
BEA WebLogic Enterprise
Creating Client Applications

B E A W e b L o g i c E n t e r p r i s e 4 . 2
D o c u m e n t E d i t i o n 4 . 2

J u l y 1 9 9 9

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Creating Client Applications

Document Edition Date Software Version

4.2 July 1999 BEA WebLogic Enterprise 4.2

Contents

Preface
Purpose of This Document ... vii

How to Use This Document .. viii

Related Documentation ... xi

Contact Information... xiv

1. Client Application Development Concepts
Overview of Client Applications... 1-2

OMG IDL .. 1-3

OMG IDL to C++ Mapping ... 1-3

OMG IDL to Java Mapping ... 1-3

OMG IDL to COM Mapping ... 1-4

Static and Dynamic Invocation ... 1-4

Client Stubs .. 1-6

Interface Repository .. 1-7

Domains... 1-8

Environmental Objects .. 1-9

Bootstrap Object... 1-10

Factories and the FactoryFinder Object ... 1-11

Naming Conventions and WLE Extensions to the FactoryFinder Object 1-12

SecurityCurrent Object... 1-14

TransactionCurrent Object ... 1-15

InterfaceRepository Object .. 1-16

Concepts for ActiveX Client Applications.. 1-17

What is ActiveX? ... 1-17

Views and Bindings ... 1-17

Naming Conventions for ActiveX Views .. 1-18
Creating Client Applications iii

2. Creating CORBA Client Applications
Summary of the Development Process for CORBA C++ Client Applications. 2-2

Summary of the Development Process for CORBA Java Client Applications . 2-3

Step 1: Obtaining the OMG IDL File .. 2-4

Step 2: Selecting the Invocation Type ... 2-6

Step 3: Compiling the OMG IDL File... 2-7

Step 4: Writing the CORBA Client Application ... 2-8

Initializing the ORB ... 2-9

Establishing Communication with the WLE Domain 2-9

Resolving Initial References to the FactoryFinder Object 2-11

Using the FactoryFinder Object to Get a Factory 2-12

Using a Factory to Get a CORBA Object .. 2-13

Step 5: Building the CORBA Client Application.. 2-14

Server Applications Acting as Client Applications ... 2-14

Using Java2 Applets .. 2-15

3. Creating ActiveX Client Applications
Summary of the Development Process for ActiveX Client Applications 3-2

The BEA Application Builder ... 3-3

Step 1: Loading the Automation Environmental Objects into the Interface
Repository... 3-5

Step 2: Loading the CORBA Interfaces into the Interface Repository 3-5

Step 3: Starting the Interface Repository Server Application 3-6

Step 4: Creating ActiveX Bindings for the CORBA Interfaces 3-7

Step 5: Loading the Type Library for the ActiveX Bindings 3-8

Step 6: Writing the ActiveX Client Application ... 3-9

Including Declarations for the Automation Environmental Objects, Factories,
and ActiveX Views of CORBA Objects... 3-9

Establishing Communication with the WLE Domain 3-10

Obtaining References to the FactoryFinder Object 3-11

Using a Factory to Get an ActiveX View... 3-11

Invoking Operations on the ActiveX View .. 3-12

Step 7: Deploying the ActiveX Client Application ... 3-13
iv Creating Client Applications

4. Using Security
Overview of WLE Security ... 4-1

Summary of the Development Process for Security.. 4-2

Step 1: Using the Bootstrap Object to Obtain the SecurityCurrent Object 4-3

Step 2: Getting the PrincipalAuthenticator Object from the SecurityCurrent
Object ... 4-4

Step 3: Obtaining the Authentication Level .. 4-5

Step 4: Logging on to the WLE Domain with Proper Authentication 4-5

Step 5: Logging off the WLE Domain .. 4-7

5. Using Transactions
Overview of WLE Transactions.. 5-1

Summary of the Development Process for Transactions 5-2

Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object.. 5-2

Step 2: Using the TransactionCurrent Methods .. 5-3

6. Using the Dynamic Invocation Interface
When to Use DII.. 6-2

DII Concepts.. 6-3

Request Objects .. 6-3

Options for Sending Requests .. 6-4

Options for Receiving the Results of Requests .. 6-5

Summary of the Development Process for DII ... 6-6

Step 1: Loading the CORBA Interfaces into the Interface Repository 6-7

Step 2: Obtaining the Object Reference for the CORBA Object 6-8

Step 3: Creating a Request Object... 6-8

Using the CORBA::Object::_request Member Function 6-8

Using the CORBA::Object::create_request Member Function.................. 6-9

Setting Arguments for the Request Object ... 6-9

Setting Input and Output Arguments with the CORBA::NamedValue
Member Function .. 6-9

Example of Using CORBA::Object::create_request Member

Function .. 6-10

Step 4: Sending a DII Request and Retrieving the Results 6-11

Synchronous Requests.. 6-11
Creating Client Applications v

Deferred Synchronous Requests... 6-11

Oneway Requests ... 6-12

Multiple Requests ... 6-12

Step 5: Deleting the Request ... 6-16

Step 6: Using the Interface Repository with DII ... 6-17

7. Handling Exceptions
CORBA Exception Handling Concepts .. 7-1

CORBA System Exceptions .. 7-1

CORBA C++ Client Applications ... 7-3

Handling System Exceptions.. 7-4

User Exceptions.. 7-5

CORBA Java Client Applications ... 7-6

System Exceptions.. 7-7

User Exceptions.. 7-8

ActiveX Client Applications ... 7-9

Index
vi Creating Client Applications

Preface

Purpose of This Document

This document describes how to create CORBA C++, CORBA Java, and ActiveX
client applications for the BEA WebLogic Enterprise (sometimes referred to as WLE)
software. This document provides step-by-step instructions for creating client
applications, and includes code examples to illustrate the development process. For
information about WebLogic Enterprise concepts, see Getting Started.

Note: For instructions about how to create joint client/server applications, that is,
clients that support callback objects that may be invoked by servers and native
clients within the WebLogic Enterprise domain, see Using Server-to-Server
Communication.

Note: Effective February 1999, the BEA M3 product is renamed. The new name of
the product is BEA WebLogic Enterprise (WLE).

Who Should Read This Document

This document is intended for programmers who want to develop client applications
for the WebLogic Enterprise software.

How This Document Is Organized

Creating Client Applications is organized as follows:
Creating Client Applications vii

pts

,

t

t full
ne

t a
t Chapter 1, “Client Application Development Concepts,” introduces the conce
you need to know to develop client applications for the WLE software.

t Chapter 2, “Creating CORBA Client Applications,” provides instructions for
creating CORBA C++ and CORBA Java client applications.

t Chapter 3, “Creating ActiveX Client Applications,” provides instructions for
creating ActiveX client applications.

t Chapter 4, “Using Security,” describes using security in CORBA C++, CORBA
Java, and ActiveX client applications.

t Chapter 5, “Using Transactions,” describes using transactions in CORBA C+
CORBA Java, and ActiveX client applications.

t Chapter 6, “Using the Dynamic Invocation Interface,” explains how to use the
Dynamic Invocation Interface (DII) from CORBA C++ and CORBA Java clien
applications.

t Chapter 7, “Handling Exceptions,” explains how CORBA C++, CORBA Java,
and ActiveX client applications handle CORBA exceptions.

How to Use This Document

This document, Creating Client Applications, is designed primarily as an online,
hypertext document. If you are reading this as a paper publication, note that to ge
use from this document you should access it as an online document via the Onli
Documentation CD for the BEA WebLogic Enterprise 4.2 release.

The following sections explain how to view this document online, and how to prin
copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the following file:

\doc\wle\v42\index.htm
viii Creating Client Applications

Note: The online documentation requires Netscape Communicator version 4.0 or
later, or Microsoft Internet Explorer version 4.0 or later.

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print.

The Online Documentation CD includes Adobe Acrobat PDF files of all of the online
documents. You can use the Adobe Acrobat Reader to print all or a portion of each
document. On the CD Home Page, click the PDF Files button and scroll to the entry
for the document you want to print.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

.doc

BITMAP

float
Creating Client Applications ix

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v][-o name] [-f firstfile-syntax]
 [-l lastfile-syntax]

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

t That an argument can be repeated several times in a command line

t That the statement omits additional optional arguments

t That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

genicf [options] idl-filename...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
x Creating Client Applications

Related Documentation

The following sections list the documentation provided with the M3 software, related
BEA publications,and other publications related to the technology.

BEA WebLogic Enterprise Documentation

The BEA WebLogic Enterprise information set consists of the following documents:

Installation Guide

C++ Release Notes

Java Release Notes

Getting Started

Guide to the University Sample Applications

Guide to the Java Sample Applications

Creating Client Applications (this document)

Creating C++ Server Applications

Creating Java Server Applications

Administration Guide

Using Server-to-Server Communication

C++ Programming Reference

Java Programming Reference

Java API Reference

Java JDBC Driver Programming Reference

System Messages

Glossary
Creating Client Applications xi

Technical Articles

Note: The Online Documentation CD also includes Adobe Acrobat PDF files of all
of the online documents. You can use the Adobe Acrobat Reader to print all
or a portion of each document.

BEA Publications

Selected BEA TUXEDO Release 6.5 for WebLogic Enterprise version 4.2 documents
are available on the Online Documentation CD.

To access these documents:

1. Click the Other Reference button from the main menu.

2. Click the TUXEDO Documents option.

Other Publications

For more information about CORBA, Java, and related technologies, refer to the
following books and specifications:

Cobb, E. 1997. The Impact of Object Technology on Commercial Transaction
Processing. VLDB Journal, Volume 6. 173-190.

Edwards, J. with DeVoe, D. 1997. 3-Tier Client/Server At Work. Wiley Computer
Publishing.

Edwards, J., Harkey, D., and Orfali, R. 1996. The Essential Client/Server Survival
Guide. Wiley Computer Publishing.

Flanagan, David. May 1997. Java in a Nutshell, 2nd Edition. O’Reilly & Associates,
Incorporated.

Flanagan, David. September 1997. Java Examples in a Nutshell. O’Reilly &
Associates, Incorporated.

Fowler, M. with Scott, K. 1997. UML Distilled, Applying the Standard Object
Modeling Language. Addison-Wesley.
xii Creating Client Applications

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series.

Jacobson, I. 1994. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley.

Mowbray, Thomas J. and Malveau, Raphael. (Contributor). 1997. CORBA Design
Patterns, Paper Back and CD-ROM Edition. John Wiley & Sons, Inc.

Orfali, R., Harkey, D., and Edwards, J. 1997. Instant CORBA. Wiley Computer
Publishing.

Orfali, R., Harkey, D. February 1998. Client/Server Programming with Java and
CORBA, 2nd Edition. John Wiley & Sons, Inc.

Otte, R., Patrick, P., and Roy, M. 1996. Understanding CORBA. Prentice Hall PTR.

Rosen, M. and Curtis, D. 1998. Integrating CORBA and COM Applications. Wiley
Computer Publishing.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Loresen, W. 1991.
Object-Oriented Modeling and Design. Prentice Hall.

The Common Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. Published by the Object Management Group (OMG).

CORBAservices: Common Object Services Specification. Revised Edition. Updated:
November 1997. Published by the Object Management Group (OMG).
Creating Client Applications xiii

Contact Information

The following sections provide information about how to obtain support for the
documentation and the software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of the BEA WebLogic Enterprise product,
or if you have problems installing and running the BEA WebLogic Enterprise
software, contact BEA Customer Support through BEA WebSupport at
www.beasys.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

t Your name, e-mail address, phone number, and fax number

t Your company name and company address

t Your machine type and authorization codes

t The name and version of the product you are using

t A description of the problem and the content of pertinent error messages
xiv Creating Client Applications

CHAPTER
1 Client Application
Development Concepts

This chapter reviews the types of client applications supported by the WLE software
and introduces the following concepts that you need to understand before you develop
client applications for the WLE software:

t OMG IDL

t Static and dynamic invocation

t Client stubs

t Interface Repository

t Domains

t Environmental objects

t ActiveX

t Views

t Bindings

t Naming conventions for ActiveX views
Creating Client Applications 1-1

1 CLIENT APPLICATION DEVELOPMENT CONCEPTS

Kit

g

asic
Overview of Client Applications

The WLE software supports the following types of client applications:

t CORBA C++

This type of client application uses the C++ environmental objects to access the
CORBA objects in a WLE domain, and the WLE Object Request Broker (ORB)
to process requests to CORBA objects. Use the WLE development commands to
build CORBA C++ client applications.

t CORBA Java

This type of client application uses the Java environmental objects to access
CORBA objects in a WLE domain. However, these client applications use an
ORB product other than the WLE ORB to process requests to CORBA objects.
CORBA Java client applications are built using the ORB product’s Java
development tools. The WLE software supports interoperability with the
following products:

t Netscape Enterprise Server version 3.6 and JavaSoft Java Development
(JDK) version 1.1.6

t JDK version 1.2.1

t ActiveX

This type of client application uses the Automation environmental objects to
access CORBA objects in a WLE domain, and the BEA ActiveX Client to
process requests to CORBA objects. Use the Application Builder to select the
CORBA interfaces that are available to ActiveX client applications, to create
ActiveX views of the CORBA interfaces, and to create packages for deployin
ActiveX views of CORBA interfaces to client machines. These client
applications are built using an automation development tool such as Visual B
or PowerBuilder.
1-2 Creating Client Applications

OMG IDL

at it
tten
 are

tion

tion
OMG IDL

With any distributed application, the client/server application needs some basic
information to communicate. For example, the client application needs to know which
operations it can request, and the arguments to the operations.

You use the Object Management Group (OMG) Interface Definition Language (IDL)
to describe available CORBA interfaces to client applications. An interface definition
written in OMG IDL completely defines the CORBA interface and fully specifies each
operation’s arguments. OMG IDL is a purely declarative language. This means th
contains no implementation details. Operations specified in OMG IDL can be wri
in and invoked from any language that provides CORBA bindings. C++ and Java
two of the supported languages.

Generally, the application designer provides the OMG IDL files for the available
CORBA interfaces and operations to the programmer who creates the client
applications.

OMG IDL to C++ Mapping

The WLE software conforms to The Common Object Request Broker:Architecture and
Specification, Version 2.2. For complete information about the OMG IDL to C++
mapping, see The Common Object Request Broker:Architecture and Specification,
Version 2.2, Revised: February, 1998, which is available on the Online Documenta
CD.

OMG IDL to Java Mapping

The WLE software conforms to The Common Object Request Broker:Architecture and
Specification, Version 2.2. For complete information about the OMG IDL to Java
mapping, see The Common Object Request Broker:Architecture and Specification,
Version 2.2, Revised: February, 1998, which is available on the Online Documenta
CD.
Creating Client Applications 1-3

1 CLIENT APPLICATION DEVELOPMENT CONCEPTS
OMG IDL to COM Mapping

The WLE software conforms to the OMG COM/CORBA Internetworking
Specification, Version 1.1. The mapping of COM data types is included in the OMG
COM/CORBA Internetworking Specification, Version 1.1.

Static and Dynamic Invocation

The WLE Object Request Broker (ORB) supports two types of client/server
invocations: static and dynamic. In both cases, the client application performs a request
by gaining access to an object reference for a server application and invoking the
operation that satisfies the request. The server application cannot tell the difference
between static and dynamic invocations.

When using static invocation, the client application invokes operations directly on the
client stubs. Static invocation is the easiest, most common type of invocation. The
stubs are generated by the IDL compiler. Static invocation is recommended for
applications that know at compile time the particulars of the operations they need to
invoke and can process within the synchronous nature of the invocation. Figure 1-1
illustrates static invocation.
1-4 Creating Client Applications

STATIC AND DYNAMIC INVOCATION

ct’s
Figure 1-1 Static Invocation

While dynamic invocation is more complicated it enables your client application to
invoke operations on any CORBA object without having to know the CORBA obje
interfaces at compile time. Figure 1-2 illustrates dynamic invocation.

Client Application
Static Invocation

Client Stub

Request

Server
Skeleton

Server Application

Object Request Broker

OMG IDL

IDL Compiler
Creating Client Applications 1-5

1 CLIENT APPLICATION DEVELOPMENT CONCEPTS

t can
 a

a
e
local
Figure 1-2 Dynamic Invocation

When using dynamic invocation, the client application can dynamically build
operation requests for a CORBA object interface that has been stored in the Interface
Repository. Server applications do not require any special design to be able to receive
and handle dynamic invocation requests. Dynamic invocation is generally used when
the client application requires deferred synchronous communication, or by dynamic
client applications when the nature of the interaction is undefined. For more
information about using dynamic invocation, see Chapter 6, “Using the Dynamic
Invocation Interface.”

Client Stubs

Client stubs provide the programming interface to operations that a CORBA objec
perform. A client stub is a local proxy for the CORBA object. Client stubs provide
mechanism for performing a synchronous invocation on an object reference for
CORBA object. The client application does not need special code to deal with th
CORBA object or its arguments; the client application simply treats the stub as a
object.

