
BEA WebLogic Enterprise
Java Programming Reference

B E A W e b L o g i c E n t e r p r i s e 4 . 2
D o c u m e n t E d i t i o n 4 . 2

J u l y 1 9 9 9

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Java Programming Reference

Document Edition Date Software Version

4.2 July 1999 BEA WebLogic Enterprise 4.2

Java Programming Reference iii

Contents

Preface
Purpose of This Document .. xi

How to Use This Document .. xiii

Related Documentation ... xvi

Contact Information... xix

1. OMG IDL Syntax
Style Guidelines for Writing OMG IDL Statements ... 1-2

OMG IDL Extensions.. 1-2

2. Server Description File
Creating the Server Description File ... 2-2

About Object Activation and Deactivation .. 2-2

Server Description File Syntax .. 2-3

Prolog .. 2-4

Server Declaration... 2-4

Module and Implementation Declarations.. 2-5

Archive Declaration .. 2-9

Sample Server Description File... 2-11

3. TP Framework
TP Framework Interfaces .. 3-2

Tobj_Servant Interface ... 3-2

Server Interface .. 3-3

TP Interface .. 3-3

TransactionalObject Interface Not Enforced.. 3-4

Transactions Usage Notes ... 3-5

iv Java Programming Reference

Transaction Termination .. 3-5

Transaction Suspend and Resume .. 3-6

Restrictions ... 3-7

Voting on Transaction Outcome .. 3-8

4. Bootstrap Object
How Bootstrap Objects Work.. 4-2

Types of Remote Clients Supported .. 4-6

Capabilities and Limitations .. 4-7

Bootstrap Object API... 4-7

Tobj Module ... 4-8

Java Mapping.. 4-9

Programming Examples .. 4-10

Getting a SecurityCurrent Object ... 4-10

Getting a UserTransaction Object .. 4-11

5. FactoryFinder Interface
Capabilities, Limitations, and Requirements... 5-2

Functional Description .. 5-3

Locating a FactoryFinder ... 5-3

Registering a Factory.. 5-4

Locating a Factory .. 5-5

CORBAservices Naming Service Module OMG IDL........................ 5-7

CORBAservices Life Cycle Service Module OMG IDL.................... 5-7

Tobj Module OMG IDL.. 5-8

Locating Factories in Another Domain ... 5-9

Why Use WebLogic Enterprise Extensions? 5-10

Creating Application Factory Keys .. 5-11

Names Library Interface Pseudo OMG IDL 5-11

Java Mapping .. 5-17

Java Methods ... 5-18

Java Programming Examples .. 5-18

Server Registering a Factory .. 5-18

Client Obtaining a FactoryFinder Object Reference 5-19

Client Finding One Factory Using the Tobj Approach 5-19

Java Programming Reference v

6. Security Service
Introduction ... 6-2

Capabilities and Limitations.. 6-2

Getting Initial References to the SecurityCurrent Object.................................. 6-3

Basic Security-Level Requirements for WebLogic Enterprise Clients 6-3

Functional Components... 6-4

Security Model ... 6-4

Authentication of Principals... 6-4

Controlling Access to Objects .. 6-5

Administrative Control... 6-5

Security Model Functional Description... 6-6

Description ... 6-6

Logging on to the System ... 6-7

Example of a Secure Object Invocation.. 6-8

Authentication ... 6-8

Authentication Mechanisms.. 6-9

Authentication Process.. 6-10

Principal Authenticator Object.. 6-12

WebLogic Enterprise Extensions to the Principal Authenticator
Object... 6-13

Credentials Object... 6-14

SecurityCurrent Object ... 6-15

Client Security API.. 6-17

CORBA Module... 6-17

TimeBase Module .. 6-18

Security Module ... 6-20

Security Level 1 Module .. 6-22

Security Level 2 Module .. 6-22

Tobj Module... 6-24

Java Programming Examples .. 6-26

Using WebLogic Enterprise Extensions to Log on 6-26

Getting Information from Privileges .. 6-29

Checking the Validity of the Credentials Expiration Time...................... 6-30

Authentication Using SecurityLevel2.PrincipalAuthenticator................. 6-30

Authentication Using Tobj.PrincipalAuthenticator.................................. 6-33

vi Java Programming Reference

Logging Off Using Tobj.PrincipalAuthenticator 6-35

Checking the Validity of Credentials ... 6-35

Getting Principal’s Privileges...6-36

Copying a Credentials Object...6-37

Destroying a Credentials Object... 6-37

Getting the Principal Authenticator Object .. 6-38

Getting Credentials... 6-38

Setting Default Credentials... 6-38

Getting a Principal’s Privileges .. 6-39

Removing a Credentials Object from the “Own” List.............................. 6-40

Getting Credentials of the Requesting Principal6-40

Getting the Principal’s Privileges from Credentials.................................6-41

Getting the Principal’s Privileges from the SecurityCurrent object6-42

Obtaining the SecurityCurrent Object .. 6-43

Getting Association Options... 6-43

Getting Delegation State... 6-43

Getting Delegation Mode ... 6-44

7. Transaction Service
Capabilities and Limitations .. 7-2

Lightweight Clients with Delegated Commit... 7-3

Transaction Propagation... 7-3

Transaction Integrity .. 7-3

Transaction Termination .. 7-4

Flat Transactions .. 7-4

Interoperability Between Remote Clients and the WebLogic Enterprise
Domain.. 7-4

Intradomain Interoperability... 7-5

Network Interoperability .. 7-5

Relationship of the Transaction Service to Transaction Processing 7-5

Process Failure.. 7-6

Multithreaded Support.. 7-7

OMG Interface Definition Language (IDL) ... 7-7

General Constraints .. 7-7

Getting Initial References to the TransactionCurrent Object 7-8

Java Programming Reference vii

Transaction Service API.. 7-9

Data Types.. 7-9

Control Interface .. 7-10

TransactionalObject Interface .. 7-10

Other CORBAservices Object Transaction Service Interfaces................ 7-11

Transaction Service API Extensions ... 7-11

Exception.. 7-11

TransactionCurrent Interface.. 7-12

8. Interface Repository Interfaces
Structure and Usage... 8-3

From the Programmer’s Point of View .. 8-4

Performance Implications .. 8-5

Building Client Applications... 8-5

Getting Initial References to the InterfaceRepository Object 8-6

Interface Repository Interfaces.. 8-6

Supporting Type Definitions .. 8-6

IRObject Interface .. 8-7

Contained Interface .. 8-8

Container Interface... 8-9

IDLType Interface.. 8-11

Repository Interface ... 8-11

ModuleDef Interface .. 8-12

ConstantDef Interface .. 8-12

TypedefDef Interface ... 8-13

StructDef .. 8-14

UnionDef.. 8-14

EnumDef .. 8-15

AliasDef ... 8-15

PrimitiveDef ... 8-16

ExceptionDef.. 8-17

AttributeDef ... 8-17

OperationDef.. 8-18

InterfaceDef.. 8-20

viii Java Programming Reference

9. Joint Client/Server Applications
Introduction ... 9-2

Main Program and Server Initialization ... 9-2

Servants .. 9-3

Servant Inheritance from Skeletons.. 9-4

Callback Object Models Supported.. 9-4

Preparing Callback Objects using BEAWrapper Callbacks....................... 9-6

Threading Considerations in the Main Program .. 9-7

Multiple Threads ... 9-8

Java Client ORB Initialization.. 9-8

IIOP Support... 9-9

Java Applet Support .. 9-9

Port Numbers for Persistent Object References.................................. 9-9

Callbacks Interface API... 9-10

10. Java Development and Administration Commands
buildjavaserver .. 10-3

buildXAJS ... 10-5

m3idltojava.. 10-7

11. CORBA ORB
Initializing the ORB... 11-1

Passing the Address of the IIOP Listener... 11-3

Initializing the ORB for Native and Remote Clients....................................... 11-3

12. Mapping IDL to Java
IDL to Java Overview.. 12-1

Package Comments on Holder Classes ... 12-3

Exceptions ... 12-4

Differences Between CORBA and Java Exceptions 12-5

System Exceptions.. 12-5

System Exception Structure .. 12-6

Minor Codes.. 12-6

Completion Status ... 12-6

User Exceptions.. 12-7

Minor Code Meanings.. 12-7

Java Programming Reference xi

Preface

Purpose of This Document

This document provides Java programmer reference information for the following
BEA WebLogic Enterprise (sometimes referred to as WLE) product components:

t OMG IDL

t Server Description File

t TP Framework

t Bootstrap object

t FactoryFinder

t Security Service

t Transaction Service

t Interface Repository

t Application build and administration commands

t CORBA ORB

t IDL to Java mapping

xii Java Programming Reference

The information provided in this document is supplemented by the Java API
Reference, which contains descriptions of the application programming interface
(API) for the following components:

t TP Framework

t Bootstrap object

t FactoryFinder

t Security Service

t Java Transaction Service (JTS)

t Java Transaction API (JTA)

Note: Effective February 1999, the BEA M3 product is renamed. The new name of
the product is BEA WebLogic Enterprise (WLE).

Who Should Read This Document

This document is intended for application developers interested in using the WebLogic
Enterprise software to write the following applications:

t Server applications implemented in the Java programming language

t All client applications supported by the WebLogic Enterprise product

This document assumes a familiarity with CORBA and Java programming. For
reference information about implementing WebLogic Enterprise server applications in
the C++ programming language, see the C++ Programming Reference.

How This Document Is Organized

The Java Programming Reference is organized as follows:

t Chapter 1, “OMG IDL Syntax,” provides a brief discussion on the Object
Management Group (OMG) Interface Definition Language (IDL), and includes a
cross-reference to a recommended publication about OMG IDL coding style
guidelines.

Java Programming Reference xiii

t Chapter 2, “Server Description File,” describes the Server Description File.

t Chapter 3, “TP Framework,” includes high-level programming topics relevant to
the WebLogic Enterprise TP Framework.

t Chapter 4, “Bootstrap Object,” describes the Bootstrap object.

t Chapter 5, “FactoryFinder Interface,” describes the FactoryFinder interface.

t Chapter 6, “Security Service,” describes the Security Service.

t Chapter 7, “Transaction Service,” describes the Transaction Service.

t Chapter 8, “Interface Repository Interfaces,” describes the Interface Repository
interfaces.

t Chapter 9, “Joint Client/Server Applications,” describes programming
requirements for joint client/servers.

t Chapter 10, “Java Development and Administration Commands,” describes the
development and administration commands for WebLogic Enterprise
applications on UNIX and Windows NT platforms.

t Chapter 11, “CORBA ORB,” provides a number of programming topics related
to using the CORBA ORB. The information provided in this chapter is
supplementary to the Sun Microsystems, Inc. documentation of the
org.omg.CORBA package API, which is available in the Java Development Kit
(JDK) 1.2.

t Chapter 12, “Mapping IDL to Java,” contains reprints on select topics on
mapping IDL to Java from the Java IDL documentation published by Sun
Microsystems, Inc.

How to Use This Document

This document, Java Programming Reference, is designed primarily as an online,
hypertext document. If you are reading this as a paper publication, note that to get full
use from this document you should access it as an online document via the Online
Documentation CD for the BEA WebLogic Enterprise 4.2 release.

xiv Java Programming Reference

The following sections explain how to view this document online, and how to print a
copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the following file:

\doc\wle\v42\index.htm

Note: The online documentation requires Netscape Communicator version 4.0 or
later, or Microsoft Internet Explorer version 4.0 or later.

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print.

The Online Documentation CD includes Adobe Acrobat PDF files of all of the online
documents. You can use the Adobe Acrobat Reader to print all or a portion of each
document. On the CD Home Page, click the PDF Files button and scroll to the entry
for the document you want to print.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

Java Programming Reference xv

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

Convention Item

xvi Java Programming Reference

Related Documentation

The following sections list the documentation provided with the BEA WebLogic
Enterprise software, related BEA publications, and other publications related to the
technology.

BEA WebLogic Enterprise Documentation

The BEA WebLogic Enterprise information set consists of the following documents:

Installation Guide

C++ Release Notes

Java Release Notes

Getting Started

Guide to the University Sample Applications

Guide to the Java Sample Applications

... Indicates one of the following in a command line:

t That an argument can be repeated several times in a command line

t That the statement omits additional optional arguments

t That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Java Programming Reference xvii

Creating Client Applications

Creating C++ Server Applications

Creating Java Server Applications

Administration Guide

Using Server-to-Server Communication

C++ Programming Reference

Java Programming Reference (this document)

Java API Reference

JDBC Driver Programming Reference

System Messages

Glossary

Technical Articles

Note: The Online Documentation CD also includes Adobe Acrobat PDF files of all
of the online documents. You can use the Adobe Acrobat Reader to print all
or a portion of each document.

BEA Publications

Selected BEA TUXEDO Release 6.5 for BEA WebLogic Enterprise version 4.2
documents are available on the Online Documentation CD.

To access these documents:

1. Click the Other Reference button from the main menu.

2. Click the TUXEDO Documents option.

xviii Java Programming Reference

Other Publications

For more information about CORBA, Java, and related technologies, refer to the
following books and specifications:

Cobb, E. 1997. The Impact of Object Technology on Commercial Transaction
Processing. VLDB Journal, Volume 6. 173-190.

Edwards, J. with DeVoe, D. 1997. 3-Tier Client/Server At Work. Wiley Computer
Publishing.

Edwards, J., Harkey, D., and Orfali, R. 1996. The Essential Client/Server Survival
Guide. Wiley Computer Publishing.

Flanagan, David. May 1997. Java in a Nutshell, 2nd Edition. O’Reilly & Associates,
Incorporated.

Flanagan, David. September 1997. Java Examples in a Nutshell. O’Reilly &
Associates, Incorporated.

Fowler, M. with Scott, K. 1997. UML Distilled, Applying the Standard Object
Modeling Language. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series.

Jacobson, I. 1994. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley.

Mowbray, Thomas J. and Malveau, Raphael C. (Contributor). 1997. CORBA Design
Patterns, Paper Back and CD-ROM Edition. John Wiley & Sons, Inc.

Orfali, R., Harkey, D., and Edwards, J. 1997. Instant Corba. Wiley Computer
Publishing.

Orfali, R., Harkey, D. February 1998. Client/Server Programming with Java and
CORBA, 2nd Edition. John Wiley & Sons, Inc.

Otte, R., Patrick, P., and Roy, M. 1996. Understanding CORBA. Prentice Hall PTR.

Rosen, M. and Curtis, D. 1998. Integrating CORBA and COM Applications. Wiley
Computer Publishing.

Java Programming Reference xix

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Loresen, W. 1991.
Object-Oriented Modeling and Design. Prentice Hall.

The Common Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. Published by the Object Management Group (OMG).

CORBAservices: Common Object Services Specification. Revised Edition. Updated:
November 1997. Published by the Object Management Group (OMG).

Contact Information

The following sections provide information about how to obtain support for the
documentation and the software.

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of the BEA WebLogic Enterprise product,
or if you have problems installing and running the BEA WebLogic Enterprise
software, contact BEA Customer Support through BEA WebSupport at
www.beasys.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

t Your name, e-mail address, phone number, and fax number

t Your company name and company address

xx Java Programming Reference

t Your machine type and authorization codes

t The name and version of the product you are using

t A description of the problem and the content of pertinent error messages

Java Programming Reference 1-1

CHAPTER

1 OMG IDL Syntax

The Object Management Group (OMG) Interface Definition Language (IDL) is used
to describe the interfaces that client objects call and that object implementations
provide. An OMG IDL interface definition fully specifies each operation’s parameters
and provides the information needed to develop client applications that use the
interface’s operations.

Client applications are written in languages for which mappings from OMG IDL
statements have been defined. How an OMG IDL statement is mapped to a client
language construct depends on the facilities available in the client language. For
example, an OMG IDL exception might be mapped to a structure in a language that
has no notion of exception, or to an exception in a language that does.

OMG IDL statements obey the same lexical rules as C++ statements, although new
keywords are introduced to support distribution concepts. OMG IDL statements also
provide full support for standard C++ preprocessing features and OMG IDL-specific
pragmas.

The OMG IDL grammar is a subset of ANSI C++ with additional constructs to support
the operation invocation mechanism. OMG IDL is a declarative language; it supports
C++ syntax for constant, type, and operation declarations; it does not include any
algorithmic structures or variables.

For a description of OMG IDL grammar, see Chapter 3 of the Common Object Request
Broker: Architecture and Specification Revision 2.2 “OMG IDL Syntax and
Semantics.”

1 OMG IDL Syntax

1-2 Java Programming Reference

Style Guidelines for Writing OMG IDL
Statements

Refer to the following publication for OMG IDL style guidelines:

Mowbray, Thomas J. and Malveau, Raphael C.(Contributor). 1997.
CORBA Design Patterns, Paper Back and CD-ROM Edition.
John Wiley & Sons, Inc.

OMG IDL Extensions

The IDL compiler defines preprocessor macros specific to the platform. All the
macros predefined by the preprocessor that you are using can be used in the OMG IDL
file, in addition to the user-defined macros. You can also define your own macros
when you are compiling or loading OMG IDL files.

Java Programming Reference 2-1

CHAPTER

2 Server Description File

This chapter contains the following topics:

t Creating the Server Description File. This section includes the following topics:

t About Object Activation and Deactivation

t Server Description File Syntax

t Sample Server Description File

When you create a Java server application meant to be run in the WebLogic Enterprise
environment, the buildjavaserver command accepts the following information:

t Default activation and transaction policies for all the objects implemented in the
server application

t The server declaration, which includes the name of the Server object and the
name of the server descriptor file

t The declarations of each of the modules and interfaces defined in the server
application’s OMG IDL file

t Nondefault activation and transaction policies for specific objects implemented
in the server application

t A description of the content of the server application’s jar archive, which
contains all the files needed by the server application

You specify all the preceding information in a Server Description File, which is used
by the buildjavaserver command to create the server descriptor file and, optionally,
build a server jar file.

2 Server Description File

2-2 Java Programming Reference

Creating the Server Description File

The means to provide the information required by the buildjavaserver command is
the Server Description File, which is expressed in the XML language. XML looks very
similar to HTML; its key difference is that no XML tag is predefined. Every XML file
uses a Document Type Definition (DTD) file that specifies:

t What the XML tags are

t What attributes can be attached to an element

t What elements can be used in other elements

The DTD required by the WebLogic Enterprise system is packaged with the WebLogic
Enterprise software. You create the Server Description File using a common text
editor. The section “About Object Activation and Deactivation” on page 2-2 provides
important background information about the policies you define in the Server
Description File, and the section “Server Description File Syntax” on page 2-3
provides the details on how to specify the server description information in a Server
Description File.

About Object Activation and Deactivation

The WebLogic Enterprise TP Framework application programming interface (API)
provides callback methods for object activation and deactivation. These methods
provide the ability for application code to implement flexible state management
schemes for CORBA objects.

State management is the way you control the saving and restoring of object state during
object deactivation and activation. State management also affects the duration of
object activation, which influences the performance of servers and their resource
usage. The external API of the TP Framework includes the
com.beasys.Tobj_Servant.activate_object and
com.beasys.Tobj_Servant.deactivate_object methods, which provide a
possible location for state management code. Additionally, the TP Framework API
includes the com.beasys.Tobj.TP.deactivateEnable method to enable the user

Creating the Server Description File

Java Programming Reference 2-3

to control the timing of object deactivation. The default duration of object activation is
controlled by policies assigned to implementations when the server application is built
by the buildjavaserver command.

While CORBA objects are active, their state is contained in a servant. This state must
be initialized when objects are first invoked (that is, the first time a method is invoked
on a CORBA object after its object reference is created) and on subsequent invocations
after objects have been deactivated.

While a CORBA object is deactivated, its state must be saved outside the process in
which the servant was active. When an object is activated, its state must be restored.
The object’s state can be saved in shared memory, in a file, in a database, and so forth.
It is up to the programmer to determine what constitutes an object’s state, and what
must be saved before an object is deactivated, and restored when an object is activated.

You can use the Server Description File to set activation policies to control the
duration of object activations in the server process. The activation policy determines
the in-memory activation duration for a CORBA object. A CORBA object is active in
a Portable Object Adapter (POA) if the POA’s active object map contains an entry that
associates an object ID with an existing servant. Object deactivation removes the
association of an object ID with its active servant.

Server Description File Syntax

The Server Description File has the following four major parts:

t Prolog

t Server declaration

t Module and implementation declarations

t Archive declaration

The sections that follow explain the syntax and how to specify each of these parts of
the Server Description File.

2 Server Description File

2-4 Java Programming Reference

Prolog

Every Server Description File begins with the following required prolog:

<?xml version="1.0"?>
<!DOCTYPE M3-SERVER SYSTEM "m3.dtd">

If you want to override the default activation or transaction policy used by the
buildjavaserver command, you can override those defaults in the prolog using the
following syntax:

<?xml version="1.0"?>
<!DOCTYPE M3-SERVER SYSTEM "m3.dtd" [

<!ENTITY TRANSACTION_POLICY "transaction_value">
<!ENTITY ACTIVATION_POLICY "activation_value">

]>

In the preceding syntax, note the following:

t transaction_value represents one of the following: never, ignore,
optional, or always. (Note that the double quotes are a required part of the
syntax.)

t activation_policy represents one of the following: method, transaction,
or process.

t The square brackets ([and]) preceding and following the!ENTITY tags are
required; that is, the brackets in the preceding syntax do not imply that the
enclosed text is optional.

Note that you specify default activation and transaction policies in the prolog only if
you want to override the following WebLogic Enterprise system defaults:

Server Declaration

Immediately following the prolog is the server declaration, which is an optional part
of the Server Description File. The server declaration contains the following:

t The fully qualified name of the Server object

Activation Policy method

Transaction Policy optional

Creating the Server Description File

Java Programming Reference 2-5

t The fully qualified name of the file containing the server descriptor

To specify the server declaration, use the following syntax:

<M3-SERVER SERVER-IMPLEMENTATION="server_name"
 SERVER-DESCRIPTOR-NAME="server_descriptor">
</M3-SERVER>

In the preceding syntax, note the following:

t server_name represents the fully qualified name of the class that contains the
Server object. Qualified names use dot separators, not slashes. If you do not
specify the Server object, the WebLogic Enterprise system creates a default
Server object that opens and closes the XA resource manager associated with the
server application, if any, when the server application is started and stopped,
respectively. (Note that the double quotes are a required part of the syntax.)

t server_descriptor represents the name of the file where the server descriptor
will be stored. This file name typically has a .ser suffix. If you do not specify a
server descriptor, the buildjavaserver command uses Server.ser by default.

Module and Implementation Declarations

After the prolog and the server declaration (if present), the Server Description File
contains module and implementation declarations, which may be specified as nested
elements.

The module declarations specify Java packages for the server application. Interface
declarations specify:

t The interface repository ID for the interface being implemented

t Optionally, nondefault activation or transaction policies for objects that
implement the interface

Module Declaration Syntax

A module declaration uses the following syntax:

<MODULE name="name">
 .
 .
 .
</MODULE>

2 Server Description File

2-6 Java Programming Reference

In the preceding syntax, note the following:

t name represents the name of either a single Java package, or a set of nested
packages. This variable is needed if it exists in the OMG IDL file, and it is used
for scoping and grouping. Its use must be consistent with the way it is used
inside the OMG IDL file.

t A module declaration can contain an implementation declaration, nested module
declaration, or both.

t You can specify a nested package in a single module declaration using the dotted
notation, or you can factor out the package name using nested module
declarations. For example, either of the following module declarations for the
com.acme package is valid:

<MODULE name="com.acme">
 .
 .
 .
</MODULE>

or:

<MODULE name="com">
 <MODULE name="acme">
 .
 .
 .
 </MODULE>
</MODULE>

Implementation Declaration Syntax

An implementation declaration uses the following syntax:

<IMPLEMENTATION name="name"
 [implements="interface_id"]
 [transaction="transaction_policy"]
 [activation="activation_policy"] />

In the preceding syntax, note the following:

t name represents the name of the implementation class. If the implementation
declaration is not nested inside any module declaration, name must be the fully
qualified class name, using the dotted notation.

Creating the Server Description File

Java Programming Reference 2-7

If the implementation declaration is nested inside one or more module
declarations, the names of the modules will be prepended to the implementation
name to specify the whole name. The base class of the implementation name
must be a skeleton class generated by the m3idltojava command.

t interface_id represents the IDL interface repository ID for the interface being
implemented. This clause in the implementation declaration is optional. If you
do not specify an interface ID, the WebLogic Enterprise system uses the most
derived interface ID found in the skeleton class by default. The interface ID
must match the most derived interface ID found in the skeleton class.

t transaction_policy represents the transaction policy used by the
implementation in the server, and must be one of the keywords listed and
described in the following table:

Policy Description

never The implementation is not transactional. Objects created for this interface
can never be invoked within the scope of a transaction. The system
generates an exception (INVALID_TRANSACTION) if an implementation
with this policy is involved in a transaction. An AUTOTRAN policy specified
in the UBBCONFIG file for the interface is ignored.

ignore The implementation is not transactional. The system allows requests on this
object to be made within the scope of a transaction, but the object is not part
of the transaction. An AUTOTRAN policy specified in the UBBCONFIG file
for the interface is ignored. (The BEA TUXEDO infrastructure always
enforces the use of the TPNOTRAN flag (see tpcall(3) in the BEA
TUXEDO System Reference) for requests associated with implementations
that have this policy.

optional The implementation may be transactional. Objects can be invoked either
inside or outside the scope of a transaction. If the AUTOTRAN parameter is
enabled in the UBBCONFIG file for the interface, the implementation is
transactional. Servers containing transactional objects must be configured
within a group associated with an XA-compliant RM.

always The implementation is transactional. Objects are always transactional. If a
request is made outside the scope of a transaction, the system automatically
starts a transaction before invoking the method, and the transaction is
committed when the method ends. (This is the AUTOTRAN feature.) Servers
containing transactional objects must be configured within a group
associated with an XA-compliant RM.

2 Server Description File

2-8 Java Programming Reference

The transaction clause is optional. If you do not specify a transaction policy, the
default is optional, unless the default value has been overridden in the prolog.

t activation_policy represents the activation policy used by the
implementation in the server, and must be one of the keywords listed and
described in the following table:

The activation policy determines the default in-memory activation duration for a
CORBA object. A CORBA object is active in a POA if the POA’s active object map
contains an entry that associates an object ID with an existing servant. Object
deactivation removes the association of an object ID with its active servant.

Policy Description

method The activation of the CORBA object (that is, the association between the
object ID and the servant) lasts until the end of the method. At the
completion of a method, the object is deactivated. When the next method
is invoked on the object reference, the CORBA object is activated (the
object ID is associated with a new servant). This behavior is similar to
that of a BEA TUXEDO stateless service.

transaction The activation of the CORBA object (that is, the association between the
object ID and the servant) lasts until the end of the transaction. During the
transaction, multiple object methods can be invoked. This is a model of
resource allocation that is similar to that of a BEA TUXEDO
conversational service.

This model is less expensive than the BEA TUXEDO conversational
service in that it uses fewer system resources. This is because of the
WebLogic Enterprise ORB’s multicontexted dispatching model (that is,
the presence of many servants in memory at the same time for one
server), which makes it possible for a single server process to be shared
by many concurrently active servants, which service many clients. In the
BEA TUXEDO system, the process would be dedicated to a single client
and to only one service for the duration of a conversation.

process The activation of the CORBA object (that is, the association between the
object ID and the servant) lasts until the end of the process.

Note: The TP Framework API provides an interface method
(com.beasys.Tobj.TP.deactivateEnable()) that allows the
application to control the timing of object deactivation for objects that
have the activation policy set to process. For a description of
this method, see the Java API Reference.

