EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

BEA WebLogic Enterprise

Creating Java Server Applications

BEA WebLogic Enterprise 4.2
Document Edition 4.2
July 1999

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF

MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES

NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Creating Java Server Applications

Document Edition Date Software Version

4.2 July 1999 BEA WebLogic Enterprise 4.2

Contents

Preface
Purpose of ThiSDOCUMENEcuiiiie et e e Vii
HOowW to USe ThiS DOCUMENTc.eecviecie et s s st enn viii
Related DOCUMENEALIONcuviiecieece ettt ettt sttt Xi
Contact INfOrMatioN........ccviiieeece e e er s Xiii

1. Java Server Application Concepts

OVEIVIBIW ...ttt ettt se et ae b e b e st ebe e e seenbes e se et snbene e e eneeees 1-1
The Entities Y ou Create to Build a WebL ogic Enterprise Java Server
PN o] o 1= o] o OSSR 1-3
The Implementation of the CORBA Objects for Y our Java Server
APPIICAITON. ..ot e e 1-4
The Server ODJECL.........oooi e s erae 1-8
Understanding Object References and Object State.........ccoeveveeeeeeeecviciececnnnne 1-9
Generating Object REfErenCes.........oovvveie e 1-10
Managing ObJECE SEALE.........ccevvieiiece et sraean 1-11
Choosing Between Stateless and Stateful Objects.........ccoveieicecie e e, 1-16
When You Want Stateless ObJECES.......ccccvvieiiveeiire s 1-17
When You Want Stateful ObjECtS........ccevveviiieeiece e 1-18
Reading and Writing an Object’'s Dataccceeieeiiiiiiiiiiie e 1-19
USING DESIGN PAtEINS ...uvviiiiii it ee et ee e e eee e e e e 1-25

2. Steps for Creating a Java Server Application

Summary of the Java Server Application Development Process.............coc...... 2-2

Step 1: Compile the OMG IDL file for the server application.......................... 2-3
Using the m3idltojava COMPIIEToooiiiiiiiiiii e 2-4

Step 2: Write the methods that implement each interface’s operations. 2-5

Creating C++ Server Applications iii

Creating an Object Implementation File ... 2-6

Implementing a Factory ODJECtcooeieiiie e e 2-6
Using ThreadS With WLE ... e 2-8
Step 3: Create the Server ODJECL. ..o 2-8
Writing the Code That Creates and RegistersaFactoryccoceevveneens 2-10
Releasing the Server Application ..o i 2-11
Step 4: Compilethe Java source files.o 2-12
Step 5: Define the object activation and transaction policies. ..o 2-13
Specifying POlICIES IN XML ..ot 2-13
Step 6: Verify the environment variables.c.coooieiiiiniiii e 2-15
Step 7: Finish the Server Description File.ooviiiiinciiieceeeee 2-17
Step 8: Deploy the server appliCation.cccevereieienrieeires e 2-19
Development and Debugging TiPS.....cccceeeererereseereenierie e s seeseesseneas 2-21
Use of CORBA and WebL ogic Enterprise Exceptions and the User Log2-21
Detecting Error Conditionsin the Callback Methods............ccccccveveenee. 2-26

Common Pitfalls of OMG IDL Interface Versioning and Modification.. 2-27

3. Integrating Transactions into a Java Server Application

Overview of Transactionsin the WebL ogic Enterprise System..........cccceveeneee. 31
Integrating Transactions in a WebL ogic Enterprise Client and Server
WY o] o[- 1 o] o TSROSO 3-3
Making an Object Automatically Transactional............cccccvereieveneninenne. 35
Enabling an Object to Participatein a Transactioncococeeeveeneeieeenne. 3-6
Preventing an Object from Being Invoked While a Transaction
[S SCOPEA ...ttt et e e e 3-7
Excluding an Object from an Ongoing Transaction............ccoceeevereenieeenne. 3-7
ASSIGNING POIICIES ...t er e erea 3-8
Using an XA ReSOUICE MaNagErccoecveeeeiueiieeeeieeiee e e eereesreeraesae e 3-8
Opening an XA ReSOUICe MaNaQEScceeereereerueeereeeerereeseseeeeseesienee s 3-9
Closing an XA ReSOUrceE Managerccoceevveeveesreereesreniesreeeesneesesseeeens 3-10
Transactions and Object State Management............cccceceeeiececcececeeec e 3-10
Delegating Object State Management to an XA Resource Manage 3-10
Waiting Until Transaction Work |s Complete Before Writing
10 the Dat@DaSecoueee e et e 311
Notes on Using Transactions in the WebL ogic Enterprise System................. 3-12

iv Creating C++ Server Applications

4. Scaling a Java Server Application
Overview of the Scalability Features Available in the WebL ogic Enterprise

SYSLEIM <ttt e e b e bt b n e et 4-2
Scaling a WebL ogic Enterprise Server Application...........ccoeveeeieneeceeineneee 4-3
Replicating Server Processes and Server GrouUpScoceeeveeeeeeeeeseeneenenne 4-4
Scaling the Application Via Object State Management............cccccceeenees 4-11
Factory-based ROULINGcoi i e e 4-13
Enabling Multithreaded JAVaServers...........cocoo i e veeneee e 4-18
Additional Design Considerations for the Teller Object.......................... 4-20
How the Bankapp Server Application Can Be Scaled Further........................ 4-22

Creating C++ Server Applications %

Vi Creating C++ Server Applications

Preface

Purpose of This Document

This document describes how programmers can implement key featuresin the BEA
WebL ogic Enterprise (sometimes referred to as WLE) product to design and
implement scalabl e, high-performance, Java server applications that run in a

WebL ogic Enterprise domain. The Java examples shown in this book are based on the
sample applications described in the Guide to the Java Sample Applications.

Note: Effective February 1999, the BEA M3 product isrenamed. The new name of
the product is BEA WebL ogic Enterprise (WLE).

Who Should Read This Document

This document is intended for programmers who are interested in creating secure,
scalable, transaction-based server applications. It assumes you are knowledgeable with
the BEA TUXEDO system, CORBA, and Java programming.

How This Document Is Organized

Creating Java Server Applicationsis organized as follows:

4 Chapter 1, “Java Server Application Concepts,” presents a number of basic
concepts about creating WebLogic Enterprise server applications and describes
the programming entities you create for a WebLogic Enterprise server
application.

Creating Java Server Applications Vii

4 Chapter 2, “Steps for Creating a Java Server Application,” lists and describes the
basic steps you follow to create a WebLogic Enterprise server application.

4 Chapter 3, “Integrating Transactions into a Java Server Application,” describes
how the WebLogic Enterprise system supports transactions in a WebLogic
Enterprise domain and how you can implement transactions into your server
applications.

4 Chapter 4, “Scaling a Java Server Application,” describes the key scalability
features that you can build into your WebLogic Enterprise applications to make
them highly scalable, including replicated server processes and groups,
factory-based routing, and object state management.

How to Use This Document

This documentCreating Java Server Applications, is designed primarily as an online,
hypertext document. If you are reading this as a paper publication, note that to get fu
use from this document you should access it as an online document via the Online
Documentation CD for the BEA WebLogic Enterprise 4.2 release.

The following sections explain how to view this document online, and how to print a
copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the following file:

\ doc\w e\ v42\i ndex. ht m

Note: The online documentation requires Netscape Communicator version 4.0 or
later, or Microsoft Internet Explorer version 4.0 or later.

Viii Creating Java Server Applications

Printing from a Web Browser

Y ou can print a copy of this document, one file at atime, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print.

The Online Documentation CD includes Adobe Acrobat PDF files of all of the online
documents. Y ou can use the Adobe Acrobat Reader to print al or a portion of each
document. On the CD Home Page, click the PDF Files button and scrall to the entry
for the document you want to print.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Item

boldface text

Indicates terms defined in the glossary.

Ctrl+Tab

Indicates that you must press two or more keys simultaneously.

italics

Indicates emphasis or book titles.

nonospace
t ext

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#i ncl ude <iostreamh> void main () the pointer psz
chnod u+w *

.doc

Bl TVAP

fl oat

nonospace
bol df ace
t ext

Identifies significant wordsin code.
Example:
void commt ()

Creating Java Server Applications iX

Convention Item

nonospace Identifies variables in code.

italic Example:
text .
String expr
UPPERCASE Indicates device names, environment variables, and logical operators.
TEXT Examples:
LPT1
SIGNON
OR
{1} Indicates a set of choices in a syntax line. The braces themsel ves should
never be typed.
[] Indicates optional itemsin a syntax line. The brackets themselves should
never be typed.
Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Separates mutually exclusive choicesin a syntax line. The symbol itself
should never be typed.

Indicates one of the following in acommand line:

4 That an argument can be repeated several timesin acommand line

4 That the statement omits additiona optional arguments

4 That you can enter additional parameters, values, or other information
The ellipsisitself should never be typed.

Example:

bui l dobjclient [-v] [-0 nane | [-f file-list]...
[-1 file-list]...

Indicates the omission of items from a code example or from a syntax line.
The vertical dlipsisitself should never be typed.

Creating Java Server Applications

Related Documentation

The following sections list the documentation provided with the BEA WebL ogic
Enterprise software, related BEA publications, and other publications related to the
technology.

BEA WebLogic Enterprise Documentation

The BEA WebL ogic Enterprise information set consists of the following documents:
Installation Guide

C++ Release Notes

Java Release Notes

Getting Started

Guide to the University Sample Applications
Guide to the Java Sample Applications

Creating Client Applications

Creating C++ Server Applications

Creating Java Server Applications (this document)
Administration Guide

Using Server-to-Server Communication

C++ Programming Reference

Java Programming Reference

Java API Reference

JDBC Driver Programming Reference

System Messages

Creating Java Server Applications Xi

Glossary

Technical Articles

Note: The Online Documentation CD a so includes Adobe Acrobat PDF files of all
of the online documents. Y ou can use the Adobe Acrobat Reader to print all
or aportion of each document.

BEA Publications

Selected BEA TUXEDO Release 6.5 for BEA WebL ogic Enterprise version 4.2
documents are available on the Online Documentation CD.

To access these documents:
1. Click the Other Reference button from the main menu.

2. Click the TUXEDO Documents option.

Other Publications

For more information about CORBA, Java, and related technologies, refer to the
following books and specifications:

Cobb, E. 1997. The Impact of Object Technology on Commercial Transaction
Processing. VLDB Journal, Volume 6. 173-190.

Edwards, J. with DeVoe, D. 1997. 3-Tier Client/Server At Work. Wiley Computer
Publishing.

Edwards, J., Harkey, D., and Orfali, R. 1996. The Essential Client/Server Survival
Guide. Wiley Computer Publishing.

Flanagan, David. May 1997. Java in a Nutshell, 2nd Edition. O’'Reilly & Associates,
Incorporated.

Flanagan, David. September 199&va Examplesin a Nutshell. O’Reilly &
Associates, Incorporated.

Xii Creating Java Server Applications

Fowler, M. with Scott, K. 1997. UML Distilled, Applying the Sandard Object
Modeling Language. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns. Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series.

Jacobson, |. 1994. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley.

Mowbray, Thomas J. and Malveau, Raphael C. (Contributor). 1997. CORBA Design
Patterns, Paper Back and CD-ROM Edition. John Wiley & Sons, Inc.

Orfdi, R., Harkey, D., and Edwards, J. 1997. Instant Corba. Wiley Computer
Publishing.

Orfdli, R., Harkey, D. February 1998. Client/Server Programming with Java and
CORBA, 2nd Edition. John Wiley & Sons, Inc.

Otte, R., Patrick, P., and Roy, M. 1996. Understanding CORBA. Prentice Hall PTR.

Rosen, M. and Curtis, D. 1998. Integrating CORBA and COM Applications. Wiley
Computer Publishing.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Loresen, W. 1991.
Object-Oriented Modeling and Design. Prentice Hall.

The Common Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. Published by the Object Management Group (OMG).

CORBAservices: Common Object Services Specification. Revised Edition. Updated:
November 1997. Published by the Object Management Group (OMG).

Contact Information

The following sections provide information about how to obtain support for the
documentation and the software.

Creating Java Server Applications Xiii

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about thisversion of the BEA WebL ogic Enterprise product,
or if you have problemsinstalling and running the BEA WebL ogic Enterprise
software, contact BEA Customer Support through BEA WebSupport at

www. beasys. com You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which isincluded in the product
package.

When contacting Customer Support, be prepared to provide the following information:
4 Your name, e-mail address, phone number, and fax number

4 Your company hame and company address

4 Your machine type and authorization codes

4 Thename and version of the product you are using
¢

A description of the problem and the content of pertinent error messages

Xiv Creating Java Server Applications

CHAPTER

1 Java Server
Application Concepts

This chapter presents the following WebL ogic Enterprise topics:

4 Overview

4 TheEntities You Create to Build a WebL ogic Enterprise Java Server Application
4 Understanding Object References and Object State

4 Choosing Between Stateless and Stateful Objects

For background information about WebL ogic Enterprise server applications and how
they work, see Getting Started.

Overview

This section provides an overview of the Java server application creation process. The
file names shown are based on the Bankapp sample application that is included with
the WebL ogic Enterprise software. Many steps have been omitted from this ssmple
overview. The purpose hereisto give you an idea of the overall process, before you
read about CORBA object state management and other key conceptsin the remainder
of this chapter, and before you read about detailed build steps in subsequent chapters.

Creating Java Server Applications 1-1

1

Java Server Application Concepts

1-2

To create a Java server application:

1

Create atext file that describes the interfaces for your CORBA objects.

The descriptions are written in the Object Management Group Interface
Definition Language (OMG IDL). For example, the BankApp. i dI file describes
theTel | er and Tel | er Fact ory interfaces.

Compile the IDL files by using the n8i dl t oj ava compiler to generate, for each
interface, Java object implementation files, client stubs, server skeletons, Helper
classes, and Holder classes. Do not edit these files.

Copy each object implementation file to anew file.

For example, compiling the BankApp. i di file with then8i di t oj ava compiler
generatesaTel | er. j ava fileand aTel | er Fact ory. j ava file. To create Java
filesthat you can use as a starting point for adding your business logic and
object implementations, you can:

a CopyTeller.javatoTellerlnpl.java.
b. Copy Tel l erFactory.javatoTel |l erFactoryl npl.java.

Edit your object implementation files, adding the business logic to each object’s
methods.

Create the Server object, which is code that performs the initialize and release
functions for the server application.

Use thg avac compiler to compile all the. j ava files into Java bytecodes
(*. cl ass files).

Create a text file called a Server Description File, which is expressed in the XML
language.

To see a sample file, open thenkApp. xn file that is included with the
WebLogic Enterprise software in the following directory:

Windows NT

drive: \ M3di r\ sanpl es\ cor ba\ bankapp_j ava\j dbc\
UNIX

/usr/ 1l ocal / M3dir/sanpl es/ cor ba/ bankapp_j ava/j dbc/

In your Server Description File, you assign the activation and transaction
policies for the interfaces implemented in your server application. This XML file

Creating Java Server Applications

The Entities You Create to Build a WebLogic Enterprise Java Server Application

9.

also contains a server declaration, which includes the name of the Server object
and the name of the server descriptor file (SER). You can also identify the Java
class files that comprise the server application’s Java Archive (JAR) file.

Compile the XML-based Server Description File withthel dj avaser ver
command and generate the SER file and JAR file.

Deploy your Java server application.

The Entities You Create to Build a WebLogic
Enterprise Java Server Application

To build a WebLogic Enterprise Java server application, you create the following
entities:

L4

The Java implementation of the CORBA objects that execute your server
application’s business logic. This topic is explained in the next section.

The Java Server object, which performs the initialize and release functions for
the server application, and may perform other functions. This topic is explained
in the section “The Server Object” on page 1-8.

A Java Archive (JAR) file that contains the Java bytecodessé files) that
comprise your server application. In the WebLogic Enterprise Java environment,
you can optionally use atARCH VE> section of the Server Description File to
identify and collect the class files and packages. The Server Description File is
written in XML.

The JAR file also contains a server descriptor, which is a Java object that
contains information about all the servant classes implemented by the server
application, along with the policies attached to the interfaces. Also stored in the
JAR file is the name of the Server object that is used to initialize and stop the
server.

There are also a number of files that you work with that are generated by the

n8i dl t oj ava compiler and that you build into an WebLogic Enterprise server
application. These files are listed and described in Chapter 2, “Steps for Creating a
Java Server Application.”

Creating Java Server Applications 1-3

1

Java Server Application Concepts

The Implementation of the CORBA Objects for Your Java
Server Application

Having aclear understanding of what CORBA objects are, and how they are defined,
implemented, instantiated, and managed is critical for the person who is designing or
creating an WebL ogic Enterprise Java server application.

The CORBA objectsfor which you have defined interfacesin the Object M anagement
Group Interface Definition Language (OMG IDL) contain the business logic and data
for your WebL ogic Enterprise Java server applications. All client application requests
involve invoking operations on a CORBA object. The code you write that implements
the operations defined for an interface is called an object implementation. For
example, in Java, the object implementation is a Java class.

This section discusses the following topics:

4 How OMG IDL interface definitions establish the operations that can be invoked
on a CORBA object

4 How you implement the operations on a CORBA object

4 How client applications access and manipulate your application’'s CORBA
objects

How Interface Definitions Establish the Operations on a CORBA Object

1-4

A CORBA object'’s interface identifies the operations that can be performed on it. A

distinguishing characteristic of CORBA objects is that an object’s interface definition

is separate from its implementation. The definition for the interface establishes how th
operations on the interface must be implemented, including what the valid parametet
are that can be passed to and returned from an operation.

An interface definition, which is expressed in OMG IDL, establishes the client/server
contract for an application. That is, for a given interface, the server application is
bound to do the following:

4 Implement the operations defined for that interface

4+ Always use the parameters defined with each operation

Creating Java Server Applications

The Entities You Create to Build a WebLogic Enterprise Java Server Application

How the server application implements the operations may change over time. Thisis
acceptabl e behavior aslong asthe server application continuesto meet the requirement
of implementing the defined interface and using the defined parameters. In thisway,
the client stub is always a reliable proxy for the object implementation on the server
machine. Thisunderscores one of thekey architectural strengthsof CORBA -- that you
can change how a server application implements an object over time without requiring
the client application to be modified or even to be aware that the obj ect implementation
has changed.

The interface definition also determines the content of both the client stub and the
skeleton in the server application; these two entities, in combination with the ORB and
the Portable Object Adapter (POA), ensure that aclient request for an operation on an
object can be routed to the code in the server application that can satisfy the request.

Once the system designer has specified the interfaces of the business objectsin the
application, the programmer’s job is to implement those interfaces. This book explains
how.

For more information about OMG IDL, s€zeating Client Applications.

How You Implement the Operations on a CORBA Object

As stated earlier, the code that implements the operations defined for a CORBA
object’s interface is called an object implementation. For Java, this code consists of a
set of methods, one for each of the operations defined for the interfaces in your
application’s OMG IDL file.

In the WebLogic Enterprise Java environment, you define an object implementation
file by copying thei nt er f ace. j ava file generated by thesi dI t oj ava compiler

and editing the copy. For example, using the file names in the Bankapp sample
application, copy th&el | er. j ava file to Tel | er I npl . j ava. Then, you edit

Tel L erl npl . j ava, adding your business logic to create the Teller object’s
implementation file. The suggested modification steps are described in the section
“Creating an Object Implementation File” on page 2-6.

