EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

BEA WebLogic Enterprise

Java Programming Reference

BEA WebLogic Enterprise 4.2
Document Edition 4.2
July 1999

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.
All other company names may be trademarks of the respective companies with which they are associated.

Java Programming Reference

Document Edition Date Software Version

4.2 July 1999 BEA WebLogic Enterprise 4.2

Contents

Preface
PuUrpose Of ThiS DOCUMENEcc.eruiiie et s e e Xi
HOW t0 USE ThiS DOCUMIENT ...ttt ettt e e saae s sann s Xiii
Related DOCUMENEALIONeveeeeiiieeceees e e ettt ee e e sre e s vae e e e aessbseeessraessanees XVi
CoNtACE INFOMMALION.eiiieiee et ee e e e e e b e e e e e s sbbe e e e srae s sanees XiX
1. OMG IDL Syntax
Style Guidelines for Writing OMG IDL Statements..........cccceeererereeieienennene 1-2
OMG [DL EXEENSIONS. ...eceiuieiieceiiieeeeees e e st seste e seae e s sreesseaasssssasssssssessranssanens 1-2
2. Server Description File

3.

Creating the Server Description File..........oooieiiiie e 2-2
About Object Activation and Deactivationccceerrieeinicniese e 2-2
Server Description File SYNaXccocoueeeieieeieeiniere e s 2-3

[(0o o SRS 2-4
SErVEr DECIArELION.......eieee et 2-4
Module and Implementation Declarations............cccceoeveeeeieneeneeeenen. 2-5
ATChIVE DECIAIaLiON ...t 2-9
Sample Server DesCription File.........couiiiiiiiriee e 2-11

TP Framework

TP Framework INterfaCeso 3-2
Tobj_Servant INterface.........covvve et e 3-2
SENVEr INEEITACE ...t e 33
TP INEEITACE ... ettt e e 3-3
TransactionalObject Interface Not Enforced...........cccoovvieviivieveececeeenee 34

Transactions USAge NOLESciuiuiie ettt e 35

Java Programming Reference iii

Transaction TEMUNGLIONoeeiveeiieeeeiceie et ee e eeees e ee s s ee e s sre e s s aeesseeeeas 3-5

Transaction Suspend and RESUME...........coceieieirieeeeie e e 3-6
RESIITCLIONS ...ttt e e s e er e e een 3-7
Voting on Transaction OULCOMEceeeeieeieeriieiee et et e 3-8

4. Bootstrap Object

How Bootstrap ObJeCtS WOIK..........oiiieieeeireie e e 4-2
Types of Remote Clients SUPPOIEdo ierereie e 4-6
Capabilities and Limitations...........ccceoererirenie e e e e 4-7
BOOtStrap OBJECE APot e e 4-7
TOD] MOQUIE ... e e e 4-8
= YN\ = 1o o o TSP 4-9
Programming EXamMPIESccccceiiiiaiiireinee et e e 4-10
Getting a SecurityCurrent ODJECtccueiireeirie e 4-10
Getting a UserTransaction ODJECtoocueiiirieee e 4-11

5. FactoryFinder Interface

Capabilities, Limitations, and Requirements...........cccoveeeeneninese e 5-2
FUNCtional DESCIIPLIONooviieiieeie ettt e e 5-3
Locating a FaCtoryFiNGEr ... e s 5-3
REGIStENING @ FACOIY ...t e s 54
LOCAH NG 8 FACLOIY ... e s 5-5
CORBAservices Naming Service Module OMG IDLcccoeuueeene. 5-7
CORBAservices Life Cycle Service Module OMG IDL 5-7

Tob) MOAUIE OMG IDL ... e 5-8
Locating Factories in Another Domain...........cccceeveeeeeveiceseecee s 5-9

Why Use WebL ogic Enterprise EXtENSIONS?.........coevveeeenicieninneen 5-10
Creating Application Factory KeysS........ccovueirerinie e 5-11
Names Library Interface Pseudo OMG IDLccocccvevevceevevccen e, 5-11
JAVAMAPPING ...ee ettt e e e e 5-17
JAVAIMELNOOS ...t et e e nea 5-18
Java Programming EXampPIEScoeveurirnnieeinisee e e 5-18
Server Registering aFactorycccccvciiiicceiee e 5-18
Client Obtaining a FactoryFinder Object Reference..........cccocevevveieenenns 5-19
Client Finding One Factory Using the Tobj Approachccocecevenenne. 5-19

iv Java Programming Reference

6. Security Service

F g oo (171 o o OSSR 6-2
Capabilities and Limitations..........cccocooeeoieiriere e e 6-2
Getting Initial References to the SecurityCurrent Object.........c.coovvvceieeenenne 6-3
Basic Security-L evel Requirementsfor WebL ogic Enterprise Clients............. 6-3
Functional COMPONENES........ccoieuiriree et se e e e e ereere e 6-4
SECUNTLY MOE ... e e 6-4
Authentication of PrinCipalS........cceiiieoiiinenee e 6-4
Controlling AcCesSt0 ODJECES......c.eoiiierieee et 6-5
AdMIiNiStrative CONtFOlccoovei e e e 6-5
Security Model Functional DeSCription.cceeiereeiereieeieeiries e 6-6
DESCITPLION ..ttt et ettt e e e e ene s eene e 6-6
Logging ONto the SYSIEMociiiece e s 6-7
Example of a Secure Object INVOCaLioN...........cooeveeieieieinereiie e 6-8
AULNENEICATON ...t e e e e e 6-8
Authentication MeChaniSMS..........cccevereieiereereeieeie e e e 6-9
AULNENti CatiON PrOCESS......ccuiivireeie ettt s e 6-10
Principal Authenticator OBJeCt.........ccuvoiviiirerirre e 6-12

WebL ogic Enterprise Extensions to the Principal Authenticator
(@] o= TR 6-13
CredentialS ObJECL.......c.vcueceeeeee e 6-14
Security Current ODJECLc.coviiiiie e 6-15
ClENt SECUNLY AP ... ere e sr e saesraeane s 6-17
CORBA MOUUIE.......eeiiit ettt e e e 6-17
TimMEBase MOAUIEoooieiie e e 6-18
SECUNLY MOAUIE ..o 6-20
Security Level 1 MOAUIE.........ccviieeieeieee et 6-22
Security Level 2 MOdUIE.........ccoiiieieeieee ettt 6-22
B I] o]\ oo (U1 = TSP 6-24
Java Programming EXamPlES......cccccvee e iie it s 6-26
Using WebL ogic Enterprise Extensionsto Log ON..........ccceeevveeveieecvnennens 6-26
Getting Information from Privileges..........ccccovveviceeieiiececeeeeeee e 6-29
Checking the Validity of the Credentials Expiration Time...................... 6-30
Authentication Using SecurityL evel2.Principal Authenticator................. 6-30
Authentication Using Tobj.Principal Authenticator...........c..cccoeveveieeneeee. 6-33

Java Programming Reference %

L ogging Off Using Tobj.Principal Authenticatorccceviiiiiiiienens 6-35

Checking the Validity of CredentialS.........cccooieoeoininiene s 6-35

Getting Principal’s Privileges.o 6-3€
Copying a Credentials ODJEC.........oeiiiiiiiiiiiii e 6-3
Destroying a Credentials ObJeCt...........uueuiiiiiiiiiiiiiee e 6-3
Getting the Principal Authenticator Object ..., 6-38
Getting CredentialS...........cooiiiiiiiiii e e 6-3
Setting Default Credentials...............ueueuiiiiiiiiniiiiciice e, 6-3
Getting a Principal’s PriVIlEgesSuoeiiiiiiiiiiiiiee e 6-3¢
Removing a Credentials Object from the “Own” List..........ccccccceeeninninne 6-40
Getting Credentials of the Requesting Principalccccccoiiiiiiiiiinennen. 6-4(
Getting the Principal’s Privileges from Credentials.............ococuvviveeeeeenn. 6-41
Getting the Principal’s Privileges from the SecurityCurrent object......... 6-42
Obtaining the SecurityCurrent Object...........cccceeiieiiiiees 6-4:
Getting ASSOCIAtioN OPLIONS......ccoiiiiiiiiee et 6-4:
Getting Delegation State.........ciiiiiiiiiii i 6-4
Getting Delegation MOUEo.vvviiiiieiie e e 6-4

7. Transaction Service

Capabilities and LImitationNsSooooiiiieiieii e 7-
Lightweight Clients with Delegated Commit............ccoooiiiiiiiieiieieieriree 7-3
Transaction Propagation ... i 7-
Transaction INTEQIILYeeeiiiie et er e ee e 7-
Transaction TermMINAtioNccueeeiiiiieie i 7-
FIat TranSACHONSeiiiiiiiiie ittt 7-
Interoperability Between Remote Clients and the WebLogic Enterprise

DOMAIN ...ttt et e 7-
Intradomain Interoperability ... 7-E
Network Interoperabilityoueeiiiiiiiiie e 7-5
Relationship of the Transaction Service to Transaction Processing 7-
ProCess FalUre........cooiiiiiiiieie et 7
Multithreaded SUPPOIT........eueiiiieiei e aee e 7-
OMG Interface Definition Language (IDL)uevvveiiiiiiiieiiiiieeeneeeeeeen, 7-7
GeNEral CONSLIAINTSccveiiiiiiieiie et e 7-

Getting Initial References to the TransactionCurrent Objectcccccccvvvninnnns 7-

Vi Java Programming Reference

TranSaCtioN SEIVICE AP ...ttt st e 7-9

D= = B Y oSS TP 7-9
CoNtrol INLEIfaCtEvcee e e e 7-10
Transactional Object INterfaceccoovevevieeie e 7-10
Other CORBA services Object Transaction Service Interfaces................ 7-11
Transaction Service APl EXIENSIONS........cccoiecuicie ettt 7-11
(o= o] (Lo ST SR 7-11
TransactionCurrent INtErface.........oovvveeee e 7-12

Interface Repository Interfaces

SErUCIUrE @NA USAJE.. ...ttt ettt e e sr b 8-3
From the Programmer’s Point of VIeWcccocoiiiiiiii e 8-4
Performance ImpliCations 8-5
Building Client APPlICAtIONSuiiiiieie et 8-5
Getting Initial References to the InterfaceRepository Objectoccueieeee 8-6
Interface Repository INterfaces....... ... 8-6
Supporting Type DefinitioNSoooiiiiiiiii e 8-6
IRODJECT INTEITACEeeieiee e e e e e e e e e e e e e e e aee e e 8-7
CoNtaiNed INLEITACEcoveiiie i 8-8
CoNtAINEr INTEITACE ..o e 8-9
IDLTYPE INtEITACE .. ceii it 8-11
RepOSItOry INtErfaceooiiiiieie e 8-11
ModuleDef INTEIfACEoccoi i 8-12
ConstantDef INEITACEccveviiiiiii e 8-12
TypedefDef INTErface ... 8-13
SHTUCTDET .. 8-14
UNIONDET ... e e 8-14
ENUMDET ... e 8-15
ABIBSDET .o 8-15
PHMItIVEDET ... 8-16
EXCEPLONDET ... e 8-17
ARFDULEDET ... 8-17
OPErAtIONDET ...t 8-18
INEEITACEDET ...t 8-20

Java Programming Reference Vii

9. Joint Client/Server Applications

gL oo (1 (' o TSRS 9-2
Main Program and Server Initializationoccceeniiennine e 9-2
SEIVANES ...ttt ettt ettt ettt et re et e eb e e e b e b b ben b en e bt e e nas 9-3
Servant Inheritance from SKeletons............cccoveeririiiiicne e 9-4
Callback Object Models SUPPOIEd..........ooeieeeuiririere e 9-4
Preparing Callback Objects using BEAWrapper Callbacks............c...c...... 9-6
Threading Considerationsin the Main Programcccccceeeve e e, 9-7

MUIPIE THIrEads ..ot e 9-8

Java Client ORB [NitialiZation..........cccovoereeiieirierie e 9-8
[TOP SUPPOIT..... ettt ettt e e bbb e 9-9
JaVa APPIEL SUPPOITeoveieeee ettt e e 9-9

Port Numbers for Persistent Object References.........cccocevvveveevieenne. 9-9
Callbacks Interface APo e s 9-10

10. Java Development and Administration Commands

DUITOJAVASEIVEN ...t e 10-3
PUITAXAIS ..ot 10-5
(4010 [(o] V7= TR 10-7
11. CORBA ORB

NitiaiZING the ORB...... .o e 11-1
Passing the Address of the [IOP Listener........ccocovoeve e, 11-3
Initializing the ORB for Native and Remote Clients..........cccceeeeveiecieiecnens 11-3

12. Mapping IDL to Java
[DL 10 JAVA OVEIVIEWevieeieeeee ettt e 12-1
Package Comments on Holder Classescoeoeeevireeieie e 12-3
EXCEPLIONS ...ttt ettt et et n e a et n e 12-4
Differences Between CORBA and Java EXceptions..........cccceeveeeieniennns 12-5
SYSEEM EXCEPLIONS.....cce ettt e et se e e 12-5
System EXCEption StrUCTUNEcc.eveeiueie e 12-6
MINOT COUES......uieiieiieeiee ettt 12-6
COMPIELION SEALUScevieee et e e 12-6
USEr EXCEPLIONS. ...ttt sttt st e s es b sne e enens 12-7
Minor Code MEBNINGS.......ccviieeieeieeee ettt st e e 12-7

Viii Java Programming Reference

Preface

Purpose of This Document

This document provides Java programmer reference information for the following
BEA WebL ogic Enterprise (sometimes referred to as WL E) product components:

L4

* & & & & O ¢ > o o

OMG IDL

Server Description File

TP Framework

Bootstrap object

FactoryFinder

Security Service

Transaction Service

Interface Repository

Application build and administration commands
CORBA ORB

IDL to Java mapping

Java Programming Reference Xi

Theinformation provided in this document is supplemented by the Java API
Reference, which contains descriptions of the application programming interface
(API) for the following components:

4 TP Framework

4+ Bootstrap object

4 FactoryFinder

4 Security Service

4 JavaTransaction Service (JTS)
¢

Java Transaction API (JTA)

Note: Effective February 1999, the BEA M3 product isrenamed. The new name of
the product is BEA WebL ogic Enterprise (WLE).

Who Should Read This Document

Thisdocument isintended for application devel opersinterested in using the WebL ogic
Enterprise software to write the following applications:

4 Server applications implemented in the Java programming language
4+ All client applications supported by the WebL ogic Enterprise product

This document assumes a familiarity with CORBA and Java programming. For
referenceinformation about implementing WebL ogic Enterprise server applicationsin
the C++ programming language, see the C++ Programming Reference.

How This Document Is Organized

The Java Programming Referenceis organized as follows:

4 Chapter 1, “OMG IDL Syntax,” provides a brief discussion on the Object
Management Group (OMG) Interface Definition Language (IDL), and includes a
cross-reference to a recommended publication about OMG IDL coding style
guidelines.

Xii Java Programming Reference

4 Chapter 2, “Server Description File,” describes the Server Description File.

>

Chapter 3, “TP Framework,” includes high-level programming topics relevant to
the WebLogic Enterprise TP Framework.

Chapter 4, “Bootstrap Object,” describes the Bootstrap object.
Chapter 5, “FactoryFinder Interface,” describes the FactoryFinder interface.
Chapter 6, “Security Service,” describes the Security Service.

Chapter 7, “Transaction Service,” describes the Transaction Service.

* & & o o

Chapter 8, “Interface Repository Interfaces,” describes the Interface Repository
interfaces.

4 Chapter 9, “Joint Client/Server Applications,” describes programming
requirements for joint client/servers.

4 Chapter 10, “Java Development and Administration Commands,” describes the
development and administration commands for WebLogic Enterprise
applications on UNIX and Windows NT platforms.

4 Chapter 11, “CORBA ORB,” provides a number of programming topics related
to using the CORBA ORB. The information provided in this chapter is
supplementary to the Sun Microsystems, Inc. documentation of the
or g. onmg. CORBA package API, which is available in the Java Development Kit
(JDK) 1.2.

4 Chapter 12, “Mapping IDL to Java,” contains reprints on select topics on
mapping IDL to Java from the Java IDL documentation published by Sun
Microsystems, Inc.

How to Use This Document

This documentJava Programming Reference, is designed primarily as an online,
hypertext document. If you are reading this as a paper publication, note that to get full
use from this document you should access it as an online document via the Online
Documentation CD for the BEA WebLogic Enterprise 4.2 release.

Java Programming Reference Xiii

Thefollowing sections explain how to view this document online, and how to print a
copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the following file:
\ doc\w e\ v42\i ndex. ht m

Note: The online documentation requires Netscape Communicator version 4.0 or
later, or Microsoft Internet Explorer version 4.0 or later.

Printing from a Web Browser

Y ou can print a copy of this document, one file at atime, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print.

The Online Documentation CD includes Adobe Acrobat PDF files of all of the online
documents. Y ou can use the Adobe Acrobat Reader to print all or a portion of each
document. On the CD Home Page, click the PDF Files button and scroll to the entry
for the document you want to print.

Documentation Conventions

Xiv

The following documentation conventions are used throughout this document.

Convention Item

boldfacetext Indicatesterms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

Java Programming Reference

Convention

Item

nonospace Indicates code samples, commands and their options, data structures and
t ext their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#i ncl ude <iostreamh> void main () the pointer psz
chmod u+w *
.doc
Bl TMAP
fl oat
nonospace Identifies significant wordsin code.
bol df ace Example:
t ext . .
void commt ()
nonospace Identifies variables in code.
italic Example:
t ext .
String expr
UPPERCASE Indicates device names, environment variables, and logica operators.
TEXT Examples:
LPT1
SIGNON
OR
{} Indicates a set of choicesin a syntax line. The braces themselves should

never be typed.

[]

Indicates optional itemsin a syntax line. The brackets themsel ves should
never be typed.

Example:

buil dobjclient [-v] [-0o name | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Java Programming Reference XV

Convention Item

Indicates one of the following in acommand line:

4 That an argument can be repeated several timesin acommand line

4 That the statement omits additiona optional arguments

4 That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

Related Documentation

Thefollowing sections list the documentation provided with the BEA WebL ogic
Enterprise software, related BEA publications, and other publications related to the
technology.

BEA WebLogic Enterprise Documentation

The BEA WebL ogic Enterprise information set consists of the following documents:
Installation Guide

C++ Release Notes

Java Release Notes

Getting Sarted

Guideto the University Sample Applications

Guideto the Java Sample Applications

XVi Java Programming Reference

Creating Client Applications

Creating C++ Server Applications
Creating Java Server Applications
Administration Guide

Using Server-to-Server Communication
C++ Programming Reference

Java Programming Reference (this document)
Java API Reference

JDBC Driver Programming Reference
System Messages

Glossary

Technical Articles

Note: The Online Documentation CD also includes Adobe Acrobat PDF files of all
of the online documents. Y ou can use the Adobe Acrobat Reader to print all
or aportion of each document.

BEA Publications

Selected BEA TUXEDO Release 6.5 for BEA WebL ogic Enterprise version 4.2
documents are available on the Online Documentation CD.

To access these documents:
1. Click the Other Reference button from the main menu.

2. Click the TUXEDO Documents option.

Java Programming Reference XVii

Other Publications

XViii

For more information about CORBA, Java, and related technologies, refer to the
following books and specifications:

Cobb, E. 1997. The Impact of Object Technology on Commercial Transaction
Processing. VLDB Journal, Volume 6. 173-190.

Edwards, J. with DeVoe, D. 1997. 3-Tier Client/Server At Work. Wiley Computer
Publishing.

Edwards, J., Harkey, D., and Orfali, R. 1996. The Essential Client/Server Survival
Guide. Wiley Computer Publishing.

Flanagan, David. May 1997. Java in a Nutshell, 2nd Edition. O’'Reilly & Associates,
Incorporated.

Flanagan, David. September 199&va Examplesin a Nutshell. O’Reilly &
Associates, Incorporated.

Fowler, M. with Scott, K. 1997UML Distilled, Applying the Sandard Object
Modeling Language. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. T3&fgn Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series.

Jacobson, |. 1990bject-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley.

Mowbray, Thomas J. and Malveau, Raphael C. (Contributor). X3ORBA Design
Patterns, Paper Back and CD-ROM Edition. John Wiley & Sons, Inc.

Orfali, R., Harkey, D., and Edwards, J. 198%tant Corba. Wiley Computer
Publishing.

Orfali, R., Harkey, D. February 1998lient/Server Programming with Java and
CORBA, 2nd Edition. John Wiley & Sons, Inc.

Otte, R., Patrick, P., and Roy, M. 19%derstanding CORBA. Prentice Hall PTR.

Rosen, M. and Curtis, D. 199itegrating CORBA and COM Applications. Wiley
Computer Publishing.

Java Programming Reference

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Loresen, W. 1991.
Object-Oriented Modeling and Design. Prentice Hall.

The Common Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. Published by the Object Management Group (OMG).

CORBAservices: Common Object Services Specification. Revised Edition. Updated:
November 1997. Published by the Object Management Group (OMG).

Contact Information

The following sections provide information about how to obtain support for the
documentation and the software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail a docsuppor t@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about thisversion of the BEA WebL ogic Enterprise product,
or if you have problems installing and running the BEA WebL ogic Enterprise
software, contact BEA Customer Support through BEA WebSupport at

wwmv. beasys. com You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which isincluded in the product
package.

When contacting Customer Support, be prepared to provide the following information:
4+ Your name, e-mail address, phone number, and fax number

4 Your company hame and company address

Java Programming Reference Xix

4 Your machine type and authorization codes
4 Thename and version of the product you are using

4 A description of the problem and the content of pertinent error messages

XX Java Programming Reference

CHAPTER

1 OMG IDL Syntax

The Object Management Group (OMG) Interface Definition Language (IDL) is used

to describe the interfaces that client objects call and that object implementations

provide. An OMG IDL interface definition fully specifies each operation’s parameters
and provides the information needed to develop client applications that use the
interface’s operations.

Client applications are written in languages for which mappings from OMG IDL
statements have been defined. How an OMG IDL statement is mapped to a client
language construct depends on the facilities available in the client language. For
example, an OMG IDL exception might be mapped to a structure in a language that
has no notion of exception, or to an exception in a language that does.

OMG IDL statements obey the same lexical rules as C++ statements, although new
keywords are introduced to support distribution concepts. OMG IDL statements also
provide full support for standard C++ preprocessing features and OMG IDL-specific
pragmas.

The OMG IDL grammar is a subset of ANSI C++ with additional constructs to support
the operation invocation mechanism. OMG IDL is a declarative language; it supports
C++ syntax for constant, type, and operation declarations; it does not include any
algorithmic structures or variables.

For a description of OMG IDL grammar, see Chapter 3 o€thramon Object Request
Broker: Architecture and Specification Revision 2.2 “OMG IDL Syntax and
Semantics.”

Java Programming Reference 1-1

1 omG iDL Syntax

Style Guidelines for Writing OMG IDL
Statements

Refer to the following publication for OMG IDL style guidelines:

Mowbray, Thomas J. and Malveau, Raphael C.(Contributor). 1997.
CORBA Design Patterns, Paper Back and CD-ROM Edition.
John Wiley & Sons, Inc.

OMG IDL Extensions

The IDL compiler defines preprocessor macros specific to the platform. All the
macros predefined by the preprocessor that you are using can be used inthe OMG IDL
file, in addition to the user-defined macros. Y ou can also define your own macros
when you are compiling or loading OMG IDL files.

1-2 Java Programming Reference

CHAPTER

2

Server Description File

This chapter contains the following topics:

4 Creating the Server Description File. This section includes the following topics:
4 About Object Activation and Deactivation
4 Server Description File Syntax

4 Sample Server Description File

When you create a Java server application meant to berun in the WebL ogic Enterprise
environment, the bui | dj avaser ver command accepts the following information:

4 Default activation and transaction policiesfor all the objects implemented in the
server application

4 The server declaration, which includes the name of the Server object and the
name of the server descriptor file

¢ Thedeclarations of each of the modules and interfaces defined in the server
application’s OMG IDL file

4+ Nondefault activation and transaction policies for specific objects implemented
in the server application

4 A description of the content of the server applicatipmis archive, which
contains all the files needed by the server application

You specify all the preceding information in a Server Description File, which is used
by thebui | dj avaser ver command to create the server descriptor file and, optionally,
build a servef ar file.

Java Programming Reference 2-1

2 Server Description File

Creating the Server Description File

Themeansto provide theinformation required by the bui | dj avaser ver commandis
the Server Description File, which isexpressed inthe XML language. XML looksvery
similar to HTML ; itskey difference isthat no XML tag is predefined. Every XML file
uses a Document Type Definition (DTD) file that specifies:

4 What the XML tags are
4 What attributes can be attached to an element
4 What elements can be used in other e ements

TheDTD required by theWebL ogic Enterprise system ispackaged with the WebL ogic
Enterprise software. Y ou create the Server Description File using a common text

editor. The section “About Object Activation and Deactivation” on page 2-2 provides
important background information about the policies you define in the Server
Description File, and the section “Server Description File Syntax” on page 2-3
provides the details on how to specify the server description information in a Server
Description File.

About Object Activation and Deactivation

2-2

The WebLogic Enterprise TP Framework application programming interface (API)
provides callback methods for object activation and deactivation. These methods
provide the ability for application code to implement flexible state management
schemes for CORBA objects.

State management is the way you control the saving and restoring of object state durir
object deactivation and activation. State management also affects the duration of
object activation, which influences the performance of servers and their resource
usage. The external API of the TP Framework includes the

com beasys. Tobj _Servant . acti vat e_obj ect and

com beasys. Tobj _Servant . deacti vat e_obj ect methods, which provide a

possible location for state management code. Additionally, the TP Framework API
includes the&eom beasys. Tobj . TP. deact i vat eEnabl e method to enable the user

Java Programming Reference

Creating the Server Description File

to control the timing of object deactivation. The default duration of object activationis
controlled by policies assigned to implementationswhen the server application isbuilt
by the bui | dj avaser ver command.

While CORBA objects are active, their stateis contained in a servant. This state must
beinitialized when objects arefirst invoked (that is, thefirst time amethod isinvoked
on aCORBA object after itsobject referenceis created) and on subsequent invocations
after objects have been deactivated.

While a CORBA object is deactivated, its state must be saved outside the process in

which the servant was active. When an object is activated, its state must be restored.

The object’s state can be saved in shared memory, in a file, in a database, and so forth.
It is up to the programmer to determine what constitutes an object’s state, and what
must be saved before an object is deactivated, and restored when an object is activated.

You can use the Server Description File to set activation policies to control the
duration of object activations in the server process. The activation policy determines
the in-memory activation duration for a CORBA object. A CORBA object is active in

a Portable Object Adapter (POA) if the POA's active object map contains an entry that
associates an object ID with an existing servant. Object deactivation removes the
association of an object ID with its active servant.

Server Description File Syntax

The Server Description File has the following four major parts:
4 Prolog

4 Server declaration

4 Module and implementation declarations

4 Archive declaration

The sections that follow explain the syntax and how to specify each of these parts of
the Server Description File.

Java Programming Reference 2-3

2 Server Description File

Prolog

Every Server Description File begins with the following required prolog:

<?xm version="1.0"?>
<! DOCTYPE MB- SERVER SYSTEM "n8. dt d">

If you want to override the default activation or transaction policy used by the
bui | dj avaser ver command, you can override those defaultsin the prolog using the
following syntax:

<?xm version="1.0"?>
<! DOCTYPE M3- SERVER SYSTEM "n8. dtd" [
<IENTI TY TRANSACTI ON_POLI CY "transacti on_val ue">
<I'ENTI TY ACTI VATI ON_PQOLI CY "activation_val ue">
1>

In the preceding syntax, note the following:

¢ transaction_val ue represents one of the following: never, i gnore,
opti onal , or al ways. (Note that the double quotes are arequired part of the

syntax.)

¢ activation_policy represents one of the following: net hod, t ransacti on,
or process.

4 Thesquare brackets ([and]) preceding and following the! ENTI TY tags are
required; that is, the brackets in the preceding syntax do not imply that the
enclosed text is optional.

Note that you specify default activation and transaction policiesin the prolog only if
you want to override the following WebL ogic Enterprise system defaults:

Activation Policy met hod

Transaction Policy opt i onal

Server Declaration

2-4

Immediately following the prolog is the server declaration, which is an optional part
of the Server Description File. The server declaration contains the following:

4 Thefully qualified name of the Server object

Java Programming Reference

Creating the Server Description File

4+ Thefully qualified name of the file containing the server descriptor
To specify the server declaration, use the following syntax:
<MB3- SERVER SERVER- | MPLEMENTATI ON="ser ver_nane"

SERVER- DESCRI PTOR- NAME=" server_descri ptor" >
</ M3- SERVER>
In the preceding syntax, note the following:

¢ server_nanme representsthefully qualified name of the class that contains the
Server object. Qualified names use dot separators, not slashes. If you do not
specify the Server object, the WebL ogic Enterprise system creates a default
Server object that opens and closes the X A resource manager associated with the
server application, if any, when the server application is started and stopped,
respectively. (Note that the double quotes are arequired part of the syntax.)

¢ server_descript or representsthe name of the file where the server descriptor
will be stored. Thisfile nametypically hasa . ser suffix. If you do not specify a
server descriptor, the bui | dj avaser ver command uses Ser ver . ser by default.

Module and Implementation Declarations

After the prolog and the server declaration (if present), the Server Description File
contains module and implementation declarations, which may be specified as nested
elements.

The module declarations specify Java packages for the server application. Interface
declarations specify:

4 Theinterface repository ID for the interface being implemented

4 Optionally, nondefault activation or transaction policies for objects that
implement the interface

Module Declaration Syntax

A modul e declaration uses the following syntax:

<MODULE nane=" nane">

</ MODULE>

Java Programming Reference 2-5

2 Server Description File

In the preceding syntax, note the following:

4+ nane represents the name of either asingle Java package, or a set of nested
packages. Thisvariableis needed if it existsinthe OMG IDL file, and it is used
for scoping and grouping. Its use must be consistent with the way it is used
insidethe OMG IDL file.