Creating the Server Description File

Java Programming Reference 2-9

The activation clause is optional. If you do not specify an activation policy, the default
is method, unless the default value has been overridden in the prolog.

Archive Declaration

The archive declaration describes the content of the jar archive that contains all the
server application files. This section of the Server Description File is optional; if you
do not provide this section, you can build the jar archive by using the jar command
directly. However, declaring an archive in the Server Description File simplifies the
process of collecting and identifying the files.

The archive declaration is the last section of the Server Description File. If you do not
include an archive declaration, the buildjavaserver command produces only the
server descriptor and places it in the file specified by the server-descriptor-name
attribute in the server declaration.

You specify the content of the <ARCHIVE> element as either fully qualified Java classes
or file names. When specifying file names, note that path specifications are system
dependent, which has implications on archive portability.

The buildjavaserver command has the searchpath option, which you can use to
specify the search path for the files and classes included in the archive.

Note: After you use the buildjavaserver command to create the jar archive, you
might find it useful to verify the contents of the archive by using the jar tvf
command. This helps make sure that the archive contains all the intended
files.

Archive Declaration Syntax

The archive declaration has the following syntax:

<ARCHIVE name="archive-name">
 [<CLASS name="class-name" />] [...]
 [<PACKAGE name="package-name" />] [...]
 [<PACKAGE-RECURSIVE name="package-name"/>] [...]
 [<PACKAGE-ANONYMOUS />]
 [<FILE prefix="file-prefix" name="file-name" />] [...]
 [<DIRECTORY prefix="dir-prefix" name="dir-name" />] [...]
</ARCHIVE>

In the preceding syntax, note the following:

2 Server Description File

2-10 Java Programming Reference

t Each of the entities nested inside the <ARCHIVE> element is optional, and there
are no default values for any of these entities.

t The [...] construct next to an entity indicates that you can provide multiple
such entities.

t archive-name represents the name of the jar archive file to be created by the
buildjavaserver command. The archive created contains all the classes,
packages, and files specified within the <ARCHIVE> element.

t class-name represents the fully qualified name of the class to be included in
the archive. All inner classes of that class are included as well.

t package-name represents the fully qualified name of a package to be included
in the archive. All the classes belonging to that package are included as well.

If you want to include nested packages, use the <PACKAGE-RECURSIVE>
element.

t Use the <PACKAGE-ANONYMOUS> element to specify that all classes not in a
package are to be included in the archive. (This refers to the classes that do not
have a package statement in the Java source.)

t file-name represents the name of a file to be included in the archive. You can
use the file-prefix construct to specify a path name. This path name is
prepended to the file name when the file is located to be included in the archive;
however, the file is stored in the archive only with the name specified by
file-name.

For example, if the file-name is acme/iconf.gif, and the file-prefix is
/dev, the buildjavaserver command looks for the file
/dev/acme/iconf.gif and stores it in the archive as acme/iconf.gif.

t dir-name represents the path name of the directory to be included in the
archive. All subdirectories are included as well. You can use the dir-prefix
construct to specify a directory path. The directory path is prepended to the
directory name when the directory is located to be included in the archive;
however, the file is stored in the archive only with the name specified by
dir-name.

Sample Server Description File

Java Programming Reference 2-11

Sample Server Description File

Listing 2-1 shows a sample Server Description File.

Listing 2-1 Sample Server Description File

<?xml version="1.0"?>
<!DOCTYPE M3-SERVER SYSTEM "m3.dtd"]>
<M3-SERVER
server-implementation="com.beasys.samples.BankAppServerImpl"
 server-descriptor-name="BankApp.ser">

<MODULE name="com.beasys.samples">
<IMPLEMENTATION

name="TellerFactoryImpl" />
activation="process"
transaction="never"

/>

<IMPLEMENTATION
name="TellerImpl"/>
activation="method"
transaction="never"

/>

<IMPLEMENTATION
name="DBAccessImpl"
activation="method"
transaction="never"

/>

</MODULE>

<ARCHIVE name="BankApp.jar">
<PACKAGE name="com.beasys.samples"/>

</ARCHIVE>
</M3-SERVER>

For an example of another Server Description File, see Creating Java Server
Applications.

2 Server Description File

2-12 Java Programming Reference

Java Programming Reference 3-1

CHAPTER

3 TP Framework

This chapter contains the following topics:

t TP Framework Interfaces. This section describes the following interfaces:

t Tobj_Servant Interface

t Server Interface

t TP Interface

t Transactions Usage Notes. This section describes the following topics:

t Transaction Termination

t Transaction Suspend and Resume

t Restrictions

t Voting on Transaction Outcome

The WebLogic Enterprise TP Framework provides a programming framework that
enables users to create servers for high-performance TP applications. This chapter
describes the architecture of and interfaces in the TP Framework. Information about
the TP Framework API is in the Java API Reference. Information about how to use this
API can be found in Creating Java Server Applications.

The TP Framework consists of:

t The com.beasys.Tobj_Servant class, which has virtual methods for object
state management

t The com.beasys.Tobj.Server class, which has virtual methods for
application-specific server initialization and termination logic

t The com.beasys.Tobj.TP class, which provides methods to:

t Create object references for CORBA objects

3 TP Framework

3-2 Java Programming Reference

t Register (and unregister) factories with the FactoryFinder object

t Initiate user-controlled deactivation of the CORBA object currently being
invoked

t Obtain an object reference to the CORBA object currently being invoked

t Open and close XA resource managers

t Log messages to a user log (ULOG) file

t Obtain object references to the ORB and to Bootstrap objects

t Header files for these classes

t A library to be link-edited with server applications

TP Framework Interfaces

The TP Framework supports the following interfaces:

t com.beasys.Tobj_Servant

t com.beasys.Tobj.Server

t com.beasys.Tobj.TP

t org.omg.CosTransactions.TransactionalObject (deprecated in the
previous release)

Tobj_Servant Interface

The com.beasys.Tobj_Servant interface defines operations that allow a CORBA
object to assist in the management of its state. Every implementation skeleton
generated by the IDL compiler automatically inherits from the
com.beasys.Tobj_Servant class. The com.beasys.Tobj_Servant class contains
two virtual methods, activate_object and deactivate_object, that can be
redefined by the programmer.

TP Framework Interfaces

Java Programming Reference 3-3

Whenever a request comes in for an inactive CORBA object, the object is activated and
the activate_object method is invoked on the servant. When the CORBA object is
deactivated, the deactivate_object method is invoked on the servant. The timing
of deactivation is driven by the implementation’s activation policy. When
deactivate_object is invoked, the TP Framework passes in a reason code to
indicate why the call was made.

Note: The activate_object and deactivate_object methods are the only
methods that the TP Framework guarantees will be invoked for CORBA
object activation and deactivation. The servant class constructor and
destructor may or may not be invoked at activation or deactivation time.
Therefore, the server-application code must not do any state handling for
CORBA objects in either the constructor or destructor of the servant class.

Server Interface

The com.beasys.Tobj.Server interface provides callback methods that can be used
for application-specific server initialization and termination logic. The
com.beasys.Tobj.Server class is a Java class.

Note: Unlike implementing C++ server applications with the WebLogic Enterprise
system, when you are implementing Java server applications with the
WebLogic Enterprise system, you must provide definitions for the
com.beasys.Tobj.Server.initialize and
com.beasys.Tobj.Server.release methods. The TP Framework provides
default versions of these methods.

TP Interface

The com.beasys.Tobj.TP interface supplies a set of service methods that can be
invoked by application code. This is the only interface in the TP Framework that can
safely be invoked by application code. All other interfaces have callback methods that
are intended to be invoked only by system code.

3 TP Framework

3-4 Java Programming Reference

The purpose of this interface is to provide high-level calls that application code can
call, instead of calls to underlying APIs provided by the Portable Object Adapter
(POA), the CORBAservices Naming Service, and the BEA TUXEDO system. By
using these calls, programmers can learn a simpler API and are spared the complexity
of the underlying APIs.

The com.beasys.Tobj.TP interface implicitly uses two features of the WebLogic
Enterprise software that extend the CORBA APIs:

t Factories and the FactoryFinder object

t Factory-based routing

Usage Notes

During server application initialization, the application constructs the object reference
for an application factory. It then invokes the register_factory method, passing in
the factory’s object reference together with a factory id field. On server release
(shutdown), the application uses the unregister_factory method to unregister the
factory.

TransactionalObject Interface Not Enforced

The org.omg.CosTransactions.TransactionalObject interface was formerly
used to indicate that an object was transactional. In the previous version of the
WebLogic Enterprise software, if a transactional invocation was done on an object that
did not descend from the org.omg.CosTransactions.TransactionalObject
interface, an exception was raised. Therefore, in the previous version, an object had to
descend from the org.omg.CosTransactions.TransactionalObject interface to
be eligible to participate in transactions. This behavior was enforced by the TP
Framework.

However, in version 2.1 of the WebLogic Enterprise software, this interface is
deprecated. Therefore, the use of this interface is now optional and no enforcement of
descent from this interface is done for objects infected with transactions. By specifying
the never or ignore transaction policies, the programmer can specify that an object
is not to be infected by transactions. There is no interface enforcement for eligibility
for transactions. The only indicator is the transaction policy.

Transactions Usage Notes

Java Programming Reference 3-5

Note: The CORBAservices Object Transaction Service does not require that all
requests be performed within the scope of a transaction. It is up to each object
to determine its behavior when invoked outside the scope of a transaction; an
object that requires a transaction context can raise a standard exception.

Transactions Usage Notes

The following sections provide some information about how to use transactions.

Transaction Termination

In general, the handling of the outcome of a transaction is the responsibility of the
initiator. Therefore, the following is true:

t If the client or server application code initiates transactions, the TP Framework
never commits a transaction. The WebLogic Enterprise system may roll back the
transaction if server processing tries to return to the client with the transaction in
an illegal state.

t If the system initiates a transaction, the commit or rollback will always be
handled by the WebLogic Enterprise system.

The following behavior is enforced by the WebLogic Enterprise system:

t If no transaction is active when a method on a CORBA object is invoked and
that method begins a transaction, the transaction must be either committed,
rolled back, or suspended when the method invocation returns. If none of these
actions is taken, the transaction is rolled back by the TP Framework and the
org.omg.CORBA.OBJ_ADAPTER exception is raised to the client application.

This exception is raised because the transaction was initiated in the server
application; therefore, the client application would not expect a transactional
error condition such as TRANSACTION_ROLLEDBACK.

3 TP Framework

3-6 Java Programming Reference

Transaction Suspend and Resume

The CORBA object must follow strict rules with respect to suspending and resuming
a transaction within a method invocation. These rules and the error conditions that
result from their violation are described in this section.

When a CORBA object method begins execution, it can be in one of the following
three states with respect to transactions:

t The client application began the transaction.

t Valid server application behavior: Suspend and resume the transaction
within the method execution.

t Invalid server application behavior: Return from the method with the
transaction in the suspended state (that is, return from the method without
invoking resume if suspend was invoked).

t Error Processing: If invalid behavior occurs, the TP Framework raises the
org.omg.CORBA.TRANSACTION_ROLLEDBACK exception to the client
application and the transaction is rolled back by the WebLogic Enterprise
system.

t The system began a transaction to provide AUTOTRAN or transaction policy
always behavior.

Note: For each CORBA interface, set AUTOTRAN to Yes if you want a transaction to
start automatically when an operation invocation is received. Setting
AUTOTRAN to Yes has no effect if the interface is already in transaction mode.
For more information about AUTOTRAN, refer to the Administration Guide.

t Valid server behavior: Suspend and resume the transaction within the method
execution.

Note: Not recommended. The transaction may be timed out and aborted before
another request causes the transaction to be resumed.

t Invalid server behavior: Return from the method with the transaction in the
suspended state (that is, return from the method without invoking resume if
suspend was invoked).

t Error Processing: If invalid behavior occurs, the TP Framework raises the
org.omg.CORBA.OBJ_ADAPTER exception to the client and the transaction is
rolled back by the system. The org.omg.CORBA.OBJ_ADAPTER exception is

Transactions Usage Notes

Java Programming Reference 3-7

raised because the client application did not initiate the transaction, and,
therefore, does not expect transaction error conditions to be raised.

t The CORBA object is not involved in a transaction when it starts executing.

t Valid server behavior:

t Begin and commit a transaction within the method execution.

t Begin and roll back a transaction within the method execution.

t Begin and suspend a transaction within the method execution.

t Invalid server behavior: Begin a transaction and return from the method with
the transaction active.

t Error Processing: If invalid behavior occurs, the TP Framework raises the
org.omg.CORBA.OBJ_ADAPTER exception to the client application and the
transaction is rolled back by the WebLogic Enterprise system. The
org.omg.CORBA.OBJ_ADAPTER exception is raised because the client
application did not initiate the transaction, and, therefore, does not expect
transaction error conditions to be raised.

Restrictions

The following restrictions apply to WebLogic Enterprise transactions:

t A CORBA object in the WebLogic Enterprise system must have the same
transaction context when it returns from a method invocation that it had when
the method was invoked.

t A CORBA object can be infected by only one transaction at a time. If an
invocation tries to infect an already infected object, an
org.omg.CORBA.INVALID_TRANSACTION exception is returned.

t If a CORBA object is infected with a transaction and a nontransactional request
is made on it, an org.omg.CORBA.OBJ_ADAPTER exception is raised.

t If the application begins a transaction in the
com.beasys.Tobj.Server.initialize method, it must either commit or roll
back the transaction before returning from the method. If it does not, the TP
Framework shuts down the server. This is because the application has no
predictable way of regaining control after completing the initialize method.

3 TP Framework

3-8 Java Programming Reference

t If a CORBA object is infected by a transaction and with an activation policy of
transaction, and if the reason code passed to the method is either
DR_TRANS_COMMITTING or DR_TRANS_ABORTED, no invocation on any CORBA
object can be done from within the
com.beasys.Tobj_Servant.deactivate_object method. Such an
invocation results in an org.omg.CORBA.BAD_INV_ORDER exception.

t If an object generates a user exception within a system-generated transaction
(that is, the client did not begin a transaction explicitly), the client application
receives the org.omg.CORBA.OBJ_ADAPTER system exception and not the user
exception.

Voting on Transaction Outcome

CORBA objects can affect transaction outcome during two stages of transaction
processing:

t During transactional work

The org.omg.CORBA.Current.rollback_only method can be used to ensure
that the only possible outcome is to roll back the current transaction. The
rollback_only method can be invoked from any CORBA object method.

t After completion of transactional work

CORBA objects that have the transaction activation policy are given a chance to
vote whether the transaction should commit or roll back after transactional work
is completed. These objects are notified of the completion of transactional work
prior to the start of the two-phase commit algorithm when the TP Framework
invokes its deactivate_object method.

Note that this behavior does not apply to objects with process or method
activation policies. If the CORBA object wants to roll back the transaction, it
can invoke the org.omg.CORBA.Current.rollback_only method. If it wants
to vote to commit the transaction, it does not make that call. Note, however, that
a vote to commit does not guarantee that the transaction is committed, since
other objects may subsequently vote to roll back the transaction.

Transactions Usage Notes

Java Programming Reference 3-9

Note: CORBA objects that have the transaction activation policy are, by
definition, notified when a transaction completes, as described above.
However, CORBA objects that have a method or process activation policy
do not receive any notification. This is something that programmers need to be
aware of.

For example, consider a CORBA object with activation policy set to process
that opens an SQL cursor within a client-initiated transaction. Typically, once
the client application commits the transaction, all cursors that were opened
within that transaction are automatically closed; however, the object does not
receive any notification that its cursor has been closed.

3 TP Framework

3-10 Java Programming Reference

Java Programming Reference 4-1

CHAPTER

4 Bootstrap Object

This chapter contains the following topics:

t How Bootstrap Objects Work

t Types of Remote Clients Supported

t Capabilities and Limitations

t Bootstrap Object API. This section describes the following:

t Tobj Module

t Java Mapping

t Programming Examples. The following examples are provided:

t Getting a SecurityCurrent Object

t Getting a UserTransaction Object

To communicate with WebLogic Enterprise objects, a client application must obtain
object references. The client application uses the Bootstrap object to obtain initial
object references to four key objects in a WebLogic Enterprise domain: the
FactoryFinder (which is used to locate factory objects), SecurityCurrent (which is used
to log on to the system), TransactionCurrent (which is used to manage transactions),
and the Interface Repository (which is used to obtain information about available
interfaces). However, this poses a problem: How does the client application access the
Bootstrap object?

Bootstrap objects are local programming objects, not remote CORBA objects, in both
the client and the server. When Bootstrap objects are created, their constructor requires
the network address of a WebLogic Enterprise IIOP Server Listener/Handler. Given
this information, the Bootstrap object can generate object references for the

4 Bootstrap Object

4-2 Java Programming Reference

above-mentioned remote objects in the WebLogic Enterprise domain. These object
references can then be used to access services available in the WebLogic Enterprise
domain.

How Bootstrap Objects Work

Bootstrap objects are created by a client or a server application that must access object
references to the following objects:

t SecurityCurrent

t TransactionCurrent

t FactoryFinder

t Interface Repository

In addition, you can use the Bootstrap object to return information needed by the client
application; for example, information needed to initialize the client ORB.

Bootstrap objects represent the first connection to a specific WebLogic Enterprise
domain. For a WebLogic Enterprise remote client, the Bootstrap object is created with
the host and the port for the WebLogic Enterprise IIOP Server Listener/Handler.
However, for WebLogic Enterprise native client and server applications, there is no
need to specify a host and port because they execute in a specific WebLogic Enterprise
domain. The IIOP Server Listener/Handler host and the port ID are included in the
WebLogic Enterprise domain configuration information.

Once created, Bootstrap objects satisfy requests for object references for objects in a
particular WebLogic Enterprise domain. Different Bootstrap objects allow the
application to use multiple domains.

Using the Bootstrap object, you can obtain four different references, as follows:

t SecurityCurrent

The SecurityCurrent object is used to establish a security context within a
WebLogic Enterprise domain. The client can then obtain the
PrincipalAuthenticator from the principal_authenticator attribute of the
SecurityCurrent object.

How Bootstrap Objects Work

Java Programming Reference 4-3

t TransactionCurrent

The TransactionCurrent object is used to participate in a WebLogic Enterprise
transaction. The basic operations are as follows:

t Begin

Begin a transaction. Future operations take place within the scope of this
transaction.

t Commit

End the transaction. All operations on this client application have completed
successfully.

t Roll back

Abort the transaction. Tell all other participants to roll back.

t Suspend

Suspend participation in the current transaction. This operation returns an
object that identifies the transaction and allows the client application to
resume the transaction later.

t Resume

Resume participation in the specified transaction.

t FactoryFinder

The FactoryFinder object is used to obtain a factory. In the WebLogic Enterprise
system, factories are used to create application objects. The FactoryFinder
provides the following different methods to find factories:

t Get a list of all available factories that match a factory object reference
(find_factories).

t Get the factory that matches a name component consisting of id and kind
(find_one_factory).

t Get the first available factory of a specific kind
(find_one_factory_by_id).

t Get a list of all available factories of a specific kind
(find_factories_by_id).

t Get a list of all registered factories (list_factories).

4 Bootstrap Object

4-4 Java Programming Reference

t InterfaceRepository

The Interface Repository contains the interface descriptions of the CORBA
objects that are implemented within the WebLogic Enterprise domain. Clients
using the Dynamic Invocation Interface (DII) need a reference to the Interface
Repository to be able to build CORBA request structures. The ActiveX Client is
a special case of this. Internally, the implementation of the COM/IIOP Bridge
uses DII, so it must get the reference to the Interface Repository, although this is
transparent to the desktop client.

The FactoryFinder and Interface Repository objects are not implemented in the
environmental objects library. However, they are specific to a WebLogic Enterprise
domain and are thus conceptually similar to the SecurityCurrent and
TransactionCurrent objects in use.

You can also invoke the following methods on the Bootstrap object to return
information needed by the client application:

t getNativeProperties

This method returns the properties needed to initialize the ORB for native client
applications. The getNativeProperties method must be invoked before any
attempt is made to access any class in the org.omg.CORBA package.

t getRemoteProperties

This method returns the properties needed to initialize the ORB for remote client
applications.

t getUserTransaction

This method returns the current transactional context object to the client
application.

The Bootstrap object implies an association or "session" between the client application
and the WebLogic Enterprise domain. Within the context of this association, the
Bootstrap object imposes a containment relationship with the other Current objects (or
contained objects); that is, the SecurityCurrent and TransactionCurrent. Current
objects are valid only for this domain and only while the Bootstrap object exists.

In addition, a client can have only one instance of each of the Current objects at any
time. If a Current object already exists, an attempt to create another Current object does
not fail. Instead, another reference to the already existing object is handed out; that is,
a client application may have more than one reference to the single instance of the
Current object.

How Bootstrap Objects Work

Java Programming Reference 4-5

To create a new instance of a Current object, the application must first invoke the
destroy_current method on the Bootstrap object. This invalidates all of the Current
objects, but will not destroy the session with the WebLogic Enterprise domain. After
invoking the destroy_current method, new instances of the Current objects can be
created within the WebLogic Enterprise domain using the existing Bootstrap object.

To obtain Current objects for another domain, a different Bootstrap object must be
constructed. Although it is possible to have multiple Bootstrap objects at one time,
only one Bootstrap object may be "active," that is, have Current objects associated with
it. Thus, an application must first invoke the destroy_current method on the
"active" Bootstrap object before obtaining new Current objects on another Bootstrap
object, which then becomes the active Bootstrap object.

Servers and native clients are inside of the WebLogic Enterprise domain; therefore, no
"session" is established. However, the same containment relationships are enforced.
Servers and native clients access the domain they are currently in by specifying an
empty string, rather than by specifying //host:port. (When you compile client and
server applications, specify the -DTOBJADDR option to specify a host and port to be
used at run time, which allows for more flexibility and portability in client and server
application code. For more information, see Creating Client Applications and Creating
Java Server Applications.) Client and server applications must use the
com.beasys.Tobj_Bootstrap.resolve_initial_references method, not the
org.omg.CORBA.ORB.resolve_initial_references method.

4 Bootstrap Object

4-6 Java Programming Reference

Types of Remote Clients Supported

Table 4-1 shows the types of remote clients that can use the Bootstrap object to access
the other environmental objects, such as FactoryFinder, SecurityCurrent,
TransactionCurrent, and InterfaceRepository.

Table 4-1 Remote Clients Supported

Remote
Client

Description

CORBA C++ CORBA C++ client applications use the WebLogic Enterprise C++
environmental objects to access the CORBA objects in a WebLogic
Enterprise domain, and the WebLogic Enterprise Object Request Broker
(ORB) to process from CORBA objects. Use the WebLogic Enterprise
system development commands to build these client applications (see
Chapter 10, “Java Development and Administration Commands”).

CORBA Java CORBA Java client applications use the Java environmental objects to
access CORBA objects in a WebLogic Enterprise domain. However, these
client applications use an ORB product other than the WebLogic Enterprise
ORB to process requests from CORBA objects. These client applications
are built using the ORB product’s Java development tools.

The Java core system of the WebLogic Enterprise software supports
interoperability with client platforms using either of the following:

t The Java IDL ORB provided with the Java Development Kit 1.2 from
Sun Microsystems, Inc.

t Netscape Communicator Version 4.0, using the bundled Visigenic
IIOP-capable ORB

For complete details about Java application and applet support, see the
Release Notes.

ActiveX Use the WebLogic Enterprise Automation environmental objects to access
CORBA objects in a WebLogic Enterprise domain, and the ActiveX Client
to process requests from CORBA objects. Use the Application Builder to
create bindings for CORBA objects so that they can be accessed from
ActiveX client applications. ActiveX client applications are built using a
development tool such as Visual Basic, Delphi, or PowerBuilder.

Capabilities and Limitations

Java Programming Reference 4-7

This chapter describes how to use the Bootstrap object with Java client applications.
For reference information about how to use the Bootstrap object in C++ and ActiveX
client applications, see the C++ Programming Reference.

Capabilities and Limitations

Bootstrap objects have the following capabilities and limitations:

t Multiple Bootstrap objects can coexist in a client application, although only one
Bootstrap object can own the Current objects (Transaction and Security) at one
time. Client applications must invoke the destroy_current method on the
Bootstrap object associated with one domain before obtaining the Current
objects on another domain. Although it is possible to have multiple Bootstrap
objects that establish connections to different WebLogic Enterprise domains,
only one set of Current objects is valid. Attempts to obtain other Current objects
without destroying the existing Current objects fail.

t Method invocations to any WebLogic Enterprise domain other than the domain
that provides the valid SecurityCurrent object fail and return an
org.omg.CORBA.NO_PERMISSION exception.

t Method invocations to any WebLogic Enterprise domain other than the domain
that provides the valid TransactionCurrent object do not execute within the scope
of a transaction.

t The transaction and security objects returned by the Bootstrap objects are BEA
implementations of the Current objects. If other ("native") Current objects are
present in the environment, they are ignored.

Bootstrap Object API

The Bootstrap object application programming interface (API) is described in the Java
API Reference. The sections that follow describe:

t The object references returned by the Bootstrap object

4 Bootstrap Object

4-8 Java Programming Reference

t The Java mapping for the Bootstrap object

t Mappings for Microsoft desktop clients, including automation mapping

Tobj Module

Table 4-2 shows the object reference that is returned for each type ID.

Table 4-3 describes the Tobj module exceptions.

Table 4-2 Returned Object References

ID Returned Object Reference

FactoryFinder FactoryFinder object (com.beasys.Tobj.FactoryFinder)

InterfaceRepository InterfaceRepository object (org.omg.CORBA.Repository)

SecurityCurrent SecurityCurrent object
(org.omg.SecurityLevel2.Current)

TransactionCurrent OTS Current object
(com.beasys.Tobj.TransactionCurrent)

Table 4-3 Tobj Module Exceptions

Exception Description

com.beasys.Tobj.
InvalidName

Raised if id is not one of the names specified in Table 4-2.
On the server, the resolve_initial_references
method also raises com.beasys.Tobj.InvalidName
when SecurityCurrent is passed.

com.beasys.Tobj.
InvalidDomain

On the server application, raised if the WebLogic Enterprise
server environment is not booted.

org.omg.CORBA.
NO_PERMISSION

Raised if id is TransactionCurrent or
SecurityCurrent and another Bootstrap object in the
client owns the Current objects.

Bootstrap Object API

Java Programming Reference 4-9

Java Mapping

Listing 4-1 shows the Tobj_Bootstrap.java mapping.

Listing 4-1 Tobj_Bootstrap.java Mapping

package com.beasys;

public class Tobj_Bootstrap {
 public Tobj_Bootstrap(org.omg.CORBA.ORB orb,
 String address)
 throws org.omg.CORBA.SystemException;
public class Tobj_Bootstrap {
 public Tobj_Bootstrap(org.omg.CORBA.ORB orb, String address,
 java.applet.Applet applet)
 throws org.omg.CORBA.SystemException;

public void register_callback_port(orb.omg.CORBA.Object objref)
 throws org.omg.CORBA.SystemException;

public org.omg.CORBA.Object
 resolve_initial_references(String id)
 throws Tobj.InvalidName,
 org.omg.CORBA.SystemException;
public void destroy_current()
 throws org.omg.CORBA.SystemException;
}

org.omg.CORBA.
BAD_PARAM

Raised for the register_callback_port method if the
object is null or if the host contained in the object does not
match the connection.

org.omg.CORBA.
IMP_LIMIT

Raised if the register_callback_port method is
invoked more than once.

Table 4-3 Tobj Module Exceptions

Exception Description

4 Bootstrap Object

4-10 Java Programming Reference

Programming Examples

This section provides Java client programming examples that use Bootstrap objects.

Getting a SecurityCurrent Object

Listing 4-2 shows how to program a Java client to get a SecurityCurrent object.

