
BEAWebLogic®
Integration

Guide to Building
Business Processes

Version 10.2
Document Revised: March 2008

Guide to Building Business Processes 1

Contents

Guide to Building Business Processes
Topics Included in This Section. 1-1

Creating a Business Process Application
Components of Your Application . 2-1

Designing Your Application . 2-4

Creating a Business Process Application . 2-4

Setting the Business Process Properties . 2-6

Setting the Business Process Annotations . 2-8

Starting Your Business Process
Designing Start Nodes . 3-1

Client Request Start (Asynchronous). 3-5

Client Request with Return Start (Synchronous) . 3-5

Adding Nodes to Your Client Request with Return Node Group. 3-13

Naming the Methods on Client Request with Return Nodes 3-14

Subscription Start (Asynchronous) . 3-14

Subscription Start (Synchronous) . 3-18

Event Choice Start . 3-23

Exception Handlers on Start Nodes . 3-26

Interacting With Clients
Receiving Messages From Clients . 4-2

2 Guide to Building Business Processes

Create a Client Request Node in Your Business Process. 4-2

Design Your Client Request Node . 4-3

Naming the Methods on Client Request Nodes . 4-6

Sending Messages to Clients. 4-6

Create a Client Response Node in Your Business Process . 4-7

Design Your Client Response Node. 4-8

Adding Dynamic Callback Properties . 4-10

Buffering Client Messages . 4-11

Interacting With Resources Using Controls
Designing Interactions Between Business Processes and Resources 5-1

Create Control Nodes in Your Business Process . 5-2

Designing Your Control Nodes. 5-4

Adding Instances of Controls to Your Business Process Project 5-4

Configuring Control Nodes. 5-9

Setting Control Properties and Annotations . 5-13

Receiving Multiple Events
Create an Event Choice Node in Your Business Process . 6-2

Design Your Event Choice Group . 6-4

Creating Parallel Paths of Execution
Understanding Parallel Execution in Your Business Process . 7-1

Create a Parallel Node in Your Business Process . 7-2

Design Your Parallel Node . 7-3

Defining Conditions For Branching
Creating a Decision Node in Your Business Process . 8-2

Designing Your Decision Node . 8-3

Guide to Building Business Processes 3

Creating Case Statements
Comparing Decision Nodes and Switch Nodes. 9-1

Creating a Switch Node . 9-2

Designing a Switch Node . 9-3

Writing Custom Java Code in Perform Nodes

Creating Looping Logic
Understanding While Node Groups. 11-1

Creating While Node Groups in Your Business Process. 11-2

Designing While Node Groups . 11-3

Looping Through Items in a List
Creating For Each Nodes in Your Business Process . 12-1

Designing For Each Nodes . 12-2

Specifying Endpoints in Your Business Process

Grouping Nodes in Your Business Process

Handling Exceptions
Types of Exception Handlers. 15-1

Creating Exception Handler Paths. 15-2

Deleting Exception Handler Paths. 15-5

Order of Execution of Exception Handlers . 15-5

Handling Exceptions in Transaction Blocks . 15-6

Using Exception Handlers for Compensation . 15-7

Compensation Example . 15-7

Unhandled Exceptions . 15-9

4 Guide to Building Business Processes

Adding Message Paths
Creating a Message Path . 16-1

Deleting Message Paths . 16-5

Adding Timeout Paths
Creating a Timeout Path . 17-1

Deleting Timeout Paths. 17-4

Running and Testing Your Business Process
Using the Test Browser . 18-1

Testing the Public Methods of Your Business Process . 18-4

Testing a Message Broker Channel . 18-5

Viewing the Process Graph . 18-5

Understanding the Service URL . 18-7

Business Process Variables and Data Types
Creating Variables. 19-1

Deleting Variables. 19-6

Working with Data Types . 19-6

Assigning MFL Data to XML Variables and XML Data to MFL Variables 19-9

Validating Schemas
Validating a Typed XML Variable . 20-1

Typing and Validating an Untyped XML Type . 20-2

Versioning Business Processes
Creating a New Version of a Business Process. 21-2

Configuring the New Versions of Your Business Process . 21-4

Editing Versions of Business Processes . 21-4

Guide to Building Business Processes 5

Deleting Versions of a Business Process. 21-5

Using Versioning with Long-Running Business Processes. 21-5

Importing Versioned Business Processes . 21-6

Building Stateless and Stateful Business Processes
Working with Variables in Stateless Processes . 22-2

Building Synchronous and Asynchronous Business Processes
Working with Subprocesses . 23-2

Synchronous Subprocesses. 23-2

Asynchronous Subprocesses . 23-3

Synchronous Clients for Asynchronous Business Processes. 23-4

Limitations . 23-9

Synchronous-Asynchronous Security . 23-11

Transaction Boundaries
Implicit Transaction Boundary Rules . 24-2

An Implicit Transaction Boundary Example. 24-3

Explicit Transaction Boundaries . 24-6

Creating Explicit Transaction Boundaries . 24-7

Setting the Explicit Transaction Properties . 24-8

Handling Exceptions in Transaction Blocks . 24-9

Business Process Source Code
Overview . 25-2

Business Process Language . 25-2

Variables . 25-3

Control Declarations . 25-3

Client Operations and Control Communication Methods . 25-4

6 Guide to Building Business Processes

Can You Edit Code?. 25-4

Perform Methods. 25-5

XQuery Statements . 25-5

Building ebXML Participant Business Processes
About the ebXML Participant Business Process. 26-1

