
BEAWebLogic
Enterprise
Security™®

Programming Security
for Web Services

Product Version: 4.2
Revised: August 12, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR
FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT,
GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE
USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY,
RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data
Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry,
BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA WebLogic
Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security,
BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic
JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server, BEA WebLogic
Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup Edition, BEA
WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical Support is a
service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual property rights
reserved by third parties.

All other trademarks are the property of their respective companies.

Web Services Programmers Guide iii

1. Introduction to the Web Services Security Service Module
About This Document . 1-1

Audience for This Guide . 1-2

How this Document is Organized. 1-2

Product Documentation on the dev2dev Web Site . 1-2

Related Information . 1-3

Overview of Web Services . 1-3

Product Overview . 1-4

Web Server Product Environment . 1-5

Web Services Security Service Module . 1-7

Client Trust Model . 1-8

Deployment Model. 1-9

Usage Model. 1-10

Product Features . 1-12

Supported Web Services Standards . 1-15

SOAP . 1-16

WSDL 1.1. 1-16

2. Web Services Interfaces
Registry Service Interface . 2-1

Registry Process . 2-2

Registry Service Methods. 2-3

Methods Common to All Web Services Interfaces . 2-3

Authentication Service Interface . 2-4

Authentication Process . 2-5

Authentication Service Methods . 2-6

authenticate() Method . 2-7

assertIdentity() Method . 2-8

iv Web Services Programmers Guide

isAssertionSupported() Method . 2-8

validateIdentity() Method . 2-9

Authorization Service Interface . 2-9

Authorization Process . 2-10

Authorization Service Methods . 2-11

isAccessAllowed() . 2-11

isAuthenticationRequired() Method . 2-12

Auditing Service Interface . 2-13

Auditing Process . 2-13

Auditing Service Method . 2-14

Role Mapping Service Interface . 2-15

Role Mapping Process . 2-15

Role Mapping Service Method . 2-16

Credential Mapping Service Interface. 2-16

Credential Mapping Process . 2-17

Credential Mapping Method . 2-18

Web Services Programmers Guide 1-1

C H A P T E R 1

Introduction to the Web Services
Security Service Module

This document provides an introduction to WebLogic Enterprise Security Web Services product
and describes interfaces clients use to interact with it.

This section covers the following topics:

� “About This Document” on page 1-1

� “Overview of Web Services” on page 1-3

� “Product Overview” on page 1-4

� “Product Features” on page 1-12

� “Supported Web Services Standards” on page 1-15

About This Document
This section covers the following topics:

� “Audience for This Guide” on page 1-2

� “How this Document is Organized” on page 1-2

� “Product Documentation on the dev2dev Web Site” on page 1-2

� “Related Information” on page 1-3

In t rod uct ion t o the We b S erv ic es S ec ur i t y Se rv ice M od ule

1-2 Web Services Programmers Guide

Audience for This Guide
It is assumed that the reader understands Web Services technologies and has a general
understanding of the Microsoft Windows or UNIX operating systems being used. This document
is intended for the following audiences:

� Web Services Developers—Developers who are programmers who focus on developing
Web services applications and who work with other engineering, quality assurance (QA),
and database teams to implement security features. Web services developers have in-depth
working knowledge of Web Services programming.

� Application Developers—Developers who focus on designing applications and work with
other engineers, quality assurance (QA) technicians, and database teams to implement
applications.

� Security Administrators—Administrators who are responsible for installing and
configuring the WebLogic Enterprise Security products and designing policy. Security
administrators work with other administrators to implement and maintain security
configurations, authentication and authorization schemes, and to set up and maintain access
to deployed application resources. Security administrators have a general knowledge of
security concepts and the WebLogic Enterprise Security architecture.

How this Document is Organized
This document is organized as follows:

� Chapter 1 (this chapter) provides an overview of the Web Services Security Service
Module and the related standards and features it supports.

� Chapter 2, “Web Services Interfaces,” describes the Web Services interfaces and the
methods that each interface supports.

Product Documentation on the dev2dev Web Site
BEA product documentation, along with other information about BEA software, is available
from the BEA dev2dev web site:

http://dev2dev.bea.com

To view the documentation for this product, select More Product Centers from the menu on the
left side of the screen on the dev2dev page. From the BEA Products list, choose WebLogic
Enterprise Security. The home page for this product is displayed. From the Resources menu,

http://dev2dev.bea.com

Ove rv ie w o f We b S erv i c es

Web Services Programmers Guide 1-3

choose Documentation 4.2. The home page for the complete documentation set for the product is
displayed.

Related Information
The BEA corporate web site provides all documentation for BEA WebLogic Enterprise Security.
Other BEA WebLogic Enterprise Security documents that may be of interest to the reader
include:

� Programming Security for Java Applications—The document describes how to implement
security in Java applications. It include descriptions of the Security Service Application
Programming Interfaces and programming instructions for implementing security in Java
applications.

� BEA WebLogic Enterprise Security Administration Guide—This document provides a
complete overview of the product and includes step-by-step instructions on how to perform
various administrative tasks.

� Developing Security Providers for BEA WebLogic Enterprise Security —This document
provides security vendors and security and application developers with the information
needed to develop custom security providers.

� BEA WebLogic Enterprise Security Policy Managers Guide—This document defines the
policy model used by BEA WebLogic Enterprise Security, and describes how to import
and export policy data.

� WSDL Documentation for the Web Service Interfaces—This document provides reference
documentation for the Web Services Interfaces that are provided with and supported by this
release of BEA WebLogic Enterprise Security.

� BEA WebLogic Enterprise Security Web Server Installation—This document describes how
to install Web Server Security Service Module.

� Javadocs for Security Service Provider Interfaces—This document provides reference
documentation for the Security Service Provider Interfaces that are provided with and
supported by this release of BEA WebLogic Enterprise Security.

Overview of Web Services
Web services are a special type of service that can be shared by and used as components of
distributed Web-based applications. Web services interface with existing back-end applications,
such as customer relationship management systems, order-processing systems, and so on.

