
Using the idltojava Compiler

W e b L o g i c E n t e r p r i s e 5 . 0
D o c u m e n t E d i t i o n 5 . 0

D e c e m b e r 1 9 9 9

BEA WebLogic Enterprise

Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Using the idltojava Compiler

Document Edition Date Software Version

5.0 December 1999 BEA WebLogic Enterprise 5.0

Using the idltojava Compiler for WebLogic Enterprise iii

Contents

About This Document
What You Need to Know .. viii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... ix

Contact Us!.. ix

Documentation Conventions ...x

1. Overview of CORBA Java Programming
Where do I get the BEA idltojava compiler? .. 1-2

How does the BEA idltojava compiler differ from
the Sun Microsystems, Inc. version?.. 1-2

What is IDL? ... 1-3

What is Java IDL? ... 1-3

About Distributed Applications... 1-4

Multi-Tiered Applications.. 1-5

User Interface Tier ... 1-6

Service or Business Logic Tier .. 1-6

Data Store (Database) Tier... 1-6

About CORBA and Java IDL.. 1-6

About CORBA ... 1-7

Accessing CORBA Objects from Java Applications 1-7

A Quick Review of CORBA Concepts .. 1-8

Defining and Implementing CORBA Objects ... 1-10

CORBA Object Interfaces .. 1-10

Java Language-based Implementation .. 1-11

iv Using the idltojava Compiler for WebLogic Enterprise

Client Implementation ... 1-13

The FactoryFinder .. 1-14

What’s next? .. 1-14

2. Using the idltojava Command
Syntax of the idltojava Command ... 2-2

idltojava Command Description.. 2-2

Running idltojava on Client or Joint Client/Server IDL Files........................... 2-2

Running m3idltojava on Server Side IDL Files .. 2-3

idltojava Command Options .. 2-3

idltojava Command Flags.. 2-4

Using #pragma in IDL Files .. 2-6

3. Java IDL Examples
Getting Started with a Simple Example of IDL .. 3-1

Callback Objects IDL Example... 3-2

Persistent State and User Exceptions IDL Example.. 3-3

Implementation Inheritance... 3-4

4. Java IDL Programming Concepts
Exceptions ... 4-1

Differences Between CORBA and Java Exceptions 4-2

System Exceptions.. 4-2

System Exception Structure .. 4-2

Minor Codes... 4-3

Completion Status ... 4-3

User Exceptions.. 4-4

Minor Code Meanings.. 4-4

Initializations ... 4-7

Creating an ORB Object... 4-8

Creating an ORB for an Application... 4-8

Creating an ORB for an Applet... 4-8

Arguments to ORB.init().. 4-9

System Properties.. 4-10

Using the idltojava Compiler for WebLogic Enterprise v

Obtaining Initial Object References... 4-10

Stringified Object References ... 4-11

Getting References from the ORB .. 4-11

The FactoryFinder Interface .. 4-12

5. IDL to Java Mappings Used By the idltojava Compiler

6. The Java IDL API

Index

vi Using the idltojava Compiler for WebLogic Enterprise

Using the idltojava Compiler vii

About This Document

This document explains what Java IDL is and describes how to use the idltojava
compiler for developing Java - CORBA applications in the BEA WebLogic Enterprise
(WLE) environment.

This document covers the following topics:

� Chapter 1, “Overview of CORBA Java Programming,” explains the relationship
of Java IDL to CORBA, provides an overview of distributed application
concepts and CORBA, and explains how you can use Java IDL to create Java
applications that interoperate with CORBA objects. This chapter also explains
where to get the BEA idltojava compiler, and how the BEA idltojava compiler
differs from the idltojava compiler available from Sun Microsystems, Inc.

� Chapter 2, “Using the idltojava Command,” explains how to run the idltojava
compiler and explains all the options and flags on the idltojava command.

� Chapter 3, “Java IDL Examples,” provides several code examples to illustrate
the use of the idltojava compiler. The code examples include the Java SimpApp
sample application to get you started. Other examples illustrate use of Persistent
State and User Exceptions, Callback Objects, and Implementation Inheritance.

� Chapter 4, “Java IDL Programming Concepts,” discusses some relavant
programming concepts, such as Exceptions, Initialization, and use of the Factory
Finder.

� Chapter 5, “IDL to Java Mappings Used By the idltojava Compiler,” explains
the CORBA IDL to Java mappings that the idltojava tool implements.

� Chapter 6, “The Java IDL API,” provides links to the Javadoc API reference
pages that relate to Java IDL and the idltojava compiler.

viii Using the idltojava Compiler

What You Need to Know

This document is intended mainly for developers who are interested in building
distributed Java applications that can act as Common Object Request Broker
Architecture (CORBA) objects in a BEA WebLogic Enterprise application. It assumes
a familiarity with the WebLogic Enterprise platform and Java programming.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.beasys.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise
documentation Home page, click the PDF files button and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site athttp://www.adobe.com/.

How to Print the Document

Using the idltojava Compiler ix

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
TUXEDO, distributed object computing, transaction processing, C++ programming,
and Java programming, see theWLE Bibliographyin the WebLogic Enterprise online
documentation.

For more general information about Java IDL and Java CORBA applications, refer to
the following sources.

� The Object Management Group (OMG) Web site at http://www.omg.org/

� The Sun Microsystems, Inc. Java Web site at http://java.sun.com/

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail atdocsupport@beasys.comif you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.0 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSupport atwww.beasys.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

x Using the idltojava Compiler

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

Documentation Conventions

Using the idltojava Compiler xi

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

xii Using the idltojava Compiler

Using the idltojava Compiler 1-1

CHAPTER

1 Overview of CORBA
Java Programming

BEA WebLogic Enterprise (WLE) is an implementation of the Java 2 Enterprise
Edition (J2EE) platform. As such, WLE includes CORBA (Common Object Request
Broker Architecture) capability for standards-based interoperability and connectivity.

The WLE platform allows distributed Web-enabled Java applications to transparently
invoke operations on remote network services using the industry standard Object
Management Group (OMG) Interface Definition Language (IDL) and Internet
Inter-ORBProtocol (IIOP) defined by the OMG. Runtime components include a fully
compliant Java Object Request Broker (ORB) for distributed computing using IIOP
communication.

To build Java applications that can access CORBA objects, you need the BEA
idltojava compiler, a tool that converts IDL files to Java stub and skeleton files. The
idltojava compiler is included with the BEA WebLogic Enterprise software.

This topic includes the following sections:

� Where do I get the BEA idltojava compiler?

� How does the BEA idltojava compiler differ from the Sun Microsystems, Inc.
version?

� What is IDL?

� What is Java IDL?

� About Distributed Applications

� About CORBA and Java IDL

� What’s next?

1 Overview of CORBA Java Programming

1-2 Using the idltojava Compiler

Where do I get the BEA idltojava compiler?

The WebLogic Enterprise CD-ROM includes the BEA version of the idltojava
compiler. Once you have installed WebLogic Enterprise, you can find the idltojava
compiler inWLEDIR/bin .

