
BEA WebLogic Enterprise
Guide to the

B E A W e b L o g i c E n t e r p r i s e 4 . 2
D o c u m e n t E d i t i o n 4 . 2

J u l y 1 9 9 9

University Sample Applications

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Guide to the University Sample Applications

Document Edition Date Software Version

4.2 July 1999 BEA WebLogic Enterprise 4.2

Contents

Preface
Purpose of This Document .. ix

How to Use This Document ..x

Related Documentation ... xiii

Contact Information...xv

1. Introduction
An Overview of the University Sample Applications....................................... 1-1

Naming Conventions Used in the University Sample Applications 1-3

2. Setting Up Your Environment
System Prerequisites.. 2-1

Editing the setenv and UBBCONFIG Files... 2-2

Naming Conventions for the setenv and UBBCONFIG Files 2-3

Setting setenv Parameters... 2-4

Setting the UBBCONFIG Parameters.. 2-6

Running the setenv Command ... 2-9

3. The Basic Sample Application
How the Basic Sample Application Works ... 3-2

The OMG IDL for the Basic Sample Application... 3-3

Generating the Client Stubs and the Skeletons.. 3-5

Writing the Client Application .. 3-6

Writing the Server Application ... 3-6

Configuring the Basic Sample Application ... 3-7

Building the Basic Sample Application .. 3-8

Copying the Files for the Basic Sample Application into a
Guide to the University Sample Applications iii

Work Directory ... 3-8

Changing the Protection on the File for the Basic Sample Application... 3-11

Setting the Environment Variables... 3-11

Initializing the University Database ... 3-11

Loading the UBBCONFIG File.. 3-12

Compiling the Basic Sample Application ... 3-12

Running the Basic Sample Application... 3-13

Starting the Server Application .. 3-13

Starting the CORBA C++ Client Application .. 3-14

Starting the CORBA Java Client Application .. 3-14

Starting the ActiveX Client Application .. 3-14

Using the Client Applications in the Basic Sample Application 3-16

The CORBA C++ Client Application .. 3-16

The CORBA Java Client Application .. 3-17

The ActiveX Client Application... 3-18

4. The Security Sample Application
How the Security Sample Application Works... 4-1

The Development Process for the Security Sample Application....................... 4-3

OMG IDL ... 4-3

The Client Application ... 4-3

The Server Application... 4-4

The UBBCONFIG File... 4-4

The ICF File ... 4-4

Building the Security Sample Application .. 4-4

Copying the Files for the Security Sample Application into
a Work Directory... 4-5

Changing the Protection on the Files for the Security
Sample Application ... 4-7

Setting the Environment Variables... 4-8

Initializing the University Database ... 4-8

Loading the UBBCONFIG File.. 4-8

Compiling the Security Sample Application ... 4-9

Running the Security Sample Application .. 4-10

Starting the University Server Application .. 4-10
iv Guide to the University Sample Applications

Starting the CORBA C++ Client Application.. 4-11

Starting the CORBA Java Client Application.. 4-11

Starting the ActiveX Client Application .. 4-12

Using the Client Applications in the Security Sample Application 4-14

The CORBA C++ Client Application .. 4-14

The CORBA Java Client Application .. 4-14

The ActiveX Client Application .. 4-14

5. The Transactions Sample Application
How the Transactions Sample Application Works ... 5-1

The Development Process for the Transactions Sample Application 5-3

OMG IDL... 5-4

The Client Application ... 5-4

The University Server Application .. 5-4

The UBBCONFIG File .. 5-5

The ICF File ... 5-5

Building the Transactions Sample Application... 5-6

Copying the Files for the Transactions Sample Application into
a Work Directory .. 5-6

Changing the Protection on the Files for the Transactions
Sample Application... 5-9

Setting the Environment Variables .. 5-9

Initializing the University Database... 5-10

Loading the UBBCONFIG File ... 5-10

Creating a Transaction Log .. 5-10

Compiling the Transactions Sample Application.. 5-11

Running the Transactions Sample Application ... 5-12

Starting the Server Application .. 5-12

Starting the CORBA C++ Client Application.. 5-13

Starting the CORBA Java Client Application.. 5-14

Starting the ActiveX Client Application .. 5-14

Using the Client Applications in the Transactions sample application 5-16

The CORBA C++ Client Application .. 5-16

The CORBA Java Client Application .. 5-17

The ActiveX Client Application .. 5-17
Guide to the University Sample Applications v

6. The Wrapper Sample Application
How the Wrapper Sample Application Works .. 6-1

The Development Process for the Wrapper sample application........................ 6-3

OMG IDL ... 6-3

The Client Application ... 6-4

The Server Application... 6-4

The UBBCONFIG File... 6-5

The ICF File ... 6-5

Building the Wrapper Sample Application ... 6-6

Copying the Files for the Wrapper Sample Application into
a Work Directory... 6-6

Changing the Protection on the Files for the Wrapper
Sample Application ... 6-9

Setting the Environment Variables... 6-10

Initializing the University Database ... 6-10

Loading the UBBCONFIG File.. 6-10

Creating a Transaction Log .. 6-11

Compiling the Wrapper Sample Application .. 6-12

Running the Wrapper Sample Application.. 6-12

Starting the Server Application .. 6-13

Starting the CORBA C++ Client Application .. 6-14

Starting the CORBA Java Client Application .. 6-14

Starting the ActiveX Client Application .. 6-15

Using the Client Applications in the Wrapper Sample Application................ 6-16

The CORBA C++ Client Application .. 6-17

The CORBA Java Client Application .. 6-17

The ActiveX Client Application... 6-17

7. The Production Sample Application
How the Production Sample Application Works .. 7-2

Replicating Server Applications... 7-3

Replicating Server Groups ... 7-5

Using a Stateless Object Model.. 7-7

Using Factory-based Routing ... 7-7

The Development Process for the Production Sample Application 7-8
vi Guide to the University Sample Applications

OMG IDL... 7-8

The Client Application ... 7-9

The Server Application .. 7-9

The UBBCONFIG File .. 7-9

Replicating Server Application Processes and Server Groups 7-10

Implementing Factory-based Routing... 7-12

The ICF File ... 7-13

Building the Production Sample Application.. 7-13

Copying the Files for the Production Sample Application into a Work
Directory ... 7-14

Changing the Protection on the Files for the Production
Sample Application... 7-17

Setting the Environment Variables .. 7-18

Initializing the University Database... 7-18

Loading the UBBCONFIG File ... 7-18

Creating a Transaction Log .. 7-19

Compiling the Production Sample Application... 7-20

Running the Production Sample Application .. 7-21

Starting the Server Application .. 7-21

Starting the CORBA C++ Client Application.. 7-22

Starting the CORBA Java Client Application.. 7-22

Starting the ActiveX Client Application .. 7-23

How the Production Sample Application Can Be Scaled Further................... 7-25

A. Setting Up the Database
Database Support.. A-1

Setup Instructions for the Oracle Database .. A-2

Setup for Local Database Instance .. A-2

Setup for Remote Database Instance... A-3

Index
Guide to the University Sample Applications vii

viii Guide to the University Sample Applications

Preface

Purpose of This Document

This document describes the University sample applications that are provided with the
BEA WebLogic Enterprise (sometimes referred to as WLE) software, and is intended
to be used with the following documents:

t Getting Started

t Creating Client Applications

t Creating C++ Server Applications

Note: Effective February 1999, the BEA M3 product is renamed. The new name of
the product is BEA WebLogic Enterprise (WLE).

Who Should Read This Document

This document is intended for application designers and client and server programmers
who would find a set of progressive examples useful in understanding the WebLogic
Enterprise software.

How This Document Is Organized

The Guide to the University Sample Applications is organized as follows:

t Chapter 1, “Introduction,” provides an overview of the sample applications.
Guide to the University Sample Applications ix

ts
and

s

e

at is

 note
nt via

t a
t Chapter 2, “Setting Up Your Environment,” describes the system requiremen
and provides information about setting up the system environment variables
parameters in the UBBCONFIG file.

t Chapter 3, “The Basic Sample Application,” describes the Basic sample
application.

t Chapter 4, “The Security Sample Application,” describes the Security sample
application.

t Chapter 5, “The Transactions Sample Application,” describes the Transaction
sample application.

t Chapter 6, “The Wrapper Sample Application,” describes the Wrapper sampl
application.

t Chapter 7, “The Production Sample Application,” describes the Production
sample application.

t Appendix A, “Setting Up the Database,” describes setting up the database th
used with the University sample applications.

How to Use This Document

This document, the Guide to the University Sample Applications, is designed primarily
as an online, hypertext document. If you are reading this as a paper publication,
that to get full use from this document you should access it as an online docume
the Online Documentation CD for the BEA WebLogic Enterprise 4.2 release.

The following sections explain how to view this document online, and how to prin
copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the following file:

\doc\wle\v42\index.htm
x Guide to the University Sample Applications

Note: The online documentation requires Netscape Communicator version 4.0 or
later, or Microsoft Internet Explorer version 4.0 or later.

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed and
selected in your browser. To select a chapter or appendix, click anywhere inside the
chapter or appendix you want to print.

The Online Documentation CD includes Adobe Acrobat PDF files of all of the online
documents. You can use the Adobe Acrobat Reader to print all or a portion of each
document. On the CD Home Page, click the PDF Files button and scroll to the entry
for the document you want to print.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

.doc

BITMAP

float
Guide to the University Sample Applications xi

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name]...
[-f firstfile-syntax] [-l lastfile-syntax]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

t That an argument can be repeated several times in a command line

t That the statement omits additional optional arguments

t That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name]...
[-f firstfile-syntax] [-l lastfile-syntax]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
xii Guide to the University Sample Applications

Related Documentation

The following sections list the documentation provided with the BEA WebLogic
Enterprise software, related BEA publications, and other publications related to the
technology.

BEA WebLogic Enterprise Documentation

The BEA WebLogic Enterprise information set consists of the following documents:

Installation Guide

C++ Release Notes

Java Release Notes

Getting Started

Guide to the University Sample Applications (this document)

Guide to the Java Sample Applications

Creating Client Applications

Creating C++ Server Applications

Creating Java Server Applications

Administration Guide

Using Server-to-Server Communication

C++ Programming Reference

Java Programming Reference

Java API Reference

JDBC Driver Programming Reference

System Messages
Guide to the University Sample Applications xiii

Glossary

Technical Articles

Note: The Online Documentation CD also includes Adobe Acrobat PDF files of all
of the online documents. You can use the Adobe Acrobat Reader to print all
or a portion of each document.

BEA Publications

Selected BEA TUXEDO Release 6.5 for BEA WebLogic Enterprise version 4.2
documents are available on the Online Documentation CD.

To access these documents:

1. Click the Other Reference button from the main menu.

2. Click the TUXEDO Documents option.

Other Publications

For more information about CORBA, Java, and related technologies, refer to the
following books and specifications:

Cobb, E. 1997. The Impact of Object Technology on Commercial Transaction
Processing. VLDB Journal, Volume 6. 173-190.

Edwards, J. with DeVoe, D. 1997. 3-Tier Client/Server At Work. Wiley Computer
Publishing.

Edwards, J., Harkey, D., and Orfali, R. 1996. The Essential Client/Server Survival
Guide. Wiley Computer Publishing.

Flanagan, David. May 1997. Java in a Nutshell, 2nd Edition. O’Reilly & Associates,
Incorporated.

Flanagan, David. September 1997. Java Examples in a Nutshell. O’Reilly &
Associates, Incorporated.
xiv Guide to the University Sample Applications

Fowler, M. with Scott, K. 1997. UML Distilled, Applying the Standard Object
Modeling Language. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series.

Jacobson, I. 1994. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley.

Mowbray, Thomas J. and Malveau, Raphael C. (Contributor). 1997. CORBA Design
Patterns, Paper Back and CD-ROM Edition. John Wiley & Sons, Inc.

Orfali, R., Harkey, D., and Edwards, J. 1997. Instant Corba. Wiley Computer
Publishing.

Orfali, R., Harkey, D. February 1998. Client/Server Programming with Java and
CORBA, 2nd Edition. John Wiley & Sons, Inc.

Otte, R., Patrick, P., and Roy, M. 1996. Understanding CORBA. Prentice Hall PTR.

Rosen, M. and Curtis, D. 1998. Integrating CORBA and COM Applications. Wiley
Computer Publishing.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Loresen, W. 1991.
Object-Oriented Modeling and Design. Prentice Hall.

The Common Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. Published by the Object Management Group (OMG).

CORBAservices: Common Object Services Specification. Revised Edition. Updated:
November 1997. Published by the Object Management Group (OMG).

Contact Information

The following sections provide information about how to obtain support for the
documentation and the software.
Guide to the University Sample Applications xv

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of the BEA WebLogic Enterprise product,
or if you have problems installing and running the BEA WebLogic Enterprise
software, contact BEA Customer Support through BEA WebSupport at
www.beasys.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

t Your name, e-mail address, phone number, and fax number

t Your company name and company address

t Your machine type and authorization codes

t The name and version of the product you are using

t A description of the problem and the content of pertinent error messages
xvi Guide to the University Sample Applications

CHAPTER
1 Introduction

This chapter describes the University sample applications provided with the Weblogic
Enterprise (WLE) software. The sample applications provide client and server
programmers with the basic concepts of developing distributed client/server
applications using the WLE software and introduces many of the more advanced
features of the WLE product.

This chapter includes the following sections:

t An overview of the University sample applications

t Naming conventions used in the University sample applications

An Overview of the University Sample
Applications

The WLE software includes a sample application suite based on client and server
applications implemented at a university. Each University sample application
demonstrates a new set of WLE features while building on the experience obtained
from the previous examples. The University sample applications are intentionally
simplified to demonstrate only the steps and processes associated with using a
particular feature of the WLE product.
Guide to the University Sample Applications 1-1

1 INTRODUCTION
Table 1-1 decribes the University sample applications.

Table 1-1 The University Sample Applications

Use the University sample applications in conjunction with the following manuals:

t Creating Client Applications

t Creating C++ Server Applications

University
Sample Application

Description

Basic Describes how to create WLE client and server
applications, configure the WLE application, and build
and run the client and server applications included in
the Basic sample application. CORBA C++, CORBA
Java, and ActiveX client applications are provided as
well as a C++ server application.

Security Adds application-level security to the client
applications in the Basic sample application and to the
configuration of the WLE application.

Transactions Adds transactional objects to the client and server
applications in the Basic sample application. The
Transactions sample application demonstrates how to
use the Implementation Configuration File (ICF) to
define transaction policies for CORBA objects.

Wrapper Demonstrates how to wrap an existing BEA TUXEDO
application as a CORBA object.

Production Demonstrates replicating server applications, creating
stateless objects, and implementing factory-based
routing in server applications.
1-2 Guide to the University Sample Applications

NAMING CONVENTIONS USED IN THE UNIVERSITY SAMPLE APPLICATIONS
Naming Conventions Used in the University
Sample Applications

The naming conventions listed and described in Table 1-2 are used in the code of the
University sample applications:

Table 1-2 Naming Conventions Used in the University Sample Applications

Convention Description

crs The abbreviation for course.

syn The abbreviation for synopsis.

det The abbreviation for details.

lst The abbreviation for list.

enum The abbreviation for enumerator.

stu The abbreviation for student.

num The abbreviation for number.

cur The abbreviation for current.

_oref A CORBA::Object reference.

_ref A typed object reference.

p_ The abbreviation for ptr.

v_ The abbreviation for var.

s_ The abbreviation for file static data.

m_ The abbreviation for class member data.

method names and
variable names

Use all lowercase letters for the name and underscores to
separate words within the method name (for example,
m_v_crs_syn_list is member data that is a var holding a
course synopsis list).
Guide to the University Sample Applications 1-3

1 INTRODUCTION
type names Start with an uppercase letter and use an uppercase letter to
separate words with a type name. Type names do not use
abbreviations. An example of a type name is
UniversityB::CourseSynopsisEnumerator_var.

Table 1-2 Naming Conventions Used in the University Sample Applications

Convention Description
1-4 Guide to the University Sample Applications

CHAPTER

 see

2 Setting Up Your
Environment

This chapter describes how to configure up your WebLogic Enterprise (WLE)
application so that you can run the University sample applications. This chapter
includes the following sections:

t Software prerequisites

t Editing the setenv and UBBCONFIG files

A copy of the Readme.txt file with troubleshooting information and the latest
information about setting up the sample applications is included in each sample
application directory.

For information about setting up a database so that it can be used with the University
sample applications, see Appendix A, “Setting Up the Database.”

System Prerequisites

For information about the operating system platforms supported by the product,
Installing the WebLogic Enterprise Software.

To run the client applications in the University sample applications, you need the
following development tools:

t Visual C++ Version 5.0 with Service Pack 3
Guide to the University Sample Applications 2-1

2 SETTING UP YOUR ENVIRONMENT
t If you want to run the ActiveX client application, Visual Basic Version 5.0 with
Service Pack 3

t If you want to run the CORBA Java client application, Java Development Kit
(JDK) Version 1.1.6 or greater or JDK Version 1.2.

t The UNIX platforms supported by Version 4.2 of the WLE software use the
JDK Version 1.1.6 or greater.

t The Windows NT platforms supported by Version 4.2 of the WLE software
use the JDK Version 1.2.

Editing the setenv and UBBCONFIG Files

You need to set several parameters in the setenv and UBBCONFIG files in order for the
University sample applications to work properly, as follows:

t The setenv file sets the system environment variables needed to build and run
the sample applications. Each sample application directory contains a unique
setenv file. The name of the setenv file designates which sample application
the file is to be used with. For example, setenvb is for the Basic sample
application. Each sample application directory contains a setenv file for the
Windows NT and UNIX operating systems. For a list of the specific file names
for the setenv file, see Table 2-1.

t The UBBCONFIG file is the configuration file for the sample application. The
UBBCONFIG file defines parameters for how the client and server applications in
the sample application should work. Each sample application directory contains
a unique UBBCONFIG file. The name of the UBBCONFIG file designates which
sample application the file is to be used with. For example, ubb_b is for the
Basic sample application. Each sample application directory contains a
UBBCONFIG file for the Windows NT and UNIX operating systems. For a list of
the specific file names for the UBBCONFIG file, see Table 2-1.

The information in the setenv and UBBCONFIG files must match. The following
sections explain how to edit the setenv and UBBCONFIG files.
2-2 Guide to the University Sample Applications

EDITING THE SETENV AND UBBCONFIG FILES
Naming Conventions for the setenv and UBBCONFIG
Files

Table 2-1 describes the naming conventions for the setenv and UBBCONFIG files.

