
Reference Manual

Section 3CBL —

B E A  T U X E D O  6 . 5  f o r  W L E  5 . 0
D o c u m e n t  E d i t i o n  6 . 5

D e c e m b e r  1 9 9 9

COBOL Functions

BEA TUXEDO



Copyright

Copyright © 1999 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems 
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against 
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or 
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable 
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems 
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause 
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at 
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR 
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part 
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT 
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF 
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES 
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE 
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, 
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, ObjectBroker, TOP END, and Tuxedo are registered trademarks of BEA Systems, Inc. BEA Builder, BEA 
Connect, BEA Manager, BEA MessageQ, BEA Jolt, M3, eSolutions, eLink, WebLogic, and WebLogic Enterprise 
are trademarks of BEA Systems, Inc. 

All other company names may be trademarks of the respective companies with which they are associated.

BEA TUXEDO Reference Manual

Document Edition Date Software Version

6.5 December 1998  BEA TUXEDO 6.5 for WLE 5.0



About This Document

The TUXEDO 6.5 Reference Manual for WebLogic Enterprise 5.0 includes the 
following components:

n “Section 1 — Commands” provides information about shell-level commands 
included with TUXEDO and WebLogic Enterprise (WLE) software.

n “Section 3C — C Functions” describes C language functions that comprise the 
.Application-Transaction Monitor Interface (ATMI). ATMI provides routines to 
open and close resources, manage transactions, manage typed buffers, and 
invoke request/response and conversational service calls.

n “Section 3CBL — COBOL Functions” describes the COBOL bindings for the 
ATMI interface.

n “Section 3FML — FML Commands” describes C language functions  for 
defining and manipulating Field Manipulation Language (FML) storage 
structures.

n “Section 5 — File Formats and Data Descriptions” describes various files and 
tables. This includes the configuration files, UBBCONFIG and TUXCONFIG, and the 
TUXEDO Management Information Base (TMIB) classes that provide an 
interface for managing WLE or TUXEDO systems.

Who Should Use This Document

This document is intended for system administrators and programmers who are 
interested in creating, configuring, or managing TUXEDO or WebLogic Enterprise 
applications.
Using the WLE SPI Implementation for JNDI v



e-docs Web Site

The BEA WebLogic Enterprise product documentation is available on the BEA 
corporate Web site. From the BEA Home page, click the Product Documentation 
button or go directly to the “e-docs” Product Documentation page at 
http://e-docs.beasys.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using 
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Enterprise 
documentation Home page on the e-docs Web site (and also on the documentation 
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document 
(or a portion of it) in book format. To access the PDFs, open the WebLogic Enterprise 
documentation Home page, click the PDF Files button, and select the document you 
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe 
Web site at http://www.adobe.com/.

Related Information

For more information about CORBA, Java 2 Enterprise Edition (J2EE), BEA 
TUXEDO, distributed object computing, transaction processing, C++ programming, 
and Java programming, see the WLE Bibliography in the WebLogic Enterprise online 
documentation. 
vi Using the WLE SPI Implementation for JNDI



Documentation Conventions
Contact Us!

Your feedback on the BEA WebLogic Enterprise documentation is important to us. 
Send us e-mail at docsupport@beasys.com if you have questions or comments. Your 
comments will be reviewed directly by the BEA professionals who create and update 
the WebLogic Enterprise documentation.

In your e-mail message, please indicate that you are using the documentation for the 
BEA WebLogic Enterprise 5.0 release.

If you have any questions about this version of BEA WebLogic Enterprise, or if you 
have problems installing and running BEA WebLogic Enterprise, contact BEA 
Customer Support through BEA WebSupport at www.beasys.com. You can also 
contact Customer Support by using the contact information provided on the Customer 
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

n Your name, e-mail address, phone number, and fax number

n Your company name and company address

n Your machine type and authorization codes

n The name and version of the product you are using

n A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.
Using the WLE SPI Implementation for JNDI vii



italics Indicates emphasis or book titles.

monospace 
text

Indicates code samples, commands and their options, data structures and 
their members, data types, directories, and file names and their extensions. 
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main ( ) the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace 
boldface 
text

Identifies significant words in code.

Example:

void commit ( )

monospace 
italic 
text

Identifies variables in code.

Example:

String expr

UPPERCASE 
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should 
never be typed.

[ ] Indicates optional items in a syntax line. The brackets themselves should 
never be typed.

Example:

buildobjclient [-v] [-o name ] [-f file-list]... 
[-l file-list]...

Convention Item
viii Using the WLE SPI Implementation for JNDI



Documentation Conventions
| Separates mutually exclusive choices in a syntax line. The symbol itself 
should never be typed.

... Indicates one of the following in a command line: 

n That an argument can be repeated several times in a command line

n That the statement omits additional optional arguments

n That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name ] [-f file-list]... 
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. 
The vertical ellipsis itself should never be typed.

Convention Item
Using the WLE SPI Implementation for JNDI ix



x Using the WLE SPI Implementation for JNDI



Contents

Section 3CBL — COBOL Functions
INTRO(3CBL) ........................................................................................3

FINIT(3CBL) ........................................................................................30

FVFTOS(3CBL) ...................................................................................31

FVSTOF(3CBL) ...................................................................................33

TPABORT(3CBL) ................................................................................35

TPACALL(3CBL) ................................................................................37

TPADVERTISE(3CBL) .......................................................................41

TPBEGIN(3CBL) .................................................................................43

TPBROADCAST(3CBL) .....................................................................45

TPCALL(3CBL) ...................................................................................48

TPCANCEL(3CBL)..............................................................................53

TPCHKAUTH(3CBL) ..........................................................................54

TPCHKUNSOL(3CBL)........................................................................55

TPCLOSE(3CBL).................................................................................57

TPCOMMIT(3CBL) .............................................................................58

TPCONNECT(3CBL)...........................................................................61

TPDEQUEUE(3CBL)...........................................................................65

TPDISCON(3CBL)...............................................................................73

TPENQUEUE(3CBL)...........................................................................75

TPFORWAR(3CBL) ............................................................................82

TPGETLEV(3CBL) ..............................................................................85

TPGETRPLY(3CBL)............................................................................86

TPGETUNSOL(3CBL) ........................................................................90

TPGPRIO(3CBL)..................................................................................92

TPINITIALIZE(3CBL).........................................................................94
BEA TUXEDO Reference Manual iii



TPNOTIFY(3CBL) ............................................................................ 100

TPOPEN(3CBL) ................................................................................ 103

TPPOST(3CBL) ................................................................................. 104

TPRECV(3CBL) ................................................................................ 109

TPRESUME(3CBL)........................................................................... 114

TPRETURN(3CBL)........................................................................... 116

TPSCMT(3CBL)................................................................................ 120

TPSEND(3CBL) ................................................................................ 122

TPSETUNSOL(3CBL) ...................................................................... 126

TPSPRIO(3CBL) ............................................................................... 128

TPSUBSCRIBE(3CBL) ..................................................................... 130

TPSUSPEND(3CBL) ......................................................................... 136

TPSVCSTART(3CBL) ...................................................................... 138

TPSVRDONE(3CBL)........................................................................ 141

TPSVRINIT(3CBL) ........................................................................... 142

TPTERM(3CBL)................................................................................ 143

TPUNADVERTISE(3CBL)............................................................... 144

TPUNSUBSCRIBE(3CBL) ............................................................... 145

TXBEGIN(3CBL).............................................................................. 148

TXCLOSE(3CBL) ............................................................................. 150

TXCOMMIT(3CBL).......................................................................... 152

TXINFORM(3CBL)........................................................................... 154

TXOPEN(3CBL)................................................................................ 156

TXROLLBACK(3CBL)..................................................................... 158

TXSETCOMMITRET(3CBL) ........................................................... 160

TXSETTRANCTL(3CBL)................................................................. 162

TXSETTIMEOUT(3CBL) ................................................................. 164

USERLOG(3CBL) ............................................................................. 166
iv BEA TUXEDO Reference Manual



Section 3CBL — COBOL 
Functions
BEA TUXEDO Reference Manual 1



2 BEA TUXEDO Reference Manual



INTRO(3CBL)
INTRO(3CBL)

Name INTRO—introduction to the COBOL application-transaction monitor interface

Description The application-transaction monitor interface provides the interface between the 
COBOL application and the transaction processing system. This interface is known as 
ATMI and these pages specify its COBOL language binding. It provides routines to 
open and close resources, manage transactions, manage record types, and invoke 
request/response and conversational service calls.

Communication
Paradigms

The routines described in the ATMI reference pages imply a particular model of 
communication. This model is expressed in terms of how client and server programs 
can communicate using request and reply messages.

There are two basic communication paradigms: request/response and conversational. 
Request/response services are invoked by service requests along with their associated 
data. Request/response services can receive exactly one request (upon entering the 
service routine) and send at most one reply (upon returning from the service routine). 
Conversational services, on the other hand, are invoked by connection requests along 
with a means of referring to the open connection (that is, a handle used in calling 
subsequent connection routines). Once the connection has been established and the 
service routine invoked, either the connecting program or the conversational service 
can send and receive data as defined by the application until the connection is torn 
down.

Note that a program can initiate both request/response and conversational 
communication, but cannot accept both request/response and conversational service 
requests. The following sections describe the two communication paradigms in greater 
detail.

BEA TUXEDO
Request/response

Client/server
Model

With regard to request/response communication, a client is defined as a program that 
can send requests and receive replies. By definition, clients cannot receive requests nor 
send replies. A client can send any number of requests, and can wait for the replies 
synchronously or receive (some limited number of) the replies at its convenience. In 
certain cases, a client can send a request that has no reply. TPINITIALIZE() and 
TPTERM() allow a client to join and leave a BEA TUXEDO system application.

A request/response server is a program that can receive one (and only one) service 
request at a time and send at most one reply to that request. While a server is working 
on a particular request, it can act like a client by initiating request/response or 
conversational requests and receiving their replies. In such a capacity, a server is called 
a requester. Note that both client and server programs can be requesters (in fact, a client 
can be nothing but a requester).
BEA TUXEDO Reference Manual 3



INTRO(3CBL)
A request/response server can forward a request to another request/response server. 
Here, the server passes along the request it received to another server and does not 
expect a reply. It is the responsibility of the last server in the chain to send the reply to 
the original requester. Use of the forwarding routine ensures that the original requester 
ultimately receives its reply.

Servers and service routines offer a structured approach to writing BEA TUXEDO 
system applications. In a server, the application writer can concentrate on the work 
performed by the service rather than communications details such as receiving 
requests and sending replies. Because many of the communication details are handled 
by the BEA TUXEDO system, the application must adhere to certain conventions 
when writing a service routine. At the time a server finishes its service routine, it can 
send a reply using TPRETURN() or forward the request using TPFORWAR(). A service is 
not allowed to perform any other work nor is it allowed to communicate with any other 
program after this point. Thus, a service performed by a server is started when a request 
is received and ended either when a reply is sent or the request is forwarded.

Concerning request and reply messages, there is an inherent difference between the 
two: a request has no associated context before it is sent, but a reply does. For example, 
when sending a request, the caller must supply addressing information, whereas a reply 
is always returned to the program that originated the request, that is, addressing context 
is maintained for a reply and the sender of the reply can exert no control over its 
destination. The differences between the two message types manifest themselves in the 
parameters and descriptions of the routines described in TPCALL().

When a request message is sent, it is sent at a particular priority. The priority affects 
how a request is dequeued: when a server dequeues requests, it dequeues the one with 
the highest priority. To prevent starvation, the oldest request is dequeued every so 
often regardless of priority. By default, a request’s priority is associated with the 
service name to which the request is being sent. Service names can be given priorities 
at configuration time (see ubbconfig(5)). A default priority is used if none is defined. 
In addition, the priority can be set at runtime using a routine (TPSPRIO()) described in 
TPCALL(). By doing so, the caller can override the configuration or default priority 
when the message is sent.

BEA TUXEDO
System

Conversational
Client/server

Model

With regard to conversational communication, a client is defined as a program that can 
initiate a conversation but cannot accept a connection request.

A conversational server is a program that can receive connection requests. Once the 
connection has been established and the service routine invoked, either the connecting 
program or the conversational service can send and receive data as defined by the 
application until the connection is torn down. The conversation is half-duplex in nature 
4 BEA TUXEDO Reference Manual



INTRO(3CBL)
such that one side of the connection has control and can send data until it gives up 
control to the other side. While the connection is established, the server is ‘‘reserved’’ 
such that no other program can establish a connection with the server. As with a 
request/response server, the conversational server can act as a requester by initiating 
other requests or connections with other servers. Unlike a request/response server, a 
conversational server can not forward a request to another server. Thus, a 
conversational service performed by a server is started when a request is received and 
ended when the final reply is sent via TPRETURN().

Once the connection is established, the communications handle implies any context 
needed regarding addressing information for the participants. Messages can be sent 
and received as needed by the application. There is no inherent difference between the 
request and reply messages and no notion of priority of messages.

BEA TUXEDO
System Queued
Message Model

The BEA TUXEDO system queued message model allows for enqueueing a request 
message to stable storage for subsequent processing without waiting for its 
completion, and optionally getting a reply via a queued response message. The ATMI 
verbs that queue messages and dequeue responses are TPENQUEUE() and TPDEQUEUE(). 
They can be called from any type of BEA TUXEDO system application processes: 
client, server, or conversational.

The queued message facility is an XA-compliant resource manager. Messages are 
enqueued and dequeued within transactions to ensure reliable one-time-only 
processing.

ATMI
Transactions

The BEA TUXEDO system supports two sets of mutually exclusive verbs for defining 
and managing transactions: BEA TUXEDO system’s ATMI transaction demarcation 
verbs (which are prefaced with TP) and X/Open’s TX Interface (whose verbs are 
prefaced with TX). Because X/Open used ATMI’s transaction demarcation verbs as the 
base for the TX Interface, the syntax and semantics of the TX Interface are quite 
similar to ATMI. This section is an overview of ATMI’s transaction concepts. The 
following section introduces additional concepts of the TX Interface.

A transaction in the BEA TUXEDO system is used to define a single logical unit of 
work that either wholly succeeds or has no effect whatsoever. A transaction allows 
work performed in many programs, at possibly different sites, to be treated as an 
atomic unit of work. The initiator of a transaction normally uses TPBEGIN() and either 
TPCOMMIT() or TPABORT() to delineate the operations within a transaction.
BEA TUXEDO Reference Manual 5



INTRO(3CBL)
The initiator may also suspend its work on the current transaction by issuing 
TPSUSPEND. Another process may take over the role of the initiator of a suspended 
transaction by issuing TPRESUME. As a transaction initiator, a program must call one of 
TPSUSPEND, TPCOMMIT, or TPABORT. Thus, one program can start a transaction that 
another may finish.

If a program calling a service is in transaction mode, then the called service routine is 
also placed in transaction mode on behalf of the same transaction. Otherwise, whether 
the service is invoked in transaction mode or not depends on options specified for the 
service in the configuration file. A service that is not invoked in transaction mode can 
define multiple transactions between the time it is invoked and the time it ends. On the 
other hand, a service routine invoked in transaction mode can participate in only one 
transaction, and work on that transaction is completed upon termination of the service 
routine. Note that a connection cannot be upgraded to transaction mode: if TPBEGIN() 
is called while a conversation exists, the conversation remains outside of the 
transaction (that is, as if TPCONNECT() had been called with the TPNOTRAN setting).

A service routine joining a transaction that was started by another program is called a 
participant. A transaction can have several participants. A service can be invoked to do 
work on the same transaction more than once. Only the initiator of a transaction (that 
is, a program either calling TPBEGIN or TPRESUME) can call TPCOMMIT() or \% 
TPABORT(). Participants influence the outcome of a transaction by using TPRETURN() 
or TPFORWAR(). These two calls signify the end of a service routine and indicate that 
the routine has finished its part of the transaction.

TX Transactions Transactions defined by the TX Interface are practically identical with those defined 
by the ATMI verbs. An application writer may use either set of verbs when writing 
clients and service routines. In fact, the BEA TUXEDO system does not require all 
client and server programs within a single application to use one set of verbs or the 
other. However, the two verb sets may not be used together within a single program 
(that is, a program cannot call TPBEGIN() and later call TXCOMMIT()).

The TX Interface has two calls for opening and closing resource managers in a portable 
manner, TXOPEN() and TXCLOSE(), respectively. Transactions are started with 
TXBEGIN() and completed with either TXCOMMIT() or TXROLLBACK(). TXINFORM() is 
used to retrieve transaction information, and there are three calls to set options for 
transactions: TXSETCOMMITRET(), TXSETTRANCTL(), and TXSETTIMEOUT(). The TX 
Interface has no equivalents to ATMI’s TPSUSPEND(3) and TPRESUME().

In addition to the semantics and rules defined for ATMI transactions, the TX Interface 
has some additional semantics that are worth introducing here. First, service routine 
writers wanting to use the TX Interface must supply their own TPSVRINIT() routine 
6 BEA TUXEDO Reference Manual



INTRO(3CBL)
that calls TXOPEN(). The default BEA TUXEDO system-supplied TPSVRINIT() calls 
TPOPEN(). The same rule applies for TPSVRDONE(): if the TX Interface is being used, 
then service routine writers must supply their own TPSVRDONE() that calls TXCLOSE().

Second, the TX Interface has two additional semantics not found in ATMI. These are 
chained and unchained transactions, and transaction characteristics.

Chained and
Unchained

Transactions

The TX Interface supports chained and unchained modes of transaction execution. By 
default, clients and service routines execute in the unchained mode; when an active 
transaction is completed, a new transaction does not begin until TXBEGIN() is called.

In the chained mode, a new transaction starts implicitly when the current transaction 
completes. That is, when TXCOMMIT() or TXROLLBACK() is called, the BEA TUXEDO 
system coordinates the completion of the current transaction and initiates a new 
transaction before returning control to the caller. (Certain failure conditions may 
prevent a new transaction from starting.)

Clients and service routines enable or disable the chained mode by calling 
TXSETTRANCTL(). Transitions between the chained and unchained mode affect the 
behavior of the next TXCOMMIT() or TXROLLBACK() call. The call to TXSETTRANCTL() 
does not put the caller into or take it out of transaction mode.

Since TXCLOSE() cannot be called when the caller is in transaction mode, a caller 
executing in chained mode must switch to unchained mode and complete the current 
transaction before calling TXCLOSE().

Transaction
Characteristics

A client or a service routine may call TXINFORM() to obtain the current values of their 
transaction characteristics and to determine whether they are executing in transaction 
mode.

The state of an application program includes several transaction characteristics. The 
caller specifies these by calling TXSET* functions. When a client or a service routine 
sets the value of a characteristic, it remains in effect until the caller specifies a different 
value. When the caller obtains the value of a characteristic via TXINFORM(), it does not 
change the value.

Timeouts There are three types of timeouts in the BEA TUXEDO system: one is associated with 
the duration of a transaction from start to finish. A second is associated with the 
maximum length of time a blocking call will remain blocked before the caller regains 
control. The third is a service timeout and occurs when a call exceeds the number of 
seconds specified in the SVCTIMEOUT parameter in the SERVICES section of 
ubbconfig(5). The first kind of timeout is specified when a transaction is started with 
TPBEGIN() (see TPBEGIN() for details). The second kind of timeout can occur when 
BEA TUXEDO Reference Manual 7



INTRO(3CBL)
using the BEA TUXEDO system communication routines defined in TPCALL(). 
Callers of these routines typically block when awaiting a reply that has yet to arrive, 
although they can also block trying to send data (for example, if request queues are 
full). The maximum amount of time a caller remains blocked is determined by a BEA 
TUXEDO system configuration file parameter (see the BLOCKTIME parameter in 
ubbconfig(5) for details).

Blocking timeouts are performed by default when the caller is not in transaction mode. 
When a client or server is in transaction mode, it is subject to the timeout value with 
which the transaction was started and is not subject to the blocking timeout value 
specified in the UBBCONFIG file.

When a transaction timeout occurs, replies to asynchronous requests made in 
transaction mode become ‘‘stale.’’ That is, if a program is waiting for a particular 
asynchronous reply for a request sent in transaction mode and a transaction timeout 
occurs, the handle for that reply becomes stale (invalid). Similarly, if a transaction 
timeout occurs, an event is generated on the connection handle associated with the 
transaction and that handle becomes invalid. On the other hand, if a blocking timeout 
occurs, the handle is still valid and the waiting program can re-issue the call to await 
the reply.

The service timeout mechanism provides a way for the system to kill processes that 
may be frozen by some unknown or unexpected system error. When a service timeout 
occurs in a request/response service, the BEA TUXEDO system kills the server 
process that is executing the frozen service and returns error code TPESVCERR. If a 
service timeout occurs in a conversational service, the TPEV_SVCERR event is returned.

Beginning in Release 6.4, some additional detail is provided beyond the TPESVCERR 
error code. If a service failed due to exceeding the timeout threshold, an 
event,.SysServiceTimeout, is posted and a call to tperrordetail(3) will return 
the TPED_SVCTIMEOUT error code.

Dynamic
Service

Advertisements

By default, a server’s services are advertised when it is booted and unadvertised when 
it is shut down. If a server needs to control at run time the set of services that it offers, 
it can do so by calling TPADVERTISE() and TPUNADVERTISE(). These routines affect 
only the services offered by the calling server unless that server belongs to a multiple 
server, single queue (MSSQ) set. Because all servers in an MSSQ set must offer the 
same set of services, these routines also affect the advertisements of all servers sharing 
the caller’s MSSQ set.
8 BEA TUXEDO Reference Manual



INTRO(3CBL)
Typed Records In order to send data to another application program, the sending application program 
first places the data in a record. The ATMI interface supports the notion of a typed 
record. A typed record is really a pair of COBOL records. The data record is defined 
in static storage and contains application data to be passed to another application 
program. An auxiliary type record accompanies the data record and it identifies to the 
BEA TUXEDO system the interpretation and translation rules of the data record as it 
passes across heterogeneous machine boundaries. The auxiliary type record contains 
the data record’s type, its optional subtype, and its optional length. Some record types 
require further specification via a subtype (for example, a particular record layout) and 
those of variable length require a length to be specified.

The application programmer may choose one of the six supported typed records. Note, 
the BEA TUXEDO system provides a method for adding user specific typed records. 
Refer to the C language binding intro(3) section for details. REC-TYPE in 
TPTYPE-REC selects which record type the application wishes to send or receive. 
SUB-TYPE in TPTYPE-REC must also be given when further classification is required 
(for example, a view record). When sending, LEN in TPTYPE-REC indicates the number 
of bytes to be sent and when receiving the number of bytes to move into the user’s 
record. The following are the supported REC-TYPEs. 

CARRAY 
The CARRAY record type allows an arbitrary number of characters which may 
contain LOW-VALUE characters anywhere in the record. When sending data, 
LEN must contain the number of bytes to be transferred.

STRING 
The STRING record type allows an arbitrary number of characters which may 
not contain LOW-VALUE characters within the record but may be at the end of 
the record. When sending data, LEN must contain the number of bytes to be 
transferred.

VIEW 
This record type describes a COBOL record that was generated using the 
viewc(1) compiler. When using a VIEW, SUB-TYPE must contain the name of 
the view. When sending a VIEW type, LEN must contain the number of bytes 
to be transferred or set NO-LENGTH which will send the length of the view.

Two of the above record types have synonyms: X_OCTET is a synonym for CARRAY, and 
X_COMMON is a synonym for VIEW. X_COMMON supports a subset of the data types 
supported by VIEW: longs (PICS9(9) COMP-5), shorts (PICS9(4) COMP-5), and 
characters (PICX(n)). X_COMMON should be used when both C and COBOL 
programs are communicating.
BEA TUXEDO Reference Manual 9



INTRO(3CBL)
In all three cases, after a successful transfer, LEN contains the number of bytes 
transferred. When receiving data, LEN must contain the maximum number of bytes the 
data area contains. After a successful call, LEN contains the number of bytes moved 
into the data area. If the size of the incoming message is larger than the size specified 
in LEN, only LEN amount of data is moved into the data area; the remaining data is 
discarded.

Buffer Type
Switch

The BEA TUXEDO system provides a method for adding user specific record types. 
Refer to the C language binding intro(3) section for details.

Unsolicited
Notification

There are two methods for sending messages to application clients outside the 
boundaries of the client/server interaction defined above. The first is the broadcast 
mechanism supported by TPBROADCAST(). This function allows application clients, 
servers, and administrators to broadcast typed record messages to a set of clients 
selected on the basis of the names assigned to them. The names assigned to clients are 
determined in part by the application by the information passed in the TPINFDEF-REC 
data structure at TPINITIALIZE() time and in part by the system based on the 
processor at which the client accesses the application.

The second is the notification of a particular client as identified from an earlier or 
current service request. Each service request contains a unique client identifier that 
identifies the originating client for the service request. TPCALL()’s and TPFORWAR()’s 
from within a service routine do not change the originating client for that chain of 
service requests. Client identifiers can be saved and passed between application 
servers. The routine TPNOTIFY() is used to notify clients identified in this manner.

COBOL
Language ATMI

Return Codes
And Other
Definitions

The following return code and setting definitions are used by the ATMI routines. 

*
* TPSTATUS.cbl
*
05 TP-STATUS      PICS9(9) COMP-5.
88 TPOK        VALUE 0.
88 TPEABORT      VALUE 1.
88 TPEBADDESC     VALUE 2.
88 TPEBLOCK      VALUE 3.
88 TPEINVAL      VALUE 4.
88 TPELIMIT      VALUE 5.
88 TPENOENT      VALUE 6.
88 TPEOS        VALUE 7.
88 TPEPERM       VALUE 8.
88 TPEPROTO      VALUE 9.
88 TPESVCERR      VALUE 10.
88 TPESVCFAIL     VALUE 11.
88 TPESYSTEM      VALUE 12.
10 BEA TUXEDO Reference Manual



INTRO(3CBL)
88 TPETIME       VALUE 13.
88 TPETRAN       VALUE 14.
88 TPEGOTSIG      VALUE 15.
88 TPERMERR      VALUE 16.
88 TPEITYPE      VALUE 17.
88 TPEOTYPE      VALUE 18.
88 TPERELEASE     VALUE 19.
88 TPEHAZARD      VALUE 20.
88 TPEHEURISTIC    VALUE 21.
88 TPEEVENT      VALUE 22.
88 TPEMATCH      VALUE 23.
88 TPEMAXVAL      VALUE 24.
05 TPEVENT       PICS9(9) COMP-5.
88 TPEV-NOEVENT    VALUE 0.
88 TPEV-DISCONIMM   VALUE 1.
88 TPEV-SENDONLY    VALUE 2.
88 TPEV-SVCERR     VALUE 3.
88 TPEV-SVCFAIL    VALUE 4.
88 TPEV-SVCSUCC    VALUE 5.
05 TPSVCTIMOUT     PICS9(9) COMP-5.
88 TPED-NOEVENT    VALUE 0.
88 TPEV-SVCTIMEOUT   VALUE 1.
88 TPEV-TERM      VALUE 2.
05 APPL-RETURN-CODE  PICS9(9) COMP-5.

The TPTYPE COBOL structure is used whenever sending or receiving application data. 
REC-TYPE indicates the type of data record that is to be sent. SUB-TYPE indicates the 
name of the view if a VIEW REC-TYPE is specified. LEN indicates the amount of data to 
send and amount received. 

*
* TPTYPE.cbl
*
05 REC-TYPE   PICX(8).
88 X-OCTET  VALUE "X_OCTET".
88 X-COMMON VALUE "X_COMMON".
05 SUB-TYPE   PICX(16).
05 LEN        PICS9(9) COMP-5.
88 NO-LENGTH VALUE 0.
05 TPTYPE-STATUSPICS9(9) COMP-5.
88 TPTYPEOK   VALUE 0.
88 TPTRUNCATE  VALUE 1.
BEA TUXEDO Reference Manual 11



INTRO(3CBL)
The TPSVCDEF data structure is used by functions to pass settings to and from the BEA 
TUXEDO system. 

*
* TPSVCDEF.cbl    
*
05 COMM-HANDLE       PIC S9(9) COMP-5.
05 TPBLOCK-FLAG       PIC S9(9) COMP-5.
88 TPBLOCK         VALUE 0.
88 TPNOBLOCK        VALUE 1.
05 TPTRAN-FLAG       PIC S9(9) COMP-5.
88 TPTRAN          VALUE 0.
88 TPNOTRAN         VALUE 1.
05 TPREPLY-FLAG       PIC S9(9) COMP-5.
88 TPREPLY         VALUE 0.
88 TPNOREPLY        VALUE 1.
05 TPACK-FLAG        PIC S9(9) COMP-5 REDEFINES TPREPLY-FLAG.
88 TPNOACK         VALUE 0.
88 TPACK          VALUE 1.
05 TPTIME-FLAG       PIC S9(9) COMP-5.
88 TPTIME          VALUE 0.
88 TPNOTIME         VALUE 1.
05 TPSIGRSTRT-FLAG     PIC S9(9) COMP-5.
88 TPNOSIGRSTRT       VALUE 0.
88 TPSIGRSTRT        VALUE 1.
05 TPGETANY-FLAG      PIC S9(9) COMP-5.
88 TPGETHANDLE       VALUE 0.
88 TPGETANY         VALUE 1.
05 TPSENDRECV-FLAG     PIC S9(9) COMP-5.
88 TPSENDONLY        VALUE 0.
88 TPRECVONLY        VALUE 1.
05 TPNOCHANGE-FLAG     PIC S9(9) COMP-5.
88 TPCHANGE         VALUE 0.
88 TPNOCHANGE        VALUE 1.
05 TPSERVICETYPE-FLAG    PIC S9(9) COMP-5.
88 TPREQRSP        VALUE IS 0.
88 TPCONV         VALUE IS 1.
*
05 APPKEY          PIC S9(9) COMP-5.
05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5.
05 SERVICE-NAME       PIC X(15).

The TPINFDEF data structure is used by TPINITIALIZE() to join the application.

*
* TPINFDEF.cbl
*
05 USRNAME       PICX(30).
05 CLTNAME       PICX(30).
12 BEA TUXEDO Reference Manual



INTRO(3CBL)
05 PASSWD        PICX(30).
05 GRPNAME       PICX(30).
05 NOTIFICATION-FLAG  PICS9(9) COMP-5.
88 TPU-SIG       VALUE 1.
88 TPU-DIP       VALUE 2.
88 TPU-IGN       VALUE 3.
05 ACCESS-FLAG     PICS9(9) COMP-5.
88 TPSA-FASTPATH    VALUE 1.
88 TPSA-PROTECTED   VALUE 2.
05 DATALEN       PICS9(9) COMP-5.

The TPQUEDEF data structure is used to pass and retrieve information associated with 
enqueuing the message.

