
BEA WebLogic Enterprise
Getting Started

B E A W e b L o g i c E n t e r p r i s e 4 . 2
D o c u m e n t E d i t i o n 4 . 2

J u l y 1 9 9 9

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Getting Started

Document Edition Part Number Date Software Version

4.2 861-001001-003 July 1999 BEA WebLogic Enterprise 4.2

Contents

Preface
Purpose of This Document ... vii

How to Use This Document .. viii

Related Documentation ... xi

Contact Information... xiv

1. Understanding the WebLogic Enterprise (WLE) Product
Overview of the WLE Product .. 1-1

WLE Programming Environment.. 1-4

IDL Compilers.. 1-4

Development Commands ... 1-5

Administration Tools.. 1-6

ActiveX Application Builder ... 1-9

WLE Object Services .. 1-11

WLE Components ... 1-12

Bootstrap Object... 1-14

IIOP Listener/Handler .. 1-15

ORB.. 1-16

TP Framework.. 1-17

How WLE Client and Server Applications Interact .. 1-19

Step 1: The server application is initialized. .. 1-20

Step 2: The client application is initialized. ... 1-21

Step 3: The client application authenticates itself to the WLE domain. .. 1-22

Step 4: The client application obtains a reference to the object needed to
execute its business logic. ... 1-23

Step 5: The client application invokes an operation on the CORBA
object. .. 1-25
Getting Started iii

2-9

2-12

-15

-16

2-19

2-22

-23

-24

-24

2-25

.. 3-1

.. 3-2

.. 3-4

... 3-6

3-6

3-7

.. 4-1

... 4-3

... 4-4

.. 4-6

... 4-8

4-9

-12

-13

-14
2. Developing WebLogic Enterprise (WLE) Applications
Overview of the Development Process for WLE Applications......................... 2-2

The Simpapp Sample Application ... 2-4

Step 1: Writing the OMG IDL... 2-5

Step 2: Generating Client Stubs and Skeletons ... 2-6

Step 3: Writing the Server Application ... 2-8

Writing the Methods That Implement Each Interface’s Operations

Creating the Server Object ...

Defining an Object’s Activation Policies ... 2

Step 4: Writing the Client Application ..2

Step 5: Creating a Configuration File..

Step 6: Compiling the Server Application...

Step 7: Compiling the Client Application ...2

Additional WLE Sample Applications ..2

Univeristy Sample Applications... 2

Java Sample Applications...

3. Using Security
Overview of the Security Service ..

How Security Works ...

The Security Sample Application..

Development Steps ...

Step 1: Defining the Security Level in the Configuration File...................

Step 2: Writing the Client Application...

4. Using Transactions
Overview of the Transaction Service ..

When to Use Transactional Objects ...

What Happens During a Transaction..

Transactions Sample Application..

Development Steps ...

Step 1: Writing the OMG IDL..

Step 2: Defining Transaction Policies for the Interfaces..........................4

Step 3: Writing the Client Application... 4

Step 4: Writing the Server Application .. 4
iv Getting Started

Step 5: Creating a Configuration File .. 4-16
Getting Started v

vi Getting Started

Preface

Purpose of This Document

This document presents an overview of the BEA WebLogic Enterprise (sometimes
referred to as WLE) product and describes the development process for developing
distributed client/server applications using the WebLogic Enterprise software. The
Getting Started document does not discuss every feature of the WebLogic Enterprise
product; instead, it gives a general description of building a simple transactional
application. This document should be used in conjunction with the following BEA
WebLogic Enterprise documents:

t Creating Client Applications

t Creating C++ Server Applications

t Creating Java Server Applications

t Using Server-to-Server Communication

Note: Effective February 1999, the BEA M3 product is renamed. The new name of
the product is BEA WebLogic Enterprise (WLE).

Who Should Read This Document

This document is intended for programmers who want to familiarize themselves with
the WebLogic Enterprise product and create distributed client/server applications
using the WebLogic Enterprise programming environment.
Getting Started vii

es
ts of

E

d

from

t a
How This Document Is Organized

The Getting Started document is organized as follows:

t Chapter 1, “Understanding the WebLogic Enterprise (WLE) Product,” describ
the features, the programming environment, and the architectural componen
the WLE product.

t Chapter 2, “Developing WebLogic Enterprise (WLE) Applications,” explains
how to build a typical WLE application, using the Simpapp sample application
as an example.

t Chapter 3, “Using Security,” describes how security is incorporated into a WL
application. The Security sample application is used as an example.

t Chapter 4, “Using Transactions,” describes how transactions are incorporate
into a WLE application. The Transactions sample application is used as an
example.

How to Use This Document

This document, Getting Started, is designed primarily as an online, hypertext
document. If you are reading this as a paper publication, note that to get full use
this document you should access it as an online document via the Online
Documentation CD for the BEA WebLogic Enterprise 4.2 release.

The following sections explain how to view this document online, and how to prin
copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the following file:

\doc\wle\v42\index.htm
viii Getting Started

Note: The online documentation requires Netscape Communicator version 4.0 or
later, or Microsoft Internet Explorer version 4.0 or later.

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print.

The Online Documentation CD includes Adobe Acrobat PDF files of all of the online
documents. You can use the Adobe Acrobat Reader to print all or a portion of each
document. On the CD Home Page, click the PDF Files button and scroll to the entry
for the document you want to print.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

.doc

BITMAP

float
Getting Started ix

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name]...
[-f firstfile-syntax] [-l lastfile-syntax]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

t That an argument can be repeated several times in a command line

t That the statement omits additional optional arguments

t That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name]...
[-f firstfile-syntax] [-l lastfile-syntax]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
x Getting Started

Related Documentation

The following sections list the documentation provided with the BEA WebLogic
Enterprise software, related BEA publications, and other publications related to the
technology.

BEA WebLogic Enterprise Documentation

The BEA WebLogic Enterprise information set consists of the following documents:

Installation Guide

C++ Release Notes

Java Release Notes

Getting Started (this document)

Guide to the University Sample Applications

Guide to the Java Sample Applications

Creating Client Applications

Creating C++ Server Applications

Creating Java Server Applications

Administration Guide

Using Server-to-Server Communication

C++ Programming Reference

Java Programming Reference

Java API Reference

JDBC Driver Programming Reference

System Messages
Getting Started xi

Glossary

Technical Articles

Note: The Online Documentation CD also includes Adobe Acrobat PDF files of all
of the online documents. You can use the Adobe Acrobat Reader to print all
or a portion of each document.

BEA Publications

Selected BEA TUXEDO Release 6.5 for BEA WebLogic Enterprise version 4.2
documents are available on the Online Documentation CD.

To access these documents:

1. Click the Other Reference button from the main menu.

2. Click the TUXEDO Documents option.

Other Publications

For more information about CORBA, Java, and related technologies, refer to the
following books and specifications:

Cobb, E. 1997. The Impact of Object Technology on Commercial Transaction
Processing. VLDB Journal, Volume 6. 173-190.

Edwards, J. with DeVoe, D. 1997. 3-Tier Client/Server At Work. Wiley Computer
Publishing.

Edwards, J., Harkey, D., and Orfali, R. 1996. The Essential Client/Server Survival
Guide. Wiley Computer Publishing.

Flanagan, David. May 1997. Java in a Nutshell, 2nd Edition. O’Reilly & Associates,
Incorporated.

Flanagan, David. September 1997. Java Examples in a Nutshell. O’Reilly &
Associates, Incorporated.
xii Getting Started

Fowler, M. with Scott, K. 1997. UML Distilled, Applying the Standard Object
Modeling Language. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series.

Jacobson, I. 1994. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley.

Mowbray, Thomas J. and Malveau, Raphael C. (Contributor). 1997. CORBA Design
Patterns, Paper Back and CD-ROM Edition. John Wiley & Sons, Inc.

Orfali, R., Harkey, D., and Edwards, J. 1997. Instant Corba. Wiley Computer
Publishing.

Orfali, R., Harkey, D. February 1998. Client/Server Programming with Java and
CORBA, 2nd Edition. John Wiley & Sons, Inc.

Otte, R., Patrick, P., and Roy, M. 1996. Understanding CORBA. Prentice Hall PTR.

Rosen, M. and Curtis, D. 1998. Integrating CORBA and COM Applications. Wiley
Computer Publishing.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Loresen, W. 1991.
Object-Oriented Modeling and Design. Prentice Hall.

The Common Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. Published by the Object Management Group (OMG).

CORBAservices: Common Object Services Specification. Revised Edition. Updated:
November 1997. Published by the Object Management Group (OMG).

Contact Information

The following sections provide information about how to obtain support for the
documentation and the software.
Getting Started xiii

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of the BEA WebLogic Enterprise product,
or if you have problems installing and running the BEA WebLogic Enterprise
software, contact BEA Customer Support through BEA WebSupport at
www.beasys.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

t Your name, e-mail address, phone number, and fax number

t Your company name and company address

t Your machine type and authorization codes

t The name and version of the product you are using

t A description of the problem and the content of pertinent error messages
xiv Getting Started

CHAPTER
1 Understanding the
WebLogic Enterprise
(WLE) Product

This chapter discusses the following topics:

t Overview of the WLE Product

t WLE Programming Environment

t WLE Object Services

t WLE Components

t How WLE Client and Server Applications Interact

Overview of the WLE Product

The WLE product extends the Object Request Broker (ORB) model with online
transaction processsing (OLTP) functions. It uses the CORBA standard as a
programming model for developing enterprise applications with high performance,
scalability, and reliability. The WLE deployment infrastructure delivers secure,
transactional, distributed applications in a managed environment.
Getting Started 1-1

1 Understanding the WebLogic Enterprise (WLE) Product

tion
 for

ates
Objects built with the WLE product can be accessed from Web-based applications that
communicate using the Object Management Group (OMG) Internet Inter-ORB
Protocol (IIOP). IIOP is the standard protocol for communications running on the
Internet or on an enterprise’s Intranet. The WLE product has a native implementa
of IIOP, ensuring high-performance, interoperable, distributed-object applications
the Internet, Intranets, and enterprise computing environments. Figure 1-1 illustr
the WLE product.

Figure 1-1 WLE Product

CORBA C++
Client

Application

CORBA Java
Client

Application

ActiveX
Client

Application

Netscape or JDK
Object Request

Broker

WLE Domain

IIOP Object Request Broker

IIOP

Object Services
Application

Programming
Interfaces

Administration
TP Monitor and

Messaging

Server Application
Programming Interfaces

Database
Integration
1-2 Getting Started

Overview of the WLE Product
The WLE product provides:

t A set of integrated components that can be used to build robust, distributed
client/server applications. These components can be accessed from a set of C++,
Java, and COM/OLE/ActiveX application programming interfaces (APIs).

t Support for hetergeneous client and server applications. The WLE product
supports C++ and Java server applications, as well as C++, Java, and ActiveX
client applications and Java applets.

t Interoperability with other ORB products. The use of IIOP in the WLE product
allows client and server applications developed with the product to be used with
applications built with CORBA 2.0 compliant ORBs from other vendors.

t Integration with other enterprise resources, such as Oracle and Microsoft SQL
Server databases and legacy applications.

t A Simple Network Management Protocol (SNMP) Management Information
Base (MIB) that defines the key management attributes of WLE applications.

t A CORBA and XA-compatible Transaction Service to ensure the integrity of
your data even when transactions span mulitiple databases and applications.

t A CORBA-based security service that provides authentication for distributed
objects and their client applications.

t An interface repository that stores meta information about object types. Meta
information stored for CORBA objects includes information about modules,
interfaces, operations, attributes, and exceptions.

t Dynamic Invocation Interface (DII) support. DII allows client applications to
dynamically create requests for objects that were not defined at compile time.