Client Application
Dynamic Invocation

Request

Server
Skeleton

Server Application

Object Request Broker

Interface
Repository

OMG IDL
1-6 Creating Client Applications

INTERFACE REPOSITORY

 from
 file
lient

n.

e

 the

ce
 is

ons

ry.
A client application must have a stub for each interface it plans to use. You use the idl
command (or your Java product’s equivalent command) to generate a client stub
the OMG IDL definition of the CORBA interface. The command generates a stub
and a header file that describe everything that you need if you want to use the c
stub from a programming language, such as C++ or Java. You simply invoke a method
from within your client application to request an operation in the server applicatio

Interface Repository

The Interface Repository contains descriptions of a CORBA object’s interfaces and
operations. The information stored in the Interface Repository is equivalent to th
information defined in an OMG IDL file, but the information is accessible
programmatically at run time. Client applications use the Interface Repository for
following reasons:

t CORBA client applications that use static invocation do not access the Interfa
Repository at run time. The information about the CORBA object’s interfaces
included in the client stub.

t CORBA client applications that use dynamic invocation use the Interface
Repository to learn about a CORBA object’s interfaces, and to invoke operati
on the object.

t ActiveX client applications are not aware that they are using the Interface
Repository. The BEA ActiveX Client uses CORBA operations to obtain
information about CORBA objects from the Interface Repository.

You use the following WLE development commands to manage the Interface
Repository:

t The idl2ir command populates the Interface Repository with CORBA
interfaces. This command creates an Interface Repository if an Interface
Repository does not exist. Also use this command to update the CORBA
interfaces in the Interface Repository.

t The ir2idl command creates an OMG IDL file from the contents of the
Interface Repository.

t The irdel command deletes CORBA interfaces from the Interface Reposito
Creating Client Applications 1-7

1 CLIENT APPLICATION DEVELOPMENT CONCEPTS

xist
bject.
For a description of the development commands for the Interface Repository, see the
C++ Programming Reference available from the Online Documentation CD.

Domains

A domain is a way of grouping objects and services together as a management entity.
A WLE domain has at least one IIOP Server Listener/Handler (ISL/ISH) and is
identified by a name. One client application can connect to multiple WLE domains
using different Bootstrap objects. For each WLE domain, a client application can get
a FactoryFinder object, an InterfaceRepository object, a SecurityCurrent object, and a
TransactionCurrent object, which correspond to the services offered within the WLE
domain. For a description of the Bootstrap object, the FactoryFinder object, the
InterfaceRepository object, the SecurityCurrent object, and the TransactionCurrent
object, see “Environmental Objects” in this chapter.

Note: Only one TransactionCurrent object and one SecurityCurrent object can e
at the same time, and they must be associated with the same Bootstrap o

Figure 1-3 illustrates how an WLE domain works.

Figure 1-3 How a WLE Domain Works

Bootstrap 1
//host1:port1

Client Application Domain 1

IIOP
Server

Listener/
Handler

//host1:port1

InterfaceRepository
Object

FactoryFinder
Object

SecurityCurrent
Object

TransactionCurrent
Object

Bootstrap 1
//host1:port1

Client Application Domain 1

IIOP
Server

Listener/
Handler

//host1:port1

InterfaceRepository
Object

FactoryFinder
Object

SecurityCurrent
Object

TransactionCurrent
Object
1-8 Creating Client Applications

ENVIRONMENTAL OBJECTS
Environmental Objects

The WLE software provides a set of environmental objects that set up
communication between client applications and server applications in a particular
WLE domain. The WLE software provides the following environmental objects:

t Bootstrap

This object establishes communication between a client application and a WLE
domain. It also obtains object references for the other environmental objects in
the WLE domain.

t FactoryFinder

This CORBA object locates a factory, which in turn can create object references
for CORBA objects.

t SecurityCurrent

Thisobject can be used to log a client application into a WLE domain with the
proper security. The WLE software provides an implementation of the
CORBAservices Security Service.

t TransactionCurrent

This object allows a client application to participate in a transaction. The WLE
software provides an implementation of the CORBAservices Object Transaction
Service (OTS).

t UserTransaction

This object allows a client application to participate in a transaction. The WLE
software provides an implementation of the Sun Microsystems, Inc. Java
Transaction Application Programming Interface (JTA API). This object is
supported with Java client and server applications only.

t InterfaceRepository

This CORBA object contains interface definitions for all the available CORBA
interfaces and the factories used to create object references to the CORBA
interfaces.
Creating Client Applications 1-9

1 CLIENT APPLICATION DEVELOPMENT CONCEPTS
The WLE software provides environmental objects for the following programming
environments:

t C++

t Java

t Automation

Bootstrap Object

The client application creates a Bootstrap object. A list of ISLs/ISHs can be supplied
either as a parameter or via the TOBJADDR environmental variable or Java property. A
single ISL/ISH is specified as follows:

//host:port

For example, //myserver:4000

Once the Bootstrap object is instantiated, the resolve_initial_references
method is invoked, passing in a string id, to obtain a reference to an available object.
The valid values for the string id are FactoryFinder, TransactionCurrent,
SecurityCurrent, and InterfaceRepository.

Figure 1-4 illustrates how the Bootstrap object works in a WLE domain.
1-10 Creating Client Applications

ENVIRONMENTAL OBJECTS
Figure 1-4 How the Bootstrap Object Works

Factories and the FactoryFinder Object

Client applications get object references to CORBA objects from a factory. A factory
is any CORBA object that returns an object reference to another CORBA object and
registers itself with the FactoryFinder object.

To use a CORBA object, the client application must be able to locate the factory that
creates an object reference for the CORBA object. The WLE software offers the
FactoryFinder object for this purpose. The factories available to client applications are
those that are registered with the FactoryFinder object by WLE server applications at
startup.

The client application uses the following sequence of steps to obtain a reference to a
CORBA object:

1. Once the Bootstrap object is created, the resolve_initial_references method
is invoked to obtain the reference to the FactoryFinder object.

Client
Application

Domain

IIOP
Listener/Handler

Bootstrap
Object

FactoryFinder
Object Reference

TransactionCurrent
Object Reference

SecurityCurrent
Object Reference

InterfaceRepository
Object Reference

FactoryFinder
Object

TransactionCurrent
Object

SecurityCurrent
Object

InterfaceRepository
Object

resolve_initial_references
Creating Client Applications 1-11

1 CLIENT APPLICATION DEVELOPMENT CONCEPTS
2. Client applications query the FactoryFinder object for object references to the
desired factory.

3. Client applications call the factory to obtain an object reference to the CORBA
object.

Figure 1-5 illustrates the client application interaction with the FactoryFinder object.

Figure 1-5 How Client Applications Use the FactoryFinder Object

Naming Conventions and WLE Extensions to the
FactoryFinder Object

The factories available to client applications are those that are registered with the
FactoryFinder object by the WLE server applications at startup. Factories are
registered using a key consisting of the following fields:

t The Interface Repository Id of the factory’s interface

t An object reference to the factory

Client Application

M3 Domain

Bootstrap
Object

FactoryFinder
Object

Factory

CORBA Object

Get FactoryFinder object.

FactoryFinder
Object

FactoryFinder object returns
factory for CORBA object.

Factory
Factory gets CORBA object.

Server Application
1-12 Creating Client Applications

ENVIRONMENTAL OBJECTS
The FactoryFinder object used by the WLE software is defined in the CORBAservices
LifeCycle Service. The WLE software implements extensions to the
COS::LifeCycle::FactoryFinder interface that make it easier for client
applications to locate a factory using the FactoryFinder object.

The CORBAservices Life Cycle Service specifies the use of names as defined in the
CORBAservices Naming Service to locate factories with the
COS::LifeCycle::FactoryFinder interface. These names consist of a sequence of
NameComponent structures, which consist of ID and kind fields.

The use of CORBA names to locate factories is cumbersome for client applications; it
involves many calls to build the appropriate name structures and assemble the Naming
Service name that must be passed to the find_factories method of the
COS::LifeCycle::FactoryFinder interface. Also, since the method can return
more than one factory, client applications must manage the selection of an appropriate
factory and the disposal of unwanted object references.

The FactoryFinder object is designed to make it easier for client applications to locate
factories by extending the interface with simpler method calls.

The extensions are intended to provide the following simplifications for the client
application:

t Let the client application locate factories by id, using a simple string parameter
for the id field. This reduces the work needed by the client application to build
name structures.

t Permit the FactoryFinder object to implement a load balancing scheme by
choosing from a pool of available factories.

t Provide methods that return one object reference to a factory, instead of a
sequence of object references. This eliminates the need for client applications to
provide code to handle the selection of a single factory from a sequence, and
then dispose of the unneeded references.

The most straightforward application design can be achieved by using the
Tobj::FactoryFinder::find_one_factory_by_id method in client applications.
This method accepts a simple string for factory id as input and returns one factory to
the client application. The client application is freed from the necessity of
manipulating name components and selecting among many factories.

To use the Tobj::FactoryFinder::find_one_factory_by_id method, the
application designer must establish a naming convention for factories that client
applications can use to easily locate factories for specific CORBA object interfaces.
Creating Client Applications 1-13

1 CLIENT APPLICATION DEVELOPMENT CONCEPTS
Ideally, this convention should establish some mnemonic types for factories that
supply object references for certain types of CORBA object interfaces. Factories are
then registered using these conventions. For example, a factory that returns an object
reference for Student objects might be called StudentFactory. For more information
about registering factories with the FactoryFinder object, see Creating C++ Server
Applications and Creating Java Server Applications, available from the Online
Documentation CD.

It is recommended that you either use the actual interface ID of the factory in the OMG
IDL file, or specify the the factory ID as a constant in the OMG IDL file. This
technique ensures naming consistency between the client application and the server
application.

SecurityCurrent Object

The SecurityCurrent object is a WLE implementation of the CORBAservices Security
Service. The WLE security model is based on authentication. You use the
SecurityCurrent object to specify the appropriate level of security. The following
levels of authentication are provided:

t TOBJ_NOAUTH

No authentication is needed; however, the client application can still authenticate
itself, and must specify a user name and a client name; no password is required.

t TOBJ_SYSAUTH

The client application must authenticate itself to the WLE domain, and must
specify a user name, client name, and client application password.

t TOBJ_APPAUTH

The client application must provide information in addition to that which is
required by TOBJ_SYSAUTH. If the default WLE authentication service is used in
the WLE domain configuration, the client application must provide a user
password; otherwise, the client application provides authentication data that is
interpreted by the custom authentication service in the WLE domain.

Note: If a client application is not authenticated and the security level is
TOBJ_NOAUTH, the ISL/ISH of the WLE domain registers the client application
with the user name and client application name sent to the ISL/ISH.
1-14 Creating Client Applications

ENVIRONMENTAL OBJECTS

ional

rm
g the

signer

r be

if

of a

vior
In the WLE software, only the PrincipalAuthenticator and Credentials properties on
the SecurityCurrent object are supported. For information about using the
SecurityCurrent object in client applications, see Chapter 4, “Using Security.” For a
description of the SecurityLevel1::Current and SecurityLevel2::Current
interfaces, refer to the C++ Programming Reference or the Java Programming
Reference, available from the Online Documentation CD.

TransactionCurrent Object

The TransactionCurrent object is a WLE implementation of the CORBAservices
Object Transaction Service. The TransactionCurrent object maintains a transact
context for the current session between the client application and the server
application. Using the TransactionCurrent object, the client application can perfo
transactional operations, such as initiating and terminating a transaction and gettin
status of a transaction.

Transactions are used on a per-interface basis. During design, the application de
decides which interfaces within a WLE application will handle transactions. A
transaction policy for each interface is then defined in an Implementation
Configuration File (ICF). The transaction policies are:

t Never

The interface is not transactional. Objects created for this interface can neve
involved in a transaction. The WLE software generates an exception
(INVALID_TRANSACTION) if an implementation with this policy is involved in a
transaction. An AUTOTRAN policy specified in the UBBCONFIG file for the
interface is ignored.

t Optional (This is the default transaction_policy.)

The interface may be transactional. Objects can be involved in a transaction
the request is transactional. If the AUTOTRAN parameter is specified in the
UBBCONFIG file for the interface, AUTOTRAN is on.

t Always

The interface must always be part of a transaction. If the interface is not part
transaction, a transaction will be automatically started by the TP Framework.
The transaction is committed when the method ends. (This is the same beha
that results from specifying AUTOTRAN for an object with the optional
Creating Client Applications 1-15

1 CLIENT APPLICATION DEVELOPMENT CONCEPTS

ject,

 as

to
ss the
tion

y in

se

rap
transaction policy, except that no administrative configuration is necessary to
achieve this behavior, and it cannot be overridden by administrative
configuration.)

t Ignore

The interface is not transactional. The interface can be included in a transaction;
however, the AUTOTRAN policy specified for this implementation in the
UBBCONFIG file is ignored.

For information about using the TransactionCurrent object in client applications, see
Chapter 5, “Using Transactions.” For a description of the TransactionCurrent ob
see the C++ Programming Reference or the Java Programming Reference, available
from the Online Documentation CD.

InterfaceRepository Object

The InterfaceRepository object returns information about the Interface Repository in
a specific WLE domain. The InterfaceRepository object is based on the CORBA
definition of an Interface Repository. It offers the proper set of CORBA interfaces
defined by the Common Request Broker Architecture and Specification, Version 2.2.

CORBA client applications that use the Dynamic Invocation Interface (DII) need
access the Interface Repository programmatically. The exact steps taken to acce
Interface Repository depend on whether the client application is seeking informa
about a specific CORBA interface or browsing the Interface Repository to find an
interface. In either case, the client application can only read to the Interface
Repository, it cannot write to the Interface Repository.

Before a CORBA client application using DII can browse the Interface Repositor
a WLE domain, the client application needs to obtain an object reference for the
InterfaceRepository object in that domain. CORBA client applications using DII u
the Bootstrap object to obtain the object reference.

ActiveX client applications are not aware they are using the Interface Repository
object. Like CORBA client applications, ActiveX client applications use the Bootst
object to obtain a reference to the Interface Repository object.
1-16 Creating Client Applications

CONCEPTS FOR ACTIVEX CLIENT APPLICATIONS

ts to
e in
odel
an

ct
LE

ate

ngs
For information about using the Interface Repository object in CORBA client
applications that use DII, see Chapter 6, “Using the Dynamic Invocation Interface.”
For a description of the Interface Repository object, see the C++ Programming
Reference available from the Online Documentation CD.

Concepts for ActiveX Client Applications

The following sections describe concepts that are specific to ActiveX client
applications.

What is ActiveX?

ActiveX is a set of technologies from Microsoft that enables software componen
interact with one another in a networked environment, regardless of the languag
which the components were created. ActiveX is built on the Component Object M
(COM) and integrates with Object Linking and Embedding (OLE). OLE provides
architecture for document embedding. Automation is the part of COM that allows
applications such as Visual Basic, Delphi, and PowerBuilder to manipulate
Automation objects, ActiveX controls, and ActiveX documents.

The BEA ActiveX Client provides interoperability between the WLE and COM obje
systems. The ActiveX Client transforms the interfaces of CORBA objects in a W
domain into methods on Automation objects.

Views and Bindings

ActiveX client applications use views of CORBA interfaces. Views represent the
CORBA interfaces in a WLE domain locally as Automation objects. To use an
ActiveX view of a CORBA object (referred to as an ActiveX view), you need to cre
a binding for ActiveX. The binding describes the interface of a CORBA object to
ActiveX. The interfaces of the CORBA objects are loaded into the Interface
Repository. You then use the BEA Application Builder to create Automation bindi
for the interfaces.
Creating Client Applications 1-17

1 CLIENT APPLICATION DEVELOPMENT CONCEPTS
The Application Builder is a development tool that you use along with a client
development tool (such as Visual Basic) to select which CORBA objects in a WLE
domain you want your ActiveX client application to interact with. For a description of
the Application Builder and how it works, see the online help that is integrated into the
Application Builder graphical user interface (GUI).

The combination of the ActiveX client application and the generated binding creates
the ActiveX view of the object.

Figure 1-6 illustrates how the ActiveX Client works.

Figure 1-6 How the ActiveX Client Works

Naming Conventions for ActiveX Views

Naming conventions describe an algorithm for mapping CORBA interfaces to
ActiveX to avoid type and variable name conflicts. Naming conventions also indicate
how to use a given object. The names of all ActiveX methods begin with DI.

The ActiveX Client observes this naming convention when it creates Automation
bindings for CORBA interfaces. If a CORBA interface has the name Account, the
Automation binding for that interface has the name DIAccount.

CORBAInterface.idl

Interface
Repository Application Builder

DICORBAInterface.tlb
(binding)

ActiveX Client
Application
1-18 Creating Client Applications

CONCEPTS FOR ACTIVEX CLIENT APPLICATIONS
CORBA interface names are often scoped within nested levels known as modules;
however, in ActiveX, there is no scoping. To avoid name conflicts, the ActiveX Client
exposes a CORBA interface into ActiveX with the name of the different scopes
prepended to the name of the interface.

