
BEA WebLogic Enterprise
Using Server-to-Server Communication

B E A W e b L o g i c E n t e r p r i s e 4 . 2
D o c u m e n t E d i t i o n 4 . 2

J u l y 1 9 9 9

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and TUXEDO are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Connect, BEA Manager, BEA MessageQ, Jolt, M3, and WebLogic are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using Server-to-Server Communication

Document Edition Date Software Version

4.2 July 1999 BEA WebLogic Enterprise 4.2

. 2-9

-11

2-13

e
2-15

-15

-17

2-17

-18

-20

-22
Contents

Preface
Purpose of This Document ..v

How to Use This Document .. vi

Related Documentation ... viii

Contact Information... xi

1. Understanding Server-to-Server Communication
Overview of Server-to-Server Communication... 1-1

Joint Client/Server Applications.. 1-2

Object Policies for Callback Objects... 1-4

2. Developing C++ Joint Client/Server Applications
Development Process .. 2-2

Chat Room Sample Application .. 2-3

Step 1: Writing the OMG IDL... 2-5

Step 2: Generating Skeletons and Client Stubs ... 2-7

Step 3: Writing the Methods That Implement Each Object’s Operations........

Step 4: Writing the Client Portion of the Joint Client/Server Application...... 2

Step 5: Creating a Callback Object Using the Callbacks Wrapper Object......

Step 6: Invoking Operations on a WLE Object By Passing a Reference to th
Callback Object ..

Step 7: Specifying Configuration Information .. 2

Step 8: Compiling Joint Client/Server Applications 2

Using the POA to Create a Callback Object ...

Creating a Callback Object with a Transient Object Policy..................... 2

Creating a Callback Object with a Persistent/User ID Object Policy 2

Creating a Callback Object with a Persistent/System ID Object Policy .. 2
Using Server-to-Server Communication iii

. 3-8

3-11

-12

3-13

. 3-15

3-16

-16

-17

3-18

-19

ry

-22

-23

3-25

3-29
Threading Considerations for C++ Joint Client/Server Applications 2-23

Building and Running the Chat Room Sample Application............................ 2-24

Copying the Files for the Chat Room Sample Application into a Work
Directory.. 2-25

Changing the Protection Attribute on the Files for the Chat Room Sample
Application .. 2-26

Verifying the Setting of the TUXDIR Environment Variable 2-27

Executing the ChatSetup Command... 2-28

Starting the Server Application .. 2-29

Starting the Client Application... 2-30

Stopping the Chat Room Sample Application.. 2-30

3. Developing Java Joint Client/Server Applications
Development Process .. 3-2

Software Requirements.. 3-3

The Callback Sample Application ... 3-3

Step 1: Writing the OMG IDL... 3-4

Step 2: Generating Skeletons and Client Stubs ... 3-6

Step 3: Writing the Methods That Implement Each Interface’s Operations

Step 4: Initializing the ORB ..

Step 5: Writing the Client Portion of the Joint Client/Server Application 3

Step 6: Creating a Callback Object Using the Callbacks Wrapper Object......

Step 7: Establishing a Connection to an ISH..

Step 8: Invoking Operations on the Callback Object

Step 9: Specifying Configuration Information .. 3

Step 10: Compiling Java Joint Client/Server Applications 3

Threading Considerations for Java Joint Client/Server Applications

Building and Running the Callback Sample Application................................ 3

Copying the Files for the Callback Sample Application into a Work Directo
3-20

Changing the Protection Attribute on the Files for the Callback Sample
Application .. 3

Verifying the Settings of the Environment Variables 3

Executing the runme Command ...

Using the Callback Sample Application..
iv Using Server-to-Server Communication

tion
Preface

Purpose of This Document

This document describes using the server-to-server functionality in the BEA
WebLogic Enterprise (sometimes referred to as WLE) product. This document defines
concepts associated with using server-to-server communication and describes the
development process for Java and C++ joint client/server applications. In addition,
instructions for building and running the Chat Room and Callback sample applications
are included in this document.

Note: Effective February 1999, the BEA M3 product is renamed. The new name of
the product is BEA WebLogic Enterprise (WLE).

 Who Should Read This Document

This document is intended for programmers who are interested in implementing
server-to-server communication in their WLE applications.

How This Document Is Organized

Using Server-to-Server Communication is organized as follows:

t Chapter 1, “Understanding Server-to-Server Communication,” explains the
concepts you need to understand in order to use server-to-server communica
and build joint client/server applications.
Using Server-to-Server Communication vii

t

at to
he

t a

or

nd

the
t Chapter 2, “Developing C++ Joint Client/Server Applications,” describes
building C++ joint client/server applications and how to build and run the Cha
Room sample application.

t Chapter 3, “Developing Java Joint Client/Server Applications,”describes
building Java joint client/server applications and how to build and run the
Callback sample application.

How to Use This Document

This document, Using Server-to-Server Communication, is designed primarily as an
online, hypertext document. If you are reading this as a paper publication, note th
get full use from this document you should access it as an online document via t
Online Documentation CD for the BEA WebLogic Enterprise 4.2 release.

The following sections explain how to view this document online, and how to prin
copy of this document.

Opening the Document in a Web Browser

To access the online version of this document, open the following file:

\doc\wle\v42\index.htm

Note: The online documentation requires Netscape Communicator version 4.0
later, or Microsoft Internet Explorer version 4.0 or later.

Printing from a Web Browser

You can print a copy of this document, one file at a time, from the Web browser.
Before you print, make sure that the chapter or appendix you want is displayed a
selected in your browser. To select a chapter or appendix, click anywhere inside
chapter or appendix you want to print.
viii Using Server-to-Server Communication

The Online Documentation CD includes Adobe Acrobat PDF files of all of the online
documents. You can use the Adobe Acrobat Reader to print all or a portion of each
document. On the CD Home Page, click the PDF Files button and scroll to the entry
for the document you want to print.

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr
Using Server-to-Server Communication ix

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name]...
[-f firstfile-syntax] [-l lastfile-syntax]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

t That an argument can be repeated several times in a command line

t That the statement omits additional optional arguments

t That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name]...
[-f firstfile-syntax] [-l lastfile-syntax]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
x Using Server-to-Server Communication

Related Documentation

The following sections list the documentation provided with the BEA WebLogic
Enterprise software, related BEA publications, and other publications related to the
technology.

BEA WebLogic Enterprise Documentation

The BEA WebLogic Enterprise information set consists of the following documents:

Installation Guide

C++ Release Notes

Java Release Notes

Getting Started

Guide to the University Sample Applications

Guide to the Java Sample Applications

Creating Client Applications

Creating C++ Server Applications

Creating Java Server Applications

Administration Guide

Using Server-to-Server Communication (this document)

C++ Programming Reference

Java Programming Reference

Java API Reference

JDBC Driver Programming Reference

System Messages
Using Server-to-Server Communication xi

Glossary

Technical Articles

Note: The Online Documentation CD also includes Adobe Acrobat PDF files of all
of the online documents. You can use the Adobe Acrobat Reader to print all
or a portion of each document.

BEA Publications

Selected BEA TUXEDO Release 6.5 for BEA WebLogic Enterprise version 4.2
documents are available on the Online Documentation CD.

To access these documents:

1. Click the Other Reference button from the main menu.

2. Click the TUXEDO Documents option.

Other Publications

For more information about CORBA, Java, and related technologies, refer to the
following books and specifications:

Cobb, E. 1997. The Impact of Object Technology on Commercial Transaction
Processing. VLDB Journal, Volume 6. 173-190.

Edwards, J. with DeVoe, D. 1997. 3-Tier Client/Server At Work. Wiley Computer
Publishing.

Edwards, J., Harkey, D., and Orfali, R. 1996. The Essential Client/Server Survival
Guide. Wiley Computer Publishing.

Flanagan, David. May 1997. Java in a Nutshell, 2nd Edition. O’Reilly & Associates,
Incorporated.

Flanagan, David. September 1997. Java Examples in a Nutshell. O’Reilly &
Associates, Incorporated.
xii Using Server-to-Server Communication

Fowler, M. with Scott, K. 1997. UML Distilled, Applying the Standard Object
Modeling Language. Addison-Wesley.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. 1995. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley Professional Computing
Series.

Jacobson, I. 1994. Object-Oriented Software Engineering: A Use Case Driven
Approach. Addison-Wesley.

Mowbray, Thomas J. and Malveau, Raphael C. (Contributor). 1997. CORBA Design
Patterns, Paper Back and CD-ROM Edition. John Wiley & Sons, Inc.

Orfali, R., Harkey, D., and Edwards, J. 1997. Instant Corba. Wiley Computer
Publishing.

Orfali, R., Harkey, D. February 1998. Client/Server Programming with Java and
CORBA, 2nd Edition. John Wiley & Sons, Inc.

Otte, R., Patrick, P., and Roy, M. 1996. Understanding CORBA. Prentice Hall PTR.

Rosen, M. and Curtis, D. 1998. Integrating CORBA and COM Applications. Wiley
Computer Publishing.

Rumbaugh, J., Blaha, M., Premerlani, W., Eddy, F., and Loresen, W. 1991.
Object-Oriented Modeling and Design. Prentice Hall.

The Common Object Request Broker: Architecture and Specification. Revision 2.2,
February 1998. Published by the Object Management Group (OMG).

CORBAservices: Common Object Services Specification. Revised Edition. Updated:
November 1997. Published by the Object Management Group (OMG).

Contact Information

The following sections provide information about how to obtain support for the
documentation and the software.
Using Server-to-Server Communication xiii

Documentation Support

If you have questions or comments on the documentation, you can contact the BEA
Information Engineering Group by e-mail at docsupport@beasys.com. (For
information about how to contact Customer Support, refer to the following section.)

Customer Support

If you have any questions about this version of the BEA WebLogic Enterprise product,
or if you have problems installing and running the BEA WebLogic Enterprise
software, contact BEA Customer Support through BEA WebSupport at
www.beasys.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

t Your name, e-mail address, phone number, and fax number

t Your company name and company address

t Your machine type and authorization codes

t The name and version of the product you are using

t A description of the problem and the content of pertinent error messages
xiv Using Server-to-Server Communication

CHAPTER
1 Understanding
Server-to-Server
Communication

This chapter contains the following topics:

t Overview of Server-to-Server Communication

t Joint Client/Server Applications

t Object Policies for Callback Objects

Overview of Server-to-Server
Communication

Server-to-server communication allows WebLogic Enterprise (WLE) applications to
invoke CORBA objects and handle invocations from those CORBA objects (referred
to as callback objects). The CORBA objects can be either inside or outside of a WLE
domain.

The WLE product offers an implementation of the Internet Inter-ORB Protocol (IIOP)
Version 1.2, which provides inbound and outbound communication with the CORBA
objects. Server-to-server communication provides more efficient use of network
Using Server-to-Server Communication 1-1

1 Understanding Server-to-Server Communication
resources and provides integration with third-party Object Request Brokers (ORBs).
In addition, server-to-server communication is supported with CORBA objects that are
implemented using IIOP versions 1.0 and 1.1.

Joint Client/Server Applications

In previous versions of the WLE product, client applications invoked operations
defined in Object Management Group (OMG) Interface Definition Language (IDL) on
a CORBA object. The server applications implemented the operations of the CORBA
object. The CORBA objects in the server application used WLE TP Framework and
environmental objects to implement state management, security, and transactions.
These CORBA objects as referred to as WLE objects. Server applications could act as
client applications for other server applications; however, client applications could not
act as server applications for other client applications.

Server-to-server communication allows client applications to now act as server
applications for requests from other client applications. In addition, server-to-server
communication allows WLE server applications to invoke objects on other ORBs.