Table 2-1 Naming Conventions for setenv and UBBCONFIG Files

University
Sample Application

Naming Convention

Basic t setenvb.cmd—The setenv file for Windows
NT

t setenvb.sh—The setenv file for UNIX

t ubb_b.nt—The UBBCONFIG file for Windows
NT

t ubb_b.mk—The UBBCONFIG file for UNIX

Security t setenvs.cmd—The setenv file for Windows
NT

t setenvs.sh—The setenv file for UNIX

t ubb_s.nt—The UBBCONFIG file for Windows
NT

t ubb_s.mk—The UBBCONFIG file for UNIX

Transactions t setenvt.cmd—The setenv file for Windows
NT

t setenvt.sh—The setenv file for UNIX

t ubb_t.nt—The UBBCONFIG file for Windows
NT

t ubb_t.mk—The UBBCONFIG file for UNIX

Wrapper t setenvw.cmd—The setenv file for Windows
NT

t setenvw.sh—The setenv file for UNIX

t ubb_w.nt—The UBBCONFIG file for Windows
NT

t ubb_w.mk—The UBBCONFIG file for UNIX
Guide to the University Sample Applications 2-3

2 SETTING UP YOUR ENVIRONMENT
Setting setenv Parameters

Table 2-2 lists the parameters you need to modify in the setenv file.

Production t setenvp.cmd—The setenv file for Windows
NT

t setenvp.sh—The setenv file for UNIX

t ubb_p.nt—The UBBCONFIG file for Windows
NT

t ubb_p.mk—The UBBCONFIG file for UNIX

University
Sample Application

Naming Convention

Table 2-2 Parameters in the setenv File

Parameter Description

APPDIR The directory path where you copied the sample application files. For example:

Windows NT

APPDIR=c:\work\university\basic

UNIX

APPDIR=/usr/work/university/basic

TUXCONFIG The directory path and name of the configuration file. For example:

Windows NT

TUXCONFIG=c:\work\university\basic\tuxconfig

UNIX

TUXCONFIG=/usr/work/university/basic/tuxconfig

TUXDIR The directory path where you installed the WLE software. For example:

Windows NT

TUXDIR=c:\WLEdir

UNIX

TUXDIR=/usr/local/WLEdir
2-4 Guide to the University Sample Applications

EDITING THE SETENV AND UBBCONFIG FILES
ORACLE_HOME The directory path where you installed the Oracle software. For example:

Windows NT

ORADIR=c:\Orant

UNIX

ORACLE_HOME=/usr/local/oracle

NETSCAPE The directory path where you installed the Netscape Enterprise Server software. For
example:

Windows NT

NETSCAPE=c:\Netscape\SuiteSpot

UNIX

NETSCAPE=/usr/local/netscape/suitespot

You need to specify this parameter only if you plan to use the CORBA Java client
application.

JARTYPE Specifies the version of the JDK being used.

Windows NT

JARTYPE = JDK or jdk

UNIX

JARTYPE = JDK or jdk

If you do not specify the JARTYPE parameter, it is assumed you are using the JDK
version 1.1. You need to specify this parameter only if you plan to use the CORBA
Java sample application.

JDKDIR The directory path where you installed the JDK software. For example:

Windows NT

JDKDIR=c:\JDK1.2

UNIX

JDKDIR=/usr/local/jdk1.1.6

You need to specify this parameter only if you plan to use the CORBA Java sample
application.

TOBJADDR If you are using a CORBA C++ client application that does not reside on the same
machine as the server application, enter the host and port of the machine where the
server application runs. It must be specified exactly (including case) as it appears in
the UBBCONFIG file for the machine. For example: //BEANIE:2500

Table 2-2 Parameters in the setenv File

Parameter Description
Guide to the University Sample Applications 2-5

2 SETTING UP YOUR ENVIRONMENT
Setting the UBBCONFIG Parameters

Table 2-3 lists the parameters you need to modify in the UBBCONFIG file.

USERID If you are using a remote instance of the Oracle database, the format is as follows:

USERID=username/password@aliasname

This is the same information you defined when you set up a remote instance of the
Oracle database.

If you are using a local instance of the Oracle database, the format is as follows:

USERID=username/password

ORACLE_SID The instance ID of the Oracle database. On Windows NT, you do not need to specify
the ORACLE_SID, the parameter automatically defaults to ORCL.

CCMPL The directory location of the C compiler. This parameter is set to a typical installation
directory. Verify that your installation matches this directory location and change the
location if necessary. This parameter applies only to the UNIX operating system.

CPPCMPL The directory location of the C++ compiler. This parameter is set to a typical
installation directory. Verify that your installation matches this directory location and
change the location if necessary. This parameter applies only to the UNIX operating
system.

CPPINC The directory location of the C++ include directory. This parameter is set to a typical
installation directory. Verify that your installation matches this directory location and
change the location if necessary. This parameter applies only to the UNIX operating
system.

SHLIB_PATH,
LD_LIBRARY_PATH,
or

LIBPATH

The directory location of the shared library. This parameter is set to a typical
installation directory. Verify that your installation matches this directory location and
change the location if necessary. This parameter applies only to the UNIX operating
system.

PROC The directory location of the Oracle Programmer C/C++ SQL Precompiler. You only
need to specify this parameter if you are using the Windows NT operating system.

PRODIR The directory location of the Oracle Programmer C/C++ SQL Precompiler. You only
need to specify this parameter if you are using the Windows NT operating system.

Table 2-2 Parameters in the setenv File

Parameter Description
2-6 Guide to the University Sample Applications

EDITING THE SETENV AND UBBCONFIG FILES
Table 2-3 Parameters in the UBBCONFIG File

Parameter Description

MY_SERVER_MACHINE Delete this parameter and replace it with the name of the server machine.

On Windows NT, you can obtain the server machine name by entering the
following command at the MS-DOS prompt:

set COMPUTERNAME

On UNIX, you can obtain the server machine name by entering the following
command at the shell prompt:

prompt>uname -n

You must enter the server machine name exactly (including case) as it appears in
the output of the command.

Specify the server machine name as it appears. For example, BEANIE.

Full names must be included in quotation marks. For example:
"beanie.beasys.com".

APPDIR The full directory path where you copied the sample application files. The
directory path needs to be included in quotation marks. For example:

Windows NT

APPDIR="c:\work\university\basic"

UNIX

APPDIR="/usr/work/university/basic"

This parameter needs to match the APPDIR parameter in the setenv file.

TUXCONFIG The full directory path of the configuration file. This is the subdirectory of the
sample application. The directory path needs to be included in quotation marks.
For example:

Windows NT

TUXCONFIG="c:\work\university\basic\tuxconfig"

UNIX

TUXCONFIG="usr/work/university/basic/tuxconfig"

This parameter needs to match the TUXCONFIG parameter in the setenv file.
Guide to the University Sample Applications 2-7

2 SETTING UP YOUR ENVIRONMENT
TUXDIR The full directory path where you installed the WLE software. The directory path
needs to be included in quotation marks. For example:

Windows NT

TUXDIR="c:\M3dir"

UNIX

TUXDIR="/usr/local/M3dir"

This parameter needs to match the TUXDIR parameter in the setenv file.

CLOPT for the ISL
process

Enter the host name and port number of the machine on which the server
application is installed. For example:

ISL

 SRVGRP = SYS_GRP

 SRVID =

 CLOPT = "-A --n //BEANIE:2500"

OPENINFO If you are using the Transactions, Wrapper, or Production sample applications,
you need to specify this parameter for the Oracle database.

If you are using a remote instance of the Oracle database, the OPENINFO
parameter is specified as follows:

OPENINFO =
"Oracle_XA:Oracle_XA+SqlNet=aliasname+Acc=P/account
/password+SesTM=100+LogDir=.+MaxCur=5"

For example on Windows NT:

OPENINFO = "Oracle_XA:Oracle_XA+SqlNet=ORCL+Acc=P/scott/
tiger+SesTM=100+LogDir=.+MaxCur=5"

If you are using a local instance of the Oracle database, the OPENINFO parameter
is specified as follows:

OPENINFO = "Oracle_XA:Oracle_XA+Acc=P
/account/password+SesTM=100+LogDir=.+MaxCur=5"

For example, on Windows NT:

OPENINFO = "Oracle_XA:Oracle_XA+Acc=P
/scott/tiger+SesTM=100+LogDir=.+MaxCur=5"

Table 2-3 Parameters in the UBBCONFIG File

Parameter Description
2-8 Guide to the University Sample Applications

EDITING THE SETENV AND UBBCONFIG FILES
Running the setenv Command

Before you can use the University sample applications, you need to run the setenv
script to ensure your system environment variables reflect all the changes made in the
process of setting up the Oracle database and your configuration. Instructions for
running the setenv command are included in the descriptions of building the
individual sample applications.

Note: The makefiles for the University sample applications assume Microsoft Visual
C++ is installed in the following location on Windows NT:

c:\Progra~1\Devstu~1\VC

If your copy of Microsoft Visual C++ is not installed in that directory, run the
following command procedure to set the appropriate system environment
variables.

c:\Progra~1\Devstu~1\VC\Bin\VCVARS32.bat

The Oracle Pro*C/C++ compiler uses short names so you need to use ~ in the
directory path to ensure the system variable is set correctly.
Guide to the University Sample Applications 2-9

2 SETTING UP YOUR ENVIRONMENT
2-10 Guide to the University Sample Applications

CHAPTER
3 The Basic Sample
Application

The chapter discusses the following topics:

t How the Basic sample application works

t The Object Management Group (OMG) Interface Definition Language (IDL) for
the Basic sample application

t Generating the Client Stubs and the Skeletons

t Writing the client application

t Writing the server application

t Configuring the Basic sample application

t Building the Basic sample application

t Compiling the Basic sample application

t Running the Basic sample application

t Using the client applications in the Basic sample application

Refer to Readme.txt in the \basic directory for troubleshooting information and the
latest information about using the Basic sample application.

For an explanation of concepts associated with WLE applications and a description of
the development process for WLE applications, see Getting Started.
Guide to the University Sample Applications 3-1

3 THE BASIC SAMPLE APPLICATION
How the Basic Sample Application Works

The Basic sample application allows users to browse for available courses and get
details on selected courses. Figure 3-1 illustrates how the Basic sample application
works.

Figure 3-1 The Basic Sample Application

The Basic sample application demonstrates the following features:

t Creating WLE client and server applications

t Defining the configuration for a WLE application

t Building client and server applications using the commands and tools
provided by the WLE software

CORBA Java Client
Application

CORBA C++ Client
Application

ActiveX Client
Application

Browse Courses

Get Course Details
University

Server Application

University
Database

CORBA
3-2 Guide to the University Sample Applications

THE OMG IDL FOR THE BASIC SAMPLE APPLICATION
The OMG IDL for the Basic Sample
Application

The first step in creating client and server applications is to specify all of the CORBA
interfaces and their methods using OMG IDL. The Basic sample application
implements the following CORBA interfaces:

Listing 3-1 shows the univb.idl file that defines the CORBA interfaces in the Basic
sample application. A copy of this file is included in the directory for the Basic sample
application.

Listing 3-1 OMG IDL for the Basic Sample Application

module UniversityB

{

 typedef unsigned long CourseNumber;
 typedef sequence<CourseNumber> CourseNumberList;

Interface Description Operations

RegistrarFactory Creates object references to the
Registrar object.

find_registrar()

Registrar Obtains course information from the
database.

get_courses_synopsis()

get_courses_details()

CourseSynopsisEnumerator Gets synopses of courses that match the
search criteria from the course database
and reads them into memory; returns the
first subset of the synopses to the
Registrar object, which in turns returns
them to the client application; and
provides a means for a client application
to retrieve the remainder of the
synopses.

get_next_n()

destroy()
Guide to the University Sample Applications 3-3

3 THE BASIC SAMPLE APPLICATION
 struct CourseSynopsis
 {
 CourseNumber course_number;
 string title;
 };

 typedef sequence<CourseSynopsis> CourseSynopsisList;

 interface CourseSynopsisEnumerator
 {
 CourseSynopsisList get_next_n(
 in unsigned long number_to_get,
 out unsigned long number_remaining
);
 void destroy();
 };

 typedef unsigned short Days;
 const Days MONDAY = 1;
 const Days TUESDAY = 2;
 const Days WEDNESDAY = 4;
 const Days THURSDAY = 8;
 const Days FRIDAY = 16;

 struct ClassSchedule
 {
 Days class_days; // bitmask of days
 unsigned short start_hour; // whole hours in military time
 unsigned short duration; // minutes
 };

 struct CourseDetails
 {
 CourseNumber course_number;
 double cost;
 unsigned short number_of_credits;
 ClassSchedule class_schedule;
 unsigned short number_of_seats;
 string title;
 string professor;
 string description;
 };

 typedef sequence<CourseDetails> CourseDetailsList;

 interface Registrar
 {
 CourseSynopsisList
 get_courses_synopsis(
 in string search_criteria,
3-4 Guide to the University Sample Applications

GENERATING THE CLIENT STUBS AND THE SKELETONS

ot

tion.
ou

that
nt

ated
 in unsigned long number_to_get, // 0 = all
 out unsigned long number_remaining,
 out CourseSynopsisEnumerator rest
);
 CourseDetailsList get_courses_details(in CourseNumberList
 courses);

 interface RegistrarFactory
 {
 Registrar find_registrar(
);
 };
};

Generating the Client Stubs and the
Skeletons

Note: The CORBA client applications in the University sample applications use
static invocation. For an example of using the dynamic invocation interface,
see Creating Client Applications. When creating CORBA Java client
applications, see your Java ORB’s documentation for information about
compiling the OMG IDL to get client stubs. ActiveX client applications do n
use client stubs.

The interface specification defined in OMG IDL is used by the IDL compiler to
generate client stubs for the client application and skeletons for the server applica
The client stubs are used by the client application for all operation invocations. Y
use the skeleton, along with the code you write, to create the server application
implements the CORBA objects. For information about generating and using clie
stubs and skeletons, see Getting Started.

During the development process, you would use the idl command to compile the
OMG IDL file and produce client stubs and skeletons. This task has been autom
in the makefile for the Basic sample application. For a description of the idl
command, see the C++ Programming Reference.
Guide to the University Sample Applications 3-5

3 THE BASIC SAMPLE APPLICATION
Writing the Client Application

The WLE software supports three types of client applications:

t CORBA C++

t CORBA Java

t ActiveX

Note: The ActiveX client application is written in Visual Basic.

During the development process, you would write client application code that does the
following:

t Initializes the ORB

t Uses the Bootstrap environmental object to establish communication with the
WLE domain

t Resolves initial references to the FactoryFinder environmental object

t Uses a factory to get an object reference for the Registrar object

t Invokes the get_courses_synopsis() and get_courses_details()
methods on the Registrar object

C++, Java, and Visual Basic versions of the client application code in the Basic sample
application are provided. For information about writing client applications, see Getting
Started and Creating Client Applications.

Writing the Server Application

During the development process, you would write the following:

t The Server object that initializes the University server application and registers a
factory for the Registrar object with the WLE domain
3-6 Guide to the University Sample Applications

CONFIGURING THE BASIC SAMPLE APPLICATION

ed

t The method implementations for the operations on the Registrar,
RegistrarFactory, and CourseSynopsisEnumerator objects

C++ code for the Server object and the method implementations in the University
server application are provided.

During the development process, you use the genicf command to create an
Implementation Configuration File (ICF). You then edit the ICF file to define
activation and transaction policies for the Registrar, RegistrarFactory, and
CourseSynopsisEnumerator objects. For the Basic sample application, the
Registrar, RegistrarFactory, and CourseSynopsisEnumerator objects have an
activation policy of process and a transaction policy of ignore. An ICF file for the
Basic sample application is provided.

For information about writing server applications, see Creating C++ Server
Applications.

Configuring the Basic Sample Application

A key part of any WLE application is the UBBCONFIG file. Although creating a
UBBCONFIG file is the task of the administrator, it is important for the client and server
programmers to understand that the file exists and how the file is used. When system
administrators create a configuration file, they are describing the WLE application
using a set of parameters that the WLE software interprets to create a runnable
application.

There are two forms of the configuration file:

t The UBBCONFIG file, an ASCII version of the file, created and modified with any
editor. Chapter 2, “Setting Up Your Environment,” describes setting the requir
parameters in the UBBCONFIG file used by all University sample applications.

t The TUXCONFIG file, a binary version of the UBBCONFIG file created using the
tmloadcf command. When the tmloadcf command is executed, the
environment variable TUXCONFIG must be set to the name and directory location
of the TUXCONFIG file.

For information about the UBBCONFIG file and the tmloadcf command, see
Administration Guide.
Guide to the University Sample Applications 3-7

3 THE BASIC SAMPLE APPLICATION

:

Building the Basic Sample Application

Perform the following steps to build the Basic sample application:

1. Copy the files for the Basic sample application into a work directory.

2. Change the protection on the files for the Basic sample application.

3. Set the environment variables.

4. Initialize the University database.

5. Load the UBBCONFIG file.

6. Build the client and server sample applications.

The following sections describe these steps.

Note: Before you can build or run the Basic sample application, you need to perform
the steps in Chapter 2, “Setting Up Your Environment.”

Copying the Files for the Basic Sample Application into a
Work Directory

The files for the Basic sample application are located in the following directories

Windows NT

drive:\WLEdir\samples\corba\university\basic

UNIX

/usr/WLEdir/samples/corba/university/basic

In addition, you need to copy the utils directory into your work directory. The utils
directory contains files that set up logging, tracing, and access to the University
database.

Table 3-1 lists and describes the files you will use to create the Basic sample
application.
3-8 Guide to the University Sample Applications

BUILDING THE BASIC SAMPLE APPLICATION
Table 3-1 Files Included in the Basic Sample Application

File Description

univb.idl The OMG IDL that declares the
CourseSynopsisEnumerator, Registrar, and
RegistrarFactory interfaces

univbs.cpp The C++ source code for the University server application
in the Basic sample application

univb_i.h
univb_i.cpp

The C++ source code for method implementations of the
CourseSynopsisEnumerator, Registrar, and
RegistrarFactory interfaces

univbc.cpp The C++ source code for the CORBA C++ client
application in the Basic sample application

frmBrowser.frm
frmBrowser.frx

The Visual Basic source code for the ActiveX client
application in the Basic sample application

modPublicDeclarations.
bas

A Visual Basic file that contains the declarations for
variables used in the sample applications

frmTracing.frm
frmTracing.frx

The files that provide tracing capabilities to the ActiveX
client application

University.vbp The Visual Basic project file for the ActiveX client
application in the Basic sample application

University.vbw The Visual Basic workspace file for the ActiveX client
application in the Basic sample application

UnivBApplet.java The Java source code for the CORBA Java client
application in the Basic sample application

univb_utils.h
univb_utils.cpp

The files that define database access functions for the
CORBA C++ client application

univb.icf The Implementation Configuration File (ICF) for the
Basic sample application

setenvb.sh A UNIX script that sets the environment variables needed
to build and run the Basic sample application
Guide to the University Sample Applications 3-9

3 THE BASIC SAMPLE APPLICATION
setenvb.cmd An MS-DOS command procedure that sets the
environment variables needed to build and run the Basic
sample application

ubb_b.mk The configuration file for the UNIX operating system
platform

ubb_b.nt The configuration file for the Windows NT operating
system platform

makefileb.mk The makefile for the Basic sample application on the
UNIX operating system platform

makefileb.nt The makefile for the Basic sample application on the
Windows NT operating system platform

log.cpp, log.h,
log_client.cpp, and
log_server.cpp

The client and server applications that provide logging
and tracing functions for the sample applications. These
files are located in the \utils directory.

oradbconn.cpp and
oranoconn.cpp

The files that provide access to an Oracle SQL database
instance. These files are located in the \utils directory.

samplesdb.cpp and
samplesdb.h

The files that provide print functions for the database
exceptions in the sample applications. These files are
located in the \utils directory.

unique_id.cpp and
unique_id.h

C++ Unique ID class routines for the sample applications.
These files are located in the \utils directory.

samplesdbsql.h and
samplesdbsql.pc

C++ class methods that implement access to the SQL
database. These files are located in the \utils directory.

university.sql The SQL for the University database. This file is located
in the \utils directory.