You also define the object’s default in-memory behavior in a separate file, the
XML-based Server Description File. In this XML file, you define the default activation
and transaction policies for each interface that is implemented in the server application.
You then provide this file as input to thei | dj avaser ver command.

Creating Java Server Applications 1-5

1 Java Server Application Concepts

How Client Applications Access and Manipulate Your Application’s CORBA

Objects

Client applications access and manipulate the CORBA objects managed by the server
application via object references to those objects. Client applications invoke
operations (that is, requests) on an object reference. These requests are sent as
messages to the server application, which invokes the appropriate operations on
CORBA objects. The fact that these requests are sent to the server application and
invoked in the server application is completely transparent to the client; client
applications appear simply to be making invocations on the client stub.

Client applications may manipulate a CORBA object only by means of an object
reference. One primary design consideration is how to create object references and
return them to the client applications that need them in away that is appropriate for
your application.

Typically, object referencesto CORBA objectsare created in the WebL ogic Enterprise
system by factories. A factory isany CORBA object that returns, as one of its

operations, a reference to another CORBA object. You implement your application’s
factories the same way that you implement other CORBA objects defined for your
application.

You can make your factories widely known to the WebLogic Enterprise domain, and
to clients connected to the WebLogic Enterprise domain, by registering them with the
FactoryFinder. Registering a factory is an operation typically performed by the Serve
object, which is described in the section “The Server Object” on page 1-8. For more
information about designing factories, see the section “Generating Object Reference:
on page 1-10.

The Content of an Object Reference

From the client application’s perspective, an object reference is opaque; it is like a
black box that client applications use without having to know what is inside. However,
object references contain all the information needed for the WebLogic Enterprise
system to locate a specific object instance and to locate any state data that is associa
with that object.

An object reference contains the following information:

4 The interface name

This is the Interface Repository ID of the objects’ OMG IDL interface.

1-6 Creating Java Server Applications

The Entities You Create to Build a WebLogic Enterprise Java Server Application

¢ Theobject ID (OID)

The OID uniquely identifies the instance of the object to which the reference
applies. If the object has data in external storage, the OID also typically includes
a key that the server machine can use to locate the object’s data.

¢ Group ID

The group ID identifies the server group to which the object reference is routed
when a client application makes a request using that object reference. Generating
a nondefault group ID is part of a key WebLogic Enterprise feature called
factory-based routing, which is described in the section “Factory-based Routing”
on page 4-13.

Note:

The combination of the three items in the preceding list uniquely identifies the
CORBA object. It is possible for an object with a given interface and OID to
be simultaneously active in two different groups, if those two groups both
contain the same object implementation.

If you need to guarantee that only one object instance of a given interface name
and OID is available at any one time in your domain, either: use factory-based
routing to ensure that objects with a particular OID are always routed to the
same group, or configure your domain so that a given object implementation
is in only one group. This assures that if multiple clients have an object
reference containing a given interface name and OID, the reference is always
routed to the same object instance.

For more information about factory-based routing, see the section
“Factory-based Routing” on page 4-13.

The Lifetime of an Object Reference

Object references created by server applications running in a WebLogic Enterprise
domain have a usable lifespan that extends beyond the life of the server process that
creates them. WebL ogic Enterprise object references can be used by client applications
regardless of whether the server processes that originally created them are still running.
In this way, object references are not tied to a specific server process.

Creating Java Server Applications 1-7

1

Java Server Application Concepts

The Server Object

1-8

The Java Server object is the other programming code entity that you create for an
WebL ogic Enterprise server application. The Java Server object implements
operations that execute the following tasks:

4 Performing basic server application initialization operations, which may include
registering factories managed by the server application and allocating resources
needed by the server application. If the server application istransactional, the
Server object also implements the code that opens an XA resource manager.

4 Performing server process shutdown and cleanup procedures when the server
application has finished servicing requests. For example, if the server application
istransactional, the Server object a so implements the code that closesthe XA
resource manager.

Y ou implement this Server object by creating a new class that derives from

com beasys. Tobj . Server and overridestheiniti al i ze andr el ease methods. In
the server application code, you can also write apublic default constructor. Y ou create
the Server object class from scratch using atext editor.

For example:

i nport com beasys. Tobj . *;
/**

* Provides code to initialize and stop the server invocation

* BankAppServerlnpl is specified in the BankApp. XM. input file
* as the nane of the Server object.

*/

public class BankAppServer | npl
ext ends com beasys. Tobj . Server {

public boolean initialize(string[] args)
throws com beasys. Tobj S.InitializeFail ed

public bool ean rel ease()
t hrows com beasys. Tobj S. Rel easeFai | ed

}

In the XML-coded Server Description File, which you process with the
bui | dj avaser ver command, you identify the name of the Server object.

Creating Java Server Applications

Understanding Object References and Object State

Thecr eat e_ser vant method, used in the C++ environment of WebL ogic Enterprise,
is not used in the Java environment. In Java, objects are created dynamically, without
prior knowledge of the classes being used.

In the Java environment of WebL ogic Enterprise, a servant factory is used to retrieve
an implementation class, given the interface repository ID. This information is stored
in aserver descriptor file created by the bui | dj avaser ver command for each
implementation class.

When amethod request is received, and no servant is available for the interface, the
servant factory looks up the interface and creates an object of the appropriate
implementation class.

This collection of the object’s implementation and data compose the run-time, active
instance of the CORBA object.

For more information about creating the Server object, see Chapter 2, “Steps for
Creating a Java Server Application.”

Understanding Object References and
Object State

This section presents important background information about the following topics,
which have a major influence on how you design and implement WebLogic Enterprise
server applications:

4 Generating object references

4 Managing object state

4 Reading and writing an object’s data stored on disk
4 Using design patterns

It is not essential that you read these topics before proceeding to the next chapter;
however, this information is located here because it applies broadly to fundamental
design and implementation issues for all WebLogic Enterprise server applications.

Creating Java Server Applications 1-9

1

Java Server Application Concepts

Generating Object References

1-10

One of the most basic functions of a WebL ogic Enterprise server application is
providing client applications with object referencesto the objects they need to execute
their business logic. WebL ogic Enterprise client applications typically get object
references to the initial CORBA objects they use from the following two sources:

4 TheBootstrap object
4 Factories managed in the WebL ogic Enterprise domain

Client applications use the Bootstrap object to resolveinitial references to a specific
set of objectsin the WebL ogic Enterprise domain, such as the FactoryFinder and the
SecurityCurrent objects. The Bootstrap object is described in Getting Sarted and in

Creating Client Applications.

Factories, however, are designed, implemented, and registered by you, and they
provide the means by which client applications get references to objectsin the

WebL ogic Enterprise server application, particularly the initial server application
object. At itssimplest, afactory isa CORBA object that returns an object reference to
another CORBA object. The client application typically invokes an operation on a
factory to obtain an object reference to a CORBA object of a specific type. Planning
and implementing your factories carefully is an important task when developing
WebL ogic Enterprise server applications.

Client applications are able to locate via the FactoryFinder the factories managed by
your server application. When you devel op the Server object, you typically include
code that registers with the FactoryFinder any factories managed by the server
application.

It isviathisregistration operation that the FactoryFinder keeps track of your server
application’s factories and can provide object references to them to the client
applications that request them. We recommend that you use factories and register the
with the FactoryFinder; this model makes it simple for client applications to find the
objects in your WebLogic Enterprise server application.

Note: In WebLogic Enterprise 4.2, references to objects implemented in Java can b
created only by factories that are also implemented in Java. You cannot mix
and match factories and objects with regards to implementation language.

Creating Java Server Applications

Understanding Object References and Object State

Managing Object State

Object state management is a fundamentally important concern of large-scale
client/server systems, because it is critical that such systems optimize throughput and
response time. The majority of high-throughput applications, such as applications you
run in a WebL ogic Enterprise domain, tend to be statel ess, meaning that the system
flushes state information from memory after a service or an operation has been
fulfilled.

Managing state is an integral part of writing CORBA-based server applications.
Typically, itisdifficult to manage statein these server applicationsin away that scales
and performs well. The WebL ogic Enterprise software provides an easy way to
manage state and simultaneously ensure scalability and high performance.

The scalability qualities that you can build into a WebL ogic Enterprise server
application help the server application function well in an environment that includes
hundreds or thousands of client applications, multiple machines, replicated server
processes, and a proportionately greater number of objects and client invocations on
those objects.

About Object State

In aWebL ogic Enterprise domain, object state refers specifically to the process, or
in-memory, state of an object acrossclient invocationsonit. The WebL ogic Enterprise
software uses the following definitions of stateless and stateful objects:

Object Behavior Characteristics

Stateless The object is mapped into memory only for the duration of an
invocation on one of the object’s operations, and is deactivated
and has its process state flushed from memory after the invocation
is complete; that is, the object’s state is not maintained in memory
after the invocation is complete.

Creating Java Server Applications 1-11

1 Java Server Application Concepts

Object Behavior Characteristics

Stateful The object remains activated between invocations on it, and its
state ismaintained in memory across those invocations. The state
remains in memory until a specific event occurs, such as:

4 The server process in which the object existsis stopped or is
shut down.

4 Thetransaction in which the object is participating is either
committed or rolled back.

4 The object invokes the
com beasys. Tobj . TP. deact i vat eEnabl e method
on itself and the method completes.

Each of these eventsis discussed in more detail in this section.

Both stateless and stateful objects have data; however, stateful objects may have
nonpersistent datain memory that is required to maintain context (state) between
operation invocationson those obj ects. Thus, subsequent invocations on such astateful
object always go to the same servant. Conversely, invocations on a statel ess object can
bedirected by the WebL ogic Enterprise system to any available server process that can
activate the object.

State management also involves how long an object remains active, which has

important implications on server performance and the use of machine resources. The
section “How to Manage Object State” on page 1-13 explains the various mechanism:
the WebLogic Enterprise system provides to control object state.

Obiject state is transparent to the client application. Client applications implement a
conversational model of interaction with distributed objects. As long as a client
application has an object reference, it assumes that the object is always available fo
additional requests, and the object appears to be maintained continuously in memot
for the duration of the client application interaction with it.

To achieve optimal application performance, you need to carefully plan how your
application’s objects manage state. Objects are required to save their state to durab
storage, if applicable, before they are deactivated. Objects must also restore their ste
from durable storage, if applicable, when they are activated. For more information
about reading and writing object state information, see the section “Reading and
Writing an Object’s Data” on page 1-19.

1-12 Creating Java Server Applications

Understanding Object References and Object State

How to Manage Object State

WebL ogic Enterprise provides two basic means to control object state:

4+ By defining object activation policies on an object’s interface in the Server
Description File. Object activation policies are described in the section “Object
Activation Policies” on page 1-13.

4 By using a TP Framework feature callgaplication-controlled deactivation,
described in the section “Application-Controlled Deactivation” on page 1-15.

Object Activation Policies

The WebLogic Enterprise system provides three object activation policies that you can
assign to an object’s interface to determine how long an object remains in memory
after it has been invoked by a client request. These policies determine whether the
object to which they apply is generally stateless or stateful.

The three policies are listed and described in the following table.

Policy Description

Met hod Causes the object to be active only for the duration of the
invocation on one of the object’s operations; that is, the object
is activated at the beginning of the invocation, and is
deactivated at the end of the invocation. An object with this
activation policy is called eethod-bound object.

Thenet hod activation policy is associated with stateless
objects. This activation policy is the default.

Creating Java Server Applications 1-13

1

Java Server Application Concepts

1-14

Policy Description

Transaction Causes the object to be activated when an operation isinvoked
onit. If the object is activated within the scope of atransaction,
the object remains active until the transaction is either
committed or rolled back. If the object is activated outside the
scope of atransaction, its behavior is the same asthat of a
method-bound object. An object with this activation policy is
called atransaction-bound object.

For moreinformation about object behavior within the scope of
atransaction, and general guidelines about using this policy,

see Chapter 3, “Integrating Transactions into a Java Server
Application.”

Thet r ansact i on activation policy is associated with
stateful objects for a limited time and under specific
circumstances.

Process Causes the object to be activated when an operation is invoked
on it, and to be deactivated only under the following
circumstances:

4 The server process that manages this object is shut down.

4 An operation on this object invokes the
com beasys. Tobj . TP. deact i vat eEnabl e
method, which causes this object to be deactivated when
the method completes. (This is part of a key WebLogic
Enterprise feature called application-controlled
deactivation, which is described in the section
“Application-Controlled Deactivation” on page 1-15.

An object with this activation policy is callecpeocess-bound

object. Thepr ocess activation policy is associated with
stateful objects.

Y ou determine what events cause an object to be deactivated by assigning object

activation policies. For more information about how you assign object activation

policies to an object’s interface, see the section “Step 5: Define the object activation
and transaction policies.” on page 2-13.

Creating Java Server Applications

Understanding Object References and Object State

Application-Controlled Deactivation

Application-controlled deactivation provides ameans for an application to deactivate
an object during run time. The TP Framework provides the

com beasys. Tobj . TP. deact i vat eEnabl e method, which a process-bound object
caninvokeonitself. Wheninvoked, thedeact i vat eEnabl e method causesthe object
inwhich it existsto be deactivated upon completion of the current client invocation on
that object. An object can invoke this method only on itself; you cannot invoke this
method on any object but the object in which the invocation is made.

The application-controlled deactivation featureis particularly useful when you want an
object to remain in memory for the duration of alimited number of client invocations
on it, and you want the client application to be able to tell the object that the client is
finished with the object. At this point, the object takesitself out of memory.

Application-controlled deactivation, therefore, allows an object to remain in memory
in much the same way that a process-bound object can: the object is activated as a
result of aclient invocation on it, and it remainsin memory after the initial client
invocation on it is completed. Y ou can then deactivate the object without having to
shut down the server process in which the object exists.

An alternative to application-controlled deactivation isto scope atransaction to
maintain a conversation between a client application and an object; however,
transactions areinherently more costly, and transactions are generally inappropriate in
situations where the duration of the transaction may be indefinite.

A good rule of thumb to use when choosing between application-controlled
deactivation and transactions for a conversation is whether there are any disk writing
operations involved. If the conversation involves read-only operations, or involves
maintaining state only in memory, then application-controlled deactivation is
appropriate. If the conversation involveswriting datato disk during or at the end of the
conversation, transactions may be more appropriate.

Note: If you use application-controlled deactivation to implement a conversational
model between a client application and an object managed by the server
application, make sure that the object eventually invokes the
com beasys. Tobj . TP. deact i vat eEnabl e method. Otherwise, the object
remainsidlein memory indefinitely. (Note that this can be arisk if the client
application crashes before the deact i vat eEnabl e method is invoked.
Transactions, on the other hand, implement a time-out mechanism to prevent

Creating Java Server Applications 1-15

1 Java Server Application Concepts

the situation in which the object remainsidlefor anindefinite period. Thismay
be another consideration when choosing between the two conversational
models.)

Y ou implement application-controlled deactivation in an object using the following
procedure:

1. Intheimplementationfile, insert an invocationto thedeact i vat eEnabl e method
at the appropriate location within the operation of the interface that uses
application-controlled deactivation.

2. Inthe Server Description File (XML), assign the pr ocess activation policy to
the interface that contains the operation that invokes the deact i vat eEnabl e
method.

3. Build and deploy your application as described in the sections “Step 7: Finish the
Server Description File.” on page 2-17 and “Step 8: Deploy the server
application.” on page 2-19.

Choosing Between Stateless and Stateful
Objects

In general, you need to balance the costs of implementing stateless objects against t
costs of implementing stateful objects.

In the case where the cost to initialize an object with its durable state is expensive
(because, for example, the object’'s data takes up a great deal of space, or the dural
state is located on a disk very remote to the servant that activates it), it may make sen
to keep the object stateful, even if the object is idle during a conversation. In the cas
where the cost to keep an object active is expensive in terms of machine resource
usage, it may make sense to make such an object stateless.

By managing object state in a way that is efficient and appropriate for your application
you can maximize your application’s ability to support large numbers of simultaneous
client applications that use large numbers of objects. You generally do this by
assigning theret hod activation policy to these objects, which has the effect of

1-16 Creating Java Server Applications

Choosing Between Stateless and Stateful Objects

deactivating idle object instances so that machine resources can be all ocated to other
object instances. However, your specific application characteristics and needs may
vary.

When You Want Stateless Objects

Statel ess objects generally provide good performance and optimal usage of server
resources, because server resources are never used when objects are idle. Stateless
objects are generally a good approach to implementing server applications. Stateless
objects are particularly appropriate in the following situations:

L4

The client application typically waits for user input between invocations on the
object.

The client request typically contains all the data needed by the server
application, and the server can process the client request using only that data.

The object has very high access rates, but low access rates from any one
particular client application.

By making an object stateless, you can generally assure that server application
resources are not being tied up for an arbitrarily long time waiting for input from the
client application.

Note the following characteristics about an application that employs a statel ess object
mode!:

L4

Information about and associated with an invocation is not maintained after the
server application has finished executing a client request.

Anincoming client request is sent to the first available server process. After the
request has been satisfied, the application state vanishes and the server
application is available for another client application request.

Durable state information for the object exists outside the server process. With
each invocation on this object, the durable state is read into memory.

The WebL ogic Enterprise domain may direct successive requests on an object
from agiven client application to a different server process.

The overdl system performance of a machinethat is running stateless objectsis
usually enhanced.

Creating Java Server Applications 1-17

1

Java Server Application Concepts

When You Want Stateful Objects

1-18

A stateful object, once activated, remainsin memory until aspecific event occurs, such
asthe process in which the object exists is shut down, or the transaction in which the
object is activated is completed.

Stateful objects are typically appropriate in the following situations:

L4

When an object isused very frequently by alarge number of client applications.
Thisisthe case for long-lived, well-known objects like factories. When the
server application keeps these objects active, the client application typically
experiences minimal response time in accessing them. Since these active objects
are shared by many client applications, there are relatively few objects of this
typein memory.

Note: Plan carefully how process objects are potentially involved in a transaction.

Any object that isinvolved in atransaction cannot beinvoked by another client
application or object. Process objects meant to be used by alarge number of
client applications can create problemsif they are involved in transactions
frequently or for long durations.

When a client application must invoke successive operations on an object to
complete atransaction, and the client application is not idle while waiting for
user input between those invocations. In this case, if the object were deactivated
between invocations, there would be a degradation of response time because
state would be written and read between each invocation; such behavior may not
be appropriate for transactions. You can trade holding server resources for better
response time.

Note the following behavior with stateful objects:

L4

State information is maintained between server invocations, and the servant
typically remains dedicated to a given client application for a specified duration.

Even though data is sent and received between the client and server applications,
the server process maintains additional context or application state information
in memory.

In cases where one or more stateful objects are using alot of machine resources,
server performance for tasks and processes not associated with the stateful object
may be worse than with a stateless server model.

Creating Java Server Applications

Choosing Between Stateless and Stateful Objects

For example, if an object has alock on a database and is caching alot of datain
memory, that database and the memory used by that stateful object are
unavailable to other objects, potentially for the entire duration of atransaction.