The server-to-server communication functionality is available through a callback
object. A callback object has two purposes:

t It invokes operations on either WLE or CORBA objects.

t It implements the operations of a CORBA object.

Callback objects do not use the TP Framework and are not subject to WLE
administration, they should be used when transactional behavior, security, reliability,
and scalability are not important.

Callback objects are implemented in joint client/server applications. A joint
client/server application consists of the following:

t A portion that performs WLE client application functions, such as initializing the
ORB, using the WLE environmental objects to establish connections, resolving
initial references to the FactoryFinder object, and using factories to create WLE
objects

t A portion that creates a servant for a callback object and activates the callback
object using an object ID
1-2 Using Server-to-Server Communication

Joint Client/Server Applications
Figure 1-1 shows the structure of a joint client/server application.

Figure 1-1 Structure of a Joint Client/Server Application

C++ and Java joint client/server applications are supported.

Use of callback objects in Java applets is limited due to Java applet security
mechanisms. Any Java applet run-time environment that allows a Java applet to create
and listen on sockets (via the proprietary environment or protocol of the Java applet)
can act as a joint client/server application. However, if the Java applet run-time
environment restricts socket communication, the Java applet cannot act as a joint
client/server application.

Note: The ActiveX client software that is included in the WLE V4.2 kit does not
support callback objects, and, therefore cannot be used to develop joint
client/server applications.

Joint Client/Server Application WLE Server Application

Factory

WLE Object

invoke_WLEobject(callbackobj)
operation;

Create Callback Object

Callbacks Wrapper callbackobj;
operation;

Client main()
Bootstrap

FactoryFinder
create_callbackobj;

invoke_WLEobject(callbackobj);
Using Server-to-Server Communication 1-3

1 Understanding Server-to-Server Communication
Joint client/server applications use IIOP to communicate with the WLE server
applications. IIOP can work in the following ways, depending on the version of the
IIOP protocol you are using:

t Bidirectional

Joint client/server applications are always connected to the same IIOP Server
Handler (ISH) in the WLE domain. That ISH reuses the same connection to send
requests to and receive requests from the joint client/server application.

t Dual-paired connection

Joint client/server applications use the register_callback_port method of
the Bootstrap object to register the listening port of the joint client/server
application in the ISH. Invocations from server applications on the callback
object in the joint client/server application are routed through the ISH connected
to the joint client/server application. This ISH uses a second outbound
connection to send requests to and receive replies from the connected joint
client/server application. The outbound connection is paired with the incoming
connection. This differs from bidirectional IIOP, which uses only one
connection.

t Asymmetric

Joint client/server applications can invoke on any callback object, and are not
restricted to invoking callback objects implemented in joint client/server
applications connected to an ISH. Asymmetric IIOP forces the ORB
infrastructure to search for an available ISH to handle the invocation.

For a more detailed description of bidirectional, dual-paired connnection, and
asymmetric IIOP, see the C++ Programming Reference or the Java Programming
Reference.

Object Policies for Callback Objects

Callback objects are assigned policies that control how long an object reference is valid
and how an object ID is assigned to the object. Object policies are defined when the
reference to the callback object is created. In addition, they can be defined in the
Callbacks Wrapper object, which simplifies the development of joint client/server
applications.
1-4 Using Server-to-Server Communication

Object Policies for Callback Objects

a

t

e

nce

 the
same

LE
ID or
The following object policies are supported for callback objects:

t Transient/System ID—The object reference for this type of callback object is
valid only for the life of the joint client/server application. The object ID is
assigned by the WLE system. This type of object is used for invocations that
joint client/server application wants to receive only until it terminates.

t Persistent/System ID—The object reference for this type of callback object is
valid across multiple invocations in a joint client/server application. The objec
ID is assigned by the WLE system. This type of object is useful in joint
client/server applications that stop and restart over a period of time. When th
Joint client/server application is up, it can receive requests on a particular
callback object with that object reference. Typically, the joint client/server
application creates the object reference once, saves it in its own permanent
storage area, and reactivates the servant for the object every time the joint
client/server application comes up.

t Persistent/User ID—This object policy is the same as Persistent/System ID,
except that the object ID is assigned by the joint client/server application.

When creating a callback object with an object policy of transient, the object refere
is valid only until the joint client/server application is terminated or until the

stop_all_objects method is called.

When creating a callback object with an object policy of persistent, the object
reference is valid even after the termination of the joint client/server application. If
joint client/server application terminates, restarts, and activates a servant for the
object ID, the servant accepts requests made on that object reference.

Note: If you are creating a native joint client/server application (that is, a joint
client/server application that is located in the same WLE domain as the W
server applications that invokes it), you cannot use the Persistent/System
Persistent/User ID object policies.
Using Server-to-Server Communication 1-5

CHAPTER

2 Developing C++ Joint
Client/Server
Applications

This chapter contains the following topics:

t Development Process

t Chat Room Sample Application

t Step 1: Writing the OMG IDL

t Step 2: Generating Skeletons and Client Stubs

t Step 3: Writing the Methods That Implement Each Object’s Operations

t Step 4: Writing the Client Portion of the Joint Client/Server Application

t Step 5: Creating a Callback Object Using the Callbacks Wrapper Object

t Step 6: Invoking Operations on a WLE Object By Passing a Reference to the
Callback Object

t Step 7: Specifying Configuration Information

t Step 8: Compiling Joint Client/Server Applications

t Using the POA to Create a Callback Object

t Threading Considerations for C++ Joint Client/Server Applications

t Building and Running the Chat Room Sample Application
Using Server-to-Server Communication 2-1

Development Process
Development Process

Table 2-1 outlines the development process for C++ joint client/server applications.

Table 2-1 Development Process for C++ Joint Client/Server Applications

These steps are explained in detail in subsequent topics.

Because the callback object in a joint client/server application is not transactional and
has no object management capabilities, you do not need to create an Implementation
Configuration File (filename.icf) for it. However, you still need to create an ICF
file for the WLE objects in your WLE application. For information about writing an
ICF file, see Creating C++ Server Applications.

Step Description

1 Write the OMG IDL for the callback interface and for the
CORBA interfaces you want to use in your WLE application.

2 Generate the skeletons and client stubs.

3 Write the methods that implement each object’s operations.

4 Write the client portion of the joint client/server application.

5 Create a callback object using the Callbacks Wrapper object.

6 Invoke operations on a WLE object by passing the object
reference for the callback object.

7 Specifying configuration information.

8 Compile the joint client/server application.
Using Server-to-Server Communication 2-2

2 Developing C++ Joint Client/Server Applications
Chat Room Sample Application

Throughout this topic, the Chat Room sample application is used to demonstrate the
development steps. A chat room is an application that allows several people at different
locations to communicate with each other. The chat room can be thought of as a
moderator whose job it is to keep track of client applications that have logged in, and
to distribute messages to those client applications.

A client application logs in to the moderator, supplying a user name. When messages
are entered at the keyboard, the client application invokes the moderator, and passes
the messages to the moderator. The moderator then distributes the messages to all the
other client applications by making an invocation on the callback object.

The Chat Room sample application consists of a C++ joint client/server application
and a WLE server application. The joint client/server application receives keyboard
input and makes invocations on the moderator. The joint client/server application also
sets up the callback object to listen for messages from the moderator (that is, to receive
invocations from the moderator). The WLE server application in the Chat Room
sample application implements the moderator.

Figure 2-1 illustrates how the Chat Room sample application works.
2-3 Using Server-to-Server Communication

Chat Room Sample Application
Figure 2-1 How the Chat Room Sample Application Works

The Chat Room sample application works as follows:

1. The joint client/server application implements the logic for the callback object (the
Listener object), creates a servant for the Listener object, and activates the Listener
object.

2. The joint client/server application creates an object reference for the Listener
object and passes it to the Moderator object as part of the signon operation.

3. The server application in the Chat Room sample application checks the keyboard
for messages.

4. When messages are generated at the keyboard, the Chat Room sample application
sends the messages to the Moderator object via the send operation.

Joint Client/Server Application WLE Server Application

Factory

Moderator Object

ModeratorFactory_i::get_Moderator

Moderator_i::signon(const char* who,
 Listener_ptr callback_ref)
{
...
//Store callback object
callbacks[i]=_duplicate(callback_ref);
...
}

Moderator_i::send(const char* who,
 const char* input_line)
{
...
//Invoke callback
callbacks[i]->post(who input_line);
...
}

Moderator_i::signoff();

Create Listener Object

Callbacks Wrapper Listener_obj;
Listener_i::post

Client main()
Bootstrap
FactoryFinder
create_Listener_obj;
get_Moderator(...);
invoke_Moderator_ptr->signon(
 const char* who,
 Listener_ptr callback_obj);
Using Server-to-Server Communication 2-4

2 Developing C++ Joint Client/Server Applications

.

 to
n
ch
at it
5. The Chat Room sample application temporarily passes control over to the ORB
to allow the Listener object in the joint client/server application to receive post
invocations from the Moderator object.

6. The Listener object in the joint client/server application saves the posted
messages until a client application requests them.

The source files for the Chat Room sample application are located in the
WLEdir\samples\corba\chatroom directory in the WLE software directory. See
“Building and Running the Chat Room Sample Application,” for more information

Step 1: Writing the OMG IDL

You use Object Management Group (OMG) Interface Definition Language (IDL)
describe available CORBA interfaces to client applications. An interface definitio
written in OMG IDL completely defines the CORBA interface and fully specifies ea
operation’s arguments. OMG IDL is a purely declarative language. This means th
contains no implementation details. For more information about OMG IDL, see
Creating Client Applications.

The Chat Room sample application implements the CORBA interfaces listed in
Table 2-2.

Table 2-2 CORBA Interfaces for the Chat Room Sample Application

Interface Description Operation

Listener The callback object post()

Moderator Receives input from client applications
and uses the callback object to forward
messages back to the joint client/server
application

signon()

send()

signoff()

ModeratorFactory Creates object references to the
Moderator object

get_moderator()
2-5 Using Server-to-Server Communication

Step 1: Writing the OMG IDL
Listing 2-1 shows the chatclient.idl that defines the Listener interface.

Listing 2-1 OMG IDL for the Listener Interface

module ChatClient{
interface Listener {

oneway void post (in string from,
 in string output_line);

};
};

Listing 2-2 shows the chatroom.idl that defines the Moderator and
ModeratorFactory interfaces for the Chat Room sample application. The #include is
used to resolve references to interfaces in another OMG IDL file. In the Chat Room
sample application, the signon method requires a Listener object as a parameter and,
therefore, must use the #include to reference the OMG IDL file that defines the
Listener interface.

Listing 2-2 OMG IDL for the Moderator and ModeratorFactory Interfaces

#include "ChatClient.idl"

module ChatRoom {

interface Moderator {
exception IdAlreadyUsed{};
exception NoRoomLeft{};
exception IdNotKnown{};

void signon(in string who,
 in ChatClient::Listener callback_ref)

raises(IdAlreadyUsed, NoRoomLeft);

void send (in string who,
 in string input_line)

raises(IdNotKnown);

void signoff(in string who)
raises(IdNotKnown);

};
Using Server-to-Server Communication 2-6

2 Developing C++ Joint Client/Server Applications

ate.

interface ModeratorFactory {
 Moderator get_moderator(in string chatroom_name);
};

};

Step 2: Generating Skeletons and Client
Stubs

The interface specification defined in OMG IDL is used by the IDL compiler to
generate skeletons and client stubs. Note that a joint client/sever application uses the
client stub for the WLE object and the skeleton and client stub for the callback object.

For example, in the Chat Room sample application, the joint client/server application
uses the skeleton and client stub for the Listener object (that is, the callback object) to
implement the object. The joint client/server application also uses the client stubs for
for the Moderator and ModeratorFactory to invoke operations on the objects. The
WLE server application uses the skeletons for the Moderator and ModeratorFactory
objects to implement the objects and the client stub for the Listener object to invoke
operations on the object.

