
Guide to the Java

W e b L o g i c E n t e r p r i s e 5 . 0
D o c u m e n t E d i t i o n 5 . 0

D e c e m b e r 1 9 9 9

BEA WebLogic Enterprise

Sample Applications

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise
are trademarks of BEA Systems, Inc.

All other company names may be trademarks of the respective companies with which they are associated.

Guide to the Java Sample Applications

Document Edition Date Software Version

5.0 December 1999 BEA WebLogic Enterprise 5.0

Contents

About This Document
What You Need to Know .. viii

e-docs Web Site ... viii

How to Print the Document... viii

Related Information... ix

Contact Us! .. ix

Documentation Conventions ...x

1. Introduction
Overview of the Sample Applications... 1-1

2. The Java Simpapp Sample Application
How the Java Simpapp Sample Application Works.. 2-2

Software Prerequisites ... 2-3

The OMG IDL Code for the Java Simpapp Sample Application...................... 2-3

Building and Running the Java Simpapp Sample Application 2-4

Copying the Files for the Java Simpapp Sample Application into a Work Di-
rectory ... 2-5

Changing the Protection Attribute on the Files for the Java Simpapp Sample
Application ... 2-7

Verifying the Settings of the Environment Variables 2-7

Executing the runme Command... 2-9
Guide to the Java Sample Applications iii

Using the Java Simpapp Sample Application.. 2-15

Using the C++ Client Application with the Java Simpapp Sample Application....
2-16

Stopping the Java Simpapp Sample Application... 2-17

3. The JDBC Bankapp Sample Application
How the JDBC Bankapp Sample Application Works 3-2

Java Server Objects .. 3-2

Application Workflow.. 3-2

JDBC Connection Pooling ... 3-3

Development Process for the JDBC Bankapp Sample Application 3-4

Object Management Group (OMG) Interface Definition Language (IDL)
3-4

BankApp.idl File ... 3-5

BankDB.idl File .. 3-6

Bank.idl File .. 3-7

Client Application .. 3-8

Server Application.. 3-8

Server Description File (BankApp.xml) .. 3-9

UBBCONFIG File.. 3-9

Enabling Multithreaded Support ... 3-10

Setting Up the Connection Pool .. 3-10

Setting Up the Database for the JDBC Bankapp Sample Application 3-12

Setting Up an Oracle Database... 3-12

Setting Up a Microsoft SQL Server Database.. 3-13

Building the JDBC Bankapp Sample Application ... 3-13

Step 1: Copy the Files for the JDBC Bankapp Sample Application into a
Work Directory .. 3-14

Source File Directories ... 3-14

Copying Source Files to the Work Directory.................................... 3-15

Source Files Used to Build the JDBC Bankapp Sample Application3-15

Step 2: Change the Protection Attribute on the Files for the JDBC Bankapp
Sample Application .. 3-17

Step 3: Verify the Settings of the Environment Variables 3-18

Environment Variables.. 3-18

Verifying Settings ... 3-19
iv Guide to the Java Sample Applications

Changing Settings ... 3-19

Step 4: Run the setupJ Command ... 3-20

Syntax.. 3-20

Command .. 3-21

Step 5: Load the UBBCONFIG File ... 3-21

Compiling the Client and Server Applications ... 3-22

Initializing the Database ... 3-22

Initializing an Oracle Database .. 3-22

Initializing a Microsoft SQL Server Database ... 3-23

Starting the Server Application in the JDBC Bankapp Sample Application . 3-24

Files Generated by the JDBC Bankapp Sample Application 3-25

Starting the ATM Client Application in the JDBC Bankapp Sample Application
3-27

Stopping the JDBC Bankapp Sample Application ... 3-29

Using the ATM Client Application .. 3-29

Available Banking Operations ... 3-29

Available Statistics ... 3-30

Keypad Functions... 3-30

Steps for Using the ATM Client Application... 3-31

4. The XA Bankapp Sample Application
How the XA Bankapp Sample Application Works .. 4-2

Server Applications .. 4-2

Application Workflow.. 4-2

Software Prerequisites ... 4-3

Development Process for the XA Bankapp Sample Application 4-4

Object Management Group (OMG) Interface Definition Language (IDL)
4-4

Client Application .. 4-4

Server Application.. 4-5

Server Description File .. 4-5

Implementation Configuration File ... 4-5

UBBCONFIG File.. 4-6
Guide to the Java Sample Applications v

Setting Up the Database for the XA Bankapp Sample Application 4-6

Building the XA Bankapp Sample Application ... 4-7

Step 1: Copy the Files for the XA Bankapp Sample Application into a Work
Directory .. 4-7

Source File Directories.. 4-7

Copying Source Files to the Work Directory...................................... 4-8

Source Files Used to Build the XA Bankapp Sample Application 4-9

Step 2: Change the Protection Attribute on the Files for the XA Bankapp
Sample Application .. 4-10

Step 3: Verify the Settings of the Environment Variables 4-11

Environment Variables.. 4-11

Verifying Settings ... 4-12

Changing Settings ... 4-12

Step 4: Run the setupX Command .. 4-13

Step 5: Load the UBBCONFIG File ... 4-13

Step 6: Create a Transaction Log .. 4-14

Compiling the Client and Server Applications.. 4-14

Initializing the Oracle Database .. 4-15

Starting the Server Application in the XA Bankapp Sample Application 4-15

Files Generated by the XA Bankapp Sample Application 4-16

Starting the ATM Client Application in the XA Bankapp Sample Application ...
4-20

Stopping the XA Bankapp Sample Application ... 4-21

Using the ATM Client Application .. 4-21

Index
vi Guide to the Java Sample Applications

nd

d
About This Document

This document describes the Java sample applications that are provided with the BEA
WebLogic Enterprise (sometimes referred to as WLE) software and is intended to be
used with the following documents:

t Getting Started

t Creating Client Applications

t Creating Java Server Applications

Note: Effective February 1999, the BEA M3 product is renamed. The new name of
the product is BEA WebLogic Enterprise (WLE).

This document covers the following topics:

t Chapter 1, “Introduction,” provides an overview of the sample applications.

t Chapter 2, “The Java Simpapp Sample Application,” describes how to build a
use the Java Simpapp sample application.

t Chapter 3, “The JDBC Bankapp Sample Application,” describes how to build
and use the JDBC Bankapp sample application.

t Chapter 4, “The XA Bankapp Sample Application,” describes how to build an
use the XA Bankapp sample application.
Guide to the Java Sample Applications vii

sing

tion
ent
rise

 you

obe
What You Need to Know

This document is intended for application designers and client and server programmers
who would find a set of progressive examples useful in understanding the WebLogic
Enterprise software.

e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA
corporate Web site. From the BEA Home page, click the Product Documentation
button or go directly to the “e-docs” Product Documentation page at
http://e-docs.beasys.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by u
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise
documentation Home page on the e-docs Web site (and also on the documenta
CD). You can open the PDF in Adobe Acrobat Reader and print the entire docum
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterp
documentation Home page, click the PDF Files button, and select the document
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Ad
Web site at http://www.adobe.com/.
viii Guide to the Java Sample Applications

HOW TO PRINT THE DOCUMENT
Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA
TUXEDO, distributed object computing, transaction processing, C++ programming,
and Java programming, see the WLE Bibliography in the WebLogic Enterprise online
documentation.

Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us.
Send us e-mail at docsupport@beasys.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Enterprise 5.0 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you
have problems installing and running BEA WebLogic Enterprise, contact BEA
Customer Support through BEA WebSupport at www.beasys.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages
Guide to the Java Sample Applications ix

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR
x Guide to the Java Sample Applications

DOCUMENTATION CONVENTIONS
{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Guide to the Java Sample Applications xi

xii Guide to the Java Sample Applications

CHAPTER

ion.

d
ccount

ns.

tions,
1 Introduction

This chapter provides an overview of the Java sample applications

Overview of the Sample Applications

The sample applications provide client and server programmers with the basic
concepts of developing Java server applications for the Weblogic Enterprise (WLE)
software.

The following sample applications are provided:

n Java Simpapp—provides a Java client application and a Java server applicat
The Java server application contains two operations that manipulate strings
received from the Java client application.

n JDBC Bankapp—implements an automatic teller machine (ATM) interface an
uses Java Database Connectivity (JDBC) to access a database that stores a
and customer information.

n XA Bankapp—implements the same ATM interface as JDBC Bankapp;
however, XA Bankapp uses a database XA library to demonstrate using the
Transaction Manager to coordinate transactions.

The chapters in this manual describe how to build and run the sample applicatio

For a description of the development process used to create the sample applica
see Getting Started.
Guide to the Java Sample Applications 1-1

1 Introduction
1-2 Guide to the Java Sample Applications

CHAPTER
2 The Java Simpapp
Sample Application

The chapter discusses the following topics:

n How the Java Simpapp sample application works

n Software prerequisites

n The Object Management Group (OMG) Interface Definition Language (IDL) for
the Java Simpapp sample application

n Building and running the Java Simpapp sample application

n Using the Java Simpapp sample application

n Using the C++ client application with the Java Simpapp sample application

n Stopping the Java Simpapp Sample Application

Refer to Readme.txt in the \WLEdir\samples\corba\simpapp_java directory
for troubleshooting information and the latest information about using the Java
Simpapp sample application.
Guide to the Java Sample Applications 2-1

2 The Java Simpapp Sample Application
How the Java Simpapp Sample Application
Works

The Java Simpapp sample application consists of a Java client application that sends
requests to a Java server application. The Java server application provides an
implementation of a CORBA object that has the following two methods:

l The upper method accepts a string from the Java client application and
converts the string to uppercase letters.

l The lower method accepts a string from the Java client application and
converts the string to lowercase letters.

Figure 2-1 illustrates how the Java Simpapp sample application works.

Figure 2-1 The Java Simpapp Sample Application

Java Client
Application

Java
Server

Application

SimpleFactory
find_simple()

Simple
to_upper()
to_lower()
2-2 Guide to the Java Sample Applications

Software Prerequisites
Software Prerequisites

To run the idltojava compiler used by the Java Simpapp sample application, you
need to install Visual C++ Version 5.0 with Service Pack 3 for Visual Studio.

The OMG IDL Code for the Java Simpapp
Sample Application

The Java Simpapp sample application implements the CORBA interfaces listed in
Table 2-1:

Listing 2-1 shows the simple.idl file that defines the CORBA interfaces in the Java
Simpapp sample application. This is the same OMG IDL file used by the C++ Simpapp
sample application shipped with version 4.2 of the WebLogic Enterprise (WLE)
software. The runme command automatically copies it from the
\corba\simpapp_java directory.

Table 2-1 CORBA Interfaces for the Java Simpapp Sample Application

Interface Description Operation

SimpleFactory Creates object references to the
Simple object

find_simple()

Simple Converts the case of a string to_upper()

to_lower()
Guide to the Java Sample Applications 2-3

2 The Java Simpapp Sample Application
Listing 2-1 OMG IDL Code for the Java Simpapp Sample Application

#pragma prefix "beasys.com"

interface Simple
{
 //Convert a string to lower case (return a new string)
 string to_lower(in string val);

 //Convert a string to upper case (in place)
 void to_upper(inout string val);
};

interface SimpleFactory
{
 Simple find_simple();
};

Building and Running the Java Simpapp
Sample Application

Perform the following steps to build and run the Java Simpapp sample application:

1. Copy the files for the Java Simpapp sample application into a work directory.

2. Change the protection attribute on the files for the Java Simpapp sample
application.

3. Verify the environment variables.

4. Execute the runme command.

The following sections describe these steps.
2-4 Guide to the Java Sample Applications

Building and Running the Java Simpapp Sample Application
Copying the Files for the Java Simpapp Sample
Application into a Work Directory

You need to copy the files for the Java Simpapp sample application into a work
directory on your local machine. The files for the Java Simpapp sample application are
located in the following directories:

Windows NT

drive:\WLEdir\samples\corba\simpapp_java

UNIX

/usr/local/WLedir/samples/corba/simapp_java

You will use the files listed in Table 2-2 to build and run the Java Simpapp sample
application.