Table 3-1 Files Included in the Basic Sample Application

File Description
3-10 Guide to the University Sample Applications

BUILDING THE BASIC SAMPLE APPLICATION
Changing the Protection on the File for the Basic Sample
Application

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit the files or build the files in the Basic sample
application, you need to change the protection of the files you copied into your work
directory, as follows:

Windows NT

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>chmod u+rw /workdirectory/*.*

Setting the Environment Variables

Use the following command to set the environment variables used to build the client
and server applications in the Basic sample application:

Windows NT

prompt>setenvb

UNIX

prompt>/bin/ksh

prompt>. ./setenvb.sh

Initializing the University Database

Use the following command to initialize the University database used with the Basic
sample application:

Windows NT

prompt>nmake -f makefileb.nt initdb
Guide to the University Sample Applications 3-11

3 THE BASIC SAMPLE APPLICATION
UNIX

prompt>make -f makefileb.mk initdb

Loading the UBBCONFIG File

Use the following command to load the UBBCONFIG file:

Windows NT

prompt>tmloadcf -y ubb_b.nt

UNIX

prompt>tmloadcf -y ubb_b.mk

Compiling the Basic Sample Application

During the development process, you would use the buildobjclient and
buildobjserver commands to build the client and server applications. However, for
the Basic sample application, this step has been done for you.

The directory for the Basic sample application contains a makefile that builds the
client and server sample applications.

Use the following commands to build the CORBA C++ client and server applications
in the Basic sample application:

Windows NT

prompt>nmake -f makefileb.nt

UNIX

prompt>make -f makefileb.mk

To build the CORBA Java client application:

Windows NT

prompt>nmake -f makefileb.nt javaclient
3-12 Guide to the University Sample Applications

RUNNING THE BASIC SAMPLE APPLICATION

ing

UNIX

prompt>make -f makefileb.mk javaclient

For information about building and using the ActiveX client application, see “Start
the ActiveX Client Application.”

For more information about the buildobjclient and buildobjserver commands,
see the C++ Programming Reference.

Running the Basic Sample Application

Perform the following steps to run the Basic sample application:

1. Start the University server application.

2. Start one or more of the client applications.

Starting the Server Application

Start the system and sample application server applications in the Basic sample
application by entering the following command:

prompt>tmboot -y

This command starts the following server processes:

t TMSYSEVT

The BEA TUXEDO system event broker.

t TMFFNAME

The transaction management services, including the NameManager and the
FactoryFinder services.

t TMIFSRVR

The Interface Repository server process. This server process is used only by
ActiveX client applications.
Guide to the University Sample Applications 3-13

3 THE BASIC SAMPLE APPLICATION
t univb_server

The University server process.

t ISL

The IIOP Listener/Handler process.

Before using another sample application, enter the following command to stop the
system and sample application server processes:

prompt>tmshutdown

Starting the CORBA C++ Client Application

Start the CORBA C++ client application in the Basic sample application by entering
the following command:

prompt>univb_client

Starting the CORBA Java Client Application

Before you can start the CORBA Java client application, you need to change the values
of the Port and Host parameters in UnivBApplet.html to match the host name and
port number specified in the ISL parameter in the UBBCONFIG file. For example:

<param name=port value=2500>
<param name=host value=BEANIE>

Start the CORBA Java client application in the Basic sample application by entering
the following command:

prompt>appletviewer UnivBApplet.html

Starting the ActiveX Client Application

Note: For the University sample applications, the task of loading the OMG IDL for
the CORBA interfaces into the Interface Repository is automated by the
makefile.
3-14 Guide to the University Sample Applications

RUNNING THE BASIC SAMPLE APPLICATION
Before you can start the ActiveX client application, you must use the Application
Builder to create ActiveX bindings for the CORBA interfaces.

To create an ActiveX binding for a CORBA interface:

1. Click the BEA Application Builder icon in the WLE program group.

The Domain logon window appears.

2. In the Domain Logon window, enter the host name and port number that you
specified in the ISL parameter in the UBBCONFIG file. You must match exactly
the capitalization used in the UBBCONFIG file. For example: //BEANIE:2500.

The Application Builder logon window appears.

3. Highlight the UniversityB folder in the Services window and drag it to the
Workstation Views window, or copy the UniversityB folder from the Services
window and paste it into the Workstation Views window.

A confirmation window appears.

4. Click Create to create the ActiveX bindings for the CORBA interfaces in the
Basic sample application.

The Application Builder creates the following:

t A binding for the CORBA interface. The binding is named
DImodulename_interfacename. For example, the binding for the
Registrar interface is named DIUniversityB_Registrar.

t A type library. By default, the type library is placed in
\WLEdir\TypeLibraries.

The type library file is named DImodulename_interfacename.tlb.

t A Windows system registry entry, including unique Program IDs for each
object type, for the CORBA interface.

Perform the following steps to open the ActiveX client application:

1. Open the University project in Visual Basic.

2. Run the University project.

3. From the Run menu, click Start.

A logon window appears.
Guide to the University Sample Applications 3-15

3 THE BASIC SAMPLE APPLICATION
4. In the Logon window, enter the host name and port number that you specified in
the ISL parameter in the UBBCONFIG file. You must match exactly the
capitalization used in the UBBCONFIG file.

Using the Client Applications in the Basic
Sample Application

The following sections briefly explain how to use the client applications that are
included in the Basic sample application.

The CORBA C++ Client Application

After starting the CORBA C++ client application, a menu with the following options
appears:

<F> Find courses

<A> List all courses

<D> Display course details

<E> Exit

Perform the following steps to find courses the match a particular curriculum subject:

1. At the Options prompt, enter F.

2. Enter a text string at the Enter search string: prompt. For example,
computer. You can enter any combination of uppercase and lowercase letters.

A list of all the courses that match that search string appears.

Perform the following steps to list all the courses in the database:

1. At the Options prompt, enter A.

A list of ten courses appears.
3-16 Guide to the University Sample Applications

USING THE CLIENT APPLICATIONS IN THE BASIC SAMPLE APPLICATION
2. Enter y to continue viewing lists of ten courses or n to return to the Options
menu.

Perform the following steps to display the details of a particular course:

1. At the Options prompt, enter D.

2. Enter a course number followed by -1 at the Course Number prompt. For
example:

100011
100039
-1

A summary of that course appears.

To exit the C++ CORBA client application, enter E at the Options prompt.

The CORBA Java Client Application

Perform the following steps to find courses that match a particular curriculum subject:

1. In the text box under the search string? prompt, enter a text string. You can
enter the title of a course, the name of a professor, or the description of a course.
For example, computer.

2. Click the Show button.

A list of all the courses that match that search string appears.

Perform the following steps to list all the courses in the database:

1. Place your cursor in the Course Name Search String text box.

2. Press Enter.

A list of all the courses in the course database appears.

Perform the following steps to display the details of a particular course:

1. Select a course in the Course Number/Course Name window.

2. Click the Details button.

A summary of details for the selected course appears.
Guide to the University Sample Applications 3-17

3 THE BASIC SAMPLE APPLICATION
To exit the CORBA Java client application, choose Quit from the Applet menu.

The ActiveX Client Application

When you log on to the ActiveX client application, the Course Browser window
appears. Use the Course Browser window to find courses available at the university.

Perform the following steps to find courses that match a particular curriculum subject:

1. In text box next to the Find Courses button, enter a text string or use the pulldown
menu to choose a curriculum subject. For example, computer.

2. Click the Find Courses button.

A list of all the courses that match that search string appears.

Perform the following steps to display the details of a particular course:

1. Select a course in the window next to the Get Details button.

2. Click the Get Details button or double click the course name.

A summary of details for the selected course appears.

3. To enter the course into the schedule, double click the course name.

To exit the ActiveX client application, choose Exit from the File menu.
3-18 Guide to the University Sample Applications

CHAPTER
4 The Security Sample
Application

The chapter discusses the following topics:

t How the Security sample application works

t The development process for the Security sample application

t Building the Security sample application

t Compiling the Security sample application

t Running the Security sample application

t Using the client applications in the Security sample application

Refer to Readme.txt in the \security directory for troubleshooting information and
the latest information about using the Security sample application.

How the Security Sample Application Works

The Security sample application enhances the Basic sample application by adding
application-level security to the Weblogic Enterprise (WLE) application.
Application-level security requires each student to have an ID and a password.
Therefore, the concept of a Student is added to the Security sample application.

The following functionality is added to the Basic sample application:
Guide to the University Sample Applications 4-1

4 THE SECURITY SAMPLE APPLICATION
t The client applications add a logon operation. This operation uses a
SecurityCurrent environmental object to invoke operations on the
PrincipalAuthenticator object, which is part of the process of logging on to
access the domain.

t The University server application implements an additional operation,
get_student_details(), on the Registrar object to return information
about a student. After a proper CORBA logon is complete, the
get_student_details() operation accesses the student information in the
database to obtain the student information needed by the client logon operation.

t The University database contains student information in addition to course
information.

Figure 4-1 illustrates how the Security sample application works.

Figure 4-1 The Security Sample Application

CORBA Java Client
Application

CORBA C++ Client
Application

ActiveX Client
Application

University
Server Application

University
Database

Browse Courses

Get Course Details

CORBA

Get Student DetailsLogon

Security Required
4-2 Guide to the University Sample Applications

THE DEVELOPMENT PROCESS FOR THE SECURITY SAMPLE APPLICATION

t

ent

E

on

or
The Development Process for the Security
Sample Application

This section describes the development process required when adding security to WLE
client and server applications. These steps are in addition to the development steps
outlined in Chapter 3, “The Basic Sample Application.”

Note: The steps in this section have been done for you and are included in the
Security sample application.

OMG IDL

During the development process, you would define the StudentDetails struct and
the get_student_details()operation in Object Management Group (OMG)
Interface Definition Language (IDL).

The Client Application

During the development process, you would add the following code to your clien
application:

t The Bootstrap environmental object to obtain a reference to the SecurityCurr
environmental object in the specified WLE domain

t The Tobj::PrincipalAuthenticator operation of the SecurityCurrent
environmental object to return the type of authentication expected by the WL
domain

t Operations to log on to the WLE domain using the required security informati

For the Security sample application, this code has already been added for you.F
information about adding security to client applications, see Getting Started.
Guide to the University Sample Applications 4-3

4 THE SECURITY SAMPLE APPLICATION
The Server Application

During the development process, you would write the method implementation for the
get_student_details()operation. For information about writing method
implementations, see Creating C++ Server Applications.

The UBBCONFIG File

In the WLE software, security levels are defined for the configuration by the system
administrator. The system administrator defines the security for the WLE domain by
setting the SECURITY parameter RESOURSES section of the UBBCONFIG file to the
desired security level. In the Security sample application, the SECURITY parameter is
set to APP_PW for application-level security. For information about adding security to
a WLE domain, see Administration Guide.

The ICF File

No changes to the Implementation Configuration File (ICF) are required.

Building the Security Sample Application

Perform the following steps to build the Security sample application:

1. Copy the files for the Security sample application.

2. Change the protection on the files for the Security sample application.

3. Set the environment variables.

4. Initialize the University database.

5. Load the UBBCONFIG file.

6. Build the client and server sample applications.
4-4 Guide to the University Sample Applications

BUILDING THE SECURITY SAMPLE APPLICATION

es:

.

The following sections describe these steps.

Note: Before you can build or run the Security sample application, you need to
perform the steps in Chapter 2, “Setting Up Your Environment.”

Copying the Files for the Security Sample Application
into a Work Directory

The files for the Security sample application are located in the following directori

Windows NT

drive:\WLEdir\samples\corba\university\security

UNIX

/usr/WLEdir/samples/corba/university/security

In addition, you need to copy the utils directory into your work directory. The utils
directory contains files that set up logging, tracing, and access to the University
database.

You will use the files listed in Table 4-1 to create the Security sample application

Table 4-1 Files Included in the Security Sample Application

File Description

univs.idl The OMG IDL that declares the
CourseSynopsisEnumerator, Registrar,
and RegistrarFactory interfaces

univss.cpp The C++ source code for the University server
application in the Security sample application

univs_i.h
univs_i.cpp

The C++ source code for method implementations of
the CourseSynopsisEnumerator,
Registrar, and RegistrarFactory interfaces

univsc.cpp The C++ source code for the CORBA C++ client
application in the Security sample application
Guide to the University Sample Applications 4-5

4 THE SECURITY SAMPLE APPLICATION
frmBrowser.frm The Visual Basic source code for the ActiveX client
application in the Security sample application

frmOpen.frm The Visual Basic source code for the ActiveX client
application in the Security sample application

University.vbp The Visual Basic project file for the ActiveX client
application in the Security sample application

University.vbw The Visual Basic workspace file for the ActiveX
client application in the Security sample application

modPublicDeclarations.
bas

A Visual Basic file that contains the declarations for
variables used in the sample applications

frmTracing.frm
frmTracing.frx

The files that provide tracing capabilities to the
ActiveX client application

frmLogon.frm The Visual Basic file that performs the security
logon for the ActiveX client application

UnivSApplet.java The Java source code for the CORBA Java client
application in the Security sample application

univs_utils.h
univs_utils.cpp

The files that define database access functions for the
CORBA C++ client application

univs.icf The Implementation Configuration File (ICF) for the
Security sample application

setenvs.sh A UNIX script that sets the environment variables
needed to build and run the Security sample
application

setenvs.cmd An MS-DOS command procedure that sets the
environment variables needed to build and run the
Security sample application

ubb_s.mk The UBBCONFIG file for the UNIX operating system

ubb_s.nt The UBBCONFIG file for the Windows NT operating
system

Table 4-1 Files Included in the Security Sample Application

File Description
4-6 Guide to the University Sample Applications

BUILDING THE SECURITY SAMPLE APPLICATION
Changing the Protection on the Files for the Security
Sample Application

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit the files or build the files in the Security sample
application, you need to change the protection of the files you copied into your work
directory, as follows:

makefiles.mk The makefile for the Security sample application
on the UNIX operating system

makefiles.nt The makefile for the Security sample application
on the Windows NT operating system

log.cpp, log.h,
log_client.cpp, and
log_server.cpp

The client and server applications that provide
logging and tracing functions for the sample
applications. These files are located in the \utils
directory.

oradbconn.cpp and
oranoconn.cpp

The files that provide access to an Oracle SQL
database instance. These files are located in the
\utils directory.

samplesdb.cpp and
samplesdb.h

The files that provide print functions for the database
exceptions in the sample applications.These files are
located in the \utils directory.

unique_id.cpp and
unique_id.h

C++ Unique ID class routines for the sample
applications.These files are located in the \utils
directory.

samplesdbsql.h and
samplesdbsql.pc

C++ class methods that implement access to the SQL
database. These files are located in the \utils
directory.

university.sql The SQL for the University database. This file is
located in the \utils directory.

Table 4-1 Files Included in the Security Sample Application

File Description
Guide to the University Sample Applications 4-7

4 THE SECURITY SAMPLE APPLICATION
Windows NT

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>chmod u+rw /workdirectory/*.*

Setting the Environment Variables

Use the following command to set the environment variables used to build the client
and server applications in the Security sample applications:

Windows NT

prompt>setenvs

UNIX

prompt>/bin/ksh

prompt>. ./setenvs.sh

Initializing the University Database

Use the following command to initialize the University database used with the Security
sample application:

Windows NT

prompt>nmake -f makefiles.nt initdb

UNIX

prompt>make -f makefiles.mk initdb

Loading the UBBCONFIG File

Use the following command to load the UBBCONFIG file:
4-8 Guide to the University Sample Applications

COMPILING THE SECURITY SAMPLE APPLICATION
Windows NT

prompt>tmloadcf -y ubb_s.nt

UNIX

prompt>tmloadcf -y ubb_s.mk

The build process for the UBBCONFIG file prompts you for an application password.
This password will be used to log on to the client applications. Enter the password and
press Enter. You are then prompted to verify the password by entering it again.

Compiling the Security Sample Application

During the development process, you would use the buildobjclient and
buildobjserver commands to build the client and server applications. However, for
the Security sample application, this step has been done for you.

The directory for the Security sample application contains a makefile that builds the
client and server sample applications.

Use the following commands to build the CORBA C++ client and server applications
in the Security sample application:

Windows NT

prompt>nmake -f makefiles.nt

UNIX

prompt>make -f makefiles.mk

To build the CORBA Java client application:

Windows NT

prompt>nmake -f makefiles.nt javaclient

UNIX

prompt>make -f makefiles.mk javaclient
Guide to the University Sample Applications 4-9

4 THE SECURITY SAMPLE APPLICATION

le

For information about starting the ActiveX client application, see “Starting the
ActiveX Client Application.”

For more information about the buildobjclient and buildobjserver commands,
see the C++ Programming Reference.

Running the Security Sample Application

Perform the following steps to run the Security sample application:

1. Start the University server application.

2. Start one or more of the client applications.

These steps are explained in the following sections.

Starting the University Server Application

Start the system and sample application server applications in the Security samp
application by entering the following command:

prompt>tmboot -y

This command starts the following server processes:

t TMSYSEVT

The BEA TUXEDO system event broker.

t TMFFNAME

The transaction management services, including the NameManager and the
FactoryFinder services.

t TMIFSRVR

The Interface Repository server process. This server process is used only by
ActiveX client applications.

t univs_server
4-10 Guide to the University Sample Applications

RUNNING THE SECURITY SAMPLE APPLICATION
The University server process.

t ISL

The IIOP Listener/Handler process.