Reading and Writing an Object’s Data

Many of the CORBA objects managed by the server application may have datathat is
in external storage. This externally stored data may be regarded as the persistent or
durable state of the object. You must address durable state handling at appropriate
points in the object implementation for object state management to work correctly.

Because of the wide variety of requirements you may have for your client/server

application with regards to reading and writing an object’s durable state, the TP
Framework cannot automatically handle durable object state on disk. In general, if an
object’s durable state is modified as a result of one or more client invocations, you
must make sure that durable state is saved before the object is deactivated, and you
should plan carefully how the object’s data is stored or initialized while the object is
active.

The sections that follow describe the mechanisms available to you to handle an
object’s durable state, and give some general advice about how to read and write object
state under specific circumstances. The specific topics presented include:

The available mechanisms for reading and writing an object’s durable state
Reading state at object activation

Reading state within individual operations on an object

Stateful objects and durable state

¢

¢

¢

4 Stateless objects and durable state

¢

4 Your responsibilities for object deactivation
¢

Avoiding unnecessary /O

How you choose to read and write durable state invariably depends on the specific
requirements of your client/server application, especially with regard to how the data
is structured. In general, your priority should be to minimize the number of disk
operations, especially where a database controlled by an XA resource manager is
involved.

Creating Java Server Applications 1-19

1 Java Server Application Concepts

Available Mechanisms for Reading and Writing an Object’s Durable State

Table 1-1 and Table 1-2 describe the avail able mechanisms for reading and writing an

object’s durable state.

Table 1-1 Available Mechanisms for Reading an Object’'s Durable State

Mechanism

Description

com beasys.

Tobj _Servant.
activat e_obj ect
method

After the TP Framework creates the servant for an object, the
TP Framework invokestheact i vat e_obj ect method on
that servant. This method is defined on the Tobj _Ser vant
class, from which all the CORBA objects you define for your
client/server application inherit.

Y ou may choose not to define and implement the

acti vat e_obj ect method on your object, in which case

nothing happens regarding specific object state handling when

the TP Framework activates your object. However, if you

define and implement this method, you can choose to include

code in this method that reads some or all of an object’s durable
state into memory. Therefore, thet i vat e_obj ect

method provides your server application with its first
opportunity to read an object’s durable state into memory.

Note that if an object’'s OID contains a database key, the
acti vat e_obj ect method provides the only means the
object has to extract that key from the OID.

For more information about implementing the
acti vat e_obj ect method, see “Step 2: Write the methods
that implement each interface’s operations.” on page 2-5.

Operations on the object

You can include inside the individual operations that you
define on the object the code that reads an object’s durable
state.

1-20 Creating Java Server Applications

Choosing Between Stateless and Stateful Objects

Table 1-2 Available Mechanisms for Writing an Object’s Durable State

Mechanism

Description

com beasys.

Tobj _Servant.
deacti vat e_obj ect
method

When an object isbeing deactivated by the TP Framework, the
TP Framework invokes this operation on the object as thefinal
step of object deactivation. Aswiththeact i vat e_obj ect
method, the deact i vat e_obj ect methodisdefined onthe
Tobj _Servant class. Youimplement the

deacti vat e_obj ect method on your object optionaly if
you have specific object state that you want flushed from
memory or written to a database.

Thedeact i vat e_obj ect method provides the final
opportunity your server application hasto write durable stateto
disk before the object is deactivated.

If your object keeps any datain memory, or allocates memory
for any purpose, you implement the deact i vat e_obj ect
method so your object has afinal opportunity to flush that data
from memory. Flushing any state from memory before an
object is deactivated is critical in avoiding memory leaks.

Operations on the object

Asyou may haveindividual operations on the objectsthat read
durable state from disk, you may a so have individual
operations on the object that write durable state back to disk.

For method-bound and process-bound objects in general, you
typically perform database write operations within these
operations and not inthedeact i vat e_obj ect method.

For transaction-bound objects, however, writing durable state
inthedeact i vat e_obj ect method provides a number of
object management efficiencies that may make sense for your
transactional server applications.

Note: If youusethedeacti vat e_obj ect method to write any durable stateto disk,
any errors that occur while writing to disk are not reported to the client
application. Therefore, the only circumstances under which you should write
datato disk in this operation iswhen the object istransaction-bound (that is, it
hasthet ransacti on activation policy assigned to it), or you scope the disk
write operations within atransaction by invoking the Tr ansact i onCur r ent

object.

Creating Java Server Applications 1-21

1

Java Server Application Concepts

Any errors encountered while writing to disk during a transaction can be

reported back to the client application. For more information about using the
deacti vat e_obj ect method to write object state to disk, see the section
“Caveat for State Handling in com.beasys.Tobj_Servant.deactivate_object”
on page 2-28.

Reading State at Object Activation

Using thecom beasys. Tobj _Servant. acti vat e_obj ect method on an object to
read durable state may be appropriate when either of the following conditions exist:

4 Object data is always used or updated in all the object’s operations.
4+ All the object’s data is capable of being read in one operation.
The advantages of using thet i vat e_obj ect method to read durable state include:

4 You write code to read data only once, instead of duplicating the code in each of
the operations that use that data.

4+ None of the operations that use an object’s data need to perform any reading of
that data. In this sense, you can write the operations in a way that is independen
of state initialization.

Reading State Within Individual Operations on an Object

1-22

With all objects, regardless of activation policy, you can read durable state in each
operation that needs that data. That is, you handle the reading of durable state outsi
thecom beasys. Tobj _Servant. acti vat e_obj ect method. Cases where this
approach may be appropriate include the following:

4+ Object state is made up of discrete data elements that require multiple operation
to read or write.

4 Objects do not always use or update state data at object activation.

For example, consider an object that represents a customer’s investment portfolio. Tt
object contains several discrete records for each investment. If a given operation
affects only one investment in the portfolio, it may be more efficient to allow that
operation to read the one record than to have a general-parposet e_obj ect

method that automatically reads in the entire investment portfolio each time the objec
is invoked.

Creating Java Server Applications

Choosing Between Stateless and Stateful Objects

Stateless Objects and Durable State

In the case of stateless objects -- that is, objects defined with the met hod activation
policy -- you must ensure the following:

4 That any durable state needed by the request is brought into memory by thetime
the operation’s business logic starts executing

4 That any changes to the durable state are written out by the end of the invocation

The TP Framework invokes tlsem beasys. Tobj _Servant. acti vat e_obj ect

method on an object at activation. If an object has an OID that contains a key to the
object’s durable state on disk, thet i vat e_obj ect method provides the only
opportunity the object has to retrieve that key from the OID.

If you have a stateless object that you want to be able to participate in a transaction, we
generally recommend that if the object writes any durable state to disk that it be done
within individual methods on the object. However, if you have a stateless object that
is always transactional -- that is, a transaction is always scoped when this object is
invoked -- you have the option to handle the database write operations in the

deact i vat e_obj ect method, because you have a reliable mechanism in the XA
resource manager to commit or roll back database write operations accurately.

Note: Even if your object is method-bound, you may have to take into account the
possibility that two server processes are accessing the same disk data at the
same time. In this case, you may want to consider a concurrency management
technique, the easiest of which is transactions. For more information about
transactions and transactional objects, see Chapter 3, “Integrating
Transactions into a Java Server Application.”

Stateful Objects and Durable State

For stateful objects, you should read and write durable state only at the point where it
is needed. This may introduce the following optimizations:

4 In the case of process-bound objects, you avoid the situation in which an object
allocates a large amount of memory over a long period.

4 In the case of transaction-bound objects, you can postpone writing durable state
until thecom beasys. Tobj _Servant. deact i vate_obj ect method is
invoked, when the transaction outcome is known.

Creating Java Server Applications 1-23

1

Java Server Application Concepts

In general, transaction-bound objects must depend on the XA resource manager to
handle all database write or rollback operations automatically.

Note: Datawritten to externa storage that is not managed by an XA resource
manager will not be coordinated within the scope of atransaction; if the
transaction is rolled back, the datais not rolled back.

For more information about objects and transactions, see Chapter 3, “Integrating
Transactions into a Java Server Application.”

Your Responsibilities for Object Deactivation

As mentioned in the preceding sections, you implement the

com beasys. Tobj _Servant . deact i vat e_obj ect method to write an object’s
durable state to disk. You should also implement this operation on an object to flush
any remaining object data from memory so that the object’s servant can be used to
activate another instance of that object. You should not assume that an invocation t
an object'sleact i vat e_obj ect method also results in an invocation of that object’s
destructor.

Avoiding Unnecessary 1/0

1-24

Be careful not to introduce inefficiencies into the application by doing unnecessary I/C
in objects. Situations to be aware of include the following:

4+ If many operations in an object do not use or affect object state, it may be
inefficient to read and write state each time these operations are invoked. Desigr
these objects so that they handle state only in the operations that need it; in suct
cases, you may not want to have all of the object’s durable state read in at objec
activation.

4 If object state is made up of data that is read in multiple operations, try to do
only the necessary operations at object activation by doing one of the following:

4 Read only the state that is common to all the operations in the
com beasys. Tobj _Servant . acti vat e_obj ect method. Defer the reading
of additional state to only the operations that require it.

4+ Write out only the state that has changed. You can do this by managing flags
that indicate the data that was changed during an activation, or by comparing
before and after data images.

Creating Java Server Applications

Choosing Between Stateless and Stateful Objects

A general optimization isto initialize adi r t ySt at e flag on activation and to
write datain the com beasys. Tobj _Servant . deact i vat e_obj ect
method only if the flag has been changed while the object was active.

Sample Activation Walkthrough

For exampl es of the sequence of activity that takes place when an object is activated,
see Getting Sarted.

Using Design Patterns

It isimportant to structure the business logic of your application around awell-formed
design. The WebL ogic Enterprise software provides a set of design patternsto address
thisneed. A design pattern issimply astructured solution to a specific design problem.
The value of adesign pattern liesin its ability to be expressed in aform you can reuse
and apply to other design problems.

The WebL ogic Enterprise design patterns are structured solutions to enterprise-class
application design problems. Y ou can use them to design successful large-scale
client/server applications.

The design patterns summarized here are a guide to using good design practicesin
WebL ogic Enterpriseclient and server applications. They are animportant and integral
part of designing WebL ogic Enterprise client and server applications, and the chapters
in this book show examples of using these design patterns to implement the Bankapp
sample applications.

The Process-Entity design pattern applies to a large segment of enterprise-class
client/server applications. This design pattern is referred to as the flyweight patternin
Object-Oriented Design Patterns, Gammaet a., and asthe M odel-View-Controller in
other publications.

In this pattern, the client application creates along-lived process object that the client
application interacts with to make requests. For example, in the WebL ogic Enterprise
University sample applications, this object might be the registrar that handles course
browsing operations on behalf of the client application. The courses themselves are
database entities and are not made visible to the client application.

Creating Java Server Applications 1-25

1

Java Server Application Concepts

1-26

The advantages of the Process-Entity design pattern include:

L4

You can achieve the advantages of afine-grained object model without
implementing fine-grained objects. Instead, you use CORBA st ruct datatypes
to simulate objects.

M achine resource usage is optimized because there is only a single object

mapped into memory: the process object. By contrast, if each database entity

were activated into memory as a separate object instance, the number of objects

that would need to be handled could overwhelm the machine’s resources quickly
in a large-scale deployment.

Because they are not exposed to the client application, database entities need n
be implemented as CORBA objects. Instead, entities can be implemented as
local language objects in the server process. This is a fundamental principle of
three-tier designs, but it also accurately models the way in which many
businesses operate (for example, a registrar at a real university). The individual
who serves as the registrar at a university can handle a large course database fc
multiple students; you do not need an individual registrar for each individual
student. Thus, the process object state is distinct from the entity object state.

For complete details on the Process-Entity design patteresiar@cal Articleson the
Online Documentation CD.

Creating Java Server Applications

CHAPTER

2

Steps for Creating a

Java Server
Application

Thischapter describesthe basic stepsinvolved in creating aWebL ogic Enterprise Java
server application. The steps shown in this chapter are not definitive; there may be
other steps you may need to take for your particular server application, and you may
want to change the order in which you follow some of these steps. However, the
development process for every WebL ogic Enterprise server application has each of
these steps in common.

This chapter presents the following topics:
4 Summary of the Java Server Application Development Process
¢ Development and Debugging Tips

This chapter begins with a summary of the steps, and also lists the devel opment tools
and commands used throughout this book. Y our particular deployment environment
might use additional software development tools, so thetoolsand commandslisted and
described in this chapter are also not definitive.

The chapter uses examples from the Bankapp sample application, which is provided
with the WebL ogic Enterprise software. For complete details about the sample
application, see the Guide to the Java Sample Applications. For complete information
about the tools and commands used throughout this book, see the Java Programming
Reference.

Creating Java Server Applications 2-1

2 Steps for Creating a Java Server Application

Summary of the Java Server Application
Development Process

The basic stepsinvolved in the creation of a server application are summarized in the

following table:

Step 1: Compilethe OMG IDL file for the server application.

Step 2: Write the methods that implement each interface’s operations.
Step 3: Create the Server object.

Step 4: Compile the Java source files.

Step 5: Define the object activation and transaction policies.

Step 6: Verify the environment variables.

Step 7: Finish the Server Description File.

Step 8: Deploy the server application.

The WebLogic Enterprise software also provides the following development tools anc

commands:
Tool Description
n8i dl t oj ava Compiles your application’s OMG IDL file.

bui | dj avaser ver

Creates a JAR file containing your Java server class files; also
creates a server descriptor file (SER).

bui | dXAJS For applications that use an XA-compliant resource manager,
creates an XA-specific version of the JavaServer.

tm oadcf Creates th@UXCONFI Gfile, a binary file for the WebLogic
Enterprise domain that specifies the configuration of your
server application.

t madmi n Among other things, creates a log of transactional activities,

which is used in some of the sample applications.

2-2 Creating Java Server Applications

Step 1: Compile the OMG IDL file for the server application.

Step 1: Compile the OMG IDL file for the
server application.

The basic structure of the client and server portions of the application that runsin the
WebLogic Enterprise domain are determined by statements in the application’s OMG
IDL file. When you compile your application’s OMG IDL file, th@i dlI t oj ava

compiler generates many files, some of which are shown in the following diagram:

/1 BankApp. | DL

modul e BankApp {

interface Teller { . . . }
interface TellerFactory { . . . }
}
I
nBi dl t oj ava
Compiler
\
Teller.java TellerFactory.java
_TellerStub.java _TellerFactoryStub.java
Client Stub Client Stub
_TellerimplBase.java _TellerFactorylmplBase.java
Server Skeleton Server Skeleton
TellerHolder.java TellerFactoryHolder.java
Holder Class Holder Class
TellerHelper.java TellerFactoryHelper.java
Helper Class Helper Class

Creating Java Server Applications 2-3

2 Steps for Creating a Java Server Application

The preceding diagram shows some of the files generated when the sample
BankApp. | DL fileis compiled by the n8i dI t oj ava command.

These files are described in Table 2-1.
Note: Do not modify these files.

Table 2-1 Sample Files Produced by the n8i dI t oj ava Compiler

File Default Name Description
Base interface class interface.java Contains an implementation of the interface, written
file in Java.

Copy thisfileto create a new file and add your
business logic to the new file. By convention in our
samples and in this document, we name this file

i nterfacel npl.java, substituting the actual
name of the interface in the file name. We cal this
new file an object implementation file.

Client stub file _interfaceStub.java Contains generated code for sending a request.

Server skeleton file _interfacel npl Base. java ContainsJavaskeletonsfor each interface specified
inthe OMG IDL file. The skeleton maps client
requests to the appropriate operation in the Java
server application during run time.

Holder classfile interfaceHol der.java Containstheimplementation of the Holder class. The
Holder classprovidesoperationsforout andi nout
arguments, which CORBA has, but which do not
map exactly to Java.

Helper classfile interfaceHel per.java Containstheimplementation of the Helper class. The
Helper classprovidesauxiliary functionality, notably
the nar r owmethod.

Using the m3idltojava Compiler

To generate the files listed in Table 2-1, enter the following command:

nBi dltojava [options] idl-filenane

2-4 Creating Java Server Applications

Step 2: Write the methods that implement each interface’s operations.

In the nBi dl t o] ava command syntax:

4 options represents one or more command-line optionsto the IDL compiler. The
command-line options are described in the Java Programming Reference.

4 idl-filenane represents the name of your application’s OMG IDL file.

For more information about thesi dl t oj ava compiler, including details on the
n8i dl t oj ava command, see thiava Programming Reference.

Note: Thens8i dl t oj ava compiler supports all the functionality provided by the
i dI t oj ava compiler from Sun Microsystems, Inc. For more information
about the dI t oj ava compiler, refer to the following Web site:

http://java. sun.com products/jdk/idl/

Step 2: Write the methods that implement
each interface’s operations.

Astheserver application programmer, your task isto write the methodsthat implement
the operations for each interface you have defined in your application’s OMG IDL file.

The Java object implementation file contains:

4 Method declarations for each operation specified in the OMG IDL file

4 Your application’s business logic

4 Constructors for each interface implementation (implementing these is optional)
¢

Optionally, thecom beasys. Tobj _Servant . acti vat e_obj ect and
com beasys. Tobj _Servant . deact i vat e_obj ect methods

Within theact i vat e_obj ect anddeacti vat e_obj ect methods, you write

code that performs any particular steps related to activating or deactivating an
object. This includes reading and writing the object’s durable state from and to
disk, respectively. For background information on this topic, see the section
“Reading and Writing an Object’'s Data” on page 1-19.

Creating Java Server Applications 2-5

2 Steps for Creating a Java Server Application

Creating an Object Implementation File

Although you can create your server application’s object implementation file
manually, you can save time and effort by usingn$ied! t oj ava compiler to

generate a file for each interface. Tihe er face. j ava file contains Java signatures

for the methods that implement each of the operations defined for your application’s
interfaces.

To take advantage of this shortcut, use the following steps:

1. Create a copy of thent er face. j ava file, which was created when you compiled
your OMG IDL file with then8i dI t oj ava command, and name it
i nterfacel npl . java. For example, using the Bankapp sample file names, you
would copyTel | er. j ava to a new file namedel | er I npl . j ava.

2. Open the newnt er f acel npl . j ava file. For example, in the previously
uneditedTel | er I npl . j ava file, we changed:

public interface Tell er extends org. ong. CORBA. (bj ect {
to:
public class Tellerlnpl extends Bankapp. Tell erl npl Base {

Bankapp. _Tel | erl npl Base is the class defined in the server skeleton file that
was generated by tmai dl t oj ava compiler for theTel | er object.

3. For each method el | er I npl . j ava, we added theubl i c keyword. For
example, we changed:

float deposit(int accountlD, float arount)
to:

public float deposit(int accountlD, float amount)

Repeat this procedure to creatg er f acel npl . j ava object implementation files for
your interfaces, and add the business logic for your Java server application.

Implementing a Factory Object

As mentioned in the section “How Client Applications Access and Manipulate Your
Application’s CORBA Objects” on page 1-6, you need to create factories so that clien
applications can easily locate the objects managed by your server application. A

2-6 Creating Java Server Applications

Step 2: Write the methods that implement each interface’s operations.

factory islike any other CORBA object that you implement, with the exception that
you register it with the FactoryFinder object. Registering afactory is described in the
section “Writing the Code That Creates and Registers a Factory” on page 2-10.

