
BEAWebLogic®
Integration

Tutorial: Designing Your
First Business Process

Version 10.2
Document Revised: March 2008

Designing Your First Business Process iii

Contents

1. Introduction
Tutorial Goals . 1-1

Tutorial Overview . 1-2

Tutorial Organization . 1-4

Part I. Design and Run a Simple Process

2. Step 1: Create the Business Process Application
Create Business Process Tutorial Application . 2-2

Start Designing the Process. 2-7

3. Step 2: Specify How the Process Is Started
Create Start Node . 3-2

Design Client Request Node . 3-3

Specify General Settings . 3-4

Specify Receive Data . 3-7

4. Step 3: Define Conditions for Alternate Paths of Execution
Add Decision Node . 4-1

Define Condition in Decision Node . 4-3

5. Step 4: Invoke a Web Service
Create Instance of Web Service Control . 5-2

Call Web Service. 5-2

iv Designing Your First Business Process

Receive Tax Rate from Web Service . 5-4

6. Step 5: Run the Business Process

7. Step 6: Invoke a Business Process
Create Process Control for Tax Calculation Process . 8-2

Change Control Send Node to Interact with Process Control . 8-3

Change Control Receive Node to Interact with Process Control 8-4

Test Request Quote Process . 8-5

Part II. Add Complex Business Logic

8. Step 7: Loop Through Items in a List
Overview of XML Schemas. 9-1

Design “For Each” Loop . 9-3

Add “For Each” Node . 9-4

Select Repeating XML Element to be Iterated . 9-5

9. Step 8: Design Parallel Paths of Execution
Create Parallel Node. 10-2

Create Logic to Assemble Price and Availability Data . 10-3

Create Instances of PriceProcessor and AvailProcessor Controls. 10-4

Add Control Nodes in Business Process. 10-4

Design Activities on Get Price Branch . 10-6

Design Activities on Get Availability Branch. 10-11

10. Step 9: Create Quote Document
Convert Price List to XML Document . 11-2

Convert Availability List to XML Quote Document . 11-5

Combine Price and Availability Quotes. 11-7

Designing Your First Business Process v

Create Instance of TutorialJoin Control . 11-7

Design Process Interaction with TutorialJoin Control. 11-8

11. Step 10: Write Quote to File System
Create Instance of File Control. 12-1

Design Control Send Node to Interact with File Control . 12-2

Assign File Control Properties to a Variable . 12-3

Use the File Control Properties. 12-4

12. Step 11: Send Quote From Business Process to Client
Add Client Response Node. 13-1

Design Send Quote Node . 13-2

13. Step 12: Run RequestQuote Business Process

A. WorkSpace Studio Views, Functions, and Shortcuts
WorkSpace Studio Views .A-1

Functions and Shortcuts .A-3

vi Designing Your First Business Process

Designing Your First Business Process 1-1

C H A P T E R 1

Introduction

The Business Process Management (BPM) capability of WebLogic Integration (WLI) enables
integration of diverse applications and human participants, and coordinated exchange of
information with trading partners outside your enterprise.

This tutorial provides a tour of the features available for designing business processes in
Workshop for WebLogic. It describes how to create a business process that orchestrates
processing of a Request for Quote (RFQ).

Tutorial Goals
The goals of the tutorial include the following:

Designing communication nodes in a process – that is, creating the interface between your
business process and its clients and resources. Clients of business processes can be any
other resources or services that invoke processes.

Designing interactions with clients, including creating the methods that expose the
functionality of a process.

Designing interactions with resources by using controls. WLI controls make it easy to
access enterprise resources – databases, Enterprise Java Beans (EJBs), web services, and
other processes (including those that use RosettaNet and ebXML business processes) –
from a process.

Handling XML, non-XML, and Java data types in a process. This includes working with
XML schemas and transforming data between disparate data types using the XQuery
Mapper tool.

1-2 Designing Your First Business Process

Tutorial Overview
The business process in this scenario starts when an RFQ is received from a client. The business
process checks the inventory and pricing systems of the enterprise to determine whether the order
can be fulfilled. Based on the shipping address provided by the client, the process also determines
whether sales tax must be added to the quote. Finally, the business process compiles a single
quote document from the sales tax, price, and availability data, logs the quote by writing it to the
file system and sends it to the client.

The following sequence summarizes the steps in the RFQ business process and describes how the
process is designed in WLI:

1. Receive an RFQ from a client.

You design a Client Request node in your business process to handle the receipt of an
XML document that contains the customer name, shipping address, and the identity and
quantity of items for which the quote is requested. You design the business process so that
it starts when it receives an RFQ message from a client.

2. Determine whether sales tax must be included in the quote.

You design a Decision node to create different paths of execution based on the evaluation
of a condition. The Decision node includes, on one path, a call to a web service that
calculates sales tax. Business processes communicate with other services through controls.
You design a Control Send node to communicate with a web service that calculates the
sales tax for your quote.

3. Process the items sent in the RFQ message.

For each item in the RFQ, the process calculates the price and determines availability of
the quantities requested in the incoming XML message.

You create the following nodes in the business process:

– For Each: These nodes represent points in a business process at which a set of
activities is performed repeatedly, once for each item in a list. For Each nodes include
an iterator node (on which a list of items is specified) and a loop (in which the
activities to be performed for each item in the list are defined)

– Parallel: Parallel nodes represent points in a business process at which a number of
activities are executed in parallel. In this tutorial, you design a Parallel node containing
two branches: a path for calculating prices and a path for determining availability.

– Control: Control Send and Control Receive nodes on each path handle asynchronous
exchange of messages between the business process and web service resources.

Tuto r ia l Overv i ew

Designing Your First Business Process 1-3

• A pricing web service returns the price for the items in the RFQ.

• An availability web service returns information about the availability of the
requested items.

4. Compile price, availability, and tax information in a quote document.

You use Transformation controls to map the price, availability, and sales tax information
to an XML document that is returned to the client as the quote.

5. Keep a record of the quote created by the business process.

You use a File control to write the quote to your file system.

6. Send the quote to the client.

You design a Client Response node to send a response to the client. The response contains
the data calculated by the business process.

The following figure shows the actors in the tutorial scenario.

Figure 1-1 Actors in the Tutorial Scenario

1-4 Designing Your First Business Process

The actors in the tutorial scenario are:

Clients that create and send RFQ messages – containing customer name, shipping address,
list of items, and quantity of items required – to the RequestQuote business process.

The RequestQuote business process that receives RFQs and returns the following for the
items requested in the RFQ:

– Price

– Availability information

A web service that calculates sales tax for the quote, based on the shipping address
provided by the client.

A business process that calculates the sales tax. This business process serves the same
purpose as the tax calculation web service described in the preceding item. The
RequestQuote business process can call either the web service or the business process to
request for calculation of the sales tax for the quote.

A pricing web service that calculates the price of the items requested by the client.

An availability web service that determines availability of the items requested by the client.

Transformation controls to map disparate data formats in your application.

The business process starts when it receives an XML document from a client. Data is
exchanged between resources in the application – clients, the RequestQuote business
process, web services, and so on – in XML format.

Tutorial Organization
The goal of this tutorial is to create a business process that receives RFQ messages from clients,
validates and processes the RFQs, and send quotes to the clients.

The tutorial is organized as follows:

Part I, “Design and Run a Simple Process”

In this part of the tutorial, you do the following:

a. Create a business process.

b. Specify how the process is started at run time.

c. Design a Decision node that includes asynchronous calls to a web service.

Tuto r ia l Organ izat ion

Designing Your First Business Process 1-5

d. Test the business process.

e. Replace the asynchronous call to the web service with a asynchronous call to another
business process.

f. Design interactions between the business process and external resources.

Part II, “Add Complex Business Logic”

In this part of the tutorial, you add more complex business logic to the business process.

– Create looping logic

– Design parallel processing nodes

– Transform the price and availability data from untyped XML data to typed XML

– Use a File control to write your quote to a file system

– Use a Client Response node to return the quote to the client invoking the business
process.

1-6 Designing Your First Business Process

Designing Your First Business Process

Part I Design and Run a
Simple Process

In this part of the tutorial, you create a business process, specify how the process is started at run time,
design a Decision node that includes asynchronous calls to a web service, and test the business process.

This part consists of the following steps:

Chapter 2, “Step 1: Create the Business Process Application”

Describes how to create a business process.

Chapter 3, “Step 2: Specify How the Process Is Started”

Describes how to design the start of your business process.

Chapter 4, “Step 3: Define Conditions for Alternate Paths of Execution”

Describes how to design a Decision node and its associated conditions in the business process.
The path of execution through a decision node is based on evaluation of the conditions that you
specify for the node.

Chapter 5, “Step 4: Invoke a Web Service”

Describes how to design the interaction between the business process and a web service control.

Chapter 6, “Step 5: Run the Business Process”

At this point, you have created a business process, which you can test by using the test browser
of WorkSpace Studio.

For information about the components available in WorkSpace Studio for designing business
processes, see Appendix A, “WorkSpace Studio Views, Functions, and Shortcuts.”

Designing Your First Business Process 2-1

C H A P T E R 2

Step 1: Create the Business Process
Application

In this step, you create the application in which you design the tutorial business process
(RequestQuote.java).

This step includes the following tasks:

Create Business Process Tutorial Application

Start Designing the Process

2-2 Designing Your First Business Process

Create Business Process Tutorial Application
1. From the WorkSpace Studio menu, choose File > New > Other.

The New wizard is displayed.

Figure 2-1 New Wizard

2. Expand WebLogic Integration, select Tutorial: Request Quote Process Application, and
click Next.

The Process Application dialog box is displayed.

Create Bus iness P rocess Tuto r ia l App l i cat ion

Designing Your First Business Process 2-3

Figure 2-2 Process Application Dialog Box

3. Enter the following:

a. EAR Project Name: Tutorial_Process_Application_Ear

b. Web Project Name: Tutorial_Process_Application_Web

c. Utility Project Name: Tutorial_Process_Application_Utility

4. Select the Add WebLogic Integration System and Control Schemas to Utility Project
check box to add the system schemas to the Schemas folder under the Utility project.

5. Click Finish.

2-4 Designing Your First Business Process

The Open Associated Perspective? dialog box is displayed.

Figure 2-3 Open Associated Perspective Dialog Box

6. Click Yes to switch to the Process perspective.

Note: Perspectives define the initial set of views and their associated layout in WorkSpace
Studio. The Process perspective contains all the views that are necessary for creating
process applications: Node Palette, Data Palette, and so on.

Similarly, the XQuery Transformation perspective contains the views that are
relevant for XQuery transformation: Expression Functions, Expression Variables,
Target Expression, and Constraints, and so on.

Create Bus iness P rocess Tuto r ia l App l i cat ion

Designing Your First Business Process 2-5

The application is created and displayed in the Package Explorer view.

Figure 2-4 Package Explorer View

The Package Explorer view displays the files and resources available in the application:

– Tutorial_Process_Application_Web: A project with WLI process facet added to it.
Every application contains one or more projects. Projects represent WebLogic Server
(WLS) applications. In other words, when you create a project, you are creating a web
application. The name of your project is included in the URL that clients use to access
the application.

The src/requestquote folder contains the business processes, transformation,
XQuery files.

• FileQuote.java: A File control used by the RFQ process to write the quote to the
file system.

2-6 Designing Your First Business Process

• PriceAvailTransformations.java: Contains data transformations used in
RequestQuote.java.

• RequestQuote.java: This is the completed RequestQuote business process. It is
provided for reference and to let you run the business process before you start
recreating it. The tutorial walks you through the steps to recreate this business
process.

Note: For information about running the RequestQuote.java business process that is
provided in the application folder, see Chapter 13, “Step 12: Run RequestQuote
Business Process.”

• RequestQuoteTransformation.java and TutorialJoin.java: Contain data
transformations used in RequestQuote.java.

• XQ files: An XQ file is created for each transformation method on a transformation
file. XQ files contain the queries (written in the XQuery language) called by the
transformation files in your project.

The requestquote.services folder contains services with which your process
interacts: web services, web service controls, processes, and process controls.

The testxml folder contains XML files that you can use to test the completed business
process.

– Tutorial_Process_Application_Utility: A project that contains the XML schemas used
in the application.

Web applications are J2EE deployment units that define a collection of web resources –
business processes, web services, JSPs, servlets, and so on – and can define references
to external resources such as EJBs.

7. In this tutorial, you create the RequestQuote.java file from scratch.

To proceed, delete the following files from the src/requestquote folder of the
Tutorial_Process_Application_Web project:
– RequestQuote.java

– RequestQuoteTransformation.java

– RequestQuoteavailProcessor_avail.xq

– RequestQuoteavailProcessorGetAvail.xq

– RequestQuotepriceProcessor_returnPrice.xq

– RequestQuotepriceProcessorGetPrice.xq

– RequestQuotetaxCalculationRequestTaxRate.xq

Star t Des ign ing the P rocess

Designing Your First Business Process 2-7

Figure 2-5 Web Project Files

Caution: Delete only the files that are listed in this step. You need all the other files to create
the business process.

To delete the files, select them, and press the Delete key (or right-click and select Delete).

Note: You can select multiple files by holding down the Ctrl key while clicking on the file
names.