Before using another sample application, enter the following command to stop the
system and sample application server processes:

prompt>tmshutdown

Starting the CORBA C++ Client Application

Start the CORBA C++ client application in the Security sample application by
performing the following steps:

1. At the MS-DOS prompt, enter the following command:

prompt>univs_client

2. At the Enter student id: prompt, enter any number between 100001 and
100010.

3. Press Enter.

4. At the Enter domain password: prompt, enter the password you defined when
you loaded the UBBCONFIG file.

5. Press Enter.

Starting the CORBA Java Client Application

Before you can start the CORBA Java client application, you need to change the values
of the Port and Host parameters in UnivSApplet.html to match the host name and
port number specified in the ISL parameter in the UBBCONFIG file. For example:

<param name=port value=2500>
<param name=host value=BEANIE>

Start the CORBA Java client application in the Security sample application by
performing the following steps:
Guide to the University Sample Applications 4-11

4 THE SECURITY SAMPLE APPLICATION
1. At the MS-DOS prompt, enter the following command:

prompt>appletviewer UnivSApplet.html

A logon window appears.

2. Enter a number between 100001 and 100010 in the student ID field.

3. Enter the password you defined when you loaded the UBBCONFIG file in the
Domain Password field.

4. Click the Logon button.

5. Enter a search string to find a course.

Starting the ActiveX Client Application

Note: For the University sample applications, the task of loading the OMG IDL for
the CORBA interfaces into the Interface Repository is automated by the
makefile.

Before you can start the ActiveX client application, you must use the Application
Builder to create ActiveX bindings for the CORBA interfaces.

To create an ActiveX binding for a CORBA interface:

1. Click the BEA Application Builder icon in the WLE program group.

The IIOP Listener window appears.

2. In the IIOP Listener window, enter the host name and port number that you
specified in the ISL parameter in the UBBCONFIG file . You must match exactly
the capitalization used in the UBBCONFIG file.

The Logon window appears.

3. In the Logon window, enter a student ID between 100001 and 100010 for the
user name and the password you defined when you loaded the UBBCONFIG file.

The Application Builder window appears. All the CORBA interfaces loaded in
the Interface Repository appear in the Services window of the Application
Builder.
4-12 Guide to the University Sample Applications

RUNNING THE SECURITY SAMPLE APPLICATION
4. Highlight the UniversityS folder in the Services window and drag it to the
Workstation Views window, or copy the UniversityS folder from the Services
window and paste it into the Workstation Views window.

A confirmation window appears.

5. Click Create to create ActiveX bindings for the CORBA interfaces in the
Security sample application.

The Application Builder creates the following:

t A binding for the CORBA interface. The binding is named
DImodulename_interfacename. For example, the binding for the
Registrar interface is named DIUniversityS_Registrar.

t A type library. By default, the type library is placed in
\WLEdir\TypeLibraries.

The type library file is named DImodulename_interfacename.tlb.

t A Windows system registry entry, including unique Program IDs for each
object type, for the CORBA interface.

Perform the following steps to run the ActiveX client application:

1. Open the University.vbw file in Visual Basic.

2. From the Run menu, click Start.

The IIOP Listener window appears.

3. In the IIOP Listener window, enter the host name and port number that you
specified in the ISL parameter in the UBBCONFIG file. You must match exactly
the capitalization used in the UBBCONFIG file.

The Logon window appears.

4. In the Logon window, enter a student ID between 100001 and 100010 for the
user name and the password you defined when you loaded the UBBCONFIG file.
Guide to the University Sample Applications 4-13

4 THE SECURITY SAMPLE APPLICATION
Using the Client Applications in the Security
Sample Application

The following sections briefly explain how to use the client applications in the Security
sample application.

The CORBA C++ Client Application

The CORBA C++ client application in the Security sample application has the
following additional option:

<L> List your registered courses

This option displays the list of courses registered under the student ID that was used to
log on to the CORBA C++ client application.

The CORBA Java Client Application

No additional functionality is added to the CORBA Java client application in the
Security sample application.

The ActiveX Client Application

No additional functionality is added to the ActiveX client application in the Security
sample application.
4-14 Guide to the University Sample Applications

CHAPTER
5 The Transactions
Sample Application

This chapter discusses the following topics:

t How the Transactions sample application works

t The development process for the Transactions sample application

t Building the Transactions sample application

t Compiling the Transactions sample application

t Running the Transactions sample application

t Using the client applications in the Transactions sample application

Refer to Readme.txt in the \transactions directory for troubleshooting
information and the latest information about using the Transactions sample
application.

How the Transactions Sample Application
Works

In the Transactions sample application, students can register for classes. The operation
of registering for courses is executed within the scope of a transaction. The
Transactions sample application works in the following way:
Guide to the University Sample Applications 5-1

5 THE TRANSACTIONS SAMPLE APPLICATION
1. Students submit a list of courses for which they want to be registered.

2. For each course in the list, the University server application checks whether:

t The course is in the database

t The student is already registered for a course

t The student exceeds the maximum number of credits the student can take

3. One of the following occurs:

t If the course meets all the criteria, the University server application registers
the student for the course.

t If the course is not in the database or if the student is already registered for
the course, the University server application adds the course to a list of
registered courses for which the student could not be registered. After
processing all the registration requests, the server application returns the list
of courses for which registration failed. The client application prompts the
student to either commit the transaction (thereby registering the student for
the courses for which registration request succeeded) or to roll back the
transaction (thus not registering the student for any of the courses).

t If the student exceeds the maximum number of credits the student can take,
the University server application returns a TooManyCredits user exception
to the client application. The client application provides a brief message
explaining that the request was rejected. The client application then rolls
back the transaction.

Figure 5-1 illustrates how the Transactions sample application works.
5-2 Guide to the University Sample Applications

THE DEVELOPMENT PROCESS FOR THE TRANSACTIONS SAMPLE APPLICATION
Figure 5-1 The Transactions Sample Application

The Development Process for the
Transactions Sample Application

This section describes the steps used to add transactions to the Transactions sample
application. These steps are in addition to the development process outlined in
Chapter 3, “The Basic Sample Application.”

Note: The steps in this section have been done for you and are included in the
Transactions sample application.

CORBA Java Client
Application

CORBA C++ Client
Application

ActiveX Client
Application

Browse Courses

Get Course Details

University
Server Application

University
Database

Register for Courses
T

T Part of a Transaction

Get Student Details

CORBA
T

Guide to the University Sample Applications 5-3

5 THE TRANSACTIONS SAMPLE APPLICATION
OMG IDL

During the development process, you would define in Object Management Group
(OMG) Interface Definition Language (IDL) the register_for_courses()
operation for the Registrar. The register_for_courses() operation has a
parameter, NotRegisteredList, which returns to the client application the list of
courses for which registration failed. If the value of NotRegisteredList is empty,
the client application commits the transaction.

You also need to define the TooManyCredits user exception.

The Client Application

During the development process, you would add the following to your client
application:

t The Bootstrap environmental object to obtain a reference to the
TransactionCurrent environmental object in the specified Weblogic Enterprise
(WLE) domain

t The operations of the TransactionCurrent environmental object to include a
CORBA object in a transaction

t A call to the register_for_courses() operation so that students can register
for courses.

For information about using Transactions in client applications, see Getting Started.

The University Server Application

During the development process, you would add the following to the University server
application:

t Invocations to the TP::open_xa_rm() and TP::close_xa_rm() operations in
the Server::initialize() and Server::release() operations of the
Server object

t A method implementation for the register_for_courses() operation
5-4 Guide to the University Sample Applications

THE DEVELOPMENT PROCESS FOR THE TRANSACTIONS SAMPLE APPLICATION
For information about these tasks, see Creating C++ Server Applications.

The UBBCONFIG File

During the development process, you need the following in the UBBCONFIG file:

t A server group that includes both the University server application and the
server application that manages the database. This server group needs to be
specified as transactional.

t The OPENINFO parameter defined according to the XA parameter for the Oracle
database. The XA parameter for the Oracle database is described in the
"Developing and Installing Applications that Use the XA Libraries" section of
the Oracle7 Server Distributed Systems manual.

Note: If you use a database other than Oracle, refer to the product documentation for
information about defining the XA parameter.

t The pathname to the transaction log (TLOG) in the TLOGDEVICE parameter.

For information about the transaction log and defining parameters in the UBBCONFIG
file, see Administration Guide.

The ICF File

During the development process, change the Transaction policy of the Registrar
object from optional to always. The always Transaction policy indicates that this
object must be part of a transaction. For information about defining Transaction
policies for CORBA objects, see Creating C++ Server Applications.
Guide to the University Sample Applications 5-5

5 THE TRANSACTIONS SAMPLE APPLICATION
Building the Transactions Sample
Application

Perform the following steps to build the Transactions sample application:

1. Copy the files for the Transactions sample application.

2. Change the protection on the files for the Transactions sample application files.

3. Set the environment variables.

4. Initialize the University database.

5. Load the UBBCONFIG file.

6. Create a transaction log.

7. Build the client and server sample applications.

The following sections describe these steps.

Note: Before you can build or run the Transactions sample application, you need to
perform the steps in Chapter 2, “Setting Up Your Environment.”

Copying the Files for the Transactions Sample
Application into a Work Directory

The files for the Transactions sample application are located in the following
directories:

Windows NT

drive:\WLEdir\samples\corba\university\transaction

UNIX

/usr/WLEdir/samples/corba/university/transaction
5-6 Guide to the University Sample Applications

BUILDING THE TRANSACTIONS SAMPLE APPLICATION
In addition, you need to copy the utils directory into your work directory. The utils
directory contains files that set up logging, tracing, and access to the University
database.

You will use the files listed in Table 5-1 to create the Transactions sample application.

Table 5-1 Files Included in the Transactions sample application

File Description

univt.idl The OMG IDL that declares the
CourseSynopsisEnumerator, Registrar,
and RegistrarFactory interfaces

univts.cpp The C++ source code for the University server
application in the Transactions sample application

univt_i.h
univt_i.cpp

The C++ source code for method implementations of
the CourseSynopsisEnumerator,
Registrar, and RegistrarFactory interfaces

univtc.cpp The C++ source code for the CORBA C++ client
application in the Transactions sample application

frmBrowser.frm The Visual Basic source code for the ActiveX client
application in the Transactions sample application

frmOpen.frm The Visual Basic source code for the ActiveX client
application in the Transactions sample application

University.vbp The Visual Basic project file for the ActiveX client
application in the Transactions sample application

University.vbw The Visual Basic workspace file for the ActiveX
client application in the Transactions sample
application

modPublicDeclarations.
bas

A Visual Basic file that contains the declarations for
variables used in the sample applications

frmTracing.frm
frmTracing.frx

The files that provide tracing capabilities to the
ActiveX client application

frmLogon.frm The Visual Basic file that performs the security
logon for the ActiveX client application
Guide to the University Sample Applications 5-7

5 THE TRANSACTIONS SAMPLE APPLICATION
UnivTApplet.java The Java source code for the CORBA Java client
application in the Transactions sample application

univt_utils.h
univt_utils.cpp

The files that define database access functions for the
CORBA C++ client application

univt.icf The ICF file for the Transactions sample application

setenvt.sh A UNIX script that sets the environment variables
needed to build and run the Transactions sample
application

setenvt.cmd An MS-DOS command procedure that sets the
environment variables needed to build and run the
Transactions sample application

ubb_t.mk The UBBCONFIG file for the UNIX operating system

ubb_t.nt The UBBCONFIG file for the Windows NT operating
system

makefilet.mk The makefile for the Transactions sample
application on the UNIX operating system

makefilet.nt The makefile for the Transactions sample
application on the Windows NT operating system

log.cpp, log.h,
log_client.cpp, and
log_server.cpp

The client and server applications that provide
logging and tracing functions for the sample
applications. These files are located in \utils
directory.

oradbconn.cpp and
oranoconn.cpp

The files that provide access to an Oracle SQL
database instance. These files are located in \utils
directory.

samplesdb.cpp and
samplesdb.h

The files that provide print functions for the database
exceptions in the sample applications. These files are
located in \utils directory.

unique_id.cpp and
unique_id.h

C++ Unique ID class routines for the sample
applications. These files are located in \utils
directory.

Table 5-1 Files Included in the Transactions sample application

File Description
5-8 Guide to the University Sample Applications

BUILDING THE TRANSACTIONS SAMPLE APPLICATION
Changing the Protection on the Files for the Transactions
Sample Application

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit the files or build the files in the Transactions sample
application, you need to change the protection of the files you copied into your work
directory, as follows:

Windows NT

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>chmod u+rw /workdirectory/*.*

Setting the Environment Variables

Use the following command to set the environment variables used to build the client
and server applications in the Transactions sample application:

Windows NT

prompt>setenvt

UNIX

prompt>/bin/ksh

prompt>. ./setenvt.sh

samplesdbsql.h and
samplesdbsql.pc

C++ class methods that implement access to the SQL
database. These files are located in \utils
directory.

university.sql The SQL for the University database. This file is
located in \utils directory.

Table 5-1 Files Included in the Transactions sample application

File Description
Guide to the University Sample Applications 5-9

5 THE TRANSACTIONS SAMPLE APPLICATION
Initializing the University Database

Use the following command to initialize the University database used with the
Transactions sample application:

Windows NT

prompt>nmake -f makefilet.nt initdb

UNIX

prompt>make -f makefilet.mk initdb

Loading the UBBCONFIG File

Use the following command to load the UBBCONFIG file:

Windows NT

prompt>tmloadcf -y ubb_t.nt

UNIX

prompt>tmloadcf -y ubb_t.mk

The build process for the UBBCONFIG file prompts you for an application password.
This password will be used to log on to the client applications. Enter the password and
press Enter. You are then prompted to verify the password by entering it again.

Creating a Transaction Log

The transaction log records the transaction activities in a WLE application. During the
development process, you need to define the location of the transaction log (specified
by the TLOGDEVICE parameter) in the UBBCONFIG file. For the Transactions sample
application, the transaction log is placed in your work directory.

You need to perform the following steps to open the transaction log for the
Transactions sample application:

1. Enter the following command to start the Interactive Administrative Interface:
5-10 Guide to the University Sample Applications

COMPILING THE TRANSACTIONS SAMPLE APPLICATION
tmadmin

2. Enter the following command to create a transaction log:

crdl -b blocks -z directorypath
clog -m SITE1

where

blocks specifies the number of blocks to be allocated for the transaction log and
directorypath indicates the location of the transaction log. The
directorypath option needs to match the location specified in the
TLOGDEVICE parameter in the UBBCONFIG file. The following is an example of
the command on Windows NT:

crdl -b 500 -z c:\mysamples\university\Transaction\TLOG

3. Enter q to exit the Interactive Administrative Interface.

Compiling the Transactions Sample
Application

During the development process, you would use the buildobjclient and
buildobjserver commands to build the client and server applications. You would
also build a database-specific transaction manager to coordinate the transactional
events in the client/server application. However, for the Transactions sample
application, this step has been done for you. The directory for the Transactions sample
application contains a makefile that builds the client and server sample applications
and creates a transaction manager called TMS_ORA.

Note: In the makefile, the following parameter is hard coded to build a transaction
manager for the Oracle database:

RM=Oracle_XA

If you use a database other than Oracle, you need to change this parameter.
Guide to the University Sample Applications 5-11

5 THE TRANSACTIONS SAMPLE APPLICATION
Use the following commands to build the CORBA C++ client and server applications
in the Transactions sample application:

Windows NT

prompt>nmake -f makefilet.nt

UNIX

prompt>make -f makefilet.mk

To build the CORBA Java client application:

Windows NT

prompt>nmake -f makefilet.nt javaclient

UNIX

prompt>make -f makefilet.mk javaclient

For information about starting the ActiveX client application, see “Starting the
ActiveX Client Application.”

For more information about the buildobjclient and buildobjserver commands,
see the C++ Programming Reference.

Running the Transactions Sample
Application

Perform the following steps to run the Transactions sample application:

1. Start the server application.

2. Start one or more of the client applications.

These steps are described in the following sections.
5-12 Guide to the University Sample Applications

RUNNING THE TRANSACTIONS SAMPLE APPLICATION
Starting the Server Application

Start the system and sample application server applications in the Transactions sample
application by entering the following command:

prompt>tmboot -y

This command starts the following server processes:

t TMSYSEVT

The BEA TUXEDO system event broker.

t TMFFNAME

The transaction management services, including the NameManager and the
FactoryFinder services.

t TMIFSRVR

The Interface Repository server process. This server process is used only by
ActiveX client applications.

t univt_server

The University server process.

t ISL

The IIOP Listener/Handler process.

Before using another sample application, enter the following command to stop the
system and sample application server processes:

prompt>tmshutdown

Starting the CORBA C++ Client Application

Start the CORBA C++ client application in the Transactions sample application by
performing the following steps:

1. At the MS-DOS prompt, enter the following command:

prompt>univt_client
Guide to the University Sample Applications 5-13

5 THE TRANSACTIONS SAMPLE APPLICATION
2. At the Enter student id: prompt, enter any number between 100001 and
100010.

3. Press Enter.

4. At the Enter domain password: prompt, enter the password you defined when
you loaded the UBBCONFIG file.

5. Press Enter.

Starting the CORBA Java Client Application

Before you can start the CORBA Java client application, you need to change the value
of the Port and Host parameters in UnivSApplet.html to match the host name and
port number specified in the ISL parameter in the UBBCONFIG file. For example:

<param name=port value=2500>
<param name=host value=BEANIE>

Start the CORBA Java client application in the Transactions sample application by
performing the following steps:

1. At the MS-DOS prompt, enter the following command:

prompt>appletviewer UnivTApplet.html

A logon window appears.

2. Enter a number between 100001 and 100010 in the student ID field.

3. In the Domain Password field, enter the password you defined when you loaded
the UBBCONFIG file.

4. Double click the Logon button.

Starting the ActiveX Client Application

Note: For the University sample applications, the task of loading the OMG IDL for
the CORBA interfaces into the Interface Repository is automated by the
makefile.
5-14 Guide to the University Sample Applications

RUNNING THE TRANSACTIONS SAMPLE APPLICATION
Before you can start the ActiveX client application, you must use the Application
Builder to create ActiveX bindings for the CORBA interfaces.

To create an ActiveX binding for a CORBA interface:

1. Click the BEA Application Builder icon in the WLE program group.

The IIOP Listener window appears.

2. In the IIOP Listener window, enter the host name and port number that you
specified in the ISL parameter in the UBBCONFIG file . You must match exactly
the capitalization used in the UBBCONFIG file.

The Logon window appears.

3. In the Logon window, enter a student ID between 100001 and 100010 for the
user name and the password you defined when you loaded the UBBCONFIG file.

The Application Builder window appears. All the CORBA interfaces loaded in
the Interface Repository appear in the Services window of the Application
Builder.

4. Highlight the UniversityT folder in the Services window and drag it to the
Workstation Views window, or copy the UniversityT folder from the Services
window and paste it into the Workstation Views window.

A confirmation window appears.