How does the BEA idltojava compiler differ
from the Sun Microsystems, Inc. version?

The BEA WLE idltojava compiler provided with WLE includes several
enhancements, extensions and additions that are not included in the original compiler
produced by Sun Microsystems, Inc. The WLE specific revisions are summarized
here. For detailed information on using the idltojava compiler provided with WLE, see
the topic “Using the idltojava Command” on page 2-1.

The WLE idltojava compiler:

� The behavior and defaults of the flags differs from that described in the Sun
Microsystems, Inc. documentation. (See “idltojava Command Flags” on page
2-4.)

� Includes a new #pragma tag:#pragma ID < name> <Repostitory_id>

(See “Using #pragma in IDL Files” on page 2-6.)

� Includes a new #pragma tag:#pragma version < name> <m.n> (See “Using
#pragma in IDL Files” on page 2-6.)

� Extends the#pragma prefix to work on inner scope. A blank prefix reverts.
(See “Using #pragma in IDL Files” on page 2-6.)

� Allows unions with boolean discriminators

� Allows declarations nested inside complex types

What is IDL?

Using the idltojava Compiler 1-3

What is IDL?

Interface Definition Language (IDL) is a generic term for a language that lets a
program or object written in one language communicate with another program written
in an unknown language. In distributed object technology, new objects must be able to
be sent to any platform environment and have the ability to discover how to run in that
environment. An ORB is an example of a program that uses an interface definition
language to “broker” communication between one object program and another.

What is Java IDL?

CORBA is the standard distributed object architecture developed by the OMG
consortium. The OMG has specified an architecture for an ORB on which object
components written by different vendors can interoperate across networks and
operating systems. The OMG-specified Interface Definition Language (IDL) is used
to define the interfaces to CORBA objects.

Sun Microsystems, Inc. defines “Java IDL” as:

The classes, libraries, and tools that make it possible to use CORBA objects
from the Java programming language. The main components of Java IDL are an
ORB, a naming service, and the idltojava compiler.

Note thatJava IDLis not a particular kind of interface definition language (IDL) apart
from OMG IDL. The same IDL can be compiled with the idltojava compiler to produce
CORBA-compatible Java files, or with a C++ based compiler to produce
CORBA-compatible C++ files. The compiler that you use on the IDL is what makes

1 Overview of CORBA Java Programming

1-4 Using the idltojava Compiler

the difference. The OMG has established IDL-to-Java mappings as well as
IDL-to-C++ mappings. The language-based compilers generate code based on the
OMG CORBA mappings to their particular language.

The BEA WLE system provides its own “brand” of Java IDL. In other words, as a
J2EE implementation, WLE provides all of the components you need to build Java
applications capable of accessing CORBA objects. The key components in WLE are:

� WLE idltojava compiler— A tool for converting IDL interface definitions to
Java stub and skeleton files

� WLE CORBA Object Request Broker (ORB)

� Java Naming and Directory Interface (JNDI)—The standard naming service
available in the Java 2 Enterprise Edition (J2EE)

� Bootstrap Object and FactoryFinder—WLE objects that work in conjunction
with the naming service to supply local and remote object references

About Distributed Applications

The termdistributed computingrefers to the paradigm in which data and applications
in a system are spread out over multiple hosts on a network. Over time, more and more
enterprises are moving applications and data to where they can operate most efficiently
in the enterprise, to some mix of desktop workstations, local area network servers,
regional servers, Web servers, and other servers. “Client-server” computing fits into
this model in that it implies that clients will provide certain capabilities for a user and
request others from server applications that provide services for the clients. The servers
can be on remote machines. The Web's HTTP protocol is an example.

The e-business market that is emerging today in the context of the World Wide Web
demands an object-oriented view of distributed computing as a basis for business
systems.

This section discusses general concepts that relate to all distributed computing
environments:

� Multi-Tiered Applications

� User Interface Tier

About Distributed Applications

Using the idltojava Compiler 1-5

� Service or Business Logic Tier

� Data Store (Database) Tier

Multi-Tiered Applications

Traditional enterprise applications are, for the most part, self-contained monolithic
programs with limited access to one another's procedures and data. They are usually
cumbersome to build and expensive to maintain because even simple changes require
the entire program to be recompiled and retested.

By contrast, applications built using distributed objects such as CORBA naturally lend
themselves to a multi-tiered architecture, resulting in a useful separation of concerns.

A three-tiered application has a user interface code layer, a computation code (or
business logic) layer, and a database access layer. All interaction between the layers
occurs via the interfaces that all CORBA objects must publish. Figure 1-1 illustrates
the transition from monolithic applications to multi-tiered, modular applications.

Figure 1-1 Transition from Monolithic to Multi-Tiered Applications

1st Tier

2nd Tier

3rd Tier Data
StoreStore

GUI GUI

service
logic

service
logic

service
logic

Data
Store

Data
Store

Data
Store

Data
StoreStore

GUI

Business
Logic

GUI

Business
Logic

1st generation
systems (monolithic)

2nd generation
systems

Latest generation
systems (many tiers)

1 Overview of CORBA Java Programming

1-6 Using the idltojava Compiler

User Interface Tier

The user interface (UI) tier is the layer of user interaction. Its focus is on efficient user
interface design and accessibility throughout your organization. The user interface tier
can reside on the user's desktop, on your organization's intranet, or on the World Wide
Web (Internet). Several user interface implementations may be deployed which access
the same server. The UI tier usually invokes methods on the business logic tier and thus
acts as a client of the business logic servers.

Service or Business Logic Tier

The service, or business logic layer, is server-based code with which the client code
interacts. The business logic layer is made up of business objects: CORBA objects that
perform logical business functions such as inventory control, budget, sales orders, and
billing. These objects invoke methods on the Database tier objects.

Data Store (Database) Tier

The data store layer is made up of objects that encapsulate database routines and
interact directly with the DBMS product(s). For example, a hypothetical
get_Sales_Sum method might be implemented to obtain data from a relational
database via the appropriate appropriate JDBC SQL SELECT statements.

About CORBA and Java IDL

The following sections explain more about CORBA and Java IDL:

� About CORBA

� Accessing CORBA Objects from Java Applications

� A Quick Review of CORBA Concepts

About CORBA and Java IDL

Using the idltojava Compiler 1-7

� Defining and Implementing CORBA Objects

� Client Implementation

� The FactoryFinder

About CORBA

The Common Object Request Broker Architecture (CORBA) is the standard
distributed object architecture developed by the OMG Consortium. The OMG has
specified an architecture for an open software bus, or Object Request Broker (ORB),
on which object components written by different vendors can interoperate across
networks and operating systems. This standard allows CORBA objects to invoke one
another without knowing where the objects they access reside or in what language the
requested objects are implemented. The OMG-specified Interface Definition
Language (IDL) is used to define the interfaces to CORBA objects.

CORBA objects differ from typical programming language objects in these ways:

� CORBA objects can be located anywhere on a network.

� CORBA objects can interoperate with objects on other platforms.

