
Oracle® Complex Event Processing
Reference Guide

Release 3.0

July 2008

Alpha/Beta Draft

Oracle Complex Event Processing Reference Guide, Release 3.0

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors,
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S.
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S.
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification,
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective
owners.

This software and documentation may provide access to or information on content, products and services from third parties.
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or
damages incurred due to your access to or use of third-party content, products, or services.

This documentation is in prerelease status and is intended for demonstration and preliminary use only. It may not be specific to
the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly
disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages
incurred due to the use of this documentation.

Oracle Complex Event Processing Reference Guide iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Oracle CEP Documentation Set . 1-2

Guide to This Document . 1-2

Samples for the Oracle CEP Application Developer . 1-3

2. Oracle Complex Event Processing Spring Tag Reference
Overview of the Oracle Complex Event Processing Spring Tags 2-2

Graphical Representation . 2-2

Example of an EPN Assembly File That Uses Oracle CEP Tags. 2-4

wlevs:adapter . 2-6

wlevs:cache . 2-9

wlevs:caching-system . 2-11

wlevs:class . 2-14

wlevs:event-bean . 2-14

wlevs:event-type-repository. 2-18

wlevs:event-type . 2-19

wlevs:factory . 2-20

wlevs:function . 2-21

wlevs:instance-property . 2-22

wlevs:listener . 2-24

wlevs:loader . 2-24

iv Oracle Complex Event Processing Reference Guide

wlevs:metadata . 2-25

wlevs:processor . 2-27

wlevs:property . 2-29

wlevs:source . 2-31

wlevs:store. 2-32

wlevs:stream . 2-33

3. Deployer Command-Line Reference
Overview of Using the Deployer Command-Line Utility. 3-1

Required Environment for the Deployer Utility . 3-2

Running the Deployer Utility Remotely . 3-2

Syntax for Invoking the Deployer Utility . 3-3

Connection Arguments. 3-4

User Credential Arguments . 3-5

Deployment Commands. 3-6

Examples of Using the Deployer Utility . 3-7

4. Metadata Annotations
Overview of Oracle Complex Event Processing Metadata Annotations 4-1

com.bea.wlevs.management.Activate . 4-2

com.bea.wlevs.management.Prepare . 4-5

com.bea.wlevs.management.Rollback . 4-6

com.bea.wlevs.util.Service . 4-8

5. XSD Schema Reference for Oracle CEP Files
Component Configuration XSD Schemas. 5-1

Example of a Component Configuration File . 5-1

EPN Assembly XSD Schema . 5-2

Example of a EPN Assembly File . 5-2

Oracle Complex Event Processing Reference Guide v

Deployment XSD Schema. 5-4

Example of a Deployment XML File. 5-4

Server Configuration XSD Schema. 5-4

Example of a Server Configuration XML File. 5-5

vi Oracle Complex Event Processing Reference Guide

Oracle Complex Event Processing Reference Guide 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—Oracle Complex Event
Processing Reference Guide.

“Document Scope and Audience” on page 1-1

“Oracle CEP Documentation Set” on page 1-2

“Guide to This Document” on page 1-2

“Samples for the Oracle CEP Application Developer” on page 1-3

Document Scope and Audience
This document is a resource for software developers who develop event driven real-time
applications. It also contains information that is useful for business analysts and system architects
who are evaluating Oracle Complex Event Processing (or Oracle CEP for short)or considering
the use of Oracle CEP for a particular application.

The topics in this document are relevant during the design, development, configuration,
deployment, and performance tuning phases of event driven applications. The document also
includes topics that are useful in solving application problems that are discovered during test and
pre-production phases of a project.

It is assumed that the reader is familiar with the Java programming language and Spring.

I n t roduct i on and Roadmap

1-2 Oracle Complex Event Processing Reference Guide

Oracle CEP Documentation Set
This document is part of a larger Oracle CEP documentation set that covers a comprehensive list
of topics. The full documentation set includes the following documents:

Oracle CEP Getting Started

Oracle CEP Application Development Guide

Oracle CEP Administration and Configuration Guide

Oracle CEP EPL Reference Guide

Oracle CEP Reference Guide

Oracle CEP Release Notes

Oracle CEP Visualizer Help

See the main Oracle CEP documentation page for further details.

Guide to This Document
This document is organized as follows:

This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide and the Oracle CEP documentation set and samples.

Chapter 2, “Oracle Complex Event Processing Spring Tag Reference,” lists the custom
Spring tags you can use in a variety of XML configuration files to further configure Oracle
CEP applications.

Chapter 3, “Deployer Command-Line Reference,” provides reference information for the
Deployer tool used to install, update, start and stop OSGi bundles to Oracle CEP.

Chapter 4, “Metadata Annotations,” provides reference information for the metadata
annotations you can use in your adapter Java file to access its configuration.

Chapter 5, “XSD Schema Reference for Oracle CEP Files,” provides the XSD Schemas for
the various Oracle CEP XML files, including component configuration files, EPN
assembly file, deployments file, and server configuration file.

http://e-docs.bea.com/wlevs/docs30/get_started/index.html
http://e-docs.bea.com/wlevs/docs30/create_apps/index.html
http://e-docs.bea.com/wlevs/docs30/config_server/index.html
http://e-docs.bea.com/wlevs/docs30/epl_guide/index.html
http://e-docs.bea.com/wlevs/docs30/reference/index.html
http://e-docs.bea.com/wlevs/docs30/notes/index.html
http://e-docs.bea.com/wlevs/docs30/index.html
http://e-docs.bea.com/wlevs/docs30/visualizer_help/index.html

Samples f o r the Orac le CEP Appl i cat ion Deve loper

Oracle Complex Event Processing Reference Guide 1-3

Samples for the Oracle CEP Application Developer
In addition to this document, Oracle provides a variety of code samples for Oracle CEP
application developers. The examples illustrate Oracle CEP in action, and provide practical
instructions on how to perform key development tasks.

Oracle recommends that you run some or all of the examples before programming and
configuring your own event driven application.

The examples are distributed in two ways:

Pre-packaged and compiled in their own domain so you can immediately run them after
you install the product.

Separately in a Java source directory so you can see a typical development environment
setup.

The following three examples are provided in both their own domain and as Java source in this
release of Oracle CEP:

HelloWorld—Example that shows the basic elements of an Oracle CEP application. See
Hello World Example for additional information.

The HelloWorld domain is located in
WLEVS_HOME\samples\domains\helloworld_domain, where WLEVS_HOME refers to the
top-level Oracle CEP directory, such as c:\beahome\wlevs30.

The HelloWorld Java source code is located in
WLEVS_HOME\samples\source\applications\helloworld.

ForeignExchange (FX)—Example that includes multiple adapters, streams, and complex
event processor with a variety of EPL rules, all packaged in the same Oracle CEP
application. See Foreign Exchange (FX) Example for additional information.

The ForeignExchange domain is located in WLEVS_HOME\samples\domains\fx_domain,
where WLEVS_HOME refers to the top-level Oracle CEP directory, such as
c:\beahome\wlevs30.

The ForeignExchange Java source code is located in
WLEVS_HOME\samples\source\applications\fx.

Signal Generation—Example that receives simulated market data and verifies if the price
of a security has fluctuated more than two percent, and then detects if there is a trend
occurring by keeping track of successive stock prices for a particular symbol.See Signal
Generation Example for additional information.

http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#helloworld
http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#fx
http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#algotrading
http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#algotrading

I n t roduct i on and Roadmap

1-4 Oracle Complex Event Processing Reference Guide

The Signal Generation domain is located in
WLEVS_HOME\samples\domains\signalgeneration_domain, where WLEVS_HOME refers
to the top-level Oracle CEP directory, such as c:\beahome\wlevs30.

The Signal Generation Java source code is located in
WLEVS_HOME\samples\source\applications\signalgeneration.

Oracle Complex Event Processing Reference Guide 2-1

C H A P T E R 2

Oracle Complex Event Processing
Spring Tag Reference

This section contains information on the following subjects:

“Overview of the Oracle Complex Event Processing Spring Tags” on page 2-2

“wlevs:adapter” on page 2-6

“wlevs:cache” on page 2-9

“wlevs:caching-system” on page 2-11

“wlevs:class” on page 2-14

“wlevs:event-bean” on page 2-14

“wlevs:event-type-repository” on page 2-18

“wlevs:event-type” on page 2-19

“wlevs:factory” on page 2-20

“wlevs:function” on page 2-21

“wlevs:instance-property” on page 2-22

“wlevs:listener” on page 2-24

“wlevs:loader” on page 2-24

“wlevs:metadata” on page 2-25

“wlevs:processor” on page 2-27

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-2 Oracle Complex Event Processing Reference Guide

“wlevs:property” on page 2-29

“wlevs:source” on page 2-31

“wlevs:store” on page 2-32

“wlevs:stream” on page 2-33

Overview of the Oracle Complex Event Processing Spring
Tags

Oracle Complex Event Processing, or Oracle CEP for short, provides a number of Spring tags
that you use in the EPN assembly file of your application to register event types, declare the
components of the event processing network and specify how they are linked together. The EPN
assembly file is an extension of the standard Spring context file.

Graphical Representation
The following graphic describes the hierarchy of the Oracle CEP Spring tags.

Ove rv iew o f the Orac le Comple x Event P rocess ing Spr ing Tags

Oracle Complex Event Processing Reference Guide 2-3

Figure 2-1 Hierarchy of Oracle CEP Spring Tags

wlevs:event-type-repository

beans

wlevs:event-type

wlevs:adapter

wlevs:listener

wlevs:instance-proper

wlevs:property

wlevs:processor

wlevs:listener

wlevs:instance-proper

wlevs:property

wlevs:stream

wlevs:listener

wlevs:source

wlevs:instance-proper

wlevs:property

wlevs:class

wlevs:metadata

wlevs:property

Standard Spring and OSGI tags, such as <bean>, <osgi-service>, and so on...

.

.

.

wlevs:source

wlevs:function

#event-type-repository
#event-type
#adapter
#listener
#instance-property
#instance-property
#property
#processor
#listener
#instance-property
#instance-property
#property
#stream
#listener
#source
#instance-property
#instance-property
#property
#class
#metadata
#property
#source
#function

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-4 Oracle Complex Event Processing Reference Guide

Figure 2-2 Hierarchy of Oracle CEP Spring Tags (continued)

Example of an EPN Assembly File That Uses Oracle CEP Tags
The following sample EPN assembly file from the HelloWorld application shows how to use
many of the Oracle CEP tags:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd

wlevs:cache

wlevs:caching-system

wlevs:store

wlevs:listener

.