The primary function of a factory is to create object references, which it does by
invoking thecom beasys. Tobj . TP. cr eat e_obj ect _r ef er ence method. The
creat e_obj ect _r ef er ence method requires the following input parameters:

4 The Interface Repository ID of the object's OMG IDL interface
4 The object ID (OID) in string format
4 Optionally, routing criteria

For example, in the Bankapp sample applicationT#he er Fact ory interface
specifies the following operations in tMel | er Fact or yl npl . j ava file.

Note: In this code fragment, the Import statement appeared earlier in the source file
and is not shown here.

org.ong. CORBA. Obj ect teller_oref =
TP. creat e_obj ect _reference(
BankApp. Tel l erHel per.id(), // Repository ID
tel | er Nane, /1 Object ID
nul | /1 Routing Criteria
)

In the previous code example, notice the following:

4 The following parameter specifies tiel | er object’s Interface Repository ID
by extracting it from its typecode:

BankApp. Tel | er Hel per.i d()

4 Thenul | parameter specifies that no routing criteria are used, with the result
that an object reference created forThel er object is routed to the same
group as th@el | er Fact or y object that created the object reference.

For information about specifying routing criteria that affect the group to which
object references are routed, see Chapter 4, “Scaling a Java Server Application.”

Note: In WebLogic Enterprise 4.2, references to objects implemented in Java can be
created only by factories that are also implemented in Java. You cannot mix
and match factories and objects with regards to implementation language.

Creating Java Server Applications 2-7

2 Steps for Creating a Java Server Application

Using Threads with WLE

Step 3:

WLE supports the ability to configure multithreaded JavaServers. For each
JavaServer, you can establish the maximum number of threadsin the application’s
UBBCONFI Gfile.

For information about the tradeoffs of using single-threaded JavaServers or
multithreaded JavaServers, see the section “Enabling Multithreaded JavaServers” o
page 4-18. For information about defining t'/BBCONFI G parameters, see Chapter 3

of the Administration Guide.

Create the Server object.

In Java, you use a Server object to initialize and release the server application. You
implement this Server object by creating a new class that derives from the

com beasys. Tobj . Server class and overrides thai tial i ze andr el ease

methods. In the server application code, you can also write a public default constructc

For example:

i nport com beasys. Tobj . *;
/**
* Provides code to initialize and stop the server invocation.
* BankAppServerlnpl is specified in the BankApp.xm input file

* as the nane of the Server object.
*/

public cl ass BankAppServer | npl
ext ends com beasys. Tobj . Server {

public boolean initialize(string[] args)
throws com beasys. Tobj S. I nitializeFail ed;

public bool ean rel ease()
t hrows com beasys. Tobj S. Rel easeFai | ed;

}

In the XML-coded Server Description File, which you process with the
bui | dj avaser ver command, you identify the name of the Server object.

2-8 Creating Java Server Applications

Step 3: Create the Server object.

Thecr eat e_ser vant method, used in the C++ environment of WebL ogic Enterprise,
is not used in the Java environment. In Java, objects are created dynamically, without
prior knowledge of the classes being used. In the Java environment of WebL ogic
Enterprise, a servant factory is used to retrieve an implementation class, given the
interface repository ID. Thisinformation isstored in aserver descriptor file created by
the bui | dj avaserver command for each implementation class. When a method
request is received, and no servant is available for the interface, the servant factory
looks up the interface and creates an object of the appropriate implementation class.

This collection of the object’s implementation and data compose the run-time, active
instance of the CORBA object.

When your Java server application starts, the TP Framework creates the Server object
specified in the XML file. Then, the TP Framework invokesithiet i al i ze method.

If the method returns true, the server application starts. If the method throws the

com beasys. Tobj S. I ni ti al i zeFai | ed exception, or returnial se, the server
application does not start.

When the server application shuts down, the TP Framework invokesltbase
method on the Server object.

Any command-line options specified in theoPT parameter for your specific server
application in theSERVERS section of the WebLogic Enterprise domaiaBBCONFI G

file are passed to thrubl i ¢ bool ean initialize(string[] args) operation as

ar gs. For more information about passing arguments to the server application, see the
Administration Guide. For examples of passing arguments to the server application,
see theGuide to the Java Sample Applications.

Within thei ni ti al i ze method, you can include code that does the following, if
applicable:

4 Creates and registers factories

4 Allocates any machine resources

4 Initializes any global variables needed by the server application
4 Opens the databases used by the server application
¢

Opens the XA resource manager

Creating Java Server Applications 2-9

2 Steps for Creating a Java Server Application

Writing the Code That Creates and Registers a Factory

2-10

If your server application manages afactory that you want client applicationsto beable
to locate easily, you need to write the code that registers that factory with the
FactoryFinder object, which isinvoked typically asthe final step of the server
application initialization process.

To write the code that registers a factory managed by your server application, do the
following:

1. Create an object reference to the factory.

This step involves creating an object reference as described in the section
“Implementing a Factory Object” on page 2-6. In this step, you include an
invocation to theom beasys. Tobj . TP. cr eat e_obj ect _r ef erence method,
specifying the Interface Repository ID of the factory’s OMG IDL interface.The
following Bankapp example, from ttBank AppSer ver | npl . j ava file, creates

an object reference, represented by the varfadale_or ef , to the

Tel | er Fact ory factory:

/1 Save the Teller factory nane.
tell erFNane = new String(args[0]);

/1l Create the Teller factory object reference.

fact _oref = TP.create_object _reference(
BankApp. Tel | er Fact oryHel per.id(), // factory Repository id
tel | er FNane, /1 object id
nul | /1 no routing criteria

)i
2. Register the factory with the WebLogic Enterprise domain.

This step involves invoking the following operation for each of the factories
managed by the server application:

/'l Register the factory reference with the factory finder.

TP.regi ster_factory(
fact _oref, /1 factory object reference
tel | er FNane /1 factory nane

)i
Thecom beasys. Tobj . TP. regi st er _f act or y method registers the server
application’s factories with the FactoryFinder object. This operation requires the
following input parameters:

Creating Java Server Applications

Step 3: Create the Server object.

4 The object reference for the factory, created in step 1 above.

4 A dtring identifier, which in the Bankapp example is based on the Teller
factory name that is specified as a command-line option in the CLOPT
parameter for the Bankapp server application. This string isused in the call
to the com beasys. Tobj . TP. unregi ster _factory method. Itisalso
used in the invocation of thefind_one_fact ory_by_i d method that is
called by clients of thisinterface.

Releasing the Server Application

When the WebL ogic Enterprise system administrator entersthe t mshut down
command, the TP Framework invokes the following operation in the Server object of
each running server application in the WebL ogic Enterprise domain:

public void rel ease()

Withinthe r el ease() operation, you may perform any application-specific cleanup
tasksthat are specific to the server application, such as:

4 Unregistering object factories managed by the server application
4 Deallocating resources

4 Closing any databases

4 Closing an XA resource manager

Once a server application receives a request to shut down, the server application can
no longer receive requests from other remote objects. This has implications on the
order in which server applications should be shut down, which is an administrative
task. For example, do not shut down one server processif a second server process
contains an invocation in itsr el ease() operation to the first server process.

During server shutdown, you may want to include an invocation to unregister each of
the server application’s factories. For example, the following example is from the
BankAppSer ver | npl . j ava file:

/1 Unregister the factory.
/1 Use a try bl ock since cleanup code shouldn't throw exceptions.

try {
TP. unregi ster_factory(

Creating Java Server Applications 2-11

2 Steps for Creating a Java Server Application

Step 4:

fact _oref, /1l factory object reference
Tel | er FNane /1l factory interface id

)

} catch (Exception e){
TP. userl og("Coul dn’t unregister the TellerFactory: " +
e. get Message());
e.printStackTrace();

}

Theinvocation of the com beasys. Tobj . TP. unr egi st er _f act or y method should
be one of the first actionsin ther el ease() implementation. The

unr egi st er _factory method unregisters the server application’s factories. This
operation requires the following input arguments:

4 The object reference for the factory

4+ A string identifier, which in the Bankapp sample is based on the Teller factory
name that is specified as a command-line option in the CLOPT parameter for the
Bankapp server application

Compile the Java source files.

After you have implemented your application’s objects and the Server object, use th
j avac compiler to create the bytecodes for all the class files that comprise your
application. This set of files includes thej ava source files generated by the

n8i dl t oj ava compiler, plus the object implementation files and server class file that
you created.

2-12 Creating Java Server Applications

Step 5: Define the object activation and transaction policies.

Step 5: Define the object activation and
transaction policies.

As stated in the section “Managing Object State” on page 1-11, you determine what
events cause an object to be deactivated by assigning object activation policies,
transaction policies, and, optionally, using the application-controlled deactivation
feature.

You specify default object activation and transaction policies in the Server Description
File, which is expressed in XML, and you implement application-controlled
deactivation viatheom beasys. Tobj . TP. deact i vat eEnabl e method in your Java
code. This section explains how you implement one of the mechanisms, using the
Bankapp WebLogic Enterprise sample application as an example.

Specifying Policies in XML

The WebLogic Enterprise software supports the following activation policies,
described in “Object Activation Policies” on page 1-13:

Activation Policy Description

nmet hod Causes the object to be active only for the duration of the
invocation on one of the object’s operations.

transaction Causes the object to be activated when an operation is invoked on
it. If the object is activated within the scope of a transaction, the
object remains active until the transaction is either committed or
rolled back.

process Causes the object to be activated when an operation is invoked on
it, and to be deactivated only when one of the following occurs:

4 The process in which the server application exists is shut
down.

4 The object has invoked the
com beasys. Tobj . TP. deact i vat eEnabl e method
on itself.

Creating Java Server Applications 2-13

2 Steps for Creating a Java Server Application

The WebL ogic Enterprise software also supports the following transaction policies,
described in Chapter 3, “Integrating Transactions into a Java Server Application™:

Transaction Policy Description

al ways When an operation on this object isinvoked, thispolicy causesthe
TP Framework to begin atransaction for this object, if thereis not
aready an active transaction. If the TP Framework starts the
transaction, the TP Framework commits the transaction if the
operation completes successfully, or rolls back the transaction if
the operation rai ses an exception.

If al ways is specified, the AUTOTRAN parameter in the
application’sUBBCONFI Gfile is ignored.

optional The implementation may be transactional. Objects can be invoked
either inside or outside the scope of a transaction. If the
AUTOTRAN parameter is enabled in the application’s
UBBCONFI Gfile, the implementation is transactional. Servers
containing transactional objects must be configured within a
group associated with an XA-compliant resource manager.

Opt i onal is the default transaction policy.

never Causes the TP Framework to generate an error condition if this
object is invoked during a transaction.

If never is specified, théAUTOTRAN parameter in the
application’sUBBCONFI Gfile is ignored.

i gnore If a transaction is currently active when an operation on this
object is invoked, the transaction is suspended until the operation
invocation is complete. This transaction policy prevents any
transaction from being propagated to the object to which this
transaction policy has been assigned.

If i gnor e is specified, thé&UTOTRAN parameter in the
application’sUBBCONFI Gfile is ignored.

To assign these policies to the objects in your application, create the Server
Description File, which is written in the Extensible Markup Language (XML). Specify
the activation policies for each of your application’s interfaces.

Note: For information about the XML tags used with the WebLogic Enterprise
Server Description File, see thava Programming Reference.

2-14 Creating Java Server Applications

Step 6: Verify the environment variables.

The following example shows a portion of the BankApp. xni file that was created for
the WebL ogic Enterprise Bankapp sample application. Notice that there are no default
policy settings in the XML file; the policies are explicitly assigned.

<?xm version="1.0"?>
<! DOCTYPE M3- SERVER SYSTEM "n8. dtd">

<MB- SERVER
server-inpl ement ati on="com beasys. sanpl es. BankAppSer ver | npl "
server-descri pt or - nane="BankApp. ser" >

<MODULE nane="com beasys. sanpl es" >
<| MPLEMENTATI ON
nane="Tel | er Factoryl npl "
activation="process"
transaction="never"
/>

<| MPLEMENTATI ON
nane="Tel | er | npl "
activati on="net hod"
transacti on="never"
/>

<| MPLEMENTATI ON
nane="DBAccess| npl "
activati on="net hod"
transacti on="never"
/>
</ MODULE>

</ MB- SERVER>

Step 6: Verify the environment variables.

Several environment variables are defined by the WebL ogic Enterprise softwarewhen
the product isinstalled, but it is always a good ideato verify the following key
environment variables prior to the bui | dj avaser ver compilation step. The
environment variables are:

Creating Java Server Applications 2-15

2 Steps for Creating a Java Server Application

4 JAVA_HOME, the directory where the JDK isinstalled

4 CLASSPATH, which must point to:

4 Thelocation of the WebL ogic Enterprise JAR archive, which contains all the
classfiles

4 Thelocation of the WebL ogic Enterprise message catalogs
4 TUXDI R, the directory where the WebL ogic Enterprise software is installed

To verify whether an environment variable has been set, you can use the echo
command, as shown in the following examples:

On Windows NT systems:
echo %JAVA HOVE%

On Solaris systems:

echo $JAVA HOVE

If you discover that required WebL ogic Enterprise system variables are not set on your
system, you can set them as shown in the following exampl es.

On Windows NT systems:
set JAVA HOVE=c:\j dkl.2
set CLASSPATH=. ; 99 UXDI R% udat aobj \j ava\j dk\ nB. j ar; %9UXDI R% | ocal e\ j ava\ M3

set PATH=% AVA HOVE% bi n; %9 AVA HOVE% j r e\ bi n; %9 AVA HOVE% | re\ bi n\ cl assi c;
%TUXDI RA | i b; %TUXDI R bi n; %PATH%

On Solaris systems:
JAVA HOVE=/usr/kits/jdkl. 2
CLASSPATH=. : $TUXDI R/ udat aobj / j ava/j dk/ MB. j ar: $TUXDI R/ | ocal e/ j ava/ MB
PATH=$JAVA_HOVE/ bi n: $TUXDI R/ bi n: $PATH

LD LI BRARY _PATH=$JAVA HOVE/jre/lib/sparc/ native_threads:
$JAVA HOVE/ jrel/libl/sparc/classic: $JAVA HOVE/ jre/lib/sparc: STUXDIR/ li b

THREADS FLAG=native
export JAVA HOME CLASSPATH PATH LD LI BRARY_PATH THREADS_FLAG

2-16 Creating Java Server Applications

Step 7: Finish the Server Description File.

Note that during the deployment step, you must also define the environment variables
APPDI R and TUXCONFI G. These variables are described in subsequent sections of this
chapter.

Step 7: Finish the Server Description File.

After you have compiled the Java source code and defined the environment variables,
enter additional information in the XM L-based Server Description File, and then
supply the Server Description File as input to the bui | dj avaser ver command.

Edit your Server Description File to identify the Server object and the name of thefile

that will contain your Java application’s server descriptor. This portion of the XML file
is called the server declaration; its location in the file is immediately after the prolog.
The required prolog contains the following two lines:

<?xm version="1.0"7?>
<! DOCTYPE M- SERVER SYSTEM "nB. dtd">

Note: TheDTD file type stands for Document Type Definition. In XML, a DTD file
is used to specify software descriptions or to format documents&l lied
file is supplied by the WebLogic Enterprise system and specifies the set of
elements (or tags, such 9sSVPLEMENTATI ON>) that are parsed by the
bui | dj avaser ver compiler. The compiler understands the attributes
attached to each element, and which elements can be used with another
element.

The server declaration used in the sanBalekApp. xni file is as follows:

<MB- SERVER
server -i npl enment at i on="com beasys. sanpl es. BankAppSer ver | npl "
server -descri pt or - nane="BankApp. ser">

In the XML file for your Java server application, you can also include elements that
will causebui | dj avaser ver to create a Java Archive (JAR) file. This section of the
XML file is optional, because you could use the JAR command to assemble your
application’s classes into a JAR file. However, ¢hBCH VE> element provides help

by simplifying the process of collecting the files.

For example, th8ankApp. XM file contains the following elements:

Creating Java Server Applications 2-17

2 Steps for Creating a Java Server Application

2-18

<ARCH VE nane="BankApp.jar">
<PACKAGE- RECURSI VE nane="com beasys. sanpl es"/ >
</ ARCHI VE>

The archive element must be the last element inside the <MB- SERVER> element. It
must be located after al the modules and implementations.

If the XML file contains instructions to create an archive, both the class specified by
ser ver _name andthefilespecified by ser ver _descri pt or arestored inthearchive.
Theserver _descri pt or fileisinserted in the archive manifest with the M3- Ser ver
tag; this insertion makes the server descriptor the entry point during server execution.

If you do not include the archive element, the bui | dj avaser ver command generates
only the server descriptor and writes it in the file specified in the
server-descri pt or- name attribute of the M3- SERVER element.

For more information about the elements and options in the XML -based Server
Description File, see the Java Programming Reference.

When you have completed your edit to the Server Description File, you are ready to
usethebui | dj avaser ver command. (This step assumes that you have already

defined the environment variables that are identified in the section “Step 6: Verify the
environment variables.” on page 2-15.)

Thebui | dj avaser ver command has the following format:
bui | dj avaserver [-s searchpath] input_file.xm
In thebui | dj avaser ver command syntax:

¢ -s searchpath is used to locate the classes and packages when building the
archive. If this optional value is not specified, it defaults to the value of the
CLASSPATH environment variable.

¢ input_fileisthe name of the XML Server Description File.

Creating Java Server Applications

Step 8: Deploy the server application.

Step 8: Deploy the server application.

Y ou or the system administrator deploy the WebL ogic Enterprise server application by
using the procedure summarized in this section. For complete detail s on building and
deploying the WebL ogic Enterprise Bankapp sample application, seethe Guideto the
Java Sample Applications.

To deploy the server application:

1. Placethe server application JAR file in the directory listed in APPDI R. On NT
systems, thisdirectory must beonalocal drive (not anetworked drive). On Solaris,
the directory can be loca or remote.

2. If your Java server application uses an XA-compliant resource manager such as
Oracle, you must build an X A-specific version of the JavaServer by using the
bui | dXAJS command at a system prompt. Provide as input to the command the
resource manager that is associated with the server. In your application’s
UBBCONFI Gfile, you also must use thiavaSer ver XA element in place of
JavaSer ver to associate the XA resource manager with a specified server group.
See theJava Programming Reference for details about thbui | dXAJS
command.

3. Create the application’s configuration file, also known asBBeONFI Gfile, in a
text editor. Include the parameters to slaktaSer ver or JavaSer ver XA. For
example:

* SERVERS

JavaServer
SRVGRP = BANK GROUP2

SRVID = 8

CLOPT = "-A -- -M 10 BankApp.jar TellerFactory_ 1"
SYSTEM ACCESS=FASTPATH

RESTART = N

Note: There is a strict order to starting servers in WebLogic Enterprise Java.
Also, you can specify a fully qualified path to the location of the JAR file;
or, JavaServer looks for the application’s JAR file in the value for the

Creating Java Server Applications 2-19

2 Steps for Creating a Java Server Application

2-20

APPDI R environment variable. See Chapter 3 of the Administration Guide
for UBBCONFI Gfile details.