During the development process, use the idl command with the -P and -i options
to compile the OMG IDL file that defines the callback object (for example, the
chatclient.idl file in the Chat Room sample application). The options work as
follows:

t The -P option creates a skeleton class that inherits directly from the
PortableServer::ServantBase class. Inheriting from
PortableServer::ServantBase means the joint client/server application must
explicitly create a servant for the callback object and initialize the servant’s st
The servant for the callback object cannot use the activate_object and
deactivate_object methods as they are members of the
PortableServer::ServantBase class.

t The -i option results in an implementation template file being generated. This
file is a template for the code that implements the interfaces defined in OMG
IDL for the Listener object.
2-7 Using Server-to-Server Communication

Step 2: Generating Skeletons and Client Stubs
You then need to compile the OMG IDL file that defines the interfaces in the WLE
server application (for example, the chatroom.idl file in the Chat Room sample
application). Use the idl command with only the -i option to compile that OMG IDL
file.

Table 2-3 lists the files that are created by the idl command.

Note: In the Chat Room sample application, the generated template files for the
ChatClient.idl and ChatRoom.idl files have been renamed to reflect the
objects (Listener and Moderator) they implement. In addition, the template file
for the Moderator object includes the implementation for the
ModeratorFactory object.

Table 2-3 Files Produced by the idl Command

File File in the Chat Room
Sample Application
Created by the idl
Command

Description

Client stub file Listener_c.cpp
Listener_c.h
Moderator_c.cpp
Moderator_c.h

Contains client stubs for each interface specified in the
OMG IDL file. The client stubs are used to send a request
to an object.

Implementation file Listener_i.cpp
Moderator_i.cpp

Contains signatures for the methods that implement the
operations of the Listener, Moderator, and
ModeratorFactory interfaces specified in the OMG
IDL file. The Listener_i.h file contains
implementation files that inherit from the
POA_ChatClient::Listener class.

Skeleton file Listener_s.cpp
Listener_s.h
Moderator_s.cpp
Moderator_s.h

Contains skeletons for each interface specified in the
OMG IDL file. During run time, the skeleton maps client
requests to the appropriate operation in the server
application. The Listener_s.h file contains
POA_skeleton class definitions (for example,
POA_ChatClient::Listener).
Using Server-to-Server Communication 2-8

2 Developing C++ Joint Client/Server Applications

al)

n

.

e
Step 3: Writing the Methods That Implement
Each Object’s Operations

After you compile each of the OMG IDL files, you need to write methods that
implement the operations for each object. In a joint client/server application, you write
the implementation file for the callback object (that is, the Listener object). You write
the implementation for a callback object as you would write the implementation for
any other CORBA object, except that you use the POA instead of the TP Framework.
You also write implementation files for the WLE objects (that is, the Moderator and
ModeratorFactory objects) in the WLE server application.

An implementation file contains the following:

t Method declarations for each operation specified in the OMG IDL file

t Your application’s business logic

t Constructors for each interface implementation (implementing these is option

t Optionally, for WLE objects, the
com.beasys.Tobj_Servant.activate_object and
com.beasys.Tobj_Servant.deactivate_object methods

Within the activate_object and deactivate_object methods, you write
code that performs any particular steps related to activating or deactivating a
object.

Listing 2-3 includes the implemention file for the Listener object, and Listing 2-4
includes the implementation file for the Moderator and ModeratorFactory objects

Note: Additional methods and data were added to the implementation file for th
Moderator and ModeratorFactory objects. The template for the
implementation file was created by the idl -i command.
2-9 Using Server-to-Server Communication

Step 3: Writing the Methods That Implement Each Object’s Operations
Listing 2-3 Implementation File for the Listener Object

//This module contains the definition of the implementation class
//Listener_i

#ifndef _Listener_i_h
#define _Listener_i_h

#include "ChatClient_s.h

class Listener_i : public POA_ChatClient::Listener {
public:

Listener_i ();
virtual ~Listener_i();

void post (
const char * from,
const char * output_line);

...
};

#endif

Listing 2-4 Implementation File for Moderator and ModeratorFactory Objects

//This module contains the definition of the implementation class
//Moderator and ModeratorFactory

#ifndef _Moderator_i_h
#define _Moderator_i_h

#include "ChatRoom_s.h"

const int CHATTER_LIMIT = 5; // the most chatters allowed

class Moderator_i : public POA_ChatRoom::Moderator {
public:

//Define the operations

void signon (const char* who,
 ChatClient::Listener_ptr callback_ref);

void send (const char * who,
 const char * input_line);
Using Server-to-Server Communication 2-10

2 Developing C++ Joint Client/Server Applications
 void signoff (const char * who);

//Define the Framework functions

virtual void activate_object (const char* stroid);
virtual void deactivate_object(const char* stroid,

TobjS::DeactivateReasonValue
reason);

private:

//Define function to find name on list
int find(const char * handle);

//Define name of the chat room overseen by the Moderator
char* m_chatroom_name;

//Data for maintaining list

//Chatter[n] id
 CORBA::String chatters[CHATTER_LIMIT];

//Chatter[n] callback ref
ChatClient::Listener_var callbacks[CHATTER_LIMIT];

};

class ModeratorFactory_i : public POA_ChatRoom::ModeratorFactory {
public:

 ChatRoom::Moderator_ptr get_moderator (const char*
 chatroom_name);
};
#endif

Step 4: Writing the Client Portion of the
Joint Client/Server Application

During development of a joint client/server application, you write the client portion of
the joint client/server application as you would write any WLE client application. The
client application needs to include code that does the following:

1. Initializes the ORB. The WLE system activates an ORB using the correct protocol
(in this case, IIOP).
2-11 Using Server-to-Server Communication

Step 4: Writing the Client Portion of the Joint Client/Server Application
2. Uses the Bootstrap object to establish communication with the WLE domain.

3. Resolves initial references to the FactoryFinder object.

4. Uses a factory to get an object reference for the desired WLE object (that is, the
Moderator object).

The client development steps are illustrated in Listing 2-5, which includes code from
the Chat Room sample application. In the Chat Room sample application, the client
portion of the joint client/server application uses a factory to get an object reference to
the Moderator object, and then invokes the sign_on(), send(), and sign_off()
methods on the Moderator object.

Listing 2-5 Client Portion of the Chat Room Joint Client/Server Application

...

//Initialize the ORB

orb_ptr = CORBA::ORB_init(argc, argv, “BEA_IIOP”);

//Create a Bootstrap object to establish communication with the
//WLE domain

bootstrap = new Tobj_Bootstrap(orb_ptr,"");

//Get a FactoryFinder object, use it to find a Moderator factory,
//and get a Moderator.

//Use the Bootstrap object to find the FactoryFinder object

CORBA::Object_var var_factory_finder_oref =
 bootstrap->resolve_initial_references("FactoryFinder");

//Narrow the FactoryFinder object

Tobj::FactoryFinder_var var_factory_finder =
Tobj::FactoryFinder::_narrow(var_factory_finder_oref.in());

//Use the FactoryFinder object to find a factory for the Moderator

CORBA::Object_var var_moderator_factory_oref =
var_factory_finder->find_one_factory_by_id(
"ModeratorFactory");

//Narrow the Moderator Factory
Using Server-to-Server Communication 2-12

2 Developing C++ Joint Client/Server Applications

 the
ChatRoom::ModeratorFactory_var var_moderator_factory =
ChatRoom::ModeratorFactory::_narrow(

 var_moderator_factory_oref.in());

//Get a Moderator
//The chatroom name is passed as a command line parameter

var_moderator_oref =
 var_moderator_factory->get_moderator
 (var_chat_room_name.in());

...

Step 5: Creating a Callback Object Using the
Callbacks Wrapper Object

Since the basic steps for creating a callback object are always the same, the WLE
product provides a Callbacks Wrapper object that simplifies the development of
callback objects.

The Callbacks Wrapper object does the following:

t Defines the object policy for the callback object. The following object policies
are supported:

t Transient/SystemID (_transient)

t Persistent/SystemId (_persistent/systemid)

t Persistent/UserId (_persistent/userid)

For a complete description of the object policies for callback objects, see
“Object Policies for Callback Objects.”

t Creates a servant for the callback object.

t Sets the ORB and the POA to the state in which they will accept requests on
callback object.
2-13 Using Server-to-Server Communication

Step 5: Creating a Callback Object Using the Callbacks Wrapper Object
t Returns an object reference to the activated callback object. The object Id can be
generated by the system or supplied by the user.

t Tells the ORB to stop accepting requests on either a single servant or all the
active servants.

For a complete description of the Callbacks Wrapper object and its methods, see the
C++ Programming Reference.

Listing 2-6 shows how a Callbacks Wrapper object is used in the Chat Room sample
application.

Listing 2-6 Using the Callbacks Wrapper Object in the Chat Room Sample
Application

...

//Use the Callbacks object to create a servant for the
//Listener object, activate the Listener object, and create an
//object reference for the Listener object.

BEAWrapper::Callbacks* callbacks =
 new BEAWrapper::Callbacks(orb_ptr);
Listener_i * listener_callback_servant = new Listener_i();
CORBA::Object_var v_listener_oref=callbacks->start_transient(

 listener_callback_servant,
 ChatClient::_tc_Listener->id());

ChatClient::Listener_var v_listener_callback_oref =
 ChatClient::Listener::_narrow(
 var_listener_oref.in());
...
Using Server-to-Server Communication 2-14

2 Developing C++ Joint Client/Server Applications
Step 6: Invoking Operations on a WLE Object
By Passing a Reference to the Callback
Object

Once you have an object reference to a callback object, you can pass the callback
object reference as a parameter to a method of a WLE object. In the Chat Room sample
application, the Moderator object uses an object reference to the Listener object as a
parameter to the sign_on method. Listing 2-7 illustrates this step.

Listing 2-7 Invoking the signon Method

//Sign on to the Chat room using a user-defined handle and a
//reference to the Listener object (the callback object) to receive
//input from other client applications logged into the Chat room.

var_moderator_reference->signon(handle,
 var_listener_callback_oref.in());

Step 7: Specifying Configuration
Information

When running remote joint client/server applications that use IIOP, the object
references for the callback object must contain a host and port number, as follows.

t For transient callback objects, any port is sufficient and can be obtained
dynamically by the ORB.

t For persistent callback objects, the ORB must be configured to accept requests
for the callback object on the same port on which the object reference for the
callback object was created.
2-15 Using Server-to-Server Communication

Step 7: Specifying Configuration Information

e

 the
 that
r
al
E
The user specifies the port number from the user range of port numbers, rather than
from the dynamic range. Assigning port numbers from the user range prevents joint
client/server applications from using conflicting ports. To specify a particular port for
the joint client/server application to use, include the following on the command line
that starts the process for the joint client/server application:

-ORBport nnn

where nnn is the number of the port to be used by the ORB when creating invocations
and listening for invocations on the callback object in the joint client/server
application.

Use this command when you want the object reference for the callback object in a joint
client/server application to be persistent and when you want to stop and restart the joint
client/server application. If this command is not used, the ORB uses a random port. If
the joint client/server application is stopped and then started, invocations to callback
objects in the the joint client/server application will fail.

The port number is part of the input to the argv argument of the CORBA::orb_init
member function. When the argv argument is passed, the ORB reads that information,
establishing the port for any object references created in that process. You can also use
the Bootstrap object’s register_callback_port operation for the same purpose.

For a joint client/server application to communicate with a WLE object in the sam
WLE domain, a configuration file for the WLE server application is needed. The
configuration file should be written as part of the development of the WLE server
application. The binary version of the configuration file, the TUXCONFIG file, must
exist before the joint client/server application is started. The TUXCONFIG file is created
using the tmloadcf command. For information about creating a TUXCONFIG file, see
Getting Started and the Administration Guide.

