
BEA WebLogic Enterprise
JDBC Driver

B E A W e b L o g i c E n t e r p r i s e 4 . 2
D o c u m e n t E d i t i o n 4 . 2

J u l y 1 9 9 9

Programming Reference

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

JDBC Driver Programming Reference

Document Edition Date Software Version

4.2 July 1999 BEA WebLogic Enterprise 4.2

JDBC Driver Programming Reference iii

Contents

Preface
Purpose of This Document ... vii

How to Use This Document .. viii

Related Documentation ... xi

Contact Information... xiii

1. Using the jdbcKona Drivers
Platforms Supported by the jdbcKona Drivers.. 1-2

Adding the jdbcKona JAR File to Your CLASSPATH 1-2

jdbcKona/Oracle Shared Libraries and Dynamic Link Libraries...................... 1-3

Requirements for Making a Connection to a Database Management
System (DBMS) ... 1-3

Support for JDBC Extended SQL ... 1-4

The JDBC API, with WebLogic Extensions ... 1-5

Implementing a WLE Java Application Using the jdbcKona Drivers 1-6

Importing Packages .. 1-7

Setting Properties for Connecting to the DBMS.. 1-8

Connecting to the DBMS ... 1-8

Making a Simple SQL Query... 1-10

Inserting, Updating, and Deleting Records .. 1-11

Creating and Using Stored Procedures and Functions 1-12

Disconnecting and Closing Objects ... 1-14

Code Example .. 1-15

2. Using the jdbcKona/Oracle Driver
Data Type Mapping ... 2-1

Connecting the jdbcKona/Oracle Driver to an Oracle DBMS 2-2

iv JDBC Driver Programming Reference

Method 1... 2-3

Method 2... 2-3

Other Properties You Can Set for the jdbcKona/Oracle Driver 2-4

General Notes ... 2-5

Waiting for Oracle DBMS Resources ... 2-5

Autocommit ... 2-6

Using Oracle Blobs.. 2-6

Support for Oracle Array Fetches.. 2-7

Using Stored Procedures ... 2-8

Syntax for Stored Procedures in the jdbcKona/Oracle Driver 2-8

Binding a Parameter to an Oracle Cursor... 2-8

Using CallableStatement .. 2-10

DatabaseMetaData Methods.. 2-11

jdbcKona/Oracle and the Oracle NUMBER Column...................................... 2-12

3. Using the jdbcKona/
MSSQLServer4 Driver

Connecting to an SQL Server with the jdbcKona/MSSQLServer4 Driver 3-1

Method 1... 3-2

Method 2... 3-2

Method 3... 3-3

Setting Properties for Microsoft SQL
Server 7... 3-3

Using the jdbcKona/MSSQLServer4 Driver in Java Development
Environments.. 3-4

JDBC Extensions and Limitations... 3-4

Support for JDBC Extended SQL .. 3-4

cursorName Method Not Supported... 3-5

java.sql.TimeStamp Limitations... 3-5

Querying Metadata ... 3-5

Changing autoCommit Mode ... 3-5

Statement.executeWriteText() Methods Not Supported 3-6

Sharing a Connection Object in Multithreaded Applications..................... 3-6

EXECUTE Keyword with Stored Procedures.. 3-6

JDBC Driver Programming Reference v

4. Extensions to the JDBC API
Class CallableStatement .. 4-2

weblogic.jdbc.oci.CallableStatement.getResultSet............................. 4-3

Class Connection ... 4-4

weblogic.jdbc.oci.Connection.waitOnResources................................ 4-5

Class weblogic.jdbc.oci.Statement .. 4-6

weblogic.jdbc.oci.Statement.fetchsize .. 4-7

weblogic.jdbc.oci.Statement.parse.. 4-8

vi JDBC Driver Programming Reference

JDBC Driver Programming Reference vii

Preface

Purpose of This Document

This document provides reference information on the jdbcKona drivers, which are
packaged and installed with the BEA WebLogic Enterprise (sometimes referred to as
WLE) software.

Note: Effective February 1999, the BEA M3 product is renamed. The new name of
the product is BEA WebLogic Enterprise (WLE).

Who Should Read This Document

This document is intended for WebLogic Enterprise server application developers who
need to use a JDBC driver to access a database management system (DBMS).

How This Document Is Organized

The JDBC Driver Programming Reference is organized as follows:

t Chapter 1, “Using the jdbcKona Drivers,” provides an overview of how to use
the jdbcKona drivers with the WebLogic Enterprise system. This chapter also
provides some vendor-specific details on the jdbcKona drivers, and also contains
a sample implementation that lists and describes the procedure for using a
jdbcKona driver with a WebLogic Enterprise Java server application.

viii JDBC Driver Programming Reference

t Chapter 2, “Using the jdbcKona/Oracle Driver,” provides specific details about
how to use the jdbcKona/Oracle driver to connect a WebLogic Enterprise Java
server application to an Oracle DBMS.

t Chapter 3, “Using the jdbcKona/ MSSQLServer4 Driver,” provides specific
details about how to use the jdbcKona/MSSQLServer4 driver to connect a
WebLogic Enterprise Java server application to Microsoft’s SQL Server.

t Chapter 4, “Extensions to the JDBC API,” documents the API to the jdbcKona
extensions to the JDBC application programming interface (API).

How to Use This Document

This document, JDBC Driver Programming Reference, is designed primarily as an
online, hypertext document. If you are reading this as a paper publication, note that to
get full use from this document you should access it as an online document via the
Online Documentation CD for the BEA WebLogic Enterprise 4.2 release.

The following sections explain how to view this document online, and how to print a
copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the following file:

\doc\wle\v42\index.htm

Note: The online documentation requires Netscape Communicator version 4.0 or
later, or Microsoft Internet Explorer version 4.0 or later.

JDBC Driver Programming Reference ix

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print.

The Online Documentation CD includes Adobe Acrobat PDF files of all of the online
documents. You can use the Adobe Acrobat Reader to print all or a portion of each
document. On the CD Home Page, click the PDF Files button and scroll to the entry
for the document you want to print.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

x JDBC Driver Programming Reference

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

t That an argument can be repeated several times in a command line

t That the statement omits additional optional arguments

t That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

JDBC Driver Programming Reference xi

Related Documentation

The following sections list the documentation provided with the BEA WebLogic
Enterprise software, related BEA publications, and other publications related to the
technology.

BEA WebLogic Enterprise Documentation

The BEA WebLogic Enterprise information set consists of the following documents:

Installation Guide

C++ Release Notes

Java Release Notes

Getting Started

Guide to the University Sample Applications

Guide to the Java Sample Applications

Creating Client Applications

Creating C++ Server Applications

Creating Java Server Applications

Administration Guide

Using Server-to-Server Communication

C++ Programming Reference

Java Programming Reference

Java API Reference

JDBC Driver Programming Reference (this document)

System Messages

xii JDBC Driver Programming Reference

Glossary

Technical Articles

Note: The Online Documentation CD also includes Adobe Acrobat PDF files of all
of the online documents. You can use the Adobe Acrobat Reader to print all
or a portion of each document.

BEA Publications

Selected BEA TUXEDO Release 6.5 for BEA WebLogic Enterprise version 4.2
documents are available on the Online Documentation CD.

To access these documents:

1. Click the Other Reference button from the main menu.

2. Click the TUXEDO Documents option.

Other Publications

For more information about CORBA, Java, and related technologies, refer to the
following books and specifications:

Cobb, E. 1997. The Impact of Object Technology on Commercial Transaction
Processing. VLDB Journal, Volume 6. 173-190.

Edwards, J. with DeVoe, D. 1997. 3-Tier Client/Server At Work. Wiley Computer
Publishing.

Edwards, J., Harkey, D., and Orfali, R. 1996. The Essential Client/Server Survival
Guide. Wiley Computer Publishing.

Flanagan, David. May 1997. Java in a Nutshell, 2nd Edition. O’Reilly & Associates,
Incorporated.

Flanagan, David. September 1997. Java Examples in a Nutshell. O’Reilly &
Associates, Incorporated.

JDBC Driver Programming Reference xiii

Fowler, M. with Scott, K. 1997. UML Distilled, Applying the Standard Object
Modeling Language. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series.

Jacobson, I. 1994. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley.

Mowbray, Thomas J. and Malveau, Raphael C. (Contributor). 1997. CORBA Design
Patterns, Paper Back and CD-ROM Edition. John Wiley & Sons, Inc.

Orfali, R., Harkey, D., and Edwards, J. 1997. Instant Corba. Wiley Computer
Publishing.

Orfali, R., Harkey, D. February 1998. Client/Server Programming with Java and
CORBA, 2nd Edition. John Wiley & Sons, Inc.

Otte, R., Patrick, P., and Roy, M. 1996. Understanding CORBA. Prentice Hall PTR.

Rosen, M. and Curtis, D. 1998. Integrating CORBA and COM Applications. Wiley
Computer Publishing.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Loresen, W. 1991.
Object-Oriented Modeling and Design. Prentice Hall.

The Common Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. Published by the Object Management Group (OMG).