4. Set the following additional environment variables on the machine from which
you are booting the WebL ogic Enterprise server application:

4 TUXCONFI G which must match the TUXCONFI G entry in the UBBCONFI Gfile.
This variable represents the location or path of the binary version of the
application’sUBBCONFI Gfile.

4 APPDI R, which represents the directory in which the application’s executable
file exists.

5. If you have not already done so, setThi®DI R environment variable on all
machines that are running in the WebLogic Enterprise domain or that are
connected to the WebLogic Enterprise domain. This environment variable points
to the location where the WebLogic Enterprise software is installed.

6. Enter the following command to create TXCONFI G file:

pronpt > tm oadcf -y application-ubbconfig-file

The command-line argumeapp! i cat i on-ubbconfi g-fi I e represents the
name of your application’9BBCONFI Gfile. Note that you may need to remove
any oldTUXCONFI Gfiles to execute this command.

7. Enter the following command to start the WebLogic Enterprise server
application:
pronpt > t nboot -y
You can reboot a server application without reloadingUBRCONFI Gfile.
For complete details about configuring the JDBC Bankapp and XA Bankapp sample
applications, see thBuide to the Java Sample Applications. For complete details on

creating theJBBCONFI G file for WebLogic Enterprise applications, see the
Administration Guide.

Creating Java Server Applications

Development and Debugging Tips

Development and Debugging Tips

The following topics are discussed in this section:

4 Useof CORBA and WebL ogic Enterprise exceptions and the user log
4 Detecting error conditionsin the callback methods

4 Common pitfalls of OMG IDL interface versioning and modification
¢

Caveat for state handling in the
com beasys. Tobj _Servant . deact i vat e_obj ect method

Use of CORBA and WebLogic Enterprise Exceptions and
the User Log

This section discusses the following topics:
4 Theclient application view of exceptions

4 The server application view of exceptions

Client Application View of Exceptions

When aclient application invokes an operation on aCORBA object, an exception may
bereturned asaresult of theinvocation. The only valid exceptions that can be returned
to aclient application are the following:

4 Standard CORBA-defined exceptions that are known to every
CORBA-compliant ORB

4 Exceptionsthat are defined in OMG IDL and known to the client application via
either its stub or the Interface Repository

The WebL ogic Enterprise system works to ensure that these CORBA -defined
restrictions are not violated, which is described in the section “Server Application
View of Exceptions” on page 2-22.

Creating Java Server Applications 2-21

2 Steps for Creating a Java Server Application

Because the set of exceptions exposed to the client application is limited, client
applications may occasionally catch exceptions for which the cause is ambiguous.
Whenever possible, the WebL ogic Enterprise system supplements such exceptions
with descriptive messages in the user log, which serves as an aid in detecting and
debugging error conditions. These cases are described in the following section.

Server Application View of Exceptions

This section presents the following topics:

4 Exceptions raised by the WebL ogic Enterprise system that can be caught by
application code

4 TheWebLogic Enterprise system’s handling of exceptions raised by application
code during the invocation of operations on CORBA objects

Exceptions Raised by the WebLogic Enterprise System that Can Be Caught by
Application Code

The WebLogic Enterprise system may return the following types of exceptions to an
application when operations on the TP object are invoked:

4 CORBA-defined system exceptions

¢ CORBAUser Except i ons defined in the filerobj S. i dl

The OMG IDL code for the exceptions is as follows.

Note: This code fragment is from an IDL file that is not distributed with WebLogic
Enterprise systems. A separate file that shares the Tias. i dI is
distributed with WebLogic Enterprise systems. The two files are slightly
different.

#i fndef _OBJTM TOBJS | DL
#define _OBJTM TOBJS | DL

#pragma prefix "beasys. cont
#pragma j avaPackage "com beasys"

nodul e Tobj S {
/1 Enuner ati ons

enum Deact i vat eReasonVal ue {
DR_METHOD_END,

2-22 Creating Java Server Applications

Development and Debugging Tips

DR _SERVER SHUTDOWN,
DR _TRANS COWM TTI NG,
DR _TRANS_ ABORTED

}

/| Exceptions

exception ActivateObjectFailed { string reason; };
exception ApplicationProblem{ };

excepti on CannotProceed { };

excepti on OreateServantFailed { string reason; };
exception DeactivateCbhjectFailed { string reason; };
exception Illegal Interface { };

exception Illegal Operation { };

exception InitializeFailed { string reason; };
exception InvalidDomain { };

exception Invalidlnterface { };

exception InvalidName { };

exception InvalidObject { };

exception InvalidOjectld { };

exception InvalidServant { };

exception N | Object { string reason; };

excepti on NoSuchEl emrent { };

excepti on NotFound { };

exception O bProblem{ };

exception QutOf Mermory { };

exception OverFlow { };

excepti on Regi strarNot Avail able { };

exception Rel easeFailed { string reason; };
excepti on Unknownl nterface { };

}s
#endif /* _OBJTM TOBJS IDL */

The WebLogic Enterprise System’s Handling of Exceptions Raised by Application
Code during the Invocation of Operations on CORBA Objects

A server application can raise exceptions in the following places in the course of
servicing a client invocation:

4 Inthecom beasys. Tobj _Servant. acti vate_object and
com beasys. Tobj _Servant . deact i vate_obj ect callback methods

4 Inthe implementation code for the invoked operation
Itispossiblefor the server application to raise any of thefoll owing types of exceptions:

4 A CORBA-defined system exception

Creating Java Server Applications 2-23

2 Steps for Creating a Java Server Application

4 A CORBA user-defined exception defined in OMG IDL
4 A CORBA user-defined exception defined for WebL ogic Enterprise

Thefollowing exceptions are intended to be used in server applicationsto help
the WebL ogic Enterprise system send messages to the user log, which can help
with troubleshooting:

interface Tobj S {
exception ActivateojectFailed { string reason; };
exception DeactivateObjectFailed { string reason; };
exception InitializeFailed { string reason; };
exception Rel easeFailed { string reason; };

}
4+ Any other Java exception type

All exceptions raised by server application code that are not caught by the server
application are caught by the WebL ogic Enterprise system. When these exceptionsare
caught, one of the following occurs:

4 Theexception is returned to the client application without alteration.

4 Theexception is converted to a standard CORBA exception, which is then
returned to the client application.

4 Theexception is converted to a standard CORBA exception, and the following
actions occur:

4 Theexception is returned to the client application.

4 One or more messages containing descriptive information about the error are
sent to the user log. The descriptive information may originate from either
the server application code or from the WebL ogic Enterprise system.

Thefollowing sections show how the WebL ogi ¢ Enterprise system handles exceptions
raised by the server application during the course of aclient invocation on a CORBA
object.

Exceptionsraised in thecom beasys. Tobj _Servant . acti vat e_obj ect method
If any exception israised intheacti vat e_obj ect method:

¢ Theorg. ong. CORBA. OBJECT_NOT_EXI ST exception is returned to the client
application.

2-24 Creating Java Server Applications

Development and Debugging Tips

4 |f the exception raised iscom beasys. Tobj S. Acti vat eObj ect Fai | ed, a
message is sent to the user log. If areason string is supplied in the constructor
for the exception, the reason string is also written as part of the message.

4+ Neither the operation requested by the client nor the
com beasys. Tobj _Servant . deact i vat e_obj ect method isinvoked.

Exceptions raised in operation implementations

The WebL ogic Enterprise system requires operation implementations to throw either
CORBA system exceptions, or user-defined exceptions defined in OMG IDL that are
known to the client application. If these types of exceptions are thrown by operation
implementations, then the WebL ogic Enterprise system returns them to the client
application, unless one of the following conditions exists:

4 The object has the al ways transaction policy, and the WebL ogic Enterprise
system automatically started a transaction when the object was invoked. In this
case, the transaction is automatically rolled back by the WebL ogic Enterprise
system. Because the client application is unaware of the transaction, the
WebL ogic Enterprise system then raises the or g. ong. CORBA. OBJ_ADAPTER
CORBA system exception, and not the
or g. omg. CORBA. TRANSACTI ON_ROLLEDBACK exception, which would have
been the case had the client initiated the transaction.

4 Theexceptionisdefined in the file Tobj S.i dl . Inthiscase, the exceptionis
converted to the or g. ong. CORBA. BAD_CPERATI ON exception and
BAD_OPERATI ONis returned to the client application. In addition, the following
message is sent to the user log:

"WARN: Application didn’t catch Tobj S exception. TP Franmework
t hr owi ng or g. ong. CORBA. BAD_OPERATI ON. "

If the exception iscom beasys. Tobj S. 1| | egal Oper at i on, the following
supplementary message is written to warn the programmer of a possible coding
error in the application:

"WARN: Application call ed com beasys. Tobj. TP. deacti vat eEnabl e()
illegally and didn't catch TobjS exception."

Thiscan occur if the com beasys. Tobj . TP. deact i vat eEnabl e method is
invoked inside an object that hasthet r ansact i on activation policy.
(Application-controlled deactivation is not supported for transaction-bound
objects.)

Creating Java Server Applications 2-25

2 Steps for Creating a Java Server Application

4 TheWebLogic Enterprise system raised an interna system exception following
the client invocation. In this case, the or g. ong. CORBA. | NTERNAL exception is
returned to the client.

Exceptionsraised in thecom beasys. Tobj _Ser vant . deacti vat e_obj ect
method

If any exception israised inthe deact i vat e_obj ect method, the following occurs:
4 Theexception is not returned to the client application.

¢ |If the exceptionraised is com beasys. Tobj S. Dect i vat eCbj ect Fai | ed, a
message is sent to the user log. If areason string is supplied in the constructor
for the exception, the reason string is also written as part of the message.

4 A messageis sent to the user log for exceptions other than the
Tobj S. Deact i vat eCbj ect Fai | ed exception, indicating the type of exception
caught by the WebL ogic Enterprise system.

Detecting Error Conditions in the Callback Methods

2-26

The WebL ogic Enterprise system provides a set of predefined exceptions that allow
you to specify message strings that the TP Framework writesto the user log if
application code gets an error in any of the following callback methods:

4 com beasys. Tobj _Servant. acti vat e_obj ect
4 com beasys. Tobj _Servant . deacti vat e_obj ect
4 com beasys. Tobj. Server.initialize

4 com beasys. Tobj . Server.rel ease

Y ou can use these exceptions as a useful debugging aid that allows you to send
unambiguous information about why an exception is being raised. Note that the TP
Framework writes these messages to the user log only. They are not returned to the
client application.

Y ou specify these messages with the following exceptions, which have an optional
reason string:

Creating Java Server Applications

Development and Debugging Tips

Exception Callback M ethods That Can Raise This
Exception
Acti vat eCbj ect Fai | ed com beasys. Tobj _Servant .

acti vate_obj ect

Deacti vat evj ect Fai l ed com beasys. Tobj _Servant .
deacti vat e_obj ect

InitializeFail ed com beasys. Tobj . Server.initialize

Rel easeFai | ed com beasys. Tobj . Server.rel ease

To send a message string to the user log, specify the string in the exception, asin the
following example:

throw new InitializeFailed("Unable to Initialize Bankapp server");

Note the following:

4 When you throw these exceptions, the reason string parameter is optional. If you
do not need to specify a message string, omit the string parameter, asin the
following example:

t hrow new com beasys. Tobj S. Acti vat eObj ect Fai | ed() ;

4 If youchooseto usethel niti al i zedFai | ed exception in your code, be sure to
either fully qualify that object or include the following import declaration prior
tothelni tial i zeFai | ed exception:

i mport com beasys. Tobj S. *;

Common Pitfalls of OMG IDL Interface Versioning and
Modification

An object isinstantiated based on its Interface Repository ID. It iscrucial that this
interface | D isthe same as the one supplied in the factory when the factory invokesthe
com beasys. Tobj . TP. cr eat e_obj ect _r ef er ence method.

Creating Java Server Applications ~ 2-27

2 Steps for Creating a Java Server Application

It is possible for this condition to arise if, during the course of development, different
versions of theinterface are being devel oped or many modifications are being madeto
the IDL file. Even if you typically usethe i nt er f aceHel per . i d method to specify
the interface repository 1D, it is possible for a mismatch to occur.

If the interface IDs do not match, the following message is placed in the user log
(ULoG) and the cr eat e_obj ect _r ef er ence method returns a null object reference:

| JTPFW CAT: 38: ERROR TP. creat e. obj ect. reference() could not create
obj ect reference for: Interface = Interface-ID O D= oid-number

Caveat for State Handling in com.beasys.Tobj_Servant.deactivate_object

2-28

Thedeacti vat e_obj ect method isinvoked when the activation boundary for an
object is reached. Y ou may, optionally, write durable state to disk in the
implementation of this operation. It is important to understand that exceptions raised
in this operation are not returned to the client application. The client application will
be unaware of any error conditions raised in this operation unless the object is
participating in a transaction. Therefore, in cases where it isimportant that the client
application know whether the writing of state viathis operation is successful, we
recommend that transactions be used.

If you decideto usethe deact i vat e_obj ect method for writing state, and the client
application needs to know the outcome of the write operations, we recommend that
you do the following:

4+ Ensure that each operation that affects object state isinvoked within a
transaction, and that deactivation occurs within the transaction boundaries. This
can be done by using either the met hod or t r ansact i on activation policies, and
ispossible with the pr ocess activation policy if the
com beasys. Tobj . TP. deact i vat eEnabl e method is invoked within the
transaction boundary.

4 If an error occurs during the writing of object state, invoke the
org. ong. CosTransactions. Current.rol | back_only method to ensure that
the transaction is rolled back. One of the following actionsiis taken:

4 If thereisno transaction associated with the client thread, the OBJ_ADAPTER
exception is raised.

4 Otherwise, the transaction associated with the client thread is modified so
that the only possible outcome is to roll back the transaction.

Creating Java Server Applications

Development and Debugging Tips

If transactions are not used, we recommend that you write object state within the scope
of individual operations on the object, rather than viathe deact i vat e_obj ect
method. Thisway, if an error occurs, the operation can raise an exception that is
returned to the client application.

Creating Java Server Applications 2-29

2 Steps for Creating a Java Server Application

2-30 Creating Java Server Applications

CHAPTER

3 Integrating

Transactions into a
Java Server
Application

This chapter describeshow tointegrate transactionsinto aWebL ogic Enterprise server
application and covers the following topics:

4 Overview of Transactionsin the WebL ogic Enterprise System

4 Integrating Transactionsin a WebL ogic Enterprise Client and Server Application
4 Transactions and Object State Management
¢

Notes on Using Transactions in the WebL ogic Enterprise System

Overview of Transactions in the WebLogic
Enterprise System

The WebL ogic Enterprise system provides transactions as a means to guarantee that
database transactions are completed accurately and that they take on all the ACID
properties (atomicity, consistency, isolation, and durability) of ahigh-performance

Creating Java Server Applications 31

3

Integrating Transactions into a Java Server Application

3-2

transaction. That is, you have a reguirement to perform multiple write operations on
durable storage, and you must be guaranteed that the operations succeed; if any one of
the operations fails, the entire set of operationsisrolled back.

Transactions typically are appropriate in the situations described in the following list.
Each situation encapsul ates a transactional model supported by the WebL ogic
Enterprise system.

4 Theclient application needs to make invocations on several different objects,
which may involve write operations to one or more databases. If any one
invocation is unsuccessful, any state that is written (either in memory or, more
typically, to a database) must be rolled back.

For example, consider atravel agent application. The client application needsto
arrange for ajourney to a distant location; for example, from Strasbourg, France,
to Alice Springs, Australia. Such ajourney would inevitably require multiple
individual flight reservations. The client application works by reserving each
individual segment of the journey in sequential order; for example, Strasbourg to
Paris, Paristo New York, New York to Los Angeles. However, if any individual
flight reservation cannot be made, the client application needs away to cancel

all the flight reservations made so far. For example, if the client application
cannot book aflight from Los Angeles to Honolulu on a given date, the client
application needs to cancel the flight reservations made up to that point.

4 Theclient needs a conversation with an object managed by the server
application, and the client needs to make multiple invocations on a specific
object instance. The conversation may be characterized by one or more of the
following:

4 Dataiscached in memory or written to a database during or after each
successive invocation.

Datais written to a database at the end of the conversation.

The client needs the object to maintain an in-memory context between each
invocation; that is, each successive invocation uses the data that is being
maintained in memory across the conversation.

4 Atthe end of the conversation, the client needs the ability to cancel all
database write operations that may have occurred during or at the end of the
conversation.

For example, consider an internet-based online shopping application. The user of
the client application browses through an online catal og and makes multiple
purchase selections. When the user is done choosing all theitems he or she

Creating Java Server Applications

Integrating Transactions in a WebLogic Enterprise Client and Server Application

wants to buy, the user clicks on a button to make the purchase, where the user
may enter credit card information. If the credit card check fails (for example, the
user cannot provide valid credit card information) the shopping application
needs away to cancel all the pending purchase selections or roll back any
purchase transactions made during the conversation.

4+ Within the scope of a single client invocation on an object, the object performs
multiple edits to datain adatabase. If one of the edits fails, the object needs a
mechanism to roll back all the edits. (And in this situation, the individual
database edits are not necessarily CORBA invocations.)

For example, consider a banking application. The client invokes the transfer
operation on ateller object. The transfer operation requires the teller object to
make the following invocations on the bank database:

4 Invoking the debit method on one account
4 Invoking the credit method on another account

If the credit invocation on the bank database fails, the banking application needs
away to roll back the previous debit invocation.

Integrating Transactions in a WebLogic
Enterprise Client and Server Application

The WebL ogic Enterprise system supports two transaction APl models:

¢ The Java Transaction Service defined by Sun Microsystems—This service is the
Java mapping of the Object Transaction Service (OTS) that is specified as part
of CORBA: or g. ong. CosTransacti ons. Current.

4 The Java Transaction API defined by Sun Microsystems—Only the
application-level transaction demarcation interface is supported:
javax.transaction. User Transact i on.

In this document, we refer generically to these mappings as the TransactionCurrent
object. For specifics about g. ong. CosTransact i ons. Cur rent and

javax. transaction. User Transact i on, see thelava APl Reference and theJava
Programming Reference.

Creating Java Server Applications 3-3

3

Integrating Transactions into a Java Server Application

34

The WebL ogic Enterprise system supports transactionsin the following ways:

L4

The client or the server application can begin and end transactions explicitly by
using calls on the TransactionCurrent object. For details about the
TransactionCurrent object, see Creating Client Applications.

You can assign transactional policies to an object’s interface so that when the
object is invoked, the WebLogic Enterprise system can start a transaction
automatically for that object, if a transaction has not already been started, and
commit or roll back the transaction when the method invocation is complete.
You use transactional policies on objects in conjunction with an XA resource
manager and database when you want to delegate all the transaction commit an
rollback responsibilities to that resource manager.

Objects involved in a transaction can force a transaction to be rolled back. That
is, after an object has been invoked within the scope of a transaction, the object
can invoke the ol | back_onl y method on the TransactionCurrent object to

mark the transaction for rollback only. This prevents the current transaction from
being committed. An object may need to mark a transaction for rollback if an
entity, typically a database, is otherwise at risk of being updated with corrupt or
inaccurate data.