*
* TPQUEDEF.cbl
*
05 TPBLOCK-FLAG     PICS9(9) COMP-5.
88 TPNOBLOCK      VALUE 0.
88 TPBLOCK       VALUE 1.
05 TPTRAN-FLAG     PICS9(9) COMP-5.
88 TPNOTRAN       VALUE 0.
88 TPTRAN        VALUE 1.
05 TPTIME-FLAG     PICS9(9) COMP-5.
88 TPNOTIME       VALUE 0.
88 TPTIME        VALUE 1.
05 TPSIGRSTRT-FLAG   PICS9(9) COMP-5.
88 TPNOSIGRSTRT     VALUE 0.
88 TPSIGRSTRT      VALUE 1.
05 TPNOCHANGE-FLAG   PICS9(9) COMP-5.
88 TPNOCHANGE      VALUE 0.
88 TPCHANGE       VALUE 1.
05 TPQUE-ORDER-FLAG   PICS9(9) COMP-5.
88 TPQDEFAULT      VALUE 0.
88 TPQTOP        VALUE 1.
88 TPQBEFOREMSGID    VALUE 2.
05 TPQUE-TIME-FLAG   PICS9(9) COMP-5.
88 TPQNOTIME      VALUE 0.
88 TPQTIME-ABS     VALUE 1.
88 TPQTIME-REL     VALUE 2.
05 TPQUE-PRIORITY-FLAG PICS9(9) COMP-5.
88 TPQNOPRIORITY    VALUE 0.
88 TPQPRIORITY     VALUE 1.
05 TPQUE-CORRID-FLAG  PICS9(9) COMP-5.
88 TPQNOCORRID     VALUE 0.
88 TPQCORRID      VALUE 1.
05 TPQUE-REPLYQ-FLAG  PICS9(9) COMP-5.
88 TPQNOREPLYQ     VALUE 0.
88 TPQREPLYQ      VALUE 1.
BEA TUXEDO Reference Manual 13



INTRO(3CBL)
05 TPQUE-FAILQ-FLAG   PICS9(9) COMP-5.
88 TPQNOFAILUREQ    VALUE 0.
88 TPQFAILUREQ     VALUE 1.
05 TPQUE-MSGID-FLAG   PICS9(9) COMP-5.
88 TPQNOMSGID      VALUE 0.
88 TPQMSGID       VALUE 1.
05 TPQUE-GETBY-FLAG   PICS9(9) COMP-5.
88 TPQGETNEXT      VALUE 0.
88 TPQGETBYMSGID    VALUE 1.
88 TPQGETBYCORRID    VALUE 2.
05 TPQUE-WAIT-FLAG   PICS9(9) COMP-5.
88 TPQNOWAIT      VALUE 0.
88 TPQWAIT       VALUE 1.
05 DIAGNOSTIC      PICS9(9) COMP-5.
88 QMEINVAL       VALUE -1.
88 QMEBADRMID      VALUE -2.
88 QMENOTOPEN      VALUE -3.
88 QMETRAN       VALUE -4.
88 QMEBADMSGID     VALUE -5.
88 QMESYSTEM      VALUE -6.
88 QMEOS        VALUE -7.
88 QMENOTA       VALUE -8.
88 QMEPROTO       VALUE -9.
88 QMEBADQUEUE     VALUE -10.
88 QMENOMSG       VALUE -11.
88 QMEINUSE       VALUE -12.
88 QMENOSPACE      VALUE -13.
05 DEQ-TIME       PICS9(9) COMP-5.
05 PRIORITY       PICS9(9) COMP-5.
05 MSGID        PICX(32).
05 CORRID        PICX(32).
05 QNAME        PICX(15).
05 QSPACE-NAME     PICX(15).
05 REPLYQUEUE      PICX(15).
05 FAILUREQUEUE     PICX(15).
05 CLIENTID OCCURS4 TIMESPICS9(9) COMP-5.
05 APPL-RETURN-CODE   PICS9(9) COMP-5.
05 APPKEY        PICS9(9) COMP-5.

The TPSVCRET data structure is used by TPRETURN() to indicate the status of the 
transaction.

*
* TPSVCRET.cbl
*
05 TP-RETURN-VAL    PICS9(9) COMP-5.
88 TPSUCCESS      VALUE 0.
88 TPFAIL        VALUE 1.
14 BEA TUXEDO Reference Manual



INTRO(3CBL)
88 TPEXIT        VALUE 2.
05 APPL-CODE      PICS9(9) COMP-5.

The TPTRXDEF data structure is used by TPBEGIN() to set transaction timeouts, and by 
TPSUSPEND() and TPRESUME() to get and set, respectively, transaction identifiers.

*
* TPTRXDEF.cbl
*
05 T-OUT        PICS9(9) COMP-5 VALUE IS0.
05 TRANID       OCCURS6 TIMESPICS9(9) COMP-5.

The TPCMTDEF data structure is used by TPSCMT() to set the commit level 
characteristics.

*
* TPCMTDEF.cbl
*
05 CMT-FLAG          PICS9(9) COMP-5.
88 TP-CMT-LOGGED       VALUE 1.
88 TP-CMT-COMPLETE      VALUE 2.
05 PREV-CMT-FLAG       PICS9(9) COMP-5.
88 PREV-TP-CMT-LOGGED     VALUE 1.
88 PREV-TP-CMT-COMPLETE VALUE 2.

The TPAUTDEF data structure is used by TPCHKAUTH() to check if authentication is 
required.

* TPAUTDEF.cbl
*
05 AUTH-FLAG      PICS9(9) COMP-5.
88 TPNOAUTH      VALUE 0.
88 TPSYSAUTH      VALUE 1.
88 TPAPPAUTH      VALUE 2.

The TPPRIDEF data structure is used by TPSPRIO() and TPGPRIO() to manipulate 
message priorities.

*
* TPPRIDEF.cbl
*
05 PRIORITY       PICS9(9) COMP-5.
05 PRIO-FLAG      PICS9(9) COMP-5.
88 TPABSOLUTE      VALUE 0.
88 TPRELATIVE      VALUE 1.
BEA TUXEDO Reference Manual 15



INTRO(3CBL)
The TPTRXLEV data structure is used by TPGETLEV() to receive transaction level 
setting.

*
* TPTRXLEV.cbl
*
05 TPTRXLEV-FLAG    PICS9(9) COMP-5.
88 TP-NOT-IN-TRAN    VALUE 0.
88 TP-IN-TRAN      VALUE 1.

The TPBCTDEF data structure is used by TPNOTIFY() and TPBROADCAST() to send 
notifications.

*
* TPBCTDEF.cbl
*
05 TPBLOCK-FLAG      PICS9(9) COMP-5.
88 TPBLOCK         VALUE 0.
88 TPNOBLOCK        VALUE 1.
05 TPTIME-FLAG       PICS9(9) COMP-5.
88 TPTIME         VALUE 0.
88 TPNOTIME        VALUE 1.
05 TPSIGRSTRT-FLAG     PICS9(9) COMP-5.
88 TPNOSIGRSTRT      VALUE 0.
88 TPSIGRSTRT       VALUE 1.
05 LMID          PICX(30).
05 USERNAME        PICX(30).
05 CLTNAME         PICX(30).

The FML-INFO data structure is used by FINIT(), FVSTOF(), and FVFTOS() to deal with 
FML buffers.

*
* FMLINFO.cbl
*
05 FML-STATUS PIC S9(9) COMP-5.
88 FOK         VALUE 0.
88 FALIGNERR      VALUE 1.
88 FNOTFLD       VALUE 2.
88 FNOSPACE       VALUE 3.
88 FNOTPRES       VALUE 4.
88 FBADFLD       VALUE 5.
88 FTYPERR       VALUE 6.
88 FEUNIX        VALUE 7.
88 FBADNAME       VALUE 8.
88 FMALLOC       VALUE 9.
88 FSYNTAX       VALUE 10.
88 FFTOPEN       VALUE 11.
88 FFTSYNTAX      VALUE 12.
16 BEA TUXEDO Reference Manual



INTRO(3CBL)
88 FEINVAL       VALUE 13.
88 FBADTBL       VALUE 14.
88 FBADVIEW       VALUE 15.
88 FVFSYNTAX      VALUE 16.
88 FVFOPEN       VALUE 17.
88 FBADACM       VALUE 18.
88 FNOCNAME       VALUE 19.
*
05 FML-LENGTH  PIC S9(9) COMP-5.
*
05 FML-MODE   PIC S9(9) COMP-5.
88 FUPDATE       VALUE 1.
88 FCONCAT       VALUE 2.
88 FJOIN        VALUE 3.
88 FOJOIN        VALUE 4.
*
05 VIEWNAME   PIC X(33).

The TPEVTDEF data structure is used by TPPOST(), TPSUBSCRIBE(), and 
TPUNSUBSCRIBE() to handle event postings and subscriptions.

*
* TPEVTDEF.cbl
*
05 TPBLOCK-FLAG     PIC S9(9) COMP-5.
88 TPBLOCK       VALUE 0.
88 TPNOBLOCK      VALUE 1.
05 TPTRAN-FLAG     PIC S9(9) COMP-5.
88 TPTRAN        VALUE 0.
88 TPNOTRAN       VALUE 1.
05 TPREPLY-FLAG     PIC S9(9) COMP-5.
88 TPREPLY       VALUE 0.
88 TPNOREPLY      VALUE 1.
05 TPTIME-FLAG     PIC S9(9) COMP-5.
88 TPTIME        VALUE 0.
88 TPNOTIME       VALUE 1.
05 TPSIGRSTRT-FLAG   PIC S9(9) COMP-5.
88 TPNOSIGRSTRT     VALUE 0.
88 TPSIGRSTRT      VALUE 1.
05 TPEV-METHOD-FLAG   PIC S9(9) COMP-5.
88 TPEVNOTIFY      VALUE 0.
88 TPEVSERVICE     VALUE 1.
88 TPEVQUEUE      VALUE 2.
05 TPEV-PERSIST-FLAG  PIC S9(9) COMP-5.
88 TPEVNOPERSIST    VALUE 0.
88 TPEVPERSIST     VALUE 1.
05 TPEV-TRAN-FLAG    PIC S9(9) COMP-5.
88 TPEVNOTRAN      VALUE 0.
88 TPEVTRAN       VALUE 1.
BEA TUXEDO Reference Manual 17



INTRO(3CBL)
*
05 EVENT-COUNT     PIC S9(9) COMP-5.
05 SUBSCRIPTION-HANDLE PIC S9(9) COMP-5.
05 NAME-1        PIC X(31).
05 NAME-2        PIC X(31).
05 EVENT-NAME      PIC X(31).
05 EVENT-EXPR      PIC X(255).
05 EVENT-FILTER     PIC X(255).

COBOL
Language TX
Return Codes

And Other
Definitions

The following return code and setting definitions are used by the TX routines.

*
* TXSTATUS.cbl
*
05 TX-STATUS      PICS9(9) COMP-5.
88 TX-NOT-SUPPORTED   VALUE 1.
*  Normal execution
88 TX-OK        VALUE 0.
*  Normal execution
88 TX-OUTSIDE      VALUE -1.
*  Application is in an RM local transaction
88 TX-ROLLBACK     VALUE -2.
*  Transaction was rolled back
88 TX-MIXED       VALUE -3.
*  Transaction was partially committed and partially
*  rolled back
88 TX-HAZARD      VALUE -4.
*  Transaction may have been partially committed and
*  partially rolled back
88 TX-PROTOCOL-ERROR  VALUE -5.
*  Routine invoked in an improper context
88 TX-ERROR       VALUE -6.
*  Transient error
88 TX-FAIL       VALUE -7.
*  Fatal error
88 TX-EINVAL      VALUE -8.
*  Invalid arguments were given
88 TX-COMMITTED     VALUE -9.
*  The transaction was heuristically committed
88 TX-NO-BEGIN     VALUE -100.
*  Transaction committed plus new transaction could not
*  be started
88 TX-ROLLBACK-NO-BEGIN VALUE -102.
*  Transaction rollback plus new transaction could not
*  be started
88 TX-MIXED-NO-BEGIN  VALUE -103.
*  Mixed plus new transaction could not be started
88 TX-HAZARD-NO-BEGIN  VALUE -104.
*  Hazard plus new transaction could not be started
18 BEA TUXEDO Reference Manual



INTRO(3CBL)
88 TX-COMMITTED-NO-BEGIN VALUE -109.
*  Heuristically committed plus transaction could not
*  be started

The TXINFDEF record defines a data structure where the result of the TXINFORM() call 
will be stored.

*
* TXINFDEF.cbl
*
05 XID-REC.
*  XID record
10 FORMAT-ID   PICS9(9) COMP-5.
*  A value of -1 in FORMAT-ID means that the XID is null
10 GTRID-LENGTH  PICS9(9) COMP-5.
10 BRANCH-LENGTH PICS9(9) COMP-5.
10 XID-DATA        PICX(128).
05 TRANSACTION-MODE    PICS9(9) COMP-5.
*  Transaction mode settings
88 TX-NOT-IN-TRAN     VALUE 0.
88 TX-IN-TRAN       VALUE 1.
05 COMMIT-RETURN     PICS9(9) COMP-5.
*  Commit_return settings
88 TX-COMMIT-COMPLETED  VALUE 0.
88 TX-COMMIT-DECISION-LOGGED VALUE 1.
05 TRANSACTION-CONTROL  PICS9(9) COMP-5.
*  Transaction_control settings
88 TX-UNCHAINED      VALUE 0.
88 TX-CHAINED       VALUE 1.
05 TRANSACTION-TIMEOUT  PICS9(9) COMP-5.
*  Transaction_timeout value
88 NO-TIMEOUT       VALUE 0.
05 TRANSACTION-STATE   PICS9(9) COMP-5.
*  Transaction_state information
88 TX-ACTIVE       VALUE 0.
88 TX-TIMEOUT-ROLLBACK-ONLY VALUE 1.
88 TX-ROLLBACK-ONLY    VALUE 2.

ATMI State
Transitions

BEA TUXEDO keeps track of the state for each program and verifies that legal state 
transitions occur for the various function calls and options. The state information 
includes the program type (request/response server, conversational server, or client), 
the initialization state (uninitialized or initialized), the resource management state 
(closed or open), the transaction state of the program, and the state of all asynchronous 
request/response and connection handles. When an illegal state transition is attempted, 
the called function fails, setting TPSTATUS-REC to TPEPROTO. The legal states and 
BEA TUXEDO Reference Manual 19



INTRO(3CBL)
transitions for this information are described in the following tables. The table below 
indicates which functions request/response servers, conversational servers, and clients 
are allowed to call.

Note that TPSVRINIT and TPSVRDONE are not in this table since these functions are not 
called by applications (that is, they are application-supplied functions that are invoked 
by BEA TUXEDO). 

Functions

Function Process Type

Request/response Conversational Client

Server Server

TPABORT Y Y Y

TPACALL Y Y Y

TPADVERTISE Y Y N

TPBEGIN Y Y Y

TPBROADCAST Y Y Y

TPCALL Y Y Y

TPCANCEL Y Y Y

TPCHKAUTH Y Y Y

TPCHKUNSOL N N Y

TPCLOSE Y Y Y

TPCOMMIT Y Y Y

TPCONNECT Y Y Y

TPDEQUE Y Y Y

TPDISCON Y Y Y

TPENQUEUE Y Y Y

TPFORWAR Y N N
20 BEA TUXEDO Reference Manual



INTRO(3CBL)
TPGETLEV Y Y Y

TPGETRPLY Y Y Y

TPGPRIO Y Y Y

TPINITIALIZE N N Y

TPNOTIFY Y Y Y

TPOPEN Y Y Y

TPPOST Y Y Y

TPRECV Y Y Y

TPRESUME Y Y Y

TPRETURN Y Y N

TPSCMT Y Y Y

TPSEND Y Y Y

TPSETUNSOL N N Y

TPSPRIO Y Y Y

TPSUBSCRIBE Y Y Y

TPSUSPEND Y Y Y

TPTERM N N Y

TPUNADVERTISE Y Y N

TPUNSUBSCRIBE Y Y Y

Functions

Function Process Type

Request/response Conversational Client

Server Server
BEA TUXEDO Reference Manual 21



INTRO(3CBL)
The remaining state tables are for both clients and servers, unless otherwise noted. 
Keep in mind that because some functions can not be called by both clients and servers 
(for example, TPINITIALIZE), certain state transitions shown below may not be 
possible for both program types. The above table should be consulted to determine 
whether the program in question is allowed to call a particular function.

The following state table indicates whether or not a client program has been initialized 
and registered with the transaction manager. Note that this table assumes the use of 
TPINITIALIZE, which is optional. That is, a client may implicitly join an application 
by issuing one of many ATMI verbs (for example, TPACALL or TPCALL). A client must 
use TPINITIALIZE when either application authentication is required (see 
TPINITIALIZE and the description of the SECURITY keyword in ubbconfig(5)) or the 
client wishes to directly access an XA-compliant resource manager (see 
TPINITIALIZE).

A server is placed in the initialized state by BEA TUXEDO’s dispatcher before its 
TPSVRINIT function is invoked, and it is placed in the uninitialized state by BEA 
TUXEDO’s dispatcher after its TPSVRDONE function has returned. Note that in all of 
the state tables shown below, an error return from a function causes the program to 
remain in the same state, unless otherwise noted.

Note: ‡ "all others" refers to the remaining ATMI calls

Initialization States

Function States

Uninitialized Initialized

I0 I1

TPCHKAUTH I0 I1

TPINITIALIZE I1 I1

TPSETUNSOL I0 I1

TPTERM I0 I0

tptypes I0 I1

all others‡ I1
22 BEA TUXEDO Reference Manual



INTRO(3CBL)
The remaining state tables assume a precondition of state I (regardless of whether a 
process arrived in this state via tpinit or the BEA TUXEDO main).

The following table indicates the state of a client or server with respect to whether or 
not a resource manager associated with the process has been initialized. 

The following state table indicates the state of a process with respect to whether or not 
the process is associated with a transaction. For servers, transitions to states T1 and T2 
assume a precondition of state R1 (for example, TPOPEN has been called with no 
subsequent call to TPCLOSE or TPTERM). 

Resource Management States

Function States

Closed Open

R0 R1

TPOPEN R1 R1

TPCLOSE R0 R0

TPBEGIN R1

TPCOMMIT R1

TPABORT R1

TPSUSPEND R1

TPRESUME R1

TPSVCSTART with TPTRAN R1

all others R0 R1
BEA TUXEDO Reference Manual 23



INTRO(3CBL)
The following state table indicates the state of a single request handle returned by 
tpacall. 

Transaction State of Program

Function State

Not in transaction Initiator Participant

T0 T1 T2

TPBEGIN

TPABORT T0

TPCOMMIT T0

SPSUSPEND T0

TPRESUME T0

TPSVCSTART with TPTRAN T2

TPSVCSTART
(not in transaction mode)

T0

TPRETURN T0 T0

TPFORWAR T0 T0

TPCLOSE R0

TPTERM I0 T0

all others T0 T1 T2
24 BEA TUXEDO Reference Manual



INTRO(3CBL)
Note: * This state change occurs only if the descriptor is not associated with the 
caller’s transaction.

† This state change occurs only if the descriptor is associated with the caller's 
transaction.

‡ If the descriptor is associated with the caller's transaction, then tpsuspend 
returns a protocol error.

The following state table indicates the state of a connection descriptor returned by 
tpconnect or provided by a service invocation in the TPSVCINFO structure. For 
primitives that do not take a connection descriptor, the state changes apply to all 
connection descriptors, unless otherwise noted.

Asynchronous Request Descriptor States

Function States

No Descriptor Valid Descriptor

A0 A1

TPACALL A1

TPGETRPLY A0

TPCANCEL A0 *

TPABORT A0 A0†

TPCOMMIT A0 A0†

TPSUSPEND A0 A‡

TPRETURN A0 A0

TPFORWAR A0 A0

TPTERM I0 I0

all others A0 A1
BEA TUXEDO Reference Manual 25



INTRO(3CBL)
The states are as follows: 

C0 - No handle 
C1 - TPCONNECT handle send-only 
C2 - TPCONNECT handle receive-only 
C3 - TPSVCDEF handle send-only 
C4 - TPSVCDEF handle receive-only

Connection Request Handle States

Function/Event States

C0 C1 C2 C3 C4

TPCONNECT with TPSENDONLY C1 

*

TPCONNECT with TPRECVONLY C2 

*

TPSVCSTART with flag TPSENDONLY C3 

†

TPSVCSTART with flag TPRECVONLY C4 

†

TPRECV/no event C2 C4

TPRECV/TPEV_SENDONLY C1 C3

TPRECV/TPEV_DISCONIMM C0 C0

TPRECV/TPEV_SVCERR C0

TPRECV/TPEV_SVCFAIL C0

TPRECV/TPEV_SVCSUCC C0

TPSEND/no event C1 C3

TPSEND with flag TPRECVONLY C2 C4

TPSEND/TPEV_DISCONIMM C0 C0

TPSEND/TPEV_SVCERR C0
26 BEA TUXEDO Reference Manual



INTRO(3CBL)
Note: * If the program is in transaction mode and TPNOTRAN is not specified, the 
connection is in transaction mode.

† If the TPTRAN flag is set, the connection is in transaction mode. 

‡ If the connection is not in transaction mode, no state change. 

†† If the connection is in transaction mode, then tpsuspend returns a protocol 
error.

TX State
Transitions

BEA TUXEDO ensures that a process calls the TX verbs in a legal sequence. When an 
illegal state transition is attempted (that is, a call from a state with a blank transition 
entry), the called function returns TX_PROTOCOL_ERROR. The legal states and 
transitions for the TX primitives are shown in the table below. Calls that return failure 
do not make state transitions, except where described by specific state table entries. 
Any BEA TUXEDO client or server is allowed to use the TX verbs.

TPSEND/TPEV_SVCFAIL C0

TPTERM (client only) C0 C0

TPCOMMIT (originator only) C0 C0 ‡ C0 ‡

TPSUSPEND (originator only) C0 C0†† C0††

TPABORT (originator only) C0 C0 ‡ C0 ‡

TPDISCON C0 C0

TPRETURN (CONV server) C0 C0 C0 C0

TPFORWAR (CONV server) C0 C0 C0 C0

all others C0 C1 C2 C3 C4

Connection Request Handle States

Function/Event States

C0 C1 C2 C3 C4
BEA TUXEDO Reference Manual 27



INTRO(3CBL)
The states are defined below: 

S0 

No RMs have been opened or initialized. A process cannot start a global 
transaction until it has successfully called TXOPEN.

S1 

A process has opened its RM but is not in a transaction. Its 
transaction_control characteristic is TX-UNCHAINED.

S2 

A process has opened its RM but is not in a transaction. Its 
transaction_control characteristic is TX-CHAINED.

S3 

A process has opened its RM and is in a transaction. Its 
transaction_control characteristic is TX-UNCHAINED.

S4 

A process has opened its RM and is in a transaction. Its 
transaction_control characteristic is TX-CHAINED.

TX State Transitions

Function States

S0 S1 S2 S3 S4

TXBEGIN S3 S4

TXCLOSE S0 S0 S0

TXCOMMIT -> TX_SET1 S1 S4

TXCOMMIT -> TX_SET2 S2

TXINFORM S1 S2 S3 S4

TXOPEN S1 S1 S2 S3 S4

TXROLLBACK -> TX_SET1 S1 S4

TXROLLBACK -> TX_SET2 S2
28 BEA TUXEDO Reference Manual



INTRO(3CBL)
1. TX_SET1 denotes any of TX_OK, TX_ROLLBACK, TX_MIXED, TX_HAZARD, or 
TX_COMMITTED (TX_ROLLBACK is not returned by tx_rollback and 
TX_COMMITTED is not returned by tx_commit).

2. TX_SET2 denotes any of TX_NO_BEGIN, TX_ROLLBACK_NO_BEGIN, 
TX_MIXED_NO_BEGIN, TX_HAZARD_NO_BEGIN, or TX_COMMITTED_NO_BEGIN 
(TX_ROLLBACK_NO_BEGIN is not returned by tx_rollback and 
TX_COMMITTED_NO_BEGIN is not returned by tx_commit).

3. If TX_FAIL is returned on any call, the application process is in an undefined 
state with respect to the above table.

4. When tx_info returns either TX_ROLLBACK_ONLY or 
TX_TIMEOUT_ROLLBACK_ONLY in the transaction state information, the 
transaction is marked rollback-only and will be rolled back whether the 
application program calls tx_commit or tx_rollback.

See Also buffer(3c), PADVERTISE(3cbl), TPBEGIN(3cbl), TPCALL(3cbl), TPCONNECT(3cbl), 
TPINITIALIZE(3cbl), TPOPEN(3cbl), TPSVCSTART(3cbl), tuxtypes(5), typesw(5)

TXSETCOMMITRET S1 S2 S3 S4

TXSETTRANCTL

  control = TX-CHAINED

S2 S2 S4 S4

TXSETRRANCTL

  control = TX-UNCHAINED

S1 S1 S3 S3

TXSETTIMEOUT S1 S2 S3 S4

TX State Transitions

Function States

S0 S1 S2 S3 S4
BEA TUXEDO Reference Manual 29



FINIT(3CBL)
FINIT(3CBL)

Name FINIT, FINIT32—initialize fielded buffer

synopsis 01 FML-BUFFER.
 05 FML-ALIGN      PIC S9(9) USAGE IS COMP.
 05 FML-DATA       PIC X(applen).
 
01 FML-REC
 COPY FMLINFO.
 
CALL "FINIT" USING FML-BUFFER FML-REC.
 
CALL "FINIT32" USING FML-BUFFER FML-REC.

Description FINIT() can be called to initialize a fielded buffer. FML-BUFFER is the record to be 
used for the fielded buffer; it should be aligned on a 4-byte boundary to work with both 
FML16 and FML32. This can be accomplished by defining two record elements as 
shown in the synopsis above. FML-LENGTH IN FML-REC is the length of the record. 
The internal structure is set up for a fielded buffer with no fields; the application 
program should not interpret the record, other than to pass it to FINIT, FVFTOS, or 
FVSTOF, or an ATMI call that takes a typed record (in this case, the type is “FML” and 
there is no subtype).

FINIT32 is used with 32-bit FML.

Return Values Upon successful completion, FINIT sets FML-STATUS in FML-REC to FOK.

On error, FML-STATUS is set to a non-zero value.

Errors Under the following conditions, FINIT fails and sets FML-STATUS in FML-REC to: 

[FALIGNERR]
“fielded buffer not aligned”
The buffer does not begin on the proper boundary.

[FNOSPACE]
“no space in fielded buffer”
The buffer size specified is too small for a fielded buffer.

Example The correct was to reinitialize a buffer to have no fields is: Finit(frfr, 
(FLDLEN)Fsizeof(fbfr));

See Also Fintro()
30 BEA TUXEDO Reference Manual



FVFTOS(3CBL)
FVFTOS(3CBL)

Name FVFTOS, FVFTOS32—copy from fielded buffer to COBOL structure

synopsis 01 DATA-REC. 
COPY User data. 
 
01 FML-BUFFER.
 05 FML-ALIGN      PIC S9(9) USAGE IS COMP.
 05 FML-DATA       PIC X(applen).
 
01 FML-REC COPY FMLINFO. 
 
CALL "FVFTOS" USING FML-BUFFER DATA-REC FML-REC. 
 
CALL "FVFTOS32" USING FML-BUFFER DATA-REC FML-REC.

Description The FVFTOS() function transfers data from a fielded buffer to a COBOL record. 
FML-BUFFER is a pointer to a fielded buffer initialized with FINIT. DATA-REC is a 
pointer to a C structure. VIEWNAME IN FML-REC is the name of the view describing 
the COBOL record.

Fields are copied from the fielded buffer into the structure based on the element 
descriptions in VIEWNAME. If a field in the fielded buffer has no corresponding 
element in the COBOL record, it is ignored. If an element specified in the COBOL 
record has no corresponding field in the fielded buffer, a null value is copied into the 
element. The null value used is definable for each element in the view description.

To store multiple occurrences in the COBOL record, the record element should defined 
with OCCURS. If the buffer has fewer occurrences of the field than there are occurrences 
of the element, the extra element slots are assigned null values. On the other hand, if 
the buffer has more occurrences of the field than there are occurrences of the element, 
the surplus occurrences are ignored.

FVFTOS32 is used for views defined with view32 typed buffers for larger views with 
more fields.

Return Values Upon successful completion, FVFTOS32 sets FML-STATUS IN FML-REC to FOK.

On error, FML-STATUS is set to a non-zero value.
BEA TUXEDO Reference Manual 31



FVFTOS(3CBL)
Errors Under the following conditions, FVFTOS fails and sets FML-STATUS to: 

[FALIGNERR]
“fielded buffer not aligned”
The buffer does not begin on the proper boundary.

[FNOTFLD]
“buffer not fielded”
The buffer is not a fielded buffer or has not been initialized by FINIT.

[FEINVAL]
“invalid argument to function”
One of the arguments to the function invoked was invalid.

[FBADACM]
“ACM contains negative value”
An Associated Count Member should not be a negative value while 
transferring data from a COBOL record to a fielded buffer.

[FBADVIEW]
“cannot find or get view”
The view description VIEWNAME was not found in the files specified by 
VIEWDIR or VIEWFILES.

See Also Fintro(), viewfile(5)
32 BEA TUXEDO Reference Manual



FVSTOF(3CBL)
FVSTOF(3CBL)

Name FVSTOF—copy from C structure to fielded buffer

synopsis 01 DATA-REC.
 COPY User data. 
 
01 FML-BUFFER.
 05 FML-ALIGN      PIC S9(9) USAGE IS COMP.
 05 FML-DATA       PIC X(applen).
 
01 FML-REC
 COPY FMLINFO. 
 
CALL "FVSTOF" USING FML-BUFFER DATA-REC FML-REC. 
 
CALL "FVSTOF32" USING FML-BUFFER DATA-REC FML-REC.

Description FVSTOF() transfers data from a C structure to a fielded buffer. FML-BUFFER is a record 
containing the fielded buffer. DATA-REC is the COBOL record. VIEWNAME IN 
FML-REC is the name of the view describing the COBOL record. FML-MODE IN 
FML-REC specifies the manner in which the transfer is made. FML-MODE has four 
possible values:

FUPDATE
FOJOIN
FJOIN
FCONCAT

The action of these modes are the same as that described in Fupdate(3), Fojoin(3), 
Fjoin(3), and Fconcat(3). One can even think of FVSTOF() as the same as these 
functions, except that where they specify a source buffer, FVSTOF() specifies a 
COBOL record. Bear in mind that FUPDATE does not move record elements that have 
null values.

FVSTOF32 is used for views defined with view32 typed buffers for larger views with 
more fields.

Return Values Upon successful completion, FVSTOF32 sets FML-STATUS IN FML-REC to FOK.

On error, FML-STATUS is set to a non-zero value.
BEA TUXEDO Reference Manual 33



FVSTOF(3CBL)
Errors Under the following conditions, FVSTOF fails and sets FML-STATUS to: 

[FALIGNERR] 
“fielded buffer not aligned”
The buffer does not begin on the proper boundary.

[FNOTFLD] 
“buffer not fielded”
The buffer is not a fielded buffer or has not been initialized by FINIT.

[FEINVAL] 
“invalid argument to function”
One of the arguments to the function invoked was invalid.

[FBADACM] 
“ACM contains negative value”
An Associated Count Member should not be a negative value while 
transferring data from a COBOL record to a fielded buffer.

[FBADVIEW] 
“cannot find or get view”
The view description VIEWNAME was not found in the files specified by 
VIEWDIR or VIEWFILES.

See Also Fintro(), viewfile(5)
34 BEA TUXEDO Reference Manual



TPABORT(3CBL)
TPABORT(3CBL)

Name TPABORT—abort current BEA TUXEDO system transaction

synopsis 01 TPTRXDEF-REC.
  COPY TPTRXDEF.
 
01 TPSTATUS-REC.
  COPY TPSTATUS.
 
CALL "TPABORT" USING TPTRXDEF-REC TPSTATUS-REC.

Description TPABORT signifies the abnormal end of a transaction. When this call returns, all 
changes made to resources during the transaction are undone. Like TPCOMMIT(), this 
routine can be called only by the initiator of a transaction. Participants (that is, service 
routines) can express their desire to have a transaction aborted by calling TPRETURN() 
with TPFAIL.

If TPABORT is called while communication handles exist for outstanding replies, then 
upon return from the routine, the transaction is aborted and those communications 
handles associated with the caller’s transaction are no longer valid. Communications 
handles not associated with the caller’s transaction remain valid.

For each open connection to a conversational server in transaction mode, TPABORT will 
send a TPEV-DISCONIMM event to the server, whether or not the server has control of 
a connection. Connections opened before TPBEGIN() or with the TPNOTRAN setting 
(that is, not in transaction mode) are not affected.

Currently, TPABORT's argument, TPTRXDEF-REC, is reserved for future use.

Return Values Upon successful completion, TPABORT sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPABORT fails and sets TP-STATUS to: 

[TPEINVAL]
Invalid arguments were given. The caller's transaction is not affected.

[TPEHEURISTIC] 
Due to a heuristic decision, the work done on behalf of the transaction was 
partially committed and partially aborted.

[TPEHAZARD] 
Due to some failure, the work done on behalf of the transaction could have 
been heuristically completed.
BEA TUXEDO Reference Manual 35



TPABORT(3CBL)
[TPEPROTO] 
TPABORT was called in an improper context (for example, by a participant).

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

Notices When using TPBEGIN(), TPCOMMIT() and TPABORT to delineate a BEA TUXEDO 
system transaction, it is important to remember that only the work done by a resource 
manager that meets the XA interface (and is linked to the caller appropriately) has 
transactional properties. All other operations performed in a transaction are not 
affected by either TPCOMMIT() or TPABORT.

See Also TPBEGIN(), TPCOMMIT(), TPGETLEV()
36 BEA TUXEDO Reference Manual



TPACALL(3CBL)
TPACALL(3CBL)

Name TPACALL—routine to send a message to a service asynchronously

synopsis 01 TPSVCDEF-REC.
  COPY TPSVCDEF. 
 
