The Object Model 1

This chapter dscribes the concrete object model that underlies the CORBA
architecture. The model is derived from the abstrace®bject Model defined by the
Object Managemen®roup inthe Object Management Ahitecture Guide
(Information about th©MA Guideand other books in the CORBAdumentation set
is provided in this document's preface.)

Contents

This chapter contains tHellowing sections.

Section Title Page
“Overview” 1-1
“Object Semantics” 1-2
“Object Implementation” 1-8

1.1 Overview

The object model provides an organized presentation of object concepts and
terminology. It defines a partial model for computation that embodies the key
characteristics of objects as realized by the submitted technologies. The OMG object
model isabstractin that it is not directlyrealized byany particular techology. The

model described here iscancreteobject model. A concrete object model may differ
from the abstract object model in several ways:

CORBA V2.2 ebruary 1998 1-1



* It may elaboratethe abstract object model by making it more specific, for
example, by defining the form of request parameters or the dgegused to
specify types.

* It may populatethe model by introducing specific instancesaofities defined by
the model, for example, specific objects, specific operations, or specific types.

* It may restrictthe model by eliminating entities or placing additional restrictions
on theiruse.

An object system is a collection of objects that isolates the requestors of services
(clients) from the providers of services by a well-defieadapsulatingnterface. In
particular, clients are isolated from the implementations of services as data
representations and executable code.

The object model first describes concepts that are meaningful to clients, including such
concepts as object creation aneritity, requests and operat® types and signatures.

It then describes concepts related to object implementations, including such concepts
as methods, execution engines, and activation.

The object model is most specifendprescriptive in defining concepts meaningful to
clients. The discussion of object implementation is nsuggestive, with the intent of
allowing maximal freedom for different object technologies to provide differaysw
of implemening objects.

There are some other characteristics of object systems that are outside the scope of the
object model. Some of these concepts are aspects of application architecture, some are
associated with specific domains to which object technology is applied. Such concepts
are more properly dealt with in an architectural reference model. Examples of excluded
concepts are compound objects, links, copying of objects, change management, and
transactions. Also outside theoge of the object model are tdetails of control

structure: the object model does not say whether clients and/or servers are single-
threaded omult-threaded, and does not spedifyw event loops are programmed nor

how hreads are created, destroyed, or synchronized.

This object model is an example of a classical object model, where a client sends a
message to an object. Conceptually, the objeetprets the message to decide what
service to perform. In the classical model, a message identifies an abjezero or

more actual parameters. As in most classical object models, a diskieg first

parameter is required, which identifies the operation to be performed; the interpretation
of the message by the object involves selecting a method based on the specified
operation. Operationally, of course, method selection could be performed either by the
object or the ORB.

1.2 Object Semantics

An object system provides services to clientlié@nt of a service is any entity
capable of requesting the service.

This section defines the concepts associated with object semantics, that is, the concept:
relevant to clients.

CORBAV2.2 February 1998



1.2.1 Objects

An object system includes entitigsown asobjects. Anobjectis an identifiable,
encapsulateéntity that provide®ne or more services that can be requested by a
client.

1.2.2 Requests

Clients request services by issuing requesteeqiestis an event (i.e., something that
occurs at a particular time). The information associated with a request consists of an
operation, a target object, zero or more (actual) parametedsan optional request
context.

A request formis a description or pattern thedin be evaluated or performeulltiple

times to cause the issuing of requests. As described in the OMG IDL Synmdax
Semantics chapter, request forms are defined by particulpudge bindings. An
alternative request form consists of calls to the dynamic invocation interface to create
an invocation structure, add arguments to the invocation structure, and to issue the
invocation (refer to the Dynamic Invocation Interface chapter for descriptions of these
request forms).

A valueis anything that may be aditimate (actual) parameter irrequest. More
particularly, a value is an instance of an OMG IDL data type. There are non-object
values, as well as values that reference obijects.

An objectreferenceis a value that reliably denotes a particular object. Specifically, an
object reference will identify the same objeetch time the refenee is used in a
request (subject to certain pragmaditoits of space and time). An object may be
denoted bymultiple, distinct object referares.

A request may have parameters that are used to pass data to the target object; it may
also have a request context which provides additional information about the request. A
request context is a mapping fratrings tostrings.

A request causes a service to be performed on behalf of the client. One possible
outcome of performing a service is returning to the client the results, if any, defined for
the request.

If an abnormal condition occurs during the performance of a request, an exception is
returned. The exception may carry additional refpanameters particular to that
exception.

The request parameters are identified by position. A parameter may be an input
parameter, an output parameter, or an input-output parameter. A request may also
return a singleeturn result valugas well as the results stored into the output and
input-output parameters.

The followingsemantics hold for all requests:

* Any aliasing of parameter values is neither guaranteed removed nor guaranteed to
be preserved.

» The order in which aliased output parameters are written is not guaranteed.