Objects involved in a transaction can be kept in memory from the time they are
first invoked until the moment when the transaction is ready to be committed or
rolled back. In the case of a transaction that is about to be committed, these
objects are polled by the WebLogic Enterprise system immediately before the
resource managers prepare to commit the transaction. (In this sense, polling
means invoking the object’s

com beasys. Tobj _Servant . deacti vat e_obj ect method and passing a
reason value.)

When an object is polled, the object may veto the current transaction by
invoking ther ol | back_onl y method on the TransactionCurrent object. In
addition, if the current transaction is to be rolled back, objects have an
opportunity to skip any writes to a database. If no object vetos the current
transaction, the transaction is committed.

The following sections explain how you can use object activation policies and
transaction policies to get the transactional behavior you want in your objects. Note
that these policies apply to an interface and, therefore, to all operations on all object
implementing that interface.

Creating Java Server Applications

Integrating Transactions in a WebLogic Enterprise Client and Server Application

Note: If aserver application manages an object that you want to be ableto participate
in atransaction, the Server object for that application must invoke the
com beasys. Tobj . TP. open_xa_r mand
com beasys. Tobj . TP. cl ose_xa_r mmethods. For more information about
database connections, see the section “Opening an XA Resource Manager” on
page 3-9.

Making an Object Automatically Transactional

The WebLogic Enterprise system providesaheays transactional policy, which you

can define on an object’s interface to have the WebLogic Enterprise system start a
transaction automatically when that object is invoked and a transaction has not already
been scoped. When an invocation on that object is completed, the WebLogic
Enterprise system commits or rolls back the transaction automatically. Neither the
server application, nor the object implementation, needs to invoke the
TransactionCurrent object in this situation; the WebLogic Enterprise system
automatically invokes the TransactionCurrent object on behalf of the server
application.

Assigning theal ways transactional policy to an object’s interface is appropriate when:

4 The object writes to a database and you want all the database commit or rollback
responsibilities delegated to an XA resource manager whenever this object is
invoked.

4 You want to give the client application the opportunity to include the object in a
larger transaction that encompasses invocations on multiple objects, and the
invocations must all succeed or be rolled back if any one invocation fails.

If you want an object to be automatically transactional, assign the following policies
to that object’s interface in the XML-based Server Description File:

Activation Policy Transaction Policy

process, net hod, or al ways
transaction

Note: Database cursors cannot span transactions. For an examQesateey C++
Server Applications.

Creating Java Server Applications 3-5

3

Integrating Transactions into a Java Server Application

Enabling an Object to Participate in a Transaction

3-6

If you want an object to be able to be invoked within the scope of atransaction, you
canassignthe opti onal transaction policies to that object’s interface. dpei onal
transaction policy may be appropriate for an object that does not perform any databa:
write operations, but that you want to have the ability to be invoked during a
transaction.

You can use the following policies, when they are specified in the XML-based Servel
Description File for that object’s interface, to make an object optionally transactional

Activation Policy Transaction Policy

process, net hod, or optional
transaction

When the transaction policyadpt i onal , if theAUTOTRAN parameter is enabled in the
application’suBBCONFI Gfile, the implementation is transactional. Servers containing
transactional objects must be configured within a group associated with an
XA-compliant resource manager.

If the object does perform database write operations, and you want the object to be ak
to participate in a transaction, assigningaheays transactional policy is generally a
better choice. However, if you prefer, you can usesthé onal policy and

encapsulate any write operations within invocations on the TransactionCurrent objec!
That is, within your operations that write data, scope a transaction around the write
statements by invoking the TransactionCurrent object to, respectively, begin and
commit or roll back the transaction, if the object is not already scoped within a
transaction. This ensures that any database write operations are handled
transactionally. This also introduces a performance efficiency: if the object is not
invoked within the scope of a transaction, all the database read operations are
nontransactional, and, therefore, more streamlined.

Note: Some XA resource managers used in the WebLogic Enterprise system requir
that any object participating in a transaction scope their database read
operations, in addition to write operations, within a transaction. (However,
you can still scope your own transactions.) For example, using the Oracle7
TMS with the WebLogic Enterprise system has this requirement. When
choosing the transaction policies to assign to your objects, make sure you ar
familiar with the requirements of the XA resource manager you are using.

Creating Java Server Applications

Integrating Transactions in a WebLogic Enterprise Client and Server Application

Preventing an Object from Being Invoked While a
Transaction Is Scoped

In many cases, it may be critical to exclude an object from atransaction. If such an

object isinvoked during a transaction, the object returns an exception, which may

cause the transaction to berolled back. The WebL ogic Enterprise system provides the

never transaction policy, which you can assign to an object’s interface to specifically
prevent that object from being invoked within the course of a transaction.

This transaction policy is appropriate for objects that write durable state to disk that
cannot be rolled back; for example, for an object that writes data to a disk that is not
managed by an XA resource manager. Having this capability in your client/server
application is crucial if the client application does not or cannot know if some of its
invocations are causing a transaction to be scoped. Therefore, if a transaction is
scoped, and an object with this policy is invoked, the transaction can be rolled back.

To prevent an object from being invoked while a transaction is scoped, assign the
following policies to that object’s interface in the XML-based Server Description File:

Activation Policy Transaction Policy

process or net hod never

Excluding an Object from an Ongoing Transaction

In some cases, it may be appropriate to permit an object to be invoked during the
course of a transaction but also keep that object from being a part of the transaction. If
such an object is invoked during a transaction, the transaction is automatically
suspended. After the invocation on the object is completed, the transaction is
automatically resumed. The WebLogic Enterprise system providégrhbee

transaction policy for this purpose.

Thei gnor e transaction policy may be appropriate for an object such as a factory that
typically does not write data to disk. By excluding the factory from the transaction, the
factory can be available to other client invocations during the course of a transaction.
In addition, using this policy can introduce an efficiency into your server application
because it minimizes the overhead of invoking objects transactionally.

Creating Java Server Applications 3-7

3 Integrating Transactions into a Java Server Application

To prevent any transaction from being propagated to an object, assign the following
policies to that object’s interface in the Server Description File:

Activation Policy Transaction Policy

process or net hod i gnore

Assigning Policies

For information about how to create a Server Description File and specify policies or
objects, see the section “Step 5: Define the object activation and transaction policies
on page 2-13.

Using an XA Resource Manager

The XA Bankapp sample application in the

drive: \ M3di r\ sanpl es\ cor ba\ bankapp_j ava\ XA directory uses the Oracle7
Transaction Manager Server (TMS) as an example of a relational database
management service (RDBMS). TMS handles object state data automatically. Using
any XA resource manager imposes specific requirements on how different objects
managed by the server application may read and write data to that database, includir
the following:

4 Some XA resource managers (for example, Oracle7) require that all database
operations be scoped within a transaction. This means that all method
invocations on th®Baccess object need to be scoped within a transaction
because this object reads from a database. The transaction can be started eithe:
by the client or by the WebLogic Enterprise system.

4 When a transaction is committed or rolled back, the XA resource manager
automatically handles the durable state implied by the commit or rollback. That
is, if the transaction is committed, the XA resource manager ensures that all
database updates are made permanent. Likewise, if there is a rollback, the XA
resource manager automatically restores the database to its state prior to the
beginning of the transaction.

3-8 Creating Java Server Applications

Integrating Transactions in a WebLogic Enterprise Client and Server Application

This characteristic of XA resource managers actually makes the design problems
associated with handling object state data in the event of arollback much
simpler. Transactional objects can always delegate the commit and rollback
responsibilities to the XA resource manager, which greatly simplifies the task of
implementing a server application.

Opening an XA Resource Manager

If an object’s interface has th¢ways oropti onal transaction policy, you must
invoke thecom beasys. Tobj . TP. open_xa_r mmethod in the

com beasys. Tobj . Server.initialize method in the Server object that supports
this object. You must build a special version of the JavaServer by usimgj théxAl S
command, if your object performs database operations.

In the SERVERS section of the applicationdBBCONFI G file, you must use the
JavaSer ver XA element in place afavaSer ver to associate the XA resource
manager with a specified server groufavaSer ver uses the null RM.)

The resource manager is opened using the information providedGRERIENFO
parameter, which is in th@ROUPS section of th&BBCONFI Gfile. Note that the default
version of theom beasys. Tobj . Server.initial i ze method automatically opens
the resource manager.

Note: Using a resource manager (except the NULL resource manager) disables the
multithreading feature. If an XA-enabled version of JavaServer is built using
bui | dXAJS, the server supports only the single-threaded mode; in this case,
the WebLogic Enterprise system ignores-thenunber command line
argument for multithreading (if specified).

If you have an object that participates in a transaction but does not actually perform
database operations (the object typically hasphé onal transaction policy), you

still need to include an invocation to them beasys. Tobj . TP. open_xa_rm

method.

Creating Java Server Applications 39

3 Integrating Transactions into a Java Server Application

Closing an XA Resource Manager

If your Server object'som beasys. Tobj . Server .initialize method opens an
XA resource manager, you must include the following invocation in the
com beasys. Tobj . Server. rel ease method:

com beasys. Tobj . TP. cl ose_xa rm);

Transactions and Object State Management

If you need transactions in your WebLogic Enterprise client and server application,

you can integrate transactions with object state management in a few different ways
In general, the WebLogic Enterprise system can automatically scope the transactior
for the duration of an operation invocation without requiring you to make any changes
to your application’s logic or the way in which the object writes durable state to disk.

The following sections address some key points regarding transactions and object ste
management.

Delegating Object State Management to an XA Resource

Manager

Using an XA resource manager, such as Oracle7, generally simplifies the design
problems associated with handling object state data in the event of a rollback.
Transactional objects can always delegate the commit and rollback responsibilities t
the XA resource manager, which greatly eases the task of implementing a server
application. This means that process- or method-bound objects involved in a
transaction can write to a database during transactions, and can depend on the resou
manager to undo any data written to the database in the event of a transaction rollba

3-10 Creating Java Server Applications

Transactions and Object State Management

Waiting Until Transaction Work Is Complete Before
Writing to the Database

The transact i on activation policy isagood choice for objectsthat maintain statein
memory that you do not want written, or that cannot be written, to disk until the
transaction work is complete. When you assign thet r ansact i on activation policy to
an object, the object:

4 Isbrought into memory when it is first invoked within the scope of atransaction
4 Remainsin memory until the transaction is either committed or rolled back

When the transaction work iscomplete, the WebL ogic Enterprise system invokes each
transaction-bound objecttm beasys. Tobj _Servant . deact i vat e_obj ect
method, passingreason code that can be eithBR_TRANS_COVM TTI NG or
DR_TRANS_ABORTED. If the variable iDR_TRANS_COWM TTI NG, the object can invoke
its database write operations. If the variablIBRSTRANS_ABORTED, the object skips
its write operations.

Assigning the r ansact i on activation policy to an object may be appropriate in the
following situations:

4 You want the object to write its durable state to disk at the time that the
transaction work is complete.

This introduces a performance efficiency because it reduces the number of
database write operations that may need to be rolled back.

4 You want to provide the object with the ability to veto a transaction that is about
to be committed.

If the WebLogic Enterprise system passes the reBROPRANS_COWM TTI NG,
the object can, if necessary, invoke thel back_onl y method on the
TransactionCurrent object. Note that if you do make an invocation to the
rol | back_onl y method from within the

com beasys. Tobj _Servant . deact i vat e_obj ect method, the

deact i vate_obj ect method is not invoked again.

4 You have an object that is likely to be invoked multiple times during the course
of a single transaction, and you want to avoid the overhead of continually
activating and deactivating the object during that transaction.

Creating Java Server Applications 3-11

3

Integrating Transactions into a Java Server Application

To give an object the ability to wait until the transaction is committing before writing
to a database, assign the following policies to that object’s interface in the XML-basec
Server Description File:

Activation Policy Transaction Policy

transaction al ways oropti onal

Note: Transaction-bound objects cannot start a transaction or invoke other objects
from inside theom beasys. Tobj _Servant . deact i vat e_obj ect method.
The only valid invocations transaction-bound objects can make inside the
deacti vat e_obj ect method are write operations to the database.

Also, if you have an object that is involved in a transaction, the Server object
that manages that object must include invocations to open and close the XA
resource manager, even if the object does not write any data to disk. For mor
information about opening and closing an XA resource manager, see the
sections “Opening an XA Resource Manager” on page 3-9 and “Closing an
XA Resource Manager” on page 3-10.

Notes on Using Transactions in the WebLogic
Enterprise System

3-12

Note the following about integrating transactions into your WebLogic Enterprise
client/server applications:

4 The following transactions are not permitted in the WebLogic Enterprise system:
4 Nested transactions

You cannot start a new transaction if an existing transaction is already active.
(You may start a new transaction if you first suspend the existing one;
however, the object that suspends the transaction is the only object that can
subsequently resume the transaction.)

¢ Recursive transactions

Creating Java Server Applications

Notes on Using Transactions in the WebLogic Enterprise System

A transactional object cannot call a second object, which in turn callsthe
first object.

The object that starts atransaction is the only entity that can end the transaction.
(In astrict sense, the object can be the client application, the TP Framework, or
an object managed by the server application.) An object that isinvoked within
the scope of atransaction may suspend and resume the transaction (and while
the transaction is suspended, the object can start and end other transactions).
However, you cannot end a transaction in an object unless you began the
transaction there.

Objects can be involved with only one transaction at one time. The WebL ogic
Enterprise system does not support concurrent transactions.

The WebL ogic Enterprise system does not queue requests to objects that are
currently involved in atransaction. If a nontransactional client application
attempts to invoke an operation on an object that is currently in atransaction, the
client application receives the following error message:

or g. ong. CORBA. OBJ_ADAPTER

If aclient that isin atransaction attempts to invoke an operation on an object
that is currently in a different transaction, the client application receivesthe
following error message:

or g. ong. CORBA. | N\VALI D_TRANSACTI ON

For transaction-bound objects, you might consider doing all state handling in the
com beasys. Tobj _Servant . deact i vat e_obj ect method. This makesit
easier for the object to handle its state properly, since the outcome of the
transaction is known at the time that the

com beasys. Tobj _Servant . deact i vat e_obj ect method isinvoked.

For method-bound objects that have severa operations, but only afew that affect
the object’s durable state, you may want to consider the following:

4 Assign theopt i onal transaction policy.

4 Scope any write operations within a transaction, by making invocations on
the TransactionCurrent object.

If the object is invoked outside a transaction, the object does not incur the
overhead of scoping a transaction for reading data. This way, regardless of
whether the object is invoked within a transaction, all the object’s write
operations are handled transactionally.

Creating Java Server Applications 3-13

3

Integrating Transactions into a Java Server Application

3-14

4 Transaction rollbacks are asynchronous. Therefore, it is possible for an object to

be invoked while its transactional context is still active. If you try to invoke such
an object, you receive an exception.

If an object with the al ways transaction policy isinvolved in atransaction that
is started by the WebL ogic Enterprise system, and not the client application, note
the following:

If an exception is raised inside an operation on that object, the client application
receives an OBJ_ADAPTER exception. In this situation, the WebL ogic Enterprise
system automatically rolls back the transaction. However, the client application
iscompletely unaware that a transaction has been scoped in the WebL ogic
Enterprise domain.

If the client application initiates a transaction, and the server application marks
the transaction for a rollback and returns a CORBA exception, the client
application receives only atransaction rollback exception but not the CORBA
exception.

Creating Java Server Applications

CHAPTER

A4

Scaling a Java Server
Application

This chapter shows how you can take advantage of severa key scalability features of
the WebL ogic Enterprise system. The descriptions demonstrate scal ability features
that achieve the following goals:

4 Adding parallel processing capability, enabling the WebL ogic Enterprise domain
to process multiple client requests simultaneously

4 Spreading the processing load on the server applications in the Bankapp sample
application across multiple machines

Some of the Bankapp examples in this chapter include sample code that is not
implemented in the product sample’s Bankapp files.

This chapter discusses the following topics:

4 Overview of the Scalability Features Available in the WebLogic Enterprise
System

4 Scaling a WebLogic Enterprise Server Application. This section includes the
following topics:

4 Replicating Server Processes and Server Groups
4 Scaling the Application Via Object State Management
4 Factory-based Routing

4 Enabling Multithreaded JavaServers

4 How the Bankapp Server Application Can Be Scaled Further

Creating Java Server Applications 4-1

4 Scaling a Java Server Application

Overview of the Scalability Features
Available in the WebLogic Enterprise System

Supporting highly scalable applications is one of the strengths of the WebL ogic
Enterprise system. Many applications may perform well in an environment
characterized by 1 to 10 server processes, and 10 to 100 client applications. However,
in an enterprise environment, applications need to support:

4+ Hundreds of execution contexts, where the context can be a thread or a process
4 Tens of thousands of client applications
4+ Millions of objects

Deploying a Java application with such demands quickly reveals the resource
shortcomings and performance bottlenecks in your application. The WebL ogic
Enterprise system supports such large-scale deployments in several ways, including:

4+ Replicated server processes and server groups
4 Object state management

4 Factory-based routing
¢

Multithreaded JavaServers (appropriate for certain types of applications and
processing environments, as outlined in the section “Enabling Multithreaded
JavaServers” on page 4-18)

Other features provided in the WebLogic Enterprise system to make an application
highly scalable include the IIOP Listener/Handler, which is summariz€dttimg
Sarted and described fully in thadministration Guide.

4-2 Creating Java Server Applications

Scaling a WebLogic Enterprise Server Application

Scaling a WebLogic Enterprise Server
Application

Using the JIDBC Bankapp sample application as an exampl e, this section explains how
to scale an application to meet a significantly greater processing capability. The basic
design goa for the IDBC Bankapp sample applicationisto greatly scale up the number
of client applications it can accommodate by doing the following:

L4

L4

Processing in parallel (and on one machine) the client requests on multiple
objects that implement the same interface

Directing requests on behalf of some bank automated teller machines (ATMs) to
one machine, and other ATMsto other machines

Adding more machines across which to spread the processing load

To accommodate these design goals, the JIDBC Bankapp sample application has been
extended as follows:

L4

Replicates the Teller and TellerFactory server processes within the groups in
which they are configured.

Replicates the groups described above on an additional machine.

Implements a statel ess object model to scale up the number of client requests the
server process can manage simultaneously.

Assigns unique object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective groups. This makes
these objects available on a per-client-application (and not per-process) basis,
thereby accommodating a parallel-processing capability.

¢ TellerFactory
¢ Teller

Implements factory-based routing to direct client requests on behalf of some
ATMsto one machine, and other ATMs to another machine.

Setting up threads for the Teller objects, as discussed in the Guide to the Java
Sample Applications. For related information, aso see the section “Enabling
Multithreaded JavaServers” on page 4-18.

Creating Java Server Applications 4-3

4 Scaling a Java Server Application

The sections that follow describe how the JDBC Bankapp sample application uses
replicated server processes and server groups, object state management, and
factory-based routing to meetsits scalability goals. The first section that follows
provides a description of the OMG IDL changesimplemented in the Bankapp sample
application.

Replicating Server Processes and Server Groups

4-4

The WebL ogic Enterprise system offers awide variety of choices for how you may
configure your server applications, such as:

4 One machine with one server process that implements one interface.
4 One machine with multiple server processes implementing one interface.