CORBAservices: Common Object Services Specification. Revised Edition. Updated:
November 1997. Published by the Object Management Group (OMG).

Contact Information

The following sections provide information about how to obtain support for the
documentation and the software.

xiv JDBC Driver Programming Reference

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of the BEA WebLogic Enterprise product,
or if you have problems installing and running the BEA WebLogic Enterprise
software, contact BEA Customer Support through BEA WebSupport at
www.beasys.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

t Your name, e-mail address, phone number, and fax number

t Your company name and company address

t Your machine type and authorization codes

t The name and version of the product you are using

t A description of the problem and the content of pertinent error messages

JDBC Driver Programming Reference 1-1

CHAPTER

1 Using the jdbcKona
Drivers

This chapter covers general guidelines for using the jdbcKona drivers and some
vendor-specific notes on each driver. Included at the end of this chapter is a summary
of the steps you take, including sample code, to use a JDBC driver in a WebLogic
Enterprise Java application.

Note: The jdbcKona drivers are based on JDBC 1.22

The jdbcKona drivers include both Type 2 and Type 4 drivers. The Type 2 drivers (for
Oracle) employ client libraries supplied by the database vendors. The Type 4 drivers
(for the Microsoft SQL Server) are 100% pure Java; they connect to the database
server at the wire level without vendor-supplied client libraries.

1 USING THE JDBCKONA DRIVERS

1-2 JDBC Driver Programming Reference

Platforms Supported by the jdbcKona
Drivers

The following table lists the platforms supported by the jdbcKona drivers.

Adding the jdbcKona JAR File to Your
CLASSPATH

Be sure to add the jdbcKona JAR file, which applies to both jdbcKona drivers, to your
environment. You can do this by appending the following to your CLASSPATH system
environment variable:

On Solaris Systems:

$TUXDIR/udataobj/java/jdbc/jdbcKona.jar

On NT Systems:

$TUXDIR\udataobj\java\jdbc\jdbcKona.jar

JDBC Driver Operating
System and

Version

JVM DBMS Client Libraries

jdbcKona/
Oracle

Windows NT 4.0
(SP4)

Java 2 Oracle 7.3.4 or higher Oracle 7.3.4

Solaris 2.4, 2.5, and
2.6

Java 2 Oracle 7.3.4 or higher Oracle 7.3.4

jdbcKona/
MSSQLServer4

Not applicable Java 2 Microsoft SQL Server
6.5 (SP3)

Not applicable

JDBCKONA/ORACLE SHARED LIBRARIES AND DYNAMIC LINK LIBRARIES

JDBC Driver Programming Reference 1-3

jdbcKona/Oracle Shared Libraries and
Dynamic Link Libraries

The jdbcKona/Oracle (Type 2) driver calls native libraries that are supplied with the
driver. The UNIX libraries (shared object files) are in the $TUXDIR/lib directory. The
Windows DLL files are included in the WLE Java software kit in the $TUXDIR\bin
directory.

The following table lists the names of the driver files included with the WLE Java
system.

For the jdbcKona/Oracle driver, you also need the vendor-supplied libraries for the
database.

Requirements for Making a Connection to a
Database Management System (DBMS)

You need the following components to connect to a DBMS using a jdbcKona driver:

t A database server (Oracle or Microsoft SQL Server)

t The jdbcKona driver for your database

t The Java 2 software

JDBC Driver Windows NT/95 UNIX

jdbcKona/Oracle weblogicoci33.dll libweblogicoci33.so

1 USING THE JDBCKONA DRIVERS

1-4 JDBC Driver Programming Reference

Support for JDBC Extended SQL

The Sun Microsystems, Inc. JDBC specification includes SQL Extensions, also called
SQL Escape Syntax. All jdbcKona drivers support Extended SQL. Extended SQL
provides access to common SQL extensions in a way that is portable between DBMSs.

For example, the function to extract the day name from a date is not defined by the SQL
standards. For Oracle, the SQL is:

select to_char(date_column, ’DAY’) from table_with_dates

Using Extended SQL, you can retrieve the day name for both DBMSs, as follows:

select {fn dayname(date_column)} from table_with_dates

The following is an example that demonstrates several features of Extended SQL:

String insert=
"-- This SQL includes comments and JDBC extended SQL syntax. \n" +
"insert into date_table values({fn now()}, -- current time \n" +
" {d ’1997-05-24’}, -- a date \n" +
" {t ’10:30:29’ }, -- a time \n" +
" {ts ’1997-05-24 10:30:29.123’}, -- a timestamp \n" +
" ’{string data with { or } will not be altered’) \n" +
"-- Also note that you can safely include { and } in comments or \n" +
"-- string data.";

Statement stmt = conn.createStatement();
stmt.executeUpdate(query);

Extended SQL is delimited with curly braces ({}) to differentiate it from common
SQL. Comments are preceded by two hyphens, and are ended by a newline character
(\n). The entire Extended SQL sequence, including comments, SQL, and Extended
SQL, is placed within double quotes and is passed to the execute method of a
Statement object.

The following is Extended SQL used as part of a CallableStatement object:

CallableStatement cstmt =
conn.prepareCall("{ ? = call func_squareInt(?)}");

The following example shows that you can nest extended SQL expressions:

select {fn dayname({fn now()})}

THE JDBC API, WITH WEBLOGIC EXTENSIONS

JDBC Driver Programming Reference 1-5

You can retrieve lists of supported Extended SQL functions from a
DatabaseMetaData object. The following example shows how to list all the functions
a JDBC driver supports:

DatabaseMetaData md = conn.getMetaData();
System.out.println("Numeric functions: " + md.getNumericFunctions());
System.out.println("\nString functions: " + md.getStringFunctions());
System.out.println("\nTime/date functions: " + md.getTimeDateFunctions());
System.out.println("\nSystem functions: " + md.getSystemFunctions());
conn.close();

Refer to Chapter 11 of the JDBC 1.2 specification at the Sun Microsystems, Inc. Web
site for a description of Extended SQL.

The JDBC API, with WebLogic Extensions

For the complete set of JDBC API documentation, see the following Web site:

http://www.weblogic.com/docs/classdocs/packages.html#jdbc

The following packages, classes, interfaces, and WebLogic extensions compose the
JDBC API:

Package java.sql
Package java.math

Class java.lang.Object
Interface java.sql.CallableStatement
(extends java.sql.PreparedStatement)

 Interface java.sql.Connection
 Interface java.sql.DatabaseMetaData
 Class java.util.Date
 Class java.sql.Date
 Class java.sql.Time
 Class java.sql.Timestamp
 Class java.util.Dictionary
 Class java.util.Hashtable
 (implements java.lang.Cloneable)
 Class java.util.Properties
 Interface java.sql.Driver
 Class java.sql.DriverManager
 Class java.sql.DriverPropertyInfo
 Class java.lang.Math

1 USING THE JDBCKONA DRIVERS

1-6 JDBC Driver Programming Reference

 Class java.lang.Number
 Class java.math.BigDecimal
 Class java.math.BigInteger
 Interface java.sql.PreparedStatement
 (extends java.sql.Statement)
 Interface java.sql.ResultSet
 Interface java.sql.ResultSetMetaData
 Interface java.sql.Statement
 Class java.lang.Throwable
 Class java.lang.Exception
 Class java.sql.SQLException
 Class java.sql.SQLWarning
 Class java.sql.DataTruncation
 Class java.sql.Types
 Class weblogic.jdbc.oci.Connection
 (implements java.sql.Connection)
 Class weblogic.jdbc.oci.Statement
 (implements java.sql.Statement)
 Class weblogic.jdbc.oci.PreparedStatement
 Class weblogic.jdbc.oci.CallableStatement
 (implements java.sql.CallableStatement)

The jdbcKona drivers provide extensions to JDBC for certain database-specific
enhancements. The jdbcKona drivers have the following extended classes:

Class weblogic.jdbc.oci.CallableStatement
Class weblogic.jdbc.oci.Connection
Class weblogic.jdbc.oci.Statement

For more information about these extensions, see Chapter 4, “Extensions to the JDBC
API.”

Implementing a WLE Java Application Using
the jdbcKona Drivers

This section describes the following steps involved in implementing a simple WLE
Java application that uses a jdbcKona driver to connect to a DBMS:

t Importing Packages

t Setting Properties for Connecting to the DBMS

IMPLEMENTING A WLE JAVA APPLICATION USING THE JDBCKONA DRIVERS

JDBC Driver Programming Reference 1-7

t Connecting to the DBMS

t Making a Simple SQL Query

t Inserting, Updating, and Deleting Records

t Creating and Using Stored Procedures and Functions

t Disconnecting and Closing Objects

Many of the steps described in this section include code snippets from a
comprehensive code example that is provided at the end of this chapter.

For database-specific details on implementing WLE Java applications using the
jdbcKona drivers, see Chapter 2, “Using the jdbcKona/Oracle Driver,” and Chapter 3,
“Using the jdbcKona/ MSSQLServer4 Driver.”