Table 2-2 Files Included in the Java Simpapp Sample Application

File Description

Simple.idl The OMG IDL code that declares the Simple and
SimpleFactory interfaces.This file is copied from
the WLE simpapp_java directory by the runme
command file.

ServerImpl.java The Java source code that overrides the
Server.initialize and Server.release
methods.

SimpleClient.java The Java source code for the client application in the
Java Simpapp sample application.

SimpleFactoryImpl.java The Java source code that implements the
SimpleFactory methods.

SimpleImpl.java The Java source code that implements the Simple
methods.
Guide to the Java Sample Applications 2-5

2 The Java Simpapp Sample Application
Simple.xml The Server Description File used to associate
activation and transaction policy values with
CORBA interfaces. For the Java Simpapp sample
application, the Simple and SimpleFactory
interfaces have an activation policy of method and
a transaction policy of optional.

Readme.txt Provides the latest information about building and
running the Java Simpapp sample application.

runme.cmd The Windows NT batch file that builds and runs the
Java Simpapp sample application.

runme.ksh The UNIX Korn shell script that builds and executes
the Java Simpapp sample application.

makefile.mk The make file for the Java Simpapp sample
application on the UNIX operating system. This file
is used to manually build the Java Simpapp sample
application. Refer to the Readme.txt file for
information about manually building the Java
Simpapp sample application. The UNIX make
command needs to be in the path of your machine.

makefiles.nt The make file for the Java Simpapp sample
application on the Windows NT operating system.
This make file can be used directly by the Visual
C++ nmake command. This file is used to manually
build the Java Simpapp sample application. Refer to
the Readme.txt file for information about
manually building the Java Simpapp sample
application. The Windows NT nmake command
needs to be in the path of your machine.

smakefile.nt The make file for the Java Simpapp sample
application that is used with Visual Cafe smake
command.

Note: makefile.nt is included by
smakefile.nt.

Table 2-2 Files Included in the Java Simpapp Sample Application

File Description
2-6 Guide to the Java Sample Applications

Building and Running the Java Simpapp Sample Application
Changing the Protection Attribute on the Files for the
Java Simpapp Sample Application

During the installation of the WLE software, the sample application files are marked
read-only. Before you can edit or build the files in the Java Simpapp sample
application, you need to change the protection attribute of the files you copied into
your work directory, as follows:

Windows NT

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>/bin/ksh

ksh prompt>chmod u+w /workdirectory/*.*

On the UNIX operating system platform, you also need to change the permission of
runme.ksh to give execute permission to the file, as follows:

ksh prompt>chmod +x runme.ksh

Verifying the Settings of the Environment Variables

Before building and running the Java Simpapp sample application, you need to ensure
that certain environment variables are set on your system. In most cases, these
environment variables are set as part of the installation procedure. However, you need
to check the environment variables to ensure they reflect correct information.
Guide to the Java Sample Applications 2-7

2 The Java Simpapp Sample Application
Table 2-3 lists the environment variables required to run the Java Simpapp sample
application.

To verify that the information for the environment variables defined during installation
is correct, perform the following steps:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings for TUXDIR and JAVA_HOME.

Table 2-3 Required Environment Variables for the Java Simpapp Sample Application

Environment
Variable

Description

TUXDIR The directory path where you installed the WLE software. For example:

Windows NT

TUXDIR=c:\WLEdir

UNIX

TUXDIR=/usr/local/WLEdir

JAVA_HOME The directory path where you installed the JDK software. For example:

Windows NT

JAVA_HOME=c:\JDK1.2

UNIX

JAVA_HOME=/usr/local/JDK1.2
2-8 Guide to the Java Sample Applications

Building and Running the Java Simpapp Sample Application
UNIX

ksh prompt>printenv TUXDIR

ksh prompt>printenv JAVA_HOME

To change the settings, perform the following steps:

Windows NT

1. On the Environment page in the System Properties window, click the environment
variable you want to change or enter the name of the environment variable in the
Variable field.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

UNIX

ksh prompt>export TUXDIR=directorypath

ksh prompt>export JAVA_HOME=directorypath

Executing the runme Command

The runme command automates the following steps:

1. Setting the system environment variables

2. Loading the UBBCONFIG file

3. Compiling the code for the client application

4. Compiling the code for the server application

5. Starting the server application using the tmboot command

6. Starting the client application

7. Stopping the server application using the tmshutdown command

Note: You can also run the Java Simpapp sample application manually. The steps for
manually running the Java Simpapp sample application are described in the
Readme.txt file.
Guide to the Java Sample Applications 2-9

2 The Java Simpapp Sample Application
To build and run the Java Simpapp sample application, enter the runme command, as
follows:

Windows NT

prompt>cd workdirectory

prompt>runme

UNIX

ksh prompt>cd workdirectory

ksh prompt>./runme.ksh

The Java Simpapp sample application runs and prints the following messages:

Testing simpapp
 cleaned up
 prepared
 built
 loaded ubb
 booted
 ran
 shutdown
 saved results
 PASSED

Note: After executing the runme command, you may get a message indicating the
Host, Port, and IPCKEY parameters in the UBBCONFIG file conflict with an
existing UBBCONFIG file. If this occurs, you need to set these parameters to
different values to get the Java Simpapp sample application running on your
machine. See the Readme.txt file for information about how to set these
parameters.

The runme command starts the following application processes:

n TMSYSEVT

The BEA TUXEDO system event broker.

n TMFFNAME

The following three TMFFNAME server processes are started:

l The TMFFNAME server process started with the -N and -M options is the
master NameManager service. The NameManager service maintains a
mapping of the application-supplied names to object references.
2-10 Guide to the Java Sample Applications

Building and Running the Java Simpapp Sample Application
l The TMFFNAME server process started with only the -N option is the slave
NameManager service.

l The TMFFNAME server process started with the -F option contains the
FactoryFinder object.

n JavaServer

The Java Simpapp sample application server process. The JavaServer process
has one option, simple, which is the Java Archive (JAR) file that was created
for the application.

n ISL

The IIOP Listener process.

Table 2-4 lists the files in the work directory generated by the runme command.

Table 2-4 Files Generated by the runme Command

File Description

SimpleFactory.java Generated by the m3idltojava command for
the SimpleFactory interface. The
SimpleFactory interface contains the Java
version of the OMG IDL interface. It extends
org.omg.CORBA.Object.

SimpleFactoryHolder.java Generated by the m3idltojava command for
the SimpleFactory interface.This class holds a
public instance member of type
SimpleFactory. The class provides operations
for out and inout arguments that are included in
CORBA, but that do not map exactly to Java.

SimpleFactoryHelper.java Generated by the m3idltojava command for
the SimpleFactory interface. This class
provides auxiliary functionality, notably the
narrow method.

_SimpleFactoryStub.java Generated by the m3idltojava command for
the SimpleFactory interface. This class is the
client stub that implements the
SimpleFactory.java interface.
Guide to the Java Sample Applications 2-11

2 The Java Simpapp Sample Application
_SimpleFactoryImplBase.java Generated by the m3idltojava command for
the SimpleFactory interface. This abstract
class is the server skeleton. It implements the
SimpleFactory.java interface. The
user-written server class SimpleFactoryImpl
extends _SimpleFactoryImplBase.

Simple.java Generated by the m3idltojava command for
the Simple interface. The Simple interface
contains the Java version of the OMG IDL
interface. It extends org.omg.CORBA.Object.

SimpleHolder.java Generated by the m3idltojava command for
the Simple interface.This class holds a public
instance member of type Simple. The class
provides operations for out and inout arguments
that CORBA has but that do not match exactly to
Java.

SimpleHelper.java Generated by the m3idltojava command for
the Simple interface. This class provides
auxiliary functionality, notably the narrow
method.

_SimpleStub.java Generated by the m3idltojava command for
the Simple interface. This class is the client stub
that implements the Simple.java interface.

_SimpleImplBase.java Generated by the m3idltojava command for
the Simple interface. This abstract class is the
server skeleton. It implements the Simple.java
interface. The user-written server class
SimpleImpl extends _SimpleImplBase.

Simple.ser The Server Descriptor File generated by the
buildjobjserver command in the runme
command.

Simple.jar The server Java Archive file generated by the
buildjavaserver command in the runme
command.

Table 2-4 Files Generated by the runme Command

File Description
2-12 Guide to the Java Sample Applications

Building and Running the Java Simpapp Sample Application
Table 2-5 lists files in the results directory generated by the runme command.

SimpleClient.jar The Java Archive file for the client application. It
can be used to verify. This file is used during the
installation of the WLE software to insure the
client application is installed properly. For
information about verifying the installation of the
WLE software, see Installing the WebLogic
Enterprise Software.

.adm/.keybd A file that contains the security encryption key
database. The subdirectory is created by the
tmloadcf command in the runme command.

results A directory generated by the runme command.

Table 2-5 Files in the results Directory Generated by the runme Command

File Description

input Contains the input that the runme command
provides to the Java client application.

output Contains the output produced when the runme
command executes the Java client application.

expected_output Contains the output that is expected when the
Java client application is executed by the
runme command. The data in the output file
is compared to the data in the
expected_output file to determine whether
or not the test passed or failed.

log Contains the output generated by the runme
command. If the runme command fails, check
this file for errors.

Table 2-4 Files Generated by the runme Command

File Description
Guide to the Java Sample Applications 2-13

2 The Java Simpapp Sample Application
setenv.cmd Contains the commands to set the environment
variables needed to build and run the Java
Simpapp sample application on the Windows
NT operating system platform.

setenv.ksh Contains the commands to set the environment
variables needed to build and run the Java
Simpapp sample application on the UNIX
operating system platform.

stderr Generated by the tmboot command, which is
executed by the runme command. If the
-noredirect JavaServer option is specified
in the UBBCONFIG file, the
System.err.println method sends the
output to the stderr file instead of to the
ULOG file.

stdout Generated by the tmboot command, which is
executed by the runme command. If the
-noredirect JavaServer option is specified
in the UBBCONFIG file, the
System.out.println method sends the
output to the stdout file instead of to the
ULOG file.

tmsysevt.dat Contains filtering and notification rules used by
the TMSYSEVT (system event reporting)
process. This file is generated by the tmboot
command in the runme command.

tuxconfig A binary version of the UBBCONFIG file.

ubb The UBBCONFIG file for the Java Simpapp
sample application.

ULOG.<date> A log file that contains messages generated by
the tmboot command.

Table 2-5 Files in the results Directory Generated by the runme Command

File Description
2-14 Guide to the Java Sample Applications

Using the Java Simpapp Sample Application
Using the Java Simpapp Sample Application

This section describes how to use the Java Simpapp sample application after the runme
command is executed.

Run the Java server application in the Java Simpapp sample application, as follows:

Windows NT

prompt>tmboot

UNIX

ksh prompt>tmboot

Run the Java client application in the Java Simpapp sample application, as follows:

Windows NT

prompt>java -classpath .;%TUXDIR%\udataobj\java\jdk\m3envobj.jar
-DTOBJADDR=%TOBJADDR% SimpleClient
String?
Hello World
HELLO WORLD
hello world

UNIX

ksh prompt>java -classpath .:$TUXDIR/udataobj/java/jdk\
/m3envobj.jar -DTOBJADDR=$TOBJADDR SimpleClient
String?
Hello World
HELLO WORLD
hello world

Note: The Java Simpapp sample client application uses the client-only JAR file
m3envobj.jar. However, you could also use the m3.jar file to run the client
application.
Guide to the Java Sample Applications 2-15

2 The Java Simpapp Sample Application
Using the C++ Client Application with the
Java Simpapp Sample Application

A C++ client application is provided with the Java Simpapp sample application to
demonstrate interoperabililty between a Java server application and a C++ client
application. This section describes the process of building and running the C++ client
application.

Build the C++ client application in the Java Simpapp sample application as follows:

1. Copy the files from the following directory to a work directory:

Windows NT

\WLEdir\samples\CORBA\simpapp_java

UNIX

/usr/local/WLEdir/samples/corba/simapp_java

Note: The work directory for the Java Simpapp sample application cannot be the
same as the work directory for the C++ Simpapp sample application.

