EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

BEA WebLogic Enterprise

Creating C++ Server Applications

BEA WebLogic Enterprise 4.2
Document Edition 4.2
July 1999

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Creating C++ Server Applications

Document Edition Date Software Version

4.2 July 1999 BEA WebLogic Enterprise 4.2

Contents

Preface
Purpose of ThiSDOCUMENEcuiiiie et e e Vii
HOowW to USe ThiS DOCUMENTc.eecviecie et s s st enn viii
Related DOCUMENEALIONcuviiecieece ettt ettt sttt Xi
Contact INfOrMatioN........ccviiieeece e e er s Xiv

1. Server Application Concepts

The Entities Y ou Create to Build a WebL ogic Enterprise Server Application. 1-2
The Implementation of the CORBA Objects for Y our Server Application1-2

The SErver ODJECL.......c.oiiieeeeeee e e e erae 1-8
Process for Devel oping WebL ogic Enterprise Server Applications.................. 1-8
Generating Object REfEreNCES.........cov e 1-9
Managing ObJECE SEALE.........cceevieiie et sraean 1-10
Reading and Writing an Object’'s Datacccveeieiiiiiiiiiiiieeeee e 1-15
Using Design Patternseuiuiiiiiiiieiie e e 1-22

2. Steps for Creating a WebLogic Enterprise Server Application
Summary of the WebLogic Enterprise Server Application Development

PIOCESS .t 2-2
Step 1: Compile the OMG IDL file for the server application.......................... 2-3
Using the IDL COMPIIET........ueeiiiiiei e 2-4
Generating the Skeleton and Implementation Filesccccccceiiiiinis 2-5
Generating Tie ClaSSES....ccuuii it 2-5
Step 2: Write the methods that implement each interface’s operations. 2-6
The Implementation File Generated by the IDL Compiler........................ 2-6
Implementing @ FACIOIYuiiiiiiiiii e 2-7
Step 3: Create the Server ODJECT. ... 2-8

Creating C++ Server Applications iii

iv

Initiaizing the Server AppliCationcooeereieieeesre e 2-9

Writing the Code That Creates and RegistersaFactoryccocceeveeneens 2-10
Creating SEIVANTS......coe ettt ete sttt eee e eee st e e e aenee e s 2-11
Releasing the Server Application ..o iiiieinnce e 2-12
Step 4: Define the in-memory behavior of Objects. ... 2-14
Specifying Object Activation and Transaction Policiesin the ICF File..2-14
Step 5: Compile and link the server application.cocoeineiciencnienee 2-17
Step 6: Deploy the server appliCation.ccocevereeieierr e 2-18
Development and Debugging TiPS.....cocceeeverererereereeierie e esesies e seeseesneneas 2-19
Use of CORBA and M3 Exceptions and the User LOg........cccveeveeierienenns 2-19
Detecting Error Conditionsin the Callback Methods............ccccccveveenees 2-24
Common Pitfalls of OMG IDL Interface Versioning and Modification.. 2-25
Caveat for State Handling in Tobj_ServantBase::deactivate object().....2-26
S Az gL oo gV TS 2-27
How Servant POolING WOFKS........ccveieieiie et 2-27
How Y ou Implement Servant POOLINGccoeeeeimenieeie s 2-28
Delegation-based Interface Implementation.............ccooieieneieiennnccseeee. 2-29
About Tie Classes in the WebL ogic Enterprise System.........c.ccoceeeerenens 2-29
When to USE Tie ClIaSsES......ccviueririeriieriie et 2-31
How to Create Tie Classes in a WebL ogic Enterprise Application.......... 2-32

3. Designing and Implementing a Basic WebLogic Enterprise

Server Application
How the Basic University Sample Application WOrks...........cccccoe v veeieievenen 3-2
The Basic University Sample Application OMG IDLcccccoeeiiiniceenene 3-2
APPHICATON SEAMTUP. ...cveeee et 3-4
Browsing COUISE SYNOPSES.ccueueruereereaneeserreaeesessesessessessessensesseseensesesses 34
Browsing Course Details...........ccoocveiiceiii ettt e 3-7
Design Considerations for the University Server Applicationcccccceeeeneee. 3-7
Design Considerations for Generating Object References...........ccoveeeeee. 3-8
Design Considerations for Managing Object State.........cccevevveeveveeenenne. 3-10
Design Considerations for Handling Durable State Information 3-12
How the Basic Sample Application Applies Design Patterns.................. 3-15

Creating C++ Server Applications

Additional Performance Efficiencies Built into the WebL ogic Enterprise
SYSEEIM .ttt ettt et sa e e srennee e 3-17

4. Security and WebLogic Enterprise Server Applications

Overview of Security and WebL ogic Enterprise Server Applications.............. 4-1
Design Considerations for the University Server Application...........ccccocvenee 4-2
How the Security University Sample Application Works............ccceeeeeee. 4-3
Design Considerations for Returning Student Details to the Client
APPHCALTON. ...ttt 4-5

5. Integrating Transactions into a WebLogic Enterprise Server
Application

Overview of Transactions in the WebL ogic Enterprise Systemc.ccccveeee 5-2
Designing and I mplementing Transactions in a WebL ogic Enterprise Server
PN o] o 1= o] o USSR 5-4
How the Transactions University Sample Application Works.................. 5-6
Transactional Model Used by the Transactions University Sample
APPIICAITON. ..ot e e e 5-7
Object State Considerations for the University Server Application 5-8

Configuration Requirements for the Transactions Sample Application .. 5-10
Integrating Transactionsin a WebL ogic Enterprise Client and Server

W o] o 1= o] o USSR 5-10
Making an Object Automatically Transactionalccocoveeeienricecnne 5-11
Enabling an Object to Participatein a Transaction...........ccoccoeeeveieeenne 5-12
Preventing an Object from Being Invoked While a Transaction
[SSCOPEA......eeiiie ettt ettt b e e b e 5-13
Excluding an Object from an Ongoing Transaction............c.ccceevereeeennn. 5-14
ASSIGNING POLICIES. ...ttt e e 5-15
Opening an XA ResoUrce Managercoceeeererieneneseeneeie s seee s 5-15
Closing an XA ReSOUrce Managerccueveeueeeesueeiesteeieseesieeeeseesneeeeas 5-15
Transactions and Object State Managementccccveveiviiieeveinee s se s 5-16
Delegating Object State Management to an XA Resource Manager 5-16
Waiting Until Transaction Work is Complete Before Writing
10 the Dat@hase......ccoveueerer ettt e 5-16
Notes on Using Transactions in the WebL ogic Enterprise System................. 5-18

Creating C++ Server Applications %

Vi

User-Defined EXCEPLIONS.coo ettt sttt et 5-20

Defining the EXCEPLION........coie et 5-20
Throwing the EXCEPLIONc..ooiiiiiieeee e e 5-21
Wrapping a BEA TUXEDO Service in an Object
Overview of Wrapping a BEA TUXEDO SerViCe.......ccocemrerenereseenieie e 6-2
Designing the Object That Wrapsthe BEA TUXEDO Service................. 6-3
Creating the Buffer in Which to Encapsulate BEA TUXEDO Service
CallS. et e e 6-4
Implementing the Operations That Send Messages to and from the BEA
TUXEDO SEIVICE ...ovinieeeieieiiee et e e e 6-6
RESIIICHIONS ... vttt e e e e e 6-7
Design Considerations for the Wrapper Sample Application............cccceeeeeneee. 6-8

Scaling a WebLogic Enterprise Server Application
Overview of the Scalability Features Available in the WebL ogic Enterprise

SYSEEIM ..t ettt e b e b bkt en et e e s 7-2
Scaling aWebL ogic Enterprise Server Application.........cccooveereieieeneie e 7-3
OMG IDL Changes for the Production Sample Application 7-4
Replicating Server Processes and Server GroUpS........cooveeverveneeseereeneeeeenes 7-4
Scaling the Application Via Object State Managementc.cccceeennee. 7-10
Factory-based ROULING........cooiiiie e 7-12
Additional Design Considerations for the Registrar and Teller Objects.. 7-18
How the Production Server Application Can Be Scaled Further 7-22
Choosing Between Stateless and Stateful Objectscccceeevcieiecceececceeeee, 7-23
When You Want Statel €ss ODJECES........coovvveviieie e 7-24
When You Want Stateful ObJECEScoeevieiecice e 7-25

Index

Creating C++ Server Applications

Preface

Purpose of This Document

This document describes how programmers can implement key featuresin the BEA
WebL ogic Enterprise (sometimes referred to as WLE) product to design and
implement scalabl e, high-performance, C++ server applicationsthat runin a

WebL ogic Enterprise domain. The C++ examples shown in this book are based on the
sample applications described in the Guide to the University Sample Applications.

Note: Effective February 1999, the BEA M3 product isrenamed. The new name of
the product is BEA WebL ogic Enterprise (WLE).

Who Should Read This Document

This document is intended for programmers who are interested in creating secure,
scalable, transaction-based server applications. It assumes your are knowledgeable
with the BEA TUXEDO system, CORBA, and C++ programming.

How This Document Is Organized

Creating C++ Server Applications is organized as follows:

4 Chapter 1, “Server Application Concepts,” presents a number of basic concepts
about creating WebLogic Enterprise server applications and describes the two
primary programming entities you create for a WebLogic Enterprise server
application.

Creating C++ Server Applications Vii

4 Chapter 2, “Steps for Creating a WebLogic Enterprise Server Application,” lists
and describes the basic steps you follow to create a WebLogic Enterprise server
application.

4 Chapter 3, “Designing and Implementing a Basic WebLogic Enterprise Server
Application,” explains the fundamental concepts and processes involved with
designing and implementing a basic WebLogic Enterprise server application,
based on the Basic University sample application.

4 Chapter 4, “Security and WebLogic Enterprise Server Applications,” explains
the role of a WebLogic Enterprise server application in implementing a security
model for a WebLogic Enterprise domain.

4 Chapter 5, “Integrating Transactions into a WebLogic Enterprise Server
Application,” describes how the WebLogic Enterprise system supports
transactions in a WebLogic Enterprise domain and how you can implement
transactions into your server applications.

4 Chapter 6, “Wrapping a BEA TUXEDO Service in an Object,” describes how to
integrate a BEA TUXEDO application into a WebLogic Enterprise server
application.

4 Chapter 7, “Scaling a WebLogic Enterprise Server Application,” describes the
key scalability features that you can build into your WebLogic Enterprise
applications to make them highly scalable, including replicated server processes
and groups, factory-based routing, and object state management.

How to Use This Document

viii

This documentCreating C++ Server Applications, is designed primarily as an online,
hypertext document. If you are reading this as a paper publication, note that to get fu
use from this document you should access it as an online document via the Online
Documentation CD for the BEA WebLogic Enterprise 4.2 release.

The following sections explain how to view this document online, and how to print a
copy of this document.

Creating C++ Server Applications

Opening the Document in a Web Browser

To access the online version of this document, open the following file:
\'doc\w e\v42\i ndex. htm

Note: The online documentation requires Netscape Communicator version 4.0 or
later, or Microsoft Internet Explorer version 4.0 or later.

Printing from a Web Browser

Y ou can print a copy of this document, one file at atime, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print.

The Online Documentation CD includes Adobe Acrobat PDF files of all of the online
documents. Y ou can use the Adobe Acrobat Reader to print al or a portion of each
document. On the CD Home Page, click the PDF Files button and scrall to the entry
for the document you want to print.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention ltem

boldfacetext Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

Creating C++ Server Applications iX

Convention

Item

nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and file names and their extensions.
M onospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostreamh> void main () the pointer psz
chnmod u+w *
. doc
Bl TMAP
f 1 oat
nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commit ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in a syntax line. The braces themsel ves should

never be typed.

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Creating C++ Server Applications

Convention

Item

Indicates one of the following in acommand line:

4 That an argument can be repeated several timesin acommand line

4 That the statement omits additional optional arguments

4 That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

buil dobjclient [-v] [-0 name | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from asyntax line.

The vertical ellipsisitself should never be typed.

Related Documentation

The following sections list the documentation provided with the BEA WebL ogic
Enterprise software, related BEA publications, and other publications related to the

technology.

WebLogic Enterprise Documentation

The BEA WebL ogic Enterprise information set consists of the following documents:

Installation Guide

C++ Release Notes

Java Release Notes

Getting Started

Guide to the University Sample Applications

Guide to the Java Sample Applications

Creating C++ Server Applications

Xi

Creating Client Applications

Creating C++ Server Applications (this document)
Creating Java Server Applications
Administration Guide

Using Server-to-Server Communication
C++ Programming Reference

Java Programming Reference

Java API Reference

JDBC Driver Programming Reference
System Messages

Glossary

Technical Articles

Note: The Online Documentation CD also includes Adobe Acrobat PDF files of all
of the online documents. Y ou can use the Adobe Acrobat Reader to print all

or aportion of each document.

BEA Publications

Xii

Selected BEA TUXEDO Release 6.5 for BEA WebL ogic Enterprise version 4.2
documents are available on the Online Documentation CD.

To access these documents:

1. Click the Other Reference button from the main menu.

2. Click the TUXEDO Documents option.

Creating C++ Server Applications

Other Publications

For more information about CORBA, Java, and related technologies, refer to the
following books and specifications:

Cobb, E. 1997. The Impact of Object Technology on Commercial Transaction
Processing. VLDB Journal, Volume 6. 173-190.

Edwards, J. with DeVoe, D. 1997. 3-Tier Client/Server At Work. Wiley Computer
Publishing.

Edwards, J., Harkey, D., and Orfali, R. 1996. The Essential Client/Server Survival
Guide. Wiley Computer Publishing.

Flanagan, David. May 1997. Java in a Nutshell, 2nd Edition. O’Reilly & Associates,
Incorporated.

Flanagan, David. September 1993@va Examplesin a Nutshell. O'Reilly &
Associates, Incorporated.

Fowler, M. with Scott, K. 1997UML Distilled, Applying the Sandard Object
Modeling Language. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. T3&#gn Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series.

Jacobson, I. 199bject-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley.

Mowbray, Thomas J. and Malveau, Raphael C. (Contributor). T8ORBA Design
Patterns, Paper Back and CD-ROM Edition. John Wiley & Sons, Inc.

Orfali, R., Harkey, D., and Edwards, J. 198%tant Corba. Wiley Computer
Publishing.

Orfali, R., Harkey, D. February 1998lient/Server Programming with Java and
CORBA, 2nd Edition. John Wiley & Sons, Inc.

Otte, R., Patrick, P., and Roy, M. 19@Mderstanding CORBA. Prentice Hall PTR.

Rosen, M. and Curtis, D. 1998itegrating CORBA and COM Applications. Wiley
Computer Publishing.

Creating C++ Server Applications Xiii

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Loresen, W. 1991.
Object-Oriented Modeling and Design. Prentice Hall.

The Common Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. Published by the Object Management Group (OMG).

CORBAservices: Common Object Services Specification. Revised Edition. Updated:
November 1997. Published by the Object Management Group (OMG).

Contact Information

The following sections provide information about how to obtain support for the
documentation and the software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questionsabout thisversion of the BEA WebL ogic Enterprise product,
or if you have problemsinstalling and running the BEA WebL ogic Enterprise
software, contact BEA Customer Support through BEA WebSupport at

www. beasys. com You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which isincluded in the product
package.

When contacting Customer Support, be prepared to provide the following information:
4 Your name, e-mail address, phone number, and fax number

4 Your company hame and company address

Xiv Creating C++ Server Applications

4 Your machine type and authorization codes
4 Thename and version of the product you are using

4 A description of the problem and the content of pertinent error messages

Creating C++ Server Applications XV

XVi Creating C++ Server Applications

CHAPTER

1

Server Application
Concepts

This chapter discusses the following topics:

4 The Entities You Create to Build a WebL ogic Enterprise Server Application:

¢
¢

The Implementation of the CORBA Objects for Your Server Application
The Server Object

4 Processfor Developing WebL ogic Enterprise Server Applications:

¢
¢
¢
¢

Generating Object References
Managing Object State
Reading and Writing an Object's Data

Using Design Patterns

Each of the chapters in this book gives procedures for and examples of building
WebLogic Enterprise server applications that take advantage of various WebLogic
Enterprise software features. For background information about WebLogic Enterprise
server applications and how they work, seeGbtting Started.

Creating C++ Server Applications 1-1

1 SERVER APPLICATION CONCEPTS

The Entities You Create to Build a WebLogic
Enterprise Server Application

To build a WebL ogic Enterprise server application, you create the following two
entities:

4 Theimplementation of the CORBA objects that execute your server
application’s business logic

4 The Server object, which implements the operations that initialize and release
the server application and instantiate the CORBA objects needed to satisfy clien
requests

There are also a number of files that you work with that are generated by the IDL
compiler and that you build into a WebLogic Enterprise server application. These files
are listed and described in Chapter 2, “Steps for Creating a WebLogic Enterprise
Server Application.”

The sections that follow provide introductory information about these entities. For
complete details about how to generate these components, see Chapter 2, “Steps f
Creating a WebLogic Enterprise Server Application.”

The Implementation of the CORBA Objects for Your
Server Application

1-2

Having a clear understanding of what CORBA objects are, and how they are definec
implemented, instantiated, and managed is critical for the person who is designing c
creating a WLE server application.

The CORBA objects for which you have defined interfaces in the Object Managemen
Group Interface Definition Language (OMG IDL) contain the business logic and data
for your WebLogic Enterprise server applications. All client application requests
involve invoking an operation on a CORBA object. The code you write that
implements the operations defined for an interface is called an object implementatior
For example, in C++, the object implementation is a C++ class.

Creating C++ Server Applications

THE ENTITIES YOU CREATE TO BUILD A WEBLOGIC ENTERPRISE SERVER APPLICATION

This section discusses the following topics:

4 How OMG IDL interface definitions establish the operations that can be invoked
on a CORBA object

4 How you implement the operations on a CORBA object

4 How client applications access and manipulate your application’s CORBA
objects

4 How you instantiate a CORBA object with code and data at run time in response
to a client request

How Interface Definitions Establish the Operations on a CORBA Object

A CORBA object’s interface identifies the operations that can be performed on it. A
distinguishing characteristic of CORBA objects is that an object’s interface definition
is separate from its implementation. The definition for the interface establishes how the
operations on the interface must be implemented, including what the valid parameters
are that can be passed to and returned from an operation.

An interface definition, which is expressed in OMG IDL, establishes the client/server
contract for an application. That is, for a given interface, the server application is
bound to do the following:

4 Implement the operations defined for that interface
4+ Always use the parameters defined with each operation

How the server application implements the operations may change over time. This is
acceptable behavior as long as the server application continues to meet the requirement
of implementing the defined interface and using the defined parameters. In this way,
the client stub is always a reliable proxy for the object implementation on the server
machine. This underscores one of the key architectural strengths of CORBA -- that you
can change how a server application implements an object over time without requiring
the client application to be modified or even to be aware that the object implementation
has changed.

The interface definition also determines the content of both the client stub and the
skeleton in the server application; these two entities, in combination with the ORB and
the Portable Object Adapter (POA), ensure that a client request for an operation on an
object can be routed to the code in the server application that can satisfy the request.

Creating C++ Server Applications 1-3

1 SERVER APPLICATION CONCEPTS

Once the system designer has specified the interfaces of the business objectsin the
application, the programmer’s job is to implement those interfaces. This book explain:
how.

For more information about OMG IDL, s€eeating Client Applications.

How You Implement the Operations on a CORBA Object

As stated eatrlier, the code that implements the operations defined for a CORBA
object’s interface is called an object implementation. For C++, this code consists of
set of methods, one for each of the operations defined for the interfaces in your
application’s OMG IDL file. The file containing the set of object implementations for
your application is known as an implementation file. The WebLogic Enterprise systemn
provides an IDL compiler, which compiles your application’s OMG IDL file to
produce several files, one being an implementation file, shown in the following figure

OMG IDL File :{> IDL Compiler :{> Implen';ielsgtatlon

The generated implementation file contains method templates, method declarations
object constructors and destructors, and other data that you can use as a starting pl:
for writing your application’s object implementations. For example, in C++, the
generated implementation file contains signatures for each interface’s methods. Yol
enter the business logic for each method in this file, and then provide this file as inpu
to the command that builds the executable server application file.

How Client Applications Access and Manipulate Your Application’s CORBA

Objects

Client applications access and manipulate the CORBA objects managed by the server
application via object references to those objects. Client applications invoke
operations (that is, requests) on an object reference. These requests are sent as
messages to the server application, which invokes the appropriate operations on
CORBA objects. The fact that these requests are sent to the server application and
invoked in the server application is completely transparent to the client; client
applications appear simply to be making invocations on the client stub.

1-4 Creating C++ Server Applications

THE ENTITIES YOU CREATE TO BUILD A WEBLOGIC ENTERPRISE SERVER APPLICATION

Client applications may manipulate a CORBA object only by means of an object
reference. One primary design consideration is how to create object references and
return them to the client applications that need them in away that is appropriate for
your application.

Typically, object referencesto CORBA objectsare created inthe WebL ogic Enterprise

system by factories. A factory isany CORBA object that returns, as one of its

operations, a reference to another CORBA object. You implement your application’s
factories the same way that you implement other CORBA objects defined for your
application. You can make your factories widely known to the WebLogic Enterprise
domain, and to clients connected to the WebLogic Enterprise domain, by registering
them with the FactoryFinder. Registering a factory is an operation typically performed
by the Server object, which is described in the section “The Server Object” on

page 1-8. For more information about designing factories, see the section “Generating
Object References” on page 1-9.

THE CONTENT OF AN OBJECT REFERENCE

From the client application’s perspective, an object reference is opaque; it is like a
black box that client applications use without having to know what is inside. However,
object references contain all the information needed for the WebLogic Enterprise
system to locate a specific object instance and to locate any state data that is associated
with that object.

An object reference contains the following information:

4 The interface name

This is the Interface Repository ID of the object’ OMG IDL interface.
4 The object ID (OID)

The OID uniquely identifies the instance of the object to which the reference
applies. If the object has data in external storage, the OID also typically includes
a key that the server machine can use to locate the object’s data.

¢ Group ID

The group ID identifies the server group to which the object reference is routed
when a client application makes a request using that object reference. Generating
a nondefault group ID is part of a key WebLogic Enterprise feature called
factory-based routing, which is described in the section “Factory-based Routing”
on page 7-12.

Creating C++ Server Applications 1-5

1 SERVER APPLICATION CONCEPTS

Note: Thecombination of thethree itemsin the preceding list uniquely identifiesthe
CORBA object. It is possible for an object with a given interface and OID to
be simultaneously activein two different groups, if those two groups both
contain the same object implementation. If you need to guarantee that only one
object instance of agiven interface name and OID isavailable at any onetime
inyour domain, either: use factory-based routing to ensure that objectswith a
particular OID are always routed to the same group, or configure your domain
so that a given object implementation isin only one group. This assuresthat if
multiple clients have an object reference containing a given interface name
and OID, the reference is always routed to the same object instance.

For more information about factory-based routing, see the section
“Factory-based Routing” on page 7-12.

THE LIFETIME OF AN OBJECT REFERENCE

Object references created by server applications running in a WebLogic Enterprise
domain typically have a usable lifespan that extends beyond the life of the server
process that creates them. WebLogic Enterprise object references can be used by cli
applications regardless of whether the server processes that originally created them &
still running. In this way, object references are not tied to a specific server process.

An object reference created with the: : creat e_act i ve_obj ect _ref erence()
operation is valid only for the lifetime of the server process in which it was created.
For more information, see the section “Preactivating an Object with State” on
page 3-17.

How You Instantiate a CORBA Object at Run Time

1-6

When a server application receives a request for an object that is not mapped in the
server machine’s memory (that is, the object is not active), the TP Framework invoke
theServer: : create_servant () operation. The

Server:: create_servant () operation is implemented in the Server object, which,
as mentioned in the section “The Implementation of the CORBA Objects for Your
Server Application” on page 1-2, is a component of a WebLogic Enterprise server
application that you create.

TheServer: : creat e_ser vant () operation causes an instance of the CORBA object
implementation to be mapped into the server machine’s memory. This instance of th
object’s implementation is called the objecesvant. Formally speaking, a servant is

Creating C++ Server Applications

THE ENTITIES YOU CREATE TO BUILD A WEBLOGIC ENTERPRISE SERVER APPLICATION

an instance of the C++ class that implements an interface defined in the application’s
OMG IDL file. The servant is generated via the Gietv statement that you write in
theServer: : creat e_ser vant () operation.

After the object’s servant has been created, the TP Framework invokes the

Tobj _Servant Base: : acti vat e_obj ect () operation on the servant. The

Tobj _Servant Base: : acti vat e_obj ect () operation is a virtual operation that is
defined on th&obj _Ser vant Base base class, from which all object implementation
classes inherit. The TP Framework invokes the

Tobj _Servant Base: : acti vat e_obj ect () operation to tie the servant to an object
ID (OID). (Conversely, when the TP Framework invokes the

Tobj _Servant Base: : deact i vat e_obj ect () operation on an object, the servant’'s
association with the OID is broken.)

If your object has data on disk that you want to read into memory when the CORBA
object is activated, you can have that data read by defining and implementing the
Tobj _Servant Base: : acti vat e_obj ect () operation on the object. The

Tobj _Servant Base: : acti vat e_obj ect () operation can contain the specific read
operations required to bring an object’s durable state into memory. (There are
circumstances in which you may prefer instead to have an object’s disk data read into
memory by one or more separate operations on the object that you may have coded in
the implementation file. For more information, see the section “Reading and Writing
an Object’s Data” on page 1-15.) After the invocation of the

Tobj _Servant Base: : acti vat e_obj ect () operation is complete, the object is said

to be active.

This collection of the object’s implementation and data compose the run-time, active
instance of the CORBA object.

SERVANT POOLING

WebLogic Enterprise 4.2 provides a new feature caéedant pooling. Servant

pooling gives your WebLogic Enterprise server application the opportunity to keep a
servant in memory after the servant’s association with a specific OID has been broken.
When a client request that can be satisified with a pooled servant arrives, the TP
Framework bypasses the: : creat e_ser vant operation and creates a link between
the pooled servant and the OID provided in the client request.

Servant pooling thus provides the WebLogic Enterprise server application with a
means to minimize the costs of reinstantiating a servant each time a request arrives for
an object that can be satisified by that servant. For more information about servant
pooling and how to use it, see the section “Servant Pooling” on page 2-27.

Creating C++ Server Applications 1-7

1 SERVER APPLICATION CONCEPTS

The Server Object

The Server object isthe other programming code entity that you create for aWebL ogic
Enterprise server application. The Server object implements operations that execute
the following tasks:

4 Performing basic server application initialization operations, which may include
registering factories managed by the server application and allocating resources
needed by the server application. If the server application istransactional, the
Server object also implements the code that opens an XA resource manager.

4 Instantiating the CORBA objects needed to satisfy client requests.

4 Performing server process shutdown and cleanup procedures when the server
application has finished servicing requests. For example, if the server application
istransactional, the Server object a so implements the code that closesthe XA
resource manager.

Y ou create the Server object from scratch, using a common text editor. Y ou then
provide the Server object as input into the server application build command,
bui | dobj ser ver . For more information about creating the Server object, see
Chapter 2, “Steps for Creating a WebLogic Enterprise Server Application.”

Process for Developing WebLogic Enterprise
Server Applications

This section presents important background information about the following topics,
which have a major influence on how you design and implement WebLogic Enterprise
server applications:

4 Generating Object References

4 Managing Object State

4 Reading and Writing an Object’'s Data
¢

Using Design Patterns

1-8 Creating C++ Server Applications

PROCESS FOR DEVELOPING WEBLOGIC ENTERPRISE SERVER APPLICATIONS

It is not essential that you read these topics before proceeding to the next chapter;
however, thisinformation is located here because it applies broadly to fundamental
design and implementation issues for all WebL ogic Enterprise server applications.

Generating Object References

One of the most basic functions of a WebL ogic Enterprise server application is
providing client applications with object referencesto the objects they need to execute
their business logic. WLE client applicationstypically get object references to the
initial CORBA objects they use from the following two sources:

4 TheBootstrap object
4 Factories managed in the WebL ogic Enterprise domain

Client applications use the Bootstrap object to resolve initial references to a specific
set of objects in the WebL ogic Enterprise domain, such as the FactoryFinder and the
SecurityCurrent objects. The Bootstrap object is described in Getting Started and
Creating Client Applications.

Factories, however, are designed, implemented and registered by you, and they
provide the means by which client applications get references to objectsin the

WebL ogic Enterprise server application, particularly the initial server application
object. At itssimplest, afactory isa CORBA object that returns an object reference to
another CORBA object. The client application typically invokes an operation on a
factory to obtain an object reference to a CORBA object of a specific type. Planning
and implementing your factories carefully is an important task when devel oping
WebL ogic Enterprise server applications.