{DOCROOT}/programmersguide/index.html
{DOCROOT}/adminguide/index.html
{DOCROOT}/dvspisec/index.html
{DOCROOT}/policymanager/index.html
{DOCROOT}/javadocs/SSPI/index.html

In t rod uct ion t o the We b S erv ic es S ec ur i t y Se rv ice M od ule

1-4 Web Services Programmers Guide

Traditionally, software application architecture tended to fall into two categories: huge
monolithic systems running on mainframes or client-server applications running on desktops.
Although these architectures work well for the purpose the applications were built to address,
they are closed and cannot be easily accessed by the diverse users of the Web. Thus the software
industry has evolved toward loosely coupled service-oriented applications that interact
dynamically over the Web. The applications break down the larger software system into smaller
modular components, or shared services. These services can reside on different computers and
can be implemented by vastly different technologies, but they are packaged and transported using
standard Web protocols, such as Extensible Markup Language (XML) and Hyper Text Transfer
Protocol (HTTP), thus making them easily accessible by any user on the Web.

This concept of services is not new. Remote Method Invocation (RMI), Component Object
Model (COM), and Common Object Request Broker Architecture (CORBA) are all
service-oriented technologies. However, applications based on these technologies must be
written using that particular technology, often as implemented by a particular vendor. This
requirement typically hinders widespread acceptance of such services on the Web. To solve this
problem, web services are defined to share the following properties that make them easily
accessible from heterogeneous environments:

� Web services are accessed over the Web.

� Web services describe themselves using an XML-based description language.

� Web services communicate with clients (both end-user applications or other web services)
through XML messages that are transmitted by standard Internet protocols, such as HTTP.

Product Overview
The BEA WebLogic Enterprise Security provides three Web Server products: the IIS Web Server
Security Service Module (SSM), the Apache Web Server SSM, and the Web Services SSM (see

Prod uc t Ov erv ie w

Web Services Programmers Guide 1-5

Figure 1-1). This document only describes the Web Services SSM and the security service
application programming interfaces (APIs) that it supports.

For a description of the IIS and Apache Web Server SSMs, see Web Server Installation.

Figure 1-1 Web Server Product Components

The following topics provide more information on the these products:

� “Web Server Product Environment” on page 1-5

� “Web Services Security Service Module” on page 1-7

� “Client Trust Model” on page 1-8

� “Deployment Model” on page 1-9

� “Usage Model” on page 1-10

Web Server Product Environment
Figure 1-2 shows the major components that make up the BEA WebLogic Enterprise Security
product environment.

Apache Web Server

Web Browser

Apache Web Server
SSM

BEA WebLogic Enterprise Security
Web Server SSM Products

IIS Web Server
SSM

Web Services
SSM

IIS Web Server
Customer-

Developed Web
Server

Web Browser Web Browser

{DOCROOT}/installwebserver/index.html

In t rod uct ion t o the We b S erv ic es S ec ur i t y Se rv ice M od ule

1-6 Web Services Programmers Guide

Figure 1-2 WebLogic Enterprise Security Product Environment

� Administration Application

The Administration Application allows you to configure, deploy, and manage multiple
Security Service Modules in a distributed environment. While the modules consume
configuration data and then service security requests accordingly, the Administration
Application allows you to configure and deploy security configuration information to the
modules and modify that information as needed.

� Service Control Manager

The Service Control Manager (SCM) is an essential component of the configuration
provisioning mechanism and a key component of a fully-distributed security enforcement
architecture. A SCM is a machine agent that exposes a provisioning, or deployment,
interface to the Administration Application to facilitate the management of a potentially
large number of distributed Security Service Modules (SSMs). The SCM can receive and
store meta-data updates, both full and incremental, initiated by the Administration
Application.

The Administration Application uses this provisioning mechanism to distribute
configuration data to each created instance of a SSM where it is consumed locally (see
Figure 1-3). Each instance of a SSM is assigned a unique configuration ID, which is
registered with the SCM when the SSM is enrolled. The SCM uses the configuration ID
when distributing and updating configuration data to each SSM instance to ensure that the
correct data is distributed.

� Web Services Security Service Module

The Web Services Security Service Module (SSM) is used to adapt web servers to the
WebLogic Enterprise Security infrastructure so that web server resources can be protected

Service Control
Manager

Java Security
Service Module

Administration
Application

WebLogic Server
Security Service

Module

Web Services
Security Service

Module

Prod uc t Ov erv ie w

Web Services Programmers Guide 1-7

by a custom security configuration. You define and deploy the security configuration using
the Administration Application. You can only configure one instance of the Web Services
SSM on a single machine, however, the number of machines in your network on which
you can configure Web Services SSMs is unlimited (see Figure 1-3). After you deploy the
initial security configuration to a Web Server SSM, it does not require any additional
communication with the Service Control Manager (SCM) to perform runtime security
functions. However, the SCM does maintain communication with each Web Services SSM
instance so that it can distribute, or deploy, full and incremental security configuration
updates.

Figure 1-3 Deploying Security Configuration Data

Web Services Security Service Module
The Web Services Security Service Module (SSM) provides six security service APIs: Registry,
Authentication, Authorization, Auditing, Role Mapping, and Credential Mapping (see
Figure 1-4). These APIs can be used to developed web services clients to access the WebLogic
Enterprise Security infrastructure and use it to make access control decisions for users attempting
to access web server application resources. Once the web services client is implemented, it uses
the Web Services SSM (which incorporates the Security Services APIs, the Security Framework,
and the configured security providers) to make access control decisions for the web server to
which it is connected. Then you can use the WebLogic Enterprise Security Administration

SSM Configuration

Administration Application System with SCM
and SSMs

Provisioning
Interface Local

Store Configuration ID

Configuration ID

Administration
Application

Service Control
Manager

Web Services
SSM

Web Services
SSM

In t rod uct ion t o the We b S erv ic es S ec ur i t y Se rv ice M od ule

1-8 Web Services Programmers Guide

Application to configured and deploy a security configuration to protect the web server
application resources. Thus, the Web Services SSM enables security administrators and web
developers to perform security tasks for applications running on a web server. Additionally, you
can use the Web Services SSM to add information provided by the Security Framework (such as
roles and response attributes) to the HTTP requests handled by the protected web server
applications.

Figure 1-4 shows the components of the Web Services SSM.