The files are deleted from your application folder in the file system, and do not appear in
the Package Explorer view.

Start Designing the Process
In this step, you start the process of recreating the RequestQuote.java file.

1. In the Package Explorer view, go to the Tutorial_Process_ApplicationWeb\src
folder, and right-click the requestquote folder.

2. Choose New > Process.

The New Process dialog box is displayed.

2-8 Designing Your First Business Process

Figure 2-6 New Process Dialog Box

3. In the Name field, enter RequestQuote.

4. Click Finish.

The new RequestQuote.java file is created and displayed in the Design view. At the
moment, it has only a Start and a Finish node.

Figure 2-7 New Process

Note: For more information about the views in WorkSpace Studio, see Appendix A,
“WorkSpace Studio Views, Functions, and Shortcuts.”

Designing Your First Business Process 3-1

C H A P T E R 3

Step 2: Specify How the Process Is
Started

In this step, you define how your business process is started. As web services, business processes
expose their functionality through methods, which clients invoke to make requests. You can also
create Process controls from business processes. In the case of Process controls, other resources
can interact with your process via the controls interface.

Note: You will learn more about Process controls in Step 6: Invoke a Business Process.

In this step, you design the Start node in your business process to receive a Request for Quote
(RFQ) message from a client; receipt of the RFQ message is the trigger that starts the business
process.You also create a variable to hold the incoming RFQ message.

In the Design view, interactions between a business process and a client are represented by Client
Request and Client Response nodes. In this case, you add a Client Request node to your
business process and, subsequently, create the code for this node to handle receipt of a message
from a client.

Complete the following tasks to design the Client Request node that starts your business process:

Create Start Node

Design Client Request Node

3-2 Designing Your First Business Process

Create Start Node
1. In the Package Explorer view, double-click RequestQuote.java. The RequestQuote

business process is displayed in the Design view.

Figure 3-1 RequestQuote Process

2. Double-click the Start node to display the node builder, which displays the possible start
methods.

Figure 3-2 Node Builder - Start Node

3. Select Invoked via a Client Request, and click Close.

The empty node that was associated with the Start node changes to a Client Request
node.

Des ign C l i en t Request Node

Designing Your First Business Process 3-3

Design Client Request Node
Designing the Client Request node includes creating a method and parameters that the client
uses to trigger the start of the business process, and designing the logic for handling receipt of
requests from the client.

1. Rename the Client Request node.

Select the Client Request node and press F2. Enter Client Requests Quote as the new
name and press Enter. Your business process should now be as shown in the following
figure:

Figure 3-3 Rename Client Request Node

2. Double-click the Client Requests Quote node.

The node builder is displayed.

3-4 Designing Your First Business Process

Figure 3-4 Node Builder

Note: Node builders provide a task-driven user interface to help you design the
communication between a business process and its clients and other resources. To
access the node builder for any node, double-click the node in the Design view. A
node builder that is specific for the type of node that you selected is displayed in-line
in your business process.

The node builder for a Client Request node displays the two tabs: General Settings and
Receive Data.

Specify General Settings
The following steps describe how to specify the method exposed by your business process.
Clients invoke this method to start and make requests on your business process.

1. On the General Settings tab, in the Method Name field, change the default method name
from clientRequest to quoteRequest.

Note: When you make your business process available as a service, the name that you
assign to a method on a Client Request node is the name of the method that is
exposed through the Web Services Description Language (WSDL). It is
recommended that you use a name that clearly indicates the service offered by the
business process.

2. Specify a data type for the parameter of the quoteRequest method:

a. Click Add... on the General Settings tab. A panel showing the data types is displayed.

Des ign C l i en t Request Node

Designing Your First Business Process 3-5

Figure 3-5 Specify Data Type for Parameters

The RFQ is an XML message. So an XML data type is required at this node.

b. Select the XML tab.

The panel displays a list of XML schema files under Typed and a list of Untyped
XML objects that are available in your project.

The XML schemas that you need for this tutorial are in the Schemas folder of the
utility project. The schemas provided include QuoteRequest.xsd, PriceQuote.xsd,
AvailQuote.xsd, Quote.xsd, and a system schema DynamicProperties.xsd.

Note: For XML schemas to be available to the services in your application, they must
be located in Schemas folder under the web or utility project.

In this step, you use the QuoteRequest.xsd XML schema to specify the structure of
documents that clients can send to trigger your business process.

c. In the XML tab, progressively expand the nodes under Typed node, up to and including
the QuoteRequest.xsd node.

A graphical representation of the QuoteRequest.xsd XML schema is displayed.

d. Select the quoteRequest node. It represents the parent element in your XML document.

The following value appears in the Type Name field:
org.example.request.QuoteRequestDocument.

3-6 Designing Your First Business Process

Figure 3-6 Request Quote Parameter Type

e. In the Parameter Name field, enter requestXML in place of the default parameter name
(x0).

f. Click OK.

The parameter type (QuoteRequestDocument) and name (requestXML) are displayed
in the General Settings tab in the node builder.

This step completes the specification of the method exposed to clients by your business
process. Messages from clients are expected to be typed XML; that is, the messages
received from clients must contain XML data that is valid against an XML schema (in this
case, QuoteRequest.xsd).

Note: Sample XML files (QuoteRequest.xml and QuoteRequest_a.xml) that are
provided in the testxml folder are used later in the tutorial to test the process.

The General Settings tab is updated, as shown in the following figure, to indicate that you
successfully completed the specification of a method name and parameters.

Figure 3-7 General Settings Tab - Updated

Note: indicates a completed task; indicates an incomplete task.

Des ign C l i en t Request Node

Designing Your First Business Process 3-7

Specify Receive Data
1. Select the Receive Data tab, which lets you to specify a variable that receives an RFQ

message from a client.

The Receive Data tab has two modes:

– Variable Assignment: You can use this mode to assign data received from a client to a
variable of the same data type.

– Transformation: You can use this mode to create a transformation between the data
assigned to a variable and the data expected by the method parameter.

By default, the Receive Data tab opens in the Variable Assignment panel.

Note: It is also possible to assign typed non-XML (MFL) data directly to XML variables in
the Receive Data tabs; no transformation is necessary. A discussion about non-XML
(MFL) data is outside the scope of this tutorial. To learn about MFL files and the
assignment of the data to business process variables, see Business Process Variables
and Data Types in Guide to Building Business Processes.

For this tutorial, we use the Variable Assignment mode because we want to assign the
XML message received from the client directly to a variable of the same data type. In
subsequent steps, you create a variable of typed XML (QuoteRequestDocument) to which
your process assigns the incoming RFQs from clients.

2. In the Select variables to assign drop-down list, select Create new variable...

The Create Variable dialog box is displayed.

3. In the Variable Name field, enter requestXML.

4. In the XML tab, progressively expand the tree structure under the Typed node up to and
including the QuoteRequest.xsd node; then, select the quoteRequest element as shown in
the following figure.

http://edocs.bea.com/wli/docs102/bpguide/bpguideDataTypes.html
http://edocs.bea.com/wli/docs102/bpguide/bpguideDataTypes.html

3-8 Designing Your First Business Process

Figure 3-8 Create Variable Dialog Box

The following value appears in the Type Name field:
org.example.request.QuoteRequestDocument.

5. Click OK.

The new variable is created and displayed in the Receive Data tab.

Figure 3-9 Variable Assignment

Note: The requestXML variable is shown as an XML variable in the Data Palette view.

Both tabs in the node builder (General Settings and Receive Data) are marked as
complete .

6. Click Close.

Des ign C l i en t Request Node

Designing Your First Business Process 3-9

In the Design view, note the completeness indicator associated with the Client Requests
Quote node changes from to , confirming that the design of the node is complete.

Figure 3-10 Completeness Indicator

7. From the WorkSpace Studio menu, choose File > Save All.

Related Topics
Components of Your Application

Designing Start Nodes

Working With Data Types

Interacting With Resources Using Controls

http://edocs.bea.com/wli/docs102/bpguide/bpguideCreateApp.html
http://edocs.bea.com/wli/docs102/bpguide/bpguideStartException.html
http://edocs.bea.com/wli/docs102/bpguide/bpguideDataTypes.html
http://edocs.bea.com/wli/docs102/bpguide/bpguideControlsProperties.html

3-10 Designing Your First Business Process

Designing Your First Business Process 4-1

C H A P T E R 4

Step 3: Define Conditions for Alternate
Paths of Execution

The business process is required to take a decision based on a value that the process extracts from
the variable to which the XML message from the client is assigned. You design a condition,
which must be evaluated at run time to determine whether the shipping address specified in the
incoming RFQ XML file requires sales tax to be calculated for the quote.

If the condition evaluates to true, then sales tax must be calculated and the flow of
execution proceeds along a branch that invokes a web service to calculate the sales tax.

If the condition evaluates to false, then no sales tax is required for the quote; the flow of
execution proceeds along the default branch.

You design the decision logic by creating a Decision node in your business process. This step
includes the following tasks:

Add Decision Node

Define Condition in Decision Node

Add Decision Node
1. If the Node Palette view is not visible, choose Window > Show View > Node Palette.

2. Select the Decision node () from the Node Palette view, drag it to the Design view, and
drop it just below the Client Requests Quote node.

Note: As you drag the node to the Design view, targets () appear, indicating possible
positions at which you can insert the node. As you drag the node close to a target

4-2 Designing Your First Business Process

location, the target is activated () and the mouse pointer changes to an arrow ().
At this point, you can release the mouse button; the node snaps to the location
indicated by the active target.

The Decision node includes a node for the condition (labeled Condition) and two paths of
execution: one for actions to be executed if the condition evaluates to true and the other
(Default path) for actions to be executed if the condition evaluates to false.

3. Change the names of the Decision, Condition, and Default nodes to represent the business
tasks for tutorial more clearly:

– Change the name of the Decision node to Sales Tax Calculation Needed?.

– Change the name of the Condition node (true path) to Yes.

– Change the name of the Default node (false path) to No.

The business process is displayed in the Design view as shown in the following figure.

Figure 4-1 Business Process with Decision Node

Def ine Cond i t i on in Dec i s ion Node

Designing Your First Business Process 4-3

Define Condition in Decision Node
1. Double-click the condition node () to invoke the decision builder, which provides a

task-driven user interface to help you design the decision logic.

Figure 4-2 Decision Builder

The Variable option button is selected by default. Do not change this selection because, in
this case, you design the decision based on the value of an element in an XML document,
which is valid with respect to an XML schema.

2. Select an XML element based on which the decision is to be made.

a. In the decision builder, select a variable by clicking the icon adjacent to Left Hand
Expression.

A drop-down list of the variables in your project is displayed. In this case, the
requestXML variable, which you created for the Client Request node at the start of
your business process, is displayed.

The quoteRequest XML schema is depicted in the Select Expression Node pane.

4-4 Designing Your First Business Process

Figure 4-3 Selection Expression Node

The schema in our example (QuoteRequest.xsd) specifies the following elements:

• A root element: quoteRequest

• Child elements: customerName and shipAddress

• A repeating element: widgetRequest

The shipAddress element contains the attributes: street, city, state and zip.

b. Expand the ShipAddress element and select the state attribute.

With this step, you have selected the node in the XML document that represents the
element based on which you want to define the condition logic.

The following expression appears in the Selected Expression field:
fn:data($requestXML/ns0:shipAddress/@state)

c. Click Select. The above expression appears in the Left Hand Expression field.

d. Select the = operator from the Operator list.

e. Enter “CA” in the Right Hand Expression field.

f. Click Add to add the condition that you just created:

fn:data($requestXML/ns0:shipAddress/@state) = “CA”

You have now finished designing the first condition for the decision node.

Def ine Cond i t i on in Dec i s ion Node

Designing Your First Business Process 4-5

g. Select the expression in the condition list pane, as shown in the following figure:

Figure 4-4 Condition List Pane

h. Change the Join Type to OR.

Note: You can change the join type for a condition even after you define the condition,
by right-clicking on the join type as shown in the following figure.

Figure 4-5 Changing the Join Type

i. In the Right Hand Expression field, change CA to California.

The Add button changes to Update.

j. Click the arrow adjacent to the Update button, and choose Add from the menu.

k. Similarly, add conditions for NJ and New Jersey.

4-6 Designing Your First Business Process

The conditions that you defined are listed in the condition list pane, as shown in the
following figure.

Figure 4-6 Condition List

3. Click Close to close the decision builder.

The icon for the Condition node in the Design view changes from to , indicating
that the condition defined for this node is based on the evaluation of XML data.

This step completes the design of the condition that is evaluated when the flow transitions
to the Decision node at run time.

The condition logic is represented in the source code as an XQuery expression. As you
define the conditions in the decision builder, BEA Workshop generates an XQuery
expression.