Listing 4-2 Programming a Java Client to Get a SecurityCurrent Object

import java.util.*;
import org.omg.CORBA.*;
import com.beasys.*;
class client {
 public static void main(String[] args)
 {
 Bool is_native=true;
 Properties = prop;
 Tobj.PrincipalAuthenticator auth = null;
 if (args.length != 1)
 is_native=false

 if (is_native) {
 /* Native Client */
 prop = Tobj_Bootstrap.getNativeProperties();
 host_port = "";
 } else {
 /* Remote Client */
 prop = Tobj_Bootstrap.getRemoteProperties();
 // Set host and port.
 host_port = "//COLORMAGIC:10000";
 }
 try {
 // Initialize ORB
 ORB orb = ORB.init(args, prop);
 // Create Bootstrap object
 Tobj_Bootstrap bs=new Tobj_Bootstrap(orb,host_port);

 // Get security current
 org.omg.CORBA.Object ocur =

Programming Examples

Java Programming Reference 4-11

 bs.resolve_initial_references("SecurityCurrent");
 SecurityLevel2.Current cur =
 SecurityLevel2.CurrentHelper.narrow(ocur);
 }
 catch (Tobj.InvalidName e) {
 System.out.println("Invalid name: "+e);
 System.exit(1);
 }
 catch (Tobj.InvalidDomain e) {
 System.out.println("Invalid domain address: "+host_port +" "+e);
 System.exit(1);
 }
 catch (SystemException e) {
 System.out.println("Exception getting security current: "+e);
 e.printStackTrace();
 System.exit(1);
 }
 }
}

Getting a UserTransaction Object

The following code example shows using the Bootstrap object to get the
UserTransaction object, which may then be used to begin and terminate transactions
and get information about transactions.

Listing 4-3 Programming a Java Client to get a UserTransaction Object

if (is_native){
 /* Native Client */
 prop = Tobj_Bootstrap.getNativeProperties();
 host_port = null;
} else {
 /* Remote Client */
 prop = Tobj_Bootstrap.getRemoteProperties();
 // Set host and port.
 host_port = "//COLORMAGIC:10000";
}

// Initialize ORB
 orb = ORB.init(args, prop);

4 Bootstrap Object

4-12 Java Programming Reference

// Create Bootstrap Object
 bs = new Tobj_Bootstrap(orb, host_port);

javax.transaction.UserTransaction ucur = bs.getUserTransaction();

ucur.begin();
/* Make transactional calls from client to server */
 ucur.commit();

Java Programming Reference 5-1

CHAPTER

5 FactoryFinder Interface

This chapter contains the following topics:

t Capabilities, Limitations, and Requirements

t Functional Description. This section describes the following topics:

t Locating a FactoryFinder

t Registering a Factory

t Locating a Factory

t Creating Application Factory Keys

t Java Methods

t Java Programming Examples

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the WebLogic Enterprise domain. The WebLogic
Enterprise NameManager provides the mapping of factory names to object references
for the FactoryFinder. Multiple FactoryFinders and NameManagers together provide
increased availability and reliability. In this release, the level of functionality has been
extended to support multiple domains.

Note: The NameManager is not a naming service, such as CORBAservices Naming
Service, but is merely a vehicle for storing registered factories.

In the WebLogic Enterprise environment, application factory objects are used to create
objects that clients interact with to perform their business operations (for example,
TellerFactory and Teller). Application factories are generally created during server
initialization and are accessed by both remote clients and clients located within the
server application.

5 FactoryFinder Interface

5-2 Java Programming Reference

The FactoryFinder interface and the NameManager services are contained in separate
(nonapplication) servers. A set of application programming interfaces (APIs) is
provided so that both client and server applications can access and update the factory
information.

The support for multiple domains in this release benefits customers that need to scale
to a large number of machines or who want to partition their application environment.
To support multiple domains, the mechanism used to find factories in a WebLogic
Enterprise environment has been enhanced to allow factories in one domain to be
visible in another. The visibility of factories in other domains is under the control of
the system administrator.

Capabilities, Limitations, and Requirements

During server application initialization, application factories need to be registered with
the NameManager. Clients can then be provided with the object reference of a
FactoryFinder to allow them to retrieve a factory object reference based on associated
names that were created when the factory was registered.

The following functional capabilities, limitations, and requirements apply to this
release:

t The FactoryFinder interface is in compliance with the
org.omg.CosLifeCycle.FactoryFinder interface.

t Server applications can register and unregister application factories with the
CORBAservices Naming Service.

t Clients can access objects using a single point of entry -- the FactoryFinder.

t Clients can construct names for objects using a simplified BEA scheme made
possible by WebLogic Enterprise extensions to the CORBAservices interface or
the more general CORBA scheme.

t Multiple FactoryFinders and NameManagers can be used to increase availability
and reliability in the event that one FactoryFinder or NameManager should fail.

t Support for multiple domains. Factories in one domain can be configured to be
visible in another domain that is under administrative control.

Functional Description

Java Programming Reference 5-3

t Two NameManager services, at a minimum, must be configured, preferably on
different machines, to maintain the factory-to-object reference mapping across
process failures. If both NameManagers fail, the master NameManager, which
has been keeping a persistent journal of the registered factories, recovers the
previous state by processing the journal so as to re-establish its internal state.

t Only one NameManager must be designated as the master, and the master
NameManager must be started before the slave. If the master NameManager is
started after one or more slaves, the master assumes that it is in recovery mode
instead of in initializing mode.

Functional Description

The WebLogic Enterprise environment promotes the use of the factory design pattern
as the primary means for a client to obtain a reference to an object. Through the use of
this design pattern, client applications require a mechanism to obtain a reference to an
object that acts as a factory for another object. Because the WebLogic Enterprise
environment has chosen CORBA as its visible programming model, the mechanism
used to locate factories is modeled after the FactoryFinder as described in the
CORBAservices Specification, Chapter 6 “Life Cycle Service,” December 1997,
published by the Object Management Group.

In the CORBA FactoryFinder model, application servers register active factories with
a FactoryFinder. When an application server’s factory becomes inactive, the
application server removes the corresponding registration from the FactoryFinder.
Client applications locate factories by querying a FactoryFinder. The client application
can control the references to the factory object returned by specifying criteria that is
used to select one or more references.

Locating a FactoryFinder

A client application must obtain a reference to a FactoryFinder before it can begin
locating an appropriate factory. To obtain a reference to a FactoryFinder in the domain
to which a client application is associated, the client application must invoke the
Tobj_Bootstrap.resolve_initial_references operation with a value of
“FactoryFinder” . This operation returns a reference to a FactoryFinder that is in the

5 FactoryFinder Interface

5-4 Java Programming Reference

domain to which the client application is currently attached. For more information, see
the description of the com.beasys.Tobj_Bootstrap object in the Java API
Reference.

Note: The references to the FactoryFinder that are returned to the client application
can be references to factory objects that are registered on the same machine as
the FactoryFinder, on a different machine than the FactoryFinder, or possibly
in a different domain than the FactoryFinder.

Registering a Factory

For a client application to be able to obtain a reference to a factory, an application
server must register a reference to any factory object for which it provides an
implementation with the FactoryFinder (see Figure 5-1). Using the WebLogic
Enterprise TP Framework, the registration of the reference for the factory object can
be accomplished using the TP.register_factory operation, once a reference to a
factory object has been created. The reference to the factory object, along with a value
that identifies the factory, is passed to this operation. The registration of references to
factory objects is typically done as part of initialization of the application; normally,
as part of the implementation of the Server.initialize operation.

Functional Description

Java Programming Reference 5-5

Figure 5-1 Registering a Factory Object

When the server application is shutting down, it must unregister any references to the
factory object that it has previously registered in the application server. This is done
by passing the same reference to the factory object, along with the corresponding value
used to identify the factory, to the TP.unregister_factory operation. Once
unregistered, the reference to the factory object can then be destroyed. The process of
unregistering a factory with the FactoryFinder is typically done as part of the
implementation of the Server.release operation. For more information about these
operations, see the section “Server Interface” on page 3-23.

Locating a Factory

For a client application to request a factory to create a reference to an object, it must
first obtain a reference to the factory object. The reference to the factory object is
obtained by querying a FactoryFinder with specific selection criteria, as shown in
Figure 5-2. The criteria are determined by the format of the particular FactoryFinder
interface and method used.

Server
Name

Manager
TPFW

System
Event
Broker

Register,
Unregister_factory

Register factory in
Namemanager

Post event to update other
Namemanagers

5 FactoryFinder Interface

5-6 Java Programming Reference

Figure 5-2 Locating a Factory Object

The WebLogic Enterprise software extends the CosLifeCycle.FactoryFinder
interface by introducing three methods in addition to the find_factories method
declared for the FactoryFinder. Therefore, using the Tobj extensions, a client can use
either the find_factories or find_factories_by_id methods to obtain a list of
application factories. A client can also use the find_one_factory or
find_one_factory_by_id method to obtain a single application factory, and the
list_factories method to obtain a list of all registered factories.

The CosLifeCycle.FactoryFinder interface defines a factory_key, which is a
sequence of id and kind strings conforming to the CosNaming Name shown in
Listing 5-1. The kind field of the NameComponent for all WebLogic Enterprise
application factories is set to the string FactoryInterface by the TP Framework
when an application factory is registered. Applications supply their own value for the
id field.

Assuming that the CORBAservices Life Cycle Service modules are contained in their
own file (ns.idl and lcs.idl, respectively), only the OMG IDL code for that subset
of both files that is relevant for using the WebLogic Enterprise FactoryFinder is shown
in the following listings.

Client
Factory
Finder

Bootstrap Name
Manager

resolve_initial_references

CORBA.Object

factory._narrow()

find_*_factor*

CORBA.Object

Tobj_FF._narrow()

find factory object in
NameManager

IOR string

Functional Description

Java Programming Reference 5-7

CORBAservices Naming Service Module OMG IDL

Listing 5-1 shows the portions of the ns.idl file that are relevant to the FactoryFinder.

Listing 5-1 CORBAservices Naming OMG IDL

// ------ ns.idl ------

module CosNaming {
 typedef string Istring;
 struct NameComponent {
 Istring id;
 Istring kind;
 };
 typedef sequence <NameComponent> Name;

};

// This information is taken from CORBAservices: Common Object
// Services Specification, page 3-6. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

CORBAservices Life Cycle Service Module OMG IDL

Listing 5-2 shows the portions of the lcs.idl file that are relevant to the
FactoryFinder.

Listing 5-2 Life Cycle Service OMG IDL

// ----- lcs.idl -----

#include “ns.idl”

module CosLifeCycle{
 typedef CosNaming::Name Key;
 typedef Object Factory;
 typedef sequence<Factory> Factories;

 exception NoFactory{ Key search_key; }

5 FactoryFinder Interface

5-8 Java Programming Reference

 interface FactoryFinder {
 Factories find_factories(in Key factory_key)
 raises(NoFactory);

 };

};

// This information is taken from CORBAservices: Common Object
// Services Specification, pages 6-10, 11. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

Tobj Module OMG IDL

Listing 5-3 shows the Tobj Module OMG IDL.

Listing 5-3 Tobj Module OMG IDL

// ----- Tobj.idl -----

module Tobj {

 // Constants

 const string FACTORY_KIND = "FactoryInterface";

 // Exceptions

 exception CannotProceed { };
 exception InvalidDomain {};
 exception InvalidName { };
 exception RegistrarNotAvailable { };

 // Extension to LifeCycle Service

 struct FactoryComponent {
 CosLifeCycle::Key factory_key;
 CosLifeCycle::Factory factory_ior;
 };

 typedef sequence<FactoryComponent> FactoryListing;

 interface FactoryFinder : CosLifeCycle::FactoryFinder {
 CosLifeCycle::Factory find_one_factory(in CosLifeCycle::Key
 factory_key)

Functional Description

Java Programming Reference 5-9

 raises (CosLifeCycle::NoFactory,
 CannotProceed,
 RegistrarNotAvailable);
 CosLifeCycle::Factory find_one_factory_by_id(in string
 factory_id)
 raises (CosLifeCycle::NoFactory,
 CannotProceed,
 RegistrarNotAvailable);
 CosLifeCycle::Factories find_factories_by_id(in string
 factory_id)
 raises (CosLifeCycle::NoFactory,
 CannotProceed,
 RegistrarNotAvailable);
 FactoryListing list_factories()
 raises (CannotProceed,
 RegistrarNotAvailable);
 };
};

Locating Factories in Another Domain

Typically, a FactoryFinder returns references to factory objects that are in the same
domain as the FactoryFinder itself. However, it is possible to return references to
factory objects in domains other than the domain in which a FactoryFinder exists. This
can occur if a FactoryFinder contains information about factories that are resident in
another domain (see Figure 5-3). A FactoryFinder finds out about these interdomain
factory objects through configuration information that describes the location of these
other factory objects.

When a FactoryFinder receives a request to locate a factory object, it must first
determine if a reference to a factory object that meets the specified criteria exists. If
there is registration information for a factory object that matches the criteria, the
FactoryFinder must then determine if the factory object is local to the current domain
or needs to be imported from another domain. If the factory object is from the local
domain, the FactoryFinder returns the reference to the factory object to the client.

5 FactoryFinder Interface

5-10 Java Programming Reference

Figure 5-3 Inter-domain FactoryFinder Interaction

If, on the other hand, the information indicates that the factory object is from another
domain, the FactoryFinder delegates the request to an interdomain FactoryFinder in
the appropriate domain. As a result, only a FactoryFinder in the same domain as the
factory object will contain a reference to the factory object. The interdomain
FactoryFinder is responsible for returning the reference of the factory object to the
local FactoryFinder, which subsequently returns it to the client.

Why Use WebLogic Enterprise Extensions?

The WebLogic Enterprise software extends the interfaces defined in the
CORBAservices specification, Chapter 6 “Life Cycle Service,” December 1997,
published by the Object Management Group, for the following reasons:

t Although the CORBA-defined approach is powerful and allows various selection
criteria, the interface used to query a FactoryFinder can be complicated to use.

t Additionally, if the selection criterion specified by the client application is not
specific enough, it is possible that more than one reference to a factory object
may be returned. If this occurs, it is not immediately obvious what a client
application should do next.

Client
Factory
Finder

Bootstrap
Name

Manager

resolve_initial_references

CORBA.Object

factory._narrow()

find_*_factor*

CORBA.Object

Tobj_FF._narrow()
Find factory

object in
NameManager

IOR string

Factory
Finder

find_*_factor*

Intradomain
FactoryFinder
delegates request
to interdomain
FactoryFinder

CORBA.Object

Functional Description

Java Programming Reference 5-11

t Finally, the CORBAservices specification did not specify a standardized
mechanism through which an application server is to register a factory object.

Therefore, WebLogic Enterprise extends the interfaces defined in the CORBAservices
specification to make using a FactoryFinder easier. The extensions are manifested as
refined interfaces to the FactoryFinder that are derived from the interfaces specified in
the CORBAservices specification.

Creating Application Factory Keys

Two of the four methods provided in the Tobj.FactoryFinder interface accept
CosLifeCycle.Keys, which corresponds to CosNaming.Name. A client must be able
to construct these keys.

The CosNaming Specification describes two interfaces that constitute a Names Library
interface that can be used to create and manipulate CosLifeCycle.Keys. The pseudo
OMG IDL statements for these interfaces is described in the following section.

Names Library Interface Pseudo OMG IDL

Note: This information is taken from the CORBAservices: Common Object Services
Specification, pp. 3-14 to18. Revised Edition: March 31, 1995. Updated:
November 1997. Used with permission by OMG.

To allow the representation of names to evolve without affecting existing client
applications, it is desirable to hide the representation of names from the client
application. Ideally, names themselves would be objects; however, names must be
lightweight entities that are efficient to create, manipulate, and transmit. As such,
names are presented to programs through the names library.

The names library implements names as pseudo-objects. A client application makes
calls on a pseudo-object in the same way it makes calls on an ordinary object. Library
names are described in pseudo-IDL (to suggest the appropriate language binding). C++
client applications use the same client language bindings for pseudo-IDL (PIDL) as
they use for IDL.

Pseudo-object references cannot be passed across OMG IDL interfaces. As described
in Chapter 3 of the CORBAservices: Common Object Services Specification, in the
section “The CosNaming Module,” the CORBAservices Naming Service supports the

5 FactoryFinder Interface

5-12 Java Programming Reference

NamingContext OMG IDL interface. The names library supports an operation to
convert a library name into a value that can be passed to the name service through the
NamingContext interface.

Note: It is not a requirement to use the names library in order to use the
CORBAservices Naming Service.

The names library consists of two pseudo-IDL interfaces, the LNameComponent
interface and the LName interface, as shown in Listing 5-4.

Listing 5-4 Names Library Interfaces in Pseudo-IDL

interface LNameComponent { // PIDL
 const short MAX_LNAME_STRLEN = 128;

 exception NotSet{ };
 exception OverFlow{ };

 string get_id
 raises (NotSet);
 void set_id(in string i)
 raises (OverFlow);
 string get_kind()
 raises(NotSet);
 void set_kind(in string k)
 raises (OverFlow);
 void destroy();
};

interface LName {// PIDL
 exception NoComponent{ };
 exception OverFlow{ };
 exception InvalidName{ };
 LName insert_component(in unsigned long i,
 in LNameComponent n)
 raises (NoComponent, OverFlow);
 LNameComponent get_component(in unsigned long i)
 raises (NoComponent);
 LNameComponent delete_component(in unsigned long i)
 raises (NoComponent);

 unsigned long num_components();
 boolean equal(in LName ln);
 boolean less_than(in LName ln);
 Name to_idl_form()
 raises (InvalidName);
 void from_idl_form(in Name n);

Functional Description

Java Programming Reference 5-13

 void destroy();
};

LName create_lname();
LNameComponent create_lname_component();

Creating a Library Name Component

To create a library name component pseudo-object, use the following method:

LNameComponent create_lname_component();

The returned pseudo-object can then be operated on using the operations shown in
Listing 5-4.

Creating a Library Name

To create a library name pseudo-object, use the following method:

LName create_lname();

The returned pseudo-object reference can then be operated on using the operations
shown in Listing 5-4.

The LNameComponent Interface

A name component consists of two attributes: identifier and kind. The
LNameComponent interface defines the operations associated with these attributes, as
follows:

string get_id()
raises(NotSet);
void set_id(in string k);
string get_kind()
raises(NotSet);
void set_kind(in string k);

get_id

The get_id operation returns the identifier attribute’s value. If the
attribute has not been set, the NotSet exception is raised.

set_id

The set_id operation sets the identifier attribute to the string argument.

5 FactoryFinder Interface

5-14 Java Programming Reference

get_kind

The get_kind operation returns the kind attribute’s value. If the attribute
has not been set, the NotSet exception is raised.

set_kind

The set_kind operation sets the kind attribute to the string argument.

The LName Interface

The following operations are described in this section:

t Destroying a library name component pseudo-object

t Inserting a name component

t Getting the ith name component

t Deleting a name component

t Number of name components

t Testing for equality

t Testing for order

t Producing an OMG IDL form

t Translating an OMG IDL form

t Destroying a library name pseudo-object

Destroying a Library Name Component Pseudo-Object

The destroy operation destroys library name component pseudo-objects.

void destroy();

Inserting a Name Component

A name has one or more components. Each component except the last is used to
identify names of subcontexts. (The last component denotes the bound object.) The
insert_component operation inserts a component after position i.

LName insert_component(in unsigned long i, in LNameComponent lnc)
raises(NoComponent, OverFlow);

Functional Description

Java Programming Reference 5-15

If component i-1 is undefined and component i is greater than 1 (one), the
insert_component operation raises the NoComponent exception.

If the library cannot allocate resources for the inserted component, the OverFlow
exception is raised.

Getting the ith Name Component

The get_component operation returns the ith component. The first component is
numbered 1 (one).

LNameComponent get_component(in unsigned long i)
raises(NoComponent);

If the component does not exist, the NoComponent exception is raised.

Deleting a Name Component

The delete_component operation removes and returns the ith component.

LNameComponent delete_component(in unsigned long i)
 raises(NoComponent);

If the component does not exist, the NoComponent exception is raised.

After a delete_component operation has been performed, the compound name has
one fewer component and components previously identified as i+1...n are now
identified as i...n-1.

Number of Name Components

The num_components operation returns the number of components in a library name.

unsigned long num_components();

Testing for Equality

The equal operation tests for equality with library name ln.

boolean equal(in LName ln);

5 FactoryFinder Interface

5-16 Java Programming Reference

Testing for Order

The less_than operation tests for the order of a library name in relation to library
name ln.

boolean less_than(in LName ln);

This operation returns true if the library name is less than the library name ln passed
as an argument. The library implementation defines the ordering on names.

Producing an OMG IDL form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. Several operations in the NamingContext interface
have arguments of an OMG IDL-defined structure, Name. The following PIDL
operation on library names produces a structure that can be passed across the OMG
IDL request.

Name to_idl_form()
 raises(InvalidName);

If the name is of length 0 (zero), the InvalidName exception is returned.

Translating an IDL Form

Pseudo-objects cannot be passed across OMG IDL interfaces. The library name is a
pseudo-object; therefore, it cannot be passed across the OMG IDL interface for the
CORBAservices Naming Service. The NamingContext interface defines operations
that return an IDL struct of type Name. The following PIDL operation on library names
sets the components and kind attribute for a library name from a returned OMG IDL
defined structure, Name.

void from_idl_form(in Name n);

Destroying a Library Name Pseudo-Object

The destroy operation destroys library name pseudo-objects.

void destroy();

Functional Description

Java Programming Reference 5-17

Java Mapping

The names library pseudo OMG IDL interface maps to the Java classes contained in
the com.beasys.Tobj package, shown in Listing 5-5. All exceptions are contained in
the same package.

For a detailed description of the Library Name class, refer to Chapter 3 in the
CORBAservices: Common Object Services Specification.

Listing 5-5 Java Mapping for LNameComponent

package com.beasys.Tobj;

public class LNameComponent {
 public static LNameComponent create_lname_component();
 public static final short MAX_LNAME_STRING = 128;
 public void destroy();
 public String get_id() throws NotSet;
 public void set_id(String i) throws OverFlow;
 public String get_kind() throws NotSet;
 public void set_kind(String k) throws OverFlow;
};

package com.beasys.Tobj;

public class LName {

 public static LName create_lname();
 public void destroy();
 public LName insert_component(long i, LNameComponent n)
 throws NoComponent, OverFlow;
 public LNameComponent get_component(long i)
 throws NoComponent;
 public LNameComponent delete_component(long i)
 throws NoComponent;
 public long num_components();
 public boolean equal(LName ln);
 public boolean less_than(LName ln);// not implemented
 public org.omg.CosNaming.NameComponent[] to_idl_form()
 throws InvalidName;
 public void from_idl_form(org.omg.CosNaming.NameComponent[] nr);
};

5 FactoryFinder Interface

5-18 Java Programming Reference

Java Methods

The documentation for the Java methods on the FactoryFinder interface is in the Java
API Reference.

Java Programming Examples

The following listings show Java programming examples of how to program using the
FactoryFinder interface.

Note: Remember to check for exceptions in your code.

Server Registering a Factory

Listing 5-6 shows how to program a server to register a factory.

Listing 5-6 Server Application: Registering a Factory

// Register the factory reference with the factory finder.
//
// The second parameter to TP.register_factory() is a string
// identifier that is used to identify the object.
// This same string is used in the call to TP.unregister_factory().
// It is also used in the call to find_one_factory_by_id() that
// is called by clients of this interface.
//
TP.register_factory(
 fact_oref, // factory object reference
 tellerFName // factory name
);

Java Programming Examples

Java Programming Reference 5-19

Client Obtaining a FactoryFinder Object Reference

Listing 5-7 shows how to program a client to get a FactoryFinder object reference.

Listing 5-7 Client Application: Getting a FactoryFinder Object Reference

// Create the Bootstrap object,
// the TOBJADDR properly contains host and port to connect to.
Tobj_Bootstrap bootstrap = new Tobj_Bootstrap (orb,"");

// Use the Bootstrap object to find the factory finder.
org.omg.CORBA.Object fact_finder_oref =
 bootstrap.resolve_initial_references("FactoryFinder");

// Narrow the factory finder.
FactoryFinder fact_finder_ref =
 FactoryFinderHelper.narrow(fact_finder_oref);

Client Finding One Factory Using the Tobj Approach

Listing 5-8 shows how to program a client to find one factory using the Tobj approach.

Listing 5-8 Client Application: Finding One Factory Using the Tobj Approach

// Use the factory finder to find the teller factory.
org.omg.CORBA.Object teller_fact_oref =
fact_finder_ref.find_one_factory_by_id("TellerFactory_1");

5 FactoryFinder Interface

5-20 Java Programming Reference

Java Programming Reference 6-1

CHAPTER

6 Security Service

This chapter contains the following topics:

t Introduction

t Capabilities and Limitations

t Getting Initial References to the SecurityCurrent Object

t Basic Security-Level Requirements for WebLogic Enterprise Clients

t Functional Components. This section includes the following topics:

t Security Model

t Authentication of Principals

t Controlling Access to Objects

t Administrative Control

t Security Model Functional Description

t Authentication

t Client Security API. This section describes the following modules:

t CORBA Module

t TimeBase Module

t Security Module

t Security Level 1 Module

t Security Level 2 Module

t Tobj Module

t Java Programming Examples

6 Security Service

6-2 Java Programming Reference

Introduction

The purpose of client security is to enable WLE clients to authenticate themselves via
the IIOP Server Listener/Handler and to pass the WLE security checks.

WLE client security provides two types of security authentication:

t An implementation of the security environmental objects for a CORBA Object
Request Broker (ORB) environment. Client authentication is achieved using
application programming interfaces (APIs) defined by CORBA security,
although the authentication is performed by the IIOP Server Listener/Handler,
not by the client ORB. Client security provides helper methods to create the data
structures needed to call the standard CORBA authentication methods.

t An implementation of authentication similar to that found in the BEA TUXEDO
system. Logon and logoff functions are provided that are easier to use than their
CORBA counterparts. Logon passwords and data are secure traversing the
network.

You can use either method to implement client security.

Capabilities and Limitations

This implementation of WebLogic Enterprise client security has the following
capabilities and limitations.

t Supports two types of authentication, as described above.

t Provides add-on methods to help generate the information needed for CORBA
security from information specific to the WebLogic Enterprise client, such as
client name, client application password, user password (or user authentication
data), and so forth.

t Implements authentication only.

t Allows remote WebLogic Enterprise clients to authenticate themselves to
WebLogic Enterprise domains via the IIOP Server Listener/Handler so that
clients can connect to a WebLogic Enterprise domain with BEA TUXEDO style
security activated.

Getting Initial References to the SecurityCurrent Object

Java Programming Reference 6-3

Getting Initial References to the
SecurityCurrent Object

You use the Bootstrap object to get an initial reference to the SecurityCurrent object.
For a description of the Bootstrap object method, refer to the
com.beasys.Tobj_Bootstrap.resolve_initial_references method
description in the Java API Reference.

Basic Security-Level Requirements for
WebLogic Enterprise Clients

A client that connects to a WebLogic Enterprise domain must provide security
information according to the security level required by the WebLogic Enterprise
domain. Table 6-1 defines the security levels supported by WebLogic Enterprise
domains.

Table 6-1 Security Levels Supported by WebLogic Enterprise Domains

Security Level Definition

TOBJ_NOAUTH No authentication is needed; however, the client can still authenticate
itself, and must specify a user name and a client name, but no
password.

TOBJ_SYSAUTH The client must authenticate itself to the WebLogic Enterprise domain,
and must specify a user name, client name, and client application
password.

