Interworking Architecture 15

The Interworking chapters describe a sfieafion for communicatiometween two

similar but very distinct bject management systems: Microsofts COM (including

OLE) and the OMG’s COBA. An optimal specification would allow objects from

either system to make their key functionality visible to cliardig the other system

as transparently as possible. The architecture for Interworking is designed to meet this
goal.

Contents

This chapter contains tHellowing sections.

Section Title Page
“Purpose of the Interworking Arctecture” 15-2
“Interworking Object Model” 15-3
“Interworking Mapping Issues” 15-8
“Interface Mapping” 15-8
“Interface Composition Mappings” 15-11
“Object Identity, Binding, and Life Cycle” 15-18
“Interworking Interfaces” 15-23
“Distribution” 15-32
“Interworking Targets” 15-34
“Compliance to COM/CORBA Interworking” 15-34

CORBA V2.2 Febloag/ 15-1

15

15.1 Purpose of thimterworking Architecture

15-2

The purpose ofhe Interworking architecture is to specify support for two-way
communicatiorbetween CORBA objects and COM objects. The goal is that objects
from one object model should be able to be viewed as if they existed in the other object
model. For example, a client working in a CORBA model should be able to view a
COM object as if it were a CORBA object. Likewise, a client working in a COM

object model should be able to view a CORBA object as if it were a COM object.

There are many sitarities between the tweystems. In particular, both are centered
around the idea that an object is a discrete unit of functionality that présents
behavior through a set of fully-describaderfaces Eachsystem hides the details of
implementation from its clients. To a large extent Ca@nhl CORBA are semantically
isomorphic. Much of the COM/CORBA Interworkingesgfication simply involves a
mapping of the syntax, structure and facilities of each to the other — a straightforward
task.

There are, however, differences in the CORBA and COM object models. COM and
CORBA each have a differemtay of describing what an object is, how it is typically
used, and howhe components of the object model are organized. Even among largely
isomorphic elements, these diffaces raise a number of issues atidw to provide

the most transparent mapping.

15.1.1 Comparing COM Obijects to CORBA Objects

From a COM point of view, an object is typically a subcomponent of an application,
which represents a point of exposure to other parts of the application, or to other
applications. Many OLE objects are document-centric and are often (though certainly
not exclusively) tied to some visual presentation metaphor. Historically, the typical
domain of an COM object is a single-usanltitaskingvisual desktop such as a
Microsoft Windows desktop. Currently, the main goal of COM and OLE is to expedite
collaboration- and information-sharing among applications using the same desktop,
largely through user manipulation of visual elements (for example, drag-and-drop, cut-
and-paste).

From a CORBA point of view, an object is an independent component providing a
related set of behaviors. An object is expected to be available transparetly to

CORBA client regardless of the location (or implementation) of either the object or the
client. Most CORBA obijects focus dfistributed control in deterogeneous

environment. Historically, the typical domain of a CORBA object is an arbitrarily
scalable disthuted network. In its current form, the main goal of CORBA is lmnal

these independent components to be shared among a wide variety of applications (and
other objects), any of which may be otherwise unrelated.

Of course, CORBA is already used to define desktop objects, and COM can be
extended to work over a network. Also, both modets growing and evolving, and
will probably overlap in functionally in the future. Therefore,@od interworking
model must map the functionality of two systems @cleother while preserving the
flavor of each system as it is typically presented to a developer.

CORBAV2.2 February 1998

15

The most obviousimilarity between these two systemdfisit they are both based
architecturally orobjects The Interworking ®ject Model describes the overlap
between the features of the CORBA and COM object modelshawdhecommon
features map between the two models.

Object
Request

%@ ~ [=

Implementation

Parameters

Interface

Figure 15-1 Interworking Object Model

15.2 Interworking Object Model

15.2.1 Relationship to CORBA Object Model

In the Interworking Object Model, each object is simply a discrete unitmaftifonality

that presentgtself through a publisheéhterface described iterms of a well-known,
fully-described set of interface semantics. An interf@a® its underlying

functionality) is accessed through at least one well-known, fully descidved of

request. Each request in turn targets a specific object—an object instance—based on &
reference toits identity. That target object is thexpected to service the request by
invoking the expected behavior in its own particulaplementabn. Request

parameters are object referenceandject data values described in the object

model’s data type system. Interfaces may be composed by combining other interfaces
according to some gll-deined commsition rules. Ineach object system, interfaces are
described in a specialized larage or can be represented in some repository or library.

In CORBA, thelnterworking Object Model is mapped to an architectural abstraction
known asthe Object Request Broker (ORB). Functionally, an ORB provides for the
registration of the following:

®* Types and theinterfaces, as described in the OMG Interface Definitianduage
(OMG IDL).

® Instance identities, from which the ORB can then construct appropriate references
to each object for interested clients.

CORBA V2.2 Interworking Object Model February 1998 15-3

15

15-4

A CORBA object may thereafter receive requests from interested clients that hold its
object reference and have the necessary information to make a properly-formed request
on the object’s interface. This request can be statically defined at campaler
dynamically created at run-tinfased upon typmformation available through an

interface type repository.

While CORBA specifies the existence of an implementation type description called
ImplementationDef (and almplementationRepostory, which contains these type
descriptions), CORBA does notespify the interface or charaistics ofthe
Implementation Repository or the Implementaid@h As such,mplementation typing
and cescriptions vary from ORB to OR8nd are not part dahis specification.

15.2.2 Relationship to the OLE/COM Model

In OLE, the Interworking Object Model is principally mapped to the architectural
abstractiorknown as the @mponent Object Model (COM). Functionally, COM allows
an object to exposiés interfaces in a well-digfed binary form (that is, a virtual
function table) so that clients witatic compile-timeknowledge otthe interface’s
structure, and with a reference to an instance offering that interface, can send it
appropriate requests. Most COM interfaces are described in Microsoft Interface
Definition Language (MIDL).

COM supports ammplementation typing mechanism centesgdund the concept of a
COM class. A COM class has a well-defined identity and there is a repo@itawn

as the system registry) that maps implementations (identified by class IDs) to specific
executable code units that embody the corresporidiptementation realizations.

COM also provides an extensicalled OLE Automation. Interfaces that are
Automation-compatible can be described in Objectiiidn Language (ODL) and

can optionally beegistered in a binaryype Library. Automation interfaces can be
invoked d/namically by a client having no compile-time interfac®wledge through a
special COM interface (IDispatch). Run-tiryg@e checking on invocations can be
implementedwhen a Typelibrary is supplied. Automation interfaces have properties

and methods, whereas COM interfaces have only methods. The data types that may be
used for prpertiesand as method pameters comprise a subset of the types supported

in COM, with no support for user-defined constructed types.

Thus, use of and interoperating with objects exposing OLE Automation interfaces is
considerably different from other CObbjects. Although Atomation is implemented
through COM, for the purposes of this document, OLE Automaticth COM are
considered to be distinct object models. Interworking between CORBA and OLE
Automation will be described separately from interworking with the basic COM
model.

15.2.3 Basic Description of the Interworkiipdel

Viewed at this very high leveMicrosoft's COMand OMG’s CORBA appear quite
similar. Roughly speaking, CONhterfaces (including Automation interfaces) are
equivalent to CORBA interfaces. In addition, COM interface pointers are veghhp
equivalent to CORBA object references. Assuming that lower-level design details

CORBAV2.2 February 1998

15

(caling conventions, data types, and so forth) are moiessrsemantically
isomorphic, a reasonable level of interworking is probably possible between the two
systems thragh straightforward mappings.

How such interworking can be practically achievedlistrated in aninterworking
Model, shown in Figure 15-2. #hows how an object inlfect System B can be
mapped and represented to a client in Objecte®y#\. Fromnow on,this will be
called a B/Amapping. For example, mapping a CORBA object twibible to a COM
client is a CORBA/COM mapping.

Object System A Object System B

Target object
implementation in B

Object reference in A

Bridge

A

View in A of targetin B
(object in system A)

Object reference in B

Figure 15-2 B/A Interworking Model

On the left is a client in object system A, thadnts to send a request to a target object
in system B, on the right. We refer to the entire concentily thatprovides the
mapping as a bridge. The goal ismb@p and deliver any request from the client
transparently to the target.

To do so, we fst provide an object in system A called a View. The View is an object
in system A that presents the identity and interface of the target in system B mapped to
the vernacular of system And is described as an A View of a B target.

The View expases an interface, called the View Interface, which is isomorphic to the
target’s interface in system B. The methodshefView Interface convert requests from
system A clients into requests on the target's interface in system B.idWeisva
component of the bridge. A bridge may be composed of many Views.