To view the XQuery expression, go to the Source view. The condition that you defined is
represented by the following XQuery expression in the source code:

Listing 4-1 XQuery Expression

@com.bea.wli.common.XQuery(prolog =

"declare namespace ns0 = \"http://www.example.org/request\";" +

"declare function exprFunction0($requestXML) as xs:boolean {" +

Def ine Cond i t i on in Dec i s ion Node

Designing Your First Business Process 4-7

"(((fn:data($requestXML/ns0:shipAddress/@state) = \"CA\") or

(fn:data($requestXML/ns0:shipAddress/@state) = \"California\")) or

(fn:data($requestXML/ns0:shipAddress/@state) = \"NJ\")) or

(fn:data($requestXML/ns0:shipAddress/@state) = \"New Jersey\")" +

"};")

You are now ready to define the actions on the subsequent paths in the flow.

Related Topic
Defining Conditions for Branching

http://edocs.bea.com/wli/docs102/bpguide/bpguideDecision.html

4-8 Designing Your First Business Process

Designing Your First Business Process 5-1

C H A P T E R 5

Step 4: Invoke a Web Service

In the previous step, you designed a set of conditions for a decision node (Sales Tax Calculation
Needed?). In this step, you learn how to create the activities to be performed when the condition
defined in your decision node (Sales Tax Calculation Needed?) evaluates to true (that is,
shipAddress/state in the XML document received from a client equals CA, California, NJ, or
New Jersey). Specifically, you learn how to design your business process to invoke with a tax
calculation web service through a web service control.

The TaxCalcControl.java web service control is created for you and included in the
Tutorial_Process_Application_Web\requestquote\services folder.

Note: Java controls are server-side components managed by the Workshop framework. They
encapsulate external resources and business logic for use in Workshop applications. They
represent the interfaces between your business process and other resources. The
underlying control implementation takes care of most of the details of the interaction for
you. Controls expose Java interfaces that may be invoked directly from your business
process. You can add an instance of a control to your project and then invoke its methods.

A complete description of how to create a web service and its associated control is
beyond the scope of this tutorial. For more information about creating web services and
creating controls from web services, see the following:

Tutorial: Web Services

“Controls and Transactions” in Using Integration Controls

“Transaction Boundaries” in Guide to Building Business Processes

http://edocs.bea.com/wlw/docs102/guide/webservices/WSTutorial/tutWebSvcIntro.html
http://edocs.bea.com/wli/docs102/controls/controlsTransacts.html
http://edocs.bea.com/wli/docs102/bpguide/bpguideTransaction.html

5-2 Designing Your First Business Process

Invoking a web service control involves the following tasks:

Create Instance of Web Service Control

Call Web Service

Receive Tax Rate from Web Service

Create Instance of Web Service Control
1. Select the Design view.

2. From the WorkSpace Studio menu, choose Window > Show View > Data Palette.

3. Click on the Data Palette tab. A drop-down menu of controls, representing the resources
with which your business process can interact, is displayed.

4. Choose Local Control > TaxCalcControl - requestQuote.services.

5. Accept the default Field Name, and click Finish.

Note: You can also create an instance of the control by dragging it from the Package
Explorer view and dropping it in the Data Palette under the Controls node.

Call Web Service
1. In the Data Palette, expand the taxCalcControl node.

2. Drag the void requestTaxRate(String stateID_arg) method from the Data Palette
view to the Design view, and drop it immediately below the Yes node of the Sales Tax
Calculation Needed? node.

Figure 5-1 Control Send Node

Cal l Web Serv i ce

Designing Your First Business Process 5-3

A Control Send node is created; this node represents an asynchronous call to the tax
calculation web service control. The name of the node is the same as the name of the
method (requestTaxRate) that you selected from the Data Palette view.

Note: This interaction is designed to be asynchronous, meaning that the business process,
after sending a request to the web service, does not wait for a response. It continues
processing and receives a response when the web service completes the request.

3. Double-click the requestTaxRate node. The node builder opens on the General Settings tab.
The control instance and target methods are already selected: taxCalcControl and void
request TaxRate(String stateID_arg) respectively.

4. Select the Send Data tab.

By default, the Send Data tab opens in the Variable Assignment pane. The Control
Expects field indicates the data type (String stateID_arg) that is expected by the
requestTaxRate() method exposed by the taxCalcControl web services.

Note: As you learned in a previous step, Send Data tabs have two modes: Variable
Assignment and Transformation.

In this case, you must switch to the Transformation mode because the data type required
as input for the taxCalcControl control is Java String, whereas the data type of the
variable in which the RFQ message (including the value of shipAddress/state) is
stored, is Typed XML (QuoteRequestDocument, valid against an XML schema).

Note: WLI provides a tool called XQuery Mapper to transform data between heterogeneous
data types. The data transformations that you create using XQuery Mapper are stored
in xq files. You can think of a transformation file as another resource with which your
business process interacts. The files containing the data transformations are built as
controls. The controls expose methods, which business processes can invoke to
transform disparate data types.

5. Select Transformation.

6. Click Select Variable to view the variables in your project, and choose requestXML
(QuoteRequestDocument), which is the variable you created for the Client Request node at
the start of your business process.

7. Click Create Transformation.

An XQuery file is created and opened in the XQuery transformation perspective
automatically.

The design view of the XQuery file shows the elements of the QuoteRequestDocument
XML document in the Source pane and a String element in the Target pane.

5-4 Designing Your First Business Process

8. Select state in the Source pane and drag it to String in the Target pane. A connecting line
appears between the state and String elements, as shown in the following figure. This line
represents a transformation between the two data types.

Figure 5-2 Data Transformation

9. Save the xq file.

An XQuery file (RequestQuotetaxCalcControlrequestTaxRate.xq) and a
transformation control file (RequestQuoteTransformation.java) are created. Both files
are displayed in the Package Explorer view. In addition, an instance of the transformation
control is created and shown under transformations in the Data Palette (Controls folder).

10. Switch to the process by selecting the RequestQuote.java tab, and revert to the process
perspective.

11. Click Close to close the Request Tax Rate node builder.

You have now finished designing the requestTaxRate node.

Receive Tax Rate from Web Service
The interaction between the business process and the tax calculation control is asynchronous,
which means that the business process can continue performing other work while the tax
calculation service prepares its response. The tax calculation service notifies the business process
when the response is ready.

In the preceding section, you designed a call to the tax calculation web service (through a
control).

Rece ive Tax Rate f rom Web Serv ice

Designing Your First Business Process 5-5

To add the logic in your business process for receiving the tax rate returned by the tax calculation
control, complete the following steps:

1. Switch to the Process perspective.

2. In the Data Palette, expand the taxCalcControl node to view the list of methods available
for the control.

3. Drag the void returnTaxRate(float taxRate_arg) method from the Data Palette to
the Design view and drop it in the Sales Tax Calculation Needed? node immediately below
the requestTaxRate node.

A Control Receive node is created representing an asynchronous response from the tax
calculation web service control. The name of the node is the same as the name of the
method (returnTaxRate) that you selected from the Data Palette.

Figure 5-3 Control Receive Node

4. Double-click the returnTaxRate node.

The node builder opens in the General Settings tab. The control instance and target
methods are already selected: taxCalculation and returnTaxRate(float
taxRate_arg) respectively.

5. Select the Receive Data tab. The tab opens in the Variable Assignment mode.

The Control Returns field indicates the data type and name of the parameter returned by
the returnTaxRate() method of the taxCalculation control.

6. From the Select variables to assign drop-down list, select Create new variable....

5-6 Designing Your First Business Process

The Create Variable dialog box is displayed.

7. In the Variable Name field, enter taxRate.

8. On the Simple tab, expand Primitives and then select float.

9. In the Default value field, enter 0 (zero). This initializes the value of taxRate to zero.

Figure 5-4 Create Variable Dialog Box

10. Click OK.

The new variable to which the sales tax rate is assigned at run time is created and shown as
a Java variable under Variables in the Data Palette view.

11. Click Close to close the node builder.

You have now finished designing the returnTaxRate node and the activities to be
performed by the business process when the condition in the Decision node evaluates to
true.

In the Design view, the business process appears as shown in the following figure.

Rece ive Tax Rate f rom Web Serv ice

Designing Your First Business Process 5-7

Figure 5-5 Graphical View of Business Process

Note: The start node icon changed from (indicating a stateless business process) to
(stateful) after you added the asynchronous call to the web service control.

To see whether the process is stateless or stateful, select the start node, and look for
the stateless property in the JPD Configuration view.

For more information about stateful and stateless business processes, see “Building
Stateless and Stateful Business Processes” in Guide to Building Business Processes.

To understand why the property of the process changed from stateless to stateful, see
“Transaction Boundaries”.

12. From the WorkSpace Studio menu, choose File > Save All.

http://edocs.bea.com/wli/docs102/bpguide/bpguideTransaction.html
http://edocs.bea.com/wli/docs102/bpguide/bpguideState.html
http://edocs.bea.com/wli/docs102/bpguide/bpguideState.html

5-8 Designing Your First Business Process

No further design is required for this decision node.

If the condition evaluates to true, the Yes path is executed and the tax rate for the RFQ is
calculated.

If the condition evaluates to false, the No path is executed and a value of zero is assigned
to taxRate because the variable was initialized to zero when it was created.

Related Topics
Using Integration Controls

Transforming Data Using the XQuery Mapper

http://edocs.bea.com/wli/docs102/controls/index.html

Designing Your First Business Process 6-1

C H A P T E R 6

Step 5: Run the Business Process

To run and test the business process that you created, complete the following steps:

1. If WebLogic Server (WLS) is not already running, choose Window > Show View > Other >
Server > Servers from the WorkSpace Studio menu, and click OK.

The Server view is displayed. If no server is defined, the view is empty.

2. In the Package Explorer view, right-click on RequestQuote.java, and choose Run As >
Run On Server.

The Run On Server wizard is displayed.

3. Select Manually define a new server (if there is no server defined) and click Next.

Note: If one or more servers are already defined, you can select Choose an existing server.

The BEA WebLogic Server v10.2 dialog box is displayed.

4. Click Browse adjacent to the Domain home field, and select the samples integration domain
directory from BEA_HOME\wlserver_10.0\samples\domains\integration, where
BEA_HOME represents the directory in which you installed WLI.

5. Click Finish.

The server is started, and the RequestQuote application is deployed on it. The status of the
server changes to Started in the Servers view.

After the application is deployed, the test browser is displayed.

6. Select the Test Form tab.

6-2 Designing Your First Business Process

7. Click the Browse... button adjacent to the xml requestXML (file value) field.

8. Select the Tutorial_Process_Application_Web\src\testxml\QuoteRequest.xml
file.

9. Click the quoteRequest button to start the business process.

Note: The label of the button reflects the name of the start method in the business process.

Figure 6-1 Test Form

The Test Form tab refreshes to display a summary of your request parameters and the
responses from the web service in the Message Log.

Figure 6-2 Message Log - Initial

10. Click Refresh to refresh the entries in the log until this instance of the business process
completes running.

Figure 6-3 Message Log - Refreshed

Designing Your First Business Process 6-3

11. Entries displayed in the message log correspond to the methods in the business process:

– The quoteRequest method that starts the business process.

– A call from your business process to the taxCalculation web service:
taxCalcControl.requestTaxRate.

– A response from the taxCalculation web service to your business process:
taxCalcControl.returnTaxRate.

– Instance ID: When the business process finishes, a message similar to the following is
displayed in the message log:

Instance instanceID is Completed.

instanceID is the ID that is generated when the quoteRequest method in your
business process was called.

You can click any of the methods in the message log to view the details of the call. For
example, if you click quoteRequest, the Service Request panel displays the XML
message sent by the client (you) when the method was called.

If you click taxCalcControl.returnTaxRate, you can view the response from the
taxCalculation service.

Figure 6-4 Message Log with Details

In the sample XML message that you used, state is NJ. So the process executes the Yes
branch of the Sales Tax Calculation Needed? node.

6-4 Designing Your First Business Process

The following code segment shows the rate of sales tax returned for this test XML
message.
<returnTaxRate xmlns="http://www.openuri.org/">

<taxRate>0.08</taxRate>

</returnTaxRate>

By following these steps, you ran and tested a simple business process, which contains a Start
node and a Decision node, and includes an asynchronous call to a web service through a control.

Subsequent steps in this tutorial build on the business process that you have created so far.

Note: For information about the other features of the test browser, see “Additional
Functionality in Test Browser” on page 14-5.

Designing Your First Business Process 8-1

C H A P T E R 7

Step 6: Invoke a Business Process

Process controls are used to send requests to and receive responses from other business processes
in the same domain using Java/RMI. This scenario demonstrates a typical use case for a process
control – to call a subprocess from a parent business process.

In this part of the tutorial, you change the design of the business process you created in the
previous part, to take advantage of a tax calculation service provided by a business process
instead of using the tax calculation web service you used earlier. You can do this by first creating
a process control from the tax calculation business process. Then, you simply change the control
nodes in such a way that instead of communicating with the tax calculation web service through
the web service control, the nodes communicate with the tax calculation business process
through the new process control.

The tasks in this step include:

Create Process Control for Tax Calculation Process

Change Control Send Node to Interact with Process Control

Change Control Receive Node to Interact with Process Control

Test Request Quote Process

8-2 Designing Your First Business Process

Create Process Control for Tax Calculation Process
1. Open RequestQuote.java in the Package Explorer view.

2. If the Data Palette view is not visible, choose Window > Show View > Data Palette.

Instances of controls that are already available in your project are displayed in the
Controls folder of the Data Palette view.

