EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

BEA WebLogic Enterprise

Getting Started

BEA WebLogic Enterprise 4.2
Document Edition 4.2
July 1999

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.
All other company names may be trademarks of the respective companies with which they are associated.

Getting Sarted

Document Edition Part Number Date Software Version

4.2 861-001001-003 July 1999 BEA WebLogic Enterprise 4.2

Contents

Preface
Purpose of ThiSDOCUMENEcuiiiie et e e Vii
HOowW to USe ThiS DOCUMENTc.eecviecie et s s st enn viii
Related DOCUMENEALIONcuviiecieece ettt ettt sttt Xi
Contact INfOrMatioN........ccviiieeece e e er s Xiv

1. Understanding the WebLogic Enterprise (WLE) Product

Overview Of the WLE ProduCtccuviiiiineince s 1-1
WLE Programming ENVIFONMENT...........coioaiririiie e e 1-4
DL COMPITENS. ...ttt e e e 1-4
Development COMMANGSooieeirierene e ese e s 1-5
AdMINiStration TOOIS.......cccoviiiiieeeee et 1-6
ActiveX Application BUITAEScccooeiiiiniiee e e e 1-9
WLE ODJECE SEIVICESocuiiciecie ettt sttt sttt v et sne e 1-11
WL E COMPONENES......ueiuieiieeieeie et ere sttt e i srees e see e be e e eee e s e e 1-12
[2T0To 1S 1= o N @] o] = o: ST 1-14
[TOP Listener/Handlercoouieiiiiieeieeieeie e 1-15
ORB ...ttt ettt h et r et e en e en s 1-16
TP FFraMEWOTK ..ottt e e 1-17
How WLE Client and Server Applications Interact...........ccoooeeveieieinnecenne, 1-19
Step 1: The server application isinitialized.c.cooooveiiiininniiis 1-20
Step 2: The client application isinitialized.ccocooeeerniecie i 1-21

Step 3: The client application authenticates itself to the WLE domain. .. 1-22
Step 4: The client application obtains a reference to the object needed to

EXECUte itSbUSINESS IOQIC.occueeeiieeeeee e 1-23
Step 5: The client application invokes an operation on the CORBA
(o] o)L= PR SRS 1-25

Getting Started iii

2. Developing WebLogic Enterprise (WLE) Applications

Overview of the Development Process for WLE Applications...........ccoceeeeeee 2-2

The Simpapp Sample APPIICALTIONcc.cie i 2-4

Step 1: Wrting the OM G IDLc.voieieeeeie e 2-5

Step 2: Generating Client Stubs and SKEletoNS.........coovieeieiriieee e 2-6

Step 3: Writing the Server AppliCation ..o 2-8
Writing the Methods That Implement Each Interface’s Operations 2-9
Creating the Server ODJECTuii i 2-1
Defining an Object’s Activation PoliCIeS ..., 2-15

Step 4: Writing the Client Applicationuvveiiiiiiiiii e 2-16

Step 5: Creating a Configuration File...........ccccciiiiiiiii e, 2-1

Step 6: Compiling the Server AppliCation...........coooviiiiiiiiiiiiiie e, 2-2:

Step 7: Compiling the Client AppliCationc.eueieiiieiiiiiiieee e 2-23

Additional WLE Sample Applicationsc..uuuuiiiiiiiiiiiieeee e 2-24
Univeristy Sample AppliCatioNS..........cccuueviieiiiiiiiiieee e 2-24
Java Sample APPlICAtIONS.euiiiiiiiiie e 2-2

3. Using Security

Overview Of the SECUTtY SEIVICEiuiiii ittt 3-
HOW SeCUIItY WOTKS ... 3-
The Security Sample ApPlCAtiONcoir i 3-
DEVEIOPMENT STEPS .. .ttt e e e et e e e e e e e e 3
Step 1: Defining the Security Level in the Configuration File................... 3-6
Step 2: Writing the Client Application............coooiiiiiiiiiieie e 3-7

4. Using Transactions

Overview of the TranSaction SEIVICEuiiiiiiiiieiiiie e 4-
When to Use Transactional ObJectS ..., 4.
What Happens During @ TranSacCtioN...........couaiiiiiiiieie e 4.
Transactions Sample AppPliCationueiiiiii e 4-
DEVEIOPMENT STEPS ... ittt e e sttt ee e e e e e e e eeee e 4
Step 1: Writing the OMG IDL........cooiiiiiiiiiiii e 4-9
Step 2: Defining Transaction Policies for the Interfaces...........ccccccccec. 4-172
Step 3: Writing the Client Application............cociiiiiiiiiiiieee e, 4-13
Step 4: Writing the Server Application ..o, 4-14

Getting Started

Step 5: Creating a Configuration File

Getting Started

\Y

Vi Getting Started

Preface

Purpose of This Document

This document presents an overview of the BEA WebL ogic Enterprise (sometimes
referred to as WLE) product and describes the development process for developing
distributed client/server applications using the WebL ogic Enterprise software. The
Getting Started document does not discuss every feature of the WebL ogic Enterprise
product; instead, it gives a general description of building a simple transactional
application. This document should be used in conjunction with the following BEA
WebL ogic Enterprise documents:

¢
¢
¢
¢

Creating Client Applications
Creating C++ Server Applications
Creating Java Server Applications

Using Server-to-Server Communication

Note: Effective February 1999, the BEA M3 product isrenamed. The new name of

the product is BEA WebL ogic Enterprise (WLE).

Who Should Read This Document

This document isintended for programmers who want to familiarize themselves with
the WebL ogic Enterprise product and create distributed client/server applications
using the WebL ogic Enterprise programming environment.

Getting Started Vii

How This Document Is Organized

The Getting Started document is organized as follows:

4 Chapter 1, “Understanding the WebLogic Enterprise (WLE) Product,” describes
the features, the programming environment, and the architectural components of
the WLE product.

4 Chapter 2, “Developing WebLogic Enterprise (WLE) Applications,” explains
how to build a typical WLE application, using the Simpapp sample application
as an example.

4 Chapter 3, “Using Security,” describes how security is incorporated into a WLE
application. The Security sample application is used as an example.

4 Chapter 4, “Using Transactions,” describes how transactions are incorporated
into a WLE application. The Transactions sample application is used as an
example.

How to Use This Document

This documentGetting Started, is designed primarily as an online, hypertext
document. If you are reading this as a paper publication, note that to get full use fron
this document you should access it as an online document via the Online
Documentation CD for the BEA WebLogic Enterprise 4.2 release.

The following sections explain how to view this document online, and how to print a
copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the following file:
\ doc\w e\ v42\i ndex. ht m

Viii Getting Started

Note: The online documentation requires Netscape Communicator version 4.0 or
later, or Microsoft Internet Explorer version 4.0 or later.

Printing from a Web Browser

Y ou can print a copy of this document, one file at atime, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print.

The Online Documentation CD includes Adobe Acrobat PDF files of all of the online
documents. Y ou can use the Adobe Acrobat Reader to print al or a portion of each
document. On the CD Home Page, click the PDF Files button and scrall to the entry
for the document you want to print.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab

Indicates that you must press two or more keys simultaneously.

italics

Indicates emphasis or book titles.

nonospace
t ext

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#i ncl ude <iostreamh> void main () the pointer psz
chnod u+w *

.doc

Bl TVAP

fl oat

Getting Started iX

Convention

Item

nonospace I dentifies significant wordsin code.
bol df ace Example:
text . .
void commt ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in asyntax line. The braces themsel ves should

never be typed.

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.

Example:

bui |l dobjclient [-v] [-0 nanme]...
[-f firstfile-syntax] [-| lastfile-syntax]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

4 That an argument can be repeated several timesin acommand line

4 That the statement omits additiona optional arguments

4 That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui |l dobjclient [-v] [-0 nanme]...
[-f firstfile-syntax] [-| lastfile-syntax]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

Getting Started

Related Documentation

The following sections list the documentation provided with the BEA WebL ogic
Enterprise software, related BEA publications, and other publications related to the
technology.

BEA WebLogic Enterprise Documentation

The BEA WebL ogic Enterprise information set consists of the following documents:
Installation Guide

C++ Release Notes

Java Release Notes

Getting Started (this document)

Guide to the University Sample Applications
Guide to the Java Sample Applications
Creating Client Applications

Creating C++ Server Applications

Creating Java Server Applications
Administration Guide

Using Server-to-Server Communication
C++ Programming Reference

Java Programming Reference

Java API Reference

JDBC Driver Programming Reference

System Messages

Getting Started Xi

Glossary

Technical Articles

Note: The Online Documentation CD a so includes Adobe Acrobat PDF files of all
of the online documents. Y ou can use the Adobe Acrobat Reader to print all
or aportion of each document.

BEA Publications

Selected BEA TUXEDO Release 6.5 for BEA WebL ogic Enterprise version 4.2
documents are available on the Online Documentation CD.

To access these documents:
1. Click the Other Reference button from the main menu.

2. Click the TUXEDO Documents option.

Other Publications

For more information about CORBA, Java, and related technologies, refer to the
following books and specifications:

Cobb, E. 1997. The Impact of Object Technology on Commercial Transaction
Processing. VLDB Journal, Volume 6. 173-190.

Edwards, J. with DeVoe, D. 1997. 3-Tier Client/Server At Work. Wiley Computer
Publishing.

Edwards, J., Harkey, D., and Orfali, R. 1996. The Essential Client/Server Survival
Guide. Wiley Computer Publishing.

Flanagan, David. May 1997. Java in a Nutshell, 2nd Edition. O’'Reilly & Associates,
Incorporated.

Flanagan, David. September 199&va Examplesin a Nutshell. O’Reilly &
Associates, Incorporated.

Xii Getting Started

Fowler, M. with Scott, K. 1997. UML Distilled, Applying the Sandard Object
Modeling Language. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series.

Jacobson, |. 1994. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley.

Mowbray, Thomas J. and Malveau, Raphael C. (Contributor). 1997. CORBA Design
Patterns, Paper Back and CD-ROM Edition. John Wiley & Sons, Inc.

Orfdi, R., Harkey, D., and Edwards, J. 1997. Instant Corba. Wiley Computer
Publishing.

Orfdli, R., Harkey, D. February 1998. Client/Server Programming with Java and
CORBA, 2nd Edition. John Wiley & Sons, Inc.

Otte, R., Patrick, P., and Roy, M. 1996. Understanding CORBA. Prentice Hall PTR.

Rosen, M. and Curtis, D. 1998. Integrating CORBA and COM Applications. Wiley
Computer Publishing.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Loresen, W. 1991.
Object-Oriented Modeling and Design. Prentice Hall.

The Common Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. Published by the Object Management Group (OMG).

CORBAservices: Common Object Services Specification. Revised Edition. Updated:
November 1997. Published by the Object Management Group (OMG).

Contact Information

The following sections provide information about how to obtain support for the
documentation and the software.

Getting Started Xiii

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about thisversion of the BEA WebL ogic Enterprise product,
or if you have problemsinstalling and running the BEA WebL ogic Enterprise
software, contact BEA Customer Support through BEA WebSupport at

www. beasys. com You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which isincluded in the product
package.

When contacting Customer Support, be prepared to provide the following information:
4 Your name, e-mail address, phone number, and fax number

4 Your company hame and company address

4 Your machine type and authorization codes

4 Thename and version of the product you are using
¢

A description of the problem and the content of pertinent error messages

Xiv Getting Started

CHAPTER

1 Understanding the

WebLogic Enterprise
(WLE) Product

This chapter discusses the following topics:
4 Overview of the WLE Product

¢ WLE Programming Environment

4 WLE Object Services

¢ WLE Components

4 How WLE Client and Server Applications Interact

Overview of the WLE Product

The WLE product extends the Object Request Broker (ORB) model with online
transaction processsing (OLTP) functions. It uses the CORBA standard as a
programming model for developing enterprise applications with high performance,
scalability, and reliability. The WLE deployment infrastructure delivers secure,
transactional, distributed applications in a managed environment.

Getting Started 1-1

1 Understanding the WebLogic Enterprise (WLE) Product

Objects built with the WL E product can be accessed from Web-based applicationsthat
communicate using the Object Management Group (OMG) Internet Inter-ORB

Protocol (110P). I1OP is the standard protocol for communications running on the

Internet or on an enterprise’s Intranet. The WLE product has a native implementatiol
of IIOP, ensuring high-performance, interoperable, distributed-object applications for
the Internet, Intranets, and enterprise computing environments. Figure 1-1 illustrate:s
the WLE product.

Figure1-1 WLE Product

CORBA C++ CORBA Java ActiveX Netscape or JDK
Client Client Client Object Request
Application Application Application Broker
WLE Domain

IIOP Object Request Broker

Object Services

Administration

Application
Programming

TP Monitor and
Messaging

Interfaces

Database
Integration

Server Application
Programming Interfaces

1-2

Getting Started

Overview of the WLE Product

The WLE product provides:

4 A set of integrated components that can be used to build robust, distributed
client/server applications. These components can be accessed from a set of C++,
Java, and COM/OLE/ActiveX application programming interfaces (APISs).

4 Support for hetergeneous client and server applications. The WLE product
supports C++ and Java server applications, as well as C++, Java, and ActiveX
client applications and Java applets.

4 Interoperability with other ORB products. The use of I1OP in the WLE product
allows client and server applications developed with the product to be used with
applications built with CORBA 2.0 compliant ORBs from other vendors.

