
BEAWebLogic®
Event Server

Getting Started With
WebLogic Event Server

Version 2.0
July 2007

Getting Started With WebLogic Event Server iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

WebLogic Event Server Documentation Set . 1-2

Guide to This Document . 1-2

Samples for the WebLogic Event Server Application Developer 1-2

2. Overview of WebLogic Event Server
Introduction to WebLogic Event Server . 2-1

Conceptual Overview of WebLogic Event Server . 2-1

Event Processing Networks . 2-4

Use Cases . 2-4

Summary of WebLogic Event Server Features . 2-5

Supported Configurations . 2-6

Next Steps . 2-6

3. WebLogic Event Server Examples
Overview of the Samples Provided in the Distribution Kit . 3-1

Increasing the Performance of the Examples . 3-2

Setting Your Development Environment. 3-3

Windows . 3-3

UNIX . 3-5

HelloWorld Example . 3-6

Running the HelloWorld Example from the helloworld Domain. 3-7

iv Getting Started With WebLogic Event Server

Building and Deploying the HelloWorld Example from the Source Directory 3-8

Description of the Ant Targets to Build Hello World . 3-9

Implementation of the HelloWorld Example . 3-9

The HelloWorld EPN Assembly File . 3-11

The HelloWorld Component Configuration File . 3-15

The XSD File that Describes the Extended HelloWorld Component Configuration 3-17

Foreign Exchange (FX) Example . 3-19

Running the Foreign Exchange Example . 3-21

Building and Deploying the Foreign Exchange Example from the Source Directory . . .
3-22

Description of the Ant Targets to Build FX . 3-23

Implementation of the FX Example . 3-24

The FX EPN Assembly File . 3-25

The FX Processor Configuration Files . 3-29

Algorithmic Trading Example. 3-32

Running the Algorithmic Trading Example . 3-33

4. Installing WebLogic Event Server
Before You Begin . 4-1

Installation Overview. 4-2

Installing WebLogic Event Server in Graphical Mode: Main Steps 4-3

Installing WebLogic Event Server in Console Mode: Main Steps 4-5

Installing WebLogic Event Server in Silent Mode: Main Steps . 4-8

Creating a silent.xml File for Silent-Mode Installation . 4-11

Guidelines for Component Selection . 4-12

Sample silent.xml File for Silent-Mode Installation . 4-13

Returning Exit Codes to the Command Window . 4-13

Post-Installation Steps . 4-14

Getting Started With WebLogic Event Server v

vi Getting Started With WebLogic Event Server

Getting Started With WebLogic Event Server 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—Getting Started with
WebLogic Event Server.

“Document Scope and Audience” on page 1-1

“WebLogic Event Server Documentation Set” on page 1-2

“Guide to This Document” on page 1-2

“Samples for the WebLogic Event Server Application Developer” on page 1-2

Document Scope and Audience
This document is a resource for software developers who develop event driven real-time
applications. It also contains information that is useful for business analysts and system architects
who are evaluating WebLogic Event Server or considering the use of WebLogic Event Server for
a particular application.

The topics in this document are relevant during the design, development, configuration,
deployment, and performance tuning phases of event driven applications. The document also
includes topics that are useful in solving application problems that are discovered during test and
pre-production phases of a project.

It is assumed that the reader is familiar with the Java programming language and Spring.

I n t roduct i on and Roadmap

1-2 Getting Started With WebLogic Event Server

WebLogic Event Server Documentation Set
This document is part of a larger WebLogic Event Server documentation set that covers a
comprehensive list of topics. The full documentation set includes the following documents:

Getting Started With WebLogic Event Server

Creating WebLogic Event Server Applications

WebLogic Event Server Administration and Configuration Guide

EPL Reference Guide

WebLogic Event Server Reference Guide

WebLogic Event Server Release Notes

See the main WebLogic Event Server documentation page for further details.

Guide to This Document
This document is organized as follows:

This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide and the features of WebLogic Event Server.

Chapter 2, “Overview of WebLogic Event Server,” provides a conceptual overview of
WebLogic Event Server, typical use cases, definition of terms and acronyms, and an
overview of the programming model.

Chapter 3, “WebLogic Event Server Examples,” describes in detail two of the examples
provided in the distribution kit: HelloWorld and foreign exchange (FX).

Chapter 4, “Installing WebLogic Event Server,” describes how to install WebLogic Event
Server.

Samples for the WebLogic Event Server Application
Developer

In addition to this document, BEA Systems provides a variety of code samples for WebLogic
Event Server application developers. The examples illustrate WebLogic Event Server in action,
and provide practical instructions on how to perform key development tasks.

Samples fo r the WebLog ic Event Se rve r App l i cat ion Deve loper

Getting Started With WebLogic Event Server 1-3

BEA recommends that you run some or all of the examples before programming and configuring
your own event driven application.

The examples are distributed in two ways:

Pre-packaged and compiled in their own domain so you can immediately run them after
you install the product.

Separately in a Java source directory so you can see a typical development environment
setup.

The following two examples are provided in both their own domain and as Java source in this
release of WebLogic Event Server:

HelloWorld—Example that shows the basic elements of a WebLogic Event Server
application. See Hello World Example for additional information.

The HelloWorld domain is located in
WLEVS_HOME\samples\domains\helloworld_domain, where WLEVS_HOME refers to the
top-level WebLogic Event Server directory, such as c:\beahome\wlevs20.

The HelloWorld Java source code is located in
WLEVS_HOME\samples\source\applications\helloworld.

ForeignExchange (FX)—Example that includes multiple adapters, streams, and complex
event processor with a variety of EPL rules, all packaged in the same WebLogic Event
Server application. See Foreign Exchange (FX) Example for additional information.

The ForeignExchange domain is located in WLEVS_HOME\samples\domains\fx_domain,
where WLEVS_HOME refers to the top-level WebLogic Event Server directory, such as
c:\beahome\wlevs20.

The ForeignExchange Java source code is located in
WLEVS_HOME\samples\source\applications\fx.

WebLogic Event Server also includes an algorithmic trading application, pre-assembled and
deployed in its own sample domain; the source code for the example, however, is not provided.
The algorithmic trading domain is located in
WLEVS_HOME\samples\domains\algotrading_domain.

I n t roduct i on and Roadmap

1-4 Getting Started With WebLogic Event Server

Getting Started With WebLogic Event Server 2-1

C H A P T E R 2

Overview of WebLogic Event Server

This section contains information on the following subjects:

“Introduction to WebLogic Event Server” on page 2-1

“Use Cases” on page 2-4

“Summary of WebLogic Event Server Features” on page 2-5

“Supported Configurations” on page 2-6

“Next Steps” on page 2-6

Introduction to WebLogic Event Server
WebLogic Event Server is a low latency, Java based middleware framework for event driven
applications. It is a light weight application server which connects to high volume data feeds and
has a complex event processing engine (CEP) to match events based on user defined rules.

WebLogic Event Server has the capability of deploying user Java code (POJOs) which contain
the business logic. Running the business logic within WebLogic Event Server provides a highly
tuned framework for time and event driven applications.

Conceptual Overview of WebLogic Event Server
The following graphic provides a high level view of an event-driven system:

Overv iew o f WebLog ic Event Se rve r

2-2 Getting Started With WebLogic Event Server

An event-driven system is generally comprised of several event sources, the real-time
event-driven (WebLogic Event Server) applications, and event sinks. The event sources generate
streams of ordinary event data. The WebLogic Event Server applications listen to the event
streams, process these events, and generate notable events. Event sinks receive the notable
events.

event subscribers

Real-Time
Event-Driven Application

queries

devices

sensors

console

back-end

analytic
engines datastores

data feeds

Reuters Bloomberg

- Currency cross rate calculation
- Detection of clustered stock movement
- Best-effort stock trading
- Climate control (e.g. temperature drops
across several locations)

ordinary events notable events

In t roduct i on to WebLogic Event Se rve r

Getting Started With WebLogic Event Server 2-3

Event sources, event-driven applications, and event sinks are de-coupled from each other; one
can add or remove any of these components without causing changes to the other components.
This is an attribute of event driven architectures.

Event-driven applications are rule-driven. These rules, or queries, which are persisted using some
data store, are used for processing the inbound stream of events, and generating the outbound
stream of events. Generally, the number of outbound events is much lower than that of the
inbound events.

WebLogic Event Server is a middleware for the development of event-driven applications. A
WebLogic Event Server application is essentially an event-driven application.

Next, consider the application itself, which is hosted by the WebLogic Event Server
infrastructure, a light-weight container. It can be described by the following diagram:

A WebLogic Event Server application typically comprises of four main component types.
Adapters interface directly to the inbound event sources. Adapters understand the inbound
protocol, and are responsible for converting the event data into a normalized data that can be
queried by a processor (i.e. event processing agent, or processor). Adapters forward the
normalized event data into Streams. Streams are event processing endpoints. Among other things,
streams are responsible for queuing event data until the event processing agent can act upon it.
The event processing agent removes the event data from the stream, processes it, and may
generate new events to an output stream. The user code registers to listen to the output stream,
and is triggered by the insertion of a new event in the output stream. The user code is generally
just a plain-old-Java-object (POJO). The user application makes use of a set of external services,
such as JMS, WS, and file writers, to forward on the generated events to external event sinks.

Event
Source

Event
Sink

Event
Sink

Event
Source Adapter

Adapter

Processor User Code

Stream

Stream

Stream

Event
Source

Event
Sink

Event
Sink

Event
Source AdapterAdapter

AdapterAdapter

Processor User Code

StreamStream

StreamStream

StreamStream

Overv iew o f WebLog ic Event Se rve r

2-4 Getting Started With WebLogic Event Server

Event Processing Networks
Adapters, streams, processors, and business logic POJOs can be connected arbitrarily to each
other, forming event processing networks (EPN). Examples of topologies of EPNs are:

Adapter > Stream > Business Logic POJO

Scenario: no processing is needed, aside adaptation from proprietary protocol to some
normalized model.

Adapter > Stream > Processor > Stream > Business Logic POJO

Scenario: straight through processing to user code.

Adapter > Stream > Processor > Stream > Business Logic POJO > Stream > Processor >
Stream-> Business Logic POJO

Scenario: two layers of event processing, the first processor creates causality between
events, and the second processor aggregates events into complex events.

EPNs have two important attributes.

First, event processing networks can be used to create hierarchy of processing agents, and thus
achieve very complex processing of events. Each layer of the EPN aggregates events of its layer
into complex events that become simple events in the layer above it.

A second attribute of event processing networks is that it helps with integrability, that is, the
quality of having separately developed components work correctly together. For example, one
can add user code and reference to external services at several places in the network.

Use Cases
The use cases for WebLogic Event Server span a variety of businesses:

Financial: Algorithmic Trading

Automate stock trading based on market movement. Sample query: if, within any 20
second window, StockB rises by more than 2% and StockA does not, then automatically
buy StockA.

Transportation: Security and Fraud Detection

Discover fraudalent activity by detecting patterns among events. Sample query: if a single
ID card is used twice in less than 5 seconds to gain access to a city’s subway system, alert
security for piggybacking.

Summary o f WebLog ic Event Se rve r Features

Getting Started With WebLogic Event Server 2-5

Energy and Telecommunications: Alarm Correlation

Reduce false positive alarms. Sample query: When 15 alarms are received within any 5
second window, but less than 5 similar alarms detected within 30 seconds, then do nothing.