4 A module declaration can contain an implementation declaration, nested module
declaration, or both.

4 You can specify a nested package in a single module declaration using the dotted
notation, or you can factor out the package name using nested module
declarations. For example, either of the following module declarations for the
com acne packageisvalid:

<MODULE nane="com acne" >

</ MODULE>
or:

<MODULE nane="coni >
<MODULE nane="acne" >

</ MODULE>
</ MODULE>

Implementation Declaration Syntax

An implementation declaration uses the following syntax:

<I MPLEMENTATI ON nane=" nane"
[impl ements="interface id"]
[transacti on="transaction_policy"]
[activation="activation_policy"] >

In the preceding syntax, note the following:

4 nane represents the name of the implementation class. If the implementation
declaration is not nested inside any module declaration, name must be the fully
qualified class name, using the dotted notation.

2-6 Java Programming Reference

Creating the Server Description File

If the implementation declaration is nested inside one or more module
declarations, the names of the modules will be prepended to the implementation
name to specify the whole name. The base class of the implementation name
must be a skeleton class generated by the n8i dl t oj ava command.

i nterface_idrepresentsthe IDL interface repository ID for the interface being
implemented. This clause in the implementation declaration is optional. If you
do not specify an interface I D, the WebL ogic Enterprise system uses the most
derived interface ID found in the skeleton class by default. The interface ID
must match the most derived interface D found in the skeleton class.

transaction_pol i cy represents the transaction policy used by the
implementation in the server, and must be one of the keywords listed and
described in the following table:

Policy Description

never The implementation is not transactional. Objects created for thisinterface

can never be invoked within the scope of atransaction. The system
generates an exception (I NVALI D_TRANSACTI ON) if an implementation
with thispalicy isinvolved in atransaction. An AUTOTRAN policy specified
in the UBBCONFI Gfile for the interface isignored.

i gnore Theimplementation is not transactional. The system all ows requests on this
object to be made within the scope of atransaction, but the object isnot part
of thetransaction. An AUTOTRAN policy specified in the UBBCONFI Gfile
for theinterface isignored. (The BEA TUXEDO infrastructure always
enforces the use of the TPNOTRAN flag (seet pcal | (3) inthe BEA
TUXEDO System Reference) for requests associ ated with i mplementations
that have this policy.

opti onal The implementation may be transactional . Objects can be invoked either

inside or outside the scope of atransaction. If the AUTOTRAN parameter is
enabled in the UBBCONFI Gfile for the interface, the implementation is
transactional. Servers containing transactional objects must be configured
within a group associated with an XA-compliant RM.

al ways The implementation is transactional . Objects are alwaystransactional. If a

request is made outside the scope of atransaction, the system automatically
starts a transaction before invoking the method, and the transaction is
committed when the method ends. (Thisisthe AUTOTRANfeature.) Servers
containing transactional objects must be configured within a group
associated with an XA-compliant RM.

Java Programming Reference 2-7

2 Server Description File

2-8

Thetransaction clause isoptional. If you do not specify a transaction policy, the
default isopt i onal , unless the default value has been overridden in the prolog.

4 activation_policy represents the activation policy used by the
implementation in the server, and must be one of the keywords listed and
described in the following table:

Policy Description

nmet hod The activation of the CORBA object (that is, the association between the
object ID and the servant) lasts until the end of the method. At the
completion of amethod, the object is deactivated. When the next method
isinvoked on the object reference, the CORBA object is activated (the
object ID is associated with a new servant). This behavior is similar to
that of a BEA TUXEDO stateless service.

transaction Theactivation of the CORBA object (that is, the association between the
object ID and the servant) lastsuntil the end of thetransaction. During the
transaction, multiple object methods can be invoked. Thisisamodd of
resource allocation that is similar to that of aBEA TUXEDO
conversational service.

This model is less expensive than the BEA TUXEDO conversational

servicein that it uses fewer system resources. This is because of the

WebL ogic Enterprise ORB’s multicontexted dispatching model (that is,
the presence of many servants in memory at the same time for one
server), which makes it possible for a single server process to be shared
by many concurrently active servants, which service many clients. In the
BEA TUXEDO system, the process would be dedicated to a single client
and to only one service for the duration of a conversation.

process The activation of the CORBA object (that is, the association between the
object ID and the servant) lasts until the end of the process.

Note: The TP Framework API provides an interface method

(com beasys. Tobj . TP. deact i vat eEnabl e()) that allows the
application to control the timing of object deactivation for objects that
have theact i vati on poli cy settopr ocess. For a description of
this method, see thiava APl Reference.

The activation policy determines the default in-memory activation duration for a
CORBA object. A CORBA object isactivein aPOA if the POA’s active object map
contains an entry that associates an object ID with an existing servant. Object
deactivation removes the association of an object ID with its active servant.

Java Programming Reference

Creating the Server Description File

The activation clauseis optiona. If you do not specify an activation policy, the default
is met hod, unless the default value has been overridden in the prolog.

Archive Declaration

The archive declaration describes the content of thej ar archive that contains all the
server application files. This section of the Server Description Fileis optional; if you
do not provide this section, you can build the j ar archive by using thej ar command
directly. However, declaring an archive in the Server Description File simplifies the
process of collecting and identifying the files.

The archive declaration isthelast section of the Server Description File. If you do not
include an archive declaration, the bui | dj avaser ver command produces only the
server descriptor and placesit in thefile specified by the ser ver - descri pt or - name
attribute in the server declaration.

Y ou specify the content of the <ARCHI VE> element aseither fully qualified Javaclasses
or file names. When specifying file names, note that path specifications are system
dependent, which has implications on archive portability.

Thebui | dj avaser ver command has the sear chpat h option, which you can use to
specify the search path for the files and classes included in the archive.

Note: After youusethebui | dj avaser ver command to createthej ar archive, you
might find it useful to verify the contents of the archive by usingthej ar t vf
command. This helps make surethat the archive contains al the intended
files.

Archive Declaration Syntax

The archive declaration has the following syntax:

<ARCHI VE nane=" ar chi ve- nane" >

[<CLASS nane="cl ass-nane" [>] [...]

[<PACKAGE nane=" package- nane" [>] [...]

[<PACKACGE- RECURSI VE nane=" package-nanme"/>] [...]

[<PACKAGE- ANONYMOUS / >]

[<FILE prefix="file-prefix" name="file-nanme" [>] [...]

[<Dl RECTORY prefix="dir-prefix" name="dir-nanme" [>] [...]
</ ARCH VE>

In the preceding syntax, note the following:

Java Programming Reference 2-9

2 Server Description File

2-10

Each of the entities nested inside the <ARCHI VE> element is optional, and there
are no default values for any of these entities.

The[...] construct next to an entity indicates that you can provide multiple
such entities.

ar chi ve- nanme representsthe name of thej ar archivefile to be created by the
bui | dj avaserver command. The archive created contains all the classes,
packages, and files specified within the <ARCH VE> element.

cl ass- nane represents the fully qualified name of the class to be included in
the archive. All inner classes of that class are included as well.

package- nanme represents the fully qualified name of apackage to be included
in the archive. All the classes belonging to that package are included aswell.

If you want to include nested packages, use the <PACKAGE- RECURSI VE>
element.

Use the <PACKAGE- ANONYMOUS> element to specify that all classesnot in a
package are to be included in the archive. (This refers to the classes that do not
have apackage statement in the Java source.)

fil e- nane represents the name of afileto be included in the archive. You can
usethefil e- prefi x construct to specify a path name. This path nameis
prepended to the file name when the file is located to be included in the archive;
however, the file is stored in the archive only with the name specified by

fil e-nane.

For example, if thefil e- name isacne/i conf. gi f,andthefile-prefixis
/ dev, the bui | dj avaser ver command looks for the file
/ dev/ acme/i conf. gi f and storesitinthearchiveasacne/iconf.gif.

di r - nane represents the path name of the directory to be included in the
archive. All subdirectories are included aswell. You can usethe di r- prefi x
construct to specify a directory path. The directory path is prepended to the
directory name when the directory is located to be included in the archive;
however, the file is stored in the archive only with the name specified by

di r - nane.

Java Programming Reference

Sample Server Description File

Sample Server Description File

Listing 2-1 shows a sample Server Description File.

Listing 2-1 Sample Server Description File

<?xm version="1.0"?>
<! DOCTYPE MB- SERVER SYSTEM "n8. dtd"]>

<MB- SERVER
server-inpl ement ati on="com beasys. sanpl es. BankAppSer ver | npl "

server -descri pt or- nane="BankApp. ser" >

<MODULE nane="com beasys. sanpl es" >
<| MPLEMENTATI ON
name="Tel | er Factoryl npl" />
activation="process"
transacti on="never"
/>

<| MPLEMENTATI ON
nanme="Tel l erl npl "/ >
activati on="net hod"
transacti on="never"
/>

<| MPLEMENTATI ON
name="DBAccessl npl "
activati on="net hod"
transacti on="never"
/>

</ MCDULE>

<ARCHI VE name="BankApp.jar">
<PACKAGE nane="com beasys. sanpl es"/>

</ ARCH VE>
</ MB- SERVER>

For an example of another Server Description File, see Creating Java Server
Applications.

Java Programming Reference 2-11

2 Server Description File

2-12 JavaProgramming Reference

CHAPTER

3

TP Framework

This chapter contains the following topics:

4 TP Framework Interfaces. This section describes the following interfaces:
4 Tobj_Servant Interface
4 Server Interface

¢ TPInterface

4 Transactions Usage Notes. This section describes the following topics:
4 Transaction Termination
4 Transaction Suspend and Resume
4 Restrictions

4 Voting on Transaction Outcome

The WebL ogic Enterprise TP Framework provides a programming framework that
enables usersto create servers for high-performance TP applications. This chapter
describes the architecture of and interfaces in the TP Framework. Information about
the TP Framework APl isinthe Java API Refer ence. | nformation about how to usethis
API can be found in Creating Java Server Applications.

The TP Framework consists of:

¢ Thecom beasys. Tobj _Servant class, which has virtual methods for object
state management

4 Thecom beasys. Tobj . Server class, which hasvirtual methods for
application-specific server initialization and termination logic

¢ Thecom beasys. Tobj . TP class, which provides methods to:

4 Create object references for CORBA objects

Java Programming Reference 31

3 TP Framework

Register (and unregister) factories with the FactoryFinder object

Initiate user-controlled deactivation of the CORBA object currently being
invoked

Obtain an object reference to the CORBA object currently being invoked

Open and close XA resource managers

> & &

L og messagesto a user log (ULOG) file
4 Obtain object references to the ORB and to Bootstrap objects
4+ Header filesfor these classes

4 A library to be link-edited with server applications

TP Framework Interfaces

The TP Framework supports the following interfaces:
4 com beasys. Tobj _Ser vant

4 com beasys. Tobj . Server

4 com beasys. Tobj . TP
¢

org. omg. CosTransact i ons. Tr ansacti onal Obj ect (deprecated in the
previous rel ease)

Tobj_Servant Interface

The com beasys. Tobj _Ser vant interface defines operations that allow a CORBA
object to assist in the management of its state. Every implementation skeleton
generated by the IDL compiler automatically inherits from the

com beasys. Tobj _Servant class. Thecom beasys. Tobj _Servant classcontains
two virtual methods, act i vat e_obj ect and deact i vat e_obj ect , that can be
redefined by the programmer.

3-2 Java Programming Reference

TP Framework Interfaces

Whenever arequest comesin for aninactive CORBA object, theobject isactivated and
theacti vat e_obj ect method isinvoked on the servant. When the CORBA object is
deactivated, the deact i vat e_obj ect method is invoked on the servant. The timing
of deactivation is driven by the implementation’s activation policy. When

deact i vat e_obj ect is invoked, the TP Framework passes in a reason code to
indicate why the call was made.

Note: Theactivate_obj ect anddeact i vate_obj ect methods are the only
methods that the TP Framework guarantees will be invoked for CORBA
object activation and deactivation. The servant class constructor and
destructor may or may not be invoked at activation or deactivation time.
Therefore, the server-application code must not do any state handling for
CORBA objects in either the constructor or destructor of the servant class.

Server Interface

Thecom beasys. Tobj . Ser ver interface provides callback methods that can be used
for application-specific server initialization and termination logic. The
com beasys. Tobj . Server class is a Java class.

Note: Unlike implementing C++ server applications with the WebLogic Enterprise
system, when you are implementing Java server applications with the
WebLogic Enterprise system, you must provide definitions for the
com beasys. Tobj . Server.initialize and
com beasys. Tobj . Ser ver. r el ease methods. The TP Framework provides
default versions of these methods.

TP Interface

Thecom beasys. Tobj . TP interface supplies a set of service methods that can be
invoked by application code. This is thely interface in the TP Framework that can
safely be invoked by application code. All other interfaces have callback methods that
are intended to be invoked only by system code.

Java Programming Reference 3-3

3 TP Framework

The purpose of thisinterfaceisto provide high-level callsthat application code can
cal, instead of callsto underlying APIs provided by the Portable Object Adapter
(POA), the CORBA services Naming Service, and the BEA TUXEDO system. By
using these calls, programmers can learn asimpler APl and are spared the complexity
of the underlying APIs.

The com beasys. Tobj . TP interface implicitly usestwo features of the WebL ogic
Enterprise software that extend the CORBA APIs:

4 Factories and the FactoryFinder object
4 Factory-based routing

Usage Notes

During server application initialization, the application constructs the object reference
for an application factory. It then invokesther egi st er _f act or y method, passing in
the factory’s object reference together with afactory i d field. On server release
(shutdown), the application usesthe unr egi st er _f act or y method to unregister the
factory.

TransactionalObject Interface Not Enforced

34

Theor g. ong. CosTransact i ons. Tr ansact i onal Obj ect interface was formerly
used to indicate that an object was transactional. In the previous version of the
WebL ogic Enterprise software, if atransactional invocation was done on an object that
did not descend from the or g. ong. CosTr ansact i ons. Transact i onal Qbj ect
interface, an exception wasraised. Therefore, in the previous version, an object had to
descend fromthe or g. ong. CosTransact i ons. Tr ansact i onal Cbj ect interfaceto
be eligible to participate in transactions. This behavior was enforced by the TP
Framework.

However, in version 2.1 of the WebL ogic Enterprise software, this interface is
deprecated. Therefore, the use of thisinterface is now optional and no enforcement of
descent from thisinterfaceisdonefor objectsinfected with transactions. By specifying
thenever ori gnor e transaction policies, the programmer can specify that an object
isnot to be infected by transactions. Thereis no interface enforcement for eligibility
for transactions. The only indicator isthe transaction policy.

Java Programming Reference

Transactions Usage Notes

Note: The CORBAservices Object Transaction Service does not require that all

requests be performed within the scope of atransaction. It isup to each object
to determine its behavior when invoked outside the scope of atransaction; an
object that requires a transaction context can raise a standard exception.

Transactions Usage Notes

The following sections provide some information about how to use transactions.

Transaction Termination

In general, the handling of the outcome of atransaction is the responsibility of the
initiator. Therefore, the following istrue:

L4

If the client or server application code initiates transactions, the TP Framework
never commits atransaction. The WebL ogic Enterprise system may roll back the
transaction if server processing triesto return to the client with the transaction in
anillegal state.

If the system initiates a transaction, the commit or rollback will always be
handled by the WebL ogic Enterprise system.

The following behavior is enforced by the Webl ogic Enterprise system:

L4

If no transaction is active when a method on a CORBA object isinvoked and
that method begins a transaction, the transaction must be either committed,
rolled back, or suspended when the method invocation returns. If none of these
actionsistaken, the transaction is rolled back by the TP Framework and the

or g. omg. CORBA. OBJ_ADAPTER exception is raised to the client application.

This exception is raised because the transaction was initiated in the server
application; therefore, the client application would not expect a transactional
error condition such as TRANSACTI ON_ROLLEDBACK.

Java Programming Reference 3-5

3 TP Framework

Transaction Suspend and Resume

3-6

The CORBA object must follow strict rules with respect to suspending and resuming
atransaction within a method invocation. These rules and the error conditions that
result from their violation are described in this section.

When a CORBA object method begins execution, it can be in one of the following
three states with respect to transactions:

4 Theclient application began the transaction.

4 \Valid server application behavior: Suspend and resume the transaction
within the method execution.

4 Invalid server application behavior: Return from the method with the
transaction in the suspended state (that is, return from the method without
invoking resumeif suspend was invoked).

4 Error Processing: If invalid behavior occurs, the TP Framework raises the
org. omg. CORBA. TRANSACTI ON_ROLLEDBACK exception to the client
application and the transaction is rolled back by the WebL ogic Enterprise
system.

4 Thesystem began atransaction to provide AUTOTRAN or transaction policy
al ways behavior.

Note: For each CORBA interface, set AUTOTRANtO Y esif you want atransaction to
start automatically when an operation invocation is received. Setting
AUTOTRAN to Y es has no effect if the interface is already in transaction mode.
For more information about AUTOTRAN, refer to the Administration Guide.

4 \Valid server behavior: Suspend and resume the transaction within the method
execution.

Note: Not recommended. The transaction may be timed out and aborted before
another request causes the transaction to be resumed.

4 Invalid server behavior: Return from the method with the transaction in the
suspended state (that is, return from the method without invoking resume if
suspend was invoked).

4 Error Processing: If invalid behavior occurs, the TP Framework raises the
org. omg. CORBA. OBJ_ADAPTER exception to the client and the transaction is
rolled back by the system. The or g. ong. CORBA. OBJ_ADAPTER exception is

Java Programming Reference

Transactions Usage Notes

raised because the client application did not initiate the transaction, and,
therefore, does not expect transaction error conditions to be raised.

4 The CORBA object isnot involved in a transaction when it starts executing.
4 Valid server behavior:
4 Begin and commit a transaction within the method execution.
4+ Begin androll back atransaction within the method execution.
4 Begin and suspend a transaction within the method execution.

4 Invalid server behavior: Begin atransaction and return from the method with
the transaction active.

4 Error Processing: If invalid behavior occurs, the TP Framework raises the
or g. onmg. CORBA. OBJ_ADAPTER exception to the client application and the
transaction isrolled back by the WebL ogic Enterprise system. The
or g. onmg. CORBA. OBJ_ADAPTER exception is raised because the client
application did not initiate the transaction, and, therefore, does not expect
transaction error conditions to be raised.

Restrictions

The following restrictions apply to WebL ogic Enterprise transactions:

4 A CORBA object in the WebL ogic Enterprise system must have the same
transaction context when it returns from a method invocation that it had when
the method was invoked.

4 A CORBA object can be infected by only one transaction at atime. If an
invocation tries to infect an already infected object, an
or g. omg. CORBA. | NVALI D_TRANSACTI ON exception is returned.

4 If aCORBA object isinfected with atransaction and a nontransactional request
ismade on it, an or g. ong. CORBA. OBJ_ADAPTER exception is raised.

4 If the application begins atransaction in the
com beasys. Tobj . Server.initialize method, it must either commit or roll
back the transaction before returning from the method. If it does not, the TP
Framework shuts down the server. Thisis because the application has no
predictable way of regaining control after completing thei ni ti al i ze method.

Java Programming Reference 3-7

3 TP Framework

4 If aCORBA object isinfected by atransaction and with an activation policy of
transaction, and if the reason code passed to the method is either
DR_TRANS_COWM TTI NG or DR_TRANS_ABORTED, no invocation on any CORBA
object can be done from within the
com beasys. Tobj _Servant . deacti vat e_obj ect method. Such an
invocation resultsin an or g. omg. CORBA. BAD | NV_ORDER exception.

4 If an object generates a user exception within a system-generated transaction
(that is, the client did not begin a transaction explicitly), the client application
receivesthe or g. ong. CORBA. OBJ_ADAPTER system exception and not the user
exception.

Voting on Transaction Outcome

3-8

CORBA objects can affect transaction outcome during two stages of transaction
processing:

4 During transactional work

Theor g. omy. CORBA. Current . rol | back_onl y method can be used to ensure
that the only possible outcome is to roll back the current transaction. The
rol | back_only method can be invoked from any CORBA object method.

4 After completion of transactional work

CORBA objects that have the transaction activation policy are given a chance to
vote whether the transaction should commit or roll back after transactional work
is completed. These objects are notified of the completion of transactional work
prior to the start of the two-phase commit a gorithm when the TP Framework
invokesitsdeact i vat e_obj ect method.

Note that this behavior does not apply to objects with process or method
activation policies. If the CORBA abject wantsto roll back the transaction, it
can invoke theor g. ong. CORBA. Current . rol | back_onl y method. If it wants
to vote to commit the transaction, it does not make that call. Note, however, that
avote to commit does not guarantee that the transaction is committed, since
other objects may subsequently vote to roll back the transaction.

Java Programming Reference

Transactions Usage Notes

Note: CORBA objectsthat havethet ransact i on activation policy are, by
definition, notified when a transaction completes, as described above.
However, CORBA objects that have a met hod or pr ocess activation policy
do not receive any notification. Thisissomething that programmers need to be
aware of .

For example, consider aCORBA object with activation policy setto process
that opensan SQL cursor within aclient-initiated transaction. Typically, once
the client application commits the transaction, all cursors that were opened
within that transaction are automatically closed; however, the object does not
receive any notification that its cursor has been closed.

Java Programming Reference 39

3 TP Framework

3-10 JavaProgramming Reference

CHAPTER

A4

Bootstrap Object

This chapter contains the following topics:
4 How Bootstrap Objects Work
4+ Types of Remote Clients Supported
4 Capabilitiesand Limitations
4 Bootstrap Object API. This section describes the following:
4 Tobj Module
4+ JavaMapping
4 Programming Examples. The following examples are provided:
4 Getting a SecurityCurrent Object
4 Getting a UserTransaction Object

To communicate with WebL ogic Enterprise objects, a client application must obtain
object references. The client application uses the Bootstrap object to obtain initial
object references to four key objectsin aWebL ogic Enterprise domain: the
FactoryFinder (whichisusedtolocatefactory objects), SecurityCurrent (whichisused
to log on to the system), TransactionCurrent (which is used to manage transactions),
and the Interface Repository (which is used to obtain information about available
interfaces). However, this poses a problem: How doesthe client application access the
Bootstrap object?

Bootstrap objects arelocal programming objects, not remote CORBA objects, in both
the client and the server. When Bootstrap objects are created, their constructor requires
the network address of a WebL ogic Enterprise |1OP Server Listener/Handler. Given
thisinformation, the Bootstrap object can generate object references for the

Java Programming Reference 4-1

4 Bootstrap Object

above-mentioned remote objectsin the WebL ogic Enterprise domain. These object
references can then be used to access services available in the WebL ogic Enterprise
domain.

How Bootstrap Objects Work

4-2

Bootstrap objects are created by aclient or a server application that must access object
references to the following objects:

4 SecurityCurrent

4 TransactionCurrent
4 FactoryFinder

4 Interface Repository

In addition, you can usethe Bootstrap object to return information needed by the client
application; for example, information needed to initialize the client ORB.

Bootstrap objects represent the first connection to a specific WebL ogic Enterprise
domain. For aWebL ogic Enterprise remote client, the Bootstrap object iscreated with
the host and the port for the WebL ogic Enterprise [|OP Server Listener/Handler.
However, for WebL ogic Enterprise native client and server applications, thereisno
need to specify ahost and port because they execute in a specific WebL ogic Enterprise
domain. The IIOP Server Listener/Handler host and the port ID are included in the
WebL ogic Enterprise domain configuration information.

Once created, Bootstrap objects satisfy requests for object references for objectsin a
particular WebL ogic Enterprise domain. Different Bootstrap objects alow the
application to use multiple domains.

Using the Bootstrap object, you can obtain four different references, as follows:

4 SecurityCurrent

The SecurityCurrent object is used to establish a security context within a
WebL ogic Enterprise domain. The client can then obtain the

Principal Authenticator from the pri nci pal _aut hent i cat or attribute of the
SecurityCurrent object.

Java Programming Reference

How Bootstrap Objects Work

¢ TransactionCurrent

The TransactionCurrent object is used to participate in a WeblL ogic Enterprise
transaction. The basic operations are as follows:

L4

Begin
Begin atransaction. Future operations take place within the scope of this
transaction.

Commit

End the transaction. All operations on this client application have completed
successfully.

Roll back
Abort the transaction. Tell al other participantsto roll back.
Suspend

Suspend participation in the current transaction. This operation returns an
object that identifies the transaction and allows the client application to
resume the transaction later.

Resume

Resume participation in the specified transaction.

4 FactoryFinder

The FactoryFinder object is used to obtain a factory. In the WebL ogic Enterprise
system, factories are used to create application objects. The FactoryFinder
provides the following different methods to find factories:

L4

Get alist of al available factories that match a factory object reference
(fi nd_factori es).

Get the factory that matches a name component consisting of id and kind
(fi nd_one_factory).

Get the first available factory of a specific kind
(fi nd_one_factory_by_id).

Get alist of al available factories of a specific kind
(fi nd_factories_by_id).

Get alist of al registered factories (1 i st _f actori es).

Java Programming Reference 4-3

4 Bootstrap Object

4-4

4+ InterfaceRepository

The Interface Repository contains the interface descriptions of the CORBA
objects that are implemented within the WebL ogic Enterprise domain. Clients
using the Dynamic Invocation Interface (DI1) need areference to the Interface
Repository to be able to build CORBA request structures. The ActiveX Client is
aspecial case of this. Internally, the implementation of the COM/IIOP Bridge
uses DI, so it must get the reference to the Interface Repository, athough thisis
transparent to the desktop client.

The FactoryFinder and Interface Repository objects are not implemented in the
environmental objects library. However, they are specific to a WebL ogic Enterprise
domain and are thus conceptually similar to the SecurityCurrent and
TransactionCurrent objectsin use.

Y ou can aso invoke the following methods on the Bootstrap object to return
information needed by the client application:

4 getNativeProperties

This method returns the properties needed to initialize the ORB for native client
applications. The get Nat i vePr opert i es method must be invoked before any
attempt is made to access any class in the or g. ong. CORBA package.

4 get Renot eProperties

This method returns the properties needed to initialize the ORB for remote client
applications.

4 get User Transacti on

This method returns the current transactional context object to the client
application.

The Bootstrap object impliesan association or "session" between the client application
and the WebL ogic Enterprise domain. Within the context of this association, the
Bootstrap object imposes a containment relati onship with the other Current objects (or
contained objects); that is, the SecurityCurrent and TransactionCurrent. Current
objects are valid only for this domain and only while the Bootstrap object exists.

In addition, a client can have only one instance of each of the Current objects at any
time. If aCurrent object already exists, an attempt to create another Current object does
not fail. Instead, another reference to the already existing object is handed out; that is,
aclient application may have more than one reference to the single instance of the
Current object.

Java Programming Reference

How Bootstrap Objects Work

To create a new instance of a Current object, the application must first invoke the
dest roy_current method onthe Bootstrap object. Thisinvalidatesall of the Current
objects, but will not destroy the session with the WebL ogic Enterprise domain. After
invoking thedest r oy_current method, new instances of the Current objects can be
created within the WebL ogic Enterprise domain using the existing Bootstrap object.

To obtain Current objects for another domain, a different Bootstrap object must be
constructed. Although it is possible to have multiple Bootstrap objects at one time,
only one Bootstrap object may be"active," that is, have Current objects associated with
it. Thus, an application must first invoke thedest r oy_cur rent method on the
"active" Bootstrap object before obtaining new Current objects on another Bootstrap
object, which then becomes the active Bootstrap object.

Servers and native clientsare inside of the WebL ogic Enterprise domain; therefore, no
"session” is established. However, the same containment rel ationships are enforced.
Servers and native clients access the domain they are currently in by specifying an
empty string, rather than by specifying / / host : port . (When you compile client and
server applications, specify the - DTOBJ ADDR option to specify a host and port to be
used at run time, which allows for more flexibility and portability in client and server
application code. For moreinformation, see Creating Client Applicationsand Creating
Java Server Applications.) Client and server applications must use the

com beasys. Tobj _Boot strap.resolve_initial _references method, not the
org. ong. CORBA. ORB.resolve_initial _references method.

Java Programming Reference 4-5

4 Bootstrap Object

Types of Remote Clients Supported

4-6

Table 4-1 shows the types of remote clientsthat can use the Bootstrap object to access
the other environmental objects, such as FactoryFinder, SecurityCurrent,
TransactionCurrent, and I nterfaceRepository.

Table 4-1 Remote Clients Supported

Remote Description
Client

CORBA C++ CORBA C++ client applications use the WebL ogic Enterprise C++
environmenta objectsto access the CORBA objectsin a WebL ogic
Enterprise domain, and the WebL ogic Enterprise Object Request Broker
(ORB) to process from CORBA objects. Use the WebL ogic Enterprise
system devel opment commands to build these client applications (see
Chapter 10, “Java Development and Administration Commands”).

CORBA Java CORBA Java client applications use the Java environmental objects to
access CORBA objects in a WebLogic Enterpdsmain. However, these
client applications use an ORB product other than the WebLogic Enterprise
ORB to process requests from CORBA objects. These client applications
are built using the ORB product’s Java development tools.

The Java core system of the WebLogic Enterpafevare supports
interoperability with client platforms using either of the following:

4 The Java IDL ORB provided with the Java Development Kit 1.2 from
Sun Microsystems, Inc.

4 Netscape Communicator Version 4.0, using the bundled Visigenic
IIOP-capable ORB

For complete details about Java application and applet support, see the
Release Notes.