3. Select the Controls folder, and click to display a drop-down list of controls that represent
the resources with which your business process can interact.

4. Choose Integration Controls > Process.

The Insert Control: Process dialog box is displayed.

5. In the Field Name field, enter taxCalcProcess as the name for the instance of the process
control that you creating, and click Next.

6. In the Create Control dialog box, enter TaxCalculationProcess in the Name field, and
click Next.

7. In the Insert Control - Process dialog box, click Browse... and select
/Tutorial_Process_Application_Web/src/requestquote.services/TaxCalcProc

ess.java.

This Java file is a simple business process that calculates the sales tax for an RFQ.

The start method for TaxCalcProcess.java (requestTaxRate) is displayed in the Start
Method field.

8. Click Finish.

The process control (TaxCalcControl.java) is created and displayed in the Package
Explorer view. An instance of the control (taxCalcProcess) is added to the Data
Palette. The Controls area in the Data Palette view now resembles the following figure:

Figure 7-1 Controls in Data Palette

Change Cont ro l Send Node to In te ract w i th P rocess Cont ro l

Designing Your First Business Process 8-3

Change Control Send Node to Interact with Process
Control

1. In the Data Palette, click + beside taxCalcProcess under the Controls folder to expand the
list of methods on the control.

2. Drag the void requestTaxRate (QuoteRequestDocument quoteRequest) method
from the Data Palette to the Design view and drop it on the requestTaxRate node in the
RequestQuote.java process.

The following message is displayed:
This Control node is already associated with a control method. Do you
wish to replace this control method?

3. Click OK.

The requestTaxRate node changes to reflect the type of control with which it is now
associated. The node changes as follows:

Figure 7-2 Change in Node After Associating Control

4. Double-click the requestTaxRate node to open its node builder.

5. In the General Settings tab, confirm that taxCalcProcess is selected in the Control field
and that the following method is selected in the Method field:

void requestTaxRate(QuoteRequestDocument quoteRequest)

6. Select the Send Data tab.

By default, the Variable Assignment option is selected, and the Control Expects field
contains QuoteRequestDocument quoteRequest, indicating the format and type of the
message that the tax calculation process requires.

Note: The tax calculation process requires a message of XML type
QuoteRequestDocument – the same type as the requestXML variable to which the
XML message sent from a client to the RequestQuote.java process is assigned.
Unlike the scenario for sending data to the tax calculation web service in Chapter ,
“Step 4: Invoke a Web Service,” no transformation is required on this node; you can
create a direct variable assignment.

8-4 Designing Your First Business Process

7. In the Select variables to assign field, and select requestXML(QuoteRequest).

8. Click Close.

This step completes the procedure to change your business process to call the tax
calculation business process instead of the tax calculation web service.

Change Control Receive Node to Interact with Process
Control

1. In the Data Palette, click + beside taxCalcProcess under the Controls folder to expand the
list of methods on the control.

2. Drag the void returnTaxRate(float salesTaxRate) method from the Data Palette to
the Design view and drop it on the returnTaxRate node in the RequestQuote.java process.

The following message is displayed:
The Control node is already associated with a control method. Do you
wish to replace this control method?

3. Click OK.

The returnTaxRate node changes to reflect the type of control with which it is now
associated.

4. Double-click the returnTaxRate node.

5. In the General Settings tab, confirm that taxCalcProcess is selected in the Control field and
that the following method is selected in the Method field:

void returnTaxRate(float salesTaxRate)

6. Select the Receive Data tab.

The Variable Assignment option is selected by default, and the Control Returns field
contains float salesTaxRate, indicating the type and name of the parameter expected to be
returned by the tax calculation process.

7. In the Select variables to assign field, and select taxRate (float).

8. Click Close.

This step completes the procedure to change the callback handler to receive a message
from the tax calculation business process instead of from the tax calculation web service.

9. From the WorkSpace Studio menu, choose File > Save All.

Test Request Quote P rocess

Designing Your First Business Process 8-5

Test Request Quote Process
You can run and test the business process, which now contains an asynchronous call to another
business process in the same way that you tested the business process in the previous part.
Perform steps 1 through 7 of Step 5: Run the Business Process.

When you start the operations in the Test Form page, the Message Log refreshes to display a
summary of the calls to, and responses from, the tax calculation business process.

Figure 7-3 Message Log

Entries in the message log correspond to the methods in your business process:

The quoteRequest method that starts the business process.

A call from the RequestQuote business process to the taxCalcProcess business process:
taxCalcProcess.requestTaxRate. Note that, in this case, the entire XML document
(contained in the requestXML variable) is passed to the subprocess. This is different from
when the business process called the tax calculation web service; in that case, only the
state field was passed to the web service.

A response from the taxCalcProcess business process to your RequestQuote business
process: taxCalcProcess.returnTaxRate. Note that instead of the tax rate being
returned in a web services SOAP envelope, as it was in the return from the web service,
the process control returns the raw float value (0.08).

The Instance ID represents the ID that was generated when the quoteRequest method in
the business process was called.

8-6 Designing Your First Business Process

Designing Your First Business Process

Part IIAdd Complex
Business Logic

In this part of the tutorial, you add more complex business logic to the business process that you
designed and tested earlier. This part of the tutorial consists of the following steps:

Chapter , “Step 7: Loop Through Items in a List”

You extract a list of items from the RFQ document received from a client and perform a set of
activities once for each item in the list.

Chapter , “Step 8: Design Parallel Paths of Execution”

You design your business process to execute tasks in parallel. This step also includes instructions
for designing your business process to interact with resources through controls and transform the
data exchanged with those controls, as required.

Chapter , “Step 9: Create Quote Document”

You learn how to transform the price and availability data from untyped XML data to typed
XML, and then combine the price and availability data (that is returned to the business process
from several external services) in a single quote document.

Chapter , “Step 10: Write Quote to File System”

You learn how to write business process data to a log by using a file control.

Chapter , “Step 11: Send Quote From Business Process to Client”

Chapter , “Step 12: Run RequestQuote Business Process”

Designing Your First Business Process 9-1

C H A P T E R 8

Step 7: Loop Through Items in a List

In this step of the tutorial, you create the logic to extract a list of items from the RFQ received
from a client, and begin designing the business process to determine the price and availability of
the items requested by the client.

A For Each node represents a point in a business process where a set of activities is performed
repeatedly, once for each item in a list. A For Each node includes the following:

An iterator node in which a list of items is specified

A loop in which the activities to be performed for each item in the list are defined

An iteration variable holds the current element being processed in the For Each loop, for the life
of the loop.

The following section gives you a brief overview of XML schemas. Read this section before you
proceed with designing the For Each node in your business process.

Overview of XML Schemas
The business process that you create in this tutorial is designed to start when it receives an RFQ
(in the form of an XML file) from a client. The RFQ must contain valid XML, that is, XML data
valid against an XML schema (QuoteRequest.xsd in this case).

The QuoteRequest.xsd schema is available in your application at the following location:
Tutorial_Process_Application_Utility\Schemas.

9-2 Designing Your First Business Process

Note: To make the schemas in your project available in the business process, you must place
them in a Schemas folder in Tutorial_Process_Application_Utility (utility
project).

For more information, see “Creating and Importing Schema Files” in Transforming Data Using
XQuery.

XML schemas in your application’s Schemas folder are compiled to generate XML Beans. In this
way, BEA Workshop generates a set of interfaces that represent different aspects of your XML
schemas. XML Bean types correspond to types in the XML schema itself. XML Beans provide
Java counterparts for all built-in schema types, and generate Java counterparts for any derived
types in your schema.

In Step 2: Specify How the Process Is Started, you created a variable (requestXML) to which the
RFQ document (that your business process receives from a client) is assigned. When you work
with such variables in the Design view, you work with a graphical representation of the XML
schema that is associated with the variable.

The following figure is a graphical representation of the quoteRequest element in the
QuoteRequest.xsd schema against which the RFQ document from clients is valid:

Figure 8-1 Graphical Representation of XML Schema

Note the following characteristics of the QuoteRequest.xsd schema:

The elements and attributes of the XML schema are represented as nodes.

The root element is quoteRequest. It specifies the following child elements:
customerName, shipAddress, and widgetRequest.

The shipAddress element specifies the following attributes: street, city, state, and
zip.

http://edocs.bea.com/wli/docs102/dtguide/dtguideMapper.html
http://edocs.bea.com/wli/docs102/dtguide/dtguideMapper.html

Des ign “Fo r Each” Loop

Designing Your First Business Process 9-3

The widgetRequest element is a repeating element (represented graphically by). In
other words, there can be one or more occurrences of the widgetRequest element in an
associated XML document. The widgetRequest element, in turn, contains two elements:
widgetId and quantity.

The business process in this scenario dictates that each pair of widgetId and quantity elements
received in the RFQ documents from clients is processed. This processing begins with a For
Each node. In each iteration through the For Each loop, one widgetRequest item must be
extracted from the requestXML variable, and an activity (or a set of activities) must be performed
on that item.

Design “For Each” Loop
Creating the logic for your business process to iterate over the sequence of items in the RFQ
document involves the following tasks:

Add “For Each” Node

Select Repeating XML Element to be Iterated

9-4 Designing Your First Business Process

Add “For Each” Node
1. In the Design view, drag the For Each node () from the Node Palette to the RequestQuote

business process and drop it immediately after the Sales Tax Calculation Needed?
(Decision) node.

2. Press Enter to accept the default name: For Each.

The business process now has a For Each node, as shown in the following figure.

Figure 8-2 “For Each” Node

Des ign “Fo r Each” Loop

Designing Your First Business Process 9-5

Select Repeating XML Element to be Iterated
1. Double-click the For Each node.

2. In the node builder, click Select Variable.

A list of the variables (typed XML) in your project is displayed.

3. Select requestXML (QuoteRequestDocument).

The requestXML variable contains the repeating XML element for which you want to
design the iteration logic. A representation of the XML schema in the requestXML
variable is displayed in the Select Node pane.

Figure 8-3 XML Schema Displayed in “Select Node” Pane

4. In the Select Node pane, select widgetRequest.

The Repeating element and Iteration Variable fields are filled with the following data:

– Repeating element: Contains the following XPath expression, which when applied on
the incoming XML document, returns the set of repeating XML elements:

$requestXML/ns0:widgetRequest

– Iteration Variable: Contains the name of an iteration variable: iter_forEach1.

At run time, the current element being processed in the For Each loop is assigned to
the iteration variable.

5. Click Close to close the node builder.

The iteration variable, iter_forEach1, is created and added to the list of variables in the
Data Palette. It is of XML type WidgetRequestDocument.WidgetRequest.

For information about how the iteration variable is used in the For Each loop, see “Design
“Create PriceList” Node” on page 10-9.

9-6 Designing Your First Business Process

This step completes the design of the iteration logic for your For Each node.

The node is updated in the Design view to reflect the work you did to define the condition.

Figure 8-4 Updated “For Each” Node

The icon indicates that an XML query is defined for the node.

After you create the iteration logic in the For Each node, you must define the activity or set of
activities to be performed during each iteration.

You add activities to the For Each loop by creating nodes within it to support your business logic.
In Step 8: Design Parallel Paths of Execution, you create a Parallel node and design it so that the
business process executes two sets of activities in parallel: request for price, and determination
of availability for the items requested by the client.

Related Topics
Business Process Variables and Data Types

Looping Through Items in a List

Grouping Nodes in Your Business Process

http://edocs.bea.com/wli/docs102/bpguide/bpguideForEach.html
http://edocs.bea.com/wli/docs102/bpguide/bpguideGroups.html
http://edocs.bea.com/wli/docs102/bpguide/bpguideDataTypes.html

Designing Your First Business Process 10-1

C H A P T E R 9

Step 8: Design Parallel Paths of
Execution

In the previous step, you created a For Each loop to iterate through a set of repeating elements
in an RFQ document. In this step, you design the activities to be performed within each iteration
of the For Each loop.

When your business process interacts with multiple systems, as is the case for price and
availability processing in this scenario, you can use Parallel nodes to create two or more parallel
branches of execution.

Note: Parallel branches of execution in a business process are logically parallel; physically, the
branches are executed serially. Business processes benefit from this logical parallelism
when communication with external systems involves waiting for responses from those
external systems. While one branch of execution is waiting for a response, another branch
of execution in the parallel flow can progress.

For more information, see Creating Parallel Paths of Execution in Guide to Building
Business Processes.

In our example scenario, the business process must determine both price and availability
information so that a quote can be prepared and returned to the client. This business process can
benefit from parallelism because it communicates with two external systems: one each for price
calculation and availability calculation. The business process expects a response from each of the
external systems.

The external systems can be any resource – other business processes, web services, EJBs,
databases, file systems, and so on – that returns the information your business process requires.
Business processes interact with the resources through controls.

http://edocs.bea.com/wli/docs102/bpguide/bpguideParallelDesign.html

10-2 Designing Your First Business Process

This tutorial uses two web services: one returns the price for each widgetID specified in the
client’s RFQ document; a second service returns availability information based on the widgetID
and the quantity specified in the request document.

The controls with which the business process interacts are provided in the
\Tutorial_Process_ApplicationWeb\requestquote.services folder. The controls are
PriceProcessor.java and AvailProcessor.java.