Importing Packages

The classes that you import into your WLE Java server application that uses a
jdbcKona driver should include:

import java.sql.*;
import java.util.Properties;

The jdbcKona drivers implement the java.sql interface. You write your WLE Java
application using the java.sql classes; the java.sql.DriverManager maps the
jdbcKona driver to the java.sql classes.

You do not import the jdbcKona driver class; instead, you load the driver inside the
application. This allows you to select an appropriate driver at runtime. You can even
decide after the program is compiled what DBMS to connect to.

Included in the WLE Java software is the latest version of the JDBC API class files.
Make sure you do not have any earlier versions of the java.sql classes in your
CLASSPATH.

You need to import the java.util.Properties class only if you use a Properties
object to set parameters for connecting to the DBMS.

1 USING THE JDBCKONA DRIVERS

1-8 JDBC Driver Programming Reference

Setting Properties for Connecting to the DBMS

In the following example, a java.util.Properties object sets the parameters for
connecting to the DBMS. There are other ways of passing these parameters to the
DBMS that do not require a Properties object, as in the following snippet:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");

The value for the server property may be vendor-specific; in this example, it is the V2
alias of an Oracle database running over TCP. You may also add the server name to
the URL (see the next section) instead of setting it with the java.util.Properties
object.

Connecting to the DBMS

In general, to a connect to a DBMS, you need to perform the following steps:

1. Load the proper jdbcKona driver.

The most efficient way to load the jdbcKona driver is to invoke the
Class.forName().newInstance method with the name of the driver class.
This loads and registers the jdbcKona driver, as in the following example for
jdbcKona/Oracle:

Class.forName("weblogic.jdbc.oci.Driver").newInstance();

2. Obtain a JDBC connection.

You request a JDBC connection by invoking the
DriverManager.getConnection method, which takes as its parameters the
URL of the driver and other information about the connection, such as the
location of the database and login information.

Note that both steps describe the jdbcKona driver, but in different formats. The full
pathname for the driver is period-separated, while the URL is colon-separated. The
following table lists the class paths and URLs for the jdbcKona drivers:

IMPLEMENTING A WLE JAVA APPLICATION USING THE JDBCKONA DRIVERS

JDBC Driver Programming Reference 1-9

Additional information required to form a database connection varies by DBMS
vendor and by whether the jdbcKona driver is of Type 2 or Type 4. There are also a
variety of methods for specifying this information in your program.

For full details about the jdbcKona drivers, refer to Chapter 2, “Using the
jdbcKona/Oracle Driver,” and Chapter 3, “Using the jdbcKona/ MSSQLServer4
Driver.” For a complete code example, see “Implementing a WLE Java Application
Using the jdbcKona Drivers” on page 1-6.

The connection to the DBMS is handled by the jdbcKona driver. You use both the class
name of the driver (in dot-notation) and the URL of the driver (with colons as
separators). Class names are case sensitive.

The Class.forName().newInstance method loads the driver and registers the
driver with the DriverManager object.

Note: The Sun Microsystems, Inc. JDBC API Reference for the java.sql.Driver
interface recommends simply invoking Class.forName("driver-class")
to load the driver.

The connection is created with the DriverManager.getConnection method, which
takes as arguments the URL of the driver and a Properties object, as in the following
snippet. The URL is not case sensitive.

Class.forName("weblogic.jdbc.oci.Driver").newInstance();
Connection conn =
DriverManager.getConnection("jdbc:weblogic:oracle",

props);
conn.setAutoCommit(false);

The default transaction mode for JDBC assumes autocommit to be true. Setting
autocommit to false improves performance.

JDBC Driver Driver
Type

Class Pathname Class URL

jdbcKona/Oracle Type 2 weblogic.jdbc.oci.Driver jdbc:weblogic:oci

jdbcKona/
MSSQLServer4

Type 4 weblogic.jdbc.
mssqlserver4.Driver

jdbc:weblogic:mssqlserver4

1 USING THE JDBCKONA DRIVERS

1-10 JDBC Driver Programming Reference

The Connection object is an important part of the application. The Connection class
has constructors for many fundamental database objects that you will use throughout
the application. In the examples that follow, you will see the Connection object conn
used repeatedly.

Connecting to the database completes the initial portion of a WLE Java application,
which will be very much the same for any application.

Invoke the close method on the Connection object as soon as you finish working with
the object, usually at the end of a class.

Making a Simple SQL Query

The most fundamental task in database access is to retrieve data. With a jdbcKona
driver, retrieving data is a three-step process:

1. Create a Statement object to send an SQL query to the DBMS.

2. Execute the Statement.

3. Retrieve the results into a ResultSet object.

In the following code snippet, we execute a simple query on the Employee table (alias
"emp") and display data from three of the columns. We also access and display
metadata about the table from which the data was retrieved. Note that we close the
Statement at the end.

Statement stmt = conn.createStatement();
stmt.execute("select * from emp");
ResultSet rs = stmt.getResultSet();

while (rs.next()) {
 System.out.println(rs.getString("empid") + " - " +
 rs.getString("name") + " - " +
 rs.getString("dept"));
 }

ResultSetMetaData md = rs.getMetaData();

System.out.println("Number of columns: " + md.getColumnCount());
for (int i = 1; i <= md.getColumnCount(); i++) {
 System.out.println("Column Name: " + md.getColumnName(i));
 System.out.println("Nullable: " + md.isNullable(i));
 System.out.println("Precision: " + md.getPrecision(i));

IMPLEMENTING A WLE JAVA APPLICATION USING THE JDBCKONA DRIVERS

JDBC Driver Programming Reference 1-11

 System.out.println("Scale: " + md.getScale(i));
 System.out.println("Size: " + md.getColumnDisplaySize(i));
 System.out.println("Column Type: " + md.getColumnType(i));
 System.out.println("Column Type Name: "+ md.getColumnTypeName(i));
 System.out.println("");
 }

stmt.close();

Inserting, Updating, and Deleting Records

The following snippet shows three common database tasks: inserting, updating, and
deleting records from a database table. We use a JDBC PreparedStatement object
for these operations; we create the PreparedStatement object, then execute the
object and close it.

A PreparedStatement object (subclassed from JDBC Statement) allows you to
execute the same SQL over and over again with different values.
PreparedStatement objects use the JDBC "?" syntax.

String inssql = "insert into emp(empid, name, dept) values (?, ?, ?)";
PreparedStatement pstmt = conn.prepareStatement(inssql);

for (int i = 0; i < 100; i++) {
pstmt.setInt(1, i);
pstmt.setString(2, "Person " + i);
pstmt.setInt(3, i);
pstmt.execute():

}
pstmt.close();

We also use a PreparedStatement object to update records. In the following code
snippet, we add the value of the counter "i" to the current value of the "dept" field.

String updsql = "update emp set dept = dept + ? where empid = ?";
PreparedStatement pstmt2 = conn.prepareStatement(updsql);

for (int i = 0; i < 100; i++) {
pstmt2.setInt(1, i);
pstmt2.setInt(2, i);
pstmt2.execute();

}
pstmt2.close();

1 USING THE JDBCKONA DRIVERS

1-12 JDBC Driver Programming Reference

Finally, we use a PreparedStatement object to delete the records that we added and
then updated, as in the following snippet:

String delsql = "delete from emp where empid = ?";
PreparedStatement pstmt3 = conn.prepareStatement(delsql);

for (int i = 0; i < 100; i++) {
pstmt3.setInt(1, i);
pstmt3.execute();

}
pstmt3.close();

Creating and Using Stored Procedures and Functions

You can use a jdbcKona driver to create, use, and drop stored procedures and
functions. First, we execute a series of Statement objects to drop a set of stored
procedures and functions from the database, as in the following code snippet:

Statement stmt = conn.createStatement();
try {stmt.execute("drop procedure proc_squareInt");}
catch (SQLException e) {;}
try {stmt.execute("drop procedure func_squareInt");}
catch (SQLException e) {;}
try {stmt.execute("drop procedure proc_getresults");}
catch (SQLException e) {;}
stmt.close();

We use a JDBC Statement object to create a stored procedure or function, and then
we use a JDBC CallableStatement object (subclassed from the Statement object)
with the JDBC "?" syntax to set IN and OUT parameters. For information about doing
this with the jdbcKona/Oracle driver, see Chapter 2, “Using the jdbcKona/Oracle
Driver.”

The first two code snippets that follow use the jdbcKona/Oracle driver. Note that
Oracle does not natively support binding to "?" values in an SQL statement. Instead,
it uses ":1", ":2", and so forth. You can use either syntax in your SQL with the
jdbcKona/Oracle driver.

Stored procedure input parameters are mapped to JDBC IN parameters, using the
CallableStatement.setxxx methods, such as setInt(), and the "?" syntax of the
JDBC PreparedStatement object. Stored procedure output parameters are mapped
to JDBC OUT parameters, using the CallableStatement.registerOutParameter

IMPLEMENTING A WLE JAVA APPLICATION USING THE JDBCKONA DRIVERS

JDBC Driver Programming Reference 1-13

methods and the "?" syntax of the JDBC PreparedStatement object. A parameter
may be both IN and OUT, which requires both a setxxx() and a
registerOutParameter() invocation to be made on the same parameter number.