Health Care: Patient Monitoring

Monitor the vital signs of a patient and perform some task if a particular event happens.
Sample query: When a change in medication is followed by a rise in blood pressume
within 20% of maximum allowable for this patient within any 10 second window, alert
nearest nurse.

Summary of WebLogic Event Server Features
The following list summarizes the main features of WebLogic Event Server:

An application server that supports deployment of Plain Old Java applications (POJOs), or
Spring applications, for handling large volumes of streaming data with low latency
requirements.

WebLogic Event Server applications are developed and deployed as event driven
applications, that is, a set of custom Spring tags is used to define the event processing
network in the EPN assembly file, which extends the standard Spring context file, of your
application.

The application server contains a set of real time services that include a complex event
processor (CEP), adapters, and streams. The server is highly tuned for high message
throughput and low latency and deterministic behavior.

The complex event processor is a high performance, continuous query engine for
processing high volumes of streaming data. It has full support for filtering, correlation, and
aggregation of streaming data from one or more streams.

The Event Processing Language (EPL), a SQL-like language that allows event data from
streams to be declaratively filtered, correlated, aggregated, and merged, with the ability to
insert results into other streams for further downstream processing. You define the EPL
rules either in an XML file that configures the complex event processor or
programmatically using APIs.

An Adapter SDK that provides all the tools you need to create adapters that listen to
incoming data feeds.

Overv iew o f WebLog ic Event Se rve r

2-6 Getting Started With WebLogic Event Server

A set of product examples that show both a simple Hello World scenario to get you started
and more complex foreign exchange and algorithmic trading scenarios to showcase
additional features of WebLogic Event Server.

A load generator utility that simulates a data feed, useful for testing your application
without needing to connect to a live data feed.

A monitoring service that includes pre-built instrumentation for measuring throughput and
latency at the component level.

A static and dynamic configuration framework. Static configuration is performed using
XML files; dynamic configuration is performed by accessing configuration and runtime
MBeans using JMX and with the command-line utility wlevs.Admin.

WebLogic Event Server is built on the BEA microServices Architecture (mSA) which uses
an OSGi-based framework to manage services provided by modules or feature sets. BEA
mSA provides the following services:

– Jetty, an HTTP container for running servlets.

– javax.sql.DataSource implementation and thin JDBC drivers for accessing a
relational database.

– Logging and debugging.

– Authentication and authorization security.

Supported Configurations
For information on supported configurations, see BEA WebLogic Event Server 2.0 in Supported
Configurations: WebLogic.

Next Steps
Install WebLogic Event Server 2.0. Chapter 4, “Installing WebLogic Event Server.”

Run the examples from their respective domains. See:

– “Running the HelloWorld Example from the helloworld Domain” on page 3-7

– “Running the Foreign Exchange Example” on page 3-21

See “Overview of the Samples Provided in the Distribution Kit” on page 3-1 for overview
information.

Next S teps

Getting Started With WebLogic Event Server 2-7

Build the examples from their respective source directories. See:

– “Building and Deploying the HelloWorld Example from the Source Directory” on
page 3-8

– “Building and Deploying the Foreign Exchange Example from the Source Directory”
on page 3-22

Create your own WebLogic Event Server domain. See Creating a WebLogic Event Server
Domain.

Create a WebLogic Event Server application and deploy it to your new domain. See
Creating WebLogic Event Server Applications for a description of the programming
model, details about the various components that make up an application, and how they all
fit together.

Overv iew o f WebLog ic Event Se rve r

2-8 Getting Started With WebLogic Event Server

Getting Started With WebLogic Event Server 3-1

C H A P T E R 3

WebLogic Event Server Examples

This section contains information on the following subjects:

“Overview of the Samples Provided in the Distribution Kit” on page 3-1

“Setting Your Development Environment” on page 3-3

“HelloWorld Example” on page 3-6

“Foreign Exchange (FX) Example” on page 3-19

“Algorithmic Trading Example” on page 3-32

Overview of the Samples Provided in the Distribution Kit
WebLogic Event Server includes two complete examples: HelloWorld, which is a basic skeleton
of a a typical WebLogic Event Server application, and a Foreign Exchange (FX) example that
includes a multiple components.

These examples are provided in two forms, as follows:

Out-of-the-box sample domains pre-configured to deploy an assembled application. For
clarity, each example (Hello World and Foreign Exchange) is deployed to its own domain.
To deploy the application you simply start a server in the domain.

The sample helloworld domain is located in
WLEVS_HOME\samples\domains\helloworld_domain, where WLEVS_HOME refers to the
main WebLogic Event Server installation directory, such as d:\beahome2\wlevs20. See
“Running the HelloWorld Example from the helloworld Domain” on page 3-7 for details.

WebLogic Event Se rve r Examples

3-2 Getting Started With WebLogic Event Server

The sample foreign exchange domain is located in
WLEVS_HOME\samples\domains\fx_domain. See “Running the Foreign Exchange
Example” on page 3-21 for details.

The Java and configuration XML source for each sample is provided in a separate source
directory that describes a sample development environment.

The HelloWorld source directory is located in
WLEVS_HOME\samples\source\applications\helloworld, where WLEVS_HOME refers
to the main WebLogic Event Server installation directory, such as
d:\beahome2\wlevs20. See “Implementation of the HelloWorld Example” on page 3-9
for details.

The Foreign Exchange source directory is located in
WLEVS_HOME\samples\source\applications\fx. See “Implementation of the FX
Example” on page 3-24 for details.

WebLogic Event Server also includes an algorithmic trading application, pre-assembled and
deployed in its own sample domain; the source code for the example, however, is not provided.

The sample algorithmic trading domain is located in
WLEVS_HOME\samples\domains\algotrading_domain. See “Running the Algorithmic
Trading Example” on page 3-33 for details.

The samples use Ant as their development tool; for details about Ant and installing it on your
computer, see the Apache Ant Project.

Increasing the Performance of the Examples
To increase the throughput and latency when running the examples, and WebLogic Event Server
applications in general, BEA recommends the following:

Use the JRockit JDK included in WebLogic Real Time 2.0 and enable the deterministic
garbage collector by passing the -dgc parameter to the command that starts the WebLogic
Event Server instance for the appropriate domain:

prompt> startwlevs.cmd -dgc

By default the deterministic garbage collector is disabled for the examples.

When running WebLogic Event Server on a computer with a larger amount of memory,
you should set the load generator and server heap sizes appropriately for the size of the

Set t ing Your Deve lopment Env i ronment

Getting Started With WebLogic Event Server 3-3

computer. On computers with sufficient memory, BEA recommend a heap size of 1 GB
for the server and between 512MB - 1GB for the load generator.

Setting Your Development Environment
You must set your development environment before you can start WebLogic Event Server
instances and run the examples. In particular, you must set the PATH and JAVA_HOME
environment variables so that you are using the correct version of the JRockit JDK (R27.3).

There are two ways in which the R27.3 version of JRockit might have been installed on your
computer:

As part of the WebLogic Real Time 2.0 installation. This version of the JRockit JDK
includes the deterministic garbage collector.

As part of the Weblogic Event Server 2.0 installation. This version of the JRockit JDK
does not include the deterministic garbage collector, and is provided for testing purposes
only.

Although not required, BEA recommends that you run WebLogic Event Server using the JRockit
JDK version included in WebLogic Real Time 2.0 for best results; however, the following
procedures describe how to set your environment for either case.

For clarity, it is assumed in the following procedures that you installed WebLogic Real Time and
WebLogic Event Server in different BEA home directories; however, it is also possible to install
both products in the same BEA home. If you do this, both products will install JRockit, although
in different directories:

WebLogic Event Server installs its version of JRockit in the
jrockit-R27.3.0-106-1.5.0_11 directory.

WebLogic Real Time, installs its version of JRockit in the jrockit-realtime20_150_11
directory.

Windows
1. Update your PATH environment variable to include the bin directory of the JRockit JDK.

Also, be sure that your PATH environment variable includes the bin directory of your Ant
installation.

If using the JRockit JDK installed with WebLogic Real Time 2.0:

WebLogic Event Se rve r Examples

3-4 Getting Started With WebLogic Event Server

If you installed WebLogic Real Time 2.0 in the d:\beahome_wlrt directory and Ant is
installed in the d:\ant directory, set your PATH environment variable as shown:

prompt> set
PATH=d:\beahome_wlrt\jrockit-realtime20_150_11\bin;d:\ant\bin;%PATH%

If using the JRockit JDK installed with WebLogic Event Server 2.0:

If you installed WebLogic Event Server 2.0 in the d:\beahome_wlevs directory and Ant
is installed in the d:\ant directory, set your PATH environment variable as shown:

prompt> set
PATH=d:\beahome_wlevs\jrockit-R27.3.0-106-1.5.0_11\bin;d:\ant\bin;%PATH
%

2. Ensure that the JAVA_HOME variable in the server start script points to the correct JRockit JDK.
If it does not, edit the script.

The server start script (called startwlevs.cmd) is located in the main domain directory.
For example, the HelloWorld domain is located in
WLEVS_HOME\samples\domains\helloworld_domain, where WLEVS_HOME refers to the
main WebLogic Event Server installation directory, such as
d:\beahome_wlevs\wlevs20.

If using the JRockit JDK installed with WebLogic Real Time 2.0, the set command
should be as follows:

set JAVA_HOME=d:\beahome_wlrt\jrockit-realtime20_150_11

If using the JRockit JDK installed with WebLogic Event Server 2.0, the set
command should be as follows:

set JAVA_HOME=d:\beahome_wlevs\jrockit-R27.3.0-106-1.5.0_11

3. Set the JAVA_HOME variable in your own development environment to point to the JRockit
JDK.

If using the JRockit JDK installed with WebLogic Real Time 2.0:

prompt> set JAVA_HOME=d:\beahome_wlrt\jrockit-realtime20_150_11

If using the JRockit JDK installed with WebLogic Event Server 2.0:

prompt> set JAVA_HOME=d:\beahome_wlevs\jrockit-R27.3.0-106-1.5.0_11

To make it easier to reset your development environment after logging out of a session, you can
create a command file, such as setEnv.cmd, that contains these set commands.

Set t ing Your Deve lopment Env i ronment

Getting Started With WebLogic Event Server 3-5

You can also set these environment variables permanently on your Windows computer by
invoking the Control Panel > System window, clicking the Advanced tab, and then clicking the
Environment Variables button. You can set the environment variables for the current user or for
the entire system.

UNIX
1. Update your PATH environment variable to include the bin directory of the JRockit JDK.

Also, be sure that your PATH environment variable includes the bin directory of your Ant
installation.

If using the JRockit JDK installed with WebLogic Real Time 2.0:

If you installed WebLogic Real Time in the /beahome_wlrt directory and Ant is installed
in the /ant directory, set your PATH environment variable as shown:

prompt> PATH=/beahome_wlrt/jrockit-realtime20_150_11/bin:/ant/bin:$PATH

 If using the JRockit JDK installed with WebLogic Event Server 2.0:

If you installed WebLogic Event Server in the /beahome_wlevs directory and Ant is
installed in the /ant directory, set your PATH environment variable as shown:

prompt>
PATH=/beahome_wlevs/jrockit-R27.3.0-106-1.5.0_11/bin:/ant/bin:$PATH

2. Ensure that the JAVA_HOME variable in the server start script points to the correct JRockit JDK.
If it does not, edit the script.