5. Click Create to create the ActiveX bindings for the CORBA interfaces in the
Transactions sample application.

The Application Builder creates the following:

t A binding for the CORBA interface. The binding is named
DImodulename_interfacename. For example, the binding for the
Registrar interface is named DIUniversityT_Registrar.

t A type library. By default, the type library is placed in
\WLEdir\TypeLibraries.

The type library file is named DImodulename_interfacename.tlb.

t A Windows system registry entry, including unique Program IDs for each
object type, for the CORBA interface.

Perform the following steps to run the ActiveX client application:

1. Open the University.vbw file in Visual Basic.
Guide to the University Sample Applications 5-15

5 THE TRANSACTIONS SAMPLE APPLICATION
2. From the Run menu, click Start.

The IIOP Listener window appears.

3. In the IIOP Listener window, enter the host name and port number that you
specified in the ISL parameter in the UBBCONFIG file. You must match exactly
the capitalization used in the UBBCONFIG file.

The Logon window appears.

4. In the Logon window, enter a student ID between 100001 and 100010 for the
user name and the password you defined when you loaded the UBBCONFIG file.

Using the Client Applications in the
Transactions sample application

The following sections briefly explain how to use the client applications in the
Transactions sample application.

The CORBA C++ Client Application

The CORBA C++ client application in the Transactions sample application has the
following additional option:

<R> Register for Courses

Perform the following steps to register for a course:

1. At the Options prompt, enter R.

2. At the Course Number prompt, enter a course number followed by -1 . For
example:

100011
100039
-1

3. Press Enter.
5-16 Guide to the University Sample Applications

USING THE CLIENT APPLICATIONS IN THE TRANSACTIONS SAMPLE APPLICATION
4. At the Options prompt, enter L to view a list of courses for which the student ID
is registered.

To exit the C++ CORBA client application, enter E at the Options prompt.

The CORBA Java Client Application

When you log on to the CORBA Java client application, a Student Account Summary
window appears. Use the Student Account Summary window to register for courses.

Perform the following steps to register for a class:

1. Obtain a list of available courses from the Student Account Summary window by
entering a text string in the Search String text box. For example, computer.

2. Click the Search Catalog button.

A list of courses matching the search string appears in the window.

3. Select a course by clicking on its name in the lower portion of the Student
Account Summary window.

If you are already registered for a course, Yes appears in the Registered field on
the Student Account Summary window.

4. To register for the course, click the Register button on the Student Account
Summary window.

To view a list of courses for which the student ID is registered, double click the Show
Registration button.

To exit the CORBA Java client application, click the Logoff button in the Student
Account Summary window, or choose Quit from the Applet menu.

The ActiveX Client Application

When you log on to the ActiveX client application, the Course Browser window
appears. Use the Course Browser window to register for courses.

Perform the following steps to register for a class:
Guide to the University Sample Applications 5-17

5 THE TRANSACTIONS SAMPLE APPLICATION

the
e

d.

ered
1. In the text box next to the Find Courses button, enter a text string or use the
pulldown menu to choose a curriculum subject. For example, computer.

2. Click the Find Courses button.

A list of all the courses that match that search string appears.

3. Select a course from the list that appears in the window next to the Get Details
button, or double-click the course name.

The details for the selected course appear.

4. Click the Register for Course button or double click the course to enter the course
into the schedule.

The course appears in the student’s schedule at the bottom of the window. If
student is already registered for the course, it appears in the color green. If th
course conflicts with a previously registered course, it appears in the color re

To remove a course from the schedule, double click the course in the schedule.

To view a list of courses for which the student ID is registered, click the Get Regist
Courses button.

To complete information about a course, click the Get Details button.

To exit the ActiveX client application, choose Exit from the File menu.
5-18 Guide to the University Sample Applications

CHAPTER

dent’s
dated.
6 The Wrapper Sample
Application

The chapter discusses the following topics:

t How the Wrapper sample application works

t The development process for the Wrapper sample application

t Building the Wrapper sample application

t Compiling the Wrapper sample application

t Running the Wrapper sample application

t Using the client applications in the Wrapper sample application

Refer to Readme.txt in the \wrapper directory for troubleshooting information and
the latest information about using the Wrapper sample application.

How the Wrapper Sample Application
Works

In the Wrapper sample application, when a student registers for classes, the stu
account is charged for the classes and the balance of the student’s account is up
In addition, students can get information about their account balances.
Guide to the University Sample Applications 6-1

6 THE WRAPPER SAMPLE APPLICATION
The Wrapper sample application incorporates an additional server application and a
BEA TUXEDO application. The Billing server application contains a Teller object,
which calls the BEA TUXEDO Teller application. The BEA TUXEDO Teller
application performs the following billing operations:

t Debiting a student account

t Crediting a student account

t Obtaining the current balance of a student account

The University database is modified to include account information.

Figure 6-1 illustrates how the Wrapper sample application works.

Figure 6-1 The Wrapper Sample Application

CORBA Java Client
Application

CORBA C++ Client
Application

ActiveX Client
Application

Browse Courses

Get Course Details

University
Server Application

University
Database

Register for Courses

Get Student Details

CORBA

Billing
Server Application

 Teller
 TellerFactory

BEA TUXEDO
Teller application

CURRBALANCE()
DEBIT()
CREDIT()

BEA TUXEDO
6-2 Guide to the University Sample Applications

THE DEVELOPMENT PROCESS FOR THE WRAPPER SAMPLE APPLICATION

ject.
The Development Process for the Wrapper
sample application

This section describes the development process required when wrapping a BEA
TUXEDO application in a Weblogic Enterprise (WLE) application. These steps are in
addition to the development process outlined in Chapter 3, “The Basic Sample
Application.”

Note: The steps in this section have been done for you and are included in the
Wrapper sample application.

OMG IDL

When wrapping a BEA TUXEDO application, you need to define an object that
interoperates with the BEA TUXEDO application and a factory that creates that ob
In the Wrapper sample application, the Teller and TellerFactory objects interact
with the BEA TUXEDO Teller application. During the development process, you
would define the interfaces of the Teller and the TellerFactory objects in Object
Management Group (OMG) Interface Definition Language (IDL), as follows:

You need to add a Balance field to the StudentDetails structure. Client
applications use the Balance field to show the student’s account balance. A user
exception DelinquentAccount is also added.

Object Description Operations

TellerFactory Returns an object reference to the
Teller object

find_teller()

Teller Interoperates with the BEA
TUXEDO Teller application to
perform billing and accounting
operations

get_balance()

credit()

debit()
Guide to the University Sample Applications 6-3

6 THE WRAPPER SAMPLE APPLICATION
The Client Application

During the development process, you would add code to the client application to
handle the user exception Delinquent Account that the register_for_courses()
operation can raise.

The Server Application

During the development process, you would write the following for the Billing server
application:

t Method implementations for the get_balance(), credit(), and debit()
operations for the Teller object. The method implementations need to include
the code that does the following:

t Allocates an FML message buffer

t Fills the FML message buffer with the data you want to send to the BEA
TUXEDO Teller application

t Calls the BEA TUXEDO Teller application

t Extracts information from the FML message buffer returned from the BEA
TUXEDO Teller application

t Returns the information from the FML message buffer to the University
server application

t A method implementation for the find_teller() operation of the
TellerFactory object.

t A Billing server object that creates and registers the TellerFactory object
and calls the open_XA_RM and close_XA_RM functions.

During the development process, you would add the following to the University server
application:

t In the server initialization portion of the code for the University server
application, include the Bootstrap object to get a FactoryFinder object for the
TellerFactory object. The University server application is using the Bootstrap
and FactoryFinder objects like a client application would.
6-4 Guide to the University Sample Applications

THE DEVELOPMENT PROCESS FOR THE WRAPPER SAMPLE APPLICATION
t In the code for the University server application, include a reference to the
TellerFactory object in the constructor of the servant for the Registrar object.
Use the TellerFactory object to create a Teller object.

t In the method implementations for the get_student_details() and
register_for_courses() operations for the Registrar object, invoke the
get_balance() and debit() operations on the Teller object.

For information about writing server applications that wrap BEA TUXEDO
applications, see Creating C++ Server Applications.

The UBBCONFIG File

During the development process, you need to make the following changes to the
UBBCONFIG file:

t Define the following server groups in the GROUPS section of the UBBCONFIG file:

t ORA_GRP, which contains the University server application, the BEA
TUXEDO Teller application, and the server application for the University
database. This server group allows both the University server application and
the BEA TUXEDO Teller application to access the University database.

t APP_GRP, which contains the Billing server application.

t Specify the server applications in the Wrapper sample application in the order in
which they should be booted in the SERVERS section of the UBBCONFIG file.
Start the server applications in the following order:

a. BEA TUXEDO Teller application

b. Billing server application

c. University server application

The ICF File

During the development process, you need to define activation and transaction policies
for the Teller and TellerFactory objects. The Teller and TellerFactory
objects have the following policies:
Guide to the University Sample Applications 6-5

6 THE WRAPPER SAMPLE APPLICATION

ies:
t The Teller object has an activation policy of process and a transaction
policy of optional.

t The TellerFactory object has an activation policy of process and a
transaction policy of ignore.

For information about defining activation and transaction policies for CORBA objects,
see Creating C++ Server Applications.

Building the Wrapper Sample Application

Perform the following steps to build the Wrapper sample application:

1. Copy the files for the Wrapper sample application.

2. Change the protection on the files for the Wrapper sample application.

3. Set the environment variables.

4. Initialize the University database.

5. Load the UBBCONFIG file.

6. Create a transaction log.

7. Build the client and server sample applications.

The following sections describe these steps.

Note: Before you can build or run the Wrapper sample application, you need to
perform the steps in Chapter 2, “Setting Up Your Environment.”

Copying the Files for the Wrapper Sample Application
into a Work Directory

The files for the Wrapper sample application are located in the following director

Windows NT
6-6 Guide to the University Sample Applications

BUILDING THE WRAPPER SAMPLE APPLICATION
drive:\WLEdir\samples\corba\university\wrapper

UNIX

/usr/WLEdir/samples/corba/university/wrapper

In addition, you need to copy the utils directory into your work directory. The utils
directory contains files that set up logging, tracing, and access to the University
database.

You will use the files listed in Table 6-1 to create the Wrapper sample application.

Table 6-1 Files Included in the Wrapper Sample Application

File Description

billw.idl The OMG IDL that declares the Teller and
TellerFactory interfaces

univw.idl The OMG IDL that declares the
CourseSynopsisEnumerator, Registrar,
and RegistrarFactory interfaces

billws.cpp The C++ source code for the Billing server
application in the Wrapper sample application

univws.cpp The C++ source code for the University server
application in the Wrapper sample application

billw__i.h
billw_i.cpp

The C++ source code for the method
implementations of the Teller and
TellerFactory interfaces

univw_i.h
univw_i.cpp

The C++ source code for the method
implementations of the
CourseSynopsisEnumerator, Registrar,
and RegistrarFactory interfaces

univwc.cpp The C++ source code for the CORBA C++ client
application in the Wrapper sample application

frmBrowser.frm The Visual Basic source code for the ActiveX client
application in the Wrapper sample application

university.vbp The Visual Basic project file for the ActiveX client
application in the Wrapper sample application
Guide to the University Sample Applications 6-7

6 THE WRAPPER SAMPLE APPLICATION
University.vbw The Visual Basic workspace file for the ActiveX
client application in the Wrapper sample application

modPublicDeclarations.
bas

A Visual Basic file that contains the declarations for
variables used in the sample applications

frmTracing.frm
frmTracing.frx

The files that provide tracing capabilities to the
ActiveX client application

frmLogon.frm The Visual Basic file that performs the security
logon for the ActiveX client application

univWApplet.java The Java source code for the CORBA Java client
application in the Wrapper sample application

univw_utils.h
univw_utils.cpp

The files that define database access functions for the
CORBA C++ client application

univw.icf The ICF file for the University server application in
the Wrapper sample application

billw.icf The ICF file for the Billing server application in the
Wrapper sample application

setenvw.sh A UNIX script that sets the environment variables
needed to build and run the Wrapper sample
application

tellw_flds, tellw_u.c,
tellw_c.h, tellws.ec

The files for the BEA TUXEDO Teller application

setenvw.cmd An MS-DOS command procedure that sets the
environment variables needed to build and run the
Wrapper sample application

ubb_w.mk The UBBCONFIG file for the UNIX operating
system

ubb_w.nt The UBBCONFIG file for the Windows NT operating
system

makefilew.mk The makefile for the Wrapper sample application
on the UNIX operating system

Table 6-1 Files Included in the Wrapper Sample Application

File Description
6-8 Guide to the University Sample Applications

BUILDING THE WRAPPER SAMPLE APPLICATION
Changing the Protection on the Files for the Wrapper
Sample Application

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit the files or build the files in the Wrapper sample
application, you need to change the protection of the files you copied into your work
directory, as follows:

Windows NT

prompt>attrib -r drive:\workdirectory*.*

makefilew.nt The makefile for the Wrapper sample application
on the Windows NT operating system

log.cpp, log.h,
log_client.cpp, and
log_server.cpp

The files for the client and server applications that
provide logging and tracing functions for the sample
applications. These files are located in the \utils
directory.

oradbconn.cpp and
oranoconn.cpp

The files that provide access to an Oracle SQL
database instance. These files are located in the
\utils directory.

samplesdb.cpp and
samplesdb.h

The files that provide print functions for the database
exceptions in the sample applications. These files are
located in the \utils directory.

unique_id.cpp and
unique_id.h

C++ Unique ID class routines for the sample
applications.These files are located in the \utils
directory.

samplesdbsql.h and
samplesdbsql.pc

C++ class methods that implement access to the SQL
database. These files are located in the \utils
directory.

university.sql The SQL for the University database. This file is
located in the \utils directory.

Table 6-1 Files Included in the Wrapper Sample Application

File Description
Guide to the University Sample Applications 6-9

6 THE WRAPPER SAMPLE APPLICATION
UNIX

prompt>chmod u+rw /workdirectory/*.*

Setting the Environment Variables

Use the following command to set the environment variables used to build the client
and server applications in the Wrapper sample application:

Windows NT

prompt>setenvw

UNIX

prompt>/bin/ksh

prompt>. ./setenvw.sh

Initializing the University Database

Use the following command to initialize the University database used with the
Wrapper sample application:

Windows NT

prompt>nmake -f makefilew.nt initdb

UNIX

prompt>make -f makefilew.mk initdb

Loading the UBBCONFIG File

Use the following command to load the UBBCONFIG file:

Windows NT

prompt>tmloadcf -y ubb_w.nt
6-10 Guide to the University Sample Applications

BUILDING THE WRAPPER SAMPLE APPLICATION
UNIX

prompt>tmloadcf -y ubb_w.mk

The build process for the UBBCONFIG file prompts you for an application password.
This password will be used to log on to the client applications. Enter the password and
press Enter. You are then prompted to verify the password by entering it again.

Creating a Transaction Log

The transaction log records the transaction activities in a WLE application. During the
development process, you need to define the location of the transaction log (specified
by the TLOGDEVICE parameter) in the UBBCONFIG file. For the Wrapper sample
application, the transaction log is placed in your work directory.

You need to perform the following steps to open the transaction log for the Wrapper
sample application:

1. Enter the following command to start the Interactive Administrative Interface:

tmadmin

2. Enter the following command to create a transaction log:

crdl -b blocks -z directorypath
crlog -m SITE1

where

blocks specifies the number of blocks to be allocated for the transaction log,
and directorypath indicates the location of the transaction log. The
directorypath option needs to match the location specified in the
TLOGDEVICE parameter in the UBBCONFIG file. The following is an example of
the command on Windows NT:

crdl -b 500 -z c:\mysamples\university\wrapper\TLOG

3. Enter q to quit the Interactive Administrative Interface.
Guide to the University Sample Applications 6-11

6 THE WRAPPER SAMPLE APPLICATION
Compiling the Wrapper Sample Application

During the development process, you would use the buildobjclient and
buildobjserver commands to build the client and server applications. However, for
the Wrapper sample application, this step has been done for you. The directory for the
Wrapper sample application contains a makefile that builds the client and server
sample applications.

Use the following commands to build the CORBA C++ client and server application
in the Wrapper sample application:

Windows NT

prompt>nmake -f makefilew.nt

UNIX

prompt>make -f makefilew.mk

To build the CORBA Java client application:

Windows NT

prompt>nmake -f makefilew.nt javaclient

UNIX

prompt>make -f makefilew.mk javaclient

For information about starting the ActiveX client application, see “Starting the
ActiveX Client Application.”

For more information about the buildobjclient and buildobjserver commands,
see the C++ Programming Reference.

Running the Wrapper Sample Application

Perform the following steps to run the Wrapper sample application:
6-12 Guide to the University Sample Applications

RUNNING THE WRAPPER SAMPLE APPLICATION
1. Start the server application.

2. Start one or more of the client applications.

These steps are described in the following sections.

Starting the Server Application

Start the system and sample application server processes in the Wrapper sample
application by entering the following command:

prompt>tmboot -y

This command starts the following server processes:

t TMSYSEVT

The BEA TUXEDO system event broker.

t TMFFNAME

The transaction management services, including the NameManager and the
FactoryFinder services.

t TMIFSRVR

The Interface Repository server process. This server process is used only by
ActiveX client applications.

t univw_server

The University server process.

t tellw_server

The BEA TUXEDO Teller application process.

t billw_server

The Billing server application process.

t ISL

The IIOP Listener/Handler process.

Before using another sample application, enter the following command to stop the
system and sample application server processes:
Guide to the University Sample Applications 6-13

6 THE WRAPPER SAMPLE APPLICATION
prompt>tmshutdown

Starting the CORBA C++ Client Application

Start the CORBA C++ client application in the Wrapper sample application by
performing the following steps:

1. At the MS-DOS prompt, enter the following command:

prompt>univw_client

2. At the Enter student id: prompt, enter any number between 100001 and
100010.

3. Press Enter.

4. At the Enter domain password: prompt, enter the password you defined when
you loaded the UBBCONFIG file.

5. Press Enter.

Starting the CORBA Java Client Application

Before you can start the CORBA Java client application, you need to change the value
of the Port and Host parameters in UnivWApplet.html to match the host name and
port number specified in the ISL parameter in the UBBCONFIG file. For example:

<param name=port value=2500>
<param name=host value=BEANIE>

Start the CORBA Java client application in the Wrapper sample application by
performing the following steps:

1. At the MS-DOS prompt, enter the following command:

prompt>appletviewer UnivWApplet.html

A logon window appears.

2. Enter a number between 100001 and 100010 in the student ID field.
6-14 Guide to the University Sample Applications

RUNNING THE WRAPPER SAMPLE APPLICATION
3. In the Domain Password field, enter the password you defined when you loaded
the UBBCONFIG file.

4. Double click the Logon button.

Exceptions appear in the status bar of the Appletviewer window or in the MS-DOS
window in which the CORBA Java client application was started.