In the following code snippet, we use a JDBC Statement object to create an Oracle
stored procedure; then we execute the stored procedure with a CallableStatement
object. We use the registerOutParameter method to set an output parameter for the
squared value.

Statement stmt1 = conn.createStatement();
stmt1.execute("CREATE OR REPLACE PROCEDURE proc_squareInt " +
 "(field1 IN OUT INTEGER, field2 OUT INTEGER) IS " +
 "BEGIN field2 := field1 * field1; field1 := " +
 "field1 * field1; END proc_squareInt;");
stmt1.close();

// Native Oracle SQL is commented out here
// String sql = "BEGIN proc_squareInt(?, ?); END;";

// This is the correct syntax as specified by JDBC
String sql = "{call proc_squareInt(?, ?)}";
CallableStatement cstmt1 = conn.prepareCall(sql);

// Register out parameters
cstmt1.registerOutParameter(2, java.sql.Types.INTEGER);
for (int i = 0; i < 5; i++) {
 cstmt1.setInt(1, i);
 cstmt1.execute();
 System.out.println(i + " " + cstmt1.getInt(1) +
" " + cstmt1.getInt(2));
}
cstmt1.close();

In the following code snippet, we use similar code to create and execute a stored
function that squares an integer.

Statement stmt2 = conn.createStatement();
stmt2.execute("CREATE OR REPLACE FUNCTION func_squareInt " +
 "(field1 IN INTEGER) RETURN INTEGER IS " +
 "BEGIN return field1 * field1; " +
 "END func_squareInt;");
stmt2.close();

// Native Oracle SQL is commented out here
// sql = "BEGIN ? := func_squareInt(?); END;";

// This is the correct syntax specified by JDBC
sql = "{ ? = call func_squareInt(?)}";

1 USING THE JDBCKONA DRIVERS

1-14 JDBC Driver Programming Reference

CallableStatement cstmt2 = conn.prepareCall(sql);

cstmt2.registerOutParameter(1, Types.INTEGER);
for (int i = 0; i < 5; i++) {
 cstmt2.setInt(2, i);
 cstmt2.execute();
 System.out.println(i + " " + cstmt2.getInt(1) +
 " " + cstmt2.getInt(2));
}
cstmt2.close();

Disconnecting and Closing Objects

Close Statement, ResultSet, Connection, and other such objects with their close
methods after you have finished using them. Closing these objects releases resources
on the remote DBMS and within your application. When you use one object to
construct another, close the objects in the reverse order in which they were created. For
example:

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from empno");

(process the ResultSet)

rs.close();
stmt.close();

Always close the java.sql.Connection as well, usually as one of the last steps in
your program. Every connection should be closed, even if a login fails. An Oracle
connection will cause a system failure (such as a segment violation) when the finalizer
thread attempts to close a connection that you have inadvertently left open. If you do
not close connections to log out of the database, you may also exceed the maximum
number of database logins. Once a connection is closed, all of the objects created in its
context become unusable.

There are occasions on which you will want to invoke the commit method to commit
changes you have made to the database before you close the connection.

When autocommit is set to true (the default JDBC transaction mode), each SQL
statement is its own transaction. After we created the Connection object for these
examples, however, we set autocommit to false; in this mode, the Connection object
always has an implicit transaction associated with it, and any invocation to the

IMPLEMENTING A WLE JAVA APPLICATION USING THE JDBCKONA DRIVERS

JDBC Driver Programming Reference 1-15

rollback or commit methods will end the current transaction and start a new one.
Invoking commit() before close() ensures that all of the transactions are completed
before closing the connection.

Just as you close Statement, PreparedStatement, and CallableStatement
objects when you have finished working with them, always invoke the close method
on the connection as final cleanup in your application, in a try {} block, and catch
exceptions and deal with them appropriately. The final two lines of the example
include an invocation to commit() and then close() to close the connection, as in
the following snippet:

conn.commit();
conn.close();

Code Example

The following is a sample implementation to give you an overall idea of the structure
for a WLE Java application that uses a jdbcKona driver to access a DBMS. The code
example shown here includes retrieving data, displaying metadata, inserting, deleting,
and updating data, and stored procedures and functions. Note the explicit invocations
to close() for each JDBC-related object, and note also that we close the connection
itself in a finally {} block, with the invocation to close() wrapped in a try {}
block.

import java.sql.*;
import java.util.Properties;
import weblogic.common.*;

public class test {
 static int i;
 Statement stmt = null;

 public static void main(String[] argv) {
 try {
 Properties props = new Properties();
 props.put("user", "scott");
 props.put("password", "tiger");
 props.put("server", "DEMO");

 Class.forName("weblogic.jdbc.oci.Driver").newInstance();
 Connection conn =
 DriverManager.getConnection("jdbc:weblogic:oracle",
 props);

1 USING THE JDBCKONA DRIVERS

1-16 JDBC Driver Programming Reference

 }
 catch (Exception e)
 e.printStackTrace();
 }

 try {
 // This will improve performance in Oracle
 // You’ll need an explicit commit() call later
 conn.setAutoCommit(false);

 stmt = conn.createStatement();
 stmt.execute("select * from emp");
 ResultSet rs = stmt.getResultSet();

 while (rs.next()) {
 System.out.println(rs.getString("empid") + " - " +
 rs.getString("name") + " - " +
 rs.getString("dept"));
 }

 ResultSetMetaData md = rs.getMetaData();

 System.out.println("Number of Columns: " + md.getColumnCount());
 for (i = 1; i <= md.getColumnCount(); i++) {
 System.out.println("Column Name: " + md.getColumnName(i));
 System.out.println("Nullable: " + md.isNullable(i));
 System.out.println("Precision: " + md.getPrecision(i));
 System.out.println("Scale: " + md.getScale(i));
 System.out.println("Size: " + md.getColumnDisplaySize(i));
 System.out.println("Column Type: " + md.getColumnType(i));
 System.out.println("Column Type Name: "+ md.getColumnTypeName(i));
 System.out.println("");
 }
 rs.close();
 stmt.close();

 Statement stmtdrop = conn.createStatement();
 try {stmtdrop.execute("drop procedure proc_squareInt");}
 catch (SQLException e) {;}
 try {stmtdrop.execute("drop procedure func_squareInt"); }
 catch (SQLException e) {;}
 try {stmtdrop.execute("drop procedure proc_getresults"); }
 catch (SQLException e) {;}
 stmtdrop.close();

 // Create a stored procedure
 Statement stmt1 = conn.createStatement();
 stmt1.execute("CREATE OR REPLACE PROCEDURE proc_squareInt " +
 "(field1 IN OUT INTEGER, " +

IMPLEMENTING A WLE JAVA APPLICATION USING THE JDBCKONA DRIVERS

JDBC Driver Programming Reference 1-17

 "field2 OUT INTEGER) IS " +
 "BEGIN field2 := field1 * field1; " +
 "field1 := field1 * field1; " +
 "END proc_squareInt;");
 stmt1.close();

 CallableStatement cstmt1 =
 conn.prepareCall("BEGIN proc_squareInt(?, ?); END;");
 cstmt1.registerOutParameter(2, Types.INTEGER);
 for (i = 0; i < 100; i++) {
 cstmt1.setInt(1, i);
 cstmt1.execute();
 System.out.println(i + " " + cstmt1.getInt(1) +
 " " + cstmt1.getInt(2));
 }
 cstmt1.close();

 // Create a stored function
 Statement stmt2 = conn.createStatement();
 stmt2.execute("CREATE OR REPLACE FUNCTION func_squareInt " +
 "(field1 IN INTEGER) RETURN INTEGER IS " +
 "BEGIN return field1 * field1; END func_squareInt;");
 stmt2.close();

 CallableStatement cstmt2 =
 conn.prepareCall("BEGIN ? := func_squareInt(?); END;");
 cstmt2.registerOutParameter(1, Types.INTEGER);
 for (i = 0; i < 100; i++) {
 cstmt2.setInt(2, i);
 cstmt2.execute();
 System.out.println(i + " " + cstmt2.getInt(1) +
 " " + cstmt2.getInt(2));
 }
 cstmt2.close();

 // Insert 100 records
 System.out.println("Inserting 100 records...");
 String inssql = "insert into emp(empid, name, dept) values (?, ?, ?)";
 PreparedStatement pstmt = conn.prepareStatement(inssql);

 for (i = 0; i < 100; i++) {
 pstmt.setInt(1, i);
 pstmt.setString(2, "Person " + i);
 pstmt.setInt(3, i);
 pstmt.execute();
 }
 pstmt.close();

1 USING THE JDBCKONA DRIVERS

1-18 JDBC Driver Programming Reference

 // Update 100 records
 System.out.println("Updating 100 records...");
 String updsql = "update emp set dept = dept + ? where empid = ?";
 PreparedStatement pstmt2 = conn.prepareStatement(updsql);

 for (i = 0; i < 100; i++) {
 pstmt2.setInt(1, i);
 pstmt2.setInt(2, i);
 pstmt2.execute();
 }
 pstmt2.close();

 // Delete 100 records
 System.out.println("Deleting 100 records...");
 String delsql = "delete from emp where empid = ?";
 PreparedStatement pstmt3 = conn.prepareStatement(delsql);

 for (i = 0; i < 100; i++) {
 pstmt3.setInt(1, i);
 pstmt3.execute();
 }
 pstmt3.close();

 conn.commit();
 }
 catch (Exception e) {
 // Deal with failures appropriately
 }
 finally {
 try {conn.close();}
 catch (Exception e) {
 // Catch and deal with exception
 }
 }
 }
}

JDBC Driver Programming Reference 2-1

CHAPTER

2 Using the
jdbcKona/Oracle Driver

This chapter provides general guidelines for using the jdbcKona/Oracle Type 2 driver.
For general notes about and an example of using the jdbcKona drivers, see Chapter 1,
“Using the jdbcKona Drivers.”