The server start script (called startwlevs.sh) is located in the main domain directory.
For example, the HelloWorld domain is located in
WLEVS_HOME/samples/domains/helloworld_domain, where WLEVS_HOME refers to the
main WebLogic Event Server installation directory, such as /beahome_wlevs/wlevs20.

If using the JRockit JDK installed with WebLogic Real Time 2.0, the JAVA_HOME
variable should be set as follows:

JAVA_HOME=/beahome_wlrt/jrockit-realtime20_150_11

If using the JRockit JDK installed with WebLogic Event Server 2.0, the JAVA_HOME
variable should be set as follows:

JAVA_HOME=/beahome_wlevs/jrockit-R27.3.0-106-1.5.0_11

3. Set the JAVA_HOME variable in your development environment to point to the JRockit JDK.

If using the JRockit JDK installed with WebLogic Real Time 2.0:

WebLogic Event Se rve r Examples

3-6 Getting Started With WebLogic Event Server

prompt> JAVA_HOME=/beahome_wlrt/jrockit-realtime20_150_11

If using the JRockit JDK installed with WebLogic Event Server 2.0:

prompt> JAVA_HOME=/beahome_wlevs/jrockit-R27.3.0-106-1.5.0_11

To make it easier to reset your environment after logging out of a session, you can create a
command file, such as setEnv.sh, that contains these commands.

HelloWorld Example
The first example that shows how to create a WebLogic Event Server application is the
ubiquitous HelloWorld. The following diagram shows the components that make up the
application and how they fit together, which together make up the HelloWorld event processing
network:

Figure 3-1 The HelloWorld Event Processing Network

The example includes the following components:

helloworldAdapter—Component that simply generates Hello World messages every
second. In a real-world scenario, this component would typically read a stream of data
from a source, such as a data feed from a financial institution, and convert it into a stream
of events that the complex event processor can understand. The HelloWorld application
also includes a HelloWorldAdapterFactory that creates instances of HelloWorldAdapter.

helloworldInstream—Component that streams the events generated by the adapter (in
this case Hello World messages) to the complex event processor.

helloworldProcessor—Component that simply forwards the messages from the
helloworldAdapter component to the POJO that contains the business logic. In a
real-world scenario, this component would typically execute additional and possibly much

helloworldAdapter helloworldProcessor helloworldBean

helloworldInstream helloworldOutstream

He l l oWor ld Example

Getting Started With WebLogic Event Server 3-7

more complex processing of the events from the stream, such as selecting a subset of
events based on a property value, grouping events, and so on.

helloworldOutstream—Component that streams the events processed by the complex
event processor to the POJO that contains the user-defined business logic.

helloworldBean—POJO component that simply prints out a message every time it
receives a batch of messages from the processor via the output stream. In a real-world
scenario, this component would contain the business logic of the application, such as
running reports on the set of events from the processor, sending appropriate emails or
alerts, and so on.

Running the HelloWorld Example from the helloworld
Domain
To run the HelloWorld application that is pre-deployed to the helloworld domain, you simply
start an instance of WebLogic Event Server, as described in the following steps:

1. Open a command window and change to the helloworld domain directory, located in
WLEVS_HOME\samples\domains\helloworld_domain directory, where WLEVS_HOME
refers to the main WebLogic Event Server installation directory, such as
d:\beahome2\wlevs20.

prompt> cd d:\beahome2\wlevs20\samples\domains\helloworld_domain

2. Set your development environment, as described in “Setting Your Development
Environment” on page 3-3.

3. Start WebLogic Event Server by running the startwlevs.cmd (Windows) or
startwlevs.sh (UNIX) command:

prompt> startwlevs.cmd

If you are using the JRockit JDK included in WebLogic Real Time 2.0, enable the
deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

After server status messages scroll by, you should see the following message printed to the output
about every second:

 Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example is running correctly.

WebLogic Event Se rve r Examples

3-8 Getting Started With WebLogic Event Server

Building and Deploying the HelloWorld Example from the
Source Directory
The HelloWorld sample source directory contains the Java source, along with other required
resources such as configuration XML files, that make up the HelloWorld application. The
build.xml Ant file contains targets to build and deploy the application to the helloworld domain;
see “Description of the Ant Targets to Build Hello World” on page 3-9 for details.

Because a pre-packaged version of the Hello World application is already deployed to the
helloworld domain, the following procedure shows how to build and deploy a duplicate of the
HelloWorld application alongside the original one, rather than overwriting it.

To build and deploy the HelloWorld application, follow these steps:

1. Open a new command window and change to the HelloWorld source directory, located in
WLEVS_HOME\samples\source\applications\helloworld, where WLEVS_HOME refers
to the main WebLogic Event Server installation directory, such as d:\beahome2\wlevs20.

prompt> cd d:\beahome2\wlevs20\samples\source\applications\helloworld

2. Set your development environment, as described in “Setting Your Development
Environment” on page 3-3.

3. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

4. Execute the stage Ant target to copy the application JAR file, along with its configuration
XML file, to the
WLEVS_HOME\samples\domains\helloworld_domain\applications\helloworld_ne
w directory:

prompt> ant stage

This target does not override the existing Hello World application, which is located in the
WLEVS_HOME\samples\domains\helloworld_domain\applications\helloworld
directory, but rather, creates an entirely new directory.

5. Change to the WLEVS_HOME\samples\domains\helloworld_domain directory:

prompt> cd d:\beahome2\wlevs20\samples\domains\helloworld_domain

6. Edit the deployments.xml file and change the location attribute of the lone
<wlevs:deployment> tag to point to the new directory; the updated tag should look like this
(updated text in bold):

He l l oWor ld Example

Getting Started With WebLogic Event Server 3-9

<wlevs:deployment id="helloworld" state="start"
location="file:${wlevs.domain.home}/applications/helloworld_new/com.
bea.wlevs.example.helloworld_2.0.0.0.jar"/>

7. If WebLogic Event Server for the helloworld domain is running, you must restart it using the
start script to deploy this new HelloWorld JAR file:

prompt> startwlevs.cmd

If you are using the JRockit JDK included in WebLogic Real Time 2.0, enable the
deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

For details, see Stopping and Starting the Server.

After server status messages scroll by, you should see the following message printed to the output
about every second:

 Message: HelloWorld - the current time is: 3:56:57 PM

This message indicates that the HelloWorld example has been redeployed and is running
correctly.

Description of the Ant Targets to Build Hello World
The build.xml file, located in the top level of the HelloWorld source directory, contains the
following targets to build and deploy the application:

clean—This target removes the dist and output working directories under the current
directory.

all—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.helloworld_2.0.0.0.jar, and places the generated JAR file
into a dist directory below the current directory.

stage—This target deploys the JAR file, along with its configuration file
(processor.xml) to the helloworld domain by copying the two files to the
WLEVS_HOME\samples\domains\helloworld_domain\applications\helloworld_ne
w directory.

Implementation of the HelloWorld Example
The implementation of the HelloWorld example generally follows the main steps for creating a
WebLogic Event Server application; refer to that section for a task-oriented procedure that
describes the typical development process.

WebLogic Event Se rve r Examples

3-10 Getting Started With WebLogic Event Server

The HelloWorld example, because it is relatively simple, does not use all the components and
configuration files described in the general procedure for creating a WebLogic Event Server
application. All the files of the example are located relative to the
WLEVS_HOME\samples\source\applications\helloworld directory, where WLEVS_HOME
refers to the main WebLogic Event Server installation directory such as c:\beahome\wlevs20.
BEA recommends that you use this example directory setup in your own environment, although
it is obviously not required.

The files used by the HelloWorld example include:

An EPN assembly file that describes each component in the application and how all the
components are connected together. The EPN assembly file extends the standard Spring
context file. The file also registers the event types used in the application. You are
required to include this XML file in your WebLogic Event Server application.

In the example, the file is called com.bea.wlevs.example.helloworld-context.xml
and is located in the src/main/resources/META-INF/spring directory.

For details, see “The HelloWorld EPN Assembly File” on page 3-11.

Java source files for the helloworldAdapter component, which also includes a factory
bean to create adapter instances.

In the example, the two files are called HelloWorldAdapter.java and
HelloWorldAdapterFactory.java and are located in the
src/main/java/com/bea/wlevs/adapter/example/helloworld directory.

For detailed descriptions of these two files and how to program the adapter Java files in
general, see Programming the Adapter Class: Guidelines and Programming the Adapter
Factory Class.

Java source file that describes the HelloWorldEvent event type.

In the example, the file is called HelloWorldEvent.java and is located in the
src/main/java/com/bea/wlevs/event/example/helloworld directory.

For a detailed description of this file, as well as general information about programming
event types, see Creating Event Types.

An XML file that configures the helloworldProcessor, helloworldAdapter, and
helloworldOutstream components. An important part of this file is the set of EPL rules
that select the set of events that the HelloWorld application processes. You also use the
XML configuration file to enabled monitoring. You are required to include a processor
configuration file in your WebLogic Event Server application, although the adapter and
stream configuration is optional.

He l l oWor ld Example

Getting Started With WebLogic Event Server 3-11

In the example, the file is called config.xml and is located in the
src/main/resources/META-INF/wlevs directory.

For details, see “The HelloWorld Component Configuration File” on page 3-15.

An XSD Schema file that describes the XML file that configures the
helloworldProcessor and helloworldAdapter components. This XSD file is
optional and only required if your application extends the default configuration Schema for
the components; the HelloWorld application extends the default adapter configuration.

In the example, the file is called helloworld.xsd and is located in the
src/main/resources/extension directory.

For details, see “The XSD File that Describes the Extended HelloWorld Component
Configuration” on page 3-17.

A Java file that implements the helloworldBean component of the application, a POJO
that contains the business logic.

In the example, the file is called HelloWorldBean.java and is located in the
src/main/java/com/bea/wlevs/example/helloworld directory.

For details about this file, and programming the business logic POJO in general, see
Programming Business Logic: Guidelines.

A MANIFEST.MF file that describes the contents of the OSGi bundle that will be deployed
to WebLogic Event Server.

In the example, the MANIFEST.MF file is located in the
src/main/main/resources/META-INF directory

See Assembling a WebLogic Event Server Application: Main Steps for information about
creating this file, as well as a description of creating the OSGi bundle that you deploy to
WebLogic Event Server.

The HelloWorld example uses a build.xml Ant file to compile, stage, assemble, and deploy the
OSGi bundle; see “Building and Deploying the HelloWorld Example from the Source Directory”
on page 3-8 for a description of this build.xml file if you also use Ant in your development
environment.

The HelloWorld EPN Assembly File
One of the main purposes of the EPN assembly file is to define the event processing network by
declaring the components of the application and how they are all connected, or in other word,
which components listen to which other components. WebLogic Event Server provides a set of

WebLogic Event Se rve r Examples

3-12 Getting Started With WebLogic Event Server

custom Spring tags used to declare the network. You also use the EPN assembly file to register
the event types used by your application and its EPL rules.

You use the EPN assembly file in the typical way to define the application component beans in
the Spring application context; the application components beans are those implemented with
Java classes, such as adapters and the POJO that contains the business logic.

For full reference information about the custom Spring tags, see WebLogic Event Server Custom
Spring Tags Reference or the XSD Schema file that defines the tags.

