
 Interworking Architecture 15
t this
The Interworking chapters describe a specification for communication between two
similar but very distinct object management systems: Microsoft’s COM (including
OLE) and the OMG’s CORBA. An optimal specification would allow objects from
either system to make their key functionality visible to clients using the other system
as transparently as possible. The architecture for Interworking is designed to mee
goal.

Contents

This chapter contains the following sections.

Section Title Page

“Purpose of the Interworking Architecture” 15-2

“Interworking Object Model” 15-3

“Interworking Mapping Issues” 15-8

“Interface Mapping” 15-8

“Interface Composition Mappings” 15-11

“Object Identity, Binding, and Life Cycle” 15-18

“Interworking Interfaces” 15-23

“Distribution” 15-32

“Interworking Targets” 15-34

“Compliance to COM/CORBA Interworking” 15-34
 CORBA V2.2 February 1998 15-1

15

ts
bject
a

ard

d

gely

n,

inly
l

ite
p,
, cut-

 the

 (and
15.1 Purpose of the Interworking Architecture

The purpose of the Interworking architecture is to specify support for two-way
communication between CORBA objects and COM objects. The goal is that objec
from one object model should be able to be viewed as if they existed in the other o
model. For example, a client working in a CORBA model should be able to view
COM object as if it were a CORBA object. Likewise, a client working in a COM
object model should be able to view a CORBA object as if it were a COM object.

There are many similarities between the two systems. In particular, both are centered
around the idea that an object is a discrete unit of functionality that presents its
behavior through a set of fully-described interfaces. Each system hides the details of
implementation from its clients. To a large extent COM and CORBA are semantically
isomorphic. Much of the COM/CORBA Interworking specification simply involves a
mapping of the syntax, structure and facilities of each to the other — a straightforw
task.

There are, however, differences in the CORBA and COM object models. COM an
CORBA each have a different way of describing what an object is, how it is typically
used, and how the components of the object model are organized. Even among lar
isomorphic elements, these differences raise a number of issues as to how to provide
the most transparent mapping.

15.1.1 Comparing COM Objects to CORBA Objects

From a COM point of view, an object is typically a subcomponent of an applicatio
which represents a point of exposure to other parts of the application, or to other
applications. Many OLE objects are document-centric and are often (though certa
not exclusively) tied to some visual presentation metaphor. Historically, the typica
domain of an COM object is a single-user, multitasking visual desktop such as a
Microsoft Windows desktop. Currently, the main goal of COM and OLE is to exped
collaboration- and information-sharing among applications using the same deskto
largely through user manipulation of visual elements (for example, drag-and-drop
and-paste).

From a CORBA point of view, an object is an independent component providing a
related set of behaviors. An object is expected to be available transparently to any
CORBA client regardless of the location (or implementation) of either the object or
client. Most CORBA objects focus on distributed control in a heterogeneous
environment. Historically, the typical domain of a CORBA object is an arbitrarily
scalable distributed network. In its current form, the main goal of CORBA is to allow
these independent components to be shared among a wide variety of applications
other objects), any of which may be otherwise unrelated.

Of course, CORBA is already used to define desktop objects, and COM can be
extended to work over a network. Also, both models are growing and evolving, and
will probably overlap in functionally in the future. Therefore, a good interworking
model must map the functionality of two systems to each other while preserving the
flavor of each system as it is typically presented to a developer.
15-2 CORBA V2.2 February 1998

15

d on a

faces
e
ary.

n

ces
The most obvious similarity between these two systems is that they are both based
architecturally on objects. The Interworking Object Model describes the overlap
between the features of the CORBA and COM object models, and how the common
features map between the two models.

Figure 15-1 Interworking Object Model

15.2 Interworking Object Model

15.2.1 Relationship to CORBA Object Model

In the Interworking Object Model, each object is simply a discrete unit of functionality
that presents itself through a published interface described in terms of a well-known,
fully-described set of interface semantics. An interface (and its underlying
functionality) is accessed through at least one well-known, fully described form of
request. Each request in turn targets a specific object—an object instance—base
reference to its identity. That target object is then expected to service the request by
invoking the expected behavior in its own particular implementation. Request
parameters are object references or nonobject data values described in the object
model’s data type system. Interfaces may be composed by combining other inter
according to some well-defined composition rules. In each object system, interfaces ar
described in a specialized language or can be represented in some repository or libr

In CORBA, the Interworking Object Model is mapped to an architectural abstractio
known as the Object Request Broker (ORB). Functionally, an ORB provides for the
registration of the following:

• Types and their interfaces, as described in the OMG Interface Definition Language
(OMG IDL).

• Instance identities, from which the ORB can then construct appropriate referen
to each object for interested clients.

Object

Interface

Request

Parameters

Identity

Implementation
CORBA V2.2 Interworking Object Model February 1998 15-3

15

 its
quest

d

cific

s
ay be

ted

 is

A CORBA object may thereafter receive requests from interested clients that hold
object reference and have the necessary information to make a properly-formed re
on the object’s interface. This request can be statically defined at compile time or
dynamically created at run-time based upon type information available through an
interface type repository.

While CORBA specifies the existence of an implementation type description calle
ImplementationDef (and an Implementation Repository, which contains these type
descriptions), CORBA does not specify the interface or characteristics of the
Implementation Repository or the ImplementationDef. As such, implementation typing
and descriptions vary from ORB to ORB and are not part of this specification.

15.2.2 Relationship to the OLE/COM Model

In OLE, the Interworking Object Model is principally mapped to the architectural
abstraction known as the Component Object Model (COM). Functionally, COM allows
an object to expose its interfaces in a well-defined binary form (that is, a virtual
function table) so that clients with static compile-time knowledge of the interface’s
structure, and with a reference to an instance offering that interface, can send it
appropriate requests. Most COM interfaces are described in Microsoft Interface
Definition Language (MIDL).

COM supports an implementation typing mechanism centered around the concept of a
COM class. A COM class has a well-defined identity and there is a repository (known
as the system registry) that maps implementations (identified by class IDs) to spe
executable code units that embody the corresponding implementation realizations.

COM also provides an extension called OLE Automation. Interfaces that are
Automation-compatible can be described in Object Definition Language (ODL) and
can optionally be registered in a binary Type Library. Automation interfaces can be
invoked dynamically by a client having no compile-time interface knowledge through a
special COM interface (IDispatch). Run-time type checking on invocations can be
implemented when a Type Library is supplied. Automation interfaces have propertie
and methods, whereas COM interfaces have only methods. The data types that m
used for properties and as method parameters comprise a subset of the types suppor
in COM, with no support for user-defined constructed types.

Thus, use of and interoperating with objects exposing OLE Automation interfaces
considerably different from other COM objects. Although Automation is implemented
through COM, for the purposes of this document, OLE Automation and COM are
considered to be distinct object models. Interworking between CORBA and OLE
Automation will be described separately from interworking with the basic COM
model.

15.2.3 Basic Description of the Interworking Model

Viewed at this very high level, Microsoft’s COM and OMG’s CORBA appear quite
similar. Roughly speaking, COM interfaces (including Automation interfaces) are
equivalent to CORBA interfaces. In addition, COM interface pointers are very roughly
equivalent to CORBA object references. Assuming that lower-level design details
15-4 CORBA V2.2 February 1998

15

wo

ct

ct
ed to

e

d B,
(calling conventions, data types, and so forth) are more or less semantically
isomorphic, a reasonable level of interworking is probably possible between the t
systems through straightforward mappings.

How such interworking can be practically achieved is illustrated in an Interworking
Model, shown in Figure 15-2. It shows how an object in Object System B can be
mapped and represented to a client in Object System A. From now on, this will be
called a B/A mapping. For example, mapping a CORBA object to be visible to a COM
client is a CORBA/COM mapping.

Figure 15-2 B/A Interworking Model

On the left is a client in object system A, that wants to send a request to a target obje
in system B, on the right. We refer to the entire conceptual entity that provides the
mapping as a bridge. The goal is to map and deliver any request from the client
transparently to the target.

To do so, we first provide an object in system A called a View. The View is an obje
in system A that presents the identity and interface of the target in system B mapp
the vernacular of system A, and is described as an A View of a B target.

The View exposes an interface, called the View Interface, which is isomorphic to th
target’s interface in system B. The methods of the View Interface convert requests from
system A clients into requests on the target’s interface in system B. The View is a
component of the bridge. A bridge may be composed of many Views.