ActiveX Use the WebLogic Enterprigeutomation environmental objects to access
CORBA objects in a WebLogic Enterpridemain, and the ActiveX Client
to process requests from CORBA objects. Use the Application Builder to
create bindings for CORBA objects so that they can be accessed from
ActiveX client applications. ActiveX client applications are built using a
development tool such as Visual Basic, Delphi, or PowerBuilder.

Java Programming Reference

Capabilities and Limitations

This chapter describes how to use the Bootstrap object with Java client applications.
For reference information about how to use the Bootstrap object in C++ and ActiveX
client applications, see the C++ Programming Reference.

Capabilities and Limitations

Bootstrap objects have the following capabilities and limitations:

L4

Multiple Bootstrap objects can coexist in a client application, although only one
Bootstrap object can own the Current objects (Transaction and Security) at one
time. Client applications must invoke thedest r oy_current method on the
Bootstrap object associated with one domain before obtaining the Current
objects on another domain. Although it is possible to have multiple Bootstrap
objects that establish connections to different WebL ogic Enterprise domains,
only one set of Current objectsis valid. Attempts to obtain other Current objects
without destroying the existing Current objects fail.

Method invocations to any WebL ogic Enterprise domain other than the domain
that provides the valid SecurityCurrent object fail and return an
or g. ong. CORBA. NO_PERM SSI ON exception.

Method invocations to any WebL ogic Enterprise domain other than the domain
that provides the valid TransactionCurrent object do not execute within the scope
of atransaction.

The transaction and security objects returned by the Bootstrap objects are BEA
implementations of the Current objects. If other ("native") Current objects are
present in the environment, they are ignored.

Bootstrap Object API

The Bootstrap object application programming interface (API) isdescribed in the Java
API Reference. The sections that follow describe:

4 The object references returned by the Bootstrap object

Java Programming Reference 4-7

4 Bootstrap Object

4 The Javamapping for the Bootstrap object
4+ Mappingsfor Microsoft desktop clients, including automation mapping

Tobj Module

Table 4-2 shows the object reference that is returned for each type ID.

Table 4-2 Returned Object References

ID Returned Object Reference

FactoryFinder FactoryFinder object (com beasys. Tobj . Fact or yFi nder)

InterfaceRepository InterfaceRepository object (or g. ong. CORBA. Reposi tory)

SecurityCurrent SecurityCurrent object
(org. ong. SecuritylLevel 2. Qurrent)

TransactionCurrent OTS Current object
(com beasys. Tobj . Transacti onCurrent)

Table 4-3 describes the Tobj module exceptions.

Table 4-3 Tobj M odule Exceptions

Exception Description
com beasys. Tobj . Raised if i d isnot one of the names specified in Table 4-2.
I nval i dNane Onthe server, theresol ve_initial _references

method al SO raises com beasys. Tobj . | nval i dNanme
when Secur it yCurrent ispassed.

com beasys. Tobj . On the server application, raised if the WebL ogic Enterprise
I'nval i dDomai n server environment is not booted.

org. ony. CORBA. Raised if i d isTr ansacti onCurrent or

NO_PERM SSI ON Securi t yCurrent and another Bootstrap object in the

client owns the Current objects.

4-8 Java Programming Reference

Bootstrap Object API

Table 4-3 Tobj Module Exceptions

Exception Description

org. ong. CORBA. Raisedforther egi st er _cal | back_port methodif the

BAD_PARAM object isnull or if the host contained in the object does not
match the connection.

org. ong. CORBA. Raisedif t he regi ster_cal | back_port methodis

IMP_LIMT invoked more than once.

Java Mapping
Listing 4-1 shows the Tobj _Boot st r ap. j ava mapping.

Listing4-1 Tobj_Bootstrap.java M apping

package com beasys;

public class Tobj Bootstrap {
public Tobj Bootstrap(org.ong. CORBA. ORB or b,
String address)
t hrows org. ong. CORBA. Syst enExcepti on;
public class Tobj Bootstrap {
public Tobj Bootstrap(org. ong. CORBA. ORB orb, String address,
j ava. appl et . Appl et appl et)
t hrows org. ong. CORBA. Syst enExcept i on;

public void register_call back_port (orb. ong. CORBA. (bj ect objref)
throws org. ong. CORBA. Syst enExcepti on;

public org.ong. CORBA. Obj ect
resolve_initial _references(String id)
throws Tobj.Inval i dNane,
or g. ong. CORBA. Syst enExcepti on;
public void destroy_current ()
t hrows org. ong. CORBA. Syst enExcepti on;

}

Java Programming Reference 4-9

4 Bootstrap Object

Programming Examples

This section provides Java client programming examples that use Bootstrap objects.

Getting a SecurityCurrent Object
Listing 4-2 shows how to program a Java client to get a SecurityCurrent object.

Listing 4-2 Programming a Java Client to Get a SecurityCurrent Object

inport java.util.*;
i nport org. ong. CORBA. *;
i nport com beasys. *;
class client {
public static void main(String[] args)
{
Bool is_native=true;
Properties = prop;
Tobj . Princi pal Authenticator auth = null;
if (args.length !'= 1)
i s_native=fal se

if (is_native) {
/* Native Client */
prop = Tobj _Boot strap.getNativeProperties();
host _port = "";
} else {
/* Remote Client */
prop = Tobj _Boot st rap. get Renot eProperties();
/1 Set host and port.
host _port = "// COLORMAG C: 10000";

try {
/1 Initialize ORB
ORB orb = ORB.init(args, prop);
/] Create Bootstrap object
Tobj _Bootstrap bs=new Tobj _Boot strap(orb, host_port);

/1l Get security current
org. ong. CORBA. Obj ect ocur =

4-10 JavaProgramming Reference

Programming Examples

bs.resolve_initial _references("SecurityCurrent");
SecuritylLevel 2. Current cur =
Securi tylLevel 2. Current Hel per. narrow ocur);
}
catch (Tobj .l nvalidName e) {
Systemout.printlin("lInvalid nane: "+e);
Systemexit(1);

catch (Tobj .|l nvalidDomain e) {
Systemout.println("lInvalid domai n address: "+host_port +" "+e);
Systemexit(1);

catch (SystenkException e) {
Systemout.println("Exception getting security current: "+e);
e.printStackTrace();
Systemexit(1);

Getting a UserTransaction Object

The following code exampl e shows using the Bootstrap object to get the
UserTransaction object, which may then be used to begin and terminate transactions
and get information about transactions.

Listing 4-3 Programming a Java Client to get a User Transaction Object

if (is_native){
/* Native Client */
prop = Tobj Bootstrap.getNativeProperties();
host _port = null;
} else {
/* Renpote Client */
prop = Tobj Boot st rap. get Renot eProperties();
/1 Set host and port.
host _port = "//COLORVAG C. 10000";

}

// Initialize ORB
orb = ORB.init(args, prop);

Java Programming Reference 4-11

4 Bootstrap Object

/1 Create Bootstrap hbject
bs = new Tobj Bootstrap(orb, host_port);

j avax. transaction. User Transacti on ucur = bs. get UserTransaction();
ucur . begin();

/* Make transactional calls fromclient to server */
ucur.commt();

4-12 JavaProgramming Reference

CHAPTER

5

FactoryFinder Interface

This chapter contains the following topics:
4 Capabilities, Limitations, and Requirements
4 Functional Description. This section describes the following topics:
4 Locating a FactoryFinder
4+ Registering a Factory
4 Locating a Factory
4 Creating Application Factory Keys
4+ JavaMethods
4+ JavaProgramming Examples

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the WebL ogic Enterprise domain. The WebL ogic
Enterprise NameM anager provides the mapping of factory names to object references
for the FactoryFinder. Multiple FactoryFinders and NameM anagers together provide
increased availability and reliability. In thisrelease, the level of functionality has been
extended to support multiple domains.

Note: The NameManager is not a naming service, such as CORBA services Naming
Service, but is merely avehicle for storing registered factories.

Inthe WebL ogic Enterprise environment, application factory objectsare used to create
objectsthat clientsinteract with to perform their business operations (for example,
TellerFactory and Teller). Application factories are generally created during server
initialization and are accessed by both remote clients and clients located within the
server application.

Java Programming Reference 5-1

5 FactoryFinder Interface

The FactoryFinder interface and the NameM anager services are contained in separate
(nonapplication) servers. A set of application programming interfaces (APIS) is
provided so that both client and server applications can access and update the factory
information.

The support for multiple domainsin this rel ease benefits customers that need to scale
to alarge number of machines or who want to partition their application environment.
To support multiple domains, the mechanism used to find factoriesin a WebL ogic
Enterprise environment has been enhanced to allow factories in one domain to be
visiblein another. The visibility of factories in other domainsis under the control of
the system administrator.

Capabilities, Limitations, and Requirements

5-2

During server applicationinitialization, application factories need to be registered with
the NameManager. Clients can then be provided with the object reference of a
FactoryFinder to allow them to retrieve afactory object reference based on associated
names that were created when the factory was registered.

Thefollowing functional capabilities, limitations, and requirements apply to this
release:

4 TheFactoryFinder interface isin compliance with the
org. ong. CosLi f eCycl e. Fact or yFi nder interface.

4 Server applications can register and unregister application factories with the
CORBAservices Naming Service.

4 Clients can access objects using a single point of entry -- the FactoryFinder.

4 Clients can construct names for objects using a simplified BEA scheme made
possible by WebL ogic Enterprise extensions to the CORBA services interface or
the more general CORBA scheme.

4 Multiple FactoryFinders and NameManagers can be used to increase avail ability
and reliability in the event that one FactoryFinder or NameManager should fail.

4 Support for multiple domains. Factories in one domain can be configured to be
visible in another domain that is under administrative control.

Java Programming Reference

Functional Description

4 Two NameManager services, at aminimum, must be configured, preferably on
different machines, to maintain the factory-to-object reference mapping across
process failures. If both NameManagers fail, the master NameManager, which
has been keeping a persistent journa of the registered factories, recovers the
previous state by processing the journal so asto re-establish itsinternal state.

4 Only one NameManager must be designated as the master, and the master
NameManager must be started before the slave. If the master NameManager is
started after one or more slaves, the master assumesthat it isin recovery mode
instead of in initializing mode.

Functional Description

The WebL ogic Enterprise environment promotes the use of the factory design pattern
as the primary meansfor aclient to obtain areference to an object. Through the use of
thisdesign pattern, client applications require amechanism to obtain areference to an
object that acts as afactory for another object. Because the WebL ogic Enterprise
environment has chosen CORBA as its visible programming model, the mechanism
used to locate factories is modeled after the FactoryFinder as described in the
CORBAservices Specification, Chapter 6 “Life Cycle Service,” December 1997,
published by the Object Management Group.

In the CORBA FactoryFinder model, application servers register active factories with
a FactoryFinder. When an application server’s factory becomes inactive, the
application server removes the corresponding registration from the FactoryFinder.
Client applications locate factories by querying a FactoryFinder. The client application
can control the references to the factory object returned by specifying criteria that is
used to select one or more references.

Locating a FactoryFinder

A client application must obtain a reference to a FactoryFinder before it can begin
locating an appropriate factory. To obtain a reference to a FactoryFinder in the domain
to which a client application is associated, the client application must invoke the

Tobj _Boot strap. resol ve_i ni tial _references operation with a value of
“FactoryFinder” . This operation returns areference to a FactoryFinder that isin the

Java Programming Reference 5-3

5 FactoryFinder Interface

domain to which the client applicationiscurrently attached. For moreinformation, see
the description of the com beasys. Tobj _Boot st r ap object in the Java API
Reference.

Note: Thereferencesto the FactoryFinder that are returned to the client application
can bereferencesto factory objectsthat are registered on the same machine as
the FactoryFinder, on a different machine than the FactoryFinder, or possibly
in a different domain than the FactoryFinder.

Registering a Factory

5-4

For aclient application to be able to obtain areference to afactory, an application
server must register a reference to any factory object for which it provides an
implementation with the FactoryFinder (see Figure 5-1). Using the WebL ogic
Enterprise TP Framework, the registration of the reference for the factory object can
be accomplished using the TP. r egi st er _f act or y operation, once areferenceto a
factory object has been created. The referenceto the factory object, along with avalue
that identifies the factory, is passed to this operation. The registration of referencesto
factory objectsistypically done as part of initialization of the application; normally,
as part of the implementation of the Server . i nitial i ze operation.

Java Programming Reference

Functional Description

Figure5-1 Registering a Factory Object

Name

Server TPFW
Manager

Register,
Unregister_factory

Register factory in
Namemanager

Post event to update other
Namemanagers

»

When the server application is shutting down, it must unregister any referencesto the
factory object that it has previously registered in the application server. Thisisdone
by passing the same referenceto the factory object, along with the corresponding value
used to identify the factory, to the TP. unr egi st er _f act ory operation. Once
unregistered, the reference to the factory object can then be destroyed. The process of
unregistering a factory with the FactoryFinder is typically done as part of the
implementation of the Ser ver . r el ease operation. For more information about these
operations, see the section “Server Interface” on page 3-23.

Locating a Factory

For a client application to request a factory to create a reference to an object, it must
first obtain a reference to the factory object. The reference to the factory object is
obtained by querying a FactoryFinder with specific selection criteria, as shown in
Figure 5-2. The criteria are determined by the format of the particular FactoryFinder
interface and method used.

Java Programming Reference 5-5

5 FactoryFinder Interface

5-6

Figure5-2 Locating a Factory Object

Factory Name

Client Bootstrap .
Finder Manager

resolve_initial_references

»

CORBA.Object
Tobj_FF._narrow()

find_*_factor* | find factory object in
NameManager
. IOR string
CORBA.Object <

<

| factory._narrow()

The WebL ogic Enterprise software extends the CosLi f eCycl e. Fact or yFi nder
interface by introducing three methods in addition to the fi nd_f act ori es method
declared for the FactoryFinder. Therefore, using the Tobj extensions, a client can use
either thefind_factories orfind factories_by_ i d methodsto obtain alist of
application factories. A client can also usethe fi nd_one_factory or
find_one_factory_by_i d method to obtain a single application factory, and the
list_factories method to obtain alist of al registered factories.

The CosLi f eCycl e. Fact or yFi nder interface definesaf actory_key, whichisa
sequence of i d and ki nd strings conforming to the CosNaming Name shown in
Listing 5-1. The ki nd field of the NameComponent for all WebL ogic Enterprise
application factories is set to the string Fact or yI nt er f ace by the TP Framework
when an application factory isregistered. Applications supply their own value for the
i dfield.

Assuming that the CORBAservices Life Cycle Service modules are contained in their
ownfile(ns.idl andlcs.idl, respectively), only the OMG IDL codefor that subset
of both filesthat isrelevant for using the WebL ogi ¢ Enterprise FactoryFinder is shown
in the following listings.

Java Programming Reference

Functional Description

CORBAservices Naming Service Module OMG IDL

Listing 5-1 showsthe portionsof thens. i dl filethat arerelevant to the FactoryFinder.

Listing5-1 CORBAservicesNaming OMG IDL

Io------ ns.idl ------

nmodul e CosNam ng {
typedef string Istring;
struct NanmeConponent {
Istring id;
I string kind;
}

t ypedef sequence <NanmeConponent> Nane;
b

/1 This information is taken from CORBAservi ces: Conmon (bj ect

// Services Specification, page 3-6. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used wi th perm ssion by
oMG.

CORBAservices Life Cycle Service Module OMG IDL

Listing 5-2 shows the portions of the | cs. i dI filethat are relevant to the
FactoryFinder.

Listing5-2 Life Cycle Service OMG IDL

[l ----- les.idl -----
#include “ns.idl"

module CosLifeCycle{
typedef CosNaming::Name Key;
typedef Object Factory;
typedef sequence<Factory> Factories;

exception NoFactory{ Key search_key; }

Java Programming Reference 5-7

5 FactoryFinder Interface

interface FactoryFi nder {
Factories find factories(in Key factory_key)
rai ses(NoFactory);

}s

/1 This information is taken from CORBAservices: Conmon Obj ect

// Services Specification, pages 6-10, 11. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used with perm ssion by
OoMG.

Tobj Module OMG IDL

Listing 5-3 showsthe Tobj Module OMG IDL.

Listing5-3 Tobj Module OMG IDL

Io----- Tobj .idl -----

nodul e Tobj {
/1 Constants
const string FACTORY_KIND = "Factoryl nterface";
/1 Exceptions

exception Cannot Proceed { };
exception InvalidDomain {};
exception InvalidName { };

exception RegistrarNot Available { };

/1 Extension to LifeCycle Service

struct FactoryConponent {
CoslLi feCycl e:: Key factory_ key;
CoslLi feCycle:: Factory factory_ior;

I
t ypedef sequence<Fact or yConponent > FactorylLi sti ng;

interface FactoryFinder : CosLifeCycle::FactoryFi nder {
CoslLifeCycle::Factory find_one_factory(in CosLifeCycle:: Key
factory_key)

5-8 Java Programming Reference

Functional Description

rai ses (CoslLifeCycle::NoFactory,
Cannot Pr oceed,
Regi st rar Not Avai | abl e) ;
CoslLifeCycle::Factory find_one_factory by id(in string
factory_id)
rai ses (CoslLifeCycle::NoFactory,
Cannot Pr oceed,
Regi strar Not Avai | abl e) ;
CoslLifeCycle::Factories find factories by id(in string
factory_id)
rai ses (CoslLifeCycle::NoFactory,
Cannot Pr oceed,
Regi strar Not Avai | abl e) ;
FactoryListing list _factories()
rai ses (Cannot Proceed,
Regi st rar Not Avai | abl e) ;

Locating Factories in Another Domain

Typically, a FactoryFinder returns references to factory objects that are in the same
domain asthe FactoryFinder itself. However, it is possible to return references to
factory objectsin domains other than the domain in which aFactoryFinder exists. This
can occur if a FactoryFinder contains information about factories that are resident in
another domain (see Figure 5-3). A FactoryFinder finds out about these interdomain
factory objects through configuration information that describes the location of these
other factory objects.

When a FactoryFinder receives arequest to locate a factory object, it must first
determine if areferenceto afactory object that meets the specified criteria exists. If
thereis registration information for a factory object that matches the criteria, the
FactoryFinder must then determine if the factory object islocal to the current domain
or needs to be imported from another domain. If the factory object is from the local
domain, the FactoryFinder returns the reference to the factory object to the client.

Java Programming Reference 5-9

5 FactoryFinder Interface

Figure5-3 Inter-domain FactoryFinder Interaction

. Factor Factor Name
Client Bootstrap wctory wctory
Finder Finder Manager
resolve_initial_references
» Intradomain
CORBA Object FactoryFinder
< - delegates request
: to interdomain
Tobj_FF._narrow() FactoryFinder
Find factory
find_*_factor* jecti
— »|_find_*_factor"/ Na;tgfﬂ(;tr:gger
. IOR strin
CORBA Obiect CORBA.Object |« g
| factory._narrow()

If, on the other hand, the information indicates that the factory object is from another
domain, the FactoryFinder del egates the request to an interdomain FactoryFinder in
the appropriate domain. As aresult, only a FactoryFinder in the same domain as the
factory object will contain a reference to the factory object. The interdomain
FactoryFinder is responsible for returning the reference of the factory object to the
local FactoryFinder, which subsequently returnsit to the client.

Why Use WebLogic Enterprise Extensions?

The WebL ogic Enterprise software extends the interfaces defined in the
CORBAservices specification, Chapter 6 “Life Cycle Service,” December 1997,
published by the Object Management Group, for the following reasons:

4+ Although the CORBA-defined approach is powerful and allows various selection
criteria, the interface used to query a FactoryFinder can be complicated to use.

4+ Additionally, if the selection criterion specified by the client application is not
specific enough, it is possible that more than one reference to a factory object
may be returned. If this occurs, it is not immediately obvious what a client
application should do next.

5-10 JavaProgramming Reference

Functional Description

4+ Finaly, the CORBA services specification did not specify a standardized
mechanism through which an application server is to register afactory object.

Therefore, WebL ogic Enterprise extendstheinterfaces defined in the CORBA services
specification to make using a FactoryFinder easier. The extensions are manifested as
refined interfacesto the FactoryFinder that are derived from the interfaces specified in
the CORBA services specification.

Creating Application Factory Keys

Two of the four methods provided in the Tobj . Fact or yFi nder interface accept
CosLi f eCycl e. Keys, which correspondsto CosNani ng. Nane. A client must be able
to construct these keys.

The CosNaming Specification describestwo interfacesthat constituteaNamesLibrary
interface that can be used to create and manipulate CosLi f eCycl e. Keys. The pseudo
OMG IDL statementsfor these interfaces is described in the following section.

Names Library Interface Pseudo OMG IDL

Note: Thisinformation istaken from the CORBAservices: Common Object Services
Specification, pp. 3-14 t018. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

To allow the representation of names to evolve without affecting existing client
applications, it is desirable to hide the representation of names from the client
application. Ideally, names themselves would be objects; however, names must be
lightweight entities that are efficient to create, manipul ate, and transmit. As such,
names are presented to programs through the names library.

The names library implements names as pseudo-objects. A client application makes
calls on a pseudo-object in the same way it makes calls on an ordinary object. Library
namesare described in pseudo-IDL (to suggest the appropriate language binding). C++
client applications use the same client language bindings for pseudo-IDL (PIDL) as
they use for IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As described
in Chapter 3 of the CORBAservices: Common Object Services Specification, in the
section “The CosNaming Module,” the CORBAservices Naming Service supports the

Java Programming Reference 5-11

5 FactoryFinder Interface

5-12

NamingContext OMG IDL interface. The names library supports an operation to
convert alibrary name into avalue that can be passed to the name service through the
NamingContext interface.

Note: Itisnot arequirement to use the nameslibrary in order to use the
CORBAservices Naming Service.

The names library consists of two pseudo-IDL interfaces, the LNameComponent
interface and the L Name interface, as shown in Listing 5-4.

Listing 54 NamesLibrary Interfacesin Pseudo-1DL

interface LNameConponent { // PIDL
const short MAX LNAME STRLEN = 128;

exception NotSet{ };
exception OverFlowW };

string get _id
rai ses (NotSet);
void set_id(in string i)
rai ses (OverFl ow);
string get_kind()
rai ses(Not Set) ;
void set_kind(in string k)
rai ses (OverFl ow);
voi d destroy();
I

interface LNanme {// PIDL
exception NoComponent{ };
exception Over Fl ow{ };
exception | nvalidNane{ };
LNare i nsert_conponent (in unsigned long i,
i n LNaneConponent n)
rai ses (NoConponent, OverFl ow);
LNarmeConponent get _conponent (i n unsigned long i)
rai ses (NoConmponent);
LNarmeConmponent del ete_conponent (i n unsigned long i)
rai ses (NoConmponent);
unsi gned | ong num conponents();
bool ean equal (in LName | n);
bool ean | ess_than(in LName | n);
Nane to_idl _forn()
rai ses (Invali dNane);
void fromidl _formin Nane n);

Java Programming Reference

Functional Description

voi d destroy();
b

LNane create_| nane();
LNaneConponent create_ | nane_conponent () ;

Creating a Library Name Component

To create alibrary name component pseudo-object, use the following method:

LNaneConponent create_| name_conponent () ;

The returned pseudo-object can then be operated on using the operations shown in
Listing 5-4.

Creating a Library Name

To create alibrary name pseudo-object, use the following method:

LNane create_| name();

The returned pseudo-object reference can then be operated on using the operations
shown in Listing 5-4.

The LNameComponent Interface

A name component consists of two attributes: i dent i fi er and ki nd. The
L NameComponent interface definesthe operations associated with these attributes, as
follows:

string get_id()

rai ses(Not Set) ;

void set_id(in string k);
string get_kind()

rai ses(Not Set) ;

void set_kind(in string k);

get _id
The get _i d operation returnsthei denti fi er attribute’s value. If the
attribute has not been set, tha Set exception is raised.

set_id
Theset _i d operation sets thealent i fi er attribute to the string argument.

Java Programming Reference 5-13

5 FactoryFinder Interface

5-14

get ki nd
The get _ki nd operation returnsthe ki nd attribute’s value. If the attribute
has not been set, thet Set exception is raised.

oK n'(il'heset _ki nd operation sets the nd attribute to the string argument.
The LName Interface
The following operations are described in this section:

Destroying a library name component pseudo-object

Inserting a name component

Getting the ! name component

Deleting a name component

¢

¢

¢

¢

4 Number of name components
4 Testing for equality

4 Testing for order

4 Producing an OMG IDL form
4 Translating an OMG IDL form
¢

Destroying a library name pseudo-object

Destroying a Library Name Component Pseudo-Object

The destroy operation destroys library name component pseudo-objects.

voi d destroy();

Inserting a Name Component

A name has one or more components. Each component except the last is used to
identify names of subcontexts. (The last component denotes the bound object.) The
i nsert_conponent operation inserts a component after position

LNane insert_conponent(in unsigned |long i, in LNameConponent | nc)
rai ses(NoConponent, OverFl ow);

Java Programming Reference

Functional Description

If component i -1 isundefined and component i is greater than 1 (one), the
i nsert_conponent operation raises the NoConponent exception.

If the library cannot all ocate resources for the inserted component, the Over Fl ow
exception israised.

Getting the it Name Component

Theget _conponent operation returns thei " component. The first component is
numbered 1 (one).

LNaneConponent get conponent (i n unsi gned long i)
rai ses(NoConponent) ;

If the component does not exist, the NoConponent exception israised.

Deleting a Name Component

Thedel et e_conponent operation removes and returns the i " component.

LNaneConponent del et e_conponent (i n unsi gned long i)
rai ses(NoConponent) ;

If the component does not exist, the NoConponent exception is raised.

After adel et e_conponent operation has been performed, the compound name has
one fewer component and components previously identified asi +1. . . n are now
identified asi .. . n- 1.

Number of Name Components

The num conponent s operation returns the number of componentsin alibrary name.

unsi gned | ong num conponent s();

Testing for Equality

The equal operation tests for equality with library namel n.

bool ean equal (i n LNanme | n);

Java Programming Reference 5-15

5 FactoryFinder Interface

5-16

Testing for Order

Thel ess_t han operation tests for the order of alibrary name in relation to library
namel n.

bool ean | ess_than(in LNane I n);

This operation returnstrue if the library name is less than the library name | n passed
as an argument. The library implementation defines the ordering on names.

Producing an OMG IDL form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library nameisa
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. Several operations in the NamingContext interface
have arguments of an OMG IDL-defined structure, Nane. The following PIDL
operation on library names produces a structure that can be passed across the OMG
IDL request.

Narme to_idl _form))
rai ses(| nval i dNane) ;

If the nameis of length O (zero), the | nval i dName exception is returned.

Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library nameisa
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. The NamingContext interface defines operations
that return an IDL struct of typeName. Thefollowing PIDL operation on library names
sets the components and ki nd attribute for alibrary name from areturned OMG IDL
defined structure, Nane.

void fromidl formin Nanme n);

Destroying a Library Name Pseudo-Object

The dest r oy operation destroys library name pseudo-objects.

voi d destroy();

Java Programming Reference

Functional Description

Java Mapping

The names library pseudo OMG IDL interface maps to the Java classes contained in
thecom beasys. Tobj package, showninListing 5-5. All exceptionsare contained in
the same package.

For a detailed description of the Library Name class, refer to Chapter 3 in the

CORBAservices: Common Object Services Specification.

Listing 5-5 Java Mapping for LNameComponent

package com beasys. Tobj ;

public cl

I

package com beasys. Tobj ;

publ i
publ i
publ i
publ i
publ i
publ i
publ i

ass LNameComponent {
static LNaneConponent create_| name_conponent () ;

Cc
Cc
Cc
Cc
Cc
Cc
Cc

static final

short MAX LNAME_STRING = 128;

voi d destroy();

String get_id() throws Not Set;

voi d set _id(String i) throws OverFl ow,
String get_kind() throws Not Set;

voi d set_kind(String k) throws OverFl ow,

public class LNanme {

I

public static LNanme create_| name();

public void destroy();

public LName i nsert_conponent (long i, LNameConponent n)

t hrows NoConponent,
publ i ¢ LNanmeConponent
t hrows NoConponent;
publ i ¢ LNanmeConponent
t hrows NoConponent;

Over Fl ow,
get _conponent (long i)

del et e_conponent (I ong i)

public I ong num conponents();

publ i c bool ean equal (LNane In);

public bool ean | ess_than(LNane In);// not inplenented
publ i c org. ong. CosNam ng. NaneConponent[] to_idl _form))

throws | nval i dNane;

public void from.idl _forn{org.ong. CosNam ng. NaneConponent[] nr);

Java Programming Reference

5-17

5 FactoryFinder Interface

Java Methods

The documentation for the Java methods on the FactoryFinder interface isin the Java
API Reference.

Java Programming Examples

Thefollowing listings show Java programming exampl es of how to program using the
FactoryFinder interface.

Note: Remember to check for exceptionsin your code.

Server Registering a Factory

Listing 5-6 shows how to program a server to register afactory.

Listing 5-6 Server Application: Registering a Factory

/'l Register the factory reference with the factory finder.

/1 The second paraneter to TP.register factory() is a string

/] identifier that is used to identify the object.

/1 This sane string is used in the call to TP.unregister_factory().
/1 1t is also used in the call to find one factory by id() that

/1 is called by clients of this interface.

I

TP.regi ster_factory(
fact _oref, /1 factory object reference
tell er FNane /1l factory nane

)

5-18 Java Programming Reference

Java Programming Examples

Client Obtaining a FactoryFinder Object Reference
Listing 5-7 shows how to program a client to get a FactoryFinder object reference.