The following example shows the EPN assembly file used in the HelloWorld sample application;
see the explanation after the example for details about the entries in bold.

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs.xsd">

 <!-- First, create and register the adapter (and factory) that generates
hello world messages -->

 <osgi:service interface="com.bea.wlevs.ede.api.AdapterFactory">
 <osgi:service-properties>
 <prop key="type">hellomsgs</prop>
 </osgi:service-properties>
 <bean
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterFactory"/>
 </osgi:service>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:cla
ss>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <!-- Assemble EPN (event processing network) -->

 <!-- The adapter id is used by the configuration system, so needs to be
well-known -->

He l l oWor ld Example

Getting Started With WebLogic Event Server 3-13

 <wlevs:adapter id="helloworldAdapter" provider="hellomsgs"
manageable="true">
 <!-- This property is also configure by dynamic config -->
 <wlevs:instance-property name="message" value="HelloWorld - the
currenttime is:"/>
 </wlevs:adapter>

 <!-- The processor id is used by the configuration system, so needs to be
well-known -->

 <wlevs:processor id="helloworldProcessor" manageable="true" />

 <wlevs:stream id="helloworldInstream" manageable="true">
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:stream>

 <!-- Manageable is so that we can monitor the event throughput -->

 <wlevs:stream id="helloworldOutstream" manageable="true">
 <wlevs:listener>
 <!-- Create business object -->
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:stream>

</beans>

In the preceding example:

The <osgi:service ...> entry registers the helloworldAdapterFactory as an OSGi
service. Note that the referenced interface is
com.bea.wlevs.ede.api.AdapterFactory, the WebLogic Event Server-provided
adapter factory, rather than the adapter factory specific to the HelloWorld application
(com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterFactory).

The <prop> element gives the OSGi service a type name; this type, hellomsgs, will be
referenced later on when the helloworldAdapter is declared a component of the event
processing network.

The entry that begins <bean id="helloworldAdapterFact" .. > registers the
helloworldAdapterFactory bean in the Spring application context; this class generates
instances of helloworldAdapter.

The <wlevs:event-type-repository> entry registers the event types that are used
throughout the application; in the HelloWorld application, there is just a single event type:
HelloWorldEvent, implemented with the
com.bea.wlevs.event.example.helloworld.HelloWorldEvent class. WebLogic

WebLogic Event Se rve r Examples

3-14 Getting Started With WebLogic Event Server

Event Server automatically creates instances of this data type when needed. You can also
reference this data type in the EPL rules of the application.

The <wlevs:adapter>, <wlevs:processor>, and <wlevs:stream> entries together
define the event processor network by declaring each component in the network; the
following bullets describe the configuration of each component.

The <wlevs:adapter> tag defines the adapter component of the HelloWorld application:

 <wlevs:adapter id="helloworldAdapter" provider="hellomsgs"
manageable="true">
 <wlevs:instance-property name="message" value="HelloWorld - the
currenttime is:"/>
</wlevs:adapter>

The id attribute specifies a unique identifier for this component; the id will be referenced
later by other components. The provider attribute specifies that the provider of the
adapter component is the OSGi service type hellomsgs, declared previously when the
helloworldAdapterFactory was declared as an OSGi service. The manageable
attribute enables monitoring for the adapter; by default the manageability of components is
disabled.

The <wlevs:instance-property> child tag passes an instance variable to adapter
instance; the name of the variable is message and the value is HelloWorld - the
current time is:.

The <wlevs:processor> tag defines the processor component of the application:

<wlevs:processor id="helloworldProcessor" manageable="true" />

The id and manageable attributes function the same as those for <wlevs:adapter>.

The <wlevs:stream> tags defines the two stream components of the application:

<wlevs:stream id="helloworldInstream" manageable="true">
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
</wlevs:stream>

<wlevs:stream id="helloworldOutstream" manageable="true">
 <wlevs:listener>
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
</wlevs:stream>

The id and manageable attributes for streams function the same as those for
<wlevs:adapter>.

He l l oWor ld Example

Getting Started With WebLogic Event Server 3-15

The <wlevs:stream id="helloworldInstream"> tag uses the <wlevs:listener>
child tag to specify that the helloworldProcessor listens to the stream, and the
<wlevs:source> child tag to specify that the stream gets its events from the
helloworldAdapter component.

The <wlevs:stream id="helloworldOutstream"> tag also uses these listener and
source tags. One difference, however, is that it directly nests the definition of the business
logic POJO in the <wlevs:listener> tag rather than reference a unique identifier. In this
case, the nested tag is a standard Spring <bean> that specifies that the POJO is
implemented with the com.bea.wlevs.example.helloworld.HelloWorldBean class.

The HelloWorld Component Configuration File
The HelloWorld application contains a single complex event processor, a single adapter, and a
single stream, all configured with the following XML file:

<?xml version="1.0" encoding="UTF-8"?>

<helloworld:config

 xmlns:helloworld="http://www.bea.com/ns/wlevs/example/helloworld">

 <processor>

 <name>helloworldProcessor</name>

 <rules>

 <rule id="helloworldRule"><![CDATA[select * from HelloWorldEvent

retain 1 event]]></rule>

 </rules>

 </processor>

 <adapter>

 <name>helloworldAdapter</name>

 <message>HelloWorld - the current time is:</message>

 </adapter>

 <stream monitoring="true" >

 <name>helloworldOutstream</name>

 <max-size>10000</max-size>

 <max-threads>2</max-threads>

 </stream>

</helloworld:config>

WebLogic Event Se rve r Examples

3-16 Getting Started With WebLogic Event Server

If your application contains multiple processors, adapters or streams, you can either declare them
all in a single configuration file, or create separate configuration files for each component; the
method you chose depends on which you find easier to manage.

For each component you configure, you must add the <name> child element to explicitly declare
the specific component to which you are referring. The value of the <name> element must
correspond to the component’s unique identifier of its declaration in the EPN assembly file.

For example, assume a processor is declared in the EPN assembly file as follows:

 <wlevs:processor id="helloworldProcessor" ...>

Then its corresponding XML configuration would be as follows:

 <processor>

 <name>helloworldProcessor</name>

 ...

 </processor>

The HelloWorld example uses a single configuration file for one processor with the name
helloworldProcessor, one adapter with the name helloworldAdapter, and one stream with
the name helloworldOutstream. These names correspond with the declaration of the
components in the EPN assembly file.

Note: When you create the configuration file for the components of your application, you can
use the default configuration XSD Schema files, or create a custom one if you want to
add additional elements. In the HelloWorld application, the adapter uses a custom
configuration, and thus has its own XSD Schema file that describes the configuration file.

Because the HelloWorld application uses an extended XSD schema when configuring its
components, the corresponding configuration XML file must identify the namespace for
this schema rather than the default schema. In the preceding example:
<helloworld:config
 xmlns:helloworld="http://www.bea.com/ns/wlevs/example/helloworld">

...

See “The XSD File that Describes the Extended HelloWorld Component Configuration”
on page 3-17 for details.

The <processor> element configures the processor component. The most important part of the
processor configuration is the declaration of the set of Event Processing Language (EPL) rules
that this processor executes; these rules select the set of events that are eventually passed to the
application business object. Each rule is declared with a <rule> element using an XML

He l l oWor ld Example

Getting Started With WebLogic Event Server 3-17

![CDATA[...]] section; all rules are grouped together with a single <rules> element. You can
define as many rules as you want for a particular processor.

The HelloWorld application has just a single very simple rule:

 select * from HelloWorldEvent retain 1 event

This rule selects all events of type HelloWorldEvent, but retains only one event at a time in its
window. For additional information and examples about using EPL, see the EPL Reference
Guide.

The <adapter> element configures the adapter component. The most important thing to note
about the helloworldAdapter is that it has a custom element, <message>. The Java
implementation of the adapter receives this information from WebLogic Event Server and then
uses it in its code.

The <stream> element configures the helloworldOutstream component. First it enables
monitoring of the stream using the monitoring="true" attribute. The monitoring attribute
only takes effect if the manageable="true" attribute has also been set for this component in the
EPN assembly file. The <max-size> and <max-threads> elements specify the maximum size
of the stream and the maximum number of threads assigned to the stream, respectively.

The XSD File that Describes the Extended HelloWorld
Component Configuration
WebLogic Event Server provides a default XSD Schema that describes the XML file which
configures the components (processor, adapters, streams) of your application. If this Schema is
adequate for your application, then you do not need to create an XSD file of your own.

However, sometimes it is helpful to extend the default component configuration with custom
configuration information for your specific application; for example, the HelloWorld adds a
<message> element that specifies the text of the message created by the helloworldAdapter
component, as shown in “The HelloWorld Component Configuration File” on page 3-15.

If you want to extend the default configuration of the components, then you must also provide
your own XSD schema file that describes the format of the new configuration files. This XSD
schema file must describe the extended configurations, as well as the overall format of the
configuration file. The HelloWorld application extends the default adapter configuration, but
uses the default processor and stream configurations. The XSD file is shown below; see the
explanation after the schema for a description of the sections in bold:

<?xml version="1.0" encoding="UTF-8"?>

WebLogic Event Se rve r Examples

3-18 Getting Started With WebLogic Event Server

<xs:schema xmlns="http://www.bea.com/ns/wlevs/example/helloworld"
xmlns:xs="http://www.w3.org/2001/XMLSchema"
xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"

targetNamespace="http://www.bea.com/ns/wlevs/example/helloworld"

elementFormDefault="unqualified" attributeFormDefault="unqualified"
jxb:extensionBindingPrefixes="xjc" jxb:version="1.0">

 <xs:annotation>
 <xs:appinfo>
 <jxb:schemaBindings>
 <jxb:package name="com.bea.adapter.wlevs.example.helloworld"/>
 </jxb:schemaBindings>
 </xs:appinfo>
 </xs:annotation>

 <xs:import namespace="http://www.bea.com/ns/wlevs/config/application"
schemaLocation="wlevs_application_config.xsd"/>

 <xs:element name="config">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="adapter" type="HelloWorldAdapterConfig"/>
 <xs:element name="processor" type="wlevs:DefaultProcessorConfig"/>
 <xs:element name="stream" type="wlevs:DefaultStreamConfig" />
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="HelloWorldAdapterConfig">
 <xs:complexContent>
 <xs:extension base="wlevs:AdapterConfig">
 <xs:sequence>
 <xs:element name="message" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

The important things to note about the preceding XSD file are:

The <xs:schema targetNamespace..> entry defines the target namespace; the name
can be anything you want.

Fore ign Exchange (FX) Example

Getting Started With WebLogic Event Server 3-19

The <jxb:schemaBindings> entry specifies that WebLogic Event Server should use
JAXB to generate a Java class represents the XML conents of the configuration file; the
server then passes this Java class to the adapter. The <jxb:package> child specifies the
package name of this Java class, in this case
com.bea.adapter.wlevs.example.helloworld.

The <xs:import> entry specifies the WebLogic Event Server XSD file to import; this file
defines the default configuration file and the schema types defined in this imported XSD
can then be references in the custom XSD.

The <xs:element name="config"> lays out the structure of the custom configuration
file. In particular, it says that the root element is <config> and it has three possible child
elements, <adapter>, <processor>, and <stream>.

