EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

BEA WebLogic Enterprise

JDBC Driver
Programming Reference

BEA WebLogic Enterprise 4.2
Document Edition 4.2
July 1999

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.
All other company names may be trademarks of the respective companies with which they are associated.

JDBC Driver Programming Reference

Document Edition Date Software Version

4.2 July 1999 BEA WebLogic Enterprise 4.2

Contents

Preface
Purpose of ThiSDOCUMENEcuiiiie et e e Vii
HOowW to USe ThiS DOCUMENTc.eecviecie et s s st enn viii
Related DOCUMENEALIONcuviiecieece ettt ettt sttt Xi
Contact INfOrMatioN........ccviiieeece e e er s Xiii

1. Using the jdbcKona Drivers

Platforms Supported by the jdbcKona DIiVErS........ccoooeeiieveenece e 1-2
Adding the jdbcKona JAR Fileto Your CLASSPATH ..o 1-2
jdbcK ona/Oracle Shared Libraries and Dynamic Link Libraries..........c.ccoc..... 1-3
Requirements for M aking a Connection to a Database M anagement
SYSEM (DBMS) ..ttt et ettt s 1-3
Support for IDBC EXtended SQLccooeveieieieieeieeie e s 1-4
The JDBC API, with WebL ogic EXtENSIONS........cccceeveieiiice et 1-5
Implementing a WL E Java Application Using the jdbcKona Drivers.............. 1-6
IMPOrting PaCKagES.......ceeueeieee ettt e 1-7
Setting Properties for Connecting to the DBMS.........cccooeiiiiccciinennnas 1-8
Connecting to theE DBMS ...ttt st s 1-8
Making a Simple SQL QUETYcoeueriirieieie e s e s 1-10
Inserting, Updating, and Deleting RECOrdS.........coccoeeerineinveeneeeinicreine 1-11
Creating and Using Stored Procedures and Functions...........cccccceeveeuenee. 1-12
Disconnecting and Closing ObJeCtS..........ccccceiieciceciececee e 1-14
COUE EXAMPIE ...ttt sttt s et e 1-15

2. Using the jdbcKona/Oracle Driver

Data TYPE M@PPING ... v evereeneenieeeeneenietee e eteetes e e seeseessenbesesseeneesesses e aneseeseesneas 2-1
Connecting the jdbcK ona/Oracle Driver to an Oracle DBMS...........ccccoceeeeee. 2-2

JDBC Driver Programming Reference iii

iv

1Y/ =1 (0o I TR 2-3

MELNOO 2.ttt sttt es e s sees e sees s ses e sesennas 2-3
Other Properties Y ou Can Set for the jdbcK ona/Oracle Driver 2-4
GENENAl NOLES ...ttt e et e e 2-5
Waiting for Oracle DBMS RESDUICESccveiveereeciecrieiieeteeie e seeeee s 2-5
AULOCOMIMIT ...ttt ae st e et es s e e ee e e sene s 2-6
USING Oracl@ BIODS.........cooiiieceece et 2-6
Support for Oracle Array FEIChES.........coiiieie e e 2-7
USING StOred PrOCEAUIEScooveeeieceicte ettt st st e e e 2-8
Syntax for Stored Procedures in the jdbcKona/Oracle Driver 2-8
Binding a Parameter to an Oracle CUISOrcccceeveeveeveesieeieesteesreereesae e 2-8
Using CallableStatementcocevueeieie e 2-10
DatabaseM etaData MethOUS..........ccuoirreeieeirieeee e 2-11
jdbcK ona/Oracle and the Oracle NUMBER Column..........cccoovvevieveniennens 2-12

3. Using the jdbcKona/

MSSQLServer4 Driver

Connecting to an SQL Server with the jdbcK ona/M SSQL Server4 Driver 31
= 3o o I OSSR 3-2
MEENOO 2.ttt et e 3-2
MEENOO ...ttt et e bbb e 3-3

Setting Properties for Microsoft SQL
S A= O USROS 33

Using the jdbcK ona/M SSQL Server4 Driver in Java Devel opment
ENVIFONMENES. ...ttt et s r e e e e enee s 34

JDBC Extensions and Limitations...........cccccoererierieneseenece e s 34
Support for IDBC Extended SQLcccoerireereieneeeieiee e 34
cursorName Method Not SUPPOIED........ccoieieereeieiereee s 3-5
java.sgl.TimeStamp Limitations..........coeoeieneereeieiereeeeeres e s 35
Querying Metadatal..........cceeeeieiieiiieececse et 35
Changing autoCommit MOGE.........cccevueeieeieie e 35
Statement.executeWriteT ext() Methods Not Supportedcoceeeeeeneee. 3-6
Sharing a Connection Object in Multithreaded Applications..................... 3-6
EXECUTE Keyword with Stored Procedures...........ccccovccveveeeeeieeneesiennnnns 3-6

JDBC Driver Programming Reference

4. Extensions to the JDBC API

Class Callabl @StatemMENtcooerieee e et e e 4-2
weblogic.jdbc.oci.CallableStatement.getResultSet..........ccoveeeeeeeee. 4-3
ClaSS COMNECLION ... ieeeeeietie ettt e et sttt sttt e e enae e e anesbenbesne s 4-4
weblogic.jdbc.oci.Connection.waitONRESOUrCES..........cccveeeeeereencnse 4-5
Class weblogic.jdbc.oCi. Statementccoceeveiiiecieeeeceee e e 4-6
weblogic.jdbc.oci.Statement.fetchsize.........covcve e, 4-7
weblogic.jdbc.oci.Statement.Parse.co.eveeeeeeeeereeriene e 4-8

JDBC Driver Programming Reference %

Vi JDBC Driver Programming Reference

Preface

Purpose of This Document

This document provides reference information on the jdbcK ona drivers, which are
packaged and installed with the BEA WebL ogic Enterprise (sometimes referred to as
WLE) software.

Note: Effective February 1999, the BEA M3 product isrenamed. The new name of
the product is BEA WebL ogic Enterprise (WLE).

Who Should Read This Document

Thisdocument isintended for WebL ogic Enterpriseserver application developerswho
need to use a JDBC driver to access a database management system (DBMS).

How This Document Is Organized

The JDBC Driver Programming Reference is organized as follows:

4 Chapter 1, “Using the jdbcKona Drivers,” provides an overview of how to use
the jdbcKona drivers with the WebLogic Enterprise system. This chapter also
provides some vendor-specific details on the jdbcKona drivers, and also contains
a sample implementation that lists and describes the procedure for using a
jdbcKona driver with a WebLogic Enterprise Java server application.

JDBC Driver Programming Reference Vii

4 Chapter 2, “Using the jdbcKona/Oracle Driver,” provides specific details about
how to use the jdbcKona/Oracle driver to connect a WebLogic Enterprise Java
server application to an Oracle DBMS.

4 Chapter 3, “Using the jdbcKona/ MSSQLServer4 Driver,” provides specific
details about how to use the jdbcKona/MSSQLServer4 driver to connect a
WebLogic Enterprise Java server application to Microsoft's SQL Server.

4 Chapter 4, “Extensions to the JDBC API,” documents the API to the jdbcKona
extensions to the JDBC application programming interface (API).

How to Use This Document

This documentJDBC Driver Programming Reference, is designed primarily as an
online, hypertext document. If you are reading this as a paper publication, note that t
get full use from this document you should access it as an online document via the
Online Documentation CD for the BEA WebLogic Enterprise 4.2 release.

The following sections explain how to view this document online, and how to print a
copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the following file:
\ doc\w e\ v42\i ndex. ht m

Note: The online documentation requires Netscape Communicator version 4.0 or
later, or Microsoft Internet Explorer version 4.0 or later.

Viii JDBC Driver Programming Reference

Printing from a Web Browser

Y ou can print a copy of this document, one file at atime, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print.

The Online Documentation CD includes Adobe Acrobat PDF files of all of the online
documents. Y ou can use the Adobe Acrobat Reader to print al or a portion of each
document. On the CD Home Page, click the PDF Files button and scrall to the entry
for the document you want to print.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab

Indicates that you must press two or more keys simultaneously.

italics

Indicates emphasis or book titles.

nonospace
t ext

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#i ncl ude <iostreamh> void main () the pointer psz
chnod u+w *

.doc

Bl TVAP

fl oat

nonospace
bol df ace
t ext

Identifies significant wordsin code.
Example:
void commt ()

JDBC Driver Programming Reference iX

X

Convention

Item

nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in a syntax line. The braces themsel ves should

never be typed.

Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

4 That an argument can be repeated several timesin acommand line

4 That the statement omits additiona optional arguments

4 That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

JDBC Driver Programming Reference

Related Documentation

The following sections list the documentation provided with the BEA WebL ogic
Enterprise software, related BEA publications, and other publications related to the
technology.

BEA WebLogic Enterprise Documentation

The BEA WebL ogic Enterprise information set consists of the following documents:
Installation Guide

C++ Release Notes

Java Release Notes

Getting Started

Guide to the University Sample Applications

Guide to the Java Sample Applications

Creating Client Applications

Creating C++ Server Applications

Creating Java Server Applications

Administration Guide

Using Server-to-Server Communication

C++ Programming Reference

Java Programming Reference

Java APl Reference

JDBC Driver Programming Reference (this document)

System Messages

JDBC Driver Programming Reference Xi

Glossary

Technical Articles

Note: The Online Documentation CD a so includes Adobe Acrobat PDF files of all
of the online documents. Y ou can use the Adobe Acrobat Reader to print all
or aportion of each document.

BEA Publications

Selected BEA TUXEDO Release 6.5 for BEA WebL ogic Enterprise version 4.2
documents are available on the Online Documentation CD.

To access these documents:
1. Click the Other Reference button from the main menu.

2. Click the TUXEDO Documents option.

Other Publications

For more information about CORBA, Java, and related technologies, refer to the
following books and specifications:

Cobb, E. 1997. The Impact of Object Technology on Commercial Transaction
Processing. VLDB Journal, Volume 6. 173-190.