For example, a CORBA interface named Account is defined in the OMG IDL file as:

module University
{
 module Student
 {
 interface Account
 {//Operations and attributes of the Account interface
 };
 };

};

In CORBA, this interface is named University::Student::Account. The ActiveX
Client translates this name to DIUniversity_Student_Account for ActiveX.
Creating Client Applications 1-19

1 CLIENT APPLICATION DEVELOPMENT CONCEPTS
1-20 Creating Client Applications

CHAPTER
2 Creating CORBA Client
Applications

This chapter discusses the following topics:

t The development process for CORBA C++ client applications

t The development process for CORBA Java client applications

t Obtaining the Object Management Group (OMG) Interface Definition Language
(IDL) file

t Selecting the invocation type

t Compiling the OMG IDL file

t Writing the CORBA client application

t Building the CORBA client application

t Server applications acting as client applications

t Using Java2 Applets

Note: For instructions about how to create joint client/server applications, that is,
clients that support callback objects that may be invoked by servers and native
clients within the WLE domain, see Using Server-to-Server Communication.
Creating Client Applications 2-1

2 CREATING CORBA CLIENT APPLICATIONS
Summary of the Development Process for
CORBA C++ Client Applications

The steps for creating a CORBA C++ client application are as follows:

Each step in the process is explained in detail in the following sections.

The WLE development environment for CORBA C++ client applications includes the
following:

t The idl command, which compiles the OMG IDL file and generates the client
stubs required for the CORBA interface.

t The buildobjclient command, which constructs a CORBA C++ client
application executable.

Step Description

1 Obtain the OMG IDL file for the CORBA interfaces used by
the CORBA C++ client application.

2 Select the invocation type.

3 Use the IDL compiler to compile the OMG IDL file. The client
stubs are generated as a result of compiling the OMG IDL.

4 Write the CORBA C++ client application. This chapter
describes creating a basic client application. You can also
implement security and transactions in your CORBA C++
client applications.

t For information about implementing security in your
CORBA Java client application, see Chapter 4, “Using
Security.”

t For information about using transactions in your CORBA
Java client application, see Chapter 5, “Using
Transactions.”

5 Build the CORBA C++ client application.
2-2 Creating Client Applications

SUMMARY OF THE DEVELOPMENT PROCESS FOR CORBA JAVA CLIENT APPLICATIONS
t The C++ environmental objects, which provide access to CORBA objects in a
WLE domain and to the services provided by the CORBA objects.

Summary of the Development Process for
CORBA Java Client Applications

The WLE software supports interoperability with the following products:

t Netscape Enterprise Server version 3.6 and JavaSoft Java Development Kit
(JDK) version 1.1.6

t JDK version 1.2.1

The steps for creating a CORBA Java client application are as follows:

Step Description

1 Obtain the OMG IDL file for the CORBA interfaces used by
the CORBA Java client application.

2 Select the invocation type.

3 Use the development tools provided by your CORBA Java
Object Request Broker (ORB) to compile the OMG IDL file
and generate client stubs.

4 Write the CORBA Java client application. This chapter
describes creating a basic client application. You can also
implement security and transactions in your CORBA Java
client applications.

t For information about implementing security in your
CORBA Java client application, see Chapter 4, “Using
Security.”

t For information about using transactions in your CORBA
Java client application, see Chapter 5, “Using
Transactions.”
Creating Client Applications 2-3

2 CREATING CORBA CLIENT APPLICATIONS
Each step in the process is explained in detail in the following sections.

You need to use the development tools provided by your CORBA Java ORB product
to compile the OMG IDL file, generate the client stubs, and build the CORBA Java
client application executable. You use the Java environmental objects, which provide
access to CORBA objects in a WLE domain and to the services provided by the
CORBA objects.

Step 1: Obtaining the OMG IDL File

Generally, the OMG IDL files for the available interfaces and operations are provided
to the client programmer by the application designer. This section contains the OMG
IDL for the Basic University sample application. Listing 2-1 shows the univb.idl
file, which defines the following interfaces:

5 Build the CORBA Java client application.

Step Description

Interface Description Operations

Registrar Obtains course information from the
course database

get_courses_synopsis()

get_courses_details()

RegistrarFactory Creates object references to the
Registrar object

find_registrar()

CourseSynopsisEnumerator Gets a subset of the information from
the course database, and iteratively
returns portions of that subset to the
client application

get_next_n()

destroy()
2-4 Creating Client Applications

STEP 1: OBTAINING THE OMG IDL FILE
Listing 2-1 OMG IDL File for the Basic University Sample Application

#pragma prefix "beasys.com"

module UniversityB

{

 typedef unsigned long CourseNumber;
 typedef sequence<CourseNumber> CourseNumberList;

 struct CourseSynopsis
 {
 CourseNumber course_number;
 string title;
 };

 typedef sequence<CourseSynopsis> CourseSynopsisList;
 interface CourseSynopsisEnumerator
 {
 CourseSynopsisList get_next_n(
 in unsigned long number_to_get,
 out unsigned long number_remaining
 };
 void destroy();
 };

 typedef unsigned short Days;
 const Days MONDAY = 1;
 const Days TUESDAY = 2;
 const Days WEDNESDAY = 4;
 const Days THURSDAY = 8;
 const Days FRIDAY = 16;

 struct ClassSchedule
 {
 Days class_days; // bitmask of days
 unsigned short start_hour; // whole hours in military time
 unsigned short duration; // minutes
 };

 struct CourseDetails
 {
 CourseNumber course_number;
 double cost;
 unsigned short number_of_credits;
 ClassSchedule class_schedule;
 unsigned short number_of_seats;
 string title;
Creating Client Applications 2-5

2 CREATING CORBA CLIENT APPLICATIONS

 your
6,
 string professor;
 string description;
 };

 typedef sequence<CourseDetails> CourseDetailsList;

 interface Registrar
 {
 CourseSynopsisList
 get_courses_synopsis(
 in string search_criteria,
 in unsigned long number_to_get, // 0 = all
 out unsigned long number_remaining,
 out CourseSynopsisEnumerator rest
);

 CourseDetailsList get_courses_details(in CourseNumberList
 courses);

 interface RegistrarFactory
 {
 Registrar find_registrar(
);

 };

};

Step 2: Selecting the Invocation Type

Select the invocation type (static or dynamic) that you will use in the requests in the
client application. You can use both types of invocation in a client application.

For an overview of static and dynamic invocation, see Chapter 1, “Client Application
Development Concepts.”

The remainder of this chapter assumes that you chose to use static invocation in
CORBA client application. If you chose to use dynamic invocation, see Chapter
“Using the Dynamic Invocation Interface.”
2-6 Creating Client Applications

STEP 3: COMPILING THE OMG IDL FILE

t
Step 3: Compiling the OMG IDL File

When creating CORBA C++ client applications, use the idl command to compile the
OMG IDL file and generate the files required for the interface. The following is the
syntax of the idl command:

idl idlfilename(s)

The IDL compiler generates a client stub (idlfilename_c.cpp) and a header file
(idlfilename_c.h) that describe everything you need to have to use the client stub
from the C++ programming language. You need to link these files into your client
application.

In addition, the IDL compiler generates skeletons that contain the signatures of the
CORBA object’s operations. The generated skeleton information is placed in the
idlfilename_s.cpp and idlfilename_s.h files. During development of the client
application, it can be useful to look at the server header files and skeleton file.

Note: Do not modify the generated client stub or the skeleton.

For a complete description of the idl command and options, see the C++
Programming Reference, available from the Online Documentation CD.

When creating CORBA Java client applications:

t If you are using JDK 1.2.1, you can use the idltojava command to
compile the OMG IDL file. For more information about the idltojava
command, see the documentation for the JDK 1.2.1.

t If you are using Netscape version 3.6 and JDK 1.1.6, you need to use tha
product's IDL compiler to compile the OMG IDL.

The idltojava command or the IDL compiler generates the following:

t The client stubs for each interface (_interfaceStub.java)

t The CORBA helper class (interfaceHelper.java) and the CORBA holder
class (interfaceHolder.java) that describe everything you need to use the
client stub from the Java programming language.
Creating Client Applications 2-7

2 CREATING CORBA CLIENT APPLICATIONS
Note that each OMG IDL defined exception defines an exception class and its helper
and holder classes. The compiled .class files must be in the CLASSPATH of your client
application.

In addition, the idltojava command or the IDL compiler generates skeletons that
contain the signatures of the operations of the CORBA object. The generated skeleton
information is placed in the _interfaceImplBase file.

Step 4: Writing the CORBA Client
Application

To participate in a session with a WLE server application, a WLE client application
must be able to get an object reference for a CORBA object and invoke operations on
the object. To accomplish this, the CORBA client application code must do the
following:

1. Initialize the WLE ORB.

2. Establish communication with the WLE domain.

3. Resolve initial references to the FactoryFinder object.

4. Use a factory to get an object reference for the desired CORBA object.

5. Invoke operations on the CORBA object.

The following sections use portions of the client applications in the Basic University
sample application to illustrate the steps. For information about the Basic University
sample application, see the Guide to the University Sample Applications. The Basic
University sample application is located in the following directory on the WLE
software kit:

drive:\wledir\samples\corba\university\basic
2-8 Creating Client Applications

STEP 4: WRITING THE CORBA CLIENT APPLICATION
Initializing the ORB

All CORBA client applications must first initialize the ORB.

Use the following code to initialize the ORB from a CORBA C++ client application:

C++

CORBA::ORB_var orb=CORBA::ORB_init(argc, argv, ORBid);

Typically, no ORBid is specified and the default ORBid specified during installation
is used. However, when a client application is running on a machine that also has
server applications running and the client application wants to access server
applications in another WLE domain, you need to override the default ORBid. This can
be done by hard coding the ORBid as BEA_IIOP or by passing the ORBid in the
command line as -ORBid BEA_IIOP.

Use the following code to initialize the ORB from a CORBA Java client application:

Java Application

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (args,props);

Use the following code to initialize the ORB from a CORBA Java client applet:

Java Applet

org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (this, null);

where this is the name of the Java applet

Note: For more information about ORB initialization, see C++ Programming
Reference and Java API Reference.

Establishing Communication with the WLE Domain

The client application creates a Bootstrap object. A list of IIOP Server
Listener/Handlers (ISL/ISHs) can be supplied either as a parameter, via the TOBJADDR
Java property or applet property. A single ISL/ISH is specified as follows:

//host:port
Creating Client Applications 2-9

2 CREATING CORBA CLIENT APPLICATIONS

ot
s in

e
 the
When the ISL/ISH is provided via TOBJADDR, the second argument of the constructor
can be null.

The host and port combination for the ISL/ISH is defined in the UBBCONFIG file. The
host and port combination that is specified for the Bootstrap object must exactly match
the ISL parameter in the WLE domain’s UBBCONFIG file. The format of the host and
port combination, as well as the capitalization, must match. If the addresses do n
match, the call to the Bootstrap object will fail and the following message appear
the log file:

Error: Unofficial connection from client at <tcp/ip
adress>/<portnumber>

For example, if the network address is specified as //TRIXIE::3500 in the ISL
parameter in the UBBCONFIG file, specifying either //192.12.4.6.:3500 or
//trixie:3500 in the Bootstrap object will cause the connection attempt to fail.

On UNIX systems, use the uname -n command on the host system to determine th
capitalization used. On Window NT, use the Network Control Panel to determine
capitalization.

The following C++ and Java examples show how to use the Bootstrap object:

C++

 Tobj_Bootstrap* bootstrap = new Tobj_Bootstrap(orb, “// host:port”);

Java

Use the following commands to get the valid Server ISL/ISHs for the client
application:

Native client applications

 Properties prop = Tobj_Bootstrap.getNativeProperties();

Remote client applications

 Properties prop = Tobj_Bootstrap.getRemoteProperties();

Use the IIOP Server Listerner/Handler in the following command:

 Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb, “// host:port”);
2-10 Creating Client Applications

STEP 4: WRITING THE CORBA CLIENT APPLICATION

e

g the
the

solve
Java Applet

 Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb, “// host:port”, this);

where this is the name of the Java applet

A WLE domain can have multiple IIOP Server Listener/Handlers. If you are accessing
a WLE domain with multiple ISL/ISHs, you supply a list of Host:Port combinations
to the Bootstrap object. If the second parameter of the Bootstrap command is an empty
string, the Bootstrap object walks through the list until it connects to a WLE domain.
The list of ISL/ISHs can also be specified in TOBJADDR.

If you want to access multiple WLE domains, you must create a Bootstrap object for
each WLE domain you want to access.

Note: The client application should keep the Bootstrap object until it is ready to end
the session. If the Bootstrap object is destroyed, references obtained from it
may no longer work.

Resolving Initial References to the FactoryFinder Object

The client application must obtain initial references to the environmental objects that
provide services for the application. The Bootstrap object’s
resolve_initial_references operation can be called to obtain references to th
FactoryFinder, InterfaceRepository, SecurityCurrent, and TransactionCurrent
environmental objects. The argument passed to the operation is a string containin
name of the desired object reference. You need to get initial references only for
environmental objects you plan to use in your client application.

The following C++ and Java examples show how to use the Bootstrap object to re
initial references to the FactoryFinder object:

C++

//Resolve Factory Finder
CORBA::Object_var var_factory_finder_oref =
 bootstrap.resolve_initial_references (“FactoryFinder”);
Tobj::FactoryFinder_var var_factory_finder_ref =
 Tobj::FactoryFinder::_narrow (factory_finder_oref.in());

Java
Creating Client Applications 2-11

2 CREATING CORBA CLIENT APPLICATIONS

5,

s. A

n on
use

he
.”

es
//Resolve Factory Finder
org.omg.CORBA.Object off =
 bootstrap.resolve_initial_references (“FactoryFinder”);
FactoryFinder ff=FactoryFinderHelper.narrow(off);

For information about using security in client applications, see Chapter 4, “Using
Security.” For information about transactions in client applications, see Chapter
“Using Transactions.”

Using the FactoryFinder Object to Get a Factory

CORBA client applications get object references to CORBA objects from factorie
factory is any CORBA object that returns an object reference to another CORBA
object and registers itself as a factory. The client application invokes an operatio
a factory to obtain an object reference to a CORBA object of a specific type. To
factories, the client application must be able to locate the factory it needs. The
FactoryFinder object serves this purpose. For information about the function of t
FactoryFinder object, see Chapter 1, “Client Application Development Concepts

The FactoryFinder object has the following methods:

t find_factories()

Returns a sequence of factories that match the input key exactly.

t find_one_factory()

Returns one factory that matches the input key exactly.

t find_factories_by_id()

Returns a sequence of factories whose id field in the name component match
the input argument.

t find_one_factory_by_id()

Returns one factory whose id field in the factory’s CORBA name component
matches the input argument.

t list_factories()

Lists factory objects currently registered with the FactoryFinder.
2-12 Creating Client Applications

STEP 4: WRITING THE CORBA CLIENT APPLICATION
The following C++ and Java examples show how to use the FactoryFinder
find_one_factory_by_id method to get a factory for the Registrar object used in
the client application for the WLE University sample applications:

C++

CORBA::Object_var var_registrar_factory_oref = var_factory_finder_ref->
 find_one_factory_by_id(UniversityB::_tc_RegistrarFactory->id()
);
UniversityB::RegistrarFactory_var var_RegistrarFactory_ref =
 UniversityB::RegistrarFactory::_narrow(
 var_RegistrarFactory_oref.in()
);

Java

org.omg.CORBA.Object of = FactoryFinder.find_one_factory_by_id
 (UniversityB.RegistrarFactoryHelper.id());
UniversityB.RegistrarFactory F = UniversityB.RegistrarFactoryHelper.narrow(of);

Using a Factory to Get a CORBA Object

Client applications call the factory to get an object reference to a CORBA object. The
client applications then invoke operations on the CORBA object by passing it a pointer
to the factory and any arguments that the operation requires.

The following C++ and Java examples illustrate getting the factory for the Registrar
object and then invoking the get_courses_details() method on the Registrar
object:

C++

UniversityB::Registrar_var var_Registrar =
 var_RegistrarFactory->find_Registrar();
UniversityB::CourseDetailsList_var course_details_list =
 Registrar_oref->get_course_details(CourseNumberList);

Java

UniversityB.Registrar gRegistrarObjRef = F.find_registrar();
gRegistrarObjRef.get_course_details(selected_course_numbers);
Creating Client Applications 2-13

2 CREATING CORBA CLIENT APPLICATIONS
Step 5: Building the CORBA Client
Application

The final step in the development of the CORBA client application is to produce the
executable client application. To do this, you need to compile the code and link against
the client stub.

When creating CORBA C++ client applications, use the buildobjclient command
to construct a WLE client application executable. The command combines the client
stubs for interfaces that use static invocation, and the associated header files with the
standard WLE libraries to form a client executable. For the syntax of the
buildobjclient command, see the C++ Programming Reference, available from
the Online Documentation CD.