How Client Applications Find Your Server Application’s Factories

Client applications are able to locate via the FactoryFinder the factories managed by

your server application. When you develop the Server object, you typically include

code that registers with the FactoryFinder any factories managed by the server

application. It isviathis registration operation that the FactoryFinder keeps track of

your server application’s factories and can provide object references to them to the
client applications that request them. We recommend that you use factories and
register them with the FactoryFinder; this model makes it simple for client applications
to find the objects in your WebLogic Enterprise server application.

Creating C++ Server Applications 1-9

1 SERVER APPLICATION CONCEPTS

Creating an Active Object Reference

WebL ogic Enterprise 4.2 provides a new feature that gives an alternate means by
which your server application can generate object references. Active object references
are not typically created by factories as described in the previous section, and active
object references are meant for preactivating objects with state. The next section
discusses object state in more detail.

Whereas an object associated with a conventional object reference is not instantiated
until aclient application makes an invocation on the object, the object associated with
an active object reference is created and activated at the time the active object
reference is created. Active object references are especialy convenient for specific
purposes, such asiterator objects. The section “Preactivating an Object with State” on
page 3-17 provides more information about active object references.

Managing Object State

Object state management is a fundamentally important concern of large-scale
client/server systems, because it is critical that such systems optimize throughput ar
response time. The majority of high-throughput applications, such as applications yo
run in a WLE domain, tend to be stateless, meaning that the system flushes state
information from memory after a service or an operation has been fulfilled.

Managing state is an integral part of writing CORBA-based server applications.
Typically, it is difficult to manage state in these server applications in a way that scale:
and performs well. The WebLogic Enterprise software provides an easy way to
manage state and simultaneously ensure scalability and high performance.

The scalability qualities that you can build into a WLE server application help the
server application function well in an environment that includes hundreds or thousand
of client applications, multiple machines, replicated server processes, and a
proportionately greater number of objects and client invocations on those objects.

About Object State

In a WLE domainpbject state refers specifically to the process state of an object
across client invocations on it. The WebLogic Enterprise software uses the following
definitions of stateless and stateful objects:

1-10 Creating C++ Server Applications

PROCESS FOR DEVELOPING WEBLOGIC ENTERPRISE SERVER APPLICATIONS

Object Behavior Characteristics

Stateless The object is mapped into memory only for the duration of an
invocation on one of the object’s operations, and is deactivated
and has its process state flushed from memory after the invocation
is complete; that is, the object’s state is not maintained in memory
after the invocation is complete.

Stateful The object remains activated between invocations on it, and its
state is maintained in memory across those invocations. The state
remains in memory until a specific event occurs, such as:

4 The server process in which the object exists is stopped or is
shut down

4 The transaction in which the object is participating is either
committed or rolled back

4 The object invokes th&P: : deact i vat eEnabl e()
operation on itself.

Each of these events is discussed in more detail in this section.

Both stateless and stateful objects have data; however, stateful objects may have
nonpersistent datain memory that isrequired to maintain context (state) between
operation invocations on those objects. Thus, subsequent invocationson such astateful
object always go to the same servant. Conversely, invocations on a statel ess object can
bedirected by the WebL ogic Enterprise system to any available server processthat can
activate the object.

State management al so involves how long an object remains active, which has
important implications on server performance and the use of machine resources. The
duration of an active object isdetermined by obj ect activation policiesthat you assign
to an object’s interface, described in the section that follows.

Obiject state is transparent to the client application. Client applications implement a
conversational model of interaction with distributed objects. As long as a client
application has an object reference, it assumes that the object is always available for
additional requests, and the object appears to be maintained continuously in memory
for the duration of the client application interaction with it.

To achieve optimal application performance, you need to carefully plan how your
application’s objects manage state. Objects are required to save their state to durable
storage, if applicable, before they are deactivated. Objects must also restore their state

Creating C++ Server Applications 1-11

1 SERVER APPLICATION CONCEPTS

from durable storage, if applicable, when they are activated. For more information
about reading and writing object state information, see the section “Reading and
Writing an Object’s Data” on page 1-15.

Object Activation Policies

The WLE software provides three object activation policies that you can assign to at
object’s interface to determine how long an object remains in memory after it has bee
invoked by a client request. These policies determine whether the object to which the
apply is generally stateless or stateful.

The three policies are listed and described in the following table.

Policy Description

Met hod Causes the object to be active only for the duration of the
invocation on one of the object’s operations; that is, the object
is activated at the beginning of the invocation, and is
deactivated at the end of the invocation. An object with this
activation policy is called method-bound object.

Thenet hod activation policy is associated with stateless
objects. This activation policy is the default.

Transaction Causes the object to be activated when an operation is invoked
on it. If the object is activated within the scope of a transaction,
the object remains active until the transaction is either
committed or rolled back. If the object is activated outside the
scope of a transaction, its behavior is the same as that of a
method-bound object. An object with this activation policy is
called atransaction-bound object.

For more information about object behavior within the scope of
a transaction, and general guidelines about using this policy,
see Chapter 5, “Integrating Transactions into a WebLogic
Enterprise Server Application.”

Thet r ansact i on activation policy is associated with

stateful objects for a limited time and under specific
circumstances.

1-12 Creating C++ Server Applications

PROCESS FOR DEVELOPING WEBLOGIC ENTERPRISE SERVER APPLICATIONS

Policy Description

Process Causesthe object to be activated when an operation isinvoked
onit, and to be deactivated only under the following
circumstances:

4 The server process that manages this object is shut down.

4 An operation on this object invokes the
TP: : deact i vat eEnabl e() operation, which causes
this object to be deactivated. (Thisis part of akey
WebL ogic Enterprisefeature called application-controlled
deactivation, which is described in the section
“Application-Controlled Deactivation” on page 1-13.
An object with this activation policy is callegeocess-bound

object. Thepr ocess activation policy is associated with
stateful objects.

Y ou determine what events cause an object to be deactivated by assigning object
activation policies. For more information about how you assign object activation
policies to an object’s interface, see the section “Step 4: Define the in-memory
behavior of objects.” on page 2-14.

Application-Controlled Deactivation

The WebLogic Enterprise software also provides a feature called
application-controlled deactivation, which provides a means for an application to
deactivate an object during run time. The WebLogic Enterprise software provides the
TP: : deact i vat eEnabl e() operation, which a process-bound object can invoke on
itself. When invoked, th&P: : deact i vat eEnabl e() operation causes the object in
which it exists to be deactivated upon completion of the current client invocation on
that object. An object can invoke this operation only on itself; you cannot invoke this
operation on any object but the object in which the invocation is made.

The application-controlled deactivation feature is particularly useful when you want an
object to remain in memory for the duration of a limited number of client invocations
on it, and you want the client application to be able to tell the object that the client is
finished with the object. At this point, the object takes itself out of memory.

Creating C++ Server Applications 1-13

1 SERVER APPLICATION CONCEPTS

1-14

Application-controlled deactivation, therefore, allows an object to remain in memory
in much the same way that a process-bound object can: the object is activated as a
result of aclient invocation on it, and it remains in memory after the initial client
invocation on it is completed. Y ou can then deactivate the object without having to
shut down the server process in which the object exists.

An dternative to application-controlled deactivation is to scope a transaction to
maintain a conversation between a client application and an object; however,
transactions are inherently more costly, and transactions are generally inappropriatein
situations where the duration of the transaction may be indefinite.

A good rule of thumb to use when choosing between application-controlled
deactivation and transactions for a conversation is whether there are any disk writing
operations involved. If the conversation involves read-only operations, or involves
maintaining state only in memory, then application-controlled deactivation is
appropriate. If the conversation involves writing datato disk during or at the end of the
conversation, transactions may be more appropriate.

Note: If you use application-controlled deactivation to implement a conversational
model between a client application and an object managed by the server
application, make sure that the object eventually invokes the
TP: : deact i vat eEnabl e() operation. Otherwise, the object remainsidlein
memory indefinitely. (Note that this can be arisk if the client application
crashes before the TP: : deact i vat eEnabl e() operation is invoked.
Transactions, on the other hand, implement a time-out mechanism to prevent
the situation in which the object remainsidlefor anindefinite period. Thismay
be another consideration when choosing between the two conversational
models.)

Y ou implement application-controlled deactivation in an object using the following
procedure:

1. Intheimplementationfile, insert an invocationtothe TP: : deact i vat eEnabl e()
operation at the appropriate | ocation within the operation of the interface that uses
application-controlled deactivation.

2. Inthe Implementation Configuration File (ICF file), assign the pr ocess
activation policy to the interface that contains the operation that invokes the
TP: : deact i vat eEnabl e() operation.

3. Build and deploy your application as described in the sections “Step 5: Compile

and link the server application.” on page 2-17 and “Step 6: Deploy the server

application.” on page 2-18.

Creating C++ Server Applications

PROCESS FOR DEVELOPING WEBLOGIC ENTERPRISE SERVER APPLICATIONS

Reading and Writing an Object’s Data

Many of the CORBA objects managed by the server application may have datathat is
in external storage. This externally stored data may be regarded as the persistent or
durable state of the object. You must address durable state handling at appropriate
points in the object implementation for object state management to work correctly.

Because of the wide variety of requirements you may have for your client/server

application with regards to reading and writing an object’s durable state, the TP
Framework cannot automatically handle durable object state on disk. In general, if an
object’s durable state is modified as a result of one or more client invocations, you
must make sure that durable state is saved before the object is deactivated, and you
should plan carefully how the object’s data is stored or initialized while the object is
active.

The sections that follow describe the mechanisms available to you to handle an
object’s durable state, and give some general advice how to read and write object state
under specific circumstances. The specific topics presented include:

The available mechanisms for reading and writing an object’s durable state
Reading state at object activation

Reading state within individual operations on an object

¢
¢
¢
4 Stateless objects and durable state
4 Stateful objects and durable state

4 Your responsibilities for object deactivation
4+ Avoiding unnecessary /O

How you choose to read and write durable state invariably depends on the specific
requirements of your client/server application, especially with regard to how the data
is structured. In general, your priority should be to minimize the number of disk
operations, especially where a database controlled by an XA resource manager is
involved.

Available Mechanisms for Reading and Writing an Object’s Durable State

Table 1-1 and Table 1-2 describe the available mechanisms for reading and writing an
object’s durable state.

Creating C++ Server Applications 1-15

1 SERVER APPLICATION CONCEPTS

1-16

Table 1-1 Available Mechanisms for Reading an Object’s Durable State

Mechanism

Description

Tobj _Servant Base: :
activate_object()

After the TP Framework creates the servant for an object, the

TP Framework invokes the

Tobj _Ser vant Base: : acti vat e_obj ect () operation

on that servant. As mentioned in the section “How You
Instantiate a CORBA Object at Run Time” on page 1-6, this
operation is defined on théobj _Ser vant Base base class,
from which all the CORBA objects you define for your
client/server application inherit.

You may choose not to define and implement the

Tobj _Ser vant Base: : acti vat e_obj ect () operation

on your object, in which case nothing happens regarding
specific object state handling when the TP Framework
activates your object. However, if you define and implement
this operation, you can choose to include code in this operation
that reads some or all of an object’s durable state into memory.
Therefore, the

Tobj _Ser vant Base: : acti vat e_obj ect () operation
provides your server application with its first opportunity to
read an object’s durable state into memory.

Note that if an object’'s OID contains a database key, the

Tobj _Ser vant Base: : acti vat e_obj ect () operation
provides the only means the object has to extract that key from
the OID.

For more information about implementing the

Tobj _Servant Base: : acti vat e_obj ect () operation,

see “Step 2: Write the methods thatimplement each interface’s
operations.” on page 2-6. For an example of implementing the
Tobj _Servant Base: : acti vat e_obj ect () operation,

see Chapter 3, “Designing and Implementing a Basic
WebLogic Enterprise Server Application.”

Operations on the object

You can include inside the individual operations that you
define on the object the code that reads an object’s durable
state.

Creating C++ Server Applications

PROCESS FOR DEVELOPING WEBLOGIC ENTERPRISE SERVER APPLICATIONS

Table 1-2 Available Mechanisms for Writing an Object’s Durable State

Mechanism

Description

Tobj _Servant Base: :
deacti vat e_obj ect ()

When an object isbeing deactivated by the TP Framework, the
TP Framework invokes this operation on the object as thefinal
step of object deactivation. Aswith the

Tobj _Servant Base: : acti vat e_obj ect () operation,
the Tobj _Servant Base: : deacti vate_obj ect ()
operation isdefined on the Tobj _Ser vant Base class. You
implement thedeact i vat e_obj ect () operation on your
object optionally if you have specific object state that you want
flushed from memory or written to a database.

TheTobj _Servant Base: : deact i vat e_obj ect ()
operation providesthefina opportunity your server application
has to write durable state to disk before the object is
deactivated.

If your object keeps any datain memory, or allocates memory
for any purpose, you implement the

Tobj _Servant Base: : deacti vat e_obj ect ()
operation so your object has afina opportunity to flush that
datafrom memory. Flushing any state from memory before an
object is deactivated is critical in avoiding memory leaks.

Operations on the object

Asyou may haveindividual operations on the objectsthat read
durable state from disk, you may a so have individual
operations on the object that write durable state back to disk.

For method-bound and process-bound objects in general, you
typically perform database write operations within these
operations and not in the

Tobj _Servant Base: : deacti vat e_obj ect ()
operation.

For transaction-bound objects, however, writing durable state
inthe Tobj _Servant Base: : deact i vat e_obj ect ()
operation provides a number of object management
efficiencies that may make sense for your transactional server
applications.

Note: If you usethe Tobj _Ser vant Base: : deact i vat e_obj ect () operation to
write any durable state to disk, any errors that occur while writing to disk are
not reported to the client application. Therefore, the only circumstances under
which you should write data to disk in this operation is when: the object is

Creating C++ Server Applications 1-17

1 SERVER APPLICATION CONCEPTS

transaction-bound (that is, it hasthe t r ansact i on activation policy assigned
toit), or you scope the disk write operations within a transaction by invoking
the TransactionCurrent object. Any errors encountered while writing to disk
during a transaction can be reported back to the client application. For more
information about using the Tobj _Ser vant Base: : deact i vat e_obj ect ()
operation to write object state to disk, see the section “Caveat for State
Handling in Tobj_ServantBase::deactivate_object()” on page 2-26.

Reading State at Object Activation

Using theTobj _Ser vant Base: : act i vat e_obj ect () operation on an object to read
durable state may be appropriate when either of the following conditions exist:

4 Object data is always used or updated in all the object’s operations.
4+ All the object’s data is capable of being read in one operation.

The advantages of using tiebj _Ser vant Base: : acti vat e_obj ect () operation
to read durable state include:

4 You write code to read data only once, instead of duplicating the code in each of
the operations that use that data.

4+ None of the operations that use an object’s data need to perform any reading of
that data. In this sense, you can write the operations in a way that is independen
of state initialization.

Reading State Within Individual Operations on an Object

With all objects, regardless of activation policy, you can read durable state in each
operation that needs that data. That is, you handle the reading of durable state outsi
theTobj _Servant Base: : acti vat e_obj ect () operation. Cases where this

approach may be appropriate include the following:

4 Object state is made up of discrete data elements that require multiple operation
to read or write.

4 Objects do not always use or update state data at object activation.

For example, consider an object that represents a customer’s investment portfolio. Tt
object contains several discrete records for each investment. If a given operation
affects only one investment in the portfolio, it may be more efficient to allow that

1-18 Creating C++ Server Applications

PROCESS FOR DEVELOPING WEBLOGIC ENTERPRISE SERVER APPLICATIONS

operation to read the one record than to have a general-purpose
Tobj _Servant Base: : acti vat e_obj ect () operation that automatically readsin the
entire investment portfolio each time the object isinvoked.

Stateless Objects and Durable State

In the case of stateless objects -- that is, objects defined with the met hod activation
policy -- you must ensure the following:

4 That any durable state needed by the request is brought into memory by thetime
the operation’s business logic starts executing

4 That any changes to the durable state are written out by the end of the invocation

The TP Framework invokes tlTebj _Servant Base: : acti vat e_obj ect ()

operation on an object at activation. If an object has an OID that contains a key to the
object’s durable state on disk, thebj _Ser vant Base: : acti vate_obj ect ()

operation provides the only opportunity the object has to retrieve that key from the
OID.

If you have a stateless object that you want to be able to participate in a transaction, we
generally recommend that if the object writes any durable state to disk that it be done
within individual methods on the object. However, if you have a stateless object that
is always transactional -- that is, a transaction is always scoped when this object is
invoked -- you have the option to handle the database write operations in the

Tobj _Servant Base: : deact i vat e_obj ect () operation, because you have a

reliable mechanism in the XA resource manager to commit or roll back database write
operations accurately.

Note: Even if your object is method-bound, you may have to take into account the
possibility that two server processes are accessing the same disk data at the
same time. In this case, you may want to consider a concurrency management
technique, the easiest of which is transactions. For more information about
transactions and transactional objects, see Chapter 5, “Integrating
Transactions into a WebLogic Enterprise Server Application.”

SERVANT POOLING AND STATELESS OBJECTS

Servant pooling is a particularly useful feature for stateless objects. When your
WebLogic Enterprise server application pools servants, you can significantly reduce
the costs of instantiating an object each time a client invokes it. As mentioned in the
section “Servant Pooling” on page 1-7, a pooled servant remains in memory after a

Creating C++ Server Applications 1-19

1 SERVER APPLICATION CONCEPTS

client invocation on it is complete. If you have an application in which a given object

is likely to be invoked repeatedly, pooling the servant means that only the object’s
data, and not its methods, needs to be read into and out of memory for each client
invocation. If the cost associated with reading an object's methods into memory is
high, servant pooling can reduce that cost.

For information about how to implement servant pooling, see the section “Servant
Pooling” on page 2-27.

Stateful Objects and Durable State

1-20

For stateful objects, you should read and write durable state only at the point where
is needed. This may introduce the following optimizations:

4+ In the case of process-bound objects, you avoid the situation in which an object
allocates a large amount of memory over a long period.

4+ In the case of transaction-bound objects, you can postpone writing durable state
until theTobj _Ser vant Base: : deact i vat e_obj ect () operation is invoked,
when the transaction outcome is known.

In general, transaction-bound objects must depend on the XA resource manager to
handle all database write or rollback operations automatically.

Note: For objects that are involved in a transaction, we do not support having those
objects write data to external storage that is not managed by an XA resource
manager.

For more information about objects and transactions, see Chapter 5, “Integrating
Transactions into a WebLogic Enterprise Server Application.”

SERVANT POOLING AND STATEFUL OBJECTS

Servant pooling does not make sense in the case of process-bound objects; howeve
depending on your application design, servant pooling may provide a performance
improvement for transaction-bound objects.

Creating C++ Server Applications

PROCESS FOR DEVELOPING WEBLOGIC ENTERPRISE SERVER APPLICATIONS

Your Responsibilities for Object Deactivation

Asmentioned in the preceding sections, you implement the

Tobj _Servant Base: : deact i vat e_obj ect () operation as meansto write an

object’s durable state to disk. You should also implement this operation on an object
as a means to flush any remaining object data from memory so that the object’s servant
can be used to activate another instance of that object. You should not assume that an
invocation to an object'Tobj _Ser vant Base: : deacti vat e_obj ect () operation

also results in an invocation of that object’s destructor.

Avoiding Unnecessary 1/0

Be careful not to introduce inefficiencies into the application by doing unnecessary 1/O
in objects. Situations to be aware of include the following:

4+ If many operations in an object do not use or affect object state, it may be
inefficient to read and write state each time these operations are invoked. Design
these objects so that they handle state only in the operations that need it; in such
cases, you may not want to have all of the object’s durable state read in at object
activation.

4 If object state is made up of data that is read in multiple operations, try to do
only the necessary operations at object activation by doing one of the following:

4 Reading only the state that is common to all the operations in the
Tobj _Servant Base: : acti vat e_obj ect () operation. Defer the reading of
additional state to only the operations that require it.

4 Writing out only the state that has changed. You can do this by managing
flags that indicate the data that was changed during an activation, or by
comparing before and after data images.

A general optimization is to initializedi r t ySt at e flag on activation and to
write data in th&@obj _Ser vant Base: : deacti vat e_obj ect () operation

only if the flag has been changed while the object was active. (Note that this
works only if you can be assured that the object is always activated in the
same server process.)

Sample Activation Walkthrough

For examples of the sequence of activity that takes place when an object is activated,
seeGetting Sarted.

Creating C++ Server Applications 1-21

1 SERVER APPLICATION CONCEPTS

Using Design Patterns

It isimportant to structure the businesslogic of your application around awell-formed
design. The WebL ogic Enterprise software provides a set of design patternsto address
this need. A design patternis simply astructured solution to aspecific design problem.
The value of adesign pattern liesin its ability to be expressed in aform you can reuse
and apply to other design problems.

The WebL ogic Enterprise design patterns are structured solutions to enterprise-class
application design problems. Y ou can use them to design successful large-scale
client/server applications.

The design patterns summarized here are a guide to using good design practicesin
WebL ogic Enterprise client and server applications. They are animportant and integral
part of designing WebL ogic Enterprise client and server applications, and the chapters
inthisbook show examples of using these design patternsto implement the University
sample applications.

Process-Entity Design Pattern

1-22

The Process-Entity design pattern appliesto alarge segment of enterprise-class
client/server applications. Thisdesign pattern is referred to as the flyweight patternin
Object-Oriented Design Patterns, Gammaet al., and asthe Model-View-Controller in
other publications.

In this pattern, the client application creates along-lived process object that the client
application interacts with to make requests. For example, in the University sample
applications, this object might betheregistrar that handles course browsing operations
on behalf of the client application. The coursesthemselves are database entitiesand are
not made visible to the client application.

The advantages of the Process-Entity design pattern include:

4 You can achieve the advantages of a fine-grained object model without
implementing fine-grained objects. Instead, you use CORBA st ruct datatypes
to simulate objects.

4 Machine resource usage is optimized because there is only a single object
mapped into memory: the process object. By contrast, if each database entity
were activated into memory as a separate object instance, the number of objects

Creating C++ Server Applications

PROCESS FOR DEVELOPING WEBLOGIC ENTERPRISE SERVER APPLICATIONS

that would need to be handled could overwhelm the machine’s resources quickly
in a large-scale deployment.

4 Because they are not exposed to the client application, database entities need not
be implemented as CORBA objects. Instead, entities can be implemented as
local language objects in the server process. This is a fundamental principle of
three-tier designs, but it also accurately models the way in which many
businesses operate (for example, a registrar at a real university). The individual
who serves as the registrar at a university can handle a large course database for
multiple students; you do not need an individual registrar for each individual
student. Thus, the process object state is distinct from the entity object state.

An example of applying the Process-Entity design pattern is described in Chapter 3,
“Designing and Implementing a Basic WebLogic Enterprise Server Application.” For
complete details on the Process-Entity design pattern, see the Design Patterns technical
article.

List-Enumerator Design Pattern

The List-Enumerator design pattern also applies to a large segment of enterprise-class
client/server applications. The List-Enumerator design pattern leverages a key
WebLogic Enterprise feature, application-controlled object deactivation, to handle a
cache of data that is stored and tracked in memory during several client invocations,
and then to flush the data from memory when the data is no longer needed.

An example of applying the List-Enumerator design pattern is described in Chapter 3,
“Designing and Implementing a Basic WebLogic Enterprise Server Application.”

Object preactivation, which is an especially useful tool for implementing the
List-Enumerator design, is described in the section “Preactivating an Object with
State” on page 3-17.

Creating C++ Server Applications 1-23

1 SERVER APPLICATION CONCEPTS

1-24 Creating C++ Server Applications

CHAPTER

2

Steps for Creating a

WebLogic Enterprise
Server Application

This chapter describes the basic steps involved in creating a Webl ogic Enterprise
server application. The steps shown in this chapter are not definitive; there may be
other steps you may need to take for your particular server application, and you may
want to change the order in which you follow some of these steps. However, the
development process for every WebL ogic Enterprise server application has each of
these steps in common.

This chapter presents the following topics:

4 Summary of the WebL ogic Enterprise Server Application Development Process
¢ Development and Debugging Tips

4 Servant Pooling

4 Deélegation-based Interface Implementation

This chapter begins with a summary of the steps, and also lists the development tools
and commands used throughout this book. Y our particular deployment environment
might use additional software development tools, so thetoolsand commandslisted and
described in this chapter are also not definitive.

Creating C++ Server Applications 2-1

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

The chapter uses examples from the Basic University sample application, which is
provided with the WebL ogic Enterprise software. For compl ete details about the Basic
University sample application, see the Guide to the University Sample Applications.
For complete information about the tools and commands used throughout this book,
see the C++ Programming Reference.

Summary of the WebLogic Enterprise Server
Application Development Process

The basic stepsto create a server application are:

Step 1: Compilethe OMG IDL file for the server application.

Step 2: Write the methods that implement each interface’s operations.
Step 3: Create the Server object.

Step 4: Define the in-memory behavior of objects.

Step 5: Compile and link the server application.

Step 6: Deploy the server application.

The WebLogic Enterprise software also provides the following development tools anc

commands:

Tool Description

IDL compiler Compiles your application’s OMG IDL file

geni cf Generates an Implementation Configuration File (ICF file),
which you can revise to specify nondefault object activation
and transaction policies

bui | dobj server Creates the executable image of your WebLogic Enterprise
server application

tm oadcf Creates th@UXCONFI Gfile, a binary file for the WebLogic
Enterprise domain that specifies the configuration of your
server application

t madmi n Among other things, creates a log of transactional activities,

which is used in some of the sample applications

2-2 Creating C++ Server Applications

STEP 1: COMPILE THE OMG IDL FILE FOR THE SERVER APPLICATION.

Step 1: Compile the OMG IDL file for the
server application.

The basic structure of the client and server portions of the application that runsin the
WebLogic Enterprise domain are determined by statements in the application’s OMG
IDL file. When you compile your application’s OMG IDL file, the IDL compiler
generates some or all of the files shown in the following diagram, depending upon
which options you specify in thell command. The shaded components are the
generated files that you modify to create a server application.

Client Stub File

Client Stub
Header File

Skeleton File

IDL Compiler

Skeleton
Header File

Implementation
File

Implementation
Header File

Creating C++ Server Applications 2-3

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Thefiles produced by the IDL compiler are described in Table 2-1.

Table 2-1 Files Produced by the IDL Compiler

File Default Name Description

Client stub file application_c.cpp Contains generated code for sending arequest.

Client stub header file application_c.h Contains class definitions for each interface and type
specified in the OMG IDL file.

Skeleton file application_s.cpp Containsskeletonsfor each interface specified in the OMG

IDL file. The skeleton mapsclient requeststo the appropriate
operation in the server application during run time.

Skeleton header file application_s.h Contains the skeleton class definitions.

Implementation file application_i.cpp Containssgnaturesfor the methodsthat implement the

operations on the interfaces specified in the OMG IDL file.

Implementation application_i.h Contains the initial class definitions for each interface
header file specified in the OMG IDL file.

Using the IDL Compiler

2-4

To generate the files listed in Table 2-1, enter the following command:
idl [options] idl-filenanme [icf-filenane]
Inthei dl command syntax:

4 opti ons represents one or more command-line options to the IDL compiler. The
command-line options are described in the C++ Programming Reference. If you
want to generate implementation files, you need to specify the-i option.

¢ idl-filenane represents the name of your application’s OMG IDL file.

¢ icf-filenaneis an optional parameter that represents the name of your
application’s Implementation Configuration File (ICF file), which you use to
specify object activation policies or to limit the number of interfaces for which
you want skeleton and implementation files generated. Using the ICF file is

Creating C++ Server Applications

STEP 1: COMPILE THE OMG IDL FILE FOR THE SERVER APPLICATION.

described in the section “Step 4: Define the in-memory behavior of objects.” on
page 2-14.

For more information about the IDL compiler, including details on thecommand,
see theC++ Programming Reference.

Generating the Skeleton and Implementation Files

The following command line generates client stub, skeleton, and initial

implementation files, along with skeleton and implementation header files, for the
OMG IDL file uni vb.idl :

idl -i univb.idl

For more information about thell command, see the++ Programming Reference.
For more information about generating these files for the WebLogic Enterprise
University sample applications, see thaide to the University Sample Applications.

Note: If you plan to specify nondefault object activation or transaction policies, or if
you plan to limit the number of interfaces for which you want skeleton and
implementation files generated, you need to generate and modify an
Implementation Configuration File (ICF) and pass the ICF file to the IDL
compiler. For more information, see “Specifying Object Activation and
Transaction Policies in the ICF File” on page 2-14.

Generating Tie Classes

The IDL compiler also provides th@ command-line option, which you can use for
generating tie class templates for your interfaces. For more information about
implementing tie classes in a WLE application, see the section “Delegation-based
Interface Implementation” on page 2-29.

Creating C++ Server Applications 2-5

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Step 2: Write the methods that implement
each interface’s operations.

Astheserver application programmer, your task isto write the methods that implement
the operations for each interface you have defined in your application’s OMG IDL file.