2. Change the protection on the files using the following commands:

Windows NT

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>/bin/ksh

ksh prompt>chmod u+w /workdirectory/*.*

3. Make sure the UNIX make command or the Windows NT nmake command is in
the path of your machine.

4. Set the M3SIMPDIR environment variable to your work directory.

5. Build the C++ client application, as follows:

Windows NT

prompt>cd %M3SIMPDIR
2-16 Guide to the Java Sample Applications

Stopping the Java Simpapp Sample Application
prompt>nmake -f makefile.nt simple_client.exe

UNIX

ksh prompt>cd %M3SIMPDIR

ksh prompt>make -f makefile.mk simple_client

Run the Java server application in the Java Simpapp sample application, as follows:

Windows NT

prompt>tmboot

UNIX

ksh prompt>tmboot

Run the C++ client application in the Java Simpapp sample application, as follows:

Windows NT

prompt>%M3SIMPDIR%\simple_client
String? Hello
HELLO
hello

UNIX

ksh prompt>$M3SIMPDIR/simple_client
String? Hello
HELLO
hello

Stopping the Java Simpapp Sample
Application

Before using another sample application, enter the following commands to stop the
Java Simpapp sample application and to remove unnecessary files from the work
directory:
Guide to the Java Sample Applications 2-17

2 The Java Simpapp Sample Application
Windows NT

prompt>tmshutdown -y

prompt>nmake -f makefile.nt clean

UNIX

ksh prompt>tmshutdown -y

ksh prompt>make -f makefile.mk clean
2-18 Guide to the Java Sample Applications

CHAPTER
3 The JDBC Bankapp
Sample Application

This topic includes the following sections:

n How the JDBC Bankapp Sample Application Works

n Development Process for the JDBC Bankapp Sample Application

n Setting Up the Database for the JDBC Bankapp Sample Application

n Building the JDBC Bankapp Sample Application

n Compiling the Client and Server Applications

n Initializing the Database

n Starting the Server Application in the JDBC Bankapp Sample Application

n Files Generated by the JDBC Bankapp Sample Application

n Starting the ATM Client Application in the JDBC Bankapp Sample Application

n Stopping the JDBC Bankapp Sample Application

n Using the ATM Client Application

Refer to the Readme.txt file in the
\WLEdir\samples\corba\bankapp_java\JDBC directory for troubleshooting
information and for the latest information about using the JDBC Bankapp sample
application.
Guide to the Java Sample Applications 3-1

3 The JDBC Bankapp Sample Application
How the JDBC Bankapp Sample Application
Works

The JDBC Bankapp sample application implements an automatic teller machine
(ATM) interface and uses Java Database Connectivity (JDBC) to access a database
that stores account and customer information. This topic includes the following
sections:

n Java Server Objects

n Application Workflow

n JDBC Connection Pooling

Java Server Objects

The JDBC Bankapp sample application consists of a Java server application that
contains the objects listed in Table 3-1.

Application Workflow

Figure 3-1 illustrates how the JDBC Bankapp sample application works.

Table 3-1 Objects in the Java Server Application of the JDBC Bankapp

Object Description

TellerFactory The TellerFactory object creates the object references to the
Teller object.

Teller The Teller object receives and processes requests for banking
operations from the ATM client application.

DBAccesss The DBAccess object receives and processes requests from the
Teller object to the database.
3-2 Guide to the Java Sample Applications

How the JDBC Bankapp Sample Application Works
Figure 3-1 The JDBC Bankapp Sample Application

JDBC Connection Pooling

The JDBC Bankapp sample application demonstrates how to use JDBC database
connection pooling running in a multithreaded server application. In the JDBC
Bankapp sample application, WLE creates and initializes a pool of database
connections that the sample application uses. All DBAccess objects share this pool.
For more information about JDBC connection pools, see Using JDBC Connection
Pooling.

A minimum number of database connections is established when the server is
initialized. The number of connections is increased on demand. When a worker thread
receives a request for a DBAccess object, the corresponding DBAccess method gets an
available database connection from the pool. When the call to the DBAccess method
completes, the database connection is returned to the pool. If there is no database
connection available and the maximum number of database connections has been
established, the worker thread waits until a database connection becomes available.

ATM Client
Application

Java
Server

Application

TellerFactory

Teller

DBAccess Database
Guide to the Java Sample Applications 3-3

3 The JDBC Bankapp Sample Application
Development Process for the JDBC Bankapp
Sample Application

This topic includes the following sections:

n Object Management Group (OMG) Interface Definition Language (IDL)

n Client Application

n Server Application

n Server Description File (BankApp.xml)

n UBBCONFIG File

This topic describes the development process for the JDBC Bankapp sample
application.

Note: The steps in this topic have been done for you and are included in the JDBC
Bankapp sample application.

Object Management Group (OMG) Interface Definition
Language (IDL)

Table 3-2 lists the CORBA interfaces defined in the OMG IDL for the JDBC Bankapp
sample application:

Table 3-2 CORBA Interfaces Defined in the JDBC Bankapp OMG IDL

Interface Description Methods

TellerFactory Creates object references to the
Teller object

create_Teller()
3-4 Guide to the Java Sample Applications

Development Process for the JDBC Bankapp Sample Application
BankApp.idl File

Listing 3-1 shows the BankApp.idl file that defines the TellerFactory and Teller
interfaces in the JDBC Bankapp sample application. A copy of this file is included in
the directory for the JDBC Bankapp sample application.

Listing 3-1 OMG IDL Code for the TellerFactory and Teller Interfaces

#pragma prefix "beasys.com"
#pragma javaPackage "com.beasys.samples"

#include "Bank.idl"

module BankApp{
 exception IOException {};
 exception TellerInsufficentFunds();

 struct BalanceAmounts{
 float fromAccount;
 float toAccount;
 };

 struct TellerActivity {
 long totalRequests;
 long totalSuccesses;
 long totalFailures;
 float currentBalance;
 };

Teller Performs banking operations verify_pin_number()

deposit()

withdraw()

inquiry()

transfer()

report()

DBAccess Accesses the Oracle database on
behalf of the Teller object

get_valid_accounts()

read_account()

update_account()

transfer_funds()

Table 3-2 CORBA Interfaces Defined in the JDBC Bankapp OMG IDL (Continued)
Guide to the Java Sample Applications 3-5

3 The JDBC Bankapp Sample Application
 //Process Object
 interface Teller {
 void verify_pin_number(in short pinNo,
 out Bank::CustAccounts accounts)
 raises(Bank::PinNumberNotFound, IOException);
 float deposit(in long accountNo, in float amount)
 raises(Bank::AccountRecordNotFound,IOException);
 float withdraw(in long accountNo, in float amount)
 raises(Bank::AccountRecordNotFound,
 Bank::InsufficentFunds,
 IOException, TellerInsufficientFunds);
 float inquiry(in long accountNo)
 raises(Bank::AccountRecordNotFound, IOException);
 void transfer(in long fromAccountNo,
 in long toAccountNo,in float amount,
 out BalanceAmounts balAmounts)
 raises(Bank::AccountRecordNotFound,
 Bank::InsufficientFunds,
 IOException);
 void report(out TellerActivity tellerData)
 raises(IOException);
 };

 interface TellerFactory{
 Teller createTeller(in string tellerName);
 };

};

BankDB.idl File

Listing 3-2 shows the BankDB.idl file that defines the DBAccess interface in the
JDBC Bankapp sample application. A copy of this file is included in the directory for
the JDBC Bankapp sample application.

Listing 3-2 OMG IDL Code for the DBAccess Interface

#pragma prefix "beasys.com"
#pragma javaPackage "com.beasys.samples"

#include "Bank.idl"

module BankDB{
 struct AccountData{
 long accountID;
3-6 Guide to the Java Sample Applications

Development Process for the JDBC Bankapp Sample Application
 float balance;
 };

 interface DBAccess{
 void get_valid_accounts(in short, pinNo,
 out Bank::CustAccounts accounts)
 raises(Bank::DatabaseException,
 Bank::PinNumberNotFound);
 void read_account(inout AccountData data)
 raises(Bank::DatabaseException,
 Bank::AccountRecordNotFound);
 void update_account(inout AccountData data)
 raises(Bank::DatabaseException,
 Bank::AccountRecordNotFound,
 Bank::InsufficientFunds);
 void transfer_funds(in float_amount,
 inout AccountData fromAcct,
 inout AccountData toAcct,
 raises(Bank::DatabaseException,
 Bank::AccountRecordNotFound,
 Bank::InsufficientFunds);
 };

};

Bank.idl File

Listing 3-3 shows the Bank.idl file that defines common exceptions and structures.
It is included by both BankApp.idl and BankDB.idl. A copy of this file is included
in the directory for the JDBC Bankapp sample application.

Listing 3-3 OMG IDL Code for the Exceptions and Structures in JDBC Bankapp

#pragma prefix "beasys.com"
#pragma javaPackage "com.beasys.samples"

module Bank{

 exception DataBaseException {};
 exception PinNumberNotFound ();
 exception AccountRecordNotFound ();
 exception InsufficientFunds ();

 struct CustAccounts{
 long checkingAccountID;
Guide to the Java Sample Applications 3-7

3 The JDBC Bankapp Sample Application
 long savingsAccountID;
 };

};

Client Application

During the development of the client application, you would write Java code that does
the following:

n Initializes the ORB.

n Uses the Bootstrap environmental object to establish communication with the
WebLogic Enterprise (WLE) domain.

n Resolves initial references to the FactoryFinder environmental object.

n Uses a factory to get an object reference for the Teller object.

n Invokes the verify_pin_number, deposit, withdraw, inquiry, transfer,
and report methods on the Teller object.

A Java client application, referred to as the ATM client application, is included in the
JDBC Bankapp sample application. For more information about writing Java client
applications that use transactions, see Using Transactions.

Server Application

During the development of the server application, you would write the following:

n The Server object, which initializes the server application in the JDBC Bankapp
sample application and registers a factory for the Teller object with the WLE
domain. The Server object also obtains a reference to the JDBC connection pool
from JNDI.

n The implementations for the methods of the Teller and DBAccess objects.

The implementations for the Teller object include invoking operations on the
DBAccess object.
3-8 Guide to the Java Sample Applications

Development Process for the JDBC Bankapp Sample Application
Because the Teller object has durable state (for example, ATM statistics) that
is stored in an external source (a flat file), the method implementations must also
include the activate_object and deactivate_object methods to ensure the
Teller object is initialized with its state.

The JDBC Bankapp server application is configured to be multithreaded. Writing a
multithreaded WLE Java server application is the same as writing a single-threaded
Java server application; you cannot establish multiple threads programmatically in
your object implementations. Instead, you establish the number of threads for a Java
server application in the UBBCONFIG file. For information about writing Java server
applications and using threads in Java server applications, see Using Transactions.

Server Description File (BankApp.xml)

During development, you create a Server Description File (BankApp.xml) that defines
the activation and transaction policies for the TellerFactory, Teller, and
DBAccess interfaces. Table 3-3 shows the activation and transaction policies for the
JDBC Bankapp sample application.

A Server Description File for the JDBC Bankapp sample application is provided. For
information about creating Server Description Files and defining activation and
transaction policies on objects, see Creating Java Server Applications.

UBBCONFIG File

When using the WLE software, the server application is represented by a Java Archive
(JAR). The JAR must be loaded into the Java Virtual Machine (JVM) to be executed.
The JVM must execute in a WLE server application to be integrated in an WLE

Table 3-3 Activation and Transaction Policies for JDBC Bankapp

Interface Activation Policy Transaction Policy

TellerFactory Process Never

Teller Method Never

DBAccess Method Never
Guide to the Java Sample Applications 3-9

3 The JDBC Bankapp Sample Application

pecify

application. By default, the server application that loads the JVM is called
JavaServer. You include the options to start JavaServer in the Servers section of
the application’s UBBCONFIG file. For information about starting the JavaServer and
defining parameters in the UBBCONFIG file, see “Creating the Configuration File” in the
Administration Guide.