.

.

wlevs:loader

wlevs:caching-system

wlevs:instance-property

wlevs:property

wlevs:event-bean

wlevs:listener

wlevs:instance-proper

wlevs:property

wlevs:factory

#caching-system
#cache
#instance-property
#property
#listener
#loader
#store
#event-bean
#listener
#instance-property
#instance-property
#property
#factory

Ove rv iew o f the Orac le Comple x Event P rocess ing Spr ing Tags

Oracle Complex Event Processing Reference Guide 2-5

 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs.xsd">

 <!-- First, create and register the adapter (and factory) that generates
hello world messages -->
 <osgi:service interface="com.bea.wlevs.ede.api.AdapterFactory">
 <osgi:service-properties>
 <prop key="type">hellomsgs</prop>
 </osgi:service-properties>
 <bean
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterFactory" />
 </osgi:service>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:cla
ss>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <!-- Assemble EPN (event processing network) -->

 <!-- The adapter id is used by the configuration system, so needs to be
well-known -->
 <wlevs:adapter id="helloworldAdapter" provider="hellomsgs"
manageable="true">
 <!-- This property is also configure by dynamic config -->
 <wlevs:instance-property name="message" value="HelloWorld - the
currenttime is:"/>
 </wlevs:adapter>

 <!-- The processor id is used by the configuration system, so needs to be
well-known -->
 <wlevs:processor id="helloworldProcessor" manageable="true" />

 <wlevs:stream id="helloworldInstream" manageable="true">
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:stream>

 <!-- Manageable is so that we can monitor the event throughput -->
 <wlevs:stream id="helloworldOutstream" manageable="true">
 <wlevs:listener>
 <!-- Create business object -->
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>
 </wlevs:listener>

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-6 Oracle Complex Event Processing Reference Guide

 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:stream>

</beans>

wlevs:adapter
Use this tag to declare an adapter component to the Spring application context.

Child Tags
The wlevs:adapter Spring tag supports the following child tags:

wlevs:listener

wlevs:instance-property

wlevs:property

Attributes
The following table lists the attributes of the wlevs:adapter Spring tag.

Table 2-1 Attributes of the wlevs:adapter Spring Tag

Attribute Description Data Type Required?

id Unique identifier for this component.

This identifier must correspond to the <name> element in the
XML configuration file for this adapter, if one exists.

String Yes.

advertise Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

Boolean No.

depends-on The name of the Spring beans that the underlying Spring bean
that implements this componet depends on. Use this attribute
to enforce the correct initialization order of beans in your
application. If you do not require any specific initialization
order, then do not specify this attribute.

If using, set this attribute to the value of the id attribute of the
dependent Spring bean.

String No.

wlevs :adapte r

Oracle Complex Event Processing Reference Guide 2-7

lazy-init Specifies whether Oracle CEP should lazily initialize the
underlying Spring bean that implements this component.

If set to false, the bean will be instantiated on startup by
bean factories that perform eager initialization of singletons.

Valid values for this attribute are true and false. The
default value is false.

Boolean. No.

listeners Specifies the components that listen to this component.

Set this attribute to the value of the id attribute of the element
that declared the component.

String No.

provider Specifies the adapter service provider. Typically the value of
this attribute is a reference to the OSGi-registered adapter
factory service.

If you are using the csvgen or loadgen utilities to simulate
a data feed, use the hard-coded csvgen or loadgen values,
respectively, such as:

provider="csvgen"

If you are using one of the built-in HTTP publish-subscribe
adapters, then specify the following values:
• For the built-in pub-sub adapter used for publishing,

specify the hard-coded httppub value, such as:
 provider="httppub"

• For the built-in pub-sub adapter used for subscribing,
specify the hard-coded httpsub value, such as:
 provider="httpsub"

You must specify either the provider or class attribute,
but not both, otherwise an exception is raised.

String No.

class Specifies the Java class that implements this adapter.

You must specify either the provider or class attribute,
but not both, otherwise an exception is raised.

String No

Table 2-1 Attributes of the wlevs:adapter Spring Tag

Attribute Description Data Type Required?

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-8 Oracle Complex Event Processing Reference Guide

manageable Specifies that this component can be monitored using the
Oracle CEP monitoring framework.

Setting this attribute to true may adversely impact the
performance of your application, so change the default setting
of this attribute only if you are sure you want monitoring
information about this component.

Valid values for this attribute are true and false. The
default value is false.

Boolean No.

onevent-method Specifies the method of the adapter implementation that
corresponds to the lifecycle onEvent method.

Oracle CEP invokes this method when the adapter receives an
event.

String No

init-method Specifies the method of the adapter implementation that
corresponds to the lifecycle init method.

Oracle CEP invokes this method after it has set all the supplied
instance properties. This method allows the adapter instance
to perform initialization only possible when all bean
properties have been set and to throw an exception in the event
of misconfiguration.

String No

activate-method Specifies the method of the adapter implementation that
corresponds to the lifecycle activate method.

Oracle CEP invokes this method after the dynamic
configuration of the adapter has completed. This method
allows the adapter instance to perform initialization only
possible when all dynamic bean properties have been set and
the EPN has been wired.

String No

suspend-method Specifies the method of the adapter implementation that
corresponds to the lifecycle suspend method.

Oracle CEP invokes this method when the application is
suspended.

String No

destroy-method Specifies the method of the adapter implementation that
corresponds to the lifecycle destroy method.

Oracle CEP invokes this method when the application is
stopped.

String No

Table 2-1 Attributes of the wlevs:adapter Spring Tag

Attribute Description Data Type Required?

wlevs :cache

Oracle Complex Event Processing Reference Guide 2-9

Example
The following example shows how to use the wlevs:adapter tag in the EPN assembly file:

<wlevs:adapter id="helloworldAdapter" provider="hellomsgs">

 <wlevs:instance-property name="message"

 value="HelloWorld - the current time is:"/>

</wlevs:adapter>

In the example, the adapter’s unique identifier is helloworldAdapter. The provider is an OSGi
service, also registered in the EPN assembly file, whose reference is hellomsgs. The adapter
has a static property called message, which implies that the adapter Java file has a
setMessage() method.

wlevs:cache
Use this tag to declare a cache to the Spring application context.

Child Tags
The wlevs:cache Spring tag supports the following child tags.

wlevs:caching-system—Specifies the caching system to which this cache belongs.

Note: This child tag is different from the wlevs:caching-system tag used to declare a
caching system. The child tag of the wlevs:cache tag takes a single attribute, ref,
that references the id attribute of a declared caching system.

wlevs:loader—Specifies the cache loader for this cache.

wlevs:store—Specifies a cache store for this cache.

wlevs:listener—Specifies a listener for this cache, or a component to which the cache
sends events.

Attributes
The following table lists the attributes of the wlevs:cache Spring tag.

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-10 Oracle Complex Event Processing Reference Guide

Table 2-2 Attributes of the wlevs:cache Spring Tag

Attribute Description Data Type Required?

id Unique identifier for this component.

This identifier must correspond to the <name> element in the
XML configuration file for this cache.

String Yes.

name Specifies an alternate name for this cache. If not specified,
then the name of the cache is the same as its id attribute.

String No.

key-properties Specifies a comma-separated list of names of the properties
that together form the unique key value for the objects in the
cache, or cache key. A cache key may be composed of a single
property or multiple properties. When you configure a cache
as a listener in an event processing network, Oracle CEP
inserts events that reach the cache using the unique key value
as a key.

If you specify a key class using the key-class attribute,
then this attribute is optional. If you specify neither
key-properties nor key-class, then Oracle CEP uses
the event object itself as both the key and value when it inserts
the event object into the cache.

String No.

key-class Specifies the name of the Java class used for the cache key
when the key is a composite key.

If you do not specify the key-properties attribute, then
all properties on the key-class are assumed to be key
properties. If you specify neither key-properties nor
key-class, then Oracle CEP uses the event object itself as
both the key and value when it inserts the event object into the
cache

String No.

value-type Specifies the type for the values contained in the cache. Must
be a valid type name in the event type repository.

This attribute is required only if the cache is referenced in an
EPL query. This is because the query processor needs to know
the type of events in the cache.

String No.

caching-system Specifies the caching system in which this cache is contained.

The value of this attribute corresponds to the id attribute of
the appropriate wlevs:caching-system element.

String Yes.

wlevs :cach ing-sys tem

Oracle Complex Event Processing Reference Guide 2-11

Example
The following example shows how to use the wlevs:cache tag in the EPN assembly file:

 <wlevs:cache id="cache-id" name="alternative-cache-name">

 <wlevs:caching-system ref="caching-system-id"/>

 <wlevs:listener ref="tradeListener" />

 </wlevs:cache>

In the example, the cache’s unique identifier is cache-id and its alternate name is
alternative-cache-name. The caching system to which the cache belongs has an id of
caching-system-id. The cache has a listener to which the cache sends events; the component
that listens to it has an id of tradeListener.

wlevs:caching-system
Specifies the caching system used by the application.

Child Tags
The wlevs:caching-system Spring tag supports the following child tag:

wlevs:instance-property

wlevs:property

Attributes
The following table lists the attributes of the wlevs:caching-system Spring tag.

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-12 Oracle Complex Event Processing Reference Guide

Table 2-3 Attributes of the wlevs:caching-system Spring Tag

Attribute Description Data Type Required?

id Specifies the unique identifier for this caching system.

This identifier must correspond to the <name> element in the
XML configuration file for this caching system

String Yes.

depends-on The name of the Spring beans that the underlying Spring bean
that implements this componet depends on. Use this attribute
to enforce the correct initialization order of beans in your
application. If you do not require any specific initialization
order, then do not specify this attribute.

If using, set this attribute to the value of the id attribute of the
dependent Spring bean.

String No.

lazy-init Specifies whether Oracle CEP should lazily initialize the
underlying Spring bean that implements this component.

If set to false, the bean will be instantiated on startup by
bean factories that perform eager initialization of singletons.

Valid values for this attribute are true and false. The
default value is false.