Figure 1-4 Web Services SSM Components

For a description of the Web Services Security Service APIs, see “Web Services Interfaces” on
page 2-1

Client Trust Model
To protect messages in transit between the client and the Web Services SSM, a channel security
protocol (SSL 3.0 or TLS 1.0) is used for all communication between the two. The Web Services
SSM supports both one-way and two-way SSL (see Figure 1-5). To establish an SSL connection

Authentication

Provider
Auditing
Provider

Credential
Mapping
Provider

Role Mapping
Provider

Authentication
Service

Authorization
Service

Auditing
Service

Credential
Service

Web Services Security Service APIs

Role Mapping
Service

The service-based security framework
delegates requests to the appropiate provider

Security Framework

Authorization
Provider

BEA WebLogic Enterprise Security
Web Services

Security Service Module

JAAS IA

Registry

Prod uc t Ov erv ie w

Web Services Programmers Guide 1-9

with one-way SSL, only the server is required to present a digital certificate. With two-way SSL
authentication, both the client and server must present digital certificates before the SSL
connection is enabled between the two. Thus, with two-way SSL, the Web Services SSM not only
authenticates itself to the client to complete the SSL handshake (which is the minimum
requirement for certificate authentication), but it also requires authentication from the requesting
client. The client first authenticates the server's certificate, and then the server authenticates the
client's certificate. The client certificate must be signed by a recognized certificate authority
(CA).

As mentioned, Web services clients can communicate with the Web Services SSM over one-way
or two-way SSL connections. However, when the client communicates over a one-way SSL, each
client request be accompanied by a valid client name/password credentials pair, a signed SAML
assertion, or a WLES cookie. Figure 1-5 shows the Web Services SSM client trust model.

For more information on authentication, see “Authentication Service Interface” on page 2-4.

Figure 1-5 Client Trust Model

Deployment Model
Figure 1-6 shows how you typically deploy instances of Web Services Security Service Modules
(SSM) to protect application resources. The web servers (the web services clients) are located in
the web tier, which is in the Demilitarized Zone (DMZ), and are protected from unwanted traffic
on the Internet by a firewall. The DMZ is created by using two firewalls. The Web Services SSMs

Web Services
Client

Web Services
SSM

3) One-way SSL
 Enabled (HTTPS)

1) HTTP Connect

2) Server Certificate

One-way SSL
Handshake

Web Services
Client

Web Services
SSM

4) Two-way SSL
 Enabled (HTTPS)

1) HTTP Connect

2) Server Certificate

3) Client CertificateTwo-way SSL
Handshake

4) ALL Client Requests
Include Credentials

In t rod uct ion t o the We b S erv ic es S ec ur i t y Se rv ice M od ule

1-10 Web Services Programmers Guide

are located in the application tier behind the second firewall for added security. The Web Services
SSM supports Secure Sockets Layer (SSL) communication so all traffic between the web servers
and the SSM is encrypted.

Figure 1-6 Typical Web Services Deployment Model

Usage Model
Once the Web Services client has established an SSL connection with the Web Services SSM, it
can issue requests on behalf of users for access to the web resources protected by the Web
Services SSM (see Figure 1-7).

� User A uses web servers with web services client plug-ins to access the Registry Service
and locate specific instances of SSMs and a specific security service on that SSM instance.
The Web servers use that information to make requests access to application resources on
behalf of users. BEA provides two web server products that have built-in web services
clients, the IIS Web Server SSM and the Apache Web Server SSM.

� User B uses a custom SSM client, which has a user-written web services client, to access
the Registry Service and in turn the specific SSM security service. Because communication
between the custom SSM client and the Web Services SSMs is placed on the network, the
Web Services SSMs can be located any where on the network. Their location is not
restricted to the SSMs on the local machine.

� The Admin user uses the administration console to the distribute the initial security
configuration and all updates over the network. If the Administration Server is
disconnected from the Web Services SSMs, the SSMs continue to function.

Web
Server 1

Web
Services

SSM 1

Clients
Web Tier

Application Tier

Web
Browser

1

Web
Browser

n

Web
Server 1

DMZ

Web
Services
SSM n

(Web Server Farm)
Firewall Firewall

Prod uc t Ov erv ie w

Web Services Programmers Guide 1-11

Figure 1-7 Usage Model

The interaction between the client and the Web Services SSM is as follows (see Figure 1-7):

1. The client communicates with the Web Services SSM and establishes an SSL connection.

1. The client issues a user request that includes the following:

– A user identity credential (a username/password pair, a signed SAML 1.1 assertion, or
WLES cookie)

– The resource to which the user wants access and the action to be performed

– The Authentication Service and SSM’s Configuration ID

2. The Web Services SSM specified by the Configuration ID queries the local Registry Service
to retrieve the fully qualified URL for the endpoint of the authentication service. If the
authentication service exists on the local machine, the SSM returns the URL to the client. If
it does not exist, the request is ignored locally and serviced by a remote Registry Service. If
the Configuration ID is omitted from the client request, the URL for the default
authentication service on the local machine is returned.

3. The client uses the URL to resubmit the request to the Web Services SSM Authentication
Service.

Web Services
Client Plug-in

Custom SSM
Client

SCM

Servlet Container

Admin
Console

User A

User B

Admin

HTTP

Registry
Services

Security
Framework

Security
Providers

Security
Services

ATN

ATZ

RM

CM

AUD

Web Services SSM
Web Server

In t rod uct ion t o the We b S erv ic es S ec ur i t y Se rv ice M od ule

1-12 Web Services Programmers Guide

4. The SSM calls the Authentication Service, uses the user credentials to authenticate the user.
If authentication succeeds, the SSM returns an identity assertion token that is an internal
representation of the user’s identity to the web services client. If the authentication fails, the
SSM returns an AuthenticationFaliure SOAP Fault.

5. The client includes the identity assertion token in the user request and resubmits it to the
SSM. This request includes the following:

– An identity assertion token that is an internal representation the user’s identity on the
Web Services SSM

– The resource to which the user wants access and the action to be performed

– The Authorization Service and SSM’s Configuration ID

6. The Web Services SSM specified by the Configuration ID queries the local Registry Service
to retrieve the fully qualified URL for the endpoint of the Authorization Service.

7. The SSM uses the Authorization Service and the associated Role Mapping Service to
determine whether the user has been granted the privileges required to access to the
specified resource and perform the requested action. The SSM answers the question "Is this
user allowed to perform the particular action on specified resource?" To make the access
decision, the SSM compares the roles granted to the user to the policy written to protect the
requested resource. If none of the user’s roles match the roles allowed to access the
requested resource, or if the resource does not have any policy to protect it, access is denied.

8. If access is allowed, the user is granted access to the resource and the request is serviced. If
access is denied, the Web Services SSM returns an AuthorizationFaliure SOAP Fault to the
client.

Product Features
The Web Services Security Service Module (SSM) has the following features:

� Standalone Deployment

Each instance of a Web Services SSM is made accessible to clients via a separate SOAP
endpoint with a unique URL. Further, each security service is deployed as a separate
component inside the hosting process, with each service using disparate configuration entry
to identify and initialize itself. Figure 1-8 shows how each Web Services SSM is deployed
and initialized in an environment where multiple Web Services SSMs are deployed.