Data Type Mapping

Mapping of types between Oracle and the jdbcKona/Oracle driver are provided in the
following table.

Oracle jdbcKona/Oracle driver

Varchar String

Number Tinyint

Number Smallint

Number Integer

Number Long

Number Float

Number Numeric

Number Double

2 USING THE JDBCKONA/ORACLE DRIVER

2-2 JDBC Driver Programming Reference

Note that when the PreparedStatement.setBoolean method is invoked, this
method converts a VARCHAR type to "1" or "0" (string), and it converts a NUMBER
type to 1 or 0 (number).

Note that the PreparedStatement.setBoolean method converts a VARCHAR type to
"1" or "0" (string), and it converts a NUMBER type to 1 or 0 (number).

Connecting the jdbcKona/Oracle Driver to an
Oracle DBMS

In general, to make a DBMS connection, you perform the following steps:

1. Load the proper jdbcKona driver.

The most efficient way to do this is to invoke the
Class.forName().newInstance() method with the name of the driver class,
which properly loads and registers the jdbcKona driver, as in the following
example:

Class.forName("weblogic.jdbc.oci.Driver").newInstance();

Long Longvarchar

RowID String

Date Timestamp

Raw (var)Binary

Long raw Longvarbinary

Char (var)Char

Boolean* Number OR Varchar

MLS label String

Oracle jdbcKona/Oracle driver

CONNECTING THE JDBCKONA/ORACLE DRIVER TO AN ORACLE DBMS

JDBC Driver Programming Reference 2-3

2. Request a JDBC connection by invoking the DriverManager.getConnection
method, which takes as its parameters the URL of the driver and other
information about the connection.

Note that both steps describe the jdbcKona driver, but in a different format. The full
package name is period-separated, and the URL is colon-separated. The URL must
include at least weblogic:jdbc:oracle, and may include other information,
including server name and database name.

There are several variations on this basic pattern, which are described here for Oracle.
For a full code example, see “Implementing a WLE Java Application Using the
jdbcKona Drivers” on page 1-6.

Method 1

The simplest way to connect to an Oracle DBMS is by passing the URL of the driver
that includes the name of the server, along with a username and a password, as
arguments to the DriverManager.getConnection method, as in the following
jdbcKona/Oracle example:

Class.forName("weblogic.jdbc.oci.Driver").newInstance();
Connection conn =
 DriverManager.getConnection("jdbc:weblogic:oracle:DEMO",
 "scott",
 "tiger");

In the preceding example, DEMO is the V2 alias of an Oracle database. Note that
invoking the Class.forName().newInstance() method properly loads and
registers the driver.

Method 2

You can also pass a java.util.Properties object with parameters for connection
as an argument to the DriverManager.getConnection method. The following
example shows how to connect to the DEMO database:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");

2 USING THE JDBCKONA/ORACLE DRIVER

2-4 JDBC Driver Programming Reference

Class.forName("weblogic.jdbc.oci.Driver").newInstance();
Connection conn =
 DriverManager.getConnection("jdbc:weblogic:oracle",
 props);

If you do not supply a server name (DEMO in the preceding example), the system looks
for an environment variable (ORACLE_SID in the case of Oracle). You can also add the
server name to the URL, using the following format:

"jdbc:weblogic:oracle:DEMO"

When you use the preceding format, you do not need to provide a "server" property.

Other Properties You Can Set for the jdbcKona/Oracle
Driver

There are other properties that you can set for the jdbcKona/Oracle driver, which are
covered later in this document. The jdbcKona/Oracle driver also allows setting a
property -- allowMixedCaseMetaData -- to the boolean true. This property sets up
the connection to use mixed case letters in invocation to DatabaseMetaData methods.
Otherwise, Oracle defaults to uppercase letters for database metadata.

The following is an example of setting up the properties to include this feature:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");
props.put("allowMixedCaseMetaData", "true");

Connection conn =
DriverManager.getConnection("jdbc:weblogic:oracle",

props);

If you do not set this property, the jdbcKona/Oracle driver defaults to the Oracle
default, which uses uppercase letters for database metadata.

WAITING FOR ORACLE DBMS RESOURCES

JDBC Driver Programming Reference 2-5

General Notes

Always invoke the Connection.close method to close the connection when you
have finished working with it. Closing objects releases resources on the remote DBMS
and within your application, as well as being good programming practice. Other
jdbcKona objects on which you should invoke the close method after final use
include:

t Statement (PreparedStatement, CallableStatement)

t ResultSet

Waiting for Oracle DBMS Resources

The jdbcKona/Oracle driver supports the Oracle oopt() C API, which allows a client
to wait until resources become available. The Oracle C function sets options in cases
where requested resources are not available; for example, whether to wait for locks.

You can set whether a client waits for DBMS resources, or receives an immediate
exception. The following is an example:

java.util.Properties props = new java.util.Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "goldengate");

Class.forName("weblogic.jdbc.oci.Driver").newInstance();

// You must cast the Connection as a weblogic.jdbc.oci.Connection
// to take advantage of this extension
Connection conn =
(weblogic.jdbc.oci.Connection)

DriverManager.getConnection("jdbc:weblogic:oracle", props);

// After constructing the Connection object, immediately call
// the waitOnResources method
conn.waitOnResources(true);

Note that use of this method can cause several error return codes while waiting for
internal resources that are locked for short durations.

2 USING THE JDBCKONA/ORACLE DRIVER

2-6 JDBC Driver Programming Reference

To take advantage of this feature, you must first cast your Connection object as a
weblogic.jdbc.oci.Connection object, and then invoke the waitOnResources
method.

This functionality is described in section 4-97 of The OCI Functions for C, published
by Oracle Corporation.

Autocommit

The default transaction mode for JDBC assumes autocommit to be true. You will
improve the performance of your programs by setting autocommit to false after
creating a Connection object with the following statement:

Connection.setAutoCommit(false);

Using Oracle Blobs

The jdbcKona/Oracle driver supports two new properties to support Oracle Blob
chunking:

t weblogic.oci.insertBlobChunkSize

This property affects the buffer size of input streams bound to a
PreparedStatement object. Blob chunking requires an Oracle 7.3.x or higher
Oracle Server; to use this property, you must be connected to an Oracle Server
that supports this feature.

Set this property to a positive integer to insert Blobs into an Oracle DBMS with
the Blob chunking feature. By default, this property is set to 0 (zero), which
means that BLOB chunking is turned off.

t weblogic.oci.selectBlobChunkSize

This property sets the size of output streams associated with a JDBC ResultSet
object. The mechanism for piecewise selects does not have the same use
restrictions as that for Blob inserts, so this property is set to 65534 by default. It
is not necessary to turn this property off.

SUPPORT FOR ORACLE ARRAY FETCHES

JDBC Driver Programming Reference 2-7

Set this property to the size of the desired output stream, in bytes.

Support for Oracle Array Fetches

With WLE Java, the jdbcKona/Oracle driver supports Oracle array fetches. With this
feature support, invoking the ResultSet.next method the first time gets an array of
rows and stores it in memory, rather than retrieving a single row. Each subsequent
invocation of the next method reads a row from the rows in memory until they are
exhausted, and only then does the next method go back to the database.

You set a property (java.util.Property) to control the size of the array fetch. The
property is weblogic.oci.cacheRows; it is set by default to 100. The following is an
example of setting this property to 300, which means that invocations to the next
method hit the database only once for each 300 rows retrieved by the client:

Properties props = new Properties();
props.put("user", "scott");
props.put("password", "tiger");
props.put("server", "DEMO");
props.put("weblogic.oci.cacheRows", "300");

Class.forName("weblogic.jdbc.oci.Driver").newInstance();
Connection conn =
DriverManager.getConnection("jdbc:weblogic:oracle",

props);

You can improve client performance and lower the load on the database server by
taking advantage of this JDBC extension. Caching rows in the client, however,
requires client resources. Tune your application for the best balance between
performance and client resources, depending upon your network configuration and
your application.

If any columns in a SELECT statement are of type LONG, the cache size will be
temporarily reset to 1 (one) for the ResultSet object associated with that select
statement.