Creating an ebXML Participant Business Process . 26-2

Customizing an ebXML Participant Business Process . 26-3

Configuring Business Process Annotations (Required). 26-3

Customizing Names and Argument Types (Optional) . 26-5

Retrieving the ebXML Message Envelope (Optional) . 26-6

Building RosettaNet Participant Business Processes
About the RosettaNet Participant Business Process . 27-1

Creating a RosettaNet Participant Business Process. 27-4

Customizing a RosettaNet Participant Business Process . 27-5

Configuring Business Process Annotations (Required). 27-6

Customizing Argument Types (Optional) . 27-7

Configuring Data Transformation (Required) . 27-7

Integrating with the Private Participant Process (Required) 27-8

Setting Up the Notification of Failure (Required) . 27-8

Building and Deploying Integration Applications

Calling Business Processes
How Do I: Call Business Processes?. 29-1

How Do I: Use a JPD Proxy to a Call Business Process?. 29-3

How Do I: Get a JPD Proxy for a Business Process? . 29-5

How Do I: Use a JPD Proxy From a Java Client? . 29-8

Guide to Building Business Processes 7

How Do I: Use a JPD Proxy From a JSP?. 29-19

How Do I: Use a JPD Proxy From an EJB? . 29-20

8 Guide to Building Business Processes

Guide to Building Business Processes 1-1

C H A P T E R 1

Guide to Building Business Processes

WebLogic Integration’s business process management (BPM) functionality enables the
integration of diverse applications and human participants, as well as the coordinated exchange
of information between trading partners outside of the enterprise. Business Processes allow you
to orchestrate the execution of business logic and the exchange of business documents among
back-end systems, users and trading partners (systems and users) in a loosely coupled fashion.

This guide introduces the tools in BEA WorkSpace Studio that allow you to create Business
Processes graphically, allowing you to focus on the application logic rather than on
implementation details as you develop.

The first step in the design of your business process is to build a graphical representation of the
business process that meets the business requirements for your project. You create a graph of
component nodes in your business process by dragging components from the Node Palette pane
and dropping them onto the Design view pane. Program control is represented visually by these
nodes (or shapes) and the connections between them. Effectively, you create a graphical
representation of your business process and its interactions with clients and resources, such as
databases, JMS queues, file systems, and other components.

Topics Included in This Section
Chapter 2, “Creating a Business Process Application”

Describes how to start BEA WorkSpace Studio, and provides step-by-step instructions for
creating a business process project in BEA WorkSpace Studio. Describes how some of the
high-level components you create as you build your business process application

Guide to Bu i ld ing Bus iness P rocesses

1-2 Guide to Building Business Processes

(specifically, the names you choose for these components) surface in the finished
application.

Chapter 3, “Starting Your Business Process”
Describes how to design the trigger that starts your business process. You can design your
business process to start as the result of receiving a request from a client, as the result of
receiving a message from a message broker channel to which the business process is
subscribed, or as the result of receiving any one of the former types of messages, via an
Event Choice node.

Chapter 4, “Interacting With Clients”
Provides step-by-step instructions for creating nodes in your business process that handle
interactions with client applications. A business process must be able to receive messages
from clients and send messages to clients.

Chapter 5, “Interacting With Resources Using Controls”
Describes how to create nodes in your business process that manage the interactions with
external resources, such as databases, EJBs, Web services, and so on. BEA WorkSpace
Studio Controls represent the interface between a business process and these external
resources.

Chapter 6, “Receiving Multiple Events”
Describes how to create nodes at which your business process waits to receive multiple
events, from clients or controls. Event Choice nodes handle the receipt of multiple events.
Event Choice nodes, in turn, contain Client Response or Control Receive, or both.

Chapter 7, “Creating Parallel Paths of Execution”
Describes how you can design your business process to execute tasks in parallel.

Chapter 8, “Defining Conditions For Branching”
Describes how to design a Decision node and its associated conditions in your business
process. A Decision node is used to select exactly one path of execution based on the
evaluation of one or more conditions.

Chapter 9, “Creating Case Statements”

Describes how to design Java-like case statements through using Switch nodes. A Switch
node is used to select one path of execution based on the evaluation of an expression
specified on a condition node. A Switch node contains one condition node, one or more
case paths, and one default path.

Chapter 10, “Writing Custom Java Code in Perform Nodes”
Describes the Perform nodes, which you can customize with Java code.

Top ics Inc luded in Th is Sect ion

Guide to Building Business Processes 1-3

Chapter 11, “Creating Looping Logic”
Describes how you can design logic in your business process in which the activities
enclosed in a loop are performed repeatedly while a specific condition is true.