The bridgemaps interface and identify fornetween different object systems.
Conceptually, the bridge holds a reference in B for the tdedough his is not
physically required). The bridge must provide a point of rendezvous between A and B,
and may bemplemented using any mechanism thggrmits communicatiobetween

the twosystems (IPC, RPC, network, shared memory, and so futh¢ient to

preserve all relevant object semantics.

CORBA V2.2 Interworking Object Model February 1998 15-5

15

15-6

The client teats the View as thmh it is thereal object in system Agnd makes the

request in the vernacular request form of system A. The request is translated into the
vernacular of object system B, addlivered to the target object. The net effect is that

a request made on an interface in A is transparently delivered to the intended instance
in B.

The Interworking Malel works in eitherdirection.For example, if system A is COM,
andsystem B is CORBA, then the View is called the COMW of the CORBA target.
The COM Viewpresents the target's interface to the COM client. Similarly if system A
is CORBA and system B is COM, then the View is called@RRBA Viewof the

COM target. The CORBA View presents the target’s interface to the CORBA. client

Figure 15-3shows thenterworking mappings discussed in the Interworking chapters.
They repesent the following:

®* The mapping providing a COM View of a CORBA target
®* The mapping providing a CORBA View of a COM target
®* The mapping providing an Automation View of a CORBA target
®* The mapping providing a CORBA View of an Automation target

CORBAV2.2 February 1998

15

b)

d)

CORBA server COM client
Target GORBA object Bridge COM interfacepointer

Y

—
v

CORBA object reference COM View
(a real COM object)

p

CORBA client COM server

CORBA object reference Bridge Target COM object

y

']]]\

¢

COM interface pointer

CORBA View .
(a real CORBA object)

CORBA server Automation client

i Automation interface pointer
Target RBA object | pyigge (IDispatch po?nter)

\

—
g

CORBA object reference Automation View .
(a real Automation object)

p

CORBA client Automation server

CORBA object reference Bridge | TargetAutomation object

Y
O——

Automation interface pointe

CORBA View (IDispatch pointer)
(a real CORBA object)

¢

Figure 15-3 Interworking Mapping

Note that the division of the mapping process into these architectural compdoests
not infer any particular design anplemenation strategy. For example, a COM View
andits encapsulated CORBA referencauld be implemented in COM as a single
component or as a system of communicating components on different hosts.

The architecture allows for a range iofiplementaibn strategies, including, but not
limited to genericand interface-specific mapping.

CORBA V2.2 Interworking Object Model February 1998 15-7

15

® Generic Mapping assumes that all interfacean be mapped through a dynamic
mechanism supplied atin-time by a single set of bridge components. This allows
automatic access to new interfaces as soon as they are registered with the target
system. This approach generally sinipbfinstallatiorand change management, but
may incur the run-time performance penalties normally associated with dynamic
mapping.

* |nterface-Specific Mapping assumes that separate bridge components are
generated for each interface or for a limited set of related interfaces (for example,
by a compiler). This approach gaally improves performance by “precompiling”
request mappings, but may create installatiod change management perhk.

15.3 Interworking Mapping Issues

The goal ofthe Interworking speditation is to achave a straightforward two-way
(COM/CORBA and CORBA/COM) mapping in conformance with the previously
described Interworking Model. However, despite maimyilarities,there are some
significant differences between CORBA and COM tt@amplicate achieving this goal.
The mostmnportant areas involve:

® Interface Mapping. A CORBA interface must be mapped to and from two distinct
forms of interfaes, OLE Automation and COM.

® Interface Composition Mapping. CORBA multiple inheritance must be mapped to
COM single inheritance/aggregation. COM interface aggregation must be mapped
to the CORBAmultiple inheritance model.

® |dentity Mapping. The explicit notion of an instance identity in CORBA must be
mapped to the morenplicit notion ofinstance identity in COM.

®* Mapping Invertibility . It may be desirable for the object model mappings to be
invertible, but the Interworking specificati@oes not guaranteeviartibility in all
situations.

15.4 Interface Mapping

15-8

The CORBA standartbr describing interfaces is OMG IDL. It describes the requests
that an object supports. OLE provides tdistinctand somewhadisjointed interdice
models: COM and Automatiofcach hasts own respective request form, interface
semanticsand interface syntax.

Therefore, we must consider the probleansl benéfs of four distinct mappings:
* CORBA/COM

®* CORBA/Automation

* COM/CORBA

® Automation/CORBA

CORBAV2.2 February 1998

15

We must also consider the bidirectional impact dtied, hybrid form of interface, the
Dual Interface, which supports both an Automation and a COMititezface. The
succeedingsections summarize the main issues faciagheof these mappings.

15.4.1 CORBA/COM

There is a reasonably good mappfrmgm CORBA objects to COM Interfaces; for
instance:

OMG IDL primitives map closely to COMrimitives.

Constructed data types (structmions, arraysstrings, and enums) also map
closely.

CORBA object references map closely to COM interface pointers.
Inherited CORBA interfaces may be representechaliple COM intefaces.
CORBA attributes may be mapped to getiset operations in COM interfaces.

This mapping is perhaps the most natural way to represent the interfaces of CORBA
objects in the COM environment. In practice, however, many COM clients (for
example, Visual Basic applications) can only bind to Automation Interfaces and cannot
bind to the more general COM Interfaces. Therefore, providing only a mapping of
CORBA to the COM Interfaces would not satisfy man9M/OLE clients.

15.4.2 CORBA/Automation

There is a limited fit between OLEwomation objects and CORBA objects:

Some OMG IDL primitves map directly to Automatigorimitives. However, there
areprimitives in both systems (faxample, the OLE CURRENCY type and the
CORBA unsigned integral types) thatst be mpped as special cases (possibly
with loss of range or precision).

OMG IDL constructed types do not map naturally to any Automation constructs.
Since such constructed types cannot be passed as argument parameters in
Automation interfaces, these must be simulated by providing specially constructed
interfaces (for example, viewing a struct as an OLE object with its own interface).

CORBA Interface Repositories can be mapped dynamically to Automatime T
Libraries.

CORBA object references map to Automation interface pointers.

There is no clean mapping for multiple inheritance to OLE Automation interfaces.
All methods of themultiply-inherted interfaces could be expanded to a single
Automation interface; however, this approach would require a total ordering over
the methods if [dual] interfaces are to be supported. famredtive approach would

be to map multiple inh&ance tomultiple Automation interfaces. This nmaipg,
however, would require that an interface navigation mechanism be exposed to OLE
Automation controllers. Currently OLE Automatidlmes not provide a canonical

way for clients (such as Visual Basic) to navigagéweemmultiple interfaces.

CORBA V2.2 Interface Mapping February 1998 15-9

15

®* CORBA attributes may be mapped to gat put properties in #tomation
interfaces.

This form of interface mapping will place somestrictions on théypes of argument
passing that can be mapped, and/or the cost (in terms of run-time translations) incurred
in those mappings. Nevertheless, it is likely to be the most popular form of C@RBA
COM interworking, since it will provide dynamic access to CORBA objects from

Visual Basic and other OLE Automatiatient development environments.

15.4.3 COM/CORBA

This mapping is sifftar to CORBA/COM, except for the following:

® Some COM pmitive data types (for example, UNICODE long, unsigned long long,
and wide char) and constructed types (for example, wide string) are not currently
supported by OMG IDL. (These data types may be added to OMG IDL in the
future.)

® Some unions, pointer types and the SAFEARRAY type require special handling.
The COM/CORBA mapping isomewhat further comglted, by thdollowing issues:

® Though it isless common, COM objects may be built directly i@ C++
(without exposing an interface specification) by providing custom marshaling
implementations. If the interfacean be expressed precisely in some COM
formalism (MIDL, ODL, or a Type Library), it must first be hand-translatesiuch
a form beforeanyformal mapping can be constructed. If not, the interworking
mechanism (such as the View, request transformadiod,so forthynust be
custom-built.

®* MIDL, ODL, and TypeLibraries are somewhat different, and some are not
supported on certaiwindows patforms; for example, MIDL is not available on
Win16 platforms.

15.4.4 Automation/CORBA

The Automationinterface model and type system are markedly constrained, bounding
the size of the problem of mappifigm OLE Automation interfaes to CORBA
interfaces.

* Automation interfaces and references (IDispatch pointers) map directly to CORBA
interfacesand dject references.

* Automation request signatures map directly into CORBA request signatures.

®* Most of the Automation data types map directly to CORBA data types. Certain
Automations types (for example, CURRENCY) do hate corresponding
predefined CORBA types, but caasily be mapped onto isomorphic constructed

types.
® Automation properties map to CORBA attributes.