01 TPTYPE-REC.
  COPY TPTYPE. 
 
01 DATA-REC.
  COPY User data. 
 
01 TPSTATUS-REC.
  COPY TPSTATUS. 
 
CALL "TPACALL" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description TPACALL sends a request message to the service named by SERVICE-NAME IN 
TPSVCDEF-REC. The request is sent out at the priority defined for SERVICE-NAME 
unless overridden by a previous call to TPSPRIO(). DATA-REC is a message to be sent 
and LEN IN TPTYPE-REC specifies the amount of data in DATA-REC that should be sent. 
Note that if DATA-REC is a record of a type that does not require a length to be specified, 
then LEN is ignored (and may be 0). If REC-TYPE IN TPTYPE-REC is SPACES, 
DATA-REC and LEN are ignored and a request is sent with no data portion. If REC-TYPE 
is STRING and LEN is 0, then the request is sent with no data portion. The REC-TYPE 
and SUB-TYPE of DATA-REC must match one of the REC-TYPE and SUB-TYPEs 
recognized by SERVICE-NAME. Note that for each request sent while in transaction 
mode, a corresponding reply must ultimately be received.

Following is a list of valid settings in TPSVCDEF-REC. 

TPNOTRAN 
If the caller is in transaction mode and this setting is used, then when 
SERVICE-NAME is invoked, it is not performed on behalf of the caller's 
transaction. If SERVICE-NAME belongs to a server that does not support 
transactions, then this setting must be used when the caller is in transaction 
mode. A caller in transaction mode that uses this setting is still subject to the 
transaction timeout (and no other). If a service fails that was invoked with this 
setting, the caller's transaction is not affected. Either TPNOTRAN or TPTRAN 
must be set.
BEA TUXEDO Reference Manual 37



TPACALL(3CBL)
TPTRAN 
If the caller is in transaction mode and this setting is used, then when 
SERVICE-NAME is invoked, it is performed on behalf of the caller’s 
transaction. This setting is ignored if the caller is not in transaction mode. 
Either TPNOTRAN or TPTRAN must be set.

TPNOREPLY 
Informs TPACALL that a reply is not expected. When TPNOREPLY is set, the 
routine returns [TPOK] on success and sets COMM-HANDLE IN TPSVCDEF-REC 
to 0, an invalid communications handle. When the caller is in transaction 
mode, this setting cannot be used when TPTRAN is also set. Either TPNOREPLY 
or TPREPLY must be set.

TPREPLY 
Informs TPACALL that a reply is expected. When TPREPLY is set, the routine 
returns [TPOK] on success and sets COMM-HANDLE to a valid communications 
handle. When the caller is in transaction mode, this setting must be used when 
TPTRAN is also set. Either TPNOREPLY or TPREPLY must be set.

TPNOBLOCK 
The request is not sent if a blocking condition exists (for example, the internal 
buffers into which the message is transferred are full). Either TPNOBLOCK or 
TPBLOCK must be set.

TPBLOCK 
When TPBLOCK is specified and a blocking condition exists, the caller blocks 
until the condition subsides or a timeout occurs (either transaction or blocking 
timeout). Either \%TPNOBLOCK or TPBLOCK must be set.

TPNOTIME 
This setting signifies that the caller is willing to block indefinitely and wants 
to be immune to blocking timeouts. Transaction timeouts may still occur. 
Either TPNOTIME or TPTIME must be set.

TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.
38 BEA TUXEDO Reference Manual



TPACALL(3CBL)
TPNOSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is not restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT 
must be set.

Return Values Upon successful completion, TPACALL sets TP-STATUS to [TPOK]. In addition, if 
TPREPLY was set in TPSVCDEF-REC, then TPCALL() returns a valid communications 
handle in COMM-HANDLE that can be used to receive the reply of the request sent.

Errors Under the following conditions, TPACALL fails and sets TP-STATUS to (unless 
otherwise noted, failure does not affect the caller’s transaction, if one exists): 

[TPEINVAL] 
Invalid arguments were given (for example, settings in TPSVCDEF-REC are 
invalid).

[TPENOENT] 
Can not send to SERVICE-NAME because it does not exist or is not a 
request/response service (that is, it is a conversational service).

[TPEITYPE] 
The pair REC-TYPE and SUB-TYPE is not one of the allowed types and 
sub-types that SERVICE-NAME accepts.

[TPELIMIT] 
The caller’s request was not sent because the maximum number of 
outstanding asynchronous requests has been reached.

[TPETRAN] 
SERVICE-NAME belongs to a server that does not support transactions and 
TPTRAN was set.

[TPETIME] 
A timeout occurred. If the caller is in transaction mode, then a transaction 
timeout occurred and the transaction is marked abort-only; otherwise, a 
blocking timeout occurred and both TPBLOCK and TPTIME were specified. If 
a transaction timeout occurred, then any attempts to send new requests or 
receive outstanding replies will fail with [TPETIME] until the transaction has 
been aborted.

[TPEBLOCK] 
A blocking condition exists and TPNOBLOCK was specified.
BEA TUXEDO Reference Manual 39



TPACALL(3CBL)
[TPGOTSIG] 
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO] 
TPACALL was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also TPCALL(), TPCANCEL(), TPGETRPLY(), TPGPRIO(), TPSPRIO()
40 BEA TUXEDO Reference Manual



TPADVERTISE(3CBL)
TPADVERTISE(3CBL)

Name TPADVERTISE—routine for advertising service names

synopsis 01 SVC-NAME     PIC X(15).
01 PROGRAM-NAME   PIC X(32). 
01 TPSTATUS-REC.
  COPY TPSTATUS.
 
CALL "TPADVERTISE" USING SVC-NAME PROGRAM-NAME TPSTATUS-REC.

Description TPADVERTISE allows a server to advertise the services that it offers. By default, a 
server's services are advertised when it is booted and unadvertised when it is shutdown.

All servers belonging to a multiple server, single queue (MSSQ) set must offer the 
same set of services. These routines enforce this rule by affecting the advertisements 
of all servers sharing an MSSQ set.

TPADVERTISE advertises SVC-NAME for the server (or the set of servers sharing the 
caller's MSSQ set). SVC-NAME should be 15 characters or less, but cannot be SPACES. 
(See SERVICES section of ubbconfig(5)) Longer names are truncated to 15 
characters. Users should make sure that truncated names do not match other service 
names. PROGRAM-NAME is the name of a BEA TUXEDO system service program. This 
program will be invoked whenever a request for SVC-NAME is received by the server. 
PROGRAM-NAME cannot be SPACES.

If SVC-NAME is already advertised for the server and PROGRAM-NAME matches its 
current program, then TPADVERTISE returns success (this includes truncated names 
that match already advertised names). However, if SVC-NAME is already advertised for 
the server but PROGRAM-NAME does not match its current program, then an error is 
returned (this can happen if truncated names match already advertised names).

Return Values TPADVERTISE Upon successful completion, TPADVERTISE sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPADVERTISE fails and sets TP-STATUS to: 

[TPEINVAL] 
Either SVC-NAME or PROGRAM-NAME is SPACES, or PROGRAM-NAME is not a 
name of a valid program.

[TPELIMIT] 
SVC-NAME cannot be advertised because of space limitations. (See 
MAXSERVICES in the RESOURCES section of ubbconfig(5))
BEA TUXEDO Reference Manual 41



TPADVERTISE(3CBL)
[TPEMATCH] 
SVC-NAME is already advertised for the server but with a program other than 
PROGRAM-NAME. Although TPADVERTISE fails, SVC-NAME remains advertised 
with its current program (that is, PROGRAM-NAME does not replace the current 
program).

[TPEPROTO] 
TPADVERTISE was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

Portability On AIX on the RS6000, any services provided in the first COBOL object file are not 
available in the symbol table; their names must be specified using the -s option on the 
buildserver command so that they can be advertised at run-time using 
TPADVERTISE.

See Also TPUNADVERTISE()
42 BEA TUXEDO Reference Manual



TPBEGIN(3CBL)
TPBEGIN(3CBL)

Name TPBEGIN—routine to begin a BEA TUXEDO system transaction

synopsis 01 TPTRXDEF-REC.
  COPY TPTRXDEF. 
 
01 TPSTATUS-REC.
  COPY TPSTATUS. 
 
CALL "TPBEGIN" USING TPTRXDEF-REC TPSTATUS-REC.

Description A transaction in the BEA TUXEDO system is used to define a single logical unit of 
work that either wholly succeeds or has no effect whatsoever. A transaction allows 
work being performed in many processes, at possibly different sites, to be treated as an 
atomic unit of work. The initiator of a transaction uses TPBEGIN and either TPCOMMIT() 
or TPABORT() to delineate the operations within a transaction. Once TPBEGIN is called, 
communication with any other program can place the latter (of necessity, a server) in 
“transaction mode” (that is, the server’s work becomes part of the transaction). 
Threads of control that join a transaction are called participants. A transaction always 
has one initiator and can have several participants. Only the initiator of a transaction 
can call TPCOMMIT() or TPABORT(). Participants can influence the outcome of a 
transaction by the settings in TPSVCDEF-REC they use when they call TPRETURN(). 
Once in transaction mode, any service requests made to servers are processed on behalf 
of the transaction (unless the requester explicitly specifies otherwise).

Note that if a program starts a transaction while it has any open connections that it 
initiated to conversational servers, these connections will not be upgraded to 
transaction mode. It is as if the TPNOTRAN setting had been specified on the 
TPCONNECT() call.

T-OUT specifies that the transaction should be allowed at least T-OUT seconds before 
timing out. Once a transaction times out it must be aborted. If T-OUT is 0, then the 
transaction is given the maximum number of seconds allowed by the system before 
timing out (that is, the time-out value equals the maximum value for an unsigned long 
as defined by the system).

Return Values Upon successful completion, TPBEGIN sets TP-STATUS to [TPOK].
BEA TUXEDO Reference Manual 43



TPBEGIN(3CBL)
Errors Under the following conditions, TPBEGIN fails and sets TP-STATUS to: 

[TPEINVAL] 
Invalid arguments were given.

[TPETRAN] 
The caller cannot be placed in transaction mode because an error occurred 
starting the transaction.

[TPEPROTO] 
TPBEGIN was called in an improper context (for example, the caller is already 
in transaction mode).

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

Notices When using TPBEGIN, TPCOMMIT() and TPABORT() to delineate a BEA TUXEDO 
system transaction, it is important to remember that only the work done by a resource 
manager that meets the XA0 interface (and is linked to the caller appropriately) has 
transactional properties. All other operations performed in a transaction are not 
affected by either TPCOMMIT() or TPABORT(). See buildserver(1) for details on 
linking resource managers that meet the XA interface into a server such that operations 
performed by that resource manager are part of a BEA TUXEDO system transaction.

See Also TPABORT(), TPCOMMIT(), TPGETLEV(), TPSCMT()
44 BEA TUXEDO Reference Manual



TPBROADCAST(3CBL)
TPBROADCAST(3CBL)

Name TPBROADCAST—broadcast notification by name

synopsis 01 TPBCTDEF-REC.
  COPY TPBCTDEF. 
 
01 TPTYPE-REC.
  COPY TPTYPE. 
 
01 DATA-REC.
  COPY User data. 
 
01 TPSTATUS-REC.
  COPY TPSTATUS. 
 
CALL "TPBROADCAST" USING TPBCTDEF-REC TPTYPE-REC DATA-REC 
TPSTATUS-REC.

Description TPBROADCAST allows a client or server to send unsolicited messages to registered 
clients within the system. The target client set consists of those clients matching 
identifiers passed to TPBROADCAST. Wildcards can be used in specifying identifiers.

LMID, USRNAME and CLTNAME, all in TPBCTDEF-REC, are logical identifiers used to 
select the target client set. A SPACES value for any logical identifiers constitutes a 
wildcard for that argument. A wildcard argument matches all client identifiers for that 
field. Each identifier must meet the size restrictions defined for the system to be 
considered valid, that is, each identifier must be between 0 and 30 characters in length.

The data portion of the request is identified by DATA-REC and LEN in TPTYPE-REC 
specifies how much of DATA-REC to send. Note that if DATA-REC is a record of a type 
that does not require a length to be specified, then LEN is ignored (and may be 0). If 
REC-TYPE in TPTYPE-REC is SPACES, in which case DATA-REC and LEN are ignored 
and a request is sent with no data portion.

Following is a list of valid settings in TPBCTDEF-REC. 

TPNOBLOCK 
The request is not sent if a blocking condition exists (for example, the internal 
buffers into which the message is transferred are full). Either TPNOBLOCK or 
TPBLOCK must be set.
BEA TUXEDO Reference Manual 45



TPBROADCAST(3CBL)
TPBLOCK 
If a blocking condition exists, the caller blocks until the condition subsides or 
a timeout occurs (either transaction or blocking timeout). Either TPNOBLOCK 
or TPBLOCK must be set.

TPNOTIME 
This setting signifies that the caller is willing to block indefinitely and wants 
to be immune to blocking timeouts. Transaction timeouts may still occur. 
Either TPNOTIME or TPTIME must be set.

TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is reissued. Upon successful return from TPBROADCAST, the message has 
been delivered to the system for forwarding to the selected clients. 
TPBROADCAST does not wait for the message to be delivered to each selected 
client. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is not restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT 
must be set.

Return Values Upon successful completion, TPBROADCAST sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPBROADCAST sends no broadcast messages to 
application clients and sets TP-STATUS to: 

[TPEINVAL] 
Invalid arguments were given. Note that use of an illegal LMID will cause 
TPBROADCAST to fail and return TPEINVAL. However, non-existent user or 
client names will simply successfully broadcast to no one.

[TPETIME] 
A blocking timeout occurred and both TPBLOCK and TPTIME were specified.

[TPEBLOCK] 
A blocking condition was found on the call and TPNOBLOCK was specified.
46 BEA TUXEDO Reference Manual



TPBROADCAST(3CBL)
[TPGOTSIG] 
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO] 
TPBROADCAST was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

Portability The interfaces described in TPNOTIFY() are supported on native site UNIX-based 
processors. In addition, the routines TPBROADCAST and TPCHKUNSOL() as well as the 
routine TPSETUNSOL() are supported on UNIX and MS-DOS workstation processors.

Usage Clients that select signal-based notification may not be signal-able by the system due 
to signal restrictions. When this occurs, the system generates a log message that it is 
switching notification for the selected client to dip-in and the client is notified then and 
thereafter via dip-in notification. (See ubbconfig(5) description of the RESOURCES 
NOTIFY parameter for a detailed discussion of notification methods.)

Note that signaling of clients is always done by the system so that the behavior of 
notification is consistent regardless of where the originating notification call is made. 
Because of this, only clients running as the application administrator can use 
signal-based notification. The id for the application administrator is identified as part 
of the configuration file for the application.

If signal-based notification is selected for a client, then certain ATMI calls can fail, 
returning TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not 
specified. See ubbconfig(5) and TPINITIALIZE() for more information on 
notification method selection.

See Also TPINITIALIZE(), TPNOTIFY(), TPTERM(), ubbconfig(5)
BEA TUXEDO Reference Manual 47



TPCALL(3CBL)
TPCALL(3CBL)

Name TPCALL—routine to send a message to a service synchronously

synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF. 
 
01 ITPTYPE-REC.
 COPY TPTYPE. 
 
01 IDATA-REC.
 COPY User data. 
 
01 OTPTYPE-REC.
 COPY TPTYPE. 
 
01 ODATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPCALL" USING TPSVCDEF-REC ITPTYPE-REC IDATA-REC OTPTYPE-REC 
ODATA-REC TPSTATUS-REC.

Description TPCALL sends a request and synchronously awaits its reply. A call to this routine is the 
same as calling TPACALL() immediately followed by TPGETRPLY(). TPCALL sends a 
request to the request/response service named by SERVICE-NAME in TPSVCDEF-REC. 
The request is sent out at the priority defined for SERVICE-NAME unless overridden by 
a previous call to TPSPRIO(). The data portion of a request is specified by IDATA-REC 
and LEN in ITPTYPE-REC specifies how much of IDATA-REC to send. Note that if 
IDATA-REC is a record of a type that does not require a length to be specified, then LEN 
in ITPTYPE-REC is ignored (and may be 0). If REC-TYPE in ITPTYPE-REC is SPACES, 
IDATA-REC and LEN in ITPTYPE-REC are ignored and a request is sent with no data 
portion. If REC-TYPE in ITPTYPE-REC is STRING and LEN in ITPTYPE-REC is 0, then 
the request is sent with no data portion. The REC-TYPE in ITPTYPE-REC and SUB-TYPE 
in ITPTYPE-REC must match one of the REC-TYPEs and SUB-TYPEs recognized by 
SERVICE-NAME.

ODATA-REC specifies where a reply is read into, and, on input LEN in OTPTYPE-REC 
indicates the maximum number of bytes that should be moved into ODATA-REC. If the 
same record is to be used for both sending and receiving, ODATA-REC should be 
REDEFINED to IDATA-REC. Upon successful return from TPCALL, LEN in 
OTPTYPE-REC contains the actual number of bytes moved into ODATA-REC. REC-TYPE 
and SUB-TYPE in OTPTYPE-REC contain the replies type and sub-type respectively. If 
48 BEA TUXEDO Reference Manual



TPCALL(3CBL)
the reply is larger than ODATA-REC, then ODATA-REC will contain only as many bytes 
as will fit in the record. The remainder of the reply is discarded and TPCALL sets 
TPTRUNCATE.

If LEN in OTPTYPE-REC is 0 upon successful return, then the reply has no data portion 
and ODATA-REC was not modified. It is an error for LEN in OTPTYPE-REC to be 0 on 
input.

Following is a list of valid settings in TPSVCDEF-REC. 

TPNOTRAN 
If the caller is in transaction mode and this setting is used , then when 
SERVICE-NAME is invoked, it is not performed on behalf of the caller’s 
transaction. If the SERVICE-NAME belongs to a server that does not support 
transactions then this setting must be used when the caller is in transaction 
mode. A caller in transaction mode that sets this to true is still subject to the 
transaction timeout (and no other). If a service fails that was invoked with this 
setting, the caller’s transaction is not affected. Either TPNOTRAN or TPTRAN 
must be set.

TPTRAN 
If the caller is in transaction mode and this setting is used, then when 
SERVICE-NAME is invoked, it is performed on behalf of the caller’s 
transaction. The setting is ignored if the caller is not in transaction mode. 
Either TPNOTRAN or TPTRAN must be set.

TPNOCHANGE 
When this setting is used, the type of ODATA-REC is not allowed to change. 
That is, the type and sub-type of the replied record must match REC-TYPE IN 
OTPTYPE-REC and SUB-TYPE IN OTPTYPE-REC, respectively, so long as the 
receiver recognizes the incoming record type. Either TPNOCHANGE or 
TPCHANGE must be set.

TPCHANGE 
The type and/or subtype of the reply record is allowed to differ from those 
specified in REC-TYPE IN OTPTYPE-REC and SUB-TYPE IN OTPTYPE-REC, 
respectively, so long as the receiver recognizes the incoming record type. 
Either TPNOCHANGE or TPCHANGE must be set.

TPNOBLOCK 
The request is not sent if a blocking condition exists (for example, the internal 
buffers into which the message is transferred are full). Note that this setting 
BEA TUXEDO Reference Manual 49



TPCALL(3CBL)
applies only to the send portion of TPCALL: the routine may block waiting for 
the reply. Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK 
When TPBLOCK is specified and a blocking condition exists, the caller blocks 
until the condition subsides or a timeout occurs (either transaction or blocking 
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME 
This setting signifies that the caller is willing to block indefinitely and wants 
to be immune to blocking timeouts. Transaction timeouts may still occur. 
Either TPNOTIME or TPTIME must be set.

TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is not restarted and the routine fails. Either TPNOSIGRSTRT or 
TPSIGRSTRT must be set.

Return Values Upon successful completion, TPCALL sets TP-STATUS to [TPOK]. When TP-STATUS is 
set to TPOK or TPESVCFAIL, APPL-RETURN-CODE IN TPSTATUS-REC contains an 
application defined value that was sent as part of TPRETURN().

If the size of the incoming message was larger then the size specified in LEN on input, 
TPTRUNCATE is set and only LEN amount of data was moved to ODATA-REC, the 
remaining data is discarded.

Errors Under the following conditions, TPCALL fails and sets TP-STATUS to (unless otherwise 
noted, failure does not affect the caller’s transaction, if one exists): 

[TPEINVAL] 
Invalid arguments were given (for example, SERVICE-NAME is SPACES or 
settings in TPSVCDEF-REC are invalid).
50 BEA TUXEDO Reference Manual



TPCALL(3CBL)
[TPENOENT] 
Can not send to SERVICE-NAME because it does not exist or is not a 
request/response service (that is, it is a conversational service).

[TPEITYPE] 
The pair REC-TYPE and SUB-TYPE is not one of the allowed types and 
sub-types that SERVICE-NAME accepts.

[TPEOTYPE] 
Either the type and sub-type of the reply are not known to the caller; or, 
TPNOCHANGE was set and the REC-TYPE and SUB-TYPE in ODATA-REC do not 
match the type and sub-type of the reply sent by the service. Neither 
ODATA-REC nor LEN in OTPTYPE-REC are changed. If the service request was 
made on behalf of the caller’s current transaction, then the transaction is 
marked abort-only since the reply is discarded.

[TPETRAN] 
SERVICE-NAME belongs to a server that does not support transactions and 
TPTRAN was set.

[TPETIME] 
A timeout occurred. If the caller is in transaction mode, then a transaction 
timeout occurred and the transaction is marked abort-only; otherwise, a 
blocking timeout occurred and both TPBLOCK and TPTIME were specified. In 
either case, neither ODATA-REC nor OTPTYPE-REC are changed. If a 
transaction timeout occurred, then with one exception, any attempts to send 
new requests or receive outstanding replies will fail with TPETIME until the 
transaction has been aborted.

[TPESVCFAIL] 
The service routine sending the caller’s reply called TPRETURN() with TPFAIL. 
This is an application-level failure. The contents of the service’s reply, if one 
was sent, is available in ODATA-REC. If the service request was made on 
behalf of the caller’s current transaction, then the transaction is marked 
abort-only. Note that so long as the transaction has not timed out, further 
communication may be performed before aborting the transaction and that 
any work performed on behalf of the caller’s transaction will be aborted upon 
transaction completion (that is, for subsequent communication to have any 
lasting effect, it should be done with TPNOTRAN set).

[TPESVCERR] 
An error was encountered either in invoking a service routine or during its 
completion in TPRETURN() (for example, bad arguments were passed). No 
BEA TUXEDO Reference Manual 51



TPCALL(3CBL)
reply data is returned when this error occurs (that is, neither ODATA-REC nor 
OTPTYPE-REC are changed). If the service request was made on behalf of the 
caller’s transaction (that is, TPNOTRAN was not set), then the transaction is 
marked abort-only. Note that so long as the transaction has not timed out, 
further communication may be performed before aborting the transaction and 
that any work performed on behalf of the caller’s transaction will be aborted 
upon transaction completion (that is, for subsequent communication to have 
any lasting effect, it should be done with TPNOTRAN set).

[TPEBLOCK] 
A blocking condition was found on the send portion of TPCALL and 
TPNOBLOCK was specified.

[TPGOTSIG] 
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO] 
TPCALL was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also TPACALL(), TPFORWARD(), TPGPRIO(), TPRETURN(), TPSPRIO(), tperrordetail(3), 
tpstrerrordetail(3)
52 BEA TUXEDO Reference Manual



TPCANCEL(3CBL)
TPCANCEL(3CBL)

Name TPCANCEL—cancel a communication handle for an outstanding reply

synopsis 01 TPSVCDEF-REC.
  COPY TPSVCDEF. 
 
01 TPSTATUS-REC.
  COPY TPSTATUS. 
 
CALL "TPCANCEL" USING TPSVCDEF-REC TPSTATUS-REC.

Description TPCANCEL cancels a communication handle, COMM-HANDLE IN TPSVCDEF-REC, 
returned by TPACALL(). It is an error to attempt to cancel a communication handle 
associated with a transaction.

Upon success, COMM-HANDLE is no longer valid and any reply received on behalf of 
COMM-HANDLE will be silently discarded.

Return Values Upon successful completion, TPCANCEL sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPCANCEL fails and sets TP-STATUS to: 

[TPEBADDESC]
COMM-HANDLE is an invalid communication handle.

[TPETRAN]
COMM-HANDLE is associated with the caller's transaction. COMM-HANDLE 
remains valid and the caller's current transaction is not affected.

[TPEPROTO]
TPCANCEL was called in an improper context.

[TPESYSTEM]
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS]
An operating system error has occurred.

See Also TPACALL()
BEA TUXEDO Reference Manual 53



TPCHKAUTH(3CBL)
TPCHKAUTH(3CBL)

Name TPCHKAUTH—check if authentication required to join a BEA TUXEDO system 
application

synopsis 01 TPAUTDEF-REC.
 COPY TPAUTDEF. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS.
 
 CALL "TPCHKAUTH" USING TPAUTDEF-REC TPSTATUS-REC.

Description TPCHKAUTH checks if authentication is required by the application configuration. This 
is typically used by application clients prior to calling TPINITIALIZE() to determine 
if a password should be obtained from the user.

Return Values Upon successful completion, TPCHKAUTH sets TP-STATUS to [TPOK] and sets one of the 
following values in TPAUTDEF-REC. 

TPNOAUTH 
indicates that no authentication is required.

TPSYSAUTH 
indicates that only system authentication is required.

TPAPPAUTH 
indicates that both system and application specific authentication are 
required.

Errors Under the following conditions, TPCHKAUTH fails and sets TP-STATUS to: 

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

Portability The interfaces described in TPCHKAUTH() are supported on UNIX System and 
MS-DOS operating systems. However, signal-based notification is not supported on 
MS-DOS. If it is selected at TPCHKAUTH() time, then a USERLOG() message is 
generated and the method is automatically set to dip-in.

See Also TPINITIALIZE()
54 BEA TUXEDO Reference Manual



TPCHKUNSOL(3CBL)
TPCHKUNSOL(3CBL)

Name TPCHKUNSOL—check for unsolicited message

synopsis 01 MSG-NUM PIC S9(9) COMP-5. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPCHKUNSOL" USING MSG-NUM TPSTATUS-REC.

Description TPCHKUNSOL is used by a client to trigger checking for unsolicited messages. Calls to 
this routine in a client using signal-based notification do nothing and return 
immediately. Calls to this routine can result in calls to an application-defined 
unsolicited message handling routine by the BEA TUXEDO system libraries.

Return Values Upon successful completion, TPCHKUNSOL sets TP-STATUS to [TPOK] and returns the 
number of unsolicited messages dispatched in MSG-NUM.

Errors Under the following conditions, TPCHKUNSOL fails and sets TP-STATUS to: 

[TPEPROTO] 
TPCHKUNSOL was called in an improper context (e.g., from within a server).

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

Portability The interfaces described in TPNOTIFY() are supported on native site UNIX-based 
processors. In addition, the routines TPBROADCAST() and TPCHKUNSOL() as well as the 
routine TPSETUNSOL are supported on UNIX and MS-DOS workstation processors.

Clients that select signal-based notification may not be signal-able by the system due 
to signal restrictions. When this occurs, the system generates a log message that it is 
switching notification for the selected client to dip-in and the client is notified then and 
thereafter via dip-in notification. (See ubbconfig(5) description of the RESOURCES 
NOTIFY parameter for a detailed discussion of notification methods) Note that 
signaling of clients is always done by the system so that the behavior of notification is 
consistent regardless of where the originating notification call is made. Because of this, 
only clients running as the application administrator can use signal-based notification. 
The id for the application administrator is identified as part of the configuration file for 
the application.
BEA TUXEDO Reference Manual 55



TPCHKUNSOL(3CBL)
If signal-based notification is selected for a client, then certain ATMI calls can fail, 
returning TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not 
specified. See ubbconfig(5) and TPINITIALIZE() for more information on 
notification method selection.

See Also TPBROADCAST(), TPINITIALIZE(), TPNOTIFY(), TPSETUNSOL()
56 BEA TUXEDO Reference Manual



TPCLOSE(3CBL)
TPCLOSE(3CBL)

Name TPCLOSE—close the BEA TUXEDO system resource manager

synopsis 01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPCLOSE" USING TPSTATUS-REC.

Description TPCLOSE tears down the association between the caller and the resource manager to 
which it is linked. Since resource managers differ in their close semantics, the 
specific information needed to close a particular resource manager is placed in a 
configuration file.

If a resource manager is already closed (that is, TPCLOSE is called more than once), no 
action is taken and success is returned.

Return Values Upon successful completion, TPCLOSE sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPCLOSE fails and sets TP-STATUS to: 

[TPERMERR] 
A resource manager failed to close correctly. More information concerning 
the reason a resource manager failed to close can be obtained by interrogating 
a resource manager in its own specific manner. Note that any calls to 
determine the exact nature of the error hinder portability.

[TPEPROTO] 
TPCLOSE was called in an improper context (for example, while the caller is 
in transaction mode).

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also TPOPEN()
BEA TUXEDO Reference Manual 57



TPCOMMIT(3CBL)
TPCOMMIT(3CBL)

Name TPCOMMIT—commit current BEA TUXEDO system transaction

synopsis 01 TPTRXDEF-REC.
 COPY TPTRXDEF. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPCOMMIT" USING TPTRXDEF-REC TPSTATUS-REC

Description TPCOMMIT signifies the end of a transaction, using a two-phase commit protocol to 
coordinate participants. TPCOMMIT can be called only by the initiator of a transaction. 
If any of the participants cannot commit the transaction (for example, they call 
TPRETURN() with TPFAIL), then the entire transaction is aborted and TPCOMMIT fails. 
That is, all of the work involved in the transaction is undone. If all participants agree 
to commit their portion of the transaction, then this decision is logged to stable storage 
and all participants are asked to commit their work.

Depending on the setting of the TP-COMMIT-CONTROL characteristic (see TPSCMT()), 
TPCOMMIT can return successfully either after the commit decision has been logged or 
after the two-phase commit protocol has completed. If TPCOMMIT returns after the 
commit decision has been logged but before the second phase has completed 
(TP-CMT-LOGGED), then all participants have agreed to commit the work they did on 
behalf of the transaction and should fulfill their promise to commit the transaction 
during the second phase. However, because TPCOMMIT is returning before the second 
phase has completed, there is a hazard that one or more of the participants can 
heuristically complete their portion of the transaction (in a manner that is not consistent 
with the commit decision) even though the routine has returned success.

If the TP-COMMIT-CONTROL characteristic is set such that TPCOMMIT returns after the 
two-phase commit protocol has completed (TP-CMT-COMPLETE), then its return value 
reflects the exact status of the transaction (that is, whether the transaction heuristically 
completed or not).

Note that if only a single resource manager is involved in a transaction, then a 
one-phase commit is performed (that is, the resource manager is not asked whether or 
not it can commit; it is simply told to commit). In this case, the TP-COMMIT-CONTROL 
characteristic has no bearing and TPCOMMIT will return heuristic outcomes if present.
58 BEA TUXEDO Reference Manual



TPCOMMIT(3CBL)
If TPCOMMIT is called while communication handles exist for outstanding replies, then 
upon return from TPCOMMIT, the transaction is aborted and those handles associated 
with the caller’s transaction are no longer valid. Communication handles not associated 
with the caller’s transaction remain valid.

TPCOMMIT must be called after all connections associated with the caller’s transaction 
are closed (otherwise [TPEABORT] is returned, the transaction is aborted and these 
connections are disconnected in a disorderly fashion with a TPEV-DISCONIMM event). 
Connections opened before TPBEGIN() or with the TPNOTRAN setting (that is, 
connections not in transaction mode) are not affected by calls to TPCOMMIT or 
TPABORT().

Currently, TPCOMMIT’s argument, TPTRXDEF-REC, is reserved for future use.

Return Values Upon successful completion, TPCOMMIT sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPCOMMIT fails and sets TP-STATUS to: 

[TPEINVAL] 
TPTRXDEF-REC is not equal to 0. The caller’s transaction is not affected.

[TPETIME] 
The transaction timed out and the status of the transaction is unknown (that 
is, it can have been either committed or aborted). Note that if the transaction 
timed out and its status is known to be aborted, then [TPEABORT] is returned.

[TPEABORT] 
The transaction could not commit because either the work performed by the 
initiator or by one or more of its participants could not commit. This error is 
also returned if TPCOMMIT is called with outstanding replies or open 
conversational connections.