� CORBA objects can be written in any programming language for which there is
a mapping from OMG IDL to that language. (Mappings currently specified
include Java, C++, C, Smalltalk, COBOL, and Ada.)

Accessing CORBA Objects from Java Applications

To make it possible for you to access CORBA objects from your Java applications,
WLE provides the following features which are integral to the “Java IDL”
programming model:

� WLE idltojava compiler—Theidltojava command compiles standard CORBA
IDL source code into Java source code. (You can then use thejavac compiler to
compile that source to Java bytecodes.) For a detailed description of the idltojava
compiler, see Chapter 2, “Using the idltojava Command.”

1 Overview of CORBA Java Programming

1-8 Using the idltojava Compiler

� WLE CORBA Object Request Broker (ORB)—The ORB together with the
idltojava compiler can be used to define, implement, and access CORBA objects
from Java applications. The WLE system supports both transient and persistent
CORBA objects. Transient objects are those whose lifetimes are limited by their
server process's lifetime. Persistent orstatefulobjects are those which can store
state and reinitialize themselves from this state each time the server is restarted.
(For more on using persistent objects, see the topic “Persistent State and User
Exceptions IDL Example” on page 3-3 and the section on Joint Client Server
Applications in Understanding Server-to-Server Communication in the
WebLogic Enterprise online documentation.

� Java Naming and Directory Interface (JNDI)—The capability of looking up and
locating objects in WLE is provided by the Java Naming and Directory Interface
(JNDI), a standard J2EE naming service. JNDI is used along with the BEA WLE
Bootstrap object and FactoryFinder to resolve object references.

� Bootstrap Object and FactoryFinder—The client application uses the Bootstrap
object to obtain initial object references to key objects in a WLE domain, one of
which is the FactoryFinder. The FactoryFinder, in turn, is used to locate factory
objects. Factories are used to create application objects.

The WLE Java CORBA ORB supports both transient and persistent objects.

The WLE Interface Repository is not required. An interface repository is provided for
dynamically determining interfaces. See the commandidl2ir in theCommands
ReferenceandInterface Repository Interfacesin theCORBA Java Programming
Referencein the WebLogic Enterprise online documentation.

A Quick Review of CORBA Concepts

The concepts introduced in this section are more completely discussed in the
CORBA/IIOP 2.0 Specification.

Figure 1-2 shows a method request sent from a client to a CORBA object
implementation in a server. A client is any code (perhaps itself a CORBA object) that
invokes a method on a CORBA object. The servant is an instance of the object
implementation - the actual code and data that implements the CORBA object.

About CORBA and Java IDL

Using the idltojava Compiler 1-9

Figure 1-2 Method Request from a Client to a CORBA Object

The client of a CORBA object has an object reference for the object and the client uses
this object reference to issue method requests. If the server object is remote, the object
reference points to a stub function, which uses the ORB to forward invocations to the
server object. The stub code uses the ORB to identify the machine that runs the server
object and asks that machine's ORB for a connection to the object's server. When the
stub code has the connection, it sends the object reference and parameters to the
skeleton code linked to the destination object's implementation. The skeleton code
transforms the call and parameters into the required implementation-specific format
and calls the object. Any results or exceptions are returned along the same path.

The client has no knowledge of the CORBA object's location, implementation details,
nor which ORB is used to access the object. Different ORBs communicate via the
OMG-specified Internet InterORB Protocol (IIOP).

A client may only invoke methods that are specified in the CORBA object's interface,
which is defined using the OMG Interface Definition Language (IDL). An interface
defines an object type and specifies a set of named methods and parameters, as well as
the exception types that these methods may return. An IDL compiler such as idltojava
translates the CORBA object definitions into a specific programming language
according to the appropriate OMG language mapping. Thus, the idltojava compiler
translates IDL defintions into Java constructs according to the IDL-Java language
mapping.

client

stubs

ORB

server

skeletons

ORB
IIOP

object
reference

servant

1 Overview of CORBA Java Programming

1-10 Using the idltojava Compiler

The stub and skeleton files are generated by the idltojava compiler for each object type.
Stub files present the client with access to IDL-defined methods in the client
programming language. The server skeleton files glue the object implementation to the
ORB run time. The ORB uses the skeletons to dispatch methods to the object
implementation instances (servants).

Defining and Implementing CORBA Objects

The goal in CORBA object development is the creation and registration of an object
server, or simply server. A server is a program which contains the implementation of
one or more object types and which has been registered with the ORB. For example,
you might develop a desktop publishing server which implements a "Document"
object type, a "Paragraph" object type, and other related object types.

CORBA Object Interfaces

All CORBA objects support an IDL interface; the IDL interface defines anobject type.
An interface can inherit from one or more other interfaces. IDL syntax is very similar
to that of Java or C++, and an IDL file is functionally the CORBA
language-independent equivalent to a C++ header file. IDL is mapped into each
programming language to provide access to object interfaces from that language. With
Java IDL, these IDL interfaces can be translated to Java using the idltojava compiler.
For each IDL interface, idltojava generates a Java interface and the other .java files
needed, including a client stub and a server skeleton.

An IDL interface declares a set of client accessible operations, exceptions, and typed
attributes (values). Each operation has a signature that defines its name, parameters,
result, and exceptions. Listing 1-1 shows a simple IDL interface that describes the
WLE sample application calledSimpApp .

Listing 1-1 An IDL Interface for the WLE Java Simpapp Sample Application

#pragma prefix "beasys.com"

interface Simple
{

//Convert a string to lower case (return a new string)
string to_lower(in string val);

About CORBA and Java IDL

Using the idltojava Compiler 1-11

//Convert a string to upper case (in place)
void to_upper(inout string val);

};

interface SimpleFactory
{

Simple find_simple();
};

An operation may raise an exception when an error condition arises. The type of the
exception indicates the kind of error that was encountered. Clients must be prepared to
handle defined exceptions and CORBA standard exceptions for each operation in
addition to normal results.

Java Language-based Implementation

After defining the IDL interfaces, the developer can build two basic types of
applications with WLE:

� A remote joint client/server or client, which uses files from the idltojava
command for its client stubs (and optionally also its server skeletons).

Note: A remotejoint client/serveris a client that implements server objects to be
used as callback objects. The server role of the remote joint client/server is
considerably less robust than that of a WLE server. Neither the client nor the
server has any of the WLE administrative and infrastructure components, such
astmadmin , JNDI registration, and ISL/ISH (hence, none of scalability and
reliability attributes of WLE)

� A server, which uses files from the m3idltojava command for its server
skeletons.

The client development sequence is:

1. Define IDL interfaces for the client.

2. Run the idltojava compiler on client IDL files.

3. Implement client calls (and optionally server skeletons).

4. Compile all.java files into .class files.

1 Overview of CORBA Java Programming

1-12 Using the idltojava Compiler

5. Run the client class having a public main method which calls the WLE server and
optionally also provides servants for its objects (when acting as a server).