If you are using a joint client/server application that uses IIOP version 1.0 or 1.1,
administrator needs to boot the IIOP Server Listener (ISL) with startup parameters
enable outbound IIOP to invoke callback objects not connected to an IIOP Serve
Handler (ISH). The -O option of the ISL command enables outbound IIOP. Addition
parameters allow administrators to obtain the optimum configuration for their WL
application. For more information about the ISL command, see the Administration
Guide.
Using Server-to-Server Communication 2-16

2 Developing C++ Joint Client/Server Applications
Step 8: Compiling Joint Client/Server
Applications

The final step in the development of a joint client/server application is to produce the
executable. To do this, you need to compile the code and link against the skeleton and
client stub.

Use the buildobjclient command with the -P option to construct a joint
client/server application executable. To form an executable, the command combines
the client stub for the WLE object, the client stub for the callback object, the skeleton
for the callback object, and the implementation for the callback object with the
appropriate POA libraries.

Note: To use the -P option of the buildobjclient command, you need to have
used the -P option of the idl command when you created the skeleton and
client stub for the callback object.

Using the POA to Create a Callback Object

You can use the POA directly to create a callback object. You would use the POA
directly when you want to use POA features and object policies not available through
the Callbacks Wrapper object. For example, if you want to use the POA optimization
features, you need to use the POA directly. The following topics describe how to use
the POA to create callback objects with the supported object policies.

Note: Only a subset of the POA interfaces are supported in WLE version 4.2. For a
list of support interfaces, see the C++ Programming Reference.
2-17 Using Server-to-Server Communication

Using the POA to Create a Callback Object
Creating a Callback Object with a Transient Object Policy

To use the POA to create a callback object with a transient object policy, you need to
write code that does the following:

1. Establishes a connection with a POA.

2. Creates a child POA.

Since the root POA does not allow use of bidirectional IIOP, you need to create
a child POA. The child POA can use the defaults for LifespanPolicy
(TRANSIENT) and IDAssignmentPolicy (SYSTEM). You need to specify a
BiDirPolicy policy of BOTH.

IIOP version 1.2 supports reuse of the TCP/IP connection for both incoming and
outgoing requests. Allowing reuse of a TCP/IP connection is the choice of the
ORB. To allow reuse, you create an ORB policy object that allows reuse of a
TCP/IP connection, and you use that policy object in the list of policies when
initializing an ORB. The policy object is created using the
CORBA::ORB::create_policy operation. For more information about the
CORBA::ORB::create_policy operation, see the C++ Programming
Reference.

3. Creates a servant for the callback object.

4. Informs the POA that the servant is ready to accept requests for the callback
object.

In this step, the joint client/server application activates the callback object in the
POA using an object ID.

5. Activates the POA.

6. Creates an object reference for the callback object.

7. Makes an invocation on a WLE object using the object reference for the callback
object as a parameter to one of the methods of the WLE object.

Listing 2-8 shows the portion of the Chat Room sample application that uses the POA
to create the Listener object.
Using Server-to-Server Communication 2-18

2 Developing C++ Joint Client/Server Applications
Listing 2-8 Using the POA to Create the Listener Object

//Establish communication with the POA

orb_ptr = CORBA::ORB_init(argc, argv, "BEA_IIOP");
CORBA::PolicyListpolicy_list(1);
CORBA::Any val;

CORBA::Object_ptr o_init_poa;
o_init_poa = orb_ptr->resolve_initial_references("RootPOA");

// Narrow to get the Root POA

root_poa_ptr = PortableServer::POA::_narrow(o_init_poa);
CORBA::release(o_init_poa);

//Specify an IIOP Policy of Bidirectional for the POA

val <<= BiDirPolicy::BOTH;
CORBA::Policy_ptr bidir_pol_ptr = orb_ptr->create_policy(
 BiDirPolicy::BIDIRECTIONAL_POLICY_TYPE, val);
policy_list.length (1);
policy_list[0] = bidir_pol_ptr;

//Create the BiDirectional POA

bidir_poa_ptr = root_poa_ptr->create_POA("BiDirPOA",
 root_poa_ptr->

 the_POAManager(),
 policy_list);

//Activate the POA

root_poa_ptr->the_POAManager()->activate();

//Create the Listener object

ChatClient::Listener_var v_listener_callback_ref;

//Create a servant for Listener object and activate it

listener_callback_servant = new Listener_i();
 CORBA::Object_var v_listener_oref;
 PortableServer::ObjectId_var temp_OId =
 bidir_poa_ptr ->activate_object(listener_callback_servant);

//Create object reference for the Listener object with a
2-19 Using Server-to-Server Communication

Using the POA to Create a Callback Object
//system generated Object Id

v_listener_oref = bidir_poa_ptr->create_reference_with_id
 (temp_OId,
 ChatClient::_tc_Listener->id());

v_listener_callback_ref = ChatClient::Listener::_narrow
 (v_listener_oref.in());

Creating a Callback Object with a Persistent/User ID
Object Policy

To use the POA to create a callback object with a Persistent/User ID object policy, you
need to write code that does the following:

1. Uses a string to store the user ID and converts the string to the object ID.

2. Creates a child POA with a LifespanPolicy set to PERSISTENT and
IDAssignmentPolicy set to USERID.

3. Creates a servant for the Listener object.

4. Creates an object reference for the Listener object using the stringified object ID
and the repository Id of the Listener object.

5. Activates the Listener object.

Note: The Persistent/User ID object policy is only used with remote joint
client/server applications (that is, a joint client/server application that is not in
a WLE domain).

Listing 2-9 shows code that performs these steps.

Note: The code example does not use bidirectional IIOP.
Using Server-to-Server Communication 2-20

2 Developing C++ Joint Client/Server Applications
Listing 2-9 Example Code for Listener Object with Persistent/User ID Object
Policy

//Declare a string and convert it to an object Id.
const char* oid_string = “783”;
PortableServer::ObjectID_var oid=
PortableServer::string_to_ObjectId(oid_string);

//Find the root POA
CORBA::Object_var oref =
orb_ptr->resolve_initial_references(“RootPOA”);
PortableServer::POA_var root_poa =
PortableServer::POA::_narrow(oref);

//Create and activate a Persistent/UserID POA
CORBA::PolicyList policies(2);
policies.length(2);
policies[0] = root_poa->create_lifespan_policy(

PortableServer::PERSISTENT);
policies[1] = root_poa->create_id_assignment_policy(
 PortableServer::USER_ID);
PortableServer::POA_var poa_ref =

root_poa->create_POA(“poa_ref”,
root_poa->the_POAManager(),policies);

root_poa->the_POAManager()->activate();

//Create object reference for the Listener object.
oref = poa_ref->create_reference_with_id(oid,

ChatClient::_tc_Listener->id());
ChatClient::Listener_ptr Listener_oref =

ChatClient::Listener::_narrow(oref);

//Create Listener_i servant and activate the Listener object
Listener_i* my_Listener_i = new Listener_i();
poa_ref->activate_object_with_id(oid, my_Listener_i);

//Make call passing the reference to the Listener object
v_moderator_ref->signon(handle, Listener_oref);
2-21 Using Server-to-Server Communication

Using the POA to Create a Callback Object
Creating a Callback Object with a Persistent/System ID
Object Policy

To use the POA to create a callback object with a Persistent/System ID object policy,
you need to write code that does the following:

1. Creates a child POA with a LifespanPolicy set to PERSISTENT and
IDAssignmentPolicy set to the default.

2. Creates a servant for the Listener object.

3. Creates an object reference for the Listener object using a system generated
object Id (the repository Id of the Listener object).

4. Activates the Listener object.

Note: The Persistent/System ID object policy is only used with remote joint
client/server applications (that is, a joint client/server application that is not in
a WLE domain).

Listing 2-10 shows code that performs these steps.

Listing 2-10 Example Code for Listener Object with Persistent/System ID
Object Policy

//Find the root POA
CORBA::Object_var oref=

orb_ptr->resolve_initial_references(“RootPOA”)
PortableServer::POA_var root_poa =
PortableServer::POA::_narrow(oref);

//Create and activate a Persistent/System ID POA
CORBA::PolicyList policies(1);
policies.length(1);
policies[0] = root_poa->create_lifespan_policy(
PortableServer::PERSISTENT);
//IDAssignmentPolicy is the default so you do not need to specify it
PortableServer::POA_var poa_ref = root_poa->create_POA(

“poa_ref”, root_poa->the_POAManager(), policies);
root_poa->the_POAManager()->activate();

//Create Listener_i servant and activate the Listener object
Using Server-to-Server Communication 2-22

2 Developing C++ Joint Client/Server Applications
Listener_i* my_Listener_i = new Listener_i();
PortableServer::ObjectId_var temp_OId =

poa_ref->activate_object (my_Listener_i);

//Create object reference for Listener object with returned
//system object Id
oref =
poa_ref->create_reference_with_id(
 temp_OId, ChatClient::_tc_Listener->id());
ChatClient::Listener_var Listener_oref =

ChatClient::Listener::_narrow(oref);

//Make the call passing the reference to the Listener object
v_moderator_ref->signon(handle, Listener_oref);

Threading Considerations for C++ Joint
Client/Server Applications

A joint client/server application may first function as a client application and then
switch to functioning as a server application. To do this, the joint client/server
application turns complete control of the thread to the ORB by making the following
invocation:

orb -> run();

If a method in the server portion of a joint client/server application invokes
ORB::shutdown(), all server activity stops and control is returned to the statement
after ORB::run() is invoked in the server portion of the joint client/server application.
Only under this condition does control return to the client functionality of the joint
client/server application.

Since a client application has only a single thread, the client functionality of the joint
client/server application must share the central processing unit (CPU) with the server
functionality of the joint client/server application. This sharing is accomplished by
occasionally checking with the ORB to see if the joint client/server application has
server application work to perform. Use the following code to perform the check with
the ORB:

if (orb->work_pending()) orb->perform_work();
2-23 Using Server-to-Server Communication

Building and Running the Chat Room Sample Application
After the ORB completes the server application work, the ORB returns to the joint
client/server application, which then performs client application functions. The joint
client/server application must remember to occasionally check with the ORB;
otherwise, the joint client/server application will never process any invocations.

You should be aware that the ORB cannot service callbacks while the joint
client/server application is blocking on a request. If a joint client/server application
invokes an object in another WLE server application, the ORB blocks while it waits
for the response. While the ORB is blocking, it cannot service any callbacks, so the
callbacks are queued until the request is completed.

Building and Running the Chat Room
Sample Application

Perform the following steps to build and run the Chat Room sample application:

1. Copy the files for the Chat Room sample application into a work directory.

2. Change the protection attribute on the files for the Chat Room sample
application.

3. Verify the environment variables.

4. Execute the ChatSetup command.

The following sections describe these steps.
Using Server-to-Server Communication 2-24

2 Developing C++ Joint Client/Server Applications
Copying the Files for the Chat Room Sample Application
into a Work Directory

You need to copy the files for the Chat Room sample application into a work directory
on your local machine. The files for the Chat Room sample application are located in
the following directories:

Windows NT

drive:\WLEdir\samples\corba\chatroom

UNIX

/usr/local/WLEdir/samples/corba/chatroom

You will use the files listed in Table 2-4 to build and run the Chat Room sample
application.

Table 2-4 Files Included in the Chat Room Sample Application

File Description

ChatRoom.idl The OMG IDL code that declares the Moderator
and ModeratorFactory interfaces.

ChatClient.idl The OMG IDL code that declares the Listener
interface.

Listener_i.h
Listener_i.cpp

The C++ source code for method implementations of
the Listener object in the joint client/server
application.