Boolean. No.

advertise Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

Boolean No.

wlevs :cach ing-sys tem

Oracle Complex Event Processing Reference Guide 2-13

Example
The following example shows the simplest use of the wlevs:caching-system tag in the EPN
assembly file:

 <wlevs:caching-system id="caching-system-id"/>

The following example shows how to specify a third-party implementation that uses a factory as
a provider:

 <wlevs:caching-system id ="caching-system-id"

 provider="caching-provider"/>

provider Specifies the provider of the caching system if you are using a
third-party implementation, such as GemFire, Tangosol, and
GigaSpaces.

Typically this attribute corresponds to the provider-name
attribute of a <factory> Spring tag that specifies the factory
class that creates instances of the third-party caching system.

If you do not specify the provider or class attribute, then
the default value is Oracle CEP’s own caching
implementation for local single-JVM caches; this
implementation uses an in-memory store.

String No.

class Specifies the Java class that implements this caching system;
use this attribute to specify a third-party implementation
rather than Oracle CEP’s own implementation.

If you specify this attribute, it is assumed that the third-party
implementation code resides inside the Oracle CEP
application bundle itself. The class file to which this attribute
points must implement the
com.bea.wlevs.cache.api.CachingSystem
interface.
If you do not specify the provider or class attribute, then
the default value is Oracle CEP’s own caching
implementation for local single-JVM caches; this
implementation uses an in-memory store.

String No

Table 2-3 Attributes of the wlevs:caching-system Spring Tag

Attribute Description Data Type Required?

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-14 Oracle Complex Event Processing Reference Guide

 <factory id="factory-id" provider-name="caching-provider">

 <class>the.factory.class.name</class>

 </factory>

In the example, the.factory.class.name is a factory for creating some third-party caching
system; the provider attribute of wlevs:caching-system in turn references it as the caching system
implementation for the application.

wlevs:class
Specifies the fully qualified JavaBean classname that implements a particular event type.

This tag is used only as a child of wlevs:event-type.

This tag has no child tags and no attributes

Example
The following example shows how to use the wlevs:class tag in the EPN assembly file:

 <wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs

:class>

 </wlevs:event-type>

In the example, the <wlevs:class> tag specifies the class
(com.bea.wlevs.event.example.helloworld.HelloWorldEvent) that defines the
HelloWorldEvent event type.

wlevs:event-bean
Use this tag to declare to the Spring application context that an event bean is part of your event
processing network (EPN). Event beans are managed by the Oracle CEP container, analogous to
Spring beans that are managed by the Spring framework. In many ways, event beans and Spring
beans are similar so it is up to a developer which one to use in their EPN. Use a Spring bean for
legacy integration to Spring. Use an event bean if you want to take full advantage of the
additional capabilities of Oracle CEP.

For example, you can monitor an event bean using the Oracle CEP monitoring framework, make
use of the Configuration framework metadata annotations, and record and playback events that
pass through the event bean. An event-bean can also participate in the Oracle CEP bean lifecycle

wlevs :event-bean

Oracle Complex Event Processing Reference Guide 2-15

by specifying methods in its EPN assembly file declaration, rather than by implementing Oracle
CEP API interfaces.

Child Tags
The wlevs:event-bean Spring tag supports the following child tags:

wlevs:listener

wlevs:instance-property

wlevs:property

Attributes
The following table lists the attributes of the wlevs:event-bean Spring tag.

Table 2-4 Attributes of the wlevs:event-bean Spring Tag

Attribute Description Data Type Required?

id Unique identifier for this component.

This identifier must correspond to the <name> element in the
XML configuration file for this event-bean, if one exists.

String Yes.

advertise Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

Boolean No.

depends-on The name of the Spring beans that the underlying Spring bean
that implements this componet depends on. Use this attribute
to enforce the correct initialization order of beans in your
application. If you do not require any specific initialization
order, then do not specify this attribute.

If using, set this attribute to the value of the id attribute of the
dependent Spring bean.

String No.

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-16 Oracle Complex Event Processing Reference Guide

lazy-init Specifies whether Oracle CEP should lazily initialize the
underlying Spring bean that implements this component.

If set to false, the bean will be instantiated on startup by
bean factories that perform eager initialization of singletons.

Valid values for this attribute are true and false. The
default value is false.

Boolean. No.

listeners Specifies the components that listen to this component.

Set this attribute to the value of the id attribute of the element
that declared the component.

String No.

class Specifies the Java class that implements this event bean. The
bean is not required to implement any Oracle CEP interfaces.

You must specify either the provider or class attribute,
but not both, otherwise an exception is raised.

provider Specifies the service provider.

In this case, an EDE factory registered with this specific
provider name must exist in the application.

You must specify either the provider or class attribute,
but not both, otherwise an exception is raised.

String No.

manageable Specifies that this component can be monitored using the
Oracle CEP monitoring framework.

Setting this attribute to true may adversely impact the
performance of your application, so change the default setting
of this attribute only if you are sure you want monitoring
information about this component.

Valid values for this attribute are true and false. The
default value is false.

Boolean No.

onevent-method Specifies the method of the event bean implementation that
corresponds to the lifecycle onEvent method.

Oracle CEP invokes this method when the event bean receives
an event.

By using this lifecycle attribute, the event bean
implementation does not have to explicitly implement an
Oracle CEP interface.

String No

Table 2-4 Attributes of the wlevs:event-bean Spring Tag

Attribute Description Data Type Required?

wlevs :event-bean

Oracle Complex Event Processing Reference Guide 2-17

init-method Specifies the method of the event bean implementation that
corresponds to the lifecycle init method.

Oracle CEP invokes this method after it has set all the supplied
instance properties. This method allows the bean instance to
perform initialization only possible when all bean properties
have been set and to throw an exception in the event of
misconfiguration.

By using this lifecycle attribute, the event bean
implementation does not have to explicitly implement an
Oracle CEP interface.

String No

activate-method Specifies the method of the event bean implementation that
corresponds to the lifecycle activate method.

Oracle CEP invokes this method after the dynamic
configuration of the bean has completed. This method allows
the bean instance to perform initialization only possible when
all dynamic bean properties have been set and the EPN has
been wired.

By using this lifecycle attribute, the event bean
implementation does not have to explicitly implement an
Oracle CEP interface.

String No

suspend-method Specifies the method of the event bean implementation that
corresponds to the lifecycle suspend method.

Oracle CEP invokes this method when the application is
suspended.

By using this lifecycle attribute, the event bean
implementation does not have to explicitly implement an
Oracle CEP interface.

String No

destroy-method Specifies the method of the event bean implementation that
corresponds to the lifecycle destroy method.

Oracle CEP invokes this method when the application is
stopped.

By using this lifecycle attribute, the event bean
implementation does not have to explicitly implement an
Oracle CEP interface.

String No

Table 2-4 Attributes of the wlevs:event-bean Spring Tag

Attribute Description Data Type Required?

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-18 Oracle Complex Event Processing Reference Guide

Example
The following example shows how to use the wlevs:event-bean tag in the EPN assembly file:

 <wlevs:event-bean id="myBean" class="com.customer.SomeEventBean" >

 <wlevs:listener ref="myProcessor" />

 </wlevs:event-bean>

In the example, the event bean called myBean is implemented with the class
com.customer.SomeEventBean. The component called myProcessor receives events from
the myBean event bean.

wlevs:event-type-repository
Use this tag to group together one or more wlevs:event-type tags, each of which is used to
register an event type used throughout the application.

This tag does not have any attributes.

Child Tags
The wlevs:event-type-repository Spring tag supports the following child tag:

wlevs:event-type

Example
The following example shows how to use the wlevs:event-type-repository tag in the EPN
assembly file:

<wlevs:event-type-repository>

 <wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs

:class>

 </wlevs:event-type>

</wlevs:event-type-repository>

In the example, the <wlevs:event-type-repository> tag groups a single
<wlevs:event-type> tag to declare a single event type: HelloWorldEvent. See
“wlevs:event-type” on page 2-19 for additional details.

wlevs :event- t ype

Oracle Complex Event Processing Reference Guide 2-19

wlevs:event-type
Specifies the definition of an event type used in the Oracle CEP application. Once you define the
event types of the application, you can reference them in the adapter and business class POJO, as
well as the EPL rules.

You can define an event type in the following ways:

Create a JavaBean class that represents your event type and specify its fully qualified
classname using the wlevs:class child tag.

Use the wlevs:metadata child tag to list the properties of the data type and allow Oracle
CEP to automatically create the Java class at runtime.

You can specify one of either wlevs:class or wlevs:metadata as a child of
wlevs:event-type, but not both.

You can also use the wlevs:property child tag to specify a custom property to apply to the event
type.

Oracle recommends that you define your event type by using the wlevs:class child tag because
you can them reuse the specified JavaBean class, and you control exactly what the event type
looks like.

Child Tags
The wlevs:event-type Spring tag supports the following child tags:

wlevs:class

wlevs:metadata

wlevs:property

Attributes
The following table lists the attributes of the wlevs:event-type Spring tag.

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-20 Oracle Complex Event Processing Reference Guide

Example
The following example shows how to use the wlevs:event-type tag in the EPN assembly file:

<wlevs:event-type-repository>

 <wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs

:class>

 </wlevs:event-type>

</wlevs:event-type-repository>

In the example, the name of the event type is HelloWorldEvent and its definition is determined
by the com.bea.wlevs.event.example.helloworld.HelloWorldEvent JavaBean class.

wlevs:factory
Use this tag to register a factory class as a service. Use of this tag decreases the dependency of
your application on Spring-OSGi interfaces.

The Java source of this factory must implement the com.bea.wlevs.ede.api.Factory
interface.

The factory tag does not allow you to specify service properties. If you need to specify service
properties, then you must use the Spring- OSGi <osgi:service> tag instead.

This tag does not have any child tags.

Table 2-5 Attributes of the wlevs:event-type Spring Tag

Attribute Description Data Type Required?

id Specifies the unique identifier for this event type.

If you do not specify this attribute, Oracle CEP automatically
generates an identifier for you.

q No.

type-name Specifies the name of of this event type.

This is the name you use whenever you reference the event
type in the adapter, business POJO, or EPL rules.

String Yes.

wlevs : funct i on

Oracle Complex Event Processing Reference Guide 2-21

Attributes
The following table lists the attributes of the wlevs:factory Spring tag.