Listing 5-7 Client Application: Getting a FactoryFinder Object Reference

/1 Create the Bootstrap object,
/1 the TOBJADDR properly contains host and port to connect to.
Tobj _Bootstrap bootstrap = new Tobj Bootstrap (orb,"");

/1 Use the Bootstrap object to find the factory finder.
org. ong. CORBA. Obj ect fact _finder_oref =
boot strap.resolve_initial _references("FactoryFi nder");

/1 Narrow the factory finder.
FactoryFinder fact_finder _ref =
Fact or yFi nder Hel per. narrow(fact _finder_oref);

Client Finding One Factory Using the Tobj Approach
Listing 5-8 shows how to program aclient to find one factory using the Tobj approach.

Listing 5-8 Client Application: Finding One Factory Using the Tobj Approach

/1l Use the factory finder to find the teller factory.
org.ong. CORBA. Obj ect teller fact _oref =
fact _finder_ref.find one_factory by id("TellerFactory 1");

Java Programming Reference 5-19

5 FactoryFinder Interface

5-20 JavaProgramming Reference

CHAPTER

6

Security Service

This chapter contains the following topics:

L4

¢
¢
¢
¢

Introduction

Capabilities and Limitations

Getting Initial References to the SecurityCurrent Object

Basic Security-L evel Requirements for WebL ogic Enterprise Clients
Functional Components. This section includes the following topics:
4 Security Model

4 Authentication of Principals

4 Contralling Access to Objects

4 Administrative Control

Security Model Functional Description

Authentication

Client Security API. This section describes the following modules:
CORBA Module

TimeBase Module

Security Module

Security Level 1 Module

Security Level 2 Module

Tobj Module

* & & & > o

Java Programming Examples

Java Programming Reference

6-1

6 Security Service

Introduction

The purpose of client security isto enable WLE clients to authenticate themselves via
the [1OP Server Listener/Handler and to pass the WLE security checks.

WLE client security provides two types of security authentication:

4 Animplementation of the security environmental objectsfor a CORBA Object
Request Broker (ORB) environment. Client authentication is achieved using
application programming interfaces (APIs) defined by CORBA security,
although the authentication is performed by the [1OP Server Listener/Handler,
not by the client ORB. Client security provides helper methods to create the data
structures needed to call the standard CORBA authentication methods.

4 Animplementation of authentication similar to that found in the BEA TUXEDO
system. Logon and logoff functions are provided that are easier to use than their
CORBA counterparts. Logon passwords and data are secure traversing the
network.

Y ou can use either method to implement client security.

Capabilities and Limitations

6-2

This implementation of WebL ogic Enterprise client security has the following
capabilities and limitations.

4 Supports two types of authentication, as described above.

4 Provides add-on methods to help generate the information needed for CORBA
security from information specific to the WebL ogic Enterprise client, such as
client name, client application password, user password (or user authentication
data), and so forth.

4+ Implements authentication only.

4+ Allows remote WebL ogic Enterprise clients to authenticate themselves to
WebL ogic Enterprise domains via the [lOP Server Listener/Handler so that
clients can connect to a WebL ogic Enterprise domain with BEA TUXEDO style
security activated.

Java Programming Reference

Getting Initial References to the SecurityCurrent Object

Getting Initial References to the
SecurityCurrent Object

Y ou use the Bootstrap object to get an initial reference to the SecurityCurrent object.
For a description of the Bootstrap object method, refer to the

com beasys. Tobj _Boot strap.resolve_initial _references method
description in the Java API Reference.

Basic Security-Level Requirements for
WebLogic Enterprise Clients

A client that connectsto a WebL ogic Enterprise domain must provide security
information according to the security level required by the WeblL ogic Enterprise
domain. Table 6-1 defines the security levels supported by WebL ogic Enterprise
domains.

Table 6-1 Security L evels Supported by WebL ogic Enter prise Domains
Security Level Definition

TOBJ_NQAUTH No authentication is needed; however, the client can still authenticate
itself, and must specify a user name and a client name, but no
password.

TOBJ_SYSAUTH The client must authenticate itself to the WebL ogic Enterprise domain,
and must specify auser name, client name, and client application
password.

TOBJ_APPAUTH The client must provide information in addition to that which is
required by TOBJ_SYSAUTH. If the default WebL ogic Enterprise
authentication serviceis used in the WebL ogic Enterprise domain
configuration, the client must provide auser password; otherwise, the
client provides authentication data that is interpreted by the custom
authentication service in the WebL ogic Enterprise domain.

Java Programming Reference 6-3

6 Security Service

Functional Components

This section describes the functional components of the Security Service.

Security Model

The security model in the WebL ogic Enterprise software defines the overall
framework for security. The WebL ogic Enterprise product provides the flexibility to
support different security mechanisms and policies that can be used to achieve the
appropriate level of functionality and assurance.

The WebL ogic Enterprise security model defines:
4 Under what conditions clients may access objects

4 What authentication of usersand other principals is required, who they are, and
what they can do

The WebL ogic Enterprise security model is a combination of the security refer-
ence model defined in the CORBAservices Security Service specificationtand
the value-added extensions that provide afocused, simplified form of the security
found in BEA TUXEDO. The WebL ogic Enterprise security model allows appli-
cation developers to choose to use the security model defined by CORBA, or the
BEA extensions, when developing an application.

Authentication of Principals

6-4

Authentication of principals, typically ahuman user or system entity, provides security
officers with the ability to ensure that only registered principals have access to the
objectsin the system. An authenticated principal is used asthe primary mechanism to
control accessto objects.

1. All references to the CORBA services Security Service specification in this docu-
ment are to the Revision 1.5, December 1998 edition, published by the Object Man-
agement Group.

Java Programming Reference

Functional Components

The act of authenticating principals allows the security mechanisms to:
4 Make principal s accountable for their actions
4 Control access to protected objects

4 Identify the originator of arequest

Controlling Access to Objects

The WebL ogic Enterprise security model providesasimple framework through which
asecurity officer can limit accessto authorized users only. Limiting access to objects
allows security officersto prohibit access to objects by unauthorized principals.

The access control framework consists of two parts:
4 The object invocation policy that is enforced automatically on object invocation

4+ An application access policy that the user-written application can enforce itself

Administrative Control

The system administrator is responsible for setting security policies for client
machines, server machines, and |1OP Listener/Handlersthat interact with applications
in their WebL ogic Enterprise domain. While the administrator sets the general
policies, another person or group of people may be responsible for managing security
(users, permissions, and so forth).

To provide system administratorsthe ability to define and enforce authentication of the
principal, the software provides a set of configuration parameters and utilities.
Through these features, asystem administrator can configure the WebL ogic Enterprise
software to force the principals to be authenticated to access a system on which
WebL ogic Enterprise software isinstalled.

Java Programming Reference 6-5

6 Security Service

Security Model Functional Description

This section provides a functional description of the security model.

Description

6-6

The security model adopted in the WebL ogic Enterprise software is based largely on
the CORBA security model defined in the CORBA services Security Service
specification. Consequently, many of the concepts found in the CORBA security
model apply to WebL ogic Enterprise security.

In addition to many of theinterfacesdefined by the CORBA services Security Service,
BEA provides extensions, in the form of derived interfaces. These extensions expose
the security functionality found in the BEA TUXEDO system as CORBA interfaces
that are found in the Tobj namespace. The interfaces in the Tobj namespace are
intended to be familiar to developers of BEA TUXEDO applications and provide a
focused, simplified form of the equiva ent CORBA-defined capability. An application
developer can choose to use the CORBA -defined security model, or the BEA
extensions, when developing an application.

In a security model, there are usually defined sets of specific security policies. The
WebL ogic Enterprise security model defines policiesthat specify whether a principal
must be authenticated to use the system.

WebL ogic Enterprise implements a delegated trust authentication model. In this
model, clients authenticate to a trusted system gateway process. In the case of

WebL ogic Enterprise, thetrusted system gateway processisthe|SL/ISH. As part of a
successful authentication, a security association (called a security context) is
established between the client application and the ISL/ISH that is used to mediate
access to objects. The WebL ogic Enterprise software associates the security context
with the network connection over which the principal was authenticated. Except for the
authentication exchange, thisis currently the default behavior of the WebL ogic
Enterprise system.

Figure 6-1 shows the security environment components.

Java Programming Reference

Security Model Functional Description

Figure6-1 WebL ogic Enterprise Security Environment

Security
Information

(tpusr)

-------- Authentication
Server

Gateway (AUTHSVER)

1IOP

Server
Application

[}

]

[}
(unprotected
messages) :
]

Target
BEA TUXEDO Object

Logging on to the System

When auser or other principal wantsto use the WebL ogic Enterprise system, the
principal usually needsto authenticate and obtain credentials. The credential s obtained
by the principal contain identity attributes that are used to control accessto WebL ogic
Enterprise servers.

The WebL ogic Enterprise Principal Authentication object provides a delegation
mechanism to provide security to non-BEA branded clients. Asillustrated in

Figure 6-1, remote client applications perform authentication with the ISL/ISH,
instead of with the server application itself. Consequently, the establishment of a
security association is performed in the ISL/ISH, rather than in the server-side ORB.

Java Programming Reference 6-7

6 Security Service

Intermsof CORBA security, thelSL/ISH actsasa CORBA-defined half-gateway into
the WebL ogic Enterprise domain, and is, therefore, responsible for providing the
security mechanisms that will be used in secure invocations for a given object.

Example of a Secure Object Invocation

Thefollowing isadescription of what happenswhen a client invokes on atarget object
in aWebL ogic Enterprise environment:

4 Theclient application obtains credential s for the user by authenticating itself
with the WebL ogic Enterprise domain using a Principal Authenticator object. The
request for authentication is sent to the ISL/ISH that relays the requests to an
authentication server, which verifies the supplied information. If the verification
process succeeds, the security system constructs a Credentials object that is used
in all future invocations. The Credential s object for the principal is associated
with the SecurityCurrent object that represents the security context for the
current thread of execution.

4 Theclient application invokes an object in the domain using its object reference.
Therequest is packaged into an [1OP request and forwarded to the ISL/ISH that
associates the request with the previoudly established security association. At
this point, the ISL/ISH forwards the request, al ong with the credentials of the
initiating principal, to an appropriate server process.

Authentication

6-8

When an active entity wants to use a secure object system, it authenticates itself and
obtains credentials. The credentials contain its certified identity, and, optionally, its
privilege attributes, and control where and when they can be used. In the WebL ogic
Enterprise security model, an active entity must establish itsrights to access objectsin
the system. The active entity must be either a principal, or aclient that is acting on
behalf of aprincipal.

A principal isdefined to be either a user or a system entity that is registered in and
authenticatable to the security system. Authentication may be accomplished in a
number of ways. The most common way isfor a user to supply a password. When a
user or other principal is authenticated, the principal usually supplies:

Java Programming Reference

Authentication

4 The principal’s security name

4 The authentication information needed by the particular authentication method
used

Once authenticated, the principal’s security attributes are maintained in the security
system in a credential. The credentials provide a means for the security system to
provide the principal’s certified identity and describes the privileges granted to the
particular principal.

Principals who initiate activities, have one identity that may be used. The identity is
represented in the system as attributes.

Authentication Mechanisms

As stated in “Logging on to the System” on page 6-7, the lack of interoperable security
amongst the ORB vendors has resulted in it being necessary to utilize a delegation
mechanism to provide authentication to client environments. The delegation
mechanism used is similar to the mechanism found in BEA TUXEDO. Consequently,
an authentication mechanism known as BEA TUXEDO-based security is supported in
WebLogic Enterprise domains. The implementation of this mechanism is layered on
top of the security mechanism provided in BEA TUXEDO.

As in BEA TUXEDO, remote client applications perform authentication with the
ISL/ISH instead of with the server application itself. Consequently, the establishment
of a security association is actually performed in the ISL/ISH, rather than in the
server-side ORB. Machines and server applications within a WebLogic Enterprise
domain are considered trusted. This trust is a result of a defined trust model that is
based on the assumption that the machines and applications that make up the domain
are under the control of administrators only.

Authentication of principals in an environment based on BEA TUXEDO requires the
use of user names and passwords. Unlike most operating systems, BEA TUXEDO
security defines three different authentication levels:

4 TOBJ_NOAUTH -- no authentication is needed.

4 TOBJ_SYSAUTH -- the principal must authenticate itself to the domain, and
specify a user name, client name, and user password.

4 TOBJ_APPAUTH -- same as TOBJ_SYSAUTH, except that the principal must
provide information. If the default authentication service provided in the
WebLogic Enterprise software is configured, the principal must provide an

Java Programming Reference 6-9

6 Security Service

application password; otherwise, the principal provides authentication data that
isinterpreted by a custom authentication service.

Thelevel of authentication required isadministratively controlled and is defined in the
application’s configuration. Because a client application is typically unaware of the
level of authentication configured, it must query the security system to determine the
authentication level required.

The configuration of the authentication level required is specified in an application’s
configuration, not on an object or method level. Consequently, if an application is
configured to require authentication, all objects in the application require certified
credentials for the principals. Applications can be configured to support either
unauthenticated or authenticated principals. In unauthenticated scenarios, applicatic
developers may use a Principal Authenticator to assert a user name and client nam
neither of which will be verified.

Because the BEA TUXEDO-based authentication mechanism is layered on top of th
security mechanisms provided in BEA TUXEDO, it is possible for customers to
replace the Authentication Server that provides the default authentication mechanisi
with a custom implementation. A description of how to replace the Authentication
Server in BEA TUXEDO is described in the BEA TUXEDO manuals and is outside
the scope of this document.

Authentication Process

6-10

The process of authenticating a principal is done by a user sponsor (see Figure 6-2).
user sponsor is the code that calls the security interfaces for user authentication. In-
WebLogic Enterprise domain configured to use BEA TUXEDO-based security, the
client application is the user sponsor.

In either case, the user provides identity and authentication data, such as a passwol
to the user sponsor. The user sponsor uses the Principal Authenticator object provide
as part of the security implementation to make the calls necessary to authenticate tf
principal. The credentials for the authenticated principal are associated with the
security system’s implementation of the SecurityCurrent object and are represented t
a Credentials object.

Java Programming Reference

Authentication

Figure6-2 Authentication

: User
‘" Sponsor

Principal
Authenticator

EE_ T R R Y

-l Credentials —

PRINCIPAL AUTHENTICATOR OBJECT

The Principal Authenticator object is the object visible to the application that is
responsiblefor the creation of Credentialsfor agiven principal. A user or principal that
requires authentication but has not been authenticated usesthe Principal Authenticator
object.

CREDENTIALS OBJECT

A Credentials object holds the security attributes of a principal. These security
attributes include its authenticated or unauthenticated identities. It also contains
information for establishing security associations. The Credentials object provides
methods to obtain security attributes of the principalsit represents.

Java Programming Reference 6-11

6 Security Service

SECURITYCURRENT OBJECT

The SecurityCurrent object represents the current execution context at the client and
target object. The SecurityCurrent object provides methods to give access to security
information associated with the execution context. The SecurityCurrent object gives
access to the Credential s associated with the execution environment.

At any stage, a client or target object can find the default credential s for subseguent
invocations by calling the Current . get _credent i al s method to request the
invocation credentials. These default credentials are used in all invocations that use
object references.

Principal Authenticator Object

6-12

The Principa Authenticator object is used by auser or principal that requires
authentication but has not been authenticated prior to calling the object system. The act
of authenticating aprincipal resultsin the creation of a Credential s object that is made
available as the default credentia s for the application. The Credentials object is
returned so it can be used for other methods on the Credentials.

The Principal Authenticator object isasingleton object; there isonly asingle instance
allowed in aprocess address space. Multiple references to the Principal Authenticator
object must be supported. The Principal Authenticator object isalso stateless. A
Credential s object isnot associated with the Principal Authenticator object that created
it.

All Principal Authenticator objects support the

SecuritylLevel 2. Princi pal Aut henti cat or interface defined in the
CORBAservices Security Service specification. This interface contains two methods
that are used to accomplish the authentication of the principal. Thisis because
authentication of principals may require more than one step. The authenticate method
allowsthe caller to authenticate, and optionally select, attributes for the principal of
this session.

Any invocation that fails because the security infrastructure does not permit that
invocation raises the standard exception CORBA. NO_PERM SSI ON. A method that fails
because the feature requested is not supported by the security infrastructure
implementation raises the CORBA. NO_| MPLEMENT standard exception. Any parameter
that has inappropriate values raises the CORBA. BAD_PARAMstandard exception.

Java Programming Reference

Authentication

The Principal Authenticator object is alocality-constrained object. Therefore, a
Principal Authenticator object may not be used through the DII/DSI facilities of
CORBA.. Any attempt to pass areference to this object outside of the current process,
or any attempt to externalize it using CORBA. ORB. obj ect _t o_st ri ng, resultsin the
raising of the CORBA. MARSHAL exception.

WebLogic Enterprise Extensions to the Principal Authenticator Object

BEA extends the Principal Authenticator object with functionality to support similar
security to that found in BEA TUXEDO. The enhanced functionality is provided by
definingthecom beasys. Tobj . Pri nci pal Aut henti cat or interface. Thisinterface
contains methods to provide similar capability to that available from BEA TUXEDO
through thet pi ni t function.

The methods defined for the Tobj . Pri nci pal Aut henti cat or interface areintended
to be familiar to devel opers of BEA TUXEDO applications, and provide a focused,
simplified form of the equivalent CORBA-defined capability. An application

devel oper can choose to use the CORBA-defined or BEA extensionswhen devel oping
an application. The interface Tobj . Pri nci pal Aut hent i cat or isderived from the
CORBA Securitylevel 2. Princi pal Aut henti cat or interface.

The extended Principal Authenticator object adheres to all the same rules asthe
Principal Authenticator object defined in the CORBA services Security Service
specification.

The implementation of the extended Principal Authenticator object requires users to
supply a user name, client name, and additional authentication data (for example,
passwords) used for authentication. Because the information needs to be transmitted
over the network to the ISL/ISH, it is protected to ensure confidentiality. The
protection must include encryption of any information provided by the user.

An extended Principal Authenticator object that supports the

Tobj . Pri nci pal Aut henti cat or interface provides the same functionality asif the
Securitylevel 2. Princi pal Aut henti cat or interface were used to perform the
authentication of the principa. However, unlike the

Securitylevel 2. Princi pal Aut henti cator. aut henti cate method, the logon
method defined on the Tobj . Pri nci pal Aut henti cat or interface does not return a
Credentials object. Asaresult, multithreaded applications that need to use more than
one principal identity are required to call the Curr ent . get _cr edent i al s method
immediately after the logon method to retrieve the Credential s object as aresult of the

Java Programming Reference 6-13

6 Security Service

logon method. Retrieval of the Credentials object directly after alogon method should
be protected with serialized access since it is possible for another thread to also
perform al ogon method.

Credentials Object

A Credentials object (see Figure 6-3) holds the security attributes of a principal. The
Credentials object provides methods to obtain and set the security attributes of the
principals it represents. These security attributes include its authenticated or
unauthenticated identities and privileges. The Credentials object also contains
information for establishing security associations.

Credentia's objects are created as the result of:

4 Authentication

4 Copying an existing Credential s object

4+ Asking for a Credentials object viathe SecurityCurrent object

Figure6-3 Credentials Object

Credentials - Containing Security Attributes
Unauthenticated Authenticated
Attributes Attributes
O " Identity
Public ; '*, Attributes :
hhhhh & L h’ -

There can be more than one Credential s object in a process address space. Multiple
references to a Credential s object must be supported. A Credentials object is stateful.
It maintains state on behal f of the principal for whichit was created. Thisstateincludes
any information necessary to determine the identity and privileges of the principal it

6-14 Java Programming Reference

Authentication

represents. Credentials objects are not associated with the Principal Authenticator
object that created it, but must contain some indication of the authentication authority
that certified the principal’s identity.

All Credentials objects support tisecurit yLevel 2. Credenti al s interface. Any
invocation that fails as a result of the security infrastructure determining that the client
does not have permission, raises the standard exce&amReAa. NO PERM SSI ON. A

method that fails because the feature requested is not supported by the security
infrastructure implementation raises th@RBA. NO_| MPLEMENT standard exception.

Any parameter that has inappropriate values raiseSaR®A. BAD_PARAMstandard
exception.

The Credentials object is a locality-constrained object. Therefore, a Credentials object
may not be used through the DII/DSI facilities. Any attempt to pass a reference to this
object outside of the current process, or any attempt to externalize it using

CORBA. ORB. obj ect _t o_st ri ng, results in the raising of th@ORBA. MARSHAL

exception.

SecurityCurrent Object

The SecurityCurrent object (see Figure 6-4) represents the current execution context at
both client and target objects. The SecurityCurrent object represents service-specific
state information associated with the current execution context. Both clients and
servers have SecurityCurrent objects that represent state associated with the thread of
execution and the capsule (process) in which the thread is executing (their execution
contexts).

The SecurityCurrent object is a singleton object; there is only a single instance allowed
in a process address space. Multiple references to the SecurityCurrentobject must be
supported.

The SecurityCurrent object is stateful. The methods of the SecurityCurrent object are
intended to return information about the state associated with the current execution
context. This includes information specific to both the thread of execution that is used
to make the call on the SecurityCurrent object, as well as the capsule (process) to
which the thread belongs. Changes in state associated purely with the thread, and not
with any broader execution context, will remain until the thread terminates or until
more state changes are made. State changes associated with a broader execution
context (like a process) persist across multiple invocations of methods in the target
object, until it is further modified through methods of the SecurityCurrent object or by
other means.

Java Programming Reference 6-15

6 Security Service

6-16

Consequently, thread-specific methods called on the SecurityCurrent object are
performed on the state associated with the calling thread. The thread in which the
SecurityCurrent object was obtained has no influence on the behavior of these
methods.

The CORBA services Security Service specification defines two interfaces for the
SecurityCurrent object associated with security:

4 Securitylevel 1. Current, which derives from CORBA. Cur r ent

4 Securitylevel 2. Current, which derives from the
SecuritylLevel 1. Current interface

Both interfaces give access to security information associated with the execution
context.

At any stage, a client or target object can find the default credential s for subseguent
invocations by calling the Current . get _credent i al s method, asking for the
invocation credentials. These default credentials are used in all invocations that use
object references.

Figure6-4 SecurityCurrent Object

PrincipalAuthenticator

SecurityCurrent

principal_authenticator

authenticate Credentials Credentials

get_credentials

TID Ptr
Credentials

Whenthe Current. get _attribut es method isinvoked by aclient application, the
attributes returned from the Credential s object are those of the user.

The SecurityCurrent object isalocality-constrained object. Therefore, a
SecurityCurrent object may not be used through the DI1/DSI facilities. Any attempt to
pass a reference to this object outside of the current process, or any attempt to
externalize it using CORBA. ORB. obj ect _to_stri ng, resultsin the raising of the
CORBA. MARSHAL exception.

Java Programming Reference

Client Security API

Client Security API

The following client security application programming interface (APl) modules are
implemented as pseudo-objects on the client:

4 CORBA module

4 TimeBase module

4 Security module

4 Security Level 1 module
4 Security Level 2 module
4 Tobj module

The OMG Interface Definition Language (IDL) definitions for these modules are
provided in the following sections.

CORBA Module

The Object Management Group (OMG) added the or g. ong. CORBA. Cur r ent
interface to the CORBA module to support the SecurityCurrent pseudo-object. The
change enables the CORBA module to support Security Replaceability and Security
Level 2.

Listing 6-1 shows the or g. ong. CORBA. Cur r ent interface OMG IDL statements.

Listing 6-1 org.omg.CORBA.Current Interface OMG IDL Statements

nodul e CORBA {
/1 Extensions to CORBA
interface Current {
}s

};

/1 This information is taken from CORBAservi ces: Conmon (bj ect
// Services Specification, page 15-230. Revised Edition:

Java Programming Reference 6-17

6 Security Service

/1 March 31, 1995. Updated: Novenber 1997. Used with perm ssion by
OoMG.

TimeBase Module

All data structures pertaining to the basic Time Service, Universal Time Object, and
Time Interval Object are defined in the TimeBase module. This allows other services
to use these data structures without requiring the interface definitions. The interface
definitions and associated enums and exceptions are encapsulated in the TimeBase
module.

Listing 6-2 shows the TimeBase module OMG IDL statements.

Listing 6-2 TimeBase Module OMG IDL Statements

/1 Fromtime service

nmodul e Ti meBase {
/1 interimdefinition of type ulonglong pending the
/1 adoption of the type extension by all client ORBs.
struct ul ongl ong {

unsi gned | ong | ow;
unsi gned | ong hi gh;
b
t ypedef ul ongl ong Ti meT;
typedef short Tdf T;
struct WcT {
Ti meT tine; // 8 octets
unsi gned | ong inacclo; // 4 octets
unsi gned short inacchi; [// 2 octets
Tdf T tdf; /Il 2 octets
// total 16 octets
}s

b

/1 This information is taken from CORBAservices: Conmon Obj ect

// Services Specification, p. 14-5. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used with perm ssion by
OoMG.

6-18 Java Programming Reference

Client Security API

Table 6-2 defines the TimeBase modul e data types.

Note: Thisinformation istaken from CORBAservices: Common Object Services
Soecification, p. 14-6. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.

Table 6-2 TimeBase Module Data Type Definitions

Data Type

Definition

Ti me
ul ongl ong

OMG IDL does not at present have a native type representing an unsigned
64-bit integer. The adoption of technology submitted against that RFP will
provide a means for defining a native type representing unsigned 64-bit
integersin OMG IDL.

Pending the adoption of that technology, you can use this structure to
represent unsigned 64-bit integers, understanding that when a native type
becomes available, it may not be interoperable with this declaration on all
platforms. This definition is for theinterim, and is meant to be removed
when the native unsigned 64-bit integer type becomes availablein OMG
IDL.

Time TinmeT

Ti meT represents asingle time value, which is 64 bit in size, and holdsthe
number of 100 nanoseconds that have passed since the base time. For
absolute time, the base is 15 October 1582 00:00.

Time Tdf T

Tdf T isof size 16 bits short type and holds the time displacement factor in
the form of seconds of displacement from the Greenwich Meridian.
Displacements east of the meridian are positive, while those to the west are
negative.

Time UcT

Ut cT defines the structure of the time value that is used universally in the
service. When the Ut cT structure is holding, arelative or absolutetimeis
determined by itshistory. Thereisno explicit flag within the object holding
that stateinformation. Thei naccl o andi nacchi fieldstogether hold a
valueof typel naccur acyT packedinto 48 bits. Thet df field holdstime
zoneinformation. Implementation must place the time displacement factor
for the locd time zone in this field whenever it creates a Universal Time
Object (UTO).

The content of this structureisintended to be opaque; to be able to marshal
it correctly, the types of fields need to be identified.

Java Programming Reference 6-19

6 Security Service

Security Module

The Security module defines the OMG IDL for security data types common to the
other security modules. This module depends on the TimeBase module and must be
available with any ORB that claims to be security ready.

Listing 6-3 shows the data types supported by the Security module.

Listing 6-3 Security Module OMG IDL Statements

nmodul e Security {
typedef sequence<oct et > Opaque;

/1 Extensible famlies for standard data types
struct ExtensibleFamly {

unsi gned short fam |y _definer;
unsi gned short famly;
b
/lsecurity attributes
t ypedef unsigned | ong SecurityAttributeType;

/] identity attributes; famly =0

const SecurityAttributeType Auditld = 1;

const SecurityAttributeType Accountingld = 2;
const SecurityAttributeType NonRepudiationld = 3;

/1 privilege attributes; famly =1

const SecurityAttributeType Public = 1;

const SecurityAttributeType Accessld = 2;

const SecurityAttributeType PrimaryGoupld = 3;
const SecurityAttributeType Goupld = 4;

const SecurityAttributeType Role = 5;

const SecurityAttributeType AttributeSet = 6;
const SecurityAttributeType d earance = 7;
const SecurityAttributeType Capability = 8;

struct AttributeType {
Ext ensi bl eFam |y attribute famly;
SecurityAttributeType attribute_ type;

h
typedef sequence <AttributeType> AttributeTypelLists;

struct SecAttribute {
AttributeType attri bute_type;

6-20 Java Programming Reference

Client Security API

Opaque defining_authority;
Opaque val ue;
/1l The value of this attribute can be
/1 interpreted only with know edge of type
b

typedef sequence<SecAttribute> AttributelList;

// Authentication return status
enum Aut henti cati onStatus {
SecAut hSuccess,
SecAut hFai | ur e,
SecAut hCont i nue,
SecAut hExpi red

b

/1 Authentication nethod
typedef unsigned | ong Aut hent i cati onMet hod;

enum Cr edenti al Type {
Secl nvocati onCredenti al s;
SecOMCr edenti al s;
SecNRCr edenti al s

/1 Pick up from Ti neBase
typedef Ti meBase:: UWcT Ut cT;

}s

/1 This information is taken from CORBAservi ces: Conmon (bj ect

// Services Specification, pp. 15-193 to0195. Revi sed Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used wi th perm ssion by
oMG.

Table 6-3 describes the Security module data type.

Table 6-3 Security Module Data Type Definition

Data Type Definition

sequence<oct et > Datawhose representation is known only to the Security Service
implementation.

Java Programming Reference 6-21

6 Security Service

Security Level 1 Module

This section defines those interfaces available to client application objects that use
only Level 1 Security functionality. This module depends on the CORBA module and
the Security and TimeBase modules. The SecurityCurrent interfaceisimplemented by
the ORB.

Listing 6-4 shows the Security Level 1 module OMG IDL statements.

Listing 6-4 Security Level 1 Module OMG IDL Statements

nodul e SecuritylLevel 1 {
interface Current : CORBA :Current {// PIDL
Security::AttributeList get_attributes(
in Security::AttributeTypeList attributes
)
}
b

/1 This information is taken from CORBAservices: Conmon bj ect

// Services Specification, p. 15-198. Revised Edition:

/1 March 31, 1995. Updated: Novenber 1997. Used with perm ssion by
OoMG.