Chapter 12, “Looping Through Items in a List”
Describes how to design For Each nodes in a business process, that is, how to create the
logic that allows your business process to perform a set of activities repeatedly, once for
each item in a list.

Chapter 13, “Specifying Endpoints in Your Business Process”
Describes how to design the final node in your business process.

Chapter 14, “Grouping Nodes in Your Business Process”
Describes how to combine business process nodes into a group, for which you can specify
properties, such as exception, message, and timeout paths.

Chapter 15, “Handling Exceptions”
Describes exception handlers: global exception handlers, exception handlers on a block or
group of nodes, exception handlers for individual nodes, and unhandled exceptions.

Chapter 16, “Adding Message Paths”
Describes how to use Message Paths to execute process nodes in a parallel path to a node
or group of nodes after a certain message is received from a client or a resource (via a
control). Message paths can be associated with individual nodes, a group of nodes, or with
the process (global).

Chapter 17, “Adding Timeout Paths”
Describes how to use timeout paths to execute process nodes in a parallel path to a node
or group of nodes after a certain amount of time has lapsed. Timeout paths can be
associated with individual nodes, a group of nodes, or with the process (global).

Chapter 18, “Running and Testing Your Business Process”
Describes how you can compile and test a business process using the Test Browser tool.

Chapter 19, “Business Process Variables and Data Types”
Describes the data types supported in your business process application and how to create
business process variables.

Chapter 21, “Versioning Business Processes”
Describes how you can make changes to your business process without interrupting any
instances of the process that are currently running by using the BEA WorkSpace Studio
versioning feature.

Guide to Bu i ld ing Bus iness P rocesses

1-4 Guide to Building Business Processes

Chapter 20, “Validating Schemas”
Describes the different methods you can use to validate your schemas.

Chapter 22, “Building Stateless and Stateful Business Processes”
Describes the differences between building Stateless and Stateful business processes.

Chapter 23, “Building Synchronous and Asynchronous Business Processes”
Describes the differences between building Synchronous and Asynchronous business
processes. Also includes information on enabling synchronous clients to interact with
business processes that have asynchronous interactions with resources.

Chapter 24, “Transaction Boundaries”
Describes the rules for implicit and explicit transaction boundaries and how to create
explicit transaction boundaries.

Chapter 25, “Business Process Source Code”
Describes the source code BEA WorkSpace Studio writes to a business process file (a
Process.java file), in keeping with your business process design in the graphical design
environment.

Chapter 26, “Building ebXML Participant Business Processes”
Describes the template that you can use to build an ebXML participant business process
in BEA WorkSpace Studio.

Chapter 27, “Building RosettaNet Participant Business Processes”
Describes how to build public participant business processes for RosettaNet conversations
using the RosettaNet participant business process file in BEA WorkSpace Studio.

Chapter 28, “Building and Deploying Integration Applications”
Describes how to work in iterative development mode and deploy applications in EAR
format.

Chapter 29, “Calling Business Processes”
Describes how Business Processes can expose their functionality to clients in several
ways, including through WSDL files, Process Controls, Service Broker Controls, and JPD
Proxies.

Related Topics
Workshop For WebLogic Platform User’s Guide

http://edocs.bea.com/wlw/docs102/guide/index.html

Guide to Building Business Processes 2-1

C H A P T E R 2

Creating a Business Process
Application

WebLogic Integration extends the BEA WorkSpace Studio graphical design environment to
allow the building of integrated enterprise applications. A WLI application in turn contains
projects and files. A project can contain several components including, business processes,
controls, Web services, and XML files.

This section describes the components of a WLI application, the steps you follow to create an
application in BEA WorkSpace Studio, and how to incorporate a business process in your
application. It includes the following topics:

Components of Your Application

Designing Your Application

Components of Your Application
This section outlines some of the high-level components you create as you build your business
process application and how they appear in the deployed application based on the names that you
choose for these components.

Application—The components of the application you are creating are represented in a tree
structure on the Package Explorer pane in your BEA WorkSpace Studio environment. If the
Package Explorer pane is not visible in BEA WorkSpace Studio, choose Window > Show View
> Other > Java > Package Explorer from the BEA WorkSpace Studio menu. An example of
Package Explorer pane is shown in Figure 2-1.

Creat ing a Bus iness P rocess App l icat ion

2-2 Guide to Building Business Processes

Figure 2-1 Sample Package Explorer

A WLI application will have the following projects (For example, the preceding figure represents
an application named Tutorial_Process_Application and includes an Enterprise Application
Project, Web Project, and Utility Project):

– Enterprise Application (EAR) Project— A project that contains JAR files and
deployment descriptors build files and auto-generated files. J2EE Applications and their
components are deployed on the WebLogic Server as EAR files.

– Utility Project— An optional project that contains the XML Schemas and the Message
Broker channel file. When you create your process application through the wizard or
using a template, the Utility project is created as part of the business process
application folder .The Utility Project has a schemas folder in it. When you add XML

Components o f Your App l i cat ion

Guide to Building Business Processes 2-3

Schemas and MFL files to the schemas folder in your business process project, they
are compiled to generate XML Beans. In this way, BEA WorkSpace Studio generates a
set of interfaces that represent aspects of your XML Schemas. XML Bean types
correspond to types in the XML Schema itself. XML Beans provides Java counterparts
for all built-in Schema types, and generates Java counterparts for any derived types in
your Schema.