TOBJ_APPAUTH The client must provide information in addition to that which is
required by TOBJ_SYSAUTH. If the default WebLogic Enterprise
authentication service is used in the WebLogic Enterprise domain
configuration, the client must provide a user password; otherwise, the
client provides authentication data that is interpreted by the custom
authentication service in the WebLogic Enterprise domain.

6 Security Service

6-4 Java Programming Reference

Functional Components

This section describes the functional components of the Security Service.

Security Model

The security model in the WebLogic Enterprise software defines the overall
framework for security. The WebLogic Enterprise product provides the flexibility to
support different security mechanisms and policies that can be used to achieve the
appropriate level of functionality and assurance.

The WebLogic Enterprise security model defines:

t Under what conditions clients may access objects

t What authentication of users and other principals is required, who they are, and
what they can do

The WebLogic Enterprise security model is a combination of the security refer-
ence model defined in the CORBAservices Security Service specification1and
the value-added extensions that provide a focused, simplified form of the security
found in BEA TUXEDO. The WebLogic Enterprise security model allows appli-
cation developers to choose to use the security model defined by CORBA, or the
BEA extensions, when developing an application.

Authentication of Principals

Authentication of principals, typically a human user or system entity, provides security
officers with the ability to ensure that only registered principals have access to the
objects in the system. An authenticated principal is used as the primary mechanism to
control access to objects.

1. All references to the CORBAservices Security Service specification in this docu-
ment are to the Revision 1.5, December 1998 edition, published by the Object Man-
agement Group.

Functional Components

Java Programming Reference 6-5

The act of authenticating principals allows the security mechanisms to:

t Make principals accountable for their actions

t Control access to protected objects

t Identify the originator of a request

Controlling Access to Objects

The WebLogic Enterprise security model provides a simple framework through which
a security officer can limit access to authorized users only. Limiting access to objects
allows security officers to prohibit access to objects by unauthorized principals.

The access control framework consists of two parts:

t The object invocation policy that is enforced automatically on object invocation

t An application access policy that the user-written application can enforce itself

Administrative Control

The system administrator is responsible for setting security policies for client
machines, server machines, and IIOP Listener/Handlers that interact with applications
in their WebLogic Enterprise domain. While the administrator sets the general
policies, another person or group of people may be responsible for managing security
(users, permissions, and so forth).

To provide system administrators the ability to define and enforce authentication of the
principal, the software provides a set of configuration parameters and utilities.
Through these features, a system administrator can configure the WebLogic Enterprise
software to force the principals to be authenticated to access a system on which
WebLogic Enterprise software is installed.

6 Security Service

6-6 Java Programming Reference

Security Model Functional Description

This section provides a functional description of the security model.

Description

The security model adopted in the WebLogic Enterprise software is based largely on
the CORBA security model defined in the CORBAservices Security Service
specification. Consequently, many of the concepts found in the CORBA security
model apply to WebLogic Enterprise security.

In addition to many of the interfaces defined by the CORBAservices Security Service,
BEA provides extensions, in the form of derived interfaces. These extensions expose
the security functionality found in the BEA TUXEDO system as CORBA interfaces
that are found in the Tobj namespace. The interfaces in the Tobj namespace are
intended to be familiar to developers of BEA TUXEDO applications and provide a
focused, simplified form of the equivalent CORBA-defined capability. An application
developer can choose to use the CORBA-defined security model, or the BEA
extensions, when developing an application.

In a security model, there are usually defined sets of specific security policies. The
WebLogic Enterprise security model defines policies that specify whether a principal
must be authenticated to use the system.

WebLogic Enterprise implements a delegated trust authentication model. In this
model, clients authenticate to a trusted system gateway process. In the case of
WebLogic Enterprise, the trusted system gateway process is the ISL/ISH. As part of a
successful authentication, a security association (called a security context) is
established between the client application and the ISL/ISH that is used to mediate
access to objects. The WebLogic Enterprise software associates the security context
with the network connection over which the principal was authenticated. Except for the
authentication exchange, this is currently the default behavior of the WebLogic
Enterprise system.

Figure 6-1 shows the security environment components.

Security Model Functional Description

Java Programming Reference 6-7

Figure 6-1 WebLogic Enterprise Security Environment

Logging on to the System

When a user or other principal wants to use the WebLogic Enterprise system, the
principal usually needs to authenticate and obtain credentials. The credentials obtained
by the principal contain identity attributes that are used to control access to WebLogic
Enterprise servers.

The WebLogic Enterprise Principal Authentication object provides a delegation
mechanism to provide security to non-BEA branded clients. As illustrated in
Figure 6-1, remote client applications perform authentication with the ISL/ISH,
instead of with the server application itself. Consequently, the establishment of a
security association is performed in the ISL/ISH, rather than in the server-side ORB.

Authentication
Server

(AUTHSVER)

Security
Information

(tpusr)

ORB
Core

Target
Object

Server
Application

Handler

Listener

IIOP
Gateway

Client

IIOP
(unprotected
messages)

TGIOP

BEA TUXEDO

6 Security Service

6-8 Java Programming Reference

In terms of CORBA security, the ISL/ISH acts as a CORBA-defined half-gateway into
the WebLogic Enterprise domain, and is, therefore, responsible for providing the
security mechanisms that will be used in secure invocations for a given object.

Example of a Secure Object Invocation

The following is a description of what happens when a client invokes on a target object
in a WebLogic Enterprise environment:

t The client application obtains credentials for the user by authenticating itself
with the WebLogic Enterprise domain using a PrincipalAuthenticator object. The
request for authentication is sent to the ISL/ISH that relays the requests to an
authentication server, which verifies the supplied information. If the verification
process succeeds, the security system constructs a Credentials object that is used
in all future invocations. The Credentials object for the principal is associated
with the SecurityCurrent object that represents the security context for the
current thread of execution.

t The client application invokes an object in the domain using its object reference.
The request is packaged into an IIOP request and forwarded to the ISL/ISH that
associates the request with the previously established security association. At
this point, the ISL/ISH forwards the request, along with the credentials of the
initiating principal, to an appropriate server process.

Authentication

When an active entity wants to use a secure object system, it authenticates itself and
obtains credentials. The credentials contain its certified identity, and, optionally, its
privilege attributes, and control where and when they can be used. In the WebLogic
Enterprise security model, an active entity must establish its rights to access objects in
the system. The active entity must be either a principal, or a client that is acting on
behalf of a principal.

A principal is defined to be either a user or a system entity that is registered in and
authenticatable to the security system. Authentication may be accomplished in a
number of ways. The most common way is for a user to supply a password. When a
user or other principal is authenticated, the principal usually supplies:

Authentication

Java Programming Reference 6-9

t The principal’s security name

t The authentication information needed by the particular authentication method
used

Once authenticated, the principal’s security attributes are maintained in the security
system in a credential. The credentials provide a means for the security system to
provide the principal’s certified identity and describes the privileges granted to the
particular principal.

Principals who initiate activities, have one identity that may be used. The identity is
represented in the system as attributes.

Authentication Mechanisms

As stated in “Logging on to the System” on page 6-7, the lack of interoperable security
amongst the ORB vendors has resulted in it being necessary to utilize a delegation
mechanism to provide authentication to client environments. The delegation
mechanism used is similar to the mechanism found in BEA TUXEDO. Consequently,
an authentication mechanism known as BEA TUXEDO-based security is supported in
WebLogic Enterprise domains. The implementation of this mechanism is layered on
top of the security mechanism provided in BEA TUXEDO.

As in BEA TUXEDO, remote client applications perform authentication with the
ISL/ISH instead of with the server application itself. Consequently, the establishment
of a security association is actually performed in the ISL/ISH, rather than in the
server-side ORB. Machines and server applications within a WebLogic Enterprise
domain are considered trusted. This trust is a result of a defined trust model that is
based on the assumption that the machines and applications that make up the domain
are under the control of administrators only.

Authentication of principals in an environment based on BEA TUXEDO requires the
use of user names and passwords. Unlike most operating systems, BEA TUXEDO
security defines three different authentication levels:

t TOBJ_NOAUTH -- no authentication is needed.

t TOBJ_SYSAUTH -- the principal must authenticate itself to the domain, and
specify a user name, client name, and user password.

t TOBJ_APPAUTH -- same as TOBJ_SYSAUTH, except that the principal must
provide information. If the default authentication service provided in the
WebLogic Enterprise software is configured, the principal must provide an

6 Security Service

6-10 Java Programming Reference

application password; otherwise, the principal provides authentication data that
is interpreted by a custom authentication service.

The level of authentication required is administratively controlled and is defined in the
application’s configuration. Because a client application is typically unaware of the
level of authentication configured, it must query the security system to determine the
authentication level required.

The configuration of the authentication level required is specified in an application’s
configuration, not on an object or method level. Consequently, if an application is
configured to require authentication, all objects in the application require certified
credentials for the principals. Applications can be configured to support either
unauthenticated or authenticated principals. In unauthenticated scenarios, application
developers may use a Principal Authenticator to assert a user name and client name,
neither of which will be verified.

Because the BEA TUXEDO-based authentication mechanism is layered on top of the
security mechanisms provided in BEA TUXEDO, it is possible for customers to
replace the Authentication Server that provides the default authentication mechanism
with a custom implementation. A description of how to replace the Authentication
Server in BEA TUXEDO is described in the BEA TUXEDO manuals and is outside
the scope of this document.

Authentication Process

The process of authenticating a principal is done by a user sponsor (see Figure 6-2). A
user sponsor is the code that calls the security interfaces for user authentication. In a
WebLogic Enterprise domain configured to use BEA TUXEDO-based security, the
client application is the user sponsor.

In either case, the user provides identity and authentication data, such as a password,
to the user sponsor. The user sponsor uses the Principal Authenticator object provided
as part of the security implementation to make the calls necessary to authenticate the
principal. The credentials for the authenticated principal are associated with the
security system’s implementation of the SecurityCurrent object and are represented by
a Credentials object.

Authentication

Java Programming Reference 6-11

Figure 6-2 Authentication

PRINCIPAL AUTHENTICATOR OBJECT

The Principal Authenticator object is the object visible to the application that is
responsible for the creation of Credentials for a given principal. A user or principal that
requires authentication but has not been authenticated uses the Principal Authenticator
object.

CREDENTIALS OBJECT

A Credentials object holds the security attributes of a principal. These security
attributes include its authenticated or unauthenticated identities. It also contains
information for establishing security associations. The Credentials object provides
methods to obtain security attributes of the principals it represents.

6 Security Service

6-12 Java Programming Reference

SECURITYCURRENT OBJECT

The SecurityCurrent object represents the current execution context at the client and
target object. The SecurityCurrent object provides methods to give access to security
information associated with the execution context. The SecurityCurrent object gives
access to the Credentials associated with the execution environment.

At any stage, a client or target object can find the default credentials for subsequent
invocations by calling the Current.get_credentials method to request the
invocation credentials. These default credentials are used in all invocations that use
object references.

Principal Authenticator Object

The Principal Authenticator object is used by a user or principal that requires
authentication but has not been authenticated prior to calling the object system. The act
of authenticating a principal results in the creation of a Credentials object that is made
available as the default credentials for the application. The Credentials object is
returned so it can be used for other methods on the Credentials.

The Principal Authenticator object is a singleton object; there is only a single instance
allowed in a process address space. Multiple references to the Principal Authenticator
object must be supported. The Principal Authenticator object is also stateless. A
Credentials object is not associated with the Principal Authenticator object that created
it.

All Principal Authenticator objects support the
SecurityLevel2.PrincipalAuthenticator interface defined in the
CORBAservices Security Service specification. This interface contains two methods
that are used to accomplish the authentication of the principal. This is because
authentication of principals may require more than one step. The authenticate method
allows the caller to authenticate, and optionally select, attributes for the principal of
this session.

Any invocation that fails because the security infrastructure does not permit that
invocation raises the standard exception CORBA.NO_PERMISSION. A method that fails
because the feature requested is not supported by the security infrastructure
implementation raises the CORBA.NO_IMPLEMENT standard exception. Any parameter
that has inappropriate values raises the CORBA.BAD_PARAM standard exception.

Authentication

Java Programming Reference 6-13

The Principal Authenticator object is a locality-constrained object. Therefore, a
Principal Authenticator object may not be used through the DII/DSI facilities of
CORBA. Any attempt to pass a reference to this object outside of the current process,
or any attempt to externalize it using CORBA.ORB.object_to_string, results in the
raising of the CORBA.MARSHAL exception.

WebLogic Enterprise Extensions to the Principal Authenticator Object

BEA extends the Principal Authenticator object with functionality to support similar
security to that found in BEA TUXEDO. The enhanced functionality is provided by
defining the com.beasys.Tobj.PrincipalAuthenticator interface. This interface
contains methods to provide similar capability to that available from BEA TUXEDO
through the tpinit function.

The methods defined for the Tobj.PrincipalAuthenticator interface are intended
to be familiar to developers of BEA TUXEDO applications, and provide a focused,
simplified form of the equivalent CORBA-defined capability. An application
developer can choose to use the CORBA-defined or BEA extensions when developing
an application. The interface Tobj.PrincipalAuthenticator is derived from the
CORBA SecurityLevel2.PrincipalAuthenticator interface.

The extended Principal Authenticator object adheres to all the same rules as the
Principal Authenticator object defined in the CORBAservices Security Service
specification.

The implementation of the extended Principal Authenticator object requires users to
supply a user name, client name, and additional authentication data (for example,
passwords) used for authentication. Because the information needs to be transmitted
over the network to the ISL/ISH, it is protected to ensure confidentiality. The
protection must include encryption of any information provided by the user.

An extended Principal Authenticator object that supports the
Tobj.PrincipalAuthenticator interface provides the same functionality as if the
SecurityLevel2.PrincipalAuthenticator interface were used to perform the
authentication of the principal. However, unlike the
SecurityLevel2.PrincipalAuthenticator.authenticate method, the logon
method defined on the Tobj.PrincipalAuthenticator interface does not return a
Credentials object. As a result, multithreaded applications that need to use more than
one principal identity are required to call the Current.get_credentials method
immediately after the logon method to retrieve the Credentials object as a result of the

6 Security Service

6-14 Java Programming Reference

logon method. Retrieval of the Credentials object directly after a logon method should
be protected with serialized access since it is possible for another thread to also
perform a logon method.

Credentials Object

A Credentials object (see Figure 6-3) holds the security attributes of a principal. The
Credentials object provides methods to obtain and set the security attributes of the
principals it represents. These security attributes include its authenticated or
unauthenticated identities and privileges. The Credentials object also contains
information for establishing security associations.

Credentials objects are created as the result of:

t Authentication

t Copying an existing Credentials object

t Asking for a Credentials object via the SecurityCurrent object

Figure 6-3 Credentials Object

There can be more than one Credentials object in a process address space. Multiple
references to a Credentials object must be supported. A Credentials object is stateful.
It maintains state on behalf of the principal for which it was created. This state includes
any information necessary to determine the identity and privileges of the principal it

Authentication

Java Programming Reference 6-15

represents. Credentials objects are not associated with the Principal Authenticator
object that created it, but must contain some indication of the authentication authority
that certified the principal’s identity.

All Credentials objects support the SecurityLevel2.Credentials interface. Any
invocation that fails as a result of the security infrastructure determining that the client
does not have permission, raises the standard exception CORBA.NO_PERMISSION. A
method that fails because the feature requested is not supported by the security
infrastructure implementation raises the CORBA.NO_IMPLEMENT standard exception.
Any parameter that has inappropriate values raises the CORBA.BAD_PARAM standard
exception.

The Credentials object is a locality-constrained object. Therefore, a Credentials object
may not be used through the DII/DSI facilities. Any attempt to pass a reference to this
object outside of the current process, or any attempt to externalize it using
CORBA.ORB.object_to_string, results in the raising of the CORBA.MARSHAL
exception.

SecurityCurrent Object

The SecurityCurrent object (see Figure 6-4) represents the current execution context at
both client and target objects. The SecurityCurrent object represents service-specific
state information associated with the current execution context. Both clients and
servers have SecurityCurrent objects that represent state associated with the thread of
execution and the capsule (process) in which the thread is executing (their execution
contexts).

The SecurityCurrent object is a singleton object; there is only a single instance allowed
in a process address space. Multiple references to the SecurityCurrentobject must be
supported.

The SecurityCurrent object is stateful. The methods of the SecurityCurrent object are
intended to return information about the state associated with the current execution
context. This includes information specific to both the thread of execution that is used
to make the call on the SecurityCurrent object, as well as the capsule (process) to
which the thread belongs. Changes in state associated purely with the thread, and not
with any broader execution context, will remain until the thread terminates or until
more state changes are made. State changes associated with a broader execution
context (like a process) persist across multiple invocations of methods in the target
object, until it is further modified through methods of the SecurityCurrent object or by
other means.

6 Security Service

6-16 Java Programming Reference

Consequently, thread-specific methods called on the SecurityCurrent object are
performed on the state associated with the calling thread. The thread in which the
SecurityCurrent object was obtained has no influence on the behavior of these
methods.

The CORBAservices Security Service specification defines two interfaces for the
SecurityCurrent object associated with security:

t SecurityLevel1.Current, which derives from CORBA.Current

t SecurityLevel2.Current, which derives from the
SecurityLevel1.Current interface

Both interfaces give access to security information associated with the execution
context.

At any stage, a client or target object can find the default credentials for subsequent
invocations by calling the Current.get_credentials method, asking for the
invocation credentials. These default credentials are used in all invocations that use
object references.

Figure 6-4 SecurityCurrent Object

When the Current.get_attributes method is invoked by a client application, the
attributes returned from the Credentials object are those of the user.

The SecurityCurrent object is a locality-constrained object. Therefore, a
SecurityCurrent object may not be used through the DII/DSI facilities. Any attempt to
pass a reference to this object outside of the current process, or any attempt to
externalize it using CORBA.ORB.object_to_string, results in the raising of the
CORBA.MARSHAL exception.

get_credentials

principal_authenticator

CredentialsCredentials

TID Ptr

0

authenticate

SecurityCurrent

PrincipalAuthenticator

Credentials

Client Security API

Java Programming Reference 6-17

Client Security API

The following client security application programming interface (API) modules are
implemented as pseudo-objects on the client:

t CORBA module

t TimeBase module

t Security module

t Security Level 1 module

t Security Level 2 module

t Tobj module

The OMG Interface Definition Language (IDL) definitions for these modules are
provided in the following sections.

CORBA Module

The Object Management Group (OMG) added the org.omg.CORBA.Current
interface to the CORBA module to support the SecurityCurrent pseudo-object. The
change enables the CORBA module to support Security Replaceability and Security
Level 2.

Listing 6-1 shows the org.omg.CORBA.Current interface OMG IDL statements.

Listing 6-1 org.omg.CORBA.Current Interface OMG IDL Statements

module CORBA {
 // Extensions to CORBA
 interface Current {
 };
};

// This information is taken from CORBAservices: Common Object
// Services Specification, page 15-230. Revised Edition:

6 Security Service

6-18 Java Programming Reference

// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

TimeBase Module

All data structures pertaining to the basic Time Service, Universal Time Object, and
Time Interval Object are defined in the TimeBase module. This allows other services
to use these data structures without requiring the interface definitions. The interface
definitions and associated enums and exceptions are encapsulated in the TimeBase
module.

Listing 6-2 shows the TimeBase module OMG IDL statements.

Listing 6-2 TimeBase Module OMG IDL Statements

// From time service
module TimeBase {
 // interim definition of type ulonglong pending the
 // adoption of the type extension by all client ORBs.
 struct ulonglong {
 unsigned long low;
 unsigned long high;
 };
 typedef ulonglong TimeT;
 typedef short TdfT;
 struct UtcT {
 TimeT time; // 8 octets
 unsigned long inacclo; // 4 octets
 unsigned short inacchi; // 2 octets
 TdfT tdf; // 2 octets
 // total 16 octets
 };
};

// This information is taken from CORBAservices: Common Object
// Services Specification, p. 14-5. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

Client Security API

Java Programming Reference 6-19

Table 6-2 defines the TimeBase module data types.

Note: This information is taken from CORBAservices: Common Object Services
Specification, p. 14-6. Revised Edition: March 31, 1995. Updated: November
1997. Used with permission by OMG.

Table 6-2 TimeBase Module Data Type Definitions

Data Type Definition

Time
ulonglong

OMG IDL does not at present have a native type representing an unsigned
64-bit integer. The adoption of technology submitted against that RFP will
provide a means for defining a native type representing unsigned 64-bit
integers in OMG IDL.

Pending the adoption of that technology, you can use this structure to
represent unsigned 64-bit integers, understanding that when a native type
becomes available, it may not be interoperable with this declaration on all
platforms. This definition is for the interim, and is meant to be removed
when the native unsigned 64-bit integer type becomes available in OMG
IDL.

Time TimeT TimeT represents a single time value, which is 64 bit in size, and holds the
number of 100 nanoseconds that have passed since the base time. For
absolute time, the base is 15 October 1582 00:00.

Time TdfT TdfT is of size 16 bits short type and holds the time displacement factor in
the form of seconds of displacement from the Greenwich Meridian.
Displacements east of the meridian are positive, while those to the west are
negative.

Time UtcT UtcT defines the structure of the time value that is used universally in the
service. When the UtcT structure is holding, a relative or absolute time is
determined by its history. There is no explicit flag within the object holding
that state information. The inacclo and inacchi fields together hold a
value of type InaccuracyT packed into 48 bits. The tdf field holds time
zone information. Implementation must place the time displacement factor
for the local time zone in this field whenever it creates a Universal Time
Object (UTO).

The content of this structure is intended to be opaque; to be able to marshal
it correctly, the types of fields need to be identified.

6 Security Service

6-20 Java Programming Reference

Security Module

The Security module defines the OMG IDL for security data types common to the
other security modules. This module depends on the TimeBase module and must be
available with any ORB that claims to be security ready.

Listing 6-3 shows the data types supported by the Security module.

Listing 6-3 Security Module OMG IDL Statements

module Security {
 typedef sequence<octet> Opaque;

 // Extensible families for standard data types
 struct ExtensibleFamily {
 unsigned short family_definer;
 unsigned short family;
 };

 //security attributes
 typedef unsigned long SecurityAttributeType;

 // identity attributes; family = 0
 const SecurityAttributeType AuditId = 1;
 const SecurityAttributeType AccountingId = 2;
 const SecurityAttributeType NonRepudiationId = 3;

 // privilege attributes; family = 1
 const SecurityAttributeType Public = 1;
 const SecurityAttributeType AccessId = 2;
 const SecurityAttributeType PrimaryGroupId = 3;
 const SecurityAttributeType GroupId = 4;
 const SecurityAttributeType Role = 5;
 const SecurityAttributeType AttributeSet = 6;
 const SecurityAttributeType Clearance = 7;
 const SecurityAttributeType Capability = 8;

 struct AttributeType {
 ExtensibleFamily attribute_family;
 SecurityAttributeType attribute_type;
 };

 typedef sequence <AttributeType> AttributeTypeLists;
 struct SecAttribute {
 AttributeType attribute_type;

Client Security API

Java Programming Reference 6-21

 Opaque defining_authority;
 Opaque value;
 // The value of this attribute can be
 // interpreted only with knowledge of type
 };

 typedef sequence<SecAttribute> AttributeList;

 // Authentication return status
 enum AuthenticationStatus {
 SecAuthSuccess,
 SecAuthFailure,
 SecAuthContinue,
 SecAuthExpired
 };

 // Authentication method
 typedef unsigned long AuthenticationMethod;

 enum CredentialType {
 SecInvocationCredentials;
 SecOwnCredentials;
 SecNRCredentials

 // Pick up from TimeBase
 typedef TimeBase::UtcT UtcT;
};

// This information is taken from CORBAservices: Common Object
// Services Specification, pp. 15-193 to195. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

Table 6-3 describes the Security module data type.

Table 6-3 Security Module Data Type Definition

Data Type Definition

sequence<octet> Data whose representation is known only to the Security Service
implementation.

6 Security Service

6-22 Java Programming Reference

Security Level 1 Module

This section defines those interfaces available to client application objects that use
only Level 1 Security functionality. This module depends on the CORBA module and
the Security and TimeBase modules. The SecurityCurrent interface is implemented by
the ORB.

Listing 6-4 shows the Security Level 1 module OMG IDL statements.

Listing 6-4 Security Level 1 Module OMG IDL Statements

module SecurityLevel1 {
 interface Current : CORBA::Current {// PIDL
 Security::AttributeList get_attributes(
 in Security::AttributeTypeList attributes
);
 };
};

// This information is taken from CORBAservices: Common Object
// Services Specification, p. 15-198. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
OMG.

Security Level 2 Module

This section defines the additional interfaces available to client application objects that
use Level 2 Security functionality. This module depends on the CORBA and Security
modules.

Listing 6-5 shows the Security Level 2 module OMG IDL statements.

Listing 6-5 Security Level 2 Module OMG IDL Statements

module SecurityLevel2 {
 // Forward declaration of interfaces
 interface PrincipalAuthenticator;

Client Security API

Java Programming Reference 6-23

 interface Credentials;
 interface Current;

 // Interface Principal Authenticator
 interface PrincipalAuthenticator {
 Security::AuthenticationStatus authenticate(
 in Security::AuthenticationMethod method,
 in string security_name,
 in Security::Opaque auth_data,
 in Security::AttributeList privileges,
 out Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);

 Security::AuthenticationStatus
 continue_authentication(
 in Security::Opaque response_data,
 inout Credentials creds,
 out Security::Opaque continuation_data,
 out Security::Opaque auth_specific_data
);
 };

 // Interface Credentials
 interface Credentials {
 Security::AttributeList get_attributes(
 in Security::AttributeTypeList attributes
);
 boolean is_valid(
 out Security::UtcT expiry_time
);
 };

 // Interface Current derived from SecurityLevel1::Current
 // providing additional operations on Current at this
 // security level. This is implemented by the ORB.
 interface Current : SecurityLevel1::Current { // PIDL
 void set_credentials(
 in Security::CredentialType cred_type,
 in Credentials cred
);

 Credentials get_credentials(
 in Security::CredentialType cred_type
);
 readonly attribute PrincipalAuthenticator
 principal_authenticator;

6 Security Service

6-24 Java Programming Reference

 };
};

// This information is taken from CORBAservices: Common Object
// Services Specification, pp. 15-198 to 200. Revised Edition:
// March 31, 1995. Updated: November 1997. Used with permission by
// OMG.

Tobj Module

This section defines the Tobj module interfaces.

This module provides the interfaces you use to program the BEA TUXEDO style of
authentication.

Listing 6-6 shows the Tobj module OMG IDL statements.

Listing 6-6 Tobj Module OMG IDL Statements

//Tobj Specific definitions

module Tobj {
 const Security::AuthenticationMethod TuxedoSecurity =
 0x54555800;

 //get_auth_type () return values
 enum AuthType {
 TOBJ_NOAUTH,
 TOBJ_SYSAUTH,
 TOBJ_APPAUTH
 };

 typedef sequence<octet> UserAuthData;

 interface PrincipalAuthenticator :
 SecurityLevel2::PrincipalAuthenticator { // PIDL
 AuthType get_auth_type();

 Security::AuthenticationStatus logon(
 in string user_name,
 in string client_name,
 in string system_password,
 in string user_password,

Client Security API

Java Programming Reference 6-25

 in UserAuthData user_data
);
 void logoff();

 void build_auth_data(
 in string user_name,
 in string client_name,
 in string system_password,
 in string user_password,
 in UserAuthData user_data,
 out Security::Opaque auth_data,
 out Security::AttributeList privileges
);
 };
};

6 Security Service

6-26 Java Programming Reference

Java Programming Examples

This section provides programming examples that use the Security Service.

Note: In Listing 6-7, notice that the
resolve_initial_references("SecurityCurrent") method is used to
get a reference to the SecurityCurrent object. The reference is then narrowed,
assigned to cur, and used to get PrincipalAuthenticator. Refer to Chapter 4,
“Bootstrap Object,” for a description of this method.