Security Level 2 Module

6-22

This section definesthe additional interfacesavailableto client application objectsthat
use Level 2 Security functionality. This module depends on the CORBA and Security
modules.

Listing 6-5 shows the Security Level 2 module OMG IDL statements.

Listing 6-5 Security Level 2 Module OMG IDL Statements

nodul e SecuritylLevel 2 {
// Forward declaration of interfaces
interface Principal Authenticator;

Java Programming Reference

Client Security API

interface Oedential s;
interface Current;

/1 Interface Principal Authenticator
interface Principal Aut henticator {
Security:: Aut henticationStatus authenti cat e(
in Security:: Authenticati onMet hod rmethod,

in string security_nane,

in Security:: Qpaque aut h_dat a,

in Security::AttributeList privileges,

out Credentials creds,

out Security::Opaque conti nuati on_dat a,
out Security::Opaque aut h_speci fic_data

)

Security::AuthenticationStatus
conti nue_aut henti cati on(

in Security:: Qpaque response_dat a,
inout Credentials creds,

out Security::Opaque conti nuati on_dat a,
out Security::Opaque auth_specific_data

)
}s

/'l Interface Oredentials
interface Oredentials {
Security::AttributelList get_attributes(
in Security::AttributeTypeli st attributes

)
bool ean is_valid(

out Security::UcT expiry_time
)

b

/1 Interface Qurrent derived from SecuritylLevel 1:: Current
/1 providing additional operations on Current at this
/1 security level. This is inplemented by the ORB.
interface Qurrent : SecuritylLevell::Current { // PIDL
voi d set_credential s(
in Security:: Credential Type cred_type,
in Credentials cred

)

Credential s get_credential s(
in Security:: Credential Type cred_type
)
readonly attribute Principal Authenticator
princi pal _aut henti cator;

Java Programming Reference 6-23

6 Security Service

b
}s

/1 This information is taken from CORBAservices: Conmon Obj ect

// Services Specification, pp. 15-198 to 200. Revi sed Edition:

/1 March 31, 1995. Updated: Novenmber 1997. Used with perm ssion by
/1 OMG

Tobj Module

This section defines the Tobj module interfaces.

This module provides the interfaces you use to program the BEA TUXEDO style of
authentication.

Listing 6-6 showsthe Tobj module OMG IDL statements.

Listing 6-6 Tobj Module OMG IDL Statements

/1 Tobj Specific definitions

nodul e Tobj {
const Security:: Aut henti cati onMet hod TuxedoSecurity =
0x54555800;

/lget_auth_type () return val ues
enum Aut hType {
TOBJ_NOAUTH,
TOBJ_SYSAUTH,
TOBJ_APPAUTH
I

typedef sequence<octet> User Aut hDat a;

interface Principal Aut henti cat or
SecuritylLevel 2:: Principal Authenticator { // PIDL
Aut hType get_auth_type();

Security::AuthenticationStatus | ogon(

in string user _nane,

in string client_name,

in string syst em password,
in string user _password,

6-24 Java Programming Reference

Client Security API

in

User Aut hDat a

)
voi d | ogoff();

voi d build_auth_data(

in
in
in
in
in
out
out

string
string
string
string
User Aut hDat a

Security:: Opaque

user _data

user _nane,
client_nane,
syst em password,
user _password,
user _dat a,

aut h_dat a,

Security::AttributeList privileges

Java Programming Reference 6-25

6 Security Service

Java Programming Examples

Using WebLogic Enterprise Extensions to Log on

/*

*/

//***

This section provides programming examples that use the Security Service.

Note: InListing 6-7, notice that the

resolve_initial _references("SecurityCQurrent”) methodisusedto
get areference to the SecurityCurrent object. The reference is then narrowed,
assigned to cur , and used to get Principal Authenticator. Refer to Chapter 4,
“Bootstrap Object,” for a description of this method.

Listing 6-7 shows how to program a Netscape Communicator client using the
WebLogic Enterprise extensions to CORBA security. The WebLogic Enterprise
extensions enable you to use BEA TUXEDO style authentication. The code in
boldface shows the OMG method for logging on, which is an alternative to the BEA
TUXEDO method. You may prefer the OMG method for log on. Note that the

bui | d_aut h_dat a method is a BEA-specific method used to prepare data for the

OMG method.

Listing 6-7 Java Client Application Using WebL ogic Enterprise Extensionsto

CORBA Security to Log on

Copyright (c) 1998 BEA Systens, |nc.
Al'l rights reserved

THI'S | S PROPRI ETARY

SOURCE CODE OF BEA Systens, Inc.
The copyright notice above does not
evi dence any actual or intended
publication of such source code.

/1 File: SECUR TY_CLI ENT_EXAMPLE. JAVA
/I Description:JAVA dient program

//**

6-26

Java Programming Reference

Java Programming Examples

i mport
i mport
i mport
i mport
i mport

public

or g. ong. CORBA. *;

com beasys. Tobj . *;

com beasys. *;

com beasys. Tobj I nternal . *;
java.io.*;

class security client_exanple {
public static void main(String args[])

{

try {

// Initialize ORB
ORB orb = ORB.init();

/1l COreate Bootstrap Object
Tobj _Bootstrap bs = new Tobj Bootstrap(orb, "");

/1l Get the Security Current Object
org. ong. CORBA. Obj ect secCurhj = bs.resolve_initial _references(
"SecurityCurrent");

org.ony. SecuritylLevel 2. Current secCur =
org. ong. SecuritylLevel 2. Current Hel per. narrow(secCur Obj) ;

// Get a principal authenticator
org.ong. SecuritylLevel 2. Princi pal Aut henti cator authl ev2=
secCur. princi pal _authenticator();

com beasys. Tobj . Pri nci pal Authenticator auth =
org.ong. SecuritylLevel 2. Princi pal Aut henti cat or Hel per. narrow(aut hl ev2);

[/l Get the auth type

com beasys. Tobj . Aut hType aut hType = aut h. get _auth_type();
Systemout.println("authType =" + authType);

byte[] userData = new byte[O0];

String userNanme = "guest";

String clientNane = "sinpclt"”;

String systenPassword = nul |;

String userPassword = nul | ;

// Set args according to security |evel
switch (authType. val ue())
{
case com beasys. Tobj . Aut hType. _TOBJ_NOAUTH
Systemout.println(" No Password Required ");
br eak;
case com beasys. Tobj . Aut hType. _TOBJ_SYSAUTH:
System out . println("System Password Required ");

Java Programming Reference 6-27

6 Security Service

syst enPassword = "security";
br eak;
case com beasys. Tobj . Aut hType. _TOBJ_APPAUTH:
System out. println("System Password Required & ");
System out. printl n(User Password Required ");

syst enPassword = "security";
user Password = "hell o";
br eak;

}

/1 Perform Tuxedo style |ogon

org.ong. Security.AuthenticationStatus status =

aut h. | ogon(user Nane, clientNane, systenPassword,
user Password, userData);

/'l Prepare args CORBA Seciop style for authentication
com beasys. Tobj . User Aut hDat a user Dat a;
org.ong. Security. Opaque_var authDat a;
org.ong. Security. AttributeList_var privileges;
org.ong. SecuritylLevel 2. G edential s_var creds;
org.ong. Security. Opaque_var conti nuebDat a;
org. ong. CORBA. ULong net hod = com beasys. Tobj . TuxedoSecuri ty;
org.ong. Security. Opaque_var authSpecificDat a;

/'l Use helper to build the authentication data
BeaPa- >bui | d_aut h_dat a(user Nane, cl i ent Nane,
syst enPasswor d,
user Passwor d,
userData, authbData, privileges);
/'l Perform Corba Seciop authentication
Security.AuthenticationStatus Status =
BeaPa- >aut henti cat e(met hod, user Name, authDat a,
privileges, creds, continueDat a,
aut hSpeci fi cDat a) ;

Systemout.println("logon status =" + status);
if (status != org.ong. Security. Aut henti cationStat us. SecAut hSuccess)
Systemexit(1);

}

catch (User Exception e){
Systemerr.println("User exception: " + e);
e.printStackTrace();
Systemexit(1);

catch (SystenkException e){
Systemerr.println("Systemexception: " + e);
e.printStackTrace();

Systemexit(1);

6-28 Java Programming Reference

Java Programming Examples

Getting Information from Privileges

Listing 6-8 shows how to use the Security Service to get information from privileges
on aJavaclient.

Listing 6-8 Getting I nformation from Privileges

try {

/] Build enpty attribute list to return all privileges
org.ony. Security.AttributeType[] type list =
new org.ong. Security. Attri buteType[0];
/] Get attributes fromcurrent
org.ongy. Security.SecAttribute[] privs =
secCur.get_attributes(type_list);
/1 Print attributes contents
for (int i =0 ; i <privs.length ; i++){
switch(privs[i].attribute type.attribute_type){
case org.ong. Security. Public.val ue:
/1 No security was specified.
/1 Nothing to print.
conti nue;
case org.ong. Security. Accessl d. val ue:
/1 User name
String user = new String(privs[i].value);
Systemout. println("User =" + user);
conti nue;
case org.ong. Security. PrimaryG oupld. val ue:
/1 Cient nane
String client = new String(privs[i].value);
Systemout.printin("Client =" + client);
conti nue;

}

catch (SystenkException e){
Systemout . println("Exception while checking attributes");
Systemexit(1);

Java Programming Reference 6-29

6 Security Service

Checking the Validity of the Credentials Expiration Time

try {

Listing 6-9 shows how to use the Security Serviceto check the validity of the
Credentia's expiration time on a Netscape Communicator client.

Listing 6-9 Checking Validity of Credentials Expiration Timeon a Java Client

/]l Get Credentials from current
org.ony. SecuritylLevel 2. Oredentials cred = secCur.get_credential s(
org.ong. Security. O edential Type. Secl nvocati onCredenti al s);
/1 Verify credentials
org.ony. Ti meBase. Ut cTHol der expiry_tinme =
new org. ong. Ti neBase. Ut cTHol der () ;
if (!cred.is valid(expiry_tine)){
System out. printl n(
"Credentials are not valid any nore");
Systemexit(1);
}
/] expiry_time contains credentials expiration in
/1 100 nanoseconds since 15 Cctober 1582 00: 00

}
catch (SystenkException e){

System out. println("Exception while checking credential s");
Systemexit(1);

Authentication Using
SecurityLevel2.PrincipalAuthenticator

6-30

Thefollowing code fragment illustrates the use of the CORBA -compliant interfacesto
perform authentication.

Java Programming Reference

Java Programming Examples

i mport org.ong. CORBA. *;

i mport com beasys. Tobj . *;

i mport com beasys. *;

i mport com beasys. Tobj I nternal . *
import java.io.*;

public class security_client

{
public static void main(String[] args)
{
Tobj . Princi pal Aut henticator auth = null;
try
{

String HostPort = args[0];

// Initialize ORB
ORB orb = ORB.init();

/1 Create bootstrap object
Tobj _Bootstrap bs =
new Tobj_Bootstrap(orb, "//" + HostPort);

/I Get security current

org.omg.CORBA.Object secCurObj =
bs.resolve_initial_references("SecurityCurrent");

org.omg.SecurityLevel2.Current secCur20bj =
org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

/I Get Principal Authenticator

org.omg.Security.PrincipalAuthenticator princAuth =
secCur20bj.principal_authenticator();

com.beasys.Tobj.PrincipalAuthenticator auth =
Tobj.PrincipalAuthenticatorHelper.narrow(princAuth);

/I Get Authentication type
com.beasys.Tobj.AuthType authType = auth.get_auth_type();

/I Initialize arguments

String userName = "John";
String clientName = "Teller";
String systemPassword = null;
String userPassword = null;
byte[] userData = new byte[0];

/I Prepare arguments according to security level requested
switch(authType.value())
{
case com.beasys.Tobj.AuthType. TPNOAUTH:
break;

Java Programming Reference 6-31

6 Security Service

case com beasys. Tobj . Aut hType. TPSYSAUTH:
syst emPassword = "sys pw';
br eak;

case com beasys. Tobj . Aut hType. TPAPPAUTH:
syst emPassword = "sys pw';
user Password = "john_pw';
br eak;

}

/1 Build security data
org.ony. Security. OpaqueHol der auth_data =
new org. ong. Security. OpaqueHol der();
org.ony. Security. AttributeListHolder privs =
new Security.Attributeli st Hol der();
aut h. bui | d_aut h_dat a(user Nnane, clientNane, systenPassword,
user Passwor d, user Data, authbDat a,
privs);

/1 Authenticate user

org.ony. SecuritylLevel 2. Credenti al sHol der creds =
new org. ongy. SecuritylLevel 2. O edenti al Hol der () ;

org.ony. Security. OpaqueHol der cont _data =
new org. ong. Security. OpaqueHol der();

org.ony. Security. OpaqueHol der auth_spec_data =
new org. ong. Security. OpaqueHol der();

org.ony. Security. Aut henticati onStatus status =
aut h. aut hent i cat e(com beasys. Tobj . TuxedoSecurity. val ue,

0, userNane, auth_data. val ue(),
privs.val ue(), creds, cont_data,
aut h_spec_dat a);

if (status != Authenticatoi nStatus. SecAut hSuccess)

Systemexit(1);
}

cat ch(User Exception e)
{
System.err.printin(“User exception: “ + e);
e.printStackTrace();
System.exit(1);
}

catch(SystemException e)
{
System.err.printin(“User exception: “ + e);
e.printStackTrace();
System.exit(1);

6-32 Java Programming Reference

Java Programming Examples

Authentication Using Tobj.PrincipalAuthenticator

The following code fragment illustrates the use of the BEA extensions to perform
authentication.

i mport org.ong. CORBA. *;

i mport com beasys. Tobj . *;

i mport com beasys. *;

i mport com beasys. Tobj I nternal .*
import java.io.*;

public class security_client

{
public static void main(String[] args)
{
Tobj . Princi pal Aut henticator auth = null;
try
{

String HostPort = args[0];

/'l Initialize ORB
ORB orb = ORB.init();

/1 Create bootstrap object
Tobj _Bootstrap bs =
new Tobj_Bootstrap(orb, "//” + HostPort);

/I Get security current

org.omg.CORBA.Object secCurObj =
bs.resolve_initial_references("SecurityCurrent");

org.omg.SecurityLevel2.Current secCur20bj =
org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

/I Get Principal Authenticator

org.omg.Security.PrincipalAuthenticator princAuth =
secCur20bj.principal_authenticator();

com.beasys.Tobj.PrincipalAuthenticator auth =
Tobj.PrincipalAuthenticatorHelper.narrow(princAuth);

/I Get Authentication type
com.beasys.Tobj.AuthType authType = auth.get_auth_type();

Java Programming Reference 6-33

6 Security Service

/1 Initialize argunments
String userNanme = "John";
String clientName = "Tel ler";
String systenPassword = nul | ;
String userPassword = nul |;
byte[] userData = new byte[O0];

/1l Prepare argunents according to security |level requested
swi t ch(aut hType. val ue())
{
case com beasys. Tobj . Aut hType. TPNOAUTH:
br eak;

case com beasys. Tobj . Aut hType. TPSYSAUTH:
syst emPassword = "sys pw';
br eak;

case com beasys. Tobj . Aut hType. TPAPPAUTH:
syst emPassword = "sys pw';
user Password = "john_pw';
br eak;

}

/1 TUXEDO styl e Authenticatation
org.ony. Security. Aut henticati onStatus status =
aut h. | ogon(user Nane, clientNane, systenmPassword,
user Password, userData);

/1 Check authentication result

if (status!= Security.AuthenticationStatus._SecAuthSuccess)
Systemexit(1);

}

cat ch(User Exception e)
{
System.err.printin(“User exception: “ + e);
e.printStackTrace();
System.exit(1);
}

catch(SystemException e)

{

System.err.printin(“User exception: “ + e);
e.printStackTrace();

System.exit(1);

}

/I Can now proceed with application

}

6-34 Java Programming Reference

Java Programming Examples

Logging Off Using Tobj.PrincipalAuthenticator

The following code fragment illustrates the use of the BEA extensions to log off of a
domain.

/1 Log off
try

{
aut h. | ogoff ();

}
catch (SystenException e)

{
}
}

Checking the Validity of Credentials

Thefollowing codefragment illustratesthe use of the CORBA-compliant interfacesto
check the validity of a principal’s credentials.

try
{
org.ong. Security. Ut cTHol der expiry time =

new org. ony. Security. Ut cTHol der();

/1 Verify credentials
if ('cred.is_valid(expiry_ tine))
{
Systemout.println("Credentials are not valid any nore");
Systemexit(1);
}

/1l expiry_time contains credentials expiration in
/1 100 nanoseconds since 15 Cctober 1582 00: 00
}

catch (SystenkException e)
{

Systemout.printl n("Exception while checking credentials");
Systemexit(1);
}

Java Programming Reference 6-35

6 Security Service

Getting Principal’s Privileges

Thefollowing code fragment illustrates the use of the CORBA -compliant interfacesto
retrieve the privileges and other attributes from a principal’s credentials.

try
{
/] Build enpty attribute type list to return all privileges
org.ong. Security. AttributeType[] type list =
new org.ong. Security. Attri buteType[0];

/1 Get attributes fromcurrent
org.ong. Security. SecAttribute[] privs =
creds.get _attributes(type list);

// Print attributes contents

for (int i =0 ; i <privs.length ; i++)
{
switch(privs[i].attribute_ type)
{

case org.ong. Security. Public. val ue:
/I No security was specified — Nothing to print.
continue;
case org.omg.Security.Accessld.value:
/I User name
String user = new String(privsJi].value);
System.out.printin("User = " + user);
continue;
case org.omg.Security.PrimaryGroupld.value:
/I Client name
String client = new String(privs[i].value);
System.out.printin("Client =" + client);
continue;
}
}
}
catch (SystemException e)
{
System.out.printin("Exception while getting privileges");
System.exit(1);
}

6-36 Java Programming Reference

Java Programming Examples

Copying a Credentials Object

Thefollowing codefragment illustratesthe use of the CORBA-compliant interfacesto

copy a Credentials object. Copying a Credentials object results in a “deep copy,”
possibly creating another security association based on the security technology used
by the security provided. Copying a Credentials object that is on the SecurityCurrent
object’s “own” list does not place the newly create copy on the “own” list. As a result,
the newly created copy of the Credentials object can only be used as the default for one
or more threads of the application, and will never be used as a default Credentials
object for the capsule (process).

try
{
org.ong. SecuritylLevel 2. O edentials creds_copy =

secCur 2. copy();
}

catch

{
Systemout.printl n("Exception while copying credential");

Systemexit(1);
b

Destroying a Credentials Object

The following code fragment illustrates the use of the CORBA-compliant interfaces to
destroy a Credentials object. Typically, a Credentials object exists on the “own” list of
the SecurityCurrent object. As a result, it should be removed from the “own” list prior
to being destroyed. Destroying a Credentials object always results in the destruction of
the security association between the client application and the target object, unless the
security association is shared with another Credentials object.

try
{

secCur 2. renove_own_credential s(creds);
secCur 2. destroy();
}

catch

{

Systemout.printl n("Exception while destroying credential");
Systemexit(1);
I

Java Programming Reference 6-37

6 Security Service

Getting the Principal Authenticator Object

Thefollowing code fragment illustrates the use of the CORBA -compliant interfacesto
retrieve the Principal Authenticator object.

try
{
org.ong. SecuritylLevel 2. Pri nci pal Aut henticator princAuth =
secCur Lev2. princi pal _authenticator();

}
catch (SystenException e)

{

Systemerr.println("Error getting principal authenticator”);
Systemexit(1);

}

Getting Credentials

Thefollowing code fragment illustrates the use of the CORBA -compliant interfacesto
retrieve the privileges and other attributes from a principal’s credentials.

try
{
org.ong. SecuritylLevel 2. Credentials creds =
secCur.get _credential s(
org. ongy. Security. Credential Type. Secl nvocat onCr edenti al s) ;

}
catch (SystenmException e)

{

System out. println("Exception while getting credentials");
Systemexit(1);

}

Setting Default Credentials

The following code fragment illustrates the use of the CORBA-compliant interfaces to
set the privileges and other attributes for a principal’s credentials as the credentials t
be used for invocations in the current thread.

6-38 Java Programming Reference

Java Programming Examples

try
{
secCur.set_credential s(
org.ong. Security. O edential Type. Secl nvocat i onCr edenti al s,

creds);
}
catch (SystenkException e)
{

Systemout.printl n("Exception while setting credentials");
Systemexit(1);
}

Getting a Principal’s Privileges

Thefollowing codefragment illustratesthe use of the CORBA-compliant interfacesto
retrieve the privileges and other attributes from a principal’s credentials.

try
{
/1 Build enpty attribute type list to return all privileges

org.ong. Security. Attri buteType[] type_list =
new org.ony. Security.AttributeType[O0];

/] Get attributes from current
org.ong. Security. SecAttribute[] privs =
secCur.get _attributes(type_ list);

// Print attributes contents

for (int i =0 ; i < privs.length ; i++)
{
switch(privs[i].attribute_type)
{

case org.ong. Security. Public.val ue:

/I No security was specified — Nothing to print.
continue;

case org.omg.Security.Accessld.value:
/I User name
String user = new String(privs][i].value);
System.out.printin("User =" + user);
continue;

case org.omg.Security.PrimaryGroupld.value:
/I Client name
String client = new String(privs[i].value);
System.out.printin("Client =" + client);

Java Programming Reference 6-39

6 Security Service

conti nue;
}
}

}
catch (SystenException e)

{

System out. println("Exception while getting privileges");
Systemexit(1);

}

Removing a Credentials Object from the “Own” List

Thefollowing code fragment illustrates the use of the CORBA -compliant interfacesto
remove a Credential s object from the list of default Credential s objects for the current
capsule (process). Removing a Credentials object from thislist eliminates the ability
for theremoved Credential s object to be used asthe capsul e default. It does not destroy
the Credentials object, or the security association that it represents.

try
{

secCur 2. renpve_own_credential s(creds);

}

catch

{

System out. println("Exception while renoving credential");
Systemexit(1);
I

Getting Credentials of the Requesting Principal

Thefollowing code fragment illustrates the use of the CORBA -compliant interfacesto
retrieve the credentials for the requesting principal.

try
{

org.ong. SecuritylLevel 2. Recei vedOredentials recCreds =
secCur Lev2.recevi ed_credential s();

org.ong. SecuritylLevel 2. Credentials creds =
recCreds. accepting_credential s();

}
catch (SystenException e)

6-40 Java Programming Reference

Java Programming Examples

{

System.err.printin(“Exception getting received credentials”);
System.exit(1);
}

Getting the Principal’s Privileges from Credentials

Thefollowing codefragment illustratesthe use of the CORBA-compliant interfacesto
retrieve the privileges and other attributes from the requesting principal’s credentials.

try
{
/1 Build enpty attribute list to return all privileges

org.ong. Security. Attri buteType[] type_list =
new org.ony. Security.AttributeType[O0];

/] Get attributes from Credentials
org.ong. Security. SecAttribute[] privs =
creds.get _attributes(type_list);

// Print attributes contents

for (int i =0 ; i < privs.length ; i++)
{
switch(privs[i].attribute_type)
{

case org.ong. Security. Public.val ue:

/I No security was specified — Nothing to print.
continue;

case org.omg.Security.Accessld.value:
/I User name
String user = new String(privs][i].value);
System.out.printin("User =" + user);
continue;

case org.omg.Security.PrimaryGroupld.value:
/I Client name
String client = new String(privs[i].value);
System.out.printin("Client =" + client);
continue;

}

}
}

catch (SystemException e)

{

Java Programming Reference 6-41

6 Security Service

System out.println("Exception while getting privileges");
Systemexit(1);
}

Getting the Principal’s Privileges from the
SecurityCurrent object

Thefollowing code fragment illustrates the use of the CORBA -compliant interfacesto
retrieve the privileges and other attributes for the requesting principal from the
SecurityCurrent object.

try
{
/1 Build enpty attribute list to return all privileges
org.ong. Security. AttributeType[] type list =
new org.ong. Security. AttributeType[0];

/1 Get attributes from current
org.ong. Security. SecAttribute[] privs =
secCur Lev2.get _attributes(type_list);

/1 Print attributes contents

for (int i =0 ; i <privs.length ; i++)
{
switch(privs[i].attribute_type)

case org.ong. Security. Public. val ue:

/I No security was specified — Nothing to print.
continue;

case org.omg.Security.Accessld.value:
/I User name
String user = new String(privs[i].value);
System.out.printin("User = " + user);
continue;

case org.omg.Security.PrimaryGroupld.value:
/I Client name
String client = new String(privs[i].value);
System.out.printin("Client =" + client);
continue;

}

}
}

catch (SystemException €)

6-42 JavaProgramming Reference

Java Programming Examples

{

Systemout.printl n("Exception while getting privileges");
Systemexit(1);

}

Obtaining the SecurityCurrent Object

Thefollowing code fragment illustrates how aserver application can obtain areference
to the SecurityCurrent object.

/1 Cbtain a reference to the bootstrap object
Tobj _Bootstrap bs = TP. bootstrap();
/1 Get the Security Current

org. ong. CORBA. Obj ect secQurCbj =

bs.resolve _initial_references(“SecurityCurrent”);
org.omg.SecurityLevel2.Current secCurLev2
org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

Getting Association Options

Thefollowing codefragment illustratesthe use of the CORBA-compliant interfacesto
get the association options in effect for the secure association with the remote
principal.

try
{

short options = recCreds.association_options_used();

}

catch (SystemException e)

{

System.out.printin("Exception getting association options");
System.exit(1);

}

Getting Delegation State

Thefollowing codefragment illustratesthe use of the CORBA-compliant interfacesto
get the delegation state of the remote principal for these credentials.

Java Programming Reference 6-43

6 Security Service

try
{
org.ong. Security. Del egationState del State =
recCreds. del egati on_state();
switch(del State)
{
case org.ong. Security. Seclnitiator:
System.out.printin(“Acting on own behalf”);
break;
case org.omg.Security.SecDelegate:
System.out.printin(“acting on behalf of another”);
break;
}
}
catch (SystemException €)
{
System.out.printin("Exception getting delegation state");
System.exit(1);
}

Getting Delegation Mode

Thefollowing code fragment illustrates the use of the CORBA -compliant interfacesto
get the del egation mode of the credentials.

try
{
org.omg.Security.DelegationMode delMode =
recCreds.delegation_mode();
switch(delMode)
{
case org.omg.Security.SecDelModeNoDelegation:
System.out.printin(“Unusable for invocation”);
break;
case org.omg.Security.SecDelModeSimpleDelegation:
System.out.printin(“Usable for simple delegation”);
break;
case org.omg.Security.SecDelModeCompositeDelegation:
System.out.printin(“Usable for composite delegation”);
break;
}
}

catch (SystemException €)

6-44 Java Programming Reference

Java Programming Examples

{

Systemout.println("Exception getting del egati on node");
Systemexit(1);
}

Java Programming Reference 6-45

6 Security Service

6-46 JavaProgramming Reference

CHAPTER

.

Transaction Service

This chapter contains the following topics:

L4

Capabilities and Limitations. This section describes the following topics:

* & & & > o

* & & & & o o

Lightweight Clients with Delegated Commit
Transaction Propagation

Transaction Integrity

Transaction Termination

Flat Transactions

Interoperability Between Remote Clients and the WebL ogic Enterprise

Domain

Intradomain | nteroperability

Network Interoperability

Relationship of the Transaction Service to Transaction Processing
Process Failure

Multithreaded Support

OMG Interface Definition Language (IDL)

General Constraints

Getting Initial References to the TransactionCurrent Object

Transaction Service API. This section describes the following topics:

L4

¢
¢
¢

Data Types

Control Interface

Transactional Object Interface

Other CORBA services Object Transaction Service Interfaces

Java Programming Reference

7-1

7 Transaction Service

4 Transaction Service APl Extensions
The WebL ogic Enterprise system provides the following:

4 Animplementation of the CORBAservices Object Transaction Service (OTS)
that is described in Chapter 10 of the CORBAservices: Common Object Services
Specification. This specification defines the interfaces for an object service that
provides transactional functions.

4 Sun Microsystems, Inc.jsavax. t r ansact i on package, which implements the
Java Transaction API (JTA).

This chapter describes how the WebLogic Enterprise software implements the OTS.
in particular, that portion of the CORBAservices Object Transaction Service that is
described as implementation-specific. This chapter provides the information that
programmers need to write transactional applications for the WebLogic Enterprise
system. It describes the OTS application programming interface (API) that you use t
begin or terminate transactions, suspend or resume transactions, and get informatic
about transactions.

For information about JTA, refer to the following:
4 Thej avax. transact i on package description in thiava APl Reference.

4 The Java Transaction API specification, published by Sun Microsystems, Inc.
and available from the Sun Microsystems, Inc. Web site. (SeRetbase Notes
for information about obtaining this document.)

Capabilities and Limitations

The following sections describe the capabilities and limitations of the Transaction
Service.

7-2 Java Programming Reference

Capabilities and Limitations

Lightweight Clients with Delegated Commit

A lightweight client runs on a single-user, unmanaged desktop system that has
irregular availability; that is, the owners may turn their desktop systems off when they
are not in use. These single-user, unmanaged desktop systems should not be required
to perform network functions like transaction coordination. In particular, unmanaged
systems should not be responsible for ensuring atomicity, consistency, isolation, and
durability (ACID) properties across failures for transactions involving server
resources. WebL ogic Enterprise remote clients are lightweight clients.

The Transaction Service allowslightweight clientsto do delegated commit. Del egated
commit means that the Transaction Service allows lightweight clients to begin and
terminate transactions while the responsibility for transaction coordination is

del egated to atransaction manager running on aserver machine. Thelightweight client
does not need alocal CORBA services Object Transaction Service transaction
manager.