The topics in Getting Started describe the features of the WLE product and the
development process for building a transactional application using the WLE software.
This topic does not discuss every feature of the WLE product; instead it gives an
general description of building transactional applications. For more information, see
the following on the Online Documentation CD:

Creating Client Applications

Creating C++ Server Applications

Creating Java Server Applications
Getting Started 1-3

1 Understanding the WebLogic Enterprise (WLE) Product

n

er

e
Using Server-to-Server Communication

WLE Programming Environment

The WLE product offers a robust programming environment that makes the
development and management of distributed objects easier. The following topics
describe the features of the programming environment:

t IDL Compilers

t Development Commands

t Administration Tools

t ActiveX Application Builder

IDL Compilers

The WLE product comes with two IDL compilers that make object development
easier:

t idl—compiles the OMG IDL file and generates client stub and server skeleto
files required for interface definitions being implemented in C++

t m3idltojava—compiles the OMG IDL file and generates client stub and serv
skeleton files required for interface definitions being implemented in Java

For a description of how to use the IDL compilers, see the following on the Onlin
Documentation CD:

Creating Client Applications

Creating C++ Server Applications

Creating Java Server Applications
1-4 Getting Started

WLE Programming Environment
For a description of the idl and m3idltojava commands, see the following on the
Online Documentation CD:

C++ Programming Reference

Java Programming Reference

Development Commands

Table 1-1 lists the commands that the WLE product provides for developing
application components and managing the Interface Repository.

Table 1-1 Development Commands

Development
Command

Description

buildjavaserver Constructs a server application JAR file for a Java server
application.

buildobjclient Constructs a C++ client application.

buildobjserver Constructs a C++ server application.

buildXAJS Constructs an XA resource manager to be used with a Java
server application group.

genicf Generates an Implementation Configuration File (ICF). The ICF
file defines activation and transaction policies for C++ server
applications.

id12ir Creates the Interface Repository and loads interface definitions
into it.

ir2idl Shows the content of the Interface Repository.

irdel Deletes the specified object from the Interface Repository.
Getting Started 1-5

1 Understanding the WebLogic Enterprise (WLE) Product
For a description of how to use the development commands to develop client and
server applications, see the following on the Online Documentation CD:

Creating Client Applications

Creating C++ Server Applications

Creating Java Server Applications

For a description of the development commands, see the following on the Online
Documentation CD:

C++ Programming Reference

Java Programming Reference

Administration Tools

The WLE product provides a complete set of tools for administering your WLE
environment. You can manage the WLE application through commands, through a
graphical user interface, or by including administration utilities in a script.

You can use the commands listed in Table 1-2 to perform administration tasks for your
WLE application.

Table 1-2 Administration Commands

Administration
Command

Description

tmadmin Displays information about current configuration parameters.

tmboot Activates the WLE application referenced in the specified
configuration file. Depending on the options used, the entire
application or parts of the application are started.

tmconfig Dynamically updates and retrieves information about the
configuration of a WLE application.

tmloadcf Parses the configuration file and loads the binary version of the
configuration file.
1-6 Getting Started

WLE Programming Environment
The Administration Console is a Java-based applet that you can download into your
Internet browser and use to remotely manage your WebLogic Enterprise applications.
The Administration Console allows you to perform administration tasks, such as
monitoring system events, managing system resources, creating and configuring
administration objects, and viewing system statistics. Figure 1-2 shows the main
window of the Administration Console.

tmshutdown Shuts down a set of specified server applications, or removes
interfaces from a configuration file.

tmunloadcf Unloads the configuration file.

Administration
Command

Description
Getting Started 1-7

1 Understanding the WebLogic Enterprise (WLE) Product
Figure 1-2 Administration Console Main Window

In addition, a set of utilities called the AdminAPI is provided for directly accessing and
manipulating system settings in the Management Information Bases (MIBs) for the
WLE product. The advantage of the AdminAPI is that it can be used to automate
administrative tasks, such as monitoring log files and dynamically reconfiguring an
application, thus eliminating the need for human intervention.

For information about the Administration commands, see the Adminstration Guide on
the Online Documentation CD
1-8 Getting Started

WLE Programming Environment
For a description of the Administration Console and how it works, see the
Administration Guide on the Online Documentation CD and the online help that is
integrated into the Administration Console graphical user interface (GUI).

For information about the AdminAPI, see the BEA TUXEDO Reference on the Online
Documentation CD.

ActiveX Application Builder

The ActiveX Application Builder is a development tool that you use with a client
development tool (such as Visual Basic) to select which CORBA interfaces in a WLE
domain you want your ActiveX client application to interact with. In addition, you use
the ActiveX Application Builder to create Automation bindings for CORBA
interfaces, and to create packages for deploying ActiveX views of CORBA objects to
client machines.

Figure 1-3 shows the ActiveX Application Builder main window.
Getting Started 1-9

1 Understanding the WebLogic Enterprise (WLE) Product
Figure 1-3 ActiveX Application Builder Main Window

For a description of the ActiveX Application Builder and how it works, see the online
help that is integrated into the ActiveX Application Builder graphical user interface
(GUI). For a description of how ActiveX client applications use CORBA objects, see
Creating Client Applications on the Online Documentation CD.
1-10 Getting Started

WLE Object Services

n
WLE Object Services

The WLE product includes a set of environmental objects that provide object services
to client applications in a WLE domain. You access the environmental objects through
a bootstrapping process that accesses the services in a particular WLE domain.

The following services are provided:

t Object Life Cycle service

The Object Life Cycle service is provided through the FactoryFinder
environmental object. The FactoryFinder object is a CORBA object that can be
used to locate a factory, which in turn can create object references for CORBA
objects. Factories and FactoryFinder objects are implementations of the
CORBAservices Life Cycle Service. WLE applications use the Object Life
Cycle service to find object references.

For information about using the Object Life Cycle Service, see the topic “How
WLE Client and Server Applications Interact.”

t Security service

The Security service is accessed through the SecurityCurrent environmental
object. The SecurityCurrent object is used to authenticate a client application
into a WLE domain with the proper security. The WLE software provides an
implementation of the CORBAservices Security Service.

For information about using security, see the topic “Using Security.”

t Transaction service

The Transaction service is accessed through either the TransactionCurrent
environmental object or the UserTransaction object. The TransactionCurrent
object allows a client application to participate in a transaction. The WLE
software provides an implementation of the CORBAservices Object Transaction
Service (OTS). In addition, the UserTransaction object provides access to Su
Microsystems, Inc.’s Java Transaction API (JTA) defined in the

javax.transaction package.

For information about using transactions, see the topic “Using Transactions.”
Getting Started 1-11

1 Understanding the WebLogic Enterprise (WLE) Product
t Interface Repository service

The Interface Respository service is accessed through the IntefaceRepository
object. The InterfaceRepository object is a CORBA object that contains interface
definitions for all the available CORBA interfaces and the factories used to
create object references to the CORBA interfaces. The Interface Repository
object is used with client applications that use DII.

For information about using DII, see Creating Client Applications on the Online
Documentation CD.

The WLE software provides environmental objects for the following programming
environments:

t C++

t Java

t Automation (used by ActiveX client applications)

WLE Components

This section provides an introduction to the following WLE components:

t Bootstrap Object

t IIOP Listener/Handler

t ORB

t TP Framework

Figure 1-4 illustrates the components in a WLE application.
1-12 Getting Started

WLE Components
Figure 1-4 Components in a WLE Application

WLE Domain

Server Machine(s)

Client Machine

Client Application

Object Request Broker

IIOP

IIOP Listener/
Handler

FactoryFinder
Object

SecurityCurrent
Object

InterfaceRepository
Object

Server Application

Bootstrap
Object

TP
Framework

Portable
Object

Adapter

FactoryTransactionCurrent
Object

Bootstrap
Object

TransactionCurrent
Object

TransactionCurrent
Object Reference

TransactionCurrent
Object

SecurityCurrent
Object Reference
Getting Started 1-13

1 Understanding the WebLogic Enterprise (WLE) Product
Bootstrap Object

The Bootstrap object establishes communication between a client application and a
WLE domain. A domain is simply a way of grouping objects and services together as
a management entity. A WLE domain has at least one IIOP Listener/Handler and is
identified by a name. One client application can connect to multiple WLE domains
using different Bootstrap objects.

One of the first things that client applications do after startup is create a Bootstrap
object by supplying the host and port of the IIOP Listener/Handler as a parameter to
its constructor, as follows:

//host:port

For example, //myserver:4000

The client application then uses the Bootstrap object to obtain references to the objects
in a WLE domain. Once the Bootstrap object is instantiated, the
resolve_initial_references method is invoked by the client application, passing
in a string id, to obtain a reference to the objects in the domain that provide CORBA
services. The valid values for string Id are FactoryFinder, TransactionCurrent,
SecurityCurrent, and InterfaceRepository.

Figure 1-5 illustrates how the Bootstrap object works in a WLE domain.
1-14 Getting Started

WLE Components
Figure 1-5 How the Bootstrap Object Works

IIOP Listener/Handler

The IIOP Listener/Handler is a process that receives the client request, which is sent
using IIOP, and delivers that request to the appropriate server application. The IIOP
Listener/Handler serves as a communication concentrator, providing a critical
scalability feature. The IIOP Listener/Handler removes from the server application the
burden of maintaining client connections. For information about configuring the IIOP
Listener/Handler, see the Adminstration Guide on the Online Documentation CD.

Client
Application

WLE Domain

IIOP
Listener/Handler

Bootstrap
Object

FactoryFinder
Object Reference

TransactionCurrent
Object Reference

SecurityCurrent
Object Reference

InterfaceRepository
Object Reference

FactoryFinder
Object

TransactionCurrent
Object

SecurityCurrent
Object

InterfaceRepository
Object

resolve_initial_references()
Getting Started 1-15

1 Understanding the WebLogic Enterprise (WLE) Product

ive
ORB

The ORB serves as an intermediary for requests that client applications send to server
applications, so that client applications and server applications do not need to contain
information about each other. The ORB is responsible for all the mechanisms required
to find the implementation that can satisfy the request, to prepare an object’s
implementation to receive the request, and to communicate the data that makes up the
request. The WLE product provides a C++ ORB and a BEA version of the Java IDL
ORB provided with the Java Development Kit from Sun Microsystems, Inc.

Figure 1-6 shows the relationship between an ORB, a client application, and a server
application.

Figure 1-6 The ORB in a Client/Server Environment

When the client application uses IIOP to send a request to the domain, the ORB
performs the following functions:

t Validates each request and its arguments to ensure that the client application
supplied all the required arguments.

t Manages the mechanisms required to find the CORBA object that can satisfy the
client application’s request. To do this, the ORB interacts with the Portable
Object Adapter (POA). The POA prepares an object's implementation to rece
the request and communicates the data in the request.

Client
Application

Server
Application

Requests
 Service

Object Request Broker

Directs
Response
to Client

Directs
Request
to Server

Returns
Response
1-16 Getting Started

WLE Components
t Marshals data. The ORB on the client machine writes the data associated with
the request into a standard form. The ORB receives this data and converts it into
the format appropriate for the machine on which the server application is
running. When the server application sends data back to the client application,
the ORB marshals the data back into its standard form and sends it back to the
ORB on the client machine.

TP Framework

The TP Framework provides a programming model that achieves high levels of
performance while shielding the application programmer from the complexities of the
CORBA interfaces. The TP Framwork supports the rapid construction of WLE
applications, which makes it easier for application programmers to adhere to design
patterms associated with successful TP applications.

The TP Framework interacts with the Portable Object Adapter (POA) and the WLE
application, thus eliminating the need for direct POA calls in an application. In
addition, the TP Framework integrates transactions and state management into the
WLE application.

The application programmer uses an Application Programming Interface (API) that
automates many of the functions required in a standard CORBA application. The
application programmer is responsible only for writing the business logic of the WLE
application and overriding default actions provided by the TP Framework.

The TP Framework API provides routines that perform the following functions
required by a CORBA application:

t Initializing the server application and executing startup and shutdown routines

t Creating object references

t Registering and unregistering object factories

t Managing objects and object state

t Tying the server application to WLE system resources

t Getting and initializing the ORB

t Performing object housekeeping
Getting Started 1-17

1 Understanding the WebLogic Enterprise (WLE) Product
The TP Framework ensures that the execution of a client request takes place in a
coodinated, predictable manner. The TP Framework calls the objects and services
available in the WLE application at the appropriate time, in the correct sequence. In
addition, the TP Framework maximizes the reuse of system resources by objects.
Figure 1-7 illustrates the TP Framework.

Figure 1-7 The TP Framework

The TP Framework is not a single object, but is rather a collection of objects that work
together to manage the CORBA objects that contain and implement your WLE
application’s data and business logic.