The bridge maps interface and identify forms between different object systems.
Conceptually, the bridge holds a reference in B for the target (although this is not
physically required). The bridge must provide a point of rendezvous between A an
and may be implemented using any mechanism that permits communication between
the two systems (IPC, RPC, network, shared memory, and so forth) sufficient to
preserve all relevant object semantics.

Object System A Object System B

Object reference in A

View in A of target in B
(object in system A)

Bridge

Object reference in B

Target object
implementation in B
CORBA V2.2 Interworking Object Model February 1998 15-5

15

 the
at
tance

 A

t

rs.
The client treats the View as though it is the real object in system A, and makes the
request in the vernacular request form of system A. The request is translated into
vernacular of object system B, and delivered to the target object. The net effect is th
a request made on an interface in A is transparently delivered to the intended ins
in B.

The Interworking Model works in either direction. For example, if system A is COM,
and system B is CORBA, then the View is called the COM View of the CORBA target.
The COM View presents the target’s interface to the COM client. Similarly if system
is CORBA and system B is COM, then the View is called the CORBA View of the
COM target. The CORBA View presents the target’s interface to the CORBA clien.

Figure 15-3 shows the interworking mappings discussed in the Interworking chapte
They represent the following:

• The mapping providing a COM View of a CORBA target

• The mapping providing a CORBA View of a COM target

• The mapping providing an Automation View of a CORBA target

• The mapping providing a CORBA View of an Automation target
15-6 CORBA V2.2 February 1998

15

Figure 15-3 Interworking Mapping

Note that the division of the mapping process into these architectural componentsdoes
not infer any particular design or implementation strategy. For example, a COM View
and its encapsulated CORBA reference could be implemented in COM as a single
component or as a system of communicating components on different hosts.

The architecture allows for a range of implementation strategies, including, but not
limited to generic and interface-specific mapping.

CORBA client COM server

AA
AA

CORBA object reference

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

CORBA View
(a real CORBA object)

AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AAA
AAA
AAA
AAA
AAA

Bridge

COM interface pointer

Target COM object

CORBA server COM client

AAA
AAA

CORBA object reference

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

COM View
(a real COM object)

AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Bridge COM interface pointerTarget CORBA object

CORBA client Automation server

AA
AA

CORBA object reference

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

CORBA View
(a real CORBA object)

Bridge

Automation interface pointer

Target Automation object

CORBA server Automation client

CORBA object reference Automation View
(a real Automation object)

AA
AA
AA

AAAA
AAAA
AAAA
AAAA
AAAA

AA
AA
AA
AA
AA

Bridge
Automation interface pointerTarget CORBA object

(IDispatch pointer)

(IDispatch pointer)

a)

b)

c)

d)
CORBA V2.2 Interworking Object Model February 1998 15-7

15

s
get
t
ic

ple,

ct

o
ped

ts
• Generic Mapping assumes that all interfaces can be mapped through a dynamic
mechanism supplied at run-time by a single set of bridge components. This allow
automatic access to new interfaces as soon as they are registered with the tar
system. This approach generally simplifies installation and change management, bu
may incur the run-time performance penalties normally associated with dynam
mapping.

• Interface-Specific Mapping assumes that separate bridge components are
generated for each interface or for a limited set of related interfaces (for exam
by a compiler). This approach generally improves performance by “precompiling”
request mappings, but may create installation and change management problems.

15.3 Interworking Mapping Issues

The goal of the Interworking specification is to achieve a straightforward two-way
(COM/CORBA and CORBA/COM) mapping in conformance with the previously
described Interworking Model. However, despite many similarities, there are some
significant differences between CORBA and COM that complicate achieving this goal.
The most important areas involve:

• Interface Mapping. A CORBA interface must be mapped to and from two distin
forms of interfaces, OLE Automation and COM.

• Interface Composition Mapping. CORBA multiple inheritance must be mapped t
COM single inheritance/aggregation. COM interface aggregation must be map
to the CORBA multiple inheritance model.

• Identity Mapping . The explicit notion of an instance identity in CORBA must be
mapped to the more implicit notion of instance identity in COM.

• Mapping Invertibility . It may be desirable for the object model mappings to be
invertible, but the Interworking specification does not guarantee invertibility in all
situations.

15.4 Interface Mapping

The CORBA standard for describing interfaces is OMG IDL. It describes the reques
that an object supports. OLE provides two distinct and somewhat disjointed interface
models: COM and Automation. Each has its own respective request form, interface
semantics, and interface syntax.

Therefore, we must consider the problems and benefits of four distinct mappings:

• CORBA/COM

• CORBA/Automation

• COM/CORBA

• Automation/CORBA
15-8 CORBA V2.2 February 1998

15

BA

nnot
f

s.

ted
e).

es.

er

OLE
We must also consider the bidirectional impact of a third, hybrid form of interface, the
Dual Interface, which supports both an Automation and a COM-like interface. The
succeeding sections summarize the main issues facing each of these mappings.

15.4.1 CORBA/COM

There is a reasonably good mapping from CORBA objects to COM Interfaces; for
instance:

• OMG IDL primitives map closely to COM primitives.

• Constructed data types (structs, unions, arrays, strings, and enums) also map
closely.

• CORBA object references map closely to COM interface pointers.

• Inherited CORBA interfaces may be represented as multiple COM interfaces.

• CORBA attributes may be mapped to get and set operations in COM interfaces.

This mapping is perhaps the most natural way to represent the interfaces of COR
objects in the COM environment. In practice, however, many COM clients (for
example, Visual Basic applications) can only bind to Automation Interfaces and ca
bind to the more general COM Interfaces. Therefore, providing only a mapping o
CORBA to the COM Interfaces would not satisfy many COM/OLE clients.

15.4.2 CORBA/Automation

There is a limited fit between OLE Automation objects and CORBA objects:

• Some OMG IDL primitives map directly to Automation primitives. However, there
are primitives in both systems (for example, the OLE CURRENCY type and the
CORBA unsigned integral types) that must be mapped as special cases (possibly
with loss of range or precision).

• OMG IDL constructed types do not map naturally to any Automation construct
Since such constructed types cannot be passed as argument parameters in
Automation interfaces, these must be simulated by providing specially construc
interfaces (for example, viewing a struct as an OLE object with its own interfac

• CORBA Interface Repositories can be mapped dynamically to Automation Type
Libraries.

• CORBA object references map to Automation interface pointers.

• There is no clean mapping for multiple inheritance to OLE Automation interfac
All methods of the multiply-inherited interfaces could be expanded to a single
Automation interface; however, this approach would require a total ordering ov
the methods if [dual] interfaces are to be supported. An alternative approach would
be to map multiple inheritance to multiple Automation interfaces. This mapping,
however, would require that an interface navigation mechanism be exposed to
Automation controllers. Currently OLE Automation does not provide a canonical
way for clients (such as Visual Basic) to navigate between multiple interfaces.
CORBA V2.2 Interface Mapping February 1998 15-9

15

urred

g,
tly

g.

ing

BA

• CORBA attributes may be mapped to get and put properties in Automation
interfaces.

This form of interface mapping will place some restrictions on the types of argument
passing that can be mapped, and/or the cost (in terms of run-time translations) inc
in those mappings. Nevertheless, it is likely to be the most popular form of CORBA-to-
COM interworking, since it will provide dynamic access to CORBA objects from
Visual Basic and other OLE Automation client development environments.

15.4.3 COM/CORBA

This mapping is similar to CORBA/COM, except for the following:

• Some COM primitive data types (for example, UNICODE long, unsigned long lon
and wide char) and constructed types (for example, wide string) are not curren
supported by OMG IDL. (These data types may be added to OMG IDL in the
future.)

• Some unions, pointer types and the SAFEARRAY type require special handlin

The COM/CORBA mapping is somewhat further complicated, by the following issues:

• Though it is less common, COM objects may be built directly in C and C++
(without exposing an interface specification) by providing custom marshaling
implementations. If the interface can be expressed precisely in some COM
formalism (MIDL, ODL, or a Type Library), it must first be hand-translated to such
a form before any formal mapping can be constructed. If not, the interworking
mechanism (such as the View, request transformation, and so forth) must be
custom-built.

• MIDL, ODL, and Type Libraries are somewhat different, and some are not
supported on certain Windows platforms; for example, MIDL is not available on
Win16 platforms.

15.4.4 Automation/CORBA

The Automation interface model and type system are markedly constrained, bound
the size of the problem of mapping from OLE Automation interfaces to CORBA
interfaces.

• Automation interfaces and references (IDispatch pointers) map directly to COR
interfaces and object references.

• Automation request signatures map directly into CORBA request signatures.