Enabling Multithreaded Support

If your Java server application is multithreaded, you can establish the number of
threads by using the command-line option (CLOPT) -M in the SERVERS section of the
UBBCONFIG file. In Listing 3-4, the -M 100 option enables multithreading for the
JavaServer and specifies 100 as the maximum number of worker threads that a
particular instance of JavaServer can support. The largest number that you can s
is 500.

Listing 3-4 Enabling Multithreaded Support in UBBCONFIG

JavaServer
 SRVGRP = BANK_GROUP1
 SRVID = 2
 SRVTYPE = JAVA
 CLOPT = "-A -- -M 100 Bankapp.jar TellerFactory_1 bank_pool"
 RESTART = N

Notes: The SRVTYPE=JAVA line is required when using JDBC connection pooling.

The information for the CLOPT parameter needs to be entered on one line.

You also need to set the MAXACCESSERS parameter in the RESOURCES section of the
UBBCONFIG file to account for the number of worker threads that each server
application is configured to run. The MAXACCESSERS parameter specifies the number
of processes that can attach to a WLE application.

Setting Up the Connection Pool

For the JDBC Bankapp sample application, you need to include the name of the
connection pool on the command-line option (CLOPT) in the SERVERS section of the
UBBCONFIG file, as shown in Listing 3-5.
3-10 Guide to the Java Sample Applications

Development Process for the JDBC Bankapp Sample Application
Listing 3-5 Specifying the Connection Pool Name (bank_pool) in UBBCONFIG

CLOPT = "-A -- -M 100 Bankapp.jar TellerFactory_1 bank_pool"

Note: The information for the CLOPT parameter needs to be entered on one line.

In addition, you need to include the following information on the JDBCCONNPOOLS
section of the UBBCONFIG file:

n The server group and server ID of the server.

n The class name of JDBC driver:

l JdbcOracle734 for the jdbcKona/Oracle driver

l JdbcMSSQL4 for the jdbcKona/MSSQLServer driver

n Either the JDBC URL for the Oracle database, or the name of the machine
where the Microsoft SQL Server database is installed

n Optionally, either the user id and password for the Oracle database, or the user
name and password you defined for the master instance of the Microsoft SQL
Server database

n The initial number of database connections in the pool

n The maximum number of database connections in the pool

Listing 3-6 provides an example of the JDBCCONNPOOLS section in the UBBCONFIG.

Listing 3-6 Specifying JDBCCONNPOOLS Information in UBBCONFIG

JDBCCONNPOOLS
 bank_pool
 SRVGRP = BANK_GROUP1
 SRVID = 2
 DRIVER = "weblogic.jdbc20.oci815.Driver"
 URL = "jdbc:weblogic:oracle:Beq-local"
 PROPS = "user=scott;password=tiger;server=Beq-Local"
 ENABLEXA = N
 INITCAPACITY = 2
 MAXCAPACITY = 10
 CAPACITYINCR = 1
 CREATEONSTARTUP = Y
Guide to the Java Sample Applications 3-11

3 The JDBC Bankapp Sample Application

a. You

o

f the

for
lt,

g
and”

, you

)

For more information about configuring JDBC connection pools, see <HYPERLINK
to “Configuring JDBC Connection Pools” documentation>.

Setting Up the Database for the JDBC
Bankapp Sample Application

The JDBC Bankapp sample application uses a database to store all the bank dat
can use either the Oracle or the Microsoft SQL Server database with the JDBC
Bankapp sample application.

Before you can build and run the JDBC Bankapp sample application, you need t
follow the steps in the product documentation to install the desired database.

The jdbcKona/Oracle and jdbcKona/MSSQLServer4 drivers are installed as part o
WLE installation. For more information about the jdbcKona drivers, refer to the JDBC
Driver Programming Reference and the BEA WebLogic Installation Guide.

Note: The jdbcKona/Oracle driver supports Oracle Version 7.3.4 and Oracle8i (
Solaris and Windows NT) and versions 8.04 and 8i (for HP-UX). By defau
this sample application supports Oracle Version 7.3.4 on NT/Solaris and
Version 8.0.4 on HP. You can use a different Oracle version by specifyin
command line parameters, as described in “Step 4: Run the setupJ Comm
on page 3-20.

Setting Up an Oracle Database

If you are using Oracle as the database for the JDBC Bankapp sample application
need to install the following software:

n Visual C++ Version 5.0 with Service Pack for Visual Studio (Windows NT only

n Sun SparcWorks Compiler 4.2 (Solaris only)

n Oracle Version 7.3.4
3-12 Guide to the Java Sample Applications

Building the JDBC Bankapp Sample Application
When using the Oracle database, you use the default database created by the Oracle
installation program. You need the connection string you defined for the Oracle
database and the default user id and password. Refer to the Oracle product
documentation for details about obtaining this information.

Setting Up a Microsoft SQL Server Database

If you are using the Microsoft SQL Server as the database for the JDBC Bankapp
sample application, you need to install the following software:

n Visual C++ Version 5.0 with Service Pack for Visual Studio (Windows NT only)

n Sun SparcWorks Compiler 4.2 (Solaris only)

n Microsoft SQL Server Version 7.0

When using the Microsoft SQL Server database, you use the master database instance.
You need the name of the machine where the Microsoft SQL Server database is
installed and the user name and password you defined for the master instance of the
Microsoft SQL Server database. Refer to the Microsoft product documentation for
details about obtaining this information.

Building the JDBC Bankapp Sample
Application

This topic describes the following steps, which are required to build the JDBC
Bankapp sample application:

n Step 1: Copy the Files for the JDBC Bankapp Sample Application into a Work
Directory.

n Step 2: Change the Protection Attribute on the Files for the JDBC Bankapp
Sample Application.

n Step 3: Verify the Settings of the Environment Variables.
Guide to the Java Sample Applications 3-13

3 The JDBC Bankapp Sample Application
n Step 4: Run the setupJ Command.

n Step 5: Load the UBBCONFIG File.

Step 1: Copy the Files for the JDBC Bankapp Sample
Application into a Work Directory

You need to copy the files for the JDBC Bankapp sample application into a work
directory on your local machine.

Source File Directories

The files for the JDBC Bankapp sample application are located in the following
directories:

Windows NT

drive:\WLEdir\samples\corba\bankapp_java\JDBC

drive:\WLEdir\samples\corba\bankapp_java\client

drive:\WLEdir\samples\corba\bankapp_java\shared

UNIX

/usr/local/WLEdir/samples/corba/bankapp_java/JDBC

/usr/local/WLEdir/samples/corba/bankapp_java/client

/usr/local/WLEdir/samples/corba/bankapp_java/shared

Table 3-4 describes the contents of these directories.

Table 3-4 Source File Directories for the JDBC Bankapp Sample Application

Directory Description

JDBC Source files and commands needed to build and run the JDBC Bankapp
sample application.

client Files for the ATM client application. The images subdirectory contains
.gif files used by the graphical user interface in the ATM client
application.
3-14 Guide to the Java Sample Applications

Building the JDBC Bankapp Sample Application
Copying Source Files to the Work Directory

You need to manually copy only the files in the \JDBC directory. The other sample
application files are automatically copied from the \client and \shared directories
when you execute the setupJ command. For example:

Windows NT

prompt> cd c:\mysamples\bankapp_java\JDBC

prompt> copy c:\WLEdir\samples\corba\bankapp_java\JDBC*

UNIX

ksh prompt> cd /usr/mysamples/bankapp_java/JDBC/*

ksh prompt> cp $TUXDIR/samples/bankapp_java/JDBC/* .

Note: You cannot run the JDBC Bankapp sample application in the same work
directory as the XA Bankapp sample application, because some of the files for
the JDBC Bankapp sample application have the same name as files for the XA
Bankapp sample application.

Source Files Used to Build the JDBC Bankapp Sample Application

Table 3-5 lists the files used to build and run the JDBC Bankapp sample application.

shared Common files for the JDBC Bankapp and XA Bankapp sample
applications.

Table 3-4 Source File Directories for the JDBC Bankapp Sample Application

Directory Description

Table 3-5 Files Included in the JDBC Bankapp Sample Application

File Description

Bank.idl The OMG IDL code that declares common structures
and extensions for the JDBC Bankapp sample
application.

BankApp.idl The OMG IDL code that declares the
TellerFactory and Teller interfaces.
Guide to the Java Sample Applications 3-15

3 The JDBC Bankapp Sample Application
BankDB.idl The OMG IDL code that declares the DBAccess
interface.

TellerFactoryImpl.java The Java source code that implements the
createTeller method. This file is in the
com.beasys.samples package. It is
automatically moved to the
com/beasys/samples directory by the setupJ
command.

TellerImpl.java The Java source code that implements the verify,
deposit, withdraw, inquiry, transfer, and
report methods. This file is in the
com.beasys.samples package. It is
automatically moved to the
com/beasys/samples directory by the setupJ
command.

BankAppServerImpl.java The Java source code that overrides the
Server.initialize and Server.release
methods.

DBAccessImpl.java The Java source code that implements the
get_valid_accounts, read_account,
update_account, and transfer methods. This
file is in the com.beasys.samples package. It is
automatically moved to the
com/beasys/samples directory by the setupJ
command.

Atm.java The Java source code for the ATM client application.

BankStats.java Contains methods to initialize, read from, and write
to the flat file that contains the ATM statistics.

BankApp.xml The Server Description File used to associate
activation and transaction policy values with
CORBA interfaces.

InitDB.java A Java program that initializes the database and
ensures that JDBC is working properly.

Table 3-5 Files Included in the JDBC Bankapp Sample Application (Continued)

File Description
3-16 Guide to the Java Sample Applications

Building the JDBC Bankapp Sample Application
Step 2: Change the Protection Attribute on the Files for
the JDBC Bankapp Sample Application

During the installation of the WLE software, the files for the JDBC Bankapp sample
application are marked read-only. Before you can edit or build the files in the JDBC
Bankapp sample application, you need to change the protection attribute of the files
you copied into your work directory, as follows:

Windows NT

prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>/bin/ksh

ksh prompt>chmod u+w /workdirectory/*.*

setupJ.cmd The Windows NT batch file that builds and runs the
JDBC Bankapp sample application.

setupJ.ksh The UNIX Korn shell script that builds and runs the
JDBC Bankapp sample application.

makefileJ.mk The make file for the JDBC Bankapp sample
application on the UNIX operating system. The
UNIX make command needs to be in the path of
your machine.

makefileJ.nt The make file for the JDBC Bankapp sample
application on the Windows NT operating system.
The Windows NT nmake command needs to be in
the path of your machine.

Readme.txt The file that provides the latest information about
building and running the JDBC Bankapp sample
application.

Table 3-5 Files Included in the JDBC Bankapp Sample Application (Continued)

File Description
Guide to the Java Sample Applications 3-17

3 The JDBC Bankapp Sample Application
Step 3: Verify the Settings of the Environment Variables

Before building and running the JDBC Bankapp sample application, you need to
ensure that certain environment variables are set on your system. In most cases, these
environment variables are set as part of the installation procedure. However, you need
to check the environment variables to ensure they reflect correct information.

Environment Variables

Table 3-6 lists the environment variables required to run the JDBC Bankapp sample
application.

Table 3-6 Required Environment Variables for the JDBC Bankapp Sample Application

Environment
Variable

Description

TUXDIR The directory path where you installed the WLE software. For example:

Windows NT
TUXDIR=c:\WLEdir

UNIX
TUXDIR=/usr/local/WLEdir

JAVA_HOME The directory path where you installed the JDK software. For example:

Windows NT
JAVA_HOME=c:\JDK1.2

UNIX
JAVA_HOME=/usr/local/JDK1.2

ORACLE_HOME The directory path where you installed the Oracle software. For example:

Windows NT
ORACLE_HOME=d:\orant

UNIX
ORACLE_HOME=/usr/local/oracle

Note: This environment variable applies only if you are using the Oracle database
on the Solaris operating system.
3-18 Guide to the Java Sample Applications

Building the JDBC Bankapp Sample Application
Verifying Settings

To verify that the information defined during installation is correct:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings for TUXDIR and JAVA_HOME.