2 USING THE JDBCKONA/ORACLE DRIVER

2-8 JDBC Driver Programming Reference

Using Stored Procedures

The following sections describe how to use stored procedures:

t Syntax for Stored Procedures in the jdbcKona/Oracle Driver

t Binding a Parameter to an Oracle Cursor

t Using CallableStatement

Syntax for Stored Procedures in the jdbcKona/Oracle
Driver

The syntax for stored procedures in Oracle was altered in the jdbcKona/Oracle driver
examples to match the JDBC specification. (All of the examples also show native
Oracle SQL, commented out, just above the correct usage; the native Oracle syntax
works as it did in the past.) You can read more about stored procedures for the
jdbcKona drivers in Chapter 1, “Using the jdbcKona Drivers.”

Note that Oracle does not natively support binding to "?" values in an SQL statement.
Instead it uses ":1", ":2", and so forth. We allow you to use either in your SQL with the
jdbcKona/Oracle driver.

Binding a Parameter to an Oracle Cursor

BEA Systems, Inc. has created an extension to JDBC
(weblogic.jdbc.oci.CallableStatement) that allows you to bind a parameter for
a stored procedure to an Oracle cursor. You can create a JDBC ResultSet object with
the results of the stored procedure. This allows you to return multiple ResultSet
objects in an organized way. The ResultSet objects are determined at run time in the
stored procedure. An example procedure follows.

First, define the stored procedures, as follows:

create or replace package
curs_types as

USING STORED PROCEDURES

JDBC Driver Programming Reference 2-9

type EmpCurType is REF CURSOR RETURN emp%ROWTYPE;
end curs_types;
/

create or replace procedure
single_cursor(curs1 IN OUT curs_types.EmpCurType,
ctype in number) AS BEGIN
 if ctype = 1 then
 OPEN curs1 FOR SELECT * FROM emp;
 elsif ctype = 2 then
 OPEN curs1 FOR SELECT * FROM emp where sal > 2000;
 elsif ctype = 3 then
 OPEN curs1 FOR SELECT * FROM emp where deptno = 20;
 end if;
END single_cursor;
/

create or replace procedure
multi_cursor(curs1 IN OUT curs_types.EmpCurType,
 curs2 IN OUT curs_types.EmpCurType,
 curs3 IN OUT curs_types.EmpCurType) AS
BEGIN
 OPEN curs1 FOR SELECT * FROM emp;
 OPEN curs2 FOR SELECT * FROM emp where sal > 2000;
 OPEN curs3 FOR SELECT * FROM emp where deptno = 20;
END multi_cursor;
/

In your Java code, construct CallableStatement objects with the stored procedures
and register the output parameter as data type java.sql.Types.OTHER. When you
retrieve the data into a ResultSet object, use the output parameter index as an
argument for the getResultSet method. For example:

weblogic.jdbc.oci.CallableStatement cstmt =
 (weblogic.jdbc.oci.CallableStatement)conn.prepareCall(
 "BEGIN OPEN ? " +
 "FOR select * from emp; END;");
cstmt.registerOutParameter(1, java.sql.Types.OTHER);

cstmt.execute();
ResultSet rs = cstmt.getResultSet(1);
printResultSet(rs);
rs.close();
cstmt.close();

weblogic.jdbc.oci.CallableStatement cstmt2 =
 (weblogic.jdbc.oci.CallableStatement)conn.prepareCall(
 "BEGIN single_cursor(?, ?); END;");

2 USING THE JDBCKONA/ORACLE DRIVER

2-10 JDBC Driver Programming Reference

cstmt2.registerOutParameter(1, java.sql.Types.OTHER);

cstmt2.setInt(2, 1);
cstmt2.execute();
rs = cstmt2.getResultSet(1);
printResultSet(rs);

cstmt2.setInt(2, 2);
cstmt2.execute();
rs = cstmt2.getResultSet(1);
printResultSet(rs);

cstmt2.setInt(2, 3);
cstmt2.execute();
rs = cstmt2.getResultSet(1);
printResultSet(rs);

cstmt2.close();

weblogic.jdbc.oci.CallableStatement cstmt3 =
 (weblogic.jdbc.oci.CallableStatement)conn.prepareCall(
 "BEGIN multi_cursor(?, ?, ?); END;");
cstmt3.registerOutParameter(1, java.sql.Types.OTHER);
cstmt3.registerOutParameter(2, java.sql.Types.OTHER);
cstmt3.registerOutParameter(3, java.sql.Types.OTHER);

cstmt3.execute();

ResultSet rs1 = cstmt3.getResultSet(1);
ResultSet rs2 = cstmt3.getResultSet(2);
ResultSet rs3 = cstmt3.getResultSet(3);

Note that the default size of an Oracle-stored procedure string is 256K.

Using CallableStatement

The default length of a string bound to an OUTPUT parameter of a
CallableStatement object is 128 characters. If the value you assign to the bound
parameter exceeds that length, you get the following error:

ORA-6502: value or numeric error

DATABASEMETADATA METHODS

JDBC Driver Programming Reference 2-11

You can adjust the length of the value of the bound parameter by passing an explicit
length with the scale argument to the
CallableStatement.registerOutputParameter method. The following is a
code example that binds a VARCHAR that will never be larger than 256 characters:

CallableStatement cstmt =
conn.prepareCall("BEGIN testproc(?); END;");

cstmt.registerOutputParameter(1, Types.VARCHAR, 256);
cstmt.execute();
System.out.println(cstmt.getString());
cstmt.close();

DatabaseMetaData Methods

DatabaseMetaData is implemented in its entirety in the jdbcKona/Oracle driver. There
are some variations that are specific to Oracle, which are as follows:

t As a general rule, the String catalog argument is ignored in all
DatabaseMetaData methods.

t In the DatabaseMetaData.getProcedureColumns method:

t The String catalog argument is ignored.

t The String schemaPattern argument accepts only exact matches (no pattern
matching).

t The String procedureNamePattern argument accepts only exact matches
(no pattern matching).

t The String columnNamePattern argument is ignored.

2 USING THE JDBCKONA/ORACLE DRIVER

2-12 JDBC Driver Programming Reference

jdbcKona/Oracle and the Oracle NUMBER
Column

Oracle provides a column type called NUMBER, which can be optionally specified with
a precision and a scale, in the forms NUMBER(P) and NUMBER(P,S). Even in the
simple, unqualified NUMBER form, this column can hold all number types from small
integer values to very large floating point numbers, with high precision.

The jdbcKona/Oracle driver reliably converts the values in a column to the Java type
requested when a WLE Java application asks for a value from such a column. Of
course, if a value of 123.456 is asked for with getInt(), the value will be rounded.

The method getObject, however, poses a little more complexity. The
jdbcKona/Oracle driver guarantees to return a Java object that will represent any value
in a NUMBER column with no loss in precision. This means that a value of 1 can be
returned in an Integer, but a value like 123434567890.123456789 can only be
returned in a BigDecimal.

There is no metadata from Oracle to report the maximum precision of the values in the
column, so the jdbcKona/Oracle driver must decide what sort of object to return based
on each value. This means that one ResultSet object may return multiple Java types
from the getObject method for a given NUMBER column. A table full of integer values
may all be returned as Integer from the getObject method, whereas a table of
floating point measurements may be returned primarily as Double, with some
Integer if any value happens to be something like 123.00. Oracle does not provide
any information to distinguish between a NUMBER value of 1 and a NUMBER of
1.0000000000.

There is more reliable behavior with qualified NUMBER columns; that is, those defined
with a specific precision. Oracle’s metadata provides these parameters to the driver so
the jdbcKona/Oracle driver always returns a Java object appropriate for the given
precision and scale, regardless of the values shown in the following table. The
following table shows the Java objects returned for each qualified NUMBER column.

JDBCKONA/ORACLE AND THE ORACLE NUMBER COLUMN

JDBC Driver Programming Reference 2-13

Column Definition Returned by getObject()

NUMBER(P <= 9) Integer

NUMBER(P <= 18) Long

NUMBER(P >= 19) BigDecimal

NUMBER(P <=16, S > 0) Double

NUMBER(P >= 17, S > 0) BigDecimal

2 USING THE JDBCKONA/ORACLE DRIVER

2-14 JDBC Driver Programming Reference

JDBC Driver Programming Reference 3-1

CHAPTER

3 Using the jdbcKona/
MSSQLServer4 Driver

The jdbcKona/MSSQLServer4 is a Type 4, pure-Java, two-tier driver. It requires no
client-side libraries because it connects to the database via a proprietary vendor
protocol at the wire-format level. Unlike Type 2 JDBC drivers, Type 4 drivers make
no native calls, so they can be used in Java applets.

A Type 4 JDBC driver is similar to a Type 2 driver in many other ways. Type 2 and
Type 4 drivers are two-tier drivers: each client requires an in-memory copy of the
driver to support its connection to the database.

The API reference for JDBC, of which this driver is a fully compliant implementation,
is available online in several formats at the Sun Microsystems, Inc. Web site.