[TPEHEURISTIC] 
Due to a heuristic decision, the work done on behalf of the transaction was 
partially committed and partially aborted.

[TPEHAZARD] 
Due to some failure, the work done on behalf of the transaction can have been 
heuristically completed.

[TPEPROTO] 
TPCOMMIT was called in an improper context (for example, by a participant).
BEA TUXEDO Reference Manual 59



TPCOMMIT(3CBL)
[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

Notices When using TPBEGIN(), TPCOMMIT, and TPABORT() to delineate a BEA TUXEDO 
system transaction, it is important to remember that only the work done by a resource 
manager that meets the XA interface (and is linked to the caller appropriately) has 
transactional properties. All other operations performed in a transaction are not 
affected by either TPCOMMIT or TPABORT(). See buildserver(1) for details on linking 
resource managers that meet the XA interface into a server such that operations 
performed by that resource manager are part of a BEA TUXEDO system transaction.

See Also TPABORT(), TPBEGIN(), TPCONNECT(), TPGETLEV(), TPRETURN(), TPSCMT()
60 BEA TUXEDO Reference Manual



TPCONNECT(3CBL)
TPCONNECT(3CBL)

Name TPCONNECT—establish a conversational connection

synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF. 
 
01 TPTYPE-REC.
 COPY TPTYPE. 
 
01 DATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPCONNECT" USING TPSVCDEF-REC TPTYPE-REC DATA-REC 
TPSTATUS-REC.

Description TPCONNECT allows a program to set up a half-duplex connection to a conversational 
service, SERVICE-NAME in TPSVCDEF-REC. The name must be one of the 
conversational service names posted by a conversational server.

As part of setting up a connection, the caller can pass application defined data to the 
receiving service routine. If the caller chooses to pass data, then DATA-REC contains 
the data and LEN in TPTYPE-REC specifies how much of the record to send. Note that 
if DATA-REC is a record of a type that does not require a length to be specified, then 
LEN is ignored (and may be 0). If REC-TYPE in TPTYPE-REC is SPACES, DATA-REC and 
LEN are ignored (no application data is passed to the conversational service). 
REC-TYPE and SUB-TYPE in TPTYPE-REC must match one of the types and sub-types 
recognized by SERVICE-NAME.

Because the conversational service receives DATA-REC and LEN upon successful return 
from TPSVCSTART(), the service does not call TPRECV() to get the data sent by 
TPCONNECT.
BEA TUXEDO Reference Manual 61



TPCONNECT(3CBL)
Following is a list of valid settings in TPSVCDEF-REC. 

TPNOTRAN 
If the caller is in transaction mode and this setting is used, then when 
SERVICE-NAME is invoked, it is not performed on behalf of the caller’s 
transaction. If SERVICE-NAME belongs to a server that does not support 
transactions, then this setting must be used when the caller is in transaction 
mode. A caller in transaction mode that uses this setting is still subject to the 
transaction timeout (and no other). If a service fails that was invoked with this 
setting, the caller’s transaction is not affected. Either TPNOTRAN or TPTRAN 
must be set.

TPTRAN 
If the caller is in transaction mode and this setting is used, then when 
SERVICE-NAME is invoked, it is performed on behalf of the caller’s 
transaction. This setting is ignored if the caller is not in transaction mode. 
Either TPNOTRAN or TPTRAN must be set.

TPSENDONLY 
The caller wants the connection to be set up initially such that it can only send 
data and the called service can only receive data (that is, the caller initially 
has control of the connection). Either TPSENDONLY or TPRECVONLY must be 
specified.

TPRECVONLY 
The caller wants the connection to be set up initially such that it can only 
receive data and the called service can only send data (that is, the service 
being called initially has control of the connection). Either TPSENDONLY or 
TPRECVONLY must be specified.

TPNOBLOCK 
The connection is not established and the data is not sent if a blocking 
condition exists (for example, the data buffers through which the message is 
sent are full). Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK 
When TPBLOCK is specified and a blocking condition exists, the caller blocks 
until the condition subsides or a timeout occurs (either transaction or blocking 
timeout). Either TPNOBLOCK or TPBLOCK must be set.
62 BEA TUXEDO Reference Manual



TPCONNECT(3CBL)
TPNOTIME 
This setting signifies that the caller is willing to block indefinitely and wants 
to be immune to blocking timeouts. Transaction timeouts will still affect the 
program. Either TPNOTIME or TPTIME must be set.

TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted call is 
re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT 
When TPNOSIGRSTRT is specified and a signal is received, the call fails and 
TP-STATUS is set to TPGOTSIG. Either TPNOSIGRSTRT or TPSIGRSTRT must 
be set.

Return Values Upon successful completion, TPCONNECT sets TP-STATUS to [TPOK] and returns a 
communications handle in COMM-HANDLE in TPSVCDEF-REC that is used to refer to the 
connection in subsequent calls.

Errors Under the following conditions, TPCONNECT fails and sets TP-STATUS to (unless 
otherwise noted, failure does not affect the caller’s transaction, if one exists). 

[TPEINVAL] 
Invalid arguments were given (for example, settings in TPSVCDEF-REC are 
invalid).

[TPENOENT] 
Can not initiate a connection to SERVICE-NAME because it does not exist or is 
not a conversational service.

[TPEITYPE] 
The pair REC-TYPE and SUB-TYPE is not one of the allowed types and 
sub-types that SERVICE-NAME accepts.

[TPELIMIT] 
The connection was not sent because the maximum number of outstanding 
connections has been reached.
BEA TUXEDO Reference Manual 63



TPCONNECT(3CBL)
[TPETRAN] 
SERVICE-NAME belongs to a program that does not support transactions and 
TPNOTRAN was not set.

[TPETIME] 
A timeout occurred. If the caller is in transaction mode, then a transaction 
timeout occurred and the transaction is marked abort-only; otherwise, a 
blocking timeout occurred and both TPBLOCK and TPTIME were specified. If 
a transaction timeout occurred, then any attempts to send or receive messages 
on any connections or to start a new connection will fail with [TPETIME] until 
the transaction has been aborted.

[TPEBLOCK] 
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG] 
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO] 
TPCONNECT was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also TPDISCON(), TPRECV(), TPSEND()
64 BEA TUXEDO Reference Manual



TPDEQUEUE(3CBL)
TPDEQUEUE(3CBL)

Name TPDEQUEUE—routine to dequeue a message from a queue

synopsis 01 TPQUEDEF-REC.
 COPY TPQUEDEF. 
 
01 TPTYPE-REC.
 COPY TPTYPE. 
 
01 DATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY STATDEF. 
 
CALL "TPDEQUEUE" USING TPQUEDEF-REC TPTYPE-REC DATA-REC 
TPSTATUS-REC.

Description TPDEQUEUE dequeues a message for processing from the queue named by QNAME in the 
QSPACE-NAME queue space.

By default, the message at the top of the queue is dequeued. The default order of 
messages on the queue is defined when the queue is created. The application can 
request a particular message for dequeuing by specifying its message identifier using 
MSGID. TPQUEDEF-REC settings can also be used to indicate that the application wants 
to wait for a message, in the case where a message is not currently available. See the 
section below describing this record.

DATA-REC specifies where a dequeued message is read into, and, on input LEN 
indicates the maximum number of bytes that should be moved into DATA-REC. Upon 
successful return, LEN contains the actual number of bytes moved into DATA-REC. 
REC-TYPE and SUB-TYPE contain the replies type and sub-type respectively. If the 
reply is larger than DATA-REC, then DATA-REC will contain only as many bytes as will 
fit in the record. The remainder of the reply is discarded and TPDEQUEUE fails returning 
[TPTRUNCATE].

If LEN is 0 upon successful return, then the reply has no data portion and DATA-REC 
was not modified. It is an error for LEN to be 0 on input.

The message is dequeued in transaction mode if the caller is in transaction mode and 
TPTRAN is set. This has the effect that if TPDEQUEUE returns successfully and the 
caller's transaction is committed successfully, then the message is deleted from the 
queue. If the caller's transaction is rolled back either explicitly or as the result of a 
transaction timeout or some communication error, then the message will be left on the 
BEA TUXEDO Reference Manual 65



TPDEQUEUE(3CBL)
queue (that is, the deletion of the message from the queue is also rolled back). This can 
be exploited to "peek" at a message on the queue, rolling back the transaction to leave 
the message on the queue (note that this cannot be done if TPNOTRAN is set as described 
below). It is not possible to enqueue and dequeue the same message within the same 
transaction.

The message is not dequeued in transaction mode if either the caller is not in 
transaction mode, or TPNOTRAN is set. The message is dequeued in a separate 
transaction. If a communication error or a timeout occurs (either transaction or 
blocking timeout), the application will not know whether or not the message was 
successfully dequeued and the message may be lost.

Following is a list of valid settings in TPQUEDEF-REC. 

TPNOTRAN 
If the caller is in transaction mode and this setting is used, then the message 
is not dequeued within the same transaction as the caller. A caller in 
transaction mode that sets this to true is still subject to the transaction timeout 
(and no other). If message dequeuing fails that was invoked with this setting, 
the caller’s transaction is not affected. Either TPNOTRAN or TPTRAN must be 
set.

TPTRAN 
If the caller is in transaction mode and this setting is used, then the message 
is dequeued within the same transaction as the caller. The setting is ignored 
if the caller is not in transaction mode. Either TPNOTRAN or TPTRAN must be 
set.

TPNOCHANGE 
When this setting is used, the type of DATA-REC is not allowed to change. That 
is, the type and sub-type of the dequeued message must match REC-TYPE IN 
TPTYPE-REC and SUB-TYPE IN TPTYPE-REC, respectively, so long as the 
receiver recognizes the incoming record type. Either TPNOCHANGE or 
TPCHANGE must be set.

TPCHANGE 
The type and/or subtype of the dequeued message is allowed to differ from 
those specified in REC-TYPE IN TPTYPE-REC and SUB-TYPE IN 
TPTYPE-REC, respectively, so long as the receiver recognizes the incoming 
record type. Either TPNOCHANGE or TPCHANGE must be set.
66 BEA TUXEDO Reference Manual



TPDEQUEUE(3CBL)
TPNOBLOCK 
The message is not dequeued if a blocking condition exists (for example, the 
internal buffers into which the message is transferred are full). This blocking 
condition does not include blocking on the queue itself if the TPQWAIT option 
is specified. Either TPNOBLOCK or TPBLOCK must be set.

TPBLOCK 
When TPBLOCK is specified and a blocking condition exists, the caller blocks 
until the condition subsides or a timeout occurs (either transaction or blocking 
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME 
This setting signifies that the caller is willing to block indefinitely and wants 
to be immune to blocking timeouts. Transaction timeouts may still occur. 
Either TPNOTIME or TPTIME must be set.

TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is not restarted and the routine fails. Either TPNOSIGRSTRT or 
TPSIGRSTRT must be set.

If TPDEQUEUE returns successfully, the application can retrieve additional information 
about the message using TPQUEDEF-REC. The information may include the message 
identifier for the dequeued message, a correlation identifier that should accompany any 
reply or failure message so that the originator can correlate the message with the 
original request, the name of a reply queue if a reply is desired, and the name of the 
failure queue on which the application can queue information regarding failure to 
dequeue the message. This is described below.
BEA TUXEDO Reference Manual 67



TPDEQUEUE(3CBL)
Control
Structure

TPQUEDEF-REC is used by the application program to pass and retrieve information 
associated with dequeuing the message. The settings in TPQUEDEF-REC are used to 
indicate what other elements in the structure are valid.

On input to TPDEQUEUE, the following elements may be set in the TPQUEDEF-REC:

05 MSGID   PIC X(32).
05 CORRID   PIC X(32).

Following is a list of valid settings in TPQUEDEF-REC controlling input information for 
TPDEQUEUE. 

TPQGETNEXT 
If set, it requests that the next message on the queue be dequeued, using the 
default queue order. Either TPQGETNEXT, TPQGETBYMSGID or 
TPQGETBYCORRID must be set.

TPQGETBYMSGID 
If set, it requests that the message identified by MSGID be dequeued. The 
message identifier would be one that was returned by a prior call to 
TPENQUEUE(). Note that the message identifier is not valid if the message has 
moved from one queue to another; in this case, use the correlation identifier. 
Either TPQGETNEXT, TPQGETBYMSGID or TPQGETBYCORRID must be set.

TPQGETBYCORRID 
If set, it requests that the message identified by CORRID be dequeued. The 
correlation identifier would be one that the application specified when 
enqueuing the message with TPENQUEUE. Either TPQGETNEXT, 
TPQGETBYMSGID or TPQGETBYCORRID must be set.

TPQWAIT 
This setting indicates that an error should not be returned if the queue is 
empty. Instead, the process should block until a message is available. Set 
TPQNOWAIT to not wait until a message is available. TPQWAIT cannot be set if 
either TPQGETBYMSGID or TPQGETBYCORRID is set.

On output from TPDEQUEUE, the following elements may be set in TPQUEDEF-REC:

05 PRIORITY     PIC S9(9) COMP-5. 
05 MSGID       PIC X(32). 
05 CORRID      PIC X(32). 
05 REPLYQUEUE    PIC X(15). 
05 FAILUREQUEUE   PIC X(15). 
05 DIAGNOSTIC    PIC S9(9) COMP-5. 
05 CLIENTID OCCURS 4 TIMES PIC S9(9) COMP-5 
68 BEA TUXEDO Reference Manual



TPDEQUEUE(3CBL)
05 APPL-RETURN-CODE PIC S9(9) COMP-5. 
05 APPKEY      PIC S9(9) COMP-5.

Following is a list of valid settings controlling output information from TPDEQUEUE. If 
the setting is true when TPDEQUEUE is called, the associated element in the record is 
populated if available and the setting remains true. If the value is not available, the 
setting will not be true after TPDEQUEUE completes. 

TPQPRIORITY 
If set and the value is available, the priority at which the message was queued 
is stored in PRIORITY. The priority is in the range 1 to 100, inclusive, and the 
higher the number, the higher the priority (that is, a message with a higher 
number is dequeued before a message with a lower number). If 
TPQNOPRIORITY is set, the priority is not available.

TPQMSGID 
If set and the call to TPDEQUEUE was successful, the message identifier will 
be stored in MSGID. If TPQNOMSGID is set, the message identifier is not 
available.

TPQCORRID 
If set and the call to TPDEQUEUE was successful and the message was queued 
with a correlation identifier, the value will be stored in CORRID. Any reply to 
a queue must have this correlation identifier. If TPQNOCORRID is set, the 
correlation identifier is not available.

TPQREPLYQ 
If set and the message is associated with a reply queue, the value will be 
stored in REPLYQUEUE. Any reply to the message should go to the named 
reply queue within the same queue space as the request message. If 
TPQNOREPLYQ is set, the reply queue is not available.

TPQFAILUREQ 
If set and the message is associated with a failure queue, the value will be 
stored in FAILUREQUEUE. Any failure message should go to the named failure 
queue within the same queue space as the request message. If 
TPQNOFAILUREQ is set, the failure queue is not available.

If the call to TPDEQUEUE failed and TP-STATUS is set to TPEDIAGNOSTIC, a value 
indicating the reason for failure is returned in DIAGNOSTIC. The possible values are 
defined below in the DIAGNOSTICS section.
BEA TUXEDO Reference Manual 69



TPDEQUEUE(3CBL)
Additionally on output, APPKEY is set to application authentication key, CLIENTID is 
set to the identifier for the client originating the request, and APPL-RETURN-CODE is 
set to the user-return code value that was set when the message was enqueued.

Return Values Upon successful completion, TPDEQUEUE sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPDEQUEUE fails and sets TP-STATUS to the following 
values (unless otherwise noted, failure does not affect the caller’s transaction, if one 
exists): 

[TPEINVAL] 
Invalid arguments were given (for example, QSPACE-NAME is SPACES or 
settings in TPQUEDEF-REC are invalid).

[TPENOENT] 
Cannot access the QSPACE-NAME because it is not available (the associated 
TMQUEUE(1) server is not available).

[TPEOTYPE] 
Either the REC-TYPE and SUB-TYPE of the dequeued message are not known 
to the caller; or, TPNOCHANGE was set and the REC-TYPE and SUB-TYPE do not 
match the type and sub-type of the dequeued message. Neither DATA-REC nor 
TPTYPE-REC are changed. If the call was made on behalf of the caller’s 
current transaction, then the transaction is marked abort-only and the message 
will remain on the queue.

[TPTRUNCATE] 
The size of the incoming message is larger than the size specified in LEN. 
Only LEN amount of data was moved to DATA-REC, the remaining data is 
discarded.

[TPETIME] 
A timeout occurred. If the caller is in transaction mode, then a transaction 
timeout occurred and the transaction is marked abort-only; otherwise, a 
blocking timeout occurred and both TPBLOCK and TPTIME were specified. In 
either case, neither DATA-REC nor TPTYPE-REC are changed. If a transaction 
timeout occurred, then any attempts to call TPDEQUEUE or TPENQUEUE will 
fail with TPETIME until the transaction has been aborted.

[TPEBLOCK] 
A blocking condition exists and TPBLOCK was set.

[TPGOTSIG] 
A signal was received and TPNOSIGRSTRT was set.
70 BEA TUXEDO Reference Manual



TPDEQUEUE(3CBL)
[TPEPROTO] 
TPDEQUEUE was called in an improper context. There is no effect on the queue 
or the transaction.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file. There is no effect on the queue.

[TPEOS] 
An operating system error has occurred. There is no effect on the queue.

[TPEDIAGNOSTIC] 
Dequeuing a message from the specified queue failed. The reason for failure 
can be determined by the diagnostic value returned via TPQUEDEF-REC.

DIAGNOSTIC The following diagnostic values are returned during the dequeuing of a message. 

[QMEINVAL] 
An invalid setting was specified.

[QMEBADRMID] 
An invalid resource manager identifier was specified.

[QMENOTOPEN] 
The resource manager is not currently open.

[QMETRAN] 
The call was made with TPNOTRAN set and an error occurred trying to start a 
transaction in which to dequeue the message.

[QMEBADMSGID] 
An invalid message identifier was specified for dequeuing.

[QMEINUSE] 
When dequeuing a message by correlation or message identifier, the specified 
message is in-use by another transaction. Otherwise, all messages currently 
on the queue are in-use by other transactions.

[QMESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[QMEOS] 
An operating system error has occurred.
BEA TUXEDO Reference Manual 71



TPDEQUEUE(3CBL)
[QMEABORTED] 
The operation was aborted. When executed within a global transaction, the 
global transaction has been marked rollback-only. Otherwise, the queue 
manager aborted the operation.

[QMEPROTO] 
A dequeue was done when the transaction state was not active.

[QMEBADQUEUE] 
An invalid or deleted queue name was specified.

[QMENOMSG] 
No message was available for dequeuing. Note that it is possible that the 
message exists on the queue and another application process has read the 
message from the queue. In this case, the message may be put back on the 
queue if that other process rolls back the transaction.

See Also TPENQUEUE() 
72 BEA TUXEDO Reference Manual



TPDISCON(3CBL)
TPDISCON(3CBL)

Name TPDISCON—take down a conversational connection

synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPDISCON" USING TPSVCDEF-REC TPSTATUS-REC.

Description TPDISCON immediately tears down the connection specified by COMM-HANDLE in 
TPSVCDEF-REC, the communications handle, and generates a TPEV-DISCONIMM event 
on the other end of the connection.

TPDISCON can only be called by the initiator of the conversation. TPDISCON can not be 
called within a conversational service on the communications handle with which it was 
invoked. Rather, a conversational service must use TPRETURN() to signify that it has 
completed its part of the conversation. Similarly, even though a program 
communicating with a conversational service can issue TPDISCON, the preferred way 
is to let the service tear down the connection in TPRETURN(); doing so ensures correct 
results. If the initiator of the connection is a server, then TPRETURN() can also be used 
to cause an orderly disconnection. If the initiator of the connection is in a transaction, 
then TPCOMMIT() or TPABORT() can be used to cause an orderly disconnection.

TPDISCON causes the connection to be torn down immediately (that is, abortive rather 
than orderly). Any data that has not yet reached its destination may be lost. TPDISCON 
can be issued even when the program on the other end of the connection is participating 
in the caller's transaction. In this case, the transaction is aborted. Also, the caller does 
not need to have control of the connection when TPDISCON is called.

Return Values Upon successful completion, TPDISCON sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPDISCON fails and sets TP-STATUS to: 

[TPEBADDESC] 
COMM-HANDLE is invalid or is the communications handle with which a 
conversational service was invoked.

[TPETIME] 
A timeout occurred. The communications handle is no longer valid.
BEA TUXEDO Reference Manual 73



TPDISCON(3CBL)
[TPEPROTO] 
TPDISCON was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file. The communications handle is no longer valid.

[TPEOS] 
An operating system error has occurred. The communications handle is no 
longer valid.

See Also TPABORT(), TPCOMMIT(), TPCONNECT(), TPRECV(), TPRETURN(), TPSEND()
74 BEA TUXEDO Reference Manual



TPENQUEUE(3CBL)
TPENQUEUE(3CBL)

Name TPENQUEUE—routine to enqueue a message

synopsis 01 TPQUEDEF-REC.
 COPY TPQUEDEF. 
 
01 TPTYPE-REC.
 COPY TPTYPE. 
 
01 DATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPENQUEUE" USING TPQUEDEF-REC TPTYPE-REC DATA-REC 
TPSTATUS-REC. 

Description TPENQUEUE stores a message on the queue named by QNAME in the QSPACE-NAME 
queue space. A queue space is a collection of queues, one of which must be QNAME.

When the message is intended for a BEA TUXEDO system server, the QNAME matches 
the name of a service provided by a server. The system provided server, 
TMQFORWARD(5), provides a default mechanism for dequeuing messages from the 
queue and forwarding them to servers that provide a service matching the queue name. 
If the originator expected a reply, then the reply to the forwarded service request is 
stored on the originator's (stable) queue. The originator will dequeue the reply message 
at a subsequent time. Queues can also be used for a reliable message transfer 
mechanism between any pair of BEA TUXEDO system processes (clients and/or 
servers). In this case, the queue name does not match a service name but some agreed 
upon title for transferring the message.

The data portion of a message is specified by DATA-REC and LEN in TPTYPE-REC 
specifies how much of DATA-REC to enqueue. Note that if DATA-REC is a record of a 
type that does not require a length to be specified, then LEN is ignored (and may be 0). 
If REC-TYPE in TPTYPE-REC is SPACES, DATA-REC and LEN are ignored and a message 
is enqueued with no data portion. The REC-TYPE and SUB-TYPE, both in TPTYPE-REC, 
must match one of the REC-TYPEs and SUB-TYPEs recognized by QSPACE-NAME.

The message is queued at the priority defined for QSPACE-NAME unless overridden by 
a previous call to TPSPRIO().
BEA TUXEDO Reference Manual 75



TPENQUEUE(3CBL)
If the caller is within a transaction and TPTRAN is set, the message is queued in 
transaction mode. This has the effect that if TPENQUEUE returns successfully and the 
caller’s transaction is committed successfully, then the message is guaranteed to be 
available subsequent to the transaction completing. If the caller’s transaction is rolled 
back either explicitly or as the result of a transaction timeout or some communication 
error, then the message will be deleted from the queue (that is, the placing of the 
message on the queue is also rolled back). It is not possible to enqueue then dequeue 
the same message within the same transaction.

The message is not queued in transaction mode if either the caller is not in transaction 
mode, or TPNOTRAN is set. In this case, the queued message is stored on the queue in a 
separate transaction. Once TPENQUEUE returns successfully, the submitted message is 
guaranteed to be available. If a communication error or a timeout occurs (either 
transaction or blocking timeout), the application will not know whether or not the 
message was successfully stored on the queue.

The order in which messages are placed on the queue is controlled by the application 
via TPQUEDEF-REC as described below; the default queue ordering is set when the 
queue is created.

Following is a list of valid settings in TPQUEDEF-REC. 

TPNOTRAN 
If the caller is in transaction mode and this setting is used, then the message 
is not enqueued within the same transaction as the caller. A caller in 
transaction mode that sets this to true is still subject to the transaction timeout 
(and no other). If message enqueuing fails that was invoked with this setting, 
the caller’s transaction is not affected. Either TPNOTRAN or TPTRAN must be 
set.

TPTRAN 
If the caller is in transaction mode and this setting is used, then the message 
is enqueued within the same transaction as the caller. The setting is ignored 
if the caller is not in transaction mode. Either TPNOTRAN or TPTRAN must be 
set.

TPNOBLOCK 
The message is not enqueued if a blocking condition exists (for example, the 
internal buffers into which the message is transferred are full). Either 
TPNOBLOCK or TPBLOCK must be set.
76 BEA TUXEDO Reference Manual



TPENQUEUE(3CBL)
TPBLOCK 
When TPBLOCK is specified and a blocking condition exists, the caller blocks 
until the condition subsides or a timeout occurs (either transaction or blocking 
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME 
This setting signifies that the caller is willing to block indefinitely and wants 
to be immune to blocking timeouts. Transaction timeouts may still occur. 
Either TPNOTIME or TPTIME must be set.

TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is not restarted and the routine fails. Either TPNOSIGRSTRT or 
TPSIGRSTRT must be set.

Additional information about queuing the message can be specified via 
TPQUEDEF-REC. This information includes values to override the default queue 
ordering placing the message at the top of the queue or before an enqueued message; 
an absolute or relative time after which a queued message is made available; a 
correlation identifier that aids in correlating a reply or failure message with the queued 
message; the name of a queue to which a reply should be enqueued; and the name of a 
queue to which any failure message should be enqueued.

Control
Parameter

TPQUEDEF-REC is used by the application program to pass and retrieve information 
associated with enqueuing the message. Settings are used to indicate what elements in 
the record are valid.

On input to TPENQUEUE, the following elements may be set in TPQUEDEF-REC: 

05 DEQ-TIME      PIC S9(9) COMP-5. 
05 PRIORITY      PIC S9(9) COMP-5. 
05 MSGID         PIC X(32). 
05 CORRID        PIC X(32). 
05 REPLYQUEUE    PIC X(15). 
BEA TUXEDO Reference Manual 77



TPENQUEUE(3CBL)
05 FAILUREQUEUE  PIC X(15). 
05 APPL-RETURN-CODE PIC S9(9) COMP-5.

The following values indicate what values are set in the TPQUEDEF-REC. 

TPQTOP 
Setting this value indicates that the queue ordering be overridden and the 
message placed at the top of the queue. This request may not be granted 
depending on whether or not the queue was configured to allow overriding 
the queue ordering. Set TPQDEFAULT to use default queue ordering. TPQTOP, 
TPQBEFOREMSGID, or TPQDEFAULT must be set.

TPQBEFOREMSGID 
Setting this value indicates that the queue ordering be overridden and the 
message placed in the queue before the message identified by MSGID. This 
request may not be granted depending on whether or not the queue was 
configured to allow overriding the queue ordering. Set TPQDEFAULT to use 
default queue ordering. TPQTOP, TPQBEFOREMSGID, or TPQDEFAULT must 
be set.

TPQTIME-ABS 
If set, the message is made available after the time specified by DEQ-TIME. 
DEQ-TIME is an absolute time value as generated by time() or mktime() (the 
number of seconds since 00:00:00 UTC, January 1, 1970). Set TPQNOTIME if 
neither an absolute or relative time value is set. TPQTIME-ABS, 
TPQTIME-REL, or TPQNOTIME must be set.

TPQTIME-REL 
If set, the message is made available after a time relative to the completion of 
the queuing transaction. DEQ-TIME specifies the number of seconds to delay 
after the transaction completes before the submitted message should be 
available. Set TPQNOTIME if neither an absolute or relative time value is set. 
TPQTIME-ABS, TPQTIME-REL, or TPQNOTIME must be set.

TPQPRIORITY 
If set, the priority at which the message should be enqueued is stored in 
PRIORITY. The priority must be in the range 1 to 100, inclusive. The higher 
the number, the higher the priority (that is, a message with a higher number 
is dequeued before a message with a lower number). Set TPQNOPRIORITY if 
a priority value is not available.
78 BEA TUXEDO Reference Manual



TPENQUEUE(3CBL)
TPQCORRID 
If set, the correlation identifier value specified in CORRID is available when a 
message is dequeued with TPDEQUEUE(). This identifier accompanies any 
reply or failure message that is queued such that an application can correlate 
a reply with a particular request. Set TPQNOCORRID if a correlation identifier 
is not available.

TPQREPLYQ 
If set, a reply queue named in REPLYQUEUE is associated with the queued 
message. Any reply to the message will be queued to the named queue within 
the same queue space as the request message. Set TPQNOREPLYQ if a reply 
queue name is not available.

TPQFAILUREQ 
If set, a failure queue named in FAILUREQUEUE is associated with the queued 
message. If a failure occurs when the enqueued message is subsequently 
dequeued, a failure message will go to the named queue within the same 
queue space as the original request message. Set TPQNOFAILUREQ if a failure 
queue name is not available.

Additionally, APPL-RETURN-CODE can be set with a user-return code. This value will 
be returned to the application that dequeues the message.

On output from TPENQUEUE, the following elements may be set in TPQUEDEF-REC: 

05 MSGID    PIC X(32). 
05 DIAGNOSTIC PIC S9(9) COMP-5.

Following is a list of valid settings controlling output information from TPENQUEUE. If 
the setting is true when TPENQUEUE is called, the associated element in the record is 
populated if available and the setting remains true. If the value is not available, the 
setting will not be true after TPENQUEUE completes. 

TPQMSGID 
If set and the call to TPENQUEUE was successful, the message identifier will 
be stored in MSGID. TPQNOMSGID is set if a message identifier is not available.

If the call to TPENQUEUE failed and TP-STATUS is set to TPEDIAGNOSTIC, a value 
indicating the reason for failure is returned in DIAGNOSTIC. The possible values are 
defined below in the DIAGNOSTICS section.

Return Values Upon successful completion, TPENQUEUE sets TP-STATUS to [TPOK].
BEA TUXEDO Reference Manual 79



TPENQUEUE(3CBL)
Errors Under the following conditions, TPENQUEUE fails and sets TP-STATUS to the following 
values (unless otherwise noted, failure does not affect the caller’s transaction, if one 
exists). 

[TPEINVAL] 
Invalid arguments were given (for example, QSPACE-NAME is SPACES or 
settings in TPQUEDEF-REC are invalid).

[TPENOENT] 
Cannot access the QSPACE-NAME because it is not available (the associated 
TMQUEUE(5) server is not available).

[TPETIME] 
A timeout occurred. If the caller is in transaction mode, then a transaction 
timeout occurred and the transaction is marked abort-only; otherwise, a 
blocking timeout occurred and both TPBLOCK and TPTIME were specified. If 
a transaction timeout occurred, then any attempts to call TPDEQUEUE or 
TPENQUEUE will fail with TPETIME until the transaction has been aborted.

[TPEBLOCK] 
A blocking condition exists and TPBLOCK was set.

[TPGOTSIG] 
A signal was received and TPNOSIGRSTRT was set.

[TPEPROTO] 
TPENQUEUE was called in an improper context. There is no effect on the queue 
or the transaction.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file. There is no effect on the queue.

[TPEOS] 
An operating system error has occurred. There is no effect on the queue.

[TPEDIAGNOSTIC] 
Enqueuing a message from the specified queue failed. The reason for failure 
can be determined by the diagnostic value returned via TPQUEDEF-REC.
80 BEA TUXEDO Reference Manual



TPENQUEUE(3CBL)
Diagnostic
Values

The following diagnostic values are returned during the enqueuing of a message. 

[QMEINVAL] 
An invalid setting was specified.

[QMEBADRMID] 
An invalid resource manager identifier was specified.

[QMENOTOPEN] 
The resource manager is not currently open.

[QMETRAN] 
The call was made with the TPNOTRAN setting and an error occurred trying to 
start a transaction in which to enqueue the message.

[QMEBADMSGID] 
An invalid message identifier was specified.

[QMESYSTEM] 
A system error has occurred. The exact nature of the error is written to a log 
file.

[QMEOS] 
An operating system error has occurred.

[QMEABORTED] 
The operation was aborted. When executed within a global transaction, the 
global transaction has been marked rollback-only. Otherwise, the queue 
manager aborted the operation.

[QMEPROTO] 
An enqueue was done when the transaction state was not active.

[QMEBADQUEUE] 
An invalid or deleted queue name was specified.