4 Integration with other enterprise resources, such as Oracle and Microsoft SQL
Server databases and legacy applications.

4 A Simple Network Management Protocol (SNMP) Management Information
Base (MIB) that defines the key management attributes of WLE applications.

4 A CORBA and XA-compatible Transaction Service to ensure the integrity of
your data even when transactions span mulitiple databases and applications.

4 A CORBA-based security service that provides authentication for distributed
objects and their client applications.

4+ Aninterface repository that stores meta information about object types. Meta
information stored for CORBA objects includes information about modules,
interfaces, operations, attributes, and exceptions.

4 Dynamic Invocation Interface (DII) support. DIl alows client applications to
dynamically create reguests for objects that were not defined at compile time.

The topicsin Getting Started describe the features of the WLE product and the
development process for building atransactional application using the WL E software.
Thistopic does not discuss every feature of the WLE product; instead it gives an
general description of building transactional applications. For more information, see
the following on the Online Documentation CD:

Creating Client Applications
Creating C++ Server Applications

Creating Java Server Applications

Getting Started 1-3

1 Understanding the WebLogic Enterprise (WLE) Product

Using Server-to-Server Communication

WLE Programming Environment

The WLE product offers arobust programming environment that makes the
development and management of distributed objects easier. The following topics
describe the features of the programming environment:

4 |IDL Compilers

4 Deveopment Commands
4 Administration Tools
¢

ActiveX Application Builder

IDL Compilers

The WLE product comes with two IDL compilers that make object development
easier:

4 i dl —compiles the OMG IDL file and generates client stub and server skeleton
files required for interface definitions being implemented in C++

4 nBi dl t oj ava—compiles the OMG IDL file and generates client stub and server
skeleton files required for interface definitions being implemented in Java

For a description of how to use the IDL compilers, see the following on the Online
Documentation CD:

Creating Client Applications
Creating C++ Server Applications

Creating Java Server Applications

1-4 Getting Started

WLE Programming Environment

For a description of thei dI

and n8i dlI t oj ava commands, see the following on the

Online Documentation CD:

C++ Programming Reference

Java Programming Reference

Development Commands

Table 1-1 lists the commands that the WL E product provides for developing
application components and managing the Interface Repository.

Table 1-1 Development Commands

Development
Command

Description

bui | dj avaserver

Congtructs a server application JAR file for a Java server
application.

bui | dobj cl i ent

Constructs a C++ client application.

bui | dobj server

Constructs a C++ server application.

bui | dXAJS Constructs an X A resource manager to be used with a Java
server application group.

geni cf Generatesan | mplementation Configuration File (ICF). The ICF
file defines activation and transaction policies for C++ server
applications.

idl2ir Creates the | nterface Repository and loadsinterface definitions
into it.

ir2idl Shows the content of the Interface Repository.

i rdel Deletes the specified object from the Interface Repository.

Getting Started 1-5

1 Understanding the WebLogic Enterprise (WLE) Product

For adescription of how to use the development commands to develop client and
server applications, see the following on the Online Documentation CD:

Creating Client Applications
Creating C++ Server Applications
Creating Java Server Applications

For adescription of the development commands, see the following on the Online
Documentation CD:

C++ Programming Reference

Java Programming Reference

Administration Tools

The WLE product provides acomplete set of tools for administering your WLE
environment. Y ou can manage the WL E application through commands, through a
graphical user interface, or by including administration utilitiesin a script.

Y ou can usethe commandslisted in Table 1-2 to perform administration tasksfor your
WLE application.

Table 1-2 Administration Commands

Administration Description

Command

t madmi n Displays information about current configuration parameters.
t mboot Activates the WLE application referenced in the specified

configuration file. Depending on the options used, the entire
application or parts of the application are started.

tnconfig Dynamically updates and retrieves information about the
configuration of a WLE application.

tm oadcf Parses the configuration file and loads the binary version of the
configuration file.

1-6 Getting Started

WLE Programming Environment

Administration Description
Command
t nshut down Shuts down a set of specified server applications, or removes

interfaces from a configuration file.

t nunl oadcf Unloads the configuration file.

The Administration Console is a Java-based applet that you can download into your
Internet browser and use to remotely manage your WebL ogic Enterprise applications.
The Administration Console allows you to perform administration tasks, such as
monitoring system events, managing system resources, creating and configuring
administration objects, and viewing system statistics. Figure 1-2 shows the main
window of the Administration Console.

Getting Started 1-7

1 understanding the WebLogic Enterprise (WLE) Product

Figure1-2 Administration Console M ain Window

E3BEA Administration Console

Domain Settings Tools Help
| o 4 | BB m | & |
Refrazh Search Activate Deact Migrate Log file Event Stats Settingz CS Help

— Caonfiguration Tool — T_DOMAIM

B s1TET / SACHIN General | security | Limits 1 | Limits 2 | Timers | Al e
ﬁﬁroups
ﬁtlients
Qinevices Damain 10 |
G5 Handiers .
e G Groups Master, Backup Machine: |
E"ﬁs.é:-vers temory Model: | Sinole Machine =
B simps eve [GROUP1/2] _
TP simpser. sue [GROUF1] IPC Key:
B BEL eve [SITE1/0] Object State:
[]‘ﬁrlSL.e:-:e [GROUP1/1])
License Camponents:
[]‘ﬁTMFFNAME.EHe [GROUPZ2/2]
BT TMFFNAME. ve [GROLPZ2/3] License Expiration Date:
[}ﬁrTMFFNAME.exe [GROUP2/M] T T— 1
[}ﬁrTMSYSEVT.EHE [GROUPZ2/] :
E]—‘ﬁ'se,wick}.ﬂe [GROUPT/S] License Serial Mumber:
B-EF simpfactorys [GROUPT /3]
- B Cr i T okl _%* Change ‘ Cancel ‘ Mew.. | Delete |

3| |Java dpplet Window

Inaddition, aset of utilitiescalledthe AdminAPI isprovided for directly accessing and
manipulating system settings in the Management Information Bases (MIBs) for the
WLE product. The advantage of the AdminAPI isthat it can be used to automate
administrative tasks, such as monitoring log files and dynamically reconfiguring an
application, thus eliminating the need for human intervention.

For information about the Administration commands, see the Adminstration Guide on
the Online Documentation CD

1-8 Getting Started

WLE Programming Environment

For a description of the Administration Console and how it works, see the
Administration Guide on the Online Documentation CD and the online help that is
integrated into the Administration Console graphical user interface (GUI).

For information about the AdminAPI, seethe BEA TUXEDO Reference on the Online
Documentation CD.

ActiveX Application Builder

The ActiveX Application Builder is a development tool that you use with a client
development tool (such as Visual Basic) to select which CORBA interfacesinaWLE
domain you want your ActiveX client application to interact with. In addition, you use
the ActiveX Application Builder to create Automation bindings for CORBA
interfaces, and to create packages for deploying ActiveX views of CORBA objectsto
client machines.

Figure 1-3 shows the ActiveX Application Builder main window.

Getting Started 1-9

1 Understanding the WebLogic Enterprise (WLE) Product

Figure 1-3 ActiveX Application Builder Main Window
El Builder - Services

H=] B3
File Edit M“iew Tools MWindow Help
mlE =@ alal 5] 2]l
B Services M=l E || & Workstation Views
Eaﬁ =1 OLEAutomation
= Interfaces -2l DICosLifeCycle_FactoryFinder
=1 UniversityB

[:I DISimpleFactoryLibrary

w1 DISimpleLibrary

=<l DITobj_FactoryFinder

=-0 DlUniversityB_CourseSynopsisEnum
Elgﬁ DllUniversityB_CourseSynopsisEn

-zl CourseSynopsisEnurmeratar

=-AP get_hext_n
’ﬂ) nurmber_ta_get
i number_remaining

B-§P destray
IZ—ZIgﬁ Fegistrar EHﬁ“ get_nesd_n
H-AF get_courses_details % number_to_get
- get_courses_synopsis - @ number_remaining
w28 RegistrarFactory -1 DiUniversityB_RegistrarFactaryLilirar
&1 Ohjects

=-0 DIUniversityB_RegistrarLibrary
Elﬁ DlUniversityB_Registrar
--ﬂﬁ“ get_courses_details
--'ﬁ' get_courses_synopsis

For Help, press F1

For adescription of the ActiveX Application Builder and how it works, see the online
help that isintegrated into the ActiveX Application Builder graphical user interface

(GUI). For adescription of how ActiveX client applications use CORBA objects, see
Creating Client Applications on the Online Documentation CD.

1-10 Getting Started

WLE Object Services

WLE Object Services

The WLE product includes a set of environmental objectsthat provide object services
to client applicationsin aWLE domain. Y ou access the environmental objectsthrough
a bootstrapping process that accesses the services in a particular WLE domain.

The following services are provided:

4 Object Life Cycle service

The Object Life Cycle service is provided through the FactoryFinder
environmental object. The FactoryFinder object isa CORBA object that can be
used to locate a factory, which in turn can create object references for CORBA
objects. Factories and FactoryFinder objects are implementations of the
CORBAservices Life Cycle Service. WLE applications use the Object Life
Cycle service to find object references.

For information about using the Object Life Cycle Service, see the topic “How
WLE Client and Server Applications Interact.”

4 Security service

The Security service is accessed through the SecurityCurrent environmental
object. The SecurityCurrent object is used to authenticate a client application
into a WLE domain with the proper security. The WLE software provides an
implementation of the CORBAservices Security Service.

For information about using security, see the topic “Using Security.”

4 Transaction service

The Transaction service is accessed through either the TransactionCurrent
environmental object or the UserTransaction object. The TransactionCurrent
object allows a client application to participate in a transaction. The WLE
software provides an implementation of @®RBAservices Object Transaction
Service (OTS). In addition, the UserTransaction object provides access to Sun
Microsystems, Inc.’s Java Transaction API (JTA) defined in the

j avax. transacti on package.

For information about using transactions, see the topic “Using Transactions.”

Getting Started -1

1 Understanding the WebLogic Enterprise (WLE) Product

4+ Interface Repository service

The Interface Respository service is accessed through the | ntefaceRepository
object. The InterfaceRepository object is a CORBA object that contains interface
definitions for all the available CORBA interfaces and the factories used to
create object references to the CORBA interfaces. The Interface Repository
object is used with client applicationsthat use DII.

For information about using DI, see Creating Client Applications on the Online
Documentation CD.

The WLE software provides environmental objects for the following programming
environments:

¢ C++
¢ Java

4 Automation (used by ActiveX client applications)

WLE Components

1-12

This section provides an introduction to the following WL E components:
4 Bootstrap Object

4 |IOP Listener/Handler

4 ORB

4 TP Framework

Figure 1-4 illustrates the components in a WL E application.

Getting Started

WLE Components

Figure1-4 Componentsin aWLE Application

WLE Domain
Server Machine(s)
Server Application [
FactoryFinder TP
Object Framework
Client Machine
SecurityCurrent ngr)t_able
Client Application Object Py JetCt
apter
Bootstrap P
Object
TransactionCurrent TransactionCurrent Factory
Object Reference Object
SecurityCurrent BOOth"aP
i . Object
Object Reference InterfaceRepository 1ec
Object
[
[
IIOP Listener/
Handler
IIOP

«

Object Request Broker

Getting Started 1-13

1 Understanding the WebLogic Enterprise (WLE) Product

Bootstrap Object

1-14

The Bootstrap object establishes communication between aclient application and a
WLE domain. A domain is simply away of grouping objects and services together as
amanagement entity. A WLE domain has at |east one 11OP Listener/Handler and is
identified by a name. One client application can connect to multiple WLE domains
using different Bootstrap objects.

One of thefirst things that client applications do after startup is create a Bootstrap
object by supplying the host and port of the IIOP Listener/Handler as a parameter to
its constructor, asfollows:

/'l host: port

For example, //nyser ver : 4000

Theclient application then usesthe Bootstrap object to obtain referencesto the objects
inaWLE domain. Once the Bootstrap object is instantiated, the

resol ve_i ni tial _ref er ences methodisinvoked by the client application, passing
inastring i d,toobtainareferenceto the objectsin the domain that provide CORBA
services. Thevalid valuesfor st ri ng | d are FactoryFinder, TransactionCurrent,
SecurityCurrent, and InterfaceRepository.

Figure 1-5 illustrates how the Bootstrap object worksin a WLE domain.

Getting Started

WLE Components

Figure1-5 How the Bootstrap Object Works

Client .
L WLE Domain
Application
Bootstrap FactoryFinder
Object V\ Object
resol ve_initial _references() \\) 1HOP TransactionCurrent
Listener/Handler Object

FactoryFinder

‘ SecurityCurrent
Object Reference

Object

TransactionCurrent

. InterfaceRepository
Object Reference

Object

SecurityCurrent
Object Reference

InterfaceRepository
Object Reference

IIOP Listener/Handler

The I1OP Listener/Handler is a process that receives the client request, which is sent
using I1OP, and delivers that request to the appropriate server application. The [|OP
Listener/Handler serves as a communication concentrator, providing a critical
scalability feature. The 11 OP Listener/Handler removes from the server application the
burden of maintaining client connections. For information about configuring the 1OP
Listener/Handler, see the Adminstration Guide on the Online Documentation CD.