Server Application

5

4

Server Machine

TP Framework
Server Object

TP Object

CORBA
Object

Implementations

Factory

Portable Object
Adapter

WLE Domain
1-18 Getting Started

How WLE Client and Server Applications Interact
One of the TP Framework objects is the Server object. The Server object is a
user-written programming entity that implements operations that perform tasks such as
initializing and releasing the server application; for server applications implemented in
C++, the TP Framework instantiates the CORBA objects needed to satisfy a client
request.

If a client request that requires an object that is not currently active and in-memory in
the server application arrives, the TP Framework coordinates all the operations that are
required to instantiate the object. This includes coordinating with the ORB and the
POA to get the client request to the appropriate object implementation code.

For examples of programming with the TP Framework, see Creating C++ Server
Applications and Creating Java Server Applications on the Online Documenation CD.

How WLE Client and Server Applications
Interact

The interaction between WLE client and server applications includes the following
steps:

1. The server application is initialized.

2. The client application is initialized.

3. The client application authenticates itself to the WLE domain.

4. The client application obtains a reference to the object needed to execute its
business logic.

5. The client application invokes an operation on the CORBA object.

The following topics describe what happens during each step.
Getting Started 1-19

1 Understanding the WebLogic Enterprise (WLE) Product
Step 1: The server application is initialized.

The system administrator enters the tmboot command on a machine in the WLE
domain to start the WLE server application. The TP Framework invokes the
initialize operation in the Server object to initialize the server application.

During the initialization process, the Server object does the following:

1. Gets the Bootstrap object and a reference to the FactoryFinder object.

2. Typically registers any factories with the FactoryFinder object.

3. Optionally gets an object reference to the ORB.

4. Performs any process-wide initialization.

WLE Server Application

TP Framework

Server Object

Initialize server {
 Register factories;
}

1-20 Getting Started

How WLE Client and Server Applications Interact
Step 2: The client application is initialized.

During initialization, the client application uses the Bootstrap object in the domain to
obtain initial references to the environmental objects available in the domain.

The Bootstrap object returns references to the FactoryFinder, SecurityCurrent,
TransactionCurrent, and InterfaceRepository objects in the WLE domain.

WLE Client Application

 Instantiate the Bootstrap object;
 Resolve initial references;

Bootstrap
Object
Getting Started 1-21

1 Understanding the WebLogic Enterprise (WLE) Product
Step 3: The client application authenticates itself to the
WLE domain.

If the WLE domain has a security model in effect, the client application needs to
authenticate itself to the WLE domain before it can invoke any operations in the server
application. To authenticate itself to the WLE domain, the client application:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object.

2. Invokes the logon operation of the PrincipalAuthenticator object, which is
retrieved from the SecurityCurrent object.

WLE Client Application

 Instantiate the Bootstrap object;
 Resolve initial references;
 Log on;
 Find one factory

WLE Server Application

TP Framework
Server Object

Initialize server {
 Register factories;
}

SecurityCurrent
Object

FactoryFinder
Object
1-22 Getting Started

How WLE Client and Server Applications Interact
Step 4: The client application obtains a reference to the
object needed to execute its business logic.

The client application needs to perform the following steps:

1. Obtain a reference to the factory for the object it needs.

For example, the client application needs a reference to the SimpleFactory
object. The client application obtains this factory reference from the
FactoryFinder object, shown in the following figure.

WLE Client Application

 Instantiate the Bootstrap object;
 Resolve initial references;
 Log on;
 Find one factory

WLE Server Application

TP Framework
Server Object

Initialize server {
 Register factories;
}

SecurityCurrent
Object

FactoryFinder
Object
Getting Started 1-23

1 Understanding the WebLogic Enterprise (WLE) Product
2. Invoke the SimpleFactory object to get a reference to the Simple object.

If the SimpleFactory object is not active, what happens next depends on the
programming language in which the server application is implemented:

t If C++, the TP Framework instantiates the SimpleFactory object by
invoking the Server::create_servant method on the Server object,
shown in the following figure.

t In Java, the WLE system instantiates the SimpleFactory object
dynamically.

WLE Server Application

TP Framework

SimpleFactory

Server Object

Initialize server {
 Register factories;
}
Server::create_servant() {
}

WLE Client Application

 Instantiate the Bootstrap object;
 Resolve initial references;
 Log on;
 Find a factory by ID;

1-24 Getting Started

How WLE Client and Server Applications Interact
3. The TP Framework invokes the activate_object and find_simple operations
on the SimpleFactory object to get a reference to the Simple object, shown in
the following figure.

The SimpleFactory object then returns the object reference to the Simple object to
the client application.

Note: Because the TP Framework activates objects by default, the Simpapp sample
application does not implicitly use the activate_object operation for the
SimpleFactory object.

Step 5: The client application invokes an operation on
the CORBA object.

Using the reference to the CORBA object that the factory has returned to the client
application, the client application invokes an operation on the object. For example,
now that the client application has an object reference to the Simple object, the client
application can invoke the to_upper operation on it. The instance of the Simple object
required for the client request is created as shown in the following figure.

WLE Server Application

TP Framework

SimpleFactory

Server Object

Initialize server {
 Register factories;
}

WLE Client Application

 Instantiate the Bootstrap object;
 Resolve initial references;
 Log on;
 Find a factory by ID;
 Find_simple;

Simple
Getting Started 1-25

1 Understanding the WebLogic Enterprise (WLE) Product
If the server application were implemented in Java, the Simple object required
for the client request is instantiated dynamically by the WLE system.

WLE Server Application
TP Framework

Simple

Server Object

Initialize server {
 Register factories;
}
Server::create_servant() {
}WLE Client Application

 Instantiate the Bootstrap object;
 Resolve initial references;
 Log on;
 Find a factory by ID;
 Find_simple;
 to_upper();

SimpleFactory
1-26 Getting Started

How WLE Client and Server Applications Interact
4. The TP Framework invokes the activate_object operation on the Simple
object and the factory object to allow the object to initialize any object state
necessary, shown in the following figure.

Object state initialization often involves reading durable state information from
disk for that object.

5. The TP Framework invokes the operation on the object, returning the response to
the client application.

WLE Server Application
TP Framework

Simple
activate_object {...}

to_upper() {...}

Server Object

Initialize server {
 Register factories;
}
Server::create_servant() {
}WLE Client Application

 Instantiate the Bootstrap object;
 Resolve initial references;
 Log on;
 Find a factory by ID;
 Find_simple;
 to_upper();

SimpleFactory
Getting Started 1-27

1 Understanding the WebLogic Enterprise (WLE) Product
1-28 Getting Started

CHAPTER
2 Developing WebLogic
Enterprise (WLE)
Applications

This chapter discusses the following topics:

t Overview of the Development Process for WLE Applications

t The Simpapp Sample Application

t Step 1: Writing the OMG IDL

t Step 2: Generating Client Stubs and Skeletons

t Step 3: Writing the Server Application

t Step 4: Writing the Client Application

t Step 5: Creating a Configuration File

t Step 6: Compiling the Server Application

t Step 7: Compiling the Client Application

t Additional WLE Sample Applications
Getting Started 2-1

2 Developing WebLogic Enterprise (WLE) Applications
Overview of the Development Process for
WLE Applications

Table 2-1 outlines the development process for WLE applications.

The steps in the development process are described in the following topics.

Figure 2-1 illustrates the process for developing WLE applications.

Table 2-1 Development Process for WLE Applications

Step Description

1 Write the Object Management Group (OMG) Interface Definition
Language (IDL) for each CORBA interface you want to use in your
WLE application.

2 Generate the client stubs and the skeletons.

3 Write the server application.

4 Write the client application.

5 Create a configuration file.

6 Compile the server application.

7 Compile the client application.
2-2 Getting Started

Overview of the Development Process for WLE Applications
Figure 2-1 Development Process for WLE Applications

Interface Specifications
in OMG IDL

m3idltojava
or idl

Command

Client Stubs Skeletons

Write client
application code.

Write method
implementations.

Client
Stubs

Client Application

Running
Client
Code

Write Server object.

Compile client
application code.

Compile server
application code.

Skeleton
Method

Implementations

Server
Java Archive

File*
+++

Server Application

Object Request Broker

Server Description
File or

Implementation
Configuration File

UBBCONFIG

* For Java server applications only
Getting Started 2-3

2 Developing WebLogic Enterprise (WLE) Applications
The Simpapp Sample Application

Throughout this topic, the Simpapp sample application is used to demonstrate the
development steps. C++ and Java versions of the Simpapp sample application are
available.

The server application in the Simpapp sample application provides an implementation
of a CORBA object that has the following two methods:

t The upper method accepts a string from the client application and converts
the string to uppercase letters.

t The lower method accepts a string from the client application and converts
the string to lowercase letters.

Figure 2-2 illustrates how the Simpapp sample application works.

Figure 2-2 Simpapp Sample Application

The source files for the C++ and Java versions of the Simpapp sample application are
located in the \samples\corba\simpapp and \samples\corba\simpap_java
directories of the WLE software. Instructions for building and running the Simpapp

Client
Application

Server
Application

SimpleFactory
find_simple()

Simple
to_upper()
to_lower()
2-4 Getting Started

Step 1: Writing the OMG IDL

es
ion
e

ils.
ge
sample applications are in the readme files in the directories. For the instructions for
building and running the Java Simpapp sample application, see Guide to the Java
Sample Applications on the Online Documentation CD.

Note: The Simpapp sample applications demonstrate building C++ client and server
applications and Java client and server applications. For information about
building a simple ActiveX client application, see the description of the Basic
sample application in the Guide to the University Sample Applications on the
Online Documentation CD.

The WLE product offers a suite of sample applications that demonstrate and aid in the
development of WLE applications. For an overview of the available sample
applications, see the topic “Additional WLE Sample Applications.”

Step 1: Writing the OMG IDL

The first step in writing a WLE application is to specify all of the CORBA interfac
and their methods using the Object Management Group (OMG) Interface Definit
Language (IDL). An interface definition written in OMG IDL completely defines th
CORBA interface and fully specifies each operation’s arguments. OMG IDL is a
purely declarative language. This means that it contains no implementation deta
Operations specified in OMG IDL can be written in and invoked from any langua
that provides CORBA bindings.

The Simpapp sample application implements the CORBA interfaces listed in
Table 2-2.

Table 2-2 CORBA Interfaces for the Simpapp Sample Application

Interface Description Operation

SimpleFactory Creates object references to the
Simple object

find_simple()

Simple Converts the case of a string to_upper()

to_lower()
Getting Started 2-5

2 Developing WebLogic Enterprise (WLE) Applications
Listing 2-1 shows the simple.idl file that defines the CORBA interfaces in the
Simpapp sample application. The same OMG IDL file is used by both the C++ and
Java Simpapp sample applications.

Listing 2-1 OMG IDL Code for the Simpapp Sample Application

#pragma prefix "beasys.com"

interface Simple
{
 //Convert a string to lower case (return a new string)
 string to_lower(in string val);

 //Convert a string to upper case (in place)
 void to_upper(inout string val);
};

interface SimpleFactory
{
 Simple find_simple();
};

Step 2: Generating Client Stubs and
Skeletons

The interface specification defined in OMG IDL is used by the IDL compiler to
generate client stubs for the client application, and skeletons for the server application.
The client stubs are used by the client application for all operation invocations. You
use the skeleton, along with the code you write to create the server application that
implements the CORBA objects.

During the development process, use one of the following commands to compile the
OMG IDL file and produce client stubs and skeletons for WLE client and server
applications:

t If you are creating C++ client and server applications, use the idl command.
For a description of the idl command, see C++ Programming Reference on the
Online Documentation CD.
2-6 Getting Started

Step 2: Generating Client Stubs and Skeletons
t If you are creating Java client and server applications, use the m3idltojava
command. For a description of the m3idltojava command, see Java
Programming Reference on the Online Documentation CD.

Table 2-3 lists the files that are created by the idl command.

Table 2-3 Files Created by the IDL Command

Table 2-4 lists the files that are created by the m3idltojava command.

Table 2-4 Files Created by the m3idltojava Command

File Default Name Description

Client stub file application_c.cpp Contains generated code for sending a request.

Client stub header file application_c.h Contains class definitions for each interface and type
specified in the OMG IDL file.

Skeleton file application_s.cpp Contains skeletons for each interface specified in the OMG
IDL file. During run time, the skeleton maps client requests
to the appropriate operation in the server application.