The server development sequence is:

1. Define IDL interfaces for the server.

2. Run m3idltojava on the server IDL files.

3. Implement servant objects.

4. Compile all .java files into.class files.

5. Create the XML Server Descriptor File.

6. Use thebuildjavaserver command to create a jar file.

7. Configure the JavaServer with the new jar file in a UBBCONFIG

8. Runtmloadcf on theubbconfig file to generate a binarytuxconfig file

9. Runtmboot on the configuration file (tuxconfig)

An object implementation defines the behavior for all the operations and attributes of
the interface it supports. There may be multiple implementations of an interface, each
designed to emphasize a specific time and space trade-off, for example. The
implementation defines the behavior of the interface and object creation/destruction.

Only servers can create new CORBA objects. Therefore, a factory object interface
should be defined and implemented for each object type. For example, ifDocument is
an object type, aDocumentFactory object type with acreate method should be
defined and implemented as part of the server. (Note that “create” is not reserved; any
method name may be used.)

For example, here is how a WLE server registers a new object :

org.omg.CORBA.Object docoument_oref = TP.create_object_reference(
DocumentHelper.id(), // Repository ID
docName, // Object ID
null // Routing Criteria
);

The TP Framework takes cares of the actual object instantiation:

(new DocumentServant).

About CORBA and Java IDL

Using the idltojava Compiler 1-13

A destroy method may be defined and implemented onDocument or the object may
be intended to persist indefinitely. (Note that “destroy” is not reserved and any name
may be used.)

The BEA Java CORBA ORB supports both transient and persistent objects. Persistent
objects must be created as callback objects with the Portable Object Adapter (POA) to
define a Persistent/User ID Object Policy.

Client Implementation

Client code is included on the CLASSPATH with idltojava-generated .java files and
the ORB library.

Clients may only create CORBA objects via the published factory interfaces that the
server provides. Likewise, a client may only delete a CORBA object if that object
publishes a destruction method. A CORBA object may be shared by many clients on
a network, so only the object server can know when the object has become garbage.

The client code only issues method requests on a CORBA object via the object's object
reference. Theobject referenceis an opaque structure which identifies a CORBA
object's host machine, the port where the ISH is listening for requests, and a pointer to
the specific object in the process. Because Java IDL supports only transient objects,
this object reference becomes invalid if the WLE system is stopped and restarted.

Clients typically obtain object references from:

� A factory object

For example, the client could invoke acreate method onDocumentFactory

object to create a newDocument . TheDocumentFactory create method
would return an object refererence forDocument to the client.

The use of a factory object to obtain object references is the recommended
method for Java CORBA clients in this release of WLE.

� A string that was specially created from an object reference

After an object reference is obtained, the client mustnarrow it to the appropriate type.
IDL supports inheritance; the root of its hierarchy isObject in IDL,
org.omg.CORBA.Object in Java. (org.omg.CORBA.Object is, of course, a subclass
of java.lang.Object .) Some operations, notably name lookup and unstringifying,
return anorg.omg.CORBA.Object , which you narrow (using a helper class generated

1 Overview of CORBA Java Programming

1-14 Using the idltojava Compiler

by the idltojava compiler) to the derived type you want the object to be. CORBA
objects must be explicitly narrowed because the Java run time cannot always know the
exact type of a CORBA object.

The FactoryFinder

The WLE FactoryFinder interface and the NameManager give you a mechanism for
registering, storing, and finding objects across multiple domains or within a single
domain in WLE.

For more information on how the FactoryFinder relates to Java IDL, refer to topic “The
FactoryFinder Interface” on page 4-12.

For detailed information on how to use the FactoryFinder Interface, seeFactoryFinder
Interfacein theCORBA Java Programming Referencein the WebLogic Enterprise
online documentation.

What’s next?

To get started using Java IDL to build WebLogic Enterprise Java CORBA
applications, check out the following examples, concepts, and reference information:

� Using the idltojava Command

� Java IDL Examples

� Java IDL Programming Concepts

� IDL to Java Mappings Used By the idltojava Compiler

� The Java IDL API

Using the idltojava Compiler 2-1

CHAPTER

2 Using the idltojava
Command

The idltojava compiler compiles IDL files to Java source code based on IDL to Java
mappings defined by the OMG. For more information about the IDL to Java mappings,
refer to the topic IDL to Java Mappings Used By the idltojava Compiler.

This topic includes the following sections:

� Syntax of the idltojava Command

� idltojava Command Description

� Running idltojava on Client or Joint Client/Server IDL Files

� Running m3idltojava on Server Side IDL Files

� idltojava Command Options

� idltojava Command Flags

� Using #pragma in IDL Files

For a quick summary of the enhancements and updates added to the BEA WebLogic
Enterprise (WLE) idltojava compiler, see the topic “How does the BEA idltojava
compiler differ from the Sun Microsystems, Inc. version?” on page 1-2

2 Using the idltojava Command

2-2 Using the idltojava Compiler

Syntax of the idltojava Command

idltojava [idltojava Command Flags] [idltojava Command Options] filename ...

m3idltojava [idltojava Command Flags] [idltojava Command Options] filename ...

idltojava Command Description

Theidltojava command compiles IDL source code into Java source code. You then
use thejavac compiler to compile that source to Java bytecodes.

The commandidltojava is used to translate IDL source code into generic client stubs
and generic server skeletons which can be used for callbacks. The command
m3idltojava is used to translate IDL into generic client stubs and WebLogic
Enterprise server skeletons.

The IDL declarations from the named IDL files are translated to Java declarations
according to the mappings specified in the OMG IDL to Java mappings. (For more
information on the mappings, see IDL to Java Mappings Used By the idltojava
Compiler.)

Running idltojava on Client or Joint
Client/Server IDL Files

To run idltojava on client-side IDL files, use the following command:

idltojava <flags> <options> <idl-files>

The idltojava command requires a C++ pre-processor, and is used to generate
deprecated names. The commandidltojava generates Java code as is appropriate for
the client-side ORB.

Running m3idltojava on Server Side IDL Files

Using the idltojava Compiler 2-3

Note: A remotejoint client/serveris a client that implements server objects to be
used as callback objects. The server role of the remote joint client/server is
considerably less robust than that of a WLE server. Neither the client nor the
server has any of the WLE administrative and infrastructure components, such
astmadmin , JNDI registration, and ISL/ISH (hence, none of scalability and
reliability attributes of WLE)

Running m3idltojava on Server Side IDL
Files

To run m3idltojava on server-side IDL files, use the following command:

m3idltojava <flags> <options> <idl-files>

The server-side ORB is built to use non-deprecated names. The command
m3idltojava generates Java code using non-deprecated names as is appropriate for
the server-side ORB.

idltojava Command Options

Note: Several option descriptions have been added here that are not documented in
the original Sun Microsystems Inc. idltojava compiler documentation.

Option Description

-j javaDirectory Specifies that generated Java files should be written to the given
directory. This directory is independent of the -p option, if any.

-J filesFile Specifies that a list of the files generated byidltojava should be
written to filesFile

2 Using the idltojava Command

2-4 Using the idltojava Compiler

idltojava Command Flags

The flags can be turned on by specifying them as shown, and they can be turned off by
prefixing them with the lettersno- . For example, to prevent the C preprocessor from
being run on the input IDL files, use-fno-cpp .