CORBAV2.2 Object Semantics February 1998 1-3



1-4

The return result and the values stored into the output and input-output
parameters are undefined if an exception is returned.

For descriptions of the values andceptions that are peitted,see “Types” on
page 1-4 and “Exceptions” on page 1-7.

1.2.3 Object Creadn and Destruction

Objects can be created and destahy-rom eclient’s point of view, there is no special
mechanism for creating or destroying an object. Objects are created and destroyed as
an outcome of issuing requests. The outcome of object creation is revealed to the client
in the form of an object reference that denotes the new object.

1.2.4 Types

A typeis an identifiable entity ith an associated predicate (a single-argument
mathematical function with a boolean result) defined over values. A salisfiesa
type if the predicate is true for that value. A value Hadisfies a type is called a
member of the type

Types are used in signaturesréstrict a possible parameter or to characterize a
possible result.

The extension of a typis the set of values that satisfy the typamt paticular time.

An object types a type whose members are object references. In other words, an
object type is satisfied only by object references.

Constraints on the data types in this model are shown in this section.

Basic types
» 16-bit, 32-bit, and 64-bit signed and unsigned 2's complement integers.
* Single-precision (32-bitdouble-precision @&-bit), and double-extended (a
mantissa of at least 64 bits, a signdmntd an exponent of &ast 15 bits) IEEE
floating point numbers.

 Fixed-point decimal numbers of up to 31 significant digits.

» Characters, as defined in ISO Latin-1 (8859.1) and other single- or multi-byte
character sets.

» A boolean type taking the values TRUE and FALSE.

* An 8-bit opaque detectable, guaranteeddbundergo any conversion during
transfer between sgems.

* Enumerated types consisting of ordered sequences of identifiers.

» A stringtype, which consists of a variable-length array of characters (a null
character is one whose character code is 0); the length of the stripgs#iae
integer, and is available at run-time.

* A container type “any,” which can represent any possible basic or constructed
type.
» Wide characters that may represent characters &myrwide characteset.

CORBAV2.2 February 1998



1

» Wide charactestrings, which consist of a length, available at runtime, and a
variable-length array of (fixed width)ide characters.

Constructed types:

* A record type (called struct), which consists of an ordered set of (name,value)
pairs.

* A discriminated union type, which consists adiacriminator (wlose exact value
is always availablefollowed by aninstance of a type appropriate to the
discriminator value.

* A sequence type, which consists of a variable-length array of a single type; the
length of the sequence is available at riumet

» An array type, which consists of a fixed-shapeltdimensional array of a single

type.
* An interfacetype, which specifies the set of operations which an instance of that
type must support.

Values in a request arestricted to values that satisfy these type constraints. The legal
values areshown in Figure 1-1 on page 1-5. Notparar representation for values is
defined.

Short
Object Reference Long
LongLong
UShort
Ulong
UlongLong
Float
Double
LongDouble
Fixed

Char
Wochar
String

Value Basic Value

Constructed Value

Figure 1-1 Legal Values

1.2.5 Interfaces

Struct
Sequence
Union
Array

Wstring
Boolean
Octet
Enum
Any

An interfaceis a description of a set of possible operations that a client may request of
an object. An objecsatisfiesan interface if it can be specified as the target object in
each potential request described by ititerface.

An object typés a type that is satisfied by any object reference whose referent satisfies
an interface that describes the object type.

CORBAV2.2 Object Semantics

February 1998

1-5



1-6

Interfaces are specified in OMG IDL. Interface inheritance provides the @sifop
mechanism for permitting an object to suppatltiple inerfaces.The principal
interfaceis simply the most-specific interface that the object suppanis,consists of
all operations in the transitive closure of the interface inheritance graph.

1.2.6 Operations

An operationis an identifiable entity that denotes a service that can be reqaested
is identified by aroperation identifier An operation is not a value.

An operation has a signature that describeseabiimate values afequest parameters

and

returnedesults. In particular, aignatureconsists of:
A specification of the parameters required in requests for that operation.
A specification of the result of the operation.

An identification of the user exceptions that may be raised by a request for the
operation.

A specification of additional contextual information that may affect the request.

An indication of the execution semantics the client should expect from a request
for the operation.

Operations are (potentially) generic, meaning that a single operation can be uniformly
requested on objects with differa@ntplementabns, possibly resulting in observably
different behavior. Genericity is achieved in this model via interface inheritance in IDL
and the total decoupling of implementatiwom interface specification.

The generaform for an operation signature is:

[oneway] <op_type_spec> <identifier> (p araml, ..., paramL)

[raises(exceptl,...,exceptN)] [context(hamel, ..., nameM)]

where

The optionaloneway keyword indicates that best-effort semantics are expected
of requests for this operation; the default semantics are exactly-once if the
operation successfully returns results or at-most-once if an exception is returned.

The<op_type_spec> is the type of the return result.
The<identi fier> provides a name for the operation in the interface.