Skeleton header file application_s.h Contains the skeleton class definitions.

Implementation file application_i.cpp Contains signatures for the methods that implement the
operations on the interfaces specified in the OMG IDL file.

Implementation
header file

application_i.h Contains the initial class definitions for each interface
specified in the OMG IDL file.

File Default Name Description

Base interface class
file

interface.java Contains an implementation of the interface, written
in Java.

Copy this file to create a new file, and add your
business logic to the new file. By convention in our
samples and in this document, we name this file
interfaceImpl.java, substituting the actual
name of the interface in the file name. We call this
new file an object implementation file.
Getting Started 2-7

2 Developing WebLogic Enterprise (WLE) Applications

n the
Step 3: Writing the Server Application

The WLE software supports C++ and Java server applications. The steps for creating
server applications are:

1. Write the methods that implement each interface’s operations.

2. Create the server object.

3. Define object activation policies.

For a detailed description of how to create server applications, see the following o
Online Documentation CD:

t Creating C++ Server Applications

t Creating Java Server Applications

Client stub file _interfaceStub.java Contains generated code for sending a request.

Server skeleton file _interfaceImplBase.java Contains Java skeletons for each interface specified
in the OMG IDL file. During run time, the skeleton
maps client requests to the appropriate operation in
the Java server application during run time.

Holder class file interfaceHolder.java Contains the implementation of the Holder class. The
Holder class provides operations for out and inout
arguments, which CORBA has, but which do not
map exactly to Java.

Helper class file interfaceHelper.java Contains the implementation of the Helper class. The
Helper class provides auxiliary functionality, notably
the narrow method.

File Default Name Description
2-8 Getting Started

Step 3: Writing the Server Application

al)

n

tion

e
ject
can

set of
or
Writing the Methods That Implement Each Interface’s
Operations

After you compile the OMG IDL file, you need to write methods that implement the
operations for each interface in the file. An implementation file contains the following:

t Method declarations for each operation specified in the OMG IDL file

t Your application’s business logic

t Constructors for each interface implementation (implementing these is option

t The activate_object and deactivate_object methods (optional)

Within the activate_object and deactivate_object methods, you write
code that performs any particular steps related to activating or deactivating a
object. For information about activating and deactivating objects, see Creating
C++ Server Applications or Creating Java Server Applications on the Online
Documentation CD.

You can write the implementation file by hand. However, both the idl and
m3idltojava commands have an option that generates a template for implementa
files. For information about using this template, see Creating C++ Server Applications
or Creating Java Server Applications on the Online Documentation CD.

You also need to write an implementation for the factory that is used to create th
objects in your application. You can include the implementation for the factory ob
in the same file with the other implemenations in your WLE application, or youu
include it in a seperate file.

Writing an implementation for a factory object is different than writing an
implementation for other types of objects, because you need to define a specific
information for the factory. For more information about writing implementations f
factories, see Creating C++ Server Applications or Creating Java Server Applications
on the Online Documentation CD.

Listing 2-2 includes the C++ implementations of the Simple and SimpleFactory
interfaces in the Simpapp sample application.
Getting Started 2-9

2 Developing WebLogic Enterprise (WLE) Applications
Listing 2-2 C++ Implementation of the Simple and SimpleFactory Interfaces

// Implementation of the Simple_i::to_lower method which converts
// a string to lower case.

char* Simple_i::to_lower(const char* value)
{
 CORBA::String_var var_lower = CORBA::string_dup(value);
 for (char* ptr = v_lower; ptr && *ptr; ptr++) {
 *ptr = tolower(*ptr);
 }
 return var_lower._retn();
}

// Implementation of the Simple_i::to_upper method which converts
// a string to upper case.

void Simple_i::to_upper(char*& valuel)
{
 CORBA::String_var var_upper = value;
 var_upper = CORBA::string_dup(var_upper.in());
 for (char* ptr = var_upper; ptr && *ptr; ptr++) {
 *ptr = toupper(*ptr);
 }
 value = var_upper._retn();
}
// Implementation of the SimpleFactory_i::find_simple method which
// creates an object reference to a Simple object.

Simple_ptr SimpleFactory_i::find_simple()
{
 CORBA::Object_var var_simple_oref =
 TP::create_object_reference(
 _tc_Simple->id(),
 "simple",
 CORBA::NVList::_nil()
);
 }
2-10 Getting Started

Step 3: Writing the Server Application
Listing 2-3 includes the Java implementation of the Simple interface from the Simpapp
sample application.

Listing 2-3 Java Implmentation of the Simple Interface

import com.beasys.Tobj.TP;

/**The SimpleImpl class implements the to_upper and to_lower
/**methods.

public class SimpleImpl extends _SimpleImplBase
{
/*Converts a string to upper case.*/

public void to_upper(org.omg.CORBA.StringHolder data)
{

if (data.value == null)
 return;
data.value = data.value.toUpperCase();
return;

}
/*Converts a string to lower case.*/

public String to_lower(String data)
{

if (data == null)
 return null;
return data.toLowerCase();

}
}

Listing 2-4 includes the Java implementation of the SimpleFactory interface from the
Simpapp sample application.

Listing 2-4 Java Implementation of the SimpleFactory Interface

import com.beasys.Tobj.TP;

/**The SimpleFactoryImpl class provides code to create the Simple
/**object.

public class SimpleFactoryImpl extends _SimpleFactoryImplBase
Getting Started 2-11

2 Developing WebLogic Enterprise (WLE) Applications
{
/*Create an object reference to a Simple object*/

public Simple find_simple()
{

org.omg.CORBA.Object simple_oref =
 TP.create_object_reference(

 SimpleHelper.id(), //Repository ID
 “simple”, //object id

null //routing criteria
);

//Send back the narrowed reference
return SimpleHelper.narrow(simple_oref);

};
};

};

Creating the Server Object

The Server object performs the following tasks:

t Initializes the server application, including registering factories, allocating
resources needed by the server application, and, if necessary, opening an XA
resource manager

t Performs server application shutdown and cleanup procedures

t In C++ server applications, instantiates CORBA objects needed to satisfy client
requests

In C++ server applications, the Server object is already instantiated and a header file
for the Server object is available. You implement methods that initialize and release
the server application, and, if desired, create servant objects.
2-12 Getting Started

Step 3: Writing the Server Application
Listing 2-5 includes the C++ code from the Simpapp sample application for the Server
object.

Listing 2-5 C++ Server Object

static CORBA::Object_var static_var_factory_reference;

// Method to start up the server

CORBA::Boolean Server::initialize(int argc, char* argv[])
{

// Create the Factory Object Reference

static_var_factory_reference =
 TP::create_object_reference(

_tc_SimpleFactory->id(),
"simple_factory",
CORBA::NVList::_nil()

);
// Register the factory reference with the FactoryFinder

TP::register_factory(
 static_var_factory_reference.in(),
 _tc_SimpleFactory->id()
);
return CORBA_TRUE;

}
// Method to shutdown the server

void Server::release()
{
// Unregister the factory.

 try {
TP::unregister_factory(
 static_var_factory_reference.in(),
 _tc_SimpleFactory->id()
);

 }
 catch (...) {

TP::userlog("Couldn’t unregister the SimpleFactory");
 }
}
// Method to create servants

Tobj_Servant Server::create_servant(const char*
Getting Started 2-13

2 Developing WebLogic Enterprise (WLE) Applications
 interface_repository_id)
{

if (!strcmp(interface_repository_id,
_tc_SimpleFactory->id())) {

return new SimpleFactory_i();
}
if (!strcmp(interface_repository_id,
_tc_Simple->id())) {

return new Simple_i();
}
return 0;

}

In Java server applications, you implement the Server object by creating a new class
that derives from the com.beasys.Tobj.Server class and overrides the initialize
and release methods. In the server application code, you can also write a public
default constructor for the Server object.

Listing 2-6 includes the Java code from the Simpapp sample application for the server
object.

Listing 2-6 Java Server Object

import com.beasys.Tobj.TP;

public class ServerImpl
extends com.beasys.Tobj.Server

{
static org.omg.CORBA.Object factory_reference;

/**Method to start up the server*/

public boolean initialize(String[] args)
{
 try {
 // Create the factory object reference.

 factory_reference = TP.create_object_reference(
SimpleFactoryHelper.id(),
"simple_factory",
null
);

// Register the factory reference with the FactoryFinder

TP.register_factory(
factory_reference,
2-14 Getting Started

Step 3: Writing the Server Application
SimpleFactoryHelper.id()
);

return true;

} catch (Exception e){
TP.userlog("Couldn’t initialize server: " +
e.getMessage());
e.printStackTrace();
return false;

}
}

/** Method to shutdown the server*/

public void release()
{

try {
TP.unregister_factory(
 factory_reference,
SimpleFactoryHelper.id()
);

} catch (Exception e){
TP.userlog("Couldn’t unregister the
SimpleFactory: " + e.getMessage());
e.printStackTrace();

}
}

}

Defining an Object’s Activation Policies

As part of server development, you determine what events cause an object to be
activated and deactivated by assigning object activation policies, as follows:

t For C++ server applications, specify object activation policies in the
Implementation Configuration File (ICF). A template ICF file is created by the
genicf command.

t For Java server applications, specify object activation policies in the Server
Description File, written in Extensible Markup Language (XML).

Note: You also define transaction policies in the ICF and Server Description Files.
For information about using transactions in your WLE application, see the
topic “Using Transactions.”
Getting Started 2-15

2 Developing WebLogic Enterprise (WLE) Applications

 on
e
r

 on
:

The WLE software supports the following activation policies:

The Simple interface in the Simpapp sample application is assigned the default
activation policy of method. For more information about managing object state and
defining object activation policies, see Creating C++ Server Applications and
Creating Java Server Applications on the Online Documentation CD.

Step 4: Writing the Client Application

The WLE software supports the following types of client applications:

t CORBA C++

t CORBA Java

t CORBA Java applets

t ActiveX

Activation Policy Description

method Causes the object to be active only for the duration of the
invocation on one of the object’s operations. This is the default
activation policy.

transaction Causes the object to be activated when an operation is invoked
it. If the object is activated within the scope of a transaction, th
object remains active until the transaction is either committed o
rolled back.

process Causes the object to be activated when an operation is invoked
it, and to be deactivated only when one of the following occurs

t The process in which the server application exists is shut
down.

t The method TP::deactivateEnable (C++) or
com.beasys.Tobj.TP.deactivateEnable (Java) has
been invoked on the object.
2-16 Getting Started

Step 4: Writing the Client Application
The steps for creating client applications are as follows:

1. Initialize the ORB.

2. Use the Bootstrap environmental object to establish communication with the
WLE domain.

3. Resolve initial references to the FactoryFinder environmental object.

4. Use a factory to get an object reference for the desired CORBA object.

5. Invoke methods on the CORBA object.

Note: Before you can create ActiveX client applications, you need to ensure that the
OMG IDL file for the CORBA interface you want to use is loaded in the
Interface Repository, and that bindings have been created for the CORBA
interface. For a description of these steps, see Creating Client Applications on
the Online Documentation CD.

The client development steps are illustrated in Listing 2-7 and Listing 2-8, which
include code from the Simpapp sample application. In the Simpapp sample
application, the client application uses a factory to get an object reference to the Simple
object and then invokes the to_upper and to_lower methods on the Simple object.

For a detailed description of the development steps with code examples from CORBA
C++, CORBA Java, and ActiveX client applications as well as Java applets, see
Creating Client Applications on the Online Documentation CD.