Example
The following example shows how to use the wlevs:factory tag in the EPN assembly file:
 <wlevs:factory provider-name="myEventSourceFactory"
 class="com.customer.MyEventSourceFactory" />

In the example, the factory implemented by the com.customer.MyEventSourceFactory goes
by the provider name of myEventSourceFactory.

wlevs:function
Use this tag to specify a bean that contains user-defined functions for a processor.

This tag does not have any child tags.

Attributes
The following table lists the attributes of the wlevs:function Spring tag.

Table 2-6 Attributes of the wlevs:factory Spring Tag

Attribute Description Data Type Required?

class Specifies the Java class that implements the factory. This
class must implement the
com.bea.wlevs.ede.api.Factory interface.

String Yes.

provider-name Specifies the name of this provider. Reference this name later
in the component that uses this factory.

String Yes.

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-22 Oracle Complex Event Processing Reference Guide

Example
The following example shows how to use the wlevs:function tag in the EPN assembly file:
No documentation available for Beta.

wlevs:instance-property
Specifies the properties that apply to the create stage instance of the component to which this is
a child tag. This allows declarative configuration of user-defined stage properties.

This tag is used only as a child of wlevs:adapter, wlevs:processor, wlevs:stream, or
wlevs:caching-system.

The wlevs:instance-property tag is defined as the Spring propertyType type; for
additional details of this Spring data type, the definition of the allowed child tags, and so on, see
the Spring 2.0 XSD.

Child Tags
You can specify one of the following standard Spring tags as a child tag of the
wlevs:instance-property tag:

meta

bean

ref

idref

value

null

Table 2-7 Attributes of the wlevs:function Spring Tag

Attribute Description Data Type Required?

epl-name An alternate name to use when referencing this function bean
in an EPL query.

The default value is the Spring bean name.

String No.

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

wlevs : ins tance-proper t y

Oracle Complex Event Processing Reference Guide 2-23

list

set

map

props

Attributes
The following table lists the attributes of the wlevs:instance-property Spring tag.

Example
The following example shows how to use the wlevs:instance-property tag in the EPN
assembly file:

<wlevs:adapter id="helloworldAdapter" provider="hellomsgs">

 <wlevs:instance-property name="message" value="HelloWorld - the current

time is:"/>

</wlevs:adapter>

In the example, the bean that implements the helloworldAdapter adapter component expects
an instance property called message; the sample wlevs:instance-property tag above sets the
value of this property to HelloWorld - the current time is:.

Table 2-8 Attributes of the wlevs:instance-property Spring Tag

Attribute Description Data Type Required?

name Specifies the name of the property, following JavaBean
naming conventions.

String Yes.

ref A short-cut alternative to a nested <ref bean='...'/>
element.

String No.

value A short-cut alternative to a nested <value>...</value>
element.

String No.

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-24 Oracle Complex Event Processing Reference Guide

wlevs:listener
Specifies the component that listens to the component to which this tag is a child. A listener can
be an instance of any other component. You can also nest the definition of a component within
a particular wlevs:listener component to specify the component that listens to the parent.

WARNING: Nested definitions are not eligible for dynamic configuration or monitoring.

This tag is always a child of wlevs:adapter, wlevs:processor, wlevs:stream, wlevs:event-bean, or
wlevs:cache.

Attributes
The following table lists the attributes of the wlevs:listener Spring tag.

Example
The following example shows how to use the wlevs:listener tag in the EPN assembly file:

 <wlevs:processor id="helloworldProcessor">

 <wlevs:listener ref="helloworldOutstream"/>

 </wlevs:processor>

In the example, the hellworldOutstream component listens to the helloworldProcessor
component. It is assumed that the EPN assembly file also contains a declaration for a
<wlevs:adapter>, <wlevs:stream>, or <wlevs:processor> component whose unique
identifier is helloworldOustream.

wlevs:loader
Specifies the Spring bean that implements an object that loads data into a cache.

Table 2-9 Attributes of the wlevs:listener Spring Tag

Attribute Description Data Type Required?

ref Specifies the component that listens to the parent component .

Set this attribute to the value of the id attribute of the listener
component.

You do not specify this attribute if you are nesting listeners.

String No.

wlevs :metadata

Oracle Complex Event Processing Reference Guide 2-25

This tag is always a child of wlevs:cache.

Attributes
The following table lists the attributes of the wlevs:loader Spring tag.

Example
The following example shows how to use the wlevs:loader tag in the EPN assembly file:

 <wlevs:cache id="cache-id" name="alternative-cache-name">

 <wlevs:caching-system ref="caching-system-id"/>

 <wlevs:loader ref="cache-loader-id" />

 </wlevs:cache>

 ...

 <bean id="cache-loader-id" class="wlevs.example.MyCacheLoader"/>

In the example, the cache-loader-id Spring bean, implemented with the
wlevs.example.MyCacheLoader class that in turn implements the
com.bea.cache.jcache.CacheLoader interface, is a bean that loads data into a cache. The
cache specifies this loader by pointing to it with the ref attribute of the <wlevs:loader> child
element.

wlevs:metadata
Specifies the definition of an event type by listing its fields as a group of Spring entry tags.
When you define an event type this way, Oracle CEP automatically generates the Java class for
you.

Table 2-10 Attributes of the wlevs:loader Spring Tag

Attribute Description Data Type Required?

ref Specifies the Spring bean that implements the class that loads
data into the cache.

Set this attribute to the value of the id attribute of the Spring
bean.

The Spring bean must implement the
com.bea.cache.jcache.CacheLoader interface.

String Yes.

http://e-docs.bea.com/wlevs/docs30/javadocs/wlevs/index.html

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-26 Oracle Complex Event Processing Reference Guide

Use the key attribute of the entry tag to specify the name of a field and the value attribute to
specify the Java class that represents the field’s data type.

This tag is used only as a child of wlevs:event-type.

The wlevs:metadata tag is defined as the Spring mapType type; for additional details of this
Spring data type, see the Spring 2.0 XSD.

Child Tags
The wlevs:metadata tag can have one or more standard Spring entry child tags.

Attributes
The following table lists the attributes of the wlevs:metadata Spring tag.

Example
The following example shows how to use the wlevs:metadata tag in the EPN assembly file:

<wlevs:event-type type-name="ForeignExchangeEvent">

 <wlevs:metadata>

 <entry key="symbol" value="java.lang.String"/>

 <entry key="price" value="java.lang.Double"/>

 <entry key="fromRate" value="java.lang.String"/>

 <entry key="toRate" value="java.lang.String"/>

 </wlevs:metadata>

 ...

</wlevs:event-type>

In the example, the wlevs:metadata tag groups together four standard Spring entry tags that
represent the four fields of the ForeignExchangeEvent: symbol, price, fromRate, and

Table 2-11 Attributes of the wlevs:metadata Spring Tag

Attribute Description Data Type Required?

key-type The default fully qualified classname of a Java data type for
nested entry tags.

You use this attribute only if you have nested entry tags.

String No.

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd
http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

wlevs :processor

Oracle Complex Event Processing Reference Guide 2-27

toRate. The data types of the fields are java.lang.String, java.lang.Double,
java.lang.String, and java.lang.String, respectively.

wlevs:processor
Use this tag to declare a processor to the Spring application context.

Child Tags
The wlevs:processor Spring tag supports the following child tags:

wlevs:instance-property

wlevs:listener

wlevs:property

wlevs:source

wlevs:function

Attributes
The following table lists the attributes of the wlevs:processor Spring tag.

Table 2-12 Attributes of the wlevs:processor Spring Tag

Attribute Description Data Type Required?

id Unique identifier for this component.

This identifier must correspond to the <name> element in the
XML configuration file for this processor; this is how Oracle
CEP knows which EPL rules to execute for which processor
component in your network.

String Yes.

advertise Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

Boolean No.

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-28 Oracle Complex Event Processing Reference Guide

depends-on The name of the Spring beans that the underlying Spring bean
that implements this componet depends on. Use this attribute
to enforce the correct initialization order of beans in your
application. If you do not require any specific initialization
order, then do not specify this attribute.

If using, set this attribute to the value of the id attribute of the
dependent Spring bean.

String No.

lazy-init Specifies whether Oracle CEP should lazily initialize the
underlying Spring bean that implements this component.

If set to false, the bean will be instantiated on startup by
bean factories that perform eager initialization of singletons.

Valid values for this attribute are true and false. The
default value is false.

Boolean. No.

listeners Specifies the components that listen to this component.

Set this attribute to the value of the id attribute of the element
that declared the component.

String No.

provider Specifies the language provider of the processor, such as the
Event Processor Language (EPL).

Valid values are:
• epl

The default value is epl.

String No.

queryURL Specifies a URL that points to an EPL rules definition file for
this processor.

String. No.

manageable Specifies that this component can be monitored using the
Oracle CEP monitoring framework.

Setting this attribute to true may adversely impact the
performance of your application, so change the default setting
of this attribute only if you are sure you want monitoring
information about this component.

Valid values for this attribute are true and false. The
default value is false.

Boolean No.

Table 2-12 Attributes of the wlevs:processor Spring Tag

Attribute Description Data Type Required?

wlevs :p roper t y

Oracle Complex Event Processing Reference Guide 2-29

Example
The following example shows how to use the wlevs:processor tag in the EPN assembly file:

 <wlevs:processor id="spreader" />

The example shows how to declare a processor with ID spreader. This means that in the
processor configuration file that contains the EPL rules for this processor, the <name> element
must contain the value spreader. This way Oracle CEP knows which EPL rules it must file for
this particular processor.

wlevs:property
Specifies a custom property to apply to the event type.

This tag is used only as a child of wlevs:event-type, wlevs:adapter, wlevs:processor,
wlevs:stream, or wlevs:caching-system.

The wlevs:property tag is defined as the Spring propertyType type; for additional details of
this Spring data type, the definition of the allowed child tags, and so on, see the Spring 2.0 XSD.

Child Tags
You can specify one of the following standard Spring tags as a child element of the
wlevs:property tag:

meta

bean

ref

idref

value

null

list

set

map

props

http://www.springframework.org/schema/beans/spring-beans-2.0.xsd

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-30 Oracle Complex Event Processing Reference Guide

Attributes
The following table lists the attributes of the wlevs:property Spring tag.