• Most of the Automation data types map directly to CORBA data types. Certain
Automations types (for example, CURRENCY) do not have corresponding
predefined CORBA types, but can easily be mapped onto isomorphic constructed
types.

• Automation properties map to CORBA attributes.
15-10 CORBA V2.2 February 1998

15

t

ble

es

t is,

t use

le
 the
’s

15.5 Interface Composition Mappings

CORBA provides a multiple inheritance model for aggregating and extending objec
interfaces. Resulting CORBA interfaces are, essentially, statically defined either in
OMG IDL files or in the Interface Repository. Run-time interface evolution is possi
by deriving new interfaces from existing ones. Any given CORBA object reference
refers to a CORBA object that exposes, at any point in time, a single most-derived
interface in which all ancestral interfaces are joined. The CORBA object model do
not support objects with multiple, disjoint interfaces.1

In contrast, COM objects expose aggregated interfaces by providing a uniform
mechanism for navigating among the interfaces that a single object supports (tha
the QueryInterface method). In addition, COM anticipates that the set of interfaces that
an object supports will vary at run-time. The only way to know if an object supports an
interface at a particular instant is to ask the object.

OLE Automation objects typically provide all Automation operations in a single
“flattened” IDispatch interface. While an analogous mechanism to QueryInterface
could be supported in OLE Automation as a standard method, it is not the curren
model for OLE Automation services.2

15.5.1 CORBA/COM

CORBA multiple inheritance maps into COM interfaces with some difficulty.
Examination of object-oriented design practice indicates two common uses of interface
inheritance, extending and mixing in. Inheritance may be used to extend an interface
linearly, creating a specialization or new version of the inherited interface. Inheritance
(particularly multiple inheritance) is also commonly used to mix in a new capability
(such as the ability to be stored or displayed) that may be orthogonal to the object’s
basic application function.

Ideally, extension maps well into a single inheritance model, producing a single linear
connection of interface elements. This usage of CORBA inheritance for specialization
maps directly to COM; a unique CORBA interface inheritance path maps to a sing
COM interface vtable that includes all of the elements of the CORBA interfaces in
inheritance path.3 The use of inheritance to mix in an interface maps well into COM

1. This is established in the CORBA specification, Chapter 1, Interfaces Section, and in the
Object Management Architecture Guide, Section 4.4.7.

2. One can use [dual] interfaces to expose multiple IDispatch interfaces for a given COM co-
class. The “Dim A as new Z” statement in Visual Basic 4.0 can be used to invoke a Query-
Interface for the Z interface. Many OLE Automation controllers, however, do not use the
dual interface mechanism.

3. An ordering is needed over the CORBA operations in an interface to provide a deterministic
mapping from the OMG IDL interface to a COM vtable. The current ordering is lexico-
graphical by bytes in machine-collating sequence.
CORBA V2.2 Interface Composition Mappings February 1998 15-11

15

ps to
 the

ake
ns

r
s

 a

it.

rface

M
se are

reter
 apply

e or
-

aggregation mechanism; each mixed-in inherited interface (or interface graph) ma
a separate COM interface, which can be acquired by invoking QueryInterface with
interface’s specific UUID.

Unfortunately, with CORBA multiple inheritance there is no syntactic way to
determine whether a particular inherited interface is being extended or being mixed in
(or used with some other possible design intent). Therefore it is not possible to m
ideal mappings mechanically from CORBA multiply-inherited interfaces to collectio
of COM interfaces without some additional annotation that describes the intended
design. Since extending OMG IDL (and the CORBA object model) to support
distinctions between different uses of inheritance is undesirable, alternative mappings
require arbitrary decisions about which nodes in a CORBA inheritance graph map to
which aggregated COM interfaces, and/or an arbitrary ordering mechanism. The
mapping described in Section 13.5.2, Ordering Rules for the CORBA->MIDL
Transformation, describes a compromise that balances the need to preserve linea
interface extensions with the need to keep the number of resulting COM interface
manageably small. It satisfies the primary requirement for interworking in that it
describes a uniform, deterministic mapping from any CORBA inheritance graph to
composite set of COM interfaces.

COM/CORBA

The features of COM’s interface aggregation model can be preserved in CORBA by
providing a set of CORBA interfaces that can be used to manage a collection of
multiple CORBA objects with different disjoint interfaces as a single composite un
The mechanism described in OMG IDL in Section 15.4, “Interface Mapping,” on
page 15-8, is sufficiently isomorphic to allow composite COM interfaces to be
uniformly mapped into composite OMG IDL interfaces with no loss of capability.

CORBA/Automation

OLE Automation (as exposed through the IDispatch interface) does not rely on
ordering in a virtual function table. The target object implements the IDispatch
interface as a mini interpreter and exposes what amounts to a flattened single inte
for all operations exposed by the object. The object is not required to define an
ordering of the operations it supports.

An ordering problem still exists, however, for dual interfaces. Dual interfaces are CO
interfaces whose operations are restricted to the Automation data types. Since the
COM interfaces, the client can elect to call the operations directly by mapping the
operation to a predetermined position in a function dispatch table. Since the interp
is being bypassed, the same ordering problems discussed in the previous section
for OLE Automation dual interfaces.

Automation/CORBA

OLE Automation interfaces are simple collections of operations, with no inheritanc
aggregation issues. Each IDispatch interface maps directly to an equivalent OMG IDL
described interface.
15-12 CORBA V2.2 February 1998

15

e
der.

r. If

rface

the
n

utes.

 the

s

 by
 f
15.5.2 Detailed Mapping Rules

Ordering Rules for the CORBA->MIDL Transformation

• Each OMG IDL interface that does not have a parent is mapped to an MIDL
interface deriving from IUnknown.

• Each OMG IDL interface that inherits from a single parent interface is mapped to
an MIDL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped to
an MIDL interface deriving from IUnknown.

• For each CORBA interface, the mapping for operations precede the mapping for
attributes.

• The resulting mapping of operations within an interface are ordered based upon th
operation name. The ordering is lexicographic by bytes in machine-collating or

• The resulting mapping of attributes within an interface are ordered based upon the
attribute name. The ordering is lexicographic by bytes in machine-collating orde
the attribute is not read-only, the get_<attribute name> method immediately
precedes the set_<attribute name> method.

Ordering Rules for the CORBA->OLE Automation Transformation

• Each OMG IDL interface that does not have a parent is mapped to an ODL inte
deriving from IDispatch.

• Each OMG IDL interface that inherits from a single parent interface is mapped to
an ODL interface that derives from the mapping for the parent interface.

• Each OMG IDL interface that inherits from multiple parent interfaces is mapped to
an ODL interface which derives using single inheritance from the mapping for
first parent interface. The first parent interface is defined as the first interface whe
the immediate parent interfaces are sorted based upon interface repository id. The
order of sorting is lexicographic by bytes in machine-collating order.

• Within an interface, the mapping for operations precede the mapping for attrib

• An OMG IDL interface’s operations are ordered in the resulting mapping based
upon the operation name. The ordering is lexicographic by bytes in machine-
collating order.

• An OMG IDL interface’s attributes are ordered in the resulting mapping based upon
the attribute name. The ordering is lexicographic by bytes in machine-collating
order. For non-read-only attributes, the [propget] method immediately precedes
[propput] method.

• For OMG IDL interfaces that multiply inherit from parent interfaces, the operation
introduced in the current interface are mapped first and ordered based on the above
rules. After the interface’s operations are mapped, the operations are followed
the ordered operations from the mapping of the parent interfaces (excluding theirst
interface which was mapped using inheritance).
CORBA V2.2 Interface Composition Mappings February 1998 15-13

15
15.5.3 Example of Applying Ordering Rules

Consider the OMG IDL description shown in Figure 15-4.