The schema type of the <adapter> element is HelloWorldAdapterConfig, defined later
in this custom XSD file. The schema typse of the <processor> and <stream> elements
are the default configuration types for processors and streams:
wlevs:DefaultProcessorConfig and wlevs:DefaultStreamConfig, respectively.
These types are defined in the imported XSD file wlevs_application_config.xsd. In
other words, only the adapter configuration is being changed in the custom XSD file.

The <xs:complexType name="HelloWorldAdapterConfig"> entry defines what the
HelloWorldAdapterConfig schema type looks like. In particular, it uses as a base the
default adapter configuration, wlevs:AdapterConfig, defined in the imported XSD file
wlevs_application_config.xsd., but then adds a new element called <message> of
data type string.

For additional details about extending the configuration of an adapter, see Extending the
Configuration of an Adapter.

Foreign Exchange (FX) Example
The foreign exchange example, called FX for simplicity, is a more complex example than the
HelloWorld one because it includes multiple processors that handle information from multiple
data feeds. In the example, the data feeds are simulated using the WebLogic Event Server load
generator utility. The following diagram describes the FX event processing network:

WebLogic Event Se rve r Examples

3-20 Getting Started With WebLogic Event Server

Figure 3-2 FX Event Processing Network

In the scenario, three data feeds, simulated using the load generator, send a constant pair of values
from different parts of the world; the value pairs consist of a currency pair, such as USDEUR for
US dollar - European euro, and an exchange rate between the two currencies. The fxMarketXXX
adapters receive the data from the feeds, convert them into events, and pass them to the
preprocessorXXX processors. Each processor performs an initial stale check to ensure that no
event is more than ten seconds old and then a boundary check to ensure that the exchange rate
between the two currencies is within a current boundary. The server also only selects a specific
currency pair from a particular stream; for example, the server selects USDEUR from the
simulated American data feed, but rejects all other pairs, such as USDAUD (Australian dollar).

After the data from each data feed provider passes this initial preparation phase, a different
processor, called spreader, joins all events across all providers, calculates the mid-point
between the maximum and minimum rate, and then applies a trader-specified spread. Finally, the
processor forwards the rate to the POJO that contains the business code; in this example, the
POJO simply publishes the rate to clients.

fxMarketAmer

fxMarketAsia

fxMarketEuro preprocessorEuro

preprocessorAmer

preprocessorAsia outputBeanspreader

spreaderIn
spreaderOut

fxMarketAmerOut

fxMarketAsiaOut

fxMarketEuroOut
Legend

Adapter

Stream

Processor

Business Object
(POJO)

Fore ign Exchange (FX) Example

Getting Started With WebLogic Event Server 3-21

The WebLogic Event Server monitor is configured to watch if the event latency in the last step
exceeds some threshold, such as no updated rates in a 30 second time-span, and if there is too
much variance between two consecutive rates for the same currency pair. Finally, the last rate of
each currency pair is forwarded to the dashboard.

Running the Foreign Exchange Example
For optimal demonstration purposes, BEA recommends that you run this example on a powerful
computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB
of RAM.

To run the Foreign Exchange (FX) application that is pre-deployed to the fx_domain domain, you
simply start an instance of WebLogic Event Server, as described in the following steps:

1. Open a command window and change to the fx domain directory, located in
WLEVS_HOME\samples\domains\fx_domain directory, where WLEVS_HOME refers to the
main WebLogic Event Server installation directory, such as d:\beahome2\wlevs20.

prompt> cd d:\beahome2\wlevs20\samples\domains\fx_domain

2. Set your development environment, as described in “Setting Your Development
Environment” on page 3-3.

3. Start WebLogic Event Server by running the startwlevs.cmd (Windows) or
startwlevs.sh (UNIX) command:

prompt> startwlevs.cmd

If you are using the JRockit JDK included in WebLogic Real Time 2.0, enable the
deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

The FX application is now ready to receive data from the data feeds.

4. To simulate an American data feed, open a new command window and set your environment
as described in “Setting Your Development Environment” on page 3-3.

5. Change to the WLEVS_HOME\utils\load-generator directory, where WLEVS_HOME refers
to the main WebLogic Event Server installation directory, such as d:\beahome2\wlevs20.

6. Run the load generator using the fxAmer.prop properties file:

prompt> runloadgen.cmd fxAmer.prop

7. Repeat steps 4 - 6 to simulate an Asian data feed, using the fxAsia.prop properties file:

WebLogic Event Se rve r Examples

3-22 Getting Started With WebLogic Event Server

prompt> runloadgen.cmd fxAsia.prop

8. Repeat steps 4 - 6 to simulate an European data feed, using the fxEuro.prop properties file:

prompt> runloadgen.cmd fxEuro.prop

After the server status messages scroll by in the command window from which you started the
server, and the three load generators start, you should see messages similar to the following being
printed to the server command window:

{crossRate=USDJPY, internalPrice=119.09934499999781}, {crossRate=USDGBP,
internalPrice=0.5031949999999915}, {crossRate=USDJPY,
internalPrice=117.73945624999783}

These messages indicate that the Foreign Exchange example is running correctly. The output
shows the cross rates of US dollars to Japanese yen and US dollars to UK pounds sterling.

Building and Deploying the Foreign Exchange Example from
the Source Directory
The Foreign Exchange (FX) sample source directory contains the Java source, along with other
required resources such as configuration XML files, that make up the FX application. The
build.xml Ant file contains targets to build and deploy the application to the fx_domain domain,
as described in “Description of the Ant Targets to Build FX” on page 3-23.

Because a pre-packaged version of the FX application is already deployed to the fx_domain
domain, the following procedure shows how to build and deploy a duplicate of the FX application
alongside the original one, rather than overwriting it.

To build and deploy the FX application, follow these steps:

1. Open a new command window and change to the FX source directory, located in
WLEVS_HOME\samples\source\applications\fx, where WLEVS_HOME refers to the main
WebLogic Event Server installation directory, such as d:\beahome2\wlevs20.

prompt> cd d:\beahome2\wlevs20\samples\source\applications\fx

2. Set your development environment, as described in “Setting Your Development
Environment” on page 3-3.

3. Execute the all Ant target to compile and create the application JAR file:

prompt> ant all

4. Execute the stage Ant target to copy the application JAR file, along with its configuration
XML file, to the WLEVS_HOME\fx_domain\applications\fx_new directory:

Fore ign Exchange (FX) Example

Getting Started With WebLogic Event Server 3-23

prompt> ant stage

This target does not override the existing FX application, which is located in the
WLEVS_HOME\fx_domain\applications\fx directory, but rather, creates an entirely new
directory.

5. Change to the WLEVS_HOME\samples\domains\fx_domain directory

prompt> cd d:\beahome2\wlevs20\samples\domains\fx_domain

6. Edit the deployments.xml file and change the location attribute of the lone
<wlevs:deployment> tag to point to the new directory; the updated tag should look like this
(updated text in bold):

<wlevs:deployment id="fxApp" state="start"
location="file:applications/fx_new/com.bea.wlevs.example.fx_2.0.0.0.
jar"/>

7. If WebLogic Event Server for the fx_domain domain is running, you must restart it using the
start script to deploy this new FX JAR file:

prompt> startwlevs.cmd

If you are using the JRockit JDK included in WebLogic Real Time 2.0, enable the
deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

For details, see Stopping and Starting the Server.

8. If the load generators required by the FX application are not running, start them as described
in “Running the Foreign Exchange Example” on page 3-21.

After server status messages scroll by, you should see the following message printed to the
output:

 {crossRate=USDJPY, internalPrice=119.09934499999781}, {crossRate=USDGBP,
internalPrice=0.5031949999999915}, {crossRate=USDJPY,
internalPrice=117.73945624999783}

This message indicates that the FX example has been redeployed and is running correctly.

Description of the Ant Targets to Build FX
The build.xml file, located in the top-level directory of the FX source, contains the following
targets to build and stage the application:

clean—This target removes the dist and output working directories under the current
directory.

WebLogic Event Se rve r Examples

3-24 Getting Started With WebLogic Event Server

all—This target cleans, compiles, and jars up the application into a file called
com.bea.wlevs.example.fx_2.0.0.0.jar, and places the generated JAR file into a
dist directory below the current directory.

stage—This target deploys the JAR file, along with its configuration files
(preprocessor.xml and spreader.xml) to the fx_domain domain by copying the two
files to the WLEVS_HOME\samples\domains\fx_domain\applications\fx_new
directory.

Implementation of the FX Example
The implementation of the foreign exchange (FX) example generally follows the main steps for
creating a WebLogic Event Server application; refer to that section for a procedure that describes
the typical development process.

All the files of the FX example are located relative to the
WLEVS_HOME\samples\source\applications\fx directory, where WLEVS_HOME refers to the
main WebLogic Event Server installation directory such as c:\beahome\wlevs20. BEA
recommends that you use this example directory setup in your own environment, although it is
obviously not required.

The files used by the FX example include:

A EPN assembly file that describes each component in the application and how all the
components are connected together. You are required to include this XML file in your
WebLogic Event Server application.

In the example, the file is called com.bea.wlrt.example.fx-context.xml and is
located in the src/main/resources/META-INF/spring directory.

For details, see “The FX EPN Assembly File” on page 3-25.

Two XML files that configure the processor components of the application.

The first XML file configures the preprocessorAmer, preprocessorAsia, and
preprocessorEuro components, all in a single file. This XML file includes the EPL
rules that select particular currency pairs from particular simulated market feeds and
executes the boundary conditions described in the example overview. In the example, this
file is called preprocessors.xml and is located in the
src/main/resources/META-INF/wlevs directory.

The second XML file configures the spreader processor. This component joins together
all the events that were selected by the pre-processors, calculates an internal price for the

Fore ign Exchange (FX) Example

Getting Started With WebLogic Event Server 3-25

particular currency pair, and then calculates the cross rate. This file is called
spreader.xml and is located in the src/main/config directory.

For details, see “The FX Processor Configuration Files” on page 3-29.

A Java file that implements the OutputBean component of the application, a POJO that
contains the business logic. This POJO prints out to the screen the events that it receives,
programmed in the onEvent method. The POJO also registers into the event type
repository the ForeignExchangeEvent event type.

In the example, the file is called OutputBean.java and is located in the
src/main/java/com/bea/wlevs/example/fx directory.

For additional information about the WebLogic Event Server APIs referenced in the POJO,
see the WebLogic Event Server Javadocs.

A Java file that implements the ForeignExchangeBuilderFactory, which is the factory
that generates ForeignExchangeEvents.

In the example, the file is called ForeignExchangeBuilderFactory.java and is located
in the src/main/java/com/bea/wlevs/example/fx directory.

For additional information about the WebLogic Event Server APIs referenced in
ForeignExchangeBuilderFactory, see the WebLogic Event Server Javadocs.

A MANIFEST.MF file that describes the contents of the OSGi bundle that will be deployed
to WebLogic Event Server.

In the example, the MANIFEST.MF file is located in the
src/main/main/resources/META-INF directory

See Assembling a WebLogic Event Server Application: Main Steps for information about
creating this file, as well as a description of creating the OSGi bundle that you deploy to
WebLogic Event Server.

The FX example uses a build.xml Ant file to compile, stage, assemble, and deploy the OSGi
bundle; see “Building and Deploying the Foreign Exchange Example from the Source Directory”
on page 3-22 for a description of this build.xml file if you also use Ant in your development
environment.

The FX EPN Assembly File
The following example shows the EPN assembly file used in the FX sample application; see the
explanation after the example for details about the entries in bold.