Example
The following example shows how to use the wlevs:property tag in the EPN assembly file:

<wlevs:event-type type-name="ForeignExchangeEvent">

 <wlevs:metadata>

 <entry key="symbol" value="java.lang.String"/>

 <entry key="price" value="java.lang.Double"/>

 </wlevs:metadata>

 <wlevs:property name="builderFactory">

 <bean id="builderFactory"

 class="com.bea.wlevs.example.fx.ForeignExchangeBuilderFactory"/>

 </wlevs:property>

</wlevs:event-type>

In the example, the wlevs:property tag defines a custom property of the
ForeignExchangeEvent called builderFactory. The property uses the standard Spring bean
tag to specify the Spring bean used as a factory to create ForeignExchangeEvents.

Table 2-13 Attributes of the wlevs:property Spring Tag

Attribute Description Data Type Required?

name Specifies the name of the property, following JavaBean
naming conventions.

String Yes.

ref A short-cut alternative to a nested <ref bean='...'/>
element.

String No.

value A short-cut alternative to a nested <value>...</value>
element.

String No.

wlevs :source

Oracle Complex Event Processing Reference Guide 2-31

wlevs:source
Specifies an event source for this component, or in other words, the component which the events
are coming from. Specifying an event source is equivalent to specifying this component as an
event listener to another component.

You can also nest the definition of a component within a particular wlevs:source component
to specify the component source.

WARNING: Nested definitions are not eligible for dynamic configuration or monitoring.

This tag is a child of wlevs:stream or wlevs:processor.

Attributes
The following table lists the attributes of the wlevs:source Spring tag.

Example
The following example shows how to use the wlevs:source tag in the EPN assembly file:

 <wlevs:stream id="helloworldInstream">

 <wlevs:listener ref="helloworldProcessor"/>

 <wlevs:source ref="helloworldAdapter"/>

 </wlevs:stream>

In the example, the component with id helloworldAdapter is the source of the
helloworldInstream stream component.

Table 2-14 Attributes of the wlevs:source Spring Tag

Attribute Description Data Type Required?

ref Specifies the source of the stream to which this tag is a child.

Set this attribute to the value of the id attribute of the source
component.

You do not specify this attribute if you are nesting sources.

String No.

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-32 Oracle Complex Event Processing Reference Guide

wlevs:store
Specifies the Spring bean that implements a custom store that is responsible for writing data from
the cache to a backing store, such as a table in a database.

This tag is always a child of wlevs:cache.

Attributes
The following table lists the attributes of the wlevs:store Spring tag.

Example
The following example shows how to use the wlevs:store tag in the EPN assembly file:

 <wlevs:cache id="cache-id" name="alternative-cache-name">

 <wlevs:caching-system ref="caching-system-id"/>

 <wlevs:store ref="cache-store-id" />

 </wlevs:cache>

 ...

 <bean id="cache-store-id" class="wlevs.example.MyCacheStore"/>

In the example, the cache-store-id Spring bean, implemented with the
wlevs.example.MyCacheStore class that in turn implements the
com.bea.cache.jcache.CacheStore interface, is a bean for the custom store, such as a
database. The cache specifies this store by pointing to it with the ref attribute of the
<wlevs:store> child element.

Table 2-15 Attributes of the wlevs:store Spring Tag

Attribute Description Data Type Required?

ref Specifies the Spring bean that implements the custom store.

Set this attribute to the value of the id attribute of the Spring
bean.

The Spring bean must implement the
com.bea.cache.jcache.CacheStore interface.

String Yes.

http://e-docs.bea.com/wlevs/docs30/javadocs/wlevs/index.html

wlevs :s t ream

Oracle Complex Event Processing Reference Guide 2-33

wlevs:stream
Use this tag to declare a stream to the Spring application context.

Child Tags
The wlevs:stream Spring tag supports the following child tags:

wlevs:listener

wlevs:source

wlevs:instance-property

wlevs:property

Attributes
The following table lists the attributes of the wlevs:stream Spring tag.

Table 2-16 Attributes of the wlevs:stream Spring Tag

Attribute Description Data Type Required?

id Unique identifier for this component.

This identifier must correspond to the <name> element in the
XML configuration file for this stream, if one exists.

String Yes.

advertise Advertises this service in the OSGi registry.

Valid values are true and false. Default value is false.

Boolean No.

depends-on The name of the Spring beans that the underlying Spring bean
that implements this componet depends on. Use this attribute
to enforce the correct initialization order of beans in your
application. If you do not require any specific initialization
order, then do not specify this attribute.

If using, set this attribute to the value of the id attribute of the
dependent Spring bean.

String No.

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-34 Oracle Complex Event Processing Reference Guide

lazy-init Specifies whether Oracle CEP should lazily initialize the
underlying Spring bean that implements this component.

If set to false, the bean will be instantiated on startup by
bean factories that perform eager initialization of singletons.

Valid values for this attribute are true and false. The
default value is false.

Boolean. No.

listeners Specifies the components that listen to this component.
Separate multiple components using commas.

Set this attribute to the value of the id attribute of the tag
(wlevs:adapter, wlevs:stream, or
wlevs:processor) that defines the listening component.

String No.

provider Specifies the streaming provider.

Valid values are:
• defaultstream

Default value is defaultstream, which is the
out-of-the-box streaming provider.

String No.

manageable Specifies that this component can be monitored using the
Oracle CEP monitoring framework.

Setting this attribute to true may adversely impact the
performance of your application, so change the default setting
of this attribute only if you are sure you want monitoring
information about this component.

Valid values for this attribute are true and false. The
default value is false..

Boolean No.

max-size Specifies the maximum size of this stream.

Zero-size streams synchronously pass-through events.
Streams with non-zero size process events asynchronously,
buffering events by the requested size.

The default value for this attribute is 1024.

integer No.

Table 2-16 Attributes of the wlevs:stream Spring Tag

Attribute Description Data Type Required?

wlevs :s t ream

Oracle Complex Event Processing Reference Guide 2-35

Example
The following example shows how to use the wlevs:stream tag in the EPN assembly file:

 <wlevs:stream id="fxMarketAmerOut" />

The example shows how to declare a stream service with unique identifier fxMarketAmerOut.

max-threads Specifies the maximum number of threads that will be used to
process events for this stream.

If the max-size attribute is 0, then setting a value for
max-threads has no effect.

The default value for this attribute is 1.

integer No.

source Specifies the component from which the stream sources
events.

Set this attribute to the value of the id attribute of the tag
(wlevs:adapter, wlevs:stream, or
wlevs:processor) that defines the source component.

String No.

Table 2-16 Attributes of the wlevs:stream Spring Tag

Attribute Description Data Type Required?

Orac le Complex Event P rocess ing Spr ing Tag Re fe rence

2-36 Oracle Complex Event Processing Reference Guide

Oracle Complex Event Processing Reference Guide 3-1

C H A P T E R 3

Deployer Command-Line Reference

This section contains information on the following subjects:

“Overview of Using the Deployer Command-Line Utility” on page 3-1

“Required Environment for the Deployer Utility” on page 3-2

“Running the Deployer Utility Remotely” on page 3-2

“Syntax for Invoking the Deployer Utility” on page 3-3

“Examples of Using the Deployer Utility” on page 3-7

Overview of Using the Deployer Command-Line Utility
The Deployer is a Java-based deployment utility that provides administrators and developers
command-line based operations for deploying Oracle CEP applications. In the context of Oracle
CEP deployment, an application is defined as an OSGi bundle JAR file that contains the
following artifacts:

The compiled Java class files that implement some of the components of the application,
such as the adapters, adapter factory, and POJO that contains the business logic. T

One or more Oracle CEP configuration XML files that configure the components of the
application, such as the processor, adapter, or streams.

The configuration files must be located in the META-INF/wlevs directory of the OSGi
bundle JAR file.

http://www.osgi.org/

Deploye r Command-L ine Refe rence

3-2 Oracle Complex Event Processing Reference Guide

An EPN assembly file that describes all the components of the application and how they
are connected to each other. The EPN assembly file extends the standard Spring context
file.

The EPN assembly file must be located in the META-INF/spring directory of the OSGi
bundle JAR file.

A MANIFEST.MF file that describes the contents of the JAR.

See Assembling an Oracle CEP Application: Main Steps for detailed instructions on creating this
deployment bundle.

The Deployer utility uses HTTP to connect to Oracle CEP, which means that you must configure
Jetty for the server instance to which you are deploying your application. For details, see
Configuring Oracle CEP.

Oracle CEP uses the deployments.xml file to internally maintain its list of deployed application
OSGi bundles. This file is located in in the DOMAIN_DIR/servername directory, where
DOMAIN_DIR refers to the main domain directory correspoding to the server instance to which you
are deploying your application and servername refers to the server instance itself. See
“Deployment XSD Schema” on page 5-4 for information about this file.

WARNING: The XSD for the deployments.xml file is provided for your information only;
Oracle does not recommend updating the deployments.xml file manually.

Required Environment for the Deployer Utility
To set up your environment to use the Deployer utility:

1. Install and configure the Oracle CEP software, as described in Installing Oracle CEP.

2. Open a command window and set your environment as described in Setting Up Your
Development Environment.

3. Update your CLASSPATH variable to include the wlevsdeploy.jar JAR file, located in the
WLEVS_HOME/bin directory where, WLEVS_HOME refers to the main Oracle CEP installation
directory, such as /beahome/wlevs30.

Running the Deployer Utility Remotely
Sometimes it is useful to run the Deployer utility on a computer different from the computer on
which Oracle CEP is installed and running. To run the utility remotely, follow these steps:

http://e-docs.bea.com/wlevs/docs30/get_started/install.html
http://e-docs.bea.com/wlevs/docs30/config_server/server.html
http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#environment
http://e-docs.bea.com/wlevs/docs30/get_started/examples.html#environment
http://e-docs.bea.com/wlevs/docs30/create_apps/deploy.html#assemble

Syntax fo r Invok ing the Dep loye r Ut i l i t y

Oracle Complex Event Processing Reference Guide 3-3

1. Copy the following JAR files from the computer on which Oracle CEP is installed to the
computer on which you want to run the deployer utility; you can copy the JAR files to the
directory name of your choice:

– BEA_HOME/wlevs30/bin/wlevsdeploy.jar

where BEA_HOME refers to the main directory into which you installed Oracle CEP.