Create Parallel Node
1. Make sure that your business process (RequestQuote.java) is displayed in the Design

View.

2. Drag the Parallel node () from the Node Palette to the Design view, and drag it inside the
For Each loop.

3. Press Enter to retain the default name: Parallel.

The Design view is updated as shown in the following figure:

Figure 9-1 Updated Design View

4. Change the names of the branches within the Parallel node to identify the activities that your
business process executes in parallel:

– Change the name of the left branch to Get Price.

– Change the name of the right branch to Get Availability.

Create Log ic to Assemble P r i ce and Ava i lab i l i t y Data

Designing Your First Business Process 10-3

By default, Parallel nodes specify an AND join condition, represented by the icon at
the intersection of the parallel branch lines, indicating that the activities on all the branches
must be completed for execution to proceed to the next node after the parallel node.

For this business process, since both price calculation and availability checking must be
completed before proceeding to the next node, leave the AND join condition as is.

Note: If an OR join condition is specified, when the activities on one branch are completed,
execution of activities on all the other branches terminates, and the flow of execution
proceeds to the node following the parallel node. The OR join condition is
represented by the icon in the Design view.

In the Design view, you can view and edit the join condition property in the JPD
Configuration view.

Create Logic to Assemble Price and Availability Data
In this section, you learn how to do the following:

Invoke the price and availability services (through controls) from the parallel branches you
created.

Design callbacks on your branches to wait for and handle responses from the controls.

Construct an XML document, to which response data from the controls is appended for
each iteration through the For Each loop.

Note: Review your business process in Design View: your Parallel node is within the For
Each loop, meaning that the flow of execution is through the Parallel node for each
iteration through the loop.

To design the Parallel node to interact with the price and availability web services, complete the
following tasks:

Create Instances of PriceProcessor and AvailProcessor Controls

Add Control Nodes in Business Process

Design Activities on Get Price Branch

Design Activities on Get Availability Branch

10-4 Designing Your First Business Process

Create Instances of PriceProcessor and AvailProcessor
Controls
The PriceProcessor.java and AvailProcessor.java controls are available in the
Tutorial_Process_Application_Web\src\requestquote.services folder in the
Package Explorer view.

The goal of this section is to create the appropriate controls in your application and then design
the communication between the business process and the controls.

1. Click in the Data Palette.

A list of controls, which represent the resources with which your business process can
interact, is displayed.

2. Choose Local Controls > priceProcessorControl - requestquote.Services.

The Insert Control dialog box is displayed.

3. Enter priceProcessor in the Field Name field and click Finish.

4. Similarly, create an instance of availProcessor.

The priceProcessor and availProcessor web service control instances are added to
the Data Palette:

Add Control Nodes in Business Process
You learned earlier in the tutorial that you can create control nodes in your business process by
dragging the methods for the appropriate control from the Data Palette to the business process
in the Design view.

You can also create control nodes by dragging Control Send, Control Receive, or Control Send
with Return from the Node Palette to the business process. You subsequently bind the
appropriate methods to the control node you created. This is the approach that you use in this
section.

Add the following nodes from the Node Palette to each branch of the parallel node:

Control Send

Control Receive

Control Send with Return

Create Log ic to Assemble P r i ce and Ava i lab i l i t y Data

Designing Your First Business Process 10-5

Drag each of the listed nodes from the Node Palette to the Design view, and drop the node on
parallel branches.

The resulting business process is as shown in the following figure.

Figure 9-2 Parallel Node with Controls on Each Branch

In this way, each branch is designed for the following flow of execution:

1. Call a resource (through a control) from the Control Send node.

2. Wait for a response from the control at the Control Receive node.

3. Make a synchronous call to a control at the Control Send with Return node. At this node,
you call a transformation that constructs an XML document. The response data from controls
is appended to this XML document for each iteration through the For Each loop.

10-6 Designing Your First Business Process

Design Activities on Get Price Branch
1. Rename the three control nodes on the Get Price Branch (in the order in which they are

executed) to Request Price, Receive Price, and Create PriceList respectively.

2. Complete the following tasks:

– Design “Request Price” Node

– Design “Receive Price” Node

– Design “Create PriceList” Node

Design “Request Price” Node
1. Double-click the RequestPrice node.

The node builder opens on the General Settings tab.

2. In the Control field, select priceProcessor.

The Method panel shows a list of the asynchronous send methods that you can invoke on
the priceProcessor.

3. Select the void getPrice(int itemID_arg) method.

4. Select the Send Data tab.

By default, the Send Data tab opens on the Variable Assignment pane. The Control
Expects field contains the data type (int itemID) that is expected by the getPrice()
method exposed by the priceProcessor web service.

Note: The priceProcessor web service takes the ID of the item requested as the input and
returns the price of the item.

5. Switch to the Transformation mode in the Send Data tab.

Figure 9-3 Transformation Mode

Note: This step is necessary because the data type required as input for priceProcessor is
int, whereas the iter_forEach1 variable, which holds the value of widgetId in

Create Log ic to Assemble P r i ce and Ava i lab i l i t y Data

Designing Your First Business Process 10-7

the For Each loop, is of type XML (WidgetRequestDocument is valid against an
XML schema).

6. Click Select Variable and choose iter_forEach1 (widgetRequest).

7. Click Create Transformation.

The transformation tool opens and displays a representation of the iter_forEach1
(widgetRequest) variable in the Source pane, and int in the Target pane.

8. Click widgetID in the Source pane and drag the mouse pointer to int in the Target pane.

A connecting line is drawn between the widgetID and int elements. The line represents the
transformation between the two data types.

Figure 9-4 Data Transformation

As you draw the mapping line, the following warning is displayed:

The datatype of the source node: [widgetId] and target node: [int] do not
match, a type conversion will be applied.

Note: This transformation creates a new method under
RequestQuoteTransformation.java, which was created in your project and
prebuilt in the tutorial application. It is available in the
Tutorial_Process_Application_Web\requestquote folder. A new XQ file
called RequestQuotepriceProcessorGetPrice.xq, which contains the query for
this transformation method, is also created.

9. In the Navigation pane, click RequestQuote.java to return to your process.

10. Click Close to close the Request Price node builder.

This step completes the design of the Request Price node.

Design “Receive Price” Node
1. Double-click the Receive Price node to open its node builder. The node builder opens on the

General Settings tab.

2. In the Control field, select priceProcessor.

3. The Method panel contains a list of the asynchronous receive methods for priceProcessor.

10-8 Designing Your First Business Process

Select void returnPrice(int itemID_arg, float price_arg).

4. Click Receive Data.

The Control Returns field shows the data types returned by the returnPrice(int
itemID, float price) method on the priceProcessor web service.

The priceProcessor web service takes itemID (an int value) as input and returns an
int value for the item ID and a float value for the price.

Next, you must switch from the Variable Assignment mode to the Transformation mode
because the data returned by the priceProcessor web service must be assigned to a
typed XML variable. To do this, your process must transform the Java data types returned
from the priceProcessor web service to typed XML.

5. Select Transformation.

The Receive Data tab is displayed as shown in the following figure.

6. Click Select Variable, then Create new variable....

The Create Variable dialog box is displayed.

7. In the Variable Name field, enter price.

8. Select the XML tab.

9. Expand the Typed node (by clicking the + symbol adjacent to it), and progressively expand
the nodes up to schemas.

10. Under the schemas node, expand PriceQuote.xsd, and select priceRequest.

The Type Name field shows org.example.price.PriceRequestDocument.

11. Click OK.

Create Log ic to Assemble P r i ce and Ava i lab i l i t y Data

Designing Your First Business Process 10-9

12. The Create Variable dialog box closes and the new variable is displayed in the Receive Data
tab. It is also listed as an XML Type variable in the Data Palette.

13. On the Receive Data tab, click Create Transformation. The transformation tool opens and
displays a representation of the itemID and price variables in the Source pane, and the
price variable in the Target pane.

14. Map itemID_arg to widgetId and price_arg to price, as shown in the following figure.

Note: This transformation creates a new method under
RequestQuoteTransformation.java in the
Tutorial_Process_Application_Web\requestquote folder. A new XQ file,
which contains the query for this transformation method, is also created.

15. Double-click RequestQuote.java in the Package Explorer to return to your business
process.

16. Click Close in the Receive Price node builder.

This step completes the design of the Receive Price node.

Design “Create PriceList” Node
In this step, you use a transformation control (PriceAvailTransformations) provided in your
project to append the price data returned from the priceProcessor control (on each iteration
through the For Each loop) to a single variable.

Previously, when you designed nodes in the business process, you created transformation
methods on a transformation, as necessary, to map the data your business process sent to or
received from clients and controls. In this case, you also use a transformation, but in a different
way. In the case of the Create PriceList node, the data is not sent to a client or control. Instead,
the transformation takes typed XML data as input from your business process, and returns
untyped XML (XmlObject) data. The business process must append the data returned on every
iteration of the For Each loop to a single variable, thus creating a repeating sequence of XML
data. A variable that can hold this type of repeating sequence of XML data in a For Each loops
is of type XmlObjectList. Both typed and XmlObject variables can be appended to variables
of type XmlObjectList.

For more information, see “XmlObjectList Data Type” on page 10-16.

10-10 Designing Your First Business Process

Note: This transformation is prebuilt for you in the tutorial application. It is available in the
Tutorial_Process_Application_Web\requestquote folder. A description of how
to create the PriceAvailTransform.java file is beyond the scope of this tutorial.

Create Instance of PriceAvailTransformations Control

1. If the Data Palette pane is not visible in BEA Workshop, choose Windows > Show View >
Data Palette from the menu bar.

2. In the Package Explorer view, select the PriceAvailTransformations.java file, and drag it
to the Controls area of the Data Palette. An instance of the control
(priceAvailTransformations) is created and displayed in the Data Palette.

Design Interaction of Create PriceList Node with the Transformation

1. In the Data Palette, expand the priceAvailTransformations control instance.

2. Select the following method:

XmlObject convertPriceXMLtoXMLObj
(org.example.price.PriceRequestDocument _priceRequestDoc)

3. Drag the method from the Data Palette and drop it on the Create PriceList node in the
Design view. The Create Price List node changes to reflect the binding of the method, as
shown in the following figure.

Figure 9-5 Change in Node After Binding Method

4. Double-click the Create PriceList node.

The node builder opens on the General Settings tab.

5. Confirm that the method that you bound to the node is selected:

6. Click Send Data in the node builder.

The Control Expects field contains the data type and name of the parameter expected by
the convertPriceXMLtoXMLObj() method on the priceAvailTransformations
control: PriceRequestDocument _priceRequestDoc.

7. In the Select variable to assign field, select price (PriceRequestDocument).

Create Log ic to Assemble P r i ce and Ava i lab i l i t y Data

Designing Your First Business Process 10-11

In this case, note that the data type of the price variable (PriceRequestDocument)
matches that of the data expected by priceAvailTransformations.

8. Click Receive Data to open the third tab in the node builder.

The Control Returns field contains the data type of the parameter returned by the
convertPriceXMLtoXMLObj() method on the priceAvailTransformations control:
XmlObject.

Note: An XmlObject is a Java data type that specifies data in untyped XML format (data
that is not valid against any XML schema).

9. In the Select variable to assign field, select Create new variable....

The Create Variable dialog box is displayed.

10. In the Variable Name field, enter priceList.

11. Select the XML tab to display a representation of the XML data types in your application.

XmlObject is selected by default. You must change this selection in the following step.

12. Select XmlObjectList and click OK.

13. In the Receive Data tab, select priceList(XmlObjectList) from the Select variables to
assign drop-down list.

The priceList variable is created and assigned to receive the XmlObject data returned
by the priceProcessor service.

14. Click Close to close the Create PriceList node builder.

This step completes the design of the Get Price branch on the Parallel node in your
business process.

At run time, by executing this branch, your business process appends the XmlObject,
which contains the data returned by the priceProcessor control during the current
iteration through the For Each loop, to the priceList variable.

15. From the WorkSpace Studio menu, select File > Save All.

Design Activities on Get Availability Branch
1. Rename the three nodes on the Get Availability branch (in the order in which they are

executed) to Request Availability, Receive Availability, and Create AvailList respectively.

2. Complete the following tasks:

10-12 Designing Your First Business Process

– Design “Request Availability” Node

– Design “Receive Availability” Node

– Design “Create AvailList” Node

Design “Request Availability” Node
1. Double-click the Request Availability node. The node builder opens on the General

Settings tab.

2. In the Control field, select availProcessor.

3. The Method panel shows a list of the asynchronous send methods that you can invoke on the
availProcessor control.

Select void getAvail(int itemID_arg, int quantity_arg).

4. Click Send Data in the node builder.

By default, the Send Data tab opens on the Variable Assignment pane. The Control
Expects field shows the data types and names of the parameters expected by the
getAvail() method exposed by the availProcessor web service: int itemID and int
quantity.

Note: The availProcessor web service takes the item ID (int) and quantity (int) as input.
It returns the item ID (int), quantity available (int), a boolean to indicate whether the
items are available in stock, and a ship date (String).