To learn more, see Importing Schemas.

– Web Project— A project that contains the WebLogic Server Web applications. In other
words, when you create a project, you are creating a Web application. The name of
your project "Tutorial_Process_Application_Web” which in turn contains a business
process named RequestQuote.java. Clients can access your business process via the
following URL:

http://host:port/Tutorial_Process_Application_Web/requestquote/RequestQ
uote.jpd

In the preceding URL, host and port represent the name of your host server and the
listening port.

When a project is created, various information is assembled to specify the type of project,
add standard libraries, set compiler options, control publishing tasks, set build path, and/or
add an annotation processor. This information is specified by choosing facets during
project creation. Facets can also be added and deleted from a project after its initial
creation. To edit a project facets, select Project > Properties > Project Facets. For the
business process (Process.java) and Worklist application, the Project facets has already
been configured.

Note: A process can be created only in a WEB project which has Weblogic Integration
Process facet (process-enabled) added to it. Similarly a Worklist task plan can be
created in an EAR project which has Worklist Integration Worklist Application
Module facet (worklist-enabled) added to it.

Schemas folder exported as a jar needs to be added to a Web Project or a Util project and
not to an EAR project. Due to Eclipse and WTP restrictions, schema, channel builders, and
controls are associated only with Web or Util project and not with EAR project. If you
export or add the Schemas folder as a jar, into the module dependencies of the EAR
project, the channel files will not be declared and the controls of the business process will
not be availabe in the Data Palette.

http://edocs.bea.com/wli/docs102/dtguide/dtguideMapper.html#wp1311895

Creat ing a Bus iness P rocess App l icat ion

2-4 Guide to Building Business Processes

Designing Your Application
You build your application in BEA WorkSpace Studio by adding projects to an application. A
project contains components of your application such as business processes, Web services,
control files, and XML files.

Creating a Business Process Application
To quickly get started designing business processes, you can create an application that contains
a basic business process file, which you can customize with your business process logic. To do
so, complete the following procedure:

To Create a New Application

1. From the BEA WorkSpace Studio menu, click File > New > Other....

The Select a wizard dialog box is displayed.

2. Expand WebLogic Integration and select Process Application and click Next.

3. In the Process Application dialog box, type the details as shown in the following example:

a. In the EAR Project Name field, enter Process_Application_EAR.

b. In the Web Project Name field, enter Process_Application_Web.

c. In the Utility Project Name field, enter Process_Application_Utility.

4. Select Add WebLogic Integration System and Control Schemas in Utility Project check
box.

This adds the system schemas to the Utility Project/schemas folder.

5. Click Finish.

This creates an application that contains a basic business process project, which includes a
business process file that contains only a Start and Finish node (process.java).

Note: If you select Tutorial: Process Application instead of Process Application,
WebLogic Workshop creates an application containing components for the Business
Process. To learn about taking the tutorial, see Tutorial: Building Your First Business
Process.You can also build an ebXML or RosettaNet participant business process in
WorkSpace Studio by using specially created templates. For more information about
how to create these participant processes, see Building ebXML Participant Business
Processes and Building RosettaNet Participant Business Processes.

Des ign ing Your App l i cat ion

Guide to Building Business Processes 2-5

6. In the displayed Open Associated Perspective? dialog box, click Yes to switch from J2EE
Perspective to Process Perspective.

Note: The Open Associated Perspective? dialog box appears when creating a Business
Process for the first time in a Workspace.

7. The Process Application is created and displayed in the Package Explorer pane, as shown in
Figure 2-2.

Figure 2-2 Package Explorer

The Tutorial:Getting Started with Workshop briefly describes the components and tools you use
to design your business process in the BEA WorkSpace Studio graphical design environment.

Subsequent topics in this guide describe in detail how to design specific business process
patterns, including tasks such as:

Adding methods and callbacks to client nodes in your business process to create the
interface between your business process and its clients.

Adding controls to represent the interfaces with resources such as Web services, databases,
and EJBs.

Mapping disparate data types in your business process, using XML Schemas, and
constructing sequences of XML elements over which your business process can iterate to
perform specified activities.

Viewing and editing the Process.java file in the Source view.

To learn about these tasks and others, see Topics Included in This Section.

http://edocs.bea.com/wlw/docs102/guide/ideuserguide/TutorialGettingStarted/tutGS_Intro.html

Creat ing a Bus iness P rocess App l icat ion

2-6 Guide to Building Business Processes

Setting the Business Process Properties
There are several properties which you can view and configure for your business process in the
JPD Configuration pane.

To Set the Business Process Properties

1. Select the Start node of the business process for which you want to configure the properties.

2. If the JPD Configuration pane is not visible in BEA WorkSpace Studio, choose Window >
Show View > JPD Configuration from the BEA WorkSpace Studio menu bar.