The implementation file contains:
4 Method declarations for each operation specified in the OMG IDL file

4 Your application’s business logic, include files, and other data you want the
application to use

4 Constructors and destructors for each interface implementation (implementing
these is optional)

4 Optionally, theTobj _Ser vant Base: : acti vat e_obj ect () and
Tobj _Servant Base: : deact i vat e_obj ect () operations

Within theTobj _Ser vant Base: : acti vat e_obj ect () and

Tobj _Ser vant Base: : deact i vat e_obj ect () operations, you write code that
performs any particular steps related to activating or deactivating an object. This
includes reading and writing the object’s durable state from and to disk,
respectively. If you implement these operations in your object, you must also
edit the implementation header file and add the definitions for these operations
in each implementation that uses them.

The Implementation File Generated by the IDL Compiler

2-6

Although you can create your server application’s implementation file entirely by
hand, the IDL compiler generates an implementation file that you can use as a startir
place for writing your implementation file. The implementation file generated by the
IDL compiler contains signatures for the methods that implement each of the
operations defined for your application’s interfaces.

Creating C++ Server Applications

STEP 2: WRITE THE METHODS THAT IMPLEMENT EACH INTERFACE'S OPERATIONS.

Y outypically generatethisimplementation file only once, using the-i option with the
command that invokes the IDL compiler. As you iteratively refine your application’s
interfaces, and modify the operations for those interfaces, including operation
signatures, you add all the required changes to the implementation file to reflect those
changes.

Implementing a Factory

As mentioned in the section “How Client Applications Access and Manipulate Your
Application’s CORBA Objects” on page 1-4, you need to create factories so that client
applications can easily locate the objects managed by your server application. A
factory is like any other CORBA object that you implement, with the exception that
you register it with the FactoryFinder object. Registering a factory is described in the
section “Writing the Code That Creates and Registers a Factory” on page 2-10.

The primary function of a factory is to create object references, which it does by
invoking theTP: : creat e_obj ect _r ef erence() operation. The

TP: : creat e_obj ect _r ef erence() operation requires the following input
parameters:

4 The Interface Repository ID of the object's OMG IDL interface
4 The object ID (OID) in string format
4 Optionally, routing criteria

For example, in the Basic University sample applicationRtfyg st r ar Fact ory
interface specifies only one operation, as follows:

Uni versity::Registrar_ptr RegistrarFactory i::find registrar()

Thefind_registrar() operation on th@egi strar Fact ory object contains the
following invocation to th@P: : cr eat e_obj ect _ref er ence() operation to create a
reference to &egi strar object:

CORBA: : (bj ect _var v_reg_oref =
TP: : create_object _reference(
University:: tc_Registrar->id(),
obj ect _id,
CORBA: : NVIist:: nil()
)

In the previous code example, notice the following:

Creating C++ Server Applications 2-7

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

4 Thefollowing parameter specifies the Regi st rar object’s Interface Repository
ID by extracting it from its typecode:

University:: tc_Registrar->id()
4 The following parameter specifies that no routing criteria are used, with the

result that an object reference created folRdw st rar object is routed to the
same group as thRegi st r ar Fact ory object that created the object reference:

CORBA: :NVIist:: nil()
For information about specifying routing criteria that affect the group to which

object references are routed, see Chapter 7, “Scaling a WebLogic Enterprise
Server Application”

Step 3: Create the Server object.

Implementing the Server object is not like implementing other language objects. The
header class for the Server object has already been created, and the Server object ¢
has already been instantiated for you. Creating the Server object involves
implementing a specific set of methods in the prepackaged Server object class. The
methods you implement are described in this section.

To create the Server object, create a new file using a common text editor and
implement the following operations:

Operation Description

Server::initialize(); After the server application is booted, the TP Framework invokes this

operation as the last step in the server application initialization process.
Within this operation, you perform a number of initialization tasks
needed for your particular server application. What you provide within
this operation is described in the section “Initializing the Server
Application” on page 2-9.

Server::create_servant(); When a client request arrives that cannot be serviced by an existing

servant, the TP Framework invokes this operation, passing the Interface
Repository ID of the OMG IDL interface for the CORBA object to be
activated. What you provide within this operation is described in the
section “Creating Servants” on page 2-11.

2-8

Creating C++ Server Applications

STEP 3: CREATE THE SERVER OBJECT.

Operation Description

Server::rel ease(); The TP Framework invokes this operation when the server application is
being shut down. This operation includes code to unregister any object
factories managed by the server application and to perform other
shutdown tasks. What you provide within this operation is described in
the section “Releasing the Server Application” on page 2-12.

Thereisonly oneinstance of the Server object in any server application. If your server
application is managing multiple CORBA object implementations, the
Server::initialize(),Server::create_servant(),andServer::rel ease()
operations you write must include code that appliesto all those implementations.

The code that you write for most of these tasks involves interaction with the TP
Framework. The sectionsthat follow explain the code required for each of these Server
object operations and shows sample code from the Basic University sample
application.

Initializing the Server Application

The first operation that you implement in your Server object is the operation that
initializes the server application. This operation isinvoked when the WebL ogic
Enterprise system starts the server application. The TP Framework invokes the
following operation in the Server object during the startup sequence of the server
application:

CORBA: : Bool ean Server::initialize(int argc, char** argv)

Any command-line options specified in the CLOPT parameter for your specific server
application in the SERVERS section of the WebLogic Enterprise domaiaBBCONFI G
file are passed to ttger ver: :initial i ze() operation aar gc andar gv. For more
information about passing arguments to the server applicatioAdsagistration
Guide. For examples of passing arguments to the server application, <edde¢o
the University Sample Applications.

Within theServer: :initialize() operation, you include code that does the
following, if applicable:

Creating C++ Server Applications 2-9

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Creates and registers factories
Allocates any machine resources
Initializes any global variables needed by the server application

Opens the databases used by the server application

* & & & o

Opens the XA resource manager

Writing the Code That Creates and Registers a Factory

2-10

If your server application manages afactory that you want client applicationsto beable
to locate easily, you need to write the code that registers that factory with the
FactoryFinder object, which isinvoked typically asthe final step of the server
application initialization process.

To write the code that registers a factory managed by your server application, you do
the following:

1. Create an object reference to the factory.

This step involves creating an object reference as described in the section
“Implementing a Factory” on page 2-7. In this step, you include an invocation to
theTP: : creat e_obj ect _r ef erence() operation, specifying the Interface
Repository ID of the factory’s OMG IDL interface.The following example
creates an object reference, represented by the vasiabléact _ref, to the
Regi strar Fact ory factory:
Uni versity::RegistrarFactory s v _fact_ref =
TP: : create_obj ect _reference(
University:: tc_RegistrarFactory->id(),
object_id,
CORBA: : NVList:: _nil ()
)
2. Register the factory with the WebLogic Enterprise domain.

This step involves invoking the following operation for each of the factories
managed by the server application:

TP: :register_factory (CORBA: : Object_ptr factory_or,
const char* factory_id);

Creating C++ Server Applications

STEP 3: CREATE THE SERVER OBJECT.

TheTP: : regi ster _factory() operation registers the server application’s
factories with the FactoryFinder object. This operation requires the following
input parameters:

4 The object reference for the factory, created in step 1 above

4+ A string identifier, based on the factory object's interface typecode, used to
identify the Interface Repository ID of the factory’s OMG IDL interface

The following example registers tiRegi st r ar Fact or y factory with the
WebLogic Enterprise domain:

TP::register_factory(s_v_fact_ref.in(),

University:: tc_RegistrarFactory->id());
Notice the parametemi versity:: _tc_RegistrarFactory->id(). Thisis
the same parameter specified in Ti®e: cr eat e_obj ect _r ef erence()
operation. This parameter extracts the Interface Repository ID of the object’s
OMG IDL interface from its typecode.

Creating Servants

After the server application initialization process is complete, the server application is
ready to begin processing client requests. If a request arrives for an operation on a
CORBA object for which there is no servant available in memory, the TP Framework
invokes the following operation in the Server object:

Tobj _Servant Server::create_servant(const char* interfaceNane)

TheServer:: creat e_servant () operation contains code that instantiates a servant
for the object required by the client request. For example, in C++, this code includes a
new statement on the interface class for the object.

ThesServer: : creat e_servant () operation does not associate the servant with an
OID. The association of a servant with an OID takes place when the TP Framework
invokes theTobj _Ser vant Base: : acti vat e_obj ect () operation on the servant,
which completes the instantiation of the object. (You cannot associate an OID with an
object in the object’s constructor.) Likewise, the disassociation of a servant with an
OID takes place when the TP Framework invokesitheet i vat e_obj ect ()

operation on the servant.

Creating C++ Server Applications 2-11

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

This behavior of aservant in the WebL ogic Enterprise system makesit possible, after

an object has been deactivated, for the TP Framework to make a servant available for
another object instantiation. Therefore, do not assume that an invocation of an object’
Tobj _Servant Base: : deact i vat e_obj ect () operation results in an invocation of
that object’s destructor. If you use the servant pooling feature in your server
application, you can implement thie: : appl i cati on_responsi bi | i ty()

operation in an object'Sobj _Ser vant Base: : deact i vat e_obj ect () operation to

pass a pointer to the servant to a servant pool for later reuse. Servant pooling is
discussed in the section “Servant Pooling” on page 2-27.

TheServer::create_servant () operation requires a single input argument. The
argument specifies a character string containing the Interface Repository ID of the
OMG IDL interface of the object for which you are creating a servant.

In the code you write for this operation, you specify the Interface Repository IDs of the
OMG IDL interfaces for the objects managed by your server application. During run
time, theServer : : creat e_ser vant () operation returns the servant needed for the
object specified by the request.

The following code implements ti8er ver: : creat e_ser vant () operation in the
University server application from the Basic University sample application:

Tobj _Servant Server::create_servant(const char* intf_repos_id)

if (!strcnp(intf_repos_id, University:: tc RegistrarFactory->id())) {
return new Regi strarFactory_i();

}
if (!'strcnp(intf_repos_id, University:: tc Registrar->id())) {
return new Registrar _i();

if (!strcnp(intf_repos_id, University:: tc_CourseSynopsi sEnunmerator->id())) {
return new Cour seSynopsi seEnunerator _i();
}

return 0; // unknown interface

}

Releasing the Server Application

When the WebLogic Enterprise system administrator entetsieit down
command, the TP Framework invokes the following operation in the Server object of
each running server application in the WebLogic Enterprise domain:

void Server::rel ease()

2-12 Creating C++ Server Applications

STEP 3: CREATE THE SERVER OBJECT.

WithintheSer ver : : r el ease() operation, you may perform any application-specific
cleanup tasksthat are specific to the server application, such as:

¢
¢
¢
¢

Unregistering object factories managed by the server application
Deallocating resources
Closing any databases

Closing an XA resource manager

Once a server application receives a request to shut down, the server application can
no longer receive requests from other remote objects. This has implications on the
order in which server applications should be shut down, which is an administrative
task. For example, do not shut down one server processif a second server process
containsaninvocationinitsSer ver : : r el ease() operationtothefirst server process.

During server shutdown, you may want to include the following invocation to
unregister each of the server application’s factories:

TP: :unregi ster_factory (CORBA:: Object _ptr factory_or,

const char* factory_id)

The invocation of theTP: : unr egi st er _fact ory() operation should be one of the
first actions in theser ver: : rel ease() implementation. The

TP:unregi ster_factory() operation unregisters the server application’s factories.
This operation requires the following input arguments:

4 The object reference for the factory

4+ A string identifier, based on the factory object’s interface typecode, used to

identify Interface Repository ID of the object's OMG IDL interface

The following example unregisters tRegi st r ar Fact ory factory used in the Basic
sample application:

TP: :unregister_factory(s_v_fact_ref.in(), UnivB::_tc_RegistrarFactory->id());

In the preceding code example, notice the use of the global vasiabléact _ref .
This variable was set in tf8arver: :initialize() operation that registered the
Regi strar Fact or y object, which is used again here.

Notice also the parameteni vB: : _t c_Regi st rar Fact ory->i d() . This is also the
same as the interface name used to register the factory.

Creating C++ Server Applications 2-13

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Step 4: Define the in-memory behavior of
objects.

As stated in the section “Managing Object State” on page 1-10, you determine what
events cause an object to be deactivated by assigning object activation policies,
transaction policies, and, optionally, using the application-controlled deactivation
feature.

You specify object activation and transaction policies in the ICF file, and you
implement application-controlled deactivation via 1i®e: deact i vat eEnabl e()
operation. This section explains how you implement both mechanisms, using the Basi
University sample application as an example.

The sections that follow describe the following:
4+ How to specify object activation and transaction policies in the ICF file

4 How to implement application-controlled deactivation

Specifying Object Activation and Transaction Policies in
the ICF File

2-14

The WebLogic Enterprise software supports the following activation policies,
described in “Object Activation Policies” on page 1-12:

Activation Policy Description

nmet hod Causes the object to be active only for the duration of the
invocation on one of the object’s operations.

transaction Causes the object to be activated when an operation is invoked on
it. If the object is activated within the scope of a transaction, the
object remains active until the transaction is either committed or
rolled back.

Creating C++ Server Applications

STEP 4: DEFINE THE IN-MEMORY BEHAVIOR OF OBJECTS.

Activation Policy Description

process Causesthe object to be activated when an operation isinvoked on
it, and to be deactivated only when one of the following occurs:

4 The process in which the server application exists is shut
down

¢ Theobject hasinvoked the TP: : deact i vat eEnabl e()
operation on itself

The WebL ogic Enterprise software al so supports the following transaction policies,
described in Chapter 5, “Integrating Transactions into a WebLogic Enterprise Server
Application™

Transaction Policy Description

al ways When an operation on thisobject isinvoked, thispolicy causesthe
TP Framework to begin atransaction for thisobject, if thereisnot
aready an active transaction. If the TP Framework starts the
transaction, the TP Framework commits the transaction if the
operation completes successfully, or rolls back the transaction if
the operation raises an exception.

opti onal When an operation on thisobject isinvoked, thispolicy causesthe
TP Framework to include this object in atransaction if a
transaction is active. If no transaction is active, the invocation on
this object proceeds according to the activation policy defined for
this object.

Thisis the default transaction policy.

never Causes the TP Framework to generate an error condition if this
object isinvoked during a transaction.

i gnore If atransaction is currently active when an operation on this
object isinvoked, the transaction is suspended until the operation
invocation is complete. This transaction policy prevents any
transaction from being propagated to the object to which this
transaction policy has been assigned.

Creating C++ Server Applications 2-15

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

To assign these policies to the objects in your application:

1. Generate the ICF file by entering the geni ¢cf command, specifying your
application’'s OMG IDL file as input, as in the following example:

genicf university.idl

The preceding command generates theufilieversity. i cf .
2. Edit the ICF file and specify the activation policies for each of your application’s
interfaces. The following example shows the ICF file generated for the Basic

University sample application. Notice that the default object activation policy is
met hod, and that the default transaction activation poliaypisi onal .

nmodul e POA Uni versityB

{

i mpl enent ati on Cour seSynopsi sEnunerat or _i
{
activation_policy (nethod);
transaction_policy (optional);
i npl enents (UniversityB:: CourseSynopsi sEnunerator);
b

};

nmodul e POA Uni versityB

{

i mpl enent ati on Regi strar _i
{
activation_policy (nethod);
transaction_policy (optional);
i mplements (UniversityB::Registrar);
b

b

nmodul e POA Uni versityB

{

i mpl enent ati on Regi strarFactory_i
{
activation_policy (nethod);
transaction_policy (optional);
i mpl ements (UniversityB::RegistrarFactory);
b

b

3. If you want to limit the number of interfaces for which you want skeleton and
implementation files generated, you can remove from the ICF file the
implementation blocks that implement those interfaces. Using the preceding ICF
code as an example, to prevent skeleton and implementation files from being
generated for thBegi str ar Fact ory interface, remove the following lines:

2-16 Creating C++ Server Applications

STEP 5: COMPILE AND LINK THE SERVER APPLICATION.

i mpl enentati on Regi strarFactory_i

{

activation_policy (nethod);

transaction_policy (optional);

i mpl ements (UniversityB:: RegistrarFactory);

b
Passthe ICF file to the IDL compiler to generate the skeleton and
implementation files that correspond to the specified policies. For more

information, see the section “Generating the Skeleton and Implementation Files”
on page 2-5.

Step 5: Compile and link the server
application.

After you have finished writing the code for the Server object and the object
implementations, you compile and link the server application.

You use thebui | dobj ser ver command to compile and link WebLogic Enterprise
server applications. Thsui | dobj ser ver command has the following format:

bui | dobj server [-0 servernane] [options]

In thebui | dobj ser ver command syntax:

L4

-0 servernane represents the name of the server application to be generated
by this command.

opt i ons represents the command line options totthid dobj ser ver
command.

For complete information about compiling and linking the University sample
applications, see thauideto the University Sample Applications. For complete details
about thebui | dobj ser ver command, see the++ Programming Reference.

Creating C++ Server Applications 2-17

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Step 6: Deploy the server application.

2-18

Y ou or the system administrator deploy the WebL ogi ¢ Enterprise server application by
using the procedure summarized in this section. For complete details on building and
deploying the University sample applications, see the Guide to the University Sample
Applications.

To deploy the server application:

1

Place the server application executable file in an appropriate directory on a
machine that is part of the intended WebL ogic Enterprise domain.

Create the application’s configuration file, also known asJBBEONFI Gfile, in a
common text editor.

Set the following environment variables on the machine from which you are
booting the WebLogic Enterprise server application:

4 TUXCONFI G which needs to match exactly thexCONFI G entry in the
UBBCONFI Gfile. This variable represents the location or path of the
application’sUBBCONFI Gfile.

4 APPDI R, which represents the directory in which the application’s executable
file exists.

Set theTUXDI R environment variable on all machines that are running in the
WebLogic Enterprise domain or that are connected to the WebLogic Enterprise
domain. This environment variable points to the location where the WebLogic
Enterprise software is installed.

Enter the following command to create T&CONFI Gfile:

tm oadcf -y application-ubbconfig-file

The command-line argumeapp! i cat i on-ubbconfi g-fi I e represents the
name of your application’sBBCONFI Gfile. Note that you may need to remove
any oldTUXCONFI Gfiles to execute this command.

Enter the following command to start the WebLogic Enterprise server
application:

tmboot -y

You can reboot a server application without reloadingUBRCONFI Gfile.

Creating C++ Server Applications

DEVELOPMENT AND DEBUGGING TIPS

For complete detail s about configuring the University sample applications, see the
Guide to the University Sample Applications. For complete details on creating the
UBBCONFI Gfile for WebL ogic Enterprise applications, see the Administration Guide.

Development and Debugging Tips

The following topics are discussed in this section:

L4

¢
¢
¢

Use of CORBA and M3 exceptions and the user log
Detecting error conditionsin the callback methods
Common pitfalls of OMG IDL interface versioning and modification

Caveat for state handling in the Tobj _Ser vant Base: : deact i vat e_obj ect ()
operation

Use of CORBA and M3 Exceptions and the User Log

This section discusses the following topics:

¢
¢

The client application view of exceptions

The server application view of exceptions

Client Application View of Exceptions

When aclient application invokes an operation on aCORBA object, an exception may
bereturned asaresult of theinvocation. The only valid exceptions that can be returned
to aclient application are the following:

L4

Standard CORBA --defined exceptions that are known to every
CORBA-compliant ORB

Exceptionsthat are defined in OMG IDL and known to the client application via
either its stub or the Interface Repository

Creating C++ Server Applications 2-19

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

The WebL ogic Enterprise system works to ensure that these CORBA-defined
restrictions are not violated, which is described in the section “Server Application
View of Exceptions” on page 2-20.

Because the set of exceptions exposed to the client application is limited, client
applications may occasionally catch exceptions for which the cause is ambiguous.
Whenever possible, the WebLogic Enterprise system supplements such exceptions
with descriptive messages in the user log, which serves as an aid in detecting and
debugging error conditions. These cases are described in the following section.

Server Application View of Exceptions

This section presents the following topics:

4 Exceptions raised by the WebLogic Enterprise system that can be caught by
application code

4 The M3 system’s handling of exceptions raised by application code during the
invocation of operations on CORBA objects

EXCEPTIONS RAISED BY THE WEBLOGIC ENTERPRISE SYSTEM THAT CAN BE CAUGHT BY
APPLICATION CODE

The WebLogic Enterprise system may return the following types of exceptions to an
application when operations on the TP object are invoked:

4 CORBA-defined system exceptions

4 CORBAUser Except i ons defined in the fil&fobj S c. h. The OMG IDL for
the exceptions defined in this file is the following:

interface Tobj S {
exception Al readyRegistered { };
exception Activate(ojectFailed { string reason; };
exception ApplicationProblem{ };
exception Cannot Proceed { };
exception CreateServantFailed { string reason; };
exception DeactivateObjectFailed { string reason; };
exception Illegallnterface { };
exception Il egal Operation { };
exception InitializeFailed { string reason; };
exception InvalidDomain { };
exception Invalidlnterface { };
exception InvalidName { };

2-20 Creating C++ Server Applications

DEVELOPMENT AND DEBUGGING TIPS

exception InvalidOhject { };

exception InvalidOhjectld { };
exception InvalidServant { };

exception N | Cbject { string reason; };
excepti on NoSuchEl erent { };

excepti on NotFound { };

exception OrbProblem{ };

exception Qut Of Menory { };

excepti on OverFlow { };

excepti on Regi strarNot Avai |l able { };
exception Rel easeFailed { string reason; };
excepti on TpfProblem { };

excepti on Unknownl nterface { };

THE M3 SYSTEM’S HANDLING OF EXCEPTIONS RAISED BY APPLICATION CODE DURING THE
INVOCATION OF OPERATIONS ON CORBA OBJECTS

A server application can raise exceptions in the following places in the course of
servicing a client invocation:

¢ IntheServer::create_servant,
Tobj _Servant Base: : acti vat e_obj ect (), and
Tobj _Servant Base: : deact i vat e_obj ect () callback methods.

4 Inthe implementation code for the invoked operation.

Itispossiblefor the server application to raise any of thefoll owing types of exceptions:
4 A CORBA-defined system exception

4 A CORBA user-defined exception defined in OMG IDL

4 A CORBA user-defined exception defined in the file Tobj S_c. h. The following
exceptions are intended to be used in server applications to help the WebL ogic
Enterprise system send messages to the user log, which can help with
troubleshooting:

interface Tobj S {
exception ActivateObjectFailed { string reason; };
excepti on OreateServantFailed { string reason; };
exception DeactivateCbjectFailed { string reason; };
exception InitializeFailed { string reason; };
excepti on Rel easeFailed { string reason; };

}
4 Any other C++ exception type

Creating C++ Server Applications 2-21

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

All exceptions raised by server application code that are not caught by the server
application are caught by the WebL ogic Enterprise system. When these exceptionsare
caught, one of the following occurs:

4 Theexception is returned to the client application without alteration.

4 Theexception is converted to a standard CORBA exception, which is then
returned to the client application.

4 Theexception is converted to a standard CORBA exception, and the following
actions occur:

4 Theexception is returned to the client application

4 One or more messages containing descriptive information about the error are
sent to the user log. The descriptive information may originate from either
the server application code or from the WebL ogic Enterprise system.

The following sections show how the M3 system handles exceptions raised by the
server application during the course of aclient invocation on a CORBA object.

Exceptionsraised in the Server : : creat e_ser vant () operation
If any exception israised inthe Server : : creat e_servant () operation, then:
4 The CORBA: : OBJECT_NOT_EXI ST exception is returned to the client application.

4 If theexception raised is Tobj S: : Cr eat eSer vant Fai | ed, then amessage is
sent to the user log. If areason string is supplied in the constructor for the
exception, then the reason string is also written as part of the message.

4 Neither the Tobj _Ser vant Base: : acti vat e_obj ect () or
Tobj _Servant Base: : deact i vat e_obj ect () operations areinvoked. The
operation requested by the client is not invoked.

Exceptionsraised in the Tobj _Ser vant Base: : acti vat e_obj ect () operation

If any exception israised in the Tobj _Ser vant Base: : acti vate_obj ect ()
operation, then:

4 The CORBA: : OBJECT_NOT_EXI ST exception is returned to the client application.

4 If theexception raised is Tobj S: : Act i vat eObj ect Fai | ed, amessageis sent to
the user log. If areason string is supplied in the constructor for the exception,
the reason string is also written as part of the message.

2-22 Creating C++ Server Applications

DEVELOPMENT AND DEBUGGING TIPS

4+ Neither the operation requested by the client nor the
Tobj _Ser vant Base: : deact i vat e_obj ect () operation isinvoked.

Exceptions raised in operation implementations

The WebL ogic Enterprise system requires operation implementations to throw either
CORBA system exceptions, or user-defined exceptions defined in OMG IDL that are
known to the client application. If these types of exceptions are thrown by operation
implementations, then the WebL ogic Enterprise system returns them to the client
application, unless one of the following conditions exists:

4 The object has the al ways transaction policy, and the WebL ogic Enterprise
system automatically started a transaction when the object was invoked. In this
case, the transaction is automatically rolled back by the WebL ogic Enterprise
system. Because the client application is unaware of the transaction, the
WebL ogic Enterprise system then raises the CORBA: : OBJ_ADAPTER CORBA
system exception, and not the CORBA: : TRANSACTI ON_ROLLEDBACK exception,
which would have been the case had the client initiated the transaction.

4 Theexceptionisdefined in the file Tobj S_c. h. In this case, the exception is
converted to the CORBA: : BAD OPERATI ON exception and is returned to the client
application. In addition, the following message is sent to the user log:

"WARN: Application didn’t catch Tobj S exception. TP Franmework
throwi ng CORBA: : BAD OPERATI ON. "

If the exception is Tobj S: : 111 egal Oper at i on, the following supplementary
message is written to warn the developer of a possible coding error in the
application:

"WARN: Application called TP::deactivateEnable() illegally and
didn’t catch Tobj S exception."

Thiscan occur if the TP: : deact i vat eEnabl e() operation isinvoked inside an
object that hasthet r ansact i on activation policy. (Application-controlled
deactivation is not supported for transaction-bound objects)

4 The WebL ogic Enterprise system raised an internal system exception following
the client invocation. In this case, the CORBA: : | NTERNAL exception is returned
to the client. This usualy indicates serious system problems with the process in
which the object is active.

Creating C++ Server Applications 2-23

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Exceptionsraised in the Tobj _Ser vant Base: : deact i vat e_obj ect () operation

If any exception israised in the Tobj _Ser vant Base: : deact i vat e_obj ect ()
operation, the following occurs:

4 Theexception is not returned to the client application.

4 If theexception raised is Tobj S: : Dect i vat e(bj ect Fai | ed, amessage is sent
to the user log. If areason string is supplied in the constructor for the exception,
the reason string is also written as part of the message.

4 A messageis sent to the user log for exceptions other than the
Tobj S: : Deact i vat eQbj ect Fai | ed exception, indicating the type of exception
caught by the WebL ogic Enterprise system.

Detecting Error Conditions in the Callback Methods

2-24

The WebL ogic Enterprise system provides a set of predefined exceptions that allow
you to specify message strings that the TP Framework writesto the user log if
application code gets an error in any of the following callback methods:

4 Tobj _Servant Base:: activat e_object ()
Tobj _Servant Base: : deacti vat e_obj ect ()
Server::create_servant()

Server::initialize()

> & & o

Server::rel ease()

Y ou can use these exceptions as a useful debugging aid that allows you to send
unambiguous information about why an exception is being raised. Note that the TP
Framework writes these messages to the user log only. They are not returned to the
client application.

Y ou specify these messages with the following exceptions, which have an optional
reason string:

Creating C++ Server Applications

DEVELOPMENT AND DEBUGGING TIPS

Exception Callback M ethodsthat Can Raise This
Exception
Acti vat eCbj ect Fai | ed Tobj _Servant Base: : activate_obj ect ()

Deacti vat ebj ect Fai |l ed Tobj _Servant Base: : deacti vate_obj ect ()

CreateServant Fai | ed Server::create_servant()
InitializeFail ed Server::initialize()
Rel easeFai |l ed Server::rel ease()

To send a message string to the user log, specify the string in the exception, as in the
following example:

throw Creat eServant Fai | ed(" Unknown i nterface");

Note that when you throw these exceptions, the reason string parameter is required. If
you do not want to specify a string with one of these exceptions, you must use the
double quote characters, asin the following example:

throw Acti vateQoj ect Fai l ed("");

Common Pitfalls of OMG IDL Interface Versioning and
Modification

The Server object’s implementation of the Ser ver : : creat e_ser vant () operation
instantiates an object based onitsinterface ID. Itiscrucial that thisinterface ID isthe
same as the one supplied in the factory when the factory invokes the

TP: : creat e_obj ect _r ef erence() operation. If the interface |Dsdo not match, the
Server: : create_servant () operation usualy raises an exception or returnsa
NULL servant. The WebL ogic Enterprise system then returns a

CORBA: : OBJECT_NOT_EXI ST exception to the client application.(The WebL ogic
Enterprise system does not perform any validation of interface IDs in the

TP: : creat e_obj ect _ref erence() operation.)