Getting Started 1-15

1 Understanding the WebLogic Enterprise (WLE) Product

ORB

1-16

The ORB serves asan intermediary for requests that client applications send to server
applications, so that client applications and server applications do not need to contain
information about each other. The ORB isresponsible for all the mechanismsrequired
to find the implementation that can satisfy the request, to prepare an object’s

implementation to receive the request, and to communicate the data that makes up the
reguest. The WLE product providesa C++ ORB and a BEA version of the Java IDL
ORB provided with the Java Development Kit from Sun Microsystems, Inc.

Figure 1-6 shows the relationship between an ORB, aclient application, and a server
application.

Figure1-6 TheORB in a Client/Server Environment

Client Server
Application Application
Re (uests Directs Directs Ret J
que Response Request ewrns
Service

Response

\ to Client to Server

Object Request Broker

When the client application uses [1OP to send a request to the domain, the ORB
performs the following functions:

4 Validates each reguest and its arguments to ensure that the client application
supplied all the required arguments.

4 Manages the mechanisms required to find the CORBA object that can satisfy the
client application’s request. To do this, the ORB interacts with the Portable
Object Adapter (POA). The POA prepares an object's implementation to receive
the request and communicates the data in the request.

Getting Started

WLE Components

4 Marshals data. The ORB on the client machine writes the data associated with
the request into a standard form. The ORB receives this data and converts it into
the format appropriate for the machine on which the server application is
running. When the server application sends data back to the client application,
the ORB marshals the data back into its standard form and sends it back to the
ORB on the client machine.

TP Framework

The TP Framework provides a programming model that achieves high levels of
performance while shielding the application programmer from the complexities of the
CORBA interfaces. The TP Framwork supports the rapid construction of WLE
applications, which makes it easier for application programmers to adhere to design
patterms associated with successful TP applications.

The TP Framework interacts with the Portable Object Adapter (POA) and the WLE
application, thus eliminating the need for direct POA callsin an application. In
addition, the TP Framework integrates transactions and state management into the
WLE application.

The application programmer uses an Application Programming Interface (API) that
automates many of the functions required in a standard CORBA application. The
application programmer is responsible only for writing the business logic of the WLE
application and overriding default actions provided by the TP Framework.

The TP Framework API provides routines that perform the following functions
required by a CORBA application:

Initializing the server application and executing startup and shutdown routines
Creating object references

Registering and unregistering object factories

Managing objects and object state

Tying the server application to WLE system resources

Getting and initializing the ORB

* & & & & o o

Performing object housekeeping

Getting Started ~ 1-17

1 Understanding the WebLogic Enterprise (WLE) Product

The TP Framework ensures that the execution of a client request takes placein a
coodinated, predictable manner. The TP Framework calls the objects and services
available in the WLE application at the appropriate time, in the correct sequence. In
addition, the TP Framework maximizes the reuse of system resources by objects.
Figure 1-7 illustrates the TP Framework.

Figure1-7 The TP Framework

WLE Domain

Server Machine

TP Framework
Server Object

TP Object

CORBA
Object
Implementations

[

Factory

Portable Object
Adapter

The TP Framework isnot asingle object, but israther a collection of objects that work
together to manage the CORBA objects that contain and implement your WLE
application’s data and business logic.

1-18 Getting Started

How WLE Client and Server Applications Interact

One of the TP Framework objects is the Server object. The Server object isa
user-written programming entity that implements operationsthat perform tasks such as
initializing and releasing the server application; for server applicationsimplemented in
C++, the TP Framework instantiates the CORBA objects needed to satisfy a client
request.

If aclient request that requires an object that is not currently active and in-memory in
the server application arrives, the TP Framework coordinatesall the operationsthat are
required to instantiate the object. This includes coordinating with the ORB and the
POA to get the client request to the appropriate object implementation code.

For examples of programming with the TP Framework, see Creating C++ Server
Applications and Creating Java Server Applications on the Online Documenation CD.

How WLE Client and Server Applications
Interact

The interaction between WLE client and server applications includes the following
steps:

The server application isinitialized.
The client applicationisinitialized.

The client application authenticates itself to the WL E domain.

A W dpoR

The client application obtains a reference to the object needed to execute its
business logic.

5. The client application invokes an operation on the CORBA object.

The following topics describe what happens during each step.

Getting Started 1-19

1 Understanding the WebLogic Enterprise (WLE) Product

Step 1: The server application is initialized.

The system administrator enters the t nboot command on a machinein the WLE
domain to start the WL E server application. The TP Framework invokes the
i nitialize operationinthe Server object to initialize the server application.

WLE Server Application

TP Framework

Server Object

Initialize server {
Regi ster factories;

}

During the initiali zation process, the Server object does the following:

1. Getsthe Bootstrap object and areference to the FactoryFinder object.
2. Typicaly registers any factories with the FactoryFinder object.

3. Optionally gets an object reference to the ORB.
4

. Performs any process-wide initialization.

1-20 Getting Started

How WLE Client and Server Applications Interact

Step 2: The client application is initialized.

During initialization, the client application uses the Bootstrap object in the domain to
obtain initial references to the environmental objects available in the domain.

WLE Client Application

Instantiate the Bootstrap object;
Resol ve initial references; Object

Bootstrap

The Bootstrap object returns references to the FactoryFinder, SecurityCurrent,
TransactionCurrent, and | nterfaceRepository objects in the WLE domain.

Getting Started 1-21

1 Understanding the WebLogic Enterprise (WLE) Product

Step 3: The client application authenticates itself to the
WLE domain.

If the WLE domain has a security model in effect, the client application needs to
authenticateitself to the WL E domain before it can invoke any operationsin the server
application. To authenticate itself to the WLE domain, the client application:

1. Usesthe Bootstrap object to obtain areference to the SecurityCurrent object.

2. Invokesthel ogon operation of the Pri nci pal Aut hent i cat or object, which is
retrieved from the SecurityCurrent object.

WLE Server Application

TP Framework
Server Object

WLE Client Application
Initialize server {

I nstanti ate f[he Boot strap obj ect; Regi ster factories:
Resolve initial references; }
Log on;

Fi nd one fact ory\

FactoryFinder
Object

R

SecurityCurrent
Object

1-22 Getting Started

How WLE Client and Server Applications Interact

Step 4: The client application obtains a reference to the
object needed to execute its business logic.

The client application needs to perform the following steps:

1. Obtain areference to the factory for the object it needs.

For example, the client application needs a reference to the Si npl eFact ory
object. The client application obtains this factory reference from the
Fact oryFi nder object, shown in the following figure.

WLE Server Application

TP Framework
Server Object

WLE Client Application

Initialize server {

Instantiate the Bootstrap object; Regi ster factories;

Resol ve initial references; }

Log on;
Fi nd one factory\
FactoryFinder
Object
SecurityCurrent
Object

Getting Started 1-23

1 Understanding the WebLogic Enterprise (WLE) Product

2. Invokethe Si npl eFact or y object to get areference to the Si npl e object.
If the Si npl eFact or y object is not active, what happens next depends on the
programming language in which the server application isimplemented:

4 If C++, the TP Framework instantiates the Si npl eFact ory object by
invoking the Ser ver : : cr eat e_ser vant method on the Server object,
shown in the following figure.

4 InJava, the WLE system instantiates the Si npl eFact ory object
dynamically.

WLE Server Application

TP Framework
Server Object

Initialize server {
Regi ster factories;

}
WLE Client Application 4Server::create_servant() {
}
Instantiate the Bootstrap object;
Resol ve initial references; i
Log on;
Find a factory by ID; SimpleFactory

1-24 Getting Started

How WLE Client and Server Applications Interact

3. The TP Framework invokesthe acti vat e_obj ect andfi nd_si npl e operations
on the Si npl eFact or y object to get areference to the Si npl e object, shown in
the following figure.

WLE Server Application

TP Framework
Server Object

Initialize server {
Regi ster factories;

}

WLE Client Application

Instantiate the Bootstrap object;
Resol ve initial references;

Log on;
F! nd a factory by ID; [SimpleFactory
Fi nd_si npl e; -

{

Simple

The Si npl eFact or y object then returns the object reference to the Si npl e object to
the client application.

Note: Because the TP Framework activates objects by default, the Simpapp sample
application does not implicitly usethe act i vat e_obj ect operation for the
SimpleFactory object.

Step 5: The client application invokes an operation on
the CORBA object.

Using the reference to the CORBA object that the factory has returned to the client
application, the client application invokes an operation on the object. For example,
now that the client application has an object reference to the Si npl e object, the client
application can invokethet o_upper operationonit. Theinstance of the Simple object
required for the client request is created as shown in the following figure.

Getting Started 1-25

1 Understanding the WebLogic Enterprise (WLE) Product

WLE Server Application

/ TP Framework

Server Object

Initialize server {
Regi ster factories;

N
- — Server::create_servant() {

WLE Client Application }
Instantiate the Bootstrap object;
Resol ve initial references; A 4
Log on; IR E— SimpleFactory
Find a factory by ID; «—— |
Fi nd_si npl e; i
to_upper(); —m8 — |

1> Simple

If the server application were implemented in Java, the Si npl e object required
for the client request isinstantiated dynamically by the WLE system.

1-26 Getting Started

How WLE Client and Server Applications Interact

4. The TP Framework invokesthe act i vat e_obj ect operation on the Si npl e
object and the factory object to allow the object to initialize any object state
necessary, shown in the following figure.

WLE Server Application

/ TP Framework

Server Object

Initialize server {
Regi ster factories;

Ny
- — Server::create_servant () {

WLE Client Application }
Instantiate the Bootstrap object;
Resol ve initial references; v
Log on; | 1 » SimpleFactory
Find a factory by ID; «— |
Fi nd_si npl e; i
to_upper();

Simple

> activate_object {...}
to_upper() {...}

Object state initialization often involves reading durable state information from
disk for that object.

5. The TP Framework invokes the operation on the object, returning the response to
the client application.

Getting Started ~ 1-27

1 Understanding the WebLogic Enterprise (WLE) Product

1-28 Getting Started

CHAPTER

2

Developing WebLogic
Enterprise (WLE)
Applications

This chapter discusses the following topics:

Overview of the Development Process for WLE Applications
The Simpapp Sample Application

Step 1: Writing the OMG IDL

Step 2: Generating Client Stubs and Skeletons

Step 3: Writing the Server Application

Step 4: Writing the Client Application

Step 5: Creating a Configuration File

Step 6: Compiling the Server Application

Step 7: Compiling the Client Application

* & & & & O ¢ > o o

Additional WLE Sample Applications

Getting Started

2 Developing WebLogic Enterprise (WLE) Applications

Overview of the Development Process for
WLE Applications

Table 2-1 outlines the development process for WL E applications.

Table 2-1 Development Process for WL E Applications

Step Description

1 Write the Object M anagement Group (OMG) Interface Definition
Language (IDL) for each CORBA interface you want to use in your
WLE application.

2 Generate the client stubs and the skeletons.

3 Write the server application.

4 Write the client application.

5 Create a configuration file.

6 Compile the server application.

7 Compile the client application.

The stepsin the development process are described in the following topics.

Figure 2-1 illustrates the process for developing WLE applications.

2-2 Getting Started

Overview of the Development Process for WLE Applications

Figure2-1 Development Process for WLE Applications

Skeletons

Server Description
File or
Implementation
Configuration File

Write method

ntations.

rver object.

Compile server
application code.

UBBCONFIG

Method
Implementations

Server
+ | Java Archive
File*

Interface Specifications n8i di t gjl ava
in OMG IDL ‘ ori
Command
Client Stubs
A
Write client impleme
application code.
2 Write Sel
Compile client
application code.
r—-——"""""=—""=""—"""="—"=""—"—-"- 1 r—-—————=
| | |
: Client Running : :
| Stlet;] + Client | | | Skeleton
ubs Code	

Client Applicatio

n

Object Request Broker

* For Java server applications only

Server Application

Getting Started

2-3

2 Developing WebLogic Enterprise (WLE) Applications

The Simpapp Sample Application

Throughout this topic, the Simpapp sample application is used to demonstrate the
development steps. C++ and Java versions of the Simpapp sample application are
available.

The server application in the Simpapp sample application provides an implementation
of a CORBA object that has the following two methods:

4 Theupper method accepts a string from the client application and converts
the string to uppercase letters.

4 Thel ower method accepts a string from the client application and converts
the string to lowercase letters.

Figure 2-2 illustrates how the Simpapp sample application works.

Figure2-2 Simpapp Sample Application

Server
Application

Si mpl eFact ory
7 find_sinple()

Client /
Application
\ Si npl e
t o_upper ()
to | ower()

The sourcefilesfor the C++ and Java versions of the Simpapp sample application are
located in the\ sanpl es\ cor ba\ si rpapp and \ sanpl es\ cor ba\ si npap_j ava
directories of the WLE software. Instructions for building and running the Simpapp

2-4 Getting Started

Step 1: Writing the OMG IDL

sample applications are in ther eadne filesin the directories. For the instructions for
building and running the Java Simpapp sample application, see Guide to the Java
Sample Applications on the Online Documentation CD.

Note: The Simpapp sample applications demonstrate building C++ client and server
applications and Java client and server applications. For information about
building asimple ActiveX client application, see the description of the Basic
sample application in the Guide to the Univer sity Sample Applications on the
Online Documentation CD.

The WLE product offers a suite of sample applications that demonstrate and aid in the
development of WLE applications. For an overview of the available sample
applications, see the topic “Additional WLE Sample Applications.”

