
BEAWebLogic®
Integration

Oracle9i Database
Tuning Guide

Version 10.2
Revised: March 2008

Oracle9i Database Tuning Guide iii

Contents

Introduction

Database Tuning
Initialization Parameters . 2-1

Database Statistics. 2-7

Disk I/O. 2-10

Reverse Key Indexes. 2-12

Multiple Block Size Tablespaces . 2-13

Multiple Block Size Buffer Caches. 2-14

LOB Tuning . 2-15

Partitioning . 2-17

WLI Schema Tuning
JPD Tables . 3-1

WLI_PROCESS_INSTANCE_INFO Table. 3-6

WLI_PROCESS_EVENT Table. 3-7

Oracle Statspack
Installing the Statspack .A-1

Collecting Snapshots .A-2

Generating Reports .A-2

Top WLI Database Bottlenecks .A-3

iv Oracle 9i Database Tuning Guide

Oracle9i Database Tuning Guide 1-1

C H A P T E R 1

Introduction

BEA WebLogic Integration (WLI) enables developers to rapidly create complex enterprise
business integration applications. Performance and scalability of these applications is closely tied
to the performance and efficiency of the database used for managing persistence.

The default Oracle database installation provides average performance to a wide variety of
typical database applications. This default configuration can be modified to meet the specific
needs of an application such as WLI to achieve better performance and efficiency. This guide
provides best practices and guidelines for configuring and tuning the Oracle9i database for
optimized performance with WLI.

This guide is organized into two sections:

Database Tuning, which details the specific techniques used to set up and tune the Oracle9i
database for use with WLI.

WLI Schema Tuning, which identifies specific target areas within the WLI database
schema that tend to be sensitive to database performance issues.

A brief introduction to identifying database performance issues with Oracle Statspack is also
provided in Appendix A, “Oracle Statspack”.

Target Audience
The target audience of this guide includes:

Senior application developers using WLI

Professional services personnel implementing WLI

In t roduct ion

1-2 Oracle9i Database Tuning Guide

Senior DBAs looking for guidance on how to configure Oracle for use with WLI.

Some of the suggestions made in this guide are advanced and should only be implemented by
knowledgeable professionals who can accurately gauge the effect(s) such changes would have on
the overall system.

References
Oracle9i Database Reference:
http://download-west.oracle.com/docs/cd/B10501_01/server.920/a96536/toc.htm

Oracle9i Database Concepts:
http://download-west.oracle.com/docs/cd/B10501_01/server.920/a96524/toc.htm

Oracle9i Database Performance Tuning Guide and Reference:
http://download-west.oracle.com/docs/cd/B10501_01/server.920/a96533/toc.htm

ORACLE-BASE - Oracle9i Recovery Enhancements:
http://www.oracle-base.com/articles/9i/RecoveryEnhancements9i.php

Partitioning in Oracle. What Why When Who Where How:
http://www.devarticles.com/c/a/Oracle/Partitioning-in-Oracle/1/

http://download-west.oracle.com/docs/cd/B10501_01/server.920/a96536/toc.htm
http://download-west.oracle.com/docs/cd/B10501_01/server.920/a96524/toc.htm
http://download-west.oracle.com/docs/cd/B10501_01/server.920/a96533/toc.htm
http://www.oracle-base.com/articles/9i/RecoveryEnhancements9i.php
http://www.devarticles.com/c/a/Oracle/Partitioning-in-Oracle/1/

Oracle9i Database Tuning Guide 2-1

C H A P T E R 2

Database Tuning

This chapter includes the following sections:

Initialization Parameters

Database Statistics

Disk I/O

Reverse Key Indexes

Multiple Block Size Tablespaces

Multiple Block Size Buffer Caches

LOB Tuning

Partitioning

Initialization Parameters
Oracle database makes use of initialization parameters to

set limits on user and database processes

enable or disable features

optimize resource utilization

Database Tun ing

2-2 Oracle9i Database Tuning Guide

Some of these parameters can have a significant impact on the performance of a WLI application.
This section describes how some of the more important parameters can be tuned to get better
performance with WLI.

COMPATIBLE
The compatible initialization parameter can be used to set down the compatibility of the
instance to a prior release of Oracle. Compatibility should be set to 10.2.0 for use with this tuning
guide.

DB_nK_CACHE_SIZE
This parameter sets the cache size for data contained in multiple block size tablespaces.
Applications can make use of multiple block size tablespaces to reduce I/O for larger data objects
like large objects (LOBs) and index segments. Values for n (in nK) can be 4, 8, 16, or 32 and must
be a multiple of the default block size set by DB_BLOCK_SIZE. This parameter should only be
set when using multiple block size tablespaces. See Multiple Block Size Buffer Caches, or
Caching JPD BLOB Data in WLI Schema Tuning for more information on setting this parameter.

DB_BLOCK_BUFFERS
This is a deprecated parameter. The DB_BLOCK_SIZE parameter should be used instead. Use
of this parameter will disable the use of multiple block size tablespaces.

I n i t ia l i za t i on Paramete rs

Oracle9i Database Tuning Guide 2-3

DB_BLOCK_SIZE
This parameter sets the default block size of the database. It can only be set during the creation
of the Oracle database. The setting of this parameter for a WLI database should be based on the
characteristics of the application created using WLI.

Note: A small default block size can cause ORA-01450 errors for indexes with large key
lengths. If the database is shared with another application that has an index with a large
key length, the index will have to be moved to a multiple block-size tablespace with a
block size large enough to accommodate the larger index key length.

DB_CACHE_SIZE
This parameter sets the size of the default buffer pool for the Oracle database. The default buffer
pool is used to cache highly utilized data in memory for faster access. This area should be set
appropriately to accommodate 90% of all requests for information from the database as measured
by the buffer hit % ratio in Statspack. See Appendix A, “Oracle Statspack” for more information
on using Statspack.