2. Set your CLASSPATH in one of the following ways:

– Implicitly set your CLASSPATH by using the -jar argument when you run the utility;
set the argument to the NEW_DIRECTORY/wlevsdeploy.jar file, where
NEW_DIRECTORY refers to the directory on the remote computer into which you copied
the required JAR file. When you use the -jar argument, you do not specify the
Deployer utility name at the command line.

– Explicitly update your CLASSPATH by adding the JAR file you copied to the remote
computer to your CLASSPATH environment variable:

3. Invoke the Deployer utility as described in the next section.

Syntax for Invoking the Deployer Utility
The syntax for using the Deployer utility is as follows:

java -jar wlevsdeploy.jar

 [Connection Arguments]

 [User Credential Arguments]

 [Deployment Commands]

The following sections describe the various arguments and commands you can use with the
Deployer utility. See “Examples of Using the Deployer Utility” on page 3-7 for specific
examples of using the utility.

Deploye r Command-L ine Refe rence

3-4 Oracle Complex Event Processing Reference Guide

Connection Arguments
The following table describes the connection arguments you can specify with the Deployer
utility.

Table 3-1 Connection Arguments

Argument Description

-url url Specifies the URL of the deployer of the Oracle CEP instance to which you
want to deploy the OSGI bundle.

The URL takes the following form:
http://host:port/wlevsdeployer

where:
• host refers to the hostname of the computer on which Oracle CEP is

running.
• port refers to the port number to which Oracle CEP listens; its value

is 9002 by default. This port is specified in the config.xml file that
describes your Oracle CEP domain, located in the
DOMAIN_DIR/config directory, where DOMAIN_DIR refers to your
domain directory. The port number is the value of the <Port> child
element of the <Netio> element:
<Netio>
 <Name>NetIO</Name>
 <Port>9002</Port>
</Netio>

For example, if Oracle CEP is running on host ariel at port 9002, then
the URL would be:

http://ariel:9002/wlevsdeployer

Syntax fo r Invok ing the Dep loye r Ut i l i t y

Oracle Complex Event Processing Reference Guide 3-5

User Credential Arguments
The following table describes the user credential arguments you can specify with the Deployer
utility.

Table 3-2 User Credential Arguments

Argument Description

-user username Username of the Oracle CEP administrator.

If you supply the -user option but you do not supply a corresponding
-password option, the Deployer utility prompts you for the password.

-password password Password of the Oracle CEP administrator.

Deploye r Command-L ine Refe rence

3-6 Oracle Complex Event Processing Reference Guide

Deployment Commands
The following table describes the deployment commands you can specify with the Deployer
utility.

Table 3-3 Deployment Commands

Command Description

-install bundle Installs the specified OSGi bundle to the specified Oracle CEP instance.

Be sure to specify the full pathname of the bundle if it is not located relative
to the directory from which you are running the Deployer utility.

In particular, Oracle CEP:
• Copies the specified bundle to the domain directory.
• Searches the META-INF/wlevs directory in the bundle for the

component configuration files and extracts them to the domain
directory.

• Updates the internal deployment registry.
• Starts the application. The incoming adapters immediately start

receiving data.

-update bundle Updates the existing OSGi bundle with new application code.

Be sure to specify the full pathname of the bundle if it is not located relative
to the directory from which you are running the Deployer utility.

In particular, Oracle CEP:
• Copies the updated bundles to the domain directory.
• Searches the META-INF/wlevs directory in the updated bundle for

the updated component configuration files and extracts them to the
domain directory.

• Updates the internal deployment registry with the updated information.

-uninstall name Removes the existing bundle from the specified Oracle CEP instance.

The name parameter refers to the symbolic name of the OSGi bundle that
you want to remove. The symbolic name is the value of the
Bundle-SymbolicName header in the bundle’s MANIFEST.MF file:

 Bundle-SymbolicName: myApp

In particular, Oracle CEP:
• Removes the specified OSGi bundle from the domain directory.
• Removes the bundles from the internal deployment registry .

Examples o f Us ing the Dep loye r Ut i l i t y

Oracle Complex Event Processing Reference Guide 3-7

Examples of Using the Deployer Utility
The following examples show how to use the Deployer utility. In all the examples, Oracle CEP
is running on host ariel, listening at port 9002, and the username/password of the server
administrator is wlevs/wlevs, respectively. For clarity, the examples are shown on multiple
lines; however, when you run the command, enter all arguments and commands on a single line.

prompt> java -jar wlevsdeploy.jar

 -url http://ariel:9002/wlevsdeployer -user wlevs -password wlevs

 -install /application/bundles/com.my.exampleApp_1.0.0.0.jar

-suspend name Suspends a currently running OSGI bundle which was previously installed
to the specified Oracle CEP instance.

The name parameter refers to the symbolic name of the OSGi bundle that
you want to start. The symbolic name is the value of the
Bundle-SymbolicName header in the bundle’s MANIFEST.MF file:

 Bundle-SymbolicName: myApp

-resume name Resumes a previously suspended OSGI bundle on the specified Oracle
CEP instance; the configured adapters once again start immediately
receiving incoming data.

The name parameter refers to the symbolic name of the OSGi bundle that
you want to stop. The symbolic name is the value of the
Bundle-SymbolicName header in the bundle’s MANIFEST.MF file:

 Bundle-SymbolicName: myApp

-status name Returns status information about a currently installed OSGi bundle.

The name parameter refers to the symbolic name of the OSGi bundle for
which you want status information. The symbolic name is the value of the
Bundle-SymbolicName header in the bundle’s MANIFEST.MF file:

 Bundle-SymbolicName: myApp

-startLevel
startLevel

Specifies the level at which the OSGi bundle is started. Bundles with
smaller numbers are started first.

System bundles have start levels of under 7.

Table 3-3 Deployment Commands

Command Description

Deploye r Command-L ine Refe rence

3-8 Oracle Complex Event Processing Reference Guide

The preceding example shows how to install an OSGi bundle called
com.my.exampleApp_1.0.0.0.jar, located in the /application/bundles directory. The
next command shows how to start this application after it has been installed:

prompt> java com.bea.wlevs.deployment.Deployer

 -url http://ariel:9002/wlevsdeployer -user wlevs -password wlevs

 -start exampleApp

Finally, the next example shows how to uninstall the application, which removes all traces of it
from the domain directory:

prompt> java com.bea.wlevs.deployment.Deployer

 -url http://ariel:9002/wlevsdeployer -user wlevs -password wlevs

 -uninstall exampleApp

Oracle Complex Event Processing Reference Guide 4-1

C H A P T E R 4

Metadata Annotations

This section contains information on the following subjects:

“Overview of Oracle Complex Event Processing Metadata Annotations” on page 4-1

“com.bea.wlevs.management.Activate” on page 4-2

“com.bea.wlevs.management.Prepare” on page 4-5

“com.bea.wlevs.management.Rollback” on page 4-6

“com.bea.wlevs.util.Service” on page 4-8

Overview of Oracle Complex Event Processing Metadata
Annotations

The Oracle Complex Event Processing (or Oracle CEP for short) metadata annotations are used
to access the configuration of a component.

You use the following three annotations to specify the methods of an adapter Java
implementation that handle various stages of the adapter’s lifecyle: when its configuration is
prepared, when the configuration is activated, and when the adapter is terminated due to an
exception:

com.bea.wlevs.management.Activate

com.bea.wlevs.management.Prepare

com.bea.wlevs.management.Rollback

Metadata Annotat ions

4-2 Oracle Complex Event Processing Reference Guide

Use the com.bea.wlevs.util.Service annotation to specify the method of a component that is
injected with an OSGi service reference.

com.bea.wlevs.management.Activate
Target: Method

The @Activate annotation is one of the adapter lifecycle annotations that you use in the Java file
that implements your custom adapter to explicitly specify the methods that Oracle CEP uses to
send configuration information to the adapter.

Oracle CEP calls methods marked with the @Activate annotation after, and if, the server has
called and successfully executed all the methods marked with the @Prepare annotation. You
typically use the @Activate method to actually get the adapter’s configuration data to use in the
rest of the adapter implementation.

The method you annotate with this annotation must have the following signature:

 public void methodName(AdapterConfigObject adapterConfig)

where methodName refers to the name you give the method and AdapterConfigObject refers
to the Java represenation of the adapter’s configuration XML file which is deployed with the
application. The type of this class is
com.bea.wlevs.configuration.application.DefaultAdapterConfig by default; if,
however, you have extended the configuration of the adapter, then the type is whatever have
specified in the XSD that describes the extended XML file. For example, in the HelloWorld
sample, the type is
com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig.

At run time, Oracle CEP automatically creates an instance of this class, populates it with data
from the actual XML file, and passes the instance to the adapter. The adapter methods annotated
with the adapter lifecycle annotations can then use the class to get information about the adapter’s
configuration.

This metadata annotation does not have any attributes.

Example
The following sample code from the adapter component of the HelloWorld example shows how
to use the @Prepare annotation; only relevant code is shown:

package com.bea.wlevs.adapter.example.helloworld;

com.bea .w levs .management .Act ivate

Oracle Complex Event Processing Reference Guide 4-3

...

import com.bea.wlevs.configuration.Activate;
import com.bea.wlevs.configuration.Prepare;
import com.bea.wlevs.configuration.Rollback;
import com.bea.wlevs.ede.api.Adapter;
import com.bea.wlevs.ede.api.EventSender;
import com.bea.wlevs.ede.api.EventSource;
import com.bea.wlevs.ede.api.SuspendableBean;

import com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig;

public class HelloWorldAdapter implements Runnable, Adapter, EventSource,
SuspendableBean {

...

 @Activate
 public void activateAdapter(HelloWorldAdapterConfig adapterConfig) {
 this.message = adapterConfig.getMessage();
 }

...