15-10 CORBAV2.2 February 1998

15

15.5 Interface Composition Mappings

CORBA provides anultiple inheritance model for aggregating and extending object
interfaces. Resulting CORBA interfaces are, essentially, statically defined either in
OMG IDL files or in the Interface Repository. Run-time interface evolution is possible
by derivingnew intrfaces from existing ones. Any given CORBA object reference
refers to a CORBA object thakposes, at any point in time, a singlest-dened
interface in which all ancestral interfaces are joined. The CORBA object model does
not support objects with multiple, disjoiimtterfaces:

In contrast, COM objects expose aggregaieerfaces by providing a uniform
mechanism for navigating among the interfaces that a single object supports (that is,
the Querylinterface method). In addition, COM anticipates that the sgedfces that

an object supports will vary atin-time.The only way to know if an ob{t supports an
interface at a particular instant is to ask the object.

OLE Automation objects typically provide all Automation operations in a single
“flattened” IDispatch interface. While an anatags mechanism to Querylnterface

could be supported in OLE Automation as a standard method, it is not the current use
model for OLE Automation servicés.

15.5.1 CORBA/COM

CORBA multiple inhettiance maps into COM interfaces with some difficulty.
Examination of object-oriented design practice indicatesdmmomonuses of interface
inheritarce, extending and mixing in. Inheritance may be used to exteirdeaface
linearly, creating a specialization newversion of the inherited interface. Inheritance
(particularly multiple inheritance) is also commonlged tomix in anew apability
(such as thability to be stored or displayed) that may be orthtgg to the object's
basic application function.

Ideally, extension maps well into a single inher@da model, producing a single linear
connection of interface elements. This usage of CORBwritance for specialization
maps directly to OM; a unigue CORBA interface inheritance path maps to a single
COM interface vtable that includes all of the elements of the CORBA interfaces in the
inheritance patfi.The use of inheritance to mix in an interface maps well into COM'’s

1. Thisis established in the CORBA specification, Chapter 1, Interfaces Saciibin, the
Object Management Architecture Guide, Sectigh7.

2. One can use [dual] interfaces to expose multiple IDispatch interfacegif@en&OM co-
class. The “Dim A as new Z” statement in Visual Basic 4.0 can be used to inQalar\a
Interfacefor the Z interface. Many OLE Automatia@ontrollers, however, do not use the
dual interface mechanism.

3. An ordering is needed over the CORBA operations in an interface to provide a deterministic
mapping from the OMG IDL interface to a COM vtable. The current ordering is lexico-
graphical by bytes in machine-collating sequence.

CORBA V2.2 Interface Composition Mappings February 1998 15-11

15

15-12

aggregation mechanism; each mixed-in inherited interface (or interface graph) maps to
a separate COM interface, which can be acquired by invoking Queryinterface with the
interface’s specific UUID.

Unfortunately, with CORBA multiple inheritance there is no syntactic way to
determinewhether aparticular inherited interface is beimgtended or being mixed in
(or used with some other possible design intent). Therefore it is not possible to make
ideal mappings mechanically from CORBA multiply-inherited interfaces to collections
of COM interfaces without some additional annotation that describes theedten
design. Since extending OMG IDL (and the CORBA object model) to support
distinctionsbetween different uses of inheritance islesirable, alternative mappings
require arbitrary decisions about which nodes in a CORBA inheritgnapd map to
which aggregated COM interfaces, and/oragbitrary ordering mechanism. The
mapping described in Section 13.5.2, Ordering Rideshe CORBA->MIDL
Transformation, describes a compromise that balances the need to preserve linear
interface extensions with the need to keep the number of resulting COM interfaces
manageably small. Ratisfies the primary requirement for interworking in that it
describes a uniform, deterministic mapping from any CORBA inheritance graph to a
composite set of COM interfaces.

COM/CORBA

The features of COM’s interface aggregation modah be preserved in CORBA by
providing a set of CORBA interfaces that can be used to manegkeation of

multiple CORBA objects with different disjoint interfaces as a single composite unit.
The medanism described in OMG IDL ineStion 15.4, “Interfacéapping,” on

page 15-8, isufficiently isomorphic to &w composite COMnterfaces to be

uniformly mapped into composite OMG IDL interfaces with no losscapability.

CORBA/Automation

OLE Automation (as exposed through the IDispaftithrface)does not rely on

ordering in avirtual functiontable. The target object implements tléspatch

interface as a mini interpreter and exposes what amounts to a flattened single interface
for all operations exposed by the object. The object is not required to define an
ordering of the operations it supports.

An ordering prdolem still existshowever, for dual interfaces. Dual interfaces are COM
interfaces whose operations are restricted to the Automation data types. Since these are
COM interfaes, the client can elect to call the operations directly by mapping the
operation to a predetermined position in a function dispatch table. Since the interpreter
is being bypassed, the same ordering problems discussed in the previous section apply
for OLE Automation dual interfaces.

Automation/CORBA

OLE Automation interfaces are simple collections of operations, with no inheritance or
aggregation issues. Each IDispatoterface maps directly to an equivalent OMG IDL-
described interface.

CORBAV2.2 February 1998

15

15.5.2 Detailed Mapping Rules

Ordering Rules for the CORBA->MIDL Tramsmation

Each OMG IDL interface that does not have a parent is mapped to an MIDL
interface deriving from IlUnknown.

Each OMG IDL interface that inherits from a single parent iaterfis mapped to
an MIDL interface that derives from the mapping for the parent interface.

Each OMG IDL interface that inherits from multiple parent interfaces igpetho
an MIDL interface deriving from ldknown.

For each CORBA interface, the mapping foeogtionsprecede the mapping for
attibutes.

The resulting mapping of operations within an irde€f are ordered based upon the
operation name. The ordering is lexicographic by bytes in machine-collating order.

The resulting mapping of attributes within an interface are ordemedd upon the
attibute name. The ordering is lexicographic by bytes in machine-collating order. If
the attribute is not read-only, the get_<attribute name> method immediately
precedes the set_<@bute name> method.

Ordering Rules for the CORBA->OLE Automatigarisformation

Each OMG IDL interface that does not have a parent is mapped to an ODL interface
deriving from IDispatch.

Each OMG IDL interface that inherits from a single parent iatarfis mapped to
an ODL interface that derives from the mapping for the parent interface.

Each OMG IDL interface that inherits from multiple parent interfaces igpetpo

an ODL interface which derives using single inheritance from the mapping for the
first parent interface. Thérét pareninterface is defined as the first interface when
the immediate parent interfaces are sortesetauporinterface repository id. The
order of sorting is lexicographic by bytes in machine-collating order.

Within an interface, the mapping for operations precede the mapping for attributes.

An OMG IDL interface’s operations are ordered in the resulting mappased
upon the operation name. The ordering is lexicographic by bytes in machine-
collating order.

An OMG IDL interface’s attributes are ordered in the resulting mapping hased

the attribute name. The ordering is lexicographic by bytes in machine-collating
order. For non-read-only attributes, the [propget] method immediately precedes the
[propput] method.

For OMG IDL interfaceghat multiply inherit from parent interfaces, the operations
introduced in the current interface are mapped first and ordaszt on the above
rules. After the interface’s operations are mapped, the operations are followed by
the ordered operations from the mapping of the parent interfaces (excludiimgtthe f
interface which was mapped usiitheritance).

CORBA V2.2 Interface Composition Mappings February 1998 15-13

15

15-14

15.5.3 Example of Applying Ordering Rules

Consider the OMG IDL descriptioshown inFigure 15-4.

interface A {{/ OMG IDL
void opA();
attribute long val

interface B : A { A

void opB();
¢ / \
interface C: A { B C

void opC();
¥ ™ D/

interface D: B, C {

void opD(); T:/

interface E {

void opE();
¢
interface F: D, E {
void opF();
¢

Figure 15-4 OMG IDL Description with Multiple Inheritance
Following the rules in “Detailed Mapping Rules” on page 15-13 the interface

description would map to the Microsoft MIDL definiti@mown in Figure 15-5 and
would map to the ODL dafition shown in Figure 15-6.