The table below includes descriptions of all flags.

-p package-name Specifies the name of an outer package to enclose all the
generated Java. It has the same function as#pragma
javaPackage .

Note: You must include anouter package. The compiler does
not do this for you. If you do not have an outer package,
the idltojava compiler will still generate Java files for
you but you will get a Java compiler error when you try
to compile the*.java files.

The following options are identical to the equivalent C/C++ compiler options (cpp):

-I directory Specifies a directory or path to be searched for files that are
#included in IDL files. This option is passed to the preprocessor.

-D symbol Specifies a symbol to be defined during preprocessing of the
IDL files. This option is passed to the preprocessor.

-U symbol Specifies a symbol to be undefined during preprocessing of the
IDL files. This option is passed to the preprocessor.

Option Description

Flag Description

-f list-flags Requests that the state of all the-f flags be printed. The default value of this
flag is off .

-f list -debug-flags Provides a list of debugger flags

idltojava Command Flags

Using the idltojava Compiler 2-5

-f caseless Request that case not be significant in keywords and identifiers. The default
value of this flag is 'on'.

-f client Requests the generation of the client side of the IDL files supplied. The default
value of this flag is `off'.

-f cpp Requests that the idl source be run through the C/C++ preprocessor before
being compiled by the idltojava compiler. The default value of this flag ison.

-f ignore-duplicates Specifies that duplicate definitions be ignored. This may be useful if compiling
multiple IDL files at one time. The default value of this flag isoff .

-f list-options Lists the options specified on the command line. The default value of this flag
is off .

-f map-included-files Specifies that java files be generated for definitions included by#include
preprocessor directives. The default value for this flag isoff which specifies
that the java files for included definitionsnot be generated.

-f server Requests the generation of the server side of the IDL files supplied. The
default value of this flag isoff .

-f verbose Requests that the compiler comment on the progress of the compilation. The
default value of this flag isoff .

-f version Requests that the compiler print its version and timestamp. The default value
of this flag isoff .

-f warn-pragma Requests that warning messages be issued for unknown or improperly
specified#pragma s. The default value of this flag ison.

-f write-files Requests that the derived java files be written. The default value of this flag is
'on'. You might specify-fno-write-files if you wished to check for
errors without actually writing the files.

2 Using the idltojava Command

2-6 Using the idltojava Compiler

Using #pragma in IDL Files

Note: The BEA WLE idltojava compiler processes#pragma somewhat differently
from the Sun Microsystems, Inc. idltojava compiler.

RepositoryPrefix ="prefix"

A default repository prefix can also be requested with the line#pragma prefix

"requested prefix" at the top-level in the IDL file itself. The line:

#pragma javaPackage "package"

wraps the default package in one called package. For example, compiling an IDL
module M normally creates a Java package M. If the module declaration is preceded
by:

#pragma javaPackage browser

the compiler will create the packageMinside package browser. This pragma is useful
when the definitions in one IDL module will be used in multiple products. The
command line option -p can be used to achieve the same result. The line:

#pragma ID scoped-name "IDL:<path>:<version>"

specifies the repository ID of the identifier scoped-name. This pragma may appear
anywhere in an IDL file. If the pragma appears inside a complex type, such as structure
or union, then only as much of scoped-name need be specified to specify the element.
A scoped-name is of the formouter_name::name::inner_name . The
<path> component of the repository ID is a series of identifiers separated by forward
slashes(/) . The<version> component is a decimal numberMM.mm, whereMMis the
major version number andmmis the minor version number.

Using the idltojava Compiler 3-1

CHAPTER

3 Java IDL Examples

This topic includes the following sections:

� Getting Started with a Simple Example of IDL

� Callback Objects IDL Example

� Persistent State and User Exceptions IDL Example

� Implementation Inheritance

Getting Started with a Simple Example of
IDL

Listing 3-1 shows the OMG IDL to describe a CORBA object whose operations
to_lower() andto_upper() each return a single string in which the letter case of the
user input is changed accordingly. (Uppercase input is changed to lowercase, and
vice-versa.)

Listing 3-1 IDL Interface for the WLE Java Simpapp Sample Application

#pragma prefix "beasys.com"

interface Simple
{

//Convert a string to lower case (return a new string)
string to_lower(in string val);

3 Java IDL Examples

3-2 Using the idltojava Compiler

//Convert a string to upper case (in place)
void to_upper(inout string val);

};

interface SimpleFactory
{

Simple find_simple();
};

If you were implementing this application from scratch, you would compile this IDL
interface with the following command:

m3idltojava Simple.idl

This would generate stubs and skeletons and several other files.

For comprehensive information on how to create the Java server and client for this
example, along with instructions on how to build and run it, seeThe Java Simpapp
Sample Applicationin theGuide to the Java Sample Applicationsin the WebLogic
Enterprise online documentation.

For information on the options and flags on the idltojava compiler, refer to the topic
“Using the idltojava Command” on page 2-1.

Callback Objects IDL Example

Listing 3-2 shows the OMG IDL to define the Callback, Simple, and SimpleFactory
interfaces in the WebLogic Enterprise (WLE) Callback sample application.

Listing 3-2 IDL Definition for the WLE Callback Sample Application

#pragma prefix "beasys.com"

interface Callback

//This method prints the passed data in uppercase and lowercase
//letters.
{

Persistent State and User Exceptions IDL Example

Using the idltojava Compiler 3-3

void print_converted(in string message);
};

interface Simple

//Call the callback object in the joint client/server
application

{
void call_callback(in string val, in Callback

callback_ref);
};

interface SimpleFactory
{

Simple find_simple();
};

For a complete explanation of the Java CORBA callbacks example as well as
information on how to build and run the example, seeDeveloping Java Joint
Client/Server Applicationsin CORBA Server-to-Server Communicationin the
WebLogic Enterprise online documentation.

Persistent State and User Exceptions IDL
Example

The WLE SimpApp example shows support oftransientobject references in WLE. If
the object’s server process stops and restarts, the object reference that the client is
holding becomes invalid. However, Java CORBA clients can also createpersistent
object references in WLE; that is, references that remain valid even if the WLE server
is stopped and restarted.

The BEA WLE system supports persistent objects by means of callbacks and the
Portable Object Adapter (POA).

3 Java IDL Examples

3-4 Using the idltojava Compiler

The POA provides transient, persistent, and other user ID policies with which to create
objects in WLE. You can create a persistent object reference in WLE by creating a
callback object with a Persistent/User ID Object Policy.

Implementation Inheritance

Ordinarily, servant classes must inherit from theImplBase class generated by the
idltojava compiler. This is inadequate for servant classes that need to inherit
functionality from another Java class. The Java programming language allows a class
only one superclass and the generatedImplBase class already occupies this position.
A servant class can inherit an implementation from any Java class using Tie classes

Using the idltojava Compiler 4-1

CHAPTER

4 Java IDL Programming
Concepts

This topic includes the following sections:

� Exceptions

� Initializations

� The FactoryFinder Interface

Exceptions

CORBA has two types of exceptions: standard system exceptions, which are fully
specified by the OMG, and user exceptions, which are defined by the individual
application programmer. CORBA exceptions differ slightly from Java exception
objects, but those differences are largely handled in the mapping from IDL to Java.