}

The com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig class is
a Java represenation of the adapter’s configuration XML file. In the HelloWorld example, the
configuration has been extended; this means a custom XSD file describes the XML file. The
following XSD file also specifies the fully qualified name of the resulting Java configuration
object, as shown in bold:

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns="http://www.bea.com/ns/wlevs/example/helloworld"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:jxb="http://java.sun.com/xml/ns/jaxb"
 xmlns:xjc="http://java.sun.com/xml/ns/jaxb/xjc"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/config/application"
 targetNamespace="http://www.bea.com/ns/wlevs/example/helloworld"
 elementFormDefault="unqualified" attributeFormDefault="unqualified"
 jxb:extensionBindingPrefixes="xjc" jxb:version="1.0">

 <xs:annotation>
 <xs:appinfo>
 <jxb:schemaBindings>
 <jxb:package name="com.bea.wlevs.adapter.example.helloworld"/>
 </jxb:schemaBindings>
 </xs:appinfo>
 </xs:annotation>

Metadata Annotat ions

4-4 Oracle Complex Event Processing Reference Guide

 <xs:import namespace="http://www.bea.com/ns/wlevs/config/application"
schemaLocation="wlevs_application_config.xsd"/>

 <xs:element name="config">
 <xs:complexType>
 <xs:choice maxOccurs="unbounded">
 <xs:element name="adapter" type="HelloWorldAdapterConfig"/>
 <xs:element name="processor" type="wlevs:DefaultProcessorConfig"/>
 <xs:element name="stream" type="wlevs:DefaultStreamConfig" />
 </xs:choice>
 </xs:complexType>
 </xs:element>

 <xs:complexType name="HelloWorldAdapterConfig">
 <xs:complexContent>
 <xs:extension base="wlevs:AdapterConfig">
 <xs:sequence>
 <xs:element name="message" type="xs:string"/>
 </xs:sequence>
 </xs:extension>
 </xs:complexContent>
 </xs:complexType>

</xs:schema>

Oracle CEP automatically creates an instance of this class when the application is deployed. For
example, the adapter section of the helloworldAdapter’s configuration file is as follows:

 <?xml version="1.0" encoding="UTF-8"?>

 <helloworld:config

 ...

 <adapter>

 <name>helloworldAdapter</name>

 <message>HelloWorld - the current time is:</message>

 </adapter>

 </helloworld:config>

In the Java code of the adapter above, the activateAdapter method is annotated with the
@Activate annotation. The method uses the getMessage method of the configuration object to
get the value of the message property set in the adapter’s configuration XML file. In this case,
the value is HelloWorld - the current time is:. This value can then be used in the main
part of the adapter implementation file.

com.bea .w levs .management .P repare

Oracle Complex Event Processing Reference Guide 4-5

com.bea.wlevs.management.Prepare
Target: Method

The @Prepare annotation is one of the adapter lifecycle annotations that you use in the Java file
that implements your custom adapter to explicitly specify the methods that Oracle CEP uses to
send configuration information to the adapter.

Oracle CEP calls the method annotated with @Prepare whenever a component’s state has been
updated by a particular configuration change.

The method you annotate with this annotation must have the following signature:

 public void methodName(AdapterConfigObject adapterConfig)

where methodName refers to the name you give the method and AdapterConfigObject refers
to the Java represenation of the adapter’s configuration XML file which is deployed with the
application. The type of this class is
com.bea.wlevs.configuration.application.DefaultAdapterConfig by default; if,
however, you have extended the configuration of the adapter, then the type is whatever have
specified in the XSD that describes the extended XML file. For example, in the HelloWorld
sample, the type is
com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig.

At run time, Oracle CEP automatically creates an instance of this class, populates it with data
from the actual XML file, and passes the instance to the adapter. The adapter methods annotated
with the adapter lifecycle annotations can then use the class to get information about the adapter’s
configuration.

This metadata annotation does not have any attributes.

Example
The following sample code from the adapter component of the HelloWorld example shows how
to use the @Prepare annotation; only relevant code is shown:

package com.bea.wlevs.adapter.example.helloworld;

...

import com.bea.wlevs.configuration.Activate;
import com.bea.wlevs.configuration.Prepare;
import com.bea.wlevs.configuration.Rollback;
import com.bea.wlevs.ede.api.Adapter;
import com.bea.wlevs.ede.api.EventSender;

Metadata Annotat ions

4-6 Oracle Complex Event Processing Reference Guide

import com.bea.wlevs.ede.api.EventSource;
import com.bea.wlevs.ede.api.SuspendableBean;

import com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig;

public class HelloWorldAdapter implements Runnable, Adapter, EventSource,
SuspendableBean {

...

 @Prepare
 public void checkConfiguration(HelloWorldAdapterConfig adapterConfig) {
 if (adapterConfig.getMessage() == null
 || adapterConfig.getMessage().length() == 0) {
 throw new RuntimeException("invalid message: " + message);
 }
 }

...

}

The com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig class is
a Java represenation of the adapter’s configuration XML file; Oracle CEP automatically creates
an instance of this class when the application is deployed. In the HelloWorld example, the adapter
configuration has been extended. See the example in “com.bea.wlevs.management.Activate” on
page 4-2 for additional details.

In the Java code of the adapter above, the checkConfiguration method is annotated with the
@Prepare annotation, which means this method is called when the adapter’s configuration
changes in some way. The example further shows that the method checks to make sure that the
message property of the adapter’s configuration (set in the extended adapter configuration file)
is not null or empty; if it is, then the method throws an exception.

com.bea.wlevs.management.Rollback
Target: Method

The @Rollback annotation is one of the adapter lifecycle annotations that you use in the Java file
that implements your custom adapter to explicitly specify the methods that Oracle CEP uses to
send configuration information to the adapter.

Oracle CEP calls the method annotated with @Rollback whenever a component whose
@Prepare method was called but threw an exception. The server calls the @Rollback method
for each component for which this is true.

The method you annotate with this annotation must have the following signature:

com.bea .w levs .management .Ro l lback

Oracle Complex Event Processing Reference Guide 4-7

 public void methodName(AdapterConfigObject adapterConfig)

where methodName refers to the name you give the method and AdapterConfigObject refers
to the Java represenation of the adapter’s configuration XML file which is deployed with the
application. The type of this class is
com.bea.wlevs.configuration.application.DefaultAdapterConfig by default; if,
however, you have extended the configuration of the adapter, then the type is whatever have
specified in the XSD that describes the extended XML file. For example, in the HelloWorld
sample, the type is
com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig.

At run time, Oracle CEP automatically creates an instance of this class, populates it with data
from the actual XML file, and passes the instance to the adapter. The adapter methods annotated
with the adapter lifecycle annotations can then use the class to get information about the adapter’s
configuration.

This metadata annotation does not have any attributes.

Example
The following sample code from the adapter component of the HelloWorld example shows how
to use the @Rollback annotation; only relevant code is shown:

package com.bea.wlevs.adapter.example.helloworld;

...

import com.bea.wlevs.configuration.Activate;
import com.bea.wlevs.configuration.Prepare;
import com.bea.wlevs.configuration.Rollback;
import com.bea.wlevs.ede.api.Adapter;
import com.bea.wlevs.ede.api.EventSender;
import com.bea.wlevs.ede.api.EventSource;
import com.bea.wlevs.ede.api.SuspendableBean;

import com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig;

public class HelloWorldAdapter implements Runnable, Adapter, EventSource, Suspen

dableBean {

...

 @Rollback
 public void rejectConfigurationChange(HelloWorldAdapterConfig adapterConfig)
{
 }

Metadata Annotat ions

4-8 Oracle Complex Event Processing Reference Guide

The com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterConfig class is
a Java represenation of the adapter’s configuration XML file; Oracle CEP automatically creates
an instance of this class when the application is deployed. In the HelloWorld example, the adapter
configuration has been extended. See the example in “com.bea.wlevs.management.Activate” on
page 4-2 for additional details.

In the example, the rejectConfigurationChange method is annotated with the @Rollback
annotation, which means this is the method that is called if the @Prepare method threw an
exception. In the example above, nothing actually happens.

com.bea.wlevs.util.Service
Target: Method

Specifies that the annotated method, typically a JavaBean setter method, requires an OSGi
service reference.

Attributes

Table 0-1 Attributes of the com.bea.wlevs.util.Service JWS Annotation Tag

Name Description Data Type Required?

serviceBeanName The name of the bean that backs the injected service. May
be null.

String No.

cardinality Valid values for this attribute are:
• ServiceCardinality.C0__1

• ServiceCardinality.C0__N

• ServiceCardinality.C1__1

• ServiceCardinality.C1__N

The default value is ServiceCardinality.C1__1.

enum No.

contextClassloader Valid values for this attribute are:
• ServiceClassloader.CLIENT

• ServiceClassloader.SERVICE_PROVIDER

• ServiceClassloader.UNMANAGED

The default value is ServiceClassloader.CLIENT.

enum No.

com.bea .wlevs .u t i l . Se rv i ce

Oracle Complex Event Processing Reference Guide 4-9

Example
The following example shows how to use the @Service annotation:

 @Service(filter = "(Name=StockDs)")

 public void setDataSourceService(DataSourceService dss) {

 initStockTable(dss.getDataSource());

 }

timeout Timeout for servcie resolution in milliseconds.

Default value is 30000.

int No.

serviceType Interface (or class) of the service to be injected

Default value is Service.class.

Class No.

filter Specifies the filter used to narrow service matches. Value
may be null.

String No.

Table 0-1 Attributes of the com.bea.wlevs.util.Service JWS Annotation Tag

Name Description Data Type Required?

Metadata Annotat ions

4-10 Oracle Complex Event Processing Reference Guide

Oracle Complex Event Processing Reference Guide 5-1

C H A P T E R 5

XSD Schema Reference for Oracle CEP
Files

This section contains information on the following subjects:

“Component Configuration XSD Schemas” on page 5-1

“EPN Assembly XSD Schema” on page 5-2

“Deployment XSD Schema” on page 5-4

“Server Configuration XSD Schema” on page 5-4

Component Configuration XSD Schemas
The following XSD schema files describe the structure of the XML files you use to configure
Oracle Complex Event Processing (or Oracle CEP for short) components, such as the complex
event processors and adapters. The wlevs_application_config.xsd schema imports the
wlevs_base_config.xsd schema..

 wlevs_application_config.xsd

 wlevs_base_config.xsd

Example of a Component Configuration File
The following example shows the component configuration file for the HelloWorld sample
application:

<?xml version="1.0" encoding="UTF-8"?>

http://e-docs.bea.com/wlevs/docs30/schemas/wlevs_application_config.xsd
http://e-docs.bea.com/wlevs/docs30/schemas/wlevs_base_config.xsd

XSD Schema Refe rence fo r Orac le CEP F i l es

5-2 Oracle Complex Event Processing Reference Guide

<helloworld:config
 xmlns:helloworld="http://www.bea.com/ns/wlevs/example/helloworld">
 <processor>
 <name>helloworldProcessor</name>
 <rules>
 <rule id="helloworldRule"><![CDATA[select * from HelloWorldEvent retain
1 event]]></rule>
 </rules>
 </processor>

 <adapter>
 <name>helloworldAdapter</name>
 <message>HelloWorld - the current time is:</message>
 </adapter>

 <stream monitoring="true" >
 <name>helloworldOutstream</name>
 <max-size>10000</max-size>
 <max-threads>2</max-threads>
 </stream>

</helloworld:config>

EPN Assembly XSD Schema
You use the EPN assembly file to declare the components that make up your Oracle CEP
application and how they are connected to each other, or in other words, the event processing
network. The EPN assembly file is an extension of the standard Spring context file. You also use
the file to register the Java classes that implement the adapter and POJO components of your
application, register the event types that you use throughout your application and EPL rules, and
reference in your environment the Oracle CEP-specific services.