Using WebLogic Enterprise Extensions to Log on

Listing 6-7 shows how to program a Netscape Communicator client using the
WebLogic Enterprise extensions to CORBA security. The WebLogic Enterprise
extensions enable you to use BEA TUXEDO style authentication. The code in
boldface shows the OMG method for logging on, which is an alternative to the BEA
TUXEDO method. You may prefer the OMG method for log on. Note that the
build_auth_data method is a BEA-specific method used to prepare data for the
OMG method.

Listing 6-7 Java Client Application Using WebLogic Enterprise Extensions to
CORBA Security to Log on

/* Copyright (c) 1998 BEA Systems, Inc.
 All rights reserved
 THIS IS PROPRIETARY
 SOURCE CODE OF BEA Systems, Inc.
 The copyright notice above does not
 evidence any actual or intended
 publication of such source code.
*/

//***
//File:SECURITY_CLIENT_EXAMPLE.JAVA
//Description:JAVA Client program.
//**

Java Programming Examples

Java Programming Reference 6-27

import org.omg.CORBA.*;
import com.beasys.Tobj.*;
import com.beasys.*;
import com.beasys.TobjInternal.*;
import java.io.*;

public class security_client_example {
 public static void main(String args[])
 {

 try {

 // Initialize ORB
 ORB orb = ORB.init();

 // Create Bootstrap Object
 Tobj_Bootstrap bs = new Tobj_Bootstrap(orb, "");

 // Get the Security Current Object
 org.omg.CORBA.Object secCurObj = bs.resolve_initial_references(
 "SecurityCurrent");

 org.omg.SecurityLevel2.Current secCur =
 org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

 // Get a principalauthenticator
 org.omg.SecurityLevel2.PrincipalAuthenticator authlev2=
 secCur.principal_authenticator();

 com.beasys.Tobj.PrincipalAuthenticator auth =
 org.omg.SecurityLevel2.PrincipalAuthenticatorHelper.narrow(authlev2);

 // Get the auth type
 com.beasys.Tobj.AuthType authType = auth.get_auth_type();
 System.out.println("authType =" + authType);
 byte[] userData = new byte[0];
 String userName = "guest";
 String clientName = "simpclt";
 String systemPassword = null;
 String userPassword = null;

 // Set args according to security level
 switch (authType.value())
 {
 case com.beasys.Tobj.AuthType._TOBJ_NOAUTH:
 System.out.println(" No Password Required ");
 break;
 case com.beasys.Tobj.AuthType._TOBJ_SYSAUTH:
 System.out.println("System Password Required ");

6 Security Service

6-28 Java Programming Reference

 systemPassword = "security";
 break;
 case com.beasys.Tobj.AuthType._TOBJ_APPAUTH:
 System.out.println("System Password Required & ");
 System.out.println("User Password Required ");
 systemPassword = "security";
 userPassword = "hello";
 break;
 }
 // Perform Tuxedo style logon
 org.omg.Security.AuthenticationStatus status =
 auth.logon(userName, clientName, systemPassword,
 userPassword, userData);

 // Prepare args CORBA Seciop style for authentication
 com.beasys.Tobj.UserAuthData userData;
 org.omg.Security.Opaque_var authData;
 org.omg.Security.AttributeList_var privileges;
 org.omg.SecurityLevel2.Credentials_var creds;
 org.omg.Security.Opaque_var continueData;
 org.omg.CORBA.ULong method = com.beasys.Tobj.TuxedoSecurity;
 org.omg.Security.Opaque_var authSpecificData;

 // Use helper to build the authentication data
 BeaPa->build_auth_data(userName, clientName,
 systemPassword,
 userPassword,
 userData, authData, privileges);
 // Perform Corba Seciop authentication
 Security.AuthenticationStatus Status =
 BeaPa->authenticate(method, userName, authData,
 privileges, creds, continueData,
 authSpecificData);

 System.out.println("logon status =" + status);
 if (status != org.omg.Security.AuthenticationStatus.SecAuthSuccess)
 System.exit(1);
 }
 catch (UserException e){
 System.err.println("User exception: " + e);
 e.printStackTrace();
 System.exit(1);
}
 catch (SystemException e){
 System.err.println("System exception: " + e);
 e.printStackTrace();
 System.exit(1);
 }

Java Programming Examples

Java Programming Reference 6-29

 }
}

Getting Information from Privileges

Listing 6-8 shows how to use the Security Service to get information from privileges
on a Java client.

Listing 6-8 Getting Information from Privileges

try {

 // Build empty attribute list to return all privileges
 org.omg.Security.AttributeType[] type_list =
 new org.omg.Security.AttributeType[0];
 // Get attributes from current
 org.omg.Security.SecAttribute[] privs =
 secCur.get_attributes(type_list);
 // Print attributes contents
 for (int i = 0 ; i < privs.length ; i++){
 switch(privs[i].attribute_type.attribute_type){
 case org.omg.Security.Public.value:
 // No security was specified.
 // Nothing to print.
 continue;
 case org.omg.Security.AccessId.value:
 // User name
 String user = new String(privs[i].value);
 System.out.println("User = " + user);
 continue;
 case org.omg.Security.PrimaryGroupId.value:
 // Client name
 String client = new String(privs[i].value);
 System.out.println("Client = " + client);
 continue;
 }
 }
}
catch (SystemException e){
 System.out.println("Exception while checking attributes");
 System.exit(1);
}

6 Security Service

6-30 Java Programming Reference

Checking the Validity of the Credentials Expiration Time

Listing 6-9 shows how to use the Security Service to check the validity of the
Credentials expiration time on a Netscape Communicator client.

Listing 6-9 Checking Validity of Credentials Expiration Time on a Java Client

try {

 // Get Credentials from current
 org.omg.SecurityLevel2.Credentials cred = secCur.get_credentials(
 org.omg.Security.CredentialType.SecInvocationCredentials);
 // Verify credentials
 org.omg.TimeBase.UtcTHolder expiry_time =
 new org.omg.TimeBase.UtcTHolder();
 if (!cred.is_valid(expiry_time)){
 System.out.println(
 "Credentials are not valid any more");
 System.exit(1);
 }
 // expiry_time contains credentials expiration in
 // 100 nanoseconds since 15 October 1582 00:00
}
catch (SystemException e){
 System.out.println("Exception while checking credentials");
 System.exit(1);
}

Authentication Using
SecurityLevel2.PrincipalAuthenticator

The following code fragment illustrates the use of the CORBA-compliant interfaces to
perform authentication.

Java Programming Examples

Java Programming Reference 6-31

import org.omg.CORBA.*;
import com.beasys.Tobj.*;
import com.beasys.*;
import com.beasys.TobjInternal.*
import java.io.*;

public class security_client
 {
 public static void main(String[] args)
 {
 Tobj.PrincipalAuthenticator auth = null;

 try
 {
 String HostPort = args[0];

 // Initialize ORB
 ORB orb = ORB.init();

 // Create bootstrap object
 Tobj_Bootstrap bs =
 new Tobj_Bootstrap(orb, "//” + HostPort);

 // Get security current
 org.omg.CORBA.Object secCurObj =
 bs.resolve_initial_references("SecurityCurrent");
 org.omg.SecurityLevel2.Current secCur2Obj =
 org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

 // Get Principal Authenticator
 org.omg.Security.PrincipalAuthenticator princAuth =
 secCur2Obj.principal_authenticator();
 com.beasys.Tobj.PrincipalAuthenticator auth =
 Tobj.PrincipalAuthenticatorHelper.narrow(princAuth);

 // Get Authentication type
 com.beasys.Tobj.AuthType authType = auth.get_auth_type();

 // Initialize arguments
 String userName = "John";
 String clientName = "Teller";
 String systemPassword = null;
 String userPassword = null;
 byte[] userData = new byte[0];

 // Prepare arguments according to security level requested
 switch(authType.value())
 {
 case com.beasys.Tobj.AuthType._TPNOAUTH:
 break;

6 Security Service

6-32 Java Programming Reference

 case com.beasys.Tobj.AuthType._TPSYSAUTH:
 systemPassword = "sys_pw";
 break;

 case com.beasys.Tobj.AuthType._TPAPPAUTH:
 systemPassword = "sys_pw";
 userPassword = "john_pw";
 break;
 }

 // Build security data
 org.omg.Security.OpaqueHolder auth_data =
 new org.omg.Security.OpaqueHolder();
 org.omg.Security.AttributeListHolder privs =
 new Security.AttributeListHolder();
 auth.build_auth_data(userNname, clientName, systemPassword,
 userPassword, userData, authData,
 privs);

 // Authenticate user
 org.omg.SecurityLevel2.CredentialsHolder creds =
 new org.omg.SecurityLevel2.CredentialHolder();
 org.omg.Security.OpaqueHolder cont_data =
 new org.omg.Security.OpaqueHolder();
 org.omg.Security.OpaqueHolder auth_spec_data =
 new org.omg.Security.OpaqueHolder();

 org.omg.Security.AuthenticationStatus status =
 auth.authenticate(com.beasys.Tobj.TuxedoSecurity.value,
 0, userName, auth_data.value(),
 privs.value(), creds, cont_data,
 auth_spec_data);
 if (status != AuthenticatoinStatus.SecAuthSuccess)
 System.exit(1);
 }

 catch(UserException e)
 {
 System.err.println(“User exception: “ + e);
 e.printStackTrace();
 System.exit(1);
 }

 catch(SystemException e)
 {
 System.err.println(“User exception: “ + e);
 e.printStackTrace();
 System.exit(1);

Java Programming Examples

Java Programming Reference 6-33

 }
 }
 }

Authentication Using Tobj.PrincipalAuthenticator

The following code fragment illustrates the use of the BEA extensions to perform
authentication.

import org.omg.CORBA.*;
import com.beasys.Tobj.*;
import com.beasys.*;
import com.beasys.TobjInternal.*
import java.io.*;

public class security_client
 {
 public static void main(String[] args)
 {
 Tobj.PrincipalAuthenticator auth = null;

 try
 {
 String HostPort = args[0];

 // Initialize ORB
 ORB orb = ORB.init();

 // Create bootstrap object
 Tobj_Bootstrap bs =
 new Tobj_Bootstrap(orb, "//” + HostPort);

 // Get security current
 org.omg.CORBA.Object secCurObj =
 bs.resolve_initial_references("SecurityCurrent");
 org.omg.SecurityLevel2.Current secCur2Obj =
 org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

 // Get Principal Authenticator
 org.omg.Security.PrincipalAuthenticator princAuth =
 secCur2Obj.principal_authenticator();
 com.beasys.Tobj.PrincipalAuthenticator auth =
 Tobj.PrincipalAuthenticatorHelper.narrow(princAuth);

 // Get Authentication type
 com.beasys.Tobj.AuthType authType = auth.get_auth_type();

6 Security Service

6-34 Java Programming Reference

 // Initialize arguments
 String userName = "John";
 String clientName = "Teller";
 String systemPassword = null;
 String userPassword = null;
 byte[] userData = new byte[0];

 // Prepare arguments according to security level requested
 switch(authType.value())
 {
 case com.beasys.Tobj.AuthType._TPNOAUTH:
 break;

 case com.beasys.Tobj.AuthType._TPSYSAUTH:
 systemPassword = "sys_pw";
 break;

 case com.beasys.Tobj.AuthType._TPAPPAUTH:
 systemPassword = "sys_pw";
 userPassword = "john_pw";
 break;
 }

 // TUXEDO-style Authenticatation
 org.omg.Security.AuthenticationStatus status =
 auth.logon(userName, clientName, systemPassword,
 userPassword, userData);

 // Check authentication result
 if (status!= Security.AuthenticationStatus._SecAuthSuccess)
 System.exit(1);
 }

 catch(UserException e)
 {
 System.err.println(“User exception: “ + e);
 e.printStackTrace();
 System.exit(1);
 }

 catch(SystemException e)
 {
 System.err.println(“User exception: “ + e);
 e.printStackTrace();
 System.exit(1);
 }
 // Can now proceed with application
 }

Java Programming Examples

Java Programming Reference 6-35

Logging Off Using Tobj.PrincipalAuthenticator

The following code fragment illustrates the use of the BEA extensions to log off of a
domain.

// Log off
 try
 {
 auth.logoff();
 }
 catch (SystemException e)
 {
 }
 }

Checking the Validity of Credentials

The following code fragment illustrates the use of the CORBA-compliant interfaces to
check the validity of a principal’s credentials.

try
 {
 org.omg.Security.UtcTHolder expiry_time =
 new org.omg.Security.UtcTHolder();

// Verify credentials
 if (!cred.is_valid(expiry_time))
 {
 System.out.println("Credentials are not valid any more");
 System.exit(1);
 }

 // expiry_time contains credentials expiration in
 // 100 nanoseconds since 15 October 1582 00:00
 }

catch (SystemException e)
 {
 System.out.println("Exception while checking credentials");
 System.exit(1);
 }

6 Security Service

6-36 Java Programming Reference

Getting Principal’s Privileges

The following code fragment illustrates the use of the CORBA-compliant interfaces to
retrieve the privileges and other attributes from a principal’s credentials.

try
 {
 // Build empty attribute type list to return all privileges
 org.omg.Security.AttributeType[] type_list =
 new org.omg.Security.AttributeType[0];

 // Get attributes from current
 org.omg.Security.SecAttribute[] privs =
 creds.get_attributes(type_list);

 // Print attributes contents
 for (int i = 0 ; i < privs.length ; i++)
 {
 switch(privs[i].attribute_type)
 {
 case org.omg.Security.Public.value:
 // No security was specified — Nothing to print.
 continue;
 case org.omg.Security.AccessId.value:
 // User name
 String user = new String(privs[i].value);
 System.out.println("User = " + user);
 continue;
 case org.omg.Security.PrimaryGroupId.value:
 // Client name
 String client = new String(privs[i].value);
 System.out.println("Client = " + client);
 continue;
 }
 }
 }
catch (SystemException e)
 {
 System.out.println("Exception while getting privileges");
 System.exit(1);
 }

Java Programming Examples

Java Programming Reference 6-37

Copying a Credentials Object

The following code fragment illustrates the use of the CORBA-compliant interfaces to
copy a Credentials object. Copying a Credentials object results in a “deep copy,”
possibly creating another security association based on the security technology used
by the security provided. Copying a Credentials object that is on the SecurityCurrent
object’s “own” list does not place the newly create copy on the “own” list. As a result,
the newly created copy of the Credentials object can only be used as the default for one
or more threads of the application, and will never be used as a default Credentials
object for the capsule (process).

try
 {
 org.omg.SecurityLevel2.Credentials creds_copy =
 secCur2.copy();
 }
catch
 {
 System.out.println("Exception while copying credential");
 System.exit(1);
 };

Destroying a Credentials Object

The following code fragment illustrates the use of the CORBA-compliant interfaces to
destroy a Credentials object. Typically, a Credentials object exists on the “own” list of
the SecurityCurrent object. As a result, it should be removed from the “own” list prior
to being destroyed. Destroying a Credentials object always results in the destruction of
the security association between the client application and the target object, unless the
security association is shared with another Credentials object.

try
 {
 secCur2.remove_own_credentials(creds);
 secCur2.destroy();
 }
catch
 {
 System.out.println("Exception while destroying credential");
 System.exit(1);
 };

6 Security Service

6-38 Java Programming Reference

Getting the Principal Authenticator Object

The following code fragment illustrates the use of the CORBA-compliant interfaces to
retrieve the Principal Authenticator object.

try
 {
 org.omg.SecurityLevel2.PrincipalAuthenticator princAuth =
 secCurLev2.principal_authenticator();
 }
catch (SystemException e)
 {
 System.err.println("Error getting principal authenticator");
 System.exit(1);
 }

Getting Credentials

The following code fragment illustrates the use of the CORBA-compliant interfaces to
retrieve the privileges and other attributes from a principal’s credentials.

try
 {
 org.omg.SecurityLevel2.Credentials creds =
 secCur.get_credentials(
 org.omg.Security.CredentialType.SecInvocatonCredentials);
 }
catch (SystemException e)
 {
 System.out.println("Exception while getting credentials");
 System.exit(1);
 }

Setting Default Credentials

The following code fragment illustrates the use of the CORBA-compliant interfaces to
set the privileges and other attributes for a principal’s credentials as the credentials to
be used for invocations in the current thread.

Java Programming Examples

Java Programming Reference 6-39

try
 {
 secCur.set_credentials(
 org.omg.Security.CredentialType.SecInvocationCredentials,
 creds);
 }
catch (SystemException e)
 {
 System.out.println("Exception while setting credentials");
 System.exit(1);
 }

Getting a Principal’s Privileges

The following code fragment illustrates the use of the CORBA-compliant interfaces to
retrieve the privileges and other attributes from a principal’s credentials.

try
 {
 // Build empty attribute type list to return all privileges
 org.omg.Security.AttributeType[] type_list =
 new org.omg.Security.AttributeType[0];

 // Get attributes from current
 org.omg.Security.SecAttribute[] privs =
 secCur.get_attributes(type_list);

 // Print attributes contents
 for (int i = 0 ; i < privs.length ; i++)
 {
 switch(privs[i].attribute_type)
 {
 case org.omg.Security.Public.value:
 // No security was specified — Nothing to print.
 continue;
 case org.omg.Security.AccessId.value:
 // User name
 String user = new String(privs[i].value);
 System.out.println("User = " + user);
 continue;
 case org.omg.Security.PrimaryGroupId.value:
 // Client name
 String client = new String(privs[i].value);
 System.out.println("Client = " + client);

6 Security Service

6-40 Java Programming Reference

 continue;
 }
 }
 }
catch (SystemException e)
 {
 System.out.println("Exception while getting privileges");
 System.exit(1);
 }

Removing a Credentials Object from the “Own” List

The following code fragment illustrates the use of the CORBA-compliant interfaces to
remove a Credentials object from the list of default Credentials objects for the current
capsule (process). Removing a Credentials object from this list eliminates the ability
for the removed Credentials object to be used as the capsule default. It does not destroy
the Credentials object, or the security association that it represents.

try
 {
 secCur2.remove_own_credentials(creds);
 }
catch
 {
 System.out.println("Exception while removing credential");
 System.exit(1);
 };

Getting Credentials of the Requesting Principal

The following code fragment illustrates the use of the CORBA-compliant interfaces to
retrieve the credentials for the requesting principal.

try
 {
 org.omg.SecurityLevel2.ReceivedCredentials recCreds =
 secCurLev2.recevied_credentials();
 org.omg.SecurityLevel2.Credentials creds =
 recCreds.accepting_credentials();
 }
catch (SystemException e)

Java Programming Examples

Java Programming Reference 6-41

 {
 System.err.println(“Exception getting received credentials”);
 System.exit(1);
 }

Getting the Principal’s Privileges from Credentials

The following code fragment illustrates the use of the CORBA-compliant interfaces to
retrieve the privileges and other attributes from the requesting principal’s credentials.

try
 {
 // Build empty attribute list to return all privileges
 org.omg.Security.AttributeType[] type_list =
 new org.omg.Security.AttributeType[0];

 // Get attributes from Credentials
 org.omg.Security.SecAttribute[] privs =
 creds.get_attributes(type_list);

 // Print attributes contents
 for (int i = 0 ; i < privs.length ; i++)
 {
 switch(privs[i].attribute_type)
 {
 case org.omg.Security.Public.value:
 // No security was specified — Nothing to print.
 continue;
 case org.omg.Security.AccessId.value:
 // User name
 String user = new String(privs[i].value);
 System.out.println("User = " + user);
 continue;
 case org.omg.Security.PrimaryGroupId.value:
 // Client name
 String client = new String(privs[i].value);
 System.out.println("Client = " + client);
 continue;
 }
 }
 }
catch (SystemException e)
 {

6 Security Service

6-42 Java Programming Reference

 System.out.println("Exception while getting privileges");
 System.exit(1);
 }

Getting the Principal’s Privileges from the
SecurityCurrent object

The following code fragment illustrates the use of the CORBA-compliant interfaces to
retrieve the privileges and other attributes for the requesting principal from the
SecurityCurrent object.

try
 {
 // Build empty attribute list to return all privileges
 org.omg.Security.AttributeType[] type_list =
 new org.omg.Security.AttributeType[0];

 // Get attributes from current
 org.omg.Security.SecAttribute[] privs =
 secCurLev2.get_attributes(type_list);

 // Print attributes contents
 for (int i = 0 ; i < privs.length ; i++)
 {
 switch(privs[i].attribute_type)
 {
 case org.omg.Security.Public.value:
 // No security was specified — Nothing to print.
 continue;
 case org.omg.Security.AccessId.value:
 // User name
 String user = new String(privs[i].value);
 System.out.println("User = " + user);
 continue;
 case org.omg.Security.PrimaryGroupId.value:
 // Client name
 String client = new String(privs[i].value);
 System.out.println("Client = " + client);
 continue;
 }
 }
 }
catch (SystemException e)

Java Programming Examples

Java Programming Reference 6-43

 {
 System.out.println("Exception while getting privileges");
 System.exit(1);
 }

Obtaining the SecurityCurrent Object

The following code fragment illustrates how a server application can obtain a reference
to the SecurityCurrent object.

// Obtain a reference to the bootstrap object
Tobj_Bootstrap bs = TP.bootstrap();
// Get the Security Current
org.omg.CORBA.Object secCurObj =
 bs.resolve_initial_references(“SecurityCurrent”);
org.omg.SecurityLevel2.Current secCurLev2
 org.omg.SecurityLevel2.CurrentHelper.narrow(secCurObj);

Getting Association Options

The following code fragment illustrates the use of the CORBA-compliant interfaces to
get the association options in effect for the secure association with the remote
principal.

try
 {
 short options = recCreds.association_options_used();
 }
catch (SystemException e)
 {
 System.out.println("Exception getting association options");
 System.exit(1);
 }

Getting Delegation State

The following code fragment illustrates the use of the CORBA-compliant interfaces to
get the delegation state of the remote principal for these credentials.

6 Security Service

6-44 Java Programming Reference

try
 {
 org.omg.Security.DelegationState delState =
 recCreds.delegation_state();
 switch(delState)
 {
 case org.omg.Security.SecInitiator:
 System.out.println(“Acting on own behalf”);
 break;
 case org.omg.Security.SecDelegate:
 System.out.println(“acting on behalf of another”);
 break;
 }
 }
catch (SystemException e)
 {
 System.out.println("Exception getting delegation state");
 System.exit(1);
 }

Getting Delegation Mode

The following code fragment illustrates the use of the CORBA-compliant interfaces to
get the delegation mode of the credentials.

try
 {
 org.omg.Security.DelegationMode delMode =
 recCreds.delegation_mode();
 switch(delMode)
 {
 case org.omg.Security.SecDelModeNoDelegation:
 System.out.println(“Unusable for invocation”);
 break;
 case org.omg.Security.SecDelModeSimpleDelegation:
 System.out.println(“Usable for simple delegation”);
 break;
 case org.omg.Security.SecDelModeCompositeDelegation:
 System.out.println(“Usable for composite delegation”);
 break;
 }
 }
catch (SystemException e)

Java Programming Examples

Java Programming Reference 6-45

 {
 System.out.println("Exception getting delegation mode");
 System.exit(1);
 }

6 Security Service

6-46 Java Programming Reference

Java Programming Reference 7-1

CHAPTER

7 Transaction Service

This chapter contains the following topics:

t Capabilities and Limitations. This section describes the following topics:

t Lightweight Clients with Delegated Commit

t Transaction Propagation

t Transaction Integrity

t Transaction Termination

t Flat Transactions

t Interoperability Between Remote Clients and the WebLogic Enterprise
Domain

t Intradomain Interoperability

t Network Interoperability

t Relationship of the Transaction Service to Transaction Processing

t Process Failure

t Multithreaded Support

t OMG Interface Definition Language (IDL)

t General Constraints

t Getting Initial References to the TransactionCurrent Object

t Transaction Service API. This section describes the following topics:

t Data Types

t Control Interface

t TransactionalObject Interface

t Other CORBAservices Object Transaction Service Interfaces

7 Transaction Service

7-2 Java Programming Reference

t Transaction Service API Extensions

The WebLogic Enterprise system provides the following:

t An implementation of the CORBAservices Object Transaction Service (OTS)
that is described in Chapter 10 of the CORBAservices: Common Object Services
Specification. This specification defines the interfaces for an object service that
provides transactional functions.

t Sun Microsystems, Inc.’s javax.transaction package, which implements the
Java Transaction API (JTA).

This chapter describes how the WebLogic Enterprise software implements the OTS;
in particular, that portion of the CORBAservices Object Transaction Service that is
described as implementation-specific. This chapter provides the information that
programmers need to write transactional applications for the WebLogic Enterprise
system. It describes the OTS application programming interface (API) that you use to
begin or terminate transactions, suspend or resume transactions, and get information
about transactions.

For information about JTA, refer to the following:

t The javax.transaction package description in the Java API Reference.

t The Java Transaction API specification, published by Sun Microsystems, Inc.
and available from the Sun Microsystems, Inc. Web site. (See the Release Notes
for information about obtaining this document.)

Capabilities and Limitations

The following sections describe the capabilities and limitations of the Transaction
Service.

Capabilities and Limitations

Java Programming Reference 7-3

Lightweight Clients with Delegated Commit

A lightweight client runs on a single-user, unmanaged desktop system that has
irregular availability; that is, the owners may turn their desktop systems off when they
are not in use. These single-user, unmanaged desktop systems should not be required
to perform network functions like transaction coordination. In particular, unmanaged
systems should not be responsible for ensuring atomicity, consistency, isolation, and
durability (ACID) properties across failures for transactions involving server
resources. WebLogic Enterprise remote clients are lightweight clients.

The Transaction Service allows lightweight clients to do delegated commit. Delegated
commit means that the Transaction Service allows lightweight clients to begin and
terminate transactions while the responsibility for transaction coordination is
delegated to a transaction manager running on a server machine. The lightweight client
does not need a local CORBAservices Object Transaction Service transaction
manager.

Transaction Propagation

The CORBAservices Object Transaction Service specification states that a client can
choose to propagate transaction context either implicitly or explicitly. This
implementation of the CORBAservices Object Transaction Service provides implicit
propagation. Explicit propagation is strongly discouraged.

Objects that are related to transaction context that are passed around using explicit
transaction propagation should not be mixed with implicit transaction propagation
APIs. It should be noted, however, that explicit propagation does not place any
constraints on when transactional methods can be processed; there is no guarantee that
all transactional methods will be completed before the transaction is committed.

Transaction Integrity

Checked transaction behavior provides transaction integrity by guaranteeing that a
commit will not succeed unless all transactional objects involved in the transaction
have completed the processing of their transactional requests. If implicit transaction
propagation is used, the Transaction Service provides checked transaction behavior

7 Transaction Service

7-4 Java Programming Reference

that is equivalent to that provided by the request/response interprocess communication
models defined by The Open Group. The Transaction Service performs reply checks,
commit checks, and resume checks, as described in the CORBAservices Object
Transaction Service Specification.

Unchecked transaction behavior relies completely on the application to provide
transaction integrity. If explicit propagation is used, the Transaction Service does not
provide checked transaction behavior and transaction integrity is not guaranteed.

Transaction Termination

This implementation of the CORBAservices Object Transaction Service allows
transactions to be terminated only by the client that created the transaction.

Note: The client may be a server object that requests the services of another object.

Flat Transactions

This implementation of the CORBAservices Object Transaction Service implements
the flat transaction model.

Interoperability Between Remote Clients and the
WebLogic Enterprise Domain

This implementation of the CORBAservices Object Transaction Service does not
support remote clients invoking methods on server objects in different WebLogic
Enterprise domains in the same transaction.