Topics in this section include:

� Differences Between CORBA and Java Exceptions

� System Exceptions

� User Exceptions

� Minor Code Meanings

4 Java IDL Programming Concepts

4-2 Using the idltojava Compiler

Differences Between CORBA and Java Exceptions

To specify an exception in IDL, the interface designer uses theraiseskeyword. This is
similar to thethrowsspecification in Java. When you use the exception keyword in
IDL, you create a user-defined exception. The standard system exceptions need not
(and cannot) be specified this way.

System Exceptions

CORBA defines a set of standard system exceptions, which are generally raised by the
ORB libraries to signal systemic error conditions including:

� Server-side system exceptions, such as resource exhaustion or activation failure.

� Communication system exceptions, for example, losing contact with the object,
host down, or cannot talk to the ISL or ISH.

� Client-side system exceptions, such as invalid operand type or anything that
occurs before a request is sent or after the result comes back.

All IDL operations can throw system exceptions when invoked. The interface designer
need not specify anything to enable operations in the interface to throw system
exceptions; the capability is automatic.

This makes sense because no matter how trivial an operation's implementation is, the
potential of an operation invocation coming from a client that is in another process, and
perhaps (likely) on another machine, means that a whole range of errors is possible.

Therefore, a CORBA client should always catch CORBA system exceptions.
Moreover, developers cannot rely on the Java compiler to notify them of a system
exception they should catch, because CORBA system exceptions are descendants of
java.lang.RuntimeException .

System Exception Structure

All CORBA system exceptions have the same structure:

exception <SystemExceptionName> { // descriptive of error
unsigned long minor; // more detail about error

Exceptions

Using the idltojava Compiler 4-3

CompletionStatus completed; // yes, no, maybe
}

System exceptions are subtypes ofjava.lang.RuntimeException through
org.omg.CORBA.SystemException :

java.lang.Exception
|
+--java.lang.RuntimeException

|
+--org.omg.CORBA.SystemException

|
+--BAD_PARAM
|
+--//etc.

 Minor Codes

All CORBA system exceptions have a minor code field, a number that provides
additional information about the nature of the failure that caused the exception. Minor
code meanings are not specified by the OMG; each ORB vendor specifies appropriate
minor codes for that implementation. For a description of minor codes thrown by the
Java ORB, see “Minor Code Meanings” on page 4-4.

Completion Status

All CORBA system exceptions have a completion status field which indicates the
status of the operation that threw the exception. The completion codes are:

� COMPLETED_YES

The object implementation has completed processing prior to the exception
being raised.

� COMPLETED_NO

The object implementation was not invoked prior to the exception being raised.

� COMPLETED_MAYBE

The status of the invocation is unknown.

4 Java IDL Programming Concepts

4-4 Using the idltojava Compiler

User Exceptions

CORBA user exceptions are subtypes of java.lang.Exception through
org.omg.CORBA.UserException:

java.lang.Exception
|
+--org.omg.CORBA.UserException

|
+-- Stocks.BadSymbol
|
+--//etc.

Each user-defined exception specified in IDL results in a generated Java exception
class. These exceptions are entirely defined and implemented by the programmer.

Minor Code Meanings

Every system exception has a “minor” field that allows CORBA vendors to provide
additional information about the cause of the exception. The table below lists the minor
codes of Java IDL's system exceptions, and describes their significance.

Table 4-1 ORB Minor Codes and Their Meanings

Code Meaning

BAD_PARAM Exception Minor Codes

1 A null parameter was passed to a Java IDL method.

COMM_FAILURE Exception Minor Codes

1 Unable to connect to the host and port specified in the object reference, or in the
object reference obtained after location/object forward.

2 Error occurred while trying to write to the socket. The socket has been closed by the
other side, or is aborted.

3 Error occurred while trying to write to the socket. The connection is no longer alive.

6 Unable to successfully connect to the server after several attempts.

Exceptions

Using the idltojava Compiler 4-5

DATA_CONVERSION Exception Minor Codes

1 Encountered a bad hexadecimal character while doing ORBstring_to_object
operation.

2 The length of the given IOR forstring_to_object() is odd. It must be even.

3 The string given tostring_to_object() does not start with IOR: and hence is
a bad stringified IOR.

4 Unable to perform ORBresolve_initial_references operation due to the
host or the port being incorrect or unspecified, or the remote host does not support
the Java IDL bootstrap protocol.

INTERNAL Exception Minor Codes

3 Bad status returned in the IIOP Reply message by the server.

6 When unmarshaling, the repository id of the user exception was found to be of
incorrect length.

7 Unable to determine local hostname using the Java APIs
InetAddress.getLocalHost().getHostName() .

8 Unable to create the listener thread on the specific port. Either the port is already in
use, there was an error creating the daemon thread, or security restrictions prevent
listening.

9 Bad locate reply status found in the IIOP locate reply.

10 Error encountered while stringifying an object reference.

11 IIOP message with bad GIOP v1.0 message type found.

14 Error encountered while unmarshaling the user exception.

18 Internal initialization error.

INV_OBJREF Exception Minor Codes

1 An IOR with no profile was encountered.

MARSHAL Exception Minor Codes

4 Error occurred while unmarshaling an object reference.

Code Meaning

4 Java IDL Programming Concepts

4-6 Using the idltojava Compiler

5 Marshaling/unmarshaling unsupported IDL types like wide characters and wide
strings.

6 Character encountered while marshaling or unmarshaling a character or string that
is not ISO Latin-1 (8859.1) compliant. It is not in the range of 0 to 255.

NO_IMPLEMENT Exception Minor Codes

1 Dynamic Skeleton Interface is not implemented.

OBJ_ADAPTER Exception Minor Codes

1 No object adapter was found matching the one in the object key when dispatching
the request on the server side to the object adapter layer.

2 No object adapter was found matching the one in the object key when dispatching
the locate request on the server side to the object adapter layer.

4 Error occurred when trying to connect a servant to the ORB.

OBJ_NOT_EXIST Exception Minor Codes

1 Locate request received a response indicating that the object is not known to the
locator.

2 Server id of the server that received the request does not match the server id baked
into the object key of the object reference that was invoked upon.

4 No skeleton was found on the server side that matches the contents of the object key
inside the object reference.

UNKNOWN Exception Minor Codes

1 Unknown user exception encountered while unmarshaling: the server returned a
user exception that does not match any expected by the client.

3 Unknown run-time exception thrown by the server implementation.

Code Meaning

Initializations

Using the idltojava Compiler 4-7

Table 4-2 Name Server Minor Codes and Their Meanings

Initializations

Before a Java client or Java joint client/server can use CORBA objects, it must
initialize itself by:

� Creating an ORB object.