4 One machine with multiple server processesimplementing multiple interfaces,
with or without factory-based routing.

4 One machine with amultithreaded JavaServer offering one or multiple
interfaces. For information about the tradeoffs of single-threaded JavaServers
versus multithreaded JavaServers, see the section “Enabling Multithreaded
JavaServers” on page 4-18.

4 Multiple machines with multiple server processes and multiple interfaces, with
or without factory-based routing.

In summary:

4 To add more parallel processing capability to your client/server application,
replicate your server processes.

4 To add more machines to your deployment environment, add more groups and
implement factory-based routing.

4 To add more capacity (for certain types of applications only), add more threads.
For information about the tradeoffs of single-threaded JavaServers versus
multithreaded JavaServers, see the section “Enabling Multithreaded
JavaServers” on page 4-18.

The following sections describe replicated server processes and groups, and also
explain how you can configure them in the WebLogic Enterprise system.

Creating Java Server Applications

Scaling a WebLogic Enterprise Server Application

Replicated Server Processes

When you replicate the server processes in your application:

4 You obtain a means to balance the load of incoming reguests on that server
application. Asrequests arrive in the WebL ogic Enterprise domain for the server
group, the WebL ogic Enterprise system routes the request to the least busy
server process within that group.

4 You can improve the server application’s performance. Instead of having one
server process that can process one client request at one time, you can have
multiple server processes available that can process multiple client requests
simultaneously. (Note that to make this work, you need to make each object
unique, which you can do by having your server application’s factory assign
unique OIDs.)

4+ You obtain a useful failover protection in the event that one of the server images
stops.

To achieve the full benefit of replicated server processes, make sure that the objects
instantiated by your server application generally have unique IDs. This way, a client
invocation on an object can cause the object to be instantiated on demand, within the
bounds of the number of server processes that are available, and not queued up for an
already active object.

As you design your application, keep in mind that there is a tradeoff between
providing:

4 Better application recovery, via multiple processes

4+ More efficient performance, via threads (for some types of application patterns
and processing environments)

Better failover occurs only by adding processes, and not by adding threads. This
section discusses the technique of adding processes. For information about the
tradeoffs of single-threaded JavaServers versus multithreaded JavaServers, see the
section “Enabling Multithreaded JavaServers” on page 4-18.

Figure 4-1 shows the Bankapp server application replicated Baie GROUP1
group. The replicated servers are running on a single machine.

Creating Java Server Applications 4-5

4 Scaling a Java Server Application

4-6

Figure4-1 Replicated Serversin the Bankapp Sample

Production Machine

r——— "~~~ —I
| BANK_GROUP1 |
I
I
| Bankapp Server Bankapp Server2
I
I
I
l TellerFactor TellerFactor
y y |
I
I
I
| Teller Teller :
| I I |
| [[
| I
| I
| RDBMS |
| Transaction I
Manager |
I Database Server I
I
. e e I

When areguest arrives for this group, the WebL ogic Enterprise domain has several
server processes available that can process the request, and the WebL ogic Enterprise
domain can choose the server process that is least busy.

In Figure 4-1, note the following:

4 Atany time, there may be no more than one instance of the Tel | er Factory
object within a given server process.

4 There may be any number of Tel | er objectsin any Bankapp server process.

Creating Java Server Applications

Scaling a WebLogic Enterprise Server Application

Replicated Server Groups

The notion of server groups is specific to the WebL ogic Enterprise system and adds
value to a CORBA implementation; server groups are an important part of the
scalability features of the WebL ogic Enterprise system. Basically, to add more
machines to a deployment, you need to add more groups.

Figure 4-2 shows the Bankapp sample application groups replicated on another
machine, as specified in the applicatiodBBCONFI Gfile.

Figure4-2 Replicating Server Groups Across M achines

Production Machine 1 Production Machine 2

I BANK_GROUP1 I BANK_GROUP2

Bankapp Server Bankapp Server

TellerFactory TellerFactory

| |
| N |
| N |
| N |
l Teller | l Teller |
| Q | | Q |
| N |
| N |
| N |
| |

RDBMS RDBMS

Transaction Transaction
Manager Manager
Database Server | Database Server |

Note: In the simple example shown in Figure 4-2, the content of the databases on
Production Machines 1 and 2 is identical. Each database would contain all of
the account records for all of the account IDs. Only the processing would be
distributed, based on the ATMt(m D field). A more realistic example, one
not readily adapted to the Bankapp sample application, would distribute the
data and processing based on ranges of bank account IDs.

The way in which server groups are configured, where they run, and the ways in which
they are replicated is specified in tH@BCONFI Gfile. When you replicate a server
group, you can do the following:

Creating Java Server Applications 4-7

4 Scaling a Java Server Application

4 Have ameansto spread processing load for a given application or set of
applications across additional machines.

4 Usefactory-based routing to send one set of requests on a given interface to one
machine, and another set of requests on the same interface to another machine.

The effect of having multiple server groups includes the following:

4 When aclient request arrivesin the WebL ogic Enterprise domain, the WebL ogic
Enterprise system checks the group ID specified in the object reference.

4 TheWebLogic Enterprise domain sends the request to the least busy server
process within the group to which the request is routed that can process the
request.

The section “Factory-based Routing” on page 4-13 shows how the Bankapp sample
application uses factory-based routing to spread the application’s processing load
across multiple machines.

Configuring Replicated Server Processes and Groups

To configure replicated server processes and groups in your WebLogic Enterprise
domain:

1. Bring your application’&BBCONFI Gfile into a text editor, such as WordPad.
2. In theGROUPS section, specify the names of the groups you want to configure.

3. In theSERVERS section, enter the following information for the server process
you want to replicate:

4+ A server application name. For java, this is the name of the Java server, plus
the name of the JAR file.

4 TheGROUP parameter, which specifies the name of the group to which the
server process belongs. If you are replicating a server process across multipls
groups, specify the server process once for each group.

4 TheSRvI D parameter, which specifies a numeric identifier, giving the server
process a unique identity.

4 TheM N parameter, which specifies the number of instances of the server
process to start when the application is booted.

4-8 Creating Java Server Applications

Scaling a WebLogic Enterprise Server Application

4 The MAX parameter, which specifies the maximum number of server
processes that can be running at any onetime.

Thusthe M N and MAX parameters determine the degree to which a given server
application can process requests on a given interface in paralel. During run
time, the system administrator can examine resource bottlenecks and start
additional server processes, if necessary. In this sense, the application is
designed so that the system administrator can scaleit.

Note: Thefollowing example showslinesfrom the GROUPS and SERVERS sections of
the UBBCONFI Gfile for a Bankapp sample application. These configuration
settings are not used with the Bankapp sample provided with the WebL ogic
Enterprise software.

* RESOURCES
| PCKEY 55432
DOVAI NI D si npl e
MASTER SI TE1
MODEL SHM
LDBAL Y
* MACHI NES
"TRI XI E'
LM D = SITE1
APPDI R = "c:\ bankapp\j dbc\."
TUXCONFI G = "c:\ bankapp\j dbc\.\tuxconfig"
TUXDI R ="c:\nBdir"
MAXCLI ENTS = 10
* GROUPS
SYS GRP
LM D = SI TE1
GRPNO =1
BANK_GROUP1
LM D = SI TE1
GRPNO =2
BANK_GROUP2
LM D = SI TE1
GRPNO =3
* SERVERS

By default, restart a server if it crashes, up to 5 tines
in 24 hours.
#
DEFAULT:
RESTART = Y
MAXGEN = 5

Creating Java Server Applications 4-9

4 Scaling a Java Server Application

4-10

H H HH

H* H* H# H* H

H* H H

Start the Tuxedo System Event Broker. This event broker
must be started before any servers providing the
NameManager Servi ce.
TMSYSEVT

SRVGRP = SYS GRP

SRVID = 1
TMFFNAME is a M3 provided server that runs the
obj ect-transacti onal managenent services. This includes the
NameManager and Fact or yFi nder servi ces.

The NaneManager service is a M3-specific service
that maintains a mappi ng of application-supplied nanes to
obj ect references.

Start the NaneManager Service (-N option). This nane
manager is being started as a Master (-Moption).
TMFFENAMVE
SRVGRP = SYS GRP
SRVID = 2
CLOPT = "-A-- -N-M
Start a slave NaneManager Service
TMFFENAMVE
SRVGRP = SYS GRP
SRVID = 3
CLOPT = "-A -- -N'
Start the FactoryFinder (-F) service
TMFFENAMVE
SRVGRP = SYS_GRP
SRVID = 4
CLOPT = "-A -- -N -F"
Start the JavaServer in Bank_Groupl

JavaServer
SRVGRP = BANK_ GROUP1

SRVID = 5

CLOPT = "-A -- -M 10 BankApp.jar TellerFactory_1"
SYSTEM ACCESS=FASTPATH

RESTART = N

Creating Java Server Applications

Scaling a WebLogic Enterprise Server Application

Start the JavaServer in Bank_G oup2
#

JavaServer
SRVGRP = BANK_ GROUP2

SRVID = 6

CLOPT = "-A -- -M 10 BankApp.jar TellerFactory 1"
SYSTEM ACCESS=FASTPATH

RESTART = N

Start the listener for I11OP clients

#

Specify the host nane of your server machine as
well as the port. A typical port nunber is 2500
#

I SL
SRVGRP = SYS_GRP
SRVID = 7
CLCPT = "-A -- -n //TRI Xl E: 2468"

*SERVI CES

*| NTERFACES
"1 DL: beasys. conl BankApp/ Tel l er: 1. 0"
FACTORYRQUTI NG=at m D

* ROUTI NG
atm D

TYPE = FACTORY

FIELD = "atm D'

FI ELDTYPE = LONG

RANGES = " 1-5: BANK _GROUP1,
6-10: BANK_GROUP2,
*: BANK_GROUP1

Scaling the Application Via Object State Management

As stated in Chapter 1, “Java Server Application Concepts,” object state management
is a fundamentally important concern of large-scale client/server systems because it is
critically important that such systems achieve optimized throughput and response
time. This section explains how you can use object state management to increase the
scalability of the objects managed by a WebLogic Enterprise server application, using
theTel | er objects in the Bankapp sample applications as an example.

Creating Java Server Applications 4-11

4 Scaling a Java Server Application

4-12

Thefollowing table summarizes how you can use the object state management models
supported in the WebL ogic Enterprise system to achieve major gainsin scalability in
your WebL ogic Enterprise applications.

State M odel How You Can Use It to Achieve Scalability

Method-bound Method-bound objects are brought into the machine’s memory only
for the duration of the client invocation on them. When the
invocation is complete, the object is deactivated and any state data
for that object is flushed from memory.

You can use method-bound objects to create a stateless server model
in your application, in which thousands of objects are managed by
your application. From the client application view, all the objects are
available to service requests. However, because the server
application is mapping objects into memory only for the duration of
client invocations on them, only comparatively few of the objects
managed by the server application are in memory at any given
moment.

A method-bound object is said in this document to be a stateless
object.

Process-bound Process-bound objects remain in memory from the time they are first
invoked until the server process in which they are running is shut
down. If appropriate for your application, process-bound objects
with a large amount of state data can remain in memory to service
multiple client invocations, and the system’s resources need not be
tied up reading and writing the object’s state data on each client
invocation.

A process-bound object is said in this document to be a stateful
object. (Note that transaction-bound objects can also be considered
stateful, since they can remain in memory between invocations on
them within the scope of a transaction.)

Asan example of achieving scalability, the Bankapp sample Tel | er object could use
the net hod activation policy. The met hod activation policy assigned to this object
means that the object is activated whenever aclient request arrivesfor it. The Tel | er
object staysin memory only for the duration of one client invocation, which is
appropriate in cases where the Process-Entity design pattern isrecommended. Asthe
number of clientsissuing requests on the Tel | er object increases, the WebL ogic
Enterprise domain is able to:

Creating Java Server Applications

Scaling a WebLogic Enterprise Server Application

4 Instantiatethe Tel | er object for each client request that arrives. Client requests
are not queued for an existing Tel | er object, which would likely be the case if
the Tel | er object were process-bound.

4+ Perform load balancing by instantiating the Tel | er object in the least busy
Server process or group.

Factory-based Routing

Factory-based routing is a powerful feature that provides a meansto send aclient
request to a specific server group. Using factory-based routing, you can spread that
processing load for a given application across multiple machines, because you can
determine the group, and thus the machine, in which a given object is instantiated.

Y ou can use factory-based routing to expand upon the variety of load-balancing and
scalability capabilitiesin the WebL ogic Enterprise system. In the case of the Bankapp

sample application, you can use factory-based routing to send requests to a subset of
ATMsto one machine, and reguests for another subset of ATMs to another machine.

As you add machines to ramp up your application’s processing capability, the
WebLogic Enterprise system makes it easy to modify the factory-based routing in your
application to add more machines.

The chief benefit of factory-based routing is that it provides a simple means to scale
up an application, and invocations on a given interface in particular, across a growing
deployment environment. Spreading the deployment of an application across
additional machines is strictly an administrative function that does not require any
recoding or rebuilding of the application.

The chief design consideration regarding implementing factory-based routing in your
client/server application is in choosing the value on which routing is based. The
sections that follow describe how factory-based routing works, using the extended
JDBC Bankapp sample application, which uses factory-based routing in the following
way. Client application requests to thel | er object are routed based on a teller
number. Requests for one subset of teller numbers go to one group; and requests on
behalf of another subset of teller numbers go to another group.

Creating Java Server Applications 4-13

4 Scaling a Java Server Application

How Factory-based Routing Works

Y our factories implement factory-based routing by changing the way they create
object references. All object references contain agroup 1D, and by default the group
ID is the same as the factory that creates the object reference. However, using
factory-based routing, the factory creates an object reference that includes routing
criteriathat determinesthe group ID. Then when client applications send an invocation
using such an object reference, the WebL ogic Enterprise system routes the request to
the group ID specified in the object reference. This section focuses on how the group
ID is generated for an object reference.

To implement factory-based routing, you need to coordinate the following:
4 Datainthe NTERFACES and ROUTI NG sections of the UBBCONFI Gfile.
4 Groups, machines, and databases configured in the UBBCONFI Gfile.

4+ How the factory specifies routing criteria. The interface definition for the factory
needs to specify the parameter that represents the routing criteria used to
determine the group ID.

To describe the data that needs to be coordinated, the following two sections discuss
configuring for factory-based routing in the UBBCONFI Gfile, and implementing
factory-based routing in the factory.

Configuring for Factory-based Routing in the UBBCONFIG File

4-14

For each interface for which requests are routed, you need to establish the following
information in the UBBCONFI Gfile:

4 Details about the datain the routing criteria
4 For each kind of criteria, the values that route to specific server groups

To configure for factory-based routing, the UBBCONFI Gfile needs to specify the
following datain the | NTERFACES and ROUTI NG sections, and a so in how groups and
machines are identified:

1. Thel NTERFACES section lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies what kinds
of criteriathe interface routes on. This section specifies the routing criteriavia an
identifier, FACTORYROUTI NG asin the following example:

Creating Java Server Applications

Scaling a WebLogic Enterprise Server Application

*| NTERFACES
"1 DL: beasys. coni! BankApp/ Tel l er: 1. 0"
FACTORYROUTI NG = atm D

The preceding example shows the fully qualified Interface Repository 1D for an
interface in the extended Bankapp sample in which factory-based routing is
used. The FACTORYRQUTI NG identifier specifies the name of the routing value,
atm D.

2. The ROUTI NG section specifies the following data for each routing value:

4 The TYPE parameter, which specifies the type of routing. In the Bankapp
sample, the type of routing is factory-based routing. Therefore, this
parameter is defined to FACTORY.

4 TheFI ELD parameter, which specifies the name that the factory inserts in the
routing value. In the extended Bankapp sample, the field parameter is at mi D.

4 TheFI ELDTYPE parameter, which specifies the data type of the routing
value. In the Bankapp sample, the field typefor at m D is LONG.

4 The RANGES parameter, which specifies the values that are routed to each
group.

The following example shows the ROUTI NG section of the UBBCONFI G file used
in the Bankapp sample application:

* ROUTI NG
atm D

TYPE = FACTORY

FIELD = "atm D'

FI ELDTYPE = LONG

RANGES = "1-5: BANK_GROUP1,
6- 10: BANK GROUPZ2,
*: BANK_GROUP1

The preceding example shows that Tel | er object referencesfor ATMsin one
range are routed to one server group, and Tel | er object referencesfor ATMsin
other ranges are routed to other groups. Asillustrated in Figure 4-2,
BANK_GROUP1 and BANK_GROUP2 reside on different production machines.

Implementing Factory-based Routing in a Factory

Factories implement factory-based routing by the way the invocation to the
com beasys. Tobj . TP. cr eat e_obj ect _r ef er ence method is implemented.

This operation has the following Java binding:

Creating Java Server Applications 4-15

4 Scaling a Java Server Application

4-16

public static org.ong. CORBA. Obj ect
create_object _reference(java.lang. String interfaceNane,
java.lang. String stroid,
org. ong. CORBA. NVLi st criteria)
throws I nvalidlnterface,
I nval i dObj ect I d

Thecriteria specifiesalist of named values that can be used to provide
factory-based routing for the object reference. The use of factory-based routing is
optiona and is dependent on the use of this argument. If you do not want to use
factory-based routing, you can pass avalue of 0 (zero) for thisargument. Thework of
implementing factory-based routing in a factory isin building the Nv1 i st .

As stated previoudly, the Tel | er Fact or y object in the Bankapp sample application
specifiesthe value at m D. This value must match exactly the following in the
UBBCONFI Gfile:

4 Therouting name, type, and allowable values specified by the FACTORYROUTI NG
identifier in the | NTERFACES section

4 Therouting criterianame, field, and field type specified in the ROUTI NG section

Note: Thefollowing exampleis not part of the Bankapp sample code, but is shown
here to illustrate the factory-based routing feature. The Tel | er Fact ory
object inserts the bank account number into the NvI i st using the following
code:

/1 Put the atml D (which is the routing criteria)

/1 into a CORBA NVList. The atm D conmes fromthe

/1 tellerName that is passed in as an input paraneter;
/1 tellerName should have the form Tell er<atmn D>

int atm D = Integer.parselnt (tellerNane.substring(6));
any.insert_long(atmD);

// Create the NMlist and add the atmiDto the |ist.

org. ong. CORBA. NVLi st criteria = TP.orb().create list(1);
criteria.add value("atm D', any, 0);

/1 Create the object reference.

org. ong. CORBA. bj ect teller_oref =
TP. creat e_obj ect _reference(
BankApp. Tel l erHel per.id(), // Repository ID
t el | er Nane, /1 Cbject ID

Creating Java Server Applications

Scaling a WebLogic Enterprise Server Application

criteria /1 Routing Criteria

)

Note: Itispossiblefor an object with agiven interfaceand OID to be simultaneously
activein two different groups, if those two groups both contain the same object
implementation. (However, if your factories generate unique OIDs, this
situation is very unlikely.) If you need to guarantee that only one object
instance of agiven interfacenameand OID isavailableat any onetimein your
domain, either: use factory-based routing to ensure that objects with a
particular OID are always routed to the same group, or configure your domain
so that a given object implementationisin only one group. This assuresthat if
multiple clients have an object reference containing a given interface name
and OID, thereference is always routed to the same object instance.