DB_FILE_MULTIBLOCK_READ_COUNT
This parameter sets the number of blocks Oracle will request from the I/O subsystem for a
sequential read such as a full table scan. This value should be set to 16 for use with WLI. Values
greater than 16 increase the likelihood of the Oracle optimizer choosing full scans over index
lookups.

Table 2-1 WLI Application Characteristics and DB_BLOCK_SIZE

WLI Application Characteristics Block Size

• Messaging (JMS)
• Worklist heavy

2k

• Heavy usage of stateful JPDs
• Database shared with other applications that

require a larger block size

4k

Database Tun ing

2-4 Oracle9i Database Tuning Guide

DB_KEEP_CACHE_SIZE
This parameter sets the size of the KEEP buffer pool. The KEEP buffer pool is an alternate buffer
pool for default block size data objects. This buffer pool can be used to segregate cached data
objects from the default buffer pool such as lookup tables that could possibly be aged out of the
default buffer pool by more dynamic data. This parameter should be set only if using the KEEP
pool. See Caching JPD BLOB Data in WLI Schema Tuning for more information on using
alternate buffer pools with WLI.

DB_RECYCLE_CACHE_SIZE
This parameter sets the size of RECYCLE buffer pool. The RECYCLE buffer pool is an alternate
buffer pool for default block size data objects. This buffer pool can be used to segregate cached
data objects from the default buffer pool such as highly dynamic data that could possibly age data
out of the default buffer pool. This parameter should be set only if using the RECYCLE pool. See
Caching JPD BLOB Data in WLI Schema Tuning for more information on using this buffer pool
with WLI.

DML_LOCKS
This parameter sets the maximum number of simultaneous DML operations that can occur from
all concurrent transactions in the database. On very-high-volume transactional database systems
(such as WLI), the default value (4 X TRANSACTIONS) may not be enough and can be set to a
higher static value. This limit can alternatively be removed completely by setting the value to 0
(zero) but it has the consequence of disabling DROP TABLE, CREATE INDEX, and explicit
LOCK statements.

For most WLI implementations, the default value for this parameter is adequate. On systems
where a high number of enqueue waits are observed and all other methods of tuning for enqueue
waits have been exhausted, this value should be altered. Consult the DBA before altering the
default value.

FAST_START_IO_TARGET
This parameter is deprecated in Oracle9i and should not be set. Setting this parameter overrides
the use of FAST_START_MTTR_TARGET, which is the Oracle-recommended method of
limiting instance recovery time in Oracle9i.

I n i t ia l i za t i on Paramete rs

Oracle9i Database Tuning Guide 2-5

FAST_START_MTTR_TARGET
This parameter limits the mean time to recovery (MTTR) after a database instance crash. Use of
this feature (although seemingly advantageous) can hinder performance on some systems due to
the increased contention for I/O while dirty buffers are continuously flushed to disk. On some
WLI databases, where I/O is identified as a performance problem, lowering the value for
FAST_START_MTTR_TARGET can enhance the performance to a great extent.

HASH_JOIN_ENABLED
WLI performance is slightly improved when hash joins are disabled. This parameter should be
set to FALSE when not needed by another application running in the same database instance.

LOG_BUFFER
This parameter sets the amount of memory Oracle uses to buffer entries written to the online
REDO log. WLI applications that have a high volume of transactions should set the value of this
parameter higher than the default of 512 KB. Values of 1 - 2 MB provide good performance for
high volume WLI applications.

LOG_CHECKPOINT_INTERVAL
Setting this parameter will interfere with the correct operation of
FAST_START_MTTR_TARGET (the Oracle recommended method of limiting instance
recovery time). This parameter should be set to 0 (zero) to allow the checkpoint interval to be
controlled by FAST_START_MTTR_TARGET.

LOG_CHECKPOINT_TIMEOUT
Setting this parameter will interfere with the correct operation of
FAST_START_MTTR_TARGET (the Oracle recommended method of limiting instance
recovery time). This parameter should be set to 0 (zero) to the allow checkpoint interval to be
controlled by FAST_START_MTTR_TARGET.

OPTIMIZER_MODE
The Oracle optimizer is responsible for generating the most efficient access paths to data. It can
operate in a number of modes including: CHOOSE, RULE, FIRST_ROWS, and ALL_ROWS.
WLI performance is greatly improved when the optimizer runs in the CHOOSE mode and

Database Tun ing

2-6 Oracle9i Database Tuning Guide

database statistics have been gathered on all database objects. See Database Statistics for more
information on gathering database statistics.

PGA_AGGREGATE_TARGET
This parameter sets the target memory size for the Program Global Area (PGA) in Oracle. Use of
this parameter in conjunction with WORK_AREA_SIZE_POLICY set to AUTO can increase
performance dramatically for memory-intensive SQL operations such as sort and group by.

In order to have Oracle manage this area of memory automatically, the following parameters
must be unset: BITMAP_MERGE_AREA_SIZE, CREATE_BITMAP_AREA_SIZE,
HASH_AREA_SIZE, and SORT_AREA_SIZE.

Common values of this parameter for WLI are 32 MB and 64 MB. The value of this parameter
can be fine tuned by looking at the PGA Memory Advisory section of the Oracle Statspack report.
For information about running and using Oracle Statspack, see Appendix A, “Oracle Statspack”.

PROCESSES
This parameter sets the max number of operating system user processes in Oracle and should be
set to a minimum value of 600 for WLI database applications.

SHARED_POOL_SIZE
This parameter sets the amount of memory Oracle dedicates to caching shared cursors, stored
procedures and control structures. A common setting of this parameter for WLI is 32 MB. To tune
this parameter for optimal performance, see the Shared Pool Advisory section of the Oracle
Statspack report. For more information on Oracle Statspack, see Appendix A, “Oracle
Statspack”.

UNDO_RETENTION
This parameter sets the amount, in seconds, of UNDO information to be retained in UNDO
tablespaces. The retention of large amounts of undo information on a heavily loaded WLI
database can place a substantial additional strain on the I/O subsystem. WLI does not use undo
retention. Unless the database is being shared with other applications that do make use of this
feature, it should be turned off (set to 0).