Step 1: Writing the OMG IDL

The first step in writing a WLE application is to specify all of the CORBA interfaces
and their methods using the Object Management Group (OMG) Interface Definition
Language (IDL). An interface definition written in OMG IDL completely defines the
CORBA interface and fully specifies each operation’s arguments. OMG IDL is a
purely declarative language. This means that it contains no implementation details.
Operations specified in OMG IDL can be written in and invoked from any language
that provides CORBA bindings.

The Simpapp sample application implements the CORBA interfaces listed in
Table 2-2.

Table 2-2 CORBA Interfacesfor the Simpapp Sample Application

Interface Description Operation

Si npl eFactory Creates object referencesto the find_si npl e()
Si npl e object

Sinpl e Converts the case of astring to_upper ()

to_| ower()

Getting Started 2-5

2 Developing WebLogic Enterprise (WLE) Applications

Listing 2-1 showsthesi npl e. i dlI filethat definesthe CORBA interfacesin the
Simpapp sample application. The same OMG IDL fileis used by both the C++ and
Java Simpapp sample applications.

Listing2-1 OMG IDL Codefor the Simpapp Sample Application

#pragma prefix "beasys. cont

interface Sinple

{
//Convert a string to | ower case (return a new string)
string to_lower(in string val);
// Convert a string to upper case (in place)
void to_upper(inout string val);
I
interface SinpleFactory
{
Sinple find_sinple();
b

Step 2: Generating Client Stubs and
Skeletons

2-6

Theinterface specification defined in OMG IDL isused by the IDL compiler to
generate client stubsfor the client application, and skeletons for the server application.
The client stubs are used by the client application for all operation invocations. Y ou
use the skeleton, along with the code you write to create the server application that
implements the CORBA objects.

During the development process, use one of the following commands to compile the
OMG IDL file and produce client stubs and skeletons for WLE client and server
applications:

4 If you are creating C++ client and server applications, use thei di command.
For adescription of thei dI command, see C++ Programming Reference on the
Online Documentation CD.

Getting Started

Step 2: Generating Client Stubs and Skeletons

4 If you are creating Java client and server applications, use the n8i dl t oj ava
command. For a description of the n8i dI t oj ava command, see Java
Programming Reference on the Online Documentation CD.

Table 2-3 liststhe files that are created by thei dI command.

Table 2-3 Files Created by the I DL Command

File Default Name

Description

Client stub file application _c.cpp

Contains generated code for sending a request.

Client stub header file application_c.h

Contains class definitions for each interface and type
specified in the OMG IDL file.

Skeleton file application_s.cpp

Contains skeletons for each interface specified in the OMG
IDL file. During run time, the skeleton maps client requests
to the appropriate operation in the server application.

Skeleton header file application_s.h

Contains the skeleton class definitions.

Implementation file application_i.cpp

Contains signatures for the methods that implement the
operations on the interfaces specified in the OMG IDL file.

Implementation application_i.h
header file

Contains theinitia class definitions for each interface
specified in the OMG IDL file.

Table 2-4 liststhe files that are created by the n8i dI t oj ava command.

Table 2-4 Files Created by the n8i dI t oj ava Command

File Default Name

Description

Base interface class interface.java
file

Contains an implementation of the interface, written
in Java.

Copy thisfileto create anew file, and add your
business logic to the new file. By convention in our
samples and in this document, we name thisfile
interfacel npl.j ava, substituting the actual
name of the interface in the file name. We call this
new file an object implementation file.

Getting Started 2-7

2 Developing WebLogic Enterprise (WLE) Applications

File Default Name Description
Client stub file _interfaceStub.java Contains generated code for sending a request.
Server skeleton file _interfacel npl Base. java ContainsJava skeletonsfor each interface specified

inthe OMG IDL file. During run time, the skeleton
maps client requests to the appropriate operation in
the Java server application during run time.

Holder classfile interfaceHol der.java Containstheimplementation of theHolder class. The
Holder classprovidesoperationsfor out andi nout
arguments, which CORBA has, but which do not
map exactly to Java.

Helper classfile interfaceHel per.java Containstheimplementation of the Helper class. The
Helper classprovidesauxiliary functionality, notably
the nar r owmethod.

Step 3: Writing the Server Application

The WLE software supports C++ and Java server applications. The stepsfor creating
server applications are:

1. Write the methods that implement each interface’s operations.
2. Create the server object.
3. Define object activation policies.

For a detailed description of how to create server applications, see the following on th
Online Documentation CD:

4 Creating C++ Server Applications

4 Creating Java Server Applications

2-8 Getting Started

Step 3: Writing the Server Application

Writing the Methods That Implement Each Interface’s
Operations

After you compile the OMG IDL file, you need to write methods that implement the
operationsfor each interfacein thefile. Animplementation file contains the following:

4 Method declarations for each operation specified in the OMG IDL file

4 Your application’s business logic

4 Constructors for each interface implementation (implementing these is optional)
¢

Theactivat e_obj ect anddeacti vat e_obj ect methods (optional)

Within theact i vat e_obj ect anddeacti vat e_obj ect methods, you write

code that performs any particular steps related to activating or deactivating an
object. For information about activating and deactivating objectCsting

C++ Server Applications or Creating Java Server Applications on the Online
Documentation CD.

You can write the implementation file by hand. However, both the and

n8i dl t oj ava commands have an option that generates a template for implementation
files. For information about using this template, Segating C++ Server Applications

or Creating Java Server Applications on the Online Documentation CD.

You also need to write an implementation for the factory that is used to create the
objects in your application. You can include the implementation for the factory object
in the same file with the other implemenations in your WLE application, or youu can
include it in a seperate file.

Writing an implementation for a factory object is different than writing an
implementation for other types of objects, because you need to define a specific set of
information for the factory. For more information about writing implementations for
factories, se€reating C++ Server Applications or Creating Java Server Applications

on the Online Documentation CD.

Listing 2-2 includes the C++ implementations of the Simple and SimpleFactory
interfaces in the Simpapp sample application.

Getting Started 2-9

2 Developing WebLogic Enterprise (WLE) Applications

2-10

Listing 2-2 C++ Implementation of the Simpleand SimpleFactory Interfaces

/1 Inmplementation of the Sinple_i::to_|ower nmethod which converts
/1l a string to | oner case.

char* Sinple_i::to_lower(const char* val ue)

{
CORBA: : String_var var_| ower = CORBA::string_dup(val ue);

for (char* ptr = v_lower; ptr && *ptr; ptr++) {
*ptr = tol ower(*ptr);
}

return var_lower. _retn();

}

/1 Inmplementation of the Sinple_i::to _upper nethod which converts
/1l a string to upper case.

void Sinple_i::to_upper(char*& val uel)

{
CORBA: : String_var var_upper = val ue;
var _upper = CORBA: :string_dup(var_upper.in());
for (char* ptr = var_upper; ptr && *ptr; ptr++) {
*ptr = toupper(*ptr);
}
val ue = var _upper._retn();
}

/1 lnplementation of the SinpleFactory_i::find_sinple nethod which
/] creates an object reference to a Sinple object.

Sinmple_ptr SinpleFactory_i::find_sinple()

CORBA: : bj ect _var var_sinmple_oref =
TP: : creat e_obj ect _reference(
_tc_Sinmple->id(),
"sinple",
CORBA: : NVList:: _nil()

Getting Started

Step 3: Writing the Server Application

Listing 2-3includesthe Javaimplementation of the Simpleinterface from the Simpapp
sample application.

Listing 2-3 Java Implmentation of the Simple Interface

i mport com beasys. Tobj . TP;
/**The Sinplelnpl class inplenments the to_upper and to_| ower

/**met hods.

public class Sinplelnpl extends _SinplelnplBase
{

/*Converts a string to upper case.*/

public void to_upper(org.ong. CORBA. Stri ngHol der dat a)

{
if (data.value == null)
return;
dat a. val ue = data. val ue. t oUpper Case();
return;
}

/*Converts a string to | ower case.*/
public String to_lower(String data)
if (data == null)

return null;
return data.tolLower Case();

}

Listing 2-4 includes the Java implementation of the SimpleFactory interface from the
Simpapp sample application.

Listing 2-4 Java Implementation of the SimpleFactory | nterface

i mport com beasys. Tobj . TP;
/**The Sinpl eFactorylnpl class provides code to create the Sinple

/**obj ect .

public class SinpleFactoryl npl extends _Si npl eFactoryl npl Base

Getting Started 2-11

Developing WebLogic Enterprise (WLE) Applications

{

/*Create an object reference to a Sinple object*/

public Sinple find_sinple()
{
org. ong. CORBA. Obj ect sinple_oref =
TP. creat e_obj ect _reference(
Si mpl eHel per.id(), //Repository ID
“simple”, /lobject id
null /Irouting criteria

/ISend back the narrowed reference
return SimpleHelper.narrow(simple_oref);

Creating the Server Object

The Server object performsthe following tasks:

4 Initializes the server application, including registering factories, allocating
resources needed by the server application, and, if necessary, opening an XA
resource manager

4 Performs server application shutdown and cleanup procedures

4 In C++ server gpplications, instantiates CORBA objects needed to satisfy client
requests

In C++ server applications, the Server object is already instantiated and a header file
for the Server object is available. Y ou implement methods that initialize and release
the server application, and, if desired, create servant objects.

Getting Started

Step 3: Writing the Server Application

Listing 2-5 includesthe C++ code from the Simpapp sample application for the Server
object.

Listing 2-5 C++ Server Object

static CORBA:: Object _var static_var_factory_reference;

/1 Method to start up the server

CORBA: : Bool ean Server::initialize(int argc, char* argv[])

{
/1l Create the Factory (bject Reference

static_var_factory reference =
TP: : create_object _reference(
_tc_SinpleFactory->id(),
"sinple_factory",
CORBA: : NVList:: _nil ()
)

/1 Register the factory reference with the FactoryFi nder

TP: :regi ster_factory(
static_var_factory reference.in(),
_tc_SinpleFactory->id()
)i
return CORBA_TRUE;

/1 Method to shutdown the server

void Server::release()

{
/1 Unregister the factory.

try {
TP: :unregi ster_factory(

static_var_factory reference.in(),
_tc_Si npl eFactory->i d()
)i
}

catch (...) {
TP: :userlog("Couldn’t unregister the SinpleFactory");
}

/! Method to create servants

Tobj _Servant Server::create_servant(const char*

Getting Started ~ 2-13

2 Developing WebLogic Enterprise (WLE) Applications

interface_repository_id)

{
if (!strcnp(interface_repository_id,
_tc_SinpleFactory->id())) {
return new Sinpl eFactory_i();
if (!strcnp(interface_repository_id,
_tc_Sinple->id())) {
return new Sinple_i();
}
return O;
}

In Java server applications, you implement the Server object by creating a new class
that derivesfromthecom beasys. Tobj . Server classand overridesthei nitial i ze
and r el ease methods. In the server application code, you can also write a public
default constructor for the Server object.

Listing 2-6 includes the Java code from the Simpapp sample application for the server
object.

Listing 2-6 Java Server Object

i nport com beasys. Tobj. TP;

public class Serverlnpl
ext ends com beasys. Tobj . Server
{

static org.ong. CORBA (hject factory_reference;

/**Method to start up the server*/

public boolean initialize(String[] args)

{

try {
/1l Create the factory object reference.

factory reference = TP.create_object _reference(
Si npl eFact oryHel per.id(),
"sinple_factory",
nul |

)
/1 Register the factory reference with the FactoryFi nder

TP.regi ster _factory(
factory_reference,

2-14 Getting Started

Step 3: Writing the Server Application

Si npl eFact or yHel per.id()
)i

return true;

} catch (Exception e){
TP.userlog("Couldn't initialize server: " +
e. get Message());
e.printStackTrace();
return fal se;

}

/** Method to shutdown the server*/

public void rel ease()

{
try {
TP. unregi ster_factory(
factory_reference,
Si npl eFact or yHel per.id()

)
} catch (Exception e){
TP. userl og(" Coul dn’t unregi ster the
Si nmpl eFactory: " + e.get Message());
e.printStackTrace();

Defining an Object’s Activation Policies

Aspart of server development, you determine what events cause an object to be
activated and deactivated by assigning object activation policies, as follows:

4 For C++ server applications, specify object activation policiesin the
Implementation Configuration File (ICF). A template ICF fileis created by the
geni cf command.

4 For Javaserver applications, specify object activation policiesin the Server
Description File, written in Extensible Markup Language (XML).

Note: Y ou also define transaction policies in the ICF and Server Description Files.
For information about using transactions in your WLE application, see the
topic “Using Transactions.”

Getting Started ~ 2-15

2 Developing WebLogic Enterprise (WLE) Applications

The WLE software supports the following activation policies:

Activation Policy Description

nmet hod Causes the object to be active only for the duration of the
invocation on one of the object’s operations. This is the default
activation policy.

transaction Causes the object to be activated when an operation is invoked on
it. If the object is activated within the scope of a transaction, the
object remains active until the transaction is either committed or
rolled back.

process Causes the object to be activated when an operation is invoked on
it, and to be deactivated only when one of the following occurs:

4 The process in which the server application exists is shut
down.

4 The methodP: : deact i vat eEnabl e (C++) or
com beasys. Tobj . TP. deact i vat eEnabl e (Java) has
been invoked on the object.