Pro duc t Fe atu res

Web Services Programmers Guide 1-13

Figure 1-8 Multiple Web Services SSM Deployments

� Credentials Protection

Identity assertions must be signed by a trusted entity. An assertion that is not signed or
signed by an unknown authority is rejected and the processing stopped. The digital
signature is attached to the identity assertion and covers the entire assertion.

� SOAP 1.1 Support

The Web Services SSM supports SOAP 1.1 as the message format for web services clients
invoking operations on the Web Services SSM.

� Support for Both RPC-Oriented and Document-Oriented Operations

Web Services SSM operations can be either RPC-oriented (SOAP messages contain
parameters and return values) or document-oriented (SOAP messages contain documents.).

� XML Structures Follow Industry Standards

The XML structures used for transmitting identity assertion tokens and other credential
types follow existing industry standards, particularly those defined by the OASIS
WS-Security Standard v1.0. See Figure 1-9 for the general format of the SOAP messages
exchanged between the web services client and the Web Services SSM.

Web Services
Client A1

Web Services
Client A2

Security
Providers

Web Services
SSM A

Security
Providers

Web Services
SSM B

Web Services
Client B

Local
Configuration

A

Local
Configuration

BSCM

GetConfig A

GetConfig BInit
Init

Authenticate

Authenticate

Servlet Container

In t rod uct ion t o the We b S erv ic es S ec ur i t y Se rv ice M od ule

1-14 Web Services Programmers Guide

Figure 1-9 SOAP Message Format

� Secure Web Services security service APIs

Access to the Web Services SSM security service APIs is restricted to clients that have
been authenticated.

� SOAP Interoperability

The Web Services security service APIs are able to interoperate with the most commonly
used toolkits. At the minimum, the APIs are fully interoperable with web services clients
that are written using the gSOAP v2.2.3 Framework.

� Channel and Message Protection

In order to protect messages in transit, the Web Services SSM supports a channel security
protocol (SSL 3.0 or TLS 1.0) for all communication that takes place between the SSM
and its clients.

� Support for One-way and Two-Way SSL Client Connections

The Web Services SSM always authenticates itself to client using its X.509 site certificate.

Web Services Client
Credentials

XML
Signature

XML
Encryption

User
Credentials

Method
Parameters

Web Services Method

SOAP Body

WSSE Header

SOAP Header

SOAP Envelope

Web Services SSM

SOAP
Request (SSL)

Response
Parameters

Method Response

SOAP Body

WSSE Header

SOAP Header

SOAP Envelope

XML
Signature

XML
Encryption

SOAP
Response (SSL)

Su ppo r ted We b S erv i c es S tan dar ds

Web Services Programmers Guide 1-15

A client presents its certificate as part of a two-way SSL handshake with the Web Services
SSM servlet container. The client's identity, contained in the SSL certificate, is
subsequently used for client authentication.

Note: Any certificate authority (CA) used to generate the client certificate must be manually
added to the Web Services SSM trust.jks keystore if it is not already listed there.

� Automatic Restart of Security Services

The Web Services SSM uses the WebLogic Enterprise Security process monitoring and
management mechanism to automatically restarted a security service if it is found to be
unresponsive. Upon restart, the service is initialized using the latest configuration and
automatically resumes its normal operation.

� Event Auditing Capabilities

The Web Services SSM relies on the WebLogic Enterprise Security auditing capabilities to
provide a file-based, audit logging facility with configurable audit log filename. Any
service or request-related failures produce an audit trail. Additionally, the following Web
Service SSM instance lifecycle events produce audit trails:

– Initialization complete, ready to serve requests

– Shutdown initiated

– Restarted after a process crash

� Configuration Stored Locally

The Web Services SSM relies only on the local configuration for its operation. The local
configuration includes all necessary information to start-up Web Services SSM process,
identify its instance, and set up a two-way SSL connection to the local Service Control
Manager (SCM) process.

� SOAP Message Handlers to Access SOAP Messages

A SOAP message handler accesses the SOAP message and its attachment in both the
request and response of the Web Services SSM. You can create handlers in the web
services client that invoke the Web Services SSM.

Supported Web Services Standards
The Web Services Security Service Module supports the following standards:

� “SOAP” on page 1-16

� “WSDL 1.1” on page 1-16

In t rod uct ion t o the We b S erv ic es S ec ur i t y Se rv ice M od ule

1-16 Web Services Programmers Guide

SOAP
SOAP (Simple Object Access Protocol) is a lightweight XML-based protocol used to exchange
information in a decentralized, distributed environment. The WebLogic Enterprise Security Web
Services Security Service Module implements SOAP 1.1.

The protocol consists of:

� An envelope that describes the SOAP message. The envelope contains the body of the
message, identifies who should process it, and describes how to process it.

� A set of encoding rules for expressing instances of application-specific data types.

� A convention for representing remote procedure calls and responses.

This information is embedded in a Multipurpose Internet Mail Extensions (MIME)-encoded
package that can be transmitted over HTTP or other Web protocols. MIME is a specification for
formatting non-ASCII messages so that they can be sent over the Internet.

The Web Services application programming Interface (API) is exposed to external clients, which
may or may not be developed using the same SOAP stack implementation. Since SOAP
specifications allow combinations of different communication modes (RPC versus. Document,
encoded versus. literal), the exposed public interface is able to interoperate with the most
commonly used toolkits. At the minimum, the Web Services public SOAP interface is fully
interoperable with clients written using the gSOAP v2.2.3 framework.

For more information on SOAP, see SOAP 1.1 at:
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/ and the SOAP 1.2 Recommendation at:
http://www.w3.org/TR/soap/.

WSDL 1.1
The Web Services Description Language (WSDL) is an XML-based specification that describes
a web service. A WSDL document describes web service operations, input and output
parameters, and how a client application connects to the web service.

For more information, see http://www.w3.org/TR/wsdl.

Web Service Users Guide 2-1

C H A P T E R 2

Web Services Interfaces

To develop web services clients, you use the Web Services Security Service Module (SSM)
application programming interfaces (APIs) developed by BEA Systems.