Database Stat is t i cs

Oracle9i Database Tuning Guide 2-7

WORKAREA_SIZE_POLICY
The default setting of this parameter is AUTO. Oracle recommends that this parameter be left as
default to allow for the use of automatic SQL work area memory management.

Database Statistics
The Oracle database uses an optimizer to create the most efficient access plans for retrieving data.
The ability of the optimizer to select the best plan is strongly influenced by the amount of
information (statistics) Oracle has about the underlying data and the performance of the system
that will access the data. To give the optimizer the best chance of creating efficient data access
plans, statistics should be gathered at the database, schema, and system levels.

This section details various database statistics that can be gathered.

Database Level Statistics
Statistics gathered at database level capture information about the data structures and data for the
entire database, including the SYSTEM and SYS schemas. Database level statistics should be
gathered after database creation and periodically over the lifetime of the database.

Database level statistics can be gathered using the following script by a user with the SYSDBA
system privilege.

-- gather database level statistics

begin

 dbms_stats.gather_database_stats

 (

 estimate_percent => dbms_stats.auto_sample_size,

 block_sample => FALSE,

 method_opt => 'FOR ALL INDEXED COLUMNS SIZE AUTO',

 degree => NULL,

 granularity => 'ALL',

 cascade => TRUE,

 stattab => NULL,

Database Tun ing

2-8 Oracle9i Database Tuning Guide

 statid => NULL,

 options => 'GATHER',

 statown => NULL,

 gather_sys => TRUE,

 no_invalidate => FALSE,

 gather_temp => FALSE

);

end;

/

Schema Level Statistics
Statistics gathered at the schema level only collect statistics on the objects within the target
schema. Statistics should be gathered frequently for the WLI schema: at least once per week on
low-volume systems and once daily on high volume systems. The need for frequent statistics
gathering in the WLI schema is due to the highly dynamic nature of some WLI data structures.

Schema-level statistics can be gathered using the following script by the WLI schema owner or
another user with the privileges.

-- gather schema level statistics

begin

 dbms_stats.gather_schema_stats

 (

 ownname => 'WLI_SCHEMA',

 estimate_percent => dbms_stats.auto_sample_size,

 block_sample => FALSE,

 method_opt => 'FOR ALL INDEXED COLUMNS SIZE AUTO',

 degree => NULL,

 granularity => 'ALL',

Database Stat is t i cs

Oracle9i Database Tuning Guide 2-9

 cascade => TRUE,

 stattab => NULL,

 statid => NULL,

 options => 'GATHER',

 statown => NULL,

 no_invalidate => FALSE,

 gather_temp => FALSE

);

end;

/

System Level Statistics
Statistics gathered at the system level collect information about the performance characteristics
of the database host OS and its subsystems. In particular, statistics are gathered on I/O
performance; CPU performance; and system utilization. These statistics should be gathered while
the database is under a typical workload using WLI.

System level statistics can be gathered using the following script by a user with the SYSDBA
system privilege.

begin

 dbms_stats.gather_system_stats

 (

 gathering_mode => 'INTERVAL',

 interval => 60, -- time in minutes

 stattab => NULL,

 statid => NULL,

 statown => NULL

);

end;

Database Tun ing

2-10 Oracle9i Database Tuning Guide

/

Disk I/O
Normally, the slowest part of an Oracle database is its access to persisted data - disk I/O. To
increase performance and concurrency for disk I/O, Oracle recommends separating I/O with
distinct access characteristics onto separate disks or using high performance storage subsystems
that have very high I/O bandwidth. This section addresses these recommendations.

Separating I/O
Oracle recommends separating I/O into seven distinct I/O channels by data type:

1. system data

2. temporary data

3. UNDO and rollback segment data

4. application data

5. application index data

6. REDO log data

7. archive log data

This recommendation would require a minimum of seven disks to run Oracle. Adding
redundancy would double this number. This recommendation is a not always practical. Smaller
database systems do not generally have more than four disks. Many database systems do not
exhibit the same need for these seven distinct I/O channels.

A better way of separating I/O is to identify the distinct access patterns of a database system based
on the application running on it. WLI applications have access patterns that are similar to Online
Transaction Processing (OLTP) systems with most of the requests for data being small and
answered by in-memory data buffers. These data buffers are loaded into memory at first request
and then remain in memory until they are aged out by other more frequently used data. This
behavior does not put much stress on read I/O for application data or application indexes.

However, WLI does stress the I/O subsystem in the number and type of data writes. These writes
are for REDO logs (and archive logs when running in archive log mode), LOB data, UNDO data,
application data and application indexes.

Disk I /O

Oracle9i Database Tuning Guide 2-11

For WLI, it is recommended the following data types be stored on physically separate disks or
logical units (LUNs) when possible. They are listed in order of importance for separation.
Systems that have fewer disks should attempt to separate the earlier data types first.

High Performance Storage Systems
There are a variety of high performance storage subsystems that can increase performance of the
Oracle database. These systems achieve very high I/O bandwidth rates by using large striped
arrays (RAID 0); redundancy (RAID 1); high-speed connections like Fibre channel; and
advanced load balancing algorithms within the storage system. Recommendations for these
storage systems are beyond the scope of this document. However, WLI applications have shown
increased performance when using an Oracle database with a high-performance storage
subsystem. I/O performance can be evaluated in the “File I/O Stats” section of an Oracle
Statspack report. See Appendix A, “Oracle Statspack” for more information on using Oracle
Statspack.

Table 2-2 Data Types and Disk Separation

Data Type Importance of Separation

REDO Log Data WLI applications can produce high volumes of REDO log data. This is the most
important item for separation.

Archive Log Data When the database is operating in ARCHIVE LOG MODE, archive log data
will be produced at the same rate as REDO log data. It should be placed on a
separate disk whenever possible.