Listing 2-7 C++ Client Application from the Simpapp Sample Application

int main(int argc, char* argv[])
{
 try {

// Initialize the ORB
CORBA::ORB_var var_orb = CORBA::ORB_init(argc, argv, "");

// Create the Bootstrap object
Tobj_Bootstrap bootstrap(var_orb.in(), "");

// Use the Bootstrap object to find the FactoryFinder
CORBA::Object_var var_factory_finder_oref =
 bootstrap.resolve_initial_references("FactoryFinder");

// Narrow the FactoryFinder
Getting Started 2-17

2 Developing WebLogic Enterprise (WLE) Applications
Tobj::FactoryFinder_var var_factory_finder_reference =
 Tobj::FactoryFinder::_narrow
 (var_factory_finder_oref.in());

// Use the factory finder to find the Simple factory
CORBA::Object_var var_simple_factory_oref =
var_factory_finder_reference->find_one_factory_by_id(
_tc_SimpleFactory->id()
);

// Narrow the Simple factory
SimpleFactory_var var_simple_factory_reference =
 SimpleFactory::_narrow(
 var_simple_factory_reference.in());

// Find the Simple object
Simple_var var_simple =
 var_simple_factory_reference->find_simple();

// Get a string from the user
cout << "String?";
char mixed[256];
cin >> mixed;

// Convert the string to upper case :
CORBA::String_var var_upper = CORBA::string_dup(mixed);
var_simple->to_upper(var_upper.inout());
cout << var_upper.in() << endl;

// Convert the string to lower case
CORBA::String_var var_lower = var_simple->to_lower(mixed);
cout << var_lower.in() << endl;

return 0;
}

}

Listing 2-8 Java Client Application from the Simpapp Sample Application

public class SimpleClient
{

public static void main(String args[])

// Initialize the ORB.
ORB orb = ORB.init(args, null);

// Create the Bootstrap object
2-18 Getting Started

Step 5: Creating a Configuration File
Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb, "");

// Use the Bootstrap object to locate the FactoryFinder
org.omg.CORBA.Object factory_finder_reference =
bootstrap.resolve_initial_references("FactoryFinder");

// Narrow the FactoryFinder
FactoryFinder factory_finder_reference =
FactoryFinderHelper.narrow(factory_finder_reference);

// Use the FactoryFinder to find the Simple factory.
org.omg.CORBA.Object simple_factory_reference =
factory_finder_reference.find_one_factory_by_id
(SimpleFactoryHelper.id());

// Narrow the Simple factory
SimpleFactory simple_factory_reference =
SimpleFactoryHelper.narrow(simple_factory_reference);

// Find the Simple object.
Simple simple = simple_factory_reference.find_simple();

// Get a string from the user.
System.out.println("String?");
String mixed = in.readLine();

// Convert the string to upper case.
org.omg.CORBA.StringHolder buf = new
org.omg.CORBA.StringHolder(mixed);
simple.to_upper(buf);
System.out.println(buf.value);

// Convert the string to lower case.
String lower = simple.to_lower(mixed);
System.out.println(lower);

 }
}

Step 5: Creating a Configuration File

Because the WLE software offers great flexibility and many options to application
designers and programmers, no two applications are alike. An application, for
example, may be small and simple (a single client and server running on one machine)
Getting Started 2-19

2 Developing WebLogic Enterprise (WLE) Applications

t

or complex enough to handle transactions among thousands of client and server
applications. For this reason, for every WLE application being managed, the system
administrator must provide a configuration file that defines and manages the
components (for example, domains, server applications, client applications, and
interfaces) of that application.

When system administrators create a configuration file, they are describing the WLE
application using a set of parameters that the WLE software interprets to create a
runnable version of the application. During the setup phase of administration, the
system administrator’s job is to create a configuration file. The configuration file
contains the sections listed in Table 2-5.

Table 2-5 Sections in the Configuration File for WLE Applications

There are two forms of the configuration file:

t An ASCII version of the file, created and modified with any editor. Throughou
the WLE documentation, the ASCII version of the configuration file is referred
to as the UBBCONFIG file. The configuration file may, in fact, be given any file
name.

Sections in the
Configuration File

Description

RESOURCES Defines defaults (for example, user access and the main
adminstration machine) for the WLE application

MACHINES Defines hardware-specific information about each mahine
running in the WLE application

GROUPS Defines logical groupings of server applications or CORBA
interfaces

SERVERS Defines the server application processes (for example, the
Transaction Manager) used in the WLE application

SERVICES Defines parameters for services provided by the WebLogic
Enterpise application

INTERFACES Defines information about the CORBA interfaces in the WLE
application

ROUTING Defines routing critieria for the WLE application
2-20 Getting Started

Step 5: Creating a Configuration File
t The TUXCONFIG file, a binary version of the UBBCONFIG file created using the
tmloadcf command. When the tmloadcf command is executed, the
environment variable TUXCONFIG must be set to the name and directory location
of the TUXCONFIG file.

For information about the Configuration file and the tmloadcf command, see
Administration Guide on the Online Documentation CD.

Listing 2-9 shows the configuration file for the Simpapp sample application.

Listing 2-9 Configuration File for Simpapp Sample Application

*RESOURCES
IPCKEY 55432
DOMAINID simpapp
MASTER SITE1
MODEL SHM
LDBAL N

*MACHINES
"PCWIZ"
LMID = SITE1
APPDIR = "C:\WLEDIR\MY_SIM~1"
TUXCONFIG = "C:\WLEDIR\MY_SIM~1\results\tuxconfig"
TUXDIR = "C:\WLEDIR"
MAXWSCLIENTS = 10

*GROUPS
SYS_GRP
LMID = SITE1
GRPNO = 1
APP_GRP
LMID = SITE1
GRPNO = 2

*SERVERS
DEFAULT:
 RESTART = Y
 MAXGEN = 5
TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"
Getting Started 2-21

2 Developing WebLogic Enterprise (WLE) Applications
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"
TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"
simple_server
 SRVGRP = APP_GRP

 SRVID = 1
 RESTART = N
ISL
 SRVGRP = SYS_GRP
 SRVID = 5
 CLOPT = "-A -- -n //PCWIZ:2468"

*SERVICES

When creating Java server applications, include the JavaServer parameter in the
UBBCONFIG file to start the Java server application. For example:

*SERVERS
 .
 .
 .

JavaServer
SRVGRP = BANK_GROUP2
SRVID = 8
CLOPT = “-A -- -M 10 Bankapp.jar TellerFactory_1”
SYSTEM_ACCESS = FASTPATH
RESTART = N

If you are using an XA-compliant resource manager, use the JavaServerXA parameter
in place of the JavaServer parameter to associate the XA resource manager with a
specified server group.

Step 6: Compiling the Server Application

You use the buildobjserver command to compile and link C++ server applications.
The buildobjserver command has the following format:

buildobjserver [-o servername] [options]
2-22 Getting Started

Step 7: Compiling the Client Application
In the buildobjserver command syntax:

t -o servername represents the name of the server application to be generated
by this command.

t options represents the command line options to the buildobjserver
command.

When creating Java server applications, use the javac compiler to create the
bytecodes for all the class files that comprise your WLE application. This set of files
includes the *.java source files generated by the m3idltojava compiler, plus the
object implementation files and server class files you created.

You use the buildjavaserver command to build a Java ARchive (JAR) file and link
the Java server applications. The buildjavaserver command has the following
format:

buildjavaserver [-s searchpath] input_file.xml

In the buildjavaserver command syntax:

t -s searchpath is used to locate the classes and packages when building the
archive. If this optional value is not specified, it defaults to the value of the
CLASSPATH environment variable.

t input_file is the name of the XML Server Description File.

You then have to specify the location of the JAR file for your Java server application
in the APPDIR system environment variable. On Windows NT systems, this directory
must be on a local drive (not a networked drive). On Solaris, the directory can be local
or remote.

Step 7: Compiling the Client Application

The final step in the development of the CORBA client application is to produce the
executable client application. To do this, you need to compile the code and then link
against the client stub.
Getting Started 2-23

2 Developing WebLogic Enterprise (WLE) Applications

ation

he

tion,
build

e
When creating CORBA C++ client applications, use the buildobjclient command
to construct a WLE client application executable. The command combines the client
stubs for interfaces that use static invocation, and the associated header files, with the
standard WLE libraries to form a client executable. For the syntax of the
buildobjclient command, see C++ Programming Reference on the Online
Documentation CD.

When creating CORBA Java client applications, see your Java ORB’s document
for information about building client executables. You need to include the
m3envobj.jar file in your CLASSPATH when you compile the CORBA Java client
application. The m3envobj.jar file contains the Java classes for the WLE
environmental objects.

The m3envobj.jar file built against the Netscape Enterprise server is located in t
following directory:

WLEdir/udataobj/java/netscape

Additional WLE Sample Applications

Sample applications demonstrate the tasks involved in developing a WLE applica
and provide sample code that can be used by client and server programmers to
their own WLE application. The following additional sample applications are
provided:

t University sample applications

t Java sample applications

Code from the sample applications is used throughout this manual to illustrate th
development steps. A complete description of building and running the sample
applications is provided in the following:

t Guide to the University Sample Applications

t Guide to the Java Sample Applications
2-24 Getting Started

Additional WLE Sample Applications
Univeristy Sample Applications

The University sample applications are based on client and server applications
implemented at a university. Each University sample application demonstrates a new
WLE feature while building on the experience obtained from the previous sample
application. The University sample applications are intentionally simplified to
demonstrate only the steps and processes associated with using a particular feature of
the WLE product.

Table 2-6 describes the University sample applications.

Table 2-6 The University Sample Applications

University
Sample Application

Description

Basic Describes how to develop WLE client and server
applications and configure the WLE application.
Building C++ server applications and CORBA C++,
CORBA Java, and ActiveX client applications are
demonstrated.

Security Adds application-level security to the client
applications and to the WLE application.

Transactions Adds transactional objects to the C++ server
application and client applications in the Basic sample
application. The Transactions sample application
demonstrates how to use the Implementation
Configuration File (ICF) to define transaction policies
for CORBA objects.

Wrapper Demonstrates how to wrap an existing BEA TUXEDO
application as a CORBA object.

Production Demonstrates replicating server applications, creating
stateless objects, and implementing factory-based
routing in server applications.
Getting Started 2-25

2 Developing WebLogic Enterprise (WLE) Applications
Java Sample Applications

The Java sample applications demonstrate the process of developing Java server
applications with the WLE product. In addition, the Java sample applications focus on
using database products, such as Oracle and Microsoft SQL Server, with a WLE
application. The Java sample applications listed in Table 2-7 are provided.

Table 2-7 Java Sample Applications

Java Sample
Application

Description

Java Simpapp Provides a Java client application and a Java server
application. The Java server application contains two
operations that manipulate strings received from the Java
client application.

JDBC Bankapp Implements an automatic teller machine (ATM) interface
and uses Java Database Connectivity (JDBC) to access a
database that stores account and customer information.

XA Bankapp Implements the same ATM interface as JDBC Bankapp;
however, XA Bankapp uses a database XA library to
demonstrate using the Transaction Manager to coordinate
transactions.
2-26 Getting Started

CHAPTER
3 Using Security

This chapter discusses the following topics:

t Overview of the Security Service

t How Security Works

t The Security Sample Application

t Development Steps

Overview of the Security Service

The WLE product offers a security model based on the CORBAservices Security
Service. The WLE security model implements the authentication portion of the
CORBAservices Security Service.

Security information is defined on a domain basis. The security level for the domain is
defined in the configuration file. Client applications use the SecurityCurrent object to
provide the necessary authentication information to log on to the WLE domain.

The following levels of authentication are provided:

t TOBJ_NOAUTH

No authentication is needed; however, the client application may still
authenticate itself, and may specify a user name and a client application name,
but no password.
Getting Started 3-1

3 Using Security
t TOBJ_SYSAUTH

The client application must authenticate itself to the WLE domain and must
specify a user name, client application name, and application password.

t TOBJ_APPAUTH

In addition to the TOBJ_SYSAUTH information, the client application must
provide application-specific information. If the default WLE authentication
service is used in the application configuration, the client application must
provide a user password; otherwise, the client application provides
authentication data that is interpreted by the custom authentication service in the
application.

Note: If a client application is not authenticated and the security level is
TOBJ_NOAUTH, the IIOP Listener/Handler of the WLE domain registers the
client application with the user name and client application name sent to the
IIOP Listener/Handler.

In the WLE software, only the PrincipalAuthenticator and Credentials properties on
the SecurityCurrent object are supported. For a description of the
SecurityLevel1::Current and SecurityLevel2::Current interfaces, see the
C++ Programming Reference or the Java Programming Reference on the Online
Documentation CD.

How Security Works

Figure 3-1 illustrates how security works in a WLE domain.
3-2 Getting Started

How Security Works
Figure 3-1 How Security Works in a WLE Domain

The steps are as follows:

1. The client application uses the Bootstrap object to return an object reference to the
SecurityCurrent object for the WLE domain.