CORBAV2.2 February 1998

15

[object, uuid(7fc56270-e7a7-0fa8-1d59-35b72eache29)]
interface IA : lUnknown{// Microsoft MIDL

HRESULT opA();

HRESULT get val([out] long * val);

HRESULT set_val(fin] long val);
%
[object, uuid(9d5ed678-fe57-bcca-1d41-40957afab571)]
interface IB : IA {

HRESULT opB();

h
[object,uuid (0d611837-0cad-1d41-1d40-b84d143e1257)]
interface IC: IA {

HRESULT opC();
h
[object, uuid(f623e75a-f30e-62bb-1d7d-6df5b50bb 7b5)]
interface ID : I[Unknown {

HRESULT opD();
J§
[object, uuid(3a3ea00c-fc35-332c-1d76-e5e9a32e94da)]
interface IE : IUnknown{

HRESULT opE();
h
[object, uuid(80061894-3025-315f-1d5e-4e1f09471012)]
interface IF : lUnknown {

HRESULT opF();

I3

Figure 15-5 MIDL Description

CORBA V2.2 Interface Composition Mappings February 1998 15-15

15

15-16

[uuid(7fc56270-e7a7-0fa8-1dd9-35b72eache?29),
oleautomation, dual]
interface DA : IDispatch {
Microsoft ODL
HRESULT opA([out, optional] VARAINT* v);
[propget]
HRESULT val([ouf] long *val);
[propset]
HRESULT val([in] long val);
J§
[uuid(9d5ed678-fe57-bcca-1dcl-40957afab571),
oleautomation,dual]
interface DB : DA {
HRESULT opB([out, optionallVARIANT * v);

h
[uuid (0d611837-0cad-1d41-1dc0-b84d143e1257),
oleautomation, dual]
interface DC: DA {
HRESULT opC([out, optional]VARIANT *v);
3
[uuid(f623e75a-f30e-62bb-1dfd-6df5b50bb7b5),
oleautomation, dual]
interface DD : DB {
HRESULT opD([out, optional] VARIANT *v);
HRESULT opC([out, optionall VARIANT *v);
3
[uuid(3a3eal00c-fc35-332c-1df6-e5e9a32e94da),
oleautomation, dual]
interface DE : IDispatch{
HRESULT opE([out, optional] VARIANT *v);
J§
[uuid (80061894-3025-315f-1dde-4e1f09471012)
oleautomation, dual]
interface DF : DD {
HRESULT opF([out, optional] VARIANT *v);
HRESULT opE([out, optional] VARIANT *v);

I

IDispatch

A
A IDispatch

?
E

MT—> 0> ®©
“
o~

@]

15.5.4 Mapping Interface Identity

CORBAV2.2

Figure 15-6 Example: ODL Mapping for Multiple Inheritance

This specification enables interworking solutions from different vendors to interoperate
across client/serverdundaies (for example, a COM View created by product A can
invoke a CORBA server created with product B, gitlesit they both share the same

IDL interface). To interoperate in this way, all COM Viemspped from garticular
CORBA interface must share the same COM Interface IDs. This section describes a
uniform mapping from CORBA Interfad@eposiory IDs to COM Interface IDs.

February 1998

15

Mapping Interbce Repository IDs to COM IIDs

A CORBA Repository ID is mapped to a corresponding COM Interface ID using a
derivative of the RSA Data Security, Inc. MIMessage-Digest algorithfi The
repository ID of the CORBA inteaite is fed into the MD5 algorithm to produce a 128-
bit hash identifierThe kast significant byte is bytedhd themost significant byte is
byte 8. Theresulting 128 bits are modified as follows.

Note —The DCE UUID space is currently divided into four main groups:
byte 8 = Oxxxxxxx(the NCS1.4 name space)

10xxxxxx (A DCE 1.0 UUID mme space)

110xxxxx (used byicrosoft)

1111xxxx (Unspeciéd)

For NCS1.5, the othdiits in byte 8 specify a particul&amily. Family 29 will be
assigned to ensure that the autogenerated IIDs do not interfere with other UUID
generation techniques.

The upper twdits of byte 9 will be defined as follows.

00 unspecified

Olgenerated COM IID

10generated Automation IID

1lgenerated dual interface Automation ID

Note —These bits should never be usedi&termine the type of interface. They are
used only to avoid dlisions in the namepaces when generating IIDs foultiple
types of interfaces — dual, COM, or Automation.

The other bits in the resultingey are takerfirom the MD5 message digest (stored in
the UUID with ittle endian ordering).

The IID generated from the CORBA repository ID will lsed for a COM view of a
CORBA interface except nen the repository ID is a DCE UUID and the 1ID being
generated is for a COM interface (not Automation or dual). In this case, the DCE
UUID will be used as the IID instead of the IID generated from the repository ID (this
is done to allow CORBA server developers tgliement existing COM interfaces).

This mechanism requires no change to IDL. However, there immp@licit assumption
that repository IDs should be unigque across ORBs for different interfaces aridaitlent
across ORBs for the same interface.

Note —This assumption is also necessary for [IOP to function correctly acroBs.OR

4. Rivest, R. “The MD3essage-Digest Algorithm,” RFC 1321, MIT and RSA Data Security,
Inc., April 1992.

CORBA V2.2 Interface Composition Mappings February 1998 15-17

15

Mapping COMIDs to CORBA Iterface IDs

The mapping of a COM IID tthe CORBA interface ID is vendor specific. However,
the mapping should be the same as if the CORBA mapping of the COM interface were
defined with the #pragma ID <interface_name> = “DCE....".

Thus, the MIDL ddhition

[uuid(f4f2f07c-3a95-11cf-affb-08000970dac?), object]
interface A: IUnknown {

}
maps to this OMG IDL definition:

interface A {
#pragma ID A="DC E:f4f2f07c-3a95-11cf -affb-080 00970dac7”

)

15.6 Object Identity, Bindingnd LifeCycle

15-18

The interworkingmodel illustrated in Figure 13-2 and Figure 13-3 maps a Viewne
object system to a reference in the other system. This relationship raises questions:

®* How do the concepts of object id@ptand object life cycle imifferent object
models correspond, and to the extent that thEgrdhow can they be appropriately
mapped?

®* How is a View in one systetmound to an object reference (and its referent object)
in the other system?

15.6.1 Object Identity Issues

COM and CORBA have different notions of what object identity means. The impact of
the differences between the two object models affects the transparency of presenting
CORBA objects as COM objects or COM objects as CORBA objects. The following
sections discuss the issuesdlved in mappingdentities from one system to another.
They also describe the artddtural mechanics of identity mapping and binding.

5. MD5 was chosen as the hash algorithm because of its uniformity of distribution of bits in
the hash value and its popularity for creating unique keys for input text. The algorithm is
designed such that on average, half of the output bits change for each bit change in the input.
The original algorithm provides a key with uniform distribution in 128 bits. The madif
tion used in this specification selects 118 bits. Witiniform distribution, the probability of
drawingk distinct keys (using distinct inputs) is!/((n-k)!* nk), wheren is the number of
distinct key value§.e.,n=2118). If a million (i.e.,k=1CF) distinct interface repository IDs
are passed through the algorithm, the probability of a collision in any of the keys is less than

lin 133

CORBAV2.2 February 1998

15

CORBA Obiject Identity and Reference Prdigsr

CORBA defines an object as a combination of state and a set of methods that explicitly
embodies an abstraction characterized by the behavior of relevant requests. An object
reference is defined as a name that relianlg ©nsistently denotes a particular object.

A useful description of a particular object in CORBA terms is an entity that exhibits a
consistency of interface, behavior, and state dsdifetime. This description may fail

in many boundary cases, but seems to be a reasonableestaof a common initive

notion of object identity.

Other important properties of CORBA objects include the following:
®* Objects haveopaquedentities that are encapsulated in object references.

® Object identities arenique within some definable referencentain, which is at
least as large as the space smahby an ORB instance.

®* Object referencereliably denote a particular objedhat is, they can be used to
identify and locate a particular object for the purposes of sending a request.

® |dentities are immutablegnd persist for thefetime ofthe denoted object.

® Object references can be used as request targets irrespective of the dematésd obj
state or location; if an object is passively stordtewa client makes a request on a
reference to the object, the ORB is responsible for transparently locating and
activating the object.

® There is no notion of “connectedness” between object reference and object, nor is
there anynotion of reference counting.

®* Object references may be externalized as strings and reinternalizedesiaywithin
the ORB’s reference domain.

®* Two object references may be tested for equivalence (that is, to determine whether
both references identify the same object instance), although onbuli ¢ TRUE
for the test is guaranteed to be reliable.

COM Object Identity and Refe=mce Properties

The notion of what imeans to be “a particular COM object” is somewhat less clearly
defined than under CORBA. In practidfjs notion typically corresponds to an active
instance of an implementation, but not a particular persistent state. A COM instance
can be most preciseljefined as “the entity wdseinterface (or rather, one ofhese
interfaces) is returned by an invocationlGfassFactory::Createlnstance ”

The following observationmay be made regarding COM instances:

® COM instances are either initializedtiva default “empty” state (e.g., a document
or drawing with no conts), or they arénitialized to arbitrary states;
IClassFactory::Createlnstance has no parameters for describingial
state.

®* The only inherently available identity or reference for a COM instance is its
collection of interface pointers. Their usefulness for determining identity
equivalence is limited to the scope and extent of the process they live in. There is no

CORBA V2.2 Objectldentity, Binthg, and Life Cgle February 1998 15-19

15

15-20

canonical information model, visible or opaque, tthatines the identity of a COM
object. Individual COM class types may establish a strong notion of persistent
identity, but this is not the responsibility of the COM moitgIf.

® There is no inherent mechanism to determine whether two interface pointers belong
to the same COM class or not.