Moderator_i.h
Moderator_i.cpp

The C++ source code for method implementations of
the Moderator and ModeratorFactory objects in the
WLE server application.

ChatClientMain.cpp The C++ source code for the joint client/server
application.

ChatRoomServer.cpp The C++ source code for the WLE server
application.
2-25 Using Server-to-Server Communication

Building and Running the Chat Room Sample Application
Changing the Protection Attribute on the Files for the
Chat Room Sample Application

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit or build the files in the Chat Room sample application,
you need to change the protection attribute of the files you copied into your work
directory, as follows:

Windows NT

prompt>attrib -r drive:\workdirectory*.*

KeyboardManager.h
KeyboardManager.cpp

The C++ source code that handles input from the
keyboard in the Chat Room sample application. This
code is used by ChatClientMain.cpp.

ChatRoom.icf The Implementation Configuration File (ICF) for the
Moderator and ModeratorFactory objects in the
WLE server application in the Chat Room sample
application.

ChatRoom.ksh A UNIX script that sets the environment variables
and builds the Chat Room sample application.

ChatRoom.cmd An MS-DOS command procedure that sets the
environment variables and builds the Chat Room
sample application.

ChatRoom.mk The UNIX operating system makefile for the Chat
Room sample application.

ChatRoom.nt The Windows NT operating system makefile for
the Chat Room sample application.

Readme.txt The file that provides the latest information about
building and running the Chat Room sample
application.

Table 2-4 Files Included in the Chat Room Sample Application

File Description
Using Server-to-Server Communication 2-26

2 Developing C++ Joint Client/Server Applications
UNIX

prompt>/bin/ksh

ksh prompt>chmod u+w /workdirectory/*.*

On the UNIX operating system platform, you also need to change the permission of
ChatRoom.ksh to give execute permission to the file, as follows:

ksh prompt>chmod +x ChatRoom.ksh

Verifying the Setting of the TUXDIR Environment
Variable

Before building and running the Chat Room sample application, you need to ensure
that the TUXDIR environment variable is set on your system. In most cases, this
environment variable is set as part of the installation procedure. The TUXDIR
environment variable defines the directory path where you installed the WLE software.
For example:

Windows NT

TUXDIR=c:\WLEDir

UNIX

TUXDIR=/usr/local/WLEDir

To verify that the information for the environment variables defined during installation
is correct, perform the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.
2-27 Using Server-to-Server Communication

Building and Running the Chat Room Sample Application
The Environment page appears.

5. Check the setting for TUXDIR.

UNIX

ksh prompt>printenv TUXDIR

To change the settings, perform the following steps:

Windows NT

1. On the Environment page in the System Properties window, click the TUXDIR
environment variable.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

UNIX

ksh prompt>export TUXDIR=directorypath

Executing the ChatSetup Command

The ChatSetup command automates the following steps:

1. Setting the system environment variables

2. Creating and loading the configuration file

3. Compiling the code for the client application

4. Compiling the code for the server application

Before running the ChatSetup command, you need to check the following:

t Ensure that you have the appropriate administrative privileges to build and run
applications.

t On Windows NT, make sure nmake is in the path of your machine.

t On UNIX, make sure make is in the path of your machine.

To build and run the sample application, enter the ChatSetup command, as follows:
Using Server-to-Server Communication 2-28

2 Developing C++ Joint Client/Server Applications
Windows NT

prompt>cd workdirectory

prompt>ChatSetup.cmd

UNIX

ksh prompt>cd workdirectory

ksh prompt>./ChatSetup.ksh

Starting the Server Application

Start the server application and the system server processes in the Chat Room sample
application by entering the following command:

prompt>tmboot -y

This command starts the following server processes:

t TMSYSEVT

The system event broker. This server process is used only by the WLE system.

t TMFFNAME

The following three TMFFNAME server processes are started:

t The TMFFNAME server process started with the -N and -M options is the
Master NameManager service. The NameManager service maintains a
mapping of the application-supplied names to object references. This server
process is used only by the WLE system.

t The TMFFNAME server process started with only the -N option is the Slave
NameManager service.

t The TMFFNAME server process started with the -F option contains the
FactoryFinder object.

t ChatRoom

The server application process for the Chat Room sample application.

t ISL

The IIOP Listener/Handler process.
2-29 Using Server-to-Server Communication

Building and Running the Chat Room Sample Application
Starting the Client Application

Start the client application in the Chat Room sample application by entering the
following command:

prompt>ChatClient chatroom_name -ORBport nnn

where chatroom_name is the name of a chat room to which you want to connect. You
can enter any value. You will be prompted for a handle to identify yourself. You can
enter any value. If the handle you chose is in use, you will be prompted for another
handle.

To optimize the usefulness of the Chat Room sample application, you should run a
second client application using the same chat room name.

To exit the client application, enter \.

Stopping the Chat Room Sample Application

Before using another sample application, enter the following commands to stop the
Chat Room sample application and to remove unnecessary files from the work
directory:

Windows NT

prompt>tmshutdown -y

prompt>Admin\setenv

prompt>nmake -f ChatRoom.nt superclean

prompt>nmake -f ChatRoom.nt adminclean

UNIX

ksh prompt>tmshutdown -y

ksh prompt>. ./Admin/setenv.ksh

ksh prompt>make -f ChatRoom.mk superclean

ksh prompt>make -f ChatRoom.nt adminclean
Using Server-to-Server Communication 2-30

CHAPTER
3 Developing Java Joint
Client/Server
Applications

This chapter contains the following topics:

t Development Process

t Software Requirements

t The Callback Sample Application

t Step 1: Writing the OMG IDL

t Step 2: Generating Skeletons and Client Stubs

t Step 3: Writing the Methods That Implement Each Interface’s Operations

t Step 4: Initializing the ORB

t Step 5: Writing the Client Portion of the Joint Client/Server Application

t Step 6: Creating a Callback Object Using the Callbacks Wrapper Object

t Step 7: Establishing a Connection to an ISH

t Step 8: Invoking Operations on the Callback Object

t Step 9: Specifying Configuration Information

t Step 10: Compiling Java Joint Client/Server Applications

t Threading Considerations for Java Joint Client/Server Applications
Using Server-to-Server Communication 3-1

Development Process
Building and Running the Callback Sample Application

Using the Callback Sample Application

Development Process

Table 3-1 outlines the development process for Java joint client/server applications.

Table 3-1 Development Process for Java Joint Client/Server Applications

These steps are explained in detail in subsequent topics.

Step Description

1 Write the OMG IDL for the callback interface and the CORBA
interfaces you want to use in your WLE application.

2 Generate the skeletons and client stubs.

3 Write the methods that implement each interface’s operations.

4 Initialize the ORB.

5 Write the client main portion of the joint client/server
application.

6 Create a callback object using the Callbacks Wrapper object.

7 Establish communication with an ISH.

8 Invoke operations on the WLE object by passing an object
reference for the callback object.

9 Specify configuration information.

10 Compile the joint client/server application.
Using Server-to-Server Communication 3-2

3 Developing Java Joint Client/Server Applications
Because the callback object in a joint client/server application is not transactional and
has no object management capabilities, you do not need to create a Server Description
File (filename.xml) for it. However, you still need to create a Server Description File
for the WLE objects in your WLE application. For information about writing a Server
Description File, see Creating Java Server Applications.

Software Requirements

You need the Java JDK version 1.2.1 to create Java joint client/server applications.

The Callback Sample Application

Throughout this topic, the Callback sample application is used to demonstrate the
development steps. The callback object in the joint client/server application has a
print_converted method, which accepts a string from the Simple object in the
WLE server application and prints the string in uppercase and lowercase letters.

Figure 3-1 illustrates how the Callback sample application works.
3-3 Using Server-to-Server Communication

Step 1: Writing the OMG IDL

 An
nd
age.
ut
Figure 3-1 How the Callback Sample Application Works

The source files for the Callback sample application are located in the
WLEdir\samples\corba\callback_java directory of the WLE software. See
“Building and Running the Callback Sample Application” for more information.

Step 1: Writing the OMG IDL

You use OMG IDL to describe available CORBA interfaces to client applications.
interface definition written in OMG IDL completely defines the CORBA interface a
fully specifies each operation’s arguments. OMG IDL is a purely declarative langu
This means that it contains no implementation details. For more information abo
OMG IDL, see Creating Client Applications.

The Callback sample application implements the CORBA interfaces listed in
Table 3-2.

Joint Client/Server Application WLE Server Application

Factory

Simple Object

call_callback(String data,
 Callback_obj ref);
{
 ...
 callback_ref.print_converted
 (data);
 ...
}

Create Callback Object

Callbacks Wrapper Callback_obj;
Callback_obj::print_converted
 (string message);

SimpleClient main()
Bootstrap
FactoryFinder
create_Callback_obj;
find_Simple();
Simple.call_callback
 (mixed, Callback_obj ref);
Using Server-to-Server Communication 3-4

3 Developing Java Joint Client/Server Applications
Listing 3-1 shows the simple.idl file that defines the Callback, Simple, and
SimpleFactory interfaces in the Callback sample application.

Listing 3-1 OMG IDL for the Callback Sample Application

#pragma prefix "beasys.com"

interface Callback

//This method prints the passed data in uppercase and lowercase
//letters.

{
void print_converted(in string message);

};

interface Simple

//Call the callback object in the joint client/server application

{
void call_callback(in string val, in Callback

 callback_ref);
};

Table 3-2 CORBA Interfaces for the Callback Sample Application

Interface Description Operation

Callback Accepts a string from the
Simple object in the WLE
server application and prints the
string in uppercase and
lowercase letters

print_converted()

Simple Calls the Callback object in the
joint client/server application

Calls the Callback object in the
joint client/server application

SimpleFactory Creates object references to the
Simple object

find_simple()
3-5 Using Server-to-Server Communication

Step 2: Generating Skeletons and Client Stubs
interface SimpleFactory
{
 Simple find_simple();
};

Step 2: Generating Skeletons and Client
Stubs

The interface specification defined in OMG IDL is used by the IDL compiler to
generate skeletons and client stubs. Note that a joint client/server application uses the
client stub for the WLE objects and the skeleton and client stub for the callback object.

For example, in the Callback sample application, the joint client/server application
uses the skeleton and the client stub for the Callback object to implement the object.
The joint client/server application also uses the client stubs for for the Simple and
SimpleFactory to invoke operations on the objects. The WLE server application uses
the skeletons for the Simple and SimpleFactory objects to implement the objects and
the client stub for the Callback object to invoke operations on the object.

During the development process, you use the following compilers to build client stubs
and skeletons.

t You use the idltojava command supplied with the JDK version 1.2.1 to
compile the OMG IDL file and generate client stubs and skeletons to be used by
the joint client/server application.

t You use the m3idltojava command to compile the OMG IDL file and generate
client stubs and skeletons to be used by the WLE server application.

The names of the files generated by the idltojava and m3idltojava commands are
the same; however, the content is different. When developing a WLE application that
contains a joint client/server application, it is recommended that you create two
separate directories for each set of client stubs and skeletons. For the Callback sample
application, the files generated by the idltojava command are located in the client
directory and the files generated by the m3idltojava command are located in the
server directory.
Using Server-to-Server Communication 3-6

3 Developing Java Joint Client/Server Applications
Table 3-3 lists the files that are generated by the idltojava and the m3idltojava
commands.

Table 3-3 Files Created by the idltojava and m3idltojava Commands

File Description

Callback.java The Java version of the Callback OMG IDL
interface. It extends
org.omg.CORBA.Object.

CallbackHelper.java The Java class that provides auxiliary
functionality, notably the narrow method.

CallbackHolder.java The Java class that provides operations for out
and inout arguments that are included in
CORBA, but that do not map exactly to Java.