Starting the ActiveX Client Application

Note: For the University sample applications, the task of loading the OMG IDL for
the CORBA interfaces into the Interface Repository is automated by the
makefile.

Before you can start the ActiveX client application, you must use the Application
Builder to create ActiveX bindings for the CORBA interfaces.

To create an ActiveX binding for a CORBA interface:

1. Click the BEA Application Builder icon in the WLE program group.

The IIOP Listener window appears.

2. In the IIOP Listener window, enter the host name and port number that you
specified in the ISL parameter in the UBBCONFIG file . You must match exactly
the capitalization used in the UBBCONFIG file.

The Logon window appears.

3. In the Logon window, enter a student ID between 100001 and 100010 for the
user name and the password you defined when you loaded the UBBCONFIG file.

The Application Builder window appears. All the CORBA interfaces loaded in
the Interface Repository appear in the Services window of the Application
Builder.

4. Highlight the UniversityW folder in the Services window and drag it to the
Workstation Views window, or copy the UniversityW folder from the Services
window and paste it into the Workstation Views window.

A confirmation window appears.
Guide to the University Sample Applications 6-15

6 THE WRAPPER SAMPLE APPLICATION
5. Click Create to create the ActiveX bindings for the CORBA interfaces in the
Wrapper sample application.

The Application Builder creates the following:

t A binding for the CORBA interface. The binding is named
DImodulename_interfacename. For example, the binding for the
Registrar interface is named DIUniversityW_Registrar.

t A type library. By default, the type library is placed in
\WLEdir\TypeLibraries.

The type library file is named DImodulename_interfacename.tlb.

t A Windows system registry entry, including unique Program IDs for each
object type, for the CORBA interface.

Perform the following steps to run the ActiveX client application:

1. Open the University.vbw file in Visual Basic.

2. From the Run menu, click Start.

The IIOP Listener window appears.

3. In the IIOP Listener window, enter the host name and port number that you
specified in the ISL parameter in the UBBCONFIG file. You must match exactly
the capitalization used in the UBBCONFIG file.

The Logon window appears.

4. In the Logon window, enter a student ID between 100001 and 100010 for the
user name and the password you defined when you loaded the UBBCONFIG file.

Using the Client Applications in the Wrapper
Sample Application

The following sections explain how to use the client applications in the Wrapper
sample application.
6-16 Guide to the University Sample Applications

USING THE CLIENT APPLICATIONS IN THE WRAPPER SAMPLE APPLICATION
The CORBA C++ Client Application

The CORBA C++ client application in the Wrapper sample application has the
following additional option:

 Display Your Balance

The Display Your Balance option displays the account balance associated with the
student ID used to log on to the CORBA C++ client application.

To exit the C++ CORBA client application, enter E at the Options prompt.

The CORBA Java Client Application

The CORBA Java client application in the Wrapper sample application allows you to
display an account balance.

When you log on to the CORBA Java client application, a Student Account Summary
window appears. The Student Account Summary window displays the account balance
associated with the student ID used to log on to the CORBA Java client application.
When you register for additional courses, the amount in the Balance text box in the
Student Account Summary window increases.

To exit the CORBA Java client application, click the Logoff button in the Student
Account Summary window, or choose Quit from the File menu.

The ActiveX Client Application

The ActiveX client application in the Wrapper sample application allows you to
display an account balance.

When you log on to the ActiveX client application, a Course Browser window appears.
The Course Browser window displays the registered courses and account balance for
the student ID used to log on to the ActiveX client application. When you register for
additional courses, the amount in the Balance text box in the Course Browser window
increases.

To exit the ActiveX client application, choose Exit from the File menu.
Guide to the University Sample Applications 6-17

6 THE WRAPPER SAMPLE APPLICATION
6-18 Guide to the University Sample Applications

CHAPTER
7 The Production Sample
Application

The chapter discusses the following topics:

t How the Production sample application works

t The development process for the Production sample application

t Building the Production sample application

t Compiling the Production sample application

t Running the Production sample application

t How the Production sample application can be scaled further

Note: The client applications in the Production sample application work in the same
manner as the client applications in the Wrapper sample application.

Refer to Readme.txt in the \production directory for troubleshooting information
and the latest information about using the Production sample application.
Guide to the University Sample Applications 7-1

7 THE PRODUCTION SAMPLE APPLICATION
How the Production Sample Application
Works

The Production sample application provides the same end-user functionality as the
Wrapper sample application. The Production sample application demonstrates how to
use features of the Weblogic Enterprise (WLE) software to scale an existing WLE
application. The Production sample application does the following:

t Replicates the University server application, the Billing server application, and
the BEA TUXEDO Teller application within the ORA_GRP and APP_GRP server
groups defined in the UBBCONFIG file.

t Replicates the ORA_GRP1 and APP_GRP1 server groups on an additional server
machine, Production Machine 2, as ORA_GRP2 and APP_GRP2 and partitions the
database.

t Implements a stateless object model to scale up the number of requests from
client applications the server application can manage simultaneously.

t Assigns unique object IDs (OIDs) to the following objects so that they can be
instantiated multiple times simultaneously in their respective server groups,
thereby making them available on a per-client-application (and not per-process)
basis:

t Registrar

t RegistrarFactory

t Teller

t TellerFactory

t Implements factory-based routing to direct requests from client applications on
behalf of some students to one server machine, and other students to another
server machine.

Note: To make the Production sample application easy for you to use, the sample
application is configured on the WLE software kit to run on one machine using
one database. However, the Production sample application is set up so that it
7-2 Guide to the University Sample Applications

HOW THE PRODUCTION SAMPLE APPLICATION WORKS
can be configured to run on several machines and to use multiple databases.
Changing the configuration to multiple machines and databases involves
simply modifying the UBBCONFIG file and partitioning the database.

The following sections describe how the Production sample application uses replicated
server applications, replicated server groups, object state management, and
factory-based routing to scale the Production sample application.

Replicating Server Applications

When you replicate server applications:

t You obtain a means to balance the load of incoming requests from client
applications on that server application. As requests arrive in the WLE domain
for the server group, the WLE system routes the request to the least busy server
application within that group.

t You can specify how many copies of a given server application process are
running on a server machine. The number of copies determines the extent to
which the WLE domain can process requests in-parallel from client applications.

t You obtain a useful failover protection in the event that one of the server
application processes stops.

In the Production sample application, the server applications are replicated in the
following manner:

t The University server application, the BEA TUXEDO Teller application, and the
server application for the University database are replicated within the ORA_GRP
group.

t The Billing server application is replicated within the APP_GRP group.

Figure 7-1 shows the replicated ORA_GRP and APP_GRP server groups.
Guide to the University Sample Applications 7-3

7 THE PRODUCTION SAMPLE APPLICATION
Figure 7-1 Replicated Server Groups in the Production Sample Application

In Figure 7-1, note the following:

t There can be no more than one instance of the RegistrarFactory, Registrar,
TellerFactory, or Teller objects within a single server application process.

t There can be any number of CourseSynopsisEnumerator objects within a
server application process.

Database

RegistrarFactory

Registrar

TellerFactory

Teller

BEA TUXEDO
Teller Application
debit()
credit()
current_balance()

University Server Billing Server

Production Machine

CourseSynopsys
Enumerator

ORA_GRP APP_GRP

Oracle7
Transaction

Manager Server
7-4 Guide to the University Sample Applications

HOW THE PRODUCTION SAMPLE APPLICATION WORKS
Replicating Server Groups

Server groups are a feature of the WLE software that allow you to add server machines
to an existing WLE application. When you replicate a server group, you can do the
following:

t Spread the processing load for a WLE application across multiple server
machines.

t Use factory-based routing to send requests from client applications to a
particular server machine.

The way in which server groups are configured and replicated is specified in the
UBBCONFIG file.

Figure 7-2 shows the server groups in the Production sample application replicated on
a second server machine. The replicated server groups are defined as ORA_GRP2 and
APP_GRP2 in the UBBCONFIG file for the Production sample application.
Guide to the University Sample Applications 7-5

7 THE PRODUCTION SAMPLE APPLICATION
Figure 7-2 Replicating Server Groups Across Server Machines

In Figure 7-2, the only difference between the content of the server groups on
Production Machine 1 and Production Machine 2 is the database. The University
database is partitioned into two databases. The database on Production Machine 1
contains student and account information for students with IDs between 100001 and
100005. The database on Production Machine 2 contains student and account
information for students with IDs between 100006 and 100010.

Production Machine 1

University
Server Billing Server

BEA TUXEDO
Teller

Application

Database 1

APP_GRP1ORA_GRP1

Production Machine 2

University
Server Billing Server

BEA TUXEDO
Teller

Application

Database 2

APP_GRP2ORA_GRP2

Oracle7
Transaction

Manager Server

Oracle7
Transaction

Manager Server
7-6 Guide to the University Sample Applications

HOW THE PRODUCTION SAMPLE APPLICATION WORKS
Using a Stateless Object Model

To achieve scalability gains, the Registrar and Teller objects are configured in the
Production sample application to have the method activation policy. The method
activation policy results in the following behavior changes:

t Whenever the objects are invoked, they are instantiated by the WLE domain in
the appropriate server group.

t After the invocation is complete, the WLE domain deactivates the objects.

In the Basic through the Production sample applications, the Registrar object had an
activation policy of process. All requests from client applications on the Registrar
object went to the same object instance in the memory of the server machine. This
design is adequate for a small-scale deployment. However, as client application
demands increase, requests from client applications on the Registrar object
eventually become queued, and response time drops.

However, when the Registrar and Teller objects have an activation policy of
method and the server applications that manage these objects are replicated, the
Registrar and Teller objects can process multiple requests from client applications
in parallel. The only constraint is the number of server application processes that are
available to instantiate the Registrar and Teller objects.

For the WLE application to instantiate copies of the Registrar and Teller objects
in each of the replicated server application processes, each copy of the Registrar and
Teller objects have an unique object ID (OID). The factories that create these objects
are responsible for assigning them unique OIDs. For information about generating
unique object IDs, see Creating C++ Server Applications.

Using Factory-based Routing

Factory-based routing is a WLE feature that allows you to send a request from a client
application to a specific server group. Using factory-based routing, you can spread the
processing load for a WLE application across multiple server machines. The
Production sample application uses factory-based routing in the following way:

t Requests from client applications to the Registrar object are routed based on
the student ID. Requests from student ID 100001 to 100005 go to Production
Guide to the University Sample Applications 7-7

7 THE PRODUCTION SAMPLE APPLICATION

ake
Machine 1. Requests from student ID 100006 to 100010 go to Production
Machine 2.

t Requests from the Registrar object to the Teller object are routed based on
account number. Billing requests for account 200010 to 200014 go to Production
Machine 1. Billing requests for account 200015 to 200019 go to Production
Machine 2.

For information about setting up factory-based routing, see Creating C++ Server
Applications.

The Development Process for the Production
Sample Application

This section describes the development process required when scaling a WLE
application. These steps are in addition to the development process outlined in
Chapter 3, “The Basic Sample Application.”

Note: The steps in this section have been done for you and are included in the
Production sample application.

OMG IDL

During the development process, to support factory-based routing, you would m
modifications to the Object Management Group (OMG) Interface Definition
Language (IDL) definitions for the following operations:

t The find_registrar() operation of the RegistrarFactory object to require
a student ID

t The find_teller() operation of the TellerFactory object to require an
account number

For information about implementing factory-based routing, see Creating C++ Server
Applications.
7-8 Guide to the University Sample Applications

THE DEVELOPMENT PROCESS FOR THE PRODUCTION SAMPLE APPLICATION
The Client Application

During the development process, you would specify a STU_ID value when creating a
Registrar object. The STU_ID value defines to which server group the request from
the client application is routed.

In the Production sample application, the University server application creates the
Teller object in the same way a client application would. Therefore, an ACT_NUM
value needs to be specified when creating a Teller object.

The Server Application

During the development process, you need to modify the invocation to the
TP::create_object_reference() operation for the RegistrarFactory and
TellerFactory objects to include an NVlist that specifies routing criteria. The
criteria parameter of the TP::create_object_reference()operation specifies a
list of named values to be used for factory-based routing, as follows:

t The RegistrarFactory object in the Production sample application specifies
the value for criteria to be STU_ID.

t The TellerFactory object in the Production sample application specifies the
value for criteria to be ACT_NUM.

The value of the criteria parameter must match exactly the routing criteria name,
field, and field type specified in the ROUTING section of the UBBCONFIG file.

For information about implementing factory-based routing in a factory, see Creating
C++ Server Applications.

The UBBCONFIG File

The UBBCONFIG file is the key to achieving scalability in a WLE application. This
section describes how the UBBCONFIG file for the Production sample application is
modified to:

t Replicate server application processes and server groups
Guide to the University Sample Applications 7-9

7 THE PRODUCTION SAMPLE APPLICATION
t Implement factory-based routing

Replicating Server Application Processes and Server Groups

During the development process, modify the UBBCONFIG file in the following way to
configure replicated server application processes and server groups:

1. In the GROUPS section of the UBBCONFIG file, specify the names of the groups you
want to configure. In the Production sample application, there are four server
groups: APP_GRP1, APP_GRP2, ORA_GRP1, and ORA_GRP2.

2. In the SERVERS section of the UBBCONFIG file, enter the following information
for the server application process you want to replicate:

t A server application name.

t The GROUP parameter, which specifies the name of the server group to which
the server application process belongs. If you are replicating a server process
across multiple groups, specify the server process once for each group.

t The SRVID parameter, which specifies a unique administrative ID for the
server machine.

t The MIN parameter, which specifies the number of instances of the server
application process to start when the WLE application is started. You need to
start at least two server application processes.

t The MAX parameter, which specifies the maximum number of server
application processes that can be running at any one time.You can specify no
more than five server application processes.

The MIN and MAX parameters determine the degree to which a given server application
can process requests in parallel on a given object. During run time, the system
administrator can examine resource bottlenecks and start additional server processes,
if necessary. In this sense, the application is scaled by the system administrator.

The following example shows lines from the GROUPS and SERVERS sections of the
UBBCONFIG file for the Production sample application.

*GROUPS
 APP_GRP1
 LMID = SITE1
 GRPNO = 2
 TMSNAME = TMS
 APP_GRP2
7-10 Guide to the University Sample Applications

THE DEVELOPMENT PROCESS FOR THE PRODUCTION SAMPLE APPLICATION
 LMID = SITE1
 GRPNO = 3
 TMSNAME = TMS
 ORA_GRP1
 LMID = SITE1
 GRPNO = 4
 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir
 =.+MaxCur=5"
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"
 ORA_GRP2
 LMID = SITE1
 GRPNO = 5
 OPENINFO = "ORACLE_XA:Oracle_XA+Acc=P/scott/tiger+SesTm=100+LogDir
 =.+MaxCur=5"
 CLOSEINFO = ""
 TMSNAME = "TMS_ORA"

*SERVERS
 # By default, activate 2 instances of each server
 # and allow the administrator to activate up to 5
 # instances of each server
 DEFAULT:
 MIN = 2
 MAX = 5
 tellp_server
 SRVGRP = ORA_GRP1
 SRVID = 10
 RESTART = N
 tellp_server
 SRVGRP = ORA_GRP2
 SRVID = 10
 RESTART = N
 billp_server
 SRVGRP = APP_GRP1
 SRVID = 10
 RESTART = N
 billp_server
 SRVGRP = APP_GRP2
 SRVID = 10
 RESTART = N
 univp_server
 SRVGRP = ORA_GRP1
 SRVID = 20
 RESTART = N
 univp_server
 SRVGRP = ORA_GRP2
Guide to the University Sample Applications 7-11

7 THE PRODUCTION SAMPLE APPLICATION
 SRVID = 20
 RESTART = N

Implementing Factory-based Routing

For each interface for which you want to enable factory-based routing, you need to
define the following information in the UBBCONFIG file:

t Details about the data in the routing criteria

t For each kind of criteria, the values that route to specific server groups

During the development process, make the following changes to the UBBCONFIG file:

1. The INTERFACES section lists the names of the interfaces for which you want to
enable factory-based routing. For each interface, this section specifies the value on
which the interface routes. The routing value is specified in the FACTORYROUTING
identifier.

The following example shows the FACTORYROUTING identifier for the
Registrar and Teller objects in the Production sample application:

INTERFACES
 "IDL:beasys.com/UniversityP/Registrar:1.0"
 FACTORYROUTING = STU_ID
 "IDL:beasys.com/BillingP/Teller:1.0"
 FACTORYROUTING = ACT_NUM

2. The ROUTING section specifies the following data for each routing value:

t The TYPE parameter, which specifies the type of routing. In the Production
sample application, the type of routing is factory-based routing. Therefore,
this parameter is defined to FACTORY.

t The FIELD parameter, which specifies the name that the factory inserts in the
routing value. In the Production sample application, the field parameters are
student_id and account_number.

t The FIELDTYPE parameter, which specifies the data type of the routing
value. In the Production sample application, the field types for STU_ID and
ACT_NUM are long.

t The RANGES parameter, which specifies the values that are routed to each
group.

The following example shows the ROUTING section of the UBBCONFIG file used
in the Production sample application:
7-12 Guide to the University Sample Applications

BUILDING THE PRODUCTION SAMPLE APPLICATION
*ROUTING
 STU_ID
 FIELD = "student_id"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "100001-100005:ORA_GRP1,100006-100010:ORA_GRP2"
 ACT_NUM
 FIELD = "account_number"
 TYPE = FACTORY
 FIELDTYPE = LONG
 RANGES = "200010-200014:APP_GRP1,200015-200019:APP_GRP2"

The example shows that Registrar objects for students with IDs 100001
through 100005 are instantiated in ORA_GRP1, and students with IDs 100006
through 100010 are instantiated in ORA_GRP2.Likewise, Teller objects for
accounts 200010 through 200014 are instantiated in APP_GRP1, and accounts
200015 through 200019 are instantiated in APP_GRP2.

3. The groups specified by the RANGES identifier in the ROUTING section of the
UBBCONFIG file need to be identified and configured. For example, the
Production sample application specifies four groups: ORA_GRP1, ORA_GRP2,
APP_GRP1, and APP_GRP2. These groups need to be configured, and the machines
on which they run need to be identified.

Note: The names of the server groups in the GROUPS section must exactly match the
group names specified in the ROUTING section.

The ICF File

During the development process, you need to change the activation policy of the
Registrar, RegistrarFactory, Teller, and TellerFactory objects from process
to method. For information about defining activation and transaction policies for
CORBA objects, see Creating C++ Server Applications.

Building the Production Sample Application

Perform the following steps to build the Production sample application:
Guide to the University Sample Applications 7-13

7 THE PRODUCTION SAMPLE APPLICATION

ries:
1. Copy the files for the Production sample application into a work directory.

2. Change the protection on the files for the Production sample application files.

3. Set the environment variables.

4. Initialize the University database.

5. Load the UBBCONFIG file.

6. Create a transaction log.

7. Build the client and server sample applications.

The following sections describe these steps.