WebLogic Event Se rve r Examples

3-26 Getting Started With WebLogic Event Server

Note: See the first few paragraphs of “The HelloWorld EPN Assembly File” on page 3-11 for
a brief overview of the EPN assembly file. For full reference information about the
custom Spring tags, see WebLogic Event Server Custom Spring Tags Reference or the
XSD Schema file that defines the tags.

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xmlns:osgi="http://www.springframework.org/schema/osgi"

 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"

 xsi:schemaLocation="

 http://www.springframework.org/schema/beans

 http://www.springframework.org/schema/beans/spring-beans.xsd

 http://www.springframework.org/schema/osgi

 http://www.springframework.org/schema/osgi/spring-osgi.xsd

 http://www.bea.com/ns/wlevs/spring

 http://www.bea.com/ns/wlevs/spring/spring-wlevs.xsd">

 <wlevs:event-type-repository>

 <wlevs:event-type type-name="ForeignExchangeEvent">

 <wlevs:class>

 com.bea.wlevs.example.fx.OutputBean$ForeignExchangeEvent

 </wlevs:class>

 <wlevs:property name="builderFactory">

 <bean id="builderFactory"

class="com.bea.wlevs.example.fx.ForeignExchangeBuilderFactory"/>

 </wlevs:property>

 </wlevs:event-type>

 </wlevs:event-type-repository>

 <!-- Assemble EPN (event processing network) -->

 <wlevs:adapter id="fxMarketAmer" provider="loadgen">

 <wlevs:instance-property name="port" value="9011"/>

 </wlevs:adapter>

 <wlevs:adapter id="fxMarketAsia" provider="loadgen">

 <wlevs:instance-property name="port" value="9012"/>

 </wlevs:adapter>

Fore ign Exchange (FX) Example

Getting Started With WebLogic Event Server 3-27

 <wlevs:adapter id="fxMarketEuro" provider="loadgen">

 <wlevs:instance-property name="port" value="9013"/>

 </wlevs:adapter>

 <wlevs:processor id="preprocessorAmer" listeners="spreaderIn"/>

 <wlevs:processor id="preprocessorAsia" listeners="spreaderIn"/>

 <wlevs:processor id="preprocessorEuro" listeners="spreaderIn"/>

 <wlevs:stream id="fxMarketAmerOut">

 <wlevs:listener ref="preprocessorAmer"/>

 <wlevs:source ref="fxMarketAmer"/>

 </wlevs:stream>

 <wlevs:stream id="fxMarketAsiaOut">

 <wlevs:listener ref="preprocessorAsia"/>

 <wlevs:source ref="fxMarketAsia"/>

 </wlevs:stream>

 <wlevs:stream id="fxMarketEuroOut">

 <wlevs:listener ref="preprocessorEuro"/>

 <wlevs:source ref="fxMarketEuro"/>

 </wlevs:stream>

 <wlevs:stream id="spreaderOut" advertise="true">

 <wlevs:listener>

 <!-- Create business object -->

 <bean id="outputBean"

 class="com.bea.wlevs.example.fx.OutputBean"

 autowire="byName"/>

 </wlevs:listener>

 </wlevs:stream>

 <wlevs:processor id="spreader">

 <wlevs:listener ref="spreaderOut"/>

 </wlevs:processor>

 <wlevs:stream id="spreaderIn">

 <wlevs:listener ref="spreader"/>

 </wlevs:stream>

</beans>

In the preceding example:

WebLogic Event Se rve r Examples

3-28 Getting Started With WebLogic Event Server

The <wlevs:event-type-repository> entry registers the event types that are used
throughout the application; in the FX application, there is just a single event type:
ForeignExchangeEvent, implemented with the ForeignExchangeEvent inner class of
the com.bea.wlevs.example.fx.OutputBean POJO class. The <wlevs:property
name="builderFactory"> child tag specifies that the event builder factory class in the
FX application is implemented by the
com.bea.wlevs.example.fx.ForeignExchangeBuilderFactory.

WebLogic Event Server automatically creates instances of the ForeignExchangeEvent
type when needed. You can then reference this data type in the EPL rules of the
application, the adapter Java class, and the POJO.

The set of <wlevs:adapter>, <wlevs:processor>, and <wlevs:stream> entries set up
the event processor network by declaring each component in the network. The network
consists of three adapters, four processors, and five streams, as described in “FX Event
Processing Network” on page 3-20.

Each component is given a unique ID which can be referenced by other components when
they declare their listeners and sources.

The <wlevs:adapter> entries specify the three adapters, for example:

 <wlevs:adapter id="fxMarketAmer" provider="loadgen">
 <wlevs:instance-property name="port" value="9011"/>
 </wlevs:adapter>

The provider="loadgen" attribute of each <wlevs:adapter> specifies that the adapters
get their data from the WebLogic Event Server load generator utility. The
<wlevs:instance-property> child tag specifies the port number to which the adapter
should listen.

The <wlevs:processor> entries specify the four complex event processors, for example:

 <wlevs:processor id="preprocessorAmer" listeners="spreaderIn"/>

The listeners attribute, common to all component tags, specifies the component that
listens to the processor; in this case, it is a stream called spreaderIn.

You can also use a <wlevs:listeners> child tag to specify the listeners of a component:

 <wlevs:processor id="spreader">
 <wlevs:listener ref="spreaderOut"/>
 </wlevs:processor>

In the example, the spreaderOut stream listens to the spreader processor.

The <wlevs:stream> entries specify the four streams, for example:

Fore ign Exchange (FX) Example

Getting Started With WebLogic Event Server 3-29

 <wlevs:stream id="fxMarketAmerOut">
 <wlevs:listener ref="preprocessorAmer"/>
 <wlevs:source ref="fxMarketAmer"/>
 </wlevs:stream>

As with all components, you can use the <wlevs:listener> and <wlevs:source> child
tags to specify the other components that act as listeners and sources for this component.

In the example, the preprocessorAmer processor listens to the fxMarketAmerOut
stream, which in turn listens to the fxMarketAmer adapter.

The following example shows how you can nest the definition of a component inside a
<wlevs:listener> tag:

<wlevs:stream id="spreaderOut" advertise="true">
 <wlevs:listener>
 <!-- Create business object -->
 <bean id="outputBean"
 class="com.bea.wlevs.example.fx.OutputBean"
 autowire="byName"/>
 </wlevs:listener>
 </wlevs:stream>

In the example, the outBean POJO, declared as a standard Spring bean using the <bean>
tag, listens to the spreaderOut stream. The advertise="true" attribute of the
spreaderOut stream is used to register the stream as an OSGI service in the registry.

The FX Processor Configuration Files
The FX application uses four processors: three to handle the three data feeds and one that joins
the resulting events. The first three processors are configured in a single XML file, called
preprocessor.xml, as shown:

<?xml version="1.0" encoding="UTF-8"?>

<n1:config

xsi:schemaLocation="http://www.bea.com/xml/ns/wlevs/config/application

wlevs_application_config.xsd"

 xmlns:n1="http://www.bea.com/xml/ns/wlevs/config/application"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<processor>

 <name>preprocessorAmer</name>

 <rules>

 <rule id="UsdToEurRule"><![CDATA[

WebLogic Event Se rve r Examples

3-30 Getting Started With WebLogic Event Server

 insert into ForeignExchangeEvent

 select avg(lastPrice) as price, 'USD' as fromRate, 'EUR' as toRate

 from (select * from StockTick where symbol='USDEUR') retain 1 sec

 where lastPrice < 3.0 and lastPrice > 0.25

]]></rule>

 </rules>

 </processor>

 <processor>

 <name>preprocessorAsia</name>

 <rules>

 <rule id="EurToJpyRule"><![CDATA[

 insert into ForeignExchangeEvent

 select avg(lastPrice) as price, 'EUR' as fromRate, 'JPY' as toRate

 from (select * from StockTick where symbol='EURJPY') retain 1 sec

 where lastPrice < 200.0 and lastPrice > 100.0

]]></rule>

 </rules>

 </processor>

 <processor>

 <name>preprocessorEuro</name>

 <rules>

 <rule id="EurToGbpRule"><![CDATA[

 insert into ForeignExchangeEvent

 select avg(lastPrice) as price, 'EUR' as fromRate, 'GBP' as toRate

 from (select * from StockTick where symbol='EURGBP') retain 1 sec

 where lastPrice < 1.5 and lastPrice > 0.5

]]></rule>

 </rules>

 </processor>

</n1:config>

The three processors in this file are all essentially the same; the differences lie only in the values
used in the EPL queries for querying different items from the data feeds and applying different
boundary conditions. For this reason, this section will discuss just a single one of the processors:
preprocessorAmer.

Fore ign Exchange (FX) Example

Getting Started With WebLogic Event Server 3-31

The EPL rule fired for the american data feed is:

 insert into ForeignExchangeEvent

 select avg(lastPrice) as price, 'USD' as fromRate, 'EUR' as toRate

 from (select * from StockTick where symbol='USDEUR') retain 1 sec

 where lastPrice < 3.0 and lastPrice > 0.25

To understand the query, one must look at the various clauses, as follows:

The insert clause specifies that any event selected by this EPL rule should be inserted
into ForeignExchangeEvent; this is the object that the next processor in the network,
spreader, performs its own EPL query against.

The from clause specifies that the processor should accept only those items from the
StockTick data feed in which the symbol value is USDEUR (US dollar - European euro
exchange) and should reject all other items. The from clause specifies also specifies that
the window of time for which this EPL query executes is 1 second.

The where clause specifies the boundary condition to ensure that the rates for a particular
item from the feed fall within an accepted range; in this case, the LastPrice for a
particular item from the feed must be between $3.00 and $0.25.

The select clause specifies which values from the selected item should be inserted into
the ForeignExchangeEvent object; in this case, the average of all prices in the window (1
second), and then the USD and EUR symbols to specify the to and from currency rates.

The spreader processor is configured with the spreader.xml file, as shown:

<?xml version="1.0" encoding="UTF-8"?>

<n1:config

xsi:schemaLocation="http://www.bea.com/xml/ns/wlevs/config/application

wlevs_application_config.xsd"

xmlns:n1="http://www.bea.com/xml/ns/wlevs/config/application"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

<processor>

 <name>spreader</name>

 <rules>

 <rule id="spreaderRule"><![CDATA[

 select ((a.price * b.price) + 0.05) as internalPrice, a.fromRate ||

b.toRate as crossRate

 from ForeignExchangeEvent a, ForeignExchangeEvent b retain 1 sec

 where a.toRate = b.fromRate

WebLogic Event Se rve r Examples

3-32 Getting Started With WebLogic Event Server

]]></rule>

 </rules>

 </processor>

</n1:config>

In the spreader EPL rule:

The from and where clauses join two events from the ForeignExchangeEvent object
(which contains events selected by the three preprocessorXXX components) where the
value of the toRate and fromRate are the same. The from clause also sets the processing
window, again of 1 second.

The select clause calculates an internal price of a particular currency, which averages the
to and from rate of a the currency plus a fee of $.05, and also calculates a cross rate, which
is defined as the price of one currency in terms of another currency in the market of a third
country.

The result of this query is then sent to the business object POJO.

For additional information and examples about using EPL, see the EPL Reference Guide.