LOB Data WLI applications that use business process logic will make heavy use of tables
that have LOB datatype columns. These datatypes should be stored separately
from table data in their own tablespace. When possible, this tablespace should
be stored separately on another disk.

UNDO Data WLI can produce a large amount of UNDO data. UNDO tablespaces should be
stored separately when possible.

Application Data WLI application data is write heavy and can contend with other persisted data.
When possible, it should be stored separately.

Application Index Data WLI application index data is write heavy and can contend with other persisted
data. When possible, it should be stored separately.

Database Tun ing

2-12 Oracle9i Database Tuning Guide

Reverse Key Indexes
Many database tables have primary or unique keys based on a sequence. These keys are usually
indexed by b-tree indexes which, by nature, store the indexed values in order. This behavior of
sequential storage gives this type of index the name of “monotonic” or “right-growing” index.
These types of indexes can become performance bottlenecks on high-volume transactional
systems because of serialization that occurs when inserting values into the leaf-blocks of these
indexes.

To avoid this serialization, reverse-key indexes can be used. A reverse-key index stores indexed
values in reverse-bit order. So, where the values (234, 235, 236) are stored sequentially and
contiguously in a normal b-tree index, they are stored out of sequence and non-adjacent (236,
234, 235) for the reverse-key index (see Table 2-3). Over a larger set, this reversing of the key
distributes the indexed values across the leaf-node blocks of the index, thereby eliminating the
serialization on sequential inserts.

Note: Some caution should be used when choosing to use reverse-key indexes. Once an index
is built in REVERSE, it can not be used for index range scans. This means that Oracle

Table 2-3 Normal and Reverse B-Tree Index

Decimal Representation Binary Representation Order

Normal B-Tree Index

Index Key

234 11101010 1st

235 11101011 2nd

236 11101100 3rd

Reverse B-Tree Index

Index Key

Decimal Representation Reverse Binary Representation Order

234 01010111 2nd

235 11010111 3rd

236 00110111 1st

Mul t ip le B lock S i ze Tab lespaces

Oracle9i Database Tuning Guide 2-13

will have to use table scans to answer predicates that define a range of values, as in the
following SQL statement:
WHERE salary > 100,000

 AND salary < 200,000

/

To create a reverse-key index, the REVERSE keyword must be used to create or rebuild
the index.

The following code sample shows how to create and rebuild an index.
-- create the index

CREATE UNIQUE INDEX table_pk

 ON table (column)

 REVERSE

 COMPUTE STATISTICS

/

--rebuild the index

ALTER INDEX table_pk

 REBUILD

 REVERSE

 COMPUTE STATISTICS

See WLI_PROCESS_INSTANCE_INFO Table in WLI Schema Tuning for more
information on using reverse-key indexes with WLI.

Multiple Block Size Tablespaces
Oracle9i introduced a new feature that allowed a single instance of the database to have data
structures with multiple block sizes. This feature is useful for databases that need the flexibility
of using a small block size for transaction processing applications (OLTP); and a larger block size
to support batch processing applications, decision support systems (DSS), or data warehousing.
It can also be used to support more efficient access to larger data types like LOBs.

To create a multiple block size tablespace, the keyword BLOCKSIZE must be used when
creating the tablespace, as shown in the following code sample.

-- create wli_lob_data tablespace

Database Tun ing

2-14 Oracle9i Database Tuning Guide

CREATE TABLESPACE wli_lob_data

 LOGGING

 DATAFILE '/oracle/oradata/perfdb01/wli_lob_data_01.dbf'

 SIZE 1000M REUSE

 BLOCKSIZE 16K

 EXTENT MANAGEMENT LOCAL

 UNIFORM SIZE 50M

 SEGMENT SPACE MANAGEMENT AUTO

/

See JPD Tables in WLI Schema Tuning for more information on using multiple block size
tablespaces with WLI.

Note: A multiple block size buffer cache must be created before a multiple block size
tablespace can be created. See Multiple Block Size Buffer Caches for information on
multiple block size buffer caches.

Multiple Block Size Buffer Caches
To cache multiple block size data, Oracle9i has multiple block size buffer caches. These caches
are used to buffer reads for data contained in multiple block size tablespaces.

Multiple block size caches can be created by running the following statement by a user with
privileges, as shown in the following code sample.

-- create 16K block size cache

ALTER SYSTEM

 SET db_16k_cache_size = 64M

 SCOPE = BOTH

/

See JPD Tables in WLI Schema Tuning for more information on using multiple block size
tablespaces with WLI.

LOB Tun ing

Oracle9i Database Tuning Guide 2-15

LOB Tuning
LOB tuning includes tuning caching and setting appropriate physical storage parameters.

Caching
By default, LOB data is not cached in Oracle. Caching LOB data can have a significant positive
effect on LOB access performance. However, caching LOB data in the DEFAULT pool can cause
other application data to be quickly aged out. It is recommended that you cache LOB data in an
alternate pool such as the RECYCLE or KEEP pools, or in a multiple block size cache when using
a multiple block size tablespace.

LOB caching can be enabled by creating or altering a table to use it, as shown in the following
code sample.

-- create table foo with LOB caching

CREATE TABLE foo

 (

 bar NUMBER(16),

 baz BLOB

)

 TABLESPACE wli_data

 LOB (baz)

 STORE AS

 (

 CACHE

)

/

-- alter table foo to use LOB caching

ALTER TABLE foo

 MODIFY LOB (baz) (CACHE)

/

Database Tun ing

2-16 Oracle9i Database Tuning Guide

Physical Storage Parameters
Setting the CHUNK parameter and disabling STORAGE IN ROW improve the database
performance.

CHUNK
The CHUNK parameter sets the amount of data to be operated on at one time for a LOB in bytes.
This value has to be set to a multiple of the block size for the LOB. Depending on the average
data size of the LOBs stored, this value should be set as large as possible or until it exceeds the
average size of the data stored for the LOB column.

To find the average LOB length for a table, use the following SQL statement.