Edwards, J. with DeVoe, D. 1997. 3-Tier Client/Server At Work. Wiley Computer
Publishing.

Edwards, J., Harkey, D., and Orfali, R. 1996. The Essential Client/Server Survival
Guide. Wiley Computer Publishing.

Flanagan, David. May 1997. Java in a Nutshell, 2nd Edition. O’'Reilly & Associates,
Incorporated.

Flanagan, David. September 199&va Examplesin a Nutshell. O’Reilly &
Associates, Incorporated.

Xii JDBC Driver Programming Reference

Fowler, M. with Scott, K. 1997. UML Distilled, Applying the Sandard Object
Modeling Language. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series.

Jacobson, |. 1994. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley.

Mowbray, Thomas J. and Malveau, Raphael C. (Contributor). 1997. CORBA Design
Patterns, Paper Back and CD-ROM Edition. John Wiley & Sons, Inc.

Orfdi, R., Harkey, D., and Edwards, J. 1997. Instant Corba. Wiley Computer
Publishing.

Orfdli, R., Harkey, D. February 1998. Client/Server Programming with Java and
CORBA, 2nd Edition. John Wiley & Sons, Inc.

Otte, R., Patrick, P., and Roy, M. 1996. Understanding CORBA. Prentice Hall PTR.

Rosen, M. and Curtis, D. 1998. Integrating CORBA and COM Applications. Wiley
Computer Publishing.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Loresen, W. 1991.
Object-Oriented Modeling and Design. Prentice Hall.

The Common Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. Published by the Object Management Group (OMG).

CORBAservices: Common Object Services Specification. Revised Edition. Updated:
November 1997. Published by the Object Management Group (OMG).

Contact Information

The following sections provide information about how to obtain support for the
documentation and the software.

JDBC Driver Programming Reference Xiii

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about thisversion of the BEA WebL ogic Enterprise product,
or if you have problemsinstalling and running the BEA WebL ogic Enterprise
software, contact BEA Customer Support through BEA WebSupport at

www. beasys. com You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which isincluded in the product
package.

When contacting Customer Support, be prepared to provide the following information:
4 Your name, e-mail address, phone number, and fax number

4 Your company hame and company address

4 Your machine type and authorization codes

4 Thename and version of the product you are using
¢

A description of the problem and the content of pertinent error messages

Xiv JDBC Driver Programming Reference

CHAPTER

1

Using the jdbcKona
Drivers

This chapter covers genera guidelines for using the jdbcK ona drivers and some
vendor-specific notes on each driver. Included at the end of this chapter isasummary
of the steps you take, including sample code, to use a JDBC driver in aWebL ogic
Enterprise Java application.

Note: ThejdbcKonadrivers are based on JDBC 1.22

ThejdbcKonadriversinclude both Type 2 and Type 4 drivers. The Type 2 drivers (for
Oracle) employ client libraries supplied by the database vendors. The Type 4 drivers
(for the Microsoft SQL Server) are 100% pure Java; they connect to the database
server at the wire level without vendor-supplied client libraries.

JDBC Driver Programming Reference 1-1

1 USING THE JDBCKONA DRIVERS

Platforms Supported by the jdbcKona
Drivers

Thefollowing table lists the platforms supported by the jdbcKonadrivers.

JDBC Driver Operating JVM DBMS Client Libraries
System and
Version

Windows NT 4.0 Java 2 Oracle 7.3.4 or higher Oracle 7.3.4
jdbcK ona/ (SP4)
Oracle Solaris2.4,2.5,and Java?2 Oracle 7.3.4 or higher Oracle7.3.4

2.6
jdbcK ona/ Not applicable Java?2 Microsoft SQL Server Not applicable
M SSQL Server4 6.5 (SP3)

Adding the jdbcKona JAR File to Your
CLASSPATH

Be sure to add the jdbcK ona JAR file, which applies to both jdbcK ona drivers, to your
environment. Y ou can do this by appending the following to your CLASSPATH system
environment variable:

On Solaris Systems:
$TUXDI R/ udat aobj /j ava/j dbc/j dbcKona. j ar
On NT Systems:

$TUXDI R udat aobj \j ava\j dbc\j dbcKona. j ar

1-2 JDBC Driver Programming Reference

JDBCKONA/ORACLE SHARED LIBRARIES AND DYNAMIC LINK LIBRARIES

jdbcKona/Oracle Shared Libraries and
Dynamic Link Libraries

The jdbcK ona/Oracle (Type 2) driver calls native libraries that are supplied with the
driver. The UNIX libraries (shared object files) areinthe $TUXDI R/ | i b directory. The
Windows DLL files areincluded in the WLE Java software kit in the $TUXDI R\ bi n
directory.

The following table lists the names of the driver files included with the WLE Java

system.
JDBC Driver Windows NT/95 UNIX
jdbcKona/Oracle webl ogi coci 33. dl | | i bwebl ogi coci 33. so

For the jdbcK ona/Oracle driver, you also need the vendor-supplied libraries for the
database.

Requirements for Making a Connection to a
Database Management System (DBMS)

Y ou need the following components to connect to a DBM S using a jdbcK ona driver:
4 A database server (Oracle or Microsoft SQL Server)
4 ThejdbcKonadriver for your database

¢ The Java 2 software

JDBC Driver Programming Reference 1-3

1 USING THE JDBCKONA DRIVERS

Support for JDBC Extended SQL

The Sun Microsystems, Inc. JDBC specification includes SQL Extensions, also called
QL Escape Syntax. All jdbcK ona drivers support Extended SQL . Extended SQL
provides accessto common SQL extensionsin away that is portable between DBM Ss.

For example, the function to extract the day namefrom adateisnot defined by the SQL
standards. For Oracle, the SQL is:

sel ect to_char(date_columm, 'DAY') fromtable w th _dates
Using Extended SQL, you can retrieve the day name for both DBMSs, as follows:
sel ect {fn daynane(date_colum)} fromtable wi th_dates

Thefollowing is an example that demonstrates several features of Extended SQL :

String insert=

"-- This SQ includes comrents and JDBC ext ended SQL synt ax. \n" +
"insert into date_table values({fn now()}, -- current time \n" +
" {d "1997-05-24'}, -- a date \n" +
{t '10:30:29 1}, -- atinme \n" +

{ts '1997-05-24 10:30:29.123'}, ~-- a timestanmp \n" +

"{string data with { or } will not be altered’) \n" +

"-- Also note that you can safely include { and } in comments or \n" +

"-- string data.";

St at enent stnt

= conn.createStatenment();

stnt . execut eUpdat e(query) ;

Extended SQL isdelimited with curly braces ({ }) to differentiate it from common
SQL. Comments are preceded by two hyphens, and are ended by a newline character
(\' n). The entire Extended SQL sequence, including comments, SQL, and Extended
SQL, is placed within double quotes and is passed to the execut e method of a

St at enent object.

Thefollowing is Extended SQL used as part of aCal | abl eSt at enent object:

Cal | abl eSt at ement cstnt
conn.prepareCall ("{ ?

call func_squarelnt(?)}");
The following example shows that you can nest extended SQL expressions:

sel ect {fn daynanme({fn now()})}

1-4 JDBC Driver Programming Reference

THE JDBC API, wiTH WEBLOGIC EXTENSIONS

Y ou can retrieve lists of supported Extended SQL functions from a
Dat abaseMet aDat a object. Thefollowing example showshow tolist all the functions
aJDBC driver supports:

Dat abaseMet aData md = conn. get Met aDat a() ;
Systemout.println("Numeric functions:
Systemout.println("\nString functions:
Systemout. printl n("\nTi ne/date functions:
Systemout. println("\nSystem functions:
conn. cl ose();

md. get Nurreri cFunctions());
md. get Stri ngFunctions());
nmd. get Ti mreDat eFunctions());
md. get Syst enfFunctions());

+ + + +

Refer to Chapter 11 of the JIDBC 1.2 specification at the Sun Microsystems, Inc. Web
site for a description of Extended SQL.

The JDBC API, with WebLogic Extensions

For the complete set of JDBC API documentation, see the following Web site:
htt p: // wwv. webl ogi c. coml docs/ cl assdocs/ packages. ht m #j dbc

The following packages, classes, interfaces, and WebL ogic extensions compose the
JDBC API:

Package java. sql
Package java.nmath

G ass java.l ang. Ooj ect
Interface java.sql.Callabl eSt at enent
(extends java.sql. PreparedSt at enent)
Interface java.sql.Connection
Interface java.sql.Dat abaseMet abDat a
Class java.util.Date
Cl ass java.sql.Date
Cl ass java.sql.Tine
Cl ass java. sql . Ti mest anp
Cass java.util.Dictionary
Class java. util.Hashtabl e
(impl enents java. | ang. Cl oneabl e)
O ass java.util.Properties
Interface java.sql.Driver
d ass java. sql.Driver Manager
d ass java.sql.DriverPropertylnfo
G ass java.l ang. Math

JDBC Driver Programming Reference 1-5

1 USING THE JDBCKONA DRIVERS

Cl ass java.lang. Nunber
G ass java. mat h. Bi gDeci nal
G ass java. mat h. Bi gl nt eger
Interface java. sql.PreparedStat enent
(extends java. sql . Stat enent)
Interface java. sqgl.Result Set
Interface java. sqgl.Result Set Met aDat a
Interface java. sqgl. Statenent
Cl ass java. |l ang. Throwabl e
Cl ass java.l ang. Exception
d ass java.sql . SQLException
Cl ass java. sql . SQLWar ni ng
Class java. sql. Dat aTruncati on
Class java. sql. Types
Cl ass webl ogi c. j dbc. oci . Connecti on
(i mpl enent s java. sql . Connecti on)
Cl ass webl ogi c. j dbc. oci . St at emrent
(i mpl enents java. sql . Statenent)
Cl ass webl ogi c.j dbc. oci . Prepar edSt at ement
Cl ass webl ogi c. j dbc. oci . Cal | abl eSt at enent
(i mpl enents java. sql . Cal | abl eSt at enent)

ThejdbcK ona drivers provide extensions to JDBC for certain database-specific
enhancements. The jdbcK ona drivers have the following extended classes:

Cl ass webl ogi c. j dbc. oci . Cal | abl eSt at enent

Cl ass webl ogi c. j dbc. oci . Connecti on

Cl ass webl ogi c. j dbc. oci . St at erent

For more information about these extensions, see Chapter 4, “Extensions to the JDBC
APL”

Implementing a WLE Java Application Using
the jdbcKona Drivers

This section describes the following steps involved in implementing a simple WLE
Java application that uses a jdbcKona driver to connect to a DBMS:

4 Importing Packages

4 Setting Properties for Connecting to the DBMS

1-6 JDBC Driver Programming Reference

IMPLEMENTING A WLE JAVA APPLICATION USING THE JDBCKONA DRIVERS

4 Connecting to the DBMS

4 Making a Simple SQL Query

4 Inserting, Updating, and Deleting Records

4 Creating and Using Stored Procedures and Functions
4 Disconnecting and Closing Objects

Many of the steps described in this section include code snippets from a
comprehensive code example that is provided at the end of this chapter.