Remote clients with multiple connections to the same WebLogic Enterprise domain
may not make invocations to server objects on these separate connections within the
same transaction. An org.omg.CORBA.NO_PERMISSION standard system exception is
returned to the client.

Capabilities and Limitations

Java Programming Reference 7-5

Intradomain Interoperability

The WebLogic Enterprise implementation of the CORBAservices Object Transaction
Service supports native clients invoking methods on server objects in the WebLogic
Enterprise domain. In addition, server objects invoking methods on other objects in the
same or in different processes in the same WebLogic Enterprise domain is supported.

Network Interoperability

This implementation of the CORBAservices Object Transaction Service does not
support the export or import of transactions to or from remote WebLogic Enterprise
domains.

Relationship of the Transaction Service to Transaction
Processing

This section describes the relationship of the Transaction Service to various
transaction processing servers, interfaces, protocols, and standards, as follows:

t Support of BEA TUXEDO ATMI servers

Servers using the WebLogic Enterprise Transaction Service can make
invocations on other BEA TUXEDO Application-to-Transaction Monitor
Interface (ATMI) server processes in the same domain. This implementation of
the CORBAservices Object Transaction Service does not support the following:

t Remote clients or native clients invoking ATMI services in the WebLogic
Enterprise domain

t ATMI services invoking objects

t Support of The Open Group XA interface

The Open Group Resource Managers are resource managers that can be involved
in a distributed transaction by allowing their two-phase commit protocol to be
controlled via The Open Group XA interface. This implementation of the

7 Transaction Service

7-6 Java Programming Reference

CORBAservices Object Transaction Service supports interaction with The Open
Group Resource Managers.

t Support of the OSI TP protocol

Open Systems Interconnect Transaction Processing (OSI TP) is the transactional
protocol defined by the International Organization for Standardization (ISO).
The WebLogic Enterprise implementation of the CORBAservices Object
Transaction Service does not support interactions with OSI TP transactions.

t Support of the LU 6.2 protocol

Systems Network Architecture (SNA) LU 6.2 is a transactional protocol defined
by IBM. The WebLogic Enterprise implementation of the CORBAservices
Object Transaction Service does not support interactions with LU 6.2
transactions.

t Support of the ODMG standard

ODMG-93 is a standard defined by the Object Database Management Group
(ODMG) that describes a portable interface to access Object Database
Management Systems. The WebLogic Enterprise implementation of the
CORBAservices Object Transaction Service does not support interactions with
ODMG transactions.

Process Failure

The Transaction Service monitors the participants in a transaction for failures and
inactivity. One of the features that distinguishes the BEA TUXEDO system from other
distributed application environments is the management tools for keeping the
application running when failures occur. Because the WebLogic Enterprise
implementation of the CORBAservices Object Transaction Service is built upon the
existing BEA TUXEDO transaction management system, it inherits the capabilities of
the BEA TUXEDO system for keeping applications running.

Capabilities and Limitations

Java Programming Reference 7-7

Multithreaded Support

The WebLogic Enterprise implementation of the CORBAservices Object Transaction
Service supports single-threaded implementations only. Specifically, a client with an
active transaction cannot make requests for the same transaction on multiple threads.
However, it is possible to have multiple transactions serially active at the same time in
a single thread.

OMG Interface Definition Language (IDL)

The CORBAservices Object Transaction Service OMG IDL is described in detail in
Chapter 10 of the CORBAservices: Common Object Services Specification. The
WebLogic Enterprise implementation of the CORBAservices Object Transaction
Service supports a functionally complete subset of the CORBAservices Object
Transaction Service OMG IDL interfaces. For details, see the section “Transaction
Service API” on page 7-9.

General Constraints

The following constraints apply:

t The WebLogic Enterprise implementation of the CORBAservices Object
Transaction Service imposes a limitation on programmers in that a server
application object using transactions from the WebLogic Enterprise Transaction
Service library needs the WebLogic Enterprise TP Framework functionality. A
restriction imposed by the WebLogic Enterprise TP Framework is that a client or
a server object cannot invoke methods on an object that is infected with another
transaction. The method invocation issued by the client or the server will return
an exception. For further details on the TP Framework, see Chapter 3, “TP
Framework.”

t A return from the rollback method on the Current object is asynchronous. A
consequence of this is that the objects that were infected by the rolled back
transaction get their states cleared by the WebLogic Enterprise TP Framework a
little later. This implies that no other client can infect these objects with a
different transaction until the WebLogic Enterprise TP Framework clears the

7 Transaction Service

7-8 Java Programming Reference

states of these objects. This race condition exists for a very short amount of time
and is typically not noticeable in a full-fledged application. A simple
workaround for this race condition is to try the appropriate operation after a
short (typically a 1-second) delay.

t In the WebLogic Enterprise implementation of the CORBAservices Object
Transaction Service, clients using other CORBAservices Object Transaction
Service implementations are not supported.

t In the WebLogic Enterprise implementation, clients may not make oneway
method invocations within the context of a transaction to server objects having
the NEVER, OPTIONAL, or ALWAYS transaction policies. No error or exception will
be returned to the client because it is a oneway method invocation; however, the
method on the server object will not be executed. Also, an appropriate error
message will be written to the log. Clients may make oneway method
invocations within the context of a transaction to server objects having the
IGNORE transaction policy. In this case, the method on the server object will be
executed, but not in the context of a transaction. For further details on the
transaction policies, see Chapter 2, “Server Description File.”

Getting Initial References to the
TransactionCurrent Object

To access the Transaction Service API and the extension to the Transaction Service
API as described later in this chapter, an application needs to issue the following
commands.

1. Create a Bootstrap object.
For details on creating a Bootstrap object, see Chapter 4, “Bootstrap Object.”

2. Invoke the resolve_initial_reference("TransactionCurrent") method
on the Bootstrap object. The invocation returns a standard CORBA object
pointer. For a description of this Bootstrap object method, see Chapter 4,
“Bootstrap Object.”

Transaction Service API

Java Programming Reference 7-9

3. If an application is interested in only the Transaction Service APIs, an
org.omg.CosTransactions.Current.narrow() should be issued on the
object pointer returned from step 2 above. If an application is interested in the
Transaction Service APIs with the extensions, a
com.beasys.Tobj.TransactionCurrent.narrow() should be issued on the
object pointer returned from step 2 above.

Transaction Service API

The following sections describe the portions of the CosTransactions modules that are
based on CORBA that are implemented in the WebLogic Enterprise software to
support the Transaction Service. For further details, refer to Chapter 10 of the
CORBAservices: Common Object Services Specification.

The definitions and interfaces supported by the Transaction Service in the WebLogic
Enterprise software are as follows:

t Data types

t Control interface

t org.omg.CosTransactions.TransactionalObject interface

Data Types

Listing 7-1 shows the supported data types.

Listing 7-1 Data Types Supported by the Transaction Service

enum Status {

 StatusActive,
 StatusMarkedRollback,
 StatusPrepared,
 StatusCommitted,
 StatusRolledBack,
 StatusUnknown,

7 Transaction Service

7-10 Java Programming Reference

 StatusNoTransaction
 StatusPreparing,
 StatusCommitting,
 StatusRollingBack
};

// This information is taken from CORBAservices: Common Object
// Services Specification, p. 10-15. Revised Edition:
// March 31, 1995. Updated: March 1997. Used with permission by OMG.

Control Interface

The Control interface allows a program to explicitly manage or propagate a transaction
context. An object that supports the Control interface is implicitly associated with one
specific transaction.

TransactionalObject Interface

The org.omg.CosTransactions.TransactionalObject interface is used by an
object to indicate that it is transactional. By supporting this interface, an object
indicates that it wants the transaction context associated with the client thread to be
propagated on requests to the object. However, this interface is no longer needed. For
details on transaction policies that need to be set to infect objects with transactions, see
the sections “Server Description File Syntax” on page 2-3 and “TransactionalObject
Interface Not Enforced” on page 3-4.

The CosTransactions module defines the TransactionalObject interface (shown in
Listing 7-2). The org.omg.CosTransactions.TransactionalObject interface
defines no methods. It is simply a marker.

Listing 7-2 TransactionalObject Interface

interface TransactionalObject {
};

// This information is taken from CORBAservices: Common Object
// Services Specification, p. 10-30. Revised Edition:

Transaction Service API Extensions

Java Programming Reference 7-11

// March 31, 1995. Updated: November 1997. Used with permission by
// OMG.

Other CORBAservices Object Transaction Service
Interfaces

All other CORBAservices Object Transaction Service interfaces are not supported.
Note that the Current interface described earlier is supported only if it has been
obtained from the Bootstrap object. The Control interface described earlier is
supported only if it has been obtained using the get_control and the suspend
methods on the Current object.

Transaction Service API Extensions

This section describes specific extensions to the COBRAservices Transaction Service
API described earlier. The APIs in this section enable an application to open or close
an Open Group Resource Manager.

The following APIs help facilitate participation of resource managers in a distributed
transaction by allowing their two-phase commit protocol to be controlled via The Open
Group XA interface.

The following definitions and interfaces are defined in the com.beasys.Tobj module.

Exception

The following exception is supported:

exception RMfailed {};

A request raises this exception to report that an attempt to open or close a resource
manager failed.

7 Transaction Service

7-12 Java Programming Reference

TransactionCurrent Interface

This interface supports all the methods of the Current interface in the CosTransactions
module as described in the Java API Reference. Additionally, this interface supports
APIs to open and close the resource manager.

The Tobj module defines the TransactionCurrent interface, as shown in Listing 7-3.

Listing 7-3 TransactionCurrent Interface

Interface TransactionCurrent: CosTransactions::Current {
 void open_xa_rm()
 raises(RMfailed);
 void close_xa_rm()
 raises(Rmfailed);
}

Table 7-1 describes APIs that are specific to the resource manager. For more
information about these APIs, see the Java API Reference.

Table 7-1 Resource Manager APIs for the Current Interface

Method Description

open_xa_rm This method opens The Open Group Resource Manager to which this
process is linked. A RMfailed exception is raised if there is a failure
while opening the Resource Manager.

Any attempts to invoke this method by remote clients or the native clients
raises a NO_IMPLEMENT standard system exception.

close_xa_rm This method closes The Open Group Resource Manager to which this
process is linked. An RMfailed exception is raised if there is a failure
while closing the Resource Manager. A BAD_INV_ORDER standard
system exception is raised if the function was called in an improper
context (for example, the caller is in transaction mode).

Any attempts by the remote clients or the native clients to invoke this
method raises a NO_IMPLEMENT standard system exception.

Java Programming Reference 8-1

CHAPTER

8 Interface Repository
Interfaces

This chapter contains the following topics:

t Structure and Usage

t Building Client Applications

t Getting Initial References to the InterfaceRepository Object

t Interface Repository Interfaces. This section describes the following topics:

t Supporting Type Definitions

t IRObject Interface

t Contained Interface

t Container Interface

t IDLType Interface

t Repository Interface

t ModuleDef Interface

t ConstantDef Interface

t TypedefDef Interface

t StructDef

t UnionDef

t EnumDef

t AliasDef

8 Interface Repository Interfaces

8-2 Java Programming Reference

t PrimitiveDef

t ExceptionDef

t AttributeDef

t OperationDef

t InterfaceDef

Note: Most of the information in this chapter is taken from Chapter 8 of the Common
Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. The OMG information has been modified as required to
describe the WebLogic Enterprise implementation of the Interface Repository
interfaces. Used with permission by OMG.

The WebLogic Enterprise Interface Repository contains the interface descriptions of
the CORBA objects that are implemented within the WebLogic Enterprise domain.

The WebLogic Enterprise Interface Repository is based on the CORBA definition of
an Interface Repository. It offers a proper subset of the interfaces defined by CORBA;
that is, the APIs that are exposed to programmers are implemented as defined by the
Common Object Request Broker: Architecture and Specification Revision 2.2.
However, not all interfaces are supported. In general, the interfaces required to read
from the Interface Repository are supported, but the interfaces required to write to the
Interface Repository are not. Additionally, not all TypeCode interfaces are supported.

Administration of the Interface Repository is done using tools specific to the
WebLogic Enterprise software. These tools allow the system administrator to create an
Interface Repository, populate it with definitions specified in Object Management
Group Interface Definition Language (OMG IDL), and then delete interfaces.
Additionally, an administrator may need to configure the system to include an
Interface Repository server. For a description of the Interface Repository
administration commands, see Chapter 10, “Java Development and Administration
Commands.”

Several abstract interfaces are used as base interfaces for other objects in the Interface
Repository. A common set of operations is used to locate objects within the Interface
Repository. These operations are defined in the abstract interfaces IRObject,
Container, and Contained described in this chapter. All Interface Repository objects
inherit from the IRObject interface, which provides an operation for identifying the
actual type of the object. Objects that are containers inherit navigation operations from
the Container interface. Objects that are contained by other objects inherit navigation
operations from the Contained interface. The IDLType interface is inherited by all

Structure and Usage

Java Programming Reference 8-3

Interface Repository objects that represent OMG IDL types, including interfaces,
typedefs, and anonymous types. The TypedefDef interface is inherited by all named
noninterface types.

The IRObject, Contained, Container, IDLType, and TypedefDef interfaces are not
instantiable.

All string data in the Interface Repository are encoded as defined by the ISO 8859-1
character set.

Note: The Write interface is not documented in this chapter because the WebLogic
Enterprise software supports only read access to the Interface Repository. Any
attempt to use the Write interface to the Interface Repository will raise the
exception org.omg.CORBA.NO_IMPLEMENT.

Structure and Usage

The Interface Repository consists of two distinct components: the database and the
server. The server performs operations on the database.

The Interface Repository database is created and populated using the idl2ir
administrative command. For a description of this command, see the command
“m3idltojava” on page 10-7. From the programmer’s point of view, there is no write
access to the Interface Repository. None of the write operations defined by CORBA
are supported, nor are set operations on non-read-only attributes.

Read access to the Interface Repository database is always through the Interface
Repository server; that is, a client reads from the database by invoking methods that
are performed by the server. The read operations as defined by the CORBA Common
Object Request Broker: Architecture and Specification, Revision 2.2, are described in
this chapter.

8 Interface Repository Interfaces

8-4 Java Programming Reference

From the Programmer’s Point of View

The interface to a server is defined in the OMG IDL file. How the OMG IDL file is
accessed depends on the type of client being built. Three types of clients are
considered: stub based, Dynamic Invocation Interface (DII), and ActiveX.

Client applications that use stub-style invocations need the OMG IDL file at build
time. The programmer can use the OMG IDL file to generate stubs, and so forth. (For
more information, see Creating Client Applications.) No other access to the Interface
Repository is required.

Client applications that use the Dynamic Invocation Interface (DII) need to access the
Interface Repository programmatically. The interface to the Interface Repository is
defined in this chapter and is discussed in “Building Client Applications” on page 8-5.
The exact steps taken to access the Interface Repository depend on whether the client
is seeking information about a specific object, or browsing the Interface Repository to
find an interface. To obtain information about a specific object, clients use the
org.omg.CORBA.Object._get_interface method to obtain an InterfaceDef
object. (Refer the Java API Reference for a description of this method.) Using the
InterfaceDef object, the client can get complete information about the interface.

Before a DII client can browse the Interface Repository, it needs to obtain the object
reference of the Interface Repository to start the search. DII clients use the Bootstrap
object to obtain the object reference. (For a description of this method, see Chapter 4,
“Bootstrap Object.”) Once the client has the object reference, it can navigate the
Interface Repository, starting at the root.

Note: To use the DII, the OMG IDL file must be stored in the Interface Repository.

Client applications that use ActiveX are not aware that they are using the Interface
Repository. From the Interface Repository perspective, an ActiveX client is no
different than a DII client. ActiveX clients include the Bootstrap object in the Visual
Basic code. Like DII clients, ActiveX clients use the Bootstrap object to obtain the
Interface Repository object reference. Once the client has the object reference, it can
navigate the Interface Repository, starting at the root.

Note: To use an ActiveX client, the OMG IDL file must be stored in the Interface
Repository.

Building Client Applications

Java Programming Reference 8-5

Performance Implications

All run-time access to the Interface Repository is via the Interface Repository server.
Because there is considerable overhead in making requests of a remote server
application, designers need to be aware of this. For example, consider the interaction
required to use an object reference to obtain the necessary information to make a DII
invocation on the object reference. The steps are as follows:

1. The client application invokes the _get_interface operation on the
org.omg.CORBA.Object to get the InterfaceDef object associated with the object
in question. This causes a message to be sent to the ORB that created the object
reference.

2. The ORB returns the InterfaceDef object to the client.

3. The client invokes one or more _is_a operations on the object to determine what
type of interface is supported by the object.

4. After the client has identified the interface, it invokes the describe_interface
operation on the Interface object to get a full description of the interface (for
example, version number, operations, attributes, and parameters). This causes a
message to be sent to the Interface Repository, and a reply is returned.

5. The client is now ready to construct a DII request.

Building Client Applications

Java clients that use the Interface Repository need to link in Interface Repository stubs.
How this happens is specific to the vendor. If the client application is using the
WebLogic Enterprise ORB, the WebLogic Enterprise software provides the stubs in
the org.omg.CORBA package, which you should include as part of your server
application jar file. Therefore, programmers do not need to use the Interface
Repository OMG IDL file to build the stubs.

8 Interface Repository Interfaces

8-6 Java Programming Reference

If the client application is using a third-party ORB (for example, Orbix) the
programmer must use the mechanisms that are provided by that vendor. This might
include generating stubs from the OMG IDL file using the IDL compiler supplied by
the vendor, simply linking against the stubs provided by the vendor, or some other
mechanism.

Some third-party ORBs provide a local Interface Repository capability. In this case,
the local Interface Repository is provided by the vendor and is populated with the
interface definitions that are needed by that client.

Getting Initial References to the
InterfaceRepository Object

You use the Bootstrap object to get an initial reference to the InterfaceRepository
object. For a description of the Bootstrap object method, see Chapter 4, “Bootstrap
Object.”

Interface Repository Interfaces

Client applications use the interfaces defined by CORBA to access the Interface
Repository. This section contains descriptions of each interface that is implemented in
the WebLogic Enterprise software.

Supporting Type Definitions

Several types are used throughout the Interface Repository interface definitions.

module CORBA {
 typedef string Identifier;
 typedef string ScopedName;
 typedef string RepositoryId;

Interface Repository Interfaces

Java Programming Reference 8-7

 enum DefinitionKind {
 dk_none, dk_all,
 dk_Attribute, dk_Constant, dk_Exception, dk_Interface,
 dk_Module, dk_Operation, dk_Typedef,
 dk_Alias, dk_Struct, dk_Union, dk_Enum,
 dk_Primitive, dk_String, dk_Sequence, dk_Array,
 dk_Repository,
 };
};

Identifiers are the simple names that identify modules, interfaces, constants,
typedefs, exceptions, attributes, and operations. They correspond exactly to OMG IDL
identifiers. An Identifier is not necessarily unique within an entire Interface
Repository; it is unique only within a particular Repository, ModuleDef, InterfaceDef,
or OperationDef.

A ScopedName is a name made up of one or more identifiers separated by two colons
(::). The identifiers correspond to OMG IDL scoped names. An absolute ScopedName
is one that begins with two colons and unambiguously identifies a definition in a
Repository. An absolute ScopedName in a Repository corresponds to a global name in
an OMG IDL file. A relative ScopedName does not begin with two colons and must be
resolved relative to some context.

A RepositoryId is an identifier used to uniquely and globally identify a module,
interface, constant, typedef, exception, attribute, or operation. Because RepositoryIds
are defined as strings, they can be manipulated (for example, copied and compared)
using a language binding’s string manipulation routines.

A DefinitionKind identifies the type of an Interface Repository object.

IRObject Interface

The IRObject interface (shown below) represents the most generic interface from
which all other Interface Repository interfaces are derived, even the Repository itself.

module CORBA {
 interface IRObject {
 readonly attribute DefinitionKind def_kind;
 };

};

The def_kind attribute identifies the type of the definition.

8 Interface Repository Interfaces

8-8 Java Programming Reference

Contained Interface

The Contained interface (shown below) is inherited by all Interface Repository
interfaces that are contained by other Interface Repository objects. All objects within
the Interface Repository, except the root object (Repository) and definitions of
anonymous (ArrayDef, StringDef, and SequenceDef), and primitive types are
contained by other objects.

module CORBA {
 typedef string VersionSpec;

 interface Contained : IRObject {
 readonly attribute RepositoryId id;
 readonly attribute Identifier name;
 readonly attribute VersionSpec version;

 readonly attribute Container defined_in;
 readonly attribute ScopedName absolute_name;
 readonly attribute Repository containing_repository;
 struct Description {
 DefinitionKind kind;
 any value;
 };

 Description describe ();
 };
};

An object that is contained by another object has an id attribute that identifies it
globally, and a name attribute that identifies it uniquely within the enclosing Container
object. It also has a version attribute that distinguishes it from other versioned objects
with the same name. The WebLogic Enterprise Interface Repository does not support
simultaneous containment or multiple versions of the same named object.

Contained objects also have a defined_in attribute that identifies the Container
within which they are defined. Objects can be contained either because they are
defined within the containing object (for example, an interface is defined within a
module) or because they are inherited by the containing object (for example, an
operation may be contained by an interface because the interface inherits the operation
from another interface). If an object is contained through inheritance, the defined_in
attribute identifies the InterfaceDef from which the object is inherited.

The absolute_name attribute is an absolute ScopedName that identifies a Contained
object uniquely within its enclosing Repository. If this object’s defined_in attribute
references a Repository, the absolute_name is formed by concatenating the string

Interface Repository Interfaces

Java Programming Reference 8-9

“::” and this object’s name attribute. Otherwise, the absolute_name is formed by
concatenating the absolute_name attribute of the object referenced by this object’s
defined_in attribute, the string “::” , and this object’s name attribute.

The containing_repository attribute identifies the Repository that is eventually
reached by recursively following the object’s defined_in attribute.

The describe operation returns a structure containing information about the interface.
The description structure associated with each interface is provided below with the
interface’s definition. The kind of definition described by the structure returned is
provided with the returned structure. For example, if the describe operation is
invoked on an attribute object, the kind field contains dk_Attribute and the value
field contains an any, which contains the AttributeDescription structure.

Container Interface

The Container interface is used to form a containment hierarchy in the Interface
Repository. A Container can contain any number of objects derived from the
Contained interface. All Containers, except for Repository, are also derived from
Contained.

module CORBA {
 typedef sequence <Contained> ContainedSeq;

 interface Container : IRObject {
 Contained lookup (in ScopedName search_name);

 ContainedSeq contents (
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

 ContainedSeq lookup_name (
 in Identifier search_name,
 in long levels_to_search,
 in DefinitionKind limit_type,
 in boolean exclude_inherited
);

 struct Description {
 Contained contained_object;
 DefinitionKind kind;
 any value;

8 Interface Repository Interfaces

8-10 Java Programming Reference

 };

 typedef sequence<Description> DescriptionSeq;

 DescriptionSeq describe_contents (
 in DefinitionKind limit_type,
 in boolean exclude_inherited,
 in long max_returned_objs
);
 };
};

The lookup operation locates a definition relative to this container, given a scoped
name using the OMG IDL rules for name scoping. An absolute scoped name
(beginning with “::”) locates the definition relative to the enclosing Repository. If no
object is found, a nil object reference is returned.

The contents operation returns the list of objects directly contained by or inherited
into the object. The operation is used to navigate through the hierarchy of objects.
Starting with the Repository object, a client uses this operation to list all of the objects
contained by the Repository, all of the objects contained by the modules within the
Repository, all of the interfaces within a specific module, and so on.

limit_type

If limit_type is set to dk_all , objects of all types are returned. For
example, if this is an InterfaceDef, the attribute, operation, and exception
objects are all returned. If limit_type is set to a specific interface, only
objects of that type are returned. For example, only attribute objects are
returned if limit_type is set to dk_Attribute .

exclude_inherited

If set to TRUE, inherited objects (if there are any) are not returned. If set to
FALSE, all contained objects (whether contained due to inheritance or
because they were defined within the object) are returned.
The lookup_name operation is used to locate an object by name within a
particular object or within the objects contained by that object. The
describe_contents operation combines the contents operation and the
describe operation. For each object returned by the contents operation, the
description of the object is returned (that is, the object’s describe operation
is invoked and the results are returned).

search_name

Specifies which name is to be searched for.

Interface Repository Interfaces

Java Programming Reference 8-11

levels_to_search

Controls whether the lookup is constrained to the object the operation is
invoked on, or whether the lookup should search through objects contained
by the object as well. Setting levels_to_search to -1 searches the current
object and all contained objects. Setting levels_to_search to 1 searches
only the current object.

max_returned_objs

Limits the number of objects that can be returned in an invocation of the call
to the number provided. Setting the parameter to -1 indicates return all
contained objects.

IDLType Interface

The IDLType interface (shown below) is an abstract interface inherited by all Interface
Repository objects that represent OMG IDL types. It provides access to the TypeCode
describing the type, and is used in defining other interfaces wherever definitions of
IDL types must be referenced.

module CORBA {
 interface IDLType : IRObject {
 readonly attribute TypeCode type;
 };
};

The type attribute describes the type defined by an object derived from IDLType.

Repository Interface

Repository (shown below) is an interface that provides global access to the Interface
Repository. The Repository object can contain constants, typedefs, exceptions,
interfaces, and modules. As it inherits from Container, it can be used to look up any
definition (whether globally defined or defined within a module or an interface) either
by name or by id.

module CORBA {
 interface Repository : Container {
 Contained lookup_id (in RepositoryId search_id);
 PrimitiveDef get_primitive (in PrimitiveKind kind);

8 Interface Repository Interfaces

8-12 Java Programming Reference

 };
};

The lookup_id operation is used to look up an object in a Repository, given its
RepositoryId. If the Repository does not contain a definition for search_id, a nil
object reference is returned.

The get_primitive operation returns a reference to a PrimitiveDef with the specified
kind attribute. All PrimitiveDefs are immutable and are owned by the Repository.

ModuleDef Interface

A ModuleDef (shown below) can contain constants, typedefs, exceptions, interfaces,
and other module objects.

module CORBA {
 interface ModuleDef : Container, Contained {
 };

 struct ModuleDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 };

};

The inherited describe operation for a ModuleDef object returns a
ModuleDescription.

ConstantDef Interface

A ConstantDef object (shown below) defines a named constant.

module CORBA {
 interface ConstantDef : Contained {
 readonly attribute TypeCode type;
 readonly attribute IDLType type_def;
 readonly attribute any value;
 };

Interface Repository Interfaces

Java Programming Reference 8-13

 struct ConstantDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 any value;
 };
};

type
Specifies the TypeCode describing the type of the constant. The type of a
constant must be one of the simple types (long, short, float, char, string, octet,
and so on).

type_def
Identifies the definition of the type of the constant.

value
Contains the value of the constant, not the computation of the value (for
example, the fact that it was defined as “1+2”).

The describe operation for a ConstantDef object returns a ConstantDescription.

TypedefDef Interface

A TypedefDef (shown below) is an abstract interface used as a base interface for all
named nonobject types (structures, unions, enumerations, and aliases). The
TypedefDef interface is not inherited by the definition objects for primitive or
anonymous types.

module CORBA {
 interface TypedefDef : Contained, IDLType {
 };

 struct TypeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 };
};

8 Interface Repository Interfaces

8-14 Java Programming Reference

The inherited describe operation for interfaces derived from TypedefDef returns a
TypeDescription.

StructDef

A StructDef (shown below) represents an OMG IDL structure definition. It contains
the members of the struct.

module CORBA {
 struct StructMember {
 Identifier name;
 TypeCode type;
 IDLType type_def;
 };
 typedef sequence <StructMember> StructMemberSeq;

 interface StructDef : TypedefDef, Container{
 readonly attribute StructMemberSeq members;
 };
};

The members attribute contains a description of each structure member.