UNIX

ksh prompt>printenv TUXDIR

ksh prompt>printenv JAVA_HOME

ksh prompt>printenv ORACLE_HOME

Changing Settings

To change the settings:

Windows NT

1. On the Environment page in the System Properties window, click the environment
variable you want to change, or enter the name of the environment variable in the
Variable field.

2. In the Value field, enter the correct information for the environment variable.

3. Click OK to save the changes.

UNIX

ksh prompt>TUXDIR=directorypath; export TUXDIR

ksh prompt>JAVA_HOME=directorypath; export JAVA_HOME
Guide to the Java Sample Applications 3-19

3 The JDBC Bankapp Sample Application
ksh prompt>JAVA_HOME=directorypath; export ORACLE_HOME

Note: If you are running multiple WLE applications concurrently on the same
machine, you also need to set the IPCKEY and PORT environment variables.
See the Readme.txt file for information about how to set these environment
variables.

Step 4: Run the setupJ Command

The setupJ command automates the following steps:

1. Copy the required files from the \client and \shared directories.

2. Set the PATH, TOBJADDR, APPDIR, TUXCONFIG, and CLASSPATH system
environment variables.

3. Create the UBBCONFIG file (ubb_jdbc).

4. Create a setenvJ.cmd or setenvJ.ksh file that can be used to reset the system
environment variables.

Syntax

The syntax for the setupJ command is:

prompt>setupJ DB_DRIVER DB_SERVER DB_USER DB_PASSWORD

where:

Parameter Description

DB_DRIVER Name of the database driver. Valid values include:

n jdbcOracle734

n jdbcOracle804

n jdbcOracle815

n jdbcMSSQL4

Defaul values are jdbcOracle734 (on Solaris or NT) or
jdbcOracle804 (on Hewlett-Packard).
3-20 Guide to the Java Sample Applications

Building the JDBC Bankapp Sample Application
Note: SetupJ uses default values unless you explicitly specify arguments. For
example, to use Microsoft SQL Server, you must specify all command line
parameters.

Command

Follow these steps to enter the setupJ command:

Windows NT

prompt>cd c:\mysamples\bankapp_java\JDBC

prompt>setupJ jdbcOracle815 Beq-Local scott tiger

UNIX

prompt>/bin/ksh

prompt>cd /usr/mysamples/bankapp_java/JDBC

prompt>. ./setupJ.ksh jdbcOracle815 null scott tiger

Step 5: Load the UBBCONFIG File

Use the following command to load the UBBCONFIG file:

prompt>tmloadcf -y ubb_jdbc

DB_SERVER Name of the machine where the database is installed. Default values are
Beq-Local (on NT) or null (on Solaris or Hewlett-Packard).

DB_USER User name defined for the database. Default value is scott.

DB_PASSWORD Password defined for the database. Default value is tiger.
Guide to the Java Sample Applications 3-21

3 The JDBC Bankapp Sample Application

ct’s

BC

Compiling the Client and Server
Applications

The directory for the JDBC Bankapp sample application contains a make file that
builds the client and server sample applications. During development, you use the
buildjavaserver command to build the server application, and your Java produ
development commands to build the client application. However, for the JDBC
Bankapp sample application, these steps are included in the make file.

Use the following commands to build the client and server applications in the JD
Bankapp sample application:

Windows NT

prompt>nmake -f makefileJ.nt

UNIX

prompt>make -f makefileJ.mk

Initializing the Database

This topic includes the following sections:

n Initializing an Oracle Database

n Initializing a Microsoft SQL Server Database

Initializing an Oracle Database

To initialize an Oracle database using the default arguments, enter the following
command:

prompt>java InitDB
3-22 Guide to the Java Sample Applications

Initializing the Database
To initialize the Oracle database with user-defined attributes, enter the following
command:

prompt>java InitDB driver_name connect_string username password

where

Initializing a Microsoft SQL Server Database

To initialize a Microsoft SQL Server database, enter the following command:

prompt>java InitDB JdbcMSSQL4 db_server username password

where:

Parameter Description

driver_name Name of the database driver. Valid values include:

n jdbcOracle734

n jdbcOracle804

n jdbcOracle815

n jdbcMSSQL4

Defaul values are jdbcOracle734 (on Solaris or NT) or
jdbcOracle804 (on Hewlett-Packard).

connect_string Connection string for the instance of the Oracle database being
used with the JDBC Bankapp sample application. Default values
are Beq-Local (on NT) or null (on Solaris or
Hewlett-Packard).

username User name for the Oracle database. Default value is scott.

password Password for the Oracle database. Default value is tiger.

Parameter Description

jdbcMSSQL4 Name of the database driver for Microsoft SQL Server. This is
the only valid value.

db_server Name of the machine on which the Microsoft SQL Server
database is installed.
Guide to the Java Sample Applications 3-23

3 The JDBC Bankapp Sample Application
Starting the Server Application in the JDBC
Bankapp Sample Application

Start the server application in the JDBC Bankapp sample application by entering the
following command:

prompt>tmboot -y

The tmboot command starts the application processes listed in Table 3-7.

username User name for the master instance of the Microsoft SQL
Server database.

password Password for the master instance of the Microsoft SQL Server
database.

Table 3-7 Application Processes Started by tmboot Command

Process Description

TMSYSEVT BEA TUXEDO system event broker.

TMFFNAME Three TMFFNAME server processes are started:

n The TMFFNAME server process started with the -N and -M options is
the master NameManager service. The NameManager service
maintains a mapping of the application-supplied names to object
references.

n The TMFFNAME server process started with the -N option is the slave
NameManager service.

n The TMFFNAME server process started with the -F option contains
the FactoryFinder object.

JavaServer Server process that implements the TellerFactory, Teller, and
DBAccess interfaces.

ISL IIOP Listener process.
3-24 Guide to the Java Sample Applications

Files Generated by the JDBC Bankapp Sample Application
Files Generated by the JDBC Bankapp
Sample Application

Table 3-8 lists the files generated by the JDBC Bankapp sample application.

Table 3-8 Files Generated by the JDBC Bankapp Sample Application

File Description

ubb_jdbc The UBBCONFIG file for the JDBC Bankapp sample
application. This file is generated by the setupJ command.

setenvJ.cmd and setenvJ.ksh Contains the commands to set the environment variables
needed to build and run the JDBC Bankapp sample
application. setenvJ.cmd is the Windows NT version and
setenvJ.ksh is the UNIX Korn shell version of the file.

tuxconfig A binary version of the UBBCONFIG file. Generated by the
tmloadcf command.

ULOG.<date> A log file that contains messages generated by the tmboot
command. The log file also contains messages generated by
the server applications and by the tmshutdown command.

.adm/.keybd A file that contains the security encryption key database. The
subdirectory is created by the tmloadcf command.

Atm$1.class
Atm.class
AtmAppletStub.class
AtmArrow.class
AtmButton.class
AtmCenterTextCanvas.class
AtmClock.class
AtmScreen.class
AtmServices.class
AtmStatus.class

Used by the Java client application. Created when the
Atm.java file is compiled.

InitDB.class Initializes the database used by the JDBC Bankapp sample
application. Created when InitDB.java is compiled.
Guide to the Java Sample Applications 3-25

3 The JDBC Bankapp Sample Application
AccountRecordNotFound.java
AccountRecordNotFoundHelper.java
AccountRecordNotFoundHolder.java
CustAccounts.java
CustAccountsHelper.java
CustAccountsHolder.java
DataBaseException.java
DataBaseExceptionHelper.java
DataBaseExceptionHolder.java
InsufficientFunds.java
InsufficientFundsHelper.java
InsufficientFundsHolder.java
PinNumberNotFound.java
PinNumberNotFoundHelper.java
PinNumberNotFoundHolder.java

Generated by the m3idltojava command for the interfaces
defined in the Bank.idl file. These files are created in the
com/beasys/samples/Bank directory.

BalanceAmounts.java
BalanceAmountsHelper.java
BalanceAmountsHolder.java
IOException.java
IOExceptionHelper.java
IOExceptionHolder.java
Teller.java
TellerActivity.java
TellerActivityHelper.java
TellerActivityHolder.java
TellerFactory.java
TellerFactoryHelper.java
TellerFactoryHolder.java
TellerInsufficientFunds.java
TellerInsufficientFundsHelper.ja
va
TellerInsufficientFundsHolder.ja
va
_TellerFactoryImplBase.java
_TellerFactoryStub.java
_TellerImplBase.java
_TellerStub.java

Generated by the m3idltojava command for the interfaces
defined in the BankApp.idl file. These files are created in
the com/beasys/samples/BankApp subdirectory.

Table 3-8 Files Generated by the JDBC Bankapp Sample Application (Continued)

File Description
3-26 Guide to the Java Sample Applications

Starting the ATM Client Application in the JDBC Bankapp Sample Application
Starting the ATM Client Application in the
JDBC Bankapp Sample Application

Start the ATM client application by entering the following command:

Note: The following command sets the Java CLASSPATH to include the current
directory and the client JAR file (m3envobj.jar). The full WLE JAR file
(m3.jar) can be specified instead of the client JAR file.

AccountData.java
AccountDataHelper.java
AccountDataHolder.java
DBAccessHelper.java
DBAccessHolder.java
_DBAccessImplBase.java
_DBAccessStub.java

Generated by the m3idltojava command for the interfaces
defined in the BankDB.idl file. These files are created in the
com/beasys/samples/BankDB subdirectory.

Bankapp.ser
Bankapp.jar

The Server Descriptor File and Server Java Archive file
generated by the buildjavaserver command in the make
file.

stderr Generated by the tmboot command. If the -noredirect
JavaServer option is specified in the UBBCONFIG file, the
System.err.println method sends the output to the
stderr file instead of to the ULOG file.

stdout Generated by the tmboot command. If the -noredirect
JavaServer option is specified in the UBBCONFIG file, the
System.out.println method sends the output to the
stdout file instead of to the ULOG file.

tmsysevt.dat Contains filtering and notification rules used by the
TMSYSEVT (system event reporting) process. This file is
generated by the tmboot command.

Table 3-8 Files Generated by the JDBC Bankapp Sample Application (Continued)

File Description
Guide to the Java Sample Applications 3-27

3 The JDBC Bankapp Sample Application
Windows NT

prompt>java -classpath .;%TUXDIR%\udataobj\java\jdk\m3envobj.jar
-DTOBJADDR=%TOBJADDR% Atm Teller1

UNIX

ksh prompt>java -classpath .:$TUXDIR/udataobj/java/jdk
/m3envobj.jar -DTOBJADDR=$TOBJADDR Atm Teller1

The GUI for the ATM client application appears. Figure 3-2 shows the GUI for the
ATM client application.

Figure 3-2 GUI for ATM Client Application
3-28 Guide to the Java Sample Applications

Stopping the JDBC Bankapp Sample Application
Stopping the JDBC Bankapp Sample
Application

Before using another sample application, enter the following commands to stop the
JDBC Bankapp sample application and to remove unnecessary files from the work
directory:

Windows NT

prompt>tmshutdown -y

prompt>nmake -f makefileJ.nt clean

UNIX

ksh prompt>tmshutdown -y

ksh prompt>make -f makefileJ.mk clean

Using the ATM Client Application

This topic includes the following sections:

n Available Banking Operations

n Available Statistics

n Keypad Functions

n Steps for Using the ATM Client Application

Available Banking Operations

In the ATM client application, a customer enters a personal identification number
(PIN) and performs one of the following banking operations:
Guide to the Java Sample Applications 3-29

3 The JDBC Bankapp Sample Application
n Withdraws money from the account

n Deposits money in the account

n Inquires about the balance of the account

n Transfers money between checking and savings accounts

Available Statistics

One special PIN number (999) allows customers to receive statistics about the ATM
machine. The following statistics are available:

n Total number of requests received by the ATM machine

For example, an inquiry is one request, and a withdrawal is one request.

n Total number of successful requests

n Total number of failed requests

For example, when a customer attempts to withdraw more money than is in his
account, the request fails.

n Total amount of cash remaining in the ATM machine

The ATM machine starts with $10,000 and the amount decreases with each
withdrawal request.

Keypad Functions

Use the keypad in the ATM client application to enter a PIN and amounts for deposit,
transfer, and withdrawal. Table 3-9 describes the functions available on the keypad in
the ATM client application.