®* The identity and management of state are generally independentidétiigy and
life cycle of COM class instances. Files that contain document stateiaistent,
and are identified within thélé system’s name space. A single COM instance of a
document type may load, manipulate, and store several different document files
during its lifetime; a single document file may be loadad used by multiple COM
class instances, possibly of different types. Any relationship between a COM
instance and a state vector is either an artifact of the particular class type, or the
user’s imagination.

15.6.2 Binding and Life Cycle

The identity-related issues previously dissed emerge as practical problems in

defining binding andife cycle management mechanisms in the Interworking models.
Binding refers to the way in which axisting object irone system can be located by
clients in the other system and associated with an appropriate View. Life cycle, in this
context, refers to the way objects in one system are created and destroyed by clients in
the other system.

Lifetime Comparison

The inmemory ifetime of COM(including Automation) objects is bounded by the
lifetimes of its clients. Wat is, in COM,when thereare no more clients attached to an
object, it is destroyed. If clients remain, the object cannot be removed from memory.
Unfortunately, a reference counted lifecycle model such as COM'’s has problems when
applied to wide area networks, when netwaglfic is heavy, and when networks and
routers are not fault tolerant (and thus not 100% reliable). For example, if the network
connection between clienénd the server object wedewn,the server would think

that its clientshad died, and wouldelete itself (if theravere no local references to it).
When the network connection whkster restored,\v&n just secondkater, the clients

would then have invalid object references and would need tedtarted, or be

prepared to handle invalid interface reference errors for the previously valid references.
In addition, if clients exist for a server object but rarely use it, the server object is still
required to be in memory. In large, long-runningtdbuted systems, thigpe of

memory consuming behavior is not typically acceptable.

In contrast, the CORBA Life Cycle model decouples tfetiine of the clients from

the lifetime of the activgin-memory) representation tifie persistent server object.

The CORBAmodel allows clients to maintain references to CORBA server objects
even when thelients are no longer running. Server objects can deactivate and remove
themselves from memory whenever no clients are currently using them. This behavior
avoids the problems and litations intraduced bydistributed referenceounting.

Clients can be started and stopped without incurring expensive data reloads in the
server. Servers can relinquish memory (but can later be restored) lidheyot been

CORBAV2.2 February 1998

15

used recently or if the network cogetion isdown. In addibn, since the client and
server ifetimesare decoupled, CORBA, unlike@M, has norequirement for the
servers to constantly “ping” their clients -- a requirement of distributed reference
counting which can become expensive across local networks gmdcitical across
wide area networks.

Binding Existing CORBA Objects to COM Views

COM and Automation havenhited mechanisms for registerirgnd accessingctive
objects. A single instance of a COM class can be registered actlve object
registry. COM or Automation clients can obtain an kdown pointer for an active
object with the COM GetActiveObject function or the Automati@etObject function.
The mostaturalway for COM or Automation clients to access existing CORBA
objects is througlthis (or somesimilar) mechanism.

Interworking solutions can, if desirable, create COM Views for any CORBA object and
place them in thactive object registry, so that the Vigand thus, the lgject) can be
accessed through GetActivbfact or GetObject.

The resourceassociated with the system registry are limited; some interworking
solutions will not be able to map objects efficierttiyough the regtry. This
submission defines an interface, ICBRFactory, which allows interworking solutions
to provide their own name spaces through which CORBA objects can be made
available to COM and étomation clients in a way that $smilar to OLE’s native
mechanism(GetObject). This interface is describedly in Secton 13.7.3,
ICORBAFactory Interface.

Binding COM Objects to CORBA Views

As described in “Object Identity Issues” on pddel8, COM class instances are
inherently transient. Clients typically manage COM and Automation objects by
creatingnew class instazes and subseequtly associating them with a desired stored
state. Thus, COM objects are made availableutlfindactories. The SimpleFactory

OMG IDL interface (described next in “SimpleFactory Interface” on page 15-23) is
designed to map onto COM class factoragwing CORBA clients to creat@nd

bind to) COM objects. A single CORBA SimpleFactory maps to a single COM class
factory. The manner in which a particular interworking solution maps SimpleFactories
to COM class factories is not specified. Moreover, the manner in which mapped
SimpleFactory objects are presented to CORBA clients is not specified.

COM View of CORBA Life Cycle

The Simplé-actory interice provides a create operation without parameters. CORBA
SimpleFactory objects can be wrapped with COM IClassFactory interfaces and
registered in the Windowgistry. The process of building, definirandregistering

the factory ismplementation-specific.

CORBA V2.2 Objectldentity, Binthg, and Life Cgle February 1998 15-21

15

15-22

To allow COM and Automation developers to benefit from the robust CORBA lifecycle
model, the following rules apply to COM and Automation Views ofRB® objects.
When a COM or Automation View of a CORBA object is dereferenced and there are
no longer anyclients for the View, the View may delete itself. It should not, however,
delete the CORBA object that it refers to. The client of the View may call the
LifeCycleObject::remove operation (if the intesfce is supported) on the
CORBA object to remove it. Otheise, the lifetime of the CORBA object is controlled
by the implementation-specific lifetime management process.

COM currently provides a mechanism for client-controlled persistence of COM objects
(equivalent to CORBA externalization). However, unlike CORBA, CGMrently

provides no general-purpose mechanism for clients to deal with server objects, such as
databases, which are inherently persistent (i.e. they store their own state -- their state is
not stored through an outside interfateh as IPersistStorage). COM does provide
monikers, which are conceptually equivalent to CORBA persistent object references.
However, monikers are currently only used for OLE graphical linking. To enable COM
developers to use CORBA objects to their fullest extent, the submission defines a
mechanism that allows monikers to be used as persistent references to CjR&s, o

and a new COM interface, IMonikerProvider, that allows clients to obtain an IMoniker
interface pointer from COM and Automation Views. The resulting moniker
encapsulates, stores, and loads the externalized string representation of the CORBA
reference managed by the View from which the moniker was obtained. The
IMonkierProvider interface andetails of object reference monikers are described in
“IMonikerProvider Interfaceand Moniker Use” on page 15-23.

CORBA View of COM/Automation Lifg/€le

Initial references to COM and Automation objects can be obtained ioltbeing

way: COM IClassFactories can be wrapped with CORBA SimpleFactory interfaces.
TheseSimpleFactory ¥ews of COM IClassFactories can thenibstalled in the

naming service or used via factory findeffie meclanismsused to register or
dynamically look up these factories is beyond the scopgki®fspecification.

All CORBA Views for COM and Aitomation objects support the Lifg€leObject
interface. In order to destroy a View for a COM or Automation object, the remove
method of the LifeCycleObjednterface must be called. Once a CORBA View is
instantiated, it must remain active (in memory) for the lifetime of the Vielgss the
COM or Automation objects supports the IMonikerProvider interface. If the COM or
Automation object supports the IMonikerProvideterface, then the CORBA View

can safely be deactivated arehctivated provided it stores the object’s moniker in
persistent storagleetweenactivations. Interworking solutions are not required to
support @éactivationand activation of CORBA View objects, but are enabled to do so
by the IMonikerProvider interface.

CORBAV2.2 February 1998

15

15.7 Interworking Interfaces

15.7.1 SimpleFactory Interface

CORBA allows object factories to be arbitrarily ihed. In contrast, COM

IClassFactory igimited to having only one object constructor and the object
constructor method (called Createlnstance) has no argumentasi&ing data during

the construction of the instance. The SimpleFactory interface allows CORBA objects to
be created under the rigid factory model of COMe interface alssupports CORBA
Views of COM clasdactories.

module CosLifeCycle

{
interface SimpleFactory
{
Object create_object();
|3
|3

SimpleFactory provides a generic object constructor for creating instances with no
initial state. In the future, CORBA objects, whican be createdith no initial state,
should providdactories, which implement the SimpleFactory irded.

15.7.2 IMonikerProvider Interface and Moniker Use

COM or Automation Views for CORBA objects may support the IMonikerProvider
interface. COM clients may use Querylnterface for this interface.

[object, uuid(ecce76fe-39ce-11cf-8e92-08000970dac7)] // MIDL
interface IMonikerProvider: IlUnknown {
HRESULT get_moniker([out] IMoniker ** val);

}

This allows COM clients to persistentBave the object reference for later use without
needing to keep the View in memory. The moniker returned by IMonikerProvider must
support at least the IMonikand IPersistStorage interfaces. To allow CORBjeot
reference monikers to be created with one COM/CORBA interworking solution and
later restored using anoth#Persist::GetClassID must return thdollowing

CLSID:

{a936c¢802-33fh-11cf-a9d1-00401c606e79}

In addition, the data stored by the moniker’s IPersistStorage interface must be four 0
(null) bytes followed bythe length in bytes of th&tringfied IOR (stored as a little
endian 4-byte unsigned integer value) followed bydinimgified IOR itself (without

null terminator).