Note: Before you can build or run the Production sample application, you need to
perform the steps in Chapter 2, “Setting Up Your Environment.”

Copying the Files for the Production Sample Application
into a Work Directory

The files for the Production sample application are located in the following directo

Windows NT

drive:\WLEdir\samples\corba\university\production
7-14 Guide to the University Sample Applications

BUILDING THE PRODUCTION SAMPLE APPLICATION
UNIX

/usr/WLEdir/samples/corba/university/production

In addition, you need to copy the utils directory into your work directory. The utils
directory contains files that set up logging, tracing, and access to the University
database.

You will use the files in Table 7-1 to create the Production sample application.

Table 7-1 Files Included in the Production Sample Application

File Description

billp.idl The OMG IDL that declares the Teller and
TellerFactory interfaces

univp.idl The OMG IDL that declares the
CourseSynopsisEnumerator, Registrar,
and RegistrarFactory interfaces

billps.cpp The C++ source code for the Billing server
application in the Production sample application

univps.cpp The C++ source code for the University server
application in the Production sample application

billp__i.h
billp_i.cpp

The C++ source code for the method
implementations of the Teller and
TellerFactory interfaces

univp_i.h
univp_i.cpp

The C++ source code for method implementations of
the CourseSynopsisEnumerator,
Registrar, and RegistrarFactory interfaces

univpc.cpp The C++ source code for the CORBA C++ client
application in the Production sample application

frmBrowser.frm The Visual Basic source code for the ActiveX client
application in the Production sample application

university.vbp The Visual Basic project file for the ActiveX client
application in the Production sample application
Guide to the University Sample Applications 7-15

7 THE PRODUCTION SAMPLE APPLICATION
University.vbw The Visual Basic workspace file for the ActiveX
client application in the Production sample
application

modPublicDeclarations.
bas

A Visual Basic file that contains the declarations for
variables used in the sample applications

frmTracing.frm
frmTracing.frx

The files that provide tracing capabilities to the
ActiveX client application

frmLogon.frm The Visual Basic file that performs the security
logon for the ActiveX client application

univPApplet.java The Java source code for the CORBA Java client
application in the Production sample application

univp_utils.h
univp_utils.cpp

The files that define database access functions for the
CORBA C++ client application

univp.icf The Implementation Configuration File (ICF) for the
University server application in the Production
sample application

billp.icf The ICF file for the Billing server application in the
Production sample application

tellw_flds, tellw_u.c,
tellw_c.h, tellws.ec

The files for the BEA TUXEDO Teller application

setenvp.sh A UNIX script that sets the environment variables
needed to build and run the Production sample
application

setenvp.cmd An MS-DOS command procedure that sets the
environment variables needed to build and run the
Production sample application

ubb_p.mk The UBBCONFIG file for the UNIX operating
system

ubb_p.nt The UBBCONFIG file for the Windows NT operating
system

Table 7-1 Files Included in the Production Sample Application

File Description
7-16 Guide to the University Sample Applications

BUILDING THE PRODUCTION SAMPLE APPLICATION
Changing the Protection on the Files for the Production
Sample Application

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit the files or build the files in the Production sample
application, you need to change the protection of the files you copied into your work
directory, as follows:

makefilep.mk The makefile for the Production sample
application on the UNIX operating system

makefilep.nt The makefile for the Production sample
application on the Windows NT operating system

log.cpp, log.h,
log_client.cpp, and
log_server.cpp

The files for the client and server applications that
provide logging and tracing functions for the sample
applications. These files are located in the \utils
directory.

oradbconn.cpp and
oranoconn.cpp

The files that provide access to an Oracle SQL
database instance.These files are located in the
\utils directory.

samplesdb.cpp and
samplesdb.h

The files that provide print functions for the database
exceptions in the sample applications. These files are
located in the \utils directory.

unique_id.cpp and
unique_id.h

C++ Unique ID class routines for the sample
applications.These files are located in the \utils
directory.

samplesdbsql.h and
samplesdbsql.pc

C++ class methods that implement access to the SQL
database. These files are located in the \utils
directory.

university.sql The SQL for the University database. This file is
located in the \utils directory.

Table 7-1 Files Included in the Production Sample Application

File Description
Guide to the University Sample Applications 7-17

7 THE PRODUCTION SAMPLE APPLICATION
Windows NT

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>chmod u+rw /workdirectory/*.*

Setting the Environment Variables

Use the following command to set the environment variables used to build the client
and server applications in the Production sample application:

Windows NT

prompt>setenvp

UNIX

prompt>/bin/ksh

prompt>. ./setenvp.sh

Initializing the University Database

Use the following command to initialize the University database used with the
Production sample application:

Windows NT

prompt>nmake -f makefilep.nt initdb

UNIX

prompt>make -f makefilep.mk initdb

Loading the UBBCONFIG File

Use the following command to load the UBBCONFIG file:
7-18 Guide to the University Sample Applications

BUILDING THE PRODUCTION SAMPLE APPLICATION
Windows NT

prompt>tmloadcf -y ubb_p.nt

UNIX

prompt>tmloadcf -y ubb_p.mk

The build process for the UBBCONFIG file prompts you for an application password.
This password will be used to log on to the client applications. Enter the password and
press Enter. You are then prompted to verify the password by entering it again.

Creating a Transaction Log

The transaction log records the transaction activities in a WLE application. During the
development process you need to define the location of the transaction log (specified
by the TLOGDEVICE parameter) in the UBBCONFIG file. For the Production sample
application, the transaction log is placed in your work directory.

You need to perform the following steps to open the transaction log for the Production
sample application:

1. Enter the following command to start the Interactive Administrative Interface:

tmadmin

2. Enter the following command to create a transaction log:

crdl -b blocks -z directorypath
crlog -m SITE1

where

blocks specifies the number of blocks to be allocated for the transaction log,
and directorypath indicates the location of the transaction log. The
directorypath option needs to match the location specified in the
TLOGDEVICE parameter in the UBBCONFIG file. The following is an example of
the command on Windows NT:

crdl -b 500 -z c:\mysamples\university\production\TLOG

3. Enter q to quit the Interactive Administrative Interface.
Guide to the University Sample Applications 7-19

7 THE PRODUCTION SAMPLE APPLICATION
Compiling the Production Sample
Application

During the development process, you would use the buildobjclient and
buildobjserver commands to build the client and server applications. However, for
the Production sample application, this step has been done for you. The directory for
the Production sample application contains a makefile that builds the client and
server sample applications.

Use the following commands to build the CORBA C++ client and server application
in the Production sample application:

Windows NT

prompt>nmake -f makefilep.nt

UNIX

prompt>make -f makefilep.mk

To build the CORBA Java client application:

Windows NT

prompt>nmake -f makefilep.nt javaclient

UNIX

prompt>make -f makefilep.mk javaclient

For information about starting the ActiveX client application, see “Starting the
ActiveX Client Application.”

For more information about the buildobjclient and buildobjserver commands,
see the C++ Programming Reference.
7-20 Guide to the University Sample Applications

RUNNING THE PRODUCTION SAMPLE APPLICATION
Running the Production Sample Application

Perform the following steps to run the Production sample application:

1. Start the server application.

2. Start one or more of the client applications.

The following sections described these steps in detail.

Starting the Server Application

Start the system and sample application server applications in the Production sample
application by entering the following command:

prompt>tmboot -y

This command starts the following server processes:

t TMSYSEVT

The BEA TUXEDO system event broker.

t TMFFNAME

The transaction management services, including the NameManager and the
FactoryFinder services.

t TMIFSRVR

The Interface Repository server process. This server process is used only by
ActiveX client applications.

t univp_server

Four processes of the University server application.

t tellp_server

Four processes of the BEA TUXEDO Teller application.

t billp_server

Four processes of the Billing server application.
Guide to the University Sample Applications 7-21

7 THE PRODUCTION SAMPLE APPLICATION
t ISL

The IIOP Listener/Handler process.

Before using another sample application, enter the following command to stop the
system and sample application server processes:

prompt>tmshutdown

Starting the CORBA C++ Client Application

Start the CORBA C++ client application in the Production sample application by
perform the following steps:

1. At the MS-DOS prompt, enter the following command:

prompt>univp_client

2. At the Enter student id: prompt, enter any number between 100001 and
100010.

3. Press Enter.

4. At the Enter domain password: prompt, enter the password you defined when
you loaded the UBBCONFIG file.

5. Press Enter.

Note: The CORBA C++ client application in the Production sample application
works in the same manner as the CORBA C++ client application in the
Wrapper sample application.

Starting the CORBA Java Client Application

Before you can start the CORBA Java client application, you need to change the value
of the Port and Host parameters in UnivPApplet.html to match the host name and
port number specified in the ISL parameter in the UBBCONFIG file. For example:

<param name=port value=2500>
<param name=host value=BEANIE>
7-22 Guide to the University Sample Applications

RUNNING THE PRODUCTION SAMPLE APPLICATION
Start the CORBA Java client application in the Production sample application by
performing the following steps:

1. At the MS-DOS prompt, enter the following command:

prompt>appletviewer UnivPApplet.html

A logon window appears.

2. Enter a number between 100001 and 100010 in the student ID field.

3. In the Domain Password field, enter the password you defined when you loaded
the UBBCONFIG file.

4. Double click the Logon button.

Note: The CORBA Java client application in the Production sample application
works in the same manner as the CORBA Java client application in the
Wrapper sample application.

Starting the ActiveX Client Application

Note: For the University sample applications, the task of loading the OMG IDL for
the CORBA interfaces into the Interface Repository is automated by the
makefile.

Before you can start the ActiveX client application, you must use the Application
Builder to create ActiveX bindings for the CORBA interfaces.

To create an ActiveX binding for a CORBA interface:

1. Click the BEA Application Builder icon in the WLE program group.

The IIOP Listener window appears.

2. In the IIOP Listener window, enter the host name and port number that you
specified in the ISL parameter in the UBBCONFIG file . You must match exactly
the capitalization used in the UBBCONFIG file.

The Logon window appears.

3. In the Logon window, enter a student ID between 100001 and 100010 for the
user name and the password you defined when you loaded the UBBCONFIG file.
Guide to the University Sample Applications 7-23

7 THE PRODUCTION SAMPLE APPLICATION
The Application Builder window appears. All the CORBA interfaces loaded in
the Interface Repository appear in the Services window of the Application
Builder.

4. Highlight the UniversityP folder in the Services window and drag it to the
Workstation Views window, or copy the UniversityP folder from the Services
window and paste it into the Workstation Views window.

A confirmation window appears.

5. Click Create to create the ActiveX bindings for the CORBA interfaces in the
Production sample application.

The Application Builder creates the following:

t A binding for the CORBA interface. The binding is named
DImodulename_interfacename. For example, the binding for the
Registrar interface is named DIUniversityP_Registrar.

t A type library. By default, the type library is placed in
\WLEdir\TypeLibraries.

The type library file is named DImodulename_interfacename.tlb.

t A Windows system registry entry, including unique Program IDs for each
object type, for the CORBA interface.

Perform the following steps to run the ActiveX client application:

1. Open the University.vbw file in Visual Basic.

2. From the Run menu, click Start.

The IIOP Listener window appears.

3. In the IIOP Listener window, enter the host name and port number that you
specified in the ISL parameter in the UBBCONFIG file. You must match exactly
the capitalization used in the UBBCONFIG file.

The Logon window appears.

4. In the Logon window, enter a student ID between 100001 and 100010 for the
user name and the password you defined when you loaded the UBBCONFIG file.

Note: The ActiveX client application in the Production sample application works in
the same manner as the ActiveX client application in the Wrapper sample
application.
7-24 Guide to the University Sample Applications

HOW THE PRODUCTION SAMPLE APPLICATION CAN BE SCALED FURTHER
How the Production Sample Application Can
Be Scaled Further

The Production sample application can be scaled even more by:

t Replicating the server groups in the Production sample application across
additional machines

You need to modify the UBBCONFIG file to specify the additional server groups,
the server application processes that run in the new server groups, and the server
machines on which the server groups run.

t Changing the factory-based routing tables

For example, instead of routing to the two existing server groups in the
Production sample application, you can modify the routing rules in the
UBBCONFIG file to partition the application further among additional server
groups. Any modification to the routing tables must match the information in the
UBBCONFIG file.

Note: If you add capacity to an existing WLE application that uses a database, you
must consider how the database is set up, particularly when you are using
factory-based routing. For example, if the Production sample application is
spread across six machines, the database on each machine must be set up
appropriately and in accordance with the routing tables in the UBBCONFIG file.
Guide to the University Sample Applications 7-25

7 THE PRODUCTION SAMPLE APPLICATION
7-26 Guide to the University Sample Applications

APPENDIX
A Setting Up the
Database

The University sample applications use a database (the University database) to store
all the data (for example, course names and course summaries) used in the sample
applications. Before you can build and run the University sample applications, you
need to install and set up the database.

This appendix describes the setup process for the database. For details about the steps,
see the product documentation for the database you are using.

Database Support

The University sample applications shipped with version 4.2 of the WebLogic
Enterprise (WLE) software can be used with Oracle version 7.3.3 or greater.
Table A-1 lists what version of Oracle is supported on each operating system.

Table A-1 Database Support

Operating System Version of Oracle Database Supported

Solaris SPARC version 2.6 Oracle version 7.3.4 Enterprise Edition for Sun
SPARC

Solaris SPARC version 7.0 Oracle version 7.3.4 for Solaris version 2.7

HP-UX version 10.20 Oracle version 7.3.3 for HP-UX version 10.20
Guide to the University Sample Applications A-1

A Setting Up the Database
Setup Instructions for the Oracle Database

You can use the Oracle database in the following manner:

t As a local instance

t As a remote instance

Setup for Local Database Instance

If you are using a local instance of the Oracle database, you need to install the
following Oracle components:

t Programmer/2000 Pro*C/C++

t TCP/IP Adapter

t SQL*Net Client

t SQL*Plus

HP-UX version 11.0 Oracle version 8.0 for HP-UX version 11.0

IBM AIX version 4.3.2 Oracle version 8.0.4 for IBM AIX

Compaq Tru64 Oracle version 7.3.3 for Compaq Tru64

Sequent version 4.4.2 Oracle version 8.0.4 Client for Sequent Dynix

SGI IRIX version 6.5 IP27 Oracle version 8.0.4 Client for SGI IRIX

Windows NT/Intel version 4.0 Oracle version 7.3.3. for Windows NT and Oracle
version 8.0 for Windows NT

Windows NT/Alpha version 4.0 Oracle version 7.3.3.0 for Windows NT and
Oracle version 8.0 for Windows NT

Operating System Version of Oracle Database Supported
A-2 Guide to the University Sample Applications

Setup Instructions for the Oracle Database
t Oracle 7 Server

t Oracle 7 Utilities

t SQL*Net Server

Use the default database created by the Oracle installation program. You need the
connection string for the Oracle database and the default user id and password. Refer
to the Oracle product documentation for information about obtaining this information.

Once the Oracle software is installed, you need to start the daemon for the Oracle
database. The daemon is generally started as part of the start-up process for your
machine. You also need to enable an XA Resource Manager and set privileges so that
the XA Resource Manager can manage the interaction between the Oracle database
and the sample applications (v$xatrans$).

Enter the following command to enable an XA Resource Manager that works with the
University sample applications:

SQL>grant select on v$xatrans$ to public;

Note: Enter the following additional command only if you are using version 8.0 of
the Oracle database.

SQL>grant select on dba_pending_transactions to user;

SQL>commit;

where user is the default user of the Oracle database.

For more information about performing these steps, see the Oracle product
documentation.

Instructions for initializing the Oracle database are included in the descriptions of
building the individual sample applications.

Setup for Remote Database Instance

If you are using a remote instance of the Oracle database (e.g. a database running on
another machine), you need to install the following Oracle components:

t Programmer/2000 Pro*C/C++, Version 2.2.3.0.0
Guide to the University Sample Applications A-3

A Setting Up the Database

nce
 the

ns

 the

of

f
t TCP/IP Adapter, Version 2.3.3.0.0

t SQL*Net Client, Version 2.3.3.0.0

t SQL*Plus, Version 3.3.3.0.0

In order to use a remote instance of the Oracle database, you need to define an alias for
the database. You need the following information:

t A character string that identifies the remote instance of the Oracle database.

t The name of the machine on which the remote instance of the Oracle database is
located. This name must match host name specified in the machine’s UBBCONFIG
file.

t The SID of the remote instance of the Oracle database.

Use the SQL *Net Easy Configuration Utility to define an alias for the remote insta
of the Oracle database. For more information about performing these steps, see
Oracle product documentation.

The database you are accessing needs an XA Resource Manager enabled with
privileges that allow interaction between the database and the sample applicatio
(v$xatrans$).

Enter the following command to enable an XA Resource Manager that works with
University sample applications:

SQL>grant select on v$xatrans$ to public;

Note: Enter the following additional command only if you are using version 8.0
the Oracle database.

SQL>grant select on dba_pending_transactions to user;

SQL>commit;

where user is the default user of the Oracle database.