The Simple interface in the Simpapp sample application is assigned the default
activation policy of method. For more information about managing object state and
defining object activation policies, see Creating C++ Server Applicationsand
Creating Java Server Applications on the Online Documentation CD.

Step 4: Writing the Client Application

The WLE software supports the following types of client applications:
¢ CORBA C++

4 CORBA Java

4 CORBA Java applets

4 ActiveX

2-16 Getting Started

Step 4: Writing the Client Application

The steps for creating client applications are as follows:
1. Initialize the ORB.

2. Usethe Bootstrap environmental object to establish communication with the
WLE domain.

3. Resolveinitial referencesto the FactoryFinder environmental object.
4. Useafactory to get an object reference for the desired CORBA object.

5. Invoke methods on the CORBA object.

Note: Beforeyou can create ActiveX client applications, you need to ensure that the
OMG IDL file for the CORBA interface you want to use isloaded in the
Interface Repository, and that bindings have been created for the CORBA
interface. For adescription of these steps, see Creating Client Applications on
the Online Documentation CD.

The client development steps areillustrated in Listing 2-7 and Listing 2-8, which
include code from the Simpapp sample application. In the Simpapp sample
application, the client application uses afactory to get an object referenceto the Simple
object and then invokesthet o_upper andto_l ower methodson the Simple object.

For a detailed description of the development steps with code examples from CORBA
C++, CORBA Java, and ActiveX client applications as well as Java applets, see
Creating Client Applications on the Online Documentation CD.

Listing 2-7 C++ Client Application from the Simpapp Sample Application

int main(int argc, char* argv[])
{

try {
/'l Initialize the ORB

CORBA: : ORB_var var_orb = CORBA:: ORB_init(argc, argv, "");

/1l Create the Bootstrap object
Tobj _Bootstrap bootstrap(var_orb.in(), "");

/1 Use the Bootstrap object to find the FactoryFi nder
CORBA: : (bj ect _var var_factory finder_oref =
bootstrap.resolve_initial _references("FactoryFi nder");

/1 Narrow the FactoryFi nder

Getting Started ~ 2-17

2 Developing WebLogic Enterprise (WLE) Applications

2-18

Tobj : : FactoryFi nder _var var_factory_finder_reference =
Tobj : : Fact oryFi nder:: _narrow
(var_factory _finder_oref.in());

/1 Use the factory finder to find the Sinple factory
CORBA: : Obj ect _var var_sinple factory oref =
var_factory_finder_reference->find_one factory by id(
_tc_Sinpl eFactory->id()

)

/1 Narrow the Sinple factory
Si npl eFactory_var var_sinple factory reference =
Si mpl eFactory: : _narrow
var_sinple factory reference.in());

/1 Find the Sinple object
Sinple_var var_sinple =
var_sinple_factory reference->find_sinple();

/1l Get a string fromthe user
cout << "String?";

char m xed[256] ;

cin >> m xed;

/1 Convert the string to upper case :

CORBA: : String_var var_upper = CORBA::string_dup(m xed);
var _si npl e- >t o_upper (var _upper.inout());

cout << var_upper.in() << endl;

/1 Convert the string to | ower case
CORBA: : String_var var_| ower = var_sinpl e->to_| ower (m xed);
cout << var _lower.in() << endl;

return O;

}

Listing 2-8 Java Client Application from the Simpapp Sample Application

public class Sinpledient

{

Getting Started

public static void main(String args[])

/1 Initialize the ORB.
ORB orb = ORB.init(args, null);

/1l Create the Bootstrap object

Step 5: Creating a Configuration File

Tobj _Bootstrap bootstrap = new Tobj Bootstrap(orb, "");

/1 Use the Bootstrap object to |ocate the FactoryFi nder
org. ong. CORBA. Obj ect factory finder_reference =
bootstrap.resolve_initial _references("FactoryFinder");

/1 Narrow the FactoryFi nder
FactoryFi nder factory_finder_reference =
Fact oryFi nder Hel per. narrow(factory_finder _reference);

/1 Use the FactoryFinder to find the Sinple factory.
org. ong. CORBA. Obj ect sinple factory reference =
factory _finder _reference.find one factory by id

(Si npl eFactoryHel per.id());

/1 Narrow the Sinple factory
Si npl eFactory sinple_factory_reference =
Si npl eFact or yHel per . narrow si npl e_factory_reference);

/1 Find the Sinple object.
Sinple sinple = sinple_factory_reference.find_sinple();

/] Get a string fromthe user.
Systemout . println("String?");
String mxed = in.readLine();

// Convert the string to upper case.
org. ong. CORBA. StringHol der buf = new
or g. ong. CORBA. StringHol der (m xed);

si npl e. t o_upper (buf);

System out . printl n(buf . val ue);

/1 Convert the string to | ower case.
String | ower = sinple.to_|ower(m xed);
System out . println(l ower);

}

Step 5: Creating a Configuration File

Because the WLE software offers great flexibility and many options to application
designers and programmers, no two applications are alike. An application, for
example, may be small and simple (asingle client and server running on one machine)

Getting Started 2-19

2 Developing WebLogic Enterprise (WLE) Applications

2-20

or complex enough to handl e transactions among thousands of client and server
applications. For this reason, for every WLE application being managed, the system
administrator must provide a configuration file that defines and manages the
components (for example, domains, server applications, client applications, and
interfaces) of that application.

When system administrators create a configuration file, they are describing the WLE
application using a set of parameters that the WLE software interprets to create a
runnable version of the application. During the setup phase of administration, the
system administrator’s job is to create a configuration file. The configuration file
contains the sections listed in Table 2-5.

Table 2-5 Sectionsin the Configuration Filefor WLE Applications

Sectionsin the Description
Configuration File

RESQURCES Defines defaults (for example, user access and the main
adminstration machine) for the WLE application

MACHI NES Defines hardware-specific information about each mahine
running in the WLE application

GROUPS Defines logical groupings of server applications or CORBA
interfaces

SERVERS Defines the server application processes (for example, the
Transaction Manager) used in the WLE application

SERVI CES Defines parameters for services provided by the WebL ogic
Enterpise application

| NTERFACES Defines information about the CORBA interfacesin the WLE
application

ROUTI NG Defines routing critieria for the WLE application

There are two forms of the configuration file:

4 An ASCII version of the file, created and modified with any editor. Throughout
the WLE documentation, the ASCII version of the configuration file is referred
to as thauBBCONFI Gfile. The configuration file may, in fact, be given any file
name.

Getting Started

Step 5: Creating a Configuration File

4 The TUXCONFI Gfile, abinary version of the UBBCONFI Gfile created using the
tm oadcf command. When thet ml oadcf command is executed, the
environment variable TUXCONFI G must be set to the name and directory location
of the TUXCONFI Gfile.

For information about the Configuration file and the t ml oadcf command, see
Administration Guide on the Online Documentation CD.

Listing 2-9 shows the configuration file for the Simpapp sample application.

Listing 2-9 Configuration File for Simpapp Sample Application

* RESOURCES
| PCKEY 55432
DOVAI NI D si npapp
MASTER S| TE1
MODEL SHM
LDBAL N

*MACHI NES
"PCW Z"
LM D
APPDI R
TUXCONFI G
TUXDI R
MAXWECLI ENTS

S| TE1

"C:\WLEDI R\ My_SI M-1"

"C:\WLEDI R\ M¥_SI M~1\r esul t s\t uxconfi g"
"C.\WLEDI R

10

* GROUPS
SYS GRP
LM D
GRPNO
APP_GRP
LM D
GRPNO

SI TE1

SI TE1

* SERVERS

DEFAULT:
RESTART
MAXGEN

TMSYSEVT
SRVCGRP
SRVI D

TMFENAME
SRVCGRP
SRVI D
CLCPT

o<

SYS GRP

SYS GRP

i n
N

"-A-- -N-M

Getting Started 2-21

2 Developing WebLogic Enterprise (WLE) Applications

TMFFENAME
SRVGRP = SYS GRP
SRVID =3
CLOPT ="-A-- -N'
TMFENAME
SRVGRP = SYS GRP
SRVID =14
CLOPT ="-A-- -F"
sinmpl e_server
SRVGRP = APP_GRP
SRViD =1
RESTART = N
I SL
SRVGRP = SYS GRP
SRVID =5
CLOPT ="-A-- -n //PCWZ 2468"
* SERVI CES

When creating Java server applications, include the JavaSer ver parameter in the
UBBCONFI Gfileto start the Java server application. For example:

* SERVERS

JavaServer
SRVGRP = BANK_GROUP2
SRVID = 8
CLOPT ="“-A -- -M 10 Bankapp.jar TellerFactory_1"
SYSTEM_ACCESS = FASTPATH
RESTART =N

If you are using an X A-compliant resource manager, usethe JavaServerXA parameter
in place of the JavaServer parameter to associate the X A resource manager with a
specified server group.

Step 6: Compiling the Server Application

Y ou use the buildobjserver command to compile and link C++ server applications.
The buildobjserver command has the following format:

buildobjserver [-0 servernane][options]

2-22 Getting Started

Step 7: Compiling the Client Application

Step 7:

In the bui | dobj ser ver command syntax:

4 -0 servernane represents the name of the server application to be generated
by this command.

4 opt i ons represents the command line optionsto the bui | dobj ser ver
command.

When creating Java server applications, use the j avac compiler to create the
bytecodes for all the class files that comprise your WLE application. This set of files
includesthe * . j ava source files generated by the n8i di t oj ava compiler, plus the
object implementation files and server class files you created.

You usethebui | dj avaser ver command to build aJava ARchive (JAR) fileand link
the Java server applications. The bui | dj avaser ver command has the following
format:

bui | dj avaserver [-s searchpath] input_file.xm
Inthebui | dj avaser ver command syntax:

4 -s searchpat h isused to locate the classes and packages when building the
archive. If this optional valueis not specified, it defaults to the value of the
CLASSPATH environment variable.

¢ input_fileisthe name of the XML Server Description File.

Y ou then have to specify the location of the JAR file for your Java server application
in the APPDI R system environment variable. On Windows NT systems, this directory
must be on alocal drive (not anetworked drive). On Solaris, the directory can belocal
or remote.

Compiling the Client Application

Thefinal step in the development of the CORBA client application isto produce the
executable client application. To do this, you need to compile the code and then link
against the client stub.

Getting Started ~ 2-23

2 Developing WebLogic Enterprise (WLE) Applications

When creating CORBA C++ client applications, use the bui | dobj cl i ent command
to construct a WLE client application executable. The command combines the client
stubs for interfaces that use static invocation, and the associated header files, with the
standard WLE librariesto form a client executable. For the syntax of the

bui | dobj cl i ent command, see C++ Programming Reference on the Online
Documentation CD.

When creating CORBA Java client applications, see your Java ORB’s documentatiol
for information about building client executables. You need to include the

nBenvobj . j ar file in yourCLASSPATHwhen you compile the CORBA Java client
application. TherBenvobj . j ar file contains the Java classes for the WLE
environmental objects.

ThenBenvobj . j ar file built against the Netscape Enterprise server is located in the
following directory:

WLEdi r / udat aobj / j aval net scape

Additional WLE Sample Applications

2-24

Sample applications demonstrate the tasks involved in developing a WLE application
and provide sample code that can be used by client and server programmers to buil
their own WLE application. The following additional sample applications are
provided:

4 University sample applications
4 Java sample applications

Code from the sample applications is used throughout this manual to illustrate the
development steps. A complete description of building and running the sample
applications is provided in the following:

4 Guideto the University Sample Applications
4 Guideto the Java Sample Applications

Getting Started

Additional WLE Sample Applications

Univeristy Sample Applications

The University sample applications are based on client and server applications
implemented at a university. Each University sample application demonstrates a new
WLE feature while building on the experience obtained from the previous sasmple
application. The University sample applications are intentionally simplified to
demonstrate only the steps and processes associated with using a particular feature of
the WLE product.

Table 2-6 describes the University sample applications.

Table2-6 The University Sample Applications

University Description
Sample Application

Basic Describes how to develop WLE client and server
applications and configure the WL E application.
Building C++ server applications and CORBA C++,
CORBA Java, and ActiveX client applications are
demonstrated.

Security Adds application-level security to the client
applications and to the WLE application.

Transactions Adds transactional objects to the C++ server
application and client applications in the Basic sample
application. The Transactions sample application
demonstrates how to use the Implementation
Configuration File (ICF) to define transaction policies
for CORBA objects.

Wrapper Demonstrates how to wrap an existing BEA TUXEDO
application as a CORBA object.

Production Demonsgtrates replicating server applications, creating
statel ess objects, and implementing factory-based
routing in server applications.

Getting Started ~ 2-25

2 Developing WebLogic Enterprise (WLE) Applications

Java Sample Applications

2-26

The Java sample applications demonstrate the process of developing Java server
applications with the WLE product. In addition, the Java sampl e applications focus on
using database products, such as Oracle and Microsoft SQL Server, withaWLE
application. The Java sample applications listed in Table 2-7 are provided.

Table 2-7 Java Sample Applications

Java Sample Description

Application

Java Simpapp Provides a Java client application and a Java server
application. The Java server application contains two
operationsthat manipulate strings received from the Java
client application.

JDBC Bankapp Implements an automatic teller machine (ATM) interface
and uses Java Database Connectivity (JDBC) to access a
database that stores account and customer information.