5. Select Transformation to switch modes in the Send Data tab.

Note: In this case, you must switch modes because the data that you provide as input to
availProcessor must be transformed. The availProcessor control requires int
data types as input, whereas the iter_forEach1 variable, which holds the value of
widgetId and quantity in the For Each loop, is a typed XML variable
(WidgetRequestDocument is valid against an XML schema).

6. Click Select Variable and choose iter_forEach1 (WidgetRequest).

7. Click Create Transformation.

The transformation tool opens and displays a representation of the iter_forEach1
variable in the Source pane, and the integer arguments to the availProcessor
transformation method in the Target pane.

8. Map the elements in the Source pane to the elements in the Target pane, as follows:

Create Log ic to Assemble P r i ce and Ava i lab i l i t y Data

Designing Your First Business Process 10-13

– widgetID to itemID_arg

– quantity to quantity_arg

Note: This transformation creates a new method under the
RequestQuoteTransformation.java. It is available in the
Tutorial_Process_Application_Web/requestquote folder. A new XQ file,
which contains the query for this transformation method, is also created.

9. Select RequestQuote.java in the Package Explorer to return to your process.

10. Click Close to close the Request Availability node builder.

This step completes the design of the Request Availability node.

Design “Receive Availability” Node
1. Double-click the Receive Availability node. The node builder opens on the General Settings

tab.

2. In the Control field, select availProcessor.

3. The Method panel shows a list of the asynchronous receive methods for availProcessor.

4. Select the following method:

void avail(int itemID_arg, int qty_arg, boolean avail_arg, String
date_arg)

5. Click Receive Data to open the second tab in the node builder.

The Control Returns fields are populated with the data types and names of the parameters
returned by the avail() method on the availProcessor web service.

Note: In this case, you must switch from the Variable Assignment mode to the
Transformation mode on the Receive Data tab because the data returned by the
availProcessor web service must be assigned to a typed XML variable. For this,
your process must transform the Java data types returned to typed XML data.

6. Click Transformation.

7. Click Select Variable, and then Create new variable....

The Create Variable dialog box is displayed.

8. In the Variable Name field, enter avail.

9. Select the XML tab.

10-14 Designing Your First Business Process

10. Expand the Typed node (by clicking the + symbol adjacent to it), and progressively expand
the nodes up to schemas.

11. Under the schemas node, expand AvailQuote.xsd, and select availRequest.

The Type Name field shows org.example.avail.AvailRequestDocument.

12. Click OK.

The Create Variable dialog box is closed and your new variable is created and listed as an
XML type variable in the Data Palette.

13. In the Receive Data of the node builder, click Create Transformation to open the
transformation tool, which displays a representation of the data types returned by
availProcessor in the Source pane, and the avail variable in the Target pane.

14. Map the Source values to the Target elements as follows:

– itemID_arg to widgetId

– qty_arg to requestedQuantity

– avail_arg to quantityAvail

– date_arg to shipDate

Note: This transformation creates a new method under the
RequestQuoteTransformation.java in the
requestquote\Tutorial_Process_Application_Web folder. A new XQ file,
which contains the query for this transformation method, is also created.

15. Choose File > Save All.

16. Click RequestQuote.java in the Package Explorer to return to your business process.

17. To close the Receive Availability node builder, click Close.

This step completes the design of the Receive Availability node.

Design “Create AvailList” Node
In this step, you call a method on the priceAvailTransformations control to append
availability data to a single variable of type XmlObjectList.

Note: For more information about the XmlObjectList data type, see “XmlObjectList Data
Type” on page 10-16.

Create Log ic to Assemble P r i ce and Ava i lab i l i t y Data

Designing Your First Business Process 10-15

1. Expand the priceAvailTransformations control instance in the Data Palette and select
the XmlObject convertAvailXMLtoXMLObj() method.

2. Drag the method from the Data Palette and drop it on the Create AvailList node in the
Design view. The Create AvailList node changes to reflect the binding of the method.

Figure 9-6 Change in Node After Binding Method

3. Double-click the Create AvailList node. The node builder is displayed.

4. Confirm that the priceAvailTransformations control is selected in the Control field, and
that the method you dragged onto the node is selected in the Method field:

5. Click Send Data to open the second tab in the node builder.

The Control Expects field contains AvailRequestDocument, which is the data type
expected by the convertAvailXMLtoXMLObj() method on the
priceAvailTransformations control.

6. In the Select variable to assign field, select avail (AvailRequestDocument).

In this case, note that the data type of the avail variable (AvailRequest) matches that of
the data expected by the priceAvailTransformations control.

7. Click Receive Data in the node builder.

The Control Returns has XmlObject, which is the data type returned by the
convertAvailXMLtoXMLObj() method on the priceAvailTransformations control.

Note: XmlObject is a Java data type that specifies data in untyped XML format (data that
is not valid against any XML schema)

8. In the Select variable to assign field, select Create new variable....

The Create Variable dialog box is displayed.

9. In the Variable Name field, enter availList.

10. Select the XML tab to display a representation of the XML data types in your application.

11. Select XmlObjectList under Untyped, then click OK.

The availList variable is created and assigned to receive the XmlObject data returned
by the availProcessor web service.

10-16 Designing Your First Business Process

12. To close the Create AvailList node builder, click Close.

At run time, the process appends XmlObject, which contains the data returned by the
availProcessor control during the current iteration through the For Each loop, to the
availList variable.

13. From the WorkSpace Studio menu, select File > Save All.

XmlObjectList Data Type
On each iteration through the For Each loop,

The priceProcessor web service returns price data, which is assigned to the price
variable.

The availProcessor web service returns availability data, which is assigned to the avail
variable.

Your business process must collect the price data returned on each iteration and create a list of
price data; one item is assigned to the list for each iteration through the loop. Similarly, a list of
availability data is created on the Get Availability branch of the Parallel node for each iteration
through the loop.

XmlObjectList is a Java data type that specifies a sequence of untyped XML format data. This
data type represents a sequence of XML elements (a set of repeating elements). As the final step
of each iteration through the Get Price branch in the Parallel node, the business process assigns
the data from the price variable to the priceList variable (type: XmlObjectList). In this way,
a single variable holds the price data for each item for which the For Each loop iterates.
Similarly, a single variable holds the availability data for each item.

For information about how the XmlObjectList variable is used, see “Design “Create PriceList”
Node” on page 10-9 and “Design “Create AvailList” Node” on page 10-14.

Related Topic
Guide to Data Transformation

http://edocs.bea.com/wli/docs102/dtguide/index.html

Designing Your First Business Process 11-1

C H A P T E R 10

Step 9: Create Quote Document

As a result of the work you did when you designed the Parallel node, at the point at which the
business process exits the For Each node, the price quotes are assigned to the priceList
variable, and the availability information is assigned to the availList variable. Both the
priceList and the availList variables are of data type XmlObjectList (untyped sequences
of XML data).

In this step, you first transform the data in the priceList and availList variables from untyped
XML data (XmlObjectList) to typed XML (XML that is valid against the XML schemas
provided in your project). Subsequently, you combine the typed XML price and availability data
to produce a single quote document, which is the response that your business process sends to
the client that invoked it.

Note: WLI lets you to create transformations in the following ways:

Use the node builders in the business process. You are already familiar with
creating a transformation control and transformation methods in this way.
RequestQuoteTransformation.java was created for you the first time you
created a transformation from a node builder, that is, when you needed to map the
data types from the RFQ message to the input of the taxCalculation control. (To
review, see “Call the Tax Calculation Web Service From Your Business Process” in
Step 4: Invoke a Web Service.) You subsequently created several additional
transformation methods on RequestQuoteTransformation.java (and associated
XQ files) on control nodes within the parallel node that you designed.

You can choose File > New > Other > WebLogic Integration > XQuery
Transformation from the WorkSpace Studio menu.

11-2 Designing Your First Business Process

You can change the perspective to XQuery Transformation, and then choose File
> New > XQuery Transformation from the WorkSpace Studio menu.

Go to the Source view of the transformation file, right-click, and choose
Transform > Add XQuery Transformation Method.

Create an XQuery file, and then choose its method from the node builder, by
selecting the Send Data (or Receive Data) tab, Transformation option, and then
the Advanced... button.

Transformation files can be called from your business process through control nodes. The
following transformation files are provided for you in the tutorial application:

PriceAvailTransformations.java

TutorialJoin.java.

You used PriceAvailTransformations.java in Step 8: Design Parallel Paths of
Execution.

You will use both these transformation files in this step.

A description of how to create these transformation files is outside the scope of this
tutorial. For more information, see Tutorial: Designing Your First Data Transformation.

In this step, you design the logic in your business process to create a single quote document from
the price and availability information. This involves designing control nodes that call the
PriceAvailTransformations.java and TutorialJoin.java transformation files.

This step consists of the following tasks:

Convert Price List to XML Document

Convert Availability List to XML Quote Document

Combine Price and Availability Quotes

Convert Price List to XML Document
Complete the following steps to design a node for transforming the price list (created as a result
of iteration through the For Each loop) to a typed XML variable.

1. Under the priceAvailTransformations control instance in the Data Palette, select the
PriceQuoteDocument convertPriceListToXML() method.

http://edocs.bea.com/wli/docs102/dttutorial/

Conve r t P r i ce L is t to XML Document

Designing Your First Business Process 11-3

2. Drag the method from the Data Palette and drop it on the RequestQuote business process in
the Design view, immediately after he For Each block, as shown in the following figure.

Figure 10-1 Adding Control to Convert Price List to XML Document

3. Rename the node from convertPriceListToXML to Convert PriceList To PriceQuote
XML.

4. Double-click the node to open its node builder.

5. Verify that the priceAvailTransformations control and the following method are selected in
the General Settings tab:

PriceQuoteDocument convertPriceListToXML
(org.example.request.QuoteRequestDocument _quoteRequestDoc,
com.bae.xml.XmlObjectList _XmlObjectListDoc)

6. Select the Send Data tab.

The Control Expects field shows with the data type expected by the
convertPriceListToXML() method on the priceAvailTransformations control:

Figure 10-2 “Control Expects” Field

Note: The convertPriceListToXML() method on the priceAvailTransformations
control is designed to achieve two goals: First, to transform the XmlObjectList

11-4 Designing Your First Business Process

price data to typed XML, and then to combine the customer name, shipping address,
and price data in a single variable. The convertPriceListToXML() method
receives the price list in a parameter of type XmlObjectList, and the customer name
and shipping address in a parameter of type QuoteRequestDocument.

7. On the Send Data tab, under Select variables to assign, assign the variables that hold the data
required by the priceAvailTransformations control as follows:

– Click the arrow in the variable assignment field associated with
QuoteRequestDocument and select requestXML (QuoteRequestDocument). The
requestXML variable holds the customer name and shipping address.

– Click the arrow in the variable assignment field associated with XmlObjectList, and
select priceList (XmlObjectList).

8. Select the Receive Data tab.

The Control Returns field contains PriceQuoteDocument, which is the data type
returned by the convertPriceListToXML() method on the
priceAvailTransformations control.

9. In the Select variables to assign field, select Create new variable....

The Create Variable dialog box is displayed.

10. In the Variable Name field, enter priceQuote.

11. Select the XML tab.

12. Expand the Typed node (by clicking the + symbol adjacent to it), and progressively expand
the nodes up to schemas.

13. Under the schemas node, expand PriceQuote.xsd, and select priceQuote.

The Type Name field shows org.example.price.PriceQuoteDocument.

14. Click OK to close the Create Variable dialog box.

15. Click Close to close the node builder.

This step completes the design of the Convert PriceList to PriceQuote XML node. At
run time, the price quotes (in typed XML format), and the customer name and shipping
address are assigned to the priceQuote variable.

Note: The convertPriceListToXML() method on the priceAvailTransformations
control creates the price quote XML data in the preceding step.

Conve r t Ava i lab i l i t y L is t t o XML Quote Document

Designing Your First Business Process 11-5

The input to the transformation method includes the original data sent by the client (in
the requestXML variable), and the price data returned by the priceProcessor control
(in the priceList variable) after the iterations in the For Each node.

The convertPriceListToXML() method extracts the customer name and shipping
address from the requestXML variable, and a list of item IDs and prices from the
priceList variable, and maps the data to the new variable (priceQuote).

You can double-click PriceAvailTransformations.java in the Package Explorer
view and see the transformation control in the Source view. To view the data
transformation, right-click on the convertAvailXMLtoXMLObj method, and select
Transform > Goto XQuery Document.

Related Topics
Guide to Data Transformation

Tutorial: Building Your First Data Transformation

Convert Availability List to XML Quote Document
Complete the following steps to design a node to transform the availability list (created as a result
of iteration through the For Each loop) to a typed XML variable.

1. Expand the priceAvailTransformations control instance in the Data Palette, and select
the following method:

AvailQuoteDocument convertAvailListToXML(com.bea.xml.XmlObjectList
_XmlObjectListDoc)

2. Drag the method from the Data Palette and drop it on your RequestQuote business process
in the Design view, placing it immediately after the Convert PriceList to PriceQuote XML
node.