When compiling CORBA Java client applications, you need to include the Java
Archive (JAR) file that contains the Java classes for the WLE environmental objects
in your CLASSPATH.

t If you are using JDK 1.2.1, the m3envobj.jar file is located in the following
directory:

wledir/udataobj/java/jdk

t If you are using Netscape Enterprise Server version 3.6 and JDK 1.1.6, the
m3envobj.jar file is located in the following directory:

wledir/udataobj/java/netscape

Server Applications Acting as Client
Applications

To process a request from a client application, the server application may need to
request processing from another server application. In this situation, the server
application is acting as a client application.
2-14 Creating Client Applications

USING JAVA2 APPLETS

 not

 the

the

.1

isting

ava
To act as a client application, the server application must obtain a Bootstrap object for
the current WLE domain. The Bootstrap object for the server application is already
available via TP::Bootstrap (for CORBA C++ client applications) or
TP.Bootstrap (for CORBA Java client applications). The server application then
uses the FactoryFinder object to locate a factory for the CORBA object that can satisfy
the request from the client application.

Using Java2 Applets

The WLE (Java) software supports Java2 applets. To run Java2 applets, you need to
install the Java Plug-In product from Sun Microsystems, Inc. The Java Plug-in runs
Java applets in an HTML page using Sun’s Java Virtual Machine (JVM).

Before downloading the Java Plug-In kit from the Sun web site, verify whether or
the Java Plug-In is already installed on your machine.

Netscape Navigator

In Netscape Navigator, choose the About Plug-Ins option from the Help menu in
browser window. The following will appear if the Java Plug-In is installed:

application/x-java-applet;version 1.2

Internet Explorer

From the Start menu in Windows NT Version 4.0, select the Programs option. If
Java Plug-In is installed, a Java Plug-In Control Panel option will appear.

If the Java Plug-In is not installed, you need to download and install the JDK 1.2
plug-in (jre12-win32.exe) and the HTML Converter tool (htmlconv12.zip). You
can obtain both of these products from java.sun.com/products/plugin.

You also need to read the Java Plug-In HTML Specification located at
java.sun.com/products/plugin/1.2/docs. This specification explains the
changes Web page authors need to make to their existing HTML code to have ex
JDK 1.2 applets run using the Java Plug-In rather that the brower’s default Java
run-time environment.

Write your Java applet. Use the following command to intialize the ORB from the J
applet:
Creating Client Applications 2-15

2 CREATING CORBA CLIENT APPLICATIONS
org.omg.CORBA.ORB orb = org.omg.CORBA.ORB.init (this,null);

To automatically launch the Java Plug-In when Internet Explorer or Netscape
Navigator browses the HTML page for your applet, use the OBJECT tag and the EMBED
tag in the HTML specification. If you use the HTML Converter tool to convert your
applet to HTML, these tags are automatically inserted. For more information about
using the OBJECT and EMBED tags, see
java.sun.com/products/plugin/1.2/docs/tags.html.
2-16 Creating Client Applications

CHAPTER
3 Creating ActiveX Client
Applications

This chapter discusses the following topics:

t The development process for ActiveX client applications

t An overview of the BEA Application Builder

t Starting the Interface Repository server application

t Loading the Automation environmental objects into the Interface Repository

t Loading the CORBA interfaces into the Interface Repository

t Creating ActiveX bindings for CORBA interfaces

t Loading the type library for the ActiveX bindings

t Writing the ActiveX client application

t Creating a deployment package for the ActiveX client application

For a description of the concepts you need to understand before developing an ActiveX
client application, see Chapter 1, “Client Application Development Concepts.”
Creating Client Applications 3-1

3 CREATING ACTIVEX CLIENT APPLICATIONS
Summary of the Development Process for
ActiveX Client Applications

The steps for creating an ActiveX client application are as follows:

Each step in the process is explained in detail in the following sections.

Step Description

1 Load the Automation environmental objects into the Interface
Repository.

2 Verify that the CORBA interfaces you want to access from
your ActiveX client application are loaded in the Interface
Repository. If necessary, load the Object Management Group
(OMG) Interface Definition Language (IDL) definitions for the
CORBA interfaces into the Interface Repository.

3 Start the server application process for the Interface
Repository.

4 Use the BEA Application Builder to create ActiveX bindings
for the interfaces of the CORBA object.

5 Load the type library for the ActiveX binding in your
development tool.

6 Write the ActiveX client application. This chapter describes
creating a basic client application. You can also implement
security and transactions in your ActiveX client applications.

t For information about implementing security in your
ActiveX client application, see Chapter 4, “Using
Security.”

t For information about using transactions in your ActiveX
client application, see Chapter 5, “Using Transactions.”

7 Create a deployment package for the ActiveX client
application.
3-2 Creating Client Applications

THE BEA APPLICATION BUILDER
The WLE development environment for ActiveX client applications includes the
following:

t The idl2ir command, which loads interface definitions defined in OMG IDL
into the Interface Repository

t The Application Builder, which creates ActiveX bindings for the interfaces of
CORBA objects and creates deployment packages for the interfaces

t The Automation environmental objects, which provide access to ActiveX views
of CORBA objects (referred to as ActiveX views) in a WLE domain and the
services provided by the ActiveX views

The BEA Application Builder

The Application Builder is the development tool that creates ActiveX views of
CORBA objects. The Application Builder is the primary user interface to the BEA
ActiveX Client. It can be used to select which CORBA objects are available to desktop
applications, to create ActiveX views of the CORBA objects, and to create packages
for deploying ActiveX views of CORBA objects to client machines.

To use an ActiveX view, you load the interfaces of the CORBA objects into the
Interface Repository. You then create an ActiveX binding for the CORBA interface.
The binding describes the interface of a CORBA object to ActiveX. The combination
of the ActiveX client application and the generated binding creates the view of the
object.

As shown in Figure 3-1, the Application Builder main window is partitioned into two
parts: the Services window and the Workstation Views window.
Creating Client Applications 3-3

3 CREATING ACTIVEX CLIENT APPLICATIONS
Figure 3-1 Application Builder Main Window

The Services window presents all the CORBA modules, interfaces, and operations
contained in the Interface Repository in the local WLE domain (referred to as the M3
domain in the BEA Application Builder software that is installed as part of the WLE
V4.2 software kit). You can create bindings for all the interfaces in the Interface
Repository.

At the top of the Services window are entries for each object system that is available
from the WLE domain. The ActiveX Client supports only the WLE object system. The
objects are displayed in the same hierarchical format used in the Interface Repository,
that is, as modules, interfaces, operations, and the parameters contained in operations.
The [+] symbol indicates an object that can be expanded to display the other objects.

The Workstation Views window presents all the ActiveX bindings that have been
created for CORBA interfaces. To create a binding for a CORBA interface, you drag
an entry from the Services window and into the Workstation Views window.

For a description of the Application Builder and how it works, see the online help,
which is integrated into the product graphical user interface (GUI).
3-4 Creating Client Applications

STEP 1: LOADING THE AUTOMATION ENVIRONMENTAL OBJECTS INTO THE INTERFACE REPOSITORY
Step 1: Loading the Automation
Environmental Objects into the Interface
Repository

Load the Automation environmental objects into the Interface Repository so that the
interface definitions for the objects are available to ActiveX client applications. From
the MS-DOS prompt, enter the following command to load the OMG IDL file
(TOBJIN.idl) into the Interface Repository:

prompt> idl2ir -D _TOBJ -I drive:\wledir\include drive:\wledir\include\tobjin.idl

Step 2: Loading the CORBA Interfaces into
the Interface Repository

Before you can create an ActiveX view for a CORBA object, the interfaces of the
CORBA object need to be loaded into the Interface Repository. If the interfaces of a
CORBA object are not loaded in the Interface Repository, they do not appear in the
Services window of the Application Builder. If a desired CORBA interface does not
appear in the Services window, use the idl2ir command to load the OMG IDL that
defines the CORBA into the Interface Repository. The syntax for the idl2ir
command is as follows:

idl2ir [repositoryfile.idl] file.idl

Option Description

repositoryfile Directs the command to load the OMG IDL files for the
CORBA interface into the specified Interface Repository.
Specify the name of the Interface Repository in the WLE
domain that the ActiveX client application will access.
Creating Client Applications 3-5

3 CREATING ACTIVEX CLIENT APPLICATIONS

ile
MG
r

the

e

ear
For a complete description of the idl2ir command, refer to the Administration
Guide.

Chapter 2, “Creating CORBA Client Applications,” provides a sample OMG IDL f
that is the starting point for all the University sample applications. Based on this O
IDL file, the following CORBA interfaces should appear in the Application Builde
window:

t RegistrarFactory

t Registrar

t CourseSynopsisEnumerator

For a complete description of the University sample applications, see the Guide to the
University Sample Applications available from the WLE online information set.

Step 3: Starting the Interface Repository
Server Application

ActiveX client applications read the interface definitions for CORBA objects from
Interface Repository dynamically at run time and translate them to Automation
objects. Therefore, the server application for the Interface Repository needs to b
started so that the interface definitions are available. Use the UBBCONFIG file to start
the server application process for the Interface Repository.

Note: In some cases, the system administrator may have performed this step.

In the UBBCONFIG file for the WLE domain, check that TMIFRSVR, the server
application for the Interface Repository, is started. The following entry should app
in the UBBCONFIG file:

file.idl Specifies the OMG IDL file containing definitions for the
CORBA interface.

Option Description
3-6 Creating Client Applications

STEP 4: CREATING ACTIVEX BINDINGS FOR THE CORBA INTERFACES
TMIFRSVR
 SRVGRP = SYS_GRP
 SRVID = 6
 RESTART = Y
 MAXGEN = 5
 GRACE = 3600

In addition, make sure that the ISL parameter to start the ISL/ISH is specified. The
following entry should appear in the UBBCONFIG file:

 ISL
 SRVGRP = SYS_GRP
 SRVID = 5
 CLOPT = "-A -- -n //TRIXIE:2500"

 where TRIXIE is the name of the host (server) system and 2500 is the port number.

For more information about starting server applications and specifying the ISL
parameter, see the Administration Guide.

Step 4: Creating ActiveX Bindings for the
CORBA Interfaces

For an ActiveX client application to access a CORBA object, you must generate
ActiveX bindings for the interfaces of the CORBA object. You use the Application
Builder to create the ActiveX bindings for CORBA interfaces.

To create an ActiveX binding for a CORBA interface:

1. Click the BEA Application Builder icon in the BEA WebLogic Enterprise (C++)
v4.2 program group.

The Domain logon window appears.

2. Enter the host name and port number that you specified in the ISL parameter in
the UBBCONFIG file in the logon window. You must match exactly the
capitalization used in the UBBCONFIG file.

The Application Builder logon window appears.
Creating Client Applications 3-7

3 CREATING ACTIVEX CLIENT APPLICATIONS

e

n the
type

3. Highlight the desired CORBA interface in the Services window and drag it to the
Workstation Views window, or cut the CORBA interface from the Services
window and paste it into the Workstation Views window.

The Application Builder:

t Creates a type library. By default, the type library is placed in
\wledir\TypeLibraries.

The type library file is named: DImodulename_interfacename.tlb

t Creates a Windows system registry entry, including unique Program IDs for
each object type, for the CORBA interface.

You can now use the ActiveX view from an ActiveX client application.

For a complete description of the features of the Application Builder, see the online
help that is integrated into the Application Builder graphical user interface (GUI).

Step 5: Loading the Type Library for the
ActiveX Bindings

Before you start writing your ActiveX client application, you need to load the type
library that describes the ActiveX binding for the CORBA interface in your
development tool. Follow your development product’s instructions for loading typ
libraries.

For example, in Visual Basic version 5.0 or later, you use the References option o
Project menu to get a list of available type libraries. You then select the desired
libraries from the list.

By default, the Application Builder places all generated type libraries in
\wledir\TypeLibraries. The type library for the ActiveX binding of the CORBA
interface has the following format:

DImodulename_interfacename.tlb
3-8 Creating Client Applications

STEP 6: WRITING THE ACTIVEX CLIENT APPLICATION
Step 6: Writing the ActiveX Client
Application

The ActiveX client application must do the following:

1. Include declarations for the Automation environmental objects, the factory for the
ActiveX view, and the ActiveX view.

2. Establish communication with the WLE domain.

3. Use the Bootstrap object to obtain a reference to the FactoryFinder object.

4. Use a factory to obtain an object reference to an ActiveX view.

5. Invoke operations on the ActiveX view.

6. Deploy the ActiveX client application.

The following sections use portions of the ActiveX client applications in the Basic
University sample application to illustrate the steps. For information about the Basic
University sample application, see the Guide to the University Sample Applications.
The Basic University sample application is located in the following directory on the
WLE software kit:

drive:\wledir\samples\corba\university\basic

Including Declarations for the Automation
Environmental Objects, Factories, and ActiveX Views of
CORBA Objects

To prevent errors at run time, you need to declare the object types of:

t The Automation environmental objects

t The factories that create the ActiveX views of the CORBA objects

t The ActiveX views
Creating Client Applications 3-9

3 CREATING ACTIVEX CLIENT APPLICATIONS
The following example is Visual Basic code that declares the Bootstrap and
FactoryFinder objects, the factory for the ActiveX view of the Registrar object, and the
ActiveX view of the Registrar object:

\\Declare Bootstrap object\\
 Public objBootstrap As DITobj_Bootstrap
\\Declare FactoryFinder object\\
 Public objFactoryFinder As DITobj_FactoryFinder
\\Declare factory object for Registrar Object\\
 Public objRegistrarFactory As DIUniversityB_RegistrarFactory
\\Declare the ActiveX view of the Registrar object\\
 Public objRegistrar As DIUniversityB_Registrar

Establishing Communication with the WLE Domain

When writing an ActiveX client application, there are two steps to establishing
communication with the WLE domain:

1. Create the Bootstrap object.

2. Initialize the Bootstrap object.

The following Visual Basic example illustrates using the CreateObject operation to
create a Bootstrap object:

Set objBootstrap = CreateObject(“Tobj.Bootstrap”)

You then initialize the Bootstrap object. When you initialize the Bootstrap object, you
supply the host and port of the ISL/ISH of the desired WLE domain, as follows:

objBootstrap.Initialize “// host:port”

The host and port combination for the ISL/ISH is defined in the ISL parameter of the
UBBCONFIG file. The host and port combination that is specified for the Bootstrap
object must exactly match the ISL parameter. The format of the host and port
combination, as well as the capitalization, must match. If the addresses do not match,
the call to the Bootstrap object will fail and the following message appears in the log
file:

Error: Unofficial connection from client at <tcp/ip adress/<portnumber>

For example, if the network address is specified as //TRIXIE::3500 in the ISL
parameter in the UBBCONFIG file, specifying either //192.12.4.6.:3500 or
//trixie:3500 in the Bootstrap object will cause the connection attempt to fail.
3-10 Creating Client Applications

STEP 6: WRITING THE ACTIVEX CLIENT APPLICATION

ne
s the
A WLE domain can have multiple ISL/ISHs. If you are accessing a WLE domain with
multiple ISL/ISHs, you supply a list of host:port combinations to the Bootstrap
object. The Bootstrap object walks through the list until it connects to a WLE domain.
The list of ISL/ISHs can also be specified in the TOBJADDR environmental variable.

If you want to access multiple WLE domains, you must create a Bootstrap object for
each WLE domain you want to access.

Obtaining References to the FactoryFinder Object

The client application must obtain initial references to the objects that provide services
for the application. The Bootstrap object is used to obtain references to the
FactoryFinder object, SecurityCurrent object, and TransactionCurrent object. The
argument passed to the operation is a string containing the progid of the desired
object. You have to get references only for the objects that you plan to use in your
ActiveX client application.

The following Visual Basic example shows how to use the Bootstrap object to obtain
a reference to the FactoryFinder object:

Set objFactoryFinder = objBootstrap.CreateObject(“Tobj.FactoryFinder”)

Using a Factory to Get an ActiveX View

ActiveX client applications get interface pointers to ActiveX views of CORBA objects
from factories. A factory is any CORBA object that returns an object reference to
another CORBA object. The ActiveX client application invokes an operation on a
factory to obtain an object reference to a CORBA object of a specific type. To use
factories, the ActiveX client application must be able to locate the factory it needs. The
FactoryFinder object serves this purpose. For information about the function of the
FactoryFinder object, see Chapter 1, “Client Application Development Concepts.”

Use the CreateObject function to create the FactoryFinder object, and then use o
of the FactoryFinder object methods to find a factory. The FactoryFinder object ha
following methods:

t find_factories()

Returns a sequence of factories that match the input key exactly.
Creating Client Applications 3-11

3 CREATING ACTIVEX CLIENT APPLICATIONS

 in
t find_one_factory()

Returns one factory that matches the input key exactly.

t find_factories_by_id()

Returns a sequence of factories whose ID field in the name component matches
the input argument.

t find_one_factory_by_id()

Returns one factory whose ID field in the factory’s CORBA name component
matches the input argument.

t list_factories()

Lists factory objects currently registered with the FactoryFinder.