CORBA V2.2 Interworking Interfaces February 1998 15-23

15

15-24

15.7.3 ICORBAFactory Interface

All interworking solutions that expose COM Views of CORBA objects shall expose the
ICORBAFactoryinterface. This interface is designed to supportegah simple
mechanisms for creating new CORBA object instances and binding to existing
CORBA object references by name.

interface ICORBAFactory: IlUnknown

{
HRESULT CreateObiject([in] LPTSTR factoryName, [out,

retval] IlUknown ** val);
HRESULT GetObject([in] LPTSTR objectName, [out, retval]
IUknown ** val);

}
The UUID for the ICORBAFactory interface is:

{204F6240-3AEC-11cf-BBFC-444553540000}

A COM class implementing ICORBARactory must be registered in tharndbws
System Registry on the client machine using the following class id, class &hthg,
Program Id resgctively:

{913D82C0-3B00-11cf-BBFC-444553540000}

DEFINE_GUID(IID_ICORBAFactory,

0x913d82c0, 0x3b00, Ox11cf, Oxbb, Oxfc, 0x44, 0x45, 0x53,
0x54, 0x0, 0x0);

“CORBA.Factory.COM”

The CORBA factory olgct may be implemented as a singleton object, i.e., subsequent
calls to create the object may return the same interface pointer.

We define a similar interface, DICORBAFactory, tisapports creating new CORBA
object instances and binding to existing CORBA objects for OLE Automation clients.
DICORBAFactory is arAutomation Dual Interface. (For an explanation aftémation
Dual interfaces, see the Mapping: OLE Automation and CORBA chapter.)

interface DICORBAFactory: IDispatch

{
HRESULT CreateObject([in] BSTR factoryName, [out,
retval] IDispatch ** val);
HRESULT GetObject([in] BSTR objectName, [out, retval]
IDispatch ** val);
}

The UUID for the DICORBAFactorynterface is:

{204F6241-3AEC-11cf-BBFC-444553540000}

An instance of this class must be registered in the Windows System Registifitny
on the client machine using the Program Id “CORBA.Factory.”

CORBAV2.2 February 1998

15

The Create®jectand GetObgct methods are intended to approximate the usage model
and behavior of the Visual Basic CreateObject and GetObject functions.

The frst method, @CeateObject, causes the followiagtions:

® A COM View is created. The specific mechanism by which it is created is
undefined. We note here that one possible (d&m®dly) implementation is that the
View delegates thereation to a registered COM class factory.

® A CORBA object is created and bound to the Vidlwe argument, factoryName,
identifies the type of CORBA object to be created. Since the CreateObject method
does not accept arparameters, the CORBA object must either be created by a null
factory (a factory whose creation method requires no parameters), or the View must
supply its own factory parameters internally.

® The bound View is returned to the caller.

The factoryNime parameter identifies the type of CORBA object to be created, and
thus implicitly identifies (directly or indirectly) the interfasapported by the View. In
general, the factoryName string takes the form of a sequence of identifiers separated by
period characters (*.”), such as “personnel.record.person”. The intent of this name
form is toprovide a mechanism that is familiand natural for COM and OLE

Automation programmers by duplicating the form of OLE ProglDe specific

semantics of name resolution are determined by the implementation of the

interworking solution. Théollowing examples illustrate possible implementations:

®* The factorfName sequence could be interpreted as a key to a CosMarivesS
based factory findeThe CORBAobject would be created by invoking the factory
create method. Internally, the interworking solution would map the factoryName
onto the appropriate COM class ID for the View, create the View, and bind it to the
CORBA object.

® The creation could be delegated directly to a COM class factory by interpreting the
factoryName as a COM ProgID. The ProgID would map to a class factory for the
COM View, and the View'smplementaibn would invoke the appropriate CORBA
factory to create the CORBA server object.

The Getject method has the following behavior:

®* The objectName grameter is mapped by the interworking solutimto a CORBA
object referenceThe specific mechanism for associating hames with references is
not specified. In order to appear fitier to COM and Automatiorusers, this
parameter shall take the form of a sequence of identifieerategl byperiods (.), in
the same manner as the parameter to CreateObject. An implementation could, for
example, choose to map the objectNgraeameter to a name in the OMG Naming
Service implementation. Alternatively, an interworking solution could choose to put
precreated COM Views bound gpecific CORBA object references in the active
object registryandsimply delegate €tObject calls to the regfiy.

®* The object reference is bound to an appropriate COM or Automation View and
returned to the caller.

CORBA V2.2 Interworking Interfaces February 1998 15-25

15

15-26

Another name form that is specialized to CORBA is a single name with a preceding
period, such as “.NameService”. When the name takes this form, the Interworking
solution shall interpret the identifier (without the preceding period) as a name in the
ORB Initialization interface. Specifically, the name shalulsed as thegrameter to an
invocation of theCORBA::ORB::ResolvelnitialReferences method on the
ORB pseudo-bject associated with the ICORBAFactory. The resulting object
reference is bound to an appropriate COM or Automation View, which is returned to
the caller.

15.7.4 |ForeignObject Interface

As object references are passed backfantt between two dferent object models
through a bridge, and the references are mapped through Views (as is thetlsse in
specification), the potential exists for the creation of indefinitely loragnshof Views
that delegate to other Views, which in turn delegate to other Views, amil Jo avoid
this, the Views of at leasine object systemmust be able to expose theference for

the “foreign” object managed by the View. This exposltews other Views to
determine whether an incoming object reference paramedtselisa Mew and, if so,
obtain the “foreign” reference that it manages. By passing the foreign reference
directly into the foreign object system, the bridgen avoid creating View chains.

This problem potentially exists fany View representing an object in a foreign object
system. The IForeignObject interface iesified to provide bridges access to object
references from foreign object systems thateameapsulated in proxies.

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
long *pValue;
} objSystemIDs;
interface IForeignObject : IlUnknown {
HRESULT GetForeignReference([in[objSystemIDs systemIDs,
[out] long *systemID,
[out] LPSTR* objRef);
HRESULT GetRepositoryld([out] Repositoryld
*repositoryld);

}
The UUID for IForeignObiject is:

{204F6242-3AEC-11cf-BBFC-444553540000}

The frst parameter (systemIDs) is an array of long values that cemesip specific
object systems. These values must be pesitinique, and publicly known. The OMG
will manage the allocation of identifier values in this space to guarantee uniqueness.
The valuefor the CORBA object system is the long value 1. The systemIDs array
contains a list of IDs for object systems fehich thecaller is interested in obtaining

a reference. The order of IDs in the listlicates thecaller’'s order of preference. If the
View can produce a reference forledst one of the specified object systems, then the

CORBAV2.2 February 1998

15

second parametésystemiD) is the ID of the first object system in the incoming array
that it can satisfy. ThebjRef out parameter will adainthe object reference converted
to a string form. Each objesystem is responsible for providing a mechanism to
convert its references to stringmd back into references. For the CORBA object
system, the string contains the IGRing formreturned by
CORBA::ORB::0bject_to_string , as defined in the CORBA specification.

The choice ofobject reference strings msotivated by theollowing observations:

® Language mappings for object references do not prescribe treseepation of
object references. Therefore, it is impossible to reliably map any given ORB’s
object references onto a fixed OLE Automation parameter type.

® The object reference being returrfedm GetForeignObject may be from a different
ORB than the caller. IORs in string form are the only externalized standard form of
object reference supported by CORBA.

The purpose of the GetRegitoryID method is to support the ability of DICORB#&y

(see “Mapping for anys” on page 17-24) whewitips an objecateferance, to produce

a type code for the object when asked to do so via DICORBAAnNy’s readonly typeCode
property.

It is not possible to provide gimilar inverse interface exposing COM references to
CORBA clients through CORBA Views, because of limitations imposed by COM’s
View of objectidentity and use of interface pointer as references.