Transaction Propagation

The CORBAservices Object Transaction Service specification states that a client can
choose to propagate transaction context either implicitly or explicitly. This
implementation of the CORBA services Object Transaction Service provides implicit
propagation. Explicit propagation is strongly discouraged.

Objectsthat are related to transaction context that are passed around using explicit
transaction propagation should not be mixed with implicit transaction propagation
APIs. It should be noted, however, that explicit propagation does not place any
constraints on when transactional methods can be processed; thereis no guarantee that
all transactional methods will be completed before the transaction is committed.

Transaction Integrity

Checked transaction behavior provides transaction integrity by guaranteeing that a
commi t will not succeed unless all transactional objectsinvolved in the transaction
have completed the processing of their transactional requests. If implicit transaction
propagation is used, the Transaction Service provides checked transaction behavior

Java Programming Reference 7-3

v

Transaction Service

that is equivalent to that provided by the request/response interprocess communication
models defined by The Open Group. The Transaction Service performsr epl y checks,
conmi t checks, and r esune checks, as described in the CORBAservices Object
Transaction Service Specification.

Unchecked transaction behavior relies completely on the application to provide
transaction integrity. If explicit propagation is used, the Transaction Service does not
provide checked transaction behavior and transaction integrity is not guaranteed.

Transaction Termination

This implementation of the CORBA services Object Transaction Service alows
transactions to be terminated only by the client that created the transaction.

Note: Theclient may be a server object that requests the services of another object.

Flat Transactions

This implementation of the CORBA services Object Transaction Service implements
the flat transaction model.

Interoperability Between Remote Clients and the
WebLogic Enterprise Domain

7-4

This implementation of the CORBA services Object Transaction Service does not
support remote clients invoking methods on server objectsin different WebL ogic
Enterprise domains in the same transaction.

Remote clients with multiple connections to the same WebL ogic Enterprise domain
may not make invocations to server objects on these separate connections within the
sametransaction. Anor g. ong. CORBA. NO_PERM SSI ON standard system exceptionis
returned to the client.

Java Programming Reference

Capabilities and Limitations

Intradomain Interoperability

The WebL ogic Enterprise implementation of the CORBA services Object Transaction
Service supports native clients invoking methods on server objects in the WebL ogic

Enterprise domain. In addition, server objectsinvoking methods on other objectsinthe
same or in different processes in the same WebL ogic Enterprise domain is supported.

Network Interoperability

Thisimplementation of the CORBA services Object Transaction Service does not
support the export or import of transactionsto or from remote WebL ogic Enterprise
domains.

Relationship of the Transaction Service to Transaction
Processing

This section describes the relationship of the Transaction Service to various
transaction processing servers, interfaces, protocols, and standards, as follows:

4 Support of BEA TUXEDO ATMI servers

Servers using the WebL ogic Enterprise Transaction Service can make
invocations on other BEA TUXEDO Application-to-Transaction Monitor
Interface (ATMI) server processes in the same domain. This implementation of
the CORBA services Object Transaction Service does not support the following:

4 Remote clients or native clientsinvoking ATMI services in the WebL ogic
Enterprise domain

4 ATMI services invoking objects

4 Support of The Open Group XA interface

The Open Group Resource Managers are resource managers that can be involved
in adistributed transaction by allowing their two-phase commit protocol to be
controlled via The Open Group XA interface. Thisimplementation of the

Java Programming Reference 7-5

v

Transaction Service

CORBAservices Object Transaction Service supports interaction with The Open
Group Resource Managers.

4 Support of the OS| TP protocol

Open Systems Interconnect Transaction Processing (OSI TP) is the transactiona
protocol defined by the International Organization for Standardization (1SO).
The WebL ogic Enterprise implementation of the CORBA services Object
Transaction Service does not support interactions with OSI TP transactions.

4 Support of the LU 6.2 protocol

Systems Network Architecture (SNA) LU 6.2 isatransactional protocol defined
by IBM. The WebL ogic Enterprise implementation of the CORBAservices
Object Transaction Service does not support interactions with LU 6.2
transactions.

4 Support of the ODMG standard

ODMG-93 is a standard defined by the Object Database Management Group
(ODMG) that describes a portabl e interface to access Object Database
Management Systems. The WebL ogic Enterprise implementation of the
CORBAservices Object Transaction Service does not support interactions with
ODMG transactions.

Process Failure

7-6

The Transaction Service monitors the participantsin atransaction for failures and
inactivity. One of the featuresthat distinguishesthe BEA TUXEDO system from other
distributed application environmentsis the management tools for keeping the
application running when failures occur. Because the WebL ogic Enterprise
implementation of the CORBA services Object Transaction Service is built upon the
existing BEA TUXEDO transaction management system, it inherits the capabilities of
the BEA TUXEDO system for keeping applications running.

Java Programming Reference

Capabilities and Limitations

Multithreaded Support

The WebL ogic Enterprise implementation of the CORBA services Object Transaction
Service supports single-threaded implementations only. Specifically, a client with an
active transaction cannot make requests for the same transaction on multiple threads.
However, it is possibleto have multiple transactions serially active at the sametimein
asingle thread.

OMG Interface Definition Language (IDL)

The CORBAservices Object Transaction Service OMG IDL isdescribed in detail in
Chapter 10 of the CORBAservices: Common Object Services Specification. The
WebL ogic Enterprise implementation of the CORBA services Object Transaction
Service supports a functionally complete subset of the CORBA services Object
Transaction Service OMG IDL interfaces. For details, see the section “Transaction
Service API” on page 7-9.

General Constraints

The following constraints apply:

4 The WebLogic Enterprise implementation of the CORBAservices Object
Transaction Service imposes a limitation on programmers in that a server
application object using transactions from the WebLogic Enterprise Transaction
Service libraryneeds the WebLogic Enterprise TP Framework functionality. A
restriction imposed by the WebLogic Enterprise TP Framework is that a client or
a server objeatannot invoke methods on an object that is infected with another
transaction. The method invocation issued by the client or the server will return
an exception. For further details on the TP Framework, see Chapter 3, “TP
Framework.”

4+ Areturn from the rollback method on the Current object is asynchronous. A
consequence of this is that the objects that were infected by the rolled back
transaction get their states cleared by the WebLogic Enterprise TP Fransework
little later. This implies thaho other client can infect these objects with a
different transaction until the WebLogic Enterprise TP Framework clears the

Java Programming Reference 7-7

7 Transaction Service

states of these objects. This race condition exists for avery short amount of time
and istypically not noticeable in a full-fledged application. A simple
workaround for this race condition isto try the appropriate operation after a
short (typically a 1-second) delay.

4 Inthe WebL ogic Enterprise implementation of the CORBA services Object
Transaction Service, clients using other CORBA services Object Transaction
Service implementations are not supported.

4 Inthe WebL ogic Enterprise implementation, clients may not make oneway
method invocations within the context of a transaction to server objects having
the NEVER, OPTI ONAL, or ALWAYS transaction policies. No error or exception will
be returned to the client because it is a oneway method invocation; however, the
method on the server object will not be executed. Also, an appropriate error
message will be written to the log. Clients may make oneway method
invocations within the context of atransaction to server objects having the
IGNORE transaction policy. In this case, the method on the server object will be
executed, but not in the context of atransaction. For further details on the
transaction policies, see Chapter 2, “Server Description File.”

Getting Initial References to the
TransactionCurrent Object

To access the Transaction Service API and the extension to the Transaction Service
API as described later in this chapter, an application needs to issue the following
commands.

1. Create a Bootstrap object.
For details on creating a Bootstrap object, see Chapter 4, “Bootstrap Object.”

2. Invoke theresol ve_initial _reference("TransactionCurrent”) method
on the Bootstrap object. The invocation returns a standard CORBA object
pointer. For a description of this Bootstrap object method, see Chapter 4,
“Bootstrap Object.”

7-8 Java Programming Reference

Transaction Service API

3. If an application isinterested in only the Transaction Service APIs, an
or g. ong. CosTransact i ons. Current. narrow) should beissued on the
object pointer returned from step 2 above. If an application isinterested in the
Transaction Service APIswith the extensions, a
com beasys. Tobj . Transact i onCurrent. narrow() should beissued on the
object pointer returned from step 2 above.

Transaction Service API

The following sections describe the portions of the CosT ransactions modules that are
based on CORBA that are implemented in the WebL ogic Enterprise software to
support the Transaction Service. For further details, refer to Chapter 10 of the
CORBAservices: Common Object Services Specification.

The definitions and interfaces supported by the Transaction Service in the WebL ogic
Enterprise software are as follows:

4 Datatypes
4 Control interface

4 org.ony. CosTransacti ons. Transact i onal (bj ect interface

Data Types

Listing 7-1 shows the supported data types.

Listing 7-1 Data Types Supported by the Transaction Service

enum St atus {

St at usActi ve,

St at usMar kedRol | back,
St at usPr epar ed,
StatusCommi tt ed,

St at usRol | edBack,

St at usUnknown,

Java Programming Reference 7-9

v

Transaction Service

St at usNoTransacti on
St at usPrepari ng,

St at usConmi tti ng,

St at usRol | i ngBack

}s

/1 This information is taken from CORBAservices: Conmon Obj ect
// Services Specification, p. 10-15. Revi sed Edition:
/1 March 31, 1995. Updated: March 1997. Used wi th perm ssion by OMG

Control Interface

The Control interface allowsaprogram to explicitly manage or propagate atransaction
context. An object that supportsthe Control interfaceisimplicitly associated with one
specific transaction.

TransactionalObject Interface

7-10

Theor g. ong. CosTransact i ons. Transact i onal Obj ect interfaceisused by an
object to indicate that it istransactional. By supporting this interface, an object

indicates that it wants the transaction context associated with the client thread to be
propagated on requeststo the object. However, thisinterface is no longer needed. For
detail son transaction policiesthat need to be set to infect objectswith transactions, see

the sections “Server Description File Syntax” on page 2-3 and “TransactionalObject
Interface Not Enforced” on page 3-4.

The CosTransactions module defines the TransactionalObject interface (shown in
Listing 7-2). Theor g. ong. CosTr ansacti ons. Transact i onal Obj ect interface
defines no methods. It is simply a marker.

Listing 7-2 TransactionalObject Interface

interface Transacti onal bj ect {

}s

/1 This information is taken from CORBAservices: Conmon Obj ect
// Services Specification, p. 10-30. Revised Edition:

Java Programming Reference

Transaction Service API Extensions

/1 March 31, 1995. Updated: Novenber 1997. Used wi th perm ssion by
/1 OVG

Other CORBAservices Object Transaction Service
Interfaces

All other CORBA services Object Transaction Service interfaces are not supported.
Note that the Current interface described earlier is supported only if it has been
obtained from the Bootstrap object. The Control interface described earlier is
supported only if it has been obtained using the get _cont rol and the suspend
methods on the Current object.

Transaction Service API Extensions

This section describes specific extensions to the COBRA services Transaction Service
API described earlier. The APIsin this section enable an application to open or close
an Open Group Resource Manager.

The following APIs help facilitate participation of resource managersin adistributed
transaction by allowing their two-phase commit protocol to be controlled viaThe Open
Group XA interface.

Thefollowing definitions and interfaces are defined in thecom beasys. Tobj module.

Exception

The following exception is supported:

exception RVailed {};

A reguest raises this exception to report that an attempt to open or close aresource
manager failed.

Java Programming Reference 7-11

v

Transaction Service

TransactionCurrent Interface

7-12

Thisinterface supports all the methods of the Current interface in the CosTransactions
modul e as described in the Java API Reference. Additionally, thisinterface supports
APIsto open and close the resource manager.

The Tobj module defines the TransactionCurrent interface, as shown in Listing 7-3.

Listing 7-3 TransactionCurrent Interface

Interface TransactionCurrent: CosTransactions::Current {
voi d open_xa_rm)
rai ses(RMail ed);
void close_xa_rm))
rai ses(Rnfail ed);

Table 7-1 describes APIs that are specific to the resource manager. For more
information about these APIs, see the Java API Reference.

Table7-1 Resource Manager APIsfor the Current Interface

Method Description

open_xa rm This method opens The Open Group Resource Manager to which this
processislinked. A RM ai | ed exception israised if thereis afailure
while opening the Resource M anager.

Any attemptsto invokethis method by remoteclientsor the native clients
raisessaNO_| MPLEVMENT standard system exception.

close xa rm This method closes The Open Group Resource Manager to which this
processislinked. An RM ai | ed exceptionisraised if thereisafailure
while closing the Resource Manager. A BAD_| NV_ORDER standard
system exception israised if the function was called in an improper
context (for example, the caller isin transaction mode).

Any attempts by the remote clients or the native clients to invoke this
method raises a NO_| MPLEMENT standard system exception.

Java Programming Reference

CHAPTER

8

Interface Repository
Interfaces

This chapter contains the following topics:

L4

¢
¢
¢

Structure and Usage
Building Client Applications
Getting Initial Referencesto the InterfaceRepository Object

Interface Repository Interfaces. This section describes the following topics:
Supporting Type Definitions
IRObject Interface
Contained Interface
Container Interface
IDLType Interface
Repository Interface
ModuleDef Interface
ConstantDef Interface
TypedefDef Interface
StructDef

UnionDef

EnumDef

AliasDef

® & & & & ¢ O S ¢ O > o o

Java Programming Reference

8-1

8

Interface Repository Interfaces

8-2

PrimitiveDef
ExceptionDef
AttributeDef
OperationDef
InterfaceDef

* & & o o

Note: Most of theinformation in this chapter istaken from Chapter 8 of the Common
Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. The OMG information has been modified as required to
describe the WebL ogic Enterprise implementation of the Interface Repository
interfaces. Used with permission by OMG.

The WebL ogic Enterprise Interface Repository contains the interface descriptions of
the CORBA objects that are implemented within the WebL ogic Enterprise domain.

The WebL ogic Enterprise Interface Repository is based on the CORBA definition of
an Interface Repository. It offers a proper subset of the interfaces defined by CORBA,;
that is, the APIs that are exposed to programmers are implemented as defined by the
Common Object Request Broker: Architecture and Specification Revision 2.2.
However, not all interfaces are supported. In general, the interfaces required to read
from the Interface Repository are supported, but the interfaces required to write to the
Interface Repository are not. Additionally, not all TypeCode interfaces are supported.

Administration of the Interface Repository is done using tools specific to the

WebL ogic Enterprise software. Thesetoolsallow the system administrator to createan
Interface Repository, populate it with definitions specified in Object Management
Group Interface Definition Language (OMG IDL), and then delete interfaces.
Additionally, an administrator may need to configure the system to include an
Interface Repository server. For a description of the Interface Repository
administration commands, see Chapter 10, “Java Development and Administration
Commands.”

Several abstract interfaces are used as base interfaces for other objects in the Interf:
Repository. A common set of operations is used to locate objects within the Interfac
Repository. These operations are defined in the abstract interfaces IRObject,
Container, and Contained described in this chapter. All Interface Repository objects
inherit from the IRObject interface, which provides an operation for identifying the
actual type of the object. Objects that are containers inherit navigation operations fror
the Container interface. Objects that are contained by other objects inherit navigatio
operations from the Contained interface. The IDLType interface is inherited by all

Java Programming Reference

Structure and Usage

Interface Repository objects that represent OMG IDL types, including interfaces,
typedefs, and anonymous types. The TypedefDef interface isinherited by al named
noninterface types.

The IRObject, Contained, Container, IDL Type, and TypedefDef interfaces are not
instantiable.

All string datain the Interface Repository are encoded as defined by the 1SO 8859-1
character set.

Note: The Write interface is not documented in this chapter because the WebL ogic
Enterprise software supports only read access to the | nterface Repository. Any
attempt to use the Write interface to the Interface Repository will raise the
exception or g. ong. CORBA. NO_| MPLEMENT.

Structure and Usage

The Interface Repository consists of two distinct components: the database and the
server. The server performs operations on the database.

The Interface Repository database is created and popul ated using thei dl 2i r

administrative command. For a description of this command, see the command
“ma3idltojava” on page 10-7. From the programmer’s point of view, there is no write
access to the Interface Repository. None of the write operations defined by CORBA
are supported, nor are set operations on non-read-only attributes.

Read access to the Interface Repository database is always through the Interface
Repository server; that is, a client reads from the database by invoking methods that
are performed by the server. The read operations as defined ®@RBA Common

Object Request Broker: Architecture and Secification, Revision 2.2, are described in

this chapter.

Java Programming Reference 8-3

8

Interface Repository Interfaces

From the Programmer’s Point of View

8-4

The interface to a server is defined in the OMG IDL file. How the OMG IDL fileis
accessed depends on the type of client being built. Three types of clients are
considered: stub based, Dynamic Invocation Interface (DII), and ActiveX.

Client applications that use stub-style invocations need the OMG IDL file at build
time. The programmer can use the OMG IDL file to generate stubs, and so forth. (For
more information, see Creating Client Applications.) No other accessto the Interface
Repository is required.

Client applications that use the Dynamic Invocation Interface (DI1) need to accessthe
Interface Repository programmatically. The interface to the Interface Repository is

defined in thischapter and isdiscussed in “Building Client Applications” on page 8-5.

The exact steps taken to access the Interface Repository depend on whether the clit
is seeking information about a specific object, or browsing the Interface Repository tc
find an interface. To obtain information about a specific object, clients use the

org. ong. CORBA. (hj ect. _get _i nterface method to obtain an InterfaceDef

object. (Refer thdava API Reference for a description of this method.) Using the
InterfaceDef object, the client can get complete information about the interface.

Before a DIl client can browse the Interface Repository, it needs to obtain the object
reference of the Interface Repository to start the search. DIl clients use the Bootstra
object to obtain the object reference. (For a description of this method, see Chapter -
“Bootstrap Object.”) Once the client has the object reference, it can navigate the
Interface Repository, starting at the root.

Note: To use the DII, the OMG IDL file must be stored in the Interface Repository.

Client applications that use ActiveX are not aware that they are using the Interface
Repository. From the Interface Repository perspective, an ActiveX client is no
different than a DIl client. ActiveX clients include the Bootstrap object in the Visual
Basic code. Like DIl clients, ActiveX clients use the Bootstrap object to obtain the
Interface Repository object reference. Once the client has the object reference, it ca
navigate the Interface Repository, starting at the root.

Note: To use an ActiveX client, the OMG IDL file must be stored in the Interface
Repository.

Java Programming Reference

Building Client Applications

Performance Implications

All run-time access to the Interface Repository is via the | nterface Repository server.
Because there is considerabl e overhead in making reguests of aremote server
application, designers need to be aware of this. For example, consider the interaction
required to use an object reference to obtain the necessary information to make a DI|
invocation on the object reference. The steps are as follows:

1. Theclient application invokesthe _get _i nt er f ace operation on the
or g. onmg. CORBA. Obj ect to get the InterfaceDef object associated with the object
in question. This causes a message to be sent to the ORB that created the object
reference.

2. The ORB returns the InterfaceDef object to the client.

3. Theclientinvokes one or more _i s_a operations on the object to determine what
type of interface is supported by the object.

4. After the client hasidentified the interface, it invokesthe descri be_i nterface
operation on the Interface object to get afull description of the interface (for
example, version number, operations, attributes, and parameters). This causes a
message to be sent to the Interface Repository, and areply isreturned.

5. Theclient is now ready to construct a DIl request.

Building Client Applications

Javaclientsthat usethe I nterface Repository need to link in Interface Repository stubs.
How this happens is specific to the vendor. If the client application isusing the
WebL ogic Enterprise ORB, the WebL ogic Enterprise software provides the stubsin
the or g. ong. CORBA package, which you should include as part of your server
applicationj ar file. Therefore, programmers do not need to use the Interface
Repository OMG IDL file to build the stubs.

Java Programming Reference 8-5

8 In terface Repository Interfaces

If the client application is using a third-party ORB (for example, Orbix) the
programmer must use the mechanisms that are provided by that vendor. This might
include generating stubs from the OMG IDL file using the IDL compiler supplied by
the vendor, simply linking against the stubs provided by the vendor, or some other
mechanism.

Some third-party ORBs provide alocal Interface Repository capability. In this case,
the local Interface Repository is provided by the vendor and is populated with the
interface definitions that are needed by that client.

Getting Initial References to the
InterfaceRepository Object

Y ou use the Bootstrap object to get an initial reference to the InterfaceRepository
object. For adescription of the Bootstrap object method, see Chapter 4, “Bootstrap
Object.”

Interface Repository Interfaces

Client applications use the interfaces defined by CORBA to access the Interface
Repository. This section contains descriptions of each interface that is implemented i
the WebLogic Enterprise software.

Supporting Type Definitions

Several types are used throughout the Interface Repository interface definitions.

nmodul e CORBA {

typedef string Identifier;
typedef string ScopedNane;
typedef string Reposi toryl d;

8-6 Java Programming Reference

Interface Repository Interfaces

enum DefinitionKind {
dk_none, dk_all,
dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
dk_Mbodul e, dk_Operation, dk_Typedef,
dk_Alias, dk_Struct, dk_Union, dk_Enum
dk_Primtive, dk_String, dk_Sequence, dk_Array,
dk_Repository,
I
}

Identifiers arethe simple names that identify modules, interfaces, constants,
typedefs, exceptions, attributes, and operations. They correspond exactly to OMG IDL
identifiers. An1dentifier isnot necessarily unique within an entire Interface
Repository; it isunique only within a particular Repository, ModuleDef, | nterfaceDef,
or OperationDef.

A ScopedNane isaname made up of one or more identifiers separated by two colons
(: 1) Theidentifiers correspondto OMG IDL scoped names. An absolute ScopedName
is one that begins with two colons and unambiguously identifies a definition in a
Repository. An absolute ScopedNane in a Repository correspondsto agloba namein
anOMG DL file. A relative ScopedName does not begin with two colonsand must be
resolved relative to some context.

A Reposi toryl d isan identifier used to uniquely and globally identify a module,
interface, constant, typedef, exception, attribute, or operation. Because Repositorylds
are defined as strings, they can be manipulated (for example, copied and compared)
using a language binding’s string manipulation routines.

A Def i ni ti onKi nd identifies the type of an Interface Repository object.

IRODbject Interface

The IRObject interface (shown below) represents the most generic interface from
which all other Interface Repository interfaces are derived, even the Repository itself.

nmodul e CORBA {
interface | RObject {
readonly attribute DefinitionKind def ki nd;
}
%

Thedef _ki nd attribute identifies the type of the definition.

Java Programming Reference 8-7

8 In terface Repository Interfaces

Contained Interface

The Contained interface (shown below) isinherited by all Interface Repository
interfaces that are contained by other Interface Repository objects. All objects within
the Interface Repository, except the root object (Repository) and definitions of
anonymous (ArrayDef, StringDef, and SequenceDef), and primitive types are
contained by other objects.

nmodul e CORBA {
typedef string VersionSpec;

interface Contained : | RObject {
readonly attribute Repositoryld id;
readonly attribute ldentifier name;
readonly attribute VersionSpec ver si on;
readonly attri bute Contai ner defined_in;
readonly attribute ScopedNane absol ut e_nane;
readonly attribute Repository cont ai ni ng_reposi tory;
struct Description {
Def i ni ti onKi nd ki nd;
any val ue;
b
Description describe ();
I

}s

An object that is contained by another object hasan i d attribute that identifiesit
globally, and anane attribute that identifiesit uniquely within the enclosing Container
object. Italso hasaver si on attributethat distinguishesit from other versioned objects
with the same name. The WebL ogic Enterprise | nterface Repository does not support
simultaneous containment or multiple versions of the same named object.

Contained objects also have adef i ned_i n attribute that identifies the Container
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
modul€) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the operation
from another interface). If an object is contained through inheritance, thedef i ned_i n
attribute identifies the InterfaceDef from which the object isinherited.

Theabsol ut e_name attribute is an absolute ScopedNane that identifies a Contained
object uniquely within its enclosing Repository. If this objed#si ned_i n attribute
references a Repository, thiesol ut e_name is formed by concatenating the string

8-8 Java Programming Reference

Interface Repository Interfaces

“:» and this object'sane attribute. Otherwise, thebsol ut e_nane is formed by
concatenating thaebsol ut e_name attribute of the object referenced by this object’s
def i ned_i n attribute, the string:” , and this object'sanme attribute.

The cont ai ni ng_r eposi t ory attribute identifies the Repository that is eventually
reached by recursively following the objeaf'sf i ned_i n attribute.

Thedescr i be operation returns a structure containing information about the interface.
The description structure associated with each interface is provided below with the
interface’s definition. The kind of definition described by the structure returned is
provided with the returned structure. For example, ifdicr i be operation is

invoked on an attribute object, tkend field containgdk_At t ri but e and the value

field contains arany, which contains thét t ri but eDescr i pti on structure.

Container Interface

The Container interface is used to form a containment hierarchy in the Interface
Repository. A Container can contain any humber of objects derived from the
Contained interface. All Containers, except for Repository, are also derived from
Contained.

nodul e CORBA {
typedef sequence <Contai ned> Cont ai nedSeq;

interface Container : |RObject {
Cont ai ned | ookup (in ScopedNanme search_nane);

Cont ai nedSeq contents (

in DefinitionKind limt_type,

i n bool ean exclude_inherited
)

Cont ai nedSeq | ookup_nane (

in ldentifier sear ch_nane,

inlong | evel s_to_search,

in DefinitionKind limt_type,

i n bool ean excl ude_i nherited
)

struct Description {

Cont ai ned cont ai ned_obj ect;

Defi ni ti onKi nd ki nd;

any val ue;

Java Programming Reference 8-9

8 In terface Repository Interfaces

b
typedef sequence<Description> DescriptionSeq;

DescriptionSeq describe_contents (

in DefinitionKind limt_type,

in bool ean excl ude_i nherited,

in long max_returned_objs
)

}
}s

Thel ookup operation locates a definition relative to this container, given a scoped
name using the OMG IDL rules for name scoping. An absolute scoped hame
(beginningwith ") locates the definition rel ative to the enclosing Repository. If no
object isfound, anil object referenceis returned.

The contents operation returnsthe list of objects directly contained by or inherited
into the object. The operation is used to navigate through the hierarchy of objects.
Starting with the Repository object, a client usesthis operation to list all of the objects
contained by the Repository, all of the objects contained by the modules within the
Repository, al of the interfaces within a specific module, and so on.

limit_type
If limit_type issettodk_all , objectsof all types are returned. For
example, if thisis an InterfaceDef, the attribute, operation, and exception
objects are all returned. If limit_type is set to a specific interface, only
objects of that type are returned. For example, only attribute objects are
returned if limit_type is set to dk_Attribute

exclude_inherited
If set to TRUE, inherited objects (if there are any) are not returned. If set to
FALSE, all contained objects (whether contained due to inheritance or
because they were defined within the object) are returned.
The lookup_name operation is used to locate an object by name within a
particular object or within the objects contained by that object. The
describe_contents operation combines the contents ~ operation and the
describe operation. For each object returned by the contents operation, the
description of the object is returned (that is, the objeetsr i be operation
is invoked and the results are returned).

sear ch_nane
Specifies which name is to be searched for.

8-10 JavaProgramming Reference

Interface Repository Interfaces

| evel s_to_search
Controls whether the lookup is constrained to the object the operation is
invoked on, or whether the lookup should search through objects contained
by the object aswell. Setting | evel s_t o_sear ch to -1 searches the current
object and all contained objects. Setting | evel s_t o_sear ch to 1 searches
only the current object.

max_returned_objs
Limits the number of objectsthat can be returned in an invocation of the call
to the number provided. Setting the parameter to -1 indicates return all
contained objects.

IDLType Interface

The DL Typeinterface (shown below) isan abstract interface inherited by all Interface
Repository objects that represent OMG IDL types. It provides accessto the TypeCode
describing the type, and is used in defining other interfaces wherever definitions of
IDL types must be referenced.

nodul e CORBA {
interface | DLType : | RObject {
readonly attri bute TypeCode type;

}s
I

Thet ype attribute describes the type defined by an object derived from IDLType.

Repository Interface

Repository (shown below) is an interface that provides global access to the Interface
Repository. The Repository object can contain constants, typedefs, exceptions,
interfaces, and modules. As it inherits from Container, it can be used to look up any
definition (whether globally defined or defined within amodule or an interface) either
by name or by i d.

nodul e CORBA {
interface Repository : Container {
Contai ned | ookup_id (in Repositoryld search_id);
PrimtiveDef get _primtive (in PrimtiveKi nd kind);

Java Programming Reference 8-11

8 In terface Repository Interfaces

b
b
Thel ookup_i d operation is used to look up an object in a Repository, given its

Reposi t or yl d. If the Repository does not contain a definition for sear ch_i d, anil
object reference is returned.

Theget _pri ni ti ve operationreturnsareferenceto aPrimitiveDef with the specified
kind attribute. All PrimitiveDefs are immutable and are owned by the Repository.

ModuleDef Interface

A ModuleDef (shown below) can contain constants, typedefs, exceptions, interfaces,
and other module objects.

nmodul e CORBA {
interface Modul eDef : Container, Contained {

3
struct Modul eDescription {
I dentifier nanme;
Reposi toryld id;
Reposi toryld defined_in;
Ver si onSpec Ver si on;
}

}s

Theinherited descr i be operation for a ModuleDef object returns a
M oduleDescription.

ConstantDef Interface

A ConstantDef object (shown below) defines a named constant.

nmodul e CORBA {
interface Constant Def : Contained {

readonly attribute TypeCode type;
readonly attribute |IDLType type_def;
readonly attribute any val ue;

b

8-12 Java Programming Reference

Interface Repository Interfaces

struct Constant Description {

ldentifier name;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec Ver si on;
TypeCode type;
any val ue;
b
}
type
Specifies the TypeCode describing the type of the constant. The type of a
constant must be one of the simple types (long, short, float, char, string, octet,
and so on).
type_def
Identifies the definition of the type of the constant.
val ue

Contains the value of the constant, not the computation of the value (for
example, the fact that it was defined as “1+2").