Table 3-9 Keypad Functions in the ATM Client Application

Key Function

Cancel Use this key to cancel the current operation and exit the view.
3-30 Guide to the Java Sample Applications

Using the ATM Client Application
Steps for Using the ATM Client Application

To use the ATM client application in the JDBC Bankapp sample application:

1. Enter one of the following PINs: 100, 110, 120, or 130.

2. Click OK.

The Operations view appears. Figure 3-3 shows the Operations view in the ATM
client application.

OK Use this key to accept the entered data. After you enter a PIN
or an amount for deposit, transfer, or withdrawal, you need to
click the OK button to have the action take effect.

Numerics (0 through 9) Use these keys to enter your PIN and an amount for deposit,
transfer, and withdrawal amounts.

Period (.) Use this key to enter decimal amounts for deposit, transfer, and
withdrawal.

Table 3-9 Keypad Functions in the ATM Client Application (Continued)

Key Function
Guide to the Java Sample Applications 3-31

3 The JDBC Bankapp Sample Application
Figure 3-3 Operations View in the ATM Client Application

From the Operations view, you can perform the follow banking operations:

l Inquiry

l Transfer

l Deposit

l Withdrawal

3. Click the desired banking operation.

4. Click either the Checking Acct or Savings Acct button.

5. Enter a dollar amount.

6. Click OK.

An updated account balance appears.

Note: After you click OK, you cannot cancel the operation. If you enter an
amount and then select Cancel, the ATM client application cancels your
operation and displays the previous screen.

7. Click OK.

8. Click Cancel to return to the main window of the ATM client application.
3-32 Guide to the Java Sample Applications

CHAPTER
4 The XA Bankapp
Sample Application

This topic includes the following sections:

n How the XA Bankapp Sample Application Works

n Development Process for the XA Bankapp Sample Application

n Setting Up the Database for the XA Bankapp Sample Application

n Building the XA Bankapp Sample Application

n Compiling the Client and Server Applications

n Initializing the Oracle Database

n Starting the Server Application in the XA Bankapp Sample Application

n Files Generated by the XA Bankapp Sample Application

n Starting the ATM Client Application in the XA Bankapp Sample Application

n Stopping the XA Bankapp Sample Application

n Using the ATM Client Application

For troubleshooting information and the most recent information about using the XA
Bankapp sample application, see the Readme.txt file in the
\WLEdir\samples\corba\bankapp_java\XA directory.
Guide to the Java Sample Applications 4-1

4 The XA Bankapp Sample Application
How the XA Bankapp Sample Application
Works

The XA Bankapp sample application is a CORBA application that implements the
same automatic teller machine (ATM) interface as the JDBC Bankapp sample
application. However, the XA Bankapp sample application uses the Oracle XA library
and the WebLogic Enterprise (WLE) Transaction Manager to coordinate transactions
between the WLE application and the Oracle database that stores account and
customer information.

This topic includes the following sections:

n Server Applications

n Application Workflow

Server Applications

The XA Bankapp sample application consists of two server applications:

n A Java server application, which implements the TellerFactory and Teller
objects.

n A C++ server application, which processes requests on objects that implement
the DBAccesss interface.

Application Workflow

Figure 4-1 illustrates how the XA Bankapp sample application works.
4-2 Guide to the Java Sample Applications

How the XA Bankapp Sample Application Works
Figure 4-1 The XA Bankapp Sample Application

In the XA Bankapp sample application, transactions are started and stopped in the
Teller object using the Java Transaction Service (JTS) API. In the JDBC Bankapp
sample application, transactions are started and stopped in the DBAccess object using
the Java Database Connectivity (JDBC) API.

In the XA Bankapp sample application, the DBAccess object is implemented in C++
instead of Java and resides in its own server application. The object reference for the
DBAccess object is generated in its Server::initialize method and is registered
with the FactoryFinder environmental object.

Software Prerequisites

To run the XA Bankapp sample application, you need to install the following software:

n Visual C++ Version 5.0 with Service Pack 3 for Visual Studio

n Oracle Version 7.3.4

ATM Client
Application

Java
Server

Application

TellerFactory

Teller

DBAccess

C++
Server

Application

Oracle
Database
Guide to the Java Sample Applications 4-3

4 The XA Bankapp Sample Application
Development Process for the XA Bankapp
Sample Application

This topic includes the following sections:

n Object Management Group (OMG) Interface Definition Language (IDL)

n Client Application

n Server Application

n Server Description File

n Implementation Configuration File

n UBBCONFIG File

These sections describe the development process for the XA Bankapp sample
application.

Note: The steps in this section have been done for you and are included in the XA
Bankapp sample application.

Object Management Group (OMG) Interface Definition
Language (IDL)

The BankApp.idl file used in the XA Bankapp sample application defines the
TellerFactory and Teller interfaces and the Bank.idl file defines exceptions and
structures. The transfer_funds interface has been removed from the BankDB.idl
because transactions are now started and stopped by the Teller object.

Client Application

The XA Bankapp sample application uses the same client application as the JDBC
Bankapp sample application.
4-4 Guide to the Java Sample Applications

Development Process for the XA Bankapp Sample Application
Server Application

For the XA Bankapp sample application, you would write the following:

n The Java Server object, which initializes the Java server application in the XA
Bankapp sample application and registers a factory for the Teller object with the
WLE domain.

Server Description File

During development, you create a Server Description File (BankApp.xml) that defines
the activation and transaction policies for the TellerFactory and Teller objects.
Table 4-1 shows the activation and transaction policies for the XA Bankapp sample
application.

A Server Description File for the XA Bankapp sample application is provided. For
information about creating Server Description Files and defining activation and
transaction policies on objects, see Creating Java Server Applications.

Implementation Configuration File

When writing WLE C++ server applications, you create an Implementation
Configuration File (ICF), which is similar to the Server Description File. This file has
been created for you and defines an activation policy of transaction and a
transaction policy of always for the DBAccess interface.

For information about creating ICF files and defining activation and transaction
policies on objects, see Creating C++ Server Applications.

Table 4-1 Activation and Transaction Policies for XA Bankapp Sample
Application

Interface Activation Policy Transaction Policy

TellerFactory Process Never

Teller Method Never
Guide to the Java Sample Applications 4-5

4 The XA Bankapp Sample Application

k data.
g

e

nts
with

ry
UBBCONFIG File

During development, you need to include the following information in the UBBCONFIG
file:

n The OPENINFO parameter, defined according to the XA parameter for the Oracle
database. The XA parameter for the Oracle database is described the “Developing
and Installing Applications that Use the XA Libraries” section of the Oracle7
Distributed Systems manual.

n The pathname to the transaction log (TLOG) in the TLOGDEVICE parameter.

For information about the transaction log and defining parameters in the UBBCONFIG
file, see Using Transactions.

Setting Up the Database for the XA Bankapp
Sample Application

The XA Bankapp sample application uses an Oracle database to store all the ban
Before using the XA Bankapp sample application, you need to install the followin
Oracle components:

n Oracle Server, Version 7.3.4

n Pro*C/C++ release 7.3.4 (for more information about supported compilers, se
the Oracle product documentation)

Note: When installing the specified Oracle components, other Oracle compone
are also installed. However, you will not use these additional components
the XA Bankapp sample application.

You also need to start the Oracle database daemon and enable an XA resource
manager.

For information about installing the Oracle database and performing the necessa
setup tasks, see the product documentation for the Oracle database.
4-6 Guide to the Java Sample Applications

Building the XA Bankapp Sample Application
Building the XA Bankapp Sample
Application

This topic includes the following sections:

n Step 1: Copy the Files for the XA Bankapp Sample Application into a Work
Directory

n Step 2: Change the Protection Attribute on the Files for the XA Bankapp Sample
Application

n Step 3: Verify the Settings of the Environment Variables

n Step 4: Run the setupX Command

n Step 5: Load the UBBCONFIG File

n Step 6: Create a Transaction Log

These sections describe how to build the XA Bankapp sample application.

Step 1: Copy the Files for the XA Bankapp Sample
Application into a Work Directory

You need to copy the files for the XA Bankapp sample application into a work
directory on your local machine.

Source File Directories

The files for the XA Bankapp sample application are located in the following
directories:

Windows NT

drive:\WLEdir\samples\corba\bankapp_java\XA

drive:\WLEdir\samples\corba\bankapp_java\client
Guide to the Java Sample Applications 4-7

4 The XA Bankapp Sample Application
drive:\WLEdir\samples\corba\bankapp_java\shared

UNIX

/usr/local/WLEdir/samples/corba/bankapp_java/XA

/usr/local/WLEdir/samples/corba/bankapp_java/client

/usr/local/WLEdir/samples/corba/bankapp_java/shared

Table 4-2 describes the contents of these directories:

Copying Source Files to the Work Directory

You need only to copy the files manually in the XA directory. The other files are
automatically copied from the \client and \shared directories when you execute
the setupX command. For example:

Windows NT

prompt> cd c:\mysamples\bankapp_xa\XA

prompt> copy c:\WLEdir\samples\corba\bankapp_xa\XA*

UNIX

ksh prompt> cd /usr/mysamples/bankapp_xa/XA/*

ksh prompt> cp $TUXDIR/samples/bankapp_xa/XA/*

Note: You cannot run the XA Bankapp sample application in the same work
directory as the JDBC Bankapp sample application, because some of the files
for the JDBC Bankapp sample application have the same name as files for the
XA Bankapp sample application.

Table 4-2 Source File Directories in the XA Bankapp Sample Application

Directory Description

XA Source files and commands needed to build and run the XA Bankapp
sample application.

client Files for the ATM client application. The images subdirectory contains
.gif files used by the graphical user interface in the ATM client
application.

shared Common files for the JDBC Bankapp and XA Bankapp sample
applications.
4-8 Guide to the Java Sample Applications

Building the XA Bankapp Sample Application
Source Files Used to Build the XA Bankapp Sample Application

Table 4-3 lists the files used to build and run the XA Bankapp sample application.

Table 4-3 Files Included in the XA Bankapp Sample Application

File Description

Bank.idl The OMG IDL code that declares common structures
and extensions for the XA Bankapp sample
application.

BankApp.idl The OMG IDL code that declares the
TellerFactory and Teller interfaces.

BankDB.idl The OMG IDL code that declares the DBAccess
interface.

BankDB.icf The ICF file that defines activation and transaction
policies for the DBAccess interface.

BankDBServer.cpp The C++ source code that implements the
Server::initialize and
Server::release methods for the C++ server
application.

TellerFactoryImpl.java The Java source code that implements the
createTeller method.

TellerImpl.java The Java source code that implements the verify,
deposit, withdraw, inquiry, transfer, and
report methods. In addition, it includes a reference
to the TransactionCurrent environmental object and
invokes operations on the DBAccess object within a
transaction.

BankAppServerImpl.java The Java source code that overrides the
Server.initialize and Server.release
methods.

Atm.java The Java source code for the ATM client application.

BankStats.java Contains methods to initialize, read from, and write
to the flat file that contains the ATM statistics.
Guide to the Java Sample Applications 4-9

4 The XA Bankapp Sample Application
Step 2: Change the Protection Attribute on the Files for
the XA Bankapp Sample Application

During the installation of the WLE software, the files for the XA Bankapp sample
application are marked read-only. Before you can edit or build the files in the XA
Bankapp sample application, you need to change the protection attribute of the files
you copied into your work directory, as follows:

Windows NT

BankApp.xml The Server Description File used to associate
activation and transaction policy values with
CORBA interfaces.

DBAccess_i.h
DBAccess_i.pc

The Oracle Pro*C/C++ code that implements the
DBAccess interface.

InitDB.sql The Oracle SQL *Plus script that creates and
populates the database tables.

setupX.cmd The Windows NT batch file that builds and runs the
XA Bankapp sample application.

setupX.ksh The UNIX Korn shell script that builds and runs the
XA Bankapp sample application.

makefileX.mk The make file for the XA Bankapp sample
application on the UNIX operating system. The
UNIX make command needs to be in the path of
your machine.

makefileX.nt The make file for the XA Bankapp sample
application on the Windows NT operating system.
The Windows NT nmake command needs to be in
the path of your machine.