The following Visual Basic example shows how to use the FactoryFinder
find_one_factory_by_id() method to get a factory for the Registrar object used
the client application for the WLE University sample applications:

Set objRegistrarFactory =
 objBsFactoryFinder.find_one_factory_by_id (“RegistrarFactory”)
Set objRegistrar = RegistrarFactory.find_registrar

Invoking Operations on the ActiveX View

Invoke operations on the ActiveX view by passing it a pointer to the factory and any
arguments that the operation requires.

The following Visual Basic example shows how to invoke operations on an ActiveX
view:

‘Get course details from the Registrar object’
aryCourseDetails =
 objRegistrar.get_course_details(aryCourseNumbers)
3-12 Creating Client Applications

STEP 7: DEPLOYING THE ACTIVEX CLIENT APPLICATION
Step 7: Deploying the ActiveX Client
Application

To distribute ActiveX client applications to other client machines, you need to create
a deployment package. A deployment package contains all the data needed by the
client application to use ActiveX views of CORBA objects, including the bindings, the
type libraries, and the registration information. The deployment package is a
self-registering ActiveX control with the file extension.ocx.

To create a deployment package for an ActiveX view:

1. Select an ActiveX view from the Workstation Views window.

2. Click Tools->Deploy Modules, or click the right mouse button on the desired
view and choose the Deploy Modules option from the menu.

A confirmation window is displayed.

3. Click Create to create the deployment package.

By default, the deployment package is placed in \wledir\Packages.
Creating Client Applications 3-13

3 CREATING ACTIVEX CLIENT APPLICATIONS
3-14 Creating Client Applications

CHAPTER

fying
ient

vel
em

rect
main
4 Using Security

This chapter describes how to use security in CORBA C++, CORBA Java, and
ActiveX client applications for the WLE software.

For an example of how security is implemented in working client applications, see the
description of the Security sample application in the Guide to the University Sample
Applications.

For an overview of the SecurityCurrent object, see Chapter 1, “Client Application
Development Concepts.”

Overview of WLE Security

CORBA C++, CORBA Java, and ActiveX client applications use security to
authenticate themselves to the WLE domain. Authentication is the process of veri
the identity of a client application. By entering the correct logon information, the cl
application authenticates itself to the WLE domain. The WLE software uses
authentication as defined in the CORBAservices Security Service and provides
extensions for ease of use.

A client application must provide security information according to the security le
defined in the desired WLE domain. This information is defined by the WLE syst
administrator in the UBBCONFIG file for the WLE domain. When creating client
applications, you must work with the WLE system administrator to obtain the cor
security information (such as the user name and user password) for the WLE do
you want to access from the client application.
Creating Client Applications 4-1

4 USING SECURITY
Summary of the Development Process for
Security

The steps for adding security to a client application are as follows:

The following sections describe these steps and use portions of the client applications
in the Security University sample application to illustrate the steps. For information
about the Security University sample application, see the Guide to the University
Sample Applications. The Security University sample application is located in the
following directory on the WLE software kit:

 drive:\wledir\samples\corba\university\security

Step Description

1 Use the Bootstrap object to obtain a reference to the
SecurityCurrent object in the specified WLE domain.

2 Get the PrincipalAuthenticator object from the SecurityCurrent
object.

3 Use the get_auth_type operation of the
PrincipalAuthenticator object to return the type of
authentication expected by the WLE domain.

4 Log on to the WLE domain using the required security
information.

5 Log off the WLE domain.
4-2 Creating Client Applications

STEP 1: USING THE BOOTSTRAP OBJECT TO OBTAIN THE SECURITYCURRENT OBJECT
Step 1: Using the Bootstrap Object to Obtain
the SecurityCurrent Object

Use the Bootstrap object to obtain an object reference to the SecurityCurrent object for
the specified WLE domain. The SecurityCurrent object is a
SecurityLevel2::Current object as defined by the CORBAservices Security
Service. For a complete description of the SecurityCurrent object, see the C++
Programming Reference available from the Online Documentation CD.

The following C++ , Java, and Visual Basic examples illustrate how the Bootstrap
object is used to return the SecurityCurrent object:

C++

CORBA::Object_var var_security_current_oref =
 bootstrap.resolve_initial_references(“SecurityCurrent”);
SecurityLevel2::Current_var var_security_current_ref =
 SecurityLevel2::Current::_narrow(
 var_security_current_oref.in());

Java

org.omg.CORBA.Object secCurObj =
 gBootstrapObjRef.resolve_initial_references(
 “SecurityCurrent”);
org.omg.SecurityLevel2.Current secCur =
 org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

Visual Basic

Set objSecurityCurrent =
 objBootstrap.CreateObject(“Tobj.SecurityCurrent”)
Creating Client Applications 4-3

4 USING SECURITY
Step 2: Getting the PrincipalAuthenticator
Object from the SecurityCurrent Object

The SecurityCurrent object returns a reference to the PrincipalAuthenticator for the
WLE domain. The PrincipalAuthenticator is used to get the authentication level
required for a WLE domain.

The following C++, Java, and Visual Basic examples illustrate how to obtain the
PrincipalAuthenticator for a WLE domain:

C++

//Get the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =
 var_security_current_oref->principal_authenticator();
//Narrow the PrincipalAuthenticator
Tobj::PrincipalAuthenticator_var var_bea_principal_authenticator =
 Tobj::PrincipalAuthenticator::_narrow(
 var_principal_authenticator_oref.in());

Java

//Get the PrincipalAuthenticator
org.omg.SecurityLevel2.PrincipalAuthenticator authlevel2 =
 secCur.principal_authenticator();
//Narrow the PrincipalAuthenticator
com.beasys.Tobj.PrincipalAuthenticatorObjRef gPrinAuthObjRef =
 (com.beasys.Tobj.PrincipalAuthenticator)
org.omg.SecurityLevel2.PrincipalAuthenticatorHelper.narrow(
 authlevel2);

Visual Basic

Set objPrincAuth = objSecurityCurrent.principal_authenticator
4-4 Creating Client Applications

STEP 3: OBTAINING THE AUTHENTICATION LEVEL
Step 3: Obtaining the Authentication Level

Use the Tobj::PrincipalAuthenticator::get_auth_type() method to get the
level of authentication required by the WLE domain.

For a complete description of the Tobj::PrincipalAuthenticator methods, see
the C++ Programming Reference available from the WLE online information set.

The following C++, Java, and Visual Basic examples illustrate how to obtain the
PrincipalAuthenticator for a WLE domain:

C++

//Determine the security level
Tobj::AuthType auth_type =
 var_bea_principal_authenticator->get_auth_type();

Java

//Determine the security level
com.beasys.Tobj.Authtype authType =
 gPrinAuthObjRef.get_auth_type();

Visual Basic

AuthorityType = objPrinAuth.get_auth_type

Step 4: Logging on to the WLE Domain with
Proper Authentication

Use the Tobj::PrincipalAuthenticator::logon() method to log your client
application into the desired WLE domain. The method requires the following
arguments:

t user_name

The WLE user name. This information is required for TOBJ_SYSAUTH and
TOBJ_APPAUTH authentication levels. This information may be supplied for
Creating Client Applications 4-5

4 USING SECURITY
the TOBJ_NOAUTH authentication level; however, it is not required. The
system designer decides this name at design time.

t client_name

The WLE client application name. This information is required for
TOBJ_SYSAUTH and TOBJ_APPAUTH authentication levels. This information
may be supplied for the TOBJ_NOAUTH authentication level; however, it is not
required. Obtain this information from the system administrator.

t system_password

The WLE password. This information is required for TOBJ_SYSAUTH and
TOBJ_APPAUTH authentication levels. Obtain this information from the system
administrator.

t user_password

The user password for the WLE authentication service. This information is
required for the TOBJ_APPAUTH authentication level.

t user_data

Application-specific data for authentication. This information is required when
the WLE domain being accessed by the client application is not using the
authentication service provided with the WLE software.

The user_password and user_data arguments are mutually exclusive, depending
on the authentication service used in the configuration of the WLE software. If you are
using an authentication service other than an authentication service provided by the
WLE software, provide the information required for logon in the user_data
argument. The Tobj::PrincipalAuthenticator::logon() method raises a
CORBA::BAD_PARAM exception if both user_password and user_data are set.

If a WLE domain has a TOBJ_NOAUTH authentication level, the client application is
not required to supply a user_name or client_name when logging on to the WLE
domain. If the client application does not logon with a user_name and client_name,
the IIOP Server Listener/Handler (ISL/ISH) of the WLE domain registers the client
application with the user_name and the client_name set for the ISL/ISH in the
UBBCONFIG file. However, the client application can log on with any user_name and
client_name.

The logon() method returns one of the following:

t Security::AuthenticationStatus::SecAuthSuccess if the authentication
succeeded
4-6 Creating Client Applications

STEP 5: LOGGING OFF THE WLE DOMAIN
t Security::AuthenticationStatus::SecAuthFailure if the authentication
failed or if the client application was already authenticated and did not log off
the WLE domain

The following C++, Java, and Visual Basic examples illustrate how to use the
Tobj::PrincipalAuthenticator::logon() method:

C++

Security::AuthenticationStatus status =
 var_bea_principalauthenticator->logon(
 user_name, client_name, system_password,
 user_password, 0);

Java

org.omg.Security.AuthenticationStatus status =
 gPrinAuthObjRef.logon
 (gUserName, ClientName, gSystemPassword, gUserPassword,0);

Visual Basic

If AuthorityType = TOBJ_APPAUTH Then logonStatus =
 oPrincAuth.Logon(
 UserName,ClientName,SystemPassword,_
 UserPassword,UserData)
End If

Step 5: Logging off the WLE Domain

The client application must log off the current WLE domain before it can log on as
another user in the same WLE domain. Use the
Tobj::PrincipalAuthenticator::logoff() method to discard the WLE current
authentication context and credentials. This method does not close the network
connections to the WLE domain. After logging off the WLE domain, calls using the
existing authentication fail if the authentication type is not TP_NOAUTH.
Creating Client Applications 4-7

4 USING SECURITY
4-8 Creating Client Applications

CHAPTER

ct,

tions.

r

I)
5 Using Transactions

This chapter describes how to use transactions in CORBA C++, CORBA Java, and
ActiveX client applications for the WLE software.

For an example of how transactions are implemented in working client applications,
see the descrption of the Transactions sample application in the Guide to the University
Sample Applications.

For an overview of the TransactionCurrent object, see Chapter 1, “Client Application
Development Concepts.”

Overview of WLE Transactions

Client applications use transaction processing to ensure that data remains corre
consistent, and persistent. The transactions in the WLE software allow client
applications to begin and terminate transactions and to get the status of transac
The WLE software uses transactions as defined in the CORBAservices Object
Transaction Service, with extensions for ease of use.

Transactions are defined on interfaces. The application designer decides which
interfaces within a WLE client/server application will handle transactions. Transaction
policies are defined in the Implementation Configuration File (ICF) for C++ serve
applications, or in the Server Description file (XML) for Java server applications.
Generally, the ICF file or the Server Description file for the available interfaces is
provided to the client programmer by the application designer.

If you prefer, you can use the Transaction application programming interface (AP
defined in the javax.transaction package that is shipped with the WLE (Java)
V4.2 software.
Creating Client Applications 5-1

5 USING TRANSACTIONS
Summary of the Development Process for
Transactions

The steps for adding transactions to a client application are as follows:

The following sections describe these steps and use portions of the client applications
in the Transactions University sample application to illustrate the steps. For
information about the Transactions University sample application, see the Guide to the
University Sample Applications. The Transactions University sample application is
located in the following directory on the WLE software kit:

t For Microsoftw Windows NT systems:
drive:\wledir\samples\corba\university\transactions

t For UNIX systems:
drive:/wledir/samples/corba/university/transactions

Step 1: Using the Bootstrap Object to Obtain
the TransactionCurrent Object

Use the Bootstrap object to obtain an object reference to the TransactionCurrent object
for the specified WLE domain. For a complete description of the TransactionCurrent
object, see the C++ Programming Reference available from the Online
Documentation CD.

Step Description

1 Use the Bootstrap object to obtain a reference to the
TransactionCurrent object in the specified WLE domain.

2 Use the methods of the TransactionCurrent object to include
the invocation of a CORBA object in a transaction operation.
5-2 Creating Client Applications

STEP 2: USING THE TRANSACTIONCURRENT METHODS
The following C++, Java, and Visual Basic examples illustrate how the Bootstrap
object is used to return the TransactionCurrent object:

C++

CORBA::Object_var var_transaction_current_oref =
 Bootstrap.resolve_initial_references(“TransactionCurrent”);
CosTransactions::Current_var transaction_current_oref=
 CosTransactions::Current::_narrow(
 var_transaction_current_oref.in());

Java

org.omg.CORBA.Object transCurObj =
 gBootstrapObjRef.resolve_initial_references(
 “TransactionCurrent”);
org.omg.CosTransactions.Current gTransCur=
 org.omg.CosTransactions.CurrentHelper.narrow(transCurObj);

Visual Basic

Set objTransactionCurrent =
 objBootstrap.CreateObject(“Tobj.TransactionCurrent”)

Step 2: Using the TransactionCurrent
Methods

The TransactionCurrent object has methods that allow a client application to manage
transactions. These methods can be used to begin and end transactions and to obtain
information about the current transaction. The TransactionCurrent object provides the
following methods:

t begin()

Creates a new transaction. Future operations take place within the scope of this
transaction. When a client application begins a transaction, the default
transaction timeout is 300 seconds. You can change this default, using the
set_timeout method.
Creating Client Applications 5-3

5 USING TRANSACTIONS
t commit()

Ends the transaction successfully. Indicates that all operations on this client
application have completed successfully.

t rollback()

Forces the transaction to roll back.

t rollback_only ()

Marks the transaction so that the only possible action is to roll back. Generally,
this method is used only in server applications.

t suspend()

Suspends participation in the current transaction. This method returns an object
that identifies the transaction and allows the client application to resume the
transaction later.

t resume()

Resumes participation in the specified transaction.

t get_status()

Returns the status of a transaction with a client application.

t get_transaction_name()

Returns a printable string describing the transaction.

t set_timeout()

Modifies the timeout period associated with transactions. The default transaction
timeout value is 300 seconds. If a transaction is automatically started instead of
explicity started with the begin() method, the timeout value is determined by
the value of the TRANTIME parameter in the UBBCONFIG file. For more
information about setting the TRANTIME parameter, see Administration Guide,
available on the WLE Online Documentation CD.

t get_control()

Returns a control object that represents the transaction.
5-4 Creating Client Applications

STEP 2: USING THE TRANSACTIONCURRENT METHODS
A basic transaction works in the following way:

1. A client application begins a transaction using the
Tobj::TransactionCurrent::begin() method. This method does not return a
value.

2. The operations on the CORBA interface execute within the scope of a
transaction. If a call to any of these operations raises an exception (either
explicitly or as a result of a communications failure), the exception can be caught
and the transaction can be rolled back.

3. Use the Tobj::TransactionCurrent:commit() method to commit the
current transaction. This method ends the transaction and starts the processing of
the operation. The transaction is committed only if all of the participants in the
transaction agree to commit.