Following the rules in “Detailed Mapping Rules” on page 15-13 the interface
description would map to the Microsoft MIDL definition shown in Figure 15-5 and
would map to the ODL definition shown in Figure 15-6.

interface A {// OMG IDL
void opA();
attribute long val;

};
interface B : A {

void opB();
};
interface C: A {

void opC();
};
interface D : B, C {

void opD();
};
interface E {

void opE();
};
interface F : D, E {

void opF();
};

Figure 15-4 OMG IDL Description with Multiple Inheritance

A

B C

D
E

F

15-14 CORBA V2.2 February 1998

15
[object, uuid(7fc56270-e7a7-0fa8-1d59-35b72eacbe29)]
interface IA : IUnknown{// Microsoft MIDL

HRESULT opA();
HRESULT get_val([out] long * val);
HRESULT set_val([in] long val);

};
[object, uuid(9d5ed678-fe57-bcca-1d41-40957afab571)]
interface IB : IA {

HRESULT opB();

};
[object,uuid(0d61f837-0cad-1d41-1d40-b84d143e1257)]
interface IC: IA {

HRESULT opC();
};
[object, uuid(f623e75a-f30e-62bb-1d7d-6df5b50bb7b5)]
interface ID : IUnknown {

HRESULT opD();
};
[object, uuid(3a3ea00c-fc35-332c-1d76-e5e9a32e94da)]
interface IE : IUnknown{

HRESULT opE();
};
[object, uuid(80061894-3025-315f-1d5e-4e1f09471012)]
interface IF : IUnknown {

HRESULT opF();
};

Figure 15-5 MIDL Description

A

B C

D E FA

IU IU IU IU IU
CORBA V2.2 Interface Composition Mappings February 1998 15-15

15

rate

s a
15.5.4 Mapping Interface Identity

This specification enables interworking solutions from different vendors to interope
across client/server boundaries (for example, a COM View created by product A can
invoke a CORBA server created with product B, given that they both share the same
IDL interface). To interoperate in this way, all COM Views mapped from a particular
CORBA interface must share the same COM Interface IDs. This section describe
uniform mapping from CORBA Interface Repository IDs to COM Interface IDs.

[uuid(7fc56270-e7a7-0fa8-1dd9-35b72eacbe29),
oleautomation, dual]
interface DA : IDispatch { //
Microsoft ODL

HRESULT opA([out, optional] VARAINT* v);
[propget]
HRESULT val([out] long *val);
[propset]
HRESULT val([in] long val);

};
[uuid(9d5ed678-fe57-bcca-1dc1-40957afab571),
oleautomation,dual]
interface DB : DA {

HRESULT opB([out, optional]VARIANT * v);
};
[uuid(0d61f837-0cad-1d41-1dc0-b84d143e1257),
oleautomation, dual]
interface DC: DA {

HRESULT opC([out, optional]VARIANT *v);
};
[uuid(f623e75a-f30e-62bb-1dfd-6df5b50bb7b5),
oleautomation, dual]
interface DD : DB {

HRESULT opD([out, optional]VARIANT *v);
HRESULT opC([out, optional] VARIANT *v);

};
[uuid(3a3ea00c-fc35-332c-1df6-e5e9a32e94da),
oleautomation, dual]
interface DE : IDispatch{

HRESULT opE([out, optional] VARIANT *v);
};
[uuid(80061894-3025-315f-1dde-4e1f09471012)
oleautomation, dual]
interface DF : DD {

HRESULT opF([out, optional] VARIANT *v);
HRESULT opE([out, optional] VARIANT *v);

};

Figure 15-6 Example: ODL Mapping for Multiple Inheritance

IDispatch

A

B C

D

F

IDispatch

E

15-16 CORBA V2.2 February 1998

15

8-

his

t

Mapping Interface Repository IDs to COM IIDs

A CORBA Repository ID is mapped to a corresponding COM Interface ID using a
derivative of the RSA Data Security, Inc. MD5 Message-Digest algorithm.4,5 The
repository ID of the CORBA interface is fed into the MD5 algorithm to produce a 12
bit hash identifier. The least significant byte is byte 0 and the most significant byte is
byte 8. The resulting 128 bits are modified as follows.

Note – The DCE UUID space is currently divided into four main groups:
byte 8 = 0xxxxxxx (the NCS1.4 name space)
10xxxxxx (A DCE 1.0 UUID name space)
110xxxxx (used by Microsoft)
1111xxxx (Unspecified)

For NCS1.5, the other bits in byte 8 specify a particular family. Family 29 will be
assigned to ensure that the autogenerated IIDs do not interfere with other UUID
generation techniques.

The upper two bits of byte 9 will be defined as follows.

00 unspecified
01generated COM IID
10generated Automation IID
11generated dual interface Automation ID

Note – These bits should never be used to determine the type of interface. They are
used only to avoid collisions in the name spaces when generating IIDs for multiple
types of interfaces — dual, COM, or Automation.

The other bits in the resulting key are taken from the MD5 message digest (stored in
the UUID with little endian ordering).

The IID generated from the CORBA repository ID will be used for a COM view of a
CORBA interface except when the repository ID is a DCE UUID and the IID being
generated is for a COM interface (not Automation or dual). In this case, the DCE
UUID will be used as the IID instead of the IID generated from the repository ID (t
is done to allow CORBA server developers to implement existing COM interfaces).

This mechanism requires no change to IDL. However, there is an implicit assumption
that repository IDs should be unique across ORBs for different interfaces and idenical
across ORBs for the same interface.

Note – This assumption is also necessary for IIOP to function correctly across ORBs.

4. Rivest, R. “The MD5 Message-Digest Algorithm,” RFC 1321, MIT and RSA Data Security,
Inc., April 1992.
CORBA V2.2 Interface Composition Mappings February 1998 15-17

15

,
were

ns:

t)

t of
ting
g

.

t.

Mapping COM IIDs to CORBA Interface IDs

The mapping of a COM IID to the CORBA interface ID is vendor specific. However
the mapping should be the same as if the CORBA mapping of the COM interface
defined with the #pragma ID <interface_name> = “DCE:...”.

Thus, the MIDL definition

[uuid(f4f2f07c-3a95-11cf-affb-08000970dac7), object]
interface A: IUnknown {
...
}

maps to this OMG IDL definition:

interface A {
#pragma ID A=”DC E:f4f2f07c-3a95-11cf -affb-080 00970dac7”
...
};

15.6 Object Identity, Binding, and Life Cycle

The interworking model illustrated in Figure 13-2 and Figure 13-3 maps a View in one
object system to a reference in the other system. This relationship raises questio

• How do the concepts of object identity and object life cycle in different object
models correspond, and to the extent that they differ, how can they be appropriately
mapped?

• How is a View in one system bound to an object reference (and its referent objec
in the other system?

15.6.1 Object Identity Issues

COM and CORBA have different notions of what object identity means. The impac
the differences between the two object models affects the transparency of presen
CORBA objects as COM objects or COM objects as CORBA objects. The followin
sections discuss the issues involved in mapping identities from one system to another
They also describe the architectural mechanics of identity mapping and binding.

5. MD5 was chosen as the hash algorithm because of its uniformity of distribution of bits in
the hash value and its popularity for creating unique keys for input text. The algorithm is
designed such that on average, half of the output bits change for each bit change in the inpu
The original algorithm provides a key with uniform distribution in 128 bits. The modifica-
tion used in this specification selects 118 bits. With a uniform distribution, the probability of

drawing k distinct keys (using k distinct inputs) is n!/((n-k)!* nk), where n is the number of

distinct key values (i.e., n=2118). If a million (i.e., k=106) distinct interface repository IDs
are passed through the algorithm, the probability of a collision in any of the keys is less than

1 in 1023.
15-18 CORBA V2.2 February 1998

15

licitly
bject

t.
s a

bj
a

or is

ether

rly

ce

t

is no
CORBA Object Identity and Reference Properties

CORBA defines an object as a combination of state and a set of methods that exp
embodies an abstraction characterized by the behavior of relevant requests. An o
reference is defined as a name that reliably and consistently denotes a particular objec
A useful description of a particular object in CORBA terms is an entity that exhibit
consistency of interface, behavior, and state over its lifetime. This description may fail
in many boundary cases, but seems to be a reasonable statement of a common intuitive
notion of object identity.

Other important properties of CORBA objects include the following:

• Objects have opaque identities that are encapsulated in object references.

• Object identities are unique within some definable reference domain, which is at
least as large as the space spanned by an ORB instance.

• Object references reliably denote a particular object; that is, they can be used to
identify and locate a particular object for the purposes of sending a request.

• Identities are immutable, and persist for the lifetime of the denoted object.

• Object references can be used as request targets irrespective of the denoted oect’s
state or location; if an object is passively stored when a client makes a request on
reference to the object, the ORB is responsible for transparently locating and
activating the object.

• There is no notion of “connectedness” between object reference and object, n
there any notion of reference counting.

• Object references may be externalized as strings and reinternalized anywhere within
the ORB’s reference domain.

• Two object references may be tested for equivalence (that is, to determine wh
both references identify the same object instance), although only a result of TRUE
for the test is guaranteed to be reliable.

COM Object Identity and Reference Properties

The notion of what it means to be “a particular COM object” is somewhat less clea
defined than under CORBA. In practice, this notion typically corresponds to an active
instance of an implementation, but not a particular persistent state. A COM instan
can be most precisely defined as “the entity whose interface (or rather, one of whose
interfaces) is returned by an invocation of IClassFactory::CreateInstance .”
The following observations may be made regarding COM instances:

• COM instances are either initialized with a default “empty” state (e.g., a documen
or drawing with no contents), or they are initialized to arbitrary states;
IClassFactory::CreateInstance has no parameters for describing initial
state.