In the JPD Configuration pane the following properties are displayed: general and
process.

general

name—This is the name of your business process, which is displayed throughout the BEA
WorkSpace Studio application, including the WebLogic Integration Administration
Console. You can change the name to anything you would like by clicking this property
and entering a new name.

notes—Enter any notes that you want associated with your business process by clicking
notes and then clicking to open the Notes dialog box. Enter your note and click OK.
Notes entered in the editor will be also be displayed in the WebLogic Integration
Administration Console.

process

freeze on failure—When a business process fails and there is no exception handler
configured to handle the exception thrown, the business process is placed into an aborted
state and no recovery is possible. However, if the business process is configured to freeze
on failure, the business process rolls back to the last commit point and the state is persisted
if it fails. The process can then be restarted from the WebLogic Integration Administration
Console. To configure a business process to freeze on failure: select true from the freeze
on failure drop-down menu.

For more information about business process exception handlers, see Handling Exceptions.
For more information about how to unfreeze business processes in the WebLogic
Integration Administration Console, see Process Instance Monitoring in Using the
WebLogic Integration Administration Console.

on sync failure—This property only applies to your process if it is configured to be a
synchronous subprocess, it is ignored for any other business processes. If a synchronous
subprocess fails, the default behavior is to mark it as rollback, which causes both the

http://edocs.bea.com/wli/docs102/adminhelp/processmonitoring.html

Des ign ing Your App l i cat ion

Guide to Building Business Processes 2-7

subprocess and the parent process to rollback. However, if the on sync failure property is
set to rethrow, only the subprocess is rolled back. To learn more about synchronous
subprocesses and the on sync failure property, see Working with Subprocesses.

persistence—This property sets how a stateful business process is persisted. More
specifically, it determines whether a conversation is maintained in memory or stored in a
database repository. Normally, stateful processes are persisted to a database. However, you
may want to use non-persistent stateful processes for the following:

– When the native communication mechanism requires it.

– When multiple send-receive operations need to be done in parallel.

– When the performance of a stateful process using a database does not meet
performance goals.

To set the type of persistence, from the persistent drop-down menu:

– Select always when you want your process conversations saved in the database
repository. These conversations can be recovered in the event of an abnormal shutdown
or crash. This setting is the WebLogic Integration default.

– Select never when you do not want your process conversations saved in the database
repository. These conversations cannot be recovered in the event of an abnormal
shutdown or crash.

– Select on overflow when you want your process conversations saved in the database
repository after reaching a certain number. Until this number is reached, conversations
are non-persistent. To set the overflow, set the Max Beans in Cache deployment
descriptor. To learn more about configuring deployment descriptors, see
EJB->Configuration->Descriptors in the WebLogic Server Administration Console
Online Help.

retry count—Specify how many times, after the first attempt, the process engine should
try to execute the business process.

If your business process contains an asynchronous Client Request node or multiple Client
Request nodes, any one of which is asynchronous, then you can set the retry count for the
business process. You cannot set the retry count property for business processes that
contain only synchronous Client Request nodes (that is, Client Request with Return
nodes).

retry delay—Specify the amount of time (in seconds) you want to pass before a retry is
attempted.

http://e-docs.bea.com/wls/docs100/ConsoleHelp/taskhelp/ejb/ConfigureDeploymentDescriptorValues.html

Creat ing a Bus iness P rocess App l icat ion

2-8 Guide to Building Business Processes

If your business process contains an asynchronous Client Request node or multiple Client
Request nodes, any one of which is asynchronous, then you can set the retry delay for the
business process. You cannot set the retry delay property for business processes that
contain only synchronous Client Request nodes (that is, Client Request with Return
nodes).

stateless—This property is for viewing only, it cannot be edited. It displays whether your
business process is stateless (property displays true) or stateful (property displays false).
To learn more about stateless and stateful business processes, see Building Stateless and
Stateful Business Processes.

Setting the Business Process Annotations
There are several properties which you can view and configure for your business process in the
Properties pane of your business process start node.

To Set the Business Process Annotations

1. Select the Start node of the business process for which you want to configure the annotations.

2. If the Properties pane is not visible in BEA WorkSpace Studio, choose Window > Show
View > Properties from the BEA WorkSpace Studio menu bar.

In the Properties pane, the following annotation are displayed:

BeanInfo

customizerclass— This annotation defines which bean properties are public, and which
getter/setter methods should be used to access them. This class must reside in the same
package and be similarly named to the tag (or bean) with BeanInfo appended to it.

ClassReliable

messageTimeToLive— This annotation specifies how long messages are maintained on
the server, in order to detect duplicate messages.

Ebxml
For information about ebXML annotation, see
http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/jpd/EbXML.html.

http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/jpd/EbXML.html
http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/common/Protocol.html

Des ign ing Your App l i cat ion

Guide to Building Business Processes 2-9

FeatureInfo
For information about FeatureInfo annotation, see
http://commons.apache.org/modeler/commons-modeler-1.0/docs/api/org/apache/commons/mod
eler/FeatureInfo.html.

Handler

callback— This annotation specifies which handlers to run on outbound SOAP callbacks.

file— This annotation specifies the handler configuration file to use, if handler chain is not
specified inline.

operation— This annotation specifies which handlers to run on incoming SOAP messages.