_CallbackStub.java The client stub that implements the
Callback.java interface.

_CallbackImplBase.java The skeleton that implements the
Callback.java interface. The class
CallbackImpl extends
_CallbackImplBase.

Simple.java The Java version of the Simple OMG IDL
interface. It extends org.omg.CORBA.Object.

SimpleHelper.java The Java class that provides auxiliary
functionality, notably the narrow method.

SimpleHolder.java The Java class that provides operations for out
and inout arguments that CORBA has but that
do not match exactly to Java.

_SimpleStub.java The client stub that implements the
Simple.java interface.

_SimpleImplBase.java The skeleton that implements the Simple.java
interface. The class SimpleImpl extends
_SimpleImplBase.
3-7 Using Server-to-Server Communication

Step 3: Writing the Methods That Implement Each Interface’s Operations

tate.
The skeleton class that is created by the idltojava command does not inherit from
the TP Framework com.beasys.Tobj_Servant class. Instead, the skeleton class
inherits directly from the org.omg.CORBA.DynamicImplementation class.
Inheriting from com.beasys.Tobj_Servant means the joint client/server application
must explicitly create a servant for the callback object and initialize the servant’s s
The servant for the callback object cannot use the activate_object and
deactivate_object methods as they are members of the
com.beasys.Tobj_Servant class.

Step 3: Writing the Methods That Implement
Each Interface’s Operations

After you compile the OMG IDL, you need to write methods that implement the
operations of each object. In a joint client/server application, you write the
implementation file for the callback object. You write the implementation file for a

SimpleFactory.java The Java version of the SimpleFactory OMG
IDL interface. It extends
org.omg.CORBA.Object.

SimpleFactoryHelper.java The Java class that provides auxiliary
functionality, notably the narrow method.

SimpleFactoryHolder.java The Java class that provides operations for out
and inout arguments that are included in
CORBA, but that do not map exactly to Java.

_SimpleFactoryImplBase.java The skeleton that implements the
SimpleFactory.java interface. The class
SimpleFactoryImpl extends
_SimpleFactoryImplBase.

_SimpleFactoryStub.java The client stub that implements the
SimpleFactory.java interface.

File Description
Using Server-to-Server Communication 3-8

3 Developing Java Joint Client/Server Applications
callback object as you would write the implementation file for any other CORBA
object. You also write the implementation file for the WLE object in your WLE
application.

An implementation file consists of the following:

t Method declarations for each operation specified in the OMG IDL file

t Your application’s business logic

t Constructors for each interface implementation (optional)

Listing 3-2 includes the implementation file for the Callback object.

Listing 3-2 Implementation File for the Callback Object

//The implementation file for the Callback object. The Callback
//object implements the print_converted method.

class CallbackImpl extends _CallbackImplBase {

//Prints a string in upper and lower case

public void print_converted(String data) {
 if (data == null)
 System.out.println("Null String");
else

 {
//Print input data in uppercase
System.out.println(data.toUpperCase());

//Print input data in lowercase
System.out.println(data.toLowerCase());

}
 }
}

Listing 3-3 includes the implementation file for the Simple object.

Listing 3-3 Implementation File for the Simple Object

import com.beasys.Tobj.TP;

//The implementation file for the Simple interface. The Simple
3-9 Using Server-to-Server Communication

Step 3: Writing the Methods That Implement Each Interface’s Operations
//interface implements the call_callback method of the Callback
//object.

public class SimpleImpl extends _SimpleImplBase
{

public void call_callback(String data, Callback
 callback_ref)

//Call the print_converted method on the reference to the Callback
//object

{
 callback_ref.print_converted(data);
 return;
}

}

Listing 3-4 includes the implementation file for the SimpleFactory object.

Listing 3-4 Implementation File for the SimpleFactory Object

import com.beasys.Tobj.TP;

//The implementation file for the SimpleFactory object. The
//SimpleFactory object provides methods to create a Simple object.

public class SimpleFactoryImpl extends _SimpleFactoryImplBase
{

//Create an object reference to a Simple object.

public Simple find_simple()
 {

try {
org.omg.CORBA.Object simple_oref =
 TP.create_object_reference(

SimpleHelper.id(), // Repository id
"simple_callback", // object id
null // routing criteria

);

// Send back the narrowed reference.

 return SimpleHelper.narrow(simple_oref);

 } catch (Exception e){
 TP.userlog("Cannot create Simple: " +e.getMessage());
Using Server-to-Server Communication 3-10

3 Developing Java Joint Client/Server Applications
e.printStackTrace();
return null;

 }
 }
}

Step 4: Initializing the ORB

In previous versions of the WLE product, Java client applications used the JDK ORB
without modifications. Version 4.2 of the WLE product provides a value-added
implementation of the JDK ORB. The modifications to the JDK ORB include classes
and methods that support callback objects. The classes and methods for the callback
objects are in the wleclient.jar file located in the following directories:

UNIX

$wledir/udataobj/java/jdk

Window NT

%wledir%\udataobj\java\jdk

To use this modified JDK ORB, Java joint client/server applications must set certain
properties. Listing 3-5 contains the command to initialize the JDK ORB with the
correct properties. For more information about the properties used to initialize the JDK
ORB, see the Java Programming Reference.

Listing 3-5 Initializing the ORB in the Callback Sample Application

properties prop = new Properties(System.getProperties());
prop.put(“org.omg.CORBA.ORBclass”,
 “com.beasys.CORBA.iiop.ORB”);
prop.put(“org.omg.CORBA.ORBSingletonclass”,
 “com.beasys.CORBA.idl.ORBSingleton”);
System.setProperties(prop);

//Initialize the ORB

ORB orb = ORB.init(args, prop);
3-11 Using Server-to-Server Communication

Step 5: Writing the Client Portion of the Joint Client/Server Application
Step 5: Writing the Client Portion of the
Joint Client/Server Application

During development of a joint client/server application, you write the client portion of
the joint client/server application as you would write any WLE client application. The
client application needs to include code that does the following:

1. Uses the Bootstrap object to establish communication with the WLE domain

2. Resolves initial references to the FactoryFinder object

3. Uses a factory to get an object reference for the desired WLE object

The client development steps are illustrated in Listing 3-6, which includes code from
the Callback sample application. In the Callback sample application, the client portion
of the joint client/server application uses a factory to get an object reference to the
Simple object.

Listing 3-6 The Client Portion of the Callback Sample Application

//Create a Bootstrap object
Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb,"");

//Create the Bootstrap object. The TOBJADDR system property
//defines the host and port.

Tobj_Bootstrap bootstrap = new Tobj_Bootstrap(orb, "");

//Use the Bootstrap object to find the FactoryFinder object.

org.omg.CORBA.Object fact_finder_oref =
bootstrap.resolve_initial_references("FactoryFinder");

//Narrow the FactoryFinder object.

FactoryFinder fact_finder_oref =
FactoryFinderHelper.narrow(fact_finder_oref);

//Use the FactoryFinder object to locate a factory for the
//Simple object.
Using Server-to-Server Communication 3-12

3 Developing Java Joint Client/Server Applications

ct.

n be
org.omg.CORBA.Object simple_fact_oref =
 fact_finder_oref.find_one_factory_by_id
 (SimpleFactoryHelper.id());

//Narrow the factory.

SimpleFactory simple_factory_oref =
 SimpleFactoryHelper.narrow(simple_fact_oref);

//Find the Simple object.

Simple simple = simple_factory_oref.find_simple();

Step 6: Creating a Callback Object Using the
Callbacks Wrapper Object

To allow the use of outbound IIOP in Java joint client/server applications, the JDK
ORB has been extended to implement certain POA functionality. The POA
functionality is implemented through the Callbacks Wrapper object.

The Callbacks Wrapper object does the following:

t Defines the object policy for the callback object. The following object policies
are supported:

t Transient/SystemID (_transient)

t Persistent/SystemID (_persistent/systemid)

t Persistent/UserID (_persistent/userid)

For a complete description of the object policies for callback objects, see
“Object Policies for Callback Objects.”

t Creates a servant for the callback object.

t Sets the ORB to the state in which it will accept requests on the callback obje

t Returns an object reference to the activated callback object. The object Id ca
generated by the system or supplied by the user.
3-13 Using Server-to-Server Communication

Step 6: Creating a Callback Object Using the Callbacks Wrapper Object
t Tells the ORB to stop accepting requests on either a single servant or all the
active servants.

For a complete description of the Callbacks Wrapper object, see the Java
Programming Reference.

Listing 3-7 shows how the Callbacks object is used in the Callback sample application.

Listing 3-7 Using the Callbacks Wrapper Object in the Callback Sample
Application

import java.io.*;
import java.util.Properties;
import org.omg.CORBA.*;
import org.omg.CORBA.portable.ObjectImpl;
import com.beasys.*;
import com.beasys.Tobj.*;
import com.beasys.BEAWrapper.Callbacks;
...
//Create the servant for the Callback object

CallbackImpl callback_ref = new CallbackImpl();

//Use the Callbacks Wrapper object to create the callback object

Callbacks callbacks = new Callbacks(orb);

//Activate the servant and allow the ORB to accept
//callback requests.

callbacks.start_persistent_userid(callback_ref,
((ObjectImpl)callback_ref)._ids() [0],
“myID”);

...
Using Server-to-Server Communication 3-14

3 Developing Java Joint Client/Server Applications
Step 7: Establishing a Connection to an ISH

To support IIOP more efficiently in Java joint client/server applications, the Bootstrap
object supports a register_callback_port method. This method registers the
callback object in a joint client/server application with the listening port of an ISH,
causing invocations to the callback object to be routed through the specified ISH.

In this situation, the joint client/server application is using dual-pair connection IIOP.
A joint client/server application that does not perform this registration will force server
applications that invoke the callback object in the joint client/server application to use
asymmetric IIOP, which uses the ORB infrastructure to locate an available ISH.

Note: The callback object must be activated before the register_callback_port
method is called.

Listing 3-8 shows how the register_callback_port method is used in the Callback
sample application.

Listing 3-8 The register_callback_port Method in the Callback Sample
Application

...
//Register the callback port are specified in org.omg.CORBA.ORBport

bootstrap.register_callback_port(callback_ref);
...
3-15 Using Server-to-Server Communication

Step 8: Invoking Operations on the Callback Object
Step 8: Invoking Operations on the Callback
Object

Once you have an object reference to a callback object, you pass the callback object
reference as a parameter to a method of a WLE object. In the Callback sample
application, the Simple object (the WLE object) uses an object reference to the
Callback object as a parameter to the call_callback method. Listing 3-9 illustrates
this step.

Listing 3-9 Invoking the call_callback Method

...
//Call the call_callback method which invokes the Callback object

simple.call_callback(mixed, callback_ref);
...

Step 9: Specifying Configuration
Information

When using joint client/server applications, the object references for the callback
object must contain a host and port number, as follows:

t For transient callback objects, any port is sufficient and can be obtained
dynamically by the ORB.

t For persistent callback objects, the ORB must be configured to accept requests
for the callback object on the same port on which the object reference for the
callback object was created.
Using Server-to-Server Communication 3-16

3 Developing Java Joint Client/Server Applications
The ORB is configured by setting the org.omg.CORBA.ORBPort system property.
Every time you run the joint client/server application, you must enter the following
commands to set the org.omg.CORBA.ORBPort system property:

UNIX

java -DTOBJADDR=//Host:Port
 -Dorg.omg.CORBA.ORBport=portnumber
 -classpath=$CLASSPATH JointClientServerApplication

Window NT

java -DTOBJADDR=//Host:Port
 -Dorg.omg.CORBA.ORBport=portnumber
 -classpath=%CLASSPATH% JointClientServerApplication

The administrator assigns the port number for the joint client/server application from
the user range of port numbers, rather than from the dynamic range. Assigning port
numbers from the user range prevents joint client/server applications from using
conflicting ports.