• The only inherently available identity or reference for a COM instance is its
collection of interface pointers. Their usefulness for determining identity
equivalence is limited to the scope and extent of the process they live in. There
CORBA V2.2 Object Identity, Binding, and Life Cycle February 1998 15-19

15

long

 a
s

he

ls.

 this
nts in

ory.

hen

ork

ces.
still

ove

avior

e
canonical information model, visible or opaque, that defines the identity of a COM
object. Individual COM class types may establish a strong notion of persistent
identity, but this is not the responsibility of the COM model itself.

• There is no inherent mechanism to determine whether two interface pointers be
to the same COM class or not.

• The identity and management of state are generally independent of the identity and
life cycle of COM class instances. Files that contain document state are persistent,
and are identified within the file system’s name space. A single COM instance of
document type may load, manipulate, and store several different document file
during its lifetime; a single document file may be loaded and used by multiple COM
class instances, possibly of different types. Any relationship between a COM
instance and a state vector is either an artifact of the particular class type, or t
user’s imagination.

15.6.2 Binding and Life Cycle

The identity-related issues previously discussed emerge as practical problems in
defining binding and life cycle management mechanisms in the Interworking mode
Binding refers to the way in which an existing object in one system can be located by
clients in the other system and associated with an appropriate View. Life cycle, in
context, refers to the way objects in one system are created and destroyed by clie
the other system.

Lifetime Comparison

The in-memory lifetime of COM (including Automation) objects is bounded by the
lifetimes of its clients. That is, in COM, when there are no more clients attached to an
object, it is destroyed. If clients remain, the object cannot be removed from mem
Unfortunately, a reference counted lifecycle model such as COM’s has problems w
applied to wide area networks, when network traffic is heavy, and when networks and
routers are not fault tolerant (and thus not 100% reliable). For example, if the netw
connection between clients and the server object were down, the server would think
that its clients had died, and would delete itself (if there were no local references to it).
When the network connection was later restored, even just seconds later, the clients
would then have invalid object references and would need to be restarted, or be
prepared to handle invalid interface reference errors for the previously valid referen
In addition, if clients exist for a server object but rarely use it, the server object is
required to be in memory. In large, long-running distributed systems, this type of
memory consuming behavior is not typically acceptable.

In contrast, the CORBA Life Cycle model decouples the lifetime of the clients from
the lifetime of the active (in-memory) representation of the persistent server object.
The CORBA model allows clients to maintain references to CORBA server objects
even when the clients are no longer running. Server objects can deactivate and rem
themselves from memory whenever no clients are currently using them. This beh
avoids the problems and limitations introduced by distributed reference counting.
Clients can be started and stopped without incurring expensive data reloads in th
server. Servers can relinquish memory (but can later be restored) if they have not been
15-20 CORBA V2.2 February 1998

15

nd

ss
ries

BA
used recently or if the network connection is down. In addition, since the client and
server lifetimes are decoupled, CORBA, unlike COM, has no requirement for the
servers to constantly “ping” their clients -- a requirement of distributed reference
counting which can become expensive across local networks and impractical across
wide area networks.

Binding Existing CORBA Objects to COM Views

COM and Automation have limited mechanisms for registering and accessing active
objects. A single instance of a COM class can be registered in the active object
registry. COM or Automation clients can obtain an IUnknown pointer for an active
object with the COM GetActiveObject function or the Automation GetObject function.
The most natural way for COM or Automation clients to access existing CORBA
objects is through this (or some similar) mechanism.

Interworking solutions can, if desirable, create COM Views for any CORBA object a
place them in the active object registry, so that the View (and thus, the object) can be
accessed through GetActiveObject or GetObject.

The resources associated with the system registry are limited; some interworking
solutions will not be able to map objects efficiently through the registry. This
submission defines an interface, ICORBAFactory, which allows interworking solutions
to provide their own name spaces through which CORBA objects can be made
available to COM and Automation clients in a way that is similar to OLE’s native
mechanism (GetObject). This interface is described fully in Section 13.7.3,
ICORBAFactory Interface.

Binding COM Objects to CORBA Views

As described in “Object Identity Issues” on page15-18, COM class instances are
inherently transient. Clients typically manage COM and Automation objects by
creating new class instances and subsequently associating them with a desired stored
state. Thus, COM objects are made available through factories. The SimpleFactory
OMG IDL interface (described next in “SimpleFactory Interface” on page 15-23) is
designed to map onto COM class factories, allowing CORBA clients to create (and
bind to) COM objects. A single CORBA SimpleFactory maps to a single COM cla
factory. The manner in which a particular interworking solution maps SimpleFacto
to COM class factories is not specified. Moreover, the manner in which mapped
SimpleFactory objects are presented to CORBA clients is not specified.

COM View of CORBA Life Cycle

The SimpleFactory interface provides a create operation without parameters. COR
SimpleFactory objects can be wrapped with COM IClassFactory interfaces and
registered in the Windows registry. The process of building, defining, and registering
the factory is implementation-specific.
CORBA V2.2 Object Identity, Binding, and Life Cycle February 1998 15-21

15

cle

are
r,

ects

ch as
tate is

es.
M

ker

BA

s.

or

so
To allow COM and Automation developers to benefit from the robust CORBA lifecy
model, the following rules apply to COM and Automation Views of CORBA objects.
When a COM or Automation View of a CORBA object is dereferenced and there
no longer any clients for the View, the View may delete itself. It should not, howeve
delete the CORBA object that it refers to. The client of the View may call the
LifeCycleObject::remove operation (if the interface is supported) on the
CORBA object to remove it. Otherwise, the lifetime of the CORBA object is controlled
by the implementation-specific lifetime management process.

COM currently provides a mechanism for client-controlled persistence of COM obj
(equivalent to CORBA externalization). However, unlike CORBA, COM currently
provides no general-purpose mechanism for clients to deal with server objects, su
databases, which are inherently persistent (i.e. they store their own state -- their s
not stored through an outside interface such as IPersistStorage). COM does provide
monikers, which are conceptually equivalent to CORBA persistent object referenc
However, monikers are currently only used for OLE graphical linking. To enable CO
developers to use CORBA objects to their fullest extent, the submission defines a
mechanism that allows monikers to be used as persistent references to CORBA objects,
and a new COM interface, IMonikerProvider, that allows clients to obtain an IMoni
interface pointer from COM and Automation Views. The resulting moniker
encapsulates, stores, and loads the externalized string representation of the COR
reference managed by the View from which the moniker was obtained. The
IMonkierProvider interface and details of object reference monikers are described in
“IMonikerProvider Interface and Moniker Use” on page 15-23.

CORBA View of COM/Automation Life Cycle

Initial references to COM and Automation objects can be obtained in the following
way: COM IClassFactories can be wrapped with CORBA SimpleFactory interface
These SimpleFactory Views of COM IClassFactories can then be installed in the
naming service or used via factory finders. The mechanisms used to register or
dynamically look up these factories is beyond the scope of this specification.

All CORBA Views for COM and Automation objects support the LifeCycleObject
interface. In order to destroy a View for a COM or Automation object, the remove
method of the LifeCycleObject interface must be called. Once a CORBA View is
instantiated, it must remain active (in memory) for the lifetime of the View unless the
COM or Automation objects supports the IMonikerProvider interface. If the COM
Automation object supports the IMonikerProvider interface, then the CORBA View
can safely be deactivated and reactivated provided it stores the object’s moniker in
persistent storage between activations. Interworking solutions are not required to
support deactivation and activation of CORBA View objects, but are enabled to do
by the IMonikerProvider interface.
15-22 CORBA V2.2 February 1998

15

ts to

o

t
ust

ur 0
15.7 Interworking Interfaces

15.7.1 SimpleFactory Interface

CORBA allows object factories to be arbitrarily defined. In contrast, COM
IClassFactory is limited to having only one object constructor and the object
constructor method (called CreateInstance) has no arguments for passing data during
the construction of the instance. The SimpleFactory interface allows CORBA objec
be created under the rigid factory model of COM. The interface also supports CORBA
Views of COM class factories.

module CosLifeCycle
{

interface SimpleFactory
{

Object create_object();
};

};

SimpleFactory provides a generic object constructor for creating instances with n
initial state. In the future, CORBA objects, which can be created with no initial state,
should provide factories, which implement the SimpleFactory interface.