[QMENOSPACE] 
There is no space on the queue for the message.

See Also TMQFORWARD(5), TMQUEUE(5), TPDEQUEUE(), TPSPRIO()
BEA TUXEDO Reference Manual 81



TPFORWAR(3CBL)
TPFORWAR(3CBL)

Name TPFORWAR—forward a BEA TUXEDO system service request to another routine

synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF. 
 
01 TPTYPE-REC.
 COPY TPTYPE. 
 
01 DATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS.
 
COPY TPFORWAR REPLACING TPSVCDEF-REC BY TPSVCDEF-REC
 TPTYPE-REC BY TPTYPE-REC
 DATA-REC BY DATA-REC
 TPSTATUS-REC BY TPSTAUS-REC 

Description TPFORWAR allows a service routine to forward a client's request to another service 
routine for further processing. Since TPFORWAR contains an EXIT PROGRAM statement, 
it should be called from within the same routine that was invoked to ensure correct 
return of control to the BEA TUXEDO system dispatcher (that is, TPFORWAR should 
not be invoked in a sub-program of the service routine since control would not return 
to the BEA TUXEDO system dispatcher). TPFORWAR cannot be called from within a 
conversational service.

This routine forwards a request to the service named by SERVICE-NAME in 
TPSVCDEF-REC using data contained in DATA-REC. A service routine forwarding a 
request receives no reply. After the request is forwarded, the service routine returns to 
the BEA TUXEDO system dispatcher and the server is free to do other work. Note that 
because no reply is expected from a forwarded request, the request may be forwarded 
without error to any service routine in the same executable as the service which 
forwarded the request.

If the service routine is in transaction mode, this routine puts the caller's portion of the 
transaction in a state where it may be completed when the originator of the transaction 
issues either TPCOMMIT() or TPABORT(). If a transaction was explicitly started with 
TPBEGIN(3) while in a service routine, the transaction must be ended with either 
TPCOMMIT() or TPABORT() before calling TPFORWAR. Thus, all services in a "forward 
chain" are either all started in transaction mode or none are started in transaction mode.
82 BEA TUXEDO Reference Manual



TPFORWAR(3CBL)
The last server in a forward chain sends a reply back to the originator of the request 
using TPRETURN(). In essence, TPFORWAR transfers to another server the responsibility 
of sending a reply back to the awaiting requester.

TPFORWAR should be called after receiving all replies expected from service requests 
initiated by the service routine. Any outstanding replies which are not received will 
automatically be dropped by the BEA TUXEDO system dispatcher upon receipt. In 
addition, the communications handle for those replies become invalid and the request 
is not forwarded to SERVICE-NAME.

DATA-REC is the record to be sent and LEN in TPTYPE-REC specifies the amount of data 
in DATA-REC that should be sent. Note that if DATA-REC is a record of a type that does 
not require a length to be specified, then LEN is ignored (and may be 0). If REC-TYPE 
in TPTYPE-REC is SPACES, DATA-REC and LEN are ignored and a request with zero 
length data is sent. If REC-TYPE is STRING and LEN is 0, then the request is sent with 
no data portion.

Since the service routine writer does not regain control after calling TPFORWAR, a 
blocking send with signal restart is used (i.e., TPSIGRSTRT is implied). Currently, 
settings in TPSVCDEF-REC are reserved for future use and any specified are ignored. 
TPACALL()).

Return Values A service routine does not return any value to its caller, the BEA TUXEDO system 
dispatcher. Thus, TP-STATUS is not set.

Errors If any errors occur either in the handling of the parameters passed to the routine or in 
its processing, a "failed" message is sent back to the original requester (unless no reply 
is to be sent). The existence of outstanding replies or subordinate connections, or the 
caller’s transaction being marked abort-only, qualify as failures which generate failed 
messages. Failed messages are detected by the requester with the TPESVCERR error 
indication. When such an error occurs, the caller’s data is not sent. Also, this error 
causes the caller’s current transaction to be marked abort-only.

If a transaction timeout occurs either while in the service routine or while forwarding 
the request, the requester waiting for a reply with either TPCALL(), or TPGETRPLY() will 
get a TPETIME error return. Also, the waiting requester will not receive any data. 
Service routines, however, are expected to terminate using either TPRETURN() or 
TPFORWAR. A conversational service routine must use TPRETURN(), and cannot use 
TPFORWAR.

If a service routine returns without using either TPRETURN() or TPFORWAR or TPFORWAR 
is called from a conversational server, the server will print a warning message in a log 
file and return a service error to the original requester. All open connections to 
BEA TUXEDO Reference Manual 83



TPFORWAR(3CBL)
subordinates will be disconnected immediately, and any outstanding asynchronous 
replies will be marked stale. If the server was in transaction mode at the time of failure, 
the transaction is marked abort-only. Note also that if either TPRETURN() or TPFORWAR 
are used outside of a service routine (e.g., in clients, or in TPSVRINIT() or 
TPSVRDONE()), then these routines simply return having no effect.

See Also TPCONNECT(), TPRETURN(), tperrordetail(3), tpstrerrordetail(3)
84 BEA TUXEDO Reference Manual



TPGETLEV(3CBL)
TPGETLEV(3CBL)

Name TPGETLEV—check if a BEA TUXEDO system transaction is in progress

synopsis 01 TPTRXLEV-REC.
 COPY TPTRXLEV. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPGETLEV" USING TPTRXLEV-REC TPSTATUS-REC.

Description TPGETLEV returns to the caller the current transaction level. Currently, the only levels 
defined are TP-NOT-IN-TRAN and TP-IN-TRAN.

Return Values Upon successful completion, TPGETLEV sets TP-STATUS to [TPOK] and sets values in 
TPTRXLEV-REC to either a TP-NOT-IN-TRAN to indicate that no transaction is in 
progress, or TP-IN-TRAN to indicate that a transaction is in progress.

Errors Under the following conditions, TPGETLEV fails and sets TP-STATUS to: 

[TPEPROTO] 
TPGETLEV was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

Notices When using TPBEGIN(), TPCOMMIT() and TPABORT() to delineate a BEA TUXEDO 
system transaction, it is important to remember that only the work done by a resource 
manager that meets the XA interface (and is linked to the caller appropriately) has 
transactional properties. All other operations performed in a transaction are not 
affected by either TPCOMMIT() or TPABORT(). See buildserver(1) for details on 
linking resource managers that meet the XA interface into a server such that operations 
performed by that resource manager are part of a BEA TUXEDO system transaction.

See Also TPABORT(), TPBEGIN(), TPCOMMIT(), TPSCMT()
BEA TUXEDO Reference Manual 85



TPGETRPLY(3CBL)
TPGETRPLY(3CBL)

Name TPGETRPLY—get reply from asynchronous message

synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF. 
 
01 TPTYPE-REC.
 COPY TPTYPE. 
 
01 DATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPGETRPLY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC 
TPSTATUS-REC.

Description TPGETRPLY returns a reply from a previously sent request. TPGETRPLY either returns a 
reply for a particular request, or it returns any reply that is available. Both options are 
described below.

DATA-REC specifies where the reply is to be read into and, on input, LEN in 
TPTYPE-REC indicates the maximum number of bytes that should be moved into 
DATA-REC. Also, REC-TYPE in TPTYPE-REC must be specified. Upon successful return 
from TPGETRPLY, LEN contains the actual number of bytes moved into DATA-REC, 
REC-TYPE and SUB-TYPE, both in TPTYPE-REC, contain the data's type and sub-type, 
respectively. If the reply is larger than DATA-REC, then DATA-REC will contain only as 
many bytes as will fit in the record. The remainder of the reply is discarded and 
TPGETRPLY sets TPTRUNCATE.

If LEN is 0 upon successful return, then the reply has no data portion and DATA-REC 
was not modified. It is an error for LEN to be 0 on input.

Following is a list of valid settings in TPSVCDEF-REC. 

TPGETANY 
This setting signifies that TPGETRPLY should ignore the communications 
handle indicated by COMM-HANDLE in TPSVCDEF-REC, return any reply 
available and set COMM-HANDLE to the communications handle for the reply 
returned. If no replies exist, TPGETRPLY can wait for one to arrive. Either 
TPGETANY or TPGETHANDLE must be set.

TPGETHANDLE 
This setting signifies that TPGETRPLY should use the communications handle 
identified by COMM-HANDLE and return a reply available for that 
86 BEA TUXEDO Reference Manual



TPGETRPLY(3CBL)
COMM-HANDLE. If no replies exist, TPGETRPLY can wait for one to arrive. 
Either TPGETANY or TPGETHANDLE must be set.

TPNOCHANGE 
When this value is set, the type of DATA-REC is not allowed to change. That 
is, the type and sub-type of the reply record must match REC-TYPE and 
SUB-TYPE, respectively. Either TPNOCHANGE or TPCHANGE must be set.

TPCHANGE 
The type and/or subtype of the reply record differs from REC-TYPE and 
SUB-TYPE, respectively, so long as the receiver recognizes the incoming 
record type. Either TPNOCHANGE or TPCHANGE must be set.

TPNOBLOCK 
TPGETRPLY does not wait for the reply to arrive. If the reply is available, then 
TPGETRPLY gets the reply and returns. Either TPNOBLOCK or TPBLOCK must 
be set.

TPBLOCK 
When TPBLOCK is specified and no data is available, the caller blocks until the 
reply arrives or a timeout occurs (either transaction or blocking timeout). 
Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME 
This setting signifies that the caller is willing to block indefinitely for its reply 
and wants to be immune to blocking timeouts. Transaction timeouts may still 
occur. Either TPNOTIME or TPTIME must be set.

TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is not restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT 
must be set.

Except as noted below, COMM-HANDLE is no longer valid after its reply is received.
BEA TUXEDO Reference Manual 87



TPGETRPLY(3CBL)
Return Values Upon successful completion, TPGETRPLY sets TP-STATUS to [TPOK]. When 
TP-STATUS is set to TPOK or TPESVCFAIL, APPL-RETURN-CODE in TPSTATUS-REC 
contains an application defined value that was sent as part of TPRETURN. If the size of 
the incoming message was larger then the size specified in LEN on input, TPTRUNCATE 
is set and only LEN amount of data was moved to DATA-REC, the remaining data is 
discarded.

Errors Under the following conditions, TPGETRPLY fails and sets TP-STATUS as indicated 
below. Note that if TPGETHANDLE is set, then COMM-HANDLE is invalidated unless 
otherwise stated. If TPGETANY is set, then COMM-HANDLE identifies the communications 
handle for the reply on which the failure occurred; if an error occurred before a reply 
could be retrieved, then COMM-HANDLE is 0. Also, the failure does not affect the caller’s 
transaction, if one exists, unless otherwise stated. 

[TPEINVAL] 
Invalid arguments were given (for example, settings in TPSVCDEF-REC are 
invalid).

[TPEOTYPE] 
Either the type and sub-type of the reply are not known to the caller; or, 
TPNOCHANGE was set and the REC-TYPE and SUB-TYPE do not match the type 
and sub-type of the reply sent by the service. Neither DATA-REC nor 
TPTYPE-REC are changed. If the reply was to be received on behalf of the 
caller’s current transaction, then the transaction is marked abort-only since the 
reply is discarded.

[TPEBADDESC] 
COMM-HANDLE contains an invalid communications handle.

[TPETIME] 
A timeout occurred. If the caller is in transaction mode, then a transaction 
timeout occurred and the transaction is marked abort-only; otherwise, a 
blocking timeout occurred and both TPBLOCK and TPTIME were specified. In 
either case, neither DATA-REC nor TPTYPE-REC are changed. If TPGETHANDLE 
was set, COMM-HANDLE remains valid unless the caller is in transaction mode. 
If a transaction timeout occurred, then any attempts to send new requests or 
receive outstanding replies will fail with [TPETIME] until the transaction has 
been aborted.

[TPESVCFAIL] 
The service routine sending the caller’s reply called TPRETURN() with TPFAIL. 
This is an application-level failure. The contents of the service’s reply, if one 
was sent, is available in DATA-REC. APPL-RETURN-CODE contains an 
88 BEA TUXEDO Reference Manual



TPGETRPLY(3CBL)
application defined value that was sent as part of TPRETURN. If the reply was 
received on behalf of the caller’s transaction, then the transaction is marked 
abort-only. Note that so long as the transaction has not timed out, further 
communication may be performed before aborting the transaction and that 
any work performed on behalf of the caller’s transaction will be aborted upon 
transaction completion (that is, for subsequent communication to have any 
lasting effect, it should be done with TPNOTRAN set).

[TPESVCERR] 
An error was encountered by a service routine during its completion in 
TPRETURN() or TPFORWAR() (for example, bad arguments were passed). No 
reply data is returned when this error occurs (that is, neither DATA-REC nor 
TPTYPE-REC are changed). If the reply was received on behalf of the caller’s 
transaction, then the transaction is marked abort-only. Note that so long as the 
transaction has not timed out, further communication may be performed 
before aborting the transaction and that any work performed on behalf of the 
caller’s transaction will be aborted upon transaction completion (that is, for 
subsequent communication to have any lasting effect, it should be done with 
TPNOTRAN set).

[TPEBLOCK] 
A blocking condition exists and TPNOBLOCK was specified. COMM-HANDLE 
remains valid.

[TPGOTSIG] 
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO] 
TPGETRPLY was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also TPACALL(), TPCANCEL(), TPRETURN(), tperrordetail(3), tpstrerrordetail(3)
BEA TUXEDO Reference Manual 89



TPGETUNSOL(3CBL)
TPGETUNSOL(3CBL)

Name TPGETUNSOL—get unsolicited message

synopsis 01 TPTYPE-REC.
 COPY TPTYPE. 
 
01 DATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPGETUNSOL" USING TPTYPE-REC DATA-REC TPSTATUS-REC.

Description TPGETUNSOL gets unsolicited messages that were sent via TPBROADCAST() or 
TPNOTIFY(). This routine may only be called from an unsolicited message handler.

Upon successful return, LEN IN TPTYPE_REC contains the actual number of bytes 
moved into DATA-REC. REC-TYPE and SUB-TYPE, both in TPTYPE-REC, contain the 
data's type and sub-type, respectively. If the message is larger than DATA-REC, then 
DATA-REC will contain only as many bytes as will fit in the record. The remainder of 
the message is discarded and sets TPTRUNCATE. If LEN is 0, upon successful 
completion, then the message has no data portion and DATA-REC was not modified.

It is an error for LEN to be 0 on input.

Return Values Upon successful completion, TPGETUNSOL sets TP-STATUS to [TPOK]. If the size of the 
incoming message was larger then the size specified in LEN on input, TPTRUNCATE is 
set and only LEN amount of data was moved to DATA-REC, the remaining data is 
discarded.

Errors Under the following conditions, TPGETUNSOL fails and sets TP-STATUS to: 

[TPEINVAL] 
Invalid arguments were given.

[TPEPROTO] 
TPGETUNSOL was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.
90 BEA TUXEDO Reference Manual



TPGETUNSOL(3CBL)
See Also TPSETUNSOL()
BEA TUXEDO Reference Manual 91



TPGPRIO(3CBL)
TPGPRIO(3CBL)

Name TPGPRIO—get service request priority

synopsis 01 TPPRIDEF-REC.
 COPY TPPRIDEF. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPGPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

Description TPGPRIO returns the priority for the last request sent or received. Priorities can range 
from 1 to 100, inclusive, with 100 being the highest priority. TPGPRIO may be called 
after TPCALL() or TPACALL(), (also TPENQUEUE() or TPDEQUEUE(), assuming the 
queued management facility is installed), and the priority returned is for the request 
sent. Also, TPGPRIO may be called within a service routine to find out at what priority 
the invoked service was sent. TPGPRIO may be called any number of times and will 
return the same value until the next request is sent.

Since the conversation primitives are not associated with priorities, issuing TPSEND() 
or TPRECV() has no effect on the priority returned by TPGPRIO. Also, there is no 
priority associated with a conversational service routine unless a TPCALL() or 
TPACALL() is done within that service.

Return Values Upon successful completion, TPGPRIO sets TP-STATUS to [TPOK] and returns a 
request's priority in PRIORITY in TPPRIDEF-REC.

Errors Under the following conditions, TPGPRIO fails and sets TP-STATUS to: 

[TPENOENT] 
TPGPRIO was called and no requests (via TPCALL() or TPACALL()) have been 
sent, or it is called within a conversational service for which no requests have 
been sent.

[TPEPROTO] 
TPGPRIO was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.
92 BEA TUXEDO Reference Manual



TPGPRIO(3CBL)
See Also TPACALL(), TPCALL(), TPDEQUEUE(), TPENQUEUE(), TPSPRIO()
BEA TUXEDO Reference Manual 93



TPINITIALIZE(3CBL)
TPINITIALIZE(3CBL)

Name TPINITIALIZE—join a BEA TUXEDO system application

synopsis 01 TPINFDEF-REC.
 COPY TPINFDEF. 
 
01 USER-DATA-REC PIC X(any-length). 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPINITIALIZE" TPINFDEF-REC USER-DATA-REC TPSTATUS-REC.

Description TPINITIALIZE allows a client to join a BEA TUXEDO system application. Before a 
client can use any of the BEA TUXEDO system communication or transaction 
routines, it must first join a BEA TUXEDO system application. Because calling 
TPINITIALIZE is optional, a client may also join an application by calling many 
ATMI routines (for example, TPACALL() or TPCALL()) which transparently call 
TPINITIALIZE with default values for the members of TPINFDEF-REC. A client may 
want to call TPINITIALIZE directly so that it can set the parameters described below. 
In addition, TPINITIALIZE must be used when application authentication is required 
(see the description of the SECURITY keyword in ubbconfig(5)). After 
TPINITIALIZE successfully returns, the client can initiate service requests and define 
transactions.

If TPINITIALIZE is called more than once (that is, after the client has already joined 
the application), no action is taken and success is returned.

TPINITIALIZE's argument, TPINFDEF-REC record includes the following members:

05 USRNAME       PIC X(30). 
05 CLTNAME       PIC X(30). 
05 PASSWD       PIC X(30). 
05 GRPNAME       PIC X(30). 
05 NOTIFICATION-FLAG  PIC S9(9) COMP-5. 
  88 TPU-SIG      VALUE 1. 
  88 TPU-DIP      VALUE 2. 
  88 TPU-IGN      VALUE 3. 
05 ACCESS-FLAG     PIC S9(9) COMP-5. 
  88 TPSA-FASTPATH   VALUE 1. 
  88 TPSA-PROTECTED  VALUE 2. 
05 DATALEN       PIC S9(9) COMP-5.
94 BEA TUXEDO Reference Manual



TPINITIALIZE(3CBL)
USRNAME is a name representing the caller. CLTNAME is a client name whose semantics 
are application defined. The value sysclient is reserved by the system for the 
CLTNAME field. The USRNAME and CLTNAME fields are associated with the client at 
TPINITIALIZE time and are used for both broadcast notification and administrative 
statistics retrieval. PASSWD is an application password in unencrypted format that is 
used for validation against the application password. The PASSWD is significant up to 
30 characters. GRPNAME is used to associate the client with a resource manager group 
name. If GRPNAME is SPACES, then the client is not associated with a resource manager 
and is in the default client group.

The settings of TPINFDEF-REC are used to indicate both the client specific notification 
mechanism and the mode of system access. These settings may override the 
application default; however, in the event that they cannot, TPINITIALIZE will print 
a warning in a log file, ignore the setting and return the application default setting in 
TPINFDEF-REC upon return from TPINITIALIZE. For client notification, the possible 
settings are as follows: 

TPU-SIG 
Select unsolicited notification by signals.

TPU-DIP 
Select unsolicited notification by dip-in.

TPU-IGN 
Ignore unsolicited notification.

Only one of the above can be used at a time. If the client does not select a notification 
method, then the application default method will be set upon return from 
TPINITIALIZE.

For setting the mode of system access, the possible settings are as follows: 

TPSA-FASTPATH 
Set system access to fastpath.

TPSA-PROTECTED 
Set system access to protected.

Only one of the above can be used at a time. If the client does not select a notification 
method or a system access mode, then the application default method(s) will be set 
upon return from TPINITIALIZE. See ubbconfig(5) for details on both client 
notification methods and system access modes.
BEA TUXEDO Reference Manual 95



TPINITIALIZE(3CBL)
DATALEN is the length of the application specific data that will be sent to the service. 
TPINITIALIZENEED(8) will return A SPACES value for USRNAME and CLTNAME is 
allowed for applications not making use of the application authentication feature of the 
BEA TUXEDO system. Currently, GRPNAME must be SPACES. Clients using this option 
will get defined in the BEA TUXEDO system with default values for USRNAME, 
CLTNAME and GRPNAME; default settings and no application data.

Return Values Upon successful completion, TPINITIALIZE sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPINITIALIZE fails and sets TP-STATUS to: 

[TPEINVAL] 
Invalid arguments were specified.

[TPENOENT] 
The client cannot join the application because of space limitations.

[TPEPERM] 
The client cannot join the application because it does not have permission to 
do so or because it has not supplied the correct application password. 
Permission may be denied based on an invalid application password, failure 
to pass application specific authentication or use of restricted names.

[TPEPROTO] 
TPINITIALIZE was called in an improper context (for example, the caller is 
a server).

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

Portability The interfaces described in TPINITIALIZE() are supported on UNIX System and 
MS-DOS operating systems. However, signal-based notification is not supported on 
MS-DOS. If it is selected at TPINITIALIZE time, then a USERLOG() message is 
generated and the method is automatically set to dip-in.
96 BEA TUXEDO Reference Manual



TPINITIALIZE(3CBL)
Environment
Variables

WSENVFILE 
is used within TPINITIALIZE when invoked by a workstation client. It 
indicates a file containing environment variable settings that should be set in 
the caller’s environment. See compilation(5) for more details on 
environment variable settings necessary for workstation clients. Note that this 
file is processed only when TPINITIALIZE is called and not before.

WSNADDR 
is used within TPINIT() when invoked by a workstation client. It indicates the 
network address(es) of the workstation listener that is to be contacted for 
access to the application.

TCP/IP addresses may be specified in the following forms:

"//host.name:port_number"
"//#.#.#.#:port_number"

In the first format, the domain finds an address for hostname using the local 
name resolution facilities (usually DNS). hostname must be the local 
machine, and the local name resolution facilities must unambiguously resolve 
hostname to the address of the local machine.

In the second example, the "#.#.#.#" is in dotted decimal format. In dotted 
decimal format, each # should be a number from 0 to 255. This dotted decimal 
number represents the IP address of the local machine.

In both of the above formats, port_number is the TCP port number at which 
the domain process will listen for incoming requests. port_number can 
either be a number between 0 and 65535 or a name. If port_number is a 
name, then it must be found in the network services database on your local 
machine.

The address can also be specified in hexadecimal format when preceded by 
the characters “0x”. Each character after the initial “0x” is a number between 
0 and 9 or a letter between A and F (case insensitive). The hexadecimal 
format is useful for arbitrary binary network addresses such as IPX/SPX or 
TCP/IP.

The address can also be specified as an arbitrary string. The value should be 
the same as that specified for the NLSADDR parameter in the NETWORKS section 
of the configuration file.

More than one address can be specified if desired by specifying a 
comma-separated list of pathnames for WSNADDR. Addresses are tried in order 
BEA TUXEDO Reference Manual 97



TPINITIALIZE(3CBL)
until a connection is established. Any member of an address list can be 
specified as a parenthesized grouping of pipe-separated network addresses. 
For example,

 
WSNADDR="(//m1.acme.com:3050|//m2.acme.com:3050),//m3.acme.
com:3050"

The BEA TUXEDO system randomly selects one of the parenthesized 
addresses. This strategy distributes the load randomly across a set of listener 
processes. Addresses are tried in order until a connection is established. Use 
the value in the application configuration file for the workstation listener to 
be called. If the value begins with the characters “0x”, it is interpreted as a 
string of hex-digits, otherwise it is interpreted as ASCII characters.

WSDEVICE 
is used within TPINITIALIZE when invoked by a workstation client. It 
indicates the device name to be used to access the network. This variable is 
used by workstation clients and ignored for native clients. Note that certain 
supported transport level network interfaces do not require a device name; for 
example, sockets and NetBIOS. Workstation clients supported by such 
interfaces need not specify WSDEVICE.

WSTYPE 
is used within TPINITIALIZE when invoked by a workstation client to 
negotiate encode/decode responsibilities with the native site. This variable is 
optional for workstation clients and ignored for native clients.

WSRPLYMAX 
is used by TPINITIALIZE to set the maximum amount of core memory that 
should be used for buffering application replies before they are dumped to 
file. The default value for this parameter varies with each instantiation. The 
instantiation specific programmer's guide should be consulted for further 
information.

TMMINENCRYPTBITS 
When connecting to BEA TUXEDO, require at least this minimum level of 
encryption. “0” means no encryption, while “40” and “128” specify the 
encryption key length (in bits). If this minimum level of encryption cannot be 
met, link establishment will fail. The default value is “0”.
98 BEA TUXEDO Reference Manual



TPINITIALIZE(3CBL)
TMMAXENCRYPTBITS 
When connecting to BEA TUXEDO, negotiate encryption up to this level. 
“0” means no encryption, while “40” and “128” specify the encryption length 
(in bits). The default value is “128”

Warning Clients that select signal-based notification may not be signal-able by the system due 
to signal restrictions. When this happens, the system generates a log message that it is 
switching notification for the selected client to dip-in and the client is notified then and 
thereafter via dip-in notification. (See ubbconfig(5) description of the \(RESOURCES 
NOTIFY parameter for a detailed discussion of notification methods.) Note that 
signaling of clients is always done by the system so that the behavior of notification is 
consistent regardless of where the originating notification call is made. Because of this, 
only clients running as the application administrator can use signal-based notification. 
The id for the application administrator is identified as part of the configuration for the 
application.

If signal-based notification is selected for a client, then certain ATMI calls may fail, 
returning TPGOTSIG due to receipt of an unsolicited message if TPSIGRSTRT is not 
specified.

See Also TPTERM()
BEA TUXEDO Reference Manual 99



TPNOTIFY(3CBL)
TPNOTIFY(3CBL)

Name TPNOTIFY—send notification by client identifier

synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF. 
 
01 TPTYPE-REC.
 COPY TPTYPE. 
 
01 DATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPNOTIFY" USING TPSVCDEF-REC TPTYPE-REC DATA-REC 
TPSTATUS-REC.

Description TPNOTIFY allows a server to send an unsolicited message to an individual client.

CLIENTID in TPSVCDEF-REC contains a client identifier saved from the 
TPSVCDEF-REC of a previous or current service invocation.

DATA-REC is the record to be sent and LEN in TPTYPE-REC specifies how much of 
DATA-REC should be sent. If DATA-REC is a record of type that does not require a length 
to be specified, then LEN is ignored (and may be 0). If REC-TYPE in TPTYPE-REC is 
SPACES, DATA-REC and LEN are ignored and a request is sent with no data portion.

Upon successful return from TPNOTIFY, the message has been delivered to the system 
for forwarding to the identified client. If TPACK was set, then a successful return means 
the message has been received by the client. Furthermore, if the client has registered 
an unsolicited message handler, the handler will have been called.

Following is a list of valid settings in TPSVCDEF-REC. 

TPNOBLOCK 
The request is not sent if a blocking condition exists (for example, the internal 
buffers into which the message is transferred are full). Either TPNOBLOCK or 
TPBLOCK must be set.

TPBLOCK 
If a blocking condition exists in sending the notification, the caller blocks 
until the condition subsides or a timeout occurs (either transaction or blocking 
timeout). Either TPNOBLOCK or TPBLOCK must be set.
100 BEA TUXEDO Reference Manual



TPNOTIFY(3CBL)
TPNOTIME 
This setting signifies that the caller is willing to block indefinitely and wants 
to be immune to blocking timeouts. Transaction timeouts may still occur. 
Either TPNOTIME or TPTIME must be set.

TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is reissued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is not restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT 
must be set.

TPACK 
This setting signifies that the caller will block waiting for an acknowledgment 
from the client. Either TPNOACK or TPACK must be set.

TPNOACK 
This setting signifies that the caller will not block waiting for an 
acknowledgment from the client. Either TPNOACK or TPACK must be set.

Return Values Upon successful completion, TPNOTIFY sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPNOTIFY fails and sets TP-STATUS to: 

[TPEINVAL] 
Invalid arguments were given.

[TPENOENT] 
The target client does not exist and TPACK was set.

[TPETIME] 
A blocking timeout occurred and both TPBLOCK and TPTIME were specified, 
or TPACK and TPTIME were set and no acknowledgment was received. and 
TPTIME was specified.
BEA TUXEDO Reference Manual 101



TPNOTIFY(3CBL)
[TPEBLOCK] 
A blocking condition was found on sending the notification and TPNOBLOCK 
was specified.

[TPGOTSIG] 
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO] 
TPNOTIFY was called in an improper context (for example, within a client).

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

[TPERELEASE] 
When TPACK is specified and the target is a client from a prior release of BEA 
TUXEDO which does not support the acknowledgment protocol.

See Also TPBROADCAST(3), TPCHKUNSOL(3), TPINITIALIZE(3), TPSETUNSOL(3), TPTERM(3)
102 BEA TUXEDO Reference Manual



TPOPEN(3CBL)
TPOPEN(3CBL)

Name TPOPEN—open the BEA TUXEDO system resource manager

synopsis 01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPOPEN" USING TPSTATUS-REC.

Description TPOPEN opens the resource manager to which the caller is linked. At most one resource 
manager can be linked to the caller. This routine is used in place of resource 
manager-specific open calls and allows a service routine to be free of calls that may 
hinder portability. Since resource managers differ in their initialization semantics, the 
specific information needed to open a particular resource manager is placed in a 
configuration file.

If a resource manager is already open (that is, TPOPEN is called more than once), no 
action is taken and success is returned.

Return Values Upon successful completion, TPOPEN sets TP-STATUS to [TPOK]. More information 
concerning the reason a resource manager failed to open can be gotten by interrogating 
the resource manager in its own specific manner. Note that any calls to determine the 
exact nature of a resource manager's error hinder portability.

Errors Under the following conditions, TPOPEN fails and sets TP-STATUS to: 

[TPERMERR] 
A resource manager failed to open correctly. More information concerning 
the reason a resource manager failed to open can be obtained by interrogating 
a resource manager in its own specific manner. Note that any calls to 
determine the exact nature of the error hinder portability.

[TPEPROTO] 
TPOPEN was called in an improper context (for example, by a client that has 
not joined a BEA TUXEDO system server group).

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also TPCLOSE()
BEA TUXEDO Reference Manual 103



TPPOST(3CBL)
TPPOST(3CBL)

Name TPPOST—post an event

synopsis 01 TPEVTDEF-REC.
 COPY TPEVTDEF. 
 
01 TPTYPE-REC.
 COPY TPTYPE. 
 
01 DATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPPOST" USING TPEVTDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description The caller uses TPPOST to post an event and any accompanying data. The event is 
named by EVENT-NAME in TPEVTDEF-REC and DATA-REC contains the data to be 
posted. The posted event and its data are dispatched by the BEA TUXEDO system 
event broker to all subscribers whose subscriptions successfully evaluate against 
EVENT-NAME and whose optional filter rules successfully evaluate against DATA-REC.

EVENT-NAME must be 31 characters or less, but cannot be SPACES. EVENT-NAME's first 
character cannot be a dot (“.”) as this character is reserved as the starting character for 
all events defined by the BEA TUXEDO system itself.

DATA-REC is the typed record to be posted and LEN in TPTYPE-REC specifies the 
amount of data in DATA-REC that should be posted with the event. Note that if 
DATA-REC is a record of a type that does not require a length to be specified, then LEN 
is ignored (and may be 0). If DATA-REC is a record of a type that does require a length 
to be specified, then LEN must not be 0 (if it is 0, no data will be posted). If REC-TYPE 
in TPTYPE-REC is SPACES, DATA-REC and LEN are ignored and the event is posted 
with no data.

When TPPOST is used within a transaction, the transaction boundary can be extended 
to include those servers and/or stable-storage message queues notified by the event 
broker. When a transactional posting is made, some of the recipients of the event 
posting are notified on behalf of the poster's transaction (for example, servers and 
queues), while some are not (for example, clients).