The inherited type attribute is a tk_struct TypeCode describing the structure.

UnionDef

A UnionDef (shown below) represents an OMG IDL union definition. It contains the
members of the union.

module CORBA {
 struct UnionMember {
 Identifier name;
 any label;
 TypeCode type;
 IDLType type_def;
 };
 typedef sequence <UnionMember> UnionMemberSeq;

 interface UnionDef : TypedefDef, Container {
 readonly attribute TypeCode discriminator_type;

Interface Repository Interfaces

Java Programming Reference 8-15

 readonly attribute IDLType discriminator_type_def;
 readonly attribute UnionMemberSeq members;
 };
};

discriminator_type and discriminator_type_def
Describe and identify the union’s discriminator type.

members

Contains a description of each union member. The label of each
UnionMemberDescription is a distinct value of the discriminator_type.
Adjacent members can have the same name. Members with the same name
must also have the same type. A label with type octet and value 0 (zero)
indicates the default union member.

The inherited type attribute is a tk_union TypeCode describing the union.

EnumDef

An EnumDef (shown below) represents an OMG IDL enumeration definition.

module CORBA {
 typedef sequence <Identifier> EnumMemberSeq;

 interface EnumDef : TypedefDef {
 readonly attribute EnumMemberSeq members;
 };
};

members
Contains a distinct name for each possible value of the enumeration.

The inherited type attribute is a tk_enum TypeCode describing the enumeration.

AliasDef

An AliasDef (shown below) represents an OMG IDL typedef that aliases another
definition.

8 Interface Repository Interfaces

8-16 Java Programming Reference

module CORBA {
 interface AliasDef : TypedefDef {
 readonly attribute IDLType original_type_def;
 };
};

original_type_def
Identifies the type being aliased.

The inherited type attribute is a tk_alias TypeCode describing the alias.

PrimitiveDef

A PrimitiveDef (shown below) represents one of the OMG IDL primitive types.
Because primitive types are unnamed, this interface is not derived from TypedefDef
or Contained.

module CORBA {
 enum PrimitiveKind {
 pk_null, pk_void, pk_short, pk_long, pk_ushort, pk_ulong,
 pk_float, pk_double, pk_boolean, pk_char, pk_octet,
 pk_any, pk_TypeCode, pk_Principal, pk_string, pk_objref,
 pk_longlong, pk_ulonglong, pk_longdouble, pk_wchar, pk_wstring
 };

 interface PrimitiveDef: IDLType {
 readonly attribute PrimitiveKind kind;
 };
};

kind
Indicates which primitive type the PrimitiveDef represents. There are no
PrimitiveDefs with kind pk_null. A PrimitiveDef with kind pk_string
represents an unbounded string. A PrimitiveDef with kind pk_objref
represents the OMG IDL type Object.

The inherited type attribute describes the primitive type.

All PrimitiveDefs are owned by the Repository. References to them are obtained using
Repository::get_primitive.

Interface Repository Interfaces

Java Programming Reference 8-17

ExceptionDef

An ExceptionDef (shown below) represents an exception definition. It can contain
structs, unions, and enums.

module CORBA {
 interface ExceptionDef : Contained, Container {
 readonly attribute TypeCode type;
 readonly attribute StructMemberSeq members;
 };

 struct ExceptionDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 };
};

type
tk_except TypeCode that describes the exception.

members
Describes any exception members.

The describe operation for a ExceptionDef object returns an ExceptionDescription.

AttributeDef

An AttributeDef (shown below) represents the information that defines an attribute of
an interface.

module CORBA {
 enum AttributeMode {ATTR_NORMAL, ATTR_READONLY};

 interface AttributeDef : Contained {
 readonly attribute TypeCode type;
 attribute IDLType type_def;
 attribute AttributeMode mode;
 };

8 Interface Repository Interfaces

8-18 Java Programming Reference

 struct AttributeDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode type;
 AttributeMode mode;
 };
};

type
Provides the TypeCode describing the type of this attribute.

type_def
Identifies the object that defines the type of this attribute.

mode
Specifies read only or read/write access for this attribute.

OperationDef

An OperationDef (shown below) represents the information needed to define an
operation of an interface.

module CORBA {
 enum OperationMode {OP_NORMAL, OP_ONEWAY};

 enum ParameterMode {PARAM_IN, PARAM_OUT, PARAM_INOUT};
 struct ParameterDescription {
 Identifier name;
 TypeCode type;
 IDLType type_def;
 ParameterMode mode;
 };
 typedef sequence <ParameterDescription> ParDescriptionSeq;

 typedef Identifier ContextIdentifier;
 typedef sequence <ContextIdentifier> ContextIdSeq;

 typedef sequence <ExceptionDef> ExceptionDefSeq;
 typedef sequence <ExceptionDescription> ExcDescriptionSeq;

 interface OperationDef : Contained {

Interface Repository Interfaces

Java Programming Reference 8-19

 readonly attribute TypeCode result;
 readonly attribute IDLType result_def;
 readonly attribute ParDescriptionSeq params;
 readonly attribute OperationMode mode;
 readonly attribute ContextIdSeq contexts;
 readonly attribute ExceptionDefSeq exceptions;
 };

 struct OperationDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 TypeCode result;
 OperationMode mode;
 ContextIdSeq contexts;
 ParDescriptionSeq parameters;
 ExcDescriptionSeq exceptions;
 };
};

result
A TypeCode that describes the type of the value returned by the operation.

result_def
Identifies the definition of the returned type.

params
Describes the parameters of the operation. It is a sequence of
ParameterDescription structures. The order of the ParameterDescriptions in
the sequence is significant. The name member of each structure provides the
parameter name. The type member is a TypeCode describing the type of the
parameter. The type_def member identifies the definition of the type of the
parameter. The mode member indicates whether the parameter is an in, out, or
inout parameter.

mode

The operation’s mode is either oneway (that is, no output is returned) or
normal.

contexts
Specifies the list of context identifiers that apply to the operation.

8 Interface Repository Interfaces

8-20 Java Programming Reference

exceptions
Specifies the list of exception types that can be raised by the operation.

The inherited describe operation for an OperationDef object returns an
OperationDescription.

The inherited describe_contents operation provides a complete description of this
operation, including a description of each parameter defined for this operation.

InterfaceDef

An InterfaceDef object (shown below) represents an interface definition. It can contain
constants, typedefs, exceptions, operations, and attributes.

module CORBA {
 interface InterfaceDef;
 typedef sequence <InterfaceDef> InterfaceDefSeq;
 typedef sequence <RepositoryId> RepositoryIdSeq;
 typedef sequence <OperationDescription> OpDescriptionSeq;
 typedef sequence <AttributeDescription> AttrDescriptionSeq;

 interface InterfaceDef : Container, Contained, IDLType {

 readonly attribute InterfaceDefSeq base_interfaces;

 boolean is_a (in RepositoryId interface_id);

 struct FullInterfaceDescription {
 Identifier name;
 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 OpDescriptionSeq operations;
 AttrDescriptionSeq attributes;
 RepositoryIdSeq base_interfaces;
 TypeCode type;
 };

 FullInterfaceDescription describe_interface();

 };

 struct InterfaceDescription {
 Identifier name;

Interface Repository Interfaces

Java Programming Reference 8-21

 RepositoryId id;
 RepositoryId defined_in;
 VersionSpec version;
 RepositoryIdSeq base_interfaces;
 };
};

base_interfaces
Lists all the interfaces from which this interface inherits. The is_a operation
returns TRUE if the interface on which it is invoked either is identical to or
inherits, directly or indirectly, from the interface identified by its
interface_id parameter. Otherwise, it returns FALSE.

The describe_interface operation returns a FullInterfaceDescription describing
the interface, including its operations and attributes.

The inherited describe operation for an InterfaceDef returns an InterfaceDescription.

The inherited contents operation returns the list of constants, typedefs, and
exceptions defined in this InterfaceDef and the list of attributes and operations either
defined or inherited in this InterfaceDef. If the exclude_inherited parameter is set
to TRUE, only attributes and operations defined within this interface are returned. If
the exclude_inherited parameter is set to FALSE, all attributes and operations are
returned.

8 Interface Repository Interfaces

8-22 Java Programming Reference

Java Programming Reference 9-1

CHAPTER

9 Joint Client/Server
Applications

This chapter contains the following topics:

t Introduction. This section includes the following topics:

t Main Program and Server Initialization

t Servants

t Servant Inheritance from Skeletons

t Callback Object Models Supported

t Preparing Callback Objects using BEAWrapper Callbacks

t Threading Considerations in the Main Program

t Java Client ORB Initialization

t IIOP Support

t Callbacks Interface API

This chapter describes programming requirements for joint client/server applications.
For a description of the BEAWrapper package and the Callbacks interface API, see
the Java API Reference.

9 Joint Client/Server Applications

9-2 Java Programming Reference

Introduction

For either a WebLogic Enterprise client applications or a joint client/server application
(that is, a client that can receive and process object invocations), create a Java client
main() method. The main() method uses WebLogic Enterprise environmental
objects to establish connections, set up security, and start transactions.

WebLogic Enterprise clients invoke operations on objects. In the case of DII, client
code creates the DII Request object and then invokes one of two operations on the DII
Request. In the case of static invocation, client code performs the invocation by
performing what looks like an ordinary Java invocation (which ends up calling code in
the generated client stub). Additionally, the client programmer uses ORB interfaces
defined by OMG and WebLogic Enterprise environmental objects that are supplied
with the WebLogic Enterprise software to perform functions unique to WebLogic
Enterprise.

For WebLogic Enterprise joint client/server applications, the client code must be
structured so that it can act as a server for callback WebLogic Enterprise objects only.
Such clients do not use the TP Framework and are not subject to WebLogic Enterprise
system administration. Besides the programming implications, this means that joint
client/server applications do not have the same scalability and reliability as WebLogic
Enterprise servers, nor do they have the state management and transaction behavior
available in the TP Framework. If a user wants to have those characteristics, the
application must be structured in such a way that the object implementations are in a
WebLogic Enterprise server, rather than in a client.

The following sections describe the mechanisms you use to add callback support to a
WebLogic Enterprise client. In some cases, the mechanisms are contrasted with the
WebLogic Enterprise server mechanisms that use the TP Framework.

Main Program and Server Initialization

In a WebLogic Enterprise Java server, you use the buildjavaserver command to
create the main program for the server. The server main program takes care of all
WebLogic Enterprise- and CORBA-related initialization of the server functions.
However, since you implement the Server object, you have an opportunity to

Introduction

Java Programming Reference 9-3

customize the way in which the server application is initialized and shut down. The
server main program automatically invokes methods on the Server object at the
appropriate times.

In contrast, for a WebLogic Enterprise joint client/server application (as for a
WebLogic Enterprise client), you create the main program and are responsible for all
initialization. You do not need to provide a Server object because you have complete
control over the main program and you can provide initialization and shutdown code
in any way that is convenient.

The specific initialization needed for a joint client/server application is discussed in the
section “Servants” on page 9-3.

Servants

Servants (method code) for WebLogic Enterprise joint client/server applications are
very similar to servants for WebLogic Enterprise servers. All business logic is written
the same way. The differences result from not using the TP Framework, which
includes the Server, TP, and Tobj_Servant classes. Therefore, the main difference
is that you use CORBA functions directly instead of indirectly through the TP
Framework.

In WebLogic Enterprise Java server applications, servants are created dynamically.
However, in WebLogic Enterprise joint client/server applications, the user application
is responsible for creating a servant before any requests arrive; thus, the Server class
is not needed. Typically, the program creates a servant, initializes it, and then activates
the object. The process of activation, which associates the servant with an object ID
(either user supplied or system generated), results in the creation of an object reference
that the server application subsequently can provide to another process. Such an object
might be used to handle callbacks. Thus, the servant already exists, and the object is
already active, before a request for that object arrives.

Instead of invoking the TP interface to perform certain operations, client servants
directly invoke the ORB and the BOA (for clients that are based on the Java JDK
ORB). Alternately, since much of the interaction with the ORB and the BOA is the
same for all applications, the join client/server library (wleclient.jar) provides a
convenience wrapper object (Callbacks) that does the same things using a single
operation. In addition, the wrapper objects also provide extra POA-like life span
policies for ObjectIds, see “Callback Object Models Supported” on page 9-4 and
“Preparing Callback Objects using BEAWrapper Callbacks” on page 9-6.

9 Joint Client/Server Applications

9-4 Java Programming Reference

Servant Inheritance from Skeletons

In a WLE client, as well as in a WLE server, a user-written Java implementation class
inherits from the same skeleton class name generated by the idltojava compiler. For
example, given the IDL:

interface Hospital{ … };

The skeleton generated by idltojava contains a skeleton class,
_HospitalImplBase , from which the user-written class inherits, as in:

class HospitalImpl extends _HospitalImplBase {…};

In a WLE server application, the skeleton class inherits from the TP Framework class
com.beasys.Tobj_Servant , which in turn inherits from the CORBA-defined class
org.omg.PortableServer.Servant .

The inheritance tree for a callback object implementation in a joint client/server
application is different from that of a client. The skeleton class does not inherit from
the TP Framework class, but instead inherits from the
org.omg.CORBA.DynamicImplementation class, which in turn inherits from the
org.omg.CORBA.portable.ObjectImpl class.

Not having the Tobj_Servant class in the inheritance tree for a servant means that the
servant does not have the activate_object and deactivate_object methods. In a
WLE server application, these methods are invoked by the TP Framework to
dynamically initialize and save a servant’s state before invoking a method on the
servant. For a joint client/server application, user code must explicitly create a servant
and initialize a servant’s state; therefore, the Tobj_Servant operations are not
needed.

Callback Object Models Supported

WebLogic Enterprise software supports the three kinds of callback objects. These
object types are described here primarily in terms of their behavioral characteristics
rather than in the details about how the ORB and the wrapper classes handle them.

Introduction

Java Programming Reference 9-5

The three kinds of callback objects are:

t Transient/SystemId

Object references are valid only for the life of the client process. The objectId
is not assigned by the client application, but is a unique value assigned by the
system. This type of object is useful for invocations that a client wants to receive
only until the client terminates. If used with a Notification or Event Service, for
example, these are callbacks that correspond to the concept of transient events
and transient channels. (The corresponding POA LifeSpanPolicy value is
TRANSIENT, and the IdAssignmentPolicy is SYSTEM_ID.)

t Persistent/SystemId

Object references are valid across multiple activations. The objectId is not
assigned by the client application, but is a unique value assigned by the system.
This type of object and object reference is useful when the client goes up and
down over a period of time. When the client is up, it can receive callback objects
on that particular object reference. Typically, the client creates the object
reference once, saves it in its own permanent storage area, and reactivates the
servant for that object every time the client comes up. If used with a Notification
Service, for example, these are callbacks that correspond to the concept of a
persistent subscription; that is, the Notification Service remembers the callback
reference and delivers events any time the client is up and declares that it is
again ready to receive them. This allows notification to survive client failures or
offline-time. (The corresponding POA policy values are PERSISTENT and
SYSTEM_ID.)

t Persistent/UserId

This is the same as Persistent/SystemId, except that the objectId has to be
assigned by the client application. Such an objectId might be, for example, a
database key meaningful only to the client. (The corresponding POA policy
values are PERSISTENT and USER_ID.)

Note: The Transient/UserId policy combination is not considered particularly
important. In any event, this policy combination is not available in Java server
applications.

Note: For WebLogic Enterprise native joint client/server applications, neither of the
Persistent policies is supported, only the Transient policy.

9 Joint Client/Server Applications

9-6 Java Programming Reference

In C++, these object models are established by using combinations of the following
POA policies, which control both the types of objects and the types of object references
that are possible:

t LifeSpanPolicy, which controls how long an object reference is valid

t IdAssignmentPolicy, which controls who assigns the objectId—the user or the
system

However, since the ORB used for Java server applications does not provide a POA, the
WLE system provides a Callbacks wrapper class that emulates these POA policies.

Preparing Callback Objects using BEAWrapper Callbacks

Because the code to prepare for callback objects is nearly identical for every joint
client/server application, and because the Java JDK ORB does not implement a POA,
WLE provides a wrapper class in the joint client/server library that is virtually identical
to the wrapper class provided in C++. This wrapper class emulates the POA policies
needed to support the three types of callback objects.

The following code shows the Callback wrapper interfaces.

package com.beasys.BEAWrapper;

 class Callbacks{
 public Callbacks ();

 public Callbacks (org.omg.CORBA.Object init_orb);

 public org.omg.CORBA.Object start_transient (
 org.omg.PortableServer.ObjectImpl servant,
 java.lang.String rep_id)
 throws ServantAlreadyActive,
 org.omg.CORBA.BAD_PARAMETER;

 public org.omg.CORBA.Object start_persistent_systemid (
 org.omg.PortableServer.ObjectImpl servant,
 java.lang.String rep_id,
 org.omg.CORBA.StringHolder stroid)
 throws ServantAlreadyActive,
 org.omg.CORBA.BAD_PARAMETER,
 org.omg.CORBA.IMP_LIMIT;

 public org.omg.CORBA.Object restart_persistent_systemid (

Introduction

Java Programming Reference 9-7

 org.omg.PortableServer.ObjectImpl servant,
 java.lang.String rep_id,
 java.lang.String stroid)
 throws ServantAlreadyActive,
 ObjectAlreadyActive,
 org.omg.CORBA.BAD_PARAMETER,
 org.omg.CORBA.IMP_LIMIT;

 public org.omg.CORBA.Object start_persistent_userid (
 org.omg.PortableServer.ObjectImpl servant,
 java.lang.String rep_id,
 java.lang.String stroid)
 throws ServantAlreadyActive,
 ObjectAlreadyActive,
 org.omg.CORBA.BAD_PARAMETER,
 org.omg.CORBA.IMP_LIMIT;

 public void stop_object(
 org.omg.PortableServer.ObjectImpl
 servant);

 public String get_string_oid ()
 throws NotInRequest;

 public void stop_all_objects();

};

Threading Considerations in the Main Program

When a program acts as both a client and a server in a Java client, those two parts can
execute concurrently in different threads. Since Java as an execution environment is
inherently multithreaded, there is no reason to invoke the
org.omg.CORBA.orb.work_pending and org.omg.CORBA.orb.perform_work
methods from a Java client. In fact, if the Java client tries to invoke these methods,
these methods throw an org.omg.CORBA.NO_IMPLEMENT exception. The client does
not need to invoke the org.omg.CORBA.orb.run method. As in any multithreaded
environment, any code that may execute concurrently (client and servant code for a
callback) in the client application must be coded to be thread safe. This is a departure
from C++ clients, which are currently single-threaded.

9 Joint Client/Server Applications

9-8 Java Programming Reference

Multiple Threads

In Java, the client starts up in the main thread. The client can then set up callback
objects via an invocation to any of the (re)start_xxxx methods provided by the
Callbacks wrapper class. The wrapper class handles registering the servant and its
associated OID in the ORB’s object manager. The application is then free to pass the
object reference returned by the (re)start_xxxx method to an application that needs
to call back to the servant.

Note: The ORB requires an explicit invocation to one of the (re)start_xxxx
methods to effectively initialize the servant and create a valid object reference
that can be marshaled properly to another application. This is a deviation
from the base JDK 1.2 ORB behavior that allows implicit object reference
creation via an internal invocation to the orb.connect method when
marshaling an object reference, if the application has not yet done so.

Invocations on the callback object are handled by the ORB. As each request is
received, the ORB validates the request against the object manager and spawns a
thread for that request. Multiple requests can be made simultaneously to the same
object because the ORB creates a new thread for each request; that is why the Servant
code of the Callback must be written thread safe. As each request terminates, the
thread that runs the servant also terminates.

The main client thread can make as many client invocations as necessary. An
invocation to the stop_(all_)object methods merely takes the object out of the
object manager’s list, thereby preventing any further invocations on it. Any invocation
to a stopped object fails as if it never existed.

If the client application needs to retrieve the results of a callback from another thread,
the client application must use normal thread synchronization techniques to do so.

If any thread (client main or servant) in the WLE remote-like client application exits,
all the client process activity is stopped, and the Java execution environment
terminates. We recommend only to invoke the return method to terminate a thread.

Java Client ORB Initialization

A client application must initialize the ORB with the BEA-supplied properties. This
is so that the ORB will utilize the BEA-supplied classes and methods that support the
Callbacks wrapper class and the Bootstrap object. You can find these classes in

Introduction

Java Programming Reference 9-9

wleclient.jar, which is installed in $TUXDIR/udataobj/java/jdk (on Solaris) or
%TUXDIR%\udataobj\java\jdk (on Windows NT). The application must set certain
system properties to do this, as shown in the following example:

Properties prop = new Properties(System.getProperties());
prop.put("org.omg.CORBA.ORBClass","com.beasys.CORBA.iiop.ORB");
prop.put("org.omg.CORBA.ORBSingletonClass",
 "com.beasys.CORBA.idl.ORBSingleton");
System.setProperties(prop);
// Initialize the ORB.
ORB orb = ORB.init(args, prop);

IIOP Support

IIOP is the protocol used for communication between ORBs. IIOP allows ORBs from
different vendors to interoperate. For Java server applications, a port number must be
supplied at the client for persistent or user ID object reference policies.

Java Applet Support

IIOP support for applets that want to receive callbacks or callouts is limited due to
applet security mechanisms. Any applet run-time environment that allows an applet
to create and listen on sockets (via their proprietary environment or protocol) will be
able to act as WLE joint client/server applications. If the applet run-time environment
restricts socket communication, then the applet cannot be a joint client/server
application to a WLE application.

Port Numbers for Persistent Object References

WLE Java server applications support only GIOP V1.0, as described in Chapter 13 of
the OMG CORBA 2.2 specification.

For a WLE Java remote joint client/server application to support IIOP, the object
references created for the server component must contain a host and a port. For
transient object references, any port is sufficient and can be obtained by the ORB
dynamically; however, this is not sufficient for persistent object references.

9 Joint Client/Server Applications

9-10 Java Programming Reference

Persistent references must be served on the same port after the ORB restarts. That is,
the ORB must be prepared to accept requests on the same port with which it created
the object reference. Therefore, there must be some way to configure the ORB to use
a particular port.

Java clients that expect to act as servers for callbacks of persistent references must now
be started with a specified port. This is done by setting the system property
org.omg.CORBA.ORBPort, as in the following commands:

For Windows NT:

java -DTOBJADDR=//host:port
 -Dorg.omg.CORBA.ORBPort=xxxx
 -classpath=%CLASSPATH% client

For Unix:

java -DTOBJADDR=//host:port
 -Dorg.omg.CORBA.ORBPort=xxxx
 -classpath=$CLASSPATH client

Typically, a system administrator assigns the port number for the client from the user
range of port numbers, rather from the dynamic range. This keeps the joint
client/server applications from using conflicting ports.

If a WLE remote joint client/server application tries to create a persistent object
reference without having set a port (as in the preceding command line), the operation
raises an exception, IMP_LIMIT, informing the user that a truly persistent object
reference cannot be created.

Callbacks Interface API

For a complete description of the BEAWrapper.Callbacks interface API, see the Java
API Reference

Java Programming Reference 10-1

CHAPTER

10 Java Development and
Administration
Commands

This chapter describes the following commands:

t buildjavaserver

t buildXAJS

t m3idltojava

This chapter is an alphabetical reference that describes each WebLogic Enterprise
development command and Interface Repository administration command for
developing Java applications for the Windows NT and UNIX environments. A list of
valid parameters and options is shown for each command. For information about
building C++ client and server applications, see the C++ Programming Reference.

Note: For descriptions of the idl2ir, irdel, and ir2idl commands, see the
Administration Guide.

Before executing a WebLogic Enterprise command, you must ensure that the
WebLogic Enterprise bin directory is in your defined path:

On Windows NT:

Set Path=%TUXDIR%\Bin;%Path%

On UNIX:

For c shell (csh): set path = ($TUXDIR/bin $path)

10 Java Development and Administration Commands

10-2 Java Programming Reference

For Bourne (sh) or Korn (ksh): PATH=$TUXDIR/bin:$PATH
 export PATH

Before executing a WebLogic Enterprise command, you must set the environment
variables that are listed with each command.

On Windows NT systems, the syntax for setting an environment variable is:

set var=value

On UNIX systems, the syntax for setting an environment variable is:

t For c shell:

setenv var value

t For Bourne and Korn (sh/ksh):

var=value
export var

Java Programming Reference 10-3

buildjavaserver

Synopsis Constructs a Java WebLogic Enterprise server application jar file.

Syntax buildjavaserver [-s searchpath] input_file

Description Once the class files that make up a server application have been created and specified,
along with interface activation and transaction policies, in the Server Description File,
you use the buildjavaserver command to create the jar file. The jar file contains
all the server application class files and a server descriptor. The server descriptor is a
serialized Java object that contains:

t Information about all the servant classes implemented by the server application

t Activation and transaction policies for all the interfaces that have been defined
in the application’s OMG IDL file

t The name of the Server object, which initializes and stops the server application
and performs object housekeeping

Options -s

Specifies a path to be used by the buildjavaserver command to locate the
classes and packages needed for building the jar file. If you do not specify
this option, the buildjavaserver command uses the class path by default.

input_file

Specifies the name of the Server Description File. For information about
creating this file, see Chapter 2, “Server Description File.”

Environment
Variables

TUXDIR

Finds the WebLogic Enterprise libraries and include files to use when
compiling the server application.

LD_LIBRARY_PATH (Solaris systems)
Indicates which directories contain shared objects to be used by the compiler,
in addition to the WebLogic Enterprise shared objects. A colon (:) is used to
separate the list of directories.

LIB (Windows NT systems)
Indicates a list of directories within which to find libraries. A semicolon (;) is
used to separate the list of directories.

Portability The buildjavaserver command is not supported on client-only WebLogic
Enterprise systems.

10 Java Development and Administration Commands

10-4 Java Programming Reference

Example The following example builds a Java WebLogic Enterprise server application jar file
on a Solaris system. This example uses the com/acme path for locating classes and
packages for the archive and also uses the Server Description File MyServer.xml.

buildjavaserver -s com/acme MyServer.xml

Java Programming Reference 10-5

buildXAJS

Synopsis Constructs an XA resource manager to be used with a Java server application group.

Syntax buildXAJS [-v] -r rmname [-o outfile]

Description Use this command to build an XA resource manager that you want to use with a Java
server application group. In the application’s UBBCONFIG file, you use the
JavaServerXA element in place of the JavaServer element to associate the XA
resource manager with a specified server group. Note that a server application
configured to use the default XA resource manager (that is, NULL) cannot coexist in a
server group that uses a nondefault XA resource manager, such as Oracle. Refer to the
Administration Guide for more information about configuring server groups with an
XA resource manager.

Options -v

Specifies that the buildXAJS command should work in verbose mode. In
particular, it writes the build command to its standard output.

-r rmname

Specifies the resource manager associated with this server. The value rmname
must appear in the resource manager table located in $TUXDIR/udataobj/RM

on Solaris systems, or %TUXDIR%\udataobj\RM on Windows NT systems.
On Solaris systems, each entry in this file is of the form
rmname:rmstructure_name:library_names. On NT systems, each entry
in this file is of the form rmname;rmstructure_name;library_names.
Using the rmname value, the entry in $TUXDIR/udataobj/RM or
%TUXDIR%\udataobj\RM automatically includes the associated libraries for
the resource manager and properly sets up the interface between the
transaction manager and the resource manager. The value TUXEDO/SQL
includes the libraries for the BEA TUXEDO System/SQL resource manager.
Other values can be specified as they are added to the resource manager table.
If the -r option is not specified, the default is to use the null resource
manager.

-o outfile
Specifies the name of the output file. If no name is specified, the default is
JavaServerXA.