Connecting to an SQL Server with the
jdbcKona/MSSQLServer4 Driver

To connect to an SQL Server database in a WLE Java server application, perform the
following steps:

1. Load the jdbcKona/MSSQLServer4 JDBC driver.

2. Request a JDBC connection.

3 USING THE JDBCKONA/ MSSQLSERVER4 DRIVER

3-2 JDBC Driver Programming Reference

An efficient way to load the JDBC driver is to invoke the
Class.forName().newInstance() method, specifying the name of the driver class,
as in the following example:

Class.forName("weblogic.jdbc.mssqlserver4.Driver").newInstance();

After loading the JDBC driver, request a JDBC connection by invoking the
DriverManager.getConnection method. You invoke this method with a
connection URL, which, again, specifies the JDBC driver and other connection
information.

There are several ways to specify connection information in the
DriverManager.getConnection method. The following sections describe three
methods.

Method 1

The simplest method is to use a connection URL that includes the database name, host
name and port number of the database server, and two additional arguments to specify
the database user name and password, as in the following example:

Class.forName("weblogic.jdbc.mssqlserver4.Driver").newInstance();
Connection conn =

DriverManager.getConnection(
"jdbc:weblogic:mssqlserver4:database@host:port",
"sa", // database user name
""); // password for database user

In this example, host is the name or IP number of the computer running SQL Server,
and port is the port number the SQL Server is listening on.

Method 2

You can set connection information in a Properties object and pass this information
to the DriverManager.getConnection method. The following example specifies
the server, user, and password in a Properties object:

Properties props = new Properties();
props.put("server", "pubs@myhost:1433");
props.put("user", "sa");

SETTING PROPERTIES FOR MICROSOFT SQL SERVER 7

JDBC Driver Programming Reference 3-3

props.put("password", "");

Class.forName("weblogic.jdbc.mssqlserver4.Driver").newInstance();
Connection conn =

DriverManager.getConnection("jdbc:weblogic:mssqlserver4",
props);

Method 3

You can add connection options to the end of the connection URL, instead of creating
a Properties object. Separate the URL from the connection options with a question
mark (?), and separate options with ampersands (&), as in the following example:

Class.forName("weblogic.jdbc.mssqlserver4.Driver).newInstance();
DriverManager.getConnection(
"jdbc:weblogic:mssqlserver4:database@myhost:myport?user=
sa&password=");

You can use the Driver.getPropertyInfo method to find out more about URL
options at run time.

Setting Properties for Microsoft SQL
Server 7

The jdbcKona/MSSQLServer4 driver recognizes SQL Server 7 automatically. You
must set the sql7 property in the connection URL or in a Properties object to true
to connect to SQL Server 7. For example, the connection URL for an SQL Server 7
connection would be similar to the following:

"jdbc:weblogic:mssqlserver4:pubs@myhost:myport?sql7=true"

3 USING THE JDBCKONA/ MSSQLSERVER4 DRIVER

3-4 JDBC Driver Programming Reference

Using the jdbcKona/MSSQLServer4 Driver in
Java Development Environments

The jdbcKona/MSSQLServer4 driver has been used successfully in the Java SDK 1.2
for Sun and Windows NT development environment.

JDBC Extensions and Limitations

This section describes the following JDBC extensions and limitations:

t Support for JDBC Extended SQL

t cursorName Method Not Supported

t java.sql.TimeStamp Limitations

t Querying Metadata

t Changing autoCommit Mode

t Statement.executeWriteText() Methods Not Supported

t Sharing a Connection Object in Multithreaded Applications

t EXECUTE Keyword with Stored Procedures

Support for JDBC Extended SQL

The Sun Microsystems, Inc. JDBC specification includes a feature called SQL
Extensions, or SQL Escape Syntax. The jdbcKona/MSSQLServer4 driver supports
Extended SQL. For information about this feature, see Chapter 1, “Using the jdbcKona
Drivers.”

JDBC EXTENSIONS AND LIMITATIONS

JDBC Driver Programming Reference 3-5

cursorName Method Not Supported

The cursorName method is not supported, because its definition does not apply to the
Microsoft SQL Server.

java.sql.TimeStamp Limitations

The java.sql.TimeStamp class in the Java 2 software is limited to dates after 1970.
Earlier dates raise an exception. However, if you retrieve dates using the getString
method, the jdbcKona/MSSQLServer4 driver uses its own date class to overcome the
limitation.

Querying Metadata

You can only query metadata for the current database. The metadata methods call the
corresponding SQL Server stored procedures, which operate only on the current
database. For example, if the current database is master, only the metadata relative to
master is available on the connection.

Changing autoCommit Mode

Invoke the Connection.setAutoCommit method with a true or false argument to
enable or disable chained transaction mode. When autoCommit is true, the
jdbcKona/MSSQLServer4 driver begins a transaction whenever the previous
transaction is committed or rolled back. You must explicitly end your transactions with
a commit or a rollback. If there is an uncommitted transaction when you invoke the
setAutoCommit method, the driver rolls back the transaction before changing the
mode. Be sure to commit any changes before you invoke this method.

3 USING THE JDBCKONA/ MSSQLSERVER4 DRIVER

3-6 JDBC Driver Programming Reference

Statement.executeWriteText() Methods Not Supported

The jdbcKona Type 2 drivers support an extension that allows you to write text and
image data into a row as part of an SQL INSERT or UPDATE statement without using a
text pointer. This extension, Statement.executeWriteText(), requires the
DB-Library native libraries, and thus is not supported by the
jdbcKona/MSSQLServer4 JDBC driver.

To read and write text and image data with streams, you can use the
prepareStatement.setAsciiStream(),
prepareStatement.setBinaryStream(), ResultSet.getAsciiStream(), and
ResultSet.getBinaryStream() JDBC methods.

Sharing a Connection Object in Multithreaded
Applications

The jdbcKona/MSSQLServer4 driver allows you to write multithreaded applications
in which multiple threads can share a single Connection object. Each thread can have
an active Statement object. However, if you invoke the Statement.cancel method
on one thread, SQL Server may cancel a Statement on a different thread. The
Statement object that is cancelled depends on timing issues in the SQL Server. To
avoid this unexpected behavior, we recommend that you get a separate Connection
object for each thread.

EXECUTE Keyword with Stored Procedures

A Transact-SQL feature allows you to omit the EXECUTE keyword on a stored
procedure when the stored procedure is the first command in the batch. However, when
a stored procedure has parameters, the jdbcKona/MSSQLServer4 driver adds variable
declarations (specific to the JDBC implementation) before the procedure call. Because
of this, it is good practice to use the EXECUTE keyword for stored procedures. Note that
the JDBC extended SQL stored procedure syntax, which does not include the EXECUTE
keyword, is not affected by this issue.

JDBC Driver Programming Reference 4-1

CHAPTER

4 Extensions to the JDBC
API

This chapter describes the following jdbcKona extensions to the JDBC API:

t Class weblogic.jdbc.oci.CallableStatement

t Class weblogic.jdbc.oci.Connection

t Class weblogic.jdbc.oci.Statement

For complete details on the JDBC API, refer to the following Web site:

http://www.weblogic.com/docs/classdocs/packages.html#jdbc

4 EXTENSIONS TO THE JDBC API

4-2 JDBC Driver Programming Reference

Class CallableStatement

Class weblogic.jdbc.oci.CallableStatement contains jdbcKona extensions to
JDBC to support the use of cursors as parameters in CallableStatement objects.

The CallableStatement class:

t Extends the PreparedStatement class

t Implements the CallableStatement interface

t Has the following inheritance hierarchy:

java.lang.Object
 |
 +----weblogic.jdbc.oci.Statement
 |
 +----weblogic.jdbc.oci.PreparedStatement
 |
 +----weblogic.jdbc.oci.CallableStatement

t Has the getResultSet method

CLASS CALLABLESTATEMENT

JDBC Driver Programming Reference 4-3

weblogic.jdbc.oci.CallableStatement.getResultSet

Synopsis Returns a ResultSet object from a stored procedure where the specified parameter
has been bound to an Oracle cursor. Register the output parameter with the
registerOutputParameter method, using java.sql.Types.OTHER as the data
type.

Java Mapping public ResultSet getResultSet(int parameterIndex) throws
SQLException

Parameters parameterIndex

This parameter is an index into the set of parameters for the stored procedure.

Throws SQLException

This exception is thrown if the operation cannot be completed.

4 EXTENSIONS TO THE JDBC API

4-4 JDBC Driver Programming Reference

Class Connection

This section describes only the jdbcKona extension to JDBC that accesses the Oracle
OCI C Function oopt(). Other information about this class is in the description for
class java.sql.Connection. A Connection object is usually constructed as a
java.sql.Connection class. To use this extension to JDBC, you must explicitly cast
your Connection object as a weblogic.jdbc.oci.Connection class.