XA Bankapp Implements the same ATM interface as JIDBC Bankapp;

however, XA Bankapp uses a database XA library to
demonstrate using the Transaction Manager to coordinate
transactions.

Getting Started

CHAPTER

3 Using Security

This chapter discusses the following topics:
4 Overview of the Security Service

4 How Security Works

4 The Security Sample Application

¢

Development Steps

Overview of the Security Service

The WLE product offers a security model based on the CORBA services Security
Service. The WLE security model implements the authentication portion of the
CORBAservices Security Service.

Security information is defined on adomain basis. The security level for thedomainis
defined in the configuration file. Client applications use the SecurityCurrent object to
provide the necessary authentication information to log on to the WL E domain.

The following levels of authentication are provided:

4 TOBJ NOAUTH

No authentication is needed; however, the client application may still
authenticate itself, and may specify a user name and a client application name,
but no password.

Getting Started 3-1

3 Using Security

4 TOBJ SYSAUTH

The client application must authenticate itself to the WLE domain and must
specify auser name, client application name, and application password.

¢ TOBJ APPAUTH

In addition to the TOBJ_SY SAUTH information, the client application must
provide application-specific information. If the default WL E authentication
service is used in the application configuration, the client application must
provide a user password; otherwise, the client application provides
authentication datathat is interpreted by the custom authentication service in the
application.

Note: If aclient application is not authenticated and the security level is
TOBJ_NQAUTH, the 11 OP Listener/Handler of the WLE domain registers the
client application with the user name and client application name sent to the
[1OP Listener/Handler.

In the WLE software, only the Principal Authenticator and Credentials properties on
the SecurityCurrent object are supported. For a description of the

SecuritylLevel 1:: CQurrent and SecuritylLevel 2:: Current interfaces, seethe
C++ Programming Reference or the Java Programming Reference on the Online
Documentation CD.

How Security Works

Figure 3-1 illustrates how security worksin a WLE domain.

3-2 Getting Started

How Security Works

Figure3-1 How Security Worksin aWLE Domain

Client WLE Domain
Application
Bootstrap Object [« . Object Reference for

SecurityCurrent Object

SecurityCurrent Object | » Authentication Level
Princi pal Authenti cator |e—7 for WLE Domain
get _auth_type();
P

| ogon(user nane,
appl i cat i on_nane, /
password) ;

The steps are as follows:

1. Theclient application uses the Bootstrap object to return an object reference to the
SecurityCurrent object for the WLE domain.

2. Theclient application obtains the Principal Authenticator.

3. Theclient application usesthe
Tobj : : Princi pal Authenticator::get_auth_type() method to get the
authentication level for the WLE domain.

4. The proper authentication level is returned to the client application.

5. Theclient application usesthe Tobj : : Pri nci pal Aut henticator: : | ogon()
method to log on to the WLE domain with the proper authentication information.

Getting Started 3-3

3 Using Security

The Security Sample Application

The Security sample application demonstrates application-level security. The Security
sample application requires each student using the application to havean ID and a
password. The Security sample application works in the following manner:

4 Theclient application has alogon operation. This operation invokes operations
on the Principal Authenticator object, which is obtained as part of the process of
logging on to access the domain.

¢ Theserver application implements aget _st udent _det ai | s() operation on the
Regi st rar object to return information about a student. After the user is
authenticated, logon is complete, the get _st udent _det ai | s() operation
accesses the student information in the database to obtain the student
information needed by the client logon operation.

4 Thedatabase in the Security sample application contains course and student
information.

Figure 3-2 illustrates the Security sample application.

3-4 Getting Started

The Security Sample Application

Figure 3-2 Security Sample Application

Server
Application
CORBA C++ br owse_courses() PP
Client
Application get _course_det ai | s() . .
¢ Registrar Object
CORBA Java
Client '* get_student_details() &
Application
CORBA 4
ActiveX Client
Application
Database

E Security Required

The source files for the Security sample application are located in the

\'sanpl es\ cor ba\ uni versity directory in the WLE software. For information
about building and running the Security sample application, see the Guideto the
University Sample Applications on the Online Documentation CD.

Getting Started 3-5

3 Using Security

Development Steps

Table 3-1 lists the development steps for writing a WLE application that has security.

Table 3-1 Development Stepsfor WLE Applications That Have Security

Step Description

1 Define the security level in the configuration file.

2 Write the client application.

Step 1: Defining the Security Level in the Configuration
File
The security level foraWLE domain is defined by setting the SECURI TY parameter

RESOURSES section of the configuration file to the desired security level. Table 3-2
lists the options for the SECURI TY parameter.

Table 3-2 Optionsfor the SECURI TY Parameter

Option Definition

NONE No security isimplemented in the domain. This option is the
default. This option maps to the TOBJ_NOAUTH level of
authentication.

APP_PW Requires that client applications provide an application
password during initialization. The t m oadcf command
prompts for an application password. This option maps to the
TOBJ APPAUTH leve of authentication.

USER_AUTH Requires an application password and performs a per-user
authentication during the initialization of the client application.
This option maps to the TOBJ_SY SAUTH leve of
authentication.

3-6 Getting Started

Development Steps

In the Security sample application, the SECURI TY parameter is set to APP_PwWfor
application-level security. For information about adding security to a WLE domain,
see the Administration Guide on the Online Documentation CD.

Step 2: Writing the Client Application

Write client application code that does the following:

1. UsestheBootstrap object to obtain areference to the SecurityCurrent object for the
specific WLE domain.

2. Getsthe Principal Authenticator object from the SecurityCurrent object.

3. Usestheget _aut h_type operation of the Principal Authenticator object to
return the type of authentication expected by the WLE domain.

Listing 3-1 and Listing 3-2 include the portions of the CORBA C++ and CORBA Java
client applications in the Security sample application that illustrate the development
steps for security. To see an example of the code for ActiveX client applications, see
the Guide to the University Sample Applications on the Online Documentation CD.

Listing 3-1 Example of Security in a CORBA C++ Client Application

CORBA: : (hj ect _var var_security current_oref =
bootstrap.resolve_initial_references(“SecurityCurrent”);

SecurityLevel2::Current_var var_security _current_ref =
SecurityLevel2::Current::_narrow(var_security _current_oref.in());

/IGet the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =
var_security _current_oref->principal_authenticator();
/INarrow the PrincipalAuthenticator
Tobj::PrincipalAuthenticator_var var_bea_principal_authenticator =
Tobj::PrincipalAuthenticator::_narrow
var_principal_authenticator_oref.in());

/IDetermine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
Security::AuthenticationStatus status = var_bea_principalauthenticator->logon(
user_name,
client_name,

Getting Started 3-7

3 Using Security

syst em password,
user _password,
0);

Listing 3-2 Example of Security in a CORBA Java Client Application

org. ong. CORBA. Obj ect SecurityCurrentChj =
gBootstrapObjRef.resolve_initial_references(“SecurityCurrent”);

org.omg.SecurityLevel2.Current secCur =
org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

/IGet the PrincipalAuthenticator

org.omg.SecurityLevel2.PrincipalAuthenticator authlevel2 =
secCur.principal_authenticator();

/INarrow the PrincipalAuthenticator

com.beasys.Tobj.PrincipalAuthenticatorObjRef gPrinAuthObjRef =
(com.beasys.Tobj.PrincipalAuthenticator)
org.omg.SecurityLevel2.PrincipalAuthenticatorHelper.narrow(authlevel2);

/IDetermine the security level
com.beasys.Tobj.Authtype authType = gPrinAuthObjRef.get_auth_type();

org.omg.Security.AuthenticationStatus status = gPrinAuthObjRef.logon
(gUserName, ClientName, gSystemPassword, gUserPassword,0);

3-8 Getting Started

CHAPTER

4 Using Transactions

This chapter discusses the following topics:

L4

¢
¢
¢
¢

Overview of the Transaction Service
When to Use Transactional Objects
What Happens During a Transaction
Transactions Sample Application

Development Steps

Overview of the Transaction Service

One of the most fundamental features of the WLE product i s transaction management.
Transactions are a means to guarantee that database transactions are completed
accurately and that they take on all the ACID properties (atomicity, consistency,
isolation, and durability) of a high-performancetransaction. The WL E system protects
the integrity of your transactions by providing a complete infrastructure for ensuring
that database updates are done accurately, even across a variety of resource managers.
The WLE system includes the following:

L4

The CORBAservices Object Transaction Service (OTS) and the Java Transaction
Service (JTS)

The WLE product provides a C++ interface to the OTS and a Java interface to
the OTSand the JTS. The JTSisthe Sun Microsystems, Inc. Javainterface for
transaction services, and is based on the OTS. The OTS and the JTS are

Getting Started 4-1

4 Using Transactions

4-2

accessed through the TransactionCurrent environmental object. For information
about using the TransactionCurrent environmental object, see the C++
Programming Reference or the Java Programming Reference on the Online
Documentation CD.

The Sun Microsystems, Inc. Java Transaction APl (JTA).

Only the application-level demarcation interface
(j avax. transacti on. User Transact i on) is supported. For information about
JTA, refer to the following:

4 The javax. transacti on package description in the Java APl Reference.

4 TheJava Transaction API specification, published by Sun Microsystems, Inc.
and available from the Sun Microsystems, Inc. Web site. (Seethe WLE
version 4.2 Release Notes for information about obtaining this document.)

OTS, JTS, and JTA each provide the following support for your business transactions:

L4

Creates aglobal transaction identifier when a client application initiates a
transaction.

Works with the TP Framework to track objectsthat are involved in atransaction
and, therefore, need to be coordinated when the transaction is ready to commit.

Notifies the resource managers—which are, most often, databases—when they
are accessed on behalf of a transaction. Resource managers then lock the
accessed records until the end of the transaction.

Orchestrates the two-phase commit when the transaction completes, which
ensures that all the participants in the transaction commit their updates
simultaneously. It coordinates the commit with any databases that are being
updated using Open Group’s XA protocol. Almost all relational databases
support this standard.

Executes the rollback procedure when the transaction must be stopped.

Executes a recovery procedure when failures occur. It determines which
transactions were active in the machine at the time of the crash, and then
determines whether the transaction should be rolled back or committed.

Getting Started

When to Use Transactions

When to Use Transactions

Transactions are appropriate in the situations described in the following list. Each
situation describes a transaction model supported by the WLE system.

4 Theclient application needs to make invocations on several objects, which may
involve write operations to one or more databases. If any one invocation is
unsuccessful, any state that is written (either in memory or, more typically, to a
database) must be rolled back.

For example, consider atravel agent application. The client application needs to
arrange for ajourney to a distant location; for example, from Strasbourg, France,
to Alice Springs, Australia. Such ajourney would inevitably require multiple
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequentia order; for example, Strasbourg to
Paris, Paristo New York, New York to Los Angeles. However, if any individual
flight reservation cannot be made, the client application needs a way to cancel

all the flight reservations made up to that point.

4 Theclient application needs a conversation with an object managed by the
server application, and the client application needs to make multiple invocations
on a specific object instance. The conversation may be characterized by one or
more of the following:

4 Datais cached in memory or written to a database during or after each
successive invocation.

Datais written to a database at the end of the conversation.

4 Theclient application needs the object to maintain an in-memory context
between each invocation; that is, each successive invocation uses the data
that is being maintained in memory across the conversation.

4 Attheend of the conversation, the client application needs the ability to
cancel all database write operations that may have occurred during or at the
end of the conversation.

For example, consider an Internet-based online shopping application. Users of
the client application browse through an online catalog and make multiple
purchase selections. When the users are done choosing al the items they want to
buy, they enter their credit card information to make the purchase. If the credit
card check fails, the shopping application needs away to cancel all the pending

Getting Started 4-3

4 Using Transactions

purchase selections, or roll back any purchase transactions made during the
conversation.

4+ Within the scope of asingle client invocation on an object, the object performs

multiple edits to data in a database. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (In this situation, the individual database
edits are not necessarily CORBA invocations.)

For example, consider a banking application. The client invokes the transfer
operation on ateller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

4 Invoking the debit method on one account
4 Invoking the credit method on another account

If the credit invocation on the bank database fails, the banking application needs
away to roll back the previous debit invocation.

What Happens During a Transaction

4-4

Figure 4-1 illustrates how transactions work in a WLE application.

Getting Started

What Happens During a Transaction

Figure4-1 How TransactionsWork in a WLE Application

Client

e WLE Domain
Application
Object Reference for
Bootstrap Object = | TransactionCurrent
Object
TransactionCurrent
Object
TP Framework
/7
begi n() / acti vat e_obj ect ()
regi ster_for_courses() —T] regi st gr_f or_cqurses()
conmi t_() deact i vate_object ()

!

Transaction Manager

A

Database

A basic transaction works in the following way:

1. Theclient application uses the Bootstrap object to return an object reference to the
TransactionCurrent object for the WLE domain.

2. A client application begins a transaction using the
Tobj : : Transacti onCurrent: :begi n method, and issues arequest to the
CORBA interface through the TP Framework. All operations on the CORBA
interface execute within the scope of atransaction.

Getting Started 4-5

4 Using Transactions

If acall to any of these operations raises an exception (either explicitly or as
aresult of acommunication failure), the exception can be caught and the
transaction can be rolled back.

If no exceptions occur, the client application commits the current transaction
using the Tobj : : Transacti onCurrent: : commi t method. This method
ends the transaction and starts the processing of the operation. The
transaction is committed only if all of the participants in the transaction agree
to commit.