See spring-wlevs.xsd for the full XSD Schema.

Example of a EPN Assembly File
The following XML file shows the EPN assembly file for the HelloWorld example:

<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:osgi="http://www.springframework.org/schema/osgi"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/spring"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd

http://e-docs.bea.com/wlevs/docs30/schemas/spring-wlevs.xsd

EPN Assembly XSD Schema

Oracle Complex Event Processing Reference Guide 5-3

 http://www.springframework.org/schema/osgi
 http://www.springframework.org/schema/osgi/spring-osgi.xsd
 http://www.bea.com/ns/wlevs/spring
 http://www.bea.com/ns/wlevs/spring/spring-wlevs.xsd">

 <!-- First, create and register the adapter (and factory) that generates
hello world messages -->
 <osgi:service interface="com.bea.wlevs.ede.api.AdapterFactory">
 <osgi:service-properties>
 <prop key="type">hellomsgs</prop>
 </osgi:service-properties>
 <bean
class="com.bea.wlevs.adapter.example.helloworld.HelloWorldAdapterFactory" />
 </osgi:service>

 <wlevs:event-type-repository>
 <wlevs:event-type type-name="HelloWorldEvent">

<wlevs:class>com.bea.wlevs.event.example.helloworld.HelloWorldEvent</wlevs:cla
ss>
 </wlevs:event-type>
 </wlevs:event-type-repository>

 <!-- Assemble EPN (event processing network) -->

 <!-- The adapter id is used by the configuration system, so needs to be
well-known -->

 <wlevs:adapter id="helloworldAdapter" provider="hellomsgs"
manageable="true">
 <!-- This property is also configure by dynamic config -->
 <wlevs:instance-property name="message" value="HelloWorld - the current
time is:"/>
 </wlevs:adapter>

 <!-- The processor id is used by the configuration system, so needs to be
well-known -->

 <wlevs:processor id="helloworldProcessor" manageable="true" />

 <wlevs:stream id="helloworldInstream" manageable="true">
 <wlevs:listener ref="helloworldProcessor"/>
 <wlevs:source ref="helloworldAdapter"/>
 </wlevs:stream>

 <!-- Manageable is so that we can monitor the event throughput -->

 <wlevs:stream id="helloworldOutstream" manageable="true">
 <wlevs:listener>
 <!-- Create business object -->
 <bean class="com.bea.wlevs.example.helloworld.HelloWorldBean"/>

XSD Schema Refe rence fo r Orac le CEP F i l es

5-4 Oracle Complex Event Processing Reference Guide

 </wlevs:listener>
 <wlevs:source ref="helloworldProcessor"/>
 </wlevs:stream>

</beans>

Deployment XSD Schema
The deployment file for Oracle CEP is called deployments.xml and is located in the
DOMAIN_DIR directory, where DOMAIN_DIR refers to the main domain directory. This XML file
lists the OSGi bundles that have been deployed to the server.

See deployment..xsd for the full XSD Schema.

Example of a Deployment XML File
The following example shows the deployments.xml file for the sample FX domain:

<?xml version="1.0" encoding="UTF-8"?>

<beans xmlns="http://www.springframework.org/schema/beans"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:wlevs="http://www.bea.com/ns/wlevs/deployment"
 xsi:schemaLocation="
 http://www.springframework.org/schema/beans
 http://www.springframework.org/schema/beans/spring-beans.xsd
 http://www.bea.com/ns/wlevs/deployment
 http://www.bea.com/ns/wlevs/deployment/deployment.xsd">

 <wlevs:deployment id="fxApp" state="start"
location="file:applications/fx/com.bea.wlevs.example.fx_2.0.0.0.jar"/>

</beans>

Server Configuration XSD Schema
The Oracle CEP server configuration file, config.xml, is located in the
DOMAIN_DIR/servername/config directory, where DOMAIN_DIR refers to the main domain
directory and servername refers to a particular server instance. To change the configuration of
an Oracle CEP instance, you can update this file manually and add or remove server configuration
elements.

See wlevs_server_config.xsd for the full XSD Schema.

http://e-docs.bea.com/wlevs/docs30/schemas/wlevs_server_config.xsd
http://e-docs.bea.com/wlevs/docs30/schemas/deployment.xsd

Serve r Conf igurat i on XSD Schema

Oracle Complex Event Processing Reference Guide 5-5

Example of a Server Configuration XML File
The following sample config.xml, from the
BEA_HOME/user_projects/domains/wlevs30_domain/defaultserver template domain,
shows how to configure some of these services:

<?xml version="1.0" encoding="UTF-8"?>

<n1:config xsi:schemaLocation="http://www.bea.com/ns/wlevs/config/server

wlevs_server_config.xsd"

 xmlns:n1="http://www.bea.com/ns/wlevs/config/server"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">

 <netio>

 <name>NetIO</name>

 <port>9002</port>

 </netio>

 <netio>

 <name>sslNetIo</name>

 <ssl-config-bean-name>sslConfig</ssl-config-bean-name>

 <port>4098</port>

 </netio>

 <work-manager>

 <name>JettyWorkManager</name>

 <min-threads-constraint>5</min-threads-constraint>

 <max-threads-constraint>10</max-threads-constraint>

 </work-manager>

 <jetty>

 <name>JettyServer</name>

 <network-io-name>NetIO</network-io-name>

 <work-manager-name>JettyWorkManager</work-manager-name>

 <secure-network-io-name>sslNetIo</secure-network-io-name>

 </jetty>

 <rmi>

 <name>RMI</name>

 <http-service-name>JettyServer</http-service-name>

 </rmi>

XSD Schema Refe rence fo r Orac le CEP F i l es

5-6 Oracle Complex Event Processing Reference Guide

 <jndi-context>

 <name>JNDI</name>

 </jndi-context>

 <exported-jndi-context>

 <name>exportedJndi</name>

 <rmi-service-name>RMI</rmi-service-name>

 </exported-jndi-context>

 <jmx>

 <rmi-service-name>RMI</rmi-service-name>

 <rmi-jrmp-port>9999</rmi-jrmp-port>

 <jndi-service-name>JNDI</jndi-service-name>

 <rmi-registry-port>1099</rmi-registry-port>

 </jmx>

 <ssl>

 <name>sslConfig</name>

 <key-store>./ssl/dsidentity.jks</key-store>

 <key-store-pass>

 <password>changeit</password>

 </key-store-pass>

 <key-store-alias>ds</key-store-alias>

 <key-manager-algorithm>SunX509</key-manager-algorithm>

 <ssl-protocol>TLS</ssl-protocol>

 <enforce-fips>false</enforce-fips>

 <need-client-auth>false</need-client-auth>

 </ssl>

 <http-pubsub>

 <name>pubsub</name>

 <path>/pubsub</path>

 <pub-sub-bean>

 <server-config>

 <name>pubsubbean</name>

 <supported-transport>

 <types>

 <element>long-polling</element>

 </types>

 </supported-transport>

Serve r Conf igurat i on XSD Schema

Oracle Complex Event Processing Reference Guide 5-7

<publish-without-connect-allowed>true</publish-without-connect-allowed>

 </server-config>

 <channels>

 <element>

 <channel-pattern>/evsmonitor</channel-pattern>

 </element>

 <element>

 <channel-pattern>/evsalert</channel-pattern>

 </element>

 <element>

 <channel-pattern>/evsdomainchange</channel-pattern>

 </element>

 </channels>

 </pub-sub-bean>

 </http-pubsub>

</n1:config>

XSD Schema Refe rence fo r Orac le CEP F i l es

5-8 Oracle Complex Event Processing Reference Guide

	Oracle® Complex Event Processing
	Release 3.0

	Oracle Complex Event Processing Reference Guide, Release 3.0
	Introduction and Roadmap
	Document Scope and Audience
	Oracle CEP Documentation Set
	Guide to This Document
	Samples for the Oracle CEP Application Developer

	Oracle Complex Event Processing Spring Tag Reference
	Overview of the Oracle Complex Event Processing Spring Tags
	Graphical Representation
	Example of an EPN Assembly File That Uses Oracle CEP Tags

	wlevs:adapter
	wlevs:cache
	wlevs:caching-system
	wlevs:class
	wlevs:event-bean
	wlevs:event-type-repository
	wlevs:event-type
	wlevs:factory
	wlevs:function
	wlevs:instance-property
	wlevs:listener
	wlevs:loader
	wlevs:metadata
	wlevs:processor
	wlevs:property
	wlevs:source
	wlevs:store
	wlevs:stream

	Deployer Command-Line Reference
	Overview of Using the Deployer Command-Line Utility
	Required Environment for the Deployer Utility
	Running the Deployer Utility Remotely
	Syntax for Invoking the Deployer Utility
	Connection Arguments
	User Credential Arguments
	Deployment Commands

	Examples of Using the Deployer Utility

	Metadata Annotations
	Overview of Oracle Complex Event Processing Metadata Annotations
	com.bea.wlevs.management.Activate
	com.bea.wlevs.management.Prepare
	com.bea.wlevs.management.Rollback
	com.bea.wlevs.util.Service

	XSD Schema Reference for Oracle CEP Files
	Component Configuration XSD Schemas
	Example of a Component Configuration File

	EPN Assembly XSD Schema
	Example of a EPN Assembly File

	Deployment XSD Schema
	Example of a Deployment XML File

	Server Configuration XSD Schema
	Example of a Server Configuration XML File