These interfaces are described in the following sections:

� “Registry Service Interface” on page 2-1

� “Methods Common to All Web Services Interfaces” on page 2-3

� “Authentication Service Interface” on page 2-4

� “Authorization Service Interface” on page 2-9

� “Auditing Service Interface” on page 2-13

� “Role Mapping Service Interface” on page 2-15

� “Credential Mapping Service Interface” on page 2-16

Registry Service Interface
To map security service type and SSM configuration and SOAP endpoints, the Web Services
SSM includes a Registry Service. This service maps the SSM Configuration ID and the service
type to the Web Services SSM and SOAP endpoints for the security services. The Registry
Service makes it possible to distinguish between multiple instances of Web Server and Web
Services SSMs on the same machine or on remote machines on the network as well as between
the supported service types (auditing, authentication, authorization, credential mapping, and role
mapping). Registry Service operations on a particular machine are limited to the local machine

W eb Ser v ice s In te r fa ces

2-2 Web Service Users Guide

(see Figure 2-1). On each Web Services SSM host machine, the Registry Service has a static
address.

Figure 2-1 Registry Service Function

Registry Process
The Registry Service process is as follows (Figure 2-2 fig):

Figure 2-2 Registry Process

Web
Services

Client

Service Registry

Security Services

Web Services SSM 1

Service Registry

Security Services

Web Services SSM n

Access
Service

Locate
Service

N
et

w
o

rk
Locate
Service

Access
Service

Locate
Service

Access
Service

Web
Services

Client

Service Registry

Authenticate

Security Service
URL

Web Services
SSM Instance 1

Service Type/SSM
ConfigID

Servlet Container

Web Services
SSM Instance n

Registry Failure

M et hod s Co m mo n to A l l W eb Serv ices In te r fac es

Web Service Users Guide 2-3

1. If a web services client asks the Registry Service about the existence of a particular security
service type/Configuration ID combination on the local host, the Registry Service responds
with a true or false answer.

2. If a web services client asks the registry for the URL of a valid security service type
/Configuration ID combination for the local host, the Registry Service returns the fully
qualified URL of the endpoint for the requested service type that is provided by the SSM
configuration as defined by the Configuration ID.

3. If a web services client asks the registry for the URL of an valid security service type but
does not supply a Configuration ID, the Registry Service assumes the default value for
Configuration ID and returns the fully qualified URL of the endpoint for the requested
service.

4. If a web services client asks the registry for a URL for a security service type/Configuration
ID combination that has an invalid security service type for Web Services SSM identified
by the Configuration ID, the Registry Service returns a RegistryFailure SOAP Fault.

Note: The Registry Service does not provide lifecycle management functions for the Web
Services.

For more information on the Registry Service interface and the methods it supports, see
WSDLdocs for Web Services Interfaces.

Registry Service Methods
The Registry Service supports two methods: locateService() and doesServiceExist().
Both methods accept the requested service type and SSM Configuration ID of the Web Services
SSM that provides the service. For the locateService() method, the Registry Service returns
the fully qualified URL for the endpoint of the requested service. For the doesServiceExist()
method, the service returns a Boolean value (true or false) that indicates whether the service
exists and can be requested.

Methods Common to All Web Services Interfaces
The following methods are supported by all Web Services interfaces, except for the Registry
Service interface.

� getServiceType()—This method takes an empty request and returns a structure that
contains the service. The Web Services SSM supports five security service types:
authentication, auditing, authorization, credential mapping, and role mapping.

W eb Ser v ice s In te r fa ces

2-4 Web Service Users Guide

� getServiceVersion()—This method takes an empty request and returns a structure that
contains the version of the service.

� isCompatible()—This method accepts service version information in its request and
returns compatibility information. You use this method to determine whether the version of
the service interface specified in the web services client is compatible with the current
version of the service interface in the instance of the Web Services SSM.

Authentication Service Interface
The Authentication Service provides security functions to an application so as to establish, verify,
and transfer a person or process identity. Thus, the Authentication Service provides two main
security functions: authentication and identity assertion.

The Authentication Service accepts user credentials and/or identity assertion tokens and verifies
that they match the user identity stored in the existing user profile. The following types of identity
assertion tokens are supported:

� Username/password

� Signed Security Assertion Markup Language (SAML) 1.1 assertions

� ALES cookie

The Extensible Markup Language (XML) structures used by the Authentication Service for
transmitting identity assertion tokens and other credential types follow the existing industry
standards, particularly those defined by the OASIS Web Service—Security Standard v1.0.

To ensure secure handling of credentials, all credentials presented to the Web Services Security
Service Module must satisfy the following requirements:

� All SAML 1.1 identity assertions must be signed by a trusted entity, as determined by the
SAML IdentityAsserter. The signature must be attached to the identity assertion and cover
the entire assertion. An identity assertion that is not signed or signed by an unknown
authority is rejected and the processing is stopped.

� The caller should verify the validity of server credentials prior to invoking the Web
Service. In particular, when a X.509 certificate is used as an identity assertion, the caller
should verify its validity by examining its expiration date, certification path, and revocation
status.

The Web Services SSM only accepts clear-text passwords. However, the credentials presented
are always be protected by SSL, either one-way or two-way. The Web Services SSM returns
credentials to clients over SSL as well.

A uth ent ic at io n S erv ic e In te r fa ce

Web Service Users Guide 2-5

The SOAP authentication interface enables the Web Services SSM to return challenges to clients
if they fail to provides the information necessary to complete the authentication process. In such
cases, the client can respond with the requested information. In order to avoid expensive round
trips, however, the web services client should pass in all available credentials information with
the initial SOAP request.

Authentication Process
The authentication process is as follows (see Figure 2-3):

Figure 2-3 Authentication Service Process

1. The web services client connects to the Web Services SSM over HTTP and the Web Services
SSM responds by presenting a digital certificate to prove its identity to the client. The Web
Services SSM authenticates itself to the web services client using its server X.509 certificate.
If the Web Services SSM presents a certificate that is not valid (for instance, the certificate
has expired or has a subject name mismatch), the client should break the connection.

2. The web services client verifies the SSMs digital certificate and submits a certificate signed
by a recognized certificate authority (CA) to the Web Services SSM.

3. The Web Services SSM verifies the clients certificate and establishes an SSL connection.

4. The web services client collects user credentials from the user and submits those credentials
to Web Services SSM to login. Web services clients present either of the following with
each login request:

– A valid service name/password pair or a signed SAML assertion

Web
Services

Client

Web Services
SSM

Authentication Service

Identity Credentials

Authentication
Failure

Identity Assertion
Token

Authentication
Challenge

Context Requests

W eb Ser v ice s In te r fa ces

2-6 Web Service Users Guide

– An ALES cookie

5. The Web Services SSM checks to verify that the client credentials match the credentials
stored in the user’s profile.

6. If the credentials match, the SSM returns an identity assertion token to the web services
client in behalf of the user.