If the poster is within a transaction and TPTRAN is set, the posted event goes to the event 
broker in transaction mode such that it dispatches the event as part of the poster's 
transaction. The broker dispatches transactional event notifications only to those 
104 BEA TUXEDO Reference Manual



TPPOST(3CBL)
service routine and stable-storage queue subscriptions that had TPEVTRAN set in 
TPEVTDEF-REC when the subscription was made. Client notifications, and those 
service routine and stable-storage queue subscriptions that had TPEVNOTRAN set in 
TPEVTDEF-REC when the subscription was made, are also dispatched by the event 
broker but not as part of the posting process’ transaction.

Following is a list of valid settings in TPEVTDEF-REC: 

TPNOTRAN 
If the caller is in transaction mode and this setting is used, then the event 
posting is not made on behalf of the caller’s transaction. A caller in transaction 
mode that uses this setting is still subject to the transaction timeout (and no 
other). If the event posting fails, the caller’s transaction is not affected. Either 
TPNOTRAN or TPTRAN must be set.

TPTRAN 
If the caller is in transaction mode and this setting is used, then the event 
posting is made on behalf of the caller’s transaction. This setting is ignored if 
the caller is not in transaction mode. Either TPNOTRAN or TPTRAN must be set.

TPNOREPLY 
Informs TPPOST not to wait for the event broker to process all subscriptions 
for EVENT-NAME before returning. When TPNOREPLY is set, EVENT-COUNT in 
TPEVTDEF-REC is set to zero regardless of whether TPPOST returns 
successfully or not. When the caller is in transaction mode, this setting cannot 
be used when TPTRAN is also set. Either TPNOREPLY or TPREPLY must be set.

TPREPLY 
Informs TPPOST to wait for all subscriptions to be processed before returning. 
When TPREPLY is set, the routine returns [TPOK] on success and sets 
EVENT-COUNT in TPEVTDEF-REC to the number of event notifications 
dispatched by the event broker on behalf of EVENT-NAME. When the caller is 
in transaction mode, this setting must be used when TPTRAN is also set. Either 
TPNOREPLY or TPREPLY must be set.

TPNOBLOCK 
The event is not posted if a blocking condition exists. If such a condition 
occurs, the call fails and sets TP-STATUS to [TPEBLOCK]. Either TPNOBLOCK 
or TPBLOCK must be set.
BEA TUXEDO Reference Manual 105



TPPOST(3CBL)
TPBLOCK 
When TPBLOCK is specified and a blocking condition exists, the caller blocks 
until the condition subsides or a timeout occurs (either transaction or blocking 
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME 
This setting signifies that the caller is willing to block indefinitely and wants 
to be immune to blocking timeouts. Transaction timeouts may still occur. 
Either TPNOTIME or TPTIME must be set.

TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is not restarted, the call fails and sets TP-STATUS to [TPGOTSIG]. Either 
TPNOSIGRSTRT or TPSIGRSTRT must be set.

Return Values Upon successful completion, TPPOST sets TP-STATUS to [TPOK]. In addition, 
EVENT-COUNT contains the number of event notifications dispatched by the event 
broker on behalf of EVENT-NAME (that is, postings for those subscriptions whose event 
expression evaluated successfully against EVENT-NAME and whose filter rule evaluated 
successfully against DATA-REC). Upon return where TP-STATUS is set to 
[TPESVCFAIL], EVENT-COUNT contains the number of non-transactional event 
notifications dispatched by the event broker on behalf of EVENT-NAME.

Errors Under the following conditions, TPPOST fails and sets TP-STATUS to one of the 
following values. (Unless otherwise noted, failure does not affect the caller’s 
transaction, if one exists.) 

[TPEINVAL] 
Invalid arguments were given (for example, EVENT-NAME is SPACES).

[TPENOENT] 
Cannot access the BEA TUXEDO system event broker.
106 BEA TUXEDO Reference Manual



TPPOST(3CBL)
[TPETRAN] 
The caller is in transaction mode, TPTRAN was set, and TPPOST contacted an 
event broker that does not support transaction propagation (that is, 
TMUSREVT(5) is not running in a BEA TUXEDO system group that supports 
transactions).

[TPETIME] 
A timeout occurred. If the caller is in transaction mode, then a transaction 
timeout occurred and the transaction is to be aborted; otherwise, a blocking 
timeout occurred and both TPBLOCK and TPTIME were specified. If a 
transaction timeout occurred, any attempts to do new work will fail with 
[TPETIME] until the transaction has been aborted.

[TPESVCFAIL] 
The event broker encountered an error posting a transactional event to either 
a service routine or to a stable storage queue on behalf of the caller’s 
transaction. The caller’s current transaction is marked abort-only. When this 
error is returned, EVENT-COUNT contains the number of non-transactional 
event notifications dispatched by the event broker on behalf of EVENT-NAME; 
transactional postings are not counted since their effects will be aborted upon 
completion of the transaction. Note that so long as the transaction has not 
timed out, further communication may be performed before aborting the 
transaction and that any work performed on behalf of the caller’s transaction 
will be aborted upon transaction completion (that is, for subsequent 
communication to have any lasting effect, it should be done with TPNOTRAN 
set).

[TPEBLOCK] 
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG] 
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO] 
TPPOST was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.
BEA TUXEDO Reference Manual 107



TPPOST(3CBL)
See Also TPSUBSCRIBE(), TPUNSUBSCRIBE(), EVENTS(5), TMUSREVT(5), TMSYSEVT(5)
108 BEA TUXEDO Reference Manual



TPRECV(3CBL)
TPRECV(3CBL)

Name TPRECV—receive a message in a conversational connection

synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF. 
 
01 TPTYPE-REC.
 COPY TPTYPE. 
 
01 DATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPRECV" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description TPRECV is used to receive data sent across an open connection from another program. 
COMM-HANDLE, specifies on which open connection to receive data. COMM-HANDLE is a 
communications handle returned from either TPCONNECT() or TPSVCSTART(). 
DATA-REC specifies where the message is read into, and, on input, LEN indicates the 
maximum number of bytes that should be moved into DATA-REC.

Upon successful and for several event types, LEN contains the actual number of bytes 
moved into DATA-REC. REC-TYPE and SUB-TYPE contain the data's type and sub-type, 
respectively. If the message is larger than DATA-REC, then DATA-REC will contain only 
as many bytes as will fit in the record. The remainder of the reply is discarded and 
TPRECV sets TPTRUNCATE.

If LEN is 0 upon successful return, then the reply has no data portion and DATA-REC 
was not modified. It is an error for LEN to be 0 on input.

TPRECV can be issued only by the program that does not have control of the connection.

Following is a list of valid settings in TPSVCDEF-REC. 

TPNOCHANGE 
When this setting is used, the type of DATA-REC is not allowed to change. That 
is, the type and sub-type of the message received must match REC-TYPE and 
SUB-TYPE, respectively. Either TPNOCHANGE or TPCHANGE must be set.

TPCHANGE 
The type and/or sub-type of the message received is allowed to differ from 
those specified in REC-TYPE and SUB-TYPE, respectively, so long as the 
receiver recognizes the incoming record type. Either TPNOCHANGE or 
TPCHANGE must be set.
BEA TUXEDO Reference Manual 109



TPRECV(3CBL)
TPNOBLOCK 
TPRECV does wait for data to arrive. If data is already available to receive, 
then TPRECV gets the data and returns. Either TPNOBLOCK or TPBLOCK must 
be set.

TPBLOCK 
When TPBLOCK is specified and no data is available to receive, the caller 
blocks until data arrives. Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME 
This setting signifies that the caller is willing to block indefinitely and wants 
to be immune to blocking timeouts. Transaction timeouts will still affect the 
program. Either TPNOTIME or TPTIME must be set.

TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts the underlying receive system call, then the call is 
re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is not restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT 
must be set.

If an event exists for the communications handle, COMM-HANDLE, then 
TPRECV will return setting TP-STATUS to TPEEVENT. The event type is 
returned in TPEVENT. Data can be received along with the TPEV-SVCSUCC, 
TPEV-SVCFAIL, and TPEV-SENDONLY events. Valid events for TPRECV are as 
follows.

TPEV-DISCONIMM 
Received by the subordinate of a conversation, this event indicates that the 
originator of the conversation has issued an immediate disconnect on the 
connection via TPDISCON(), or an error occurred when the originator issued 
TPRETURN() or TPCOMMIT() with the connection still open. This event is also 
returned to the originator or subordinate when a connection is broken due to 
a communications error (for example, a server, machine, or network failure). 
Because this is an immediate disconnection notification (that is, abortive 
rather than orderly), data in transit may be lost. If the two programs were 
110 BEA TUXEDO Reference Manual



TPRECV(3CBL)
participating in the same transaction, then the transaction is marked 
abort-only. COMM-HANDLE is no longer valid.

TPEV-SENDONLY 
The program on the other end of the connection has relinquished control of 
the connection. The recipient of this event is allowed to send data but can not 
receive any data until it relinquishes control.

TPEV-SVCERR 
Received by the originator of a conversation, this event indicates that the 
subordinate of the conversation has issued TPRETURN(). TPRETURN() 
encountered an errors that precluded the service from returning successfully. 
For example, bad arguments may have been passed to TPRETURN() or 
TPRETURN() may have been called while the service had open connections to 
other subordinates. Due to the nature of this event, any application defined 
data or return code are not available. The connection has been torn down and 
COMM-HANDLE is no longer valid. If this event occurred as part of the 
recipient’s transaction, then the transaction is marked as abort-only.

TPEV-SVCFAIL 
Received by the originator of a conversation, this event indicates that the 
subordinate service on the other end of the conversation has finished 
unsuccessfully as defined by the application (that is, it called TPRETURN() 
with TPFAIL or TPEXIT). If the subordinate service was in control of this 
connection when TPRETURN() was called, then it can pass an application 
defined return value and a record back to the originator of the connection. As 
part of ending the service routine, the server has torn down the connection. 
Thus, COMM-HANDLE is no longer valid. If this event occurred as part of the 
recipient’s transaction, then the transaction is marked abort-only.

TPEV-SVCSUCC 
Received by the originator of a conversation, this event indicates that the 
subordinate service on the other end of the conversation has finished 
successfully as defined by the application (that is, it called TPRETURN() with 
TPSUCCESS). As part of ending the service routine, the server has torn down 
the connection. Thus, COMM-HANDLE is no longer valid. If the recipient is in 
transaction mode, then it can either commit (if it is also the initiator) or abort 
the transaction causing the work done by the server (if also in transaction 
mode) to either commit or abort.
BEA TUXEDO Reference Manual 111



TPRECV(3CBL)
Return Values Upon successful completion, TPRECV sets TP-STATUS to [TPOK]. When TP-STATUS is 
set to [TPEEVENT] and TPEVENT is either TPEV-SVCSUCC or TPEV-SVCFAIL, 
APPL-RETURN-CODE contains an application defined value that was sent as part of 
TPRETURN(). If the size of the incoming message was larger then the size specified in 
LEN on input, TPTRUNCATE is set and only LEN amount of data was moved to 
DATA-REC, the remaining data is discarded.

Errors Under the following conditions, TPRECV fails and sets TP-STATUS to (unless otherwise 
noted, failure does not affect the caller’s transaction, if one exists): 

[TPEINVAL] 
Invalid arguments were given (for example, settings in TPSVCDEF-REC are 
invalid.

[TPEOTYPE] 
Either the type of sub-type of the incoming message are not known to the 
caller, or TPNOCHANGE was set and REC-TYPE and SUB-TYPE do not match the 
type and sub-type of the incoming message. If the conversation is part of the 
caller’s transaction, then the transaction is marked abort-only since the 
incoming message is discarded.

[TPEBADDESC] 
COMM-HANDLE contains an invalid communications handle.

[TPETIME] 
A timeout occurred. If the caller is in transaction mode, then a transaction 
timeout occurred and the transaction is marked abort-only; otherwise, a 
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME were 
specified. In either case, DATA-REC was not changed. If a transaction timeout 
occurred, then any attempts to send or receive messages on any connections 
or to start a new connection will fail with TPETIME until the transaction has 
been aborted.

[TPEEVENT] 
An event occurred and its type is available in TPEVENT.

[TPEBLOCK] 
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG] 
A signal was received and TPSIGRSTRT was not specified.
112 BEA TUXEDO Reference Manual



TPRECV(3CBL)
[TPEPROTO] 
TPRECV was called in an improper context (for example, the connection was 
established such that the calling program can only send data).

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

Usage A server can pass an application defined return value and typed record when calling 
TPRETURN(). The return value is available in APPL-RETURN-CODE and the record is 
available in DATA-REC.

See Also TPCONNECT(), TPDISCON(), TPSEND()
BEA TUXEDO Reference Manual 113



TPRESUME(3CBL)
TPRESUME(3CBL)

Name TPRESUME—resume a global transaction

synopsis 01 TPTRXDEF-REC.
 COPY TPTRXDEF. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPRESUME" USING TPTRXDEF-REC TPSTATUS-REC. 

Description TPRESUME is used to resume work on behalf of a previously suspended transaction. 
Once the caller resumes work on a transaction, it must either suspend it with 
TPSUSPEND(), or complete it with one of TPCOMMIT() or TPABORT() at a later time.

The caller must ensure that its linked resource managers have been opened (via 
TPOPEN()) before it can resume work on any transaction.

TPRESUME places the caller in transaction mode on behalf of the global transaction 
identifier contained in TRANID.

Return Value Upon successful completion, TPRESUME sets [TPOK].

Errors Under the following conditions, TPRESUME fails and sets TP-STATUS to: 

[TPEINVAL] 
Either TRANID contains a non-existent transaction identifier (including 
previously completed or timed-out transactions), or it contains a transaction 
identifier that the caller is not allowed to resume. The caller's state with 
respect to the transaction is not changed.

[TPEMATCH] 
TRANID contains a transaction identifier that another program has already 
resumed. The caller's state with respect to the transaction is not changed.

[TPETRAN] 
The BEA TUXEDO system is unable to resume the global transaction 
because the caller is currently participating in work outside any global 
transaction with one or more resource managers. All such work must be 
completed before a global transaction can be resumed. The caller's state with 
respect to the local transaction is unchanged.
114 BEA TUXEDO Reference Manual



TPRESUME(3CBL)
[TPEPROTO] 
TPRESUME was called in an improper context (for example, the caller is 
already in transaction mode). The caller’s state with respect to transaction 
mode is unchanged.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

NOTES XA-compliant resource managers must be successfully opened to be included in the 
global transaction. (See TPOPEN for details.)

A program resuming a suspended transaction must reside on the same logical machine 
(LMID) as the program that suspended the transaction. For a workstation client, the 
workstation handler (WSH) to which it is connected must reside on the same logical 
machine as the handler for the workstation client that suspended the transaction.

See Also TPABORT(), TPCOMMIT(), TPOPEN(), TPSUSPEND().
BEA TUXEDO Reference Manual 115



TPRETURN(3CBL)
TPRETURN(3CBL)

Name TPRETURN—return from a BEA TUXEDO system service routine

synopsis 01 TPSVCRET-REC.
 COPY TPSVCRET. 
 
01 TPTYPE-REC.
 COPY TPTYPE. 
 
01 DATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
COPY TPRETURN REPLACING TPSVCRET-REC BY TPSVCRET-REC
 
 TPTYPE-REC BY TPTYPE-REC 
 DATA-REC BY DATA-REC T
 PSTATUS-REC BY TPSTATUS-REC.

Description TPRETURN indicates that a service routine has completed. Since TPRETURN contains an 
EXIT PROGRAM statement, it should be called from within the same routine that was 
invoked to ensure correct return of control to the BEA TUXEDO system dispatcher 
(that is, TPRETURN should not be invoked in a sub-program of the service routine since 
control would not return to the BEA TUXEDO system dispatcher).

TPRETURN is used to send a service's reply message. If the service receiving the reply 
is waiting in either TPCALL(), TPGETRPLY(), or TPRECV(), then after a successful call 
to TPRETURN, the reply is available in the receiver's record.

For conversational services, TPRETURN also tears down the connection. That is the 
service routine cannot call TPDISCON() directly. To ensure correct results, the program 
that connected to the conversation service should not call TPDISCON(); rather, it should 
wait for notification that the conversational service has completed (i.e., it should wait 
for one of the events, like TPEV-SVCSUCC or TPEV-SVCFAIL. sent by TPRETURN).

If a service routine was in transaction mode, TPRETURN places the service's portion of 
the transaction in a state where it may be either committed or aborted when the 
transaction is completed. A service may be invoked multiple times as part of the same 
transaction so it is not necessarily fully committed nor aborted until either TPCOMMIT() 
or TPABORT() is called by the originator of the transaction.
116 BEA TUXEDO Reference Manual



TPRETURN(3CBL)
TPRETURN should be called after receiving all replies expected from request/response 
service requests initiated by the service routine. Otherwise, depending on the nature of 
the service, either a [TPESVCERR] status or a TPEV-SVCERR event will be returned to 
the program that initiated communications with the service routine. Any outstanding 
replies which are not received will automatically be dropped by the BEA TUXEDO 
system dispatcher upon receipt. In addition, the communications handle for those 
replies become invalid.

TPRETURN should also be called after closing all connections initiated by the service. 
Otherwise, depending on the nature of the service, either a [TPESVCERR] status or a 
TPEV-SVCERR event will be returned to the program that initiated communications 
with the service routine. Also, an immediate disconnect event (i.e., TPEV-DISCONIMM) 
is sent over all open connections to subordinates.

Concerning control of a connection, if the service routine does not have control over 
the connection with which it was invoked when it issued TPRETURN, then two 
outcomes are possible. First, if the service routine calls TPRETURN with 
TP-RETURN-VAL IN TPSVCRET-REC set to TPFAIL and REC-TYPE IN TPTYPE-REC 
set to SPACES (that is, no data is sent), then a TPEV-SVCFAIL event is sent to the 
originator of this conversation. Second, if any other invocation of \%TPRETURN is used, 
a TPEV-SVCERR event is sent to the originator.

Since a conversational service has only one open connection which it did not initiate, 
the server knows over which communications handle the data (and any event) should 
be sent. For this reason, a communication handle is not passed to TPRETURN.

The following is a description of TPRETURN’s arguments. TP-RETURN-VAL can be set 
to one of the following. 

TPSUCCESS 
The service has terminated successfully. If data is present, then it will be sent 
(barring any failures processing the return). If the caller is in transaction 
mode, then TPRETURN places the caller’s portion of the transaction in a state 
such that it can be committed when the transaction ultimately commits. Note 
that a call to TPRETURN does not necessarily finalize an entire transaction. 
Also, even though the caller indicates success, if there are any outstanding 
replies or open connections, if any work done within the service caused its 
transaction to be marked abort-only, then a failed message is sent (i.e., the 
recipient of the reply receives a TPESVCERR indication or a TPEV-SVCERR 
event). Note that if a transaction becomes abort-only while in the service 
routine for any reason, then TP-RETURN-VAL should be set to TPFAIL. If 
BEA TUXEDO Reference Manual 117



TPRETURN(3CBL)
TPSUCCESS is specified for a conversational service, a TPEV-SVCSUCC event 
is generated.

TPFAIL 
The service has terminated unsuccessfully from an application standpoint. An 
error will be reported to the program receiving the reply. That is, the call to 
get the reply will fail and the recipient receives a [TPSVCERR] indication or a 
TPEV-SVCERR event. If the caller is in transaction mode, then TPRETURN 
marks the transaction as abort-only (note that the transaction may already be 
marked abort-only). Barring any failures in processing the return, the caller’s 
data is sent, if present. One reason for not sending the caller’s data is when a 
transaction timeout has occurred. In this case, the program waiting for the 
reply will receive an error of [TPETIME].

TPEXIT 
This value is the same as TPFAIL, with respect to completing the service, but 
the server will exit after the transaction is marked as abort-only and the reply 
is sent back to the requester. If the server is restartable, then the server will 
automatically be restarted.

If TP-RETURN-VAL is not set to one of these three values, then it defaults to TPFAIL.

An application defined return code, APPL-CODE in TPSVCRET-REC, may be sent to the 
program receiving the service reply. This code is sent regardless of the setting of 
TP-RETURN-VAL as long as a reply can be successfully sent (i.e., as long as the 
receiving call returns success or [TPESVCFAIL], or receives one of the events 
TPEV-SVCSUCC or TPEV-SVCFAIL). The value of APPL-CODE is available in the 
receiver in the variable, APPL-RETURN-CODE in TPSTATUS-REC.

DATA-REC is a record to be sent and LEN specifies the amount of DATA-REC that should 
be sent. Note that if DATA-REC is a record of type and sub-type that does not require a 
length to be specified, then LEN is ignored (and may be 0). If REC-TYPE is SPACES, 
DATA-REC and LEN are ignored. In this case, if a reply is expected by the program that 
invokes the service, then a reply is sent with no data portion. If no reply is expected, 
then TPRETURN ignores any data passed to it and returns sending no reply. If REC-TYPE 
is STRING and LEN is 0, then the request is sent with no data portion.

If the service is conversational, there are several cases where the application return 
code and the data portion are not transmitted: 

\ 
if the connection has been terminated when the call is made (i.e., the caller 
has received TPEV-DISCONIMM on the connection), then this call simply ends 
118 BEA TUXEDO Reference Manual



TPRETURN(3CBL)
the service routine and rolls back the current transaction, if one exists. In this 
case, the caller’s data record cannot be transmitted.

\ 
if the caller does not have control of the connection, either TPEV-SVCERR or 
TPEV-SVCFAIL is sent to the originator of the connection as described above. 
Regardless of which event the originator receives, no data record is 
transmitted; however, if the originator receives the TPEV_SVCFAIL event, the 
return code is available in the originator’s APPL-RETURN-CODE in 
TPSTATUS-REC.

Return Values Since TPRETURN contains an EXIT PROGRAM statement, no value is returned to the 
caller, nor does control return to the service routine. If a service routine returns without 
using TPRETURN (i.e., it uses an EXIT PROGRAM statement directly or just simply ‘‘falls 
out of the service routine’’), the server will return a service error to the service 
requester. In addition, all open connections to subordinates will be disconnected 
immediately, and any outstanding asynchronous replies will be dropped. If the server 
was in transaction mode at the time of failure, the transaction is marked abort-only. 
Note also that if TPRETURN is used outside of a service routine (i.e., by routines that are 
not services), then it returns having no effect.

Errors Errors encountered either in handling arguments or in processing cause TP-STATUS to 
be set to [TPESVCERR] for a program receiving the service’s outcome via either 
TPCALL() or TPGETRPLY(), and cause the event, TPEV-SVCERR, to be sent over the 
conversation to a program using TPSEND() or TPRECV().

tperrdetail(3) and tpstrerrordetail(3) can be used to get additional 
information about an error produced by the last BEA TUXEDO system routine called 
in the current thread. If an error occurred, tperrdetail returns a numeric value that 
can be used as an argument to tpstrerrordetail to retrieve the text of the error 
detail.

See Also TPCALL(), TPCONNECT(), TPFORWAR(), tperrordetail(3), tpstrerrordetail(3)
BEA TUXEDO Reference Manual 119



TPSCMT(3CBL)
TPSCMT(3CBL)

Name TPSCMT—set when TPCOMMIT should return

synopsis 01 TPCMTDEF-REC.
 COPY TPCMTDEF. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPSCMT" USING TPCMTDEF-REC TPSTATUS-REC.

Description TPSCMT sets the TP-COMMIT-CONTROL characteristic to the value specified in 
TPCMTDEF-REC. The TP-COMMIT-CONTROL characteristic affects the way TPCOMMIT() 
behaves with respect to returning control to its caller. A program can call TPSCMT 
regardless of whether it is in transaction mode or not. Note that if the caller is 
participating in a transaction that another program must commit, then its call to 
TPSCMT does not affect that transaction. Rather, it affects subsequent transactions that 
the caller will commit.

In most cases, a transaction is committed only when a BEA TUXEDO system program 
calls TPCOMMIT(). There is one exception: when a service is dispatched in transaction 
mode because the AUTOTRAN variable in the SERVICES section of the UBBCONFIG file 
is enabled, then the transaction completes upon calling TPRETURN(). If TPFORWAR() is 
called, then the transaction will be completed by the server ultimately calling 
TPRETURN(). Thus, the setting of the TP-COMMIT-CONTROL characteristic in the service 
that calls TPRETURN() determines when TPCOMMIT() returns control within a server. If 
TPCOMMIT() returns a heuristic error code, the server will write a message to a log file.

When a client joins a BEA TUXEDO system application, the initial setting for this 
characteristic comes from a configuration file. (See the CMTRET variable in the 
RESOURCES section of ubbconfig(5))

Following are the valid settings for TPCMTDEF-REC. 

TP-CMT-LOGGED 
This setting indicates that TPCOMMIT() should return after the commit 
decision has been logged by the first phase of the two-phase commit protocol 
but before the second phase has completed. This setting allows for faster 
response to the caller of TPCOMMIT() although there is a risk that a transaction 
participant might decide to heuristically complete (that is, aborted) its work 
due to timing delays waiting for the second phase to complete. If this occurs, 
there is no way to indicate this situation to the caller since TPCOMMIT() has 
already returned (although BEA TUXEDO writes a message to a log file 
120 BEA TUXEDO Reference Manual



TPSCMT(3CBL)
when a resource manager takes a heuristic decision). Under normal 
conditions, participants that promise to commit during the first phase will do 
so during the second phase. Typically, problems caused by network or site 
failures are the sources for heuristic decisions being made during the second 
phase.

TP-CMT-COMPLETE 
This setting indicates that TPCOMMIT() should return after the two-phase 
commit protocol has finished completely. This setting allows for TPCOMMIT() 
to return an indication that a heuristic decision occurred during the second 
phase of commit.

Return Values Upon successful completion, TPSCMT sets TP-STATUS to [TPOK] and returns the 
previous value of the TP-COMMIT-CONTROL characteristic.

Errors Under the following conditions, TPSCMT fails and sets TP-STATUS to: 

[TPEINVAL] 
TPCMTDEF-REC is not set to TP-CMT-LOGGED or TP-CMT-COMPLETE.

[TPEPROTO] 
TPSCMT was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

Notices When using TPBEGIN(), TPCOMMIT(), and TPABORT() to delineate a BEA TUXEDO 
system transaction, it is important to remember that only the work done by a resource 
manager that meets the XA interface (and is linked to the caller appropriately) has 
transactional properties. All other operations performed in a transaction are not 
affected by either TPCOMMIT() or TPABORT(). See buildserver(1) for details on 
linking resource managers that meet the XA interface into a server such that operations 
performed by that resource manager are part of a BEA TUXEDO system transaction.

See Also TPABORT(), TPBEGIN(), TPCOMMIT(), TPGETLEV()
BEA TUXEDO Reference Manual 121



TPSEND(3CBL)
TPSEND(3CBL)

Name TPSEND—routine to send a message in a conversational connection

synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF. 
 
01 TPTYPE-REC.
 COPY TPTYPE. 
 
01 DATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPSEND" USING TPSVCDEF-REC TPTYPE-REC DATA-REC TPSTATUS-REC.

Description TPSEND is used to send data across an open connection to another program. The caller 
must have control of the connection. COMM-HANDLE specifies the open connection to 
send data over. COMM-HANDLE is a communications handle returned from either 
TPCONNECT() or TPSVCSTART().

DATA-REC contains the data to be sent and LEN specifies how much of the data to send. 
Note that if DATA-REC is a record of a type that does not require a length to be specified, 
then LEN is ignored (and may be 0). If REC-TYPE is SPACES, DATA-REC and LEN are 
ignored and a message is sent with no data (this might be done, for instance, to grant 
control of the connection without transmitting any data).

Following is a list of valid settings in TPSVCDEF-REC. 

TPRECVONLY 
This setting signifies that, after the caller's data is sent, the caller gives up 
control of the connection (that is, the caller can not issue any more TPSEND 
calls). When the receiver on the other end of the connection receives the data 
sent by TPSEND, it will also receive an event (TPEV-SENDONLY) indicating 
that it has control of the connection (and can not issue more any TPRECV() 
calls). Either TPRECVONLY or TPSENDONLY must be set.

TPSENDONLY 
This setting signifies that the caller wants to remain in control of the 
connection. Either TPRECVONLY or TPSENDONLY must be set.
122 BEA TUXEDO Reference Manual



TPSEND(3CBL)
TPNOBLOCK 
The data and any events are not sent if a blocking condition exists (for 
example, the data buffers through which the message is sent are full). Either 
TPNOBLOCK or TPBLOCK must be set.

TPBLOCK 
When TPBLOCK is specified and a blocking condition exists, the caller blocks 
until the condition subsides or a timeout occurs (either transaction or blocking 
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME 
This setting signifies that the caller is willing to block indefinitely and wants 
to be immune to blocking timeouts. Transaction timeouts will still affect the 
program. Either TPNOTIME or TPTIME must be set.

TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted call is 
re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is not restarted and the call fails. Either TPNOSIGRSTRT or TPSIGRSTRT 
must be set.

If an event exists for COMM-HANDLE, then TPSEND will return without sending the 
caller’s data. The event type is returned in TPEVENT. Valid events for TPSEND are as 
follows. 

TPEV-DISCONIMM 
Received by the subordinate of a conversation, this event indicates that the 
originator of the conversation has issued an immediate disconnect on the 
connection via TPDISCON(), or the originator of the connection issued 
TPRETURN() with open subordinate connections. This event is also returned to 
the originator or subordinate when a connection is broken due to a 
communications error (for example, a server, machine, or network failure).
BEA TUXEDO Reference Manual 123



TPSEND(3CBL)
TPEV-SVCFAIL 
Received by the originator of a conversation, this event indicates that the 
subordinate of the conversation has issued TPRETURN() without having 
control of the conversation. In addition. TPRETURN() was issued with TPFAIL 
set and no data record (that is, the REC-TYPE passed to TPRETURN() was set to 
SPACES)

TPEV-SVCERR 
Received by the originator of a conversation, this event indicates that the 
subordinate of the conversation has issued TPRETURN() without having 
control of the conversation. In addition, TPRETURN() was issued in a manner 
different from that described for TPEV-SVCFAIL below.

Because each of these events indicates an immediate disconnection notification (that 
is, abortive rather than orderly), data in transit may be lost. The communications 
handle used for the connection is no longer valid. If the two programs were 
participating in the same transaction, then the transaction has been marked abort-only.

Return Values Upon successful completion, TPSEND sets TP-STATUS to [TPOK]. If an event exists and 
no errors were encountered, TPSEND sets TP-STATUS to [TPEEVENT]. When 
TP-STATUS is set to [TPEEVENT] and TP-EVENT is either TPEV-SVCSUCC or 
TPEV-SVCFAIL, APPL-RETURN-CODE contains an application-defined value that was 
sent as part of TPRETURN.

Errors Under the following conditions, TPSEND fails and sets TP-STATUS to (unless otherwise 
noted, failure does not affect caller’s transaction, if one exits): 

[TPEINVAL] 
Invalid arguments were given.

[TPEBADDESC] 
COMM-HANDLE contains an invalid communications handle.

[TPETIME] 
A timeout occurred. If the caller is in transaction mode, then a transaction 
timeout occurred and the transaction is marked abort-only; otherwise, a 
blocking timeout occurred and neither TPNOBLOCK nor TPNOTIME were 
specified. In either case, neither DATA-REC nor TPTYPE-REC are changed. If 
a transaction timeout occurred, then any attempts to send or receive messages 
on any connections or to start a new connection will fail with [TPETIME] until 
the transaction has been aborted.
124 BEA TUXEDO Reference Manual



TPSEND(3CBL)
[TPEEVENT] 
An event occurred and its type is available in TPEVENT. DATA-REC is not sent 
when this error occurs.

[TPEBLOCK] 
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG] 
A signal was received and TPSIGRSTRT was not specified.

[TPEPROTO] 
TPSEND was called in an improper context (for example, the connection was 
established such that the calling program can only receive data).

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also TPCONNECT(), TPDISCON(), TPRECV()
BEA TUXEDO Reference Manual 125



TPSETUNSOL(3CBL)
TPSETUNSOL(3CBL)

Name TPSETUNSOL—set method of handling unsolicited messages

synopsis 01 CURR-ROUTINE  PIC S9(9) COMP-5. 
 
01 PREV-ROUTINE  PIC S9(9) COMP-5. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS.  
 
CALL "TPSETUNSOL" USING CURR-ROUTINE PREV-ROUTINE TPSTATUS-REC.