For database-specific details on implementing WLE Java applications using the
jdbcK onadrivers, see Chapter 2, “Using the jdbcKona/Oracle Driver,” and Chapter 3,
“Using the jdbcKona/ MSSQLServer4 Driver.”

Importing Packages

The classes that you import into your WLE Java server application that uses a
jdbcKona driver should include:

import java.sql.*;
inmport java.util.Properties;

The jdbcKona drivers implement thava. sql interface. You write your WLE Java
application using thgava. sql classes; thgava. sql . Dri ver Manager maps the
jdbcKona driver to th¢ava. sql classes.

You do not import the jdbcKona driver class; instead, you load the driver inside the
application. This allows you to select an appropriate driver at runtime. You can even
decide after the program is compiled what DBMS to connect to.

Included in the WLE Java software is the latest version of the JDBC API class files.
Make sure you do not have any earlier versions of #hea. sql classes in your
CLASSPATH.

You need to import thieava. uti | . Properti es class only if you useRxoperti es
object to set parameters for connecting to the DBMS.

JDBC Driver Programming Reference 1-7

1 USING THE JDBCKONA DRIVERS

Setting Properties for Connecting to the DBMS

In the following example, aj ava. uti | . Properti es object setsthe parameters for
connecting to the DBMS. There are other ways of passing these parameters to the
DBMS that do not require a Pr oper t i es object, asin the following snippet:

Properties props = new Properties();

props. put ("user", "scott");
props. put (" passwor d”, "tiger");
props. put ("server", "DEMD') ;

Thevalue for the server property may be vendor-specific; in thisexample, it isthe V2
alias of an Oracle database running over TCP. Y ou may aso add the server name to

the URL (seethe next section) instead of setting it withthej ava. uti | . Properties

object.

Connecting to the DBMS

1-8

In general, to aconnect to aDBMS, you need to perform the following steps:

1. Load the proper jdbcKonadriver.

The most efficient way to load the jdbcKona driver isto invoke the

Cl ass. for Name() . newl nst ance method with the name of the driver class.
This loads and registers the jdbcK ona driver, asin the following example for
jdbcKona/Oracle:

Cl ass. for Nane("webl ogi c.jdbc.oci.Driver").new nstance();
2. Obtain a JDBC connection.

You request a JIDBC connection by invoking the

Dri ver Manager . get Connect i on method, which takes as its parameters the
URL of the driver and other information about the connection, such as the
location of the database and login information.

Note that both steps describe the jdbcKonadriver, but in different formats. The full
pathname for the driver is period-separated, while the URL is colon-separated. The
following table lists the class paths and URL s for the jdbcK ona drivers:

JDBC Driver Programming Reference

IMPLEMENTING A WLE JAVA APPLICATION USING THE JDBCKONA DRIVERS

JDBC Driver Driver Class Pathname Class URL
Type
jdbcKona/Oracle Type 2 webl ogi c. jdbc. oci.Driver jdbc:webl ogic: oci
jdbcKona/ Type4 webl ogi c. j dbc. j dbc: webl ogi c: nesql server4
MSSQL Server4 nmesql server4. Dri ver

Additional information required to form a database connection variesby DBM S
vendor and by whether the jdbcKona driver is of Type 2 or Type 4. There are also a
variety of methods for specifying this information in your program.

For full details about the jdbcKona drivers, refer to Chapter 2, “Using the
jdbcKona/Oracle Driver,” and Chapter 3, “Using the jdbcKona/ MSSQLServer4
Driver.” For a complete code example, see “Implementing a WLE Java Application
Using the jdbcKona Drivers” on page 1-6.

The connection to the DBMS is handled by the jdbcKona driver. You use both the class
name of the driver (in dot-notation) and the URL of the driver (with colons as
separators). Class names are case sensitive.

Thed ass. f or Name() . newl nst ance method loads the driver and registers the
driver with theDr i ver Manager object.

Note: The Sun Microsystems, IndDBC API Reference for thej ava. sql . Dri ver
interface recommends simply invokiaogass. f or Name(" dri ver - cl ass")
to load the driver.

The connection is created with the ver Manager . get Connect i on method, which
takes as arguments the URL of the driver aRdaper t i es object, as in the following
snippet. The URL is not case sensitive.

Cl ass. f or Name(" webl ogi c. j dbc. oci . Driver"). new nstance();
Connection conn =
Dri ver Manager . get Connecti on("j dbc: webl ogi c: oracl e",

pr ops) ;
conn. set AutoConm t (f al se);

The default transaction mode for JDBC assumes autocommit to be true. Setting
autocommit to false improves performance.

JDBC Driver Programming Reference 1-9

1 USING THE JDBCKONA DRIVERS

TheConnect i on object isanimportant part of the application. The Connect i on class
has constructors for many fundamental database objects that you will use throughout
the application. In the examplesthat follow, you will see the Connection object conn
used repeatedly.

Connecting to the database completes the initial portion of a WLE Java application,
which will be very much the same for any application.

Invokethecl ose method on the Connection object as soon as you finish working with
the object, usually at the end of aclass.

Making a Simple SQL Query

The most fundamental task in database accessis to retrieve data. With ajdbcK ona
driver, retrieving data is a three-step process:

1. CreateaSt at enent object to send an SQL query to the DBMS.
2. Executethe St at enment .
3. Retrieve theresultsinto aResul t Set object.

In the following code snippet, we execute a simple query on the Enpl oyee table (alias
"enp") and display data from three of the columns. We also access and display
metadata about the table from which the data was retrieved. Note that we close the
Statement at the end.

Statenent stnt = conn.createStatenent();

stnt.execute("select * fromenp");

ResultSet rs = stnt.get ResultSet();

while (rs.next()) {

Systemout.println(rs.getString("enpid") + " - " +
rs.getString("name") + " - " +
rs.getString("dept"));

}

Resul t Set MetaData nd = rs. get MetabDat a() ;

System out. println("Nunber of columms: " + nd.getCol utmCount ());

for (int i =1; i <= md.getColumCount (); i++) {
Systemout. println("Colum Nane: " + nd. get Col umNane(i));
Systemout.println("Null able: * + nd.isNullable(i));
Systemout . println("Precision: " + nd. getPrecision(i));

1-10 JDBC Driver Programming Reference

IMPLEMENTING A WLE JAVA APPLICATION USING THE JDBCKONA DRIVERS

Systemout.println("Scale: " + nd. get Scal e(i));
Systemout.println("Size: " + nd. get Col umDi spl aySi ze(i));
System out. println("Colum Type: " + nd. get Col umType(i));

System out. println("Colum Type Nanme: "+ nd.get Col umTypeNane(i));
Systemout.println("");
}

stnt.close();

Inserting, Updating, and Deleting Records

The following shippet shows three common database tasks: inserting, updating, and
deleting records from a database table. We use a JDBC Pr epar edSt at ement object
for these operations; we create the Pr epar edSt at enent object, then execute the
object and close it.

A Prepar edSt at enent object (subclassed from JDBC st at ement) alows you to
execute the same SQL over and over again with different val ues.
Pr epar edSt at enent objects use the JDBC " ?" syntax.

String inssql = "insert into enp(enpid, nane, dept) values (?, ?, ?2)";
Pr epar edSt at enent pstmt = conn. prepar eSt at emrent (i nssql) ;

for (int i =0; i <100; i++) {
pstnt.setlnt(1, i);
pstnt.setString(2, "Person " + i);
pstnt.setlnt(3, i);
pstnt . execute():

pstnt.close();

We also useaPrepar edSt at ement object to update records. In the following code
snippet, we add the value of the counter "i " to the current value of the " dept " field.

String updsql = "update enp set dept = dept + ? where enmpid = ?";
Pr epar edSt at enent pstnmt2 = conn. prepareSt at enent (updsql) ;
for (int i =0; i <100; i++) {

pstnt2.setlnt(1, i);

pstnt2.setlnt(2, i);

pstnt 2. execut e();

pstnt 2. cl ose();

JDBC Driver Programming Reference 1-11

1 USING THE JDBCKONA DRIVERS

Finally, we useaPr epar edSt at ement object to del ete the records that we added and
then updated, asin the following snippet:

String delsgl = "delete fromenp where enpid = ?";
Prepar edSt at ement pstnt 3 = conn. prepar eSt at enent (del sql) ;

for (int i =0; i < 100; i++) {
pstnm3.setInt(1, i);
pstnt 3. execute();

}
pstnmt 3. cl ose();

Creating and Using Stored Procedures and Functions

Y ou can use ajdbcKonadriver to create, use, and drop stored procedures and
functions. First, we execute a series of St at ement objectsto drop a set of stored
procedures and functions from the database, as in the following code snippet:

Statenent stnt = conn.createStatenent();

try {stnt.execute("drop procedure proc_squarelnt");}
catch (SQLException e) {;}

try {stnt.execute("drop procedure func_squarelnt");}
catch (SQLException e) {;}

try {stnt.execute("drop procedure proc_getresults");}
catch (SQLException e) {;}

stnt.close();

Weusea JDBC st at enent object to create a stored procedure or function, and then
weuseaJDBC Cal | abl eSt at ement object (subclassed from the St at ement object)
with the IDBC " ?" syntax to set | Nand OUT parameters. For information about doing
this with the jdbcKona/Oracle driver, see Chapter 2, “Using the jdbcKona/Oracle
Driver.”