ManifestAttribute
For information about ManifestAttribute annotation, see
http://beehive.apache.org/docs/1.0/apidocs/classref_controls/org/apache/beehive/controls/api/p
ackaging/ManifestAttribute.html.

ManifestAttributes
For information about ManifestAttribute annotation, see
http://beehive.apache.org/docs/1.0.2/controls/apidocs/javadoc/org/apache/beehive/controls/api/
packaging/ManifestAttributes.html.

Protocol
For information about Protocol annotation, see
http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/common/Protocol.html.

Rosettanet
For information about RosettaNet properties, see
http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/jpd/RosettaNet.html.

Schemas

value— This annotation specifies the one or more schema files whose types are referenced
in the component class. This annotation can be added to the Process or Service Broker
Control. Multiple name value entries are defined and each entry refers to one definition of
a schema.

http://beehive.apache.org/docs/1.0/apidocs/classref_controls/org/apache/beehive/controls/api/packaging/ManifestAttribute.html
http://commons.apache.org/modeler/commons-modeler-1.0/docs/api/org/apache/commons/modeler/FeatureInfo.html
http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/jpd/RosettaNet.html
http://beehive.apache.org/docs/1.0/apidocs/classref_controls/org/apache/beehive/controls/api/packaging/ManifestAttribute.html
http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/common/Protocol.html
http://beehive.apache.org/docs/1.0.2/controls/apidocs/javadoc/org/apache/beehive/controls/api/packaging/ManifestAttributes.html
http://beehive.apache.org/docs/1.0.2/controls/apidocs/javadoc/org/apache/beehive/controls/api/packaging/ManifestAttributes.html

Creat ing a Bus iness P rocess App l icat ion

2-10 Guide to Building Business Processes

Stateful

maxAge— This annotation specifies the amount of time elapsed since a stateful process
started, the conversation may remain active before it is ended by the WebLogic Server.

maxIdleTime— This annotation specifies the amount of time a stateful process remains
idle before it is ended by the WebLogic Server.

runAsStartUser— This annotation specifies that the continue and finish methods will be
run as the user who started the conversation.

singlePrincipal— This annotation specifies that only the principal who started the
conversation can continue and finish the conversation.

TargetNamespace

value— This annotation specifies the XML namespace used for outgoing XML messages
and generated WSDL files.

Version

Strategy—This describes how to invoke sub processes when differerent versions of the
parent process exists. From the strategy drop-down menu:

– Select loosely-coupled if you want the subprocess version to be set at the time the
subprocess is invoked.

– Select tightly-coupled if you want the subprocess version to be set at the time the
parent process is invoked.

WSSecurityCallback

file— This annotation specifies the location of the WS-Security file.

WSSecurityService

file— This annotation specifies the path to the WS-Security policy file (WSSE file) used
by the web service.

Wsdl

value— This annotation specifies a WSDL file that is implemented by a web service.

XmlNamespaces

Value— This annotation provide the namespace value and prefix value.

Des ign ing Your App l i cat ion

Guide to Building Business Processes 2-11

Com.bea.wli.common.XQuery

Prolog—This specifies the namespace and function declaration.

Version—This specifies the XQuery version used in the Process file for inline XQueries.

Com.bea.wli.jpd.Process

binding—This property specifies whether the business process uses the Web service,
ebXML, or RosettaNet protocol. The default value is webservice. If your business process
is an ebXML or a RosettaNet process, select ebxml or rosettanet.

name— This is the name of you process.

process— This is a read-only annotation and displays the content of the process
annotation.

For more information on properties, see Javadocs.

To learn about ebXML and RosettaNet business processes, see Building ebXML
Participant Business Processes and Building RosettaNet Participant Business Processes.

Note: WS-Security policy (WSSE) files are not supported for business processes (JPDs).
Therefore, the following annotations are not supported for JPD files:
com.bea.wli.common.WSSecurityCallback and
com.bea.wli.common.WSSecurityService.

If you want to use WS-Security, then you must front-end the JPD with a JWS. The client
would invoke a JWS using WS-Security, then the JWS would locally invoke the JPD via
a Process Control.

Related Topics
Handling Exceptions

Process Instance Monitoring

http://edocs.bea.com/wli/docs102/wli.javadoc/index.html
http://edocs.bea.com/wli/docs102/adminhelp/processmonitoring.html

Creat ing a Bus iness P rocess App l icat ion

2-12 Guide to Building Business Processes

Guide to Building Business Processes 3-1

C H A P T E R 3

Starting Your Business Process

This section describes how to design the first node in your business process (the Start node) to
represent the starting point of a business process.

A business process can be started as a result of receiving a request from a client or as the result
of receiving a message from a Message Broker channel to which the business process is
subscribed (a business process can subscribe to channels to receive events from for example: File
event generators, JMS event generators, and Timer Event Generators), and by a choice of one of
several events. This section includes the following topics:

Designing Start Nodes

Exception Handlers on Start Nodes

Designing Start Nodes
A Start node represents the starting point of a business process. Depending on the method by
which your business process starts, the Start Event of your process can contain any combination
of Client Request, Client Request with Return, or Subscription nodes. You design the Start
Event of your process by double-clicking the Start Event place holder placed just below your
Start node.