To enable routing on an object’s OID, specify the OID as the routing criterion
in thecom beasys. Tobj . TP. cr eat e_obj ect _r ef er ence method, and set
up theUBBCONFI G file appropriately.

What Happens at Run Time

When you implement factory-based routing in a factory, the WebLogic Enterprise
system generates an object reference. The following example shows how the client
application gets an object reference ttetl er object when factory-based routing is
implemented:

1. The client application invokes tfel | er Fact or y object, requesting a reference
to aTel | er object. Included in the request is a teller name that includesrarp.

2. TheTel | er Fact ory inserts thet m Dinto anNvl i st, which is used as the
routing criteria.

3. TheTel | er Fact ory invokes the
com beasys. Tobj . TP: : cr eat e_obj ect _r ef er ence method, passing the
Tel I er Interface Repository ID, a unique OID, and théi st .

4. The WebLogic Enterprise system compares the content of the routing tables with
the value in théw i st to determine a group ID.

5. The WebLogic Enterprise system inserts the group ID into the object reference.

When the client application subsequently does an invocation on an object using the
object reference, the WebLogic Enterprise system routes the request to the group
specified in the object reference.

Creating Java Server Applications 4-17

4 Scaling a Java Server Application

Note: Be careful how you implement factory-based routing if you use the
process-entity design pattern. The object can service only those entities that
are contained in the group’s database.

Enabling Multithreaded JavaServers

4-18

WLE supports the ability to configure multithreaded JavaServers. For each
JavaServer, you can establish the maximum number of worker threads in the
application’sUBBCONFI Gfile.

A worker thread is a thread that is started and managed by the WebLogic Enterprise
Java software, as opposed to threads started and managed by an application progre
Internally, WebLogic Enterprise Java manages a pool of available worker threads.
When a client request is received, an available worker thread from the thread pool i
scheduled to execute the request. When the request is done, the worker thread is
returned to the pool of available threads.

In the current WebLogic Enterprise Java release, BEA recommends that you not
establish threads programmatically. Only worker threads that are created by the
run-time WebLogic Enterprise JavaServer may access the WebLogic Enterprise Jay
infrastructure. This restriction means that your Java application should not create a
Java thread from a worker thread and then try to begin a new transaction in the threa
You can, however, start threads in your application to perform other, non-WebLogic
Enterprise work.

Deploying multithreaded JavaServers may not be appropriate for all applications. Th
potential for a performance gain from a multithreaded JavaServer depends on:

4 The application pattern

4 Whether the application is running on a single-processor machine or a
multiprocessor machine

If the application is running on a single-processor machine and the application is
CPU-intensive only, without any 1/O or delays, in most cases the multithreaded
JavaServer will not perform better. In fact, due to the overhead of switching betweer
threads, the multithreaded JavaServer in this configuration may perform worse than
single-threaded JavaServer.

A performance gain is more likely with a multithreaded JavaServer when the
application has some delays or is running on a multiprocessor machine.

Creating Java Server Applications

Scaling a WebLogic Enterprise Server Application

Multithreaded WL E server applications appear the same as single-threaded
applications, codewise. However, if you are planning to configure your Java server
applicationsto be multithreaded, or if you want to have the flexibility to do so at some
point in the future, keep the following recommendations in mind when writing your
object implementations in Java:

L4

Do not start your own threads in your Java code. Threading should remain
transparent in your source files.

Write thread-safe code. Because static variables are shared across all instances of
aclass that could be executed in different server threads, make sure that access
to those variables is synchronized properly when objects that use them are
executed in a multithreaded configuration. You should use standard Java
synchronization techniques to make sure that the use of static variablesis
properly synchronized.

For more information about Java synchronization techniques, see the Java
Language Specification, available at the Sun Microsystems, Inc. Web site at the
following URL:

http://java. sun.com

If your application uses NI code to access ATMI, JavaSer ver must be
configured as single-threaded.

If an XA-enabled version of JavaServer is built using bui | dXAJS, the server
supports only the single-threaded mode; in this case, the WebL ogic Enterprise
system ignores the - M nunber command line argument for multithreading (if
specified).

If your application is sending messages to the User Log (ULOG) , notethat it is
not helpful to use the process ID to distinguish among the different threads.
Instead, you can include in each message one of the following:

4 Theobject ID
4 Thethread name
4 Thetransaction ID (if your object is transactional)

For information about defining the UBBCONFI G parametersto implement a
multithreaded JavaServer, see Chapter 3 of the Administration Guide.

Creating Java Server Applications 4-19

4 Scaling a Java Server Application

Additional Design Considerations for the Teller Object

The principal considerations that influence the design of the Tel | er object include:

4 How to ensure that the Tel | er object works properly for the Bankapp
deployment environment; namely, across multiple replicated server processes
and multiple groups.

4 How to ensure that client requests for account inquiries, withdrawls, and
transfers in a given account go to the correct server group, given that the four
server groupsin the extended Bankapp WebL ogic Enterprise domain each deal
with different databases.

The primary implications of these considerations are that these objects must:
4 Have unique object IDs (OIDs)
4 Bemethod-bound (that is, have the met hod activation policy assigned to them)

The remainder of this section discusses these considerations and implicationsin detail .

Instantiating the Teller Object

4-20

Because the extended Bankapp server is now replicated, the WebL ogic Enterprise
domain must have a meansto differentiate between multiple instances of the Tel | er
object. That is, if there are two Bankapp server processes running in a group, the
WebL ogic Enterprise domain must have a means to distinguish between, say, the
Tel I er object running in the first Bankapp server process and the Tel | er object
running in the second Bankapp server process.

Theway to provide the WebL ogic Enterprise domain with the ability to distinguish
among multiple instances of these objects is to make each object instance unique.

To make each Tel | er object unique, the factories for those objects must change the
way in which they make object references to them. For example, when the

Tel | er Fact ory object in the original Bankapp sample application created an object
reference to the Tel | er object, the

com beasys. Tobj . TP: : creat e_obj ect _r ef erence method specified an OID
that consisted only of thestring t el | er Name. However, in the extended Bankapp
sample application discussed in this chapter, the samecr eat e_obj ect _ref erence
method uses a generated unique OID instead.

Creating Java Server Applications

Scaling a WebLogic Enterprise Server Application

A consequence of giving each Tel | er object aunique OID isthat there may be
multipleinstancesof these objectsrunning simultaneoudly inthe WebL ogic Enterprise
domain. This characteristic istypical of the stateless object model, and is an example
of how the WebL ogic Enterprise domain can be highly scalable and at the same time
offer high performance.

And last, because unique Tel | er objects need to be brought into memory for each
client request on them, it iscritical that these objects be deactivated when the
invocations on them are compl eted so that any object state associated with them does
not remain idle in memory. The Bankapp server application addresses this issue by
assigning the net hod activation policy to the Teller object in the XML -based Server
Description File.

Ensuring That Account Updates Occur in the Correct Server Group

The chief scalability advantage of having replicated server groupsisto be able to
distribute processing across multiple machines. However, if your application interacts
with a database, which is the case with the JDBC Bankapp sample application, it is
critical that you consider the impact of these multiple server groups on the database
interactions.

In many cases, you may have one database associated with each machine in your
deployment. If your server application is distributed across multiple machines, you
must consider how you set up your databases.

The JDBC Bankapp sample application uses factory-based routing to send one set of
requests to one machine, and another set to the other machine. As mentioned earlier,
factory-based routing isimplemented in the Tel | er Fact or y object by theway in
which referencesto Tel | er objects are created.

Creating Java Server Applications 4-21

4 Scaling a Java Server Application

How the Bankapp Server Application Can Be
Scaled Further

In the future, the system administrator of the Bankapp sample application may want to
add capacity to the WebL ogic Enterprise domain. For example, the bank may
eventually have alarge increase in automated teller machines (ATMSs). This can be
done without modifying or rebuilding the application.

The system administrator has the following tools avail able to continual ly add capacity:

4+ Replicating the Bankapp sample application server groups across additional
machines

Doing this requires modifying the UBBCONFI G file to specify the additional
groups, what server processes run in those groups, and what machines they run
on.

4 Changing the factory-based routing tables

For example, instead of routing to the four groups shown earlier in this chapter,
the system administrator can modify the routing rules in the UBBCONFI Gfileto
partition the application further among the new groups added to the WebL ogic
Enterprise domain. Any modification to the routing tables must be consistent
with any changes or additions made to the server groups and machines
configured in the UBBCONFI Gfile.

Note: If you add capacity to an application that uses a database, you must also
consider the impact on how the database is set up, particularly when you are
using factory-based routing. For example, if the Bankapp sample application
is spread across six machines, the database on each machine must be set up
appropriately and in accordance with the routing tables in the UBBCONFI Gfile.

4-22 Creating Java Server Applications

Index

A
ACID properties 3-1
activate_object method 1-20
activation policies
method 4-11
transaction 3-11
always transaction policy 3-5
application-controlled deactivation
overview 1-15
assigning transaction policies 3-8
AUTOTRAN 3-5

BAD_OPERATION 2-23
Bankapp sample
UBBCONFIG file 4-8
buildjavaserver command
environment variables 2-15
format 2-18

C

callback methods

detecting error conditionsin 2-26
CLASSPATH variable 2-15
client applications

how they access objects 1-6
client stub 1-4
client/server contract 1-4
close xa rm method 3-10

closing an XA resource manager 3-10
compiling java source files 2-12
compiling OMG IDL 2-3
conversations

implementing transactionally 3-1
CORBA objects

See objects
create_object_reference method

example 2-6

specifying routing criteria 4-15
creating factories 2-10
creating object references 2-10
creating server applications

overview 1-1

summary 2-2
cursors

database 3-5

D
data

reading and writing for an object 1-19

database cursors 3-5
data-dependent routing
See factory-based routing
deactivate_object method 1-20
and transactions 3-11
handling state in 2-28
restrictions on using 2-28
deactivateEnable method
overview 1-15

Creating C++ Server Applications

debugging tips 2-21

defining in-memory behavior of objects 2-13

deploying server applications 2-19
design patterns

List-Enumerator 1-25

Process-Entity 1-25
development process

summary 2-2
DR_TRANS_ABORT 3-11
DR_TRANS_COMMITTING 3-11
durable objects 1-19

E

environment variables
setting 2-15

exceptions
ActivateObjectFailed 2-22
AlreadyRegistered 2-22
and client applications 2-21
and server applications 2-21
BAD_OPERATION 2-23
CannotProceed 2-22
CORBA 2-21
DeactivateObjectFailed 2-22
[llegalInterface 2-22
InitializeFailed 2-22
INVALID_TRANSACTION 3-12
InvalidDomain 2-22
Invalidinterface 2-22
InvalidName 2-22
InvalidObject 2-22
InvalidObjectID 2-22
InvalidServant 2-22
NilObject 2-22
NoSuchElement 2-22
OBJ ADAPTER 3-12
OBJECT_NOT_EXIST 2-23
OrbProblem 2-22
OutOfMemory 2-22
OverFlow 2-22

[-2 Creating C++ Server Applications

RegistrarNotAvailable 2-22
ReleaseFailed 2-22
TpfProblem 2-22
Unknownlinterface 2-22
UserExceptions 2-22

Extensible Markup Language (XML) 2-13

F

factories
and factory-based routing 4-15
and object references 1-6
creating and registering 2-10
overview 1-10
registering 2-10
factory objects
implementing 2-6
factory-based routing
and UBBCONFIG file 4-14
how it works 4-14
implementing in afactory 4-15
summary 4-13

G

generating object references 1-10
groups

configuring server 4-7

creating 4-7

routing requests to specific 4-14

IDL

See OMG IDL
IDL compiler 2-4
ignore transaction policy 3-7
[1OP Listener/Handler 4-2
implementation

object, See object implementations
initialize method 2-8

in-memory behavior of objects
defining 2-13
Interface Repository 1-4
Interface Repository identifier 1-6
interfaces
defining 1-4
limiting compilation of 2-6
validating 2-27
writing methods to implement
operations 2-5
INVALID_TRANSACTION exception 3-12

J
javafiles
compiling 2-12
JAVA_HOME variable 2-15
javac command 2-12
JavaServer
multithreaded 4-18
UBBCONFIG definition 2-19

L

Listener/Handler
[IOP 4-2

M

ma3idltojava compiler 1-5, 2-3
format 2-4

method templates 1-5

method-bound objects 1-13

multithreaded JavaServers 4-18

N

nested transactions 3-12
never transaction policy 3-7
NULL resource manager 3-11

0

OBJ ADAPTER exception 3-12
object factories
See factories
object implementation file
creating 2-6
object implementations
overview 1-4
object references
about 1-6
contents of 1-6
creating 2-10
generating 1-10
lifespan of 1-7
object state
and the WLE system 1-11
object state management
and scalability 4-11
delegating to an XA RM 3-10
OBJECT_NOT_EXIST 2-23
and OMG IDL mismatches 2-27
objects
activating 1-22
bypassing in atransaction 3-7
choosing stateful 1-18
choosing stateless 1-17
constructors 1-5
deactivating 1-22
deactivating process 1-15
destructors 1-5
excluding from atransaction 3-7
implementing an interface for 1-5
including optionally in atransaction 3-6
in-memory behavior 2-13
making always transactional 3-5
managing 1-11
method-bound 1-13
polling in atransaction 3-11
process-bound 1-13
reading and writing state data 1-19

Creating C++ Server Applications -3

setting activation policiesfor 1-11
transaction-bound 1-13
OMG IDL
defining an object with 1-4
defining operations with 1-4
versioning mismatch 2-27
open_xa_rm method 3-9
opening an XA resource manager 3-9
optional transaction policy 3-6
overview
server application creation process 1-1

P

PATH variable 2-15

persistent objects 1-19

process-bound objects
transaction-bound objects 1-13

R

recursive transactions 3-12
registering factories 2-10
release method 2-8
releasing server applications 2-11
replicating server processes 4-4
resource manager
closing an XA 3-10
delegating object state management 3-10
NULL 3-11
opening XA 3-9
routing
factory-based, See factory-based routing
routing criteria
specifying in afactory 4-15

S

scaling an application 4-4
summary features for 4-2

server application creation process

-4 Creating C++ Server Applications

overview 1-1
server applications
configuring in groups 4-7
developing 1-9
replicating in a group 4-4
scaling 4-4
Server Description File 2-13
server groups
configuring 4-7
Server object
creating 2-8
Server processes
replicating 4-4
single-threaded JavaServer 4-18
skeletons
limiting compilation of 2-6
overview 1-4
state data
reading and writing 1-19
stateful objects
criteriafor choosing 1-18
definition 1-11
See also process-bound and transaction-
bound objects
stateless objects
criteriafor choosing 1-17
definition 1-11
See also method-bound objects

support
documentation xiv
technical xiv
T
threads
single versus multiple 4-18
T™MS
configuring 3-8
Oracle7 3-8
requirements for 3-8
TobjS.idl 2-22

transaction activation policy 3-11
Transaction Manager Server
See TMS
transaction policies
always 3-5
assigning 3-8
ignore 3-7
never 3-7
optional 3-6
transactiona objects
defining 3-5
transactions
and conversations 3-1
and object state management 3-10
implementing in aWebL ogic Enterprise
server application 3-8
nested 3-12
overview of 3-1
recursive 3-12
TUXDIR variable 2-15

U

UBBCONFIG file
and factory-based routing 4-14
in Bankapp sample 4-8
overview 2-19

vV

variables
environment 2-15
vetoing atransaction 3-11

w

WebL ogic Enterprise server applications
and transactions 3-8

worker threads
used by JavaServer 4-18

X

XA resource manager 3-8
closing 3-10
delegating object state management 3-10
opening 3-9
XML
in Server Description File 2-13

Creating C++ Server Applications -5

-6 Creating C++ Server Applications

	Preface
	Purpose of This Document
	How to Use This Document
	Related Documentation
	Contact Information

	1 Java Server Application Concepts
	Overview
	The Entities You Create to Build a WebLogic Enterprise Java Server Application
	The Implementation of the CORBA Objects for Your Java Server Application
	How Interface Definitions Establish the Operations on a CORBA Object
	How You Implement the Operations on a CORBA Object
	How Client Applications Access and Manipulate Your Application’s CORBA Objects

	The Server Object

	Understanding Object References and Object State
	Generating Object References
	Managing Object State
	About Object State
	How to Manage Object State

	Choosing Between Stateless and Stateful Objects
	When You Want Stateless Objects
	When You Want Stateful Objects
	Reading and Writing an Object’s Data
	Available Mechanisms for Reading and Writing an Object’s Durable State
	Reading State at Object Activation
	Reading State Within Individual Operations on an Object
	Stateless Objects and Durable State
	Stateful Objects and Durable State
	Your Responsibilities for Object Deactivation
	Avoiding Unnecessary I/O
	Sample Activation Walkthrough

	Using Design Patterns

	2 Steps for Creating a Java Server Application
	Summary of the Java Server Application Development Process
	Step 1: Compile the OMG IDL file for the server application.
	Using the m3idltojava Compiler

	Step 2: Write the methods that implement each interface’s operations.
	Creating an Object Implementation File
	Implementing a Factory Object
	Using Threads with WLE

	Step 3: Create the Server object.
	Writing the Code That Creates and Registers a Factory
	Releasing the Server Application

	Step 4: Compile the Java source files.
	Step 5: Define the object activation and transaction policies.
	Specifying Policies in XML

	Step 6: Verify the environment variables.
	Step 7: Finish the Server Description File.
	Step 8: Deploy the server application.
	Development and Debugging Tips
	Use of CORBA and WebLogic Enterprise Exceptions and the User Log
	Client Application View of Exceptions
	Server Application View of Exceptions

	Detecting Error Conditions in the Callback Methods
	Common Pitfalls of OMG IDL Interface Versioning and Modification
	Caveat for State Handling in com.beasys.Tobj_Servant.deactivate_object

	3 Integrating Transactions into a Java Server Application
	Overview of Transactions in the WebLogic Enterprise System
	Integrating Transactions in a WebLogic Enterprise Client and Server Application
	Making an Object Automatically Transactional
	Enabling an Object to Participate in a Transaction
	Preventing an Object from Being Invoked While a Transaction Is Scoped
	Excluding an Object from an Ongoing Transaction
	Assigning Policies
	Using an XA Resource Manager
	Opening an XA Resource Manager
	Closing an XA Resource Manager

	Transactions and Object State Management
	Delegating Object State Management to an XA Resource Manager
	Waiting Until Transaction Work Is Complete Before Writing to the Database

	Notes on Using Transactions in the WebLogic Enterprise System

	4 Scaling a Java Server Application
	Overview of the Scalability Features Available in the WebLogic Enterprise System
	Scaling a WebLogic Enterprise Server Application
	Replicating Server Processes and Server Groups
	Replicated Server Processes
	Replicated Server Groups
	Configuring Replicated Server Processes and Groups

	Scaling the Application Via Object State Management
	Factory-based Routing
	How Factory-based Routing Works
	Configuring for Factory-based Routing in the UBBCONFIG File
	Implementing Factory-based Routing in a Factory
	What Happens at Run Time

	Enabling Multithreaded JavaServers
	Additional Design Considerations for the Teller Object
	Instantiating the Teller Object
	Ensuring That Account Updates Occur in the Correct Server Group

	How the Bankapp Server Application Can Be Scaled Further

	Index