The association between the transaction and the client application ends when the
client application calls the Tobj::TransactionCurrent:commit()method or
the Tobj::TransactionCurrent:rollback() method.The following C++,
Java, and Visual Basic examples illustrate using a transaction to encapsulate the
operation of a student registering for a class:

C++

//Begin the transaction
transaction_current_oref->begin();
try {
//Perform the operation inside the transaction
 pointer_Registar_ref->register_for_courses(student_id, course_number_list);
 ...
//If operation executes with no errors, commit the transaction:
 CORBA::Boolean report_heuristics = CORBA_TRUE;
 transaction_current_ref->commit(report_heuristics);
}
catch (CORBA::Exception &) {
//If the operation has problems executing, rollback the
//transaction. Then throw the original exception again.
//If the rollback fails,ignore the exception and throw the
//original exception again.
try {
 transaction_current_ref->rollback();
}
catch (CORBA::Exception &) {
 TP::userlog("rollback failed");
}
throw;
}

Creating Client Applications 5-5

5 USING TRANSACTIONS
Java

try{
 gTransCur.begin();
 //Perform the operation inside the transaction
 not_registered =
 gRegistrarObjRef.register_for_courses(student_id,selected_course_numbers);

 if (not_registered != null)

 //If operation executes with no errors, commit the transaction
 boolean report_heuristics = true;
 gTransCur.commit(report_heuristics);

 } else gTransCur.rollback();

} catch(org.omg.CosTransactions.NoTransaction nte) {
 System.err.println(“NoTransaction: “ + nte);
 System.exit(1);
} catch(org.omg.CosTransactions.SubtransactionsUnavailable e) {
 System.err.println(“Subtransactions Unavailable: “ + e);
 System.exit(1);
} catch(org.omg.CosTransactions.HeuristicHazard e) {
 System.err.println(“HeuristicHazard: “ + e);
 System.exit(1);
} catch(org.omg.CosTransactions.HeuristicMixed e) {
 System.err.println(“HeuristicMixed: “ + e);
 System.exit(1);
}

5-6 Creating Client Applications

STEP 2: USING THE TRANSACTIONCURRENT METHODS
Visual Basic

’ Begin the transaction
’
objTransactionCurrent.begin
’
’ Try to register for courses
’
NotRegisteredList = objRegistrar.register_for_courses(mStudentID,
 CourseList, exception)
’
If exception.EX_majorCode = NO_EXCEPTION then
 ’ Request succeeded, commit the transaction
 ’
 Dim report_heuristics As Boolean
 report_heuristics = True
 objTransactionCurrent.commit report_heuristics
Else
 ’ Request failed, Roll back the transaction
 ’
 objTransactionCurrent.rollback
 MsgBox "Transaction Rolled Back"
End If
Creating Client Applications 5-7

5 USING TRANSACTIONS
5-8 Creating Client Applications

CHAPTER

n

6 Using the Dynamic
Invocation Interface

This chapter discusses the following topics:

t When to use the Dynamic Invocation Interface (DII)

t DII concepts

t The development process for client applications using DII

t Loading the CORBA interfaces into the Interface Repository

t Obtaining a generic object reference

t Creating a request

t Sending DII requests and retrieving the results

t Deleting the request

t Using the Interface Repository with DII

The information in this chapter applies to CORBA C++ and CORBA Java client
applications. DII is not supported in ActiveX client applications.

For an overview of the invocation types and DII, see Chapter 1, “Client Applicatio
Development Concepts.”

For a complete description of the CORBA member functions mentioned in this
chapter, see the C++ Programming Reference or the JDK 1.2 documentation for Java
mappings of the CORBA member functions.
Creating Client Applications 6-1

6 USING THE DYNAMIC INVOCATION INTERFACE
When to Use DII

There are good reasons to use either static or dynamic invocation to send requests from
the client application. You may find you want to use both invocation types in the same
client applications. To choose an invocation type, you need to understand the
advantages and disadvantages of DII.

One of the major differences between static invocation and dynamic invocation is that,
while both support synchronous and one-way communication, only dynamic
invocation supports deferred synchronous communication.

In synchronous communication, the client application sends a request and waits until
a response is retrieved; the client application cannot do any other work while it is
waiting for the response. In deferred synchronous communication, the client
application sends the request and is free to do other work. Periodically, the client
application checks to see if the request has completed; when the request has completed,
the client application makes use of the result of that request.

In addition, DII enables a client application to invoke a method on a CORBA object
whose type was unknown at the time the client application was written. This contrasts
with static invocation, which requires that the client application include a client stub
for each type of CORBA object the client application intends to invoke. However, DII
is more difficult to program (your code has to do the work of a client stub).

A client application can use DII to obtain better performance. For example, the client
application can send multiple deferred synchronous requests at the same time and can
handle the completions as they occur. If the requests go to different server applications,
this work can be done in parallel. You cannot do this when you are using synchronous
client stubs.

Note: The client stubs have optimizations, that allow the client stubs to achieve
quicker response time than is achieved with DII when sending a single request
and immediately blocking to get the response for that request.

DII is purely an interface to the client application; static and dynamic invocations are
identical from a server application’s point of view.
6-2 Creating Client Applications

DII CONCEPTS
DII Concepts

DII frequently offers more than one way to accomplish a task, the trade-off being
programming simplicity versus performance. This section describes the high-level
concepts you need to understand to use DII. Details, including code examples, are
provided later in this chapter.

The concepts presented in this section are as follows:

t Request objects

t Request sending options

t Reply receiving options

Request Objects

A request object represents one invocation on one method of a CORBA object. If you
want to make two invocations on the same method, you need to create two request
objects.

To invoke a method, you need an object reference to the CORBA object that contains
the method. You use the object reference to create a request object, populate the
request object with arguments, send the request, wait for the reply, and obtain the result
from the request.

You can create a request object in the following ways:

t Use the CORBA::Object::_request member function.

Use the CORBA::Object::_request member function to create an empty
request object specifying only the interface name you intend to invoke in the
request (for example, get_course_details). Once the request object is
created, the arguments, if there are any, must be added before the request can be
sent to the server application. You invoke the CORBA::NVList::add_value
member function for each argument required by the method you intend to
invoke.

You must also specify the type of the request’s result using the
CORBA::Request::result member function. For performance reasons, the
Creating Client Applications 6-3

6 USING THE DYNAMIC INVOCATION INTERFACE
messages exchanged between Object Request Brokers (ORBs) do not contain
type information. By specifying a place holder for the result type, you give the
ORB the information it needs to properly extract the result from the reply.
Similarly, if the method you are invoking can raise user exceptions, you must
add a place holder for exceptions before sending the request object.

t Use the CORBA::Object::_create_request member function.

When you use the CORBA::Object:: _create_request member function to
create a request object, you pass all the arguments required to make the request
and to specify the types of the result and user exceptions, if there are any, that
the request may return. Using this member function, you create an empty
NVList, add arguments to the NVList one at a time, and create the request
object, passing the completed NVList as an argument to the request. The
potential advantage of the CORBA::Object::_create_request member
function is performance. You can reuse the arguments in multiple
CORBA::ORB::_create_request calls if you invoke the same method on
multiple target objects.

For a complete description of the CORBA member functions, see the C++
Programming Reference available from the WLE online documentation CD.

Options for Sending Requests

Once you have created and populated a request object with arguments, a result type,
and exception types, you send the request to the CORBA object. There are several
ways to send a request:

t The simplest way is to call the CORBA::Request::invoke member function,
which blocks until the reply message is retrieved.

t More complex, but not blocking, is to use the
CORBA::Request::send_deferred member function.

t If you want to invoke multiple CORBA requests in parallel, use the
CORBA::ORB::send_multiple_requests_deferred member function. It
takes a sequence of request objects.

t Use the CORBA::Request::send_oneway member function if, and only if, the
CORBA method has been defined as oneway in the OMG IDL file.
6-4 Creating Client Applications

DII CONCEPTS

ct is
. As

.2

esult:

ct

of the

ady
,

est
use

e
t You can invoke multiple oneway methods in parallel with the ORB’s
CORBA::ORB::send_multiple_requests_oneway member function.

Note: When using the CORBA::Request::send_deferred member function, the
invocation on the request object acts synchronously when the target obje
in the same address space as the client application issuing the invocation
a result of this behavior, calling the CosTransaction::Current::suspend
operation does not raise the CORBA::BAD_IN_ORDER exception, because the
transaction has completed.

For a complete description of the CORBA member functions, see the C++
Programming Reference available from the Online Documentation CD, or the JDK 1
documentation for the Java mappings of the CORBA member functions.

Options for Receiving the Results of Requests

If you send a request using the invoke method, there is only one way to get the r
use the request object’s CORBA::Request::env member function to test for an
exception; and if there is not exception, extract the NVList from the request obje
using the CORBA::Request::result member function.

If you send a request using the deferred synchronous method, you can use any
following member functions to get the result:

t CORBA::ORB::poll_response

This member function determines whether a request has completed and is re
to be processed. This member function does not block. If the request is ready
the client application has to use the get_response() or
get_next_response() member functions to process the response. Use this
member function when you don’t care about the order in which reponses are
processed, you want the client application to process other requests while
waiting for a specific response, or you want to impose a timeout.

t CORBA::ORB::poll_next_response

This member function indicates whether a response for any outstanding requ
is ready to be processed. If the request is ready, the client application has to
the get_response() or get_next_response() member functions to process
the response. Use this member function when the order in which requests ar
Creating Client Applications 6-5

6 USING THE DYNAMIC INVOCATION INTERFACE
processed is not important and you want the client application to process other
requests while waiting for a specific response.

t CORBA::ORB::get_reponse

This member function blocks until the reponse for the specific request is
completed and processed. Use this member function when you want to process
the requests for outstanding requests in a particular order.

t CORBA::ORB::get_next_response

This member function blocks until a reponse for any outstanding requests are
completed and processed. Use this member function when the order in which
requests are processed is not important.

If you used the CORBA::Request::send_oneway member function, there is no result.

For a complete description of the CORBA member functions, see the C++
Programming Reference, available from the Online Documentation CD.

Summary of the Development Process for
DII

The steps for using DII in client applications are as follows:

Step Description

1 Load the CORBA interfaces into the Interface Repository.

2 Obtain an object reference for the CORBA object on which you
want to invoke methods.

3 Create a request object for the CORBA object.

4 Send the DII request and retrieve the results.

5 Delete the request.

6 Use the Interface Repository with DII.
6-6 Creating Client Applications

STEP 1: LOADING THE CORBA INTERFACES INTO THE INTERFACE REPOSITORY
The following sections describe these steps in detail and provide C++ code examples.

Step 1: Loading the CORBA Interfaces into
the Interface Repository

Before you can create CORBA client applications that use DII, the interfaces of the
CORBA object need to be loaded into the Interface Repository. If the interfaces of a
CORBA object are not loaded in the Interface Repository, they do not appear in the
Services window of the Application Builder. If a desired CORBA interface does not
appear in the Services window, use the idl2ir command to load the OMG IDL that
defines the CORBA into the Interface Repository. The syntax for the idl2ir
command is as follows:

idl2ir [-f repositoryfile] file.idl

For a complete description of the idl2ir command, refer to the Administration
Guide.

Option Description

-f repositoryfile Directs the command to load the OMG IDL files for the
CORBA interface into the specified Interface Repository.
Specify the name of the Interface Repository in the WLE
domain that the ActiveX client application will access.

file.idl Specifies the OMG IDL file containing definitions for the
CORBA interface.
Creating Client Applications 6-7

6 USING THE DYNAMIC INVOCATION INTERFACE

the
g
est
Step 2: Obtaining the Object Reference for
the CORBA Object

Use the Bootstrap object to get a FactoryFinder object. Then use the FactoryFinder
object to get a factory for the CORBA object you want to access from the DII request.
For an example of using the Boostrap and FactoryFinder objects to get a factory, see
Chapter 2, “Creating CORBA Client Applications.”

Step 3: Creating a Request Object

When your client application invokes a method on a CORBA object, you create a
request for the method invocation. The request is written to a buffer and sent to
server application. When your client application uses client stubs, this processin
occurs transparently. Client applications that want to use DII must create a requ
object and must send the request.

Using the CORBA::Object::_request Member Function

The following C++ code example illustrates how to use the

CORBA::Object::_request member function:

Boolean aResult;
CORBA::ULong long1 = 42;
CORBA::Any in_arg1;
CORBA::Any &in_arg1_ref = in_arg1;

in_arg1 <<= long1;

// Create the request using the short form
Request_ptr reqp = anObj->_request(“anOp”);

// Use the argument manipulation helper functions
reqp->add_in_arg() <<= in_arg1_ref;
6-8 Creating Client Applications

STEP 3: CREATING A REQUEST OBJECT
// We want a boolean result
reqp->set_return_type(_tc_boolean);

// Provide some place for the result
CORBA::Any::from_boolean boolean_return_in(aResult);
reqp->return_value() <<= boolean_return_in;

// Do the invoke
reqp->invoke();

// No error, so get the return value
CORBA::Any::to_boolean boolean_return_out(aResult);
reqp->return_value() >>= boolean_return_out;

Using the CORBA::Object::create_request Member
Function

When you use the CORBA::Object::create_request member function to create a
request object, you create an empty NVList and you add arguments to the NVList one
at a time. You create the request object, passing the completed NVList as an argument
to the request.

Setting Arguments for the Request Object

The arguments for a request object are represented with an NVList object that stores
named/value objects. Methods are provided for adding, removing, and querying the
objects in the list. For a complete description of CORBA::NVList, see the C++
Programming Reference available from the WLE online information set.

Setting Input and Output Arguments with the CORBA::NamedValue Member
Function

The CORBA::NamedValue member function specifies a named/value object that can
be used to represent both input and output arguments for a request. The named/value
objects are used as arguments to the request object. The CORBA::NamedValue pair is
also used to represent the result of a request that is returned to the client application.
The name property of a named/value object is a character string, and the value property
of a named/value object is represented by a CORBA Any.
Creating Client Applications 6-9

6 USING THE DYNAMIC INVOCATION INTERFACE
For a complete description of the CORBA::NamedValue member function, see the
C++ Programming Reference available from the WLE online information set.

Example of Using CORBA::Object::create_request Member Function

The following C++ code example illustrates how to use the
CORBA::Object::create_request member function:

CORBA::Request_ptr reqp;
CORBA::Context_ptr ctx;
CORBA::NamedValue_ptr boolean_resultp = 0;
Boolean boolean_result;
CORBA::Any boolean_result_any(CORBA::_tc_boolean,
 & boolean_result);
CORBA::NVList_ptr arg_list = 0;
CORBA::Any arg;

// Get the default context
orbp->get_default_context(ctx);

// Create the named value pair for the result
(void) orbp->create_named_value(boolean_resultp);
CORBA::Any *tmpany = boolean_resultp->value();
*tmpany = boolean_result_any;

arg.replace(CORBA::_tc_long, &long_arg, CORBA_FALSE)

// Create the NVList
orbp->create_list(1, arg_list);

// Add an IN argument to the list
arg_list->add_value(“arg1”, arg, CORBA::ARG_IN);

// Create the request using the long form
anObj->_create_request (ctx,
 “anOp”,
 arg_list,
 boolean_resultp,
 reqp,
 CORBA::VALIDATE_REQUEST);
// Do the invoke
reqp->invoke();

CORBA::NamedValue_ptr result_namedvalue;
Boolean aResult;
CORBA::Any *result_any;
// Get the result
6-10 Creating Client Applications

STEP 4: SENDING A DII REQUEST AND RETRIEVING THE RESULTS
result_namedvalue = reqp->result();
result_any = result_namedvalue->value();

// Extract the Boolean from the any
*result_any >>= aResult;

Step 4: Sending a DII Request and
Retrieving the Results

You can invoke a request in several ways, depending on what kind of communication
type you want to use. This section describes how the CORBA member functions are
used to send requests and retrieve the results.

Synchronous Requests

If you want synchronous communication, the CORBA::Request::invoke member
function sends the request and waits for a response before it returns to the client
application. Use the CORBA::Request::result member function to return a
reference to a named/value object that represents the return value. Once the results are
retrieved, you read the values from the NVList stored in the request.

Deferred Synchronous Requests

The nonblocking member function, CORBA::Request::send_deferred, is also
provided for sending requests. It allows the client application to send a request and then
use the CORBA::Request::poll_response member function to determine when the
response is available. The CORBA::Request::get_response member function
blocks until a response is available.

The following code example illustrates how to use the
CORBA::Request::send_deferred, CORBA::Request::poll_response, and
CORBA::Request::get_response member functions:
Creating Client Applications 6-11

6 USING THE DYNAMIC INVOCATION INTERFACE
request->send_deferred ();

if (poll)
{
 for (int k = 0 ; k < 10 ; k++)
 {
 CORBA::Boolean done = request->poll_response();
 if (done)
 break;

 }
}
request->get_response();

Oneway Requests

Use the CORBA::Request::send_oneway member function to send a oneway
request. Oneway requests do not involve a response from the server application. For a
complete description of the CORBA::Request::send_oneway member function, see
the C++ Programming Reference available from the WLE online information set.

The following code example illustrates how to use the
CORBA::Request::send_oneway member function:

request->send_oneway();

Multiple Requests

When a sequence of request objects is sent using the
CORBA::Request::send_multiple_requests_deferred member function, the
CORBA::ORB::poll_response, CORBA::ORB::poll_next_response,
CORBA::ORB::get_response, and CORBA::ORB::get_next_response member
functions can be used to retrieve the response the server application sends for each
request.

The CORBA::ORB::poll_response and CORBA::ORB::poll_next_response
member functions can be used to determine if a response has been retrieved from the
server application. These member functions return a 1 if there is at least one response
available, and a zero if there are no responses available.
6-12 Creating Client Applications

STEP 4: SENDING A DII REQUEST AND RETRIEVING THE RESULTS
The CORBA::ORB::get_response and CORBA::ORB::get_next_response
member functions can be used to retrieve a response. If no response is available, these
member functions block until a response is retrieved. If you do not want your client
application to block, use the CORBA::ORB::poll_next_response member function
to first determine when a response is available, and then use the
CORBA::ORB::get_next_response method to retrieve the result.

You can also send multiple oneway requests by using the
CORBA::Request::send_multiple_requests_oneway member function.