2. The client application obtains the PrincipalAuthenticator.

3. The client application uses the
Tobj::PrincipalAuthenticator::get_auth_type() method to get the
authentication level for the WLE domain.

4. The proper authentication level is returned to the client application.

5. The client application uses the Tobj::PrincipalAuthenticator::logon()
method to log on to the WLE domain with the proper authentication information.

Client
Application

WLE Domain

Bootstrap Object

logon(username,
 application_name,
 password);

SecurityCurrent Object
PrincipalAuthenticator

get_auth_type();

Object Reference for
SecurityCurrent Object

Authentication Level
for WLE Domain
Getting Started 3-3

3 Using Security
The Security Sample Application

The Security sample application demonstrates application-level security. The Security
sample application requires each student using the application to have an ID and a
password. The Security sample application works in the following manner:

t The client application has a logon operation. This operation invokes operations
on the PrincipalAuthenticator object, which is obtained as part of the process of
logging on to access the domain.

t The server application implements a get_student_details() operation on the
Registrar object to return information about a student. After the user is
authenticated, logon is complete, the get_student_details() operation
accesses the student information in the database to obtain the student
information needed by the client logon operation.

t The database in the Security sample application contains course and student
information.

Figure 3-2 illustrates the Security sample application.
3-4 Getting Started

The Security Sample Application
Figure 3-2 Security Sample Application

The source files for the Security sample application are located in the
\samples\corba\university directory in the WLE software. For information
about building and running the Security sample application, see the Guide to the
University Sample Applications on the Online Documentation CD.

CORBA Java
Client

Application

CORBA C++
Client

Application

ActiveX Client
Application

Database

logon()

Security Required

Server
Application

Registrar Object

get_student_details()

browse_courses()

get_course_details()

CORBA
Getting Started 3-5

3 Using Security
Development Steps

Table 3-1 lists the development steps for writing a WLE application that has security.

Table 3-1 Development Steps for WLE Applications That Have Security

Step 1: Defining the Security Level in the Configuration
File

The security level for a WLE domain is defined by setting the SECURITY parameter
RESOURSES section of the configuration file to the desired security level. Table 3-2
lists the options for the SECURITY parameter.

Table 3-2 Options for the SECURITY Parameter

Step Description

1 Define the security level in the configuration file.

2 Write the client application.

Option Definition

NONE No security is implemented in the domain. This option is the
default. This option maps to the TOBJ_NOAUTH level of
authentication.

APP_PW Requires that client applications provide an application
password during initialization. The tmloadcf command
prompts for an application password. This option maps to the
TOBJ_APPAUTH level of authentication.

USER_AUTH Requires an application password and performs a per-user
authentication during the initialization of the client application.
This option maps to the TOBJ_SYSAUTH level of
authentication.
3-6 Getting Started

Development Steps
In the Security sample application, the SECURITY parameter is set to APP_PW for
application-level security. For information about adding security to a WLE domain,
see the Administration Guide on the Online Documentation CD.

Step 2: Writing the Client Application

Write client application code that does the following:

1. Uses the Bootstrap object to obtain a reference to the SecurityCurrent object for the
specific WLE domain.

2. Gets the PrincipalAuthenticator object from the SecurityCurrent object.

3. Uses the get_auth_type operation of the PrincipalAuthenticator object to
return the type of authentication expected by the WLE domain.

Listing 3-1 and Listing 3-2 include the portions of the CORBA C++ and CORBA Java
client applications in the Security sample application that illustrate the development
steps for security. To see an example of the code for ActiveX client applications, see
the Guide to the University Sample Applications on the Online Documentation CD.

Listing 3-1 Example of Security in a CORBA C++ Client Application

CORBA::Object_var var_security_current_oref =
 bootstrap.resolve_initial_references(“SecurityCurrent”);
SecurityLevel2::Current_var var_security_current_ref =
 SecurityLevel2::Current::_narrow(var_security_current_oref.in());

//Get the PrincipalAuthenticator
SecurityLevel2::PrincipalAuthenticator_var var_principal_authenticator_oref =
 var_security_current_oref->principal_authenticator();
//Narrow the PrincipalAuthenticator
Tobj::PrincipalAuthenticator_var var_bea_principal_authenticator =
 Tobj::PrincipalAuthenticator::_narrow
 var_principal_authenticator_oref.in());

//Determine the security level
Tobj::AuthType auth_type = var_bea_principal_authenticator->get_auth_type();
Security::AuthenticationStatus status = var_bea_principalauthenticator->logon(
 user_name,
 client_name,
Getting Started 3-7

3 Using Security
 system_password,
 user_password,
 0);

Listing 3-2 Example of Security in a CORBA Java Client Application

org.omg.CORBA.Object SecurityCurrentObj =
 gBootstrapObjRef.resolve_initial_references(“SecurityCurrent”);
org.omg.SecurityLevel2.Current secCur =
 org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

//Get the PrincipalAuthenticator
org.omg.SecurityLevel2.PrincipalAuthenticator authlevel2 =
 secCur.principal_authenticator();
//Narrow the PrincipalAuthenticator
com.beasys.Tobj.PrincipalAuthenticatorObjRef gPrinAuthObjRef =
 (com.beasys.Tobj.PrincipalAuthenticator)
 org.omg.SecurityLevel2.PrincipalAuthenticatorHelper.narrow(authlevel2);

//Determine the security level
com.beasys.Tobj.Authtype authType = gPrinAuthObjRef.get_auth_type();

org.omg.Security.AuthenticationStatus status = gPrinAuthObjRef.logon
 (gUserName, ClientName, gSystemPassword, gUserPassword,0);
3-8 Getting Started

CHAPTER
4 Using Transactions

This chapter discusses the following topics:

t Overview of the Transaction Service

t When to Use Transactional Objects

t What Happens During a Transaction

t Transactions Sample Application

t Development Steps

Overview of the Transaction Service

One of the most fundamental features of the WLE product is transaction management.
Transactions are a means to guarantee that database transactions are completed
accurately and that they take on all the ACID properties (atomicity, consistency,
isolation, and durability) of a high-performance transaction. The WLE system protects
the integrity of your transactions by providing a complete infrastructure for ensuring
that database updates are done accurately, even across a variety of resource managers.
The WLE system includes the following:

t The CORBAservices Object Transaction Service (OTS) and the Java Transaction
Service (JTS)

The WLE product provides a C++ interface to the OTS and a Java interface to
the OTS and the JTS. The JTS is the Sun Microsystems, Inc. Java interface for
transaction services, and is based on the OTS. The OTS and the JTS are
Getting Started 4-1

4 Using Transactions

ey
accessed through the TransactionCurrent environmental object. For information
about using the TransactionCurrent environmental object, see the C++
Programming Reference or the Java Programming Reference on the Online
Documentation CD.

t The Sun Microsystems, Inc. Java Transaction API (JTA).

Only the application-level demarcation interface
(javax.transaction.UserTransaction) is supported. For information about
JTA, refer to the following:

t The javax.transaction package description in the Java API Reference.

t The Java Transaction API specification, published by Sun Microsystems, Inc.
and available from the Sun Microsystems, Inc. Web site. (See the WLE
version 4.2 Release Notes for information about obtaining this document.)

OTS, JTS, and JTA each provide the following support for your business transactions:

t Creates a global transaction identifier when a client application initiates a
transaction.

t Works with the TP Framework to track objects that are involved in a transaction
and, therefore, need to be coordinated when the transaction is ready to commit.

t Notifies the resource managers—which are, most often, databases—when th
are accessed on behalf of a transaction. Resource managers then lock the
accessed records until the end of the transaction.

t Orchestrates the two-phase commit when the transaction completes, which
ensures that all the participants in the transaction commit their updates
simultaneously. It coordinates the commit with any databases that are being
updated using Open Group’s XA protocol. Almost all relational databases
support this standard.

t Executes the rollback procedure when the transaction must be stopped.

t Executes a recovery procedure when failures occur. It determines which
transactions were active in the machine at the time of the crash, and then
determines whether the transaction should be rolled back or committed.
4-2 Getting Started

When to Use Transactions
When to Use Transactions

Transactions are appropriate in the situations described in the following list. Each
situation describes a transaction model supported by the WLE system.

t The client application needs to make invocations on several objects, which may
involve write operations to one or more databases. If any one invocation is
unsuccessful, any state that is written (either in memory or, more typically, to a
database) must be rolled back.

For example, consider a travel agent application. The client application needs to
arrange for a journey to a distant location; for example, from Strasbourg, France,
to Alice Springs, Australia. Such a journey would inevitably require multiple
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequential order; for example, Strasbourg to
Paris, Paris to New York, New York to Los Angeles. However, if any individual
flight reservation cannot be made, the client application needs a way to cancel
all the flight reservations made up to that point.

t The client application needs a conversation with an object managed by the
server application, and the client application needs to make multiple invocations
on a specific object instance. The conversation may be characterized by one or
more of the following:

t Data is cached in memory or written to a database during or after each
successive invocation.

t Data is written to a database at the end of the conversation.

t The client application needs the object to maintain an in-memory context
between each invocation; that is, each successive invocation uses the data
that is being maintained in memory across the conversation.

t At the end of the conversation, the client application needs the ability to
cancel all database write operations that may have occurred during or at the
end of the conversation.

For example, consider an Internet-based online shopping application. Users of
the client application browse through an online catalog and make multiple
purchase selections. When the users are done choosing all the items they want to
buy, they enter their credit card information to make the purchase. If the credit
card check fails, the shopping application needs a way to cancel all the pending
Getting Started 4-3

4 Using Transactions
purchase selections, or roll back any purchase transactions made during the
conversation.

t Within the scope of a single client invocation on an object, the object performs
multiple edits to data in a database. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (In this situation, the individual database
edits are not necessarily CORBA invocations.)

For example, consider a banking application. The client invokes the transfer
operation on a teller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

t Invoking the debit method on one account

t Invoking the credit method on another account

If the credit invocation on the bank database fails, the banking application needs
a way to roll back the previous debit invocation.

What Happens During a Transaction

Figure 4-1 illustrates how transactions work in a WLE application.
4-4 Getting Started

What Happens During a Transaction
Figure 4-1 How Transactions Work in a WLE Application

A basic transaction works in the following way:

1. The client application uses the Bootstrap object to return an object reference to the
TransactionCurrent object for the WLE domain.

2. A client application begins a transaction using the
Tobj::TransactionCurrent::begin method, and issues a request to the
CORBA interface through the TP Framework. All operations on the CORBA
interface execute within the scope of a transaction.

Client
Application

WLE Domain

Bootstrap Object
Object Reference for
TransactionCurrent

Object

Transaction Manager

TP Framework

activate_object()
register_for_courses()
deactivate_object()

begin()
register_for_courses()

commit()

Database

TransactionCurrent
Object
Getting Started 4-5

4 Using Transactions
t If a call to any of these operations raises an exception (either explicitly or as
a result of a communication failure), the exception can be caught and the
transaction can be rolled back.

t If no exceptions occur, the client application commits the current transaction
using the Tobj::TransactionCurrent::commit method. This method
ends the transaction and starts the processing of the operation. The
transaction is committed only if all of the participants in the transaction agree
to commit.

3. The Tobj::TransactionCurrent:commit method causes the TP Framework to
call the Transaction Manager to complete the transaction.

4. The Transaction Manager updates the database.

Transactions Sample Application

In the Transactions sample application, the operation of registering for courses is
executed within the scope of a transaction. The transaction model used in the
Transactions sample application is a combination of the conversational model and the
model in which a single client invocation makes multiple individual operations on a
database.

The Transactions sample application works in the following way:

1. Students submit a list of courses for which they want to be registered.

2. For each course in the list, the server application checks whether:

t The course is in the database

t The student is already registered for a course

t The student exceeds the maximum number of credits the student can take
4-6 Getting Started

Transactions Sample Application
3. One of the following occurs:

t If the course meets all the criteria, the server application registers the student
for the course.

t If the course is not in the database or if the student is already registered for
the course, the server application adds the course to a list of courses for
which the student could not be registered. After processing all the
registration requests, the server application returns the list of courses for
which registration failed. The client application can then choose to either
commit the transaction (thereby registering the student for the courses for
which registration request succeeded) or to roll back the transaction (thus,
not registering the student for any of the courses).

t If the student exceeds the maximum number of credits the student can take,
the server application returns a TooManyCredits user exception to the client
application. The client application provides a brief message explaining that
the request was rejected. The client application then rolls back the
transaction.