15.7.2 IMonikerProvider Interface and Moniker Use

COM or Automation Views for CORBA objects may support the IMonikerProvider
interface. COM clients may use QueryInterface for this interface.

[object, uuid(ecce76fe-39ce-11cf-8e92-08000970dac7)] // MIDL
interface IMonikerProvider: IUnknown {

HRESULT get_moniker([out] IMoniker ** val);
}

This allows COM clients to persistently save the object reference for later use withou
needing to keep the View in memory. The moniker returned by IMonikerProvider m
support at least the IMoniker and IPersistStorage interfaces. To allow CORBA object
reference monikers to be created with one COM/CORBA interworking solution and
later restored using another, IPersist::GetClassID must return the following
CLSID:

{a936c802-33fb-11cf-a9d1-00401c606e79}

In addition, the data stored by the moniker’s IPersistStorage interface must be fo
(null) bytes followed by the length in bytes of the stringified IOR (stored as a little
endian 4-byte unsigned integer value) followed by the stringified IOR itself (without
null terminator).
CORBA V2.2 Interworking Interfaces February 1998 15-23

15

the

ent

ts.
15.7.3 ICORBAFactory Interface

All interworking solutions that expose COM Views of CORBA objects shall expose
ICORBAFactory interface. This interface is designed to support general, simple
mechanisms for creating new CORBA object instances and binding to existing
CORBA object references by name.

interface ICORBAFactory: IUnknown
{

HRESULT CreateObject([in] LPTSTR factoryName, [out,
retval] IUknown ** val);

HRESULT GetObject([in] LPTSTR objectName, [out, retval]
IUknown ** val);
}

The UUID for the ICORBAFactory interface is:

{204F6240-3AEC-11cf-BBFC-444553540000}

A COM class implementing ICORBAFactory must be registered in the Windows
System Registry on the client machine using the following class id, class id tag, and
Program Id respectively:

{913D82C0-3B00-11cf-BBFC-444553540000}
DEFINE_GUID(IID_ICORBAFactory,
0x913d82c0, 0x3b00, 0x11cf, 0xbb, 0xfc, 0x44, 0x45, 0x53,

0x54, 0x0, 0x0);
“CORBA.Factory.COM”

The CORBA factory object may be implemented as a singleton object, i.e., subsequ
calls to create the object may return the same interface pointer.

We define a similar interface, DICORBAFactory, that supports creating new CORBA
object instances and binding to existing CORBA objects for OLE Automation clien
DICORBAFactory is an Automation Dual Interface. (For an explanation of Automation
Dual interfaces, see the Mapping: OLE Automation and CORBA chapter.)

interface DICORBAFactory: IDispatch
{

HRESULT CreateObject([in] BSTR factoryName, [out,
retval] IDispatch ** val);

HRESULT GetObject([in] BSTR objectName, [out, retval]
IDispatch ** val);

}

The UUID for the DICORBAFactory interface is:

{204F6241-3AEC-11cf-BBFC-444553540000}

An instance of this class must be registered in the Windows System Registry by calling
on the client machine using the Program Id “CORBA.Factory.”
15-24 CORBA V2.2 February 1998

15

del

thod
ull

must

d

ed by
e

e
 the

 the
he

 is

, for

put

The CreateObject and GetObject methods are intended to approximate the usage mo
and behavior of the Visual Basic CreateObject and GetObject functions.

The first method, CreateObject, causes the following actions:

• A COM View is created. The specific mechanism by which it is created is
undefined. We note here that one possible (and likely) implementation is that the
View delegates the creation to a registered COM class factory.

• A CORBA object is created and bound to the View. The argument, factoryName,
identifies the type of CORBA object to be created. Since the CreateObject me
does not accept any parameters, the CORBA object must either be created by a n
factory (a factory whose creation method requires no parameters), or the View
supply its own factory parameters internally.

• The bound View is returned to the caller.

The factoryName parameter identifies the type of CORBA object to be created, an
thus implicitly identifies (directly or indirectly) the interface supported by the View. In
general, the factoryName string takes the form of a sequence of identifiers separat
period characters (“.”), such as “personnel.record.person”. The intent of this nam
form is to provide a mechanism that is familiar and natural for COM and OLE
Automation programmers by duplicating the form of OLE ProgIDs. The specific
semantics of name resolution are determined by the implementation of the
interworking solution. The following examples illustrate possible implementations:

• The factoryName sequence could be interpreted as a key to a CosNameService-
based factory finder. The CORBA object would be created by invoking the factory
create method. Internally, the interworking solution would map the factoryNam
onto the appropriate COM class ID for the View, create the View, and bind it to
CORBA object.

• The creation could be delegated directly to a COM class factory by interpreting
factoryName as a COM ProgID. The ProgID would map to a class factory for t
COM View, and the View’s implementation would invoke the appropriate CORBA
factory to create the CORBA server object.

The GetObject method has the following behavior:

• The objectName parameter is mapped by the interworking solution onto a CORBA
object reference. The specific mechanism for associating names with references
not specified. In order to appear familiar to COM and Automation users, this
parameter shall take the form of a sequence of identifiers separated by periods (.), in
the same manner as the parameter to CreateObject. An implementation could
example, choose to map the objectName parameter to a name in the OMG Naming
Service implementation. Alternatively, an interworking solution could choose to
precreated COM Views bound to specific CORBA object references in the active
object registry, and simply delegate GetObject calls to the registry.

• The object reference is bound to an appropriate COM or Automation View and
returned to the caller.
CORBA V2.2 Interworking Interfaces February 1998 15-25

15

ng

he

to

n

t

ss.

he
Another name form that is specialized to CORBA is a single name with a precedi
period, such as “.NameService”. When the name takes this form, the Interworking
solution shall interpret the identifier (without the preceding period) as a name in t
ORB Initialization interface. Specifically, the name shall be used as the parameter to an
invocation of the CORBA::ORB::ResolveInitialReferences method on the
ORB pseudo-object associated with the ICORBAFactory. The resulting object
reference is bound to an appropriate COM or Automation View, which is returned
the caller.

15.7.4 IForeignObject Interface

As object references are passed back and forth between two different object models
through a bridge, and the references are mapped through Views (as is the case ithis
specification), the potential exists for the creation of indefinitely long chains of Views
that delegate to other Views, which in turn delegate to other Views, and so on. To avoid
this, the Views of at least one object system must be able to expose the reference for
the “foreign” object managed by the View. This exposure allows other Views to
determine whether an incoming object reference parameter is itself a View and, if so,
obtain the “foreign” reference that it manages. By passing the foreign reference
directly into the foreign object system, the bridge can avoid creating View chains.

This problem potentially exists for any View representing an object in a foreign objec
system. The IForeignObject interface is specified to provide bridges access to object
references from foreign object systems that are encapsulated in proxies.

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]

long *pValue;
} objSystemIDs;
interface IForeignObject : IUnknown {

HRESULT GetForeignReference([in[objSystemIDs systemIDs,
[out] long *systemID,
[out] LPSTR* objRef);

HRESULT GetRepositoryId([out] RepositoryId
*repositoryId);

}

The UUID for IForeignObject is:

{204F6242-3AEC-11cf-BBFC-444553540000}

The first parameter (systemIDs) is an array of long values that correspond to specific
object systems. These values must be positive, unique, and publicly known. The OMG
will manage the allocation of identifier values in this space to guarantee uniquene
The value for the CORBA object system is the long value 1. The systemIDs array
contains a list of IDs for object systems for which the caller is interested in obtaining
a reference. The order of IDs in the list indicates the caller’s order of preference. If the
View can produce a reference for at least one of the specified object systems, then t
15-26 CORBA V2.2 February 1998

15

y

t
 of

ode

ces,
n

second parameter (systemID) is the ID of the first object system in the incoming arra
that it can satisfy. The objRef out parameter will contain the object reference converted
to a string form. Each object system is responsible for providing a mechanism to
convert its references to strings, and back into references. For the CORBA object
system, the string contains the IOR string form returned by
CORBA::ORB::object_to_string , as defined in the CORBA specification.

The choice of object reference strings is motivated by the following observations:

• Language mappings for object references do not prescribe the representation of
object references. Therefore, it is impossible to reliably map any given ORB’s
object references onto a fixed OLE Automation parameter type.

• The object reference being returned from GetForeignObject may be from a differen
ORB than the caller. IORs in string form are the only externalized standard form
object reference supported by CORBA.

The purpose of the GetRepositoryID method is to support the ability of DICORBAAny
(see “Mapping for anys” on page 17-24) when it wraps an object reference, to produce
a type code for the object when asked to do so via DICORBAAny’s readonly typeC
property.