The first two code snippets that follow use the jdbcKona/Oracle driver. Note that
Oracle does not natively support binding @ values in an SQL statement. Instead,
ituses': 1",": 2", and so forth. You can use either syntax in your SQL with the
jdbcKona/Oracle driver.

Stored procedure input parameters are mapped to JDB@rameters, using the

Cal | abl eSt at ement . set xxx methods, such a®t I nt (), and the ?* syntax of the
JDBCPr epar edSt at enent object. Stored procedure output parameters are mapped
to JDBCOUT parameters, using ti@al | abl eSt at ement . r egi st er Qut Par anmet er

1-12 IDBC Driver Programming Reference

IMPLEMENTING A WLE JAVA APPLICATION USING THE JDBCKONA DRIVERS

methods and the " ?" syntax of the JDBC Pr epar edSt at enent object. A parameter
may be both I Nand ouUT, which reguires both aset xxx() and a
regi st er Qut Par anet er () invocation to be made on the same parameter number.

In the following code snippet, we use aJDBC St at ement object to create an Oracle
stored procedure; then we execute the stored procedure with a Cal | abl eSt at enent
object. Weusether egi st er Qut Par anet er method to set an output parameter for the
squared value.

Statenent stntl = conn.createStatenent();

st 1. execut e(" CREATE OR REPLACE PROCEDURE proc_squarelnt " +
"(fieldl IN OUT I NTECER, field2 OUT INTEGER) IS " +
"BEA N field2 :=fieldl * fieldl; fieldl :=" +
"fieldl * fieldl; END proc_squarelnt;");

st 1. close();

/1 Native Oracle SQ is conmented out here
/1 String sgql = "BEGA N proc_squarelnt(?, ?); END ";

// This is the correct syntax as specified by JDBC
String sgql = "{call proc_squarelnt(?, ?)}";
Cal | abl eSt at ement cstnmt1l = conn. prepareCal |l (sql);

// Register out paraneters
cstnt 1. regi sterQutParameter (2, java.sql.Types.|NTEGER);
for (int i =0; i <5; i++) {
cstml.setInt(l, i);
cstmt 1. execute();
Systemout.println(i + " " + cstml.getint(1) +
" " + cstmtl.getint(2));

cstm 1. cl ose();

In the following code snippet, we use similar code to create and execute a stored
function that sguares an integer.

Statenent stnt2 = conn.createStatenent();

st 2. execut e(" CREATE OR REPLACE FUNCTI ON func_squarelnt " +
"(fieldl IN INTEGER) RETURN INTEGER IS " +
"BEA@ N return fieldl * fieldl;, " +
"END func_squarelnt;");

stnt2.close();

/1 Native Oracle SQ is conmented out here
/1 sql = "BEAN ? := func_squarelnt(?); END";

/1 This is the correct syntax specified by JDBC
sql ="{ ? = call func_squarelnt(?)}";

JDBC Driver Programming Reference 1-13

1 USING THE JDBCKONA DRIVERS

Cal | abl eStatenment cstnt2 = conn. prepareCall (sql);

cstm 2. regi sterQut Paraneter (1, Types.|NTEGER);
for (int i =0; i <5; i++) {
cstm2.setInt(2, i);
cstm 2. execute();
Systemout.println(i +" " + cstm2.getlnt(1l) +
"'+ cstm2.getint(2));

cstm 2. cl ose();

Disconnecting and Closing Objects

Closest at enent , Resul t Set, Connect i on, and other such objectswith their cl ose
methods after you have finished using them. Closing these objects rel eases resources
on the remote DBM S and within your application. When you use one object to
construct another, closethe objectsinthereverse order in which they were created. For
example:

Statenent stnt = conn.createStatenent();
Result Set rs = stnt.executeQuery("select * fromenpno");

(process the ResultSet)

rs.close();
stnt.close();

Alwaysclosethej ava. sgl . Connect i on aswell, usually as one of the last stepsin
your program. Every connection should be closed, even if alogin fails. An Oracle
connection will cause a system failure (such as a segment viol ation) when the finalizer
thread attempts to close a connection that you have inadvertently left open. If you do
not close connectionsto log out of the database, you may also exceed the maximum
number of databaselogins. Once aconnection isclosed, al of the objectscreated inits
context become unusable.

There are occasions on which you will want to invoke the conmi t method to commit
changes you have made to the database before you close the connection.

When aut ocommi t is set to true (the default IDBC transaction mode), each SQL
statement is its own transaction. After we created the Connect i on object for these
examples, however, we set aut oconmi t tofalse; inthismode, the Connect i on object
always has an implicit transaction associated with it, and any invocation to the

1-14 JDBC Driver Programming Reference

IMPLEMENTING A WLE JAVA APPLICATION USING THE JDBCKONA DRIVERS

rol | back or commi t methods will end the current transaction and start a new one.
Invoking conmi t () beforecl ose() ensuresthat all of the transactions are compl eted
before closing the connection.

Just asyou close St at enent , Prepar edSt at enent , and Cal | abl eSt at enent
objectswhen you have finished working with them, always invoke the cl ose method
on the connection as final cleanup in your application, inatry {} block, and catch
exceptions and deal with them appropriately. The final two lines of the example
include an invocation to conmi t () and then cl ose() to close the connection, asin
the following snippet:

conn. comm t();
conn. cl ose();

Code Example

The following is a sample implementation to give you an overall idea of the structure
for aWLE Java application that uses ajdbcKona driver to accessa DBMS. The code
example shown here includesretrieving data, displaying metadata, inserting, deleting,
and updating data, and stored procedures and functions. Note the explicit invocations
tocl ose() for each JDBC-related object, and note also that we close the connection
itself inafinally {} block, withtheinvocationto cl ose() wrappedinatry {}
block.

import java.sql.*;
inmport java.util.Properties;
i mport webl ogi c. conmon. *;

public class test {
static int i;
Statenent stnmt = nul |;

public static void main(String[] argv) {

try {
Properties props = new Properties();
props. put ("user", "scott");
props. put (" password", "tiger");
props. put ("server", "DEMO'") ;

Cl ass. for Nane("webl ogi c. jdbc.oci.Driver").new nstance();
Connecti on conn =
Dri ver Manager. get Connecti on("j dbc: webl ogi c: oracl e",

props) ;

JDBC Driver Programming Reference 1-15

1 USING THE JDBCKONA DRIVERS

1-16

catch (Exception e)
e.printStackTrace();

try {

/1 This will inprove performance in Oracle
/1 You'll need an explicit conmt() call later
conn. set AutoConmi t (f al se);

stnmt = conn. createStat enment ();
stnt.execute("select * fromenp");
Resul tSet rs = stnt.getResultSet();

while (rs.next()) {
Systemout.println(rs.getString("enpid") +
rs.getString("name") + "
rs.getString("dept"));

}

Resul t Set Met aData nd = rs. get MetaData() ;

System out . println("Nunber of Columms: " +

for (i =1; i <= md.getColumCount (); i++)
Systemout. println("Col um Nane: " +
Systemout. println("Nullable: "
System out . println("Precision:
Systemout.println("Scale: "
Systemout.println("Size: "
System out . println("Col um Type:
Systemout. println("Col um Type Nane:
Systemout.println("");

2444333738

+ 4+ + 4+ +

rs.close();
stnt.close();

Statenent stnmtdrop = conn.createStatenent();

get Col umCount ());

get Col umNane(i));

.isNullable(i));
.getPrecision(i));
.get Scal e(i));

get Col umbi spl aySi ze(i));
get Col umType(i));
get Col umTypeNane(i));

try {stntdrop.execute("drop procedure proc_squarelnt");}

catch (SQLException e) {;}

try {stntdrop.execute("drop procedure func_squarelnt”); }

catch (SQLException e) {;}

try {stntdrop.execute("drop procedure proc_get
catch (SQLException e) {;}

stnt drop. cl ose();

// Create a stored procedure
Statenent stnmtl = conn.createStatenent();

results"); }

stnt 1. execut e(" CREATE OR REPLACE PROCEDURE proc_squarelnt " +

"(fieldl IN OQUT I NTEGER, " +

JDBC Driver Programming Reference

IMPLEMENTING A WLE JAVA APPLICATION USING THE JDBCKONA DRIVERS

"field2 OUT INTEGER) IS " +
"BEA N field2 := fieldl * fieldl; " +
"fieldl :=fieldl * fieldl;, " +
"END proc_squarelnt;");

stnt 1. cl ose();

Cal | abl eStatement cstntl =

conn. prepareCall ("BEG N proc_squarelnt(?, ?); END;");
cstm 1. regi sterQut Paraneter (2, Types.|NTEGER);
for (i =0; i < 100; i++) {

cstml.setint(1, i);

cstm 1. execute();

Systemout.println(i +" " + cstml.getlnt(1l) +

" " + cstml.getint(2));

cstm 1. close();

/1l Create a stored function
Statenent stnt2 = conn.createStatenent();
stnt 2. execut e(" CREATE OR REPLACE FUNCTI ON func_squarelnt " +
"(fieldl IN INTEGER) RETURN INTEGER | S " +
"BEA N return fieldl * fieldl, END func_squarelnt;");
stnt 2. cl ose();

Cal | abl eStatenment cstnt2 =

conn. prepareCall ("BEG N ? := func_squarelnt(?); END;");
cstnt2.regi sterQutParaneter(1, Types.|NTEGER) ;
for (i = 0; i < 100; i++) {

cstm2.setInt(2, i);

cstm 2. execute();

Systemout.println(i + " " + cstnt2.getlnt(1) +

" " + cstm2.getInt(2));

cstm 2. close();