The operation parameters needed for the operation; they agedlagth the
modifiersin, out, orinout to indicate the direction in which the information
flows (with respect to the object performing the request).

The optionakaises expression indicates which user-defined exceptions can be
signaled taterminate a request for this operation; if such an expression is not
provided, no user-defined exceptions will be signaled.

The optionalcontext expression indicates which request contefdrimation

will be available to the object implementation; no other contextual information is
required to be transported with the request.

CORBAV2.2 February 1998



Parameters

A parameter is characterized by its mode and its typenidueindicates whether the
value should be passed from client to seri), from server to clientqut), or both
(inout ). The parameter’s type constrains the possible valbhich may be passed in
the directions dictated by the mode.

Return Result

The returnresult is a distiguishedout parameter.

Exceptions

An exception is an indication that an operation request was not performed successfully.
An exception may be accompanied by additional, exception-specific information.

The additional, exception-specific fiarmation is a specialized form of record. As a
record, it may consist afny of the types described in “Types” on page 1-4.

All signatures implicitly include the system exceptions; the standard system exceptions
are described in “Standard Exceptions” on page 3-37.

Contexts

A request context provides additional, operation-specific information that may affect
the performance of a request.

Execution Semantics

Two styles of execution semantics are defined by the object model:
» At-most-once: if an operation request returns successfuilgstperformed
exactly once; if it returns an exception indicationyéts perfomed at-most-once.
» Best-effort: a best-effort operation is a uegt-only operatiori,e. it cannot return
any results and the requester never synchronizes with the completion, if any, of
the request.

The executiorsemantics to be expected is associated with an operation. This prevents
a clientand object implementaticinom assuming different execution semantics.

Note that a client is able tovioke anat-most-aice ogeration in a syahronous or
deferred-synchronous manner.

1.2.7 Attributes

An interface may have attributes. An attribute is logically equivalent to declaring a pair
of accessor functions: one to retrieve the value of tidate andone to set the value
of the attribute.

CORBAV2.2 Object Semantics February 1998 1-7



An attribute may be read-only, in which case only rihteievalaccessor function is
defined.

1.3 Object Implementation

This section defines the concepts associated with object implementation, i.e. the
concepts relevant teealizing the behavior of objects in a computational system.

The mplementation of an object system carries out the computationatiastheeded
to effect the behavior of requested services. Tlaeseities may includeomputing
the results of the requeahd updating the system state. In the process, additional
requests may be issued.

The mplementation model consists o parts: the execution model and the
construction modelThe execution moel describes how services are performed. The
construction model describéew servicesre defined.

1.3.1 The Execution Model: Performi&grvices

A requested service is performed in a computational system loyitingcode that

operates upon some data. The data represents a component of the state of the
computational system. The code performs the requested service, which may change the
state of the system.

Code that is executed to perform a service is calledthod A method is an

immutable description of a computation that can be interpreted by an execution engine.
A method has an immutable attributalled amethod formathat defines the set of
execution engines that can interpret the methodexXecution enginé an abstract
machine (not a program) that can interpret methodsdfin formatscausing the
described computations to be performed. An execution engine defines a dynamic
context for the execution of a methdthe execution of anethod is called anethod
activation

When a client issues a request, a method of the target object is called. The input
parameters passed by the requestor are passed to the method and thenduitgauit-
output parameters and return result value (or exceptiohts parameters) angassed
back to the requestor.

Performing a requested service causes a method to execute that may upmrade
object’s persistent state. If the persistent form ofrlethod orstate isnot accessible
to the execution engine, it may be necessaryrét dopy the method cstate into an
execution context. This process is calbattivation the reverse process is called
deactivation

1.3.2 The ConstructioModel

A computational object system must provide mechanisms for realizing behavior of
requests. These mechanisms includénitefns of object state, definitions of methods,
anddefinitions of how the object infrastructure is to select the oustho execute and

CORBAV2.2 February 1998



1

to select the relevant portions of object state to be made accessible to the methods.
Mechanisms must also be provided to describe theretes actions associated with
object creation, such as association of the new object with appropriate methods.

An object implerentation—or implementationfor short—is a definition thgirovides

the informationneeded to create an object and to allow the objepattcipate in
providing an appropriate set of services. An implementation typically includes, among
other things, definitions of the methods that opewgten thestate of an object. It also
typically includes informatiombout the intended types of the object.

CORBA V2.2 ObjectImplementation February 1998 1-9



1-10 CORBAV2.2 February 1998



	The Object Model
	1.1 Overview
	1.2 Object Semantics
	1.2.1 Objects
	1.2.2 Requests
	1.2.3 Object Creation and Destruction
	1.2.4 Types
	1.2.5 Interfaces
	1.2.6 Operations
	1.2.7 Attributes

	1.3 Object Implementation
	1.3.1 The Execution Model: Performing Services
	1.3.2 The Construction Model