7. If the credentials do not match, the Web Services SSM submits the credentials to the
Authentication Service for checking. The Authentication Service does one of two things:

– Validates the user credentials, grants the login, and returns a success message to the
Web Services SSM.

– Invalidates the user credentials, blocks the login, and returns a failure message to the
Web Services SSM.

8. If an authentication decision cannot be made with the parameters included in the initial
client request, the Authentication Service returns a context request to the web services client
indicating which parameters are missing.

9. If authentication is successful, the Web Services SSM returns the default identity assertion
token representing the user. The type of the default identify assertion token is configurable.
If the type is not specified, SAML assertions are used.

10. If authentication fails, the Web Services SSM returns an AuthenticationFailure SOAP
Fault to the caller.

For more information on the Authentication Service Interface and the methods it supports, see
WSDLdocs for Web Services Interfaces.

Authentication Service Methods
To support authentication functions the authentication provides the following methods:

� “authenticate() Method” on page 2-7

� “assertIdentity() Method” on page 2-8

� “isAssertionSupported() Method” on page 2-8

� “validateIdentity() Method” on page 2-9

A uth ent ic at io n S erv ic e In te r fa ce

Web Service Users Guide 2-7

authenticate() Method
This method accepts any credential type supported by the authentication provider or a response
to an earlier authentication challenge, and, optionally, the type of requested identity assertion that
represents the identity and application context of the authenticated user. In response, it returns
either the requested identity assertion token, an authentication challenge, or additional context
requests, if a challenge is required by the specific authentication provider or the authentication
protocol.

Note: In addition to the identity assertion types, the Web Services SSM supports user
credentials in form of usernames with passwords.

Table 2-1 describes the authenticate() method parameters.

Table 2-1 authenticate() Method Parameters

 Parameter Description

AuthenticationChallenge In response to an authentication challenge,
specifies the identity assertion token requested by
the authentication challenge.

IdentityCredential Specifies the identity credential that is to be
used to authenticate the caller.

AssertionCredentialType Specifies the identity assertion token type.
The type specified can be any type supported
by the ALES Credential Mapping provider.
The Authentication Service may also return
an authentication challenge to the caller
requesting other assertion token types. If the
caller fails to specify an assertion token type
supported by the Authentication Service even
after challenges, the Authentication Service
returns CredentialMappingFailure to the
caller.

Context Specifies the application context in which
authentication is being requested.

W eb Ser v ice s In te r fa ces

2-8 Web Service Users Guide

assertIdentity() Method
This method accepts any supported identity assertion type or a response to an earlier
authentication challenge, and, optionally, the type of requested identity assertion that represents
the identity and application context of the authenticated user. In response, it returns either the
requested identity assertion token, an authentication challenge, or additional context requests, if
required by the specific authentication provider or the authentication protocol.

Table 2-2 describes the assertIdentity() method parameters.

isAssertionSupported() Method
This method accepts an identity assertion token type that represents the authenticated user’s
identity. It returns a Boolean value (true or false) to indicate whether this token is supported
by this instance of the Web Services SSM.

Table 2-3 describes the isAssertionSupported() method parameters.

Table 2-2 assertIdentity() Method Parameters

 Parameter Description

AuthenticationChallenge Specifies the information requested by the
authentication challenge.

IdentityAssertion Specifies the identity assertion.

AssertionCredentialType Specifies the identity assertion token type.
The type specified can be any type supported
by the ALES Credential Mapping provider.
The Authentication Service may also return
an authentication challenge to the caller
requesting other assertion token types. If the
caller fails to specify an assertion token type
supported by the Authentication Service even
after challenges, the Authentication Service
returns CredentialMappingFailure to the
caller.

Context Specifies the application context in which
authentication is being requested.

Aut hor i za t io n S erv ic e In te r fa ce

Web Service Users Guide 2-9

validateIdentity() Method
This method accepts any supported identity assertion type that represents the identity of the
authenticated user. It returns a structure with a Boolean value (true or false) that indicates the
authenticity of the token.

Table 2-4 describes the validateIdentity() method parameter.

Authorization Service Interface
The Authorization Service is a service that allows an application to determine if a specific identity
is permitted to access a specific resource. This decision may then be enforced in the application
directly at the policy enforcement point.

The Authorization Service is primarily based on a single method: isAccessAllowed(). This
method accepts a supported type of user credential or an identity token, a runtime resource, and
a runtime action. Optionally, this method can accept the type of the requested identity assertion
token that represents the identity of the authenticated user, the application context, and direction

Table 2-3 isAssertionSupported() Method Parameters

 Parameter Description

AssertionCredentialType Specifies the identity assertion token type.
The type specified can be any type supported
by the ALES Credential Mapping provider.
The Authentication Service may also return
an authentication challenge to the caller
requesting other assertion token types. If the
caller fails to specify an assertion token type
supported by the Authentication Service even
after challenges, the Authentication Service
returns CredentialMappingFailure to the
caller.

Table 2-4 validateIdentity() Method Parameters

 Parameter Description

IdentityAssertion Specifies the identity assertion token.

W eb Ser v ice s In te r fa ces

2-10 Web Service Users Guide

parameters. The isAccessAllowed() method requires that a valid, authenticated identity or a
null identity token (representing an anonymous identity) be present when requesting an access
decision.

Authorization Process
The authorization process is as follows (see Figure 2-4):

Figure 2-4 Authorization and Role Mapping Process

1. The authorization process begins when the web services client calls the Web Services SSM to
answer the question "Is this user allowed to perform this particular action on the specified
resource?" The Authorization Service accepts valid identity assertion tokens and checks the
credential cache to verify the token. Identity assertion token types supported include ALES
cookies and signed SAML 1.1 assertions.

2. If the token matches a credential in the cache, the SSM sets the user identity to the internal
identity representation, which includes the user identity and the list of roles the user has
been granted.

3. If the token does not match any of the credentials in the cache, the SSM calls the
Authorization Service and the Role Mapping Service to determine whether the user is
authorized to access resources and to get the list of roles the user has been granted. If the
user is authorized, the user identity is set to the internal identity representation, which
includes the user identity and the list of roles the user has been granted.

Web
Services

Client Authorization
Service

Identity Assertion
Token

Authorization
Failure

Authorization
Decision

User Roles

Context Requests

Identity Assertion
Token

Role Mapping
ServiceUser Roles

Identity Assertion
Token

Context Requests

Web Services SSM

Aut hor i za t io n S erv ic e In te r fa ce

Web Service Users Guide 2-11

4. The Authorization Service then compares the user identity to the resource security policy to
determine whether the user is in a role that has been granted the access privilege that is
necessary to perform the requested action on the particular resource.