-- get the average length (in bytes) of the bas LOB column in table foo

SELECT AVG(DBMS_LOB.GETLENGTH(baz)) avg_lob_len

FROM foo

/

AVG_LOB_LEN

 13171.712

In the preceding example, the average LOB length for table foo is 13171.712 bytes, or ~13K.
Setting the CHUNK size to 16K would make the average number of I/Os per request for LOB
data from foo ~1.

DISABLE STORAGE IN ROW
LOB data can be stored in-line with the table's row (in the same segment) or can be stored in its
own segment. Storing LOB data in its own segment can increase the efficiency and performance
of data access, particularly when coupled with the storage of LOB data in a larger block size
tablespace.

See JPD Tables in WLI Schema Tuning for more information on using LOB tuning with WLI.

Par t i t i on ing

Oracle9i Database Tuning Guide 2-17

Partitioning
The Oracle9i database has a feature whereby tables can be partitioned into smaller manageable
pieces. Each of these pieces is stored in a separate physical data segment. Partitioning is
transparent to the application and partitioned tables can be treated the same as standard
non-partitioned tables. There are three basic methods by which a table can be partitioned: range,
hash, and list. Only hash partitioning will be described in this document.

With hash partitioning, a table is sub-divided into a specified number of partitions by the hash of
a key value found in the table. This partitioning, with the selection of a good value for the hash,
serves to equally distribute data across the partitions of the table. In a busy table that suffers
resource contention problems (high row lock waits, buffer busy waits) this type of tuning can
have a very positive effect on performance.

To partition an existing table, a new partitioned table must be created and the data from the old
table must be copied to the new table, as shown in the following code sample.

-- create non-partitioned table

CREATE TABLE foo

 (

 bar NUMBER(16),

 baz BLOB,

 CONSTRAINT foo_pk

 PRIMARY KEY (bar)

)

 TABLESPACE users

/

-- create new partitioned version of foo with data from foo

CREATE TABLE new_foo

 (

 bar,

 baz,

Database Tun ing

2-18 Oracle9i Database Tuning Guide

 CONSTRAINT new_foo_pk

 PRIMARY KEY (bar)

)

 TABLESPACE users

 PARTITION BY HASH (bar)

 PARTITIONS 32

 AS SELECT * FROM foo

/

-- drop the original foo table

DROP TABLE foo

/

-- rename new_foo table to foo

RENAME new_foo TO foo

/

See WLI_PROCESS_INSTANCE_INFO Table in WLI Schema Tuning for more information on
using partitioning with WLI.

Oracle9i Database Tuning Guide 3-1

C H A P T E R 3

WLI Schema Tuning

In this section, we highlight typical areas within the WLI schema that can potentially perform
better with tuning, depending on the application architecture of the target WLI application. The
tuning techniques described in this section impose incremental costs in terms of database system
resources. While benefits from these tuning techniques usually outweigh the additional cost of
resources, these techniques should only be applied when a specific performance problem is
identified. See Oracle Statspack for a list of commonly identifiable database performance issues
found with WLI applications.

This chapter includes the following sections:

JPD Tables

WLI_PROCESS_INSTANCE_INFO Table

WLI_PROCESS_EVENT Table

JPD Tables
In WLI, business process logic is implemented using Java Process Definitions (JPDs). JPD
information is persisted in JPD_PROCESS tables in the WLI schema. These tables can be tuned
to accommodate a much higher level of concurrency and throughput by applying some database
tuning techniques.

One of the main areas where JPD_PROCESS tables derive a large performance increase is from
modifying the storage characteristics for the BLOB data column, CG_DATA. This column
contains the serialized byte array representing the JPD instance.

WLI Schema Tun ing

3-2 Oracle9i Database Tuning Guide

BLOB storage in a JPD table suffers from two common problems with LOBs in Oracle: not
caching the BLOB data and storing BLOB data in-line with table data. To remove these
bottlenecks, the JPD table’s BLOB column should be cached and stored in a separate tablespace.

Caching JPD BLOB Data
JPD BLOB caching should be enabled in WLI database where a JPD table has been identified as
a bottleneck. BLOB data can be cached in Oracle's DEFAULT pool, KEEP pool, RECYCLE
pool, or an alternate block size cache. Caching LOB data in the DEFAULT pool can have a
negative effect on performance because it will compete for space with the most commonly cached
data in the database. For this reason, LOB data should be cached in one of the alternate buffer
pools.

To cache JPD BLOBs, a target buffer pool must be identified or created, and the JPD table must
be created or altered to use the cache.

The following code samples show how to create a RECYCLE pool, and to alter and create the
jpd_process_table.

-- create RECYCLE pool

ALTER SYSTEM

 SET db_recycle_cache_size = 64M

 SCOPE = BOTH

/

-- alter existing JPD table to use RECYCLE pool

ALTER TABLE jpd_processes_table

 MODIFY LOB (cg_data)

 (

 CACHE

 STORAGE

 (

 BUFFER_POOL RECYCLE

JPD Tab les

Oracle9i Database Tuning Guide 3-3

)

)

/

-- create new JPD table to use RECYCLE pool

CREATE TABLE jpd_processes_table

 (

 cg_id VARCHAR2(768 byte) NOT NULL,

 last_access_time NUMBER(19),

 cg_data BLOB,

 CONSTRAINT jpd_proceses_table_pk

 PRIMARY KEY(cg_id)

 USING INDEX TABLESPACE wli_index

)

 TABLESPACE wli_data

 LOB(cg_data) STORE AS

 (

 CACHE

 STORAGE

 (

 BUFFER_POOL RECYCLE

)

)

/

See LOB Tuning in Database Tuning for more information on LOB caching.

WLI Schema Tun ing

3-4 Oracle9i Database Tuning Guide

Separate Tablespace for BLOBs
A dedicated tablespace for WLI LOB data should be created. This tablespace can be created with
either the default database block size or an alternate larger block size. Larger block sizes can
increase performance for LOB data access.