For Java joint client/server applications, the administrator needs to boot the IIOP
Server Listener (ISL) with startup parameters that enable outbound IIOP to invoke
callback objects not connected to an IIOP Server Handler (ISH). The -O option of the
ISL command enables outbound IIOP. The ISL parameter is defined in the
configuration file. Additional parameters allow administrators to obtain the optimum
configuration for their WLE application. For more information about the ISL
command, see the Administration Guide.

Note: The Callback sample application does not demonstrate using asymmetric
IIOP. Therefore, the -O option is not used in the configuration file.

Step 10: Compiling Java Joint Client/Server
Applications

When creating joint client/server applications, use the javac command provided with
the JDK 1.2.1 to construct an executable for the joint client/server application. The
command compiles the java source code of the joint client/server application.
3-17 Using Server-to-Server Communication

Threading Considerations for Java Joint Client/Server Applications

art

the
When compiling joint client/server applications, you need to include the following
Java ARchive (JAR) files in your CLASSPATH:

t The m3envobj.jar file, which contains Java versions of the WLE
environmental objects

t The wleclient.jar file, which contains the classes and methods for the
Callbacks Wrapper object

For the syntax of the javac command, see the Java Programming Reference.

You use the buildjavaserver command to build the WLE server application that
invokes the callback object. For information about compiling WLE server
applications, see Getting Started or Creating Java Server Applications.

Threading Considerations for Java Joint
Client/Server Applications

Note: The Callback sample application does not use multiple threads.

Since Java as an execution environment is multithreaded, there is no need to
implement the ORB org.omg.CORBA.orb.work_pending and
org.omg.CORBA.orb.perform_work methods. These methods throw a
NO_IMPLEMENT exception when a user tries to invoke them. In addition, the
org.omg.CORBA.orb.run method does not need to be called. Be aware that any code
that executes concurrently must be written to be thread-safe.

When using multiple threads in Java, the client functionality of the joint client/server
application starts up in the main thread. The joint client/server application then
activates the callback object using one of the start methods of the Callbacks Wrapper
object. The Callbacks Wrapper object registers the servant for the callback object, and
its associated object ID, in the ORB’s object manager. The joint client/server
application is then free to pass the object reference for the callback object to any
application that may need to invoke the callback object.

Note: The BEA version of the JDK ORB requires an explicit call to one of the st
methods of the Callbacks Wrapper object to initialize the servant for the
callback object and create a valid object ID. This requirement differs from
Using Server-to-Server Communication 3-18

3 Developing Java Joint Client/Server Applications

 any
ject

ults

 only

n.
base JDK ORB, which allows implicit creation of object references through
the orb.connect method when marshaling an object reference when an
application has not already done so.

Invocations on the callback object are handled by the ORB. As each request is
received, the ORB validates the request against the object manager and spawns a
thread for that request. Multiple requests can be made simultaneously to the same
callback object, since the ORB creates a new thread for each request.

As each request terminates, the thread that runs the servant for the callback object
terminates. The main thread that controls the client functionality of the joint
client/server application can make as many client invocations as it needs. There is no
restriction to prevent other servants defined in the joint client/server application to act
as client applications and invoke on WLE objects. A call to stop_all_objects()
merely takes the callback object out of the object manager’s list, thus preventing
further invocations on the callback object. Any invocation to a stopped callback ob
fails as if it never existed.

If the client functionality of a joint client/server application needs to retrieve the res
of a callback from another thread, the client functionality must use normal thread
synchronization techniques.

If any thread in the joint client/server application invokes an exit method, all activity
is stopped and the Java execution environment terminates. It is recommended to
call return() to terminate a thread.

Building and Running the Callback Sample
Application

Perform the following steps to build and run the Callback sample application:

1. Copy the files for the Callback sample application into a work directory.

2. Change the protection attribute on the files for the Callback sample applicatio

3. Verify the environment variables.

4. Execute the runme command.
3-19 Using Server-to-Server Communication

Building and Running the Callback Sample Application
The following sections describe these steps.

Copying the Files for the Callback Sample Application
into a Work Directory

You need to copy the files for the Callback sample application into a work directory
on your local machine. The files for the Callback sample application are located in the
following directories:

Windows NT

drive:\WLEdir\samples\corba\callback_java

UNIX

/usr/local/WLEdir/samples/corba/callback_java

You will use the files listed in Table 3-4 to build and run the Callback sample
application.

Table 3-4 Files Included in the Callback Sample Application

File Description

Simple.idl The OMG IDL code that declares the Callback,
Simple, and SimpleFactory interfaces.This file
is copied from the sample application directory by
the runme command file.

ServerImpl.java The Java source code that implements the
Server.initialize and Server.release
methods.

SimpleJCS.java The Java source code for the joint client/server
application in the Callback sample application.

SimpleFactoryImpl.java The Java source code that implements the methods of
the SimpleFactory object .

SimpleImpl.java The Java source code that implements the methods of
the Simple object.
Using Server-to-Server Communication 3-20

3 Developing Java Joint Client/Server Applications
CallbackImpl.java The Java source code that implements the methods of
the Callback object.

Simple.xml The Server Description File used to associate
activation and transaction policy values with
CORBA interfaces. For the Callback sample
application, the Simple and SimpleFactory
interfaces have an activation policy of method and
a transaction policy of never.

Readme.txt The file that provides the latest information about
building and running the Callback sample
application.

runme.cmd The Windows NT batch file that builds and runs the
Callback sample application.

runme.ksh The UNIX Korn shell script that builds and executes
the Callback sample application.

makefile.mk The UNIX Korn make file for the Callback sample
application. This file is used to manually build the
Callback sample application. Refer to the
Readme.txt file for information about manually
building the Callback sample application. The UNIX
make command needs to be in the path of your
machine.

makefile.nt The Windows NT make file for the Callback sample
application. This make file can be used directly by
the Visual C++ nmake command. This file is used
to manually build the Callback sample application.
Refer to the Readme.txt file for information about
manually building the Callback sample application.
The Windows NT nmake command needs to be in
the path of your machine.

Table 3-4 Files Included in the Callback Sample Application

File Description
3-21 Using Server-to-Server Communication

Building and Running the Callback Sample Application
Note: When running the Callback sample application on the UNIX operating system,
you need to make sure the makefile is in the path of your machine.

Changing the Protection Attribute on the Files for the
Callback Sample Application

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit or build the files in the Callback sample application,
you need to change the protection attribute of the files you copied into your work
directory, as follows:

Windows NT

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>/bin/ksh

ksh prompt>chmod u+w /workdirectory/*.*

On the UNIX operating system platform, you also need to change the permission of
runme.ksh to give execute permission to the file, as follows:

ksh prompt>chmod +x runme.ksh

smakefile.nt The make file that is used with the Visual Cafe
smake command for the Callback sample
application.

Note: makefile.nt is included by
smakefile.nt.

Table 3-4 Files Included in the Callback Sample Application

File Description
Using Server-to-Server Communication 3-22

3 Developing Java Joint Client/Server Applications
Verifying the Settings of the Environment Variables

Before building and running the Callback sample application, you need to ensure that
certain environment variables are set on your system. In most cases, these environment
variables are set as part of the installation procedure. However, you need to check the
environment variables to ensure they reflect correct information.

Table 3-5 lists the environment variables required to run the Callback sample
application.

To verify that the information for the environment variables defined during installation
is correct, perform the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

Table 3-5 Required Environment Variables for the Callback Sample Application

Environment
Variable

Description

TUXDIR The directory path where you installed the WLE software. For example:

Windows NT

TUXDIR=c:\WLEDir

UNIX

TUXDIR=/usr/local/WLEDir

JAVA_HOME The directory path where you installed the JDK software. For example:

Windows NT

JAVA_HOME=c:\JDK1.2

UNIX

JAVA_HOME=/usr/local/JDK1.2
3-23 Using Server-to-Server Communication

Building and Running the Callback Sample Application
4. Click the Environment tab.

The Environment page appears.

5. Check the settings for TUXDIR and JAVA_HOME.

UNIX

ksh prompt>printenv TUXDIR

ksh prompt>printenv JAVA_HOME

To change the settings, perform the following steps:

Windows NT

1. On the Environment page in the System Properties window, click the environment
variable you want to change, or enter the name of the environment variable in the
Variable field.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

UNIX

ksh prompt>export TUXDIR=directorypath

ksh prompt>export JAVA_HOME=directorypath

Table 3-6 lists additional environment variables that may be set prior to running the
Callback sample application.

Table 3-6 Optional Environment Variables for the Callback Sample Application

Environment
Variable

Description

HOST The host name portion of the TCP/IP network address used by
the ISL process to accept connections from the ORB. The
default value is the name of the local machine.

PORT The TCP port number at which the ISL process listens for
incoming requests; it must be a number between 0 and 65535.
The default is 2468.
Using Server-to-Server Communication 3-24

3 Developing Java Joint Client/Server Applications
Executing the runme Command

The runme command automates the following steps:

1. Setting the system environment variables

2. Loading the UBBCONFIG file

3. Compiling the code for the client application

4. Compiling the code for the server application

5. Starting the server application using the tmboot command

6. Starting the client application

7. Stopping the server application using the tmshutdown command

Note: You can also run the Callback sample application manually. The steps for
manually running the Callback sample application are described in the
Readme.txt file.

To build and run the Callback sample application, enter the runme command, as
follows:

Windows NT

prompt>cd workdirectory

prompt>runme

IPCKEY The address of shared memory; it must be a number greater than
32769 unique to this application on this system. The default
value is 55532.

CALLBACK_PORT The TCP port number at which the client application process
listens for incoming callback requests; it must be a number
between 0 and 65535. The default value is 2458.

Environment
Variable

Description
3-25 Using Server-to-Server Communication

Building and Running the Callback Sample Application
UNIX

ksh prompt>cd workdirectory

ksh prompt>./runme.ksh

The Callback sample application runs and prints the following messages:

Testing simpapp
 cleaned up
 prepared
 built
 loaded ubb
 booted
 ran
 shutdown
 saved results
 PASSED

Note: After executing the runme command, you may get a message indicating that
the Host, Port, and IPCKEY parameters in the UBBCONFIG file conflict with
an existing UBBCONFIG file. If this occurs, you need to set these parameters to
different values to get the Callback sample application running on your
machine.

The runme command starts the following application processes:

t TMSYSEVT

The BEA TUXEDO system event broker.

t TMFFNAME

The following three TMFFNAME server processes are started:

t The TMFFNAME server process started with the -N and -M options is the
Master NameManager service. The NameManager service maintains a
mapping of the application-supplied names to object references.

t The TMFFNAME server process started with only the -N option is the Slave
NameManager service.

t The TMFFNAME server process started with the -F option contains the
FactoryFinder object.

t JavaServer
Using Server-to-Server Communication 3-26

3 Developing Java Joint Client/Server Applications
The server application server process that implements the SimpleFactory and
Simple interfaces. The JavaServer process has one option, simple.jar, which
is the Java ARchive (JAR) file that was created for the application.

t ISL

The IIOP Listener server process.

Table 3-7 lists the files in the work directory generated by the runme command.

Table 3-8 lists files in the results directory generated by the runme command.

Table 3-7 Files Generated by the runme Command

File Description

SimpleFactory.java,
SimpleFactoryHolder.java,
SimpleFactoryHelper.java,
_SimpleFactoryStub.java,
_SimpleFactoryImplBase.java,
Simple.java
SimpleHolder.java,
SimpleHelper.java,
_SimpleStub.java,
_SimpleImplBase.java,

Callback.java,
CallbackHolder.java
CallbackHelper.java
_CallbackStub.java
_CallbackImplBase.java

Client stubs, skeletons, and Java Helper and
Holder classes for the SimpleFactory,
Simple, and Callback interfaces. For a
description of the files, see Table 3-3.