/1 Insert 100 records

Systemout.printIn("Inserting 100 records...");

String inssgl = "insert into emp(enpid, name, dept) values (?, ?, ?)";
Prepar edSt at ement pstmt = conn. prepareStatement (i nssql);

for (i =0; i < 100; i++) {
pstnt.setInt(1, i);
pstnt.setString(2, "Person " + i);
pstnt.setInt(3, i);
pstnt. execute();

pstnt.cl ose();

JDBC Driver Programming Reference 1-17

1 USING THE JDBCKONA DRIVERS

/1 Update 100 records

Systemout. println("Updating 100 records...");

String updsql = "update enp set dept = dept + ? where enmpid = ?";
PreparedSt at ement pstnt2 = conn. prepareSt at enent (updsql);

for (i =0; i <100; i++) {
pstnmt2.setInt(1, i);
pstnt2.setInt(2, i);
pstnt 2. execut e();

pstnt 2. cl ose();

/1 Delete 100 records

Systemout.println("Deleting 100 records...");

String delsql = "delete fromenmp where enmpid = ?";
PreparedSt at ement pstnt3 = conn. prepareSt at ement (del sql) ;

for (i =0; i < 100; i++) {
pstnt3.setint(1, i);
pstnt 3. execute();

pstnt 3. cl ose();

conn. comm t();
}
catch (Exception e) {
/1 Deal with failures appropriately
}

finally {
try {conn.close();}
catch (Exception e) {
/1 Catch and deal with exception
}
}

1-18 JDBC Driver Programming Reference

CHAPTER

2 Using the
jdbcKona/Oracle Driver

Thischapter provides general guidelinesfor using thejdbcK ona/Oracle Type 2 driver.
For general notes about and an example of using the jdbcK ona drivers, see Chapter 1,
“Using the jdbcKona Drivers.”

Data Type Mapping

Mapping of types between Oracle and the jdbcKona/Oracle driver are provided in the
following table.

Oracle jdbcK ona/Oracledriver
Var char String

Nurber Ti nyi nt

Nunber Smal | i nt

Nurber I nt eger

Nurber Long

Nunber Fl oat

Nunber Nuneric

Nunber Doubl e

JDBC Driver Programming Reference 2-1

2 USING THE JDBCKONA/ORACLE DRIVER

Oracle jdbcKona/Oracledriver
Long Longvar char

Rowl D String

Dat e Ti mest anp

Raw (var)Binary

Long raw Longvar bi nary

Char (var) Char

Bool ean* Nunber OR Var char

M.S | abel String

Note that when the Pr epar edSt at enent . set Bool ean method isinvoked, this
method converts a VARCHAR typeto " 1" or " 0" (st ri ng), and it converts a NUMBER
typeto 1 or O (number).

Notethat the Pr epar edSt at enent . set Bool ean method converts a VARCHAR typeto
"1" or"0" (string), and it convertsa NUMBERtypeto 1 or O (number).

Connecting the jdbcKona/Oracle Driver to an
Oracle DBMS

In general, to make a DBM S connection, you perform the following steps:

1. Load the proper jdbcKonadriver.

The most efficient way to do thisis to invoke the

Cl ass. for Name(). newl nst ance() method with the name of the driver class,
which properly loads and registers the jdbcKona driver, asin the following
example:

Cl ass. for Nane("webl ogi c.jdbc.oci.Driver").new nstance();

2-2 JDBC Driver Programming Reference

CONNECTING THE JDBCKONA/ORACLE DRIVER TO AN ORACLE DBMS

2. Request aJDBC connection by invoking the Dr i ver Manager . get Connect i on
method, which takes as its parameters the URL of the driver and other
information about the connection.

Note that both steps describe the jdbcK ona driver, but in a different format. The full
package name is period-separated, and the URL is colon-separated. The URL must
include at least webl ogi c: j dbc: or acl e, and may include other information,
including server name and database name.

There are several variations on this basic pattern, which are described here for Oracle.
For afull code example, see “Implementing a WLE Java Application Using the
jdbcKona Drivers” on page 1-6.

Method 1

The simplest way to connect to an Oracle DBMS is by passing the URL of the driver
that includes the name of the server, along with a username and a password, as
arguments to theri ver Manager . get Connect i on method, as in the following
jdbcKona/Oracle example:

Cl ass. f or Name(" webl ogi c. j dbc. oci . Driver"). new nstance();
Connection conn =
Dri ver Manager . get Connecti on("j dbc: webl ogi c: or acl e: DEMO',
"scott",
"tiger");

In the preceding examplBEMDis the V2 alias of an Oracle database. Note that
invoking thed ass. f or Name() . newl nst ance() method properly loads and
registers the driver.

Method 2

You can also passjava. util . Properties object with parameters for connection
as an argument to timei ver Manager . get Connect i on method. The following
example shows how to connect to o database:

Properties props = new Properties();

props. put ("user", "scott");
props. put (" password”, "tiger");
props. put("server", "DEMO') ;

JDBC Driver Programming Reference 2-3

2 USING THE JDBCKONA/ORACLE DRIVER

Cl ass. for Nane("webl ogi c.jdbc.oci.Driver").new nstance();
Connecti on conn =
Dri ver Manager . get Connecti on("j dbc: webl ogi c: oracl e",

props);

If you do not supply a server name (DEMO in the preceding exampl e), the system looks
for an environment variable (ORACLE_SI Din the case of Oracle). Y ou can also add the
server name to the URL, using the following format:

"jdbc: webl ogi c: oracl e: DEMO'

When you use the preceding format, you do not need to providea " ser ver " property.

Other Properties You Can Set for the jdbcKona/Oracle

Driver

2-4

There are other properties that you can set for the jdbcK ona/Oracle driver, which are
covered later in this document. The jdbcKona/Oracle driver also allows setting a
property -- al | owM xedCaseMet aDat a -- to the boolean t r ue. This property sets up
the connection to use mixed caselettersin invocation to Dat abaseMet aDat a methods.
Otherwise, Oracle defaults to uppercase letters for database metadata.

Thefollowing is an example of setting up the properties to include this feature:

Properties props = new Properties();

props. put ("user", "scott");
props. put ("password"”, "tiger");
props. put ("server", "DEMO") ;

props. put ("al | owM xedCaseMet aData", "true");

Connecti on conn =
Driver Manager. get Connection("jdbc: webl ogi c: oracl e",
props);

If you do not set this property, the jdbcK ona/Oracle driver defaultsto the Oracle
default, which uses uppercase letters for database metadata.

JDBC Driver Programming Reference

WAITING FOR ORACLE DBMS RESOURCES

General Notes

Alwaysinvoke the Connect i on. cl ose method to close the connection when you
have finished working with it. Closing objectsrel easesresourcesontheremote DBMS
and within your application, as well as being good programming practice. Other
jdbcK ona objects on which you should invoke the cl ose method after final use
include:

4 Statenent (PreparedStatenent, Cal | abl eSt at enent)
4 Resul t Set

Waiting for Oracle DBMS Resources

The jdbcK ona/Oracle driver supports the Oracle oopt () C API, which allowsaclient
to wait until resources become available. The Oracle C function sets optionsin cases
where reguested resources are not available; for example, whether to wait for locks.

Y ou can set whether a client waits for DBM S resources, or receives an immediate
exception. The following is an example:

java.util.Properties props = new java.util.Properties();

props. put ("user", "scott");
props. put ("password", "tiger");
props. put ("server", "gol dengat e");

Cl ass. f or Name(" webl ogi c. j dbc. oci . Dri ver"). new nstance();

/1 You nmust cast the Connection as a webl ogi c.jdbc. oci.Connecti on
/1 to take advantage of this extension
Connection conn =
(webl ogi c. j dbc. oci . Connecti on)
Dri ver Manager . get Connecti on("j dbc: webl ogi c: oracle", props);

/1 After constructing the Connection object, imediately call
/1 the wai t OnResour ces net hod
conn. wai t OnResour ces(true);

Note that use of this method can cause several error return codes while waiting for
internal resources that are locked for short durations.

JDBC Driver Programming Reference 2-5

2 USING THE JDBCKONA/ORACLE DRIVER

To take advantage of this feature, you must first cast your Connect i on object asa
webl ogi c. j dbc. oci . Connect i on object, and then invoke the wai t OnResour ces
method.

Thisfunctionality is described in section 4-97 of The OCI Functions for C, published
by Oracle Corporation.

Autocommit

The default transaction mode for JDBC assumes aut oconmi t to be true. Y ou will
improve the performance of your programs by setting aut ocommi t to false after
creating a Connect i on object with the following statement:

Connecti on. set Aut oCommi t (f al se);

Using Oracle Blobs

2-6

ThejdbcK ona/Oracle driver supports two new properties to support Oracle Blob
chunking:

4 webl ogi c. oci . i nsert Bl obChunkSi ze

This property affects the buffer size of input streams bound to a

Prepar edSt at enent object. Blob chunking requires an Oracle 7.3.x or higher
Oracle Server; to use this property, you must be connected to an Oracle Server
that supports this feature.

Set this property to a positive integer to insert Blobsinto an Oracle DBM S with
the Blob chunking feature. By default, this property is set to 0 (zero), which
means that BLOB chunking is turned off.

4 webl ogi c. oci . sel ect Bl obChunkSi ze

This property setsthe size of output streams associated with a JDBC Resul t Set
object. The mechanism for piecewise selects does not have the same use
restrictions as that for Blob inserts, so this property is set to 65534 by default. It
isnot necessary to turn this property off.

JDBC Driver Programming Reference

SUPPORT FOR ORACLE ARRAY FETCHES

Set this property to the size of the desired output stream, in bytes.

Support for Oracle Array Fetches

With WLE Java, the jdbcK ona/Oracle driver supports Oracle array fetches. With this
feature support, invoking the Resul t Set . next method the first time gets an array of
rows and storesit in memory, rather than retrieving a single row. Each subsequent
invocation of the next method reads arow from the rows in memory until they are
exhausted, and only then does the next method go back to the database.