� Obtaining one or more initial object references, typically using a FactoryFinder.

Code Meaning

INITIALIZE Exception Minor Codes

150 Transient name service caught aSystemException while initializing.

151 Transient name service caught a Java exception while initializing.

INTERNAL Exception Minor Codes

100 AnAlreadyBound exception was thrown in arebind operation.

101 AnAlreadyBound exception was thrown in arebind_context operation.

102 Binding type passed to the internal binding implementation was not
BindingType.nobject or BindingType.ncontext .

103 Object reference was bound as a context, but it could not be narrowed to
CosNaming.NamingContext .

200 Implementation of the bind operation encountered a previous binding.

201 Implementation of the list operation caught a Java exception while creating the list
iterator.

202 Implementation of thenew_context operation caught a Java exception while
creating the new NamingContext servant.

203 Implementation of the destroy operation caught a Java exception while
disconnecting from the ORB.

4 Java IDL Programming Concepts

4-8 Using the idltojava Compiler

Creating an ORB Object

Before it can create or invoke a CORBA object, an applet or client application must
first create an ORB object. By creating an ORB object, the applet or application
introduces itself to the ORB and obtains access to important operations that are defined
on the ORB object.

Applets and applications create ORB instances slightly differently, because their
parameters, which must be passed in the ORB.init() call, are arranged differently.

(For more information on initializing the ORB, see theCORBA ORBin theJava
Programming Referencein the WebLogic Enterprise online documentation.)

Creating an ORB for an Application

This code fragment shows how an application might create an ORB:

import org.omg.CORBA.ORB;

public static void main(String args[])
{

try{
ORB orb = ORB.init(args, null);

// code continues

Creating an ORB for an Applet

An applet creates an ORB like this:

import org.omg.CORBA.ORB;

public void init() {
try {

ORB orb = ORB.init(this, null);
// code continues

Some Web browsers have a built-in ORB. This can cause problems if that ORB is not
entirely compliant. In this case, special steps must be taken to initialize the Java IDL
ORB specifically. For example, because of missing classes in the installed ORB in
Netscape Communicator 4.01, an applet displayed in that browser must contain code
similar to the following in its init() method:

Initializations

Using the idltojava Compiler 4-9

import java.util.Properties;
import org.omg.CORBA.*;

public class MyApplet extends java.applet.Applet {
public void init()
{

// Instantiate the Java IDL ORB, passing in this applet
// so that the ORB can retrieve the applet properties.
Properties p = new Properties();
p.put("org.omg.CORBA.ORBClass", "com.sun.CORBA.iiop.ORB");
p.put("org.omg.CORBA.ORBSingletonClass","com.sun.CORBA.idl.ORBSingleton");
System.setProperties(p);
ORB orb = ORB.init(args, p);
...

}
}

 Arguments to ORB.init()

For both applications and applets, the arguments for the initialization method are:

� args or this

Provides the ORB access to the application's arguments or applet's parameters.

� null

A java.util.Properties object.

Theinit() operation uses these parameters, as well as the system properties, to obtain
information it needs to configure the ORB. It searches for ORB configuration
properties in the following places and order:

1. The application or applet parameters (first argument)

2. A java.util.Properties object (second argument), if one has been supplied

3. The java.util.Properties object returned bySystem.getProperties()

The first value found for a particular property is the value used by theinit()

operation. If a configuration property cannot be found in any of these places, the
init() operation assumes an implementation-specific value for it. For maximum
portability among ORB implementations, applets and applications should explicitly
specify configuration property values that affect their operation, rather than relying on
the assumptions of the ORB in which they are running.

4 Java IDL Programming Concepts

4-10 Using the idltojava Compiler

System Properties

BEA WLE uses the Sun Microsystem Java virtual machine, which adds-D command
line arguments to it. Other Java virtual machines may or may not do the same.

Currently, the following configuration properties are defined for all ORB
implementations:

� org.omg.CORBA.ORBClass

The name of a Java class that implements theorg.omg.CORBA.ORB interface.
Applets and applications do not need to supply this property unless they must
have a particular ORB implementation. The value for the Java IDL ORB is
com.sun.CORBA.iiop.ORB .

� org.omg.CORBA.ORBSingletonClass

The name of a Java class that implements theorg.omg.CORBA.ORB interface.
This is the object returned by a call toorb.init() with no arguments. It is
used primarily to create typecode instances than can be shared across untrusted
code (such as unsigned applets) in a secured environment.

Applet parameters should specify the full property names. The conventions for
applications differ from applets so as not to expose language-specific details in
command-line invocations.

Obtaining Initial Object References

To invoke a CORBA object, an applet or application must have a reference for it. There
are three ways to get a reference for a CORBA object:

� From a string that was specially created from an object reference

� From another object, such as a FactoryFinder

� From thebootstrap method

Initializations

Using the idltojava Compiler 4-11

Stringified Object References

The first technique, converting a stringified reference to an actual object reference, is
ORB-implementation independent. Regardless of which Java ORB an applet or
application runs on, it can convert a stringified object reference. However, it is up to
the applet or application developer to:

� Ensure that the object referred to is actually accessible from where the applet or
application is running.

� Obtain the stringified reference, perhaps from a file or a parameter.

The following fragment shows how a server converts a CORBA object reference to a
string:

org.omg.CORBA.ORB orb = // get an ORB object
org.omg.CORBA.Object obj = // create the object reference
String str = orb.object_to_string(obj);
// make the string available to the client

This code fragment shows how a client converts the stringified object reference back
to an object:

org.omg.CORBA.ORB orb = // get an ORB object
String stringifiedref = // read string
org.omg.CORBA.Object obj = orb.string_to_object(stringifiedref);

Getting References from the ORB

If you do not use a stringified reference to get an initial CORBA object, you use the
ORB itself to produce an initial object reference.

The WLE Bootstrap object defines an operation called
resolve_initial_references() that is intended for bootstrapping object
references into a newly started application or applet. The operation takes a string
argument that names one of a few recognized objects; it returns a CORBA Object,
which must be narrowed to the type the applet or application knows it to be.

Using theBootstrap object, you can obtain four different object references
(SecurityCurrent, TransactionCurrent, FactoryFinder, and InterfaceRepository). The
object of concern to us here is theFactoryFinder.

4 Java IDL Programming Concepts

4-12 Using the idltojava Compiler

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the WLE domain. The FactoryFinder object is used to
obtain a specific factory object, which in turn can create the needed objects.

For more information on how to use the Bootstrap object, see theJava Bootstrap
Object Programming Referencein the WebLogic Enterprise online documentation.

The FactoryFinder Interface

The FactoryFinder interface provides clients with one object reference that serves as
the single point of entry into the WLE domain. The WLE NameManager provides the
mapping of factory names to object references for the FactoryFinder. Multiple
FactoryFinders and NameManagers together provide increased availability and
reliability. Mapping across multiple domains is supported.

Note: The NameManager is not a naming service, such as CORBAservices Naming
Service, but is merely a vehicle for storing registered factories.