The public Connection class:

t Extends the Object class

t Implements the Connection interface

t Has the following inheritance hierarchy:

java.lang.Object
 |
 +----weblogic.jdbc.oci.Connection

t Has the waitOnResources method

CLASS CONNECTION

JDBC Driver Programming Reference 4-5

weblogic.jdbc.oci.Connection.waitOnResources

Synopsis Use this method to access the Oracle oopt() function for C (see section 4-97 of The
OCI Functions for C). The Oracle C function sets options in cases where requested
resources are not available; for example, whether to wait for locks.

When the argument to this method is true, this jdbcKona extension to JDBC sets this
option so that your program will receive an error return code whenever a resource is
requested but is unavailable. Use of this method can cause several error return codes
while waiting for internal resources that are locked for short durations.

Java Mapping public void waitOnResources(boolean val)

Parameters val
This parameter is set to true if the connection should wait on resources.

4 EXTENSIONS TO THE JDBC API

4-6 JDBC Driver Programming Reference

Class weblogic.jdbc.oci.Statement

This class contains jdbcKona extensions to JDBC to support parsing of SQL
statements and adjusting of the fetch size. Only those methods are documented here.

The weblogic.jdbc.oci.Statement class:

t Extends the Object base class

t Has the following inheritance hierarchy:

java.lang.Object
 |
 +----weblogic.jdbc.oci.Statement

t Has the following methods:

t fetchsize

t parse

CLASS WEBLOGIC.JDBC.OCI.STATEMENT

JDBC Driver Programming Reference 4-7

weblogic.jdbc.oci.Statement.fetchsize

Synopsis Allows tuning of the size of prefetch array used for Oracle row results. Oracle provides
the means to do data prefetch in batches, which decreases network traffic and latency
for row requests.

The default batch size is 100. Memory for 100 rows is allocated in the native stack for
every query. For queries that need fewer rows, this size can be adjusted appropriately.
This saves on the swappable image size of the application and will benefit performance
if only as many rows as needed are fetched.

Java Mapping public void fetchSize(int size)

Parameters size

This parameter specifies the number of rows to be prefetched.

4 EXTENSIONS TO THE JDBC API

4-8 JDBC Driver Programming Reference

weblogic.jdbc.oci.Statement.parse

Synopsis Allows tuning of the size of prefetch array used for Oracle row results. Oracle provides
the means to do data prefetch in batches, which decreases network traffic and latency
for row requests.

The default batch size is 100. Memory for 100 rows is allocated in the native stack for
every query. For queries that need fewer rows, this size can be adjusted appropriately.
This saves on the swappable image size of the application and will benefit performance
if only as many rows as needed are fetched.

Java Mapping public int parse(String sql) throws SQLException

Parameters sql

This parameter is the SQL statement to be verified.

Throws SQLException
This exception is thrown if the operation cannot be completed.

JDBC Driver Programming Reference I-1

Index

A
array fetches

support for 2-7
autocommit

using with Oracle 2-6
autocommit mode

changing 3-5

B
Blobs

Oracle 2-6

C
CallableStatement class 2-10

API for WebLogic extension to 4-2
class pathname

for DBMS connection 1-8
CLASSPATH 1-2
closing objects 1-14
connecting to a DBMS 1-8

and multithreaded applications 3-6
requirements for making 1-3

Connection class
API for WebLogic extension to 4-4

CursorName method 3-5

D
data type mapping 2-1
database management system

see DBMS
DatabaseMetaData methods

using 2-4
variations specific to Oracle 2-11

DBMS connections
class pathname 1-8
making 1-8
requirements for making 1-3
setting properties for 1-8

DLLs
for jdbcKona/Oracle 1-3

E
EXECUTE keyword 3-6
Extended SQL

JDBC support for 1-4

F
fetchsize method 4-7

G
getConnection method 2-3
getResultSet method 4-3

I
implementing, using jdbcKona drivers 1-6
importing packages 1-7

I-2 JDBC Driver Programming Reference

J
Java 2 1-2
java.math 1-5
java.sql 1-5
java.sql.TimeStamp class 3-5
JDBC

API 1-5
Extended SQL

support for 1-4
extensions and limitations in

jdbcKona/MSSQLServer4 3-4
jdbcKona extensions to 1-5
supported version 1-1

JDBC Extended SQL
and jdbcKona/MSSQLServer4 3-4

jdbcKona drivers
implementing in a WLE Java application

1-6
JAR file 1-2
making an SQL query with 1-10
platforms supported on 1-2
sample code using 1-15
support for JDBC Extended SQL 1-4

jdbcKona/MSSQLServer4 drivers
and autocommit 3-5
and CursorName 3-5
and EXECUTE keyword 3-6
and java.sql.TimeStamp class 3-5
and JDBC Extended SQL 3-4
and multithreaded applications 3-6
and Properties object 3-2
and Statement.executeWriteText class 3-

6
connecting to an SQL server 3-1
querying metadata 3-5

jdbcKona/Oracle drivers
and array fetches 2-7
and Blob chunking 2-6
and Oracle NUMBER column 2-12
closing connections with 2-5

connecting to Oracle DBMS 2-2
DLLs 1-3
shared libraries 1-3
using stored procedures in 2-8

JDK 1.2
See Java 2

M
metadata

querying with
jdbcKona/MSSQLServer4 3-5

Microsoft SQL Server 7 3-3
multithreaded applications

sharing a connection 3-6

N
newInstance method 2-3
NUMBER column 2-12

O
objects

disconnecting and closing 1-14
Oracle cursor 2-8
Oracle oopt() C function

accessing 4-5
API 2-5

Oracle rows 4-7

P
packages

importing 1-7
parameter

binding to an Oracle cursor 2-8
parse method 4-8
PreparedStatement class 1-11
properties

setting for a DBMS connection 1-8
Properties object 2-3

JDBC Driver Programming Reference I-3

and jdbcKona/MSSQLServer4 3-2

R
records

inserting, updating, and deleting 1-11
resources

waiting for Oracle DBMS 2-5
ResultSet class 2-8
ResultSet object

returning from stored procedure 4-3

S
shared libraries

for jdbcKona/Oracle 1-3
Solaris 1-2
SQL query

making with a jdbcKona driver 1-10
SQL server

connecting to with
jdbcKona/MSSQLServer4 3-1

Statement class
API for WebLogic extension to 4-6

Statement.executeWriteText class 3-6
stored procedures

creating and using 1-12
returning ResultSet object from 4-3
using in jdbcKona/Oracle 2-8

support
documentation xiv
technical xiv

W
waitOnResources method 4-5
WebLogic extensions

Connection class 4-4
to CallableStatement class 4-2
to JDBC (list) 1-5
to Statement class 4-6

Windows NT 4.0 1-2
WLE Java application 1-6

	Copyright
	Preface
	Purpose of This Document
	How to Use This Document
	Related Documentation
	Contact Information

	1 Using the jdbcKona Drivers
	Platforms Supported by the jdbcKona Drivers
	Adding the jdbcKona JAR File to Your CLASSPATH
	jdbcKona/Oracle Shared Libraries and Dynamic Link Libraries
	Requirements for Making a Connection to a Database Management System (DBMS)
	Support for JDBC Extended SQL
	The JDBC API, with WebLogic Extensions
	Implementing a WLE Java Application Using the jdbcKona Drivers
	Importing Packages
	Setting Properties for Connecting to the DBMS
	Connecting to the DBMS
	Making a Simple SQL Query
	Inserting, Updating, and Deleting Records
	Creating and Using Stored Procedures and Functions
	Disconnecting and Closing Objects
	Code Example

	2 Using the jdbcKona/Oracle Driver
	Data Type Mapping
	Connecting the jdbcKona/Oracle Driver to an Oracle DBMS
	Method 1
	Method 2
	Other Properties You Can Set for the jdbcKona/Oracle Driver
	General Notes

	Waiting for Oracle DBMS Resources
	Autocommit
	Using Oracle Blobs
	Support for Oracle Array Fetches
	Using Stored Procedures
	Syntax for Stored Procedures in the jdbcKona/Oracle Driver
	Binding a Parameter to an Oracle Cursor
	Using CallableStatement

	DatabaseMetaData Methods
	jdbcKona/Oracle and the Oracle NUMBER Column

	3 Using the jdbcKona/ MSSQLServer4 Driver
	Connecting to an SQL Server with the jdbcKona/MSSQLServer4 Driver
	Method 1
	Method 2
	Method 3

	Setting Properties for Microsoft SQL Server 7
	Using the jdbcKona/MSSQLServer4 Driver in Java Development Environments
	JDBC Extensions and Limitations
	Support for JDBC Extended SQL
	cursorName Method Not Supported
	java.sql.TimeStamp Limitations
	Querying Metadata
	Changing autoCommit Mode
	Statement.executeWriteText() Methods Not Supported
	Sharing a Connection Object in Multithreaded Applications
	EXECUTE Keyword with Stored Procedures

	4 Extensions to the JDBC API
	Class CallableStatement
	weblogic.jdbc.oci.CallableStatement.getResultSet

	Class Connection
	weblogic.jdbc.oci.Connection.waitOnResources

	Class weblogic.jdbc.oci.Statement
	weblogic.jdbc.oci.Statement.fetchsize
	weblogic.jdbc.oci.Statement.parse

	Index