It is not possible to provide a similar inverse interface exposing COM references to
CORBA clients through CORBA Views, because of limitations imposed by COM’s
View of object identity and use of interface pointer as references.

15.7.5 ICORBAObject Interface

The ICORBAObject interface is a COM interface that is exposed by COM Views,
allowing COM clients to have access to operations on the CORBA object referen
defined on the CORBA::Object pseudo-interface. The ICORBAObject interface ca
be obtained by COM clients through QueryInterface. ICORBAObject is defined as
follows:

interface ICORBAObject: IUnknown
{

HRESULT GetInterface([out] IUnknown ** val);
HRESULT GetImplementation([out] IUnknown ** val);
HRESULT IsA([in] LPTSTR repositoryID, [out] boolean);
HRESULT IsNil([out] boolean *val);
HRESULT IsEquivalent([in] IUnknown* obj,[out] boolean *

val);
HRESULT NonExistent([out] boolean *val);
HRESULT Hash([out] long *val);

}

The UUID for ICORBAObject is:

{204F6243-3AEC-11cf-BBFC-444553540000}
CORBA V2.2 Interworking Interfaces February 1998 15-27

15

Automation controllers gain access to operations on the CORBA object reference
interface through the Dual Interface DIORBObject::GetCORBAObject method
described next.

interface DICORBAObject: IDispatch
{

HRESULT GetInterface([out, retval] IDispatch ** val);
HRESULT GetImplementation([out, retval] IDispatch **

val);
HRESULT IsA([in] BSTR repositoryID, [out, retval]

boolean);
HRESULT IsNil([out, retval] boolean *val);
HRESULT IsEquivalent([in] IDispatch* obj,[out,retval]

boolean * val);
HRESULT NonExistent([out,retval] boolean *val);
HRESULT Hash([out, retval] long *val);

}

The UUID for DICORBAObject is:

{204F6244-3AEC-11cf-BBFC-444553540000}

15.7.6 IORBObject Interface

The IORBObject interface provides Automation and COM clients with access to the
operations on the ORB pseudo-object.

The IORBObject is defined as follows:

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
LPSTR *pValue;

} CORBA_ORBObjectIdList;
interface IORBObject : IUnknown

HRESULT ObjectToString([in] IUnknown* obj, [out] LPSTR
*val);
HRESULT StringToObject([in] LPTSTR ref, [out] IUnknown
*val);
HRESULT GetInitialReferences([out], CORBA_ORBObjectIdList
*val);
HRESULT ResolveInitialReference([in] LPTSTR name, [out]
IUnknown ** val));

}

The UUID for IORBObject is:

{204F6245-3AEC-11cf-BBFC-444553540000}
15-28 CORBA V2.2 February 1998

15

:

A reference to this interface is obtained by calling
ICORBAFactory::GetObject(”CORBA.ORB.2”).

The methods of DIORBObject delegate their function to the similarly-named
operations on the ORB pseudo-object associated with the IORBObject.

Automation clients access operations on the ORB via the following Dual Interface

interface DIORBObject: IDispatch {
HRESULT ObjectToString([in] IDispatch* obj, [out,retval]
BSTR *val);
HRESULT StringToObject([in] BSTR ref, [out,retval]
IDispatch * val);
HRESULT GetInitialReferences([out, retval]
SAFEARRAY(IDispatch *) *val);
HRESULT ResolveInitialReference([in] BSTR name, [out,
retval] IDispatch ** val));
HRESULT GetCORBAObject([in] IDispatch* obj, [out, retval]
DICORBAObject * val);

}

The UUID for DIORBObject is:

{204F6246-3AEC-11cf-BBFC-444553540000}

A reference to this interface is obtained by calling
DICORBAFactory::GetObject(”CORBA.ORB.2”).

This interface is very similar to IORBObject, except for the additional method
GetCORBAObject. This method returns an IDispatch pointer to the DICORBAObject
interface associated with the parameter Object. This operation is primarily provided to
allow Automation controllers (i.e., Automation clients) that cannot invoke
QueryInterface on the View object to obtain the ICORBAObject interface.

15.7.7 Naming Conventions for View Components

Naming the COM View Interface Id

The default tag for the COM View’s Interface Id (IID) should be:

IID_I<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface” then the default IID tag should be:

IID_IMyModule_MyInterface
CORBA V2.2 Interworking Interfaces February 1998 15-29

15

If the module containing the interface is itself nested within other modules, the default
tag should be:

IID_I<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default IID tag shall be:

IID_IOuterModule_MyModule_MyInterface

Tag for the Automation Interface Id

No standard tag is required for Automation and Dual Interface IDs because client
programs written in Automation controller environments such as Visual Basic are not
expected to explicitly use the UUID value.

Naming the COM View Interface

The default name of the COM View’s Interface should be:

I<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface,” then the default name should be:

IMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default
name should be:

I<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

IOuterModule_MyModule_MyInterface

Naming the Automation View Dispatch Interface

The default name of the Automation View’s Interface should be:

D<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface,” then the default name should be:
15-30 CORBA V2.2 February 1998

15

t. In
DMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default
name should be:

D<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

DOuterModule_MyModule_MyInterface

Naming the Automation View Dual Interface

The default name of the Automation Dual View’s Interface should be:

DI<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“MyInterface,” then the default name should be:

DIMyModule_MyInterface

If the module containing the interface is itself nested within other modules, the default
name should be:

DI<module name>_<module name>_...<module name>_<interface
name>

where the module names read from outermost on the left to innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

DIOuterModule_MyModule_MyInterface

Naming the Program Id for the COM Class

If a separate COM class is registered for each View Interface, then the default Program
Id for that class shall be:

<module name> “.” <module name> “.” ...<module name> “.”
<interface name>

where the module names read from outermost on the left to innermost on the righ
our example, the default Program Id shall be:
CORBA V2.2 Interworking Interfaces February 1998 15-31

15

 the

t. In

d

ject
an
“OuterModule.MyModule.MyInterface”

Naming the Class Id for the COM Class

If a separate COM co-class is registered for each Automation View Interface, then
default tag for the COM Class Id (CLSID) for that class should be:

CLSID_<module name>_<module name>_...<module name>_
<interface name>

where the module names read from outermost on the left to innermost on the righ
our example, the default CLSID tag should be:

CLSID_OuterModule_MyModule_MyInterface

15.8 Distribution

The version of COM (and OLE) that is addressed in this specification (OLE 2.0 in its
currently released form) does not include any mechanism for distribution. CORBA
specifications define a distribution architecture, including a standard protocol (IIOP)
for request messaging. Consequently, the CORBA architecture, specifications, an
protocols shall be used for distribution.

15.8.1 Bridge Locality

One of the goals of this specification is to allow any compliant interworking
mechanism delivered on a COM client node to interoperate correctly with any
CORBA-compliant components that use the same interface specifications. Compliant
interworking solutions must appear, for all intents and purposes, to be CORBA ob
implementations and/or clients to other CORBA clients, objects, and services on
attached network.
15-32 CORBA V2.2 February 1998

15

nts.

nd

jects

t the
Figure 15-7 Bridge Locality

Table 15-7 on page 15-33 illustrates the required locality for interworking compone
All of the transformations between CORBA interfaces and COM interfaces described
in this specification will take place on the node executing the COM environment.
Mapping agents (COM views, CORBA views, and bridging elements) will reside a
execute on the COM client node. This requirement allows compliant interworking
solutions to be localized to a COM client node, and to interoperate with any CORBA-
compliant networking ORB that shares the same view of interfaces with the
interworking solution.

15.8.2 Distribution Architecture

External communications between COM client machines, and between COM client
machines and machines executing CORBA environments and services, will follow
specifications contained in CORBA. Figure 15-7 illustrates the required distribution
architecture. The following statements articulate the responsibilities of compliant
solutions.

• All externalized CORBA object references will follow CORBA specifications for
Interoperable Object References (IORs). Any IORs generated by components
performing mapping functions must include a valid IIOP profile.

• The mechanisms for negotiating protocols and binding references to remote ob
will follow the architectural model described in CORBA.

• A product component acting as a CORBA client may bind to an object by using any
profile contained in the object’s IOR. The client must, however, be capable of
binding with an IIOP profile.

• Any components that implement CORBA interfaces for remote use must suppor
IIOP.