Figure 4-2 illustrates how the Transactions sample application works.

Figure 4-2 Transactions Sample Application

CORBA Java
Client

Application

CORBA C++
Client

Application

ActiveX Client
Application

browse_courses()

get_course_details()

 Server
Application

Database

register_for_courses()

T

T Part of a Transaction

get_student_details()

CORBA
T

Getting Started 4-7

4 Using Transactions
The Transactions sample application shows two ways in which a transaction can be
rolled back:

t Nonfatal. If the registration for a course fails because the course is not in the
database, or because the student is already registered for the course, the server
application returns the numbers of those courses to the client application. The
decision to roll back the transaction lies with the user of the client application.

t Fatal. If the registration for a course fails because the student exceeds the
maximum number of credits he or she can take, the server application generates
a CORBA exception and returns it to the client application. The decision to roll
back the transaction also lies with the client application.

Note: For information about how transactions are implemented in Java WLE
applications, see the description of the XA Bankapp sample application in the
Guide to the Java Sample Applications on the Online Documentation CD.

Development Steps

This topic describes the development steps for writing a WLE application that includes
transactions. Table 4-1 lists the development steps.

Table 4-1 Development Steps for WLE Applications That Have Transactions

Step Description

1 Write the OMG IDL for the transactional CORBA interface.

2 Define the transaction policies for the CORBA interface in the
Implementation Configuration file (ICF) for C++ WLE
applications, or in the Server Description File for Java WLE
client applications.

3 Write the client application.

4 Write the server application.

5 Create a configuration file.
4-8 Getting Started

Development Steps
The Transactions sample application is used to demonstrate these development steps.
The source files for the Transactions sample application are located in the
\samples\corba\university directory of the WLE software. For information
about building and running the Transactions sample application, see the Guide to the
University Sample Applications on the Online Documentation CD.

The XA Bankapp sample application demonstrates how to use transactions in Java
WLE applications. The source files for the XA Bankapp sample application are located
in the \samples\corba\bankapp_java directory of the WLE software. For
information about building and running the XA Bankapp sample application, see the
Guide to the Java Sample Applications on the Online Documentation CD .

Step 1: Writing the OMG IDL

You need to specify interfaces involved in transactions in Object Management Group
(OMG) Interface Definition Language (IDL) just as you would any other CORBA
interface. You must also specify any user exceptions that may occur from using the
interface.

For the Transactions sample application, you would define in OMG IDL the
Registrar interface and the register_for_courses() operation. The
register_for_courses() operation has a parameter, NotRegisteredList, which
returns to the client application the list of courses for which registration failed. If the
value of NotRegisteredList is empty, the client application commits the
transaction. You also need to define the TooManyCredits user exception.

Listing 4-1 includes the OMG IDL for the Transactions sample application.

Listing 4-1 OMG IDL for the Transactions Sample Application

#pragma prefix "beasys.com"
module UniversityT

{
typedef unsigned long CourseNumber;
typedef sequence<CourseNumber> CourseNumberList;

struct CourseSynopsis
{

CourseNumber course_number;
Getting Started 4-9

4 Using Transactions
string title;
};
typedef sequence<CourseSynopsis> CourseSynopsisList;

interface CourseSynopsisEnumerator
{
//Returns a list of length 0 if there are no more entries
CourseSynopsisList get_next_n(

in unsigned long number_to_get, // 0 = return all
out unsigned long number_remaining

);

void destroy();
};

typedef unsigned short Days;
const Days MONDAY = 1;
const Days TUESDAY = 2;
const Days WEDNESDAY = 4;
const Days THURSDAY = 8;
const Days FRIDAY = 16;

//Classes restricted to same time block on all scheduled days,
//starting on the hour

struct ClassSchedule
{

Days class_days; // bitmask of days
unsigned short start_hour; // whole hours in military time
unsigned short duration; // minutes

};

struct CourseDetails
{

CourseNumber course_number;
double cost;
unsigned short number_of_credits;
ClassSchedule class_schedule;
unsigned short number_of_seats;
string title;
string professor;
string description;

};
typedef sequence<CourseDetails> CourseDetailsList;
typedef unsigned long StudentId;

struct StudentDetails
{

StudentId student_id;
string name;
4-10 Getting Started

Development Steps
CourseDetailsList registered_courses;
};

enum NotRegisteredReason
{

AlreadyRegistered,
NoSuchCourse

};

struct NotRegistered
{

CourseNumber course_number;
NotRegisteredReason not_registered_reason;

};
typedef sequence<NotRegistered> NotRegisteredList;

exception TooManyCredits
{

unsigned short maximum_credits;
};

//The Registrar interface is the main interface that allows
//students to access the database.
interface Registrar
{

CourseSynopsisList
get_courses_synopsis(

in string search_criteria,
 in unsigned long number_to_get,
 out unsigned long number_remaining,

out CourseSynopsisEnumerator rest
);

 CourseDetailsList get_courses_details(in CourseNumberList
 courses);
StudentDetails get_student_details(in StudentId student);
NotRegisteredList register_for_courses(

in StudentId student,
in CourseNumberList courses

) raises (
TooManyCredits

);

};

// The RegistrarFactory interface finds Registrar interfaces.

interface RegistrarFactory
{

Registrar find_registrar(
Getting Started 4-11

4 Using Transactions
);
};

Step 2: Defining Transaction Policies for the Interfaces

Transaction policies are used on a per-interface basis. During design, it is decided
which interfaces within a WLE application will handle transactions. The transaction
policies are:

During development, you decide which interfaces will execute in a transaction by
assigning transaction policies, as follows:

t For C++ server applications, you specify transaction policies in the
Implementation Configuration File (ICF). A template ICF file is created by the
genicf command.

t For Java server applications, you specify transaction policies in the Server
Description File, written in Extensible Markup Language (XML).

In the Transactions sample application, the transaction policy of the Registrar
interface is set to always.

Transaction Policy Description

always The interface must always be part of a transaction. If the
interface is not part of a transaction, a transaction will be
automatically started by the TP Framework.

ignore The interface is not transactional; however, requests made to
this interface within a scope of a transaction are allowed. The
AUTOTRAN parameter, specified in the UBBCONFIG file for this
interface, is ignored.

never The interface is not transactional. Objects created for this
interface can never be involved in a transaction. The WLE
system generates an exception (INVALID_TRANSACTION)
if an interface with this policy is involved in a transaction.

optional The interface may be transactional. Objects can be involved in a
transaction if the request is transactional. This transaction policy
is the default.
4-12 Getting Started

Development Steps
Step 3: Writing the Client Application

The client application needs code that performs the following tasks:

1. Obtains a reference to the TransactionCurrent object from the Bootstrap object.

2. Begins a transaction by invoking the Tobj::TransactionCurrent::begin()
operation on the TransactionCurrent object.

3. Invokes operations on the object. In the Transactions sample application, the
client application invokes the register_for_courses() operation on the
Registrar object, passing a list of courses.

Listing 4-2 illustrates the portion of the CORBA C++ client applications in the
Transactions sample application that illustrates the development steps for transactions.

For an example of a CORBA Java client application that uses transactions, see the XA
Bankapp sample application in the Guide to the Java Sample Applications on the
Online Documentation CD. For an example of using transactions in an ActiveX client
application, see Creating Client Applications on the Online Documentation CD.

Listing 4-2 Transactions Code for CORBA C++ Client Applications

CORBA::Object_var var_transaction_current_oref =
 Bootstrap.resolve_initial_references(“TransactionCurrent”);
CosTransactions::Current_var transaction_current_oref=
 CosTransactions::Current::_narrow(var_transaction_current_oref.in());
//Begin the transaction
var_transaction_current_oref->begin();
try {
//Perform the operation inside the transaction
 pointer_Registar_ref->register_for_courses(student_id, course_number_list);
 ...
//If operation executes with no errors, commit the transaction:
 CORBA::Boolean report_heuristics = CORBA_TRUE;
 var_transaction_current_ref->commit(report_heuristics);
 }
catch (...) {
//If the operation has problems executing, rollback the
//transaction. Then throw the original exception again.
//If the rollback fails,ignore the exception and throw the
//original exception again.
try {
 var_transaction_current_ref->rollback();
Getting Started 4-13

4 Using Transactions

u

ation
luded

r.

, see
 }
catch (...) {
 TP::userlog("rollback failed");
 }
throw;
}

Step 4: Writing the Server Application

When using transactions in server applications, you need to write methods that
implement the interface’s operations. In the Transactions sample application, yo
would write a method implementation for the register_for_courses() operation.

If your WLE application uses a database, you need to include in the server applic
code that opens and closes an XA Resource Manager. These operations are inc
in the Server::initialize() and Server::release() operations of the Server
object. Listing 4-3 shows the portion of the code for the Server object in the
Transactions sample application that open and closes the XA Resource Manage

Note: For a complete example of a C++ server application that implements
transactions, see the Transactions sample application in the Guide to the
University Sample Applications.

For an example of a Java server application that implements transactions
the description of the XA Bankapp sample application in the Guide to the Java
Sample Applications on the Online Documentation CD.

Listing 4-3 C++ Server Object in Transactions Sample Application

CORBA::Boolean Server::initialize(int argc, char* argv[])
{

TRACE_METHOD("Server::initialize");
try {

open_database();
begin_transactional();
register_fact();
return CORBA_TRUE;

}
catch (CORBA::Exception& e) {

LOG(“CORBA exception : “ <<e);
}

4-14 Getting Started

Development Steps
catch (SamplesDBException& e) {
LOG(“Can’t connect to database”);

}
catch (...) {

LOG(“Unexpected database error : “ <<e);
}
catch (...) {

LOG(“Unexpected exception”);
}
cleanup();
return CORBA_FALSE;

}

void Server::release()
{

TRACE_METHOD(“Server::release”);
cleanup();

}

static void cleanup()
{

unregister_factory();
end_transactional();
close_database();

}
//Utilities to manage transaction resource manager

CORBA::Boolean s_became_transactional = CORBA_FALSE;
static void begin_transactional()
{

TP::open_xa_rm();
s_became_transactional = CORBA_TRUE;

}
static void end_transactional()
{

if(!s_became_transactional){
return//cleanup not necessary

}
try {

TP::close_xa_rm ();
}

catch (CORBA::Exception& e) {
 LOG(“CORBA Exception : “ << e);
}
catch (...) {
 LOG(“unexpected exception”);

 }
Getting Started 4-15

4 Using Transactions
s_became_transactional = CORBA_FALSE;
}

Step 5: Creating a Configuration File

You need to add the following information to the configuration file for a transactional
WLE application:

t In the SERVERS section:

t Define a server group that includes both the server application that includes
the interface and the server application that manages the database. This
server group needs to be specified as transactional.

t Replace JavaServer with JavaServerXA to associate the XA resource
manager with a specified server group. (JavaServer uses the null RM.)

t In the OPENINFO parameter of the Groups section, include information to open
the resource manager for the database. You obtain this information from the
product documentation for your database. Note that the default version of the
com.beasys.Tobj.Server.initialize method automatically opens the
resource manager.

t Include the pathname to the transaction log (TLOG) in the TLOGDEVICE
parameter. For more information about the transaction log, see the
Administration Guide.

Listing 4-4 includes the portions of the configuration file that define this information
for the Transactions sample application.