Creating C++ Server Applications 2-25

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

It is possible for this condition to arise if, during the course of development, different
versions of theinterface are being devel oped or many modifications are being madeto
IDL file. Even if you typically specify string constants for interface IDsin OMG IDL
and use these in the factory and the Ser ver : : creat e_ser vant () operation, it is
possible for a mismatch to occur if the object implementation and factory are in
different executables. This potential problem may be difficult to diagnose.

Y ou may want to consider the following defensive programming strategies during
development to avoid this potential problem. This code should be included only in
debugging versions of your application, because it introduces performance
inefficiencies that may be unacceptable in the production versions of your software.

¢ Immediately before factory invokesthe TP: : creat e_obj ect _r ef erence()
operation, include code that checks the Interface Repository to seeif the required
interface exists. (Make sure that all the application OMG IDL is up-to-date and
loaded into the Interface Repository). Should this check fail to find the interface
ID, you can assume that there is a mismatch.

4 Following the invocation of the TP: : cr eat e_obj ect _ref erence() operation
in your factories, include code that “pings” the object. That is, the code invokes
any operation on the object (typically an operation that does not do anything). If
this invocation raises theORBA: : OBJECT_NOT_EXI ST exception, an interface
ID mismatch exists. Note that “pinging” an object causes the object to be
activated, with the overhead associated with the activation.

Caveat for State Handling in
Tobj_ServantBase::deactivate_object()

TheTobj _Servant Base: : deact i vat e_obj ect () operation is invoked when the
activation boundary for an object is reached. You may, optionally, write durable state
to disk in the implementation of this operation. It is important to understand that
exceptions raised in this operation are not returned to the client application. The clier
application will be unaware of any error conditions raised in this operation unless the
object is participating in a transaction. Therefore, in cases where it is important that th
client application know whether the writing of state via this operation is successful, we
recommend that transactions be used.

2-26 Creating C++ Server Applications

SERVANT POOLING

If you decideto usethe Tobj _Ser vant Base: : deact i vat e_obj ect () operation for
writing state, and the client application needs to know the outcome of the write

operations, we recommend that you do the following:

4 Ensure that each operation that affects object state is invoked within a
transaction, and that deactivation occurs within the transaction boundaries. This
can be done by using either the met hod or t r ansact i on activation policies, and
is possible with the pr ocess activation policy if the TP: : deact i vat eEnabl e()
operation is invoked within the transaction boundary.

4 If an error occurs during the writing of object state, invoke the
COSTransactions:: Current::rol |l back_onl y() operation to ensure that the
transaction is rolled back. This ensures that the client application receives one of

the following exceptions:

4 If the client application initiated the transaction, the client application
receives the CORBA: : TRANSACTI ON_ROLLEDBACK exception.

4 If the WebL ogic Enterprise system initiated the transaction, the client
application receives the CORBA: : OBJ_ADAPTER exception.

If transactions are not used, we recommend that you write object state within the scope
of individual operations on the object, rather than viathe

Tobj _Servant Base: : deact i vat e_obj ect () operation. Thisway, if an error
occurs, the operation can raise an exception that is returned to the client application.

Servant Pooling

Asmentioned in the section “Servant Pooling and Stateless Objects” on page 1-19,
servant pooling provides a means to reduce the cost of object instantiation for

method-bound or transaction-bound objects.

How Servant Pooling Works

Normally, during object deactivation (that is, when the TP Framework invokes the
Tobj _Servant Base: : deacti vat e_obj ect () operation), the TP Framework
deletes the object’s servant; however, when servant pooling is used, the TP Framework

Creating C++ Server Applications 2-27

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

does not delete the servant at object deactivation. Instead, the server application
maintains a pointer to the servant in a pool. When a subsequent client request arrives
that can be satisfied by a servant in that pool, the server application reuses the servant
and assigns a new object ID. When a servant is reused from apool, the TP Framework
does not create a new servant.

How You Implement Servant Pooling

Y ou implement servant pooling by doing the following:

1. IntheServer::initialize() operationonthe Server object, writethe code that
sets up the servant pool. The pool consists of aset of pointers to one or more
servants, and the code for the pool specifies how many servantsfor a given class
are to be maintained in the pool.

2. Inthe pooled servantBobj _Ser vant Base: : deact i ve_obj ect () operation,
you implement th@P: : appl i cati on_responsi bility() operation. In the
implementation of th&P: : appl i cati on_r esponsi bi | ity() operation, you
provide code that places a pointer to the servant into the servant pool at the time
that the TP Framework invokes the
Tobj _Servant Base: : deact i vat e_obj ect () operation.

3. Inthe Server object’s implementation of 8e ver: : create_servant ()
operation, write code that does the following when a client request arrives:

a. Checks the pool to see if there is a servant that can satisfy the request.

b. If a servant does not exist, create a servant and invoke the
Tobj _Servant Base: : acti vat e_obj ect () operation on it.

c. If a servant exists, invoke thiebj _Ser vant Base: : acti vat e_obj ect ()
operation on it, assigning the object ID contained in the client request.

For information about theP: : appl i cation_responsi bility() operation, see the
C++ Programming Reference.

2-28 Creating C++ Server Applications

DELEGATION-BASED INTERFACE IMPLEMENTATION

Delegation-based Interface Implementation

There are two primary ways in which an object can be implemented in a WebL ogic
Enterprise application: by inheritance, or by delegation. When an object inherits from
the POA skeleton class, and is thus a CORBA aobject, that object is said to be
implemented by inheritance.

However, there may beinstancesin which you want to usea C++ object in aWebL ogic
Enterprise application in which inheriting from the POA skeleton classis difficult or
impractical. For example, you might have a C++ object that would require a major
rewriteto inherit from the POA skeleton class. Y ou can bring this non-CORBA object
into aWL E application by creating atie classfor the object. Thetie classinheritsfrom
the POA skeleton class, and thetie class contains one or more operations that delegate
to the legacy class for the implementation of those operations. The legacy classis
thereby implemented in the WebL ogic Enterprise application by delegation.

About Tie Classes in the WebLogic Enterprise System

To create a del egation-based interface implementation, use the - T command-line
option of the IDL compiler to generatetie classtemplates for each interface defined in
the OMG IDL file.

Using tie classesin aWebL ogic Enterprise application a so aff ects how you implement
the Server: : creat e_servant () operation in the Server object. The following
sections explain the use of tie classesin WebL ogic Enterprise in more detail, and also
explains how to implement the Ser ver : : cr eat e_servant () operation toinstantiate
those classes.

In WebL ogic Enterprise, thetie classisthe servant, and, therefore, servesbasically as
awrapper object for the legacy class.

The following figure shows the inheritance characteristics of the interface Account ,
which serves as awrapper for alegacy object. Thelegacy object contains the
implementation of the operation op1. Thetie class delegates opl to the legacy class.

Creating C++ Server Applications 2-29

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

2-30

OMG IDL
Interface
Account

IDL Compiler

SkeletonVHeader for
Account

Skeleton for
Account

C++ Template Class
Account tie
(Generated Using -T)

e

Implementation of Account _ti e:
opl(_ptr val);

Delegates opl to
legacy class,
passing val .

Tie classes are transparent to the client application. To the client application, thetie
class appears to be a complete implementation of the object that the client application
invokes. Thetie class delegates all operationsto the legacy class, which you provide.
In addition, the tie class contains the following:

Creating C++ Server Applications

DELEGATION-BASED INTERFACE IMPLEMENTATION

4 Constructor and destructor code, which handles startup and shutdown procedures
for the tie class and the legacy class

4+ Housekeeping code, which implements operations such as accessors

When to Use Tie Classes

Tie classes are not unique to WebL ogic Enterprise, and they are not the only way to
implement delegation in aWebL ogic Enterprise application. However, the WebL ogic
Enterprise conveniencefeaturesfor tie classes can greatly reduce the amount of coding
you need to do for the basic constructor, destructor, and housekeeping operations for
those tie classes.

Using tie classes might be recommended in one of the following situations:

4 You want to implement an object in a WebL ogic Enterprise application in which
inheriting from the POA skeleton class is difficult or impractical .

4+ All theinvocations on alegacy class instance can be accomplished from asingle
servant.

4 You are using alegacy classin your WebL ogic Enterprise application, and you
want to tie the lifetime of an instance of that legacy classto a servant class.

4 Dedlegation is the only purpose of a particular servant; therefore, nearly all the
codein that servant is dedicated to legacy object startup, shutdown, access, and
delegation.

Tie classes are not recommended when:

4 The operations on an object instance del egate to more than one legacy object
instance.

4 Dedlegation isonly apart of the purpose of an object.

Creating C++ Server Applications 2-31

2 STEPS FOR CREATING A WEBLOGIC ENTERPRISE SERVER APPLICATION

How to Create Tie Classes in a WebLogic Enterprise

Application

Account * Account_ptr
Account Fact or ySer vant

2-32

To createtie classesin an application in aWebL ogic Enterprise domain:

1. Createthe interface definition for thetie classin an OMG IDL file, asyou would

for any object in your application.

. Compilethe OMG IDL file using the - T option.

The IDL compiler generates a C++ template class, which takes the name of the
skeleton, with the string _t i e appended to it. The IDL compiler adds this
template class to the skeleton header file.

Note that the IDL compiler does not generate the implementation file for thetie
class; you need to create thisfile by hand, as described in the next step.

. Create an implementation file for the tie class. The implementation file contains

the code that delegates its operations to the legacy class.

. Inthe Server object'ser ver: : creat e_servant () operation, write the code

that instantiates the legacy object.

In the following example, the servant for tie cl@s®_Account _ti e is created,
and the legacy clasggacyAccount is instantiated.

new LegacyAccount () ;
new POA Account _tie<LegacyAccount> (Account _ptr)

Note: When compiling tie classes with the Digital C++ V6.0 compiler for Tru64

UNIX, you must include thenoi npl i ci t _i ncl ude option in the definition
of the CFLAGS or CPPFLAGS environment variables used by the

bui | dobj ser ver command. This option prevents the Digital C++ compiler
from automatically including the server skeleton definition file. ¢ pp)
everywhere the server skeleton header fite) is included, which is
necessary to avoid multiply-defined symbol errors. See the publidatiog
DIGITAL C++ for Digital Unix Systems for additional information about
using class templates, such as the tie classes, with Digital C++.

Creating C++ Server Applications

CHAPTER

3

Designing and
Implementing a Basic

WebLogic Enterprise
Server Application

This chapter describes how to design and implement a WebL ogic Enterprise server
application, using the Basic University sample application as an example. The content
of this chapter assumes that the design of the application to be implemented is
complete and is expressed in OMG IDL. This chapter focuses on design and
implementation choices that are oriented to the server application.

This chapter discusses the following topics:

4 How the Basic University Sample Application Works, which helps provide
context to the design and implementation considerations

4+ Design Considerations for the University Server Application, which includes
comprehensive discussions about the following topics:

Design Considerations for Generating Object References

Design Considerations for Managing Object State

Design Considerations for Handling Durable State Information

How the Basic Sample Application Applies Design Patterns

Additional Performance Efficiencies Built into the WebL ogic Enterprise
System

4 Preactivating an Object with State

> & & & o

Creating C++ Server Applications 31

3 DESIGNING AND IMPLEMENTING A BASIC WEBLOGIC ENTERPRISE SERVER APPLICATION

How the Basic University Sample
Application Works

The Basic University sample application provides the student with the ability to
browse courseinformation from acentral University database. Using the Basic sample
application, the student can do the following:

4+ Browse course synopses from the database by specifying a search string. The
server application then returns synopses for all coursesthat have atitle,
professor, or description containing the search string. (A course synopsis
returned to the client application includes only the course number and title.)

4+ View detailed information about specific courses. The detailed information
available for a specified course includes the following, in addition to synopsis
information:

L4

* & & & > o

Cost

Number of credits

Class schedule

Number of seats

Number of registered students
Professor

Description

The Basic University Sample Application OMG IDL

InitsOMG IDL file, the Basic University sample application defines the following
interfaces:

3-2 Creating C++ Server Applications

How THE BASIC UNIVERSITY SAMPLE APPLICATION WORKS

Interface Description Operations

Regi strar Fact ory Creates object references to the find_registrar()
Registrar object

Regi strar Obtains course information from the get _courses_synopsi s()
database get _courses_detail s()

Cour seSynopsi sEnuner at or Fetches synopses of coursesthat match get _next _n()
thesearchcriteriafromthedatabaseand gest r oy()
reads them into memory

The Basic University sample application is shown in Figure 3-1.

Figure3-1 Basic University Sample Application

University Server Application

RegistrarFactory Registrar

CourseSynopsis
Client Enumerator
Application
—

Course

Database

For the purposes of explaining what happens when the Basic University sample
application runs, the following separate groups of events are described:

Creating C++ Server Applications 3-3

3 DESIGNING AND IMPLEMENTING A BASIC WEBLOGIC ENTERPRISE SERVER APPLICATION

4+ Application startup -- when the server application is booted and the client
application gets an object referenceto the Regi st r ar object

4 Browsing course synopses -- when the client application sends a request to view
course synopses

4 Browsing course details -- when the client application sends a request to view
details on a specific list of courses

Application Startup

Thefollowing sequence shows atypical set of events that take place when the Basic
client and server applications are started and the client application obtains an object
reference to the Regi st r ar object:

1. TheBasic client and server applications are started, and the client application
obtains areference to the Regi st r ar Fact ory object from the FactoryFinder.

2. Using thereference to the Regi st r ar Fact or y object, the client application
invokesthefi nd_regi strar () operation onthe Regi st r ar Fact ory object.

3. TheRegi strarFact ory object isnot in memory (because no previous request
for that object has arrived in the server process), so the TP Framework invokes
the Server: : create_servant () operation in the Server object to instantiate it.

4. Onceinstantiated, the Regi strar Fact ory object's fi nd_regi strar ()
operation is invoked. Theegi st r ar Fact ory object creates thieegi str ar
object reference and returns it to the client application.

Browsing Course Synopses

The following sequence traces the events that may occur when the student browses
list of course synopses:

1. Using the object reference to tRegi st r ar object, the client application invokes
theget _courses_synopsi s() operation, specifying:

4 A search string to be used for retrieving course synopses from the database

3-4 Creating C++ Server Applications

How THE BASIC UNIVERSITY SAMPLE APPLICATION WORKS

4 Aninteger, represented by the variable nunber _t o_get , which specifies the
size of the synopsislist to be returned

2. TheRegi strar object isnot in memory (because no previous request for that
object has arrived in the server process), so the TP Framework invokes the
Server: :create_servant () operation, which isimplemented in the Server
object. This causes the Regi st r ar object to be instantiated in the server
machine’s memory.

3. TheRegi strar object receives the client request and creates an object reference
to theCour seSynopsi sEnuner at or object. TheCour seSynopsi sEnuner at or
object is invoked by the Registrar object to fetch the course synopses from the
database.

To create the object referenCeur seSynopsi sEnumer at or object, the
Regi strar object does the following:

a. Generates a unique ID for theur seSynopsi sEnuner at or object.

b. Generates an object ID for theur seSynopsi sEnumer at or object that is a
concatenation of the unique ID generated in the preceding step and the search
string specified by the client.

c. Gets theour seSynopsi sEnuner at or object’s Interface Repository ID from
the interface typecode.

d. Invokes thelP: : creat e_obj ect _ref erence() operation. This operation
creates an object reference tother seSynopsi sEnuner at or object needed
for the initial client request.

4. Using the object reference created in the preceding steRedghst r ar object
invokes theget _next _n() operation on th€our seSynopsi sEnuner at or
object, passing the list size. The list size is represented by the parameter
nunmber _t o_get , described in step 1.

5. The TP Framework invokes tlser ver: : cr eat e_servant () operation on the
Server object to instantiate tlieur seSynopsi sEnuner at or object.

6. The TP Framework invokes theti vat e_obj ect () operation on the
Cour seSynopsi sEnumer at or object. This operation does the following two
things:

Creating C++ Server Applications 35

3 DESIGNING AND IMPLEMENTING A BASIC WEBLOGIC ENTERPRISE SERVER APPLICATION

¢ Extractsthe search criteriafrom its OID

4 Using the search criteria, fetches matching course synopses from the
database and reads them into the server machine’s memory

7. TheCour seSynopsi sEnuner at or object returns the following information to
theRegi strar object:

4 A course synopsis list, specified in the return valoer seSynopsi sLi st
which is asequence containing the first list of course synopses

4 The number of matching course synopses that have not yet been returned,
specified by the parameteanber _r emai ni ng

8. TheRegi strar object returns theour seSynopsi sEnuner at or object
reference to the client application, and also returns the following information
obtained from that object:

4 The initial course synopsis list
¢ Thenunber _remai ni ng variable

(If the nunber _r emai ni ng variable is 0, th®egi st rar object invokes the
destroy() operation on th€our seSynopsi sEnumer at or object and returns a
nil reference to the client application.)

9. The client application sends directly to tir seSynopsi sEnuner at or object
its next request to get the next batch of matching synopses.

10. TheCour seSynopsi sEnuner at or object satisfies the client request, also
returning the updatedunber _r emai ni ng variable.

11. When the client application is done with tv@r seSynopsi sEnumer at or
object, the client application invokes thest r oy() operation on the
Cour seSynopsi sEnumer at or object. This causes the
Cour seSynopsi sEnuner at or object to invoke th&P: : deact i vat eEnabl e()
operation.

12. The TP Framework invokes theact i vat e_obj ect () operation on the
Cour seSynopsi sEnuner at or object. This causes the list of course synopses
maintained by th€our seSynopsi sEnuner at or object to be erased from the
server computer’s memory so that tweir seSynopsi sEnuner at or object’s
servant can be reused for another client request.

3-6 Creating C++ Server Applications

DESIGN CONSIDERATIONS FOR THE UNIVERSITY SERVER APPLICATION

Browsing Course Details

The following sequence shows atypical set of eventsthat take place when the client
application browses course details:

1

2.

The student enters the course numbers for the courses about which he or sheis
interested in viewing details.

The client application invokesthe get _cour se_det ai | s() operation on the
Regi strar object, passing the list of course numbers.

The Regi st r ar object searches the database for matches on the course numbers,
and then returns alist containing full details for each of the specified courses.
Thelist is contained in the Cour seDet ai | sLi st variable, which isasequence
of st ruct scontaining full course details.

Design Considerations for the University
Server Application

The Basic University sample application contains the University server application,
which deals with several fundamental WebL ogic Enterprise server application design
issues. This section addresses the following topics:

¢
¢
¢
¢

Design Considerations for Generating Object References
Design Considerations for Managing Object State
Design Considerations for Handling Durable State Information

How the Basic Sample Application Applies Design Patterns

This section also addresses the following two topics:

4+ Additional Performance Efficiencies Built into the WebL ogic Enterprise System

L4

Preactivating an Object with State

Creating C++ Server Applications 3-7

3 DESIGNING AND IMPLEMENTING A BASIC WEBLOGIC ENTERPRISE SERVER APPLICATION

Design Considerations for Generating Object References

3-8

The Basic client application needs references to the following objects, which are
managed by the University server application:

4 TheRegi strar Fact ory object

¢ TheRegi strar object

4 The Cour seSynopsi sEnuner at or object

The following table shows how these references are generated and returned.

Object

How the Object Referenceis
Generated and Retur ned

Regi strarFactory

The object reference for the Regi str ar Factory
object isgenerated in the Server object, which registers
the Regi st r ar Fact or y object with the
FactoryFinder. The client application then obtains a
referencetotheRegi st r ar Fact or y object from the
FactoryFinder.

Thereisonly oneRegi st r ar Fact or y objectin the
Basic University server application process.

Regi strar

The object reference for the Regi st r ar objectis
generated by the Regi st r ar Fact or y object and is
returned when the client application invokes the
find_registrar () operation. The object reference
created for theRegi st r ar object is dwaysthe same;
this object reference does not contain a unique OID.

Thereisonly oneRegi strar objectintheBasic
University server application process.

Creating C++ Server Applications

DESIGN CONSIDERATIONS FOR THE UNIVERSITY SERVER APPLICATION

Object How the Object Referenceis

Generated and Returned

Cour seSynopsi sEnunerat or The object reference for the

Cour seSynopsi sEnumner at or object is generated
by the Regi st r ar object when the client application
invokesthe get _cour ses_synopsi s() operation.
In thisway, the Regi st r ar object isthe factory for
the Cour seSynopsi sEnuner at or object. The
design and use of the

Cour seSynopsi sEnuner at or object is described
later in this chapter.

There can be any number of
Cour seSynopsi sEnuner at or objectsin the Basic
University server application process.

Note the following about how the University server application generates object
references:

L4

The Server object registers the Regi st r ar Fact or y object with the
FactoryFinder. This the recommended way to ensure that client applications can
locate the factories they need to obtain references to the basic objectsin the
application.

The object referenceto the Regi st r ar object is created by the

Regi strar Fact ory object. This shows avery common and basic way to return
object referencesto the client application; namely, that there is afactory
dedicated to creating and returning references to the primary object that is
required by the client application to execute business logic.

The object reference to the Cour seSynopsi sEnuner at or object is created
outside aregistered factory. In the University sample applications, thisis a good
design because of the way the Cour seSynopsi sEnuner at or object is meant to
be used; namely, its existence is specific to a particular client application
operation. The Cour seSynopsi sEnuner at or object returns a specific list and
results that are not related to the results from other queries.

Because the Regi st rar object creates, in one of its operations, an object
reference to another object, the Regi st rar object is afactory. However, the
Regi strar object is not registered as a factory with the FactoryFinder;
therefore, client applications cannot get a referenceto the Regi st r ar object
from the FactoryFinder.

Creating C++ Server Applications 39

3 DESIGNING AND IMPLEMENTING A BASIC WEBLOGIC ENTERPRISE SERVER APPLICATION

Design Considerations for Managing Object State

Each of thethree objectsin the Basic sample application hasits own state management
reguirements. This section discusses the object state management requirements for
each.

The RegistrarFactory Object

The Regi strar Fact ory object does not need to be unique for any particular client
reguest. It makes sense to keep this object in memory and avoid the expense of
activating and deactivating this object for each client invocation on it. Therefore, the
Regi st rar Fact ory object hasthe pr ocess activation policy.

The Registrar Object

The Basic sample application is meant to be deployed in a small-scale environment.
The Regi st rar object has many qualities similar to the Regi st r ar Fact or y object;
namely, this object does not need to be unique for any particular client request. Also,
it makes sense to avoid the expense of continually activating and deactivating this
object for each invocation on it. Therefore, in the Basic sample application, the

Regi st rar object hasthe pr ocess activation policy.

The CourseSynopsisEnumerator Object

3-10

Thefundamental design problem for the University server applicationishow to handle
alist of course synopses that is potentially too big to be returned to the client
application in asingle response. Therefore, the solution centers on the following:

4 To begin a conversation between the client application and an object that can
fetch the course synopses from the University database

4 To havethe object return an initial batch of synopses to the client application

4 To keep the remainder of the course synopsesin memory so that the client
application can retrieve them one batch at atime

4 To havethe client application terminate the conversation when finished, thus
freeing machine resources

Creating C++ Server Applications

DESIGN CONSIDERATIONS FOR THE UNIVERSITY SERVER APPLICATION

The University server application has the Cour seSynopsi sEnuner at or object,
which implements this solution. Although this object returns an initial batch of
synopses when it is first invoked, this object retains an in-memory context so that the
client application can get the remainder of the synopsesin subsegquent requests. To
retain an in-memory context, the Cour seSynopsi sEnuner at or object must be
stateful; that is, this object staysin memory between client invocations on it.

When the client is finished with the Cour seSynopsi sEnumer at or object, this object
needs away to be flushed from memory. Therefore, the appropriate state management
decision for the Cour seSynopsi sEnuner at or object isto assign it the pr ocess
activation policy and to implement the WebL ogic Enterprise application-controlled
deactivation feature.

Application-controlled deactivation isimplemented in the dest r oy() operation on
that object.

The following code example shows the dest r oy() operation on the
Cour seSynopsi sEnuner at or object:

voi d CourseSynopsi sEnunerator _i::destroy()
{
/1 when the client calls "destroy" on the enunerator,
/1 then this object needs to be "destructed".
/] do this by telling the TP framework that we're
/1 done with this object.

TP: : deact i vat eEnabl e() ;

Basic University Sample Application ICF File

The following code example shows the ICF file for the Basic sample application:

nodul e POA Uni versityB

{

i npl enent ati on CourseSynopsi sEnuner at or _i

{

}s

activation_policy (process);
transaction_policy (optional);
i npl enent s (UniversityB:: CourseSynopsi sEnunerator);

i npl enentation Registrar_i

{

activation_policy (process);
transaction_policy (optional)

Creating C++ Server Applications 3-11

3 DESIGNING AND IMPLEMENTING A BASIC WEBLOGIC ENTERPRISE SERVER APPLICATION

}s

activation_policy (process
transaction_policy (optional
i npl enent s (UniversityB::RegistrarFactory

i npl enent s (UniversityB::Registrar);

i mpl enent ati on Regi strarFactory_i

~———

Design Considerations for Handling Durable State
Information

Handling durable state information refers specifically to reading durable state
information from disk at some point during or after the object activation, and writing
it, if necessary, at some point before or during deactivation. The following two objects
in the Basic sample application handle durabl e state information:

¢ TheRegi strar object
4 The Cour seSynopsi sEnuner at or object

Thefollowing two sections describe the design considerations for how these two
objects handle durable state information.

The Registrar Object

3-12

One of the operations on the Regi st r ar object returns detailed course information to
the client application. In atypical scenario, a student who has browsed dozens of
course synopses may be interested in viewing detailed information on perhaps as few
astwo or three courses at one time.

Toimplement this usage scenario efficiently, the Regi st r ar object isdefined to have
theget _course_det ai | s() operation. This operation accepts an input parameter
that specifies alist of course numbers. This operation then retrieves full course details
from the database and returns the details to the client application. Because the object
in which this operation is implemented is process-bound, this operation should avoid
keeping any state datain memory after an invocation on that operation is complete.

Creating C++ Server Applications

DESIGN CONSIDERATIONS FOR THE UNIVERSITY SERVER APPLICATION

The Regi st rar object does not keep any durable state in memory. When the client
applicationinvokestheget _course_det ai | s() operation, thisobject simply fetches
therelevant course information from the University database and sendsit to the client.
This object does not keep any course datain memory. No durable state handling is
doneviatheact i vat e_obj ect () or deacti vat e_obj ect () operations on this
object.

The CourseSynopsisEnumerator Object

The Cour seSynopsi sEnumer at or object handles course synopses, which this object
retrieves from the University database. The design considerations, with regard to
handling state, involve how to read state from disk. This object does not write any state
to disk.

There are three important aspects of how the Cour seSynopsi sEnuner at or object
works that influence the design choices for how this object readsits durable state:

4 TheOID for this object contains the search criteria provided in the initial client
request for synopses. The search criteriawork as a key to the database: this
object extracts information from the database based on search criteria stored in
the OID.

4+ All the operations on this object use the course synopses that this object reads
into memory.

4 Thisobject must flush course synopses from memory when it is deactivated.
Given these three aspects, it makes sense for this object to:

4 Read its durable state information when activated; namely, viathe
activat e_obj ect () operation on this object.

4 Flush the course synopses from memory when deactivated; namely, viathe
deact i vat e_obj ect () operation.

Therefore, when the Cour seSynopsi sEnuner at or object is activated, the
activate_obj ect () operation on this object does the following:

1. Extracts the search criteriafrom its OID

2. Retrieves from the database course synopses that match the search criteria

Creating C++ Server Applications ~ 3-13

3 DESIGNING AND IMPLEMENTING A BASIC WEBLOGIC ENTERPRISE SERVER APPLICATION

Note: If youimplement the Tobj _Ser vant Base: : act i vat e_obj ect () or
Tobj _Ser vant Base: : deact i vat e_obj ect () operations on an object,
remember to edit the implementation header file (that is, the
appl i cation_i . hfile) and add the definitions for those operations to the
class definition template for the object’s interface.

Using the University Database

Note the following about the way in which the University sample applications use the
University database:

4+ All of the University sample applications access the University database to
manipulate course and student information. Typically this is a large part of the
code you write in the implementation files. To make the University sample
implementation files simpler, and to help you focus on WLE features instead of
database code, the samples have wrapped all the code that reads and writes to
the database within a set of classes. Thesfilel esdb. h in theutil s
directory contains the definitions of these classes. These classes make all the
necessary SQL calls to read and write the course and student records in the
University database.

Note: The BEA TUXEDO Teller Application in the Wrapper and Production sample
applications accesses the account information in the University database
directly and does not use thenpl esdb. h file.

For more information on the files you build into the Basic server application, see
the Guide to the University Sample Applications.

¢ TheCour seSynopsi sEnuner at or object uses a database cursor to find
matching course synopses from the University database. Because database
cursors cannot span transactions,dtiei vat e_obj ect () operation on the
Cour seSynopsi sEnuner at or object reads all matching course synopses into
memory. Note that the cursor is managed by an iterator class and is thus not
visible to theCour seSynopsi sEnuner at or object. For more information about
how the University sample applications use transactions, see Chapter 5,
“Integrating Transactions into a WebLogic Enterprise Server Application.”