The FactoryFinder interface and the NameManager are a mechanism for registering,
storing, and finding objects. In the WLE environment, you can:

� Use the Bootstrap object to obtain an object reference to a FactoryFinder

� Use the FactoryFinder to find the Factory object you need

� Use the Factory object to create new instances of the needed object

For more information about how to use the WLE FactoryFinder Interface, see the
FactoryFinder Interfacein theCORBA Java Programming Referencein the
WebLogic Enterprise online documentation.

Using the idltojava Compiler 5-1

CHAPTER

5 IDL to Java Mappings
Used By the idltojava
Compiler

The idltojava tool reads an OMG IDL interface and translates or maps it to a Java
interface. idltojava also creates stub, skeleton, helper, holder, and other files as
necessary. These.java files are generated from the IDL file according to the mapping
specified in the OMG document IDL/Java Language Mapping.

For more information on the IDL to Java mappings, refer to the OMG Web Site at
http://www.omg.org.

CORBA objects are defined in OMG IDL (Object Management Group Interface
Definition Language). Before they can be used by a Java developer, their interfaces
must be mapped to Java classes and interfaces. The idltojava tool performs this
mapping automatically.

Table 5-1 shows the correspondence between OMG IDL constructs and Java
constructs. Note that OMG IDL, as its name implies, defines interfaces. Like Java
interfaces, IDL interfaces contain no implementations for their operations (methods in
Java). In other words, IDL interfaces define only the signature for an operation (the
name of the operation, the data type of its return value, the data types of the parameters
that it takes, and any exceptions that it raises). The implementations for these
operations need to be supplied in Java classes written by a Java programmer.

5 IDL to Java Mappings Used By the idltojava Compiler

5-2 Using the idltojava Compiler

Note: When a CORBA operation takes a type that corresponds to a Java object type
(a String, for example), it is illegal to pass a Java null as the parameter value.
Instead, pass an empty version of the designated object type (for example, an
empty String or an empty array). A Java null can be passed as a parameter only
when the type of the parameter is a CORBA object reference, in which case
the null is interpreted as a nil CORBA object reference.

Table 5-1 IDL Constructs Mapped to Java Constructs

IDL Construct Java Construct

module package

interface interface, helper class, holder class

constant public static final

boolean boolean

char, wchar char

octet byte

string, wstring java.lang.String

short, unsigned short short

long, unsigned long int

long long, unsigned long long long

float float

double double

enum, struct, union class

sequence, array array

exception class

readonly attribute method for accessing value of attrubite

readwrite attribute methods for accessing and setting value of attribute

operation method

Using the idltojava Compiler 6-1

CHAPTER

6 The Java IDL API

The Java interface definition language (IDL) application programming interface (API)
includes the following packages:

� com.beasys

� com.beasys.BEAWrapper

� com.beasys.Tobj

� com.beasys.TobjS

� javax.transaction

� org.omg.CosTransactions

� org.omg.Security

� org.omg.SecurityLevel1

� org.omg.SecurityLevel2

For an overview of all application programming interface (API) information related to
WLE, see theWebLogic Enterprise API Javadoc pagein the WebLogic Enterprise
online documentation.

6 The Java IDL API

6-2 Using the idltojava Compiler

Using the idltojava Compiler I-3

Index

Symbols
#pragma, using in IDL files 2-6

A
API, Java to IDL 6-1
applications

distributed 1-4
multi-tiered 1-5

B
Bootstrap object 1-8

C
CORBA

exceptions in 4-1
features of 1-7
handling of method request 1-8

CORBA objects
accessing from Java application 1-7
created by clients 1-13

D
database storage tier 1-6
documentation, where to find it viii

E
exceptions 4-1

completion status in 4-3
minor codes in 4-3, 4-4
system 4-2
user 4-4

F
FactoryFinder 1-8
FactoryFinder interface 4-12

I
IDL

See Interface Definition Language 1-2
IDL interface 1-10
idltojava command

flags 2-4
options 2-3
syntax of 2-2
using 2-1

idltojava compiler
differences from Sun version 1-2
running on client IDL files 2-3
running on server IDL files 2-2
stubs generated by 1-10
where to get it 1-2

implementation
client 1-13
inheritance 3-4

initialization
of Java program 4-7

interface

I-4 Using the idltojava Compiler

FactoryFinder 4-12
IDL 1-10

Interface Definition Language (IDL)
what it is 1-3

Internet InterORB Protocol (IIOP) 1-9

J
Java applications

access to CORBA objects 1-7
Java IDL

examples of 3-1
using 1-14
what it is 1-3

Java, implementation in 1-11
JNDI 1-8

M
mappings, IDL to Java 5-1
method request, handling of 1-9
minor codes, meaning of 4-4

O
object location 1-9
object references

obtaining 1-13, 4-10
persistent 3-3

objects, CORBA 1-7
ORB object, creating 4-8
ORB.init 4-9

P
packages, with Java to IDL API 6-1
persistent object references 3-3
Portable Ojbect Adapter (POA) 3-3
printing product documentation viii

R
requests, client 1-9

S
service tier 1-6
Sun Microsystems, Inc.

differences between Sun and BEA
idltojava compilers 1-2

support
technical ix

T
tiers, in an application 1-5

U
user interface tier 1-6

W
WLE, key components of 1-4

	Copyright
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of CORBA Java Programming
	Where do I get the BEA idltojava compiler?
	How does the BEA idltojava compiler differ from the Sun Microsystems, Inc. version?
	What is IDL?
	What is Java IDL?
	About Distributed Applications
	Multi-Tiered Applications
	User Interface Tier
	Service or Business Logic Tier
	Data Store (Database) Tier

	About CORBA and Java IDL
	About CORBA
	Accessing CORBA Objects from Java Applications
	A Quick Review of CORBA Concepts
	Defining and Implementing CORBA Objects
	CORBA Object Interfaces
	Java Language-based Implementation

	Client Implementation
	The FactoryFinder

	What’s next?

	2 Using the idltojava Command
	Syntax of the idltojava Command
	idltojava Command Description
	Running idltojava on Client or Joint Client/Server IDL Files
	Running m3idltojava on Server Side IDL Files
	idltojava Command Options
	idltojava Command Flags
	Using #pragma in IDL Files

	3 Java IDL Examples
	Getting Started with a Simple Example of IDL
	Callback Objects IDL Example
	Persistent State and User Exceptions IDL Example
	Implementation Inheritance

	4 Java IDL Programming Concepts
	Exceptions
	Differences Between CORBA and Java Exceptions
	System Exceptions
	System Exception Structure
	Minor Codes
	Completion Status

	User Exceptions
	Minor Code Meanings

	Initializations
	Creating an ORB Object
	Creating an ORB for an Application
	Creating an ORB for an Applet
	Arguments to ORB.init()
	System Properties

	Obtaining Initial Object References
	Stringified Object References
	Getting References from the ORB

	The FactoryFinder Interface

	5 IDL to Java Mappings Used By the idltojava Compiler
	6 The Java IDL API
	Index