Readme.txt Provides the latest information about building and
running the XA Bankapp sample application.

Table 4-3 Files Included in the XA Bankapp Sample Application (Continued)

File Description
4-10 Guide to the Java Sample Applications

Building the XA Bankapp Sample Application
prompt>attrib -r drive:\workdirectory*.*

UNIX

prompt>/bin/ksh

ksh prompt>chmod u+w /workdirectory/*.*

Step 3: Verify the Settings of the Environment Variables

Before building and running the XA Bankapp sample application, you need to ensure
that certain environment variables are set on your system. In most cases, these
environment variables are set as part of the installation procedure. However, you need
to check the environment variables to ensure they reflect correct information.

Environment Variables

Table 4-4 lists the environment variables required to run the XA Bankapp sample
application.

Table 4-4 Required Environment Variables for the XA Bankapp Sample Application

Environment
Variable

Description

TUXDIR The directory path where you installed the WLE software. For example:

Windows NT

TUXDIR=c:\WLEdir

UNIX
TUXDIR=/usr/local/WLEdir

JAVA_HOME The directory path where you installed the JDK software. For example:

Windows NT
JAVA_HOME=c:\JDK1.2

UNIX
JAVA_HOME=/usr/local/JDK1.2

ORACLE_HOME The directory path where you installed the Oracle software. For example:

ORACLE_HOME=/usr/local/oracle

You need to set this environment variable on the Solaris operating system only.
Guide to the Java Sample Applications 4-11

4 The XA Bankapp Sample Application
Verifying Settings

To verify that the information defined during installation is correct:

Windows NT

1. From the Start menu, select Settings.

2. From the Settings menu, select the Control Panel.

The Control Panel appears.

3. Click the System icon.

The System Properties window appears.

4. Click the Environment tab.

The Environment page appears.

5. Check the settings for TUXDIR, ORACLE_HOME, and JAVA_HOME.

UNIX

ksh prompt>printenv TUXDIR

ksh prompt>printenv JAVA_HOME

ksh prompt>printenv ORACLE_HOME

Changing Settings

To change the settings:

Windows NT

1. On the Environment page in the System Properties window, click the environment
variable you want to change or enter the name of the environment variable in the
Variable field.

2. Enter the correct information for the environment variable in the Value field.

3. Click OK to save the changes.

UNIX

ksh prompt>TUXDIR=directorypath; export TUXDIR

ksh prompt>JAVA_HOME=directorypath; export JAVA_HOME
4-12 Guide to the Java Sample Applications

Building the XA Bankapp Sample Application
ksh prompt>JAVA_HOME=directorypath; export ORACLE_HOME

Note: If you are running multiple WLE applications concurrently on the same
machine, you also need to set the IPCKEY and PORT environment variables.
See the Readme.txt file for information about how to set these environment
variables.

Step 4: Run the setupX Command

The setupX command automates the following steps:

1. Copy the required files from the \client and \shared directories.

2. Set the PATH, TOBJADDR, APPDIR, TUXCONFIG, and CLASSPATH system
environment variables.

3. Create the UBBCONFIG file.

4. Create a setenvX.cmd or setenvX.ksh file that can be used to reset the system
environment variables.

Enter the setupX command, as follows:

Windows NT

prompt> cd c:\mysamples\bankapp_xa\XA

prompt>setupX

UNIX

prompt>/bin/ksh

prompt> cd /usr/mysamples/bankapp_xa/XA/*

prompt>. ./setupX.ksh

Step 5: Load the UBBCONFIG File

Use the following command to load the UBBCONFIG file:

prompt>tmloadcf -y ubb_xa
Guide to the Java Sample Applications 4-13

4 The XA Bankapp Sample Application

ct’s
app
Step 6: Create a Transaction Log

The transaction log records the transaction activities in a WLE session. During the
development process, you need to define the location of the transaction log (specified
by the TLOGDEVICE parameter) in the UBBCONFIG file. For the XA Bankapp sample
application, the transaction log is placed in your work directory.

To open the transaction log for the XA Bankapp sample application:

1. Enter the following command to start the Interactive Administrative Interface:

tmadmin

2. Enter the following command to create a transaction log:

crdl -b blocks -z directorypath TLOG
crlog -m SITE1

where

blocks specifies the number of blocks to be allocated for the transaction log and
directorypath indicates the location of the transaction log. The
directorypath option needs to match the location specified in the
TLOGDEVICE parameter in the UBBCONFIG file. The following is an example of
the command on Windows NT:

crdl -b 500 -z c:\mysamples\bankapp_java\XA\TLOG

3. Enter quit to exit the Interactive Administrative Interface.

Compiling the Client and Server
Applications

The directory for the XA Bankapp sample application contains a make file that builds
the client and server applications. During the development process, you use the
buildjavaserver command to build the server application, and your Java produ
development commands to build the client application. However, for the XA Bank
sample application, this step is included in the make file.
4-14 Guide to the Java Sample Applications

Initializing the Oracle Database
Use the following commands to build the client and server applications in the XA
Bankapp sample application:

Windows NT

prompt>nmake -f makefileX.nt

UNIX

prompt>make -f makefileX.mk

Initializing the Oracle Database

Use the following command to initialize the Oracle database used with the XA
Bankapp sample application:

Windows NT

prompt>nmake -f makefileX.nt InitDB

UNIX

ksh prompt>make -f makefileX.mk InitDB

Starting the Server Application in the XA
Bankapp Sample Application

Start the server application in the XA Bankapp sample application by entering the
following command:

prompt>tmboot -y
Guide to the Java Sample Applications 4-15

4 The XA Bankapp Sample Application
The tmboot command starts the application processes listed in Table 4-5.

Files Generated by the XA Bankapp Sample
Application

Table 4-6 lists the files generated by the XA Bankapp sample application.

Table 4-5 Application Processes Started by tmboot Command

Process Description

TMSYSEVT BEA TUXEDO system event broker.

TMFFNAME Three TMFFNAME server processes are started:

n The TMFFNAME server process with the -N and -M options is the
master NameManager service. The NameManager service
maintains a mapping of the application-supplied names to object
references.

n The TMFFNAME server process started with the -N option only is the
slave NameManager service.

n The TMFFNAME server process started with the -F option contains
the FactoryFinder object.

TMS_ORA Transaction manager service.

BankDataBase WLE server process that implements the DBAccess interface.

JavaServerXA Server process that implements the TellerFactory and Teller
interfaces. The JavaServer process has two options:

n BankApp.jar, which is the Java Archive (JAR) file that was
created by the buildjavaserver command.

n TellerFactory_1, which is passed to the
Server.initialize method.

JavaServerXA is a special version of JavaServer that uses the
same XA switch as the BankDataBase server process. It is created by
the buildXAJS command.

ISL IIOP Listener process.
4-16 Guide to the Java Sample Applications

Files Generated by the XA Bankapp Sample Application
Table 4-6 Files Generated by the XA Bankapp Sample Application

File Description

ubb_xa The UBBCONFIG file for the XA Bankapp sample
application. This file is generated by the setupX
command.

setenvX.cmd and setenvX.ksh Contains the commands to set the environment
variables needed to build and run the XA Bankapp
sample application. setenvX.cmd is the
Windows NT version and setenvX.ksh is the
UNIX Korn shell version of the file.

tuxconfig A binary version of the UBBCONFIG file.
Generated by the tmloadcf command.

TLOG The transaction log.

ULOG.<date> A log file that contains messages generated by the
tmboot command. The log file also contains
messages generated by the server applications and
the tmshutdown command.

.adm/.keybd A file that contains the security encryption key
database. The subdirectory is created by the
tmloadcf command.

Atm$1.class
Atm.class
AtmAppletStub.class
AtmArrow.class
AtmButton.class
AtmCenterTextCanvas.class
AtmClock.class
AtmScreen.class
AtmServices.class
AtmStatus.class

Used by the Java client application. Created when
the Atm.java file is compiled.
Guide to the Java Sample Applications 4-17

4 The XA Bankapp Sample Application
AccountRecordNotFound.java
AccountRecordNotFoundHelper.java
AccountRecordNotFoundHolder.java
CustAccounts.java
CustAccountsHelper.java
CustAccountsHolder.java
DataBaseException.java
DataBaseExceptionHelper.java
DataBaseExceptionHolder.java
InsufficientFunds.java
InsufficientFundsHelper.java
InsufficientFundsHolder.java
PinNumberNotFound.java
PinNumberNotFoundHelper.java
PinNumberNotFoundHolder.java

Generated by the m3idltojava command for
the interfaces defined in the Bank.idl file.
These files are created in the
\com\beasys\samples\Bank subdirectory.

BalanceAmounts.java
BalanceAmountsHelper.java
BalanceAmountsHolder.java
IOException.java
IOExceptionHelper.java
IOExceptionHolder.java
Teller.java
TellerActivity.java
TellerActivityHelper.java
TellerActivityHolder.java
TellerFactory.java
TellerFactoryHelper.java
TellerFactoryHolder.java
TellerInsufficientFunds.java
TellerInsufficientFundsHelper.java
TellerInsufficientFundsHolder.java
_TellerFactoryImplBase.java
_TellerFactoryStub.java
_TellerImplBase.java
_TellerStub.java

Generated by the m3idltojava command for
the interfaces defined in the BankApp.idl file.
These files are created in the
\com\beasys\samples\BankApp
subdirectory.

Table 4-6 Files Generated by the XA Bankapp Sample Application (Continued)

File Description
4-18 Guide to the Java Sample Applications

Files Generated by the XA Bankapp Sample Application
AccountData.java
AccountDataHelper.java
AccountDataHolder.java
DBAccessHelper.java
DBAccessHolder.java
_DBAccessImplBase.java
_DBAccessStub.java

Generated by the m3idltojava command for
the interfaces defined in the BankDB.idl file.
These files are created in the
\com\beasys\samples\BankDB
subdirectory.

Bankapp.ser
Bankapp.jar

The Server Descriptor file and Server Java
Archive file generated by the
buildjavaserver command in the make file.

Bank_c.cpp
Bank_c.h
Bank_s.cpp
Bank_s.h

Generated by the idl command for the interfaces
defined in the Bank.idl file.

BankDB_c.cpp
BankDB_c.h
BankDB_s.cpp
BankDB_s.h

Generated by the idl command for the interfaces
defined in the BankDB.idl file.

dbaccess_i.cpp Generated from the DBAccess_i.pc file by the
Oracle Pro*C/C++ compiler.

BankDataBase.exe The WLE server application that implements the
DBAccess interface.

TMS_ORA.exe The server process for the Transaction Manager
service.

JavaServerXA The special version of the JavaServer that uses the
same XA switches as the BankDataBase server
process.

stderr Generated by the tmboot command. If the
-noredirect JavaServer option is specified in
the UBBCONFIG file, the
System.err.println method sends the
output to the stderr file instead of to the ULOG
file.

Table 4-6 Files Generated by the XA Bankapp Sample Application (Continued)

File Description
Guide to the Java Sample Applications 4-19

4 The XA Bankapp Sample Application
Starting the ATM Client Application in the
XA Bankapp Sample Application

Start the ATM client application by entering the following command:

Note: The following command sets the Java CLASSPATH to include the current
directory and the client JAR file (m3envobj.jar). The full WLE JAR file
(m3.jar) can be specified instead of the client JAR file.

Windows NT

prompt>java -classpath .;%TUXDIR%\udataobj\java\jdk\m3envobj.jar
-DTOBJADDR=%TOBJADDR% Atm Teller2

UNIX

ksh prompt>java -classpath .:$TUXDIR/udataobj/java/jdk
/m3envobj.jar -DTOBJADDR=$TOBJADDR Atm Teller2

The GUI for the ATM client application appears.

stdout Generated by the tmboot command. If the
-noredirect JavaServer option is specified in
the UBBCONFIG file, the
System.out.println method sends the
output to the stdout file instead of to the ULOG
file.

tmsysevt.dat Contains filtering and notification rules used by
the TMSYSEVT (system event reporting) process.
This file is generated by the tmboot command.