3-14 Creating C++ Server Applications

DESIGN CONSIDERATIONS FOR THE UNIVERSITY SERVER APPLICATION

How the Basic Sample Application Applies Design
Patterns

The Basic sample application uses the following design patterns:
4 Process-Entity
4 List-Enumerator

This section describes why these two patterns are appropriate for the Basic sample
application and how this application implements them.

Process-Entity Design Pattern

Asmentioned in the section “Process-Entity Design Pattern” on page 1-22, this design
pattern is appropriate in situations where you can have one process object that handles
data entities needed by the client application. The data entities are encapsulated as
CORBA st ruct s that are manipulated by the process object and not by the client
application.

Adapting the Process-Entity design pattern to the Basic sample application allows the
application to avoid implementing fine-grained objects. For exampl@etfiest r ar

object is an efficient alternative to a similarly numerous set of course objects. The
processing burden of managing a single, coarse-gra&sngdt r ar object is small

relative to the potential overhead of managing hundreds or thousands of fine-grained
course objects.

For complete details about the Process-Entity design pattern, see the Design Patterns
technical article.

List-Enumerator Design Pattern

This design pattern is appropriate in situations where an object has generated an
internal list of data that is potentially too large to return to the client application in a
single response. Therefore, the object must return an initial batch of data to the client
application in one response, and have the ability to return the remainder of the data in
subsequent responses.

Creating C++ Server Applications 3-15

3 DESIGNING AND IMPLEMENTING A BASIC WEBLOGIC ENTERPRISE SERVER APPLICATION

3-16

A list-enumerator object must also simultaneously keep track of how much of the data

has already been returned so that the object can return the correct subsequent batch.

List-enumerator objects are always stateful (that is, they remain active and in memory

between client invocations on them) and the server application has the ability to
deactivate them when they are no longer needed.

Thelist-enumerator design pattern is an excellent choice for the

Cour seSynopsi sEnuner at or object, and implementing this design pattern provides

the following benefits:

4 TheUniversity server application has a means to return potentially large lists of
course synopsesin away that client applications can handle; namely, in
manageabl e chunks.

4 Each Cour seSynopsi sEnumer at or object is unique, and its content is

determined by the request that caused this object to be created. (In addition, each

Cour seSynopsi sEnumer at or object ID is aso unique.) When the client

invokesthe get _cour ses_synopsi s() operation on the Regi st rar object, the

Regi st rar object returns the following:

4 Aninitial list of synopses

4 An object reference to a Cour seSynopsi sEnuner at or object that can return

the remainder of the synopses

Therefore, all subseguent invocations go to the correct
Cour seSynopsi sEnuner at or object. Thisiscritical in the situation where the
server process has multiple active instances of the
Cour seSynopsi sEnuner at or class.

Becausethe get _courses_synopsi s() operation returns a unique

Cour seSynopsi sEnuner at or object reference, client requests never collide;
that is, aclient request never mistakenly goesto the wrong

Cour seSynopsi sEnuner at or object.

Although the Regi st rar object hasthe get _courses_synopsi s() operation on it,
the knowledge of the database query and the synopsis list is embedded entirely in the
Cour seSynopsi sEnuner at or object. In thissituation, the Regi st r ar object serves

only as ameans for the client to get the following:
4 Theinitia list of synopses

¢ A referenceto aCour seSynopsi sEnuner at or object that can return the
remainder of the synopses

Creating C++ Server Applications

DESIGN CONSIDERATIONS FOR THE UNIVERSITY SERVER APPLICATION

Additional Performance Efficiencies Built into the
WebLogic Enterprise System

The WebL ogic Enterprise system implements a performance efficiency in which data
marshaling between two objects in the same server process is automatically disabled.
This efficiency existsif the following circumstances exist:

4+ An object reference routes to the same group as the one containing the server
process in which the object reference was created.

4 Anobject in that server process invokes an operation using that object reference
that causes an object to be instantiated in the same process.

An example of thisiswhen the Regi st r ar object creates an object reference to the
Cour seSynopsi sEnuner at or object and causes that object to be instantiated. No
data marshaling takes place in the requests and responses between those two objects.

Preactivating an Object with State

WebL ogic Enterprise 4.2 provides a new feature that you can use to preactivate an
object with state before a client application invokes that object. This feature can be
particularly useful for creating iterator objects, such asthe

Cour seSynopsi sEnuner at or object in the University samples.

Preactivating an object with state centers around using the

TP: :create_active_object _reference() operation. Typically, objects are not
created in aWebL ogic Enterprise server application until aclient issues an invocation
on that object. However, by preactivating an object and using the

TP: : create_active_object _reference() operation to pass areference to that
object back to the client, your client application can invoke an object that is already
active and populated with state.

Creating C++ Server Applications 3-17

3 DESIGNING AND IMPLEMENTING A BASIC WEBLOGIC ENTERPRISE SERVER APPLICATION

How You Preactivate an Object with State

The processfor using the preactivation feature of WebL ogic Enterpriseisto write code
in the server application that:

1. Includes an invocation of the C++ new statement to create an object.
2. Sets the object’s state.

3. Invokes thelP: : create_acti ve_obj ect _reference() operation to obtain a
reference for the newly created object. This object reference can then be returne
to the client application.

Thus, the preactivated object is created in such a way that the TP Framework invoke
neither theServer: : create_servant () nor the
Tobj _Servant Base: : act i vat e_obj ect () operations for that object.

Usage Notes for Preactivated Objects

3-18

Note the following when using the preactivation feature:

4 Preactivated objects must have pnecess activation policy. Therefore, these
objects can be deactivated only at the end of the process or by an invocation to
theTP: : deact i vat eEnabl e() operation on those objects.

4 The object reference created by the
TP:: create_active_obj ect_reference() operation igransient. This is
because a preactivated object should exist only for the lifetime of the process in
which it was created, and this object should not be reactivated again in another
server process.

If a client application invokes on a transient object reference after the process in
which the object reference was created is shut down, the TP Framework returns
the following exception:

CORBA: : OBJECT_NOT_EXI ST

4+ For objects that are preactivated, the state usually cannot be recovered if a crasl
occurs. However, this is acceptable because such objects are typically meant to
be used within the context of a specific series of operations, and then deleted. It
state has no meaning outside that specific series.

To prevent the situation in which a server has crashed, and a client application
subsequently attempts to invoke the now-deleted object, add the

Creating C++ Server Applications

DESIGN CONSIDERATIONS FOR THE UNIVERSITY SERVER APPLICATION

Tobj S: : Acti vat ebj ect Fai | ed exception to the implementation of the
Tobj _Servant Base: : acti vat e_obj ect () operation to the object meant for
preactivation. Then, if aclient attempts to invoke such an object after a server
crash, in which case the TP Framework invokes the

Tobj _Servant Base: : acti vat e_obj ect () operation on that object, the TP
Framework returns the following exception to the client application:

CORBA: : OBJECT_NOT_EXI ST

Use preactivation sparingly because, as with all process-bound objects,
preactivation preallocates scarce resources.

Creating C++ Server Applications 3-19

3 DESIGNING AND IMPLEMENTING A BASIC WEBLOGIC ENTERPRISE SERVER APPLICATION

3-20 Creating C++ Server Applications

CHAPTER

4 Security and WebLogic

Enterprise Server
Applications

Thischapter discusses security and WebL ogi ¢ Enterprise server applications, using the
Security University sample application as an example. The Security sample
application implements a security model that requires student users of the University
sample application to be authenticated as part of the application login process.

This chapter discusses the following topics:
4 Overview of Security and WebL ogic Enterprise Server Applications

4 Design Considerations for the University Server Application

Overview of Security and WebLogic
Enterprise Server Applications

Generally, WebL ogic Enterprise server applications have little to do with security.
Security in the WebL ogic Enterprise domain is specified by the system administrator
in the UBBCONFI Gfile, and client applications are responsible for logging on, or
authenticating, to the domain. None of the security models supported in the WebL ogic
Enterprise system make any requirements on server applications running in the
WebL ogic Enterprise domain.

Creating C++ Server Applications 4-1

4 SECURITY AND WEBLOGIC ENTERPRISE SERVER APPLICATIONS

However, there may be occasions when implementing or enhancing a security model
inyour WebL ogic Enterprise application invol ves adding objects, or adding operations
to existing objects, that are managed by the server application.

This chapter showshow the University server application isenhanced to add thenotion
of astudent, which isincorporated into the client application as a meansto identify,
and log in, users of the client application.

For information about how client applications are authenticated into the WebL ogic
Enterprise domain, see Creating Client Applications. For information about
implementing a security model in the WebL ogic Enterprise domain, see the
Administration Guide.

Design Considerations for the University
Server Application

4-2

The design rationale for the Security University sample application isto require users
of the client application to log on before they can do anything. The Security sample
application, therefore, needs to define the notion of a user.

Tolog ontotheapplication, the client application needsto provide the following to the
security service in the WebL ogic Enterprise domain (note that the student user of the
application provides only the user name and application password):

4 Client name
4 User name
4 An application password

The Security sample application adds an operation, get _st udent _det ai | s(), tothe
Regi st rar object. Thisoperation enables the client application to obtain information
about each student user from the University database after the client application is
logged on to the WebL ogic Enterprise domain.

Note: Theget_student _det ai | s() operation has nothing to do with
implementing a security model in the WebL ogic Enterprise domain. The
addition of this operation is only a supplemental feature added to the Security

Creating C++ Server Applications

DESIGN CONSIDERATIONS FOR THE UNIVERSITY SERVER APPLICATION

sample application. For detail s about the security model added to the Security
sample application, and how client applications log on to the Security server
application, see Creating Client Applications.

The sections that follow explain:
4 How the Security University sample application works

4 Design considerations for returning student details to the client application

How the Security University Sample Application Works

To implement the Security sample application, the client application adds alogon
dialog with the student end user. This dialog uses the local SecurityCurrent object on
the client machine to invoke operations on the Principal Authenticator object, whichis
part of logging on to access the WebL ogic Enterprise domain. After the user
authentication process, the client application invokes the get _st udent _det ai | s()
operation on the Regi st r ar object to obtain information about each student user.

The University database used in the Security sample application is updated to contain
student information in addition to course information, and is shown in the following

figure:

M3 University Database

Student
Information

Course
Information

\’/

Theget _student _det ai | s() operation accessesthe student information portion of
the database to obtain student information needed by the client logon operation. The
following figure shows the primary objects involved in the Security sample
application:

Creating C++ Server Applications 4-3

4 SECURITY AND WEBLOGIC ENTERPRISE SERVER APPLICATIONS

University Server Application

Registrar

RegistrarFactory get _student _details()

/

Client
Application

Database
SecurityCurrent

Object

Student Info ¥

Course Info

A typical usage scenario of the Security sample application may include the following
seguence of events:

1. Theclient application obtains a reference to the SecurityCurrent object from the
Bootstrap object.

2. Theclient application invokes the SecurityCurrent object to determine the level
of security that is required by the WebL ogic Enterprise domain.

3. Theclient application queries the student user for a student 1D and the required
passwords.

4. Theclient application authenticates the student by obtaining information about
the student from the Authentication Service.

5. If the authentication processis successful, the client application logs on to the
WebL ogic Enterprise domain.

6. Theclient application invokesthe get _st udent _det ai | s() operation on the
Regi st rar object, passing astudent ID, to obtain information about the student.

7. TheRegi strar object scans the database for student information that matches
the student ID in the client request.

4-4 Creating C++ Server Applications

DESIGN CONSIDERATIONS FOR THE UNIVERSITY SERVER APPLICATION

8. If there is a match between the student ID provided in the client application
request and the student information in the database, the Regi st r ar object returns
thestruct StudentDetail s tothe client application. (If the student enters an
ID that does not match the information in the database, the Regi str ar object
returns a CORBA exception to the client application.)

9. If theRegi strar object returns St udent Det ai | s to the client application, the
client application displays a personalized wel come message to the student user.

Design Considerations for Returning Student Details to
the Client Application

The client application needs to provide a means by which to log a user on to the
WebL ogic Enterprise system so that the user can continue to use the University
application. To do this, the client application needs an identity for the user. In the
Security sample application, thisidentity is the student ID.

All that isrequired of the University server application isto return dataabout a student,
based on the student 1D, so that the client application can complete the user
authentication process. Therefore, the OMG IDL for the Security sample application
adds the definition of the get _st udent _det ai | s() operation to the Regi str ar
object. The primary design consideration for the University server application is based
on the operational scenario described earlier; namely, that one student interacts with
one client application at one time, so there is no need for the server application to deal
with a sizable batch of datato implement the get _st udent _det ai | s() operation.

Theget _student _det ai | s() operation hasthe following OMG IDL definition:

struct StudentDetails

{

St udent | d student _id;

string name;

Cour seDet ai | sLi st regi stered_courses;
b

Creating C++ Server Applications 4-5

4 SECURITY AND WEBLOGIC ENTERPRISE SERVER APPLICATIONS

4-6 Creating C++ Server Applications

CHAPTER

5

Integrating

Transactions into a
WebLogic Enterprise
Server Application

This chapter describeshow tointegrate transactionsinto aWebL ogic Enterprise server
application, using the Transactions University sample application as an example. The
Transactions sample application encapsulates the process of a student registering for a
set of courses. The Transactions sample application does not show all the possible
ways to integrate transactions into a WebL ogic Enterprise server application, but it
does show two models of transactional behavior, showing the impact of transactional
behavior on the application in general and on the durable state of objectsin particular.

This chapter discusses the following topics:
4 Overview of Transactionsin the WebLogic Enterprise System

4 Designing and Implementing Transactions in a WebL ogic Enterprise Server
Application

4 Integrating Transactions in a WebL ogic Enterprise Client and Server
Application. This section addresses the following topics:

4 Making an Object Automatically Transactional
4+ Enabling an Object to Participate in a Transaction
4+ Preventing an Object from Being Invoked While a Transaction Is Scoped

Creating C++ Server Applications 5-1

5

INTEGRATING TRANSACTIONS INTO A WEBLOGIC ENTERPRISE SERVER APPLICATION

Excluding an Object from an Ongoing Transaction

Assigning Policies

> & &

Opening an XA Resource Manager

4 Closing an XA Resource Manager
4 Transactions and Object State Management
4+ Notes on Using Transactions in the WebL ogic Enterprise System
4 User-Defined Exceptions

This chapter also presents a section on user-defined exceptions. The Transactions
sample application introduces a user-defined exception, which can be returned to the
client application and that potentially causes a client-initiated transaction to be rolled
back.

Overview of Transactions in the WebLogic
Enterprise System

5-2

The WebL ogic Enterprise system provides transactions as a means to guarantee that
database transactions are completed accurately and that they take on all the ACID
properties (atomicity, consistency, isolation, and durability) of a high-performance
transaction. That is, you have a reguirement to perform multiple write operations on
durable storage, and you must be guaranteed that the operations succeed; if any one of
the operations fails, the entire set of operationsisrolled back.

Transactions typically are appropriate in the situations described in the following list.
Each situation encapsul ates a transactional model supported by the WebL ogic
Enterprise system.

4 Theclient application needs to make invocations on several different objects,
which may involve write operations to one or more databases. If any one
invocation is unsuccessful, any state that is written (either in memory or, more
typically, to a database) must be rolled back.

For example, consider atravel agent application. The client application needsto
arrange for ajourney to a distant location; for example, from Strasbourg, France,

Creating C++ Server Applications

OVERVIEW OF TRANSACTIONS IN THE WEBLOGIC ENTERPRISE SYSTEM

to Alice Springs, Australia. Such ajourney would inevitably require multiple
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequential order; for example, Strasbourg to
Paris, Paristo New York, New York to L os Angeles. However, if any individual
flight reservation cannot be made, the client application needs away to cancel

all the flight reservations made so far. For example, if the client application
cannot book aflight from Los Angeles to Honolulu on a given date, the client
application needsto cancel the flight reservations made up to that point.

The client needs a conversation with an object managed by the server
application, and the client needs to make multiple invocations on a specific
object instance. The conversation may be characterized by one or more of the
following:

4+ Datais cached in memory or written to a database during or after each
successive invocation.

Datais written to a database at the end of the conversation.

The client needs the object to maintain an in-memory context between each
invocation; that is, each successive invocation uses the datathat is being
maintained in memory across the conversation.

4 Attheend of the conversation, the client needs the ability to cancel dl
database write operations that may have occurred during or at the end of the
conversation.

For example, consider an internet-based online shopping application. The user of
the client application browses through an online catalog and makes multiple
purchase selections. When the user is done choosing al the items he or she
wants to buy, the user clicks on a button to make the purchase, where the user
may enter credit card information. If the credit card check fails (for example, the
user cannot provide valid credit card information) the shopping application
needs away to cancel all the pending purchase selections or roll back any
purchase transactions made during the conversation.

Within the scope of a single client invocation on an object, the object performs
multiple edits to datain adatabase. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (And in this situation, the individual
database edits are not necessarily CORBA invocations.)

For example, consider a banking application. The client invokes the transfer
operation on ateller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

Creating C++ Server Applications 5-3

5

INTEGRATING TRANSACTIONS INTO A WEBLOGIC ENTERPRISE SERVER APPLICATION

4 Invoking the debit method on one account
4 Invoking the credit method on another account

If the credit invocation on the bank database fails, the banking application needs
away to roll back the previous debit invocation.

Designing and Implementing Transactions
in a WebLogic Enterprise Server Application

5-4

This section explains how to design and implement transactions in a WebL ogic

Enterprise server application using the Transactions University sasmple application as

an example. This section a so describes how the Transactions sample application

works, and discussesthe design considerationsfor implementing transactionsinit. For
additional general information about transactions, see the section “Integrating
Transactions in a WebLogic Enterprise Client and Server Application” on page 5-10.

The Transactions sample application uses transactions to encapsulate the task of a
student registering for a set of courses. The transactional model used in this applicatic
is a combination of the conversational model and the model in which a single
invocation makes multiple individual operations on a database, as described in the
preceding section.

The Transactions sample application builds on the Security sample application by
adding the following capabilities:

4 Students can submit a list of courses for which they want to register. (Each
course is represented by a number.)

4 For each course in the list, the University server application checks the
following:

¢ Whether the course is in the University database
¢ Whether the student is already registered for the course

4 Whether the student exceeds the maximum number of credits he or she can
take

Creating C++ Server Applications

DESIGNING AND IMPLEMENTING TRANSACTIONS IN A WEBLOGIC ENTERPRISE SERVER APPLICATION

4 If the course passes the checksin the preceding list, the University server
application registers the student for the course.

4 If the server application cannot register the student for a course because the
course does not exist in the database or because the student is already registered
for the course, the server application returns to the client application alist of
courses for which the registration process failed. The client application can then
choose whether to commit the transaction to register the student for the courses
for which the registration process succeeds, or to roll back the entire transaction.

4 If acourse registration fails because the student exceeds the maximum number
of credits he or she can take, the server application returns a CORBA exception
to the client application that provides a brief message explaining why the
registration for the course was not successful. (The server application does not
mark the transaction for rollback only.)

The Transactions sample application shows two ways in which a transaction can be
rolled back:

4+ Nonfatal. If the registration for a course fails because the course is not in the
database, or because the student is already registered for the course, the server
application returns the numbers of those courses to the client application. The
decision to roll back the transaction lies with the user of the client application
(and the Transaction client application code rolls back the transaction
automatically in this case).

4 Fatal. If theregistration for a course fails because the student exceeds the
maximum number of credits he or she can take, the server application generates
a CORBA exception and returnsiit to the client. The decision to roll back the
transaction a so lies with the client application.

Thus, the Transactions sample application also shows how to implement
user-defined CORBA exceptions. For example, if the student tries to register for
a course that would exceed the maximum number of courses for which the
student can register, the server application returns the TooManyCredi t s
exception. When the client application receives this exception, the client
application rolls back the transaction automatically.

The sections that follow explain:
4 How the Transactions University Sample Application Works
4 Transactiona Model Used by the Transactions University Sample Application

Creating C++ Server Applications 5-5

5

INTEGRATING TRANSACTIONS INTO A WEBLOGIC ENTERPRISE SERVER APPLICATION

4 Object State Considerations for the University Server Application

4 Configuration Requirements for the Transactions Sample Application

How the Transactions University Sample Application
Works

5-6

To implement the student registration process, the Transactions sample application
does the following:

4 Theclient application obtains a reference to the TransactionCurrent object from
the Bootstrap object.

4 When the student submits the list of courses for which he or she wants to
register, the client application:

a

Begins atransaction by invoking the Cur r ent : : begi n() operation on the
TransactionCurrent object

Invokestheregi ster _for_courses() operation onthe Regi st rar object,
passing alist of courses

¢ Theregister_for_courses() operation on the Regi strar object processes
the registration request by executing aloop that does the following iteratively for
each courseinthelist:

a

Checksto see how many credits the student is already registered for

b. Addsthe courseto thelist of courses for which the student is registered

The Regi st rar object checks for the following potential problems, which
prevent the transaction from being committed:

4 Thestudent isalready registered for the course.

4 A coursein the list does not exist.

4 The student exceeds the maximum credits allowed.

As defined in the application’s OMG IDL, thegi st er _f or _cour ses()
operation returns a parameter to the client applicatomnRegi st er edLi st ,
which contains a list of the courses for which the registration failed.

Creating C++ Server Applications

DESIGNING AND IMPLEMENTING TRANSACTIONS IN A WEBLOGIC ENTERPRISE SERVER APPLICATION

If the Not Regi st er edLi st valueisempty, the client application commits the
transaction.

If the Not Regi st er edLi st value contains any courses, the client application
queries the student to indicate whether he or she wants to complete the
registration process for the courses for which the registration succeeded. If the
user chooses to complete the registration, the client application commits the
transaction. If the user chooses to cancel the registration, the client application
rolls back the transaction.

4 If theregistration for a course has failed because the student exceeds the
maximum number of credits he or she can take, the Regi st rar object returnsa
TooManyCr edi t s exception to the client application, and the client application
rolls back the entire transaction.

Transactional Model Used by the Transactions University
Sample Application

The basic design rationale for the Transactions sample application is to handle course
registrations in groups, as opposed to one at atime. This design helps to minimize the
number of remote invocations on the Regi st r ar object.

In implementing this design, the Transactions sample application shows one model of
the use of transactions, which were described in the section “Overview of Transactions
in the WebLogic Enterprise System” on page 5-2. The model is as follows:

4 The client begins a transaction by invoking bregi n() operation on the
TransactionCurrent object, followed by making an invocation to the
regi ster_for_courses() operation on th@egi st rar object.

TheRegi st rar object registers the student for the courses for which it can, and
then returns a list of courses for which the registration process was unsuccessful.
The client application can choose to commit the transaction or roll it back. The
transaction encapsulates this conversation between the client and the server
application.

¢ Theregister_for_courses() operation performs multiple checks of the
University database. If any one of those checks fail, the transaction can be rolled
back.

Creating C++ Server Applications 5-7

5

INTEGRATING TRANSACTIONS INTO A WEBLOGIC ENTERPRISE SERVER APPLICATION

Object State Considerations for the University Server
Application

Because the Transactions University sample application is transactional, the
University server application generally needs to consider the implications on object
state, particularly in the event of arollback. In cases where there is arollback, the
server application must ensurethat all affected objects havetheir durable staterestored
to the proper state.

Because the Regi st rar object isbeing used for database transactions, agood design

choice for this object isto make it transactional; that is, assign the al ways transaction

policy to this object’s interface. If a transaction has not already been scoped when th
object is invoked, the WebLogic Enterprise system will start a transaction
automatically.

By making theRegi strar object automatically transactional, all database write
operations performed by this object will always be done within the scope of a
transaction, regardless of whether the client application starts one. Since the server
application uses an XA resource manager, and since the object is guaranteed to be il
transaction when the object writes to a database, the object does not have any rollba
or commit responsibilities because the XA resource manager takes responsibility fol
these database operations on behalf of the object.

TheRegi st rar Fact ory object, however, can be excluded from transactions because
this object does not manage data that is used during the course of a transaction. By
excluding this object from transactions, you minimize the processing overhead impliec
by transactions.

Object Policies Defined for the Registrar Object

5-8

To make theregi st rar object transactional, the ICF file specifies &heays
transaction policy for thBegi st rar interface. Therefore, in the Transaction sample
application, the ICF file specifies the following object policies forRégi st r ar
interface:

Activation Policy Transaction Policy

process al ways

Creating C++ Server Applications

DESIGNING AND IMPLEMENTING TRANSACTIONS IN A WEBLOGIC ENTERPRISE SERVER APPLICATION

Object Policies Defined for the RegistrarFactory Object

ToexcludetheRegi strar Fact or y object from transactions, the | CFfile specifiesthe
i gnor e transaction policy for the Regi st r ar interface. Therefore, in the Transaction
sample application, the ICF file specifies the following object policies for the

Regi strar Fact ory interface:

Activation Policy Transaction Policy

process i gnore

Using an XA Resource Manager in the Transactions Sample Application

The Transactions sample application uses the Oracle7 Transaction Manager Server
(TMS), which handles object state data automatically. Using any XA resource
manager imposes specific requirements on how different objects managed by the
server application may read and write data to that database, including the following:

4 Some XA resource managers (for example, Oracle7) require that all database
operations be scoped within a transaction. This means that the
Cour seSynopsi sEnuner at or object needs to be scoped within atransaction
because this object reads from a database.

4 When atransaction is committed or rolled back, the XA resource manager
automatically handles the durable state implied by the commit or rollback. That
is, if the transaction is committed, the XA resource manager ensures that all
database updates are made permanent. Likewise, if thereis arollback, the XA
resource manager automatically restores the database to its state prior to the
beginning of the transaction.

This characteristic of XA resource managers actually makes the design problems
associated with handling object state data in the event of arollback much
simpler. Transactional objects can always delegate the commit and rollback
responsibilities to the XA resource manager, which greatly simplifies the task of
implementing a server application.

Creating C++ Server Applications 5-9

5 INTEGRATING TRANSACTIONS INTO A WEBLOGIC ENTERPRISE SERVER APPLICATION

Configuration Requirements for the Transactions
Sample Application

The University sample applications use an Oracl €7 transaction manager server (TMS).
To use the Oracle7 database, you must include specific Oracle-provided filesin the
server application build process.

For details about building, configuring, and running the Transactions sample
application, see the Guide to the University Sample Applications. That online
document a so contains the UBBCONFI Gfiles for each sample application and explains
the entriesin that file.

Integrating Transactions in a WebLogic
Enterprise Client and Server Application

The WebL ogic Enterprise system supports transactionsin the following ways:

4 Theclient or the server application can begin and end transactions explicitly by
using calls on the TransactionCurrent object. For information about the
TransactionCurrent object, see Creating Client Applications.

4 You can assign transactional policiesto an object’s interface so that when the
object is invoked, the WebLogic Enterprise system can start a transaction
automatically for that object, if a transaction has not already been started, and
commit or roll back the transaction when the method invocation is complete.
You use transactional policies on objects in conjunction with an XA resource
manager and database when you want to delegate all the transaction commit an
rollback responsibilities to that resource manager.

4 Objects involved in a transaction can force a transaction to be rolled back. That
is, after an object has been invoked within the scope of a transaction, the object
can invoke the ol | back_onl y() operation on the TransactionCurrent object to
mark the transaction for rollback only. This prevents the current transaction from
being committed. An object may need to mark a transaction for rollback if an

5-10 Creating C++ Server Applications

INTEGRATING TRANSACTIONS IN A WEBLOGIC ENTERPRISE CLIENT AND SERVER APPLICATION

entity, typically a database, is otherwise at risk of being updated with corrupt or
inaccurate data.

4 Objectsinvolved in atransaction can be kept in memory from the time they are
first invoked until the moment when the transaction is ready to be committed or
rolled back. In the case of atransaction that is about to be committed, these
objects are polled by the WebL ogic Enterprise system immediately before the
resource managers prepare to commit the transaction. (In this sense, polling
means invoking the object®bj _Servant Base: : deact i vat e_obj ect ()
operation and passing a reason value.)

When an object is polled, the object may veto the current transaction by
invoking ther ol | back_onl y() operation on the TransactionCurrent object. In
addition, if the current transaction is to be rolled back, objects have an
opportunity to skip any writes to a database. If no object vetos the current
transaction, the transaction is committed.

The following sections explain how you can use object activation policies and
transaction policies to get the transactional behavior you want in your objects. Note
that these policies apply to an interface and, therefore, to all operations on all objects
implementing that interface.

Note: If a server application manages an object that you want to be able to participate
in a transaction, the Server object for that application must invoke the
TP: : open_xa_rm() andTP: : cl ose_xa_rn() operations. For more
information about database connections, see “Opening an XA Resource
Manager” on page 5-15.