15.7.5 ICORBAODbiject Interface

The ICORBAODbjecinterface is a COM interface that is exposed by COM Views,
allowing COM clients to have access to operations on the CORBA object references,
defined on th€ORBA::Object pseudo-interface. The ICORBAODbject interface can
be obtained by COM clients through Querylnterface. ICORBAObject is defined as
follows:

interface ICORBAODject: IlUnknown
{
HRESULT Getlnterface([out] IlUnknown ** val);
HRESULT Getimplementation([out] [lUnknown ** val);
HRESULT IsA([in] LPTSTR repositoryID, [out] boolean);
HRESULT IsNil([out] boolean *val);
HRESULT IsEquivalent([in] lUnknown* obj,[out] boolean *
val);
HRESULT NonExistent([out] boolean *val);
HRESULT Hash([out] long *val);

}
The UUID for ICORBAODject is:

{204F6243-3AEC-11cf-BBFC-444553540000}

CORBA V2.2 Interworking Interfaces February 1998 15-27

15

Automation controllers gain access to operations on the CORBA object reference
interface through the Dual InterfaBHORBODbject::GetCORBAODbject method
described next.

interface DICORBAODbiject: IDispatch

{
HRESULT Getlnterface([out, retval] IDispatch ** val);
HRESULT Getlmplementation([out, retval] IDispatch **

val);
HRESULT IsA([in] BSTR repositorylD, [out, retval]
boolean);
HRESULT IsNil([out, retval] boolean *val);
HRESULT IsEquivalent([in] IDispatch* obj,[out,retval]
boolean * val);

HRESULT NonEXxistent([out,retval] boolean *val);
HRESULT Hash(Jout, retval] long *val);

}
The UUID for DICORBAODbject is:

{204F6244-3AEC-11cf-BBFC-444553540000}

15.7.6 IORBODbject Interface

The IORBject interice provides Automatioand COM clients with access to the
operations on the ORB pseudo-object.

The IORBMject is defined as follows:

typedef struct {
unsigned long cbMaxSize;
unsigned long cbLengthUsed;
[size_is(cbMaxSize), length_is(cbLengthUsed), unique]
LPSTR *pValue;

} CORBA_ORBODbjectldList;

interface IORBODbject : lUnknown
HRESULT ObjectToString([in] lUnknown* obj, [out] LPSTR
*val);
HRESULT StringToObject([in] LPTSTR ref, [out] IUnknown
*val);
HRESULT GetlnitialReferences([out], CORBA_ORBODbijectldList
*val);
HRESULT ResolvelnitialReference([in] LPTSTR name, [out]
[lUnknown ** val));

}
The UUID for IORBObject is:

{204F6245-3AEC-11cf-BBFC-444553540000}

15-28 CORBAV2.2 February 1998

15

A reference to this interface is obtaineddafling
ICORBAFactory::GetObject("CORBA.ORB.2").

The nethods of DIORBODbject delegate their function to sivailarly-named
operations on the ORB pseudo-object associated with the IORBObject.

Automation clients access operations on the ORB via the following Dual Interface:

interface DIORBObject: IDispatch {
HRESULT ObjectToString([in] IDispatch* obj, [out,retval]
BSTR *val);
HRESULT StringToObject([in] BSTR ref, [out,retval]
IDispatch * val);
HRESULT GetlnitialReferences([out, retval]
SAFEARRAY/((IDispatch *) *val);
HRESULT ResolvelnitialReference([in] BSTR name, [out,
retval] IDispatch ** val));
HRESULT GetCORBAODbiject([in] IDispatch* obj, [out, retval]
DICORBAODbject * val);

}
The UUID for DIORBODbject is:
{204F6246-3AEC-11cf-BBFC-444553540000}

A reference to this interface is obtaineddafling
DICORBAFactory::GtObject("CORBA.ORB.2").

This interface is vergimilar to IORBject, except for the additional method
GetCORBAOject. This method returns an IDispatch pointer to the IR8BObject
interface associated with the parameter Object. This operatimarily provided to
allow Automation controllers (i.e., Automation clients) that cannabkev
Querylinterface on the View object to obtain the ICORBAODbject iatetf

15.7.7 Naming Conventions for View Components

Naming the COM View Inteate Id

The default tag for the COM View’s Interface Id (l1ID) should be:

[ID_l<module name>_<interface name>

For example, if the module name is “MyModule” and ifiterface name is
“Mylnterface” then the default IID tag should be:

[ID_IMyModule_Myinterface

CORBA V2.2 Interworking Interfaces February 1998 15-29

15

If the module containing the interfaceitself nested within other modules, the default
tag should be:

[ID_l<module name>_<modulename>_...<module name>_<interface
name>

where the module names read from outermost otetthéo innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default IID tag shall be:

[ID_IOuterModule_MyModule_Mylnterface

Tag for the Autmation Interfce Id

No standard tag is required for Automatiand Dual Interface IDs becauskent
programs written in Automation controller environmesitish as Visual Basic are not
expected to explicitly use the UUID value.

Naming the COM View Interface
The default name of the COM View's Interface should be:

I<module name>_<interface name>

For example, if the module name is “MyModule” and ihterface name is
“Mylnterface,” then the default name should be:

IMyModule_Mylnterface

If the module containing the interfaceitself nested within other modules, the default
name should be:

I<module nhame>_<module name>_...<module name>_<interface
name>

where the module names read from outermost oneftiéo innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

IOuterModule_MyModule_Myinterface

Naming the Automation View Dispatch Interface

The default name of the Automation View’s Interface should be:

D<module name>_<interface name>

For example, if the module name is “MyModule” and the interface name is
“Mylnterface,” then the default name should be:

15-30 CORBAV2.2 February 1998

15

DMyModule_Mylnterface

If the module containing the interfaceitself nested within other modules, the default
name should be:

D<module name>_<module name>_...<module nhame>_<interface
name>

where the module names read from outermost otetlhéo innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

DOuterModule_MyModule_MyInterface

Naming the Automation View Dual Interface

The default name of the Automation Dual View’s Interface should be:

Di<module name>_<interface name>

For example, if the module name is “MyModule” and ithierface name is
“Mylnterface,” then the default name should be:

DIMyModule_Mylnterface

If the module containing the interfaceitself nested within other modules, the default
name should be:

Dil<module name>_<module name>_...<module hame>_<interface
name>

where the module names read from outermost oneffiéo innermost on the right.
Extending our example, if module “MyModule” were nested within module
“OuterModule,” then the default name shall be:

DIOuterModule_MyModule_MyInterface

Naming the Program Id for the COM Class

If a separate COM class is registered for eaew\nterface, then the default Program
Id for that class shall be:

wn wn wn

<module name> “.” <module name> “.” ...<module name> “,
<interface name>

where the module names read from outermost on the left to innermost on the right. In
our example, the default Program Id shall be:

CORBA V2.2 Interworking Interfaces February 1998 15-31

15

15.8 Distribution

“OuterModule.MyModule.Mylnterface”

Naming the Class Id for the COM Class

If a separate COM co-class is registered for each Automation View Interface, then the
default tag for the COM Class Id (CLSID) for that class should be:

CLSID_<module name>_<module name>_...<module name>_
<interface name>

where the module names read from outermost on the left to innermost on the right. In
our example, the default @LD tag should be:

CLSID_OuterModule_MyModule Mylnterface

The vesion of COM (and OLE) that is addressed in this specification (2.DEnN its
currently released forngoes not include any mechanism éistribution. CORBA
specifications define a distribution architecture, including a standard prdthieBl)

for request messaging. Consequently, the CORBA architecture, specifications, and
protocols shall be used forsdiibution.

15.8.1 Bridge Locality

15-32

One of the goals of this specification is to allamy compliant interworking

mechanism delered on a COM client node to intgerate correctly with any
CORBA-compliant components that use the same interfacefisptions. Compliant
interworking solutions must appear, for all intents and purposes, to be CORBA object
implementations and/or clients to other CORBA clients, objects, and services on an
attached network.

CORBAV2.2 February 1998

15

1HoP CORBA Nodes
communications

ORB X

X _ CORBA

COMNode Any compliant .4 object
intérworking \
COM View bridge | CORBA
- — — client
- | Q‘/‘ob'ect

|
|
|
\ L _— _— 1 rerterence
i
\ N
[}@)

|

|

|

|

f Lo 7N7 3

COM Obiject CORBA
View

ORBY

Figure 15-7 Bridge Locality

Table 15-7 on page 15-33 illustrates the required locality for interworking components.
All of the transformations between CORB#Aterfacesand COMinterfaces described

in this specification will take place on the node executing the COM environment.
Mapping agents (COM views, CORBA views, and bridging elements) will reside and
execute on the COM client node. This requirement allows compliant interworking
solutions to be localized to a COM cliemdde, and to interagrate vith any CORBA-
compliant networking ORB that shares the same view of interfaces with the
interworking solution.

15.8.2 Distribution Architecture

External communications between COM client machines behdeen COM client
machines and machines executing CORBA environments and services, will follow
specifications contained B@ORBA Figure 15-7 illustrates the required distribution
architecture. The following statements articuldie responsibilities of compliant
solutions.

® All externalized CORBA object references will follo@ORBAspecifications for
Interoperable Object Referenc@g®Rs). Any IORs generated by components
performing mapping functions must include a valid IIOP profile.

®* The mechanisms for negotiating protocols and binding references to remote objects
will follow the architectural model described GORBA

® A product componerdcting as a CORBA client mdyind to an object by using any
profile contained in the object’s IOR. The client must, however, be capable of
binding with an IIOP profile.