Table 4-6 Files Generated by the XA Bankapp Sample Application (Continued)

File Description
4-20 Guide to the Java Sample Applications

Stopping the XA Bankapp Sample Application
Stopping the XA Bankapp Sample
Application

Before using another sample application, enter the following commands to stop the XA
Bankapp sample application and to remove unnecessary files from the work directory:

Windows NT

prompt>tmshutdown -y

prompt>nmake -f makefileX.nt clean

UNIX

ksh prompt>tmshutdown -y

ksh prompt>make -f makefileX.mk clean

Using the ATM Client Application

The ATM client application in the XA Bankapp sample application works as it does in
the JDBC Bankapp sample application. For instructions, see “Using the ATM Client
Application” on page 3-29.
Guide to the Java Sample Applications 4-21

4 The XA Bankapp Sample Application
4-22 Guide to the Java Sample Applications

Index

A
activation policies

DBAccess interface 3-8
defining in Implementation

Configuration file 4-5
defining in Server

Description file 1-5
JDBC Bankapp sample application 3-8
Teller interface

JDBC Bankapp
sample application 3-8

XA Bankapp
sample application 4-5

TellerFactory interface
JDBC Bankapp

sample application 3-8
XA Bankapp

sample application 4-5
ATM client application

starting
JDBC Bankapp

sample application 3-24
XA Bankapp

sample application 4-20
using

JDBC Bankapp
sample application 3-26

XA Bankapp
sample application 4-21

B
Bootstrap object

use in client applications 1-4
building

Java Simpapp sample application 2-4
JDBC Bankapp sample application 3-12
XA Bankapp sample application 4-6

C
client stubs

generating 1-4
in sample applications 1-4

compiling
client applications

Java Simpapp
sample application 2-9

JDBC Bankapp
sample application 3-19

XA Bankapp
sample application 4-14

server applications
Java Simpapp

sample application 2-9
JDBC Bankapp

sample application 3-19
XA Bankapp

sample application 4-14
Guide to the Java Sample Applications I-1

D
database

initializing Microsoft SQL Server 3-16
initializing Oracle 3-16
supported with JDBC Bankapp

sample application 3-11
use in JDBC Bankapp

sample application 3-11
use in XA Bankapp

sample application 4-2, 4-6
database instance

setting up local 4-6
setting up remote 4-6

DBAccess interface
activation policy 3-4
description 3-4
OMG IDL 3-6
transaction policy 3-4
use in JDBC Bankapp

sample application 3-3
use in XA Bankapp

sample application 4-16
development process

activation policies 1-5
client applications 1-2
client stubs 1-4
illustrated 1-2
Java server applications 1-2
JDBC Bankapp sample application 3-4
m3idltojava command 1-4
obtaining the OMG IDL code 1-4
Server Description file 1-5
skeletons 1-4
transaction policies 1-5
UBBCONFIG file 1-5
writing Java server application code 1-5
writing the client application code 1-4

directory location of source files
Java Simpapp sample application 2-4
JDBC Bankapp sample application 3-12

XA Bankapp sample application 4-7

E
environment variables

Java Simpapp sample application 2-7
JDBC Bankapp sample application 3-16
XA Bankapp sample application 4-11

F
FactoryFinder object

in client applications 1-4
file protections

Java Simpapp sample application 2-6
JDBC Bankapp sample application 3-15
XA Bankapp sample application 4-10

J
Java Simpapp sample application

building 2-4
changing protection on files 2-6
compiling the C++

client application 2-15
compiling the Java

client application 2-8
compiling the Java

server application 2-8
description 2-2
illustrated 2-2
loading the UBBCONFIG file 2-8
OMG IDL 2-3
required environment variables 2-7
runme command 2-8
setting up the work directory 2-4
source files 2-4, 2-5
starting the C++ client application 2-15
starting the Java client application 2-14
starting the Java server application 2-14
stopping 2-16
I-2 Guide to the Java Sample Applications

using the client applications 2-14
JAVA_HOME parameter

Java Simpapp sample application 2-7
JDBC Bankapp sample application 3-16
XA Bankapp sample application 4-11

JavaServer application process
description 3-9
Java Simpapp sample application 2-10
JDBC Bankapp sample application 3-21

JavaServerXA application process
description 4-16
XA Bankapp sample application 4-16

JDBC Bankapp sample application
building 3-12
changing protection on files 3-15
compiling the Java

client application 3-19
compiling the server application 3-19
description 3-2
development process 3-4
generated files 3-21
illustrated 3-3
initializing the database 3-19
loading the UBBCONFIG file 3-18
OMG IDL 3-4
required environment variables 3-16
setting up a work directory 3-12
setting up the database 3-11
setupJ command 3-18
software requirements 3-16
starting the ATM

client application 3-24
starting the Java

server application 3-20
stopping 3-26
using JDBC drivers with 3-11
using the ATM

client application 3-26
jdbcKona/MSSQLServer driver

use in JDBC Bankapp
sample application 3-16

jdbcKona/Oracle driver
use in JDBC Bankapp

sample application 3-16

M
m3idltojava command

generating client stubs 1-4
generating skeletons 1-4

method implementations
use in Java server applications 1-5

O
OMG IDL

changes for XA Bankapp
sample application 4-4

compiling 1-4
DBAccess interface 3-4
generating client stubs 1-4
generating skeletons 1-4
Java Simpapp sample application 2-3
Simple interface 2-3
SimpleFactory interface 2-3
Teller interface 3-4
TellerFactory interface 3-4

OPENINFO parameter 4-5
Oracle database 4-6

setting the XA parameter 4-5
setting up remote instance 4-6

ORACLE_HOME parameter
JDBC Bankapp sample application 3-16
XA Bankapp sample application 4-11

R
runme command

description 2-8
files generated by 2-10
Guide to the Java Sample Applications I-3

S
Server object

in Java server applications 1-5
setting up local instance 4-6
setupJ command

files generated by 3-16
use in JDBC Bankapp

sample application 3-16
setupX command

files generated 4-12
use in XA Bankapp

sample application 4-12
skeletons

generating 1-4
in sample applications 1-4

software requirements
JDBC Bankapp sample application 3-16
XA Bankapp sample application 4-3

source files
Java Simpapp sample application 2-5
JDBC Bankapp sample application 3-13
XA Bankapp sample application 4-7

starting
ATM client application 3-24

support
 documentation xiii

technical xiv

T
Teller interface

activation policy 3-4
description 3-4
OMG IDL 3-5
transaction policy 3-4
use in JDBC Bankapp

sample application 3-3
TellerFactory interface

activation policy 3-4
description 3-4
OMG IDL 3-5

transaction policy 3-4
use in JDBC Bankapp sample

application 3-3
TLOGDEVICE parameter 4-6
tmboot command

use in the Java Simpapp
sample application 2-14

use in XA Bankapp
sample application 4-15

TMFFNAME application process
Java Simpapp sample application 2-10
JDBC Bankapp sample application 3-21
XA Bankapp sample application 4-15

tmloadcf command
JDBC Bankapp sample application 3-18
XA Bankapp sample application 4-13

TMS_ORA
use in XA Bankapp

sample application 4-16
TMSYSEVT application process

Java Simpapp sample application 2-10
JDBC Bankapp sample application 3-21
XA Bankapp sample application 4-15

transaction log
creating 4-13

transaction manager
TMS_ORA 4-16
use in XA Bankapp

sample application 4-2
transaction policies

DBAccess interface 3-8
defining in Server Description file 1-5
for Teller interface

JDBC Bankapp
sample application 3-8

XA Bankapp
sample application 4-5

for TellerFactory interface
JDBC Bankapp

sample application 3-8
XA Bankapp
I-4 Guide to the Java Sample Applications

sample application 4-5
Implementation Configuration file 4-5
XA Bankapp sample application 4-5

TUXCONFIG file
description 1-5

TUXDIR parameter
Java Simpapp sample application 2-7
JDBC Bankapp sample application 3-16
XA Bankapp sample application 4-11

U
UBBCONFIG file

Java Simpapp sample application 2-8
JDBC Bankapp sample application 3-9
XA Bankapp sample application 4-5

X
XA Bankapp sample application

building 4-6
changing protection on files 4-10
compiling client applications 4-14
compiling server applications 4-14
creating a transaction log 4-13
description 4-2
development process 4-3
generated files 4-16
illustrated 4-2
initializing the database 4-15
loading the UBBCONFIG file 4-13
OMG IDL 4-4
required environment variables 4-11
setting up a work directory 4-7
setupX command 4-12
software requirements 4-3
starting the ATM

client application 4-20, 4-21
starting the Java

server application 4-15
stopping 4-21

UBBCONFIG file 4-5
using the ATM client application 3-26

XA parameter 4-5
XML

defining activation policies 1-5
defining transaction policies 1-5
Guide to the Java Sample Applications I-5

I-6 Guide to the Java Sample Applications

	Copyright
	About This Document
	Related Information
	Contact Us!

	1 Introduction
	Overview of the Sample Applications

	2 The Java Simpapp Sample Application
	How the Java Simpapp Sample Application Works
	Software Prerequisites
	The OMG IDL Code for the Java Simpapp Sample Application
	Building and Running the Java Simpapp Sample Application
	Copying the Files for the Java Simpapp Sample Application into a Work Directory
	Changing the Protection Attribute on the Files for the Java Simpapp Sample Application
	Verifying the Settings of the Environment Variables
	Executing the runme Command

	Using the Java Simpapp Sample Application
	Using the C++ Client Application with the Java Simpapp Sample Application
	Stopping the Java Simpapp Sample Application

	3 The JDBC Bankapp Sample Application
	How the JDBC Bankapp Sample Application Works
	Java Server Objects
	Application Workflow
	JDBC Connection Pooling

	Development Process for the JDBC Bankapp Sample Application
	Object Management Group (OMG) Interface Definition Language (IDL)
	Client Application
	Server Application
	Server Description File (BankApp.xml)
	UBBCONFIG File

	Setting Up the Database for the JDBC Bankapp Sample Application
	Setting Up an Oracle Database
	Setting Up a Microsoft SQL Server Database

	Building the JDBC Bankapp Sample Application
	Step 1: Copy the Files for the JDBC Bankapp Sample Application into a Work Directory
	Step 2: Change the Protection Attribute on the Files for the JDBC Bankapp Sample Application
	Step 3: Verify the Settings of the Environment Variables
	Step 4: Run the setupJ Command
	Step 5: Load the UBBCONFIG File

	Compiling the Client and Server Applications
	Initializing the Database
	Initializing an Oracle Database
	Initializing a Microsoft SQL Server Database

	Starting the Server Application in the JDBC Bankapp Sample Application
	Files Generated by the JDBC Bankapp Sample Application
	Starting the ATM Client Application in the JDBC Bankapp Sample Application
	Stopping the JDBC Bankapp Sample Application
	Using the ATM Client Application
	Available Banking Operations
	Available Statistics
	Keypad Functions
	Steps for Using the ATM Client Application

	4 The XA Bankapp Sample Application
	How the XA Bankapp Sample Application Works
	Server Applications
	Application Workflow
	Software Prerequisites

	Development Process for the XA Bankapp Sample Application
	Object Management Group (OMG) Interface Definition Language (IDL)
	Client Application
	Server Application
	Server Description File
	Implementation Configuration File
	UBBCONFIG File

	Setting Up the Database for the XA Bankapp Sample Application
	Building the XA Bankapp Sample Application
	Step 1: Copy the Files for the XA Bankapp Sample Application into a Work Directory
	Step 2: Change the Protection Attribute on the Files for the XA Bankapp Sample Application
	Step 3: Verify the Settings of the Environment Variables
	Step 4: Run the setupX Command
	Step 5: Load the UBBCONFIG File
	Step 6: Create a Transaction Log

	Compiling the Client and Server Applications
	Initializing the Oracle Database
	Starting the Server Application in the XA Bankapp Sample Application
	Files Generated by the XA Bankapp Sample Application
	Starting the ATM Client Application in the XA Bankapp Sample Application
	Stopping the XA Bankapp Sample Application
	Using the ATM Client Application