3. Rename the node to Convert AvailList to AvailQuote XML.

4. Double-click the node to open its node builder.

5. Verify that the priceAvailTransformations control and the following method are selected
on the General Settings tab:

AvailQuoteDocument convertAvailListToXML(com.bea.xml.XmlObjectList
_XmlObjectListDoc)

6. Select the Send Data tab.

http://edocs.bea.com/wli/docs102/dttutorial

11-6 Designing Your First Business Process

The Control Expects field contains XmlObjectList, which is the data type required by
the convertAvailListToXML() method on the priceAvailTransformations control.

7. In the Select variables to assign field, select availList (XmlObjectList).

8. Select the Receive Data tab.

The Control Returns field contains AvailQuoteDocument, which is the data type
returned by the convertAvailListToXML() method on the
priceAvailTransformations control.

9. In the Select variables to assign field, select Create new variable....

The Create Variable dialog box is displayed.

10. In the Variable Name field, enter availQuote.

11. Select the XML tab.

12. Expand the Typed node (by clicking the + symbol adjacent to it), and progressively expand
the nodes up to schemas.

13. Under the schemas node, expand AvailQuote.xsd, and select availQuote.

The Type Name field shows org.example.avail.AvailQuoteDocument.

14. Click OK to close the Create Variable dialog box.

15. Click Close to close the node builder.

This step completes the design of the Convert AvailList to AvailQuote XML node. At
run time, the availability information in XML format is assigned to the availQuote
variable.

Note: The convertAvailListToXML() method on the priceAvailTransformations
control creates the availability XML document. The input to
convertAvailListToXML() is the data returned by the availProcessor control after
the iterations in the For Each node.

You can double-click PriceAvailTransformations.java in the Package Explorer
view and see the transformation control in the Source view. To view the data
transformation, right-click on the convertAvailListToXML method, and select
Transform > Goto XQuery Document.

The following figure shows the data transformation for the convertAvailListToXML()
method:

Combine P r ice and Ava i lab i l i t y Quotes

Designing Your First Business Process 11-7

The figure shows transformation of the data in a variable of type XmlObjectList, which
contains a repeating set of untyped XML data, to the repeating element in a typed XML
variable.

To achieve this transformation, the repeating element in the target schema must be the
single child of a root element. In this case, availRequest is the repeating element, and
it is the single child of the availQuote element. Click the Source view tab in the
transformation tool to see the corresponding XQuery.

Combine Price and Availability Quotes
Complete the following tasks:

Create Instance of TutorialJoin Control

Design Process Interaction with TutorialJoin Control

Create Instance of TutorialJoin Control
Complete the following steps to add an instance of the TutorialJoin.java control in the
business process.

1. In the Package Explorer view, select the TutorialJoin.java file. It is available in the
Tutorial_Process_Application_Web\requestquote project folder.

Note: For information about building the TutorialJoin.java control, see Tutorial:
Building Your First Data Tansformation.

2. Drag the TutorialJoin.java file from the Package Explorer view to the Data Palette. An
instance of the control (tutorialJoin) is created and displayed in the Data Palette.

http://edocs.bea.com/wli/docs102/dttutorial/
http://edocs.bea.com/wli/docs102/dttutorial/

11-8 Designing Your First Business Process

Design Process Interaction with TutorialJoin Control
In this step, you design the business process to call the following method on the tutorialJoin
control:

join(PriceQuoteDocument _priceQuoteDoc,
AvailQuoteDocument _availQuoteDoc, float taxRate)

This method combines the data returned to your business process from different systems and
creating a single XML response document (quote), which is subsequently returned to the client
that invoked the business process.

1. Expand the tutorialJoin control instance in the Data Palette and select the following
method:

QuoteDocument join
(org.example.price.PriceQuoteDocument _priceQuoteDoc,
org.example.avail.AvailQuoteDocument _availQuoteDoc,float taxRate)

2. In the Design view, drag the method from the Data Palette and drop it on your RequestQuote
business process immediately after the Convert AvailList to AvailQuote XML node.

3. Rename the node to Combine Price and Avail Quotes.

4. Double-click the Combine Price and Avail Quotes node. The node builder opens on the
General Settings tab.

5. Confirm that tutorialJoin is displayed in the Control field, and that the following method
is selected in the Method field:

QuoteDocument join
(org.example.price.PriceQuoteDocument _priceQuoteDoc,
org.example.avail.AvailQuoteDocument _availQuoteDoc,float taxRate

6. Select the Send Data tab.

The Control Expects field shows the data type expected by the join method on the
tutorialJoin control, as shown in the following figure:

Combine P r ice and Ava i lab i l i t y Quotes

Designing Your First Business Process 11-9

7. In the Select variables to assign field, select the variables such that their data types match the
data type expected (Control Expects) in the input parameters to the join() method.

– For PriceQuoteDocument, select priceQuote (PriceQuoteDocument).

priceQuote holds the price quote data, which is returned from the priceProcessor
service in the For Each loop in your business process.

– For AvailQuoteDocument, select availQuote (AvailQuoteDocument).

availQuote holds the availability quote data, which is returned from the
availProcessor service in the For Each loop in your business process.

– For float taxRate, select taxRate (float).

taxRate holds the rate of sales tax applied to the quote, based on the shipping address,
which is returned to your business process from the taxCalculation service.

8. Select the Receive Data tab. The Control Returns field shows QuoteDocument, which is the
data type returned by the join() method.

9. In the Select variable to assign field, select Create new variable....

The Create Variable dialog box is displayed.

10. In the Variable Name field, enter Quote.

11. Select the XML tab.

12. Expand the Typed node (by clicking the + symbol adjacent to it), and progressively expand
the nodes up to schemas.

13. Under the schemas node, expand Quote.xsd, and select quote. The Type Name field shows
org.example.quote.QuoteDocument.

14. Click OK to create the new variable. The Quote variable is displayed in the Receive Data
tab, and also in the Data Palette.

15. Click Close to close the node builder.

This step completes the design of the Combine Price and Avail Quotes node. At run time,
the availability quote data in XML format is assigned to the Quote variable.

16. From the WorkSpace Studio menu, choose File > Save All.

The only tasks that remain in this part of the tutorial are to write the quote to your file
system (optional step) and create the Client Response node in the business process. The
business process returns the quote you created to the client via the Client Response node.

11-10 Designing Your First Business Process

Designing Your First Business Process 12-1

C H A P T E R 11

Step 10: Write Quote to File System

In this step, you create a node for the business process to write the price and availability
information to your file system. A file control enables processes to read, write, or append to a file
in a file system.

This step includes the following tasks:

1. Create Instance of File Control

2. Design Control Send Node to Interact with File Control

3. (Optional) Assign File Control Properties to a Variable

4. (Optional) Use the File Control Properties

The third and fourth tasks are optional. They are provided to help you learn more about file
controls, and are not required for completion of the tutorial.

Create Instance of File Control
1. Click on the Data Palette Controls tab and choose Integration Controls > File.

The Insert Control dialog box is displayed.

2. Enter myFileQuote as the name of the control, and click Next.

3. In the Create Control dialog box, enter MyFileQuote in the Name field, and click Next.

12-2 Designing Your First Business Process

a. In the Insert Control - File dialog box, specify the following:

• Directory Name: Enter the location in which you want the file control to write the
file. You can use any location on your file system.

• File name filter: Enter a name for the file. For example, enter quote.xml.

• Type of data: Select XmlObject from the drop-down list.

b. Click Finish.

An instance of a file control, named myFileQuote, is created in your project and
displayed under Controls in the Data Palette.

4. From the WorkSpace Studio menu, select File > Save.

Note: In the simple case, each instance of the file control allows you to manipulate a separate
file. For information about using a file control to manipulate multiple files, see File
Control.

Design Control Send Node to Interact with File Control
1. Expand the myFileQuote control instance in the Data Palette, and select the following

method:

FileControlPropertiesDocument write(XmlObject someData)

2. Drag the method and drop it in the RequestQuote business process immediately after the
Combine Price and Avail Quotes node.

3. Rename the node to Write Quote to File.

4. Double-click the Write Quote to File node.

5. In the General Settings tab, confirm that myFileQuote is displayed in the Control field and
that the following method is selected in the Method field:

FileControlPropertiesDocument write(XmlObject someData)

6. Select the Send Data tab.

The Control Expects field contains XmlObject someData, which is the data type that the
write() method expects.

7. In the Select variables to assign field, select Quote (QuoteDocument), which you created
in “Step 9: Create Quote Document” on page 11-1.

http://edocs.bea.com/wli/docs102/controls/controlsFile.html
http://edocs.bea.com/wli/docs102/controls/controlsFile.html

Ass ign F i l e Cont ro l P roper t ies to a Va r iab le

Designing Your First Business Process 12-3

Note: The node builder for this node contains a Receive Data tab. You can use this tab to
specify a variable to which the data returned by the file control is assigned. For the
purposes of this tutorial scenario, it is not required that you specify this variable; you
can ignore the Receive Data tab. However, to learn how to specify a variable on the
Receive Data tab, and a scenario in which you might subsequently use the variable,
see “File Control Properties” on page 12-3.

8. Click Close to close the node builder.

9. From the WorkSpace Studio menu, select File > Save.

This step completes the design of your file control node.

At run time, the quote document that you created in “Step 9: Create Quote Document” on page
11-1 is written to your file system in the location specified by you.

File Control Properties
The next two sections provide additional (optional) steps for further defining the Write Quote to
File node that you created in the preceding section. These steps are not necessary for completing
the tutorial. They are provided to help you understand and use the file control properties that are
returned to your business process by the FileControlPropertiesDocument
write(XmlObject someData) method.

When you use a file control to write a file to the file system, as you do in this step, the control
returns information about the file you wrote. The information is returned in a typed XML
document, FileControlPropertiesDocument, which is valid against the XML schema,
DynamicProperties.xsd. The schema is available in the utility project under
\schemas\system.

Note: To be able to use file control APIs, the DynamicProperties.xsd schema must be
available in the schemas folder of your application’s utility or web project.

Assign File Control Properties to a Variable
This section describes how to design the Write Quote to File node in your business process to
include assigning a variable to which the File Control Properties are assigned:

Note: Before starting this section, you should have completed steps 1 through 7 in Design
Control Send Node to Interact with File Control.

1. If the Write Quote to File node is not already open, double-click the node to open it.

2. Select the Receive Data tab.

12-4 Designing Your First Business Process

The Control Returns field contains FileControlPropertiesDocument, which is the
data type returned by the write() method.

3. In the Select variables to assign field, select Create new variable....

The Create Variable dialog box is displayed.

4. In the Variable Name field, enter fileProperties.

5. Select the XML tab.

6. Expand the Typed node (by clicking the + symbol adjacent to it), and progressively expand
the nodes up to schemas\system.

7. Under system, expand DynamicProperties.xsd, and select FileControlProperties.

The Type Name field shows
com.bea.wli.control.dynamicProperties.FileControlPropertiesDocument.

8. Click OK to create the new variable.

The fileProperties variable is displayed in the Receive Data tab, and also in the Data
Palette.

9. Click Close to close the node builder.

10. From the WorkSpace Studio menu, select File > Save.

This step completes the design of your file control node. At run time, the quote document
that you create in Step 9: Create Quote Document is written to your file system in the
location specified by you. Information about the file that you wrote is returned to the
RequestQuote business process, and assigned to the fileProperties variable.

Use the File Control Properties
In the previous section, you assigned the data returned from the file control to a variable named
fileProperties. You can now extract information about the file that you wrote from the
fileProperties variable.

Click the Source view tab to view the code in the RequestQuote.java file.

Declaration of the fileProperties variable is shown in the following line:

public
com.bea.wli.control.dynamicProperties.FileControlPropertiesDocument
fileProperties;

Use the F i l e Cont ro l P roper t i es

Designing Your First Business Process 12-5

The write() method on the myFileQuote control is coded as shown in the following listing:

Listing 11-1 Code for write() Method

public void myFileQuoteWrite() throws Exception {

 // #START: CODE GENERATED - PROTECTED SECTION

 - you can safely add code above this comment in this method. #//

 // input transform

 // return method call

 this.fileProperties = myFileQuote.write(this.Quote);

 // output transform

 // output assignments

 // #END : CODE GENERATED - PROTECTED SECTION

 - you can safely add code below this comment in this method. #//

}

You can edit this method (outside the PROTECTED SECTION) and write code for deriving
information from the fileProperties variable.

For example, the following line of code returns the file mask:

this.fileProperties.getFileControlProperties().getFileMask()

To extend this example further, edit the public void fileQuoteWrite() method in the
Source view to include the following line of code after the PROTECTED SECTION.

System.out.println
("The RequestQuote Process logged the quote in the following file " +
this.fileProperties.getFileControlProperties().getFileMask());

In the Design view, the icon adjacent to the Write Quote to File node changes to .

This is a visual reminder that you edited the code associated with this node in the Source view.
When you run the business process, the name you gave the file (the file mask) is printed to the
console.

For more information, see “File Control” in Using Integration Controls.

http://edocs.bea.com/wli/docs102/controls/controlsFile.html

12-6 Designing Your First Business Process

Designing Your First Business Process 13-1

C H A P T E R 12

Step 11: Send Quote From Business
Process to Client

A business process must be able to send and receive messages to and from its clients. You
designed your business process to receive messages from a client in “Step 2: Specify How the
Process Is Started” on page 3-1.