You set aproperty (j ava. util . Property)to control the size of the array fetch. The
property iswebl ogi c. oci . cacheRows; it isset by default to 100. Thefollowingisan
example of setting this property to 300, which means that invocations to the next
method hit the database only once for each 300 rows retrieved by the client:

Properties props = new Properties();

props. put ("user", "scott");
props. put ("password", "tiger");
props. put ("server", "DEMOD') ;
props. put ("webl ogi c. oci . cacheRows", "300");

Cl ass. f or Nane(" webl ogi c. j dbc. oci . Dri ver"). new nst ance();
Connection conn =
Dri ver Manager . get Connecti on("j dbc: webl ogi c: oracl e",

props);

Y ou can improve client performance and lower the load on the database server by
taking advantage of this JDBC extension. Caching rows in the client, however,
requires client resources. Tune your application for the best balance between
performance and client resources, depending upon your network configuration and
your application.

If any columns in a SELECT statement are of type LONG, the cache size will be
temporarily reset to 1 (one) for the Resul t Set object associated with that select
Statement.

JDBC Driver Programming Reference 2-7

2 USING THE JDBCKONA/ORACLE DRIVER

Using Stored Procedures

The following sections describe how to use stored procedures:
4 Syntax for Stored Proceduresin the jdbcK ona/Oracle Driver
4 Binding a Parameter to an Oracle Cursor

4 Using CallableStatement

Syntax for Stored Procedures in the jdbcKona/Oracle
Driver

The syntax for stored proceduresin Oracle was altered in the jdbcK ona/Oracle driver
exampl es to match the IDBC specification. (All of the examples also show native
Oracle SQL, commented out, just above the correct usage; the native Oracle syntax
worksasit did in the past.) Y ou can read more about stored procedures for the
jdbcKonadriversin Chapter 1, “Using the jdbcKona Drivers.”

Note that Oracle does not natively support bindingetovalues in an SQL statement.
Instead it uses ":1", ":2", and so forth. We allow you to use either in your SQL with the
jdbcKona/Oracle driver.

Binding a Parameter to an Oracle Cursor

BEA Systems, Inc. has created an extension to JDBC

(webl ogi c. j dbc. oci . Cal | abl eSt at enent) that allows you to bind a parameter for
a stored procedure to an Oracle cursor. You can create aR&3BO Set object with
the results of the stored procedure. This allows you to return mutiple t Set
objects in an organized way. TResul t Set objects are determined at run time in the
stored procedure. An example procedure follows.

First, define the stored procedures, as follows:

create or replace package
curs_types as

2-8 JDBC Driver Programming Reference

USING STORED PROCEDURES

type EnpCur Type is REF CURSOR RETURN enp%ROMYPE;

end curs_types;
/

create or

repl ace procedure

singl e _cursor(cursl IN OUT curs_types. EnpCur Type,

ctype in nunber) AS BEGA N

if ctype = 1 then

OPEN cursl FOR SELECT *

elsif ctype = 2 then

OPEN cursl FOR SELECT * FROM enp where sal

elsif ctype = 3 then

OPEN cursl FOR SELECT * FROM enp where deptno =

end if;
END singl e_cursor;
/

FROM enp;
> 2000;

20;

create or replace procedure

mul ti _cursor(cursl IN QUT
curs2 I N QUT
curs3 I N QUT

curs_types. EnpCur Type,
curs_types. EnpCur Type,
curs_types. EnpCur Type) AS

BEG N
OPEN cursl FOR SELECT *
OPEN curs2 FOR SELECT *
OPEN curs3 FOR SELECT *

END mul ti_cursor;

/

FROM enp;
FROM enp where sal
FROM enp where deptno =

> 2000;
20;

In your Java code, construct Cal | abl eSt at ement objects with the stored procedures
and register the output parameter as datatype j ava. sql . Types. OTHER. When you
retrieve the datainto aResul t Set object, use the output parameter index as an
argument for the get Resul t Set method. For example:

webl ogi c. j dbc. oci . Cal | abl eStat emrent cstnt =
(webl ogi c. jdbc. oci . Cal | abl eSt at ement) conn. prepareCal | (
"BEG N OPEN ? " +
"FOR select * fromenp; END;");
cstnt.regi sterQutParanmeter(1, java.sql.Types. OTHER);

cstnt.execute();

Resul tSet rs = cstnmt.getResultSet(1);
printResultSet(rs);

rs.close();

cstmt.close();

webl ogi c. j dbc. oci. Cal | abl eStat enent cstnt2 =
(webl ogi c. jdbc. oci . Cal | abl eSt at ement) conn. prepareCal | (
"BEA N single _cursor(?, ?); END;");

JDBC Driver Programming Reference 2-9

2 USING THE JDBCKONA/ORACLE DRIVER

cstnmt 2. regi sterQut Paraneter(1, java.sql.Types. OTHER);

cstm2.setInt(2, 1);
cstm 2. execute();

rs = cstnt2.getResultSet(1);
printResultSet(rs);

cstm2.setInt(2, 2);
cstm 2. execute();

rs = cstnt2.getResultSet(1);
printResultSet(rs);

cstm2.setInt(2, 3);
cstmt 2. execute();

rs = cstnt2.getResultSet(1);
printResultSet(rs);

cstm 2. cl ose();

webl ogi c. jdbc. oci. Cal | abl eSt at enent cstnt 3 =
(webl ogi c. j dbc. oci. Cal | abl eSt at ement) conn. prepar eCal | (
"BEG N mul ti _cursor(?, ?, ?); END,");
cstnt3.regi sterQutParanmeter(1, java.sql.Types. OTHER);
cstnt3.regi sterQut Paraneter(2, java.sql.Types. OTHER);
cstnt3.regi sterQutParaneter(3, java.sql.Types. OTHER);

cstmt 3. execute();
Resul t Set rsl

Resul t Set rs2
Resul t Set rs3

cstmt 3. get Resul t Set (1) ;
cstmt 3. get Resul t Set (2) ;
cstmt 3. get Resul t Set (3) ;

Note that the default size of an Oracle-stored procedure string is 256K .

Using CallableStatement

The default length of a string bound to an QUTPUT parameter of a
Cal | abl eSt at ement object is 128 characters. If the value you assign to the bound
parameter exceeds that length, you get the following error:

ORA- 6502: val ue or nuneric error

2-10 JDBC Driver Programming Reference

DATABASEMETADATA METHODS

Y ou can adjust the length of the value of the bound parameter by passing an explicit
length with the scale argument to the

Cal | abl eSt at enent . r egi st er Qut put Par anet er method. The following isa
code example that binds a VARCHAR that will never be larger than 256 characters:

Cal | abl eSt at ement cstnt =
conn. prepareCal | ("BEA N testproc(?); END;");

cstnt.registerQutputParaneter (1, Types. VARCHAR, 256);
cstnt.execute();
Systemout.println(cstnt.getString());

cstnt.close();

DatabaseMetaData Methods

DatabaseM etaDataisimplemented in itsentirety in the jdbcK ona/Oracle driver. There
are some variations that are specific to Oracle, which are asfollows:

4 Asageneral rule, the String catalog argument isignored in all
DatabaseM etaData methods.

4 Inthe Dat abaseMet aDat a. get Procedur eCol unms method:
4 The String cat al og argument isignored.

4 The String schenmaPat t er n argument accepts only exact matches (no pattern
matching).

4 The String pr ocedur eNamePat t er n argument accepts only exact matches
(no pattern matching).

4 The String col unmNanePat t er n argument is ignored.

JDBC Driver Programming Reference 2-11

2 USING THE JDBCKONA/ORACLE DRIVER

jdbcKona/Oracle and the Oracle NUMBER

Column

Oracle provides a column type called NUMBER, which can be optionally specified with
aprecision and a scale, in the forms NUMBER(P) and NUMBER(P, S) . Even in the
simple, unqualified NUMBER form, this column can hold all number types from small
integer valuesto very large floating point numbers, with high precision.

ThejdbcK ona/Oracle driver reliably convertsthe valuesin a column to the Java type
requested when a WL E Java application asks for a value from such a column. Of
course, if avalue of 123. 456 is asked for with get I nt () , the value will be rounded.

The method get Qbj ect , however, poses a little more complexity. The

jdbcK ona/Oracle driver guaranteesto return a Java object that will represent any value
in a NUMBER column with no loss in precision. This means that a value of 1 can be
returned in an I nt eger , but avalue like 123434567890. 123456789 can only be
returned in a Bi gDeci mal .

Thereisno metadatafrom Oracle to report the maximum precision of the valuesin the
column, so the jdbcK ona/Oracle driver must decide what sort of object to return based
on each value. This meansthat one Resul t Set object may return multiple Javatypes
fromthe get Obj ect method for agiven NUMBER column. A tablefull of integer values
may all bereturned as | nt eger from the get Obj ect method, whereas a table of
floating point measurements may be returned primarily as Doubl e, with some

I nt eger if any value happens to be something like 123. 00. Oracle does not provide
any information to distinguish between a NUMBER value of 1 and a NUVBER of

1. 0000000000.

Thereis morereliable behavior with qualified NUMBER columns; that is, those defined
with a specific precision. Oracle's metadata provides these parameters to the driver so
the jdbcK ona/Oracle driver always returns a Java object appropriate for the given
precision and scale, regardless of the values shown in the following table. The
following table shows the Java objects returned for each qualified NUVBER column.

2-12 JDBC Driver Programming Reference

JDBCKONA/QORACLE AND THE ORACLE NUMBER COLUMN

Column Definition Returned by get Obj ect ()
NUVBER(P <= 9) I nt eger

NUVBER(P <= 18) Long

NUVBER(P >= 19) Bi gDeci mal

NUVBER(P <=16, S > 0) Doubl e

NUVBER(P >= 17, S > 0) Bi gDeci nal

JDBC Driver Programming Reference 2-13

2 USING THE JDBCKONA/ORACLE DRIVER

2-14 JDBC Driver Programming Reference

CHAPTER

3 Using the jdbcKona/
MSSQLServer4 Driver

The jdbcK ona/M SSQL Server4d isa Type 4, pure-Java, two-tier driver. It requires no
client-side libraries because it connects to the database via a proprietary vendor
protocol at the wire-format level. Unlike Type 2 JDBC drivers, Type 4 drivers make
no native calls, so they can be used in Java applets.