The descri be operation for a ConstantDef object returns a ConstantDescription.

TypedefDef Interface

A TypedefDef (shown below) is an abstract interface used as a base interface for all
named nonobject types (structures, unions, enumerations, and aliases). The
TypedefDef interface is not inherited by the definition objects for primitive or
anonymous types.

nodul e CORBA {
interface TypedefDef : Contained, |DLType {

}
struct TypeDescription {

I dentifier nane;
Repositoryld id;

Reposi toryld defined_in;
Ver si onSpec ver si on;
TypeCode type;

Java Programming Reference 8-13

8 In terface Repository Interfaces

Theinherited descr i be operation for interfaces derived from TypedefDef returnsa
TypeDescription.

StructDef

A StructDef (shown below) representsan OMG IDL structure definition. It contains
the members of the struct.

nmodul e CORBA {
struct Struct Menmber {

ldentifier name;
TypeCode type;
| DLType type_def;

b
typedef sequence <Struct Menber> Struct Menber Seq;

interface StructDef : TypedefDef, Container{
readonly attribute Struct Menber Seq menbers;

}s
}s

The menber s attribute contains a description of each structure member.

Theinherited t ype attributeisat k_st ruct TypeCode describing the structure.

UnionDef

A UnionDef (shown below) representsan OMG IDL union definition. It contains the
members of the union.

nmodul e CORBA {
struct Uni onMenber {

I dentifier nane;

any | abel ;
TypeCode type;

| DLType type_def;

H
typedef sequence <Uni onMenber > Uni onMenber Seq;

interface Uni onDef : TypedefDef, Container {
readonl y attri bute TypeCode di scrim nator_type;

8-14 JavaProgramming Reference

Interface Repository Interfaces

EnumDef

AliasDef

readonl y attribute | DLType di scri m nator_type_def;
readonl y attribute Uni onMenber Seq menber s;
I
b

di scrimnator_type anddi scrimnator_type_ def
Describe and identify the union’s discriminator type.

menber s
Contains a description of each union member. The label of each
UnionMemberDescription is a distinct value of thescri mi nat or _t ype.
Adjacent members can have the same name. Members with the same name
must also have the same type. A label with type octet and value O (zero)
indicates the default union member.

The inherited ype attribute is a k_uni on TypeCode describing the union.

An EnumDef (shown below) represents an OMG IDL enumeration definition.

nodul e CORBA {
typedef sequence <ldentifier> Enumvenber Seq;

interface EnunDef : Typedef Def {
readonly attribute EnumMenber Seq menbers;
I
b

menber s
Contains a distinct name for each possible value of the enumeration.

The inherited ype attribute is a k_enumTypeCode describing the enumeration.

An AliasDef (shown below) represents an OMG IDL typedef that aliases another
definition.

Java Programming Reference 8-15

8 In terface Repository Interfaces

nmodul e CORBA {
interface AliasDef : TypedefDef {
readonly attribute |DLType original _type def;
b
I

ori ginal _type_def
| dentifies the type being aliased.

Theinherited t ype attributeisat k_al i as TypeCode describing the alias.

PrimitiveDef

A PrimitiveDef (shown below) represents one of the OMG IDL primitive types.
Because primitive types are unnamed, this interface is not derived from Typedef Def
or Cont ai ned.

nmodul e CORBA {
enum PrimtiveKi nd {
pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
pk_float, pk_double, pk_boolean, pk _char, pk_octet,
pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
pk_I ongl ong, pk_ul ongl ong, pk_| ongdoubl e, pk_wchar, pk _wstring

b
interface PrimtiveDef: |DLType {
readonly attribute PrimtiveKind ki nd;
b
}
ki nd

Indicates which primitive type the PrimitiveDef represents. There are no
PrimitiveDefswith kind pk_nul | . A PrimitiveDef with kind pk_stri ng
represents an unbounded string. A PrimitiveDef with kind pk_obj r ef
represents the OMG IDL type Object.

Theinherited t ype attribute describes the primitive type.

All PrimitiveDefs are owned by the Repository. References to them are obtained using
Repository::get_primtive.

8-16 Java Programming Reference

Interface Repository Interfaces

ExceptionDef

An ExceptionDef (shown below) represents an exception definition. It can contain
structs, unions, and enums.

nodul e CORBA {
interface Excepti onDef : Contai ned, Container {

readonl y attribute TypeCode type;
readonl y attribute Struct Menber Seq menber s;
b
struct ExceptionDescription {
ldentifier nane;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec version;
TypeCode type;
}
b
type
t k_except TypeCode that describes the exception.
menber s

Describes any exception members.

The descri be operation for a ExceptionDef object returns an ExceptionDescription.

AttributeDef

An AttributeDef (shown below) represents the information that defines an attribute of
an interface.

nodul e CORBA {
enum AttributeMode {ATTR NORMAL, ATTR_READONLY};

interface AttributeDef : Contained {

readonl y attri bute TypeCode type;
attribute | DLType type_def;
attri bute AttributeMde node;

Java Programming Reference 8-17

8 In terface Repository Interfaces

struct AttributeDescription {

ldentifier name;
Repositoryld id;
Repositoryld defined_in;
Ver si onSpec ver si on;
TypeCode type;
Attri but eMbde node;
b
I
type
Provides the TypeCode describing the type of this attribute.
type_def
I dentifies the object that defines the type of this attribute.
node

Specifiesread only or read/write access for this attribute.

OperationDef

An OperationDef (shown bel ow) represents the information needed to define an
operation of an interface.
nmodul e CORBA {

enum Qper ati onvbde { OP_NORVAL, OP_ONEWAY};

enum Par anet er Mode { PARAM I N, PARAM OUT, PARAM | NOUT};
struct ParaneterDescription {

I dentifier nane;
TypeCode type;
| DLType type_def;
Par anet er Mode node;

I

typedef sequence <ParaneterDescription> ParDescriptionSeq;

typedef ldentifier Contextldentifier;
typedef sequence <Contextldentifier> ContextldSeq;

typedef sequence <Excepti onDef> Excepti onDef Seq;
typedef sequence <ExceptionDescription> ExcDescri ptionSeq;

interface Qperati onDef : Contained {

8-18 Java Programming Reference

Interface Repository Interfaces

readonly attribute TypeCode resul t;
readonl y attribute | DLType resul t _def
readonl y attribute ParDescriptionSeq par ans;
readonl y attribute OperationMde node
readonl y attribute ContextldSeq contexts
readonl y attribute ExceptionDef Seq exceptions
I
struct OperationDescription {
ldentifier name;
Repositoryld id;
Repositoryld defined_in
Ver si onSpec Ver si on;
TypeCode result;
Qper at i onMode node
Cont ext | dSeq cont exts;
Par Descri pti onSeq par aneters
ExcDescri pti onSeq exceptions
b
b
resul t

A TypeCode that describes the type of the value returned by the operation.

resul t _def
Identifies the definition of the returned type.

par ans
Describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of the ParameterDescriptionsin
the sequenceis significant. The nane member of each structure provides the
parameter name. Thet ype member isa TypeCode describing the type of the
parameter. Thet ype_def member identifies the definition of the type of the
parameter. The node member indicateswhether the parameter isanin, out, or
inout parameter.

nmode
The operation’sode is either oneway (that is, no output is returned) or
normal.

contexts
Specifies the list of context identifiers that apply to the operation.

Java Programming Reference 8-19

8 In terface Repository Interfaces

exceptions

Specifiesthe list of exception types that can be raised by the operation.

Theinherited descr i be operation for an OperationDef object returns an
OperationDescription.

Theinherited descri be_cont ent s operation provides acomplete description of this
operation, including a description of each parameter defined for this operation.

InterfaceDef

An InterfaceDef object (shown below) represents an interface definition. It can contain
constants, typedefs, exceptions, operations, and attributes.

nmodul e CORBA {

interface | nterfaceDef;

typedef
typedef
typedef
typedef

sequence <InterfaceDef> InterfaceDef Seq;

sequence <Repositoryld> RepositoryldSeq;

sequence <QOperationDescription> QoDescriptionSeq;
sequence <AttributeDescription> AttrDescriptionSeq;

interface InterfaceDef : Container, Contained, |DLType {

readonly attribute InterfaceDef Seq base_interfaces;

boolean is_a (in Repositoryld interface_id);

struct FulllnterfaceDescription {

}s

ldentifier name;
Repositoryld id;

Repositoryld defined_in;

Ver si onSpec ver si on;
QpDescri ptionSeq operati ons;
AttrDescriptionSeq attri butes;
Reposi t oryl dSeq base interfaces;
TypeCode type;

Ful I I nterfaceDescription describe interface();

}s

struct InterfaceDescription {
I dentifier name;

8-20 JavaProgramming Reference

Interface Repository Interfaces

Repositoryld id;

Repositoryld defined_in;

Ver si onSpec ver si on;

Reposi toryl dSeq base_interfaces;

}
I

base interfaces
Listsal theinterfacesfrom which thisinterface inherits. Thei s_a operation
returns TRUE if the interface on which it isinvoked either isidentical to or
inherits, directly or indirectly, from the interface identified by its
interface_i d parameter. Otherwise, it returns FAL SE.

Thedescri be_i nt er f ace operation returns a FulllnterfaceDescription describing
the interface, including its operations and attributes.

Theinherited descri be operation for an InterfaceDef returnsan InterfaceDescription.

Theinherited cont ent s operation returnsthe list of constants, typedefs, and
exceptions defined in this InterfaceDef and the list of attributes and operations either
defined or inherited in this InterfaceDef. If theexcl ude_i nheri t ed parameter is set
to TRUE, only attributes and operations defined within this interface are returned. If
theexcl ude_i nheri t ed parameter isset to FALSE, all attributes and operations are
returned.

Java Programming Reference 8-21

8 In terface Repository Interfaces

8-22 JavaProgramming Reference

CHAPTER

O Joint Client/Server
Applications

This chapter contains the following topics:

4 Introduction. This section includes the following topics:
Main Program and Server Initialization

Servants

Servant | nheritance from Skeletons

Callback Object Models Supported

Preparing Callback Objects using BEAWrapper Callbacks
Threading Considerations in the Main Program

Java Client ORB Initialization

[1OP Support

* & & & & ¢ o o

¢ CallbacksInterface API

This chapter describes programming requirements for joint client/server applications.
For a description of the BEAWTrapper package and the Cal | backs interface API, see
the Java API Reference.

Java Programming Reference 9-1

9

Joint Client/Server Applications

Introduction

For either aWebL ogic Enterprise client applications or ajoint client/server application
(that is, aclient that can receive and process object invocations), create a Java client
mai n() method. Themai n() method uses WebL ogic Enterprise environmental
objects to establish connections, set up security, and start transactions.

WebL ogic Enterprise clients invoke operations on objects. In the case of DI, client
code createsthe DIl Request object and then invokes one of two operations on the DI
Request. In the case of static invocation, client code performs the invocation by
performing what looks like an ordinary Javainvocation (which endsup calling codein
the generated client stub). Additionally, the client programmer uses ORB interfaces
defined by OMG and WebL ogic Enterprise environmental objects that are supplied
with the WebL ogic Enterprise software to perform functions unique to WebL ogic
Enterprise.

For WebL ogic Enterprise joint client/server applications, the client code must be
structured so that it can act as a server for callback WebL ogic Enterprise objects only.
Such clients do not use the TP Framework and are not subject to WebL ogic Enterprise
system administration. Besides the programming implications, this means that joint
client/server applications do not have the same scal ability and reliability as WeblL ogic
Enterprise servers, nor do they have the state management and transaction behavior
available in the TP Framework. If a user wants to have those characteristics, the
application must be structured in such away that the object implementations arein a
WebL ogic Enterprise server, rather than in aclient.

The following sections describe the mechanisms you use to add callback support to a
WebL ogic Enterprise client. In some cases, the mechanisms are contrasted with the
WebL ogic Enterprise server mechanisms that use the TP Framework.

Main Program and Server Initialization

9-2

In aWebL ogic Enterprise Java server, you use the bui | dj avaser ver command to
create the main program for the server. The server main program takes care of all
WebL ogic Enterprise- and CORBA-related initialization of the server functions.
However, since you implement the Server object, you have an opportunity to

Java Programming Reference

Introduction

Servants

customize the way in which the server application isinitialized and shut down. The
server main program automatically invokes methods on the Server object at the
appropriate times.

In contrast, for aWebL ogic Enterprise joint client/server application (asfor a

WebL ogic Enterprise client), you create the main program and are responsible for all
initialization. Y ou do not need to provide a Server object because you have complete
control over the main program and you can provide initialization and shutdown code
in any way that is convenient.

The specificinitialization needed for ajoint client/server application isdiscussed inthe
section “Servants” on page 9-3.

Servants (method code) for WebLogic Enterprise joint client/server applications are
very similar to servants for WebLogic Enterprise servers. All business logic is written
the same way. The differences result from not using the TP Framework, which
includes theser ver, TP, andTobj _Ser vant classes. Therefore, the main difference

is that you use CORBA functions directly instead of indirectly through the TP
Framework.

In WebLogic Enterprise Java server applications, servants are created dynamically.
However, in WebLogic Enterprise joint client/server applications, the user application

is responsible for creating a servant before any requests arrive; thBe; tlee class

is not needed. Typically, the program creates a servant, initializes it, and then activates
the object. The process of activation, which associates the servant with an object ID
(either user supplied or system generated), results in the creation of an object reference
that the server application subsequently can provide to another process. Such an object
might be used to handle callbacks. Thus, the servant already exists, and the object is
already active, before a request for that object arrives.

Instead of invoking th&P interface to perform certain operations, client servants
directly invoke the ORB and the BOA (for clients that are based on the Java JDK
ORB). Alternately, since much of the interaction with the ORB and the BOA is the
same for all applications, the join client/server libratlyecl i ent . j ar) provides a
convenience wrapper objeca{ | backs) that does the same things using a single
operation. In addition, the wrapper objects also provide extra POA-like life span
policies forQbj ect | ds, see “Callback Object Models Supported” on page 9-4 and
“Preparing Callback Objects using BEAWrapper Callbacks” on page 9-6.

Java Programming Reference 9-3

9 Joint Client/Server Applications

Servant Inheritance from Skeletons

InaWLEclient, aswell asin aWLE server, a user-written Javaimplementation class
inheritsfrom the same skeleton class name generated by thei dli t oj ava compiler. For
example, giventhe IDL:

interface Hospital{ ... };

The skeleton generated by iditojava contains a skeleton class,
_HospitallmplBase , from which the user-written class inherits, asin:

class Hospitallmpl extends _HospitallmplBase {...};

In aWLE server application, the skeleton class inherits from the TP Framework class
com.beasys.Tobj_Servant , which in turn inherits from the CORBA-defined class
org.omg.PortableServer.Servant

Theinheritance tree for a callback object implementation in ajoint client/server
application is different from that of a client. The skeleton class does not inherit from
the TP Framework class, but instead inherits from the
org.omg.CORBA.Dynamiclmplementation class, which in turn inherits from the
org.omg.CORBA.portable.Objectimpl class.

Not having the Tobj_Servant classin theinheritance treefor aservant meansthat the
servant does not havethe activate_object and deactivate_object methods. Ina

WLE server application, these methods are invoked by the TP Framework to

dynamically initialize and save a servant’s state before invoking a method on the
servant. For a joint client/server application, user code must explicitly create a servar
and initialize a servant’s state; therefore, Thej _Ser vant operations are not

needed.

Callback Object Models Supported

WebLogic Enterprise software supports the three kinds of callback objects. These
object types are described here primarily in terms of their behavioral characteristics
rather than in the details about how the ORB and the wrapper classes handle them.

9-4 Java Programming Reference

Introduction

The three kinds of callback objects are:

4 Transient/Systemld

Object references are valid only for the life of the client process. The obj ect 1 d
is not assigned by the client application, but is a unique value assigned by the
system. This type of object is useful for invocations that a client wantsto receive
only until the client terminates. If used with a Notification or Event Service, for
example, these are callbacks that correspond to the concept of transient events
and transient channels. (The corresponding POA LifeSpanPolicy valueis
TRANSI ENT, and the IdAssignmentPolicy is SYSTEM | D.)

¢ Persistent/Systemld

Object references are valid across multiple activations. The obj ect | d is not
assigned by the client application, but is a unique value assigned by the system.
Thistype of object and object reference is useful when the client goes up and
down over a period of time. When the client is up, it can receive callback objects
on that particular object reference. Typically, the client creates the object
reference once, savesit in its own permanent storage area, and reactivates the
servant for that object every time the client comes up. If used with a Notification
Service, for example, these are callbacks that correspond to the concept of a
persistent subscription; that is, the Notification Service remembers the callback
reference and delivers events any time the client is up and declares that it is
again ready to receive them. This allows notification to survive client failures or
offline-time. (The corresponding POA policy values are PERSI STENT and
SYSTEM | D.)

¢ Persistent/Userld

Thisisthe same as Persistent/Systeml d, except that the obj ect | d hasto be
assigned by the client application. Such an obj ect I d might be, for example, a
database key meaningful only to the client. (The corresponding POA policy
values are PERSI STENT and USER | D.)

Note: The Transient/Userld policy combination is not considered particularly
important. In any event, this policy combination is not availablein Java server
applications.

Note: For WebL ogic Enterprise native joint client/server applications, neither of the
Persistent policiesis supported, only the Transient policy.

Java Programming Reference 9-5

9

Joint Client/Server Applications

In C++, these object models are established by using combinations of the following
POA policies, which control both thetypesof objectsand thetypes of object references
that are possible:

4 LifeSpanPolicy, which controls how long an object referenceisvalid

4 IdAssignmentPolicy, which controlswho assignsthe obj ect | d—the user or the
system

However, since the ORB used for Java server applications does not provide a POA, t
WLE system provides @l | backs wrapper class that emulates these POA policies.

Preparing Callback Objects using BEAWrapper Callbacks

Because the code to prepare for callback objects is nearly identical for every joint
client/server application, and because the Java JDK ORB does not implement a PO/
WLE provides a wrapper class in the joint client/server library that is virtually identical
to the wrapper class provided in C++. This wrapper class emulates the POA policie
needed to support the three types of callback objects.

The following code shows theal | back wrapper interfaces.

package com beasys. BEAW apper;

9-6

class Cal | backs{
public Callbacks ();

public Callbacks (org.ong. CORBA (oject init_orb);

public org.ong. CORBA. Obj ect start_transient (
org.onyg. Port abl eServer. Cbj ect | npl servant,
java.lang. String rep_id)
throws Servant Al r eadyActi ve,
or g. ong. CORBA. BAD_PARAMETER,

public org.ong. CORBA. Cbj ect start_persistent_systemd (
org.ony. Port abl eServer. Qbj ect | npl servant,
java.lang. String rep_id,
org. ong. CORBA. StringHol der stroid)
throws Servant Al readyActi ve,
or g. ong. CORBA. BAD_PARAMETER,
org.ong. CORBA. | MP_LIMT;

public org.ong. CORBA. Cbj ect restart_persistent_systemd (

Java Programming Reference

Introduction

}s

public

public

public

public

org. ong. Portabl eServer. Obj ectl npl servant,
java.lang.String rep_id,
java.lang. String stroid)
throws Servant Al readyActi ve,
Cbj ect Al r eadyActi ve,
or g. ong. CORBA. BAD_PARAMETER,
org.ong. CORBA. | MP_LIMT;

org. ong. CORBA. (bj ect start_persistent _userid (

org. ong. Portabl eServer. Obj ectl npl servant,

java.lang.String rep_id,

java.lang. String stroid)

throws Servant Al readyActi ve,
Cbj ect Al r eadyActi ve,
or g. ong. CORBA. BAD_PARAMETER,
org.ong. CORBA. | \P_LIMT;

voi d stop_object (
org. ong. Portabl eServer. Qbj ect | npl
servant) ;

String get_string oid ()
throws Notl nRequest;

void stop_all _objects();

Threading Considerations in the Main Program

When a program acts as both a client and a server in a Java client, those two parts can
execute concurrently in different threads. Since Java as an execution environment is
inherently multithreaded, there is no reason to invoke the

or g. ong. CORBA. or b. wor k_pendi ng and or g. ong. CORBA. or b. per f or m wor k
methods from a Java client. In fact, if the Java client tries to invoke these methods,
these methods throw an or g. ong. CORBA. NO_I MPLEMENT exception. The client does
not need to invoke the or g. onmg. CORBA. or b. r un method. As in any multithreaded
environment, any code that may execute concurrently (client and servant code for a
callback) in the client application must be coded to be thread safe. Thisis adeparture
from C++ clients, which are currently single-threaded.

Java Programming Reference 9-7

9

Joint Client/Server Applications

Multiple Threads

In Java, the client starts up in the main thread. The client can then set up callback
objects via an invocation to any of the (re) st art _xxxx methods provided by the
Callbacks wrapper class. The wrapper class handles registering the servant and its
associated OID in the ORB's object manager. The application isthen free to pass the
object referencereturned by the (re) st ar t _xxxx method to an application that needs
to call back to the servant.

Note: The ORB requires an explicit invocation to one of the (re) st art _xxxx
methods to effectively initialize the servant and create avalid object reference
that can be marshaled properly to another application. Thisisadeviation
from the base JDK 1.2 ORB behavior that allows implicit object reference
creation via an internal invocation to the or b. connect method when
marshaling an object reference, if the application has not yet done so.

Invocations on the callback object are handled by the ORB. Aseach request is
received, the ORB validates the request against the object manager and spawns a
thread for that request. Multiple requests can be made simultaneously to the same
object because the ORB creates a new thread for each request; that iswhy the Servant
code of the Callback must be written thread safe. As each request terminates, the
thread that runs the servant also terminates.

Themain client thread can make as many client invocations as necessary. An
invocation to the st op_(al / _) obj ect methods merely takes the object out of the
object manager'slist, thereby preventing any further invocationsonit. Any invocation
to a stopped object fails asif it never existed.

If the client application needs to retrieve the results of a callback from another thread,
the client application must use normal thread synchronization techniques to do so.

If any thread (client main or servant) in the WLE remote-like client application exits,
all the client process activity is stopped, and the Java execution environment
terminates. We recommend only to invoke ther et ur n method to terminate a thread.

Java Client ORB Initialization

9-8

A client application must initialize the ORB with the BEA-supplied properties. This
is so that the ORB will utilize the BEA-supplied classes and methods that support the
Cal | backs wrapper class and the Bootstrap object. Y ou can find these classesin

Java Programming Reference

Introduction

w eclient.jar,whichisinstalledin $TUXDI R/ udat aobj / j ava/ j dk (on Solaris) or
9@ UXDI R% udat aobj \ j ava\ j dk (on WindowsNT). Theapplication must set certain
system properties to do this, as shown in the following example:

Properties prop = new Properties(System getProperties());
prop. put ("org. ong. CORBA. ORBd ass", "com beasys. CORBA. i i op. ORB");
prop. put (" org. ong. CORBA. ORBSi ngl et onCl ass",
"com beasys. CORBA. i dl . ORBSi ngl et on");
System set Properties(prop);
// Initialize the ORB.
ORB orb = ORB.init(args, prop);

1IOP Support

[1OPisthe protocol used for communication between ORBs. |10P alows ORBsfrom
different vendorsto interoperate. For Javaserver applications, a port number must be
supplied at the client for persistent or user ID object reference policies.

Java Applet Support

[10OP support for applets that want to receive callbacks or callouts is limited due to
applet security mechanisms. Any applet run-time environment that allows an applet
to create and listen on sockets (viatheir proprietary environment or protocol) will be
ableto act asWLE joint client/server applications. If the applet run-time environment
restricts socket communication, then the applet cannot be ajoint client/server
application to a WLE application.

Port Numbers for Persistent Object References

WLE Java server applications support only GIOP V1.0, as described in Chapter 13 of
the OMG CORBA 2.2 specification.

For aWLE Javaremote joint client/server application to support |1OP, the object
references created for the server component must contain a host and a port. For
transient object references, any port is sufficient and can be obtained by the ORB
dynamically; however, thisis not sufficient for persistent object references.

Java Programming Reference 9-9

9

Joint Client/Server Applications

Persistent references must be served on the same port after the ORB restarts. That is,
the ORB must be prepared to accept requests on the same port with which it created
the object reference. Therefore, there must be some way to configure the ORB to use
aparticular port.

Javaclientsthat expect to act as serversfor callbacks of persistent references must now
be started with a specified port. Thisisdone by setting the system property
org. omg. CORBA. ORBPort, asin the following commands:

For Windows NT:

j ava - DTOBJADDR=// host: port
- Dor g. ong. CORBA. CRBPor t =xxxx
- cl asspat h=%CLASSPATH% cl i ent

For Unix:

j ava - DTOBJADDR=// host: port
- Dor g. ong. CORBA. CRBPor t =xxxx
- cl asspat h=$CLASSPATH cl i ent

Typically, a system administrator assigns the port number for the client from the user
range of port numbers, rather from the dynamic range. This keeps the joint
client/server applications from using conflicting ports.

If aWLE remote joint client/server application tries to create a persistent object
reference without having set a port (asin the preceding command line), the operation
raises an exception, | MP_LI M T, informing the user that a truly persistent object
reference cannot be created.

Callbacks Interface API

9-10

For acomplete description of the BEAW apper . Cal | backs interface API, seethe Java
AP| Reference

Java Programming Reference

CHAPTER

10 Java Development and

Administration
Commands

This chapter describes the following commands:
¢ buil dj avaserver

4 buil dXAJS

¢ n8idltojava

This chapter is an alphabetical reference that describes each WebL ogic Enterprise
development command and Interface Repository administration command for
developing Java applications for the Windows NT and UNIX environments. A list of
valid parameters and optionsis shown for each command. For information about
building C++ client and server applications, see the C++ Programming Reference.

Note: For descriptions of thei dI 2i r,irdel,andir 2i dl commands, seethe
Administration Guide.

Before executing a WebL ogic Enterprise command, you must ensure that the
WebL ogic Enterprise bi n directory isin your defined path:

On Windows NT:
Set Pat h=%TUXDI R%A Bi n; %%Pat h%

On UNIX:

For c shell (csh): set path = ($TUXDI R/ bin $pat h)

Java Programming Reference 10-1

10 Java Development and Administration Commands

For Bourne (sh) or Korn (ksh): PATH=$TUXDI R/ bi n: $PATH
export PATH

Before executing a WebL ogic Enterprise command, you must set the environment
variables that are listed with each command.

On Windows NT systems, the syntax for setting an environment variableis:
set var=val ue
On UNIX systems, the syntax for setting an environment variableis:
4 For cshell:
setenv var val ue

4 For Bourne and Korn (sh/ksh):

var =val ue
export var

10-2 JavaProgramming Reference

buildjavaserver

Synopsis
Syntax

Description

Options

Environment
Variables

Portability

Constructs a Java WebL ogic Enterprise server application j ar file.
bui | dj avaserver [-s searchpath] input file

Oncethe class files that make up a server application have been created and specified,
along with interface activation and transaction policies, in the Server Description File,
you usethebui | dj avaser ver command to createthej ar file. Thej ar file contains
all the server application class files and a server descriptor. The server descriptor is a
serialized Java object that contains:

4 Information about all the servant classes implemented by the server application

4 Adctivation and transaction policies for all the interfaces that have been defined
in the application’s OMG IDL file

4 The name of the Server object, which initializes and stops the server application
and performs object housekeeping

Specifies a path to be used by bué¢! dj avaser ver command to locate the
classes and packages needed for building #hdile. If you do not specify
this option, thebui | dj avaser ver command uses the class path by default.

input_file
Specifies the name of the Server Description File. For information about
creating this file, see Chapter 2, “Server Description File.”

TUXDI R
Finds the WebLogic Enterprise libraries and include files to use when
compiling the server application.

LD_LI BRARY_PATH (Solaris systems)
Indicates which directories contain shared objects to be used by the compiler,
in addition to the WebLogic Enterprise shared objects. A colpis (ised to
separate the list of directories.

LI B (Windows NT systems)
Indicates a list of directories within which to find libraries. A semicolon (;) is
used to separate the list of directories.

Thebui | dj avaser ver command is not supported on client-only WebLogic
Enterprise systems.

Java Programming Reference 10-3

10 Java Development and Administration Commands

Example Thefollowing example builds a Java WebL ogic Enterprise server applicationj ar file
on a Solaris system. This example uses the comf acre path for locating classes and
packages for the archive and also uses the Server Description File MySer ver . xni .

bui | dj avaserver -s confacme MyServer.xm

10-4 JavaProgramming Reference

buildXAJS
Synopsis
Syntax

Description

Options

Environment
Variables

Constructs an XA resource manager to be used with a Java server application group.
bui | dXAJS [-Vv] -r rmmane [-0 outfile]

Use this command to build an XA resource manager that you want to use with a Java
server application group. In the applicationBBCONFI Gfile, you use the

JavaSer ver XA element in place of theavaSer ver element to associate the XA
resource manager with a specified server group. Note that a server application
configured to use the default XA resource manager (thistiis,) cannot coexist in a

server group that uses a nondefault XA resource manager, such as Oracle. Refer to the

Administration Guide for more information about configuring server groups with an
XA resource manager.

-V
Specifies that theui | dXAJS command should work in verbose mode. In
particular, it writes the build command to its standard output.

-r rmane
Specifies the resource manager associated with this server. Thentedue
must appear in the resource manager table locatdd¥bdl R/ udat aobj / RM
on Solaris systems, @aUXDI R% udat aobj \ RM on Windows NT systems.
On Solaris systems, each entry in this file is of the form
rnmame: r st ruct ure_nane: | i brary_nanes. On NT systems, each entry
in this file is of the formr mame; rnst ruct ure_nane; | i brary_nanes.
Using ther mane value, the entry i$TUXDI R/ udat aobj / RMor

9@ UXDI R% udat aobj \ RMautomatically includes the associated libraries for

the resource manager and properly sets up the interface between the
transaction manager and the resource manager. The vakEbQ' SQL

includes the libraries for the BEA TUXEDO System/SQL resource manager.
Other values can be specified as they are added to the resource manager table.