Algorithmic Trading Example
The Algorithmic Trading sample application receives simulated market data and verifies if the
price of a security has fluctuated more than two percent. The application also detects if there is a
trend occurring by keeping track of successive stock prices for a particular symbol; if more than
three successive prices fluctuate more than two percent, this is considered a trend.

The application simulates a market data feed using the WebLogic Event Server load generator
utility; in this example, the load generator generates up to 10,000 messages per second. The
example includes an HTML dashboard which displays the matched events along with the
latencies; events consist of a stock symbol, a timestamp, and the price.

The example demonstrates very low latencies, with minimum latency jitter under high
throughputs. Once the application starts running, the processor matches an average of 800
messages per second. If the application is run on the minimum configured system, the example
shows very low average latencies (30-300 microsecond, on average) with minimal latency spikes
(low milliseconds).

The example computes and displays latency values based on the difference between a timestamp
generated on the load generator and timestamp on WebLogic Event Server. Computing valid
latencies requires very tight clock synchronization, such as 1 millisecond, between the computer

A lgo r i thmic T rad ing Example

Getting Started With WebLogic Event Server 3-33

running the load generator and the computer running WebLogic Event Server. For this reason,
BEA recommends running both the load generator and WebLogic Event Server on a single
multi-CPU computer where they will share a common clock.

Note: In this release, you can only run the Algorithmic Trading example from its sample
domain; the source files are not provided.

Running the Algorithmic Trading Example
For optimal demonstration purposes, BEA recommends that you run this example on a powerful
computer, such as one with multiple CPUs or a 3 GHz dual-core Intel, with a minimum of 2 GB
of RAM.

The algotrading domain contains a single application: the Algorithmic Trading sample
application. To run the Algorithmic Trading application, you simply start an instance of
WebLogic Event Server in the domain, as described in the following steps:

1. Open a command window and change to the algotrading domain directory, located in
WLEVS_HOME\samples\domains\algotrading_domain directory, where WLEVS_HOME
refers to the main WebLogic Event Server installation directory, such as
d:\beahome2\wlevs20.

prompt> cd d:\beahome2\wlevs20\samples\domains\algotrading_domain

2. Set your development environment, as described in “Setting Your Development
Environment” on page 3-3.

3. Start WebLogic Event Server by running the startwlevs.cmd (Windows) or
startwlevs.sh (UNIX) command:

prompt> startwlevs.cmd

If you are using the JRockit JDK included in WebLogic Real Time 2.0, enable the
deterministic garbage collector by passing the -dgc parameter to the command:

prompt> startwlevs.cmd -dgc

The Algorithmic Trading application is now ready to receive data from the data feeds.

4. To simulate a data feed, you will use the WebLogic Event Server load generator, as described
in the following steps:

a. 0pen a new command window and set your environment as described in “Setting Your
Development Environment” on page 3-3.

WebLogic Event Se rve r Examples

3-34 Getting Started With WebLogic Event Server

b. Change to the WLEVS_HOME\utils\load-generator directory, where WLEVS_HOME
refers to the main WebLogic Event Server installation directory, such as
d:\beahome2\wlevs20.

c. Run the load generator using the fxAmer.prop properties file:

prompt> runloadgen.cmd AMEX.prop

5. Start a browser and open the following HTML page:

 http://localhost:9002/demouc1/dashboard.html

Replace localhost with the name of the computer on which WebLogic Event Server is
running.

6. In the browser, click the Start Button on the HTML page. You should start seeing the events
that match the EPL rules configured for this example.

Getting Started With WebLogic Event Server 4-1

C H A P T E R 4

Installing WebLogic Event Server

This section contains information on the following subjects:

“Before You Begin” on page 4-1

“Installation Overview” on page 4-2

“Installing WebLogic Event Server in Graphical Mode: Main Steps” on page 4-3

“Installing WebLogic Event Server in Console Mode: Main Steps” on page 4-5

“Installing WebLogic Event Server in Silent Mode: Main Steps” on page 4-8

“Post-Installation Steps” on page 4-14

Before You Begin
Before you install WebLogic Event Server 2.0:

Optionally install WebLogic Real Time 2.0. BEA recommends this step if your
applications require low latency. WebLogic Event Server 2.0 performs optionally when it
can access certain features from WebLogic Real Time, in particular the JRockit
deterministic garbage collector. WebLogic Event Server includes its own version of
JRockit, but it does not include the deterministic garbage collector.

You can download the WebLogic Real Time 2.0 distribution from the BEA Web site at
http://commerce.bea.com.

Ins ta l l i ng WebLog ic Event Se rve r

4-2 Getting Started With WebLogic Event Server

WARNING: Be sure you install the version of WebLogic Real Time that includes JRockit
5.0. The version that includes JRockit 1.4.2 is not compatible with WebLogic
Event Server 2.0.

Install Apache Ant, a Java-based build tool. For details, see the Apache Ant Project.

Installation Overview
You install WebLogic Event Server using a standard BEA installation program. The program can
be used in the following modes:

Graphical mode

Graphical-mode installation is an interactive, GUI-based method for installing your
software. It can be run on both Windows and UNIX systems. See “Installing WebLogic
Event Server in Graphical Mode: Main Steps” on page 4-3.

WARNING: If you want to run graphical-mode installation, the console attached to the
machine on which you are installing the software must support a Java-based
GUI. All consoles for Windows systems support Java-based GUIs, but not all
consoles for UNIX systems do. If you attempt to start the installation program
in graphical mode on a system that cannot support a graphical display, the
installation program automatically starts console-mode installation.

Console mode

Console-mode installation is an interactive, text-based method for installing your software
from the command line, on either a UNIX system or a Windows system. See “Installing
WebLogic Event Server in Console Mode: Main Steps” on page 4-5.

Silent mode

Silent-mode installation is a non-interactive method of installing your software that
requires the use of an XML properties file for selecting installation options. You can run
silent-mode installation in either of two ways: as part of a script or from the command line.
Silent-mode installation is a way of setting installation configurations only once and then
using those configurations to duplicate the installation on many machines. See “Installing
WebLogic Event Server in Silent Mode: Main Steps” on page 4-8.

I ns ta l l ing WebLogic Event Se rve r in Graph ica l Mode : Main S teps

Getting Started With WebLogic Event Server 4-3

Installing WebLogic Event Server in Graphical Mode:
Main Steps

The WebLogic Event Server graphical installation program is self-explanatory, however, you can
follow these steps for more information.

1. Log in to the Windows or UNIX computer on which you want to install WebLogic Event
Server.

Be sure you log in to the computer as the user that will be the main administrator of the
WebLogic Event Server installation.

2. Download the product distribution file for the platform on which you want to install
WebLogic Event Server.

You can download your software from the BEA Web site at http://commerce.bea.com.

3. Launch the installation program in graphical mode using the commands listed in the
following table appropriate for your platform.

4. After the installation program has finished loading, you will see the standard BEA Welcome
window.

Platform Instructions

Windows Using Windows Explorer, double-click the wlevs20_win32.exe file
from its download directory.

UNIX Open a command window, change to the download directory, and enter
these commands:

prompt> chmod a+x filename.bin

prompt> ./filename.bin

In these commands, filename.bin is the name of the installation
program specific to your platform, for example,
wlevs20_linux32.bin and wlevs20_solaris64.bin.

If you want to create an installation log, use the
-log=full_path_to_log_file option; for example:

prompt> ./filename.bin
-log=C:\logs\server_install.log

Ins ta l l i ng WebLog ic Event Se rve r

4-4 Getting Started With WebLogic Event Server

Click Next.

5. In the Choose BEA Home Directory window, you can specify either an existing BEA Home
directory or create a new one. BEA recommends that you use the same BEA Home directory
into which you installed WebLogic Real Time, if applicable.

 The BEA Home directory is the main installation directory for all BEA products, such as
c:\beahome. You can have one or many BEA Home directories on your computer,
whichever suits your development and production environments best.

If you decide to install into an existing BEA Home directory, the installer program checks
if the directory includes the version of JRockit required by this release of WebLogic Event
Server. If it finds the required JRockit installation, it does not install a new one. If,
however, the installer program does not find an appropriate JRockit installation, then the
program installs its own version in the BEA Home directory.

Use the Browse button to browse your computer for an existing or new BEA Home
directory.

Click Next.

6. In the Choose Install Type window, you can choose whether to install the complete version
of WebLogic Event Server (recommended) or whether you want to pick the individual
components of the product that you want to install.

Click Next.

7. If you chose Custom in the preceding step, you will see the Choose Products and Components
window. Check the components you want to install.

Note: In this version of WebLogic Event Server, the only component you can install
separately is the Event Server Samples.

Click Next.

8. In the Choose Product Installation Directories, you can change the default name of the home
directory of WebLogic Event Server, wlevs20.

Although you can name this directory anything you want, BEA recommends that you use
the default name for clarity and standardization. For example, the documentation assumes
that you install into the wlevs20 directory.

Click Next.

9. If you are installing on Windows, and you logged in as a user with Administrator privileges,
then you will see the Choose Shortcut Location window where you can choose where you
want the Start Menu folder to appear. The following table describes the options available:

Ins ta l l ing WebLog ic Event Se rve r in Conso le Mode : Main S teps

Getting Started With WebLogic Event Server 4-5

If you logged in as a user without Administrator privileges, the Start menu entries are
created in your user's local Start menu folder.

Click Next.

The installer program installs WebLogic Event Server. The Installation Complete window
indicates that the product was installed successfully.

10. Click Done to exit the program.

Installing WebLogic Event Server in Console Mode: Main
Steps

Console-mode installation is an interactive, text-based method for installing your software from
the command line, on either a UNIX or Windows system.

When installing in console-mode, respond to the prompts in each section by entering the number
associated with your choice or by pressing Enter to accept the default. To exit the installation
process, enter exit (or x, for short) in response to any prompt. To review or change your
selection, enter previous (or p, for short) at the prompt. To proceed to the following window,
enter next (or n, for short).

Note: In the following procedure, Windows conventions (such as back-slashes in pathnames)
are used, for example, C:\bea\wlevs20. When entering pathnames on a UNIX system,
be sure to use UNIX conventions, instead. For example, use forward slashes in
pathnames, such as /home/bea/wlevs20.

The following procedure steps you through the installation program.

If you select . . . The following occurs . . .

All Users Recommended. All users registered on the machine are provided with
access to the installed software. Subsequently, if users without
Administrator privileges use the Configuration Wizard from this
installation to create domains, Start menu shortcuts to the domains are not
created. In this case, users can manually create shortcuts in their local Start
menu folders, if desired.

Local user Other users registered on this machine will not have access to the Start
menu entries for this installation.

Ins ta l l i ng WebLog ic Event Se rve r

4-6 Getting Started With WebLogic Event Server

1. Log in to the Windows or UNIX computer on which you want to install WebLogic Event
Server.

Be sure you log in to the computer as the user that will be the main administrator of the
WebLogic Event Server installation.

2. Download the product distribution file for the platform on which you want to install
WebLogic Event Server.

You can download your software from the BEA Web site at http://commerce.bea.com.

3. Launch the installation program in console mode using the commands listed in the following
table appropriate for your platform.