Description TPSETUNSOL allows a client to identify the routine that should be invoked when an 
unsolicited message is received by the BEA TUXEDO system libraries. Prior to the 
first call to TPSETUNSOL, any unsolicited messages received by the BEA TUXEDO 
system libraries on behalf of the client are logged and ignored. A call to TPSETUNSOL 
with a function number, CURR-ROUTINE, set to 0 has the same effect. The method used 
by the system for notification and detection is determined by the application default, 
which can be overridden on a per-client basis (see TPINITIALIZE()).

The routine number passed, in CURR-ROUTINE, on the call to TPSETUNSOL selects one 
of 16 predefined routines. The routine names must be _tm_dispatch1 through 
_tm_dispatch8 for C routines that provide unsolicited message handling and 
TMDISPATCH9 through TMDISPATCH16 for COBOL routines that provide the same 
message handling. The routine _tm_dispatch1 through _tm_dispatch8 must 
conform to the parameter definition described in tpsetunsol(3). Routines 
TMDISPATCH9 through TMDISPATCH16 must use TPGETUNSOL() to receive the data.

Processing within the C language application unsolicited message handling routine is 
restricted to the following BEA TUXEDO system calls:
tpalloc(3)
tpgetlev(3)
tprealloc(3)
tptypes(3)
tpfree(3)

Processing within the COBOL language application unsolicited message handling 
routine is restricted to the following BEA TUXEDO call: TPGETLEV().

Return Values Upon successful completion, TPSETUNSOL sets TP-STATUS to [TPOK] and returns the 
previous setting for the unsolicited message handling routine (0 in PREV-ROUTINE is 
a successful return indicating that no message handling routine had been set 
previously).
126 BEA TUXEDO Reference Manual



TPSETUNSOL(3CBL)
Errors Under the following conditions, TPSETUNSOL fails and sets TP-STATUS to: 

[TPEINVAL] 
Invalid arguments were given (for example, CURR-ROUTINE is not a valid 
routine value).

[TPEPROTO] 
TPSETUNSOL was called in an improper context (e.g., from within a server).

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

Portability The interfaces described in TPNOTIFY() are supported on native site UNIX-based 
processors. In addition, the routines TPBROADCAST() and TPCHKUNSOL() as well as the 
routine TPSETUNSOL are supported on UNIX and MS-DOS workstation processors.

TPSETUNSOL is not supported on Windows, OS/2, and RS6000 due to the way that 
Dynamic Link Libraries and Shared Libraries work in these environments; TPEPROTO 
will be returned if called on these platforms. Use the C-language interface 
tpsetunsol to set up a handler function in these environments.

See Also TPINIT(), TPGETUNSOL(), TPTERM()
BEA TUXEDO Reference Manual 127



TPSPRIO(3CBL)
TPSPRIO(3CBL)

Name TPSPRIO—set service request priority

synopsis 01 TPPRIDEF-REC.
 COPY TPPRIDEF. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPSPRIO" USING TPPRIDEF-REC TPSTATUS-REC.

Description TPSPRIO sets the priority for the next request sent or forwarded. The priority set affects 
only the next request sent. (Priority can also be set for messages enqueued or dequeued 
by TPENQUEUE() or TPDEQUEUE() if the queued management facility is installed.) By 
default, the setting of PRIORITY in TPPRIDEF-REC increments or decrements a 
service's default priority up to a maximum of 100 or down to a minimum of 1 
depending on its sign, where 100 is the highest priority. The default priority for a 
request is determined by the service to which the request is being sent. This default 
may be specified administratively (see ubbconfig(5)), or take the system default of 
50. TPSPRIO has no effect on messages sent via TPCONNECT() or TPSEND().

Following is a list of valid settings in TPPRIDEF-REC. 

TPABSOLUTE 
The priority of the next request should be sent out at the absolute value of 
PRIORITY. The absolute value of PRIORITY must be within the range 1 and 
100, inclusive, with 100 being the highest priority. Any value outside of this 
range causes a default value to be used.

TPRELATIVE 
The priority of the next request should be sent out at the relative value of 
PRIORITY.

Return Values Upon successful completion, TPSPRIO sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPSPRIO fails and sets TP-STATUS to: 

[TPEINVAL] 
TPPRIDEF-REC settings are invalid.

[TPEPROTO] 
TPSPRIO was called in an improper context.
128 BEA TUXEDO Reference Manual



TPSPRIO(3CBL)
[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also TPACALL(), TPCALL(), TPDEQUEUE(), TPENQUEUE(), TPGPRIO()
BEA TUXEDO Reference Manual 129



TPSUBSCRIBE(3CBL)
TPSUBSCRIBE(3CBL)

Name TPSUBSCRIBE—subscribe to an event

synopsis 01 TPEVTDEF-REC.
 COPY TPEVTDEF. 
 
01 TPQUEDEF-REC.
 COPY TPQUEDEF. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPSUBSCRIBE" USING TPEVTDEF-REC TPQUEDEF-REC TPSTATUS-REC.

Description The caller uses TPSUBSCRIBE to subscribe to an event or set of events named by 
EVENT-EXPR in TPEVTDEF-REC. Subscriptions are maintained by the BEA TUXEDO 
System Event Broker, TMUSREVT(5), and are used to notify subscribers when events 
are posted via TPPOST(). Each subscription specifies a notification method which can 
take one of three forms: client notification, service calls, or message enqueuing to 
stable-storage queues. Notification methods are determined by the subscriber's process 
type and the setting of the TPEV-METHOD-FLAG in TPEVTDEF-REC.

The event or set of events being subscribed to is named by the regular expression, 
EVENT-EXPR in TPEVTDEF-REC, and cannot be SPACES. Regular expressions are of 
the form specified in recomp(3). For example, if EVENT-EXPR is "\e\e..*", the caller 
is subscribing to all system-generated events; if EVENT-EXPR is 
"\e\e.SysServer.*", the caller is subscribing to all system-generated events related 
to servers. If EVENT-EXPR is "[A-Z].*", the caller is subscribing to all user events 
starting with A-Z; if EVENT-EXPR is ".*(ERR|err).*", the caller is subscribing to all 
user events containing either the substring "ERR" or the substring "err" (for example, 
"account_error" and "ERROR_STATE" events would both qualify).

EVENT-FILTER in TPEVTDEF-REC is a string containing a boolean filter rule associated 
with EVENT-EXPR that must be evaluated successfully before the event broker posts the 
event. Upon receiving an event to be posted, the event broker applies the filter rule, if 
one exists, to the posted event's data. If the data passes the filter rule, the event broker 
invokes the notification method associated with EVENT-EXPR; otherwise, the broker 
does not invoke the associated notification method. The caller can subscribe to the 
same event multiple times with different filter rules.

Filter rules are specific to the typed records to which they are applied. For FML and 
view records, the filter rule is a string that can be passed to each's boolean expression 
complier (see Fboolco(3) and Fvboolco(3), respectively) and evaluated against the 
130 BEA TUXEDO Reference Manual



TPSUBSCRIBE(3CBL)
posted record (see Fboolev(3) and Fvboolev(3), respectively). For STRING records, 
the filter rule is a regular expression of the form specified in recomp(3). All other 
record types require customized filter evaluators (see buffer(3) and typesw(5) for 
details on adding customized filter evaluators). If no filter rule is associated with 
EVENT-EXPR, then EVENT-FILTER must be SPACES.

If the subscriber is a BEA TUXEDO system client process and TPEVNOTIFY in 
TPEVTDEF-REC is set, then the event broker sends an unsolicited message to the 
subscriber when the event to which it subscribed is posted. That is, when an event 
name is posted that evaluates successfully against EVENT-EXPR, the event broker tests 
the posted data against the filter rule associated with EVENT-EXPR. If the data passes 
the filter rule or if there is no filter rule for the event, then the subscriber receives an 
unsolicited notification along with any data posted with the event. In order to receive 
unsolicited notifications, the client must register (via TPSETUNSOL()) an unsolicited 
message handling routine. If a BEA TUXEDO system server process calls 
TPSUBSCRIBE with TPEVNOTIFY set, then TPSUBSCRIBE fails and sets TP-STATUS in 
TPSTATUS-REC to [TPEPROTO].

Clients receiving event notification via unsolicited messages should remove their 
subscriptions from the event broker’s list of active subscriptions before exiting (see 
TPUNSUBSCRIBE() for details). Using TPUNSUBSCRIBE’s wildcard handle, -1, clients 
can conveniently remove all of their "non-persistent" subscriptions which include 
those associated with the unsolicited notification method (see the description of 
TPEVPERSIST below for subscriptions and their associated notification methods that 
persist after a process exits). If a client exits without removing its non-persistent 
subscriptions, then the event broker will remove them when it detects that the client is 
no longer accessible.

When TPEVNOTIFY is set, TPEVNOTRAN and TPEVNOPERSIST must also be set; 
otherwise TPSUBSCRIBE fails and sets TP-STATUS to [TPEINVAL]. That is, an event 
subscription for a client having the unsolicited notification method cannot be 
transactional nor can it be persistent.

If the subscriber (regardless of process type) sets TPEVSERVICE in TPEVTDEF-REC, 
then event notifications are sent to the BEA TUXEDO system service routine named 
by NAME-1 in TPEVTDEF-REC. That is, when an event name is posted that evaluates 
successfully against EVENT-EXPR, the event broker tests the posted data against the 
filter rule associated with EVENT-EXPR. If the data passes the filter rule or if there is no 
filter rule for the event, then a service request is sent to NAME-1 along with any data 
posted with the event. The service name in NAME-1 can be any valid BEA TUXEDO 
system service name and it may or may not be active at the time the subscription is 
BEA TUXEDO Reference Manual 131



TPSUBSCRIBE(3CBL)
made. Service routines invoked by the event broker should return with no reply data. 
That is, they should call TPRETURN() with REC-TYPE in TPTYPE-REC set to SPACES. 
Any data passed to TPRETURN() will be dropped.

If TPEVTRAN in TPEVTDEF-REC is also set, then if the process calling TPPOST() is in 
transaction mode, the event broker calls the subscribed service routine such that it will 
be part of the poster’s transaction. Both the event broker, TMUSREVT(5), and the 
subscribed service routine must belong to server groups that support transactions (see 
ubbconfig(5) for details). If TPEVNOTRAN is set, then the event broker calls the 
subscribed service routine such that it will not be part of the poster’s transaction.

If the subscriber (regardless of process type) sets TPEVQUEUE in TPEVTDEF-REC, then 
event notifications are enqueued to the queue space named by NAME-1 in 
TPEVTDEF-REC and the queue named by NAME-2 in TPEVTDEF-REC. That is, when an 
event name is posted that evaluates successfully against EVENT-EXPR, the event broker 
tests the posted data against the filter rule associated with EVENT-EXPR. If the data 
passes the filter rule or if there is no filter rule for the event, then the event broker 
enqueues a message to the queue space named by NAME-1 and the queue named by 
NAME-2 along with any data posted with the event. The queue space and queue name 
can be any valid BEA TUXEDO system queue space and queue name, either of which 
may or may not exist at the time the subscription is made.

TPQUEDEF-REC can contain options further directing the event broker’s enqueuing of 
the posted event. If the caller has no options to specify, then TPQUEDEF-REC should be 
set to LOW-VALUE. Otherwise, options can be set as described in the "Control 
Parameter" subsection of the TPENQUEUE() reference page (specifically, see the section 
describing the valid list of settings controlling input information for TPENQUEUE()).

If TPEVTRAN in TPEVTDEF-REC is also set, then if the process calling TPPOST() is in 
transaction mode, the event broker enqueues the posted event and its data such that it 
will be part of the poster’s transaction. The event broker, TMUSREVT(5), must belong to 
a server group that supports transactions (see ubbconfig(5) for details). If 
TPEVNOTRAN is set, then the event broker enqueues the posted event and its data such 
that it will not be part of the poster’s transaction.

By default, the BEA TUXEDO System Event Broker deletes subscriptions when the 
resource to which it is posting is not available (for example, the event broker cannot 
access a service routine and/or a queue space/queue name associated with an event 
subscription). Setting TPEVPERSIST in TPEVTDEF-REC indicates that the subscriber 
wants this subscription to persist across such errors (usually because the resource will 
become available again in the future). Persistent subscriptions are allowed only for 
TPEVSERVICE and TPEVQUEUE notification methods. TPEVPERSIST cannot be used 
132 BEA TUXEDO Reference Manual



TPSUBSCRIBE(3CBL)
when TPEVNOTIFY is set; otherwise, the function fails and sets TP-STATUS to 
[TPEINVAL]. When TPEVNOPERSIST is used, the event broker will remove this 
subscription if it encounters an error accessing either the client, the service name, or 
queue space/queue name designated in this subscription.

If TPEVPERSIST is used with TPEVTRAN and the resource is not available at the time of 
event notification, then the event broker will return to the poster such that its 
transaction must be aborted. That is, even though the subscription remains intact, the 
resource’s unavailability will cause the poster’s transaction to fail.

If the event broker’s list of active subscriptions already contains a subscription that 
matches the one being requested by TPSUBSCRIBE, then the function fails setting 
TP-STATUS to [TPEMATCH]. For a subscription to match an existing one, both 
EVENT-EXPR and EVENT-FILTER must match those of a subscription already in the 
event broker’s active list of subscriptions. In addition, depending on the notification 
method, other criteria are used to determine matches.

If TPEVNOTIFY is set, then the caller’s system-defined client identifier (known as a 
CLIENTID) is also used to detect matches. That is, TPSUBSCRIBE fails if EVENT-EXPR, 
EVENT-FILTER, and the caller’s CLIENTID match those of a subscription already 
known to the event broker.

If TPEVSERVICE is set, then TPSUBSCRIBE fails if EVENT-EXPR, EVENT-FILTER, and 
the service name set in NAME-1 match those of a subscription already known to the 
event broker.

If TPEVQUEUE is set, then event broker uses the queue space, queue name, and 
correlation identifier, in addition to EVENT-EXPR and EVENT-FILTER, when 
determining matches. The correlation identifier can be used to differentiate among 
several subscriptions for the same event expression and filter rule, destined for the 
same queue. Thus, if the caller has set both TPEVQUEUE and TPQNOCOORID, then 
TPSUBSCRIBE fails if EVENT-EXPR, EVENT-FILTER, the queue space name set in 
NAME-1, and the queue name set in NAME-2 match those of a subscription (which also 
does not have a correlation identifier specified) already known to the event broker. 
Further, if TPQCOORID is set, then TPSUBSCRIBE fails if EVENT-EXPR, EVENT-FILTER, 
NAME-1, NAME-2, and CORRID in TPQUEDEF-REC match those of a subscription (which 
has the same correlation identifier specified) already known to the event broker.
BEA TUXEDO Reference Manual 133



TPSUBSCRIBE(3CBL)
Following is a list of settings in TPEVTDEF-REC. 

TPNOBLOCK 
The subscription is not made if a blocking condition exists. If such a condition 
occurs, the call fails and sets TP-STATUS to [TPEBLOCK]. Either TPNOBLOCK 
or TPBLOCK must be set.

TPBLOCK 
When TPBLOCK is specified and a blocking condition exists, the caller blocks 
until the condition subsides or a timeout occurs (either transaction or blocking 
timeout). Either TPNOBLOCK or TPBLOCK must be set.

TPNOTIME 
This setting signifies that the caller is willing to block indefinitely and wants 
to be immune to blocking timeouts. Transaction timeouts may still occur. 
Either TPNOTIME or TPTIME must be set.

TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is not restarted, the call fails and sets TP-STATUS to [TPGOTSIG]. Either 
TPNOSIGRSTRT or TPSIGRSTRT must be set.

Return Values Upon successful completion, TPSUBSCRIBE sets TP-STATUS to [TPOK]. In addition, 
TPSUBSCRIBE sets SUBSCRIPTION-HANDLE in TPEVTDEF-REC to the handle for this 
subscription. SUBSCRIPTION-HANDLE can be used when calling TPUNSUBSCRIBE() to 
remove this subscription from the event broker’s list of active subscriptions. Either the 
subscriber or any other process is allowed to use the returned handle to delete this 
subscription.
134 BEA TUXEDO Reference Manual



TPSUBSCRIBE(3CBL)
Errors Under the following conditions, TPSUBSCRIBE fails and sets TP-STATUS to one of the 
following values. (Unless otherwise noted, failure does not affect the caller’s 
transaction, if one exists.) 

[TPEINVAL] 
Invalid arguments were given (for example, EVENT-EXPR is SPACES).

[TPENOENT] 
Cannot access the BEA TUXEDO System Event Broker.

[TPELIMIT] 
The subscription failed because the event broker’s maximum number of 
subscriptions has been reached.

[TPEMATCH] 
The subscription failed because it matched one already listed with the event 
broker.

[TPETIME] 
A timeout occurred. If the caller is in transaction mode, then a transaction 
timeout occurred and the transaction is to be aborted; otherwise, a blocking 
timeout occurred and both TPBLOCK and TPTIME were specified. If a 
transaction timeout occurred, any attempts to do new work will fail with 
[TPETIME] until the transaction has been aborted.

[TPEBLOCK] 
A blocking condition exists and TPNOBLOCK was specified.

[TPGOTSIG] 
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO] 
TPSUBSCRIBE was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also buffer(3), EVENTS(5), EVENT_MIB(5), Fboolco(3), Fboolev(3), Fvboolco(3), 
Fvboolev(3), recomp(3), TMSYSEVT(5), TMUSREVT(5), TPENQUEUE(), TPPOST(), 
TPSETUNSOL(), TPUNSUBSCRIBE(), tuxtypes(5), typesw(5), ubbconfig(5)
BEA TUXEDO Reference Manual 135



TPSUSPEND(3CBL)
TPSUSPEND(3CBL)

Name TPSUSPEND—suspend a global transaction

synopsis 01 TPTRXDEF-REC.
 COPY TPTRXDEF. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS.  
 
CALL "TPSUSPEND" USING TPTRXDEF-REC TPSTATUS-REC. 

Description TPSUSPEND is used to suspend the transaction active in the caller's program. A 
transaction begun with TPBEGIN() may be suspended with TPSUSPEND. Either the 
suspending program or another program may use TPRESUME() to resume work on a 
suspended transaction. When TPSUSPEND returns, the caller is no longer in transaction 
mode. However, while a transaction is suspended, all resources associated with that 
transaction (such as database locks) remain active. Like an active transaction, a 
suspended transaction is susceptible to the transaction timeout value that was assigned 
when the transaction first began.

For the transaction to be resumed in another process, the caller of TPSUSPEND must 
have been the initiator of the transaction by explicitly calling TPBEGIN. TPSUSPEND 
may also be called by a process other than the originator of the transaction (for 
example, a server that receives a request in transaction mode). In the latter case, only 
the caller of TPSUSPEND may call TPRESUME to resume that transaction. This case is 
allowed so that a process can temporarily suspend a transaction to begin and do some 
work in another transaction before completing the original transaction (for example, to 
run a transaction to log a failure before rolling back the original transaction).

TPSUSPEND populates TRANID with the transaction identifier being suspended.

To ensure success, the caller must have completed all outstanding transactional 
communication with servers before issuing TPSUSPEND. That is, the caller must have 
received all replies for requests sent with TPACALL() that were associated with the 
caller's transaction. Also, the caller must have closed all connections with 
conversational services associated with the caller's transaction (that is, TPRECV() must 
have returned the TPEV-SVCSUCC event). If either rule is not followed, then 
TPSUSPEND fails, the caller's current transaction is not suspended and all transactional 
communication handles remain valid. Communication handles not associated with the 
caller's transaction remain valid regardless of the outcome of TPSUSPEND.

Return Value Upon successful completion, TPSUSPEND sets [TPOK].
136 BEA TUXEDO Reference Manual



TPSUSPEND(3CBL)
Errors Under the following conditions, TPSUSPEND fails and sets TP-STATUS to: 

[TPEABORT] 
The caller’s active transaction has been aborted. All communication handles 
associated with the transaction are no longer valid.

[TPEPROTO] 
TPSUSPEND was called in an improper context (for example, the caller is not 
in transaction mode). The caller’s state with respect to transaction mode is 
unchanged.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also TPACALL(), TPBEGIN(), TPRECV(), TPRESUME().
BEA TUXEDO Reference Manual 137



TPSVCSTART(3CBL)
TPSVCSTART(3CBL)

Name TPSVCSTART—start a BEA TUXEDO system service

synopsis 01 TPSVCDEF-REC.
 COPY TPSVCDEF. 
 
01 TPTYPE-REC.
 COPY TPTYPE. 
 
01 DATA-REC.
 COPY User data. 
 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
 
CALL "TPSVCSTART" USING TPSVCDEF-REC TPTYPE-REC DATA-REC 
TPSTATUS-REC.

Description TPSVCSTART is the first BEA TUXEDO system routine to be called when writing a 
service routines. In fact, it is an error to issue any other call within a service routine 
before calling TPSVCSTART. TPVCSTART is used to retrieve the service's parameters 
and data. This routine is used for services that receive requests via TPCALL() or 
TPACALL() routines as well as by services that communicate via TPCONNECT(), 
TPSEND(), and TPRECV() routines.

Service routines processing requests made via either TPCALL(), TPACALL(), or 
TPFORWAR() receive at most one incoming message (upon successfully returning from 
TPSVCSTART) and send at most one reply (upon exiting the service routine with 
TPRETURN()).

Conversational services, on the other hand, are invoked by connection requests with at 
most one incoming message along with a means of referring to the open connection. 
Upon successfully returning from TPSVCSTART, either the connecting program or the 
conversational service may send and receive data as defined by the application. The 
connection is half-duplex in nature meaning that one side controls the conversation 
(i.e., it sends data) until it explicitly gives up control to the other side of the connection.

Concerning transactions, service routines can participate in at most one transaction if 
invoked in transaction mode. As far as the service routine writer is concerned, the 
transaction ends upon returning from the service routine. If the service routine is not 
invoked in transaction mode, then the service routine may originate as many 
transactions as it wants using TPBEGIN(), TPCOMMIT(), and TPABORT(). Note that 
TPRETURN() is not used to complete a transaction. Thus, it is an error to call 
TPRETURN() with an outstanding transaction that originated within the service routine.
138 BEA TUXEDO Reference Manual



TPSVCSTART(3CBL)
DATA-REC specifies where the service’s data is read into, and, on input, LEN in 
TPTYPE-REC indicates the maximum number of bytes that should be moved into 
DATA-REC. Upon successful return from TPSVCSTART, LEN contains the actual number 
of bytes moved into DATA-REC. REC-TYPE and SUB-TYPE, both in TPTYPE-REC, 
contain the data’s type and sub-type, respectively. If the message is larger than 
DATA-REC, then DATA-REC will contain only as many bytes as will fit in the record. The 
remainder of the message is discarded and TPSVCSTART sets TPTRUNCATE.

If LEN is 0 upon successful return, then the service has no incoming data and DATA-REC 
was not modified. It in an error for LEN to be 0 on input.

Upon successful return, SERVICE-NAME in TPSVCDEF-REC is populated with the 
service name that the requesting program used to invoke the service.

Following are the possible settings in TPSVCDEF-REC upon return of TPSVCSTART. 

TPREQRSP 
The service was invoked with either TPCALL() or TPACALL(). This setting is 
mutually exclusive with TPCONV.

TPCONV 
The service was invoked with TPCONNECT(). The communications handle for 
the conversation is available in COMM-HANDLE in TPSVCDEF-REC. This setting 
is mutually exclusive with TPREQRSP.

TPNOTRAN 
The service routine is not in transaction mode. This setting is mutually 
exclusive with TPTRAN.

TPTRAN 
The service routine is in transaction mode. This setting is mutually exclusive 
with TPNOTRAN.

TPNOREPLY 
The program invoking the service routine is not expecting a reply. This 
setting is meaningful only when TPREQRSP is set. This setting is mutually 
exclusive with TPREPLY.

TPREPLY 
The program invoking the service routine is expecting a reply. This setting is 
meaningful only when TPREQRSP is set. This setting is mutually exclusive 
with TPNOREPLY.
BEA TUXEDO Reference Manual 139



TPSVCSTART(3CBL)
TPSENDONLY 
The service is invoked such that it can send data across the connection and the 
program on the other end of the connection can only receive data. This setting 
is meaningful only when TPCONV is set. This setting is mutually exclusive 
with TPRECVONLY.

TPRECVONLY 
The service is invoked such that it can only receive data from the connection 
and the program on the other end of the connection can send data. This setting 
is meaningful only when TPCONV is set. This setting is mutually exclusive 
with TPSENDONLY.

APPKEY in TPSVCDEF-REC is set to the application key assigned to the requesting client 
program by the application defined authentication service. This key value is passed 
along with any and all service requests made while within this invocation of the service 
routine. APPKEY will have a value of -1 for originating clients that do not pass through 
the application authentication service. This includes clients of an earlier release level 
interoperating with a security application.

Return Values Upon successful completion, TPSVCSTART sets TP-STATUS to [TPOK]. If the size of the 
incoming message was larger then the size specified in LEN on input, TPTRUNCATE is 
set and only LEN amount of data was moved to DATA-REC, the remaining data is 
discarded.

Errors Under the following conditions, TPSVCSTART fails and sets TP-STATUS to: 

[TPEINVAL] 
Invalid arguments were given.

[TPEPROTO] 
TPSVCSTART was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also TPSVRINIT(), TPSVRDONE(), buildserver(1), TPBEGIN() TPCONNECT(), TPCALL(), 
TPINIT(), TPOPEN()
140 BEA TUXEDO Reference Manual



TPSVRDONE(3CBL)
TPSVRDONE(3CBL)

Name TPSVRDONE—BEA TUXEDO system server termination routine

synopsis 01 TPSTATUS-REC.
 COPY TPSTATUS. 
PROCEDURE DIVISION. 
* User code 
EXIT PROGRAM.

Description The BEA TUXEDO system server abstraction calls TPSVRDONE after it has finished 
processing service requests but before it exits. When this routine is invoked, the server 
is still part of the system but its own services have been unadvertised. Thus, BEA 
TUXEDO system communication can be performed and transactions can be defined in 
this routine. However, if TPSVRDONE returns with open connections, asynchronous 
replies pending or while still in transaction mode, the BEA TUXEDO system will 
close its connections, ignore any pending replies and rollback the transaction before 
the server exits.

If an application does not provide this routine in a server, then the default version 
provided by the BEA TUXEDO system is called instead. The default TPSVRDONE calls 
TPCLOSE() and USERLOG() to announce that the server is about to exit.

Usage If either TPRETURN() or TPFORWAR() are called in TPSVRDONE, then these routines 
simply return having no effect.

See Also TPCLOSE(), TPSVRINIT()
BEA TUXEDO Reference Manual 141



TPSVRINIT(3CBL)
TPSVRINIT(3CBL)

Name TPSVRINIT—BEA TUXEDO system server initialization routine

synopsis LINKAGE SECTION. 
 
01 CMD-LINE.
 05 ARGC  PIC 9(4) COMP-5.
 05 ARGV.
  10 ARGS PIC X OCCURS 0 TO 9999 DEPENDING ON ARGC. 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
PROCEDURE DIVISION USING CMD-LINE TPSTATUS-REC. 
* User code 
EXIT PROGRAM

Description The BEA TUXEDO system server abstraction calls TPSVRINIT during its 
initialization. This routine is called after the program has become a server but before 
it handles any service requests; thus, BEA TUXEDO system communication may be 
performed and transactions may be defined in this routine. However, if TPSVRINIT 
returns with open connections, asynchronous replies pending or while still in 
transaction mode, the BEA TUXEDO system will close the connections, ignore replies 
pending, abort the transaction, and the server will exit gracefully.

If an application does not provide this routine in a server, then the default version 
provided by the BEA TUXEDO system is called instead. The default TPSVRINIT calls 
TPOPEN() and USERLOG() to announce that the server has successfully started.

Application-specific options can be passed into a server and processed in TPSVRINIT 
(see servopts(5)). The options are passed through ARGC and ARGV. ARGC contain the 
number of arguments that have been passed and ARGV contains the arguments (in 
character format) separated by a single SPACE character. getopt(3C) is used in a BEA 
TUXEDO system.

If successful TPSVRINIT, returns [TPOK] in TP-STATUS and the service can start 
accepting requests. If an error occurs in TPSVRINIT, the application can cause the 
server to exit gracefully (and not take any service requests) by returning any value 
except [TPOK] in TP-STATUS.

Return Values If either TPRETURN() or TPFORWAR() are used outside of a service routine (e.g., in 
clients, or in TPSVRINIT or TPSVRDONE()), then these routines return having no effect.

Usage If either TPRETURN() or TPFORWAR() are called in TPSVRINIT, these routines simply 
return having no effect.

See Also TPOPEN(), TPSVRDONE()
142 BEA TUXEDO Reference Manual



TPTERM(3CBL)
TPTERM(3CBL)

Name TPTERM—leave a BEA TUXEDO system application

synopsis 01 TPSTATUS-REC.
 COPY TPSTATUS. 
CALL "TPTERM" USING TPSTATUS-REC.

Description TPTERM removes a client from a BEA TUXEDO system application. If the client is in 
transaction mode, then the transaction is rolled back. When TPTERM returns 
successfully, the caller can no longer communicate with any other thread of control nor 
can it participate in any transactions. Any outstanding conversations are immediately 
disconnected.

If TPTERM is called more than once (that is, after the caller has already left the 
application), no action is taken and success is returned.

Return Values Upon successful completion, TPTERM sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPTERM fails and sets TP-STATUS to: 

[TPEPROTO] 
TPTERM was called in an improper context (for example, the caller is a server).

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also TPINITIALIZE()
BEA TUXEDO Reference Manual 143



TPUNADVERTISE(3CBL)
TPUNADVERTISE(3CBL)

Name TPUNADVERTISE—routine for unadvertising service names

synopsis 01 SVC-NAME PIC X(15). 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
CALL "TPUNADVERTISE" USING SVC-NAME TPSTATUS-REC.

Description TPUNADVERTISE allows a server to unadvertise a service that it offers. By default, a 
server's services are advertised when it is booted and they are unadvertised when it is 
shutdown.

All servers belonging to a multiple server, single queue (MSSQ) set must offer the 
same set of services. These routines enforce this rule by affecting the advertisements 
of all servers sharing an MSSQ set.

TPUNADVERTISE removes SVC-NAME as an advertised service for the server (or the set 
of servers sharing the caller's MSSQ set). SVC-NAME cannot be SPACES. Also, 
SVC-NAME should be 15 characters or less. (See SERVICES section of ubbconfig(5)). 
Longer names will be accepted and truncated to 15 characters. Care should be taken 
such that truncated names do not match other service names.

Return Values Upon successful completion, TPUNADVERTISE sets TP-STATUS to [TPOK].

Errors Under the following conditions, TPUNADVERTISE fails and sets TP-STATUS to: 

[TPEINVAL] 
Invalid arguments were given (for example SVC-NAME is SPACES).

[TPENOENT] 
SVC-NAME is not currently advertised by the server.

[TPEPROTO] 
TPUNADVERTISE was called in an improper context (for example, by a client).

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also TPADVERTISE()
144 BEA TUXEDO Reference Manual



TPUNSUBSCRIBE(3CBL)
TPUNSUBSCRIBE(3CBL)

Name TPUNSUBSCRIBE—unsubscribe to an event

synopsis 01 TPEVTDEF-REC.
 COPY TPEVTDEF.

01 TPSTATUS-REC.
 COPY TPSTATUS.

CALL "TPUNSUBSCRIBE" USING TPEVTDEF-REC TPSTATUS-REC.

Description The caller uses TPUNSUBSCRIBE to remove an event subscription or a set of event 
subscriptions from the BEA TUXEDO System Event Broker's list of active 
subscriptions. SUBSCRIPTION-HANDLE in TPEVTDEF-REC is an event subscription 
handle returned by TPSUBSCRIBE(). Setting SUBSCRIPTION-HANDLE to the wildcard 
value, -1, directs TPUNSUBSCRIBE to unsubscribe to all non-persistent subscriptions 
previously made by the calling process. Non-persistent subscriptions are those made 
with TPEVNOPERSIST set when TPSUBSCRIBE() was called. Persistent subscriptions 
can be deleted only by using the handle returned by TPSUBSCRIBE().

Note that the -1 handle removes only those subscriptions made by the calling process 
and not any made by previous instantiations of the caller (for example, a server that 
dies and restarts cannot use the wildcard to unsubscribe to any subscriptions made by 
the original server).

Following is a list of valid settings in TPEVTDEF-REC. 