Making an Object Automatically Transactional

The WebLogic Enterprise system providesgheays transactional policy, which you

can define on an object’s interface to have the WebLogic Enterprise system start a
transaction automatically when that object is invoked and a transaction has not already
been scoped. When an invocation on that object is completed, the WebLogic
Enterprise system commits or rolls back the transaction automatically. Neither the
server application, nor the object implementation, needs to invoke the
TransactionCurrent object in this situation; the WebLogic Enterprise system
automatically invokes the TransactionCurrent object on behalf of the server
application.

Creating C++ Server Applications 5-11

5

INTEGRATING TRANSACTIONS INTO A WEBLOGIC ENTERPRISE SERVER APPLICATION

Assigning the al ways transactional policy to an object’s interface is appropriate when:

4 The object writes to a database and you want all the database commit or rollbacl
responsibilities delegated to an XA resource manager whenever this object is
invoked.

4 You want to give the client application the opportunity to include the object in a
larger transaction that encompasses invocations on multiple objects, and the
invocations must all succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following policies
to that object’s interface in the Implementation Configuration File (ICF file):

Activation Policy Transaction Policy

process, net hod, or al ways
transaction

Note: Database cursors cannot span transactions. The
Cour seSynopsi sEnuner at or object in the WebLogic Enterprise University
sample applications uses a database cursor to find matching course synopst
from the University database. Because database cursors cannot span
transactions, thect i vat e_obj ect () operation on the
Cour seSynopsi sEnuner at or object reads all matching course synopses into
memory. Note that the cursor is managed by an iterator class and is thus not
visible to theCour seSynopsi sEnuner at or object.

Enabling an Object to Participate in a Transaction

5-12

If you want an object to be able to be invoked within the scope of a transaction, you
can assign thept i onal transaction policies to that object’s interface. dpei onal
transaction policy may be appropriate for an object that does not perform any databa:
write operations, but that you want to have the ability to be invoked during a
transaction.

You can use the following policies, when specified in the ICF file for that object’s
interface, to make an object optionally transactional:

Creating C++ Server Applications

INTEGRATING TRANSACTIONS IN A WEBLOGIC ENTERPRISE CLIENT AND SERVER APPLICATION

Activation Policy Transaction Policy

process, net hod, or opti onal
transaction

If the object does perform database write operations, and you want the object to be able
to participate in atransaction, assigning the al ways transactional policy isgenerally a
better choice. However, if you prefer, you can use the opt i onal policy and
encapsulate any write operations within invocations on the TransactionCurrent object.
That is, within your operations that write data, scope a transaction around the write
statements by invoking the TransactionCurrent object to, respectively, begin and
commit or roll back the transaction, if the object is not aready scoped within a
transaction. This ensures that any database write operations are handled
transactionally. This also introduces a performance efficiency: if the object is not
invoked within the scope of atransaction, all the database read operations are
nontransactional, and therefore more streamlined.

Note: Some XA resource managers used in the WebL ogic Enterprise system require
that any object participating in a transaction scope their database read
operations, in addition to write operations, within a transaction. (However,
you can still scope your own transactions.) For example, using the Oracle7
TMS with the WebL ogic Enterprise system has this requirement. When
choosing the transaction policies to assign to your objects, make sure you are
familiar with the requirements of the XA resource manager you are using.

Preventing an Object from Being Invoked While a
Transaction Is Scoped

In many cases, it may be critical to exclude an object from atransaction. If such an

object isinvoked during a transaction, the object returns an exception, which may

cause the transaction to berolled back. The WebL ogic Enterprise system provides the

never transaction policy, which you can assign to an object’s interface to specifically
prevent that object from being invoked within the course of a transaction, even if the
current transaction is suspended.

Creating C++ Server Applications ~ 5-13

5 INTEGRATING TRANSACTIONS INTO A WEBLOGIC ENTERPRISE SERVER APPLICATION

This transaction policy is appropriate for objects that write durable state to disk that
cannot berolled back; for example, for an object that writes datato a disk that is not
managed by an XA resource manager. Having this capability in your client/server
application is crucial if the client application does not or cannot know if some of its
invocations are causing a transaction to be scoped. Therefore, if atransaction is
scoped, and an object with this policy is invoked, the transaction can be rolled back.

To prevent an object from being invoked while a transaction is scoped, assign the
following policies to that object’s interface in the ICF file:

Activation Policy Transaction Policy

process or net hod never

Excluding an Object from an Ongoing Transaction

In some cases, it may be appropriate to permit an object to be invoked during the
course of a transaction but also keep that object from being a part of the transaction.
such an object is invoked during a transaction, the transaction is automatically
suspended. After the invocation on the object is completed, the transaction is
automatically resumed. The WebLogic Enterprise system providegthoee
transaction policy for this purpose.

Thei gnor e transaction policy may be appropriate for an object such as a factory tha
typically does not write data to disk. By excluding the factory from the transaction, the
factory can be available to other client invocations during the course of a transactior
In addition, using this policy can introduce an efficiency into your server application
because it minimizes the overhead of invoking objects transactionally.

To prevent any transaction from being propagated to an object, assign the following
policies to that object’s interface in the ICF file:

Activation Policy Transaction Policy

process or net hod i gnore

5-14 Creating C++ Server Applications

INTEGRATING TRANSACTIONS IN A WEBLOGIC ENTERPRISE CLIENT AND SERVER APPLICATION

Assigning Policies

For information about how to create an | CF file and specify policieson objects, seethe
section “Step 4: Define the in-memory behavior of objects.” on page 2-14.

Opening an XA Resource Manager

If an object’s interface has th¢ways oropti onal transaction policy, you must

invoke theTP: : open_xa_r n() operation in th&erver: :initialize() operation

in the Server object. The resource manager is opened using the information provided
in the OPENI NFO parameter, which is in theROUPS section of theJBBCONFI Gfile.

Note that the default version of tBerver: :initialize() operation automatically
opens the resource manager.

If you have an object that does not write data to disk and that participates in a
transaction -- the object typically has th& i onal transaction policy -- you still need
to include an invocation to theP: : open_xa_r () operation. In that invocation,
specify theNULL resource manager.

Closing an XA Resource Manager

If your Server object'sServer::initialize() operation opens an XA resource
manager, you must include the following invocation inSbever : : r el ease()
operation:

TP::close xa_rm();

Creating C++ Server Applications ~ 5-15

5 INTEGRATING TRANSACTIONS INTO A WEBLOGIC ENTERPRISE SERVER APPLICATION

Transactions and Object State Management

If you need transactions in your WLE client and server application, you can integrate
transactions with object state management in afew different ways. In general, the
WebL ogic Enterprise system can automatically scope the transaction for the duration
of an operation invocation without requiring you to make any changesto your
application’s logic or the way in which the object writes durable state to disk.

The following sections address some key points regarding transactions an object sta
management.

Delegating Object State Management to an XA Resource

Manager

Using an XA resource manager, such as Oracle7, which is used in the WebLogic
Enterprise University sample applications, generally simplifies the design problems
associated with handling object state data in the event of a rollback. Transactional
objects can always delegate the commit and rollback responsibilities to the XA
resource manager, which greatly eases the task of implementing a server applicatio
This means that process- or method-bound objects involved in a transaction can wri
to a database during transactions, and can depend on the resource manager to undo
data written to the database in the event of a transaction rollback.

Waiting Until Transaction Work is Complete Before
Writing to the Database

The transact i on activation policy is a good choice for objects that maintain state in
memory that you do not want written, or that cannot be written, to disk until the
transaction work is complete. When you assign thnsact i on activation policy to

an object, the object:

4 Is brought into memory when it is first invoked within the scope of a transaction

4 Remains in memory until the transaction is either committed or rolled back

5-16 Creating C++ Server Applications

TRANSACTIONS AND OBJECT STATE MANAGEMENT

When thetransaction work is complete, the WebL ogic Enterprise system invokes each
transaction-bound objectf®bj _Ser vant Base: : deact i vat e_obj ect () operation,
passing a eason code that can be eithBR_TRANS_COWM TTI NG or
DR_TRANS_ABORT. If the variable iDR_TRANS_COWM TTI NG, the object can invoke its
database write operations. If the variablBRSTRANS_ABORT, the object skips its write
operations.

Assigning the r ansact i on activation policy to an object may be appropriate in the
following situations:

4 You want the object to write its durable state to disk at the time that the
transaction work is complete.

This introduces a performance efficiency because it reduces the number of
database write operations that may need to be rolled back.

4 You want to provide the object with the ability to veto a transaction that is about
to be committed.

If the WebLogic Enterprise system passes the reBROPRANS_COWM TTI NG,
the object can, if necessary, invoke thel back_onl y() operation on the
TransactionCurrent object. Note that if you do make an invocation to the
rol | back_onl y() operation from within the

Tobj _Servant Base: : deact i vat e_obj ect () operation, the

Tobj _Servant Base: : deact i vat e_obj ect () operation is not invoked again.

4 You have an object that is likely to be invoked multiple times during the course
of a single transaction, and you want to avoid the overhead of continually
activating and deactivating the object during that transaction.

To give an object the ability to wait until the transaction is committing before writing
to a database, assign the following policies to that object’s interface in the ICF file:

Activation Policy Transaction Policy

transaction al ways or opt i onal

Note: Transaction-bound objects cannot start a transaction or invoke other objects
from inside theTobj _Ser vant Base: : deact i vat e_obj ect () operation.
The only valid invocations transaction-bound objects can make inside the
Tobj _Servant Base: : deacti vat e_obj ect () operation are write
operations to the database.

Creating C++ Server Applications 5-17

5 INTEGRATING TRANSACTIONS INTO A WEBLOGIC ENTERPRISE SERVER APPLICATION

Also, if you have an object that isinvolved in atransaction, the Server object

that manages that object must include invocations to open and close,

respectively, the XA resource manager, even if the object does not write any

datato disk. (If you have atransactional object that doesnot write datato disk,

you specify the NULL resource manager.) For more information about opening

and closing an XA resource manager, see the sections “Opening an XA
Resource Manager” on page 5-15 and “Closing an XA Resource Manager” on
page 5-15.

Notes on Using Transactions in the WebLogic
Enterprise System

Note the following about integrating transactions into your WebLogic Enterprise
client/server applications:

4 The following transactions are not permitted in the WebLogic Enterprise system:
4 Nested transactions

You cannot start a new transaction if an existing transaction is already active.
(You may start a new transaction if you first suspend the existing one;
however, the object that suspends the transaction is the only object that can
subsequently resume the transaction.)

4 Recursive transactions

A transactional object cannot call a second object, which in turn calls the
first object.

4 The object that starts a transaction is the only entity that can end the transaction
(In a strict sense, the object can be the client application, the TP Framework, or
an object managed by the server application.) An object that is invoked within
the scope of a transaction may suspend and resume the transaction (and while
the transaction is suspended, the object can start and end other transactions).
However, you cannot end a transaction in an object unless you began the
transaction there.

4 Objects can be involved with only one transaction at one time. The WebLogic
Enterprise system does not support concurrent transactions.

5-18 Creating C++ Server Applications

NOTES ON USING TRANSACTIONS IN THE WEBLOGIC ENTERPRISE SYSTEM

The WebL ogic Enterprise system does not queue requests to objects that are
currently involved in atransaction. If a nontransactional client application
attempts to invoke an operation on an object that is currently in atransaction, the
client application receives the following error message:

CORBA: : OBJ_ADAPTER

If aclient that isin atransaction attempts to invoke an operation on an object
that is currently in a different transaction, the client application receivesthe
following error message:

CORBA: : | NVALI D_TRANSACTI ON

For transaction-bound objects, you might consider doing all state handling in the
Tobj _Servant Base: : deact i vat e_obj ect () operation. This makesit easier
for the object to handleits state properly, since the outcome of the transaction is
known at the time that the Tobj _Ser vant Base: : deact i vat e_obj ect ()
operation isinvoked.

For method-bound objects that have severa operations, but only afew that affect
the object’s durable state, you may want to consider the following:

4 Assign theopt i onal transaction policy.

4 Scope any write operations within a transaction, by making invocations on
the TransactionCurrent object.

If the object is invoked outside a transaction, the object does not incur the
overhead of scoping a transaction for reading data. This way, regardless of
whether the object is invoked within a transaction, all the object’s write
operations are handled transactionally.

Transaction rollbacks are asynchronous. Therefore, it is possible for an object to
be invoked while its transactional context is still active. If you try to invoke such
an object, you receive an exception.

If an object with thel ways transaction policy is involved in a transaction that
is started by the WebLogic Enterprise system, and not the client application, note
the following:

If an exception is raised inside an operation on that object, the client application
receives aroBJ_ADAPTER exception. In this situation, the WebLogic Enterprise
system automatically rolls back the transaction. However, the client application
is completely unaware that a transaction has been scoped in the WebLogic
Enterprise domain.

Creating C++ Server Applications 5-19

5

INTEGRATING TRANSACTIONS INTO A WEBLOGIC ENTERPRISE SERVER APPLICATION

4 If theclient application initiates a transaction, and the server application marks
the transaction for a rollback and returns a CORBA exception, the client
application receives only atransaction rollback exception but not the CORBA
exception.

In the WLE version 4.2 software, no workaround exists for this situation. We
recommend that applications perform as much data validation as possible before
starting a transaction.

User-Defined Exceptions

The Transactions sampl e application includes an instance of a user-defined exception,
TooManyCr edi t s. Thisexception isthrown by the server application when the client
application tries to register a student for a course, and the student has exceeded the
maximum number of courses for which he or she can register. When the client
application catches this exception, the client application rolls back the transaction that
registers a student for a course. This section explains how you can define and
implement user-defined exceptions in your WebL ogic Enterprise client/server
application, using the TooManyCr edi t s exception as an example.

Including a user-defined exception in aWebL ogic Enterprise client/server application
involves the following steps:

1. Inyour OMG IDL file, definethe exception and specify the operationsthat can use
it.

2. Intheimplementation file, include code that throws the exception.

3. Intheclient application source file, include code that catches and handles the
exception.

The sections that follow explain and give examples of the first two steps.

Defining the Exception

5-20

Inthe OMG IDL filefor your client/server application:

Creating C++ Server Applications

USER-DEFINED EXCEPTIONS

1. Definethe exception and define the data sent with the exception. For example, the
TooManyCr edi t s exception is defined to pass a short integer representing the
maximum number of credits for which a student can register. Therefore, the
definition for the TooMany Or edi t s exception contains the following OMG IDL

statements:
excepti on TooManyCredits
{
unsi gned short maxi mum credits;
b

2. Inthedefinition of the operations that throw the exception, include the exception.
The following example showsthe OMG IDL statementsfor the
regi ster_for_courses() operation onthe Regi st rar interface:

Not Regi st eredLi st regi ster_for_courses(
in Studentld st udent,
i n CourseNunberLi st courses

) raises (
TooManyCredits

)

Throwing the Exception

In the implementation of the operation that uses the exception, write the code that
throws the exception, as in the following example.

if (...) {
Uni versi tyZ:: TooManyCredits e;
e.maxi mumcredits = 18;
t hrow e;

Creating C++ Server Applications 5-21

5 INTEGRATING TRANSACTIONS INTO A WEBLOGIC ENTERPRISE SERVER APPLICATION

5-22 Creating C++ Server Applications

CHAPTER

6

Wrapping a BEA
TUXEDO Service In an
Object

This chapter presents an overview of one way in which you can call aBEA TUXEDO
service from within an object managed by a WebL ogic Enterprise server application,
using the Wrapper sample application as an example.

This chapter includes the following topics:

4 Overview of Wrapping aBEA TUXEDO Service. This section addresses the
following topics:

4 Designing the Object That Wraps the BEA TUXEDO Service
4 Creating the Buffer in Which to Encapsulate BEA TUXEDO Service Calls

4 Implementing the Operations That Send Messages to and from the BEA
TUXEDO Service

4 Design Considerations for the Wrapper Sample Application

The Wrapper sample application delegates a set of billing operations to a BEA
TUXEDO teller application, which contains a set of servicesthat perform basic billing
procedures. The approach in thischapter shows onetechniquefor incorporating aBEA
TUXEDO application into a WebL ogic Enterprise domain.

The examples shown in this chapter demonstrate a one-to-one rel ationship between
operations on an object and calls to specific services within aBEA TUXEDO server
application. In a sense, the calls to the BEA TUXEDO services are wrapped as
operations on a CORBA object; thus, the object delegates its work to the BEA

Creating C++ Server Applications 6-1

6 WRAPPING A BEA TUXEDO SERVICE IN AN OBJECT

TUXEDO application. If you have a set of BEA TUXEDO services that you want to
use in a WebL ogic Enterprise server application, the technique shown in this chapter
may work for you.

This chapter does not provide any details about BEA TUXEDO applications. For
information about how to build and configure BEA TUXEDO applications, and for
information about how they work, see the BEA TUXEDO information set.

Overview of Wrapping a BEA TUXEDO
Service

The process described in this chapter for wrapping a set of BEA TUXEDO services
encompasses the following steps:

1. Designing the object that structures a set of tasks that are oriented to BEA
TUXEDO as operations on that object.

2. Creating the message buffer used by the BEA TUXEDO services. You use this
message buffer to send and receive messages to and from the BEA TUXEDO
services. You can allocate the buffer in the object’s constructor in the
application’s implementation file.

3. Implementing on the object the operations that send and receive messages to al
from the BEA TUXEDO services. This step also includes choosing the
implementation for how the BEA TUXEDO services are called.

The following figure shows a high-level view of the relationship among the client
application, the CORBA object managed by the WebLogic Enterprise server
application, and the BEA TUXEDO application that implements the services called
from the CORBA object.

6-2 Creating C++ Server Applications

OVERVIEW OF WRAPPING A BEA TUXEDO SERVICE

M3 Server Application BEA TUXEDO Teller
Application
Client Application CORBA Object 4 OP1Service

oper at i onl(operationl()

)
operationl(); { .
operation3(); }t pcal | (opl()); 7 B OP2 Service
oper ation2()
{ .
tpcal | (op2()); " |+ OP3Service
}

operation3()

{
tpcal | (0p3());/
}

Designing the Object That Wraps the BEA TUXEDO
Service

Thefirst step described in this chapter isdesigning the object that wrapsthe callsto the
BEA TUXEDO application. For example, the goal for the Wrapper sample application
isto add billing capability to the student registration process, which can be done by

delegating a set of billing operationsto an existing BEA TUXEDO teller application.

The BEA TUXEDO teller application used by the Wrapper sample application
contains the following services:

4 CURRBALANCE -- Obtains the current balance of a given account

4 CRED T -- Credits an account by a given dollar amount

4 DEBI T -- Debits an account by a given dollar amount

To wrap these services, the Wrapper sample application includes a separate OMG IDL
file that defines a new interface, Tel | er, which has the following operations:

4 get_bal ance()

¢ credit()

¢ debit()

Creating C++ Server Applications 6-3

6 WRAPPING A BEA TUXEDO SERVICE IN AN OBJECT

Each of these operationsontheTel | er object maps one-to-oneto calls on the services
inthe BEA TUXEDO teller application.

A typical usage scenario of the Tel | er object may be the following:

1

The client application invokesther egi st er _f or _courses() operation on the
Regi st rar object, which regquires a student ID.

As part of the registration process, the Regi st r ar object invokes the
get _bal ance() operation onthe Tel | er object, passing an account number.

Theget _bal ance() operation onthe Tel | er object puts the account number
into a message buffer and sends the buffer to the BEA TUXEDO teller
application's CURRBALANCE service.

The BEA TUXEDO teller application receives the message buffer, extracts its
contents, and makes the appropriate call teCURRBALANCE service.

The CURRBALANCE service obtains from the University database the current
balance of the account and gives it to the BEA TUXEDO teller application.

The BEA TUXEDO teller application inserts the current balance into a message
buffer and returns it to theel | er object.

TheTel | er object extracts the current balance amount from the message buffer
and returns the current balance tomhgi st rar object.

For more design information about thel | er object and the Wrapper sample
application, see the section “Design Considerations for the Wrapper Sample
Application” on page 6-8.

Creating the Buffer in Which to Encapsulate BEA
TUXEDO Service Calls

6-4

The next step described in this chapter is creating the buffer within which messages a
sent between the object and the BEA TUXEDO service. There are a number of buffe
types that may be used by various BEA TUXEDO applications, and the examples use
in this chapter are based on the FML buffer type. For more information about buffer
types in the BEA TUXEDO system, see the BEA TUXEDO information set.

Creating C++ Server Applications

OVERVIEW OF WRAPPING A BEA TUXEDO SERVICE

In your application implementation file, you need to allocate the chosen buffer type.

Y ou can alocate the buffer in the object’s constructor, because the buffer you allocate
does not need to be unique to any partictdaut er object instance. This allocation
operation typically includes specifying the buffer type, passing any flags appropriate
for the procedure call to the BEA TUXEDO service, and specifying a buffer size.

You also need to add to your implementation’s header file the definition of the variable
that represents the buffer.

The following code example shows the constructor for the Wrapper application’s
Tel | er object that allocates the BEA TUXEDO buffert uxbuf :

Teller_i::Teller_i() :
m t uxbuf ((FBFR32*) t pal | oc("FM.32", "", 1000))
{

if (mtuxbuf == 0) {
throw CORBA: : | NTERNAL() ;
}

}

Note the following about the line that allocates the FML buffer:

Code Description
tpal |l oc Allocates the buffer.
" FML32" Specifiesthe FML buffer type.

Typically enclose any flags passed tothe BEA TUXEDO service.
In this example, no flags are passed.

1000 Specifiesthe buffer sizein bytes.

The object’s implementation file should also deallocate the buffer in the destructor, as
in the following statement from the Wrapper application implementation file:

tpfree((char*)mtuxbuf);

Creating C++ Server Applications 6-5

6 WRAPPING A BEA TUXEDO SERVICE IN AN OBJECT

Implementing the Operations That Send Messages to
and from the BEA TUXEDO Service

The next step isimplementing the operations on the object that wraps callsto the BEA
TUXEDO application. In this step, you choose the implementation of how the BEA
TUXEDO services are called from the object. The Wrapper sample application uses
thetpcal I implementation.

An operation on an object that wraps a BEA TUXEDO service typically includes
statements that do the following:

4 Fill the message buffer with the data that you want to send to the BEA
TUXEDO service.

4 Call the BEA TUXEDO service. The following arguments areincluded in the
cal:

a. TheBEA TUXEDO service that you want to invoke
b. The message buffer to be sent to the BEA TUXEDO service
c. Themessage buffer to be returned from the BEA TUXEDO service

d. Thesize of the buffer in which the BEA TUXEDO service responseis to be
placed

4 Extract the response from the BEA TUXEDO service
4 Return the resultsto the client application

Thefollowing exampl e showsthe implementation of theget _bal ance() operationin
the Wrapper application Tel | er object. This operation retrieves the balance of a
specific account, and the BEA TUXEDO service being called is CURRBALANCE.

CORBA: : Doubl e Teller_i::get_bal ance(BillingW:Account Nunber account)
{

/1 "marshal" the "in" parameters (account nunber)

Fchg32(m t uxbuf, ACCOUNT_NO, 0, (char*)&account, 0);

long size = Fsizeof 32(tuxbuf);

/1 Call the CURRBALANCE TUXEDO service

if (tpcall ("CURRBALANCE', (char*)tuxbuf, O,

(char**) & uxbuf, &size, 0)) {
t hr ow CORBA: : PERSI ST_STORE() ;

6-6 Creating C++ Server Applications

OVERVIEW OF WRAPPING A BEA TUXEDO SERVICE

/1 "unmarshal " the "out" paraneters (current bal ance)
CORBA: : Doubl e curr bal ;

Fget 32(m t uxbuf, CURR _BALANCE, 0, (char*)&currbal, 0);
return currbal;

}
In this code example, note the following:
The following statement fills the message buffer, m t uxbuf , with the student account
number. For information about FML, see the BEA TUXEDO Reference Manual:
Section 3FML, FML pages.
Fchg32(m t uxbuf, ACCOUNT_NO, 0, (char*)&account, 0);
The following statement calls the CURRBALANCE BEA TUXEDO service, viathe
tpcal I implementation, passing the message buffer. This statement also specifies
where the BEA TUXEDO service response isto be placed, which in this exampleis
also the same buffer as the one in which the request was sent.
if (tpcall ("CURRBALANCE", (char*)tuxbuf, O,
(char**) & uxbuf, &size, 0)) {
t hrow CORBA: : PERSI ST_STORE() ;
}
The following statement extracts the balance from the returned BEA TUXEDO
message buffer:
Fget 32(m t uxbuf, CURR _BALANCE, 0, (char*)&currbal, 0);
Thelast lineinthe get _bal ance() operation returns the results to the client
application:
return currbal;
Restrictions

Note the following restrictions regarding how you can incorporate BEA TUXEDO
services within a WebL ogic Enterprise domain:

4 You may not combine object implementations and BEA TUXEDO services
within the same server application. The BEA TUXEDO services may only exist
within a separate BEA TUXEDO server application in the same domain as the
WebL ogic Enterprise server application.

4 You may not includethet pret urn() ort pf orward() BEA TUXEDO
implementations within an object that callsaBEA TUXEDO service.

Creating C++ Server Applications 6-7

6 WRAPPING A BEA TUXEDO SERVICE IN AN OBJECT

Design Considerations for the Wrapper
Sample Application

6-8

The basic design considerations for the Wrapper sample application are based on the
scenario that is described in this section. When a student registers for a course, the
Regi st rar object performs, as part of its registration process, invocations to the

Tel | er object, which charges the student’s account for the course.

This section describes the design for the Wrapper sample application, which
incorporates an additional server application, Billing, into the configuration.
Therefore, the Wrapper sample application consists of the following four server
applications:

4 University, which has thBegi strar Fact ory, Regi strar, and
Cour seSynopsi sEnuner at or objects

¢ Billing, which has théel | er Fact ory andTel | er objects

4 BEA TUXEDO Teller Application, which has thH&JRRBALANCE, CREDI T, and
DEBI T services

4 The Oracle7 Transaction Manager Server (TMS)

In addition, theUBBCONFI G file for the Wrapper sample application specifies the
following groups:

4 ORA_GRP, which contains the University server application, the BEA
TUXEDO Teller application, and the Oracle7 TMS. Since these three processes
are involved in transactions on the University database, they must all be in the
same group, along with the database itself.

4 APP_GRP, which contains the Billing server application. This application does
not need to be in ORA_GRP, because this application does not interact with the
University database.

The configuration of the WebLogic Enterprise domain in the Wrapper sample
application is shown in the following figure.

Creating C++ Server Applications

DESIGN CONSIDERATIONS FOR THE WRAPPER SAMPLE APPLICATION

T bl
ORA_GRP APP_GRP
University Server BEA TUXEDO Teller Billing Server
Application
RegistrarFactory Object CURRBALANCE TellerFactory Object

Service

DEBIT Service

Registrar Object Teller Object

CREDIT Service

Object

Database Oracle7

Student Info Transaction

Manager Server

Account Info

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
: CourseSynopsisEnumerator H
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

Incorporating a BEA TUXEDO application into the University sample applications
makes sense from the standpoint of using the Process-Entity design pattern. BEA
TUXEDO applications generally implement the Process-Entity design pattern, which
are also used in the University sample applications.

The University database is updated to include a new table containing account
information for each student. Therefore, when servicesin the BEA TUXEDO Téller
Application process billing data, they perform transactions using the University
database.

How the Wrapper University Sample Application Works

A typical usage scenario in the Wrapper sample application encompasses the
following sequence of events:

1. After the student logon procedure, the client application invokes the
get _student _det ai | s() operation on the Regi st r ar object. Included in the
implementation of the get _st udent _det ai | s() operation is code that retrieves:

Creating C++ Server Applications 6-9

6 WRAPPING A BEA TUXEDO SERVICE IN AN OBJECT

6-10

¢ The student’s account number from the student table in the database

4 The student’s balance from the account table in the database, which is
obtained by invoking thget _bal ance() operation on th&el | er object

. The student browses courses, as with the Basic sample application, and identifie

a list of courses for which he or she wants to register.

. The client application sends a request toRég st r ar object, as with the

Transactions sample application scenario, to invoke the
regi ster_for_courses() operation. The request continues to include only a
list of course numbers and a student ID.

. While registering the student for the list of courses, the

regi ster_for_courses() operation invokes:

¢ Theget _bal ance() operation on th&el | er object, to make sure that the
student does not have a delinquent account

4 Thedebi t () operation on th&el | er object, which is managed by the
Billing server application to bill for courses

. Theget _bal ance() anddebi t () operations on th&el | er object each send a

request to the BEA TUXEDO Teller application. Encapsulated in the request is
an FML buffer containing the appropriate calls, including the account number
calls to, respectively, the@URRBALANCE andDEBI T services in the BEA

TUXEDO Teller application.

. TheCURRBALANCE andDEBI T services perform the appropriate database calls to,

respectively, obtain the current balance and debit the student’s account to reflect
the charges for the courses for which he or she has registered.

If the student has a delinquent account,Rbgi st rar object returns the
Del i nquent Account exception to the client application. The client application
then rolls back the transaction.