Listing 4-4 Configuration File for Transactions Sample Application

*RESOURCES
IPCKEY 55432
DOMAINID university
MASTER SITE1
MODEL SHM
LDBAL N
SECURITY APP_PW

*MACHINES
BLOTTO
4-16 Getting Started

Development Steps
LMID = SITE1
APPDIR = C:\TRANSACTION_SAMPLE
TUXCONFIG=C:\TRANSACTION_SAMPLE\tuxconfig
TLOGDEVICE=C:\APP_DIR\TLOG
TLOGNAME=TLOG
TUXDIR="C:\WLEdir"
MAXWSCLIENTS=10

*GROUPS
SYS_GRP
 LMID = SITE1
 GRPNO = 1
ORA_GRP
 LMID = SITE1
 GRPNO = 2

OPENINFO = "ORACLE_XA:Oracle_XA+SqlNet=ORCL+Acc=P
/scott/tiger+SesTm=100+LogDir=.+MaxCur=5"
OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger
+SesTm=100+LogDir=.+MaxCur=5"
CLOSEINFO = ""
TMSNAME = "TMS_ORA"

*SERVERS
DEFAULT:
RESTART = Y
MAXGEN = 5

TMSYSEVT
 SRVGRP = SYS_GRP
 SRVID = 1

TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 2
 CLOPT = "-A -- -N -M"

TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 3
 CLOPT = "-A -- -N"

TMFFNAME
 SRVGRP = SYS_GRP
 SRVID = 4
 CLOPT = "-A -- -F"

TMIFRSVR
 SRVGRP = SYS_GRP
 SRVID = 5
Getting Started 4-17

4 Using Transactions
UNIVT_SERVER
 SRVGRP = ORA_GRP
 SRVID = 1
 RESTART = N

 ISL
 SRVGRP = SYS_GRP
 SRVID = 6
 CLOPT = -A -- -n //MACHINENAME:2500

*SERVICES

For information about the transaction log and defining parameters in the Configuration
file, see the Administration Guide.
4-18 Getting Started

Index

A
activation policies

defining in Implementation
Configuration file 2-15

defining in Server Description file 2-15
Simpapp sample application 2-15
Simple interface 2-16
supported 2-16

ActiveX application builder
description 1-8

AdminAPI
description 1-8

administration commands
tmadmin command 1-6
tmboot command 1-6
tmconfig command 1-6
tmloadcf command 1-6
tmshutdown command 1-6
tmunloadcf command 1-6

Administration console
description 1-7

administration tools
AdminAPI 1-8
administration commands 1-6
Administration console 1-7

authentication
client application 1-20
levels 3-1

B
Bootstrap object

description 1-13
illustrated 1-13
Simpapp sample application 2-17

building
C++ client applications 2-23

buildobjclient command 1-5
C++ server applications

buildobjserver command 1-5
genicf command 1-5

Java client applications 2-23
Java server applications

buildjavaserver command 1-5
buildjavaserver command

building Java server applications 1-5
description 1-5
format 2-22
in the Simpapp sample application 2-22

buildobjclient command
building C++ client applications 1-5
description 1-5
format 2-23
in the Simpapp sample application 2-23

buildobjserver command
building C++ server applications 1-5
description 1-5
format 2-22
in the Simpapp sample application 2-22

buildXAJS command
building an XA resource manager 1-5
Getting Started I-1

description 1-5

C
client applications

authenticating into the WLE
domain 1-20

initialization process 1-19
invoking objects 1-23
using transactions 4-5
writing

Security sample application 4-13
Simpapp sample application 2-16
Transactions sample

application 4-13
client stubs

generating 2-6
in Simpapp sample application 2-6

code example
C++ client application for Simpapp

sample application 2-17
C++ implementation of the Simple

interface 2-10
C++ Server object 2-13
C++ server object that supports

transactions 4-14
configuration file for Simpapp sample

application 2-21
Java client application for the Simpapp

sample application 2-18
Java implementation of SimpleFactory

interface 2-11
Java implementation of the Simple

Interface 2-10
Java Server object 2-14
OMG IDL for Simpapp sample

application 2-6
OMG IDL for Transactions sample

application 4-9
security in C++ client applications 3-7
security in Java client applications 3-8

transactions in C++ client
application 4-13

UBBCONFIG file for Transactions
sample application 4-15

compiling
C++ client applications 2-23
C++ server applications 2-22
Java client applications 2-23
Java server applications 2-22

CORBAservices Object Transaction Service
using in WLE applications 4-1

create_servant method 1-21

D
development commands

buildjavaserver 1-5
buildobjclient command 1-5
buildobjserver command 1-5
buildXAJS command 1-5
genicf command 1-5
idl2ir command 1-5
ir2idl command 1-5
irdel command 1-5

development process
activation policies 2-16
client applications

Security sample application 3-7
Simpapp sample application 2-16
Transactions sample

application 4-13
defining object activation policies 2-15
illustrated 2-2
Implementation Configuration file 2-15
OMG IDL

Simpapp sample application 2-5
Transactions sample application 4-9

Security sample application 3-6
server applications

Simpapp sample application 2-8
Transactions sample
I-2 Getting Started

application 4-14
Server Description file 2-15
Simpapp sample application 2-4
steps for creating WLE applications 2-2
Transactions sample application 4-8
WLE applications 2-2
writing a configuration file 2-19
writing server application code 2-8
writing the client application code 2-16
writing the OMG IDL 2-5

E
environmental objects

and client initialization 1-19
description 1-10

F
factories

finding 1-21
registering 1-21

FactoryFinder object
description 1-10
example use of 1-21

G
genicf command

creating a ICF file 1-5
description 1-5

I
idl command 1-4

description 1-4
files created by 2-7
generating client stubs 2-6
generating skeletons 2-6

IDL compiler
idl command 1-4
m3idltojava command 1-4

supported 1-4
idl2ir command

description 1-5
IIOP

definition 1-2
use in WLE product 1-2

IIOP Listener/Handler
description 1-14

Implementation Configuration file
defining activation policies 2-15
defining transaction policies 4-12

initialize method
summary 1-18, 1-19

Interface Repository
creating 1-5
deleting objects from 1-5
displaying the contents 1-5
idl2ir command 1-5
ir2idl command 1-5
irdel command 1-5
loading interface definitions into 1-5

InterfaceRepository object
description 1-10

interfaces
writing methods to implement

operations 2-9
ir2idl command

description 1-5
irdel command

description 1-5

J
Java client applications

required files 2-23
Java Transaction Service

using in WLE applications 4-1

M
m3idltojava command 1-4
Getting Started I-3

description 1-4
files created by 2-7
generating client stubs 2-7
generating skeletons 2-7

Management Information Base
see MIB 1-3

managing
WLE applications

tmadmin command 1-6
tmboot command 1-6
tmconfig command 1-6
tmloadcf command 1-6
tmshutdown command 1-6
tmunloadcf command 1-6

method implementations
C++ 2-9
Java 2-10
writing 2-9

MIB
for WLE applications 1-3

O
Object Life Cycle service

description 1-10
object request broker

see ORB 1-15
object services

Interface Repository 1-10
Object Life Cycle service 1-10
Security service 1-10
Transaction service 1-10

objects
invoking 1-23

OMG IDL
compiling 2-6
generating client stubs 2-6
generating skeletons 2-6
Simple interface 2-5, 2-6
SimpleFactory interface 2-5, 2-6
Transactions sample application 4-9

ORB
description 1-15
illustrated 1-15

P
POA

description 1-15
interaction with TP Framework 1-16

Portable Object Adapter
see POA 1-15

PrincipalAuthenticator object
using in client applications 3-4

programming tools 1-4

R
register_factory method

example of 1-21
resolve_initial_references method 1-19

S
Security sample application

defining security level 3-6
description 3-4
development process 3-6
illustrated 3-4
location of files 3-5
PrincipalAuthenticator object 3-4
SecurityCurrent object 3-4
using the PrincipalAuthenticator

object 3-7
using the SecurityCurrent object 3-7
writing the client application 3-7

Security service
description 1-10
functional description 3-2

SecurityCurrent object
description 1-10
using in client applications 3-4
I-4 Getting Started

server applications
defining object activation policies 2-15
Implementation Configuration file 2-15
Server Description file 2-15
writing

Simpapp sample application 2-8
Transactions sample

application 4-14
 method implementations 2-9
 the Server object 2-12

Server Description file
defining activation policies 2-15
defining transaction policies 4-12

Server object 4-14
description 1-18
Transactions sample application 4-14
writing 2-12

Simpapp sample application
compiling

C++ client application 2-23
C++ server application 2-22
Java client application 2-23

compiling Java server application 2-22
configuration file 2-19
description 2-4
file location 2-4
illustrated 2-4
interfaces defined for 2-5
OMG IDL 2-5
using the Bootstrap object 2-17
using the buildjavaserver command 2-22
using the buildobjserver command 2-22
writing the client application code 2-16

Simple interface
activation policy 2-16
OMG IDL 2-5

Simple Network Management Protocol
see SNMP 1-3

SimpleFactory interface
OMG IDL 2-5

skeletons

generating 2-6
in Simpapp sample application 2-6

SNMP
in the WLE product 1-3

support
documentation xiv
technical xiv

supporting databases 4-14

T
TLOGDEVICE parameter 4-15
tmadmin command

description 1-6
tmboot command

description 1-6
tmconfig command

description 1-6
tmloadcf command

creating a configuraiton file 2-20
description 1-6

tmshutdown command
description 1-6

tmunloadcf command
description 1-6

Tobj_Bootstrap 1-19
TP Framework

description 1-16
illustrated 1-17

transaction policies
defined 4-12

Transaction service
description 1-10, 4-1
features 4-2

TransactionCurrent object
description 1-10

transactions
functional overview 4-4
illustrated 4-5
in client applications 4-5
OMG IDL 4-6
Getting Started I-5

restrictions 4-17
when to use 4-3

Transactions sample application
description 4-6

 development process 4-8
file location 4-9
illustrated 4-7
OMG IDL 4-9
starting server application 4-14
transaction policies 4-12
UBBCONFIG file 4-15
writing client applications 4-13
writing server applications 4-14

TUXCONFIG file
description 2-20

U
UBBCONFIG file

adding transactions 4-15
description 2-20
sections in 2-20
setting the security level 3-6

user exceptions
Transactions sample application 4-7

UserTransaction object
description 1-10

W
WLE applications

defining security levels 3-6
how they work 1-18
managing

tmadmin command 1-6
tmboot command 1-6
tmconfig command 1-6
tmloadcf command 1-6
tmshutdown command 1-6
tmunloadcf command 1-6

using CORBAservices Object

Transaction Service 4-1
using Java Transaction Service 4-1

WLE components
IIOP Listener/Handler 1-14
illustrated 1-12
ORB 1-15
TP Framework 1-16

WLE domain
adding security to 3-4

WLE product
ActiveX application builder 1-8
administration tools 1-6
description of components 1-11
development commands 1-5
features 1-3
functionality overview 1-1
how client and server applications work

1-18
IDL compilers 1-4
illustrated 1-2
object services 1-10
programming tools 1-4
I-6 Getting Started

	Copyright
	Preface
	Purpose of This Document
	How to Use This Document
	Related Documentation
	Contact Information

	1 Understanding the WebLogic Enterprise (WLE) Product
	Overview of the WLE Product
	WLE Programming Environment
	IDL Compilers
	Development Commands
	Administration Tools
	ActiveX Application Builder

	WLE Object Services
	WLE Components
	Bootstrap Object
	IIOP Listener/Handler
	ORB
	TP Framework

	How WLE Client and Server Applications Interact
	Step 1: The server application is initialized.
	Step 2: The client application is initialized.
	Step 3: The client application authenticates itself to the WLE domain.
	Step 4: The client application obtains a reference to the object needed to execute its business l...
	Step 5: The client application invokes an operation on the CORBA object.

	2 Developing WebLogic Enterprise (WLE) Applications
	Overview of the Development Process for WLE Applications
	The Simpapp Sample Application
	Step 1: Writing the OMG IDL
	Step 2: Generating Client Stubs and Skeletons
	Step 3: Writing the Server Application
	Writing the Methods That Implement Each Interface’s Operations
	Creating the Server Object
	Defining an Object’s Activation Policies

	Step 4: Writing the Client Application
	Step 5: Creating a Configuration File
	Step 6: Compiling the Server Application
	Step 7: Compiling the Client Application
	Additional WLE Sample Applications
	Univeristy Sample Applications
	Java Sample Applications

	3 Using Security
	Overview of the Security Service
	How Security Works
	The Security Sample Application
	Development Steps
	Step 1: Defining the Security Level in the Configuration File
	Step 2: Writing the Client Application

	4 Using Transactions
	Overview of the Transaction Service
	When to Use Transactions
	What Happens During a Transaction
	Transactions Sample Application
	Development Steps
	Step 1: Writing the OMG IDL
	Step 2: Defining Transaction Policies for the Interfaces
	Step 3: Writing the Client Application
	Step 4: Writing the Server Application
	Step 5: Creating a Configuration File