If the -r option is not specified, the default is to use the null resource
manager.

-0 outfile

Specifies the name of the output file. If no name is specified, the default is

JavaSer ver XA.

TUXDI R
Finds the WebLogic Enterprise libraries and include files to use when
compiling the server application.

Java Programming Reference 10-5

10 Java Development and Administration Commands

LD LI BRARY_PATH (Solaris systems)
Indicates which directories contain shared objects to be used by the compiler,

in addition to the WebL ogic Enterprise shared objects. A colon (:) is used to
separate thelist of directories.

LI B (Windows NT systems)

Indicatesalist of directorieswithin which to find libraries. A semicolon (;) is
used to separate the list of directories.

Portability = Thebui I dXAJS command is not supported on client-only WebL ogic Enterprise
systems.

Example Thefollowing example builds aJava server XA resource manager on a Solaris system:
bui | dXAJS -r oracl e7

10-6 JavaProgramming Reference

m3idltojava

Synopsis Compilesthe Object Management Group (OM G) Interface Definition Language (IDL)
file and generates client stub and server skeleton files required for the interface
definitions being implemented in Java. Use this command only when you are creating
aJava server application.

Syntax nBidltojava [-p] [-]j javaD rectory] [-|directory][-Dsynbol]
[-Usynbol] [-foptions] idl-filenane...

Description Thensi dl t oj ava command compiles OMG IDL source filesinto Java source code.
Y ou then usethe javac compiler to compilethat source into Javabytecodes. TheOMG
IDL declarations from the named OMG IDL files are translated to Java declarations
according to the mapping from OMG IDL to Java

Giventheprovided i dl - fi I enane file(s), thensi dl t oj ava command generatesthe
following files for each interface defined in the server application’s OMG IDL file:

i nterface-nane. java
Contains the Java version of the interface definitions in the OMG IDL file.
Each interface implementation extends dhg. ong. CORBA. Obj ect class.

_interface-naneSt ub. j ava
Is the client stub file.

_interface-nanel npl Base. | ava
Is the Server skeleton file, which is extended by the server application’s
object implementation classes.

i nt erface- naneHel per.java
Contains the helper class for the object.

i nt erface- naneHol der.j ava
Contains the holder class for the object.

Thens8i dl t oj ava compiler generates the client stub and server skeleton files. Any
previous versions are overwritten.

If an unknown option is passed to this command, the offending option and a usage
message is displayed to the user, and the compile is not performed.

For more information about OMG IDL syntax, see Chapter 1, “OMG IDL Syntax.”

Parameter i dl -fil enane
Represents the name of one or more files that contain OMG IDL statements.

Java Programming Reference 10-7

10 Java Development and Administration Commands

Options - p package
Specifiesthat generated Java classes should be part of the given package. The
compiler creates the appropriate directory hierarchy and stores the generated
filesin the directory that correspondsto their package. If you specify the - j
option, the hierarchy is created under the specified directory. Otherwise, the
hierarchy iscreated under the current directory. Y ou can override this option
by using #pragma j avaPackage inthe OMG IDL source file.

-j javaDirectory
Specifiesthat generated Javafiles should be written to the specified directory.
This directory is independent of the - p option, if used.

-ldirectory
Specifies directories within which to search for include files, in addition to
any directories specified with the #i ncl ude OMG IDL preprocessor
directive. Multiple directories can be specified by using multiple -1 options.

There are two typesof #i ncl ude OMG IDL preprocessor directives:
syst em (for example, <a.idl >) and user (forexample, "a.idl"). The
path for system #i ncl ude directoriesisthe system include directory and any
directories specified with the - I option. The path for user #i ncl ude
directives is the location of the file containing the #i ncl ude directive,
followed by the path specified for the system #i ncl ude directive.

By default, the text in files included with an #i ncl ude directiveis not
included in the client and server code that is generated.

- Dsynbol
Specifies a symbol to be defined during OMG IDL file preprocessing. The
n8i dl t oj ava command passes this symbol to the preprocessor.

- Usynbol
Specifiesasymbol to be undefined during OMG IDL filepreprocessing. The
n8i dl t oj ava command passes this symbol to the preprocessor.

-foptions
Y ou can enable the following options by specifying them as shown, and
disable them by appending the string no- . For example, to prevent the C
preprocessor from being run on theinput OMG IDL files, specify - f no- cpp.

-flist-flags
Displaysthe state of all -f flags. By default, this option is disabled.

-fclient
Generates the client application files. By default, this option is
enabled.

10-8 JavaProgramming Reference

-fserver
Generates the server application files. By default, this option is
enabled.

-fverbose
Specifies that the n8i dI t oj ava command should work in verbose
mode. In particular, it writes command output to its standard outpui.
By default, this option is disabled.

-fversion
Specifies that the compiler prints its version and timestamp. By
default, this option is disabled.

Examples The following command generates only the server application filesfor Si npl e. i dl :
nBidltojava -fno-client Sinple.idl
The following command generates only the client application files for Si npl e. i dl :

nBi dl toj ava -fno-server Sinple.idl

Java Programming Reference 10-9

10 Java Development and Administration Commands

10-10 JavaProgramming Reference

CHAPTER

11 CORBA ORB

This chapter supplements the information in package or g. ong. CORBA by providing
the following topics:

4 Initializing the ORB, which includes the section “Passing the Address of the
[IOP Listener”

4 Initializing the ORB for Native and Remote Clients

Note: For details about the API for packagey. ong. CORBA, see the Java IDL
document published by the Sun Microsystems, Inc. and distributed with the
JDK 1.2.

Initializing the ORB

[This section is reprinted from the package informatiorofay. ong. CORBA, as
published by Sun Microsystems, Inc. for the JDK 1.2.]

An application or applet gains access to the CORBA environment by initializing itself
into an ORB using one of thréai t methods. Two of the three methods use the
properties (associations of a name with a value) shown in the following table:

Property Name Property Value

org. ong. CORBA. ORBCI ass Class name of an ORB implementation

or g. ong. CORBA. CRBSi ngl et ond ass Class name of the ORB returned by i ni t ()

These properties allow a different vendor's ORB implementation to be "plugged in."

Java Programming Reference 11-1

11 corBA ORB

When an ORB instance isbeing created, the class name of the ORB implementation is
located using the following standard search order:

1. Check in Applet parameter or application string array, if any.

2. Check in properties parameter, if any.

3. Check in the System properties (currently applications only).

4. Fall back on ahardcoded default behavior (use the Java IDL implementation).

Note that the WebL ogic Enterprise ORB provides a default implementation for the
fully functional ORB and for the Singleton ORB. When thei ni t method is given no
parameters, the default Singleton ORB isreturned. When the i ni t method is given
parameters but no ORB classis specified, the Java IDL ORB implementation is
returned.

The following code fragment creates an ORB object initialized with the default ORB
Singleton. This ORB hasarestricted implementation to prevent malicious appletsfrom
doing anything beyond creating typecodes. It iscalled a Singleton becausethereisonly
oneinstance for an entire virtual machine.

ORB orb = ORB.init();

Thefollowing code fragment creates an ORB object and a Singleton ORB object for
an application.

Properties p = new Properties();

p. put ("org. ong. CORBA. ORBCl ass", "com sun. CORBA.iiop. ORB");

p. put ("org. ong. CORBA. ORBSIi ngl et ond ass", "com sun. CORBA. i dl . ORBSi ngl eton");
System set Properti es(p);

ORB orb = ORB.init(args, p);

In the preceding code fragment, note the following:
4 TheORB classisto beinitialized as com sun. CORBA. i i op. ORB.

4 TheSingletonORB classisto beinitialized as
com sun. CORBA. i dl . ORBSI ngl et on.

4 Thestatement Syst em set Properties(p) Setsthe system properties based on
the value of p.

4 Theparameter ar gs represents the arguments supplied to the application’s main
method. If p isnul I, and the arguments do not specify an ORB class, the new
ORB isinitialized with the default Java IDL implementation.

11-2 JavaProgramming Reference

Initializing the ORB for Native and Remote Clients

Note: Due to the security restrictions on applets, you will probably not be able to
invoke the Syst em set Propert i es method from within an applet. Instead,
you can set the or g. ong. CORBA. ORBCl ass and
or g. onmg. CORBA. ORBSI ngl et onCl ass parametersviaHTML before
starting the applet.

Thefollowing code fragment creates an ORB object for the applet supplied asthefirst
parameter. If the given applet does not specify an ORB class, the new ORB will be
initialized with the default WebL ogic Enterprise ORB implementation.

ORB orb = ORB.init(myApplet, null);

An application or applet can beinitialized in one or more ORBs. ORB initialization is
abootstrap call into the CORBA world.

Passing the Address of the 110OP Listener

When you compile WebL ogic Enterprise client and server applications, use the
- DTOBJADDR option to specify the host and port of the [|OP Listener. Thisalowsyou,
in the application code, to specify nul | asahost and port string in invocations to:

4 TheORB.init method
4 Thelocal Bootstrap object

By keeping host and port specifications out of your client and server application code,
you maximize the portability and reusability of your application code.

Initializing the ORB for Native and Remote
Clients

WebL ogic Enterprise provides two methods on the com beasys. Tobj _Boot st rap
object that client applications use to initialize the ORB, depending on whether the
clientisnative (that is, on a process that isinside the WebL ogic Enterprise domain) or
remote (that is, on a machine that needs to communicate to the server application via
the 110OP Listener/Handler).

Java Programming Reference 11-3

11 corBA ORB

These two methods are:

L4

Theget Nat i vePr opert i es method

This method returns a set of properties that need to be passed in a subsequent
invocation of the or g. ong. CORBA. ORB. i ni t method. This subsequent
invocation causes BEA'’s Java ORB to beinitialized. The

get Nat i vePr opert i es method also initializes the WeblL ogic Enterprise
infrastructure.

Theget Nat i vePr oper ti es method must be invoked before any attempt is
made to access any classin the or g. ong. CORBA package; otherwise, errors will
occur when receiving CORBA exceptions from the server.

The get Renpt ePr opert i es method

This method returns the properties needed to initialize the ORB for remote
clients. The get Renot ePr oper ti es method is specified for symmetry and
alwaysreturnsnul | .

Note: InWLE 4.2, Java native clients are not supported.

11-4 JavaProgramming Reference

CHAPTER

12 Mapping IDL to Java

This chapter contains the following topics:
4 |IDL to JavaOverview
4 Package Comments on Holder Classes

4 Exceptions. This section includes the following topics:
4 Differences Between CORBA and Java Exceptions
4 System Exceptions

4 User Exceptions

¢

Minor Code Meanings

Note: Thischapter contains excerptsfrom the Java DL document published by Sun
Microsystems, Inc. and distributed with the JDK 1.2.

IDL to Java Overview

Thei dl t oj ava and n8i dl t oj ava toolsread an OMG IDL interface and trand ateiit,
or mapit, to aJavainterface. Thensi dl t oj ava tool also creates stub, skeleton, hel per,
holder, and other filesasnecessary. Whilethei dI t oj ava tool creates stub, skeleton,
helper, holder, and other files, the skeleton files it produces cannot be used with the
WebL ogic Enterprise system. When compiling the OMG IDL files to build server
skeletons to be used with the WebL ogic Enterprise system, be sure to use the

n8i dl t oj ava tool.

Java Programming Reference 12-1

12 Mapping IDL to Java

These. j ava files are generated from the OMG IDL file according to the mapping
specified in the OMG document |DL/Java Language Mapping (available from the
OMG Web siteat ht t p: // www. ong. or g). We cross-reference the following four
chapters of that document here for your convenience:

4 Chapter 5, “Mapping IDL to Java”

4 Chapter 6, “Mapping Pseudo-Obijects to Java”

4 Chapter 7, “Server-Side Mapping”

4 Chapter 8, “Java ORB Portability Interfaces”

A summary of the IDL to Java language mapping follows.

CORBA objects are defined in OMG IDL. Before they can be used by a Java
programmer, their interfaces must be mapped to Java classes and interfaces. Sun
Microsystems, Inc. provides thel t oj ava tool, and the WebLogic Enterprise system
includes then8i dl t oj ava tool, which performs this mapping automatically.

This overview shows the correspondence between OMG IDL constructs and Java
constructs. Note that OMG IDL, as its hame implies, defines interfaces. Like Java
interfaces, IDL interfaces contain no implementations for their operations (methods ir
Java). In other words, IDL interfaces define only the signature for an operation (the
name of the operation, the datatype of its return value, the datatypes of the paramete
that it takes, and any exceptions that it raises). The implementations for these
operations need to be supplied in Java classes written by a Java programmer.

The following table lists the main constructs of IDL and the corresponding constructs

in Java.
IDL Construct Java Construct
nodul e package
interface interface, hel per class, hol der class
const ant public static final
bool ean bool ean
char, wchar char
oct et byt e

12-2 JavaProgramming Reference

Package Comments on Holder Classes

IDL Construct

Java Construct

string, wstring java.lang. String
short, unsigned short short

I ong, unsigned | ong i nt

I ong | ong, unsigned long |ong

| ong

f |l oat fl oat

doubl e doubl e

enum struct, union cl ass

sequence, array array

exception cl ass

readonly attribute

method for accessing value of attribute

readwite attribute

methods for accessing and setting value of attribute

operation

method

Note: When a CORBA operation takes atype that corresponds to a Java object type
(astring, for example), itisillegal to passaJavanul | asthe parameter
value. Instead, pass an empty version of the designated object type (for
example, an empty St ri ng or an empty array). A Javanul | can be passed as
aparameter only when thetype of the parameter isaCORBA object reference,
in which casethenul | isinterpreted asani | CORBA object reference.

Package Comments on Holder Classes

Operationsin an IDL interface may take out or i nout parameters, aswell asi n
parameters. The Java programming language only passes parameters by value and thus
doesnot haveout ori nout parameters; therefore, these are mapped to what are called
Holder classes. In place of the IDL out parameter, the Java programming language

Java Programming Reference 12-3

12 Mapping IDL to Java

method will take an instance of the Holder class of the appropriate type. The result that
was assigned to the out or i nout parameter inthe IDL interfaceisassigned to the
value field of the Holder class.

The package or g. ong. CORBA contains a Holder class for each of the basic types
(Bool eanHol der , LongHol der, St ri ngHol der ,and soon). It also hasHolder classes
for each generated class (such as TypeCodeHol der), but these are used transparently
by the ORB, and the programmer usually does not see them.

The Holder classes defined in the package or g. ong. CORBA are:

AnyHol der

Bool eanHol der
Byt eHol der
Char Hol der
Doubl eHol der
Fl oat Hol der

| nt Hol der
LongHol der

oj ect Hol der
Pri nci pal Hol der
Shor t Hol der
Stri ngHol der
TypeCodeHol der

Exceptions

12-4

CORBA has two types of exceptions: standard system exceptions, which are fully
specified by OMG, and user exceptions, which are defined by the individual
application programmer. CORBA exceptions are alittle different from Java exception
objects, but those differences are largely handled in the mapping from IDL to Java.

Topics in this section include:

4 Differences Between CORBA and Java Exceptions

4 System Exceptions, which includes the following subtopics:
4 System Exception Structure
4 Minor Codes
4 Completion Status

Java Programming Reference

Exceptions

4 User Exceptions
4 Minor Code Meanings

Differences Between CORBA and Java Exceptions

To specify an exceptionin IDL, theinterface designer usesther ai ses keyword. This
issimilar to thet hr ows specification in Java. When you use the exception keyword in
IDL, you create a user-defined exception. The standard system exceptions cannot be
specified this way.

System Exceptions

CORBA definesaset of standard system exceptions, which are generally raised by the
ORSB libraries to signa systemic error conditions like:

4 Server-side system exceptions, such as resource exhaustion or activation failure

4 Communication system exceptions, such as losing contact with the object, host
down, or cannot talk to ORB daemon (or bd)

4 Client-side system exceptions, such as invalid operand type or anything that
occurs before arequest is sent or after the result comes back

All IDL operations can throw system exceptionswhen invoked. Theinterface designer
need not specify anything to enable operationsin the interface to throw system
exceptions -- the capability is automatic.

This makes sense because no matter how trivial an operation’simplementation is, the
potential of an operation invocation coming from aclient that isin another process, and
perhaps (likely) on another machine, means that a whole range of errorsis possible.

Therefore, a CORBA client should always catch CORBA system exceptions.
Moreover, devel opers cannot rely on the Java compiler to notify them of a system
exception they should catch, because CORBA system exceptions are descendants of
java. |l ang. Runti meExcepti on.

Java Programming Reference 12-5

12 Mapping IDL to Java

System Exception Structure

All CORBA system exceptions have the same structure:

exception <SystenExceptionNane> { // descriptive of error
unsi gned | ong m nor; /1 nore detail about error
Conpl eti onSt at us conpl et ed; /1l yes, no, maybe

}

System exceptions are subtypes of j ava. | ang. Runt i meExcept i on through
or g. ong. CORBA. Syst enException:

j ava. | ang. Exception

+--java. | ang. Runti meExcepti on

I
+--o0rg. ong. CORBA. Syst enExcepti on

+- - BAD_PARAM
I

+--//etc.

Minor Codes

All CORBA system exceptions have a minor code field, which contains anumber that
provides additional information about the nature of the failure that caused the
exception. Minor code meanings are not specified by the OMG; each ORB vendor
specifies appropriate minor codes for that implementation. For the meaning of minor
codes thrown by the Java ORB, see the section “Minor Code Meanings.”

Completion Status

All CORBA system exceptions have a completion status field, which indicates the
status of the operation that threw the exception. The completion codes are:

COVPLETED_YES The object implementation has completed processing prior
to the exception being raised.

COVPLETED_NO The object implementation was not invoked prior to the
exception being raised.

COVPLETED_MAYBE The status of the invocation is unknown.

12-6 JavaProgramming Reference

Exceptions

User Exceptions

CORBA user exceptions are subtypes of j ava. | ang. Except i on through
or g. ong. CORBA. User Except i on:

java. | ang. Excepti on

I
+--o0rg. ong. CORBA. User Excepti on

I
+- - St ocks. BadSynbol

+--//etc.

Each user-defined exception specified in IDL resultsin a generated Java exception
class. These exceptions are entirely defined and implemented by the programmer.

Minor Code Meanings

System exceptions all have afield minor that allows CORBA vendorsto provide
additional information about the cause of the exception. As stated inthe CORBA 2.2
specification (13.4.2 Reply Message), the high order 20 bits of minor code value
contain a 20-bit "vendor minor codeset ID" (VMCID); the low order 12 bits contain a
minor code. BEA’s VMCID is0x54555000. Further, Sun defines single or double
digit minor codesfor its JavalDL ORB and BEA definesits minor code starting from
1,000. Thus, acondition common to either ORB uses the Java IDL minor code (and
VMCID 0), and the BEA ORB unique minor code is 1,000 or greater.

For Sun Microsystems, Inc. minor codes, see the Java IDL documentation. For BEA's
minor codes, see threlease Notes.

Table 12-1 ORB Minor Codes and Their M eanings

Code Meaning

BAD_PARAM Exception Minor Codes

1 A null parameter was passed to a Java IDL method.

COMM_FAILURE Exception Minor Codes

Java Programming Reference 12-7

12 Mapping IDL to Java

12-8

Code Meaning

1 Unable to connect to the host and port specified in the object reference, or in the
object reference obtained after locati on/object forward.

2 Error occurred whiletrying to write to the socket. The socket has been closed by the
other side, or is aborted.

3 Error occurred while trying to write to the socket. The connectionisno longer alive.

6 Unable to successfully connect to the server after several attempts.

DATA_CONVERSION Exception Minor Codes

1 Encountered abad hexadecimal character whiledoingORB st ri ng_t o_obj ect
operation.

2 The length of the given IOR for st ri ng_t o_obj ect () isodd. It must be even.

3 The string giventostring_t o_obj ect () doesnot start with | OR: and hence
isabad stringified IOR.

4 Unableto perform ORB r esol ve_i ni ti al _r ef er ences operation dueto the
host or the port being incorrect or unspecified, or the remote host does not support
the Java IDL bootstrap protocol.

INTERNAL Exception Minor Codes

3 Bad status returned in the 11OP Reply message by the server.

6 When unmarshaling, the repository id of the user exception was found to be of
incorrect length.

7 Unable to determine loca hostname using the Java API’'s
I net Addr ess. get Local Host (). get Host Name() .

8 Unable to create the listener thread on the specific port. Either the port is already in
use, there was an error creating the daemon thread, or security restrictions preven
listening.

9 Bad locate reply status found in the IIOP locate reply.

10 Error encountered while stringifying an object reference.

11 IIOP message with bad GIOP v1.0 message type found.

14 Error encountered while unmarshaling the user exception.

Java Programming Reference

Exceptions

Code Meaning
18 Internal initialization error.
INV_OBJREF Exception Minor Codes
1 An IOR with no profile was encountered.
MARSHAL Exception Minor Codes
4 Error occured while unmarshaling an object reference.
5 Marshaling/unmarshaling unsupported IDL types like wide characters and wide
strings.
6 Character encountered while marshaling or unmarshaling a character or string that
isnot ISO Latin-1 (8859.1) compliant. It is not in the range of 0 to 255.
NO_IMPLEMENT Exception Minor Codes
1 Dynamic Skeleton Interface is not implemented.
OBJ_ADAPTER Exception Minor Codes
1 No object adapter was found matching the one in the object key when dispatching
the request on the server side to the object adapter layer.
2 No object adapter was found matching the one in the object key when dispatching
the locate request on the server side to the object adapter layer.
4 Error occured when trying to connect a servant to the ORB.
OBJ_NOT_EXIST Exception Minor Codes
1 Locate request got aresponse indicating that the object is not known to the locator.
2 Server id of the server that received the request does not match the server id baked
into the object key of the object reference that was invoked upon.
4 No skeleton was found on the server side that matches the content of the object key
inside the object reference.
UNKNOWN Exception Minor Codes
1 Unknown user exception encountered while unmarshaling: the server returned a

user exception that does not match any expected by the client.

Java Programming Reference 12-9

12 Mapping IDL to Java

12-10

Code

Meaning

3

Unknown run-time exception thrown by the server implementation.

Table 12-2 Name Server Minor Codes and Their M eanings

Code

Meaning

INITIALIZE Exception Minor Codes

150

Transient name service caught a Sy st enExcept i on whileinitiaizing.

151

Transient name service caught a Java exception while initializing.

INTERNAL Exception Minor Codes

100

An Al r eadyBound exception was thrown in ar ebi nd operation.

101

An Al r eadyBound exception was thrown in ar ebi nd_cont ext operation.

102

Binding type passed to the internal binding implementation was not
Bi ndi ngType. nobj ect or Bi ndi ngType. ncont ext .

103

Object reference was bound as a context, but it could not be narrowed to
CosNam ng. Nam ngCont ext .

200

Implementation of the bi nd operation encountered a previous binding.

201

Implementation of thel i st operation caught a Java exception while creating the
list iterator.

202

Implementation of the new_cont ext operation caught a Java exception while
creating the new Nam ngCont ext servant.

203

Implementaton of the dest r oy operation caught a Java exception while
disconnecting from the ORB.

Java Programming Reference

	Restricted Rights Legend
	Trademarks or Service Marks
	1 OMG IDL Syntax
	Style Guidelines for Writing OMG IDL Statements
	OMG IDL Extensions

	2 Server Description File
	Creating the Server Description File
	About Object Activation and Deactivation
	Server Description File Syntax
	Prolog
	Server Declaration
	Module and Implementation Declarations
	Module Declaration Syntax
	Implementation Declaration Syntax

	Archive Declaration
	Archive Declaration Syntax

	Sample Server Description File

	3 TP Framework
	TP Framework Interfaces
	Tobj_Servant Interface
	Server Interface
	TP Interface
	Usage Notes

	TransactionalObject Interface Not Enforced

	Transactions Usage Notes
	Transaction Termination
	Transaction Suspend and Resume
	Restrictions
	Voting on Transaction Outcome

	4 Bootstrap Object
	How Bootstrap Objects Work
	Types of Remote Clients Supported
	Capabilities and Limitations
	Bootstrap Object API
	Tobj Module
	Java Mapping

	Programming Examples
	Getting a SecurityCurrent Object
	Getting a UserTransaction Object

	5 FactoryFinder Interface
	Capabilities, Limitations, and Requirements
	Functional Description
	Locating a FactoryFinder
	Registering a Factory
	Locating a Factory
	CORBAservices Naming Service Module OMG IDL
	CORBAservices Life Cycle Service Module OMG IDL
	Tobj Module OMG IDL
	Locating Factories in Another Domain
	Why Use WebLogic Enterprise Extensions?

	Creating Application Factory Keys
	Names Library Interface Pseudo OMG IDL
	Creating a Library Name Component
	Creating a Library Name
	The LNameComponent Interface
	The LName Interface
	Destroying a Library Name Component Pseudo-Object
	Inserting a Name Component
	Getting the ith Name Component
	Deleting a Name Component
	Number of Name Components
	Testing for Equality
	Testing for Order
	Producing an OMG IDL form
	Translating an IDL Form
	Destroying a Library Name Pseudo-Object

	Java Mapping

	Java Methods
	Java Programming Examples
	Server Registering a Factory
	Client Obtaining a FactoryFinder Object Reference
	Client Finding One Factory Using the Tobj Approach

	6 Security Service
	Introduction
	Capabilities and Limitations
	Getting Initial References to the SecurityCurrent Object
	Basic Security-Level Requirements for WebLogic Enterprise Clients
	Functional Components
	Security Model
	Authentication of Principals
	Controlling Access to Objects
	Administrative Control

	Security Model Functional Description
	Description
	Logging on to the System
	Example of a Secure Object Invocation

	Authentication
	Authentication Mechanisms
	Authentication Process
	Principal Authenticator Object
	Credentials Object
	SecurityCurrent Object

	Principal Authenticator Object
	WebLogic Enterprise Extensions to the Principal Authenticator Object
	Credentials Object
	SecurityCurrent Object

	Client Security API
	CORBA Module
	TimeBase Module
	Security Module
	Security Level 1 Module
	Security Level 2 Module
	Tobj Module

	Java Programming Examples
	Using WebLogic Enterprise Extensions to Log on
	Getting Information from Privileges
	Checking the Validity of the Credentials Expiration Time
	Authentication Using SecurityLevel2.PrincipalAuthenticator
	Authentication Using Tobj.PrincipalAuthenticator
	Logging Off Using Tobj.PrincipalAuthenticator
	Checking the Validity of Credentials
	Getting Principal’s Privileges
	Copying a Credentials Object
	Destroying a Credentials Object
	Getting the Principal Authenticator Object
	Getting Credentials
	Setting Default Credentials
	Getting a Principal’s Privileges
	Removing a Credentials Object from the “Own” List
	Getting Credentials of the Requesting Principal
	Getting the Principal’s Privileges from Credentials
	Getting the Principal’s Privileges from the SecurityCurrent object
	Obtaining the SecurityCurrent Object
	Getting Association Options
	Getting Delegation State
	Getting Delegation Mode

	7 Transaction Service
	Capabilities and Limitations
	Lightweight Clients with Delegated Commit
	Transaction Propagation
	Transaction Integrity
	Transaction Termination
	Flat Transactions
	Interoperability Between Remote Clients and the WebLogic Enterprise Domain
	Intradomain Interoperability
	Network Interoperability
	Relationship of the Transaction Service to Transaction Processing
	Process Failure
	Multithreaded Support
	OMG Interface Definition Language (IDL)
	General Constraints

	Getting Initial References to the TransactionCurrent Object
	Transaction Service API
	Data Types
	Control Interface
	TransactionalObject Interface
	Other CORBAservices Object Transaction Service Interfaces

	Transaction Service API Extensions
	Exception
	TransactionCurrent Interface

	8 Interface Repository Interfaces
	Structure and Usage
	From the Programmer’s Point of View
	Performance Implications

	Building Client Applications
	Getting Initial References to the InterfaceRepository Object
	Interface Repository Interfaces
	Supporting Type Definitions
	IRObject Interface
	Contained Interface
	Container Interface
	IDLType Interface
	Repository Interface
	ModuleDef Interface
	ConstantDef Interface
	TypedefDef Interface
	StructDef
	UnionDef
	EnumDef
	AliasDef
	PrimitiveDef
	ExceptionDef
	AttributeDef
	OperationDef
	InterfaceDef

	9 Joint Client/Server Applications
	Introduction
	Main Program and Server Initialization
	Servants
	Servant Inheritance from Skeletons
	Callback Object Models Supported
	Preparing Callback Objects using BEAWrapper Callbacks
	Threading Considerations in the Main Program
	Multiple Threads

	Java Client ORB Initialization
	IIOP Support
	Java Applet Support
	Port Numbers for Persistent Object References

	Callbacks Interface API

	10 Java Development and Administration Commands
	buildjavaserver
	Synopsis
	Syntax
	Description
	Options
	Environment Variables
	Portability
	Example
	buildXAJS

	Synopsis
	Syntax
	Description
	Options
	Environment Variables
	Portability
	Example
	m3idltojava

	Synopsis
	Syntax
	Description
	Parameter
	Options
	Examples

	11 CORBA ORB
	Initializing the ORB
	Passing the Address of the IIOP Listener

	Initializing the ORB for Native and Remote Clients

	12 Mapping IDL to Java
	IDL to Java Overview
	Package Comments on Holder Classes
	Exceptions
	Differences Between CORBA and Java Exceptions
	System Exceptions
	System Exception Structure
	Minor Codes
	Completion Status

	User Exceptions
	Minor Code Meanings