The following code example illustrates how to use the
CORBA::Request::send_multiple_requests_deferred,
CORBA::Request::poll_next_response, and
CORBA::Request::get_next_response member functions:

CORBA::Context_ptr ctx;
CORBA::Request_ptr requests[2];
CORBA::Request_ptr request;
CORBA::NVList_ptr arg_list1, arg_list2;
CORBA::ULong i, nreq;
CORBA::Long arg1 = 1;
Boolean aResult1 = CORBA_FALSE;
Boolean expected_aResult1 = CORBA_TRUE;
CORBA::Long arg2 = 3;
Boolean aResult2 = CORBA_FALSE;
Boolean expected_aResult2 = CORBA_TRUE;

try
{
 orbp->get_default_context(ctx);

 populate_arg_list (&arg_list1, &arg1, &aResult1);

 nreq = 0;

 anObj->_create_request (ctx,
 “Multiply”,
 arg_list1,
 0,
 requests[nreq++],
 0);

 populate_arg_list (&arg_list2, &arg2, &aResult2);

 anObj->_create_request (ctx,
 “Multiply”,
 arg_list2,
Creating Client Applications 6-13

6 USING THE DYNAMIC INVOCATION INTERFACE
 0,
 requests[nreq++],
 0);

// Declare a request sequence variable...
CORBA::ORB::RequestSeq rseq (nreq, nreq, requests, CORBA_FALSE);

orbp->send_multiple_requests_deferred (rseq);
for (i = 0 ; i < nreq ; i++)

{
 requests[i]->get_response();
}

// Now check the results

if (aResult1 != expected_aResult1)
{
 cout << “aResult1=” << aResult1 << “ different than expected: “ <<
expected_aResult1;
}

if (aResult2 != expected_aResult2)
{
 cout << “aResult2=” << aResult2 << “ different than expected: “ <<
expected_aResult2;
}

aResult1 = CORBA_FALSE;
aResult2 = CORBA_FALSE;

// Using the same argument lists, multiply the numbers again.
// This time we intend to poll for response...

orbp->send_multiple_requests_deferred (rseq);

// Now poll for response...

for (i = 0 ; i < nreq ; i++)
{

 // We will randomly poll maximum 10 times...
 for (int j = 0 ; j < 10 ; j++)
 {
 CORBA::Boolean done = requests[i]->poll_response();

 if (done) break;
 }
}
// Now actually get the response...
6-14 Creating Client Applications

STEP 4: SENDING A DII REQUEST AND RETRIEVING THE RESULTS
for (i = 0 ; i < nreq ; i++)
{
 requests[i]->get_response();
}

// Now check the results
if (aResult1 != expected_aResult1)
{
 cout << “aResult1=” << aResult1 << “ different than expected: “ <<
expected_aResult1
}
if (aResult2 != expected_aResult2)
{
 cout << “aResult2=” << aResult2 << “ different than expected: “ <<
expected_aResult2;
}

aResult1 = CORBA_FALSE;
aResult2 = CORBA_FALSE;

// Using the same argument lists, multiply the numbers again.
// Call get_next_response, and WAIT for a response.
orbp->send_multiple_requests_deferred (rseq);

// Poll until we get a response and then use get_next_response get it...
for (i = 0 ; i < nreq ; i++)
{
 CORBA::Boolean res = 0;

 while (! res)
 {
 res = orbp->poll_next_response();
 }
 orbp->get_next_response(request);
 CORBA::release(request);
}
// Now check the results
if (aResult1 != expected_aResult1)
{
 cout << “aResult1=” << aResult1 << “ different than expected: “ <<
expected_aResult1;
}
if (aResult2 != expected_aResult2)
{
 cout << “aResult2=” << aResult2 << “ different than expected: “ <<
expected_aResult2;
}

Creating Client Applications 6-15

6 USING THE DYNAMIC INVOCATION INTERFACE
static void populate_arg_list (
CORBA::NVList_ptr ArgList,
CORBA::Long * Arg1,
CORBA::Long * Result)
{
CORBA::Any any_arg1;
CORBA::Any any_result;

(* ArgList) = 0;
orbp->create_list(3, *ArgList);

any_arg1 <<= *Arg1;
any_result.replace(CORBA::_tc_boolean, Result, CORBA_FALSE);

(*ArgList)->add_value(“arg1”, any_arg1, CORBA::ARG_IN);
(*ArgList)->add_value(“result”, any_result, CORBA::ARG_OUT);

return;

}

Step 5: Deleting the Request

Once you have been notified that the request has successfully completed, you need to
decide if you want to delete the existing request, or reuse portions of the request in the
next invocation.

To delete the entire request, use the CORBA::Release(request) member function
on the request to be deleted. This operation releases all memory associated with the
request. Deleting a request that was issued using the deferred synchronous
communication type causes that request to be canceled if it has not completed.
6-16 Creating Client Applications

STEP 6: USING THE INTERFACE REPOSITORY WITH DII
Step 6: Using the Interface Repository with
DII

A client application can create, populate, and send requests for objects that were not
known to the client application when it was built. To do this, the client application uses
the Interface Repository to retrieve information needed to create and populate the
requests. The client application uses DII to send the requests, since it does not have
client stubs for the interfaces.

Although this technique is useful for invoking operations on a CORBA object whose
type is unknown, performance becomes an issue because of the overhead interaction
with the Interface Repository. You might consider using this type of DII request when
creating a client application that browses for objects, or when creating a client
application that is an administration tool.

The steps for using the Interface Repository in a DII request are as follows:

1. Define the macro ORB_INCLUDE_REPOSITORY before including CORBA.h in your
WLE application. For example: #define ORB_INCLUDE_RESPOSITORY.

2. Use the Bootstrap object to obtain the InterfaceRepository object, which contains
a reference to the Interface Repository in a particular WLE domain. Once the
reference to the Interface Repository is obtained, you can navigate the Interface
Repository from the root.

3. Use the CORBA::Object::_get_interface member function to communicate
with the server application that implements the desired CORBA object.

4. Use CORBA::InterfaceDef_ptr to get the definition of the CORBA interface
that is stored in the Interface Repository.

5. Locate the OperationDescription for the desired operation in the
FullInterfaceDescription operations.

6. Retrieve the repository ID from the OperationDescription.

7. Call CORBA::Repository::lookup_id using the repository ID returned in the
OperationDescription to look up the OperationDef in the Interface
Repository. This call returns the contained object.
Creating Client Applications 6-17

6 USING THE DYNAMIC INVOCATION INTERFACE
8. Narrow the contained object to an OperationDef.

9. Use the CORBA::ORB::create_operation_list member function, using the
OperationDef argument, to build an argument list for the operation.

10. Set the argument value within the operation list.

11. Send the request and retrieve the results as you would any other request. You can
use any of the options described in this chapter to send a request and to retrieve
the results.
6-18 Creating Client Applications

CHAPTER

y
7 Handling Exceptions

This chapter describes how CORBA C++, CORBA Java, and ActiveX client
applications handle CORBA exceptions.

CORBA Exception Handling Concepts

CORBA defines the following types of exceptions:

t System exceptions, which are general errors, such as running out of memory and
communication failures. System exceptions include exceptions raised by the
object request broker (ORB). The CORBA specification defines a set of system
exceptions that can be raised when errors occur in the processing of a request
from a client application.

t User exceptions, which are exceptions triggered by an object, where the
exception contains user-defined data. When you define your CORBA object’s
interface in OMG IDL, you can specify the user exceptions that the object ma
raise.

The following sections describe how each type of client application handles
exceptions.

CORBA System Exceptions

Table 7-1 lists the CORBA system exceptions.
Creating Client Applications 7-1

7 HANDLING EXCEPTIONS
Table 7-1 CORBA System Exceptions

Exception Name Description

BAD_CONTEXT An error occured while processing context objects.

BAD_INV_ORDER Routine invocations are out of order.

BAD_OPERATION Invalid operation.

BAD_PARAM An invalid parameter was passed.

BAD_TYPECODE Invalid typecode.

COMM_FAILURE Communication failure.

DATA_CONVERSION Data conversion error.

FREE_MEM Unable to free memory.

IMP_LIMIT Implementation limit violated.

INITIALIZE ORB initialization failure.

INTERNAL ORB internal error.

INTF_REPOS An error occurred while accessing the Interface
Repository.

INV_FLAG Invalid flag was specified.

INV_IDENT Invalid identifier syntax.

INV_OBJREF Invalid object reference was specified.

MARSHAL Error marshaling parameter or result.

NO_IMPLEMENT Operation implementation not available.

NO_MEMORY Dynamic memory allocation failure.

NO_PERMISSION No permission for attempted operation.

NO_RESOURCES Insufficient resources to process request.

NO_RESPONSE Response to request not yet available.
7-2 Creating Client Applications

CORBA C++ CLIENT APPLICATIONS
CORBA C++ Client Applications

Since both system and user exceptions require similar functionality, the
SystemException and UserException classes are derived from the common
Exception class. When an exception is raised, your client application can narrow
from the Exception class to a specific SystemException or UserException class.
The C++ Exception inheritance hierarchy is shown in Figure 7-1.

Figure 7-1 C++ Exception Inheritance Hierarchy

OBJ_ADAPTER Failure detected by object adapter.

OBJECT_NOT_EXIST Object is not available.

PERSIST_STORE Persistent storage failure.

TRANSIENT Transient failure.

UNKNOWN Unknown result.

Table 7-1 CORBA System Exceptions

Exception Name Description

Exception

UserException SystemException

User-Defined
Exceptions

Standard Exceptions
Creating Client Applications 7-3

7 HANDLING EXCEPTIONS
The Exception class provides the following public operations:

t copy constructor

t destructor

t _narrow

The copy constructor and destructor operations automatically manage the
storage associated with the exception.

The _narrow operation allows your client application to catch any type of exception
and then determine its type. The exception argument passed to the _narrow
operation is a pointer to the base class Exception. The _narrow operation accepts a
pointer to any Exception object. If the pointer is of type SystemException, the
narrow() operation returns a pointer to the exception. If the pointer is not of type
SystemException, the narrow() operation returns a Null pointer.

Unlike the _narrow operation on object references, the _narrow operation on
exceptions returns a suitably typed pointer to the same exception argument, not a
pointer to a new exception. Therefore, you do not free a pointer returned by the
_narrow operation. If the original exception goes out of scope or is destroyed, the
pointer returned by the _narrow operation is no longer valid.

Note: The University sample applications do not use the _narrow operation.

Handling System Exceptions

The CORBA C++ client applications use the standard C++ try-catch exception
handling mechanism to raise and catch exceptions when error conditions occur, rather
than testing status values to detect errors. This exception-handling mechanism is also
used to integrate CORBA exceptions into WLE client applications. In C++, catch
clauses are attempted in the order specified, and the first matching handler is called.

The following example for a C++ client application shows printing the respositoryId
for the exception.

Note: Throughout this chapter, bold text is used to highlight the exception code
within the example.
7-4 Creating Client Applications

CORBA C++ CLIENT APPLICATIONS
int main (int arg c, char* arg v [])
{
 CORBA::ORB_var orb;

 try{
 //Initialize the ORB
 orb = CORBA::ORB_init (argc, argv);
 }
 catch(CORBA::Exception& e) {
 cerr <<e.get_id() <<endl;
 }
 ...

}

User Exceptions

User exceptions are generated from the user-written OMG IDL file in which they are
defined. When handling exceptions, the code should first check for system exceptions.
System exceptions are predefined by CORBA, and often the application cannot
recover from a system exception. For example, system exceptions may signal
problems in the network transport or signal internal problems in the ORB. Once you
have tested for the system exceptions, test for specific user exceptions.

The following C++ example shows the OMG IDL file that declares the
TooManyCredits user exception inside the Registar interface. Note that exceptions
can be declared either within a module or within an interface.
Creating Client Applications 7-5

7 HANDLING EXCEPTIONS
exception TooManyCredits
{
 unsigned short maximum_credits;
};

interface Registrar

NotRegisteredList register_for_courses(
 in StudentId student,
 in CourseNumberList courses
) raises (
 TooManyCredits
);

The following C++ code example shows how a TooManyCredits user exception
would work within the scope of a transaction for registering for classes:

//Register a student for some course

try {
 pointer_registrar_reference->register_for_courses
 (student_id, course_number_list);
}
catch (UniversityT::TooManyCredits& e) {
 cout <<"You cannot register for more than"
 << e.maximum_credits <<"credits."<<endl;
}

CORBA Java Client Applications

Note: The information in this section is based on the OMG IDL/Java Language
Mapping Specification, orbos/97-03-01. Revised: March 19, 1997.

Java client applications handle exceptions in a similar way to C++ client applications:

t System exceptions inherit from java.lang.RuntimeException.

t User-defined exceptions inherit from java.lang.Exception.

Figure 7-2 shows the inheritance hierarchy of the Java Exception classes.
7-6 Creating Client Applications

CORBA JAVA CLIENT APPLICATIONS
Figure 7-2 Java Exception Inheritance Hierarchy

System Exceptions

The standard OMG IDL system exceptions are mapped to final Java classes that extend
org.omg.CORBA.SystemException and provide access to the OMG IDL major and
minor exception code, as well as a string describing the reason for the exception.

Note: There are no public constructors for org.omg.CORBA.SystemException;
only classes that extend it can be instantiated.

The Java class name for each standard OMG IDL exception is the same as its OMG
IDL name and is declared to be in the org.omg.CORBA package. For example, the
CORBA-defined system exception BAD_CONTEXT maps to Java as
org.omg.CORBA.BAD_CONTEXT. The default constructor supplies zero for the minor
code, COMPLETED_NO for the completion code, and ““ for the reason string. There is
also a constructor that takes the reason and uses defaults for the other fields, as well as
a constructor that requires all three parameters to be specified.

java.lang.exception

org.omg.CORBA
.UserException

java.lang.Runtime
.exception

User-Defined
Exceptions

org.omg.CORBA
.SystemException
Creating Client Applications 7-7

7 HANDLING EXCEPTIONS
The following Java code example illustrates how to use system exceptions:

try
 {
 //Resolve FactoryFinder
 org.omg.CORBA.Object off = bs.resolve_initial_references
 (“FactoryFinder”);
 FactoryFinder ff=FactoryFinderHelper.narrow(off);

 org.omg.CORBA.Object of = FactoryFinder.find_one_factory_by_id
 (UniversityT.RegistrarFactoryHelper.id());
 UniversityT.RegistrarFactory F =
 UniversityT.RegistrarFactoryHelper.narrow(of);
 }
catch (org.omg.CORBA.SystemException e) {
 System.err.println("System exception " + e);
 System.exit(1);
}

User Exceptions

User exceptions are mapped to final Java classes that extend
org.omg.CORBA.UserException and are otherwise mapped like the OMG IDL
struct data type, including the generation of Helper and Holder classes.

If the exception is defined within a nested OMG IDL scope (essentially within an
interface), its Java class name is defined within a special scope. Otherwise, its Java
class name is defined within the scope of the Java package that corresponds to the
exceptions’s enclosing OMG IDL module.

The following is an example of a user exception:

//Register for Courses
try{
 gRegistrarObjRef.register_for_courses(student_id, selected_course_numbers);
 }
catch(UniversityT.TooManyCredits e){
 System.err.println("TooManyCredits: " +e);
 System.exit(1);
}

7-8 Creating Client Applications

ACTIVEX CLIENT APPLICATIONS
ActiveX Client Applications

ActiveX client applications use the Visual Basic error handling model, which allows
you to perform special actions when an error occurs, such as jumping to a particular
error handling routine. When an exception occurs in an ActiveX client application, the
standard Visual Basic error handling works as expected; however, the amount of error
information that Visual Basic returns for any exceptions is very limited.

Visual Basic provides additional information about the exception that occurred
through the description property of the Visual Basic built-in Error object. When
an error occurs, the description string is set to indicate what type of error occurred. The
object returns a predefined data type for the exceptions. User exceptions are named to
distinguish between them.

When using the Visual Basic error handling model, the description string describes the
following:

t Whether the exception was a user or a system exception

t The name of the exception

t Whether or not the operation completed before the exception occurred

The Visual Basic error handling model cannot return exception-specific information,
such as the user data of a user exception.

To compensate for this shortcoming, ActiveX views of CORBA objects have an
additional optional exception return parameter that returns a user exception. When you
supply the optional exception object, no Visual Basic exception is triggered. Instead,
the return parameter returns the exception information.

If an exception occurs, the return parameter contains an object to get the data from the
exception. This object is similar to a structure pseudo-object, with properties for each
value. To determine the type of exception, use the exception object properties
EX_majorCode or EX_minorCode. The EX_majorCode object property has three
possible values:

t 0 when no exception occurred

t 1 when a system exception occurred

t 2 when a user exception occurred
Creating Client Applications 7-9

7 HANDLING EXCEPTIONS
The following is an example of Visual Basic code that handles exceptions:

Dim exceptType As ExceptionType
Dim exceptInfo As DIForeignException

Set exceptInfo = Exc
exceptType = exceptInfo.EX_majorCode

Select Case exceptType

 Case NO_EXCEPTION

 msg = "No Exception" & vbCrLf

 MsgBox msg

 Case SYSTEM_EXCEPTION

 ’For a system exception, the returned variant supports the
 ’minorCode and completionStatus properties.