3. TheTobj :: Transact i onCurrent: conm t method causes the TP Framework to
call the Transaction Manager to complete the transaction.

4. The Transaction Manager updates the database.

Transactions Sample Application

4-6

In the Transactions sample application, the operation of registering for coursesis
executed within the scope of atransaction. The transaction model used in the
Transactions sampl e application is a combination of the conversational model and the

model

in which a single client invocation makes multiple individual operations on a

database.

The Transactions sample application works in the following way:

1. Students submit alist of courses for which they want to be registered.

2. For each course in thelist, the server application checks whether:

¢
¢
¢

Getting Started

The course isin the database
The student is already registered for a course

The student exceeds the maximum number of credits the student can take

Transactions Sample Application

3. One of the following occurs:

4 If the course meets all the criteria, the server application registers the student

for the course.

¢ |If thecourseis not

in the database or if the student is already registered for

the course, the server application adds the course to alist of coursesfor
which the student could not be registered. After processing all the
registration requests, the server application returnsthelist of coursesfor

which registration

failed. The client application can then choose to either

commit the transaction (thereby registering the student for the courses for

which registration
not registering the

reguest succeeded) or to roll back the transaction (thus,
student for any of the courses).

¢ |f the student exceeds the maximum number of credits the student can take,

the server applicati

application. Thecl
the request was rej
transaction.

ion returns aTooMany Or edi t s user exception to the client
ient application provides a brief message explaining that
ected. The client application then rolls back the

Figure 4-2 illustrates how the Transactions sample application works.

Figure4-2 Transactions Sample Application

A Part of a Transaction

CORBA C++
Client get _st udent _det ai | s()
Application get _course_detail s()
browse_cour ses()
CORBA Java regi ster_for_courses()
Client 5 Server
Application ii Application
A
ActiveX Client CORBA A
Application
Database

Getting Started 4-7

4 Using Transactions

The Transactions sample application shows two ways in which a transaction can be
rolled back:

L4

Nonfatal. If the registration for a course fails because the course is not in the

database, or because the student is already registered for the course, the server
application returns the numbers of those courses to the client application. The
decision to roll back the transaction lies with the user of the client application.

Fatal. If the registration for a course fails because the student exceeds the
maximum number of credits he or she can take, the server application generates
a CORBA exception and returns it to the client application. The decision to rall
back the transaction al so lies with the client application.

Note: For information about how transactions are implemented in Java WLE

applications, see the description of the XA Bankapp sample application in the
Guideto the Java Sample Applications on the Online Documentation CD.

Development Steps

4-8

Thistopic describesthe development stepsfor writing aWLE application that includes
transactions. Table 4-1 lists the development steps.

Table 4-1 Development Stepsfor WLE Applications That Have Transactions

Step Description

1

Write the OMG IDL for the transactional CORBA interface.

Define the transaction policies for the CORBA interface in the
Implementation Configuration file (ICF) for C++ WLE
applications, or in the Server Description File for Java WLE
client applications.

Write the client application.

Write the server application.

Create a configuration file.

Getting Started

Development Steps

The Transactions sample application is used to demonstrate these development steps.
The source files for the Transactions sample application are located in the

\'sanpl es\ cor ba\ uni versity directory of the WLE software. For information
about building and running the Transactions sample application, see the Guide to the
University Sample Applications on the Online Documentation CD.

The XA Bankapp sample application demonstrates how to use transactionsin Java
WLE applications. The sourcefilesfor the XA Bankapp sampleapplication arelocated
inthe \ sanpl es\ cor ba\ bankapp_j ava directory of the WLE software. For
information about building and running the XA Bankapp sample application, see the
Guide to the Java Sample Applications on the Online Documentation CD .

Step 1: Writing the OMG IDL

Y ou need to specify interfaces involved in transactions in Object Management Group
(OMG@G) Interface Definition Language (IDL) just as you would any other CORBA
interface. Y ou must aso specify any user exceptions that may occur from using the
interface.

For the Transactions sample application, you would define in OMG IDL the

Regi strar interface and ther egi st er _for _cour ses() operation. The

regi ster_for_courses() operation hasaparameter, Not Regi st er edLi st, which
returns to the client application the list of courses for which registration failed. If the
value of Not Regi st er edLi st isempty, the client application commits the
transaction. Y ou also need to define the TooMany Or edi t s user exception.

Listing 4-1 includesthe OMG IDL for the Transactions sample application.

Listing4-1 OMG IDL for the Transactions Sample Application

#pragma prefix "beasys. cont
nmodul e UniversityT

{
typedef unsi gned | ong CourseNunber;
typedef sequence<CourseNunber> Cour seNunber Li st ;

struct CourseSynopsi s

{

Cour seNunber cour se_nunber;

Getting Started 4-9

4 Using Transactions

string title;
b

t ypedef sequence<Cour seSynopsi s> CourseSynopsi sLi st;

i nterface CourseSynopsi SEnuner at or
{
/I Returns a list of length O if there are no nore entries
Cour seSynopsi sLi st get_next_n(
in unsigned |long nunber to get, // O =return all
out unsi gned | ong nunber _remai ni ng

)
voi d destroy();

b
typedef unsigned short Days;
const Days MONDAY = 1;
const Days TUESDAY = 2;
const Days WEDNESDAY = 4;
const Days THURSDAY = 8;
const Days FRI DAY = 16;

/1 Classes restricted to sanme tine block on all schedul ed days,
/lstarting on the hour

struct Cl assSchedul e

{
Days class_days; // bitmask of days
unsi gned short start_hour; // whole hours in mlitary tine
unsi gned short duration; /] mnutes
b
struct CourseDetails
{
Cour seNunber cour se_nunber ;
doubl e cost;
unsi gned short nunmber _of credits;
Cl assSchedul e cl ass_schedul e;
unsi gned short nunber of seats;
string title;
string pr of essor;
string description;
b

t ypedef sequence<Cour seDet ai | s> Cour seDet ai | sLi st ;
typedef unsigned | ong Studentld;

struct StudentDetails

{
Student | d student _id;

string nane;

4-10 Getting Started

Development Steps

Cour seDet ai | sLi st registered_courses;

b
enum Not Regi st er edReason
{
Al r eadyRegi st er ed,
NoSuchCour se
b
struct Not Regi stered
{
Cour seNunber cour se_nunber;
Not Regi st eredReason not _regi st ered_reason;
b

typedef sequence<Not Regi st ered> Not Regi st eredLi st ;

excepti on TooManyCredits
{

}

/1 The Registrar interface is the main interface that all ows
//students to access the database.
interface Registrar

unsi gned short maxi mumcredits;

{
Cour seSynopsi sLi st
get _cour ses_synopsi s(
in string search_criteria,
in unsigned | ong nunber to_get,
out unsigned | ong nunber _r enmai ni ng,
out Cour seSynopsi sEnuner ator rest
)
CourseDetai |l sLi st get_courses_detail s(i n CourseNunberlLi st
cour ses);
Student Detai | s get_student _details(in Studentld student);
Not Regi st eredLi st regi ster_for_courses(
in Studentld st udent ,
in Cour seNunber Li st courses
) raises (
TooManyCredits
)i
b

/1 The RegistrarFactory interface finds Registrar interfaces.

interface RegistrarFactory

{

Registrar find_ registrar(

Getting Started 4-11

4 Using Transactions

)
}s

Step 2: Defining Transaction Policies for the Interfaces

4-12

Transaction policies are used on a per-interface basis. During design, it is decided
which interfaces within a WLE application will handle transactions. The transaction
policies are:

Transaction Policy Description

al ways The interface must always be part of atransaction. If the
interface is not part of atransaction, a transaction will be
automatically started by the TP Framework.

i gnore The interface is not transactional; however, requests made to
this interface within a scope of atransaction are alowed. The
AUTOTRAN parameter, specified in the UBBCONFI Gfilefor this
interface, isignored.

never Theinterfaceis not transactional. Objects created for this
interface can never be involved in atransaction. The WLE
system generates an exception (1 NVALI D_TRANSACTI ON)
if an interface with thispolicy isinvolved in atransaction.

optional The interface may betransactiond . Objects can beinvolvedin a
transaction if therequest istransactional. Thistransaction policy
is the default.

During devel opment, you decide which interfaces will execute in atransaction by
assigning transaction policies, as follows:

4+ For C++ server applications, you specify transaction policiesin the
Implementation Configuration File (ICF). A template ICF fileis created by the
geni cf command.

4 For Java server applications, you specify transaction policiesin the Server
Description File, written in Extensible Markup Language (XML).

In the Transactions sample application, the transaction policy of the Regi st r ar
interfaceis set to al ways.

Getting Started

Development Steps

Step 3: Writing the Client Application

The client application needs code that performs the following tasks:
1. Obtains areference to the TransactionCurrent object from the Bootstrap object.

2. Begins atransaction by invoking the Tobj : : Transacti onCurrent: : begi n()
operation on the TransactionCurrent object.

3. Invokes operations on the object. In the Transactions sample application, the
client application invokesthe regi ster_f or _cour ses() operation on the
Regi strar object, passing alist of courses.

Listing 4-2 illustrates the portion of the CORBA C++ client applicationsin the
Transactions sample application that illustrates the devel opment steps for transactions.

For an example of a CORBA Java client application that uses transactions, seethe XA
Bankapp sample application in the Guide to the Java Sample Applications on the
Online Documentation CD. For an example of using transactionsin an ActiveX client
application, see Creating Client Applications on the Online Documentation CD.

Listing4-2 Transactions Code for CORBA C++ Client Applications

CORBA: : hj ect _var var_transaction_current_oref =
Bootstrap.resolve_initial_references(“TransactionCurrent”);

CosTransactions::Current_var transaction_current_oref=
CosTransactions::Current::_narrow(var_transaction_current_oref.in());

/IBegin the transaction

var_transaction_current_oref->begin();

try {

/IPerform the operation inside the transaction
pointer_Registar_ref->register_for_courses(student_id, course_number_list);

//If operation executes with no errors, commit the transaction:
CORBA::Boolean report_heuristics = CORBA_TRUE;
var_transaction_current_ref->commit(report_heuristics);

}
catch (...) {
//If the operation has problems executing, rollback the
/ltransaction. Then throw the original exception again.
/1f the rollback fails,ignore the exception and throw the
/loriginal exception again.

try {
var_transaction_current_ref->rollback();

Getting Started

4-13

4 Using Transactions

catch (...) {
TP: :userl og("rol |l back failed");

t hr ow;

}

Step 4: Writing the Server Application

4-14

When using transactionsin server applications, you need to write methods that
implement the interface’s operations. In the Transactions sample application, you
would write a method implementation for thegi st er _f or _courses() operation.

If your WLE application uses a database, you need to include in the server applicatio
code that opens and closes an XA Resource Manager. These operations are includ
intheServer::initialize() andServer::rel ease() operations of the Server
object. Listing 4-3 shows the portion of the code for the Server object in the
Transactions sample application that open and closes the XA Resource Manager.

Note: For a complete example of a C++ server application that implements
transactions, see the Transactions sample application Guike to the
University Sample Applications.

For an example of a Java server application that implements transactions, se
the description of the XA Bankapp sample application irihigle to the Java
Sample Applications on the Online Documentation CD.

Listing 4-3 C++ Server Object in Transactions Sample Application

CORBA: : Bool ean Server::initialize(int argc, char* argv[])
{
TRACE METHOD(" Server::initialize");
try {
open_dat abase();
begi n_transactional ();
regi ster_fact();
return CORBA TRUE;

catch (CORBA : Exception& e) {
LOG(“CORBA exception : “ <<e);
}

Getting Started

Development Steps

catch (Sanpl esDBException& e) {
LOG(“Can’t connect to database”);

}
catch (...) {
LOG(“Unexpected database error : “ <<e);

}
catch (...) {

LOG(“Unexpected exception”);
}

cleanup();
return CORBA_FALSE;

}

void Server::release()

TRACE_METHOD(“Server::release”);

cleanup();
}
static void cleanup()
{

unregister_factory();
end_transactional();
close_database();

//Utilities to manage transaction resource manager

CORBA::Boolean s_became_transactional = CORBA_FALSE;
static void begin_transactional()

{
TP::open_xa_rm();
s_became_transactional = CORBA_TRUE;

static void end_transactional()

{
if(!s_became_transactional){
return//cleanup not necessary
}
try {
TP::close_xa _rm ();
}

catch (CORBA::Exception& €) {
LOG("CORBA Exception : “ << e);
}

catch (...) {
LOG(“unexpected exception”);
}

Getting Started ~ 4-15

4 Using Transactions

s_becane_transacti onal = CORBA_FALSE;

Step 5: Creating a Configuration File

Y ou need to add the following information to the configuration file for atransactional
WLE application:

4 Inthe SERVERS section:

4+ Define aserver group that includes both the server application that includes
the interface and the server application that manages the database. This
server group needs to be specified as transactional.

4 Replace JavaServer with JavaSer ver XA to associate the XA resource
manager with a specified server group. (JavaSer ver usesthe null RM.)

4 Inthe OPENI NFO parameter of the Groups section, include information to open
the resource manager for the database. You obtain thisinformation from the
product documentation for your database. Note that the default version of the
com beasys. Tobj . Server.initialize method automatically opensthe
resource manager.

4 Include the pathname to the transaction log (TLOG) in the TLOGDEVI CE
parameter. For more information about the transaction log, see the
Administration Guide.