Instructions for initializing the Oracle database are included in the descriptions o
building the individual sample applications.
A-4 Guide to the University Sample Applications

Index

A
activation policies

Basic sample application 3-7
process 7-7
Production sample application 7-7
Wrapper sample application 6-6

ActiveX client applications
starting

Basic sample application 3-14
Production sample application 7-23
Security sample application 4-12
Transactions sample

application 5-14
Wrapper sample application 6-15

using
Basic sample application 3-18
Production sample application 7-1
Security sample application 4-14
Transactions sample

application 5-17
Wrapper sample application 6-17

writing
Basic sample application 3-6
Production sample application 7-9
Security sample application 4-3
Transactions sample application 5-4
Wrapper sample application 6-4

APPDIR parameter
setenv file 2-4
UBBCONFIG file 2-7

Application Builder
using

Basic sample application 3-15
Production sample application 7-23
Security sample application 4-12
Transactions sample

application 5-14
Wrapper sample application 6-15

B
Basic sample application 3-12

activation policies 3-7
buildobjclient command 3-12
buildobjserver command 3-12
changing protection on files 3-11
compiling client applications 3-12
compiling the server application 3-12
description 3-2
ICF file 3-7
illustrated 3-2
loading the UBBCONFIG file 3-12
makefile 3-12
setenv file 3-11
setting up work directory 3-8
source files 3-8
starting the ActiveX client

application 3-14
starting the CORBA C++ client

application 3-14
Guide to the University Sample Applications I-5

starting the CORBA Java client
application 3-14

starting the Oracle database 3-11
starting the server application 3-13
tmloadcf command 3-12
transaction policies 3-7
UBBCONFIG file 3-7
writing server applications 3-6

BEA TUXEDO applications
replicating 7-2, 7-3
wrapping 6-2

Bootstrap object
Basic sample application 3-6
in client applications 3-6
Security sample application 4-3
Transactions sample application 5-4
Wrapper sample application 6-4

building
Basic sample application 3-8
Production sample application 7-13
Security sample application 4-4
transaction manager 5-11
Transactions sample application 5-6
Wrapper sample application 6-6

buildobjclient command
Basic sample application 3-12
Production sample application 7-20
Security sample application 4-9
Transactions sample application 5-11
Wrapper sample application 6-12

buildobjserver command
Basic sample application 3-12
Production sample application 7-20
Security sample application 4-9
Transactions sample application 5-11
Wrapper sample application 6-12

C
CCMPL parameter

UBBCONFIG file 2-6

client applications
Bootstrap object 3-6
FactoryFinder object 3-6
initializing the ORB 3-6
PrincipalAuthenticator operation 4-3
SecurityCurrent object 4-3
TransactionCurrent object 5-4
types 3-6
writing

Basic sample application 3-6
Production sample application 7-9
Security sample application 4-3, 5-4
Transactions sample application 5-4
Wrapper sample application 6-4

client stubs
generating 3-5
in sample applications 3-5

compiling
client applications

Basic sample application 3-12
Production sample application 7-20
Security sample application 4-9
Transactions sample

application 5-11
Wrapper sample application 6-12

server applications
Basic sample application 3-12
Production sample application 7-20
Security sample application 4-9
Transactions sample

application 5-11
Wrapper sample application 6-12

configuring
Basic sample application 3-7
factory-based routing 7-9
Production sample application 7-9
replicated server applications 7-9
replicated server groups 7-9
security 4-4
Security sample application 4-4
Transactions sample application 5-5
I-6 Guide to the University Sample Applications

Wrapper sample application 6-5
CORBA C++ client applications

client stubs 3-5
starting

Basic sample application 3-14
Production sample application 7-22
Security sample application 4-11
Transactions sample

application 5-13
Wrapper sample application 6-14

using
Basic sample application 3-16
Production sample application 7-1
Security sample application 4-14
Transactions sample

application 5-16
Wrapper sample application 6-17

writing
Basic sample application 3-6
Production sample application 7-9
Security sample application 4-3
Transactions sample application 5-3
Wrapper sample application 6-4

CORBA Java client applications
client stubs 3-5
starting

Basic sample application 3-14
Production sample application 7-22
Security sample application 4-11
Transactions sample

application 5-14
Wrapper sample application 6-14

using
Basic sample application 3-17
Production sample application 7-1
Security sample application 4-14
Transactions sample

application 5-17
Wrapper sample application 6-17

writing
Basic sample application 3-6

Production sample application 7-9
Security sample application 4-3
Transactions sample application 5-3
Wrapper sample application 6-4

CourseSynopsisEnumerator interface
OMG IDL 3-3

CPPCMPL parameter
UBBCONFIG file 2-6

CPPINC parameter
UBBCONFIG file 2-6

D
development process

client applications
Production sample application 7-9
Security sample application 4-3
Transactions sample application 5-4
Wrapper sample application 6-4

factory-based routing 7-12
ICF file

Basic sample application 3-7
Production sample application 7-13
Security sample application 4-4
Transactions sample application 5-5
Wrapper sample application 6-5

OMG IDL
Basic sample application 3-3
Production sample application 7-8
Security sample application 4-3
Transactions sample application 5-4
Wrapper sample application 6-3

replicated server applications 7-10
replicated server groups 7-10
server applications

Security sample application 4-4
Transactions sample application 5-4
Wrapper sample application 6-4

UBBCONFIG file 4-4, 7-9
Basic sample application 3-7
factory-based routing 7-12
Guide to the University Sample Applications I-7

replicated server applications 7-10
replicated server groups 7-10
Transactions sample application 5-5
Wrapper sample application 6-5

DII
in sample applications 3-5

F
factory-based routing

description 7-7
Production sample application 7-7
routing criteria 7-12
UBBCONFIG file 7-12

INTERFACES section 7-12
ROUTING section 7-12

FactoryFinder object
in client applications 3-6

FIELD parameter 7-12
FIELDTYPE parameter 7-12
file protections

Basic sample application 3-11
Production sample application 7-17
Security sample application 4-7
Transactions sample application 5-9
Wrapper sample application 6-9

FML message buffer
in server applications 6-4

G
genicf command 3-7
GROUP parameter 7-10
GROUPS section

replicating server applications 7-10
replicating server groups 7-10

I
ICF file

Basic sample application 3-7

Production sample application 7-13
Security sample application 4-4
Transactions sample application 5-5
Wrapper sample application 6-5

idl command 3-5
Implementation Configuration File

see ICF file
initialize the ORB 3-6
INTERFACES section

implementing factory-based
routing 7-12

ISL parameter
Basic sample application 3-14, 3-15
Production sample application 7-22
Security sample application 4-11
Transactions sample application 4-12,

 5-14, 5-15, 6-15, 7-23
UBBCONFIG file 2-8

J
JDKDIR parameter

setenv file 2-5

L
LD_LIBRARY_PATH parameter

UBBCONFIG file 2-6
LIBPATH parameter

UBBCONFIG file 2-6
loading the UBBCONFIG file

Basic sample application 3-12
Production sample application 7-18
Security sample application 4-8
Transactions sample application 5-10
Wrapper sample application 6-10
I-8 Guide to the University Sample Applications

M
makefile

Basic sample application 3-12
client stubs 3-5
Production sample application 7-20
Security sample application 4-9
skeletons 3-5
Transactions sample application 5-11
Wrapper sample application 6-10

MAX parameter 7-10
method implementations

Basic sample application 3-6
Security sample application 4-4
Transactions sample application 5-4
Wrapper sample application 6-4

MIN parameter 7-10
MY_SERVER_MACHINE parameter

UBBCONFIG file 2-7

N
naming conventions

sample application code 1-3
setenv file 2-3
UBBCONFIG file 2-3

NETSCAPE parameter
setenv file 2-5

O
object IDs 7-2
OIDs 7-2
OMG IDL

Basic sample application 3-3
compiling 3-5
CourseSynopsisEnumerator

interface 3-3
generating client stubs 3-5
generating skeletons 3-5
Production sample application 7-8
Registrar interface 3-3

RegistrarFactory interface 3-3
Security sample application 4-3
Teller interface 6-3
TellerFactory interface 6-3
Transactions sample application 5-4
user exception 5-4
Wrapper sample application 6-3

OPENINFO parameter
Transactions sample application 5-5
UBBCONFIG file 2-8

Oracle database
setting the XA parameter 5-5
starting

Basic sample application 3-11
Production sample application 7-18
Security sample application 4-8
Transactions sample

application 5-10
Wrapper sample applications 6-10

ORACLE_SID parameter
setenv file 2-6

ORADIR parameter
setenv file 2-5

P
PrincipalAuthenticator object

using in sample applications 4-2
process activation policy 7-7
Production sample application

activation policies 7-7
buildobjclient command 7-20
buildobjserver command 7-20
changing protection on files 7-17
compiling client applications 7-20
compiling server applications 7-20
description 7-2
development process 7-8
factory-based routing 7-2, 7-7
ICF file 7-13
illustrated 7-2
Guide to the University Sample Applications I-9

loading the UBBCONFIG file 7-18
makefile 7-20
replicating server applications 7-2
replicating server groups 7-2
server groups 7-5
setenv file 7-18
setting up a work directory 7-14
source files 7-14
starting the ActiveX client

application 7-23
starting the CORBA C++ client

application 7-22
starting the CORBA Java client

application 7-22
starting the Oracle database 7-18
starting the server application 7-21
stateless objects 7-7
tmloadcf command 7-18
UBBCONFIG file 7-9
writing client applications 7-9
writing server applications 7-9

R
RANGES parameter 7-12
Registrar interface

OMG IDL 3-3
RegistrarFactory interface

OMG IDL 3-3
replicating

server applications 7-3
description 7-2

server groups 7-5
ROUTING section

FIELD parameter 7-12
FIELDTYPE parameter 7-12
implementing factory-based

routing 7-12
RANGES parameter 7-12
TYPE parameter 7-12

S
sample applications

naming conventions 1-3
overview

scaling
Production sample application 7-2, 7-22
stateless objects 7-7

security
adding to sample applications 4-1
application-level 4-1

SECURITY parameter 4-4
Security sample application

buildobjclient command 4-9
buildobjserver command 4-9
changing protection on files 4-7
client applications 4-3
compiling

client applications 4-9
compiling the server application 4-9
description 4-1
development process 4-3
ICF file 4-4
illustrated 4-2
initializing the database 4-8
ISL parameter 4-11
loading the UBBCONFIG file 4-8
makefile 4-9
PrincipalAuthenticator object 4-2
SecurityCurrent object 4-2
server application 4-4
setenv file 4-8
setting up the work directory 4-5
source files 4-5
tmloadcf command 4-8
UBBCONFIG file 4-4
writing client applications 4-3
writing server applications 4-4

SecurityCurrent object
using in client applications 4-2
using in Security sample application 4-3
I-10 Guide to the University Sample Applications

server applications
configuring in groups 7-5
ICF file 3-7
ISL parameter 3-13
method implementations 3-6
replicating 7-3

description 7-2
UBBCONFIG file 7-10

server object 3-6
starting

Basic sample application 3-13
Production sample application 7-21
Security sample application 4-10
Transactions sample

application 5-12
Wrapper sample application 6-13

TMFFNAME 3-13
TMIFSRVR 3-13
TMSYSEVT 3-13
UBBCONFIG file

GROUPS section 7-10
SERVERS section 7-10

using FML message buffers 6-4
writing

Basic sample application 3-6
Production sample application 7-9
Security sample application 4-4
Transactions sample application 5-4
Wrapper sample application 6-4

server groups
creating 7-5
Production sample application 7-5
replicating 7-5, 7-10
Transactions sample application 5-5
UBBCONFIG file

GROUPS section 7-10
SERVERS section 7-10

Wrapper sample application 6-5
server object

Basic sample application 3-6
Transactions sample application 5-4

SERVERS section
GROUP parameter 7-10
MAX parameter 7-10
MIN parameter 7-10
replicating server applications 7-10
replicating server groups 7-10
SRVID parameter 7-10

setenv file
Basic sample application 3-11
description 2-2
paramters 2-4
Transactions sample application 5-9

SHLIB_PATH parameter
UBBCONFIG file 2-6

skeletons
generating 3-5
in sample applications 3-5

software requirements
C++ 2-1
Java 2-1
Visual Basic 2-1

source files
Basic sample application 3-8
Production sample application 7-14
Security sample application 4-5
Transactions sample application 5-6
Wrapper sample application 6-6

SRVID parameter 7-10
stateless objects 7-7
support

documentation xvi
technical xvi

system environment variables
Basic sample application 3-11
Production sample application 7-18
Security sample application 4-8
setting 2-9
Transactions sample application 5-9
Guide to the University Sample Applications I-11

T
Teller interface

OMG IDL 6-3
TellerFactory interface

OMG IDL 6-3
TLOGDEVICE parameter 5-5, 7-19
tmloadcf command

Basic sample application 3-12
Production sample application 7-18
Security sample application 4-9
Transactions sample application 5-10
Wrapper sample application 6-10

TMS_ORA 5-11
TOBJADDR parameter

setenv file 2-5
transaction manager

building 5-11
TMS_ORA 5-11

transaction policies
Basic sample application 3-7
Transactions sample application 5-5
Wrapper sample application 6-6

TransactionCurrent object
using in client applications 5-4

transactions
description 5-1
ICF file 5-5
in client applications 5-4
OMG IDL 5-1
TransactionCurrent object 5-4
UBBCONFIG file 5-5

transactions log
creating

Production sample application 7-19
Transactions sample

application 5-10
Wrapper sample application 6-11

Transactions sample application
buildobjclient command 5-11
buildobjserver command 5-11

changing protection on files 5-9
compiling client applications 5-11
compiling server application 5-11
description 5-1
development process 5-3
illustrated 5-2
initializing the database 5-10
setenv file 5-9
setting up work directory 5-6
source files 5-7
starting server application 5-4
tmloadcf command 5-10
transaction policies 5-5
UBBCONFIG file 5-5
writing client applications 5-4
writing server applications 5-4

TUXCONFIG file
description 3-7

TUXCONFIG parameter
setenv file 2-4
UBBCONFIG file 2-7

TUXDIR parameter
setenv file 2-4
UBBCONFIG file 2-8

TYPE parameter 7-12

U
UBBCONFIG file

Basic sample application 3-7, 3-12
description 2-2
parameters 2-6
replicating server groups 7-5
security 4-4
SECURITY parameter 4-4
Security sample application 4-4
Transactions sample application 5-5
Wrapper sample application 6-5

UNIX
APPDIR parameter 2-4
naming conventions for setenv file 2-3
I-12 Guide to the University Sample Applications

naming conventions for UBBCONFIG
file 2-3

setenv parameters 2-4
UBBCONFIG parameters 2-6

user exceptions
Transactions sample application 5-2
Wrapper sample application 6-3

USERID parameter
setenv file 2-6

W
Windows NT

APPDIR parameter 2-4
naming conventions for setenv file 2-3
naming conventions for UBBCONFIG

file 2-3
setenv parameters 2-4
UBBCONFIG parameters 2-6

WLE domain
adding security to 4-2

Wrapper sample application
activation policies 6-6
buildobjclient command 6-12
buildobjserver command 6-12
changing protection on files 6-9
compiling client applications 6-12
compining the server application 6-12
description 6-1
development process 6-3
ICF file 6-5
illustrated 6-2
loading the UBBCONFIG file 6-10
makefile 6-10
setting up work directory 6-6
source files 6-6
starting CORBA C++ client application

6-14
starting the ActiveX client application

 6-15
starting the CORBA Java client

application 6-14
starting the Oracle database 6-10
starting the server application 6-13
tmloadcf command 6-10
transactions log 6-11
UBBCONFIG file 6-5
writing client applications 6-4
writing server applications 6-4

wrapping
BEA TUXEDO applications 6-2

X
XA parameter 5-5
Guide to the University Sample Applications I-13

I-14 Guide to the University Sample Applications

	Copyright
	Preface
	Purpose of This Document
	How to Use This Document
	Related Documentation
	Contact Information

	1 Introduction
	An Overview of the University Sample Applications
	Naming Conventions Used in the University Sample Applications

	2 Setting Up Your Environment
	System Prerequisites
	Editing the setenv and UBBCONFIG Files
	Naming Conventions for the setenv and UBBCONFIG Files
	Setting setenv Parameters
	Setting the UBBCONFIG Parameters
	Running the setenv Command

	3 The Basic Sample Application
	How the Basic Sample Application Works
	The OMG IDL for the Basic Sample Application
	Generating the Client Stubs and the Skeletons
	Writing the Client Application
	Writing the Server Application
	Configuring the Basic Sample Application
	Building the Basic Sample Application
	Copying the Files for the Basic Sample Application into a Work Directory
	Changing the Protection on the File for the Basic Sample Application
	Setting the Environment Variables
	Initializing the University Database
	Loading the UBBCONFIG File

	Compiling the Basic Sample Application
	Running the Basic Sample Application
	Starting the Server Application
	Starting the CORBA C++ Client Application
	Starting the CORBA Java Client Application
	Starting the ActiveX Client Application

	Using the Client Applications in the Basic Sample Application
	The CORBA C++ Client Application
	The CORBA Java Client Application
	The ActiveX Client Application

	4 The Security Sample Application
	How the Security Sample Application Works
	The Development Process for the Security Sample Application
	OMG IDL
	The Client Application
	The Server Application
	The UBBCONFIG File
	The ICF File

	Building the Security Sample Application
	Copying the Files for the Security Sample Application into a Work Directory
	Changing the Protection on the Files for the Security Sample Application
	Setting the Environment Variables
	Initializing the University Database
	Loading the UBBCONFIG File

	Compiling the Security Sample Application
	Running the Security Sample Application
	Starting the University Server Application
	Starting the CORBA C++ Client Application
	Starting the CORBA Java Client Application
	Starting the ActiveX Client Application

	Using the Client Applications in the Security Sample Application
	The CORBA C++ Client Application
	The CORBA Java Client Application
	The ActiveX Client Application

	5 The Transactions Sample Application
	How the Transactions Sample Application Works
	The Development Process for the Transactions Sample Application
	OMG IDL
	The Client Application
	The University Server Application
	The UBBCONFIG File
	The ICF File

	Building the Transactions Sample Application
	Copying the Files for the Transactions Sample Application into a Work Directory
	Changing the Protection on the Files for the Transactions Sample Application
	Setting the Environment Variables
	Initializing the University Database
	Loading the UBBCONFIG File
	Creating a Transaction Log

	Compiling the Transactions Sample Application
	Running the Transactions Sample Application
	Starting the Server Application
	Starting the CORBA C++ Client Application
	Starting the CORBA Java Client Application
	Starting the ActiveX Client Application

	Using the Client Applications in the Transactions sample application
	The CORBA C++ Client Application
	The CORBA Java Client Application
	The ActiveX Client Application

	6 The Wrapper Sample Application
	How the Wrapper Sample Application Works
	The Development Process for the Wrapper sample application
	OMG IDL
	The Client Application
	The Server Application
	The UBBCONFIG File
	The ICF File

	Building the Wrapper Sample Application
	Copying the Files for the Wrapper Sample Application into a Work Directory
	Changing the Protection on the Files for the Wrapper Sample Application
	Setting the Environment Variables
	Initializing the University Database
	Loading the UBBCONFIG File
	Creating a Transaction Log

	Compiling the Wrapper Sample Application
	Running the Wrapper Sample Application
	Starting the Server Application
	Starting the CORBA C++ Client Application
	Starting the CORBA Java Client Application
	Starting the ActiveX Client Application

	Using the Client Applications in the Wrapper Sample Application
	The CORBA C++ Client Application
	The CORBA Java Client Application
	The ActiveX Client Application

	7 The Production Sample Application
	How the Production Sample Application Works
	Replicating Server Applications
	Replicating Server Groups
	Using a Stateless Object Model
	Using Factory-based Routing

	The Development Process for the Production Sample Application
	OMG IDL
	The Client Application
	The Server Application
	The UBBCONFIG File
	The ICF File

	Building the Production Sample Application
	Copying the Files for the Production Sample Application into a Work Directory
	Changing the Protection on the Files for the Production Sample Application
	Setting the Environment Variables
	Initializing the University Database
	Loading the UBBCONFIG File
	Creating a Transaction Log

	Compiling the Production Sample Application
	Running the Production Sample Application
	Starting the Server Application
	Starting the CORBA C++ Client Application
	Starting the CORBA Java Client Application
	Starting the ActiveX Client Application

	How the Production Sample Application Can Be Scaled Further
	Database Support
	Setup Instructions for the Oracle Database
	Setup for Local Database Instance
	Setup for Remote Database Instance