If the debi t () operation fails, th&el | er object invokes the

rol | back_onl y() operation on the TransactionCurrent object. Because the

Tel | er andRegi strar objects are scoped within the same transaction, this
rollback affects the entire registration process and thus prevents the situation
where there is an inconsistent database (showing, for example, that the student |
registered for the course, but the student’s account balance has not been debitec
for the course).

If no exceptions have been raised,Rbgi strar object registers the student for
the desired courses.

Creating C++ Server Applications

DESIGN CONSIDERATIONS FOR THE WRAPPER SAMPLE APPLICATION

Interface Definitions for the Billing Server Application

The following interface definitions are defined for the Billing server application:

¢ TheTel | er Fact or y object, whose only operationisfind_tel ler().The

find_teller() operationworksexactly thesameasthe find_regi strar()
operation in the University server Regi st r ar Fact or y object.

The Tel | er object, which, as mentioned earlier, implements the following
operations:

¢ debit()

¢ credit()

¢ current _bal ance()

Likethe Regi strar object, theTel | er object has no state data and does not
have a unique object ID (OID).

Additional Design Considerations for the Wrapper Sample Application

The following additional considerationsinfluence the design of the Wrapper sample
application:

L4

The Regi st rar object needs away to send requeststo the Tel | er object to
handle billing operations.

The University server application and the BEA TUXEDO Teller Application
need access to the same database. Therefore, for course registration transactions
to work properly, both server applications need to be in the same server group as
the Oracle7 TM S and the University database.

Both of these considerations have implications on the UBBCONFI Gfile for the Wrapper
sample application. The following sections discuss these and other additional design
considerationsin detail.

SENDING REQUESTS TO THE TELLER OBJECT

Up until now, al the objectsin the University server application have been defined in
the same server process. Therefore, for one object to send a request to another object
isfairly straightforward, and is summarized in the following steps, using the

Regi strar and Cour seSynopsi sEnumer at or objects as an example:

Creating C++ Server Applications 6-11

6 WRAPPING A BEA TUXEDO SERVICE IN AN OBJECT

1. TheRegi strar object creates an object reference to the
Cour seSynopsi sEnumer at or object.

2. Using the newly created object reference, the Regi st r ar object sends the request
to the Cour seSynopsi sEnuner at or object.

3. If the Cour seSynopsi sEnuner at or object is not in memory, the TP Framework
invokesthe Server: : create_servant () operation on the Server object to
instantiate the Cour seSynopsi sEnuner at or object.

However, now that thereare two server processes running, and an object in one process
needs to send a reguest to an object managed by the second process, the procedureis
not quite so straightforward. For example, the notion of getting an object referenceto
an object in another server process has important implications. For one, the second
server process has to be running when the request is made. Also, the factory for the
object in the other server process must be available.

The Wrapper sample application addresses this by incorporating the following
configuration and design elements:

4 TheUniversity server application gets the object reference to the
Tel | er Fact ory object in the University Server object’s
Server::initialize() operation. The University server application then
caches thael | er Fact or y object reference. This introduces a performance
optimization because, otherwise, Rei strar object would need to do the
following each time it needs®l | er Fact or y object:

4 Invoke theresol ve_initial _references() operation on the Bootstrap
object to get the FactoryFinder object

4 Invoke thefind_one_factory_by_i d() operation on the FactoryFinder
object to obtain a reference tda | er Fact ory object.

4 The Billing server process is started before the University server process is
started. When thBegi st rar object subsequently invokes thel | er Factory
object, theRegi st rar object uses the object reference acquired by the
Server::initialize() operation (described in the preceding list item). You
specify in theUBBCONFI G file the order in which server processes are started.

4 To handle billing during the course registration process, the
regi ster_for_courses() andget _student _detail s() operations on the
Regi st rar object are modified to include code that invokes operations on the
Tel | er object.

6-12 Creating C++ Server Applications

DESIGN CONSIDERATIONS FOR THE WRAPPER SAMPLE APPLICATION

EXCEPTION HANDLING

The Wrapper sample application is designed to handle the situation in which the
amount owed by the student exceeds the maximum allowed. If the student tries to
register for a course when he or she owes more than is permitted by University, the
Regi strar object generates a user-defined Del i nquent Account exception. When
thisexception isreturned to the client application, the client application rolls back the
transaction. For information about how to implement user-defined exceptions, see the
section “User-Defined Exceptions” on page 5-20.

SETTING TRANSACTION POLICIES ON THE INTERFACES IN THE WRAPPER SAMPLE APPLICATION

Another consideration that affects the performance of the Wrapper sample application
is setting the appropriate transaction policies for the interfaces of the objects in that
application. Theregi st r ar , Cour seSynopsi sEnuner at or , andTel | er objects are
configured with theal ways transaction policy. ThRegi strar Factory and

Tel | er Fact or y objects are configured with tihgnor e transaction policy, which
prevents the transactional context from being propagated to these objects, which do not
need to be included in transactions.

CONFIGURING THE UNIVERSITY AND BILLING SERVER APPLICATIONS

As mentioned earlier, the Billing server application is configured in a group separate
from the group containing the University database and the University, BEA TUXEDO
Teller, and Oracle7 transaction manager server (TMS) applications.

However, since the Billing server application participates in the transactions that
register students for courses, the Billing server application must include invocations to
theTP: : open_xa_rn() andTP:: cl ose_xa_r n() operations in the Server object.

This is a requirement for any server application that manages an object that is included
in any transaction. If that object does not perform any read or write operations on a
database, you can specify tid_L resource manager in the following locations:

4+ In the appropriate group definition in tbBBCONFI Gfile

4 In an argument to thisui | dobj ser ver command when you build the server
application

For information about building, configuring, and running the Wrapper sample
application, see th&uide to the University Sample Applications.

Creating C++ Server Applications 6-13

6 WRAPPING A BEA TUXEDO SERVICE IN AN OBJECT

6-14 Creating C++ Server Applications

CHAPTER

.

Scaling a WebLogic

Enterprise Server
Application

This chapter shows how you can take advantage of severa key scalability features of
the WebL ogic Enterprise system to make a WebL ogic Enterprise server application
highly scalable, using the Production University sample application as an example.
The Production sample application uses these scal ability features to achieve the
following goals:

4 To add aparallel processing capability, enabling the WebL ogic Enterprise
domain to process multiple client requests simultaneously

4 To spread the processing load on the server applications in the Production
sample application across multiple machines

This chapter discusses the following topics:

4 Overview of the Scal ability Features Available in the WebL ogic Enterprise
System

4 Scaling a WebL ogic Enterprise Server Application. This section addresses the
following topics:

4+ Replicating Server Processes and Server Groups

4 Scaling the Application Via Object State Management

4 Factory-based Routing

How the Production Server Application Can Be Scaled Further
Choosing Between Stateless and Stateful Objects

Creating C++ Server Applications 7-1

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Overview of the Scalability Features
Available in the WebLogic Enterprise System

7-2

Supporting highly scalable applications is one of the strengths of the WebL ogic
Enterprise system. Many applications may perform well in an environment
characterized by 1 to 10 server processes, and 10 to 100 client applications. However,
in an enterprise environment, applications need to support:

4 Hundreds of server processes
4 Tens of thousands of client applications
4+ Millions of objects

Deploying an application with such demands quickly reveals the resource
shortcomings and performance bottlenecks in your application. The WebL ogic
Enterprise system supports such large-scale deployments in several ways, three of
which are described in this chapter as follows:

4+ Replicated server processes and server groups
4 Object state management
4 Factory-based routing

Other features provided in the WebL ogic Enterprise system to make an application
highly scalable include the I1OP Listener/Handler, which is summarized in Technical
Overview and fully described in the Administration Guide.

Creating C++ Server Applications

SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Scaling a WebLogic Enterprise Server
Application

This section explains how to scale an application to meet a significantly greater
processing capability, using the Production sample application as an example. The
basic design goa for the Production sample application is to greatly scale up the
number of client applicationsit can accommodate by doing the following:

L4

L4

Processing in parallel and on one machine client requests on multiple objects
that implement the same interface

Directing requests on behalf of some students to one machine, and other students
to other machines

Adding more machines across which to spread the processing load

To accommodate these design goals, the Production sample application does the
following:

L4

Replicates the University, Billing, and BEA TUXEDO Teller Application server
processes within the groups in which they are configured

Replicates the groups described above on an additional machine

Implements a statel ess object model to scale up the number of client requests the
server process can manage simultaneously

Assigns unique object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups. This makes
these objects available on a per-client-application (and not per-process) basis,
thereby accommodating a parallel-processing capability.

¢ RegistrarFactory
¢ Registrar

¢ TellerFactory

¢ Teller

Implements factory-based routing to direct client requests on behalf of some
students to one machine, and other studentsto another machine

Creating C++ Server Applications 7-3

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Note: To make the Production sample application easy for you to use, this
application is configured on the WebL ogic Enterprise software kit to run on
one machine, using one database. The examples shown in this chapter,
however, show running this application on two machines using two databases.

The design of the Production sample application is set up so that it can be
configured to run on several machinesand to use multiple databases. Changing
the configuration to multiple machines and databases involves modifying the
UBBCONFI Gfile and partitioning the databases, and is described in “How the
Production Server Application Can Be Scaled Further” on page 7-22.

The sections that follow describe how the Production sample application uses
replicated server processes and server groups, object state management, and
factory-based routing to meets its scalability goals. The first section that follows
provides a description of the OMG IDL changes implemented in the Production
sample application.

OMG IDL Changes for the Production Sample Application

The only OMG IDL changes for the Production sample application are limited to the
find_registrar() andfind_teller() operations on, respectively, the

Regi strar Fact ory andTel | er Fact ory objects. These two operations are modified
to require, respectively, a student ID and account humber, which is needed to
implement factory-based routing. See the section “Factory-based Routing” on

page 7-12 to read about how the Production sample application implements and us
factory-based routing.

Replicating Server Processes and Server Groups

7-4

The WebLogic Enterprise system offers a wide variety of choices for how you may
configure your server applications, such as:

4 One machine with one server process that implements one interface
4 One machine with multiple server processes implementing one interface

4 One machine with multiple server processes implementing multiple interfaces,
with or without factory-based routing

Creating C++ Server Applications

SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

4 Multiple machines with multiple server processes and multiple interfaces, with
or without factory-based routing

In summary:

4 To add more parallel processing capability to your client/server application,
replicate your server processes.

4 To add more machines to your deployment environment, add more groups and
implement factory-based routing.

The following sections describe replicated server processes and groups, and also
explain how you can configure them in the WebL ogic Enterprise system.

Replicated Server Processes

When you replicate the server processes in your application:

4+ You obtain a means to balance the load of incoming reguests on that server
application. Asrequests arrive in the WebL ogic Enterprise domain for the server
group, the WebL ogic Enterprise system routes the request to the least busy
server process within that group.

4 You can improve the server application’s performance. Instead of having one
server process that can process one client request at one time, you can have
multiple server processes available that can process multiple client requests
simultaneously. (Note that to make this work, you need to make each object
unique, which you can do by having your server application’s factory assign
unique OIDs.)

4+ You obtain a useful failover protection in the event that one of the server images
stops.

To achieve the full benefit of replicated server processes, make sure that the objects
instantiated by your server application generally have unigue IDs. This way, a client
invocation on an object can cause the object to be instantiated on demand, within the
bounds of the number of server processes that are available, and not queued up for an
already active object.

Figure 7-1 shows the following:

4 The University server application, BEA TUXEDO Teller Application, and
Oracle7 TMS server processes are replicated within the ORA_GRP group.

Creating C++ Server Applications 7-5

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

7-6

4 TheBilling server processisreplicated within the APP_GRP group.

Both groups are shown in this figure as running on a single machine.

Figure7-1 Replicated Server Groupsin the Production Sample

—_———— e —— — — — —

University Server —\

RegistrarFactory

Registrar

CourseSynopsys
Enumerator I

!

BEA TUXEDO
Teller Application
debi t ()
credit()
current_bal ance()

Database

gl

Oracle7
Transaction
Manager Server

—_

Production Machine

When arequest arrivesfor either of these groups, the WebL ogic Enterprise domain has
several server processes available that can process the request, and the WebL ogic

Enterprise domain can choose the server process that isleast busy.

In Figure 7-1, note the following:

4 Atany time, there may be no more than one instance of the Regi st rar Fact ory,
Regi strar, Tel | erFact ory, or Tel | er objectswithin agiven server process.

4 There may be any number of Cour seSynopsi sEnumer at or objectsin any

University server process.

Creating C++ Server Applications

SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Replicated Server Groups

The notion of server groups is specific to the WebL ogic Enterprise system and adds
value to a CORBA implementation; server groups are an important part of the
scalability features of the WebL ogic Enterprise system. Basically, to add more
machines to a deployment, you need to add more groups.

Figure 7-2 shows the Production sample application groups replicated on another
machine, as specified in the applicatiodBBCONFI Gfile, as ORA_GRP2 and
APP_GRP2.

Figure7-2 Replicating Server Groups Across M achines

Production Machine 1 Production Machine 2

ORA_GRP1 APP_GRP1 ORA_GRP2 APP_GRP2

University
Server

University

Billing Server Server Billing Server

Database 1 | Database 2 |

BEA TUXEDO

BEA TUXEDO
Teller Teller
Application Application
——

Oracle7
Transaction
Manager Server

Oracle7
Transaction
Manager Server

In Figure 7-2, the only difference between the content of the groups on Production
Machines 1 and 2 is the database. The database for Production Machine 1 contains
student and account information for a subset of students. The database for Production
Machine 2 contains student and account information for a different subset of students.

Creating C++ Server Applications 7-7

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

(The course information table in both databasesis identical.) Note that the student
information in a given database may be completely unrelated to the account
information in the same database.

Theway inwhich server groups are configured, wherethey run, and the waysin which
they are replicated is specified in the UBBCONFI Gfile. When you replicate a server
group, you can do the following:

4 Have ameansto spread processing load for a given application or set of
applications across additional machines

4+ Usefactory-based routing to send one set of requests on a given interface to one
machine, and another set of requests on the same interface to another machine

The effect of having multiple server groups includes the following:

4 When aclient request arrivesin the WebL ogic Enterprise domain, the WebL ogic
Enterprise system checks the group ID specified in the object reference.

4 TheWebLogic Enterprise domain sends the request to the least busy server
process within the group to which the request is routed that can process the
request.

The section “Factory-based Routing” on page 7-12 shows how the Production sampl
application uses factory-based routing to spread the application’s processing load
across multiple machines.

Configuring Replicated Server Processes and Groups

7-8

To configure replicated server processes and groups in your WebLogic Enterprise
domain:

1. Bring your application’&BBCONFI Gfile into a text editor, such as WordPad.
2. In theGROUPS section, specify the names of the groups you want to configure.

3. In theSERVERS section, enter the following information for the server process
you want to replicate:

4+ A server application name.

4 TheGROUP parameter, which specifies the name of the group to which the
server process belongs. If you are replicating a server process across multipls
groups, specify the server process once for each group.

Creating C++ Server Applications

SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

4 The SRvI D parameter, which specifies a numeric identifier, giving the server
process a unique identity.

4 TheM N parameter, which specifies the number of instances of the server
process to start when the application is booted.

4 The MAX parameter, which specifies the maximum number of server
processes that can be running at any onetime.

Thusthe M N and MAX parameters determine the degree to which a given server
application can process requests on a given object in parallel. During run time,
the system administrator can examine resource bottlenecks and start additional
server processes, if necessary. In this sense, the application is designed so that
the system administrator can scale it.

The following example shows lines from the GROUPS and SERVERS sections of the
UBBCONFI Gfile for the Production sample application.

* GROUPS
APP_GRP1
LM D = SITELl
GRPNO =2
TMSNAME = TMS
APP_GRP2
LM D = SITELl
GRPNO =3
TMSNAME = TMS
ORA_GRP1
LM D = SITELl
GRPNO =4
OPENI NFO = "ORACLE_XA: Oracl e_XA+Acc=P/scott/..."
CLCSEI NFO = ""
TMSNAME = "TMS_CORA"
ORA_GRP2
LM D = SITELl
GRPNO =5
OPENI NFO = "ORACLE_XA: Oracl e_XA+Acc=P/scott/..."
CLCSEI NFO = ""
TMSNAME = "TMS_CORA"
* SERVERS

By default, activate 2 instances of each server
and allow the adninistrator to activate up to 5
instances of each server

DEFAULT:
M N =2
MAX =5

Creating C++ Server Applications 7-9

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

tell p_server

SRVGRP = ORA_GRP1
SRVID = 10
RESTART = N

tell p_server
SRVGRP = ORA_GRP2
SRVID =10
RESTART = N

bill p_server
SRVGRP = APP_GRP1
SRVID = 10
RESTART = N

bi Il p_server
SRVGRP = APP_GRP2
SRVID = 10
RESTART = N

uni vp_server
SRVGRP = ORA_GRP1
SRVID = 20
RESTART = N

uni vp_server

SRVGRP = ORA_GRP2
SRVID = 20
RESTART = N

Scaling the Application Via Object State Management

As stated in Chapter 1, “Server Application Concepts,” object state management is
fundamentally important concern of large-scale client/server systems because it is
critically important that such systems achieve optimized throughput and response
time. This section explains how you can use object state management to increase tt
scalability of the objects managed by a WebLogic Enterprise server application, usin
theRegi strar andTel | er objects in the Production sample applications as an
example.

The following table summarizes how you can use the object state management mode
supported in the WebLogic Enterprise system to achieve major gains in scalability ir
your WebLogic Enterprise applications.

7-10 Creating C++ Server Applications

SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

State M odel How You Can Use It to Achieve Scalability

M ethod-bound Method-bound objects are brought into the machine’s memory only
for the duration of the client invocation on them. When the
invocation is complete, the object is deactivated and any state data
for that object is flushed from memory.

You can use method-bound objects to create a stateless server model
in your application, in which thousands of objects are managed by
your application. From the client application view, all the objects are
available to service requests. However, because the server
application is mapping objects into memory only for the duration of
client invocations on them, only comparatively few of the objects
managed by the server application are in memory at any given
moment.

A method-bound object is said in this document to be a stateless
object.

Process-bound Process-bound objects remain in memory from the time they are first
invoked until the server process in which they are running is shut
down. If appropriate for your application, process-bound objects
with a large amount of state data can remain in memory to service
multiple client invocations, and the system’s resources need not be
tied up reading and writing the object’s state data on each client
invocation.

A process-bound object is said in this document to be a stateful
object. (Note that transaction-bound objects can also be considered
stateful, since they can remain in memory between invocations on
them within the scope of a transaction.)

To achieve scalability gains, the Regi st rar and Tel | er objectsare configured in the
Production server application to have the met hod activation policy. The net hod
activation policy assigned to these two objects results in the following behavior
changes:

4 Whenever these objects are invoked, they are instantiated by the WebL ogic
Enterprise domain in the appropriate server group.

4 After theinvocation is complete, the WebL ogic Enterprise domain deactivates
these objects.

Creating C++ Server Applications 7-11

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

With the Basic through the Wrapper sample applications, the Regi st r ar object was
process-bound. All client requests on that object invariably went to the same object
instance in the machine’s memory. The Basic sample application design may be
adequate for a small-scale deployment. However, as client application demands
increase, client requests on Rei strar object eventually become queued, and
response time drops.

However, when th&egi st rar andTel | er objects are stateless, and the server
processes that manage these objects are replicated, these objects can be made avalil
to process client requests on them in parallel. The only constraint on the number of
simultaneous client requests that these objects can handle is the number of server
processes that are available that can instantiate these objects. These stateless obje
thereby, make for more efficient use of machine resources and reduced client respon
time.

Most importantly, so that the WebLogic Enterprise system can instantiate copies of th
Regi strar andTel | er objects in each of the replicated server processes, each copy
of these objects must be unique. To make each instance of these objects unique, th
factories for those objects must assign unique object IDs to them. This, and other
design considerations on these two objects, are described in the section “Additional
Design Considerations for the Registrar and Teller Objects” on page 7-18.

Factory-based Routing

7-12

Factory-based routing is a powerful feature that provides a means to send a client
request to a specifierver group. Using factory-based routing, you can spread that
processing load for a given application across multiple machines, because you can
determine the group, and thus the machine, in which a given object is instantiated.

You can use factory-based routing to expand upon the variety of load-balancing anc
scalability capabilities in the WebLogic Enterprise system. In the case of the
Production sample application, you can use factory-based routing to send requests
register one subset of students to one machine, and requests for another subset of
students to another machine. As you add machines to ramp up your application’s
processing capability, the WebLogic Enterprise system makes it easy to modify the
factory-based routing in your application to add more machines.

Creating C++ Server Applications

SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

The chief benefit of factory-based routing is that it provides a simple meansto scale
up an application, and invocations on agiven interface in particular, across agrowing
deployment environment. Spreading the deployment of an application across
additional machinesis strictly an administrative function that does not require any
recoding or rebuilding of the application.

The chief design consideration regarding implementing factory-based routing in your
client/server application isin choosing the value on which routing is based. The
sections that follow describe how factory-based routing works, using the Production
sample application, which uses factory-based routing in the following way:

4 Client application requests to the Regi st r ar object are routed based on the
student ID. That is, requests on behalf of one subset of students go to one group;
and requests on behalf of another subset of students go to another group.

4 Regueststothe Tel | er object are routed based on the account number. That is,
billing requests on behalf of one subset of accounts go to one group; and
requests on behalf of another subset of accounts go to another group.

How Factory-based Routing Works

Y our factories implement factory-based routing by changing the way they create
object references. All object references contain agroup D, and by default the group
ID isthe same as the factory that creates the object reference. However, using
factory-based routing, the factory creates an object reference that includes routing
criteriathat determinesthe group I1D. Then when client applications send aninvocation
using such an object reference, the WeblL ogic Enterprise system routes the request to
the group ID specified in the object reference. This section focuses on how the group
ID is generated for an object reference.

To implement factory-based routing, you need to coordinate the following:
4 Datain the | NTERFACES and ROUTI NG sections of the UBBCONFI Gfile.
4 Groups, machines, and databases configured in the UBBCONFI Gfile.

4 How thefactory specifies routing criteria. The interface definition for the factory
needs to specify the parameter that represents the routing criteria used to
determine the group ID.

To describe the data that needs to be coordinated, the following two sections discuss
configuring for factory-based routing in the UBBCONFI Gfile, and implementing
factory-based routing in the factory.

Creating C++ Server Applications ~ 7-13

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Configuring for Factory-based Routing in the UBBCONFIG file

7-14

For each interface for which requests are routed, you need to establish the following
information in the UBBCONFI Gfile:

4 Details about the datain the routing criteria
4 For each kind of criteria, the values that route to specific server groups

To configure for factory-based routing, the UBBCONFI Gfile needs to specify the
following datain the | NTERFACES and ROUTI NG sections, and a so in how groups and
machines are identified:

1. Thel NTERFACES section lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies what kinds
of criteriathe interface routes on. This section specifies the routing criteriavia an
identifier, FACTORYROUTI NG asin the following example:

| NTERFACES
"I DL: beasys. coni Uni versi tyP/ Regi strar:1.0"
FACTORYROUTI NG = STU I D
"I DL: beasys. conl Bil lingP/ Teller:1.0"
FACTORYROUTI NG = ACT_NUM

The preceding example shows the fully qualified interface names for the two
interfaces in the Production sample in which factory-based routing is used. The
FACTORYROUTI NG identifier specifies the names of the routing values, which are
STU_I Dand ACT_NUM respectively.

2. The ROUTI NG section specifies the following data for each routing value:

4 The TYPE parameter, which specifies the type of routing. In the Production
sample, the type of routing is factory-based routing. Therefore, this
parameter is defined to FACTCRY.

4 TheFI ELD parameter, which specifies the name that the factory insertsin the
routing value. In the Production sample, the field parameters are
student _i d and account _nunber, respectively.

4 TheFI ELDTYPE parameter, which specifies the data type of the routing
value. In the Production sample, the field types for st udent _i d and
account _nunber arel ong.

4 The RANGES parameter, which specifies the values that are routed to each
group.

Creating C++ Server Applications

SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

The following example shows the ROUTI NG section of the UBBCONFI G file used
in the Production sample application:

ROUTI NG
STU I D
FI ELD = "student _id"
TYPE = FACTORY
FI ELDTYPE = LONG
RANGES = "100001- 100005: ORA_GRP1, 100006- 100010: ORA_GRP2"
ACT_NUM
FI ELD = "account _nunber"
TYPE = FACTORY
FI ELDTYPE = LONG
RANGES = "200010-200014: APP_GRP1, 200015- 200019: APP_GRP2"

The preceding example shows that Regi st r ar object references for students
with IDs in one range are routed to one server group, and Regi st r ar object
references for students with IDs in another range are routed to another group.
Likewise, Tel | er object references for accounts in one range are routed to one
server group, and Tel | er object references for accountsin another range are
routed to another group.

The groups specified by the RANGES identifier in the ROUTI NG section of the
UBBCONFI Gfile need to be identified and configured. For example, the
Production sample specifies four groups: APP_GRP1, APP_GRP2, ORA_GRP1,
and ORA_GRP2. These groups need to be configured, and the machines on
which they run need to be identified.

The following example shows the GROUPS section of the Production sample
UBBCONFI Gfile, in which the ORA_GRP1 and ORA_GRP2 groups are
configured. Notice how the names in the GROUPS section match the group names
specified in the ROUTI NG section; thisis critical for factory-based routing to
work correctly. Furthermore, any change in the way groups are configured in an
application must be reflected in the ROUTI NG section. (Note that the Production
sample packaged with the WebL ogic Enterprise software is configured to run
entirely on one machine. However, you can easily configure this application to
run on multiple machines.)

* GROUPS

APP_GRP1
LM D
GRPNO
TIVENANE

APP_GRP2
LM D
GRPNO

SI TE1

1o
N

T™MS

SI TE1

Creating C++ Server Applications ~ 7-15

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

TMBNAME = TMS
ORA GRP1
LM D = SITEL
GRPNO =4
OPENI NFO = "ORACLE XA: Oracl e XA+Acc=P/scott/..."
CLOSEI NFO = "*
TMBNAME = "TMS_ORA"
ORA_GRP2
LM D = SITEL
GRPNO =5
OPENI NFO = "ORACLE XA: Oracl e XA+Acc=P/scott/..."
CLOSEI NFO = "*
TMBNAME = "TMS_ORA"

Implementing Factory-based Routing in a Factory

7-16

Factories implement factory-based routing by the way the invocation to the
TP: : creat e_obj ect _r ef er ence() operation isimplemented. This operation has
the following C++ binding:

CORBA: : Cbject _ptr TP::create_object _reference (
const char* interfaceNane,
const Portabl eServer::oid &stroid,
CORBA: : NVIist_ptr criteria);

Thethird parameter to thisoperation, cri t eri a, specifiesalist of named valuesto be
used for factory-based routing. Therefore, the work of implementing factory-based
routing in afactory isin building the NI i st .

As stated previoudly, the Regi st r ar Fact or y object in the Production sample
application specifies the value STU_I D. This value must match exactly the following
in the UBBCONFI Gfile:

4 Therouting name, type, and allowable values specified by the FACTORYROUTI NG
identifier in the | NTERFACES section

4 Therouting criterianame, field, and field type specified in the ROUTI NG section

The Regi st rar Fact ory object inserts the student ID into the NVl i st using the
following code:

/1 put the student id (which is the routing criteria)
/1 into a CORBA NVLi st:

CORBA: : NVLi st _var v_criteria;
TP::orb()->create_list(1, v_criteria.out());
CORBA: : Any any;

Creating C++ Server Applications

SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

any <<= (CORBA::Long)student;
v_criteria->add_val ue("student _id", any, 0);

The Regi st r ar Fact or y object has the following invocation to the
TP: : create_obj ect _reference() operation, passing the NVl i st created in the
preceding code example:

/] create the registrar object reference using
/1 the routing criteria :
CORBA: : Cbj ect _var v_reg_oref =
TP: : create_object_reference(
UniversityP:: tc_Registrar->id(),
object _id,
v_criteria.in()

)

The Production sample application al so uses factory-based routing in the
Tel | er Fact or y object to determine the group in which Tel | er objects should be
instantiated based on an account number.

Note: Itispossiblefor an object with agiven interfaceand OID to be simultaneously
activein two different groups, if those two groups both contain the same object
implementation. (However, if your factories generate unique OIDs, this
situation is very unlikely.) If you need to guarantee that only one object
instance of agiven interfacenameand OID isavailableat any onetimein your
domain, either: use factory-based routing to ensure that objects with a
particular OID are always routed to the same group, or configure your domain
so that a given object implementationisin only one group. This assuresthat if
multiple clients have an object reference containing a given interface name
and OID, thereference is always routed to the same object instance.

To enable routing on an object’s OID, specify the OID as the routing criterion
in theTP: : creat e_obj ect _reference() operation, and set up the
UBBCONFI Gfile appropriately.

What Happens at Run Time

When you implement factory-based routing in a factory, the WebLogic Enterprise
system generates an object reference. The following example shows how the client
application gets an object reference Regi st r ar object when factory-based routing

is implemented:

1. The client application invokes tiRegi st r ar Fact or y object, requesting a
reference to &egi strar object. Included in the request is a student ID.