To create a new business process, complete the tasks described in Creating a Business Process
Application. When you create a new business process, it initially contains an empty Start node,
a Start Event place holder, and a Finish node, as shown in the following figure Figure 3-1.

Star t ing Your Bus iness P rocess

3-2 Guide to Building Business Processes

Figure 3-1 Start Node

The first action in the business process is specified at the Start node. That is, you specify how
the business process is started at run time by defining a Start Event. The empty node attached to
the Start node, as well as the gray check box , shown in the preceding figure, indicate that the
start method for this business process is not defined.

While you are building your business process by adding process nodes to it, you can go back to
the start node to check the stateless status of your process. If your process at any time becomes
stateful, the stateless property in the Start node property editor displays false. To learn more about
stateless and stateful business processes, see Building Stateless and Stateful Business Processes.

The Start Node also indicates any business-process-wide problems, such as when a control
declaration has an error or when an incorrect variable type is used for a variable. Any such

problems are indicated by an appearing next to the Start Node. If you place your cursor over
this icon, BEA WorkSpace Studio will display a message about the problems.

To Define the Start Method for Your Business Process
You can design the start node properties by invoking the starting event node builder. Node
builders provide a task-driven interface that allow you to specify the logic required at nodes in
your business process.

1. Double-click the Start Event placeholder on the Start node in the Design view to display the
Start node builder.

The node builder displays, as shown in Figure 3-2.

Des ign ing Star t Nodes

Guide to Building Business Processes 3-3

Figure 3-2 Node Builder

2. In the node builder, select the method by which you want your business process to start:

– Invoked via a Client Request

Select this option if you want your business process to start as the result of receiving a
message from a client.

– Invoked synchronously via a Client Request with Return

Select this option if you want your business process to start as the result of receiving a
synchronous request from a client. Any nodes added between the receive and send
nodes inside the Client Request with Return group will be executed within the scope of
the synchronous operation.

– Subscribe to a Message Broker channel and start via an Event (Time, Email, File,
Adapter, etc.)

Select this option if you want your business process to start as a result of receiving an
asynchronous message from a Message Broker channel. You create a static subscription
to a Message Broker channel on this node. This option also allows you to start your
business process via an event through File, JMS, Email, or Timer Event Generator,
which facilitate publishing events to Message Broker channels.

Note: In WebLogic Integration, subscriptions to Message Broker channels defined at a
Start node are referred to as static subscriptions, and subscriptions defined using
a Message Broker Subscription control are referred to as dynamic subscriptions.
See “Note about Static and Dynamic Subscriptions” in Javadocs.

– Subscribe synchronously to a Message Broker channel and start via an Event

http://edocs.bea.com/wli/docs102/wli.javadoc/index.html

Star t ing Your Bus iness P rocess

3-4 Guide to Building Business Processes

Select this option if you want your business process to start as a result of receiving a
synchronous message from a Message Broker channel. You create a static subscription
to a Message Broker channel on this node. This option also allows you to start your
business process via an event through File, JMS, Email, or Timer Event Generator,
which facilitate publishing events to Message Broker channels.

– Invoked via one of several Client Requests or Subscriptions (Event Choice)

Select this option if you want your business process to start as a result of receiving one
of a number of possible events. When an Event Choice node is used at the start of a
business process, you can configure it to contain Client Request, Client Request with
Return, or Message Broker Subscription nodes.

3. To close the node builder, click Close.

The drop target on the Start node is populated with an icon representing the method by
which the business process starts.

To learn more about specifying the appropriate start node for your business process, see:

Client Request Start (Asynchronous)

Client Request with Return Start (Synchronous)

Subscription Start (Asynchronous)

Subscription Start (Synchronous)

Event Choice Start

Cl ient Request S tar t (Asynchronous)

Guide to Building Business Processes 3-5

Client Request Start (Asynchronous)
If you specified that your business process starts when it receives a message from a client, that is
using the Invoked via a Client Request option, your Start node is displayed as shown in
Figure 3-3.

Figure 3-3 Client Request Start Node

To Complete the Design of Your Client Request Node

1. Double-click the Client Request node to invoke the node builder for the Client Request
node.

2. To complete the specification of events for your Client Request node, see Design Your Client
Request Node.

Related Topics
Sending Messages to Clients

Handling Exceptions

Client Operations and Control Communication Methods

Client Request with Return Start (Synchronous)
If you specified that your business process starts when it receives a message from a client and a
synchronous response is sent back to the client, that is using the Invoked synchronously via a
Client Request with Return option, your Start node is displayed as shown in Figure 3-4.

Star t ing Your Bus iness P rocess

3-6 Guide to Building Business Processes

Figure 3-4 Client Request with Return start Node

Note the following properties for the Client Request with Return group node:

 indicates that the design of this node is incomplete. To complete the design, see To
Complete the Design of Your Client Request with Return Node Group.