5. If an authorization decision can not be made with the parameters included in the initial
client request, the Authorization Service returns a context request to the web services client
indicating which parameters are missing.

6. The web services client must fill in the application context with the required parameters and
re-submit the request. The Web Services SSM supports six context types: StringValue,
BoolValue type, DateTimeValue, TimeValue, IntValue, and IpValue.

7. If the authorization process fails due to parameter-related problems, an
AuthorizationFailure SOAP Fault is returned to the caller.

8. In the absence of an error, the authorization decision that is returned to the web services
client contains a clear and unambiguous true or false statement that allows or disallows
access to the resource in question. A negative authorization decision is a valid result and
does not result in a SOAP Fault.

For more information about the Authorization Service interface, see the WSDLdocs for Web
Services Interfaces.

Authorization Service Methods
The Authorization Service supports the following methods:

� “isAccessAllowed()” on page 2-11

� “isAuthenticationRequired() Method” on page 2-12

isAccessAllowed()
This method accepts a supported type of an identity assertion token, and a runtime resource and
action structures. Optionally, it can accept type of the requested identity assertion token,
(representing the authenticated user's identity), application context, and authorization direction
parameters. In response, this method returns the authorization decision (optionally accompanied
by the time-to-live (TTL) value), an identity Assertion token, and a list of user roles, or, if
required by the authorization provider, additional context requests.

Table 2-5 describes the isAccessAllowed() method parameters.

W eb Ser v ice s In te r fa ces

2-12 Web Service Users Guide

isAuthenticationRequired() Method
The Authorization Service interface also supports the isAuthenticationRequired() method.
This method accepts a runtime resource and a runtime action. It returns a Boolean value (true or
false) that indicates whether authentication is require to access this resource. The web services
client uses this method to test whether privileges are required to access a particular resource.

Table 2-6 describes the isAuthenticationRequired() method parameters.

Table 2-5 isAccessAllowed() Method Parameters

 Parameter Description

Identity Assertion Specifies the identity assertion token type.
The type specified must be supported by the
credential mapping provider; otherwise, the
service returns
CredentialMappingFailure to the caller.

RuntimeResource Specifies the runtime resource that the caller is
requesting.

RuntimeAction Specifies the runtime action that the caller is
requesting.

AssertionCredentialType Specifies the identity assertion token type.
The type specified can be any type supported
by the ALES Credential Mapping provider.
The Authentication Service may also return
an authentication challenge to the caller
requesting other assertion token types. If the
caller fails to specify an assertion token type
supported by the Authentication Service even
after challenges, the Authentication Service
returns CredentialMappingFailure to the
caller.

Context Specifies the application context in which
access to the resource is being requested.

AZDirection Specifies authorization direction parameters.

Au di t in g S erv ic e In te r fa ce

Web Service Users Guide 2-13

Auditing Service Interface
The Auditing Service logs events based on activity related to enterprise security. The Web
Services Security Service Module (SSM) runtime uses the Auditing Service to log appropriate
data when events occur. The Auditing Service is based on an event model. When something of
note occurs, an auditing event is automatically logged. A user or a application that wants
notification when a particular event occurs can derive a new class from the AuditRecord class
or use the AuditRecord directly, as it is a named object.

Auditing Process
The auditing process is as follows (see Fig):

Figure 2-5 Auditing Process

Table 2-6 isAuthenticationRequired() Method Parameters

 Parameter Description

RuntimeResource Specifies the runtime resource that the caller is
requesting.

RuntimeAction Specifies the runtime action that the caller is
requesting.

Auditing
User Auditing

Service

Audit
Request

Audit Record

Context Requests

Security
Framework

Identity Assertion
Token

Context
Requests

Web Services SSM

Security
Providers

Auditing
Provider

Audit
Request

Audit
Event

Audit
Event

Auditing
Failure

W eb Ser v ice s In te r fa ces

2-14 Web Service Users Guide

1. During the auditing process, the Web Services SSM audit logging function supports
automated, centralized logging of audit messages. To capture a particular event for
notification purposes an auditing user can use the recordEvent() method to specify the
name of the audit record to be captured, and, optionally, the identity assertion token of the
auditing user, and the application context.

2. If the auditing provider requires application context that is not included in the
recordEvent() method, the Auditing Service returns requests for additional application
context.

3. If parameter-related audit logging failures occur, including passing in an invalid identity
assertion token for the user, an AuditingFailure SOAP Fault is returned to the caller.

4. If no errors occur during the auditing process, an empty response is returned to the auditing
user as an event notification and the audit event is logged by the auditing provider.

For more information on the Auditing Service interface and the methods it supports, see
WSDLdocs for Web Services Interfaces.

Auditing Service Method
The Auditing Service passes the audit event to the Web Services SSM runtime. Based on its
configuration, the SSM runtime routes the event to the proper auditing providers so that it can be
recorded.

The Auditing Service supports a single method, recordEvent(). Table 2-7 describes the
recordEvent() method parameters.

Table 2-7 recordEvent() Method Parameters

 Parameter Description

AuditRecord Specifies the name of the audit record that
encapsulates the logging information.

IdentityAssertion Provides an identity assertion token that
represents the auditing user.

Context Specifies the application context in which
request for an auditing record is being made.

R ole M a ppin g S erv ic e In te r fa ce

Web Service Users Guide 2-15

Role Mapping Service Interface
The Role Mapping Service allows an application to extract role information about specific
identities and resources within the context of the application. These roles can then be used for
customizing an interface or for other purposes.

Note: Do not use roles by themselves for authorization, because many policies, allowing or
disallowing access to a resource, may be written against a role. Use the Authorization
Service to determine actual access rights.

The Role Mapping Service evaluates an interaction of an identity with a resource within an
application context and returns a list of role names associated with the configuration of that
identity. These roles can change with every resource or be static for the identity across all
resources. The roles assigned to an identity are determined by the security policy.

The Web Services SSM is capable of retrieving the roles that a user may have for the given
resource and action combination. The user identity is passed as an identity assertion token,
instead of a Java object. To obtain roles, authenticated users must be authorized to obtain their
roles for the given resource/action combination.

The Role Mapping Service requires that the application pass in a valid identity, a valid resource,
and a valid action. The application context is optional and may be set to null if no context is
passed in.