Creating C++ Server Applications ~ 7-17

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

2. TheRegi strar Fact ory insertsthe student ID into an Nv1 i st , which is used as
the routing criteria.

3. TheRegi strarFactory invokestheTP: : creat e_obj ect _reference()
operation, passing the Regi st r ar interface name, a unique OID, and the
NV i st.

4. The WebL ogic Enterprise system compares the contents of the routing tables with
thevaluein the NVl i st to determine agroup ID.

5. TheWebL ogic Enterprise system inserts the group ID into the object reference.

When the client application subsequently does an invocation on an object using the
object reference, the WebL ogic Enterprise system routes the request to the group
specified in the object reference.

Note: Be careful how you implement factory-based routing if you use the
process-entity design pattern. The object can service only those entities that
are contained in the group’s database.

Additional Design Considerations for the Registrar and
Teller Objects

The principal considerations that influence the design oRégest rar andTel | er
objects include:

4 How to ensure that theegi strar andTel | er objects work properly for the
Production deployment environment; namely, across multiple replicated server
processes and multiple groups. Given that the University and Billing server
processes are replicated, the design must consider how these two objects shoul
be instantiated.

4 How to ensure that client requests for registration and billing operations for a
given student go to the correct server group, given that the two server groups in
the Production WebLogic Enterprise domain each deal with different databases.

The primary implications of these considerations are that these objects must:
4 Have unique object IDs (OIDs)

4 Be method-bound; that is, have the hod activation policy assigned to them

7-18 Creating C++ Server Applications

SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Theremainder of this section discusses these considerations and implicationsin detail.

Instantiating the Registrar and Teller Objects

In University server applications prior to the Production sample application, the
run-time behavior of the Regi st rar and Tel | er objects was fairly smple:

4 Each object was process-bound, meaning that each was activated the first time it
was invoked, and it stayed in memory until the server processin which it ran
was shut down.

4 Sincethere was only one server group running in the WebL ogic Enterprise
domain, and only one University and Billing server processin the group, al
client requests were directed to the same objects. As multiple client requests
arrived in the WebL ogic Enterprise domain, these objects each processed one
client request at onetime.

4 Because there was only one instance of each object in the server processesin
which they ran, neither object needed a unique OID. The OID for each object
specified only the Interface Repository ID.

However, since the University and Billing server processes are now replicated, the
WebL ogic Enterprise domain must have a means to differentiate between multiple
instances of the Regi st rar and Tel | er objects. That is, if there are two University
server processes running in a group, the WebL ogic Enterprise domain must have a
means to distinguish between, say, the Regi st r ar object running in the first
University server process and the Regi st r ar object running in the second University
Server process.

The way to provide the WebL ogic Enterprise domain with the ability to distinguish
among multiple instances of these objectsisto make each object instance unique.

To make each Regi strar and Tel | er object unique, the factories for those objects
must change the way in which they make object referencesto them. For example, when
the Regi st rar Fact or y object in the Basic sample application created an object
reference to the Regi st rar object, the TP: : creat e_obj ect _r ef erence()
operation specified an OID that consisted only of the string r egi st rar . However, in
the Production sample application, the same TP: : cr eat e_obj ect _ref erence()
operation uses a generated unique OID instead.

Creating C++ Server Applications 7-19

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

A consequence of giving each Regi strar and Tel | er object aunique OID isthat
there may be multiple instances of these objects running simultaneously in the
WebL ogic Enterprise domain. This characteristic is typical of the statel ess object
model, and is an example of how the WebL ogic Enterprise domain can be highly
scalable and at the same time offer high performance.

And last, since unique Regi strar and Tel | er objects need to be brought into
memory for each client request on them, it is critical that these objects be deactivated
when the invocations on them are completed so that any object state associated with
them does not remainidlein memory. The Production server application addressesthis
issue by assigning the net hod activation policy to these two objectsin the ICF file.

Ensuring That Student Registration Occurs in the Correct Server Group

7-20

The chief scalability advantage of having replicated server groupsisto be able to
distribute processing across multiple machines. However, if your application interacts
with adatabase, which isthe case with the University sasmple applications, it iscritical
that you consider the impact of these multiple server groups on the database
interactions.

In many cases, you may have one database associated with each machine in your
deployment. If your server application is distributed across multiple machines, you
must consider how you set up your databases.

The Production sample application, as described in this chapter, uses two databases.
However, thisapplication can easily be configured to accommodate more. The system
administrator can decide how many.

In the Production sample application, the student and account information is
partitioned across the two databases, but course information isidentical. Having
identical course information in both databases is not a problem because the course
information is read-only for the purposes of course registration. However, the student
and account information is read-write. I1f multiple databases were a so to contain
identical datafor students and accounts (that is, the database is not partitioned), the
application would need to deal with the overhead of synchronizing the updatesto
student and account information across all the databases each time any student or
account information were to change.

The Production sample application uses factory-based routing to send one set of
reguests to one machine, and another set to the other machine. As mentioned earlier,
factory-based routing isimplemented in the Regi st r ar Fact or y object by theway in
which references to Regi st r ar objects are created.

Creating C++ Server Applications

SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

For example, when the client application sends areguest to the Regi st r ar Fact ory
object to get an object referenceto aRegi st rar object, the client application includes
astudent ID in that request. The client application must use the object reference that

the Regi st rar Fact or y object returns to make all subsequent invocations on a

Regi strar object on a particular student’s behalf, because the object reference
returned by the factory is group-specific. Therefore, for example, when the client
application subsequently invokes thet _st udent _det ai | s() operation on the
Regi strar object, the client application can be assured thardbhest r ar object is
active in the server group associated with the database containing data for that student.
To show how this works, consider the following execution scenario, which is
implemented in the Production sample application:

1. The client application invokes tlhénd_regi st rar () operation on the
Regi st rar Fact or y object. Included in this invocation is the student ID 1000003.

2. The WebLogic Enterprise domain routes the client request to any
Regi strar Fact ory object.

3. TheRegi strar Fact or y object uses the student ID to create an object reference
to aRegi strar objectin ORA_GRP1, based on the routing information in the
UBBCONFI Gfile, and returns that object reference to the client application.

4. The client application invokes thegi st er _f or _cour ses() operation on the
Registrar object.

5. The WebLogic Enterprise domain receives the client request and routes it to the
server group specified in the object reference. In this case, the client request goes
to the University server process in ORA_GRP1, which is on Production Machine
1.

6. The University server process instantiat&egi st rar object and sends the
client invocation to it.

TheRegi st rar Fact or y object from the preceding scenario returns to the client
application a unique reference t®eyi st r ar object that can be instantiated only in
ORA_GRP1, which runs on Production Machine 1 and has a database containing
student data for students with IDs in the range 100001 to 100005. Therefore, when the
client application sends subsequent requests t&ehisst r ar object on behalf of a

given student, thBegi st r ar object interacts with the correct database.

Creating C++ Server Applications 7-21

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

Ensuring That the Teller Object is Instantiated in the Correct Server Group

WhentheRegi st r ar object needsaTel | er object, theRegi st r ar object invokesthe

Tel | er Fact ory object, using the Tel | er Fact or y object reference cached in the
University Server object, as described in “Sending Requests to the Teller Object” or
page 6-11.

However, because factory-based routing is used ifie¢heer Fact or y object, the
Regi strar object passes the student’s account number wheretfiest r ar object
requests a reference taa | er object. This way, th&el | er Fact or y object creates
a reference to @el | er object in the group that has the correct database.

Note: For the Production sample application to work properly, it is essential that the
system administrator configures the server groups and the databases properl
In particular, the system administrator must make sure that a match exists
between the routing criteria specified in the routing tables and the databases t
which requests using those criteria are routed. Using the Production sample &
an example, the database in a given group must contain the correct student ai
account information for the requests that are routed to that group.

How the Production Server Application Can
Be Scaled Further

In the future, the system administrator of the Production sample application may wan
to add capacity to the WebLogic Enterprise domain. For example, the University may
eventually have a large increase in the student population, or the Production
application may be scaled up to accommodate the course registration process for al
entire state university system encompassing several campuses. This can be done
without modifying or rebuilding the application.

The system administrator has the following tools available to continually add capacity

4+ Replicating the Production sample application server groups across additional
machines

7-22 Creating C++ Server Applications

CHOOSING BETWEEN STATELESS AND STATEFUL OBJECTS

Doing this requires modifying the UBBCONFI Gfile to specify the additional
groups, what server processes run in those groups, and what machines they run
on.

4 Changing the factory-based routing tables

For example, instead of routing to the two groups shown earlier in this chapter,
the system administrator can modify the routing rules in the UBBCONFI Gfile to
partition the application further among the new groups added to the WebL ogic
Enterprise domain. Any modification to the routing tables must be consistent
with any changes or additions made to the server groups and machines
configured in the UBBCONFI Gfile.

Note: If you add capacity to an application that uses a database, you must aso
consider the impact on how the database is set up, particularly when you are
using factory-based routing. For example, if the Production sample application
is spread across six machines, the database on each machine must be set up
appropriately and in accordance with the routing tablesin the UBBCONFI Gfile.

Choosing Between Stateless and Stateful
Objects

In general, you need to balance the costs of implementing statel ess objects against the
costs of implementing stateful objects.

In the case where the cost to initialize an object with its durable state is expensive --

because, for example, the object’'s data takes up a great deal of space, or the durable
state is located on a disk very remote to the servant that activates it -- it may make sense
to keep the object stateful, even if the object is idle during a conversation. In the case
where the cost to keep an object active is expensive in terms of machine resource
usage, it may make sense to make such an object stateless.

By managing object state in a way that’s efficient and appropriate for your application,
you can maximize your application’s ability to support large numbers of simultaneous
client applications that use large numbers of objects. You generally do this by
assigning theret hod activation policy to these objects, which has the effect of

Creating C++ Server Applications ~ 7-23

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

deactivating idle object instances so that machine resources can be allocated to other
object instances. However, your specific application characteristics and needs may

vary.

When You Want Stateless Objects

7-24

Stateless objects generally provide good performance and optimal usage of server
resources, because server resources are never used when objects are idle. Stateless
objects are generally a good approach to implementing server applications. Stateless
objects are particularly appropriate in the following situations:

4 Theclient application typically waits for user input between invocations on the
object.

4 Theclient request typically contains all the data needed by the server
application, and the server can process the client request using only that data.

4 Theobject has very high accessrates, but low access rates from any one
particular client application.

By making an object stateless, you can generally assure that server application
resources are not being tied up for an arbitrarily long time waiting for input from the
client application.

Note the following characteristics about an application that employs a statel ess object
model:

4 Information about and associated with an invocation is not maintained after the
server application has finished executing a client request.

4 Anincoming client request is sent to the first available server process: after the
reguest has been satisfied, the application state vanishes and the server
application is available for another client application request.

4+ Durable state information for the object exists outside the server process. With
each invocation on this object, the durable state is read into memory.

4 TheWLE domain may direct successive requests on an object from agiven
client application to adifferent server process.

4 Theoverall system performance of amachine that is running stateless objectsis
usually enhanced.

Creating C++ Server Applications

CHOOSING BETWEEN STATELESS AND STATEFUL OBJECTS

When You Want Stateful Objects

A stateful object, once activated, remainsin memory until aspecific event occurs, such
as the process in which the object existsis shut down, or the transaction in which the
object is activated is completed.

Stateful objects are typically appropriate in the following situations:

L4

When an object is used very frequently by alarge number of client applications.
Thisisthe case for long-lived, well-known objects like factories. When the
server application keeps these objects active, the client application typically
experiences minimal response time in accessing them. Since these active objects
are shared by many client applications, there are relatively few objects of this
type in memory.

Note: Plan carefully how process objects are potentially involved in atransaction.

Any object that isinvolved in atransaction cannot beinvoked by another client
application or object. Process objects meant to be used by alarge number of
client applications can create problems if they are involved in transactions
frequently or for long durations.

When aclient application must invoke successive operations on an object to
compl ete a transaction, and the client application is not idle while waiting for
user input between those invocations. In this case, if the object were deactivated
between invocations, there would be a degradation of response time because
state would be written and read between each invocation; such behavior may not
be appropriate for transactions. You can trade holding server resources for better
response time.

Note the following behavior with stateful objects:

L4

State information is maintained between server invocations, and the servant
typically remains dedicated to a given client application for a specified duration.

Even though data is sent and received between the client and server applications,
the server process maintains additional context or application state information
in memory.

In cases where one or more stateful objects are using alot of machine resources,
server performance for tasks and processes not associated with the stateful object
may be worse than with a statel ess server model.

Creating C++ Server Applications 7-25

7 SCALING A WEBLOGIC ENTERPRISE SERVER APPLICATION

For example, if an object has alock on a database and is caching alot of datain
memory, that database and the memory used by that stateful object are
unavailable to other abjects, potentially for the entire duration of atransaction.

7-26 Creating C++ Server Applications

Index

A
ACID properties 5-2
activate_object() operation
and exceptions 2-21
and preactivated objects 3-18
example 3-13
activation policies
method 7-10
process 3-10
transaction 5-16
allocating FML 32 buffers 6-4
always transaction policy 5-11
example 6-13
application_responsibility() operation 2-28
application-controlled deactivation
example 3-10
overview 1-13
AUTOTRANS
see transactional objects

BAD_OPERATION 2-21

Basic University sample
design considerations 3-7
handling durable state in 3-12
ICF file 3-11
managing object state 3-10
OMG IDL for 3-2
summary 3-2
use of design patternsin 3-15

BEA TUXEDO server applications
designing an object that has calls to 6-3
using in aWLE domain 6-2

BEA TUXEDO service
calling from aWLE application 6-3
choosing buffer type for 6-4

Billing server application
in University samples 6-11

C

callback methods

detecting error conditionsin 2-24
client applications

how they access objects 1-4
client stub 1-3
client/server contract 1-3
close_xa rm() operation 5-15
closing an XA resource manager 5-15
compiling OMG IDL 2-3
conversations

implementing transactionally 5-2
CORBA objects

See objects
create active object reference() operation

3-17

create object_reference() operation

example 2-7

specifying routing criteria 7-16
create _servant() operation

and exceptions 2-21

Creating C++ Server Applications -1

and OBJECT_NOT_EXIST 2-25
creating object references 2-10

durable objects 1-15
durable state handling

creating server applications example 3-12

summary 2-2
Cursors

database 5-11]

exceptions
ActivateObjectFailed 2-20

D AlreadyRegistered 2-20
data and client applications 2-19

reading and writing for an object 1-15
data marshaling
disabling 3-17
database cursors 5-11
databases
opening and closing 2-11
data-dependent routing
See factory-based routing
deactivate _object() operation
and exceptions 2-21
and servant pooling 2-27
and transactions 5-16
handling state in 2-26
restrictions on using 2-26
deactivateEnable() operation 3-10
and preactivated objects 3-18
example of 3-10
overview 1-13
debugging tips 2-19
design patterns
List-Enumerator 1-22
List-Enumerator (example) 3-15
Process-Entity 1-22
Process-Entity (example) 3-15
used in University samples 3-15
development process
summary 2-2
Digital C++ compiler
using with tie classes 2-32
DR_TRANS_ABORT 5-16
DR_TRANS_COMMITTING 5-16

[-2 Creating C++ Server Applications

and create_servant 2-21

and server applications 2-19
BAD_OPERATION 2-21
CannotProceed 2-20
CORBA 2-19
CreateServantFailed 2-20
DeactivateObjectFailed 2-20
how to write user-defined 5-20
[llegal Interface 2-20

in activate_object() 2-21

in deactivate object() 2-21
InitializeFailed 2-20

INVALID_TRANSACTION 5-18

InvalidDomain 2-20
Invalidinterface 2-20
InvalidName 2-20
InvalidObject 2-20
InvalidObjectID 2-20
InvalidServant 2-20
NilObject 2-20
NoSuchElement 2-20
OBJ ADAPTER 5-18
OBJECT_NOT_EXIST 2-21
OrbProblem 2-20
OutOfMemory 2-20
OverFlow 2-20
RegistrarNotAvailable 2-20
ReleaseFailed 2-20
TpfProblem 2-20
Unknownlnterface 2-20
UserExceptions 2-20

F

factories
advantages of 1-9
and factory-based routing 7-16
and object references 1-4
example 3-8
how clients obtain 1-9
overview 1-9
registering 2-10

factory-based routing
and UBBCONFIG file 7-14
how it works 7-13
implementing in afactory 7-16
summary 7-12

FML 6-4

FML32 buffers
allocating 6-4

G

generating object references 1-9
groups

configuring server 7-7

creating 7-7

routing requests to specific 7-13

ICFfile 2-6

assigning transaction policiesin 5-15
IDL

See OMG IDL
idl command 2-3
IDL compiler 1-4

generating tie classes 2-5

using 2-4
ignore transaction policy 5-14
[1OP Listener/Handler 7-2
implementation

object, See object implementations
Implementation Configuration File (ICFfile)

See ICFfile
instantiating objects 1-6
Interface Repository 1-3
Interface Repository identifier 1-5
interfaces
defining 1-3
delegating implementation of 2-29
limiting compilation of 2-6
validating 2-25
INVALID_TRANSACTION exception 5-18

L
legacy objects

integrating into WLE 2-29
Listener/Handler

[IOP7-2
List-Enumerator design pattern 1-23
List-Enumerator design pattern (example) 3-

15

M

method templates 1-4
method-bound objects 1-12

N

nested transactions 5-18
never transaction policy 5-13
new

C++ statement 1-6
NULL resource manager 5-16

0

OBJ ADAPTER exception 5-18
object factories
See factories
Object ID
See OID
object implementations

Creating C++ Server Applications -3

delegated 2-29
overview 1-2
See also objects 1-2
object references
about 1-4
contents of 1-5
creating 2-10
generating 1-9
generating (example) 3-8
lifespan of 1-6
object state
and the WLE system 1-10
object state management
and scalability 7-10
and transactions 5-8
delegating to an XA resource manager 5-
16
managing in Basic sample 3-10
OBJECT_NOT_EXIST 2-21
and OMG IDL mismatches 2-25
objects
activating 1-18
bypassing in atransaction 5-14
choose stateful 7-25
choosing stateless 7-24
constructors 1-4
deactivating 1-18
deactivating process 1-13
destructors 1-4
excluding from atransaction 5-13
implementing an interface for 1-4
including optionally in atransaction 5-
12
instantiating 1-6
legacy 2-29
making always transactional 5-11
making always transactional (example)
6-13
managing 1-10
method-bound 1-12
polling in atransaction 5-16

-4 Creating C++ Server Applications

pooling servants for 2-27
process-bound 1-12
reading and writing state data 1-15
setting activation policiesfor 1-10
transaction-bound 1-12
transient 3-18

OID 3-8

OMG IDL
defining an object with 1-3
defining operations with 1-3
for the Basic University sample 3-2
for Wrapper University sample 6-11
in Production University sample 7-4
versioning mismatch 2-25

open_xa rm() operation 5-15

opening an XA resource manager 5-15

optiona transaction policy 5-12

Oracle7 5-9

P

persistent objects 1-15
pooling
servant 2-27
process-bound objects
transaction-bound objects 1-12
Process-Entity design pattern 1-22

Process-Entity design pattern (example) 3-15

Production University sample
OMG IDL for 7-4
UBBCONFIG file 7-8

R

recursive transactions 5-18
Registrar object
policies on in Transactions University
sample 5-8
RegistrarFactory object 3-8
replicating server processes 7-4
resource manager

closing an XA 5-15
delegating object state management to 5-
16

NULL 5-16

opening XA 5-15
routing

factory-based, See factory-based routing
routing criteria

specifying in afactory 7-16

S

samplesdb.h 3-14
scaling an application 7-4
summary features for 7-2
SECURITY
parameter in UBBCONFIG file 4-2
security and WLE server applications 4-1
security models
implementing in server applications 4-2
Security University sample
design of 4-2
OMG IDL for 4-5
overview 4-3
SecurityCurrent object 4-3
servants
creating 2-11
overview 1-6
pooling 2-27
server applications
configuring in groups 7-7
developing 1-8
replicating in a group 7-4
scaling 7-4
server groups
configuring 7-7
Server processes
replicating 7-4
server skeleton
See skeletons
skeletons

limiting compilation of 2-6

overview 1-3
state data

preactivating an object with 3-17

reading and writing 1-15
stateful objects

criteriafor choosing 7-25

definition 1-10

See also process-bound and transaction-

bound objects 1-10

stateless objects

criteriafor choosing 7-24

definition 1-10

See a so method-bound objects 1-10
support

documentation xiv

technical xiv

T

tie classes
compiling with Digital C++ compiler 2-
32
generating 2-5
See also delegation-based interface
implementation
TMS5-9
configuring 5-9
Oracle7 5-9
requirements for 5-9
TobjS c.h2-20
tpcall() 6-6
tpforward() 6-7
tpreturn() 6-7
transaction activation policy 5-16
Transaction Manager Server
See TMS
transaction policies
aways5-11
always (example) 6-13
assigning in ICF file 5-15

Creating C++ Server Applications -5

ignore 5-14
never 5-13
optional 5-12
transactiona objects
defining 5-11
transactions
and conversations 5-2
and object state management 5-16
implementing in a WLE server
application 5-4
nested 5-18
overview of 5-2
recursive 5-18
Transactions University sample
configuring 5-10
how it works 5-6
object state management 5-8
overview 5-4
transient objects 3-18
TUXEDO
See BEA TUXEDO

U

UBBCONFIG file
and factory-based routing 7-14

in Production University sample 7-8

overview 2-18
SECURITY parameter 4-2
user-defined exceptions 5-20

Vv
vetoing atransaction 5-16

w

WLE server applications
and security 4-1
and transactions 5-4
Wrapper University sample

-6 Creating C++ Server Applications

configuring 6-13
design summary 6-8
how it works 6-9

wrapping a TUXEDO service

X

as an object 6-3

XA resource manager

closing 5-15

delegating object state management to 5-
16

opening 5-15

using in Transactions University sample
5-9

	Restricted Rights Legend
	Trademarks or Service Marks
	Preface
	Purpose of This Document
	How to Use This Document
	Related Documentation
	Contact Information

	1 Server Application Concepts
	The Entities You Create to Build a WebLogic Enterprise Server Application
	The Implementation of the CORBA Objects for Your Server Application
	How Interface Definitions Establish the Operations on a CORBA Object
	How You Implement the Operations on a CORBA Object
	How Client Applications Access and Manipulate Your Application’s CORBA Objects
	The Content of an Object Reference
	The Lifetime of an Object Reference

	How You Instantiate a CORBA Object at Run Time
	Servant Pooling

	The Server Object

	Process for Developing WebLogic Enterprise Server Applications
	Generating Object References
	How Client Applications Find Your Server Application’s Factories
	Creating an Active Object Reference

	Managing Object State
	About Object State
	Object Activation Policies
	Application-Controlled Deactivation

	Reading and Writing an Object’s Data
	Available Mechanisms for Reading and Writing an Object’s Durable State
	Reading State at Object Activation
	Reading State Within Individual Operations on an Object
	Stateless Objects and Durable State
	Servant Pooling and Stateless Objects

	Stateful Objects and Durable State
	Servant Pooling and Stateful Objects

	Your Responsibilities for Object Deactivation
	Avoiding Unnecessary I/O
	Sample Activation Walkthrough

	Using Design Patterns
	Process-Entity Design Pattern
	List-Enumerator Design Pattern

	2 Steps for Creating a WebLogic Enterprise Server Application
	Summary of the WebLogic Enterprise Server Application Development Process
	Step 1: Compile the OMG IDL file for the server application.
	Using the IDL Compiler
	Generating the Skeleton and Implementation Files
	Generating Tie Classes

	Step 2: Write the methods that implement each interface’s operations.
	The Implementation File Generated by the IDL Compiler
	Implementing a Factory

	Step 3: Create the Server object.
	Initializing the Server Application
	Writing the Code That Creates and Registers a Factory
	Creating Servants
	Releasing the Server Application

	Step 4: Define the in-memory behavior of objects.
	Specifying Object Activation and Transaction Policies in the ICF File

	Step 5: Compile and link the server application.
	Step 6: Deploy the server application.
	Development and Debugging Tips
	Use of CORBA and M3 Exceptions and the User Log
	Client Application View of Exceptions
	Server Application View of Exceptions
	Exceptions Raised by the WebLogic Enterprise System that Can Be Caught by Application Code
	The M3 System’s Handling of Exceptions Raised by Application Code during the Invocation of Operat...

	Detecting Error Conditions in the Callback Methods
	Common Pitfalls of OMG IDL Interface Versioning and Modification
	Caveat for State Handling in Tobj_ServantBase::deactivate_object()

	Servant Pooling
	How Servant Pooling Works
	How You Implement Servant Pooling

	Delegation-based Interface Implementation
	About Tie Classes in the WebLogic Enterprise System
	When to Use Tie Classes
	How to Create Tie Classes in a WebLogic Enterprise Application

	3 Designing and Implementing a Basic WebLogic Enterprise Server Application
	How the Basic University Sample Application Works
	The Basic University Sample Application OMG IDL
	Application Startup
	Browsing Course Synopses
	Browsing Course Details

	Design Considerations for the University Server Application
	Design Considerations for Generating Object References
	Design Considerations for Managing Object State
	The RegistrarFactory Object
	The Registrar Object
	The CourseSynopsisEnumerator Object
	Basic University Sample Application ICF File

	Design Considerations for Handling Durable State Information
	The Registrar Object
	The CourseSynopsisEnumerator Object
	Using the University Database

	How the Basic Sample Application Applies Design Patterns
	Process-Entity Design Pattern
	List-Enumerator Design Pattern

	Additional Performance Efficiencies Built into the WebLogic Enterprise System
	Preactivating an Object with State
	How You Preactivate an Object with State
	Usage Notes for Preactivated Objects

	4 Security and WebLogic Enterprise Server Applications
	Overview of Security and WebLogic Enterprise Server Applications
	Design Considerations for the University Server Application
	How the Security University Sample Application Works
	Design Considerations for Returning Student Details to the Client Application

	5 Integrating Transactions into a WebLogic Enterprise Server Application
	Overview of Transactions in the WebLogic Enterprise System
	Designing and Implementing Transactions in a WebLogic Enterprise Server Application
	How the Transactions University Sample Application Works
	Transactional Model Used by the Transactions University Sample Application
	Object State Considerations for the University Server Application
	Object Policies Defined for the Registrar Object
	Object Policies Defined for the RegistrarFactory Object
	Using an XA Resource Manager in the Transactions Sample Application

	Configuration Requirements for the Transactions Sample Application

	Integrating Transactions in a WebLogic Enterprise Client and Server Application
	Making an Object Automatically Transactional
	Enabling an Object to Participate in a Transaction
	Preventing an Object from Being Invoked While a Transaction Is Scoped
	Excluding an Object from an Ongoing Transaction
	Assigning Policies
	Opening an XA Resource Manager
	Closing an XA Resource Manager

	Transactions and Object State Management
	Delegating Object State Management to an XA Resource Manager
	Waiting Until Transaction Work is Complete Before Writing to the Database

	Notes on Using Transactions in the WebLogic Enterprise System
	User-Defined Exceptions
	Defining the Exception
	Throwing the Exception

	6 Wrapping a BEA TUXEDO Service in an Object
	Overview of Wrapping a BEA TUXEDO Service
	Designing the Object That Wraps the BEA TUXEDO Service
	Creating the Buffer in Which to Encapsulate BEA TUXEDO Service Calls
	Implementing the Operations That Send Messages to and from the BEA TUXEDO Service
	Restrictions

	Design Considerations for the Wrapper Sample Application
	How the Wrapper University Sample Application Works
	Interface Definitions for the Billing Server Application
	Additional Design Considerations for the Wrapper Sample Application
	Sending Requests to the Teller Object
	Exception Handling
	Setting Transaction Policies on the Interfaces in the Wrapper Sample Application
	Configuring the University and Billing Server Applications

	7 Scaling a WebLogic Enterprise Server Application
	Overview of the Scalability Features Available in the WebLogic Enterprise System
	Scaling a WebLogic Enterprise Server Application
	OMG IDL Changes for the Production Sample Application
	Replicating Server Processes and Server Groups
	Replicated Server Processes
	Replicated Server Groups
	Configuring Replicated Server Processes and Groups

	Scaling the Application Via Object State Management
	Factory-based Routing
	How Factory-based Routing Works
	Configuring for Factory-based Routing in the UBBCONFIG file
	Implementing Factory-based Routing in a Factory
	What Happens at Run Time

	Additional Design Considerations for the Registrar and Teller Objects
	Instantiating the Registrar and Teller Objects
	Ensuring That Student Registration Occurs in the Correct Server Group
	Ensuring That the Teller Object is Instantiated in the Correct Server Group

	How the Production Server Application Can Be Scaled Further
	Choosing Between Stateless and Stateful Objects
	When You Want Stateless Objects
	When You Want Stateful Objects

	Index