The following code samples show how to create default and alternate block size table space:

-- create default block size tablespace

CREATE TABLESPACE wli_lob_data

 DATAFILE '/u03/app/oracle/oradata/wlidb1/wli_lob_data01.dbf' SIZE 1000M

 EXTENT MANAGEMENT LOCAL

 UNIFORM SIZE 50M

 SEGMENT SPACE MANAGEMENT AUTO

/

-- create alternate block size tablespace

CREATE TABLESPACE wli_lob_data

 DATAFILE '/u03/app/oracle/oradata/wlidb1/wli_lob_data01.dbf' SIZE 1000M

 BLOCKSIZE 16K

 EXTENT MANAGEMENT LOCAL

 UNIFORM SIZE 50M

 SEGMENT SPACE MANAGEMENT AUTO

/

To store BLOB data from the JPD tables in a separate tablespace, the JPD table must be created
or moved with the TABLESPACE storage parameter set to the alternate tablespace.

The following code samples show how to create a JPD table and alter an existing table:

-- create the a new JPD table

CREATE TABLE jpd_processes_table

 (

JPD Tab les

Oracle9i Database Tuning Guide 3-5

 cg_id VARCHAR2(768 byte) NOT NULL,

 last_access_time NUMBER(19),

 cg_data BLOB,

 CONSTRAINT jpd_proceses_table_pk

 PRIMARY KEY(cg_id)

 USING INDEX TABLESPACE wli_index

)

 TABLESPACE wli_data

 LOB(cg_data) STORE AS

 (

 TABLESPACE wli_lob_data

 DISABLE STORAGE IN ROW

 CACHE

)

/

-- alter an existing JPD table

ALTER TABLE jpd_processes_table

 MOVE

 LOB(cg_data)

 STORE AS

 (

 DISABLE STORAGE IN ROW

 TABLESPACE wli_lob_data

 CACHE

)

/

WLI Schema Tun ing

3-6 Oracle9i Database Tuning Guide

See Multiple Block Size Tablespaces in Database Tuning for more information on multiple block
size tablespaces.

WLI_PROCESS_INSTANCE_INFO Table
The WLI_PROCESS_INSTANCE_INFO table is updated on every persistent change in the JPD.
In some applications built with WLI, this table can become a performance bottleneck due to a
large number of concurrent inserts. Two tuning techniques that have had a positive effect on the
performance of this table are: adding a reverse-key index and partitioning the table by hash.

Reverse Key Index
The primary key index of the WLI_PROCESS_INSTANCE_INFO table is populated by a
sequence. This sequential population causes the index on the primary key to be right-growing
and suffer performance problems when under heavy concurrent load. Reversing the index on the
primary key alleviates this problem by removing the serialization that occurs in the index.

To reverse the index for the primary key of the WLI_PROCESS_INSTANCE_INFO table, the
index has to be altered or the table has to be recreated.

The following code sample shows how to reverse the index.

-- rebuild the index reverse

ALTER INDEX pk_wli_process_instance_info

 REBUILD

 REVERSE

 COMPUTE STATISTICS

/

See Reverse Key Indexes in Database Tuning for more information on using reverse-key indexes.

Partitioning
As the concurrent demand for access to the WLI_PROCESS_INSTANCE_INFO table grows in
a high-volume WLI application, contention can begin to occur at the block level. Partitioning the
table decreases this contention by distributing table data across many physical partitions, thereby
reducing the likelihood that concurrent transactions will try to access the same physical block.

WLI_PROCESS_EVENT Tab le

Oracle9i Database Tuning Guide 3-7

To partition the WLI_PROCESS_INSTANCE_INFO table, it has to be recreated. Partition
values should be set to powers of two. Good performance has been observed with partition values
of 32 and 64.

The following code sample shows how to partition the WLI_PROCESS_INSTANCE_INFO
table.

-- create partitioned WLI_PROCESS_INSTANCE_INFO table

CREATE TABLE WLI_PROCESS_INSTANCE_INFO

 (

 PROCESS_INSTANCE VARCHAR(768) NOT NULL,

 PROCESS_TYPE VARCHAR(200) NOT NULL,

 PROCESS_LABEL VARCHAR(1000),

 PROCESS_STATUS SMALLINT NOT NULL,

 PROCESS_START_TIME NUMBER NOT NULL,

 PROCESS_END_TIME NUMBER,

 SLA_EXCEED_TIME NUMBER,

 SEQUENCE_ID INTEGER NOT NULL,

 CONSTRAINT PK_WLI_PROCESS_INSTANCE_INFO

 PRIMARY KEY(PROCESS_INSTANCE)

 USING INDEX TABLESPACE wli_index

)

 PARTITION BY HASH (PROCESS_INSTANCE) PARTITIONS 64

 TABLESPACE wli_data

/

See Partitioning in Database Tuning for more information on partitioning tables.

WLI_PROCESS_EVENT Table
The WLI_PROCESS_EVENT table contains detailed tracking information that describes the
events that occurred within a JPD. At the end of a JPD transaction, all the events generated during
that transaction are sent to a JMS queue and are written to the WLI_PROCESS_EVENT table.

WLI Schema Tun ing

3-8 Oracle9i Database Tuning Guide

The number of events actually generated depends on the complexity of the JPD and the
TrackingLevel set through the OA&M console. With the TrackingLevel set at its most verbose
setting, contention for access to this table can degrade system performance. This performance
degradation can be alleviated by partitioning the WLI_PROCESS_EVENT table.

Partitioning
As the number of events being tracked increases, contention for access to the
WLI_PROCESS_EVENT table at the block level also increases. Partitioning the table decreases
this contention by distributing table data across many physical partitions, thereby reducing the
likelihood that concurrent transactions will try to access the same physical block.

To partition the WLI_PROCESS_EVENT table, it has to be recreated. Partition values should
be set to powers of two. Good performance has been observed with partition values of 32 and 64.

The following code sample shows how to partition the WLI_PROCESS_EVENT table.