Role Mapping Process
The role mapping process is as follows (see Figure 2-4):

1. During the role mapping process, the Web Services SSM provides a mechanism for optionally
specifying the application context to support role mapping.

2. If parameter-related role mapping failures occur, including passing in an invalid identity
assertion token for the user, a RoleMappingFailure SOAP Fault is returned to the caller.

3. If no errors occur during the role mapping process, a list of zero or more roles, configured
in the policy for the provided user/resource/action combination, is returned to the caller. An
empty list is a valid response and does not result in a SOAP Fault.

For more information on the Role Mapping Service interface and the methods it supports, see
WSDLdocs for the Web Services Interfaces.

W eb Ser v ice s In te r fa ces

2-16 Web Service Users Guide

Role Mapping Service Method
The Role Mapping Service interface supports one method, getRoles(). This method gets the
roles for an authenticated user identity in reference to a RuntimeResource, RuntimeAction,
and an optional AppContext.

The getRoles() method accepts a supported type of an identity token, and, optionally, runtime
resource and action structures, and an application context. It returns either a list of user roles
associated for the identity or, if such is required by the Role Mapping provider, additional context
requests. If the identity provided is invalid or not properly authenticated, this method returns a
SOAP fault.

Table 2-8 describes the getRoles() method parameters.

Credential Mapping Service Interface
The Credential Mapping Service allows an client application to fetch credentials of certain types
that are associated with a specific identity for a specific resource. These credentials can then be
used on behalf of that identity to execute some privileged function, such as logging into a
database or sending e-mail.

Table 2-8 getRoles Method Parameters

 Parameter Description

Identity Assertion Specifies the identity assertion token. The
token type must be supported by the Role
Mapping provider; otherwise, the service
returns RoleMappingFailure to the caller.

RuntimeResource resource Specifies the runtime resource that the caller is
requesting.

RuntimeAction action Specifies the runtime action that the caller is
requesting.

Context Specifies the application context in which
access to the resource is being requested.

Cre den t ia l M a ppin g S erv ic e In te r fa ce

Web Service Users Guide 2-17

Credential Mapping Process
The credential mapping process is as follows (see Figure 2-6):

Figure 2-6 Credential Mapping Process

1. The client presents a get credentials request to the Web Services SSM. The request includes
a supported type of an identity assertion token and a list of requested credential types.
Optionally, the request can include a runtime resource, runtime action, and an application
context.

2. In response, the Web Services SSM returns a list of requested user credentials and identity
assertion tokens or, if required by the Credential Mapping provider, additional context
requests.

3. The Web Services SSM returns the following types of credentials in response to the client’s
request:

– Username/password pairs

– Signed SAML 1.1 assertions

– ALES cookies

4. If parameter-related credential mapping failures occur, the Web Service returns a
CredentialMappingFailure SOAP Fault to the caller.

Web
Services

Client

Identity Assertion
Token

Web Services
SSM

Credential
Mapping
Service

Requested User
Credentials

Context Requests

Requested
Credential Types

Identity Assertion
Tokens

W eb Ser v ice s In te r fa ces

2-18 Web Service Users Guide

5. If no errors occur during the credential mapping process, the Web Services SSM returns a
list of zero or more credentials that are configured in the security policy for the specified
user/resource/action combination. An empty list is a valid response and does not result in a
SOAP Fault. Also, if some of the requested credential types are not available for specified
user/resource/action combination, a SOAP Fault does not result.

For more information on the Credential Mapping Service interface and the methods it supports,
see WSDLdocs for Web Services Interfaces.

Credential Mapping Method
The Credential Mapping Service supports one method: getCredentials(). This method
accepts a supported type of an identity assertion token and a list of requested credential types.
Optionally, this method can accept an identity assertion token that represents the identity of a
different user and a runtime resource structure, which includes the requested resource and action
and the application context. In response, the getCredentials() method returns either a list of
requested user credentials, identity assertion tokens, or, if required by the ALES Credential
Mapping provider, context requests.

Note: Since password credentials need to be returned in clear text to the caller in order to be
usable for authentication in external systems, you should pay particular attention to
providing channel and message security to protect messages in transit between clients
and the Web Service. At a minimum, you must use a channel security protocol, such as
SSL or TLS, for all communication.

Authenticated users are always authorized to obtain their own credentials for the given
resource/action combination. However, authenticated user cannot requests credentials on behalf
of another user.

Credential mapping process involves issuing new types of credentials to the specified
combination of user, resource, and action. The user identity is passed as an identity assertion
token, instead of a Java object.

Table 2-9 describes the getCredentials() method parameters.

Cre den t ia l M a ppin g S erv ic e In te r fa ce

Web Service Users Guide 2-19

Table 2-9 getCredentials Method Parameters

 Parameter Description

Identity Assertion Specifies the identity assertion token. The
type used must be supported by the
Credential Mapping provider; otherwise, the
service returns
CredentialMappingFailure to the caller.

CredentialTypes Specifies a list of the types of credentials
being requested. The Web Services SSM
supports the following types of credentials:

• Username/password pairs

• Signed SAML 1.1 assertions

• WLES proprietary cookie

RuntimeResource resource Specifies the runtime resource that the caller is
requesting.

RuntimeAction action Specifies the runtime action that the caller is
requesting.

AppContext context Specifies the application context in which
access to the resource is being requested.

W eb Ser v ice s In te r fa ces

2-20 Web Service Users Guide

	Introduction to the Web Services Security Service Module
	About This Document
	Audience for This Guide
	How this Document is Organized
	Product Documentation on the dev2dev Web Site
	Related Information

	Overview of Web Services
	Product Overview
	Web Server Product Environment
	Web Services Security Service Module
	Client Trust Model
	Deployment Model
	Usage Model

	Product Features
	Supported Web Services Standards
	SOAP
	WSDL 1.1

	Web Services Interfaces
	Registry Service Interface
	Registry Process
	Registry Service Methods

	Methods Common to All Web Services Interfaces
	Authentication Service Interface
	Authentication Process
	Authentication Service Methods
	authenticate() Method
	assertIdentity() Method
	isAssertionSupported() Method
	validateIdentity() Method

	Authorization Service Interface
	Authorization Process
	Authorization Service Methods
	isAccessAllowed()
	isAuthenticationRequired() Method

	Auditing Service Interface
	Auditing Process
	Auditing Service Method

	Role Mapping Service Interface
	Role Mapping Process
	Role Mapping Service Method

	Credential Mapping Service Interface
	Credential Mapping Process
	Credential Mapping Method