In this step, you learn how to send messages from your business process to a client by designing
Client Response nodes. This step includes the following tasks:

Add Client Response Node

Design Send Quote Node

Add Client Response Node
1. In the Package Explorer view, double-click RequestQuote.java to ensure that your business

process is displayed in Design view.

2. In the Node Palette, select Client Response, drag it to the business process, and drop it
immediately before the Finish node.

3. Change the name of the node to Send Quote.

13-2 Designing Your First Business Process

Design Send Quote Node
This section describes how to complete the design of the interaction with clients for this business
process. Specifically, at this point in the process, the business process sends a quote containing
price and availability information to clients.

In this step, you specify the structure of documents that your business process sends to clients
from the Send Quote node.

1. Double-click the Send Quote node in your business process.

2. In the General Settings tab of the node builder, change the name in the Method Name field
from clientResponse to quoteResponse.

3. Click Add to display the panel of data types.

Note: In the Combine Price and Avail Quotes node, you created an XML variable to hold
the quote. The data assigned to this variable is valid against the Quote.xsd schema;
therefore, we need a typed XML parameter at this node.

4. Select the XML tab.

5. Expand the Typed node (by clicking the + symbol adjacent to it), and progressively expand
the nodes up to schemas.

6. Under schemas, expand Quote.xsd, and select quote.

The Type Name field shows org.example.quote.QuoteDocument.

7. In the Name field, replace x0 with responseXML.

8. Click OK to create the new variable.

Des ign Send Quote Node

Designing Your First Business Process 13-3

The fileProperties variable is displayed in the Receive Data tab, and also in the Data
Palette.

9. Click OK.

The QuoteDocument responseXML parameter is added to the General Settings tab in the
node builder and the General Settings tab is marked complete: .

10. Select the Send Data tab.

The Client Expects field shows the data type and the name of the parameter that you
specified in the General Settings tab: QuoteDocument responseXML

11. In the Select variables to assign field, select Quote (quote).

12. Click Close to close the node builder.

13. From the WorkSpace Studio menu, select File > Save.

This step completes the design of your RequestQuote business process.

To run the business process, proceed to “Step 12: Run RequestQuote Business Process” on page
14-1.

13-4 Designing Your First Business Process

Designing Your First Business Process 14-1

C H A P T E R 13

Step 12: Run RequestQuote Business
Process

You can run and test the business process by using the browser-based interface of WorkSpace
Studio. The interface lets you play the role of the client, invoking the methods on the business
process and viewing the responses.

1. If WebLogic Server is not already running, from the BEA Workshop menu, choose Window
> Show View > Other > Server > Servers, and click OK.

A Server view is displayed in which the server and its state are shown.

2. In the Package Explorer view, right-click on requestquote.java, click Run As, and click
Run On Server.

The Run On Server wizard is displayed.

3. Select Choose an existing server (or Manually define a server if there is no server defined),
and click Next.

Note: If you select Manually define a server, the Run On Server wizard lets you specify
the WebLogic Server and domain.

4. Click Finish.

The server is started, and the RequestQuote application is deployed on it. The Status
indicator in the Server view changes to Started.

After the application is deployed, the test browser is displayed.

5. Select the Test Form tab.

14-2 Designing Your First Business Process

6. Click the Browse button adjacent to the xml requestXML (file value) field and select the
QuoteRequest.xml file from the following folder:

Tutorial_Process_Application_Web\src\testxml\

7. Click quoteRequest to start the business process.

Figure 13-1 Test Form
[

Note: The label of the button reflects the name of the start method in the business process.

The Message Log area of the Test Form displays the status of the process.

Figure 13-2 Message Log

8. Click Refresh to refresh the entries in the log until this instance of the business process is
completed.

Designing Your First Business Process 14-3

Entries in the Message Log correspond to the methods in your business process, as shown
in the following figure.

Figure 13-3 Message Log - Refreshed

– The quoteRequest method that starts the business process.

– A call from your business process to the taxCalculation process control:
taxCalculation.requestTaxRate

– A response from the service to your business process:
taxCalculation.returnTaxRate

– Instance ID: The ID generated when the quoteRequest method in your business
process was called.

You can view the details of a specific call, by clicking on the corresponding methods in the
Message Log.

14-4 Designing Your First Business Process

For example, you can view the response from the taxCalculation service by clicking
taxCalculation.returnTaxRate, as shown in the following figure.

Figure 13-4 Message Log with Details

In this case, the tax rate was calculated based on the input value (NJ) for the state
element in the test XML.

You have now designed and tested a business process that performs the following activities:

1. Receives a request for quote message from a client (Client Request node).

2. Decides whether sales tax calculation is required (Decision node).

3. Requests another business process for the tax rate (Control Send node).

4. Receives the tax rate (Control Receive node).

5. Performs the following activities for each item in the Request for Quote (For Each and
Parallel nodes).

– Requests external resources for the price and availability information (Control Send
node).

– Receives price and availability information from the external resources (Control
Receive node).

6. Creates an untyped XML list of the prices for all the items (Control Send with Return node).

7. Creates an untyped XML list of the availability information for all the items (Control Send
with Return node).

Designing Your First Business Process 14-5

8. Converts the price and availability information lists to typed XML documents (Control Send
with Return node).

9. Combines the price and availability information in a single quote document (Control Send
with Return node).

10. Writes the quote document to a file (Control Send with Return node).

11. Sends the quote to the client that invoked the business process (Client Response node).

Additional Functionality in Test Browser
The following additional links are available from the Test Form page in the test browser:

Graph

Click Graph to open the Process Graph tab in the test browser. The interactive instance
graph is a fully expanded version of the view provided in the Design view.

Monitor

Click Monitor to open the Process Instance Details page of WLI Administration Console,
which provides details of specific process instances.

Monitor all RequestQuote.jpd processes

Click Monitor all RequestQuote.jpd processes to open the Process Instance Summary
page of WLI Administration Console.

Monitoring Processes in WLI Administration Console
You can monitor instances of your business process by using the WLI Administration Console.
You can view process instances statistics, and view summary or detailed status for selected
process instances. You can also suspend, resume, and terminate selected process instances.

1. Launch the WLI Administration Console in one of the following ways:

– Click Monitor on the Message Log in the test browser’s Test Form page.

– Enter http://localhost:7001/wliconsole in a web browser:

The default user name and password for the sample integration server are weblogic.

2. Select Process Instance Monitoring in the left navigation pane.

14-6 Designing Your First Business Process

If you invoked the Process Instance Monitoring page after running the RequestQuote
process, the RequestQuote and TaxCalcProcess processes are displayed in the Process
Instance Statistics page.

3. Click the name of any business process in the Display Name column to go to a page that
displays more information about that process.

For example, to learn more about the instance of the TaxCalcProcess business process:

a. Click TaxCalcProcess in the Display Name column.

A Process Instance Summary page is displayed.

b. This page lists all the instances of the TaxCalcProcess business process that ran or are
running.

c. To view more details about any instance, click the instance ID in the ID column.

4. On the Process Instance Details page, click Graphical View to view a graphical
representation of this instance of the TaxCalcProcess business process.

5. In the graphical view, to see more information about a specific node, click the node.

For more information, see “Process Instance Monitoring” in Using the WebLogic Integration
Administration Console.

Designing Your First Business Process A-1

A P P E N D I X A

WorkSpace Studio Views, Functions,
and Shortcuts

This section describes the components that are available in WorkSpace Studio for designing
business processes.

WorkSpace Studio Views
Ensure that you are familiar with the following WorkSpace Studio views; you will use them
throughout the tutorial.

Package Explorer view

The Package Explorer view provides a hierarchical representation of the source files in
your project, and provides a place where you can save, open, add, and delete project files.

If the Package Explorer view is not visible in BEA Workshop, choose Window > Show
View > Other > Java > Package Explorer.

Design view

The Design view is your primary working canvas. It displays the business process as you
design it. You can drag and drop nodes, controls, and variables into the Design view to
design your business process. There are many views such as JPD Configuration, Data
Palette, Node Palette, Server, and Problem to help you in your tasks.

You can also right-click a node or a group of nodes in the Design view to access options;
different options are available depending on the type of node. The following are some of
the options available from the right-click menu:

– Rename, to rename the node

A-2 Designing Your First Business Process

– Add Exception Path, to add an exception path to the node or group of nodes

– Add Message Path, to add a message path to node or group of nodes

– Cut, Copy, Delete, and so on.

To learn more about node groups in the Design view, see Grouping Nodes in Your
Business Process.

Source view

This view displays the source code for the current process. As you design your process in
the Design view, corresponding source code is written to the JPD file. You can also design
and edit your JPD file in the Source view. For more information about the Source view,
see Business Process Source Code.

Node Palette

This view displays the nodes that you can add to your business process. Nodes represent
different types of logic in your business process.

If the Node Palette is not visible in BEA Workshop, choose Window > Show View >
Node Palette.

As you drag a node from the Node Palette to the Design view, targets are displayed on
your business process. As you drag the node close to a target location, the target is
activated . When this happens, you can release the mouse button and the node snaps to
the business process at the location indicated by the active target.

Note: If you create a node at an invalid location (that is, if you create invalid logic in your
business process) the node is marked with an error icon () in the Design view. You
can view the error message describing the error by moving the mouse pointer over the
error icon.

Data Palette

This view includes folders for Variables and Controls.

– The Variables folder displays the variables created in your business process and allows
you to create new variables.

– The Controls folder displays the instances of controls in your business process and
allows you to add new instances.

You can use the Data Palette view to create variables and instances of controls in your
project. You can also create variables and instances of controls in other ways as you design
the process in the Design view.

http://edocs.bea.com/wli/docs102/bpguide/bpguideGroups.html
http://edocs.bea.com/wli/docs102/bpguide/bpguideGroups.html
http://edocs.bea.com/wli/docs102/bpguide/bpguideSource.html

Funct i ons and Shor tcuts

Designing Your First Business Process A-3

If the Data Palette is not visible in BEA Workshop, choose Window > Show View >
Data Palette.

JPD Configuration view

This view provides read and write access to the properties of the node or group of nodes
that is selected in the Design view.

If the JPD Configuration view is not visible in BEA Workshop, choose Window > Show
View > JPD Configuration.

Functions and Shortcuts
You will use the following functions and shortcuts frequently throughout the tutorial:

 Save: Saves the file that is currently displayed in the Design or Source view.

Save All (Ctrl+S): Saves all the files in your application.

 Build All: (Ctrl+B): Builds your applications. This icon is not available if automatic
building is enabled by choosing Project> Build Automatically.

F2: To change the label (name) of a node in the business process, select the node in the Design
view and press F2. Then, enter the required new label and press Enter.

 Use the up and down arrow keys to navigate between the nodes in your business process.

 Use the right and left arrow keys to expand and collapse a group of nodes.

A-4 Designing Your First Business Process

	Introduction
	Tutorial Goals
	Tutorial Overview
	Tutorial Organization

	Part I Design and Run a Simple Process
	Step 1: Create the Business Process Application
	Create Business Process Tutorial Application
	Start Designing the Process

	Step 2: Specify How the Process Is Started
	Create Start Node
	Design Client Request Node
	Specify General Settings
	Specify Receive Data

	Step 3: Define Conditions for Alternate Paths of Execution
	Add Decision Node
	Define Condition in Decision Node

	Step 4: Invoke a Web Service
	Create Instance of Web Service Control
	Call Web Service
	Receive Tax Rate from Web Service

	Step 5: Run the Business Process
	Step 6: Invoke a Business Process
	Create Process Control for Tax Calculation Process
	Change Control Send Node to Interact with Process Control
	Change Control Receive Node to Interact with Process Control
	Test Request Quote Process

	Part II Add Complex Business Logic
	Step 7: Loop Through Items in a List
	Overview of XML Schemas
	Design “For Each” Loop
	Add “For Each” Node
	Select Repeating XML Element to be Iterated

	Step 8: Design Parallel Paths of Execution
	Create Parallel Node
	Create Logic to Assemble Price and Availability Data
	Create Instances of PriceProcessor and AvailProcessor Controls
	Add Control Nodes in Business Process
	Design Activities on Get Price Branch
	Design “Request Price” Node
	Design “Receive Price” Node
	Design “Create PriceList” Node

	Design Activities on Get Availability Branch
	Design “Request Availability” Node
	Design “Receive Availability” Node
	Design “Create AvailList” Node

	Step 9: Create Quote Document
	Convert Price List to XML Document
	Convert Availability List to XML Quote Document
	Combine Price and Availability Quotes
	Create Instance of TutorialJoin Control
	Design Process Interaction with TutorialJoin Control

	Step 10: Write Quote to File System
	Create Instance of File Control
	Design Control Send Node to Interact with File Control
	Assign File Control Properties to a Variable
	Use the File Control Properties

	Step 11: Send Quote From Business Process to Client
	Add Client Response Node
	Design Send Quote Node

	Step 12: Run RequestQuote Business Process
	Additional Functionality in Test Browser
	Monitoring Processes in WLI Administration Console

	WorkSpace Studio Views, Functions, and Shortcuts
	WorkSpace Studio Views
	Functions and Shortcuts