-- create partitioned WLI_PROCESS_EVENT table

CREATE TABLE wli_process_event

 (

 process_type VARCHAR(200) NOT NULL,

 process_event_id VARCHAR(60) NOT NULL,

 process_instance VARCHAR(768) NOT NULL,

 deployment_id INTEGER NOT NULL,

 event_time INTEGER NOT NULL,

 activity_id SMALLINT NOT NULL,

 event_type SMALLINT NOT NULL,

 event_data BLOB,

 process_label VARCHAR(1000),

 is_rolled_back SMALLINT NOT NULL,

 event_elapsed_time NUMBER,

 start_event_id VARCHAR(60),

 event_count INT,

 CONSTRAINT pk_wli_process_event

WLI_PROCESS_EVENT Tab le

Oracle9i Database Tuning Guide 3-9

 PRIMARY KEY (process_instance, process_event_id)

 USING INDEX TABLESPACE wli_index

)

 PARTITION BY HASH (process_instance, process_event_id) PARTITIONS 64

 TABLESPACE wli_data

/

WLI Schema Tun ing

3-10 Oracle9i Database Tuning Guide

Oracle9i Database Tuning Guide A-1

A P P E N D I X A

Oracle Statspack

Statspack is a performance tuning tool provided by Oracle with the Oracle9i database
distribution. With minimal effort, it can be installed on any Oracle9i database to quickly gather
detailed analysis of the performance of that database instance. This appendix describes in brief:
Installing the Statspack, Collecting Snapshots, Generating Reports, and identifying the Top WLI
Database Bottlenecks.

Installing the Statspack
Installation of the Oracle Statspack tool is a relatively simple process. The following is a
step-by-step guide to the process of installing Oracle Statspack on a UNIX system.

1. Navigate to the $ORACLE_HOME/rdbms/admin directory as follows:

cd $ORACLE_HOME/rdbms/admin/

2. Start the Statspack install script, spcreate.sql, as follows:

sqlplus "/ as sysdba" @spcreate.sql

3. Enter a password for the PERFSTAT user when prompted.

4. Enter the default tablespace (tools) for the PERFSTAT user when prompted.

5. Enter the temporary tablespace (temp) for the PERFSTAT user when prompted.

6. Exit sqlplus as follows:

SQL> exit

Orac le Sta tspack

A-2 Oracle9i Database Tuning Guide

Collecting Snapshots
Once the Oracle Statspack tool is installed, snapshots must be collected to evaluate database
performance. Snapshots are moment-in-time collections of all of the database statistics that the
Oracle database continuously collects. Once two snapshots are collected, they can be compared
to identify the activity that occurred during the interval between the two snapshots.

Snapshots can be collected a various levels, each increasing level collecting a greater amount of
information about the database. As the levels go higher, each level is inclusive of the information
collected at the levels below it.

To collect statistics

1. Connect to the database as the PERFSTAT user as follows:

sqlplus perfstat/<password>

2. Create a snapshot with the statspack package as follows:

SQL> execute statspack.snap(i_snap_level=>7);

3. Exit SQLPLUS as follows:

SQL> exit

Generating Reports
Oracle Statspack comes with a comprehensive reporting script called spreport.sql. When this
script is run, it outputs a list of available snapshots, asks the user for two snapshot IDs and a name
for the report, and then outputs a text report of the results.

Table A-1 Levels of Statistics

Level Information Collected

0 General Performance Statistics

5 Addition Data: SQL Statements

6 Addition Data: SQL Plans and SQL Plan Usage

7 Addition Data: Segment Level Statistics

10 Addition Data: Parent and Child Latches

Top WL I Database Bo t t lenecks

Oracle9i Database Tuning Guide A-3

To run a Statspack report.

1. Navigate to the $ORACLE_HOME/rdbms/admin directory as follows:

cd $ORACLE_HOME/rdbms/admin/

2. Run the standard Statspack report as follows:

sqlplus perfstat/<password> @spreport

– Enter a beginning snapshot ID.

– Enter an ending snapshot ID.

– Enter a name for the report or accept the default.

– Exit SQLPLUS as follows:

SQL> exit

Top WLI Database Bottlenecks
Oracle Statspack is capable of identifying all of the common database performance bottlenecks
that have been observed with WLI. This section describes the top WLI database performance
bottlenecks and how they are identified in the Oracle Statspack report, and provides
recommendations to work around them

Enqueue Waits
Enqueues are local locks that serialize access to various resources. This wait event indicates a
wait for a lock that is held by another session (or sessions) in an incompatible mode to the
requested mode.

The action to take to reduce enqueue waits depends on the lock type that is causing the wait.

Types of Locks
There are three types of locks that predominantly cause enqueue waits - TX, TM, and ST.

TX (Transaction Lock): The TX lock is acquired when a transaction initiates its first
change and is held until the transaction does a COMMIT or ROLLBACK. It is used
mainly as a queuing mechanism so that other resources can wait for a transaction to
complete.

TM (DML Enqueue): This lock/enqueue is acquired when performing an insert, update, or
delete on a parent or child table.

Orac le Sta tspack

A-4 Oracle9i Database Tuning Guide

ST (Space management Enqueue): These enqueues are caused if a lot of space
management activity is occurring on the database (such as small extent size, several
sortings occurring on the disk).

Identification and Recommendations
Enqueue waits and their types can be identified by looking at the “Enqueue activity” section of
the Statspack report.

For the WLI application, enqueue waits are primarily found for indexed monotonic keys and data
block access on the WLI_PROCESS_INSTANCE_INFO table. Enqueue waits can be reduced
on these objects by using reverse-key indexes and by partitioning the
WLI_PROCESS_INSTANCE_INFO table. See WLI Schema Tuning for more information on
using reverse-key indexes and partitioning.

Log File Sync
When a user session COMMITs (or rolls back), session REDO information needs to be flushed
to the REDO log file. The user session will post the log writer (LGWR) to write all REDO
information required from the log buffer to the REDO log file. When the LGWR has finished, it
posts the user session. The user session waits on this wait event while waiting for LGWR to post
it back to confirm all the REDO changes are safely on disk.