Simple.ser The Server Descriptor File.

Simple.jar The server JAR file.

SimpleJCS.jar The JAR file for the joint client/server
application.

.adm/.keybd A file that contains the security encryption key
database.

results A generated directory.
3-27 Using Server-to-Server Communication

Building and Running the Callback Sample Application
Table 3-8 Files in the results Directory Generated by the runme Command

File Description

input Contains the input that the runme command
provides to the Java client application.

output Contains the output produced when the runme
command executes the Java client application.

expected_output Contains the output that is expected when the
Java client application is executed by the
runme command. The data in the output file
is compared to the data in the
expected_output file to determine whether
or not the test passed or failed.

log Contains the output generated by the runme
command. If the runme command fails, check
this file for errors.

setenv.cmd Contains the commands to set the environment
variables needed to build and run the Callback
sample application on the Windows NT
operating system platform.

setenv.ksh Contains the commands to set the environment
variables needed to build and run the Callback
sample application on the UNIX operating
system platform.

stderr Generated by the tmboot command, which is
executed by the runme command. If the
-noredirect JavaServer option is specified
in the UBBCONFIG file, the
System.err.println method sends the
output to the stderr file instead of to the
ULOG file.
Using Server-to-Server Communication 3-28

3 Developing Java Joint Client/Server Applications
Using the Callback Sample Application

This section describes how to use the Callback sample application after the runme
command is executed.

Run the joint client/server application in the Callback sample application, as follows:

Windows NT

prompt>tmboot -y
prompt>java -classpath %CLIENTCLASSPATH% -DTOBJADDR=%TOBJADDR
-Dorg.omg.CORBA.ORBPort=%CALLBACK_PORT% SimpleJCS
String?
Hello World
HELLO WORLD
hello world

stdout Generated by the tmboot command, which is
executed by the runme command. If the
-noredirect JavaServer option is specified
in the UBBCONFIG file, the
System.out.println method sends the
output to the stdout file instead of to the
ULOG file.

tmsysevt.dat Contains filtering and notification rules used by
the TMSYSEVT (system event reporting)
process. This file is generated by the tmboot
command in the runme command.

tuxconfig A binary version of the UBBCONFIG file.

ubb The UBBCONFIG file for the Callback sample
application.

ULOG.<date> A log file that contains messages generated by
the tmboot command.

Table 3-8 Files in the results Directory Generated by the runme Command

File Description
3-29 Using Server-to-Server Communication

Using the Callback Sample Application
UNIX

ksh prompt>tmboot
ksh prompt>java -classpath $CLIENTCLASSPATH -DTOBJADDR=$TOBJADDR
-Dorg.omg.CORBA.ORBPort=$CALLBACK_PORT SimpleJCS
String?
Hello World
HELLO WORLD
hello world

Before using another sample application, enter the following commands to stop the
Callback sample application and to remove unnecessary files from the work directory:

Windows NT

prompt>tmshutdown -y

prompt>nmake -f makefile.nt clean

UNIX

ksh prompt>tmshutdown -y

ksh prompt>make -f makefile.mk clean
Using Server-to-Server Communication 3-30

3 Developing Java Joint Client/Server Applications
3-31 Using Server-to-Server Communication

Index

A
asymmetric IIOP

defined 1-4

B
bidirectional IIOP

defined 1-4
Bootstrap object

C++ joint client/server applications 2-12
Callback sample application 3-12
Chat Room sample application 2-12
Java joint client/server applications 3-12

building
C++ joint client/server applications 2-17
Java joint client/server applications 3-17

buildjavaserver command 3-18
buildobjclient command 2-17

C
C++ joint client/server applications

compiling 2-17
configuration information 2-15
creating a callback object 2-13
development process 2-2
generating skeletons and client stubs 2-7
threading considerations 2-23
using the callback object 2-13, 2-15
using the Callbacks Wrapper object 2-13
writing method implementations 2-9

writing OMG IDL 2-5
writing the client portion 2-11

callback object
defined 1-2
object policies 1-4
using Callbacks Wrapper object

to create 2-13, 3-13
using POA to create 2-17

Callback sample application
building 3-19
changing protection on files 3-22
client portion 3-12
compiling the Java client

application 3-25
compiling the Java server

application 3-25
description 3-3
illustrated 3-3
implementation files 3-9
loading the UBBCONFIG file 3-25
OMG IDL 3-4
required environment variables 3-23
runme command 3-25
setting up the work directory 3-20
source files 3-20
starting the Java client application 3-29
starting the Java server application 3-29
stopping 3-30
using 3-29

Callbacks Wrapper object
C++ code example 2-14
Using Server-to-Server Communication I-1

creating C++ callback object 2-13
creating Java callback object 3-13
description 2-13
Java code example 3-14

Chat Room sample application
building 2-24
changing protection on files 2-26
client portion 2-12
description 2-3
illustrated 2-3
implementation files for 2-10
invoking the callback object 2-15
loading the UBBCONFIG file 2-28
OMG IDL 2-6
required environment variables 2-27
setting up the work directory 2-25
source files 2-25
starting the server application 2-29
stopping 2-30
using Callbacks Wrapper object 2-14

ChatRoom application process
Chat Room sample application 2-29

client stubs
for C++ joint client/server

applications 2-7
for Java joint client/server

applications 3-6
compiling

C++ joint client/server applications 2-17
Callback sample application 3-25
Chat Room sample application 2-28
Java joint client/server applications 3-17

D
development process

C++ joint client/server applications 2-2
Java joint client/server applications 3-2

directory location of source files
Callback sample application 3-20
Chat Room sample application 2-25

dual-paired connection IIOP
defined 1-4

E
environment variables

Callback sample application 3-23
CALLBACK_PORT 3-24
Chat Room sample application 2-27
HOST 3-24
IPCKEY 3-24
JAVA_HOME 2-27, 3-23
PORT 3-24
TUXDIR 2-27, 2-28, 3-23

F
file protections

Callback sample application 3-22
Chat Room sample application 2-26

I
idl command

generated files 2-8
use with C++ joint client/server

applications 2-7
idltojava command

generated files 3-7
use with Java joint client/server

applications 3-6
IIOP

asymmetric 1-4
bidirectional 1-4
dual-paired connection 1-4
supported versions 1-2
use in server-to-server communication

1-1
IIOP Server Handler

see ISH 1-4
implementation file
I-2 Using Server-to-Server Communication

Callback object 3-9
Listener object 2-10
Moderator object 2-10
ModeratorFactory object 2-10
Simple object 3-9
SimpleFactory object 3-10

interfaces
Callback 3-5
Listener 2-5
Moderator 2-5
ModeratorFactory 2-5
Simple 3-5
SimpleFactory 3-5
writing methods to implement

operations 2-9, 3-9
Internet Inter-ORB Protocol

see IIOP 1-1
ISH

connecting to 3-15
use in IIOP 1-4

ISL application process
Callback sample application 3-27
Chat Room sample application 2-29

J
JAR files

m3envobj.jar 3-18
wleclient.jar 3-11, 3-18

Java joint client/server applications
compiling 3-17
configuration information 3-16
connecting to the ISH 3-15
creating a callback object 3-13
development process 3-2
generating skeletons and client stubs 3-6
initializing the ORB 3-11
register_callback_port method 3-15
software requirements 3-3
threading considerations 3-17
using the callback object 3-16

writing method implementations 3-8
writing OMG IDL 3-4
writing the client portion 3-12

Java ORB
configuring 3-17
initializing 3-11
setting properties 3-11

JAVA_HOME parameter
Callback sample application 3-23
Chat Room sample application 2-27

javac command 3-17
JavaServer application process

Callback sample application 3-26
joint client/server application

defined 1-2
illustrated 1-3
structure 1-2
supported languages 1-3

M
m3envobj.jar 3-18
m3idltojava command

generated files 3-7
use with Java joint client/server

applications 3-6

O
object policies

defined 1-4
Persisten/System ID 1-5
Persistent/User ID 1-5
Transient/System ID 1-5

OMG IDL
Callback interface 3-4
Listener interface 2-5
Moderator interface 2-5
ModeratorFactory interface 2-5
Simple interface 3-4
SimpleFactory interface 3-4
Using Server-to-Server Communication I-3

P
POA

creating callback objects 2-17
Persistent/System ID 2-22
Persistent/User ID 2-21
Transient/System ID 2-18

Portable Object Adpater
see POA 2-17

R
register_callback_port method

use in dual-paired connection
IIOP 1-4

use in Java joint client/server
application 3-15

runme command
description 3-25
files generated by 3-27

S
server-to-server communication

callback object 1-2
concepts 1-2
description 1-1
IIOP 1-1

skeletons
for C++ joint client/server

applications 2-7
for Java joint client/server

applications 3-6
support

documentation xi
technical xi

T
TMFFNAME application process

Callback sample application 3-26
Chat Room sample application 2-29

TMSYSEVT application process
Callback sample application 3-26
Chat Room sample application 2-29

TUXDIR parameter
Callback sample application 3-23
Chat Room sample application 2-27

U
UBBCONFIG file

Callback sample application 3-25
Chat Room sample application 2-28

W
wleclient.jar 3-11

file location 3-11
I-4 Using Server-to-Server Communication

	Copyright
	Preface
	Purpose of This Document
	How to Use This Document
	Related Documentation
	Contact Information

	1 Understanding Server-to-Server Communication
	Overview of Server-to-Server Communication
	Joint Client/Server Applications
	Object Policies for Callback Objects

	2 Developing C++ Joint Client/Server Applications
	Development Process
	Chat Room Sample Application
	Step 1: Writing the OMG IDL
	Step 2: Generating Skeletons and Client Stubs
	Step 3: Writing the Methods That Implement Each Object’s Operations
	Step 4: Writing the Client Portion of the Joint Client/Server Application
	Step 5: Creating a Callback Object Using the Callbacks Wrapper Object
	Step 6: Invoking Operations on a WLE Object By Passing a Reference to the Callback Object
	Step 7: Specifying Configuration Information
	Step 8: Compiling Joint Client/Server Applications
	Using the POA to Create a Callback Object
	Creating a Callback Object with a Transient Object Policy
	Creating a Callback Object with a Persistent/User ID Object Policy
	Creating a Callback Object with a Persistent/System ID Object Policy

	Threading Considerations for C++ Joint Client/Server Applications
	Building and Running the Chat Room Sample Application
	Copying the Files for the Chat Room Sample Application into a Work Directory
	Changing the Protection Attribute on the Files for the Chat Room Sample Application
	Verifying the Setting of the TUXDIR Environment Variable
	Executing the ChatSetup Command
	Starting the Server Application
	Starting the Client Application
	Stopping the Chat Room Sample Application

	3 Developing Java Joint Client/Server Applications
	Development Process
	Software Requirements
	The Callback Sample Application
	Step 1: Writing the OMG IDL
	Step 2: Generating Skeletons and Client Stubs
	Step 3: Writing the Methods That Implement Each Interface’s Operations
	Step 4: Initializing the ORB
	Step 5: Writing the Client Portion of the Joint Client/Server Application
	Step 6: Creating a Callback Object Using the Callbacks Wrapper Object
	Step 7: Establishing a Connection to an ISH
	Step 8: Invoking Operations on the Callback Object
	Step 9: Specifying Configuration Information
	Step 10: Compiling Java Joint Client/Server Applications
	Threading Considerations for Java Joint Client/Server Applications
	Building and Running the Callback Sample Application
	Copying the Files for the Callback Sample Application into a Work Directory
	Changing the Protection Attribute on the Files for the Callback Sample Application
	Verifying the Settings of the Environment Variables
	Executing the runme Command

	Using the Callback Sample Application