4. At the Welcome prompt, type next (or n for short) or press Enter to continue with the
installation process.

Platform Instructions

Windows Open a command window, change to the download directory, and enter the
following command:

prompt> wlevs20_win32.exe -mode=console

If you want to create an installation log, use the
-log=full_path_to_log_file option; for example:

prompt> wlevs20_win32.exe -mode=console
-log=C:\logs\server_install.log

UNIX Open a command window, change to the download directory, and enter
these commands:

prompt> chmod a+x filename.bin

prompt> ./filename.bin -mode=console

In these commands, filename.bin is the name of the installation
program specific to your platform, for example,
wlevs20_linux32.bin and wlevs20_solaris64.bin.

If you want to create an installation log, use the
-log=full_path_to_log_file option; for example:

prompt> ./filename.bin -mode=console
-log=C:\logs\server_install.log

Ins ta l l ing WebLog ic Event Se rve r in Conso le Mode : Main S teps

Getting Started With WebLogic Event Server 4-7

5. In the Choose BEA Home Directory window, the list of known BEA home directories (if any)
appear, as well as an option to create a new one. BEA recommends that you use the same BEA
Home directory into which you installed WebLogic Real Time, if applicable.

 The BEA Home directory is the main installation directory for all BEA products, such as
c:\beahome. You can have one or many BEA Home directories on your computer,
whichever suits your development and production environments best.

If you decide to install into an existing BEA Home directory, the installer program checks
if the directory includes the version of JRockit required by this release of WebLogic Event
Server. If it finds the required JRockit installation, it does not install a new one. If,
however, the installer program does not find an appropriate JRockit installation, then the
program installs its own version in the BEA Home directory.

Type 1 to create a new BEA home directory, or type the number of the existing BEA
Home directory.

6. If you chose 1 to create a new BEA Home directory, the installation program guides you
through the required steps to create the new BEA Home. Be sure to enter the full path of the
BEA Home directory, for example C:\beahome2. If you specify a directory that does not
exist, the installation program creates it for you.

7. In the Choose Install Type window, you can choose whether to install the complete version
of WebLogic Event Server (recommended) or whether you want to pick the individual
components of the product that you want to install.

Enter 1 for a complete install or 2 for a custom install.

8. If you chose Custom in the preceding step, you will see the Choose Components to Install
window. Enter the numbers in brackets to toggle the components you want to install.

Note: In this version of WebLogic Event Server, the only component you can install
separately is the Samples.

Enter next (or n) when you have chosen the components.

9. In the Choose Product Installation Directories, you can change the default name of the home
directory of WebLogic Event Server, wlevs20, by entering a new value.

Although you can name this directory anything you want, BEA recommends that you use
the default name for clarity and standardization. For example, the documentation assumes
that you install into the wlevs20 directory.

Enter next (or n) when you are done.

Ins ta l l i ng WebLog ic Event Se rve r

4-8 Getting Started With WebLogic Event Server

10. If you are installing on Windows, and you logged in as a user with Administrator privileges,
then you will see the Choose Shortcut Location window where you can choose where you
want the Start Menu folder to appear. The following table describes the options available:

If you logged in as a user without Administrator privileges, the Start menu entries are
created in your user's local Start menu folder.

Enter the appropriate number.

The installer program installs WebLogic Event Server. The Installation Complete window
indicates that the product was installed successfully.

11. Type exit to exit the program.

Installing WebLogic Event Server in Silent Mode: Main
Steps

Silent-mode installation is a non-interactive method of installing your software that requires the
use of an XML properties file for selecting installation options. To install using silent mode:

1. Log in to the Windows or UNIX computer on which you want to install WebLogic Event
Server.

Be sure you log in to the computer as the user that will be the main administrator of the
WebLogic Event Server installation.

2. Download the product distribution file for the platform on which you want to install
WebLogic Event Server.

If you select . . . The following occurs . . .

1 "All Users" Recommended. All users registered on the machine are provided with
access to the installed software. Subsequently, if users without
Administrator privileges use the Configuration Wizard from this
installation to create domains, Start menu shortcuts to the domains are not
created. In this case, users can manually create shortcuts in their local Start
menu folders, if desired.

2 "Local user" Other users registered on this machine will not have access to the Start
menu entries for this installation.

I ns ta l l ing WebLog ic Event Se rve r in S i l en t Mode : Main S teps

Getting Started With WebLogic Event Server 4-9

You can download your software from the BEA Web site at http://commerce.bea.com.

3. Create a silent.xml file that defines the configuration settings normally entered by a user
during an interactive installation process. See “Creating a silent.xml File for Silent-Mode
Installation” on page 4-11.

Note: Incorrect entries in the silent.xml file can cause installation failures. To help you
determine the cause of a failure, we recommend that you create a log file when you
launch the installation program.

4. Launch the installation program in silent mode using the commands in the following table
appropriate for your platform.

Ins ta l l i ng WebLog ic Event Se rve r

4-10 Getting Started With WebLogic Event Server

A BEA Installer window is displayed, indicating that the files are being extracted. No other
prompt or text is displayed.

The installation is complete when the BEA Installer window disappears.

See “Returning Exit Codes to the Command Window” on page 4-13 for getting
information about the success or failure of the silent installation.

Platform Instructions

Windows Open a command window, change to the download directory, and enter the
following command:

prompt> wlevs20_win32.exe -mode=silent
-silent_xml=path_to_xml_file

In the preceding command, path_to_xml_file is the full pathname of
the silent.xml template file you created in the preceding step.

If you want to create an installation log, use the
-log=full_path_to_log_file option; for example:

prompt> wlevs20_win32.exe -mode=silent
-silent_xml=path_to_xml_file
-log=C:\logs\server_install.log

UNIX Open a command window, change to the download directory, and enter
these commands:

prompt> chmod a+x filename.bin

prompt> ./filename.bin -mode=silent
-silent_xml=path_to_xml_file

In these commands, filename.bin is the name of the installation
program specific to your platform, for example,
wlevs20_linux32.bin and wlevs20_solaris64.bin, and
path_to_xml_file is the full pathname of the silent.xml template
file you created in the preceding step.

If you want to create an installation log, use the
-log=full_path_to_log_file option; for example:

prompt> ./filename.bin -mode=silent
-silent_xml=path_to_xml_file
-log=C:\logs\server_install.log

I ns ta l l ing WebLog ic Event Se rve r in S i l en t Mode : Main S teps

Getting Started With WebLogic Event Server 4-11

Creating a silent.xml File for Silent-Mode Installation
When you install WebLogic Event Server in silent mode, the installation program uses an XML
file (silent.xml) to determine which installation options should be implemented.

To create a silent.xml file, follow these steps:

1. Using your favorite text edit, create an empty file called silent.xml on the computer on
which you want to install WebLogic Event Server in silent mode.

2. Copy the contents of the sample XML file, shown in “Sample silent.xml File for Silent-Mode
Installation” on page 4-13, into your own silent.xml file.

3. In the silent.xml file you just created, edit the values for the keywords shown in Table 4-1
to reflect your configuration.

For example, if you want to install into the BEA Home directory e:\beahome, update the
corresponding <data-value> element as follows

<data-value name="BEAHOME" value="e:\beahome" />

4. Save the file in the directory of your choice.

Table 4-1 Values for the silent.xml File

For this data-value name... Enter the following value...

BEAHOME The full pathname for the BEA Home directory of
your choice.

USER_INSTALL_DIR The full pathname for the directory where you want to
install your WebLogic Event Server software.

Ins ta l l i ng WebLog ic Event Se rve r

4-12 Getting Started With WebLogic Event Server

Guidelines for Component Selection
Use the following guidelines when you specify values for the COMPONENT_PATHS data-value
name:

When you specify a product component to be installed, all subcomponents that are
installed by default in a complete installation are also installed. For example, the following
entry installs both WebLogic Server and the samples:

<data-value name="COMPONENT_PATHS" value="WebLogic Event Server" />

 INSTALL_SHORTCUT_IN_ALL_USERS_FOLDER Windows only. Specify:
• true, or yes, to create the shortcuts in the All

Users folder.
• false, or no, to create the shortcuts in the local

users folder.

The user performing the installation must have
Administrator privileges to install the Start menu
shortcuts in the All Users folder.

The default value for this parameter, if you do not
specify it, is true.

COMPONENT_PATHS Specify the components and subcomponents of
WebLogic Event Server you want to install on your
system. Use the following values:

WebLogic Event Server

WebLogic Event Server/Event Server

WebLogic Event Server/Event Server
Samples

For additional information about entering these
values, see “Guidelines for Component Selection” on
page 4-12.

If you do not include the COMPONENT_PATHS
data-value name in the silent.xml file, the
complete WebLogic Event Server product is installed.

Table 4-1 Values for the silent.xml File

For this data-value name... Enter the following value...

I ns ta l l ing WebLog ic Event Se rve r in S i l en t Mode : Main S teps

Getting Started With WebLogic Event Server 4-13

To install multiple components or subcomponents, separate the components with a bar (|).
Do not leave a space before or after the bar.

To specify subcomponents, you must specify a component/subcomponent combination for
each entry. For example, to explicitly install WebLogic Event Server and the samples,
enter the following line in the file:

<data-value name="COMPONENT_PATHS" value="WebLogic Event Server/Event
Server|WebLogic Event Server/Event Server Samples" />

Note: Because this release of WebLogic Event Server includes only the server itself and
samples, the preceding example is equivalent to the example in the first bullet.

Sample silent.xml File for Silent-Mode Installation
<?xml version="1.0" encoding="UTF-8"?>
<!-- Silent installer option: -mode=silent -silent_xml=C:\bea\silent.xml -->

<bea-installer>
 <input-fields>
 <data-value name="BEAHOME" value="C:\bea" />
 <data-value name="USER_INSTALL_DIR" value="C:\bea\wlevs20" />
 <data-value name="INSTALL_SHORTCUT_IN_ALL_USERS_FOLDER" value="yes"/>
 <data-value name="COMPONENT_PATHS" value="WebLogic Event Server" />
 </input-fields>
</bea-installer>

Returning Exit Codes to the Command Window
When run in silent mode, the installation program generates exit codes that indicate the success
or failure of the installation. These exit codes are shown in the following table.

Listing 4-1 provides a sample Windows command file that invokes the installation program in
silent mode and echoes the exit codes to the command window from which the script is executed.

Table 4-2 Exit Codes

Code Description

0 Installation completed successfully

-1 Installation failed due to a fatal error

-2 Installation failed due to an internal XML parsing error

Ins ta l l i ng WebLog ic Event Se rve r

4-14 Getting Started With WebLogic Event Server

Listing 4-1 Sample Windows Command File Displaying Silent-Mode Exit Codes

rem Execute the installer in silent mode

@echo off

wlevs20_win32.exe -mode=silent -silent_xml=C:\downloads\silent.xml

-log=C:\logs\products_silent.log

@rem Return an exit code to indicate success or failure of installation

set exit_code=%ERRORLEVEL%

@echo.

@echo Exitcode=%exit_code%

@echo.

@echo Exit Code Key

@echo ---------------

@echo 0=Installation completed successfully

@echo -1=Installation failed due to a fatal error

@echo -2=Installation failed due to an internal XML parsing error

@echo.

Post-Installation Steps
After installing WebLogic Event Server:

Try out the product examples. For information about the examples and how to run them,
see Chapter 3, “WebLogic Event Server Examples.”

Create your own WebLogic Event Server domain. See Creating a WebLogic Event Server
Domain.

Create a WebLogic Event Server application and deploy it to your new domain. See
Creating WebLogic Event Server Applications for a description of the programming
model, details about the various components that make up an application, and how they all
fit together.