Identification and Recommendations
Waits on log file sync can be identified by looking at the “Top 5 Timed Events” or “Wait Events”
section of the Statspack report.

These waits can be reduced by moving log files to the faster disks or by reducing COMMIT
frequency by performing batch transactions.

Buffer Busy Waits
Buffer busy waits happen when a session needs to access a database block in the buffer cache but
cannot, because the buffer is “busy”. The two main cases where this can occur are:

Another session is reading the block into the buffer.

Another session holds the buffer in an incompatible mode to this request.

Top WL I Database Bo t t lenecks

Oracle9i Database Tuning Guide A-5

Identification and Recommendations
Segments with high buffer busy waits can be identified by looking in the “Top 5 Buf. Busy Waits
per Segment” section of the Statspack report.

Buffer busy waits can be reduced by using reverse-key indexes for busy indexes and by
partitioning busy tables. See WLI Schema Tuning for more information on using reverse-key
indexes and partitioning.

Log File Parallel Writes
Log file parallel write waits occur when waiting for writes of REDO records to the REDO log
files to complete. The wait occurs in log writer (LGWR) as part of normal activity of copying
records from the REDO log buffer to the current online log.

The actual wait time is the time taken for all the outstanding I/O requests to complete. Even
though the writes may be issued in parallel, LGWR needs to wait for the last I/O to be on disk
before the parallel write is considered complete. Hence the wait time depends on the time it takes
the OS to complete all requests.

Identification and Recommendations
Waits for log file parallel writes can be identified by looking at the “Top 5 Timed Events” or
“Wait Events” section of the Statspack report.

Log file parallel write waits can be reduced by moving log files to the faster disks and/or separate
disks where there will be less contention.

DB File Sequential Reads
DB file sequential read waits signify a wait for an I/O read request to complete. This call differs
from ‘DB file scattered reads’ in that a sequential read reads data into contiguous memory
(whereas a scattered read reads multiple blocks and scatters them into different buffers in the
SGA). If the time spent waiting for reads is significant, then it can be helpful to determine which
segments Oracle is performing the reads against.

Identification and Recommendations
Segments that are excessive on reads can be identified by looking at the “Top 5 Physical Reads
per Segment” and “SQL ordered by Reads” sections of the Statspack report.

Orac le Sta tspack

A-6 Oracle9i Database Tuning Guide

Block reads are fairly inevitable so the aim should be to minimize unnecessary I/O. I/O for
sequential reads can be reduced by tuning SQL calls that result in full table scans and using the
partitioning option for large tables.

DB File Scattered Reads
DB file scattered read waits happens when a session is waiting for a multi-block I/O to complete.
This typically occurs during full table scans or index fast full scans.

Identification and Recommendations
Segments that are excessive on reads can be identified by looking at the “Top 5 Physical Reads
per Segment” and “SQL ordered by Reads” sections of the Statspack report.

Ideally, applications should not repeatedly perform full table scans of the online portions of
application data when there is a faster and more selective way to retrieve the data. Query tuning
should be used to optimize online SQL to use indexes.

Buffer Hit Ratio
The buffer hit ratio metric shows how often processes are finding data blocks in memory vs.
retrieving them from disk.

Identification and Recommendations
Buffer hit ratio can be found in the “Instance Efficiency Percentages” section for the Statspack
report.

The exact value of the buffer hit ratio is of less importance than the ability to monitor it over time
and notice any significant changes in the profile of activity on the database. If the ratio falls below
80%, then more memory should be allocated to the database by increasing the value of the
DB_CACHE_SIZE parameter.

In some cases, the ratio can be low due to poorly performing SQL statements. In this case, the
buffer hit ratio may not increase after increasing DB_CACHE_SIZE. These SQL statements
should be tuned to avoid excessive physical I/O.

Row Lock Waits
Row lock waits occur when a process requests an incompatible lock for a row that is currently
locked by another process. These lock waits can usually be attributed to high volume inserts on
a table with a primary key index.

Top WL I Database Bo t t lenecks

Oracle9i Database Tuning Guide A-7

Identification and Recommendations
Segments where performance suffers from excessive row lock waits can be identified in the “Top
5 Row Lock Waits per Segment” section of the Statspack report.

These waits can be avoided by partitioning tables or by using reverse-key indexes. For WLI, these
waits can be found on the WLI_PROCESS_INSTANCE_INFO table and on the primary key
index of this tables. See WLI Schema Tuning for more information on using reverse-key indexes
and partitioning.

Library Hit Ratio
The library cache hit ratio indicates how often Oracle retrieves a parsed SQL or PL/SQL
statement from the library cache. When an application makes a SQL or stored procedure call,
Oracle checks the library cache to determine if a parsed version of the statement is already stored
there. If the parsed statement is stored in the library cache, Oracle executes the statement
immediately. If not, Oracle parses the statement and allocates a shared SQL area within the
library cache for it. A low library cache hit ratio can result in additional parsing, which decreases
performance and increases CPU consumption for the database.

Identification and Recommendations
The library hit ratio can be found in the “Instance Efficiency Percentages” section of the
Statspack report.

If this ratio falls below 80%, increasing the size of shared pool area can help. This can be done
by changing the value of the SHARED_POOL_SIZE parameter.

Orac le Sta tspack

A-8 Oracle9i Database Tuning Guide

	Introduction
	Target Audience
	References

	Database Tuning
	Initialization Parameters
	Database Statistics
	Disk I/O
	Reverse Key Indexes
	Multiple Block Size Tablespaces
	Multiple Block Size Buffer Caches
	LOB Tuning
	Partitioning

	WLI Schema Tuning
	JPD Tables
	WLI_PROCESS_INSTANCE_INFO Table
	WLI_PROCESS_EVENT Table

	Oracle Statspack
	Installing the Statspack
	Collecting Snapshots
	Generating Reports
	Top WLI Database Bottlenecks