®* Any components that implement CORBA interfaces for remote use must support the
[IOP.

CORBA V2.2 Distribution February 1998 15-33

15

15.9 Interworking Targets

This spedication is tageted specifically at interworkingetween the following
systemsand versions:

® CORBA as described i@ORBA: Common Objecteuest Broker Ahitecture and
Specification.

® OLE as embodied in version 2.03 of the OLE run-time libraries.

® Microsoft Object Description Language (ODL) as supported by MKTYPELIB
version 2.03.3023.

® Microsoft Interface Descriptiondnguage (MIDL) as supported by the MIDL
Compiler version 20.0102.

In determining which features of Automation to support, the expected usage model for
Automation Views follows the Automation controller behavior established by Visual
Basic 4.0.

15.10 Compliance to COM/CORBA Interworking

15-34

This section eglains which software products are subject to compliance to the
Interworking specification, and provides compliance points. For general information
about compliance to CORBA sp#cations, refer to the Preface, Sectiorb,

Definition of CORBA Compliance.

15.10.1 Products Subject to Compliance

COM/CORBA interworking covers a wideariety of software activities and a wide
range of products. This spécation isnot intended to cover all possible products that
facilitate oruse COM and CORBA mechanisms together. This Interworking
specification defines three distinct categories of software products, each of which are
subject to a distinct form of compliance. The categories are:

® Interworking Solutions
® Mapping Solutions

®* Mapped Components

Interworking Solutions

Products thatacilitate thedevelopment of software that will bidirectionally transform
COM and/or Automation invocations into isomorphic CORBA irations(and vice
versa) in a generizvay are Interworking Solutions. An example of this kind of
software would be a language processor that parses OMG IDL specifications and
automatically generatade forlibraries that map the OMG IDL interfaces into OLE
Automation interfaces and which also parses OLE Automation OD laatainatically
generates code for libraries that map the OLE Autmmanterfaces into CORBA

CORBAV2.2 February 1998

15

interfaces. Another example would be a generic bridging component that, based on
run-time interface descriptions, interpretively maps both C&id CORBA
invocations onto CORBA and COM objects (respectively).

A product of this type is aompliant Interworking Solution if the resulting mapped
interfaces are transformed as described in this specificaimhif the mapped
interfaces support all of the featurasd interface components required by this
specification.

A compliant Interworking Solution must designate whether it is a compliant
COM/CORBA Interworking Solution and/or a cpfiant Automatio/CORBA
Interworking Solution.

Mapping Solutions

Products thafacilitate the development of soféine that will unidirectionally transform
COM and/or Automation invocations into isomorphic CORBA irations(and vice

versa) in a generic way are describedapping SolutionsAn example of this kind of
software would be a language processor that parses OMG IDL specifications and
automatically generatade forlibraries that map the OMG IDL interfaces into OLE
Automation interfaces. Another example would be a generic bridging component that
interpretively maps OLE Automation invocations onto CORBA objects based on run-
time interface descriptions.

A product of this type will be consideredcampliant Mapping Solution if the
resulting mgped interfaces are transformed as described in teisifggation, and if
the mapped interfaces suppalt of the featureand interface components required in
this specification.

A compliant Mapping Solution must designate whether it is a compliant COM to
CORBA Mapping Solution, a compliant Automation to CORBA Mapping Solution, a
compliant CORBA to COM Mapping Solution, and/or a compliant CORBA to
Automation Mapping Solution.

Mapped Components

Applications, components or libraries that expose a specific, fixed seteofaces
mapped from CORBA to COM or Automation (and/or vice versa) are described as
Mapped Components. An example of this kind of product would $& af business
objects defined and implemented in CORBA that algmosg isomorphic OLE
Automation interfaces.

This type of product will be considereccampliant Mapped Component if the
interfaces it exposes are mapped as describdusirspecificationand if the mapped
interfaces support all of the featurasd interface components requiredhis
specification.

CORBAV2.2 Compliance to COM/CORBA Interworking February 1998 15-35

15

15-36

15.10.2 Compliance Points

Theintent of this submission is to allow the construction of implementations that fit in
the design space described in Section 15.2, “Interworkingdijodel,” on

page 15-3, and yet guarantee interface uniftyreamong implementations with similar

or overlapping design centers. This goal is achieved bfotlesving compliance
statements:

When a product offers the mapping of CORBrerfaces ato isomorphic COM

and/or Automation interfzes, the mapping of COM and/or Automatioterfaces

onto isomorphic CORBAnNterfaces, or when a productfefs the ability to
automatically generate components that perform such mappings, then the product
must use the interface mappings defined in this §paton. Note thaproducts

may offer custom, nonisomorphic interfaces that delegate some or all of their
behavior to CORBA, COM, or &tomation objects. Thesnterfaces are not in the
scope of this specificatiomnd areneither complianhor noncompliant.

Interworking solutions thag¢xpose COM Views of CORBA objects are required to
expose the CORBA-specific COMterfaces IC&RBAODbject and IORB®ject,
defined in “ICORBAODbject Interface” opage 15-27 and “IORBODbject Interface”
on page 15-28, respéatly.

Interworking solutions thagxpose Automation Views of CORBA objects are
required to expose the CORBAespfic Automation Dual interfaces
DICORBAODject and DIORB®ject, defined in “ICORBAObject Interface” on
page 15-27 and “IORBObject Interface” on page 15+28pectively.

OMG IDL interfaces exposed as COM outdmation Views are not required to
provide type library andegistration information in the COM client environment
where the interface is to be used. If sirformation is provided; however, then it
must be provided in the prescribed manner.

Each COM and Atomation View must map ontine and only one CORBA object
reference, andhust also expose the IForeignObjaterface, described in
“IForeignObijectinterface” on page 15-26. This constraint guaranteesltiiiy to
obtain an unambiguous CORBA object reference femiy COM or Automation
View via the IForeignObjednterface.

If COM or Automation Views expose the IMonikerProvider interface, they shall do
so as specified in “IMonikerProvider Interfaaad Moniker Use” on page 15-23.

All COM interfaces specified in this submission have associated COM Interface
IDs. Compliant interworking solutiormmust use the [IDs ggified herein, to allow
interoperability between interworkingplutions.

All compliant products that suppadtstributed interworking mustupport the
CORBA Internet Inter-ORB Protocol (IIOP), and use the interopktabi
architecture described in CORBA in the manner prescribed in “Distribution” on
page 15-32. Interworking solutions are free to use any additional proprietary or
public protocols desired.

Interworking solutions thaexpose COM Views of CORBA objects are required to
provide the ICORBAFactory object as defined in “ICORBAFactory Interface” on
page 15-24.

CORBAV2.2 February 1998

15

® Interworking solutions thagéxpose Automation Views of CORBA objects are
required to provide the DICORBAFactory object as defined in “IG@Ractory
Interface” onpage 15-24.

® Interworking solutions thagéxpose CORBA Views of COM or Automation objects
are required to derive the CORBA View interfaces from
CosLifeCycle::LifeCycleObject as described in CORBA View of
COM/Automation Life Cycle, as described under “Binding aiife: ICycle” on
page 15-20.

CORBAV2.2 Compliance to COM/CORBA Interworking February 1998 15-37

15

15-38 CORBAV2.2 February 1998

	Interworking Architecture
	15.1 Purpose of the Interworking Architecture
	15.1.1 Comparing COM Objects to CORBA Objects

	15.2 Interworking Object Model
	15.2.1 Relationship to CORBA Object Model
	15.2.2 Relationship to the OLE/COM Model
	15.2.3 Basic Description of the Interworking Model

	15.3 Interworking Mapping Issues
	15.4 Interface Mapping
	15.4.1 CORBA/COM
	15.4.2 CORBA/Automation
	15.4.3 COM/CORBA
	15.4.4 Automation/CORBA

	15.5 Interface Composition Mappings
	15.5.1 CORBA/COM
	15.5.2 Detailed Mapping Rules
	15.5.3 Example of Applying Ordering Rules
	15.5.4 Mapping Interface Identity

	15.6 Object Identity, Binding, and Life Cycle
	15.6.1 Object Identity Issues
	15.6.2 Binding and Life Cycle

	15.7 Interworking Interfaces
	15.7.1 SimpleFactory Interface
	15.7.2 IMonikerProvider Interface and Moniker Use
	15.7.3 ICORBAFactory Interface
	15.7.4 IForeignObject Interface
	15.7.5 ICORBAObject Interface
	15.7.6 IORBObject Interface
	15.7.7 Naming Conventions for View Components

	15.8 Distribution
	15.8.1 Bridge Locality
	15.8.2 Distribution Architecture

	15.9 Interworking Targets
	15.10 Compliance to COM/CORBA Interworking
	15.10.1 Products Subject to Compliance
	15.10.2 Compliance Points