A Type 4 IDBC driver issimilar to a Type 2 driver in many other ways. Type 2 and
Type 4 drivers are two-tier drivers: each client requires an in-memory copy of the
driver to support its connection to the database.

The API referencefor JDBC, of which thisdriver isafully compliant implementation,
is available online in several formats at the Sun Microsystems, Inc. Web site.

Connecting to an SQL Server with the
jdbcKona/MSSQLServer4 Driver

To connect to an SQL Server database in a WLE Java server application, perform the
following steps:

1. Load the jdbcKona/M SSQL Server4d JDBC driver.

2. Request a JDBC connection.

JDBC Driver Programming Reference 31

3 USING THE JDBCKONA/ MISSQLSERVER4 DRIVER

Method 1

Method 2

3-2

An efficient way to load the JIDBC driver isto invoke the
C ass. f or Name() . newl nst ance() method, specifying the name of thedriver class,
asin the following example:

Cl ass. for Nane("webl ogi c. j dbc. nssql server4. Driver"). new nstance();

After loading the JDBC driver, request a JDBC connection by invoking the

Dri ver Manager . get Connecti on method. Y ou invoke this method with a
connection URL, which, again, specifiesthe JDBC driver and other connection
information.

There are several waysto specify connection information in the
Dri ver Manager . get Connect i on method. The following sections describe three
methods.

The simplest method isto use a connection URL that includes the database name, host
name and port number of the database server, and two additional argumentsto specify
the database user name and password, as in the following example:

Cl ass. for Nane("webl ogi c. j dbc. nssql server4. Driver").new nstance();
Connecti on conn =
Dri ver Manager . get Connect i on(
"j dbc: webl ogi c: nesql server 4: dat abase@ost : port",
"sa", // dat abase user nane
") /'l password for database user

In thisexample, host isthe name or |P number of the computer running SQL Server,
and por t isthe port number the SQL Server is listening on.

Y ou can set connection information in aPr oper t i es object and passthisinformation
tothe Dri ver Manager . get Connect i on method. The following example specifies
theserver, user, and passwor d in aProperti es object:

Properties props = new Properties();
props. put ("server", "pubs@ryhost : 1433");
props. put ("user", "sa");

JDBC Driver Programming Reference

SETTING PROPERTIES FOR MICROSOFT SQL SERVER 7

props. put ("password", ")

Cl ass. for Name(" webl ogi c. j dbc. nssql server4. Driver"). newl nstance();
Connection conn =
Driver Manager. get Connection("jdbc: webl ogi c: nssql server4",
props);

Method 3

Y ou can add connection options to the end of the connection URL, instead of creating
aProperti es object. Separate the URL from the connection options with a question
mark (?), and separate options with ampersands (&), as in the following example:

O ass. for Name(" webl ogi c. j dbc. nssql server4. Driver).new nst ance();
Dri ver Manager . get Connecti on(
"jdbc: webl ogi c: nesql server 4: dat abase@ryhost : myport ?user =
sa&password=");

You canusetheDriver. get Propertyl nf o method to find out more about URL
options at run time.

Setting Properties for Microsoft SQL
Server 7

The jdbcK ona/M SSQL Server4 driver recognizes SQL Server 7 automatically. Y ou
must set the sql 7 property in the connection URL or inaPr operti es objecttot rue
to connect to SQL Server 7. For example, the connection URL for an SQL Server 7
connection would be similar to the following:

"j dbc: webl ogi c: nesql server 4: pubs@ryhost : nyport ?sql 7=t r ue"

JDBC Driver Programming Reference 3-3

3 USING THE JDBCKONA/ MISSQLSERVER4 DRIVER

Using the jdbcKona/MSSQLServer4 Driver in
Java Development Environments

ThejdbcK ona/M SSQL Server4 driver has been used successfully in the Java SDK 1.2
for Sun and Windows NT development environment.

JDBC Extensions and Limitations

This section describes the following JDBC extensions and limitations:

¢
¢
¢
¢
¢
¢
¢
¢

Support for IDBC Extended SQL

cursorName Method Not Supported

java.sgl.TimeStamp Limitations

Querying Metadata

Changing autoCommit Mode

Statement.executeWriteText() Methods Not Supported
Sharing a Connection Object in Multithreaded Applications
EXECUTE Keyword with Stored Procedures

Support for JDBC Extended SQL

The Sun Microsystems, Inc. JDBC specification includes a feature called SQL
Extensions, or SQL Escape Syntax. The jdbcK ona/M SSQL Server4 driver supports
Extended SQL . For information about thisfeature, seeChapter 1, “Using the jdbcKona
Drivers.”

3-4 JDBC Driver Programming Reference

JDBC EXTENSIONS AND LIMITATIONS

cursorName Method Not Supported

The cur sor Nane method is not supported, because its definition does not apply to the
Microsoft SQL Server.

java.sgl.TimeStamp Limitations

Thej ava. sql . Ti meSt anp classin the Java 2 software islimited to dates after 1970.
Earlier dates raise an exception. However, if you retrieve dates using the get St ri ng
method, the jdbcK ona/M SSQL Server4 driver uses its own date class to overcome the
limitation.

Querying Metadata

Y ou can only query metadata for the current database. The metadata methods call the
corresponding SQL Server stored procedures, which operate only on the current
database. For example, if the current database is master, only the metadata relative to
master is available on the connection.

Changing autoCommit Mode

Invokethe Connect i on. set Aut oConmi t method with at r ue or f al se argument to
enable or disable chained transaction mode. When aut oConmi t istrue, the

jdbcK ona/M SSQL Server4 driver begins a transaction whenever the previous
transactioniscommitted or rolled back. Y ou must explicitly end your transactionswith
aconmmi t orarol | back. If thereisan uncommitted transaction when you invoke the
set Aut oCommi t method, the driver rolls back the transaction before changing the
mode. Be sure to commit any changes before you invoke this method.

JDBC Driver Programming Reference 3-5

3 USING THE JDBCKONA/ MISSQLSERVER4 DRIVER

Statement.executeWriteText() Methods Not Supported

ThejdbcKona Type 2 drivers support an extension that allows you to write text and
image datainto arow as part of an SQL | NSERT or UPDATE statement without using a
text pointer. Thisextension, St at ement . execut eWi t eText (), requiresthe
DB-Library nativelibraries, and thusis not supported by the

jdbcK ona/M SSQL Server4 JDBC driver.

To read and write text and image data with streams, you can use the

prepar eSt at enent . set Ascii Stream(),

pr epar eSt at enent . set Bi narySt rean() , Resul t Set . get Asci i Stream(), and
Resul t Set . get Bi nar ySt rean() JDBC methods.

Sharing a Connection Object in Multithreaded
Applications

The jdbcK ona/M SSQL Server4 driver allows you to write multithreaded applications
inwhich multiple threads can shareasingle Connect i on object. Each thread can have
anactive St at enent object. However, if youinvokethe St at ement . cancel method
on one thread, SQL Server may cancel a St at enent on adifferent thread. The

St at enent object that is cancelled depends on timing issues in the SQL Server. To
avoid this unexpected behavior, we recommend that you get a separate Connect i on
object for each thread.

EXECUTE Keyword with Stored Procedures

A Transact-SQL feature allows you to omit the EXECUTE keyword on a stored
procedure when the stored procedureisthefirst command in the batch. However, when
astored procedure has parameters, the jdbcK ona/M SSQL Server4 driver addsvariable
declarations (specific to the IDBC implementation) before the procedure call. Because
of this, itisgood practice to use the EXECUTE keyword for stored procedures. Note that
the IDBC extended SQL stored procedure syntax, which does not include the EXECUTE
keyword, is not affected by thisissue.

3-6 JDBC Driver Programming Reference

CHAPTER

4 Extensions to the JDBC
API

This chapter describes the following jdbcK ona extensions to the JIDBC API:
4 Jdass webl ogic.jdbc. oci. Callabl eSt at enent

4 dass webl ogic.jdbc. oci. Connecti on

4 dass webl ogic.jdbc. oci. Statenment

For complete details on the JDBC AP, refer to the following Web site:

htt p: // www. webl ogi c. coni docs/ cl assdocs/ packages. ht ml #j dbc

JDBC Driver Programming Reference 4-1

4 EXTENSIONS TO THE JDBC API

Class CallableStatement

Classwebl ogi c. j dbc. oci . Cal | abl eSt at ement contains jdbcK ona extensions to
JDBC to support the use of cursors as parametersin Cal | abl eSt at ement objects.

TheCal | abl eSt at enent class:
4 Extendsthe Prepar edSt at enent class
4 Implementsthe Cal | abl eSt at enent interface

4 Hasthe following inheritance hierarchy:

j ava. | ang. Qbj ect

+----webl ogi c.j dbc. oci . St at enent
I
+----webl ogi c. j dbc. oci . Prepar edSt at enent
I
+----webl ogi c.j dbc. oci. Cal | abl eSt at enent

4 Hastheget Resul t Set method

4-2 JDBC Driver Programming Reference

CLASS CALLABLESTATEMENT

weblogic.jdbc.oci.CallableStatement.getResultSet

Synopsis ReturnsaResul t Set object from a stored procedure where the specified parameter
has been bound to an Oracle cursor. Register the output parameter with the
regi st er Qut put Par amet er method, using j ava. sql . Types. OTHER as the data

type.

Java Mapping public Resul t Set get Resul t Set (int paraneterlndex) throws
SQLException

Parameters par amet er | ndex
This parameter isan index into the set of parameters for the stored procedure.

Throws SQLExcepti on
This exception is thrown if the operation cannot be completed.