COM Node

COM Object

COM View

CORBA Nodes

Any compliant
interworking
bridge

CORBA
object

CORBA
client
object
reference

ORB X

ORB Y

IIOP
communications

CORBA
View
CORBA V2.2 Distribution February 1998 15-33

15

l for
l

n

t

 are

15.9 Interworking Targets

This specification is targeted specifically at interworking between the following
systems and versions:

• CORBA as described in CORBA: Common Object Request Broker Architecture and
Specification.

• OLE as embodied in version 2.03 of the OLE run-time libraries.

• Microsoft Object Description Language (ODL) as supported by MKTYPELIB
version 2.03.3023.

• Microsoft Interface Description Language (MIDL) as supported by the MIDL
Compiler version 2.00.0102.

In determining which features of Automation to support, the expected usage mode
Automation Views follows the Automation controller behavior established by Visua
Basic 4.0.

15.10 Compliance to COM/CORBA Interworking

This section explains which software products are subject to compliance to the
Interworking specification, and provides compliance points. For general informatio
about compliance to CORBA specifications, refer to the Preface, Section 0.5,
Definition of CORBA Compliance.

15.10.1 Products Subject to Compliance

COM/CORBA interworking covers a wide variety of software activities and a wide
range of products. This specification is not intended to cover all possible products tha
facilitate or use COM and CORBA mechanisms together. This Interworking
specification defines three distinct categories of software products, each of which
subject to a distinct form of compliance. The categories are:

• Interworking Solutions

• Mapping Solutions

• Mapped Components

Interworking Solutions

Products that facilitate the development of software that will bidirectionally transform
COM and/or Automation invocations into isomorphic CORBA invocations (and vice
versa) in a generic way are Interworking Solutions. An example of this kind of
software would be a language processor that parses OMG IDL specifications and
automatically generates code for libraries that map the OMG IDL interfaces into OLE
Automation interfaces and which also parses OLE Automation ODL and automatically
generates code for libraries that map the OLE Automation interfaces into CORBA
15-34 CORBA V2.2 February 1998

15

on

that
un-

 a

s
interfaces. Another example would be a generic bridging component that, based
run-time interface descriptions, interpretively maps both COM and CORBA
invocations onto CORBA and COM objects (respectively).

A product of this type is a compliant Interworking Solution if the resulting mapped
interfaces are transformed as described in this specification, and if the mapped
interfaces support all of the features and interface components required by this
specification.

A compliant Interworking Solution must designate whether it is a compliant
COM/CORBA Interworking Solution and/or a compliant Automation/CORBA
Interworking Solution.

Mapping Solutions

Products that facilitate the development of software that will unidirectionally transform
COM and/or Automation invocations into isomorphic CORBA invocations (and vice
versa) in a generic way are described as Mapping Solutions. An example of this kind of
software would be a language processor that parses OMG IDL specifications and
automatically generates code for libraries that map the OMG IDL interfaces into OLE
Automation interfaces. Another example would be a generic bridging component
interpretively maps OLE Automation invocations onto CORBA objects based on r
time interface descriptions.

A product of this type will be considered a compliant Mapping Solution if the
resulting mapped interfaces are transformed as described in this specification, and if
the mapped interfaces support all of the features and interface components required in
this specification.

A compliant Mapping Solution must designate whether it is a compliant COM to
CORBA Mapping Solution, a compliant Automation to CORBA Mapping Solution,
compliant CORBA to COM Mapping Solution, and/or a compliant CORBA to
Automation Mapping Solution.

Mapped Components

Applications, components or libraries that expose a specific, fixed set of interfaces
mapped from CORBA to COM or Automation (and/or vice versa) are described a
Mapped Components. An example of this kind of product would be a set of business
objects defined and implemented in CORBA that also expose isomorphic OLE
Automation interfaces.

This type of product will be considered a compliant Mapped Component if the
interfaces it exposes are mapped as described in this specification, and if the mapped
interfaces support all of the features and interface components required in this
specification.
CORBA V2.2 Compliance to COM/CORBA Interworking February 1998 15-35

15

t in

uct

o

do

e

r

o

15.10.2 Compliance Points

The intent of this submission is to allow the construction of implementations that fi
the design space described in Section 15.2, “Interworking Object Model,” on
page 15-3, and yet guarantee interface uniformity among implementations with similar
or overlapping design centers. This goal is achieved by the following compliance
statements:

• When a product offers the mapping of CORBA interfaces onto isomorphic COM
and/or Automation interfaces, the mapping of COM and/or Automation interfaces
onto isomorphic CORBA interfaces, or when a product offers the ability to
automatically generate components that perform such mappings, then the prod
must use the interface mappings defined in this specification. Note that products
may offer custom, nonisomorphic interfaces that delegate some or all of their
behavior to CORBA, COM, or Automation objects. These interfaces are not in the
scope of this specification, and are neither compliant nor noncompliant.

• Interworking solutions that expose COM Views of CORBA objects are required t
expose the CORBA-specific COM interfaces ICORBAObject and IORBObject,
defined in “ICORBAObject Interface” on page 15-27 and “IORBObject Interface”
on page 15-28, respectively.

• Interworking solutions that expose Automation Views of CORBA objects are
required to expose the CORBA-specific Automation Dual interfaces
DICORBAObject and DIORBObject, defined in “ICORBAObject Interface” on
page 15-27 and “IORBObject Interface” on page 15-28, respectively.

• OMG IDL interfaces exposed as COM or Automation Views are not required to
provide type library and registration information in the COM client environment
where the interface is to be used. If such information is provided; however, then it
must be provided in the prescribed manner.

• Each COM and Automation View must map onto one and only one CORBA object
reference, and must also expose the IForeignObject interface, described in
“IForeignObject Interface” on page 15-26. This constraint guarantees the ability to
obtain an unambiguous CORBA object reference from any COM or Automation
View via the IForeignObject interface.

• If COM or Automation Views expose the IMonikerProvider interface, they shall
so as specified in “IMonikerProvider Interface and Moniker Use” on page 15-23.

• All COM interfaces specified in this submission have associated COM Interfac
IDs. Compliant interworking solutions must use the IIDs specified herein, to allow
interoperability between interworking solutions.

• All compliant products that support distributed interworking must support the
CORBA Internet Inter-ORB Protocol (IIOP), and use the interoperability
architecture described in CORBA in the manner prescribed in “Distribution” on
page 15-32. Interworking solutions are free to use any additional proprietary o
public protocols desired.

• Interworking solutions that expose COM Views of CORBA objects are required t
provide the ICORBAFactory object as defined in “ICORBAFactory Interface” on
page 15-24.
15-36 CORBA V2.2 February 1998

15

• Interworking solutions that expose Automation Views of CORBA objects are
required to provide the DICORBAFactory object as defined in “ICORBAFactory
Interface” on page 15-24.

• Interworking solutions that expose CORBA Views of COM or Automation objects
are required to derive the CORBA View interfaces from
CosLifeCycle::LifeCycleObject as described in CORBA View of
COM/Automation Life Cycle, as described under “Binding and Life Cycle” on
page 15-20.
CORBA V2.2 Compliance to COM/CORBA Interworking February 1998 15-37

15
15-38 CORBA V2.2 February 1998

	Interworking Architecture
	15.1 Purpose of the Interworking Architecture
	15.1.1 Comparing COM Objects to CORBA Objects

	15.2 Interworking Object Model
	15.2.1 Relationship to CORBA Object Model
	15.2.2 Relationship to the OLE/COM Model
	15.2.3 Basic Description of the Interworking Model

	15.3 Interworking Mapping Issues
	15.4 Interface Mapping
	15.4.1 CORBA/COM
	15.4.2 CORBA/Automation
	15.4.3 COM/CORBA
	15.4.4 Automation/CORBA

	15.5 Interface Composition Mappings
	15.5.1 CORBA/COM
	15.5.2 Detailed Mapping Rules
	15.5.3 Example of Applying Ordering Rules
	15.5.4 Mapping Interface Identity

	15.6 Object Identity, Binding, and Life Cycle
	15.6.1 Object Identity Issues
	15.6.2 Binding and Life Cycle

	15.7 Interworking Interfaces
	15.7.1 SimpleFactory Interface
	15.7.2 IMonikerProvider Interface and Moniker Use
	15.7.3 ICORBAFactory Interface
	15.7.4 IForeignObject Interface
	15.7.5 ICORBAObject Interface
	15.7.6 IORBObject Interface
	15.7.7 Naming Conventions for View Components

	15.8 Distribution
	15.8.1 Bridge Locality
	15.8.2 Distribution Architecture

	15.9 Interworking Targets
	15.10 Compliance to COM/CORBA Interworking
	15.10.1 Products Subject to Compliance
	15.10.2 Compliance Points