TPNOBLOCK 
The subscription is not removed if a blocking condition exists. If such a 
condition occurs, the call fails and sets TP-STATUS to [TPEBLOCK]. Either 
TPNOBLOCK or TPBLOCK must be set.

TPBLOCK 
When TPBLOCK is specified and a blocking condition exists, the caller blocks 
until the condition subsides or a timeout occurs (either transaction or blocking 
timeout). Either \%TPNOBLOCK or TPBLOCK must be set.

TPNOTIME 
This setting signifies that the caller is willing to block indefinitely and wants 
to be immune to blocking timeouts. Transaction timeouts may still occur. 
Either TPNOTIME or TPTIME must be set.
BEA TUXEDO Reference Manual 145



TPUNSUBSCRIBE(3CBL)
TPTIME 
This setting signifies that the caller will receive blocking timeouts if a 
blocking condition exists and the blocking time is reached. Either TPNOTIME 
or TPTIME must be set.

TPSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is re-issued. Either TPNOSIGRSTRT or TPSIGRSTRT must be set.

TPNOSIGRSTRT 
If a signal interrupts any underlying system calls, then the interrupted system 
call is not restarted, the call fails and sets TP-STATUS to [TPGOTSIG]. Either 
TPNOSIGRSTRT or TPSIGRSTRT must be set.

Return Values Upon successful completion, TPUNSUBSCRIBE sets TP-STATUS to [TPOK]. In addition, 
TPUNSUBSCRIBE sets EVENT-COUNT in TPEVTDEF-REC to the number of subscriptions 
deleted (zero or greater) from the event broker’s list of active subscriptions. 
EVENT-COUNT may contain a number greater than 1 only when the wildcard handle, -1, 
is used. Also, EVENT-COUNT may contain a number greater than 0 even when 
TPUNSUBSCRIBE completes unsuccessfully (that is, when the wildcard handle is used, 
the event broker may have successfully removed some subscriptions before it 
encountered an error deleting others).

Errors Under the following conditions, TPUNSUBSCRIBE fails and sets TP-STATUS to one of 
the following values. (Unless otherwise noted, failure does not affect the caller’s 
transaction, if one exists.) 

[TPEINVAL] 
Invalid arguments were given (for example, SUBSCRIPTION-HANDLE is an 
invalid subscription handle).

[TPENOENT] 
Cannot access the BEA TUXEDO System Event Broker.

[TPETIME] 
A timeout occurred. If the caller is in transaction mode, then a transaction 
timeout occurred and the transaction is to be aborted; otherwise, a blocking 
timeout occurred and both TPBLOCK and TPTIME were specified. If a 
transaction timeout occurred, any attempts to do new work will fail with 
[TPETIME] until the transaction has been aborted.

[TPEBLOCK] 
A blocking condition exists and TPNOBLOCK was specified.
146 BEA TUXEDO Reference Manual



TPUNSUBSCRIBE(3CBL)
[TPGOTSIG] 
A signal was received and TPNOSIGRSTRT was specified.

[TPEPROTO] 
TPUNSUBSCRIBE was called in an improper context.

[TPESYSTEM] 
A BEA TUXEDO system error has occurred. The exact nature of the error is 
written to a log file.

[TPEOS] 
An operating system error has occurred.

See Also EVENTS(5), EVENT_MIB(5), TMSYSEVT(5), TMUSREVT(5), TPPOST(), TPSUBSCRIBE()
BEA TUXEDO Reference Manual 147



TXBEGIN(3CBL)
TXBEGIN(3CBL)

Name TXBEGIN—begin a global transaction

synopsis 01 TX-RETURN-STATUS.
 COPY TXSTATUS. 
CALL "TXBEGIN" USING TX-RETURN-STATUS.

Description TXBEGIN is used to place the calling thread of control in transaction mode. The calling 
thread must first ensure that its linked resource managers have been opened (via 
TXOPEN()) before it can start transactions. TXBEGIN fails (with a TX-STATUS value of 
[TX-PROTOCOL-ERROR]) if the caller is already in transaction mode or TXOPEN has not 
been called.

Once in transaction mode, the calling thread must call TXCOMMIT() or TXROLLBACK() 
to complete its current transaction. There are certain cases related to transaction 
chaining where TXBEGIN does not need to be called explicitly to start a transaction. See 
TXCOMMIT and TXROLLBACK for details. TX-RETURN-STATUS is the record used to 
return a value.

Optional Set-up TXSETTIMEOUT()

Return Value Upon successful completion, TXBEGIN returns TX-OK, a non-negative return value.

Errors Under the following conditions, TXBEGIN fails and returns one of these negative 
values: 

[TX-OUTSIDE] 
The transaction manager is unable to start a global transaction because the 
calling thread of control is currently participating in work outside any global 
transaction with one or more resource managers. All such work must be 
completed before a global transaction can be started. The caller's state with 
respect to the local transaction is unchanged.

[TX-PROTOCOL-ERROR] 
The function was called in an improper context (for example, the caller is 
already in transaction mode). The caller's state with respect to transaction 
mode is unchanged.

[TX-ERROR] 
Either the transaction manager or one or more of the resource managers 
encountered a transient error trying to start a new transaction. When this error 
is returned, the caller is not in transaction mode. The exact nature of the error 
is written to a log file.
148 BEA TUXEDO Reference Manual



TXBEGIN(3CBL)
[TX-FAIL] 
Either the transaction manager or one or more of the resource managers 
encountered a fatal error. The nature of the error is such that the transaction 
manager and/or one or more of the resource managers can no longer perform 
work on behalf of the application. When this error is returned, the caller is not 
in transaction mode. The exact nature of the error is written to a log file.

See Also TXCOMMIT(), TXOPEN(), TXROLLBACK(), TXSETTIMEOUT()

Warnings XA-compliant resource managers must be successfully opened to be included in the 
global transaction. (See TXOPEN for details.)
BEA TUXEDO Reference Manual 149



TXCLOSE(3CBL)
TXCLOSE(3CBL)

Name TXCLOSE—close a set of resource managers

synopsis DATA DIVISION.
 * Include TX definitions. 
01 TX-RETURN-STATUS.
 COPY TXSTATUS. 
PROCEDURE DIVISION. 
CALL "TXCLOSE" USING TX-RETURN-STATUS.

Description TXCLOSE closes a set of resource managers in a portable manner. It invokes a 
transaction manager to read resource-manager-specific information in a 
transaction-manager-specific manner and pass this information to the resource 
managers linked to the caller.

TXCLOSE closes all resource managers to which the caller is linked. This function is 
used in place of resource-manager-specific “close” calls and allows an application 
program to be free of calls which may hinder portability. Since resource managers 
differ in their termination semantics, the specific information needed to “close” a 
particular resource manager must be published by each resource manager.

TXCLOSE should be called when an application thread of control no longer wishes to 
participate in global transactions. TXCLOSE fails (returning [TX-PROTOCOL-ERROR]) if 
the caller is in transaction mode. That is, no resource managers are closed even though 
some may not be participating in the current transaction.

When TXCLOSE returns success (TX-OK), all resource managers linked to the calling 
thread are closed.

TX-RETURN-STATUS is the record used to return a value.

Return Value Upon successful completion, TXCLOSE returns TX-OK, a non-negative value.

Errors Under the following conditions, TXCLOSE fails and returns one of these negative 
values.

[TX-PROTOCOL-ERROR] 
The function was called in an improper context (for example, the caller is in 
transaction mode). No resource managers are closed.

[TX-ERROR] 
Either the transaction manager or one or more of the resource managers 
encountered a transient error. The exact nature of the error is written to a log 
file. All resource managers that could be closed are closed.
150 BEA TUXEDO Reference Manual



TXCLOSE(3CBL)
[TX-FAIL] 
Either the transaction manager or one or more of the resource managers 
encountered a fatal error. The nature of the error is such that the transaction 
manager and/or one or more of the resource managers can no longer perform 
work on behalf of the application. The exact nature of the error is written to a 
log file.

See Also TXOPEN()
BEA TUXEDO Reference Manual 151



TXCOMMIT(3CBL)
TXCOMMIT(3CBL)

Name TXCOMMIT—commit a transaction

synopsis DATA DIVISION. 
* Include TX definitions. 
01 TX-RETURN-STATUS.
 COPY TXSTATUS. 
PROCEDURE DIVISION. 
CALL "TXCOMMIT" USING TX-RETURN-STATUS.

Description TXCOMMIT is used to commit the work of the transaction active in the caller's thread of 
control.

If the transaction_control characteristic (see TXSETTRANCTL()) is 
TX-UNCHAINED, then when TXCOMMIT returns, the caller is no longer in transaction 
mode. However, if the transaction_control characteristic is TX-CHAINED, then 
when TXCOMMIT returns, the caller remains in transaction mode on behalf of a new 
transaction (see the RETURN VALUE and ERRORS sections below).

TX-RETURN-STATUS is the record used to return a value.

Optional Set-up t TXSETCOMMITRET()

t TXSETTRANCTL()

t TXSETTIMEOUT()

Return Value Upon successful completion, TXCOMMIT returns TX-OK, a non-negative return value.

Errors Under the following conditions, TXCOMMIT fails and returns one of these negative 
values.

[TX-NO-BEGIN] 
The current transaction committed successfully; however, a new transaction 
could not be started and the caller is no longer in transaction mode. This 
return value may occur only when the transaction_control characteristic 
is TX-CHAINED.

[TX-ROLLBACK] 
The current transaction could not commit and has been rolled back. In 
addition, if the transaction_control characteristic is TX-CHAINED, a new 
transaction is started.
152 BEA TUXEDO Reference Manual



TXCOMMIT(3CBL)
[TX-ROLLBACK-NO-BEGIN] 
The transaction could not commit and has been rolled back. In addition, a new 
transaction could not be started and the caller is no longer in transaction 
mode. This return value can occur only when the transaction_control 
characteristic is TX-CHAINED.

[TX-MIXED] 
The work done on behalf of the transaction was partially committed and 
partially rolled back. In addition, if the transaction_control 
characteristic is TX-CHAINED, a new transaction is started.

[TX-MIXED-NO-BEGIN] 
The work done on behalf of the transaction was partially committed and 
partially rolled back. In addition, a new transaction could not be started and 
the caller is no longer in transaction mode. This return value can occur only 
when the transaction_control characteristic is TX-CHAINED.

[TX-HAZARD] 
Due to a failure, some of the work done on behalf of the transaction may have 
been committed and some of it may have been rolled back. In addition, if the 
transaction_control characteristic is TX-CHAINED, a new transaction is 
started.

[TX-HAZARD-NO-BEGIN] 
Due to a failure, some of the work done on behalf of the transaction may have 
been committed and some of it may have been rolled back. In addition, a new 
transaction could not be started and the caller is no longer in transaction 
mode. This return value can occur only when the transaction_control 
characteristic is TX-CHAINED.

[TX-PROTOCOL-ERROR] 
The function was called in an improper context (for example, the caller is not 
in transaction mode). The caller’s state with respect to transaction mode is not 
changed.

[TX-FAIL] 
Either the transaction manager or one or more of the resource managers 
encountered a fatal error. The nature of the error is such that the transaction 
manager and/or one or more of the resource managers can no longer perform 
work on behalf of the application. The exact nature of the error is written to a 
log file. The caller’s state with respect to the transaction is unknown.

See Also TXBEGIN(), TXSETCOMMITRET(), TXSETTRANCTL(), TXSETTIMEOUT()
BEA TUXEDO Reference Manual 153



TXINFORM(3CBL)
TXINFORM(3CBL)

Name TXINFORM—return global transaction information

synopsis DATA DIVISION.
 * Include TX definitions. 
01 TX-RETURN-STATUS.
 COPY TXSTATUS. 
01 TX-INFO-AREA.
 COPY TXINFDEF. 
PROCEDURE DIVISION. 
CALL "TXINFORM" USING TX-INFO-AREA, TX-RETURN-STATUS.

Description TXINFORM returns global transaction information in TX-INFO-AREA. In addition, this 
function returns a value indicating whether the caller is currently in transaction mode 
or not.

TXINFORM populates the TX-INFO-AREA record with global transaction information. 
The contents of the TX-INFO-AREA record are described under INTRO().

If TXINFORM is called in transaction mode, then TX-IN-TRAN is set, XID-REC will be 
populated with a current transaction branch identifier and TRANSACTION-STATE will 
contain the state of the current transaction. If the caller is not in transaction mode, 
TX-NOT-IN-TRAN is set and XID-REC will be populated with the null XID (see 
TXINTRO for details). In addition, regardless of whether the caller is in transaction 
mode, COMMIT-RETURN, TRANSACTION-CONTROL, and TRANSACTION-TIMEOUT 
contain the current settings of the commit_return and transaction_control 
characteristics, and the transaction timeout value in seconds.

The transaction timeout value returned reflects the setting that will be used when the 
next transaction is started. Thus, it may not reflect the timeout value for the caller's 
current global transaction since calls made to TXSETTIMEOUT() after the current 
transaction was begun may have changed its value.

TX-RETURN-STATUS is the record used to return a value.

Return Value Upon successful completion, TXINFORM returns TX-OK, a non-negative return value.
154 BEA TUXEDO Reference Manual



TXINFORM(3CBL)
Errors Under the following conditions, TXINFORM fails and returns one of these negative 
values.

[TX-PROTOCOL-ERROR] 
The function was called in an improper context (for example, the caller has 
not yet called TXOPEN()).

[TX-FAIL] 
The transaction manager encountered a fatal error. The nature of the error is 
such that the transaction manager can no longer perform work on behalf of 
the application. The exact nature of the error is written to a log file.

See Also TXOPEN(), TXSETCOMMITRET(), TXSETTRANCTL(), TXSETTIMEOUT()

Warnings Within the same global transaction, subsequent calls to TXINFORM are guaranteed to 
provide an XID with the same gtrid component, but not necessarily the same bqual 
component.
BEA TUXEDO Reference Manual 155



TXOPEN(3CBL)
TXOPEN(3CBL)

Name TXOPEN—open a set of resource managers

synopsis DATA DIVISION.
 * Include TX definitions. 
01 TX-RETURN-STATUS.
 COPY TXSTATUS. 
PROCEDURE DIVISION. 
CALL "TXOPEN" USING TX-RETURN-STATUS.

Description TXOPEN opens a set of resource managers in a portable manner. It invokes a transaction 
manager to read resource-manager-specific information in a 
transaction-manager-specific manner and pass this information to the resource 
managers linked to the caller.

TXOPEN attempts to open all resource managers that have been linked with the 
application. This function is used in place of resource-manager-specific “open” calls 
and allows an application program to be free of calls which may hinder portability. 
Since resource managers differ in their initialization semantics, the specific 
information needed to “open” a particular resource manager must be published by each 
resource manager.

If TXOPEN returns TX-ERROR, then no resource managers are open. If TXOPEN returns 
TX-OK, some or all of the resource managers have been opened. Resource managers 
that are not open will return resource-manager-specific errors when accessed by the 
application. TXOPEN must successfully return before a thread of control participates in 
global transactions.

Once TXOPEN returns success, subsequent calls to TXOPEN (before an intervening call 
to TXCLOSE()) are allowed. However, such subsequent calls will return success, and the 
TM will not attempt to re-open any RMs.

TX-RETURN-STATUS is the record used to return a value.

Return Value Upon successful completion, TXOPEN returns TX-OK, a non-negative return value.
156 BEA TUXEDO Reference Manual



TXOPEN(3CBL)
Errors Under the following conditions, TXOPEN fails and returns one of these negative values.

[TX-ERROR] 
Either the transaction manager or one or more of the resource managers 
encountered a transient error. No resource managers are open. The exact 
nature of the error is written to a log file.

[TX-FAIL] 
Either the transaction manager or one or more of the resource managers 
encountered a fatal error. The nature of the error is such that the transaction 
manager and/or one or more of the resource managers can no longer perform 
work on behalf of the application. The exact nature of the error is written to a 
log file.

See Also TXCLOSE().
BEA TUXEDO Reference Manual 157



TXROLLBACK(3CBL)
TXROLLBACK(3CBL)

Name TXROLLBACK—roll back a transaction

synopsis DATA DIVISION.
 * Include TX definitions. 
01 TX-RETURN-STATUS.
 COPY TXSTATUS. 
PROCEDURE DIVISION. 
CALL "TXROLLBACK" USING TX-RETURN-STATUS.

Description TXROLLBACK is used to roll back the work of the transaction active in the caller's thread 
of control.

If the transaction_control characteristic (see TXSETTRANCTL()) is 
TX-UNCHAINED, then when TXROLLBACK returns, the caller is no longer in transaction 
mode. However, if the transaction_control characteristic is TX-CHAINED, then 
when TXROLLBACK returns, the caller remains in transaction mode on behalf of a new 
transaction (see the RETURN VALUE and ERRORS sections below).

TX-RETURN-STATUS is the record used to return a value.

Optional Set-up t TXSETTRANCTL()

t TXSETTIMEOUT()

Return Value Upon successful completion, TXROLLBACK returns TX-OK, a non-negative return value.

Errors Under the following conditions, TXROLLBACK fails and returns one of these negative 
values.

[TX-NO-BEGIN] 
The current transaction rolled back; however, a new transaction could not be 
started and the caller is no longer in transaction mode. This return value may 
occur only when the transaction_control characteristic is TX-CHAINED.

[TX-MIXED] 
The work done on behalf of the transaction was partially committed and 
partially rolled back. In addition, if the transaction_control 
characteristic is TX-CHAINED, a new transaction is started.

[TX-MIXED-NO-BEGIN] 
The work done on behalf of the transaction was partially committed and 
partially rolled back. In addition, a new transaction could not be started and 
158 BEA TUXEDO Reference Manual



TXROLLBACK(3CBL)
the caller is no longer in transaction mode. This return value can occur only 
when the transaction_control characteristic is TX-CHAINED.

[TX-HAZARD] 
Due to a failure, some of the work done on behalf of the transaction may have 
been committed and some of it may have been rolled back. In addition, if the 
transaction_control characteristic is TX-CHAINED, a new transaction is 
started.

[TX-HAZARD-NO-BEGIN] 
Due to a failure, some of the work done on behalf of the transaction may have 
been committed and some of it may have been rolled back. In addition, a new 
transaction could not be started and the caller is no longer in transaction 
mode. This return value can occur only when the transaction_control 
characteristic is TX-CHAINED.

[TX-COMMITTED] 
The work done on behalf of the transaction was heuristically committed. In 
addition, if the transaction_control characteristic is TX-CHAINED, a new 
transaction is started.

[TX-COMMITTED-NO-BEGIN] 
The work done on behalf of the transaction was heuristically committed. In 
addition, a new transaction could not be started and the caller is no longer in 
transaction mode. This return value can occur only when the 
transaction_control characteristic is TX-CHAINED.

[TX-PROTOCOL-ERROR] 
The function was called in an improper context (for example, the caller is not 
in transaction mode).

[TX-FAIL] 
Either the transaction manager or one or more of the resource managers 
encountered a fatal error. The nature of the error is such that the transaction 
manager and/or one or more of the resource managers can no longer perform 
work on behalf of the application. The exact nature of the error is written to a 
log file. The caller’s state with respect to the transaction is unknown.

See Also TXBEGIN(), TXSETTRANCTL(), TXSETTIMEOUT()
BEA TUXEDO Reference Manual 159



TXSETCOMMITRET(3CBL)
TXSETCOMMITRET(3CBL)

Name TXSETCOMMITRET—set commit_return characteristic

synopsis DATA DIVISION.
 * Include TX definitions. 
01 TX-RETURN-STATUS.
 COPY TXSTATUS. 
*
01 TX-INFO-AREA.
 COPY TXINFDEF. 
PROCEDURE DIVISION. 
CALL "TXSETCOMMITRET" USING TX-INFO-AREA TX-RETURN-STATUS.

Description TXSETCOMMITRET sets the commit_return characteristic to the value specified in 
COMMIT-RETURN. This characteristic affects the way TXCOMMIT() behaves with respect 
to returning control to its caller. TXSETCOMMITRET() may be called regardless of 
whether its caller is in transaction mode. This setting remains in effect until changed 
by a subsequent call to TXSETCOMMITRET.

The initial setting for this characteristic is TX-COMMIT-COMPLETED.

Following are the valid settings for COMMIT-RETURN. 

TX-COMMIT-DECISION-LOGGED 
This flag indicates that TXCOMMIT should return after the commit decision has 
been logged by the first phase of the two-phase commit protocol but before 
the second phase has completed. This setting allows for faster response to the 
caller of TXCOMMIT. However, there is a risk that a transaction will have a 
heuristic outcome, in which case the caller will not find out about this 
situation via return codes from TXCOMMIT. Under normal conditions, 
participants that promise to commit during the first phase will do so during 
the second phase. In certain unusual circumstances however (for example, 
long-lasting network or node failures) phase 2 completion may not be 
possible and heuristic results may occur.

TX-COMMIT-COMPLETED 
This flag indicates that TXCOMMIT should return after the two-phase commit 
protocol has finished completely. This setting allows the caller of TXCOMMIT 
to see return codes that indicate that a transaction had or may have had 
heuristic results.

TX-RETURN-STATUS is the record used to return a value.
160 BEA TUXEDO Reference Manual



TXSETCOMMITRET(3CBL)
Return Value Upon successful completion, TXSETCOMMITRET returns TX-OK, a non-negative return 
value.

Errors Under the following conditions, TXSETCOMMITRET does not change the setting of the 
commit_return characteristic and returns one of these negative values: 

[TX-EINVAL] 
COMMIT-RETURN is not one of TX-COMMIT-DECISION-LOGGED or 
TX-COMMIT-COMPLETED.

[TX-PROTOCOL-ERROR] 
The function was called in an improper context (for example, the caller has 
not yet called TXOPEN()).

[TX-FAIL] 
The transaction manager encountered a fatal error. The nature of the error is 
such that the transaction manager can no longer perform work on behalf of 
the application. The exact nature of the error is written to a log file.

See Also TXCOMMIT(3), TXOPEN(3), TXINFORM(3), TXGBEGIN(3), TXROLLBACK(3)
BEA TUXEDO Reference Manual 161



TXSETTRANCTL(3CBL)
TXSETTRANCTL(3CBL)

Name TXSETTRANCTL—set transaction_control characteristic

synopsis DATA DIVISION.
 * Include TX definitions. 
01 TX-RETURN-STATUS.
 COPY TXSTATUS. 
01 TX-INFO-AREA.
 COPY TXINFDEF. 
PROCEDURE DIVISION. 
CALL "TXSETTRANCTL" USING TX-INFO-AREA TX-RETURN-STATUS.

Description TXSETTRANCTL sets the transaction_control characteristic to the value specified 
in TRANSACTION-CONTROL. This characteristic determines whether TXCOMMIT() and 
TXROLLBACK() start a new transaction before returning to their caller. TXSETTRANCTL 
may be called regardless of whether the application program is in transaction mode. 
This setting remains in effect until changed by a subsequent call to TXSETTRANCTL.

The initial setting for this characteristic is TX-UNCHAINED.

Following are the valid settings for TRANSACTION-CONTROL. 

TX-UNCHAINED 
This flag indicates that TXCOMMIT and TXROLLBACK should not start a new 
transaction before returning to their caller. The caller must issue TXBEGIN() 
to start a new transaction.

TX-CHAINED 
This flag indicates that TXCOMMIT and TXROLLBACK should start a new 
transaction before returning to their caller.

TX-RETURN-STATUS is the record used to return a value.

Return Value Upon successful completion, TXSETTRANCTL returns TX-OK, a non-negative return 
value.
162 BEA TUXEDO Reference Manual



TXSETTRANCTL(3CBL)
Errors Under the following conditions, TXSETTRANCTL does not change the setting of the 
transaction_control characteristic and returns one of these negative values.

[TX-EINVAL] 
TRANSACTION-CONTROL is not one of TX-UNCHAINED or TX-CHAINED.

[TX-PROTOCOL-ERROR] 
The function was called in an improper context (for example, the caller has 
not yet called TXOPEN()).

[TX-FAIL] 
The transaction manager encountered a fatal error. The nature of the error is 
such that the transaction manager can no longer perform work on behalf of 
the application. The exact nature of the error is written to a log file.

See Also TXBEGIN(), TXCOMMIT(), TXOPEN(), TXROLLBACK(), TXINFORM()
BEA TUXEDO Reference Manual 163



TXSETTIMEOUT(3CBL)
TXSETTIMEOUT(3CBL)

Name TXSETTIMEOUT—set transaction_timeout characteristic

synopsis DATA DIVISION.
 * Include TX definitions. 
01 TX-RETURN-STATUS.
 COPY TXSTATUS. 
* 
01 TX-INFO-AREA.
 COPY TXINFDEF. 
PROCEDURE DIVISION. 
CALL "TXSETTIMEOUT" USING TX-INFO-AREA TX-RETURN-STATUS.

Description TXSETTIMEOUT sets the transaction_timeout characteristic to the value specified 
in TRANSACTION-TIMEOUT. This value specifies the time period in which the 
transaction must complete before becoming susceptible to transaction timeout; that is, 
the interval between the AP calling TXBEGIN() and TXCOMMIT() or TXROLLBACK(). 
TXSETTIMEOUT may be called regardless of whether its caller is in transaction mode or 
not. If TXSETTIMEOUT is called in transaction mode, the new timeout value does not 
take effect until the next transaction.

The initial transaction_timeout value is 0 (no timeout).

TRANSACTION-TIMEOUT specifies the number of seconds allowed before the 
transaction becomes susceptible to transaction timeout. It may be set to any value up 
to the maximum value for an S9(9) COMP-5 as defined by the system. A 
TRANSACTION-TIMEOUT value of zero disables the timeout feature.

TX-RETURN-STATUS is the record used to return a value.

Return Value Upon successful completion, TXSETTIMEOUT returns TX-OK, a non-negative return 
value.
164 BEA TUXEDO Reference Manual



TXSETTIMEOUT(3CBL)
Errors Under the following conditions, TXSETTIMEOUT does not change the setting of the 
transaction_timeout characteristic and returns one of these negative values. 

[TX-EINVAL] 
The timeout value specified is invalid.

[TX-PROTOCOL-ERROR] 
The function was called in an improper context. For example, the caller has 
not yet called TXOPEN().

[TX-FAIL] 
The transaction manager encountered an error. The nature of the error is such 
that the transaction manager can no longer perform work on behalf of the 
application. The exact nature of the error is written to a log file.

See Also TXBEGIN(), TXCOMMIT(), TXOPEN(), TXROLLBACK(), TXINFORM()
BEA TUXEDO Reference Manual 165



USERLOG(3CBL)
USERLOG(3CBL)

Name USERLOG—write a message to the BEA TUXEDO system central event log

synopsis 01 LOG-REC.
 COPY User data. 
01 LOGREC-LEN PIC S9(9) COMP-5. 
01 TPSTATUS-REC.
 COPY TPSTATUS. 
CALL "USERLOG" USING LOG-REC LOGREC-LEN TPSTATUS-REC.

Description USERLOG() places LOG-REC into a fixed output file--the BEA TUXEDO system central 
event log.

The central event log is an ordinary UNIX file whose pathname is composed as 
follows:

t If the shell variable ULOGPFX is set, its value is used as the prefix for the 
filename. If ULOGPFX is not set, ULOG is used. The prefix is determined the first 
time USERLOG() is called.

t Each time USERLOG() is called the date is determined, and the month, day, and 
year are concatenated to the prefix as mmddyy to set the name for the file.

t The first time a process writes to the userlog, it first writes an additional 
message indicating the associated BEA TUXEDO version.

The message is then appended to the file. With this scheme, processes that call 
USERLOG() on successive days will write into different files.

t Messages are appended to the log file with a tag made up of the time (hhmmss), 
system name, process name, and process-id of the calling process. The tag is 
terminated with a colon (:).

t BEA TUXEDO system-generated error messages in the log file are prefixed by a 
unique identification string of the form:

catalog>:number>:

t This string gives the name of the internationalized catalog containing the 
message string, plus the message number. By convention, BEA TUXEDO 
system-generated error messages are used only once, so the string uniquely 
identifies a location in the source code.

t If the last character of the format specification is not a newline character, 
USERLOG() appends one.
166 BEA TUXEDO Reference Manual



USERLOG(3CBL)
t If the first character of the shell variable ULOGDEBUG is 1 or y, the message sent 
to USERLOG() is also written to the standard error of the calling process.

t USERLOG() is used by the BEA TUXEDO system to record a variety of events.

t The USERLOG mechanism is entirely independent of any database transaction 
logging mechanism.

Portability The USERLOG interface is supported on UNIX and MS-DOS operating systems. The 
system name produced as part of the log message is not available on MS-DOS systems; 
therefore, the value PC is used as the system name for MS-DOS systems.

Examples If the variable ULOGPFX is set to /application/logs/log and if the first call to 
USERLOG() occurred on 9/7/90, the log file created is named 
/application/logs/log.090790. If the call:

01 LOG-REC PIC X(15) VALUE “UNKNOWN USER”.
01 LOGREC-LEN PIC S9(9) VALUES IS 13.
CALL “USERLOG” USING LOG-REC LOGREC-LEN TPSTATUS-REC.

is made at 4:22:14pm on the UNIX named logsys by the program whose process 
id is 23431, the following line appears in the log file:

162214.logsys!security.23431: UNKNOWN USER

If the message is sent to the central event log while the process is in transaction mode, 
the user log entry has additional components in the tag. These components consist of 
the literal gtrid followed by three PIC S9(9) COMP-5 hexadecimal values. The 
values uniquely identify the global transaction and make up what is referred to as the 
global transaction identifier. This identifier is used mainly for administrative purposes, 
but it does make an appearance in the tag that prefixes the messages in the central event 
log. If the foregoing message is written to the central event log in transaction mode, 
the resulting log entry will look like this.

162214.logsys!security.23431: gtrid x2 x24e1b803 x239: UNKNOWN USER

If the shell variable ULOGDEBUG has a value of y, the log message is also written to the 
standard error of the program named security.

Errors USERLOG hangs if the message sent to it is larger than BUFSIZ as defined in stdio.h

Diagnostics USERLOG() returns values include the inability to open, or write to the current log file. 
Inability to write to the standard error, when ULOGDEBUG is set, is not considered an 
error.

Notices It is recommended that applications’ use of USERLOG messages be limited to messages 
that can be used to help debug application errors; flooding the log with incidental 
information can make it hard to spot actual errors.
BEA TUXEDO Reference Manual 167



USERLOG(3CBL)
168 BEA TUXEDO Reference Manual


	Copyright
	Section 3CBL — COBOL Functions
	INTRO(3CBL)
	FINIT(3CBL)
	FVFTOS(3CBL)
	FVSTOF(3CBL)
	TPABORT(3CBL)
	TPACALL(3CBL)
	TPADVERTISE(3CBL)
	TPBEGIN(3CBL)
	TPBROADCAST(3CBL)
	TPCALL(3CBL)
	TPCANCEL(3CBL)
	TPCHKAUTH(3CBL)
	TPCHKUNSOL(3CBL)
	TPCLOSE(3CBL)
	TPCOMMIT(3CBL)
	TPCONNECT(3CBL)
	TPDEQUEUE(3CBL)
	TPDISCON(3CBL)
	TPENQUEUE(3CBL)
	TPFORWAR(3CBL)
	TPGETLEV(3CBL)
	TPGETRPLY(3CBL)
	TPGETUNSOL(3CBL)
	TPGPRIO(3CBL)
	TPINITIALIZE(3CBL)
	TPNOTIFY(3CBL)
	TPOPEN(3CBL)
	TPPOST(3CBL)
	TPRECV(3CBL)
	TPRESUME(3CBL)
	TPRETURN(3CBL)
	TPSCMT(3CBL)
	TPSEND(3CBL)
	TPSETUNSOL(3CBL)
	TPSPRIO(3CBL)
	TPSUBSCRIBE(3CBL)
	TPSUSPEND(3CBL)
	TPSVCSTART(3CBL)
	TPSVRDONE(3CBL)
	TPSVRINIT(3CBL)
	TPTERM(3CBL)
	TPUNADVERTISE(3CBL)
	TPUNSUBSCRIBE(3CBL)
	TXBEGIN(3CBL)
	TXCLOSE(3CBL)
	TXCOMMIT(3CBL)
	TXINFORM(3CBL)
	TXOPEN(3CBL)
	TXROLLBACK(3CBL)
	TXSETCOMMITRET(3CBL)
	TXSETTRANCTL(3CBL)
	TXSETTIMEOUT(3CBL)
	USERLOG(3CBL)