JDBC Driver Programming Reference 4-3

Zl EXTENSIONS TO THE JDBC API

Class Connection

This section describes only the jdbcK ona extension to JDBC that accesses the Oracle
OCI C Function oopt () . Other information about this class is in the description for
classj ava. sql . Connecti on. A Connecti on object isusually constructed asa

j ava. sgl . Connect i on class. Tousethisextensionto JDBC, you must explicitly cast
your Connect i on object asawebl ogi c. j dbc. oci . Connecti on class.

The public Connection class:
4 Extendsthe bj ect class
4 Implementsthe Connect i on interface

4 Hasthe following inheritance hierarchy:

j ava. | ang. Qbj ect

+----webl ogi c.j dbc. oci . Connection

¢ Hasthewai t OnResour ces method

4-4 JDBC Driver Programming Reference

CLASS CONNECTION

weblogic.jdbc.oci.Connection.waitOnResources

Synopsis Use this method to access the Oracle oopt () function for C (see section 4-97 of The
OCI Functions for C). The Oracle C function sets options in cases where requested
resources are not available; for example, whether to wait for locks.

When the argument to this method is true, this jdbcK ona extension to JDBC sets this
option so that your program will receive an error return code whenever aresourceis
requested but is unavailable. Use of this method can cause severa error return codes
while waiting for internal resourcesthat are locked for short durations.

Java Mapping public void wai t OnResour ces(bool ean val)

Parameters val
This parameter is set to true if the connection should wait on resources.

JDBC Driver Programming Reference 4-5

4 EXTENSIONS TO THE JDBC API

Class weblogic.jdbc.oci.Statement

This class contains jdbcK ona extensions to JDBC to support parsing of SQL
statements and adjusting of the fetch size. Only those methods are documented here.

Thewebl ogi c. j dbc. oci . St at enent class:
4 Extends the Object base class

4 Hasthe following inheritance hierarchy:

j ava. | ang. Qbj ect

+----webl ogi c.j dbc. oci . St at enent

4 Hasthe following methods:
¢ fetchsize

¢ parse

4-6 JDBC Driver Programming Reference

CLASS WEBLOGIC.JDBC.OCI.STATEMENT

weblogic.jdbc.oci.Statement.fetchsize

Synopsis

Java Mapping

Parameters

Allowstuning of the size of prefetch array used for Oraclerow results. Oracle provides
the means to do data prefetch in batches, which decreases network traffic and latency
for row requests.

The default batch size is 100. Memory for 100 rowsis allocated in the native stack for
every query. For queriesthat need fewer rows, this size can be adjusted appropriately.
Thissaves on the swappabl eimage size of theapplication and will benefit performance
if only as many rows as needed are fetched.

public void fetchSi ze(int size)

si ze
This parameter specifies the number of rows to be prefetched.

JDBC Driver Programming Reference 4-7

4 EXTENSIONS TO THE JDBC API

weblogic.jdbc.oci.Statement.parse

Synopsis Allowstuning of the size of prefetch array used for Oracle row results. Oracle provides
the means to do data prefetch in batches, which decreases network traffic and latency
for row requests.

The default batch sizeis 100. Memory for 100 rows is alocated in the native stack for
every query. For queries that need fewer rows, this size can be adjusted appropriately.
This saveson the swappable image size of the application and will benefit performance
if only as many rows as needed are fetched.
JavaMapping public int parse(String sqgl) throws SQLException
Parameters sql
This parameter is the SQL statement to be verified.

Throws SQL Exception
This exception isthrown if the operation cannot be compl eted.

4-8 JDBC Driver Programming Reference

Index

A

array fetches

support for 2-7
autocommit

using with Oracle 2-6
autocommit mode

changing 3-5

Blobs
Oracle 2-6

C

CallableStatement class 2-10

API for WebL ogic extension to 4-2
class pathname

for DBMS connection 1-8
CLASSPATH 1-2
closing objects 1-14
connecting to aDBMS 1-8

and multithreaded applications 3-6

requirements for making 1-3
Connection class

API for WebL ogic extension to 4-4
CursorName method 3-5

D
data type mapping 2-1
database management system

see DBMS
DatabaseM etaData methods

using 2-4

variations specific to Oracle 2-11
DBMS connections

class pathname 1-8

making 1-8

requirements for making 1-3

setting properties for 1-8
DLLs

for jdbcK ona/Oracle 1-3

E

EXECUTE keyword 3-6
Extended SQL
JDBC support for 1-4

F
fetchsize method 4-7

G

getConnection method 2-3
getResultSet method 4-3

implementing, using jdbcK ona drivers 1-6

importing packages 1-7

JDBC Driver Programming Reference

-1

J

Java21-2
javamath 1-5
javasgl 1-5
java.sgl.TimeStamp class 3-5
JDBC
APl 1-5
Extended SQL
support for 1-4
extensions and limitationsin
jdbcKona/M SSQL Serverd 3-4
jdbcK ona extensions to 1-5
supported version 1-1
JDBC Extended SQL
and jdbcK ona/M SSQL Server4 3-4
jdbcKonadrivers
implementingin aWLE Javaapplication
1-6
JAR file 1-2
making an SQL query with 1-10
platforms supported on 1-2
sample code using 1-15
support for JIDBC Extended SQL 1-4
jdbcK ona/M SSQL Server4 drivers
and autocommit 3-5
and CursorName 3-5
and EXECUTE keyword 3-6
and java.sql. TimeStamp class 3-5
and JDBC Extended SQL 3-4
and multithreaded applications 3-6
and Properties object 3-2
and Statement.executeWriteText class 3-
6
connecting to an SQL server 3-1
querying metadata 3-5
jdbcK ona/Oracle drivers
and array fetches 2-7
and Blob chunking 2-6
and Oracle NUMBER column 2-12
closing connections with 2-5

[-2 JDBC Driver Programming Reference

connecting to Oracle DBM S 2-2

DLLs1-3

shared libraries 1-3

using stored proceduresin 2-8
JDK 1.2

See Java 2

M

metadata
querying with
jdbcKona/M SSQL Serverd 3-5
Microsoft SQL Server 7 3-3
multithreaded applications
sharing a connection 3-6

N

new! nstance method 2-3
NUMBER column 2-12

0
objects
disconnecting and closing 1-14
Oracle cursor 2-8
Oracle oopt() C function
accessing 4-5
API 2-5
Oraclerows 4-7

P
packages

importing 1-7
parameter

binding to an Oracle cursor 2-8
parse method 4-8
PreparedStatement class 1-11
properties

setting for aDBM S connection 1-8
Properties object 2-3

and jdbcK ona/M SSQL Server4 3-2

R

records

inserting, updating, and deleting 1-11
resources

waiting for Oracle DBMS 2-5
ResultSet class 2-8
ResultSet object

returning from stored procedure 4-3

S

shared libraries

for jdbcKona/Oracle 1-3
Solaris 1-2
SQL query

making with ajdbcKona driver 1-10
SQL server

connecting to with

jdbcKona/M SSQL Serverd 3-1

Statement class

API for WebL ogic extension to 4-6
Statement.executeWriteT ext class 3-6
stored procedures

creating and using 1-12

returning ResultSet object from 4-3

using in jdbcK ona/Oracle 2-8
support

documentation xiv

technica xiv

w

waitOnResources method 4-5
WebL ogic extensions
Connection class 4-4
to CalableStatement class 4-2
to JDBC (list) 1-5
to Statement class 4-6

Windows NT 4.0 1-2
WLE Java application 1-6

JDBC Driver Programming Reference

-3

	Copyright
	Preface
	Purpose of This Document
	How to Use This Document
	Related Documentation
	Contact Information

	1 Using the jdbcKona Drivers
	Platforms Supported by the jdbcKona Drivers
	Adding the jdbcKona JAR File to Your CLASSPATH
	jdbcKona/Oracle Shared Libraries and Dynamic Link Libraries
	Requirements for Making a Connection to a Database Management System (DBMS)
	Support for JDBC Extended SQL
	The JDBC API, with WebLogic Extensions
	Implementing a WLE Java Application Using the jdbcKona Drivers
	Importing Packages
	Setting Properties for Connecting to the DBMS
	Connecting to the DBMS
	Making a Simple SQL Query
	Inserting, Updating, and Deleting Records
	Creating and Using Stored Procedures and Functions
	Disconnecting and Closing Objects
	Code Example

	2 Using the jdbcKona/Oracle Driver
	Data Type Mapping
	Connecting the jdbcKona/Oracle Driver to an Oracle DBMS
	Method 1
	Method 2
	Other Properties You Can Set for the jdbcKona/Oracle Driver
	General Notes

	Waiting for Oracle DBMS Resources
	Autocommit
	Using Oracle Blobs
	Support for Oracle Array Fetches
	Using Stored Procedures
	Syntax for Stored Procedures in the jdbcKona/Oracle Driver
	Binding a Parameter to an Oracle Cursor
	Using CallableStatement

	DatabaseMetaData Methods
	jdbcKona/Oracle and the Oracle NUMBER Column

	3 Using the jdbcKona/ MSSQLServer4 Driver
	Connecting to an SQL Server with the jdbcKona/MSSQLServer4 Driver
	Method 1
	Method 2
	Method 3

	Setting Properties for Microsoft SQL Server 7
	Using the jdbcKona/MSSQLServer4 Driver in Java Development Environments
	JDBC Extensions and Limitations
	Support for JDBC Extended SQL
	cursorName Method Not Supported
	java.sql.TimeStamp Limitations
	Querying Metadata
	Changing autoCommit Mode
	Statement.executeWriteText() Methods Not Supported
	Sharing a Connection Object in Multithreaded Applications
	EXECUTE Keyword with Stored Procedures

	4 Extensions to the JDBC API
	Class CallableStatement
	weblogic.jdbc.oci.CallableStatement.getResultSet

	Class Connection
	weblogic.jdbc.oci.Connection.waitOnResources

	Class weblogic.jdbc.oci.Statement
	weblogic.jdbc.oci.Statement.fetchsize
	weblogic.jdbc.oci.Statement.parse

	Index