 Dim minorCode As Long
 Dim completionStatus As CORBA_CompletionStatus
 Dim completionMsg As String

 minorCode = exceptInfo.EX_minorCode
 completionStatus = exceptInfo.EX_completionStatus
 Select Case completionStatus
 Case COMPLETION_NO
 completionMsg = "No"
 Case COMPLETION_YES
 completionMsg = "Yes"
 Case COMPLETION_MAYBE
 completionMsg = "Maybe"
 End Select

 msg = "System Exception" & vbCrLf
 msg = msg & " Minor Code = " & minorCode & vbCrLf
 msg = msg & " Completion Status = " & completionMsg & vbCrLf

 MsgBox msg
7-10 Creating Client Applications

ACTIVEX CLIENT APPLICATIONS
 Case USER_EXCEPTION

 ’If it is a user exception, the returned variant supports
 ’the properties for the defined user exceptions.

 msg = "User Exception" & vbCrLf
 msg = msg & " Exception: " & exceptInfo.INSTANCE_repositoryId &
 vbCrLf
 MsgBox msg

 End Select
Creating Client Applications 7-11

7 HANDLING EXCEPTIONS
7-12 Creating Client Applications

Index

A
ActiveX 1-17

concepts 1-17
bindings 1-17
views 1-17

naming conventions 1-18
ActiveX client applications

concepts 1-17
creating

bindings 3-7
views 3-7

defining security 4-2
deploying views 3-13
description 1-2
development process 3-2
establishing communication with the

domain 3-10
handling exceptions 7-9
invoking operations on objects 3-11
ISL parameter 3-7
loading environmental objects into the

Interface Repository 3-5
loading interfaces into the Interface

Repository 3-5
resolving initial references to objects 3-

11
starting a server application for the

Interface Repository 3-6
using factories 3-11
using security 4-2
using the Interface Repository 1-7

using transactions 5-2
writing 3-9

Application Builder
creating

bindings 3-7
deployment packages 3-13
type libraries 3-8
views 3-7

description 1-17
ISL parameter 3-7
windows 3-3

authentication levels
getting

C++ 4-5
Java 4-5
Visual Basic 4-5

in client applications 4-5
supported in the WLE software 1-14
TOBJ_APPAUTH 1-14
TOBJ_NOAUTH 1-14
TOBJ_SYSAUTH 1-14

Automation environmental objects
loading into the Interface Repository 3-5
TOBJIN.IDL 3-5
writing declarations for 3-9

B
bindings

creating 3-7
deploying 3-13
Creating Client Applications I-1

description 1-17
Bootstrap object

declaration
Visual Basic 3-10

description 1-10
getting SecurityCurrent object 4-3
getting TransactionCurrent object 5-2
resolving initial references

C++ 2-11
Java 2-11
Visual Basic 3-10

using in server applications 2-14
using with DII 6-8

building
CORBA C++ client applications 2-14
CORBA Java client applications 2-14

buildobjclient command 2-2

C
C++ 4-7

code examples
Bootstrap object 2-11
factories 2-13
FactoryFinder object 2-12
initializing the ORB 2-9
logging on to the domain 4-7
PrincipalAuthenticator object

C++ 4-4
SecurityCurrent object 4-4
system exceptions 7-4
TransactionCurrent object 5-3
transactions 5-5
user exceptions 7-5
using the Bootstrap object 2-10

handling exceptions 7-3
catching exceptions

C++ 7-4
Java 7-7
Visual Basic 7-9

client 2-14

client applications
choosing to use DII 6-2
supported 1-2
using security 4-1
using transactions 5-5

client stubs
defined 1-4
description 1-6
generating 1-6, 2-7

code examples
Bootstrap object

C++ 2-11
Java 2-11
Visual Basic 3-10

declarations
Visual Basic 3-10

factories
C++ 2-13
Java 2-13
Visual Basic 3-11

FactoryFinder object
C++ 2-12
Java 2-12
Visual Basic 3-11

invoking operations
C++ 2-13
Java 2-13
Visual Basic 3-11, 3-12

logging on to the WLE domain 4-6, 4-7
C++ 4-5
Java 4-5
Visual Basic 3-10

OMG IDL 2-4
ORB

initializing
C++ 2-9

Java 2-9
PrincipalAuthenticator object

C++ 4-4
Java 4-4
I-2 Creating Client Applications

Visual Basic 4-4
SecurityCurrent object

C++ 4-4
Java 4-4
Visual Basic 4-4

system exceptions
C++ 7-4
Java 7-7
Visual Basic 7-9

TransactionCurrent object
C++ 5-3
Java 5-3
Visual Basic 5-3

transactions
C++ 5-5
Java 5-5
Visual Basic 5-5

user exceptions
C++ 7-5
Java 7-8
Visual Basic 7-9

compiling
OMG IDL 2-7

CORBA C++ client applications 2-2
building 2-14
defining security 4-2
description 1-2
development process 2-2
handling exceptions 7-3
invocation type 2-6
invoking operations on objects 2-13
resolving initial references to objects 2-

11
system exceptions 7-3
user exceptions 7-5
using DII 6-6
using factories 2-12
using security 4-2
using static invocation 2-6
using the Interface Repository 1-7
using transactions 5-2

writing 2-8
CORBA interfaces

creating bindings for 3-7
loading into the Interface Repository 3-5

CORBA Java client applications
building 2-14
defining security 4-2
description 1-2
development process 2-3
handling exceptions 7-6
invocation type 2-6
invoking operations on objects 2-13
required files 2-14
resolving initial references to objects 2-

11
software requirements 2-3
system exceptions 7-6
user exceptions 7-8
using DII 6-6
using factories 2-12
using security 4-2
using static invocation 2-6
using the Interface Repository 1-7
using transactions 5-2
writing 2-8

CORBA system exceptions
description 7-1

CORBAservices Object Transaction Service
5-1

CORBAServices Security service 4-1
CourseSynposisEnumerator interface

OMG IDL 2-4

D
deferred synchronous communication

using DII 6-2
deployment package

description 3-13
directory location 3-13

description 1-17
Creating Client Applications I-3

development commands
buildobjclient 2-2
idl 2-2
idl2ir 1-7
ir2idl 1-7
irdel 1-7

development process
ActiveX client applications 3-2
CORBA C++ client applications 2-2
CORBA Java client applications 2-3
DII 6-6
security 4-2
transactions 5-2

DII
choosing 6-2
concepts

receiving options 6-3
Request objects 6-3
sending requests 6-3

creating a request 6-8
deferred synchronous communication 6-

2
deleting requests 6-16
Interface Repository, using with 6-17
loading CORBA interfaces into Interface

Repository 6-7
sending requests

deferred synchronous 6-11
multiple 6-12
oneway 6-12
synchronous 6-11

using NVList 6-9
using the Bootstrap object 6-8
using the FactoryFinder object 6-8

directory location
deployment package 3-13
type libraries 3-8

domains
authentication level 4-4
defining security for 4-1
description 1-8

establishing communication with 2-9
ActiveX client applications 3-10

figure 1-8
logging off 4-7
logging on with PrincipalAuthenticator

object 4-5
dynamic invocation

description 1-4
how it works 1-4
illustrated 1-4

E
environmental objects 1-9

Automation 1-9, 3-3
Bootstrap 1-9
C++ 1-9, 2-3
description 1-9
FactoryFinder 1-9
Interface Repository 1-9
Java 1-9
SecurityCurrent 1-9
TransactionCurrent 1-9

exceptions
concepts 7-1
CORBA system exceptions 7-1
system 7-1
user 7-1

F
factories

code examples
C++ 2-13
Java 2-13
Visual Basic 3-11

creating CORBA objects 1-11
declaration

Visual Basic 3-10
description 1-11
naming conventions 1-12
I-4 Creating Client Applications

writing declarations for 3-9
FactoryFinder object 2-12

code examples
C++ 2-12
Java 2-12
Visual Basic 3-11

declaration
Visual Basic 3-10

description 1-11
illustrated 1-11
methods 2-12
using in server applications 2-14
using with DII 6-8

H
handling exceptions

C++ 7-3
Java 7-6
Visual Basic 7-9

I
ICF file

defining transaction policies 5-1
idl command 2-2

compiling OMG IDL 2-7
CORBA C++ client applications 2-7
description 2-2
format 2-7
generating

client stubs 2-7
skeletons 2-7

IDL compiler
generated files 2-7

idl2ir command
description 1-7
loading automation environmental

objects into the Interface
Repository 3-5

loading interfaces into the Interface

Repository 3-5
populating the Interface Repository 1-7
syntax 3-5
using with ActiveX client applications 3-

3
Interface Repository

commands
idl2ir 1-7
ir2idl 1-7
irdel 1-7

description 1-7
information stored in 1-7
loading

automation environmental objects
3-5

starting server application 3-6
using with DII 6-17

InterfaceRepository object
description 1-16

invocation types
dynamic 1-4
static 1-4
using with CORBA client applications

2-6
ions 7-8
ir2idl command

creating an OMG IDL file 1-7
description 1-7

irdel command
deleting CORBA interfaces from the

Interface Repository 1-7
description 1-7

ISL parameter 3-7
using in ActiveX client applications 3-10
using in CORBA client applications 2-

10
using with the Application Builder 3-7

J
JAR file 2-14
Creating Client Applications I-5

Java 4-7
code examples

Bootstrap object 2-11
factories 2-13
FactoryFinder object 2-12
initializing the ORB 2-9
logging on to the domain 4-7
PrincipalAuthenticator object

Java 4-4
SecurityCurrent object 4-4
system exceptions 7-7
TransactionCurrent object 5-3
transactions 5-5
using the Bootstrap object 2-10

handling exceptions 7-6
Java Archive file 2-14
joint client/server applications vii

M
methods

FactoryFinder object 2-12
TransactionCurrent object 5-3

N
naming conventions

ActiveX 1-18
factories 1-12

NVList
using with DII 6-9

O
OMG IDL

code example 2-4
compiling 2-7
CourseSynopsisEnumerator interface 2-

4
defining user exceptions 7-1
description 1-3

for Basic sample application 2-5
mapping to C++ 1-3
mapping to COM 1-4
mapping to Java 1-3
Registrar interface 2-4
RegistrarFactory interface 2-4

ORB
initializing

C++ code example 2-9
Java code example 2-9

ORBid 2-9

P
PrincipalAuthenticator object

arguments 4-5
code examples

C++ 4-4
Java 4-4
Visual Basic 4-4

getting the authentication level 4-5
logging on to the WLE domain 4-5
using in client applications 4-4

R
Registrar interface

OMG IDL 2-4
RegistrarFactory interface

OMG IDL 2-4
relationship to WLE domains 1-9
request object

creating 6-8
Request objects

description 6-3
setting arguments 6-9

S
sample applications

Basic 2-8
I-6 Creating Client Applications

Security 4-2
Transactions 5-2

security
configuring 4-1
getting the PrincipalAuthenticator object

4-4
getting the SecurityCurrent object 4-3
logging off the domain 4-7
logging on to the domain 4-5
obtaining the authentication level 4-5
overview 4-1
supported authentication levels 1-14

SecurityCurrent object
code examples

C++ 4-4
Java 4-4
Visual Basic 4-4

description 1-14
properties

Credentials 1-14
PrincipalAuthenticator 1-14

using in client applications 4-4
server applications

acting as client applications 2-14
using Bootstrap object 2-14
using FactoryFinder object 2-14

skeletons
generating 2-7

software requirements
CORBA Java client applications 2-3

static invocation 1-4
description 1-4
how it works 1-4
in client applications 2-6
using client stubs 1-4

support
customer xiv
documentation xiv

system exceptions
description 7-1

T
TOBJ_APPAUTH

description 1-14
required arguments 4-5

TOBJ_NOAUTH
description 1-14
required arguments 4-5

TOBJ_SYSAUTH
description 1-14
required arguments 4-5

transaction policies
defining in ICF file 5-1
description 1-15

TransactionCurrent object
methods 5-3
transaction policies 1-15

transactions
getting the TransactionCurrent object 5-

2
in client applications 5-5
overview 5-1

type libraries
creating with Application Builder 3-8
directory location 3-8
loading bindings into development tool

3-8
naming conventions 3-8

U
UBBCONFIG file

defining
security 4-1

starting server application for Interface
Repository 3-6

user exceptions
description 7-1

V
views
Creating Client Applications I-7

creating 3-7
deploying 3-13
description 1-17
invoking operations on 3-11, 3-12
writing declarations for 3-9

Visual Basic 4-6
code examples

Bootstrap object 3-10
exceptions 7-9
factories 3-11
FactoryFinder object 3-11
invoking operations 3-11, 3-12
logging on to the domain 4-6
PrincipalAuthenticator object 4-4
SecurityCurrent object 4-4
TransactionCurrent object 5-3
transactions 5-5

declarations for 3-10
Bootstrap object 3-10
FactoryFinder object 3-10

handling exceptions 7-9
loading type libraries for bindings 3-8
I-8 Creating Client Applications

	Copyright
	Preface
	Purpose of This Document
	How to Use This Document
	Related Documentation
	Contact Information

	1 Client Application Development Concepts
	Overview of Client Applications
	OMG IDL
	OMG IDL to C++ Mapping
	OMG IDL to Java Mapping
	OMG IDL to COM Mapping

	Static and Dynamic Invocation
	Client Stubs
	Interface Repository
	Domains
	Environmental Objects
	Bootstrap Object
	Factories and the FactoryFinder Object
	Naming Conventions and WLE Extensions to the FactoryFinder Object
	SecurityCurrent Object
	TransactionCurrent Object
	InterfaceRepository Object

	Concepts for ActiveX Client Applications
	What is ActiveX?
	Views and Bindings
	Naming Conventions for ActiveX Views

	2 Creating CORBA Client Applications
	Summary of the Development Process for CORBA C++ Client Applications
	Summary of the Development Process for CORBA Java Client Applications
	Step 1: Obtaining the OMG IDL File
	Step 2: Selecting the Invocation Type
	Step 3: Compiling the OMG IDL File
	Step 4: Writing the CORBA Client Application
	Initializing the ORB
	Establishing Communication with the WLE Domain
	Resolving Initial References to the FactoryFinder Object
	Using the FactoryFinder Object to Get a Factory
	Using a Factory to Get a CORBA Object

	Step 5: Building the CORBA Client Application
	Server Applications Acting as Client Applications
	Using Java2 Applets

	3 Creating ActiveX Client Applications
	Summary of the Development Process for ActiveX Client Applications
	The BEA Application Builder
	Step 1: Loading the Automation Environmental Objects into the Interface Repository
	Step 2: Loading the CORBA Interfaces into the Interface Repository
	Step 3: Starting the Interface Repository Server Application
	Step 4: Creating ActiveX Bindings for the CORBA Interfaces
	Step 5: Loading the Type Library for the ActiveX Bindings
	Step 6: Writing the ActiveX Client Application
	Including Declarations for the Automation Environmental Objects, Factories, and ActiveX Views of ...
	Establishing Communication with the WLE Domain
	Obtaining References to the FactoryFinder Object
	Using a Factory to Get an ActiveX View
	Invoking Operations on the ActiveX View

	Step 7: Deploying the ActiveX Client Application

	4 Using Security
	Overview of WLE Security
	Summary of the Development Process for Security
	Step 1: Using the Bootstrap Object to Obtain the SecurityCurrent Object
	Step 2: Getting the PrincipalAuthenticator Object from the SecurityCurrent Object
	Step 3: Obtaining the Authentication Level
	Step 4: Logging on to the WLE Domain with Proper Authentication
	Step 5: Logging off the WLE Domain

	5 Using Transactions
	Overview of WLE Transactions
	Summary of the Development Process for Transactions
	Step 1: Using the Bootstrap Object to Obtain the TransactionCurrent Object
	Step 2: Using the TransactionCurrent Methods

	6 Using the Dynamic Invocation Interface
	When to Use DII
	DII Concepts
	Request Objects
	Options for Sending Requests
	Options for Receiving the Results of Requests

	Summary of the Development Process for DII
	Step 1: Loading the CORBA Interfaces into the Interface Repository
	Step 2: Obtaining the Object Reference for the CORBA Object
	Step 3: Creating a Request Object
	Using the CORBA::Object::_request Member Function
	Using the CORBA::Object::create_request Member Function

	Step 4: Sending a DII Request and Retrieving the Results
	Synchronous Requests
	Deferred Synchronous Requests
	Oneway Requests
	Multiple Requests

	Step 5: Deleting the Request
	Step 6: Using the Interface Repository with DII

	7 Handling Exceptions
	CORBA Exception Handling Concepts
	CORBA System Exceptions
	CORBA C++ Client Applications
	Handling System Exceptions
	User Exceptions

	CORBA Java Client Applications
	System Exceptions
	User Exceptions

	ActiveX Client Applications