Environment
Variables

TUXDIR

Finds the WebLogic Enterprise libraries and include files to use when
compiling the server application.

10 Java Development and Administration Commands

10-6 Java Programming Reference

LD_LIBRARY_PATH (Solaris systems)
Indicates which directories contain shared objects to be used by the compiler,
in addition to the WebLogic Enterprise shared objects. A colon (:) is used to
separate the list of directories.

LIB (Windows NT systems)
Indicates a list of directories within which to find libraries. A semicolon (;) is
used to separate the list of directories.

Portability The buildXAJS command is not supported on client-only WebLogic Enterprise
systems.

Example The following example builds a Java server XA resource manager on a Solaris system:

buildXAJS -r oracle7

Java Programming Reference 10-7

m3idltojava

Synopsis Compiles the Object Management Group (OMG) Interface Definition Language (IDL)
file and generates client stub and server skeleton files required for the interface
definitions being implemented in Java. Use this command only when you are creating
a Java server application.

Syntax m3idltojava [-p] [-j javaDirectory] [-Idirectory][-Dsymbol]
 [-Usymbol] [-foptions] idl-filename...

Description The m3idltojava command compiles OMG IDL source files into Java source code.
You then use the javac compiler to compile that source into Java bytecodes. The OMG
IDL declarations from the named OMG IDL files are translated to Java declarations
according to the mapping from OMG IDL to Java.

Given the provided idl-filename file(s), the m3idltojava command generates the
following files for each interface defined in the server application’s OMG IDL file:

interface-name.java
Contains the Java version of the interface definitions in the OMG IDL file.
Each interface implementation extends the org.omg.CORBA.Object class.

_interface-nameStub.java

Is the client stub file.

_interface-nameImplBase.java
Is the Server skeleton file, which is extended by the server application’s
object implementation classes.

interface-nameHelper.java
Contains the helper class for the object.

interface-nameHolder.java
Contains the holder class for the object.

The m3idltojava compiler generates the client stub and server skeleton files. Any
previous versions are overwritten.

If an unknown option is passed to this command, the offending option and a usage
message is displayed to the user, and the compile is not performed.

For more information about OMG IDL syntax, see Chapter 1, “OMG IDL Syntax.”

Parameter idl-filename
Represents the name of one or more files that contain OMG IDL statements.

10 Java Development and Administration Commands

10-8 Java Programming Reference

Options -p package
Specifies that generated Java classes should be part of the given package. The
compiler creates the appropriate directory hierarchy and stores the generated
files in the directory that corresponds to their package. If you specify the -j
option, the hierarchy is created under the specified directory. Otherwise, the
hierarchy is created under the current directory. You can override this option
by using #pragma javaPackage in the OMG IDL source file.

-j javaDirectory
Specifies that generated Java files should be written to the specified directory.
This directory is independent of the -p option, if used.

-Idirectory
Specifies directories within which to search for include files, in addition to
any directories specified with the #include OMG IDL preprocessor
directive. Multiple directories can be specified by using multiple -I options.

There are two types of #include OMG IDL preprocessor directives:
system (for example, <a.idl>) and user (for example, "a.idl"). The
path for system #include directories is the system include directory and any
directories specified with the -I option. The path for user #include
directives is the location of the file containing the #include directive,
followed by the path specified for the system #include directive.

By default, the text in files included with an #include directive is not
included in the client and server code that is generated.

-Dsymbol
Specifies a symbol to be defined during OMG IDL file preprocessing. The
m3idltojava command passes this symbol to the preprocessor.

-Usymbol
Specifies a symbol to be undefined during OMG IDL file preprocessing. The
m3idltojava command passes this symbol to the preprocessor.

-foptions
You can enable the following options by specifying them as shown, and
disable them by appending the string no-. For example, to prevent the C
preprocessor from being run on the input OMG IDL files, specify -fno-cpp.

-flist-flags

Displays the state of all -f flags. By default, this option is disabled.

-fclient

Generates the client application files. By default, this option is
enabled.

Java Programming Reference 10-9

-fserver

Generates the server application files. By default, this option is
enabled.

-fverbose

Specifies that the m3idltojava command should work in verbose
mode. In particular, it writes command output to its standard output.
By default, this option is disabled.

-fversion

Specifies that the compiler prints its version and timestamp. By
default, this option is disabled.

Examples The following command generates only the server application files for Simple.idl:

m3idltojava -fno-client Simple.idl

The following command generates only the client application files for Simple.idl:

m3idltojava -fno-server Simple.idl

10 Java Development and Administration Commands

10-10 Java Programming Reference

Java Programming Reference 11-1

CHAPTER

11 CORBA ORB

This chapter supplements the information in package org.omg.CORBA by providing
the following topics:

t Initializing the ORB, which includes the section “Passing the Address of the
IIOP Listener”

t Initializing the ORB for Native and Remote Clients

Note: For details about the API for package org.omg.CORBA, see the Java IDL
document published by the Sun Microsystems, Inc. and distributed with the
JDK 1.2.

Initializing the ORB

[This section is reprinted from the package information for org.omg.CORBA, as
published by Sun Microsystems, Inc. for the JDK 1.2.]

An application or applet gains access to the CORBA environment by initializing itself
into an ORB using one of three init methods. Two of the three methods use the
properties (associations of a name with a value) shown in the following table:

These properties allow a different vendor's ORB implementation to be "plugged in."

Property Name Property Value

org.omg.CORBA.ORBClass Class name of an ORB implementation

org.omg.CORBA.ORBSingletonClass Class name of the ORB returned by init()

11 CORBA ORB

11-2 Java Programming Reference

When an ORB instance is being created, the class name of the ORB implementation is
located using the following standard search order:

1. Check in Applet parameter or application string array, if any.

2. Check in properties parameter, if any.

3. Check in the System properties (currently applications only).

4. Fall back on a hardcoded default behavior (use the Java IDL implementation).

Note that the WebLogic Enterprise ORB provides a default implementation for the
fully functional ORB and for the Singleton ORB. When the init method is given no
parameters, the default Singleton ORB is returned. When the init method is given
parameters but no ORB class is specified, the Java IDL ORB implementation is
returned.

The following code fragment creates an ORB object initialized with the default ORB
Singleton. This ORB has a restricted implementation to prevent malicious applets from
doing anything beyond creating typecodes. It is called a Singleton because there is only
one instance for an entire virtual machine.

ORB orb = ORB.init();

The following code fragment creates an ORB object and a Singleton ORB object for
an application.

Properties p = new Properties();
p.put("org.omg.CORBA.ORBClass", "com.sun.CORBA.iiop.ORB");
p.put("org.omg.CORBA.ORBSingletonClass","com.sun.CORBA.idl.ORBSingleton");
System.setProperties(p);
ORB orb = ORB.init(args, p);

In the preceding code fragment, note the following:

t The ORB class is to be initialized as com.sun.CORBA.iiop.ORB.

t The SingletonORB class is to be initialized as
com.sun.CORBA.idl.ORBSingleton.

t The statement System.setProperties(p) sets the system properties based on
the value of p.

t The parameter args represents the arguments supplied to the application’s main
method. If p is null, and the arguments do not specify an ORB class, the new
ORB is initialized with the default Java IDL implementation.

Initializing the ORB for Native and Remote Clients

Java Programming Reference 11-3

Note: Due to the security restrictions on applets, you will probably not be able to
invoke the System.setProperties method from within an applet. Instead,
you can set the org.omg.CORBA.ORBClass and
org.omg.CORBA.ORBSingletonClass parameters via HTML before
starting the applet.

The following code fragment creates an ORB object for the applet supplied as the first
parameter. If the given applet does not specify an ORB class, the new ORB will be
initialized with the default WebLogic Enterprise ORB implementation.

ORB orb = ORB.init(myApplet, null);

An application or applet can be initialized in one or more ORBs. ORB initialization is
a bootstrap call into the CORBA world.

Passing the Address of the IIOP Listener

When you compile WebLogic Enterprise client and server applications, use the
-DTOBJADDR option to specify the host and port of the IIOP Listener. This allows you,
in the application code, to specify null as a host and port string in invocations to:

t The ORB.init method

t The local Bootstrap object

By keeping host and port specifications out of your client and server application code,
you maximize the portability and reusability of your application code.

Initializing the ORB for Native and Remote
Clients

WebLogic Enterprise provides two methods on the com.beasys.Tobj_Bootstrap
object that client applications use to initialize the ORB, depending on whether the
client is native (that is, on a process that is inside the WebLogic Enterprise domain) or
remote (that is, on a machine that needs to communicate to the server application via
the IIOP Listener/Handler).

11 CORBA ORB

11-4 Java Programming Reference

These two methods are:

t The getNativeProperties method

This method returns a set of properties that need to be passed in a subsequent
invocation of the org.omg.CORBA.ORB.init method. This subsequent
invocation causes BEA’s Java ORB to be initialized. The
getNativeProperties method also initializes the WebLogic Enterprise
infrastructure.

The getNativeProperties method must be invoked before any attempt is
made to access any class in the org.omg.CORBA package; otherwise, errors will
occur when receiving CORBA exceptions from the server.

t The getRemoteProperties method

This method returns the properties needed to initialize the ORB for remote
clients. The getRemoteProperties method is specified for symmetry and
always returns null.

Note: In WLE 4.2, Java native clients are not supported.

Java Programming Reference 12-1

CHAPTER

12 Mapping IDL to Java

This chapter contains the following topics:

t IDL to Java Overview

t Package Comments on Holder Classes

t Exceptions. This section includes the following topics:

t Differences Between CORBA and Java Exceptions

t System Exceptions

t User Exceptions

t Minor Code Meanings

Note: This chapter contains excerpts from the Java IDL document published by Sun
Microsystems, Inc. and distributed with the JDK 1.2.

IDL to Java Overview

The idltojava and m3idltojava tools read an OMG IDL interface and translate it,
or map it, to a Java interface. The m3idltojava tool also creates stub, skeleton, helper,
holder, and other files as necessary. While the idltojava tool creates stub, skeleton,
helper, holder, and other files, the skeleton files it produces cannot be used with the
WebLogic Enterprise system. When compiling the OMG IDL files to build server
skeletons to be used with the WebLogic Enterprise system, be sure to use the
m3idltojava tool.

12 Mapping IDL to Java

12-2 Java Programming Reference

These .java files are generated from the OMG IDL file according to the mapping
specified in the OMG document IDL/Java Language Mapping (available from the
OMG Web site at http://www.omg.org). We cross-reference the following four
chapters of that document here for your convenience:

t Chapter 5, “Mapping IDL to Java”

t Chapter 6, “Mapping Pseudo-Objects to Java”

t Chapter 7, “Server-Side Mapping”

t Chapter 8, “Java ORB Portability Interfaces”

A summary of the IDL to Java language mapping follows.

CORBA objects are defined in OMG IDL. Before they can be used by a Java
programmer, their interfaces must be mapped to Java classes and interfaces. Sun
Microsystems, Inc. provides the idltojava tool, and the WebLogic Enterprise system
includes the m3idltojava tool, which performs this mapping automatically.

This overview shows the correspondence between OMG IDL constructs and Java
constructs. Note that OMG IDL, as its name implies, defines interfaces. Like Java
interfaces, IDL interfaces contain no implementations for their operations (methods in
Java). In other words, IDL interfaces define only the signature for an operation (the
name of the operation, the datatype of its return value, the datatypes of the parameters
that it takes, and any exceptions that it raises). The implementations for these
operations need to be supplied in Java classes written by a Java programmer.

The following table lists the main constructs of IDL and the corresponding constructs
in Java.

IDL Construct Java Construct

module package

interface interface, helper class, holder class

constant public static final

boolean boolean

char, wchar char

octet byte

Package Comments on Holder Classes

Java Programming Reference 12-3

Note: When a CORBA operation takes a type that corresponds to a Java object type
(a String, for example), it is illegal to pass a Java null as the parameter
value. Instead, pass an empty version of the designated object type (for
example, an empty String or an empty array). A Java null can be passed as
a parameter only when the type of the parameter is a CORBA object reference,
in which case the null is interpreted as a nil CORBA object reference.

Package Comments on Holder Classes

Operations in an IDL interface may take out or inout parameters, as well as in
parameters. The Java programming language only passes parameters by value and thus
does not have out or inout parameters; therefore, these are mapped to what are called
Holder classes. In place of the IDL out parameter, the Java programming language

string, wstring java.lang.String

short, unsigned short short

long, unsigned long int

long long, unsigned long
long

long

float float

double double

enum, struct, union class

sequence, array array

exception class

readonly attribute method for accessing value of attribute

readwrite attribute methods for accessing and setting value of attribute

operation method

IDL Construct Java Construct

12 Mapping IDL to Java

12-4 Java Programming Reference

method will take an instance of the Holder class of the appropriate type. The result that
was assigned to the out or inout parameter in the IDL interface is assigned to the
value field of the Holder class.

The package org.omg.CORBA contains a Holder class for each of the basic types
(BooleanHolder, LongHolder, StringHolder, and so on). It also has Holder classes
for each generated class (such as TypeCodeHolder), but these are used transparently
by the ORB, and the programmer usually does not see them.

The Holder classes defined in the package org.omg.CORBA are:

AnyHolder
BooleanHolder
ByteHolder
CharHolder
DoubleHolder
FloatHolder
IntHolder
LongHolder
ObjectHolder
PrincipalHolder
ShortHolder
StringHolder
TypeCodeHolder

Exceptions

CORBA has two types of exceptions: standard system exceptions, which are fully
specified by OMG, and user exceptions, which are defined by the individual
application programmer. CORBA exceptions are a little different from Java exception
objects, but those differences are largely handled in the mapping from IDL to Java.

Topics in this section include:

t Differences Between CORBA and Java Exceptions

t System Exceptions, which includes the following subtopics:

t System Exception Structure

t Minor Codes

t Completion Status

Exceptions

Java Programming Reference 12-5

t User Exceptions

t Minor Code Meanings

Differences Between CORBA and Java Exceptions

To specify an exception in IDL, the interface designer uses the raises keyword. This
is similar to the throws specification in Java. When you use the exception keyword in
IDL, you create a user-defined exception. The standard system exceptions cannot be
specified this way.

System Exceptions

CORBA defines a set of standard system exceptions, which are generally raised by the
ORB libraries to signal systemic error conditions like:

t Server-side system exceptions, such as resource exhaustion or activation failure

t Communication system exceptions, such as losing contact with the object, host
down, or cannot talk to ORB daemon (orbd)

t Client-side system exceptions, such as invalid operand type or anything that
occurs before a request is sent or after the result comes back

All IDL operations can throw system exceptions when invoked. The interface designer
need not specify anything to enable operations in the interface to throw system
exceptions -- the capability is automatic.

This makes sense because no matter how trivial an operation’s implementation is, the
potential of an operation invocation coming from a client that is in another process, and
perhaps (likely) on another machine, means that a whole range of errors is possible.

Therefore, a CORBA client should always catch CORBA system exceptions.
Moreover, developers cannot rely on the Java compiler to notify them of a system
exception they should catch, because CORBA system exceptions are descendants of
java.lang.RuntimeException.

12 Mapping IDL to Java

12-6 Java Programming Reference

System Exception Structure

All CORBA system exceptions have the same structure:

exception <SystemExceptionName> { // descriptive of error
 unsigned long minor; // more detail about error
 CompletionStatus completed; // yes, no, maybe
}

System exceptions are subtypes of java.lang.RuntimeException through
org.omg.CORBA.SystemException:

java.lang.Exception
 |
 +--java.lang.RuntimeException
 |
 +--org.omg.CORBA.SystemException
 |
 +--BAD_PARAM
 |
 +--//etc.

Minor Codes

All CORBA system exceptions have a minor code field, which contains a number that
provides additional information about the nature of the failure that caused the
exception. Minor code meanings are not specified by the OMG; each ORB vendor
specifies appropriate minor codes for that implementation. For the meaning of minor
codes thrown by the Java ORB, see the section “Minor Code Meanings.”

Completion Status

All CORBA system exceptions have a completion status field, which indicates the
status of the operation that threw the exception. The completion codes are:

COMPLETED_YES The object implementation has completed processing prior
to the exception being raised.

COMPLETED_NO The object implementation was not invoked prior to the
exception being raised.

COMPLETED_MAYBE The status of the invocation is unknown.

Exceptions

Java Programming Reference 12-7

User Exceptions

CORBA user exceptions are subtypes of java.lang.Exception through
org.omg.CORBA.UserException:

java.lang.Exception
 |
 +--org.omg.CORBA.UserException
 |
 +-- Stocks.BadSymbol
 |
 +--//etc.

Each user-defined exception specified in IDL results in a generated Java exception
class. These exceptions are entirely defined and implemented by the programmer.

Minor Code Meanings

System exceptions all have a field minor that allows CORBA vendors to provide
additional information about the cause of the exception. As stated in the CORBA 2.2
specification (13.4.2 Reply Message), the high order 20 bits of minor code value
contain a 20-bit "vendor minor codeset ID" (VMCID); the low order 12 bits contain a
minor code. BEA’s VMCID is 0x54555000. Further, Sun defines single or double
digit minor codes for its Java IDL ORB and BEA defines its minor code starting from
1,000. Thus, a condition common to either ORB uses the Java IDL minor code (and
VMCID 0), and the BEA ORB unique minor code is 1,000 or greater.

For Sun Microsystems, Inc. minor codes, see the Java IDL documentation. For BEA’s
minor codes, see the Release Notes.

Table 12-1 ORB Minor Codes and Their Meanings

Code Meaning

BAD_PARAM Exception Minor Codes

1 A null parameter was passed to a Java IDL method.

COMM_FAILURE Exception Minor Codes

12 Mapping IDL to Java

12-8 Java Programming Reference

1 Unable to connect to the host and port specified in the object reference, or in the
object reference obtained after location/object forward.

2 Error occurred while trying to write to the socket. The socket has been closed by the
other side, or is aborted.

3 Error occurred while trying to write to the socket. The connection is no longer alive.

6 Unable to successfully connect to the server after several attempts.

DATA_CONVERSION Exception Minor Codes

1 Encountered a bad hexadecimal character while doing ORB string_to_object
operation.

2 The length of the given IOR for string_to_object() is odd. It must be even.

3 The string given to string_to_object() does not start with IOR: and hence
is a bad stringified IOR.

4 Unable to perform ORB resolve_initial_references operation due to the
host or the port being incorrect or unspecified, or the remote host does not support
the Java IDL bootstrap protocol.

INTERNAL Exception Minor Codes

3 Bad status returned in the IIOP Reply message by the server.

6 When unmarshaling, the repository id of the user exception was found to be of
incorrect length.

7 Unable to determine local hostname using the Java API’s
InetAddress.getLocalHost().getHostName().

8 Unable to create the listener thread on the specific port. Either the port is already in
use, there was an error creating the daemon thread, or security restrictions prevent
listening.

9 Bad locate reply status found in the IIOP locate reply.

10 Error encountered while stringifying an object reference.

11 IIOP message with bad GIOP v1.0 message type found.

14 Error encountered while unmarshaling the user exception.

Code Meaning

Exceptions

Java Programming Reference 12-9

18 Internal initialization error.

INV_OBJREF Exception Minor Codes

1 An IOR with no profile was encountered.

MARSHAL Exception Minor Codes

4 Error occured while unmarshaling an object reference.

5 Marshaling/unmarshaling unsupported IDL types like wide characters and wide
strings.

6 Character encountered while marshaling or unmarshaling a character or string that
is not ISO Latin-1 (8859.1) compliant. It is not in the range of 0 to 255.

NO_IMPLEMENT Exception Minor Codes

1 Dynamic Skeleton Interface is not implemented.

OBJ_ADAPTER Exception Minor Codes

1 No object adapter was found matching the one in the object key when dispatching
the request on the server side to the object adapter layer.

2 No object adapter was found matching the one in the object key when dispatching
the locate request on the server side to the object adapter layer.

4 Error occured when trying to connect a servant to the ORB.

OBJ_NOT_EXIST Exception Minor Codes

1 Locate request got a response indicating that the object is not known to the locator.

2 Server id of the server that received the request does not match the server id baked
into the object key of the object reference that was invoked upon.

4 No skeleton was found on the server side that matches the content of the object key
inside the object reference.

UNKNOWN Exception Minor Codes

1 Unknown user exception encountered while unmarshaling: the server returned a
user exception that does not match any expected by the client.

Code Meaning

12 Mapping IDL to Java

12-10 Java Programming Reference

Table 12-2 Name Server Minor Codes and Their Meanings

3 Unknown run-time exception thrown by the server implementation.

Code Meaning

INITIALIZE Exception Minor Codes

150 Transient name service caught a SystemException while initializing.

151 Transient name service caught a Java exception while initializing.

INTERNAL Exception Minor Codes

100 An AlreadyBound exception was thrown in a rebind operation.

101 An AlreadyBound exception was thrown in a rebind_context operation.

102 Binding type passed to the internal binding implementation was not
BindingType.nobject or BindingType.ncontext.

103 Object reference was bound as a context, but it could not be narrowed to
CosNaming.NamingContext.

200 Implementation of the bind operation encountered a previous binding.

201 Implementation of the list operation caught a Java exception while creating the
list iterator.

202 Implementation of the new_context operation caught a Java exception while
creating the new NamingContext servant.

203 Implementaton of the destroy operation caught a Java exception while
disconnecting from the ORB.

Code Meaning

	Restricted Rights Legend
	Trademarks or Service Marks
	1 OMG IDL Syntax
	Style Guidelines for Writing OMG IDL Statements
	OMG IDL Extensions

	2 Server Description File
	Creating the Server Description File
	About Object Activation and Deactivation
	Server Description File Syntax
	Prolog
	Server Declaration
	Module and Implementation Declarations
	Module Declaration Syntax
	Implementation Declaration Syntax

	Archive Declaration
	Archive Declaration Syntax

	Sample Server Description File

	3 TP Framework
	TP Framework Interfaces
	Tobj_Servant Interface
	Server Interface
	TP Interface
	Usage Notes

	TransactionalObject Interface Not Enforced

	Transactions Usage Notes
	Transaction Termination
	Transaction Suspend and Resume
	Restrictions
	Voting on Transaction Outcome

	4 Bootstrap Object
	How Bootstrap Objects Work
	Types of Remote Clients Supported
	Capabilities and Limitations
	Bootstrap Object API
	Tobj Module
	Java Mapping

	Programming Examples
	Getting a SecurityCurrent Object
	Getting a UserTransaction Object

	5 FactoryFinder Interface
	Capabilities, Limitations, and Requirements
	Functional Description
	Locating a FactoryFinder
	Registering a Factory
	Locating a Factory
	CORBAservices Naming Service Module OMG IDL
	CORBAservices Life Cycle Service Module OMG IDL
	Tobj Module OMG IDL
	Locating Factories in Another Domain
	Why Use WebLogic Enterprise Extensions?

	Creating Application Factory Keys
	Names Library Interface Pseudo OMG IDL
	Creating a Library Name Component
	Creating a Library Name
	The LNameComponent Interface
	The LName Interface
	Destroying a Library Name Component Pseudo-Object
	Inserting a Name Component
	Getting the ith Name Component
	Deleting a Name Component
	Number of Name Components
	Testing for Equality
	Testing for Order
	Producing an OMG IDL form
	Translating an IDL Form
	Destroying a Library Name Pseudo-Object

	Java Mapping

	Java Methods
	Java Programming Examples
	Server Registering a Factory
	Client Obtaining a FactoryFinder Object Reference
	Client Finding One Factory Using the Tobj Approach

	6 Security Service
	Introduction
	Capabilities and Limitations
	Getting Initial References to the SecurityCurrent Object
	Basic Security-Level Requirements for WebLogic Enterprise Clients
	Functional Components
	Security Model
	Authentication of Principals
	Controlling Access to Objects
	Administrative Control

	Security Model Functional Description
	Description
	Logging on to the System
	Example of a Secure Object Invocation

	Authentication
	Authentication Mechanisms
	Authentication Process
	Principal Authenticator Object
	Credentials Object
	SecurityCurrent Object

	Principal Authenticator Object
	WebLogic Enterprise Extensions to the Principal Authenticator Object
	Credentials Object
	SecurityCurrent Object

	Client Security API
	CORBA Module
	TimeBase Module
	Security Module
	Security Level 1 Module
	Security Level 2 Module
	Tobj Module

	Java Programming Examples
	Using WebLogic Enterprise Extensions to Log on
	Getting Information from Privileges
	Checking the Validity of the Credentials Expiration Time
	Authentication Using SecurityLevel2.PrincipalAuthenticator
	Authentication Using Tobj.PrincipalAuthenticator
	Logging Off Using Tobj.PrincipalAuthenticator
	Checking the Validity of Credentials
	Getting Principal’s Privileges
	Copying a Credentials Object
	Destroying a Credentials Object
	Getting the Principal Authenticator Object
	Getting Credentials
	Setting Default Credentials
	Getting a Principal’s Privileges
	Removing a Credentials Object from the “Own” List
	Getting Credentials of the Requesting Principal
	Getting the Principal’s Privileges from Credentials
	Getting the Principal’s Privileges from the SecurityCurrent object
	Obtaining the SecurityCurrent Object
	Getting Association Options
	Getting Delegation State
	Getting Delegation Mode

	7 Transaction Service
	Capabilities and Limitations
	Lightweight Clients with Delegated Commit
	Transaction Propagation
	Transaction Integrity
	Transaction Termination
	Flat Transactions
	Interoperability Between Remote Clients and the WebLogic Enterprise Domain
	Intradomain Interoperability
	Network Interoperability
	Relationship of the Transaction Service to Transaction Processing
	Process Failure
	Multithreaded Support
	OMG Interface Definition Language (IDL)
	General Constraints

	Getting Initial References to the TransactionCurrent Object
	Transaction Service API
	Data Types
	Control Interface
	TransactionalObject Interface
	Other CORBAservices Object Transaction Service Interfaces

	Transaction Service API Extensions
	Exception
	TransactionCurrent Interface

	8 Interface Repository Interfaces
	Structure and Usage
	From the Programmer’s Point of View
	Performance Implications

	Building Client Applications
	Getting Initial References to the InterfaceRepository Object
	Interface Repository Interfaces
	Supporting Type Definitions
	IRObject Interface
	Contained Interface
	Container Interface
	IDLType Interface
	Repository Interface
	ModuleDef Interface
	ConstantDef Interface
	TypedefDef Interface
	StructDef
	UnionDef
	EnumDef
	AliasDef
	PrimitiveDef
	ExceptionDef
	AttributeDef
	OperationDef
	InterfaceDef

	9 Joint Client/Server Applications
	Introduction
	Main Program and Server Initialization
	Servants
	Servant Inheritance from Skeletons
	Callback Object Models Supported
	Preparing Callback Objects using BEAWrapper Callbacks
	Threading Considerations in the Main Program
	Multiple Threads

	Java Client ORB Initialization
	IIOP Support
	Java Applet Support
	Port Numbers for Persistent Object References

	Callbacks Interface API

	10 Java Development and Administration Commands
	buildjavaserver
	Synopsis
	Syntax
	Description
	Options
	Environment Variables
	Portability
	Example
	buildXAJS

	Synopsis
	Syntax
	Description
	Options
	Environment Variables
	Portability
	Example
	m3idltojava

	Synopsis
	Syntax
	Description
	Parameter
	Options
	Examples

	11 CORBA ORB
	Initializing the ORB
	Passing the Address of the IIOP Listener

	Initializing the ORB for Native and Remote Clients

	12 Mapping IDL to Java
	IDL to Java Overview
	Package Comments on Holder Classes
	Exceptions
	Differences Between CORBA and Java Exceptions
	System Exceptions
	System Exception Structure
	Minor Codes
	Completion Status

	User Exceptions
	Minor Code Meanings