Listing 4-4 includes the portions of the configuration file that define thisinformation
for the Transactions sample application.

Listing 4-4 Configuration Filefor Transactions Sample Application

* RESOQURCES
| PCKEY 55432
DOVAI NI D wuniversity
MASTER SI TE1

MODEL SHMV

LDBAL N

SECURI TY APP_PW
* MACH NES

BLOTTO

4-16 Getting Started

Development Steps

LMD = SITEL

APPDI R = C:\ TRANSACTI ON_SAMPLE

TUXCONFI G=C: \ TRANSACTI ON_SAMPLE\ t uxconfi g

TLOGDEVI CE=C: \ APP_DI R TLOG
TLOGNAME=TLOG

TUXD R=" C: \ WLEdi r"

MAXWECLI ENTS=10

* GROUPS
SYS GRP
LM D = SITEL
GRPNO =1
ORA_GRP
LM D = SITEL
GRPNO =2
CPENI NFO = "ORACLE_XA: Or acl e_XA+Sql Net =ORCL+Acc=P

/scott/tiger+SesTm=100+LogDi r =. +MaxCur =5"

OPENI NFO

"ORACLE_XA: Or acl e_XA+Acc=P/ scott/ti ger

+SesTn¥100+LogDi r =. +MaxCur =5"

CLCSEI NFO
TMSNAME

* SERVERS
DEFAULT:
RESTART
MAXCGEN

TMSYSEVT
SRVCGRP
SRVI D

TMFFNAME
SRVCGRP
SRVI D
CLOPT

TMFENAME
SRVCGRP
SRVI D
CLOPT

TMFENAME
SRVCGRP
SRVI D
CLOPT

T™ FRSVR
SRVCGRP
SRVI D

I n I n I n I n o1 <

nn

"TM5_ORA"

SYS GRP

SYS GRP

"A-- -N-M

SYS GRP

oA - N

SYS GRP

oA -- F"

SYS GRP

Getting Started ~ 4-17

4 Using Transactions

UN VT_SERVER
SRVGRP = ORA CGRP
SRvID =1
RESTART = N
I SL
SRVGRP = SYS CGRP
SRVID =6
CLOPT = -A -- -n //NACH NENAME: 2500
*SERVI CES

For information about the transaction log and defining parametersin the Configuration
file, see the Administration Guide.

4-18 Getting Started

Index

A
activation policies
defining in Implementation
Configuration file 2-15
defining in Server Description file 2-15
Simpapp sample application 2-15
Simple interface 2-16
supported 2-16
ActiveX application builder
description 1-8
AdminAPI
description 1-8
administration commands
tmadmin command 1-6
tmboot command 1-6
tmconfig command 1-6
tmloadcf command 1-6
tmshutdown command 1-6
tmunloadcf command 1-6
Administration console
description 1-7
administration tools
AdminAPI 1-8
administration commands 1-6
Administration console 1-7
authentication
client application 1-20
levels 3-1

B

Bootstrap object
description 1-13
illustrated 1-13

Simpapp sample application 2-17
building
C++ client applications 2-23
buildobjclient command 1-5
C++ server applications
buildobjserver command 1-5
genicf command 1-5
Java client applications 2-23
Java server applications
buildjavaserver command 1-5
buildjavaserver command
building Java server applications 1-5
description 1-5
format 2-22
in the Simpapp sample application 2-22
buildobjclient command
building C++ client applications 1-5
description 1-5
format 2-23
in the Simpapp sample application 2-23
buildobjserver command
building C++ server applications 1-5
description 1-5
format 2-22
in the Simpapp sample application 2-22
buildX AJS command
building an XA resource manager 1-5

Getting Started -1

C

description 1-5

client applications

authenticating into the WLE
domain 1-20
initialization process 1-19
invoking objects 1-23
using transactions 4-5
writing
Security sample application 4-13
Simpapp sample application 2-16
Transactions sample
application 4-13

client stubs

generating 2-6
in Simpapp sample application 2-6

code example

-2

C++ client application for Simpapp
sample application 2-17

C++ implementation of the Simple
interface 2-10

C++ Server object 2-13

C++ server object that supports
transactions 4-14

configuration file for Simpapp sample
application 2-21

Java client application for the Simpapp
sample application 2-18

Javaimplementation of SimpleFactory
interface 2-11

Javaimplementation of the Simple
Interface 2-10

Java Server object 2-14

OMG IDL for Simpapp sample
application 2-6

OMG IDL for Transactions sample
application 4-9

security in C++ client applications 3-7

security in Javaclient applications 3-8

Getting Started

transactions in C++ client
application 4-13
UBBCONFIG file for Transactions
sample application 4-15
compiling
C++ client applications 2-23
C++ server applications 2-22
Java client applications 2-23
Java server applications 2-22
CORBAservices Object Transaction Service
using in WLE applications 4-1
create_servant method 1-21

D

development commands
buildjavaserver 1-5
buildobjclient command 1-5
buildobjserver command 1-5
buildX AJS command 1-5
genicf command 1-5
idl2ir command 1-5
ir2idl command 1-5
irdel command 1-5
development process
activation policies 2-16
client applications
Security sample application 3-7
Simpapp sample application 2-16
Transactions sample
application 4-13
defining object activation policies 2-15
illustrated 2-2
Implementation Configuration file 2-15
OMG IDL
Simpapp sample application 2-5
Transactions sample application 4-9
Security sample application 3-6
server applications
Simpapp sample application 2-8
Transactions sample

application 4-14
Server Description file 2-15
Simpapp sample application 2-4
steps for creating WLE applications 2-2
Transactions sample application 4-8
WLE applications 2-2
writing a configuration file 2-19
writing server application code 2-8
writing the client application code 2-16
writing the OMG IDL 2-5

E

environmental objects
and client initialization 1-19
description 1-10

F

factories
finding 1-21
registering 1-21

FactoryFinder object
description 1-10
example use of 1-21

G

genicf command
creating aICF file 1-5
description 1-5

idl command 1-4
description 1-4
files created by 2-7
generating client stubs 2-6
generating skeletons 2-6
IDL compiler
idl command 1-4
ma3iditojava command 1-4

supported 1-4
idl2ir command
description 1-5
[1OP
definition 1-2
usein WLE product 1-2
[1OP Listener/Handler
description 1-14
Implementation Configuration file
defining activation policies 2-15
defining transaction policies 4-12
initialize method
summary 1-18, 1-19
Interface Repository
creating 1-5
deleting objects from 1-5
displaying the contents 1-5
idl2ir command 1-5
ir2idl command 1-5
irdel command 1-5
loading interface definitionsinto 1-5
InterfaceRepository object
description 1-10
interfaces
writing methods to implement
operations 2-9
ir2idl command
description 1-5
irdel command
description 1-5

J

Java client applications
required files 2-23
Java Transaction Service
using in WLE applications 4-1

M

ma3iditojava command 1-4

Getting Started -3

description 1-4
files created by 2-7
generating client stubs 2-7
generating skeletons 2-7
Management Information Base
see MIB 1-3
managing
WLE applications
tmadmin command 1-6
tmboot command 1-6
tmconfig command 1-6
tmloadcf command 1-6
tmshutdown command 1-6
tmunloadcf command 1-6
method implementations
C++2-9
Java 2-10
writing 2-9
MIB
for WLE applications 1-3

0

Object Life Cycle service
description 1-10

object request broker
see ORB 1-15

object services
Interface Repository 1-10
Object Life Cycle service 1-10
Security service 1-10
Transaction service 1-10

objects
invoking 1-23

OMG IDL
compiling 2-6
generating client stubs 2-6
generating skeletons 2-6
Simple interface 2-5, 2-6
SimpleFactory interface 2-5, 2-6
Transactions sample application 4-9

-4 Getting Started

ORB
description 1-15
illustrated 1-15

P

POA

description 1-15

interaction with TP Framework 1-16
Portable Object Adapter

see POA 1-15
Principal Authenticator object

using in client applications 3-4
programming tools 1-4

R

register_factory method
example of 1-21
resolve initial_references method 1-19

S
Security sample application
defining security level 3-6
description 3-4
devel opment process 3-6
illustrated 3-4
location of files3-5
Principal Authenticator object 3-4
SecurityCurrent object 3-4
using the Principal Authenticator
object 3-7
using the SecurityCurrent object 3-7
writing the client application 3-7
Security service
description 1-10
functional description 3-2
SecurityCurrent object
description 1-10
using in client applications 3-4

server applications
defining object activation policies 2-15
Implementation Configuration file 2-15
Server Description file 2-15
writing
Simpapp sample application 2-8
Transactions sample
application 4-14
method implementations 2-9
the Server object 2-12
Server Description file
defining activation policies 2-15
defining transaction policies 4-12
Server object 4-14
description 1-18
Transactions sample application 4-14
writing 2-12
Simpapp sample application
compiling
C++ client application 2-23
C++ server application 2-22
Java client application 2-23
compiling Java server application 2-22
configuration file 2-19
description 2-4
filelocation 2-4
illustrated 2-4
interfaces defined for 2-5
OMG IDL 2-5
using the Bootstrap object 2-17
using the buildjavaserver command 2-22
using the buildobjserver command 2-22
writing the client application code 2-16
Simple interface
activation policy 2-16
OMG IDL 2-5
Simple Network Management Protocol
see SNMP 1-3
SimpleFactory interface
OMG IDL 2-5
skeletons

generating 2-6

in Simpapp sample application 2-6
SNMP

in the WLE product 1-3
support

documentation xiv

technical xiv
supporting databases 4-14

T

TLOGDEVICE parameter 4-15
tmadmin command
description 1-6
tmboot command
description 1-6
tmconfig command
description 1-6
tmloadcf command
creating a configuraiton file 2-20
description 1-6
tmshutdown command
description 1-6
tmunloadcf command
description 1-6
Tobj_Bootstrap 1-19
TP Framework
description 1-16
illustrated 1-17
transaction policies
defined 4-12
Transaction service
description 1-10, 4-1
features 4-2
TransactionCurrent object
description 1-10
transactions
functional overview 4-4
illustrated 4-5
in client applications 4-5
OMG IDL 4-6

Getting Started

restrictions 4-17
when to use 4-3
Transactions sample application
description 4-6
development process 4-8
filelocation 4-9
illustrated 4-7
OMG IDL 4-9
starting server application 4-14
transaction policies 4-12
UBBCONFIG file 4-15
writing client applications 4-13
writing server applications 4-14
TUXCONFIG file
description 2-20

U

UBBCONFIG file
adding transactions 4-15
description 2-20
sectionsin 2-20
setting the security level 3-6
user exceptions
Transactions sample application 4-7
UserTransaction object
description 1-10

w

WLE applications

defining security levels 3-6

how they work 1-18

managing
tmadmin command 1-6
tmboot command 1-6
tmconfig command 1-6
tmloadcf command 1-6
tmshutdown command 1-6
tmunloadcf command 1-6

using CORBA services Object

-6 Getting Started

Transaction Service 4-1
using Java Transaction Service 4-1

WLE components

I[IOP Listener/Handler 1-14
illustrated 1-12

ORB 1-15

TP Framework 1-16

WLE domain

adding security to 3-4

WLE product

ActiveX application builder 1-8

administration tools 1-6

description of components 1-11

devel opment commands 1-5

features 1-3

functionality overview 1-1

how client and server applications work
1-18

IDL compilers1-4

illustrated 1-2

object services 1-10

programming tools 1-4

	Copyright
	Preface
	Purpose of This Document
	How to Use This Document
	Related Documentation
	Contact Information

	1 Understanding the WebLogic Enterprise (WLE) Product
	Overview of the WLE Product
	WLE Programming Environment
	IDL Compilers
	Development Commands
	Administration Tools
	ActiveX Application Builder

	WLE Object Services
	WLE Components
	Bootstrap Object
	IIOP Listener/Handler
	ORB
	TP Framework

	How WLE Client and Server Applications Interact
	Step 1: The server application is initialized.
	Step 2: The client application is initialized.
	Step 3: The client application authenticates itself to the WLE domain.
	Step 4: The client application obtains a reference to the object needed to execute its business l...
	Step 5: The client application invokes an operation on the CORBA object.

	2 Developing WebLogic Enterprise (WLE) Applications
	Overview of the Development Process for WLE Applications
	The Simpapp Sample Application
	Step 1: Writing the OMG IDL
	Step 2: Generating Client Stubs and Skeletons
	Step 3: Writing the Server Application
	Writing the Methods That Implement Each Interface’s Operations
	Creating the Server Object
	Defining an Object’s Activation Policies

	Step 4: Writing the Client Application
	Step 5: Creating a Configuration File
	Step 6: Compiling the Server Application
	Step 7: Compiling the Client Application
	Additional WLE Sample Applications
	Univeristy Sample Applications
	Java Sample Applications

	3 Using Security
	Overview of the Security Service
	How Security Works
	The Security Sample Application
	Development Steps
	Step 1: Defining the Security Level in the Configuration File
	Step 2: Writing the Client Application

	4 Using Transactions
	Overview of the Transaction Service
	When to Use Transactions
	What Happens During a Transaction
	Transactions Sample Application
	Development Steps
	Step 1: Writing the OMG IDL
	Step 2: Defining Transaction Policies for the Interfaces
	Step 3: Writing the Client Application
	Step 4: Writing the Server Application
	Step 5: Creating a Configuration File