By default the name for the node is Client Request with Return. You can change the
name in the following ways:

– Right-click the node name in the Design view and select Rename from the drop-down
menu. Then enter a new name to replace Client Request with Return.

– Double-click the node name in the Design view, then enter a new name to replace
Client Request with Return.

– Double-click either of the Client Request with Return icons in your business process
to display one of the node builders. Click the name beneath the node builder icon and
enter a new name to replace Client Request with Return.

After you add any node to your business process, you can design its properties and behavior by
invoking the node builder and completing the tasks appropriate for that node. You can also add
optional nodes between the Request and Return part of the Client Request with Return node. This
allows you to process data or perform tasks after the message from the client is received and
before the return is sent back to the client. For more information on how to add optional nodes to

Cl ient Request w i th Return S tar t (Synchronous)

Guide to Building Business Processes 3-7

your Client Request with Return node, see Adding Nodes to Your Client Request with Return
Node Group.

The following sections describe how to complete the design of your Client Request with Return
nodes:

To Complete the Design of Your Client Request with Return Node Group
To design your Client Request with Return node, you need to complete the following sections:

Specify General Settings for the Request Part of Your Node Group

Specify Receive Data Settings for the Request Part of Your Node Group

Specify General Settings for the Return Part of Your Node Group

Specify Send Data Settings for the Return Part of Your Node Group

Specify General Settings for the Request Part of Your Node Group

1. Double-click the icon (upper icon) in the Client Request with Return node group in
your business process.

The node builder is invoked. It contains two tabs: General Settings and Receive Data.

2. In the General Settings tab, enter a name in the Method Name field to specify the name of
the method on this Client Request with Return node.

The name you assign to the method is the name of the method that is exposed via the Web
Services Description Language (WSDL) when you make your business process available
as a Web service. To learn more about how the methods in your project are exposed to
clients, see Components of Your Application.

3. In the General Settings tab, click Add. A panel, which shows the data types is displayed.

4. Select the type and format of the data your Client Request with Return node expects to
receive from clients (that is, the data type for the method parameter). You can also specify a
name for the method parameter.

5. Select the type and format of your data. The options available are:

– Simple Types

Lists Java primitive and classes data types

– XML Types

Star t ing Your Bus iness P rocess

3-8 Guide to Building Business Processes

Lists the XML Schemas that are available in your business process project and the
untyped XMLObject and XMLObjectList data types. To learn how to import a Schema
into your project, see Importing XML Schema.

– Non-XML Types

Lists the Message Format Language (MFL) files available in your business process
project and the untyped RawData data type. WebLogic Integration uses a metadata
language called Message Format Language (MFL), based on XML, to describe the
structure of non-XML data. Every MFL file available in your project is listed in
Non-XML Types. Note that an XML Schema representation of each MFL file is built
by BEA WorkSpace Studio and is also available in the XML Types listing.

For more detailed descriptions of the data types, see Working with Data Types.

6. After you select the data type, click OK. The parameter specification you made is displayed
in the General Settings tab in the node builder.

Note: If you selected typed XML or typed non-XML data type in the previous step, you can
select the Validate box to have the incoming message validated against your
specified schema before the message is received by the node. For more information
about schemas, see Validating Schemas and Creating and Importing Schema Files.

7. In the General Settings tab, continue clicking Add and select the type and format of your
data until you have added as many parameters as you want to use.

8. To remove a parameter from the node builder pane, select the parameter in the list and then
click Remove.

Specify Receive Data Settings for the Request Part of Your Node Group

1. Click the Receive Data tab.

This tab allows you to define one or more variables to hold the data that your business
process receives from clients. The Receive Data tab has two modes:

– Variable Assignment- Use this mode when you want to assign the data received from
the client to a variable of the same data type. By default, the Receive Data tab opens
on the Variable Assignment panel.

– Transformation- Use this mode when you want to create a transformation between
data assigned to a variable and that expected by the method parameter.

2. If the data types of your method parameters and the data type of the variables you are going
to use match, you can map your variables to the corresponding methods directly.

a. If not already selected, select the Variable Assignment option.

http://edocs.bea.com/wli/docs102/dtguide/dtguideMapper.html#wp1311895
http://edocs.bea.com/wli/docs102/dtguide/dtguideMapper.html#wp1315902

Cl ient Request w i th Return S tar t (Synchronous)

Guide to Building Business Processes 3-9

The Client Sends field is populated with the parameter(s) you specified on the General
Settings tab.

b. If you want to assign a variable that you have already created in your project to the method
parameters, under Select Variables to assign, click the arrow in the drop-down list and
select it from the menu. The variable you select is added to the node builder pane.

c. If you want to create a new variable and assign it to the method parameter, click the arrow
in the drop-down list, select Create new variable..., then follow the instructions in the To
Create a New Variable in the Node Builder section.

d. If the data types of your method parameters and your variables match, click OK. Your
new variable is created and displayed in the Receive Data tab.

3. If the data types of your method parameters and your variables are different, you can use the
XQuery Mapper Tool included in BEA WorkSpace Studio to map between heterogeneous
data types. The data transformations you create using the tool are stored in data
transformation files. When the data transformation files containing your data transformations
are built, they are built as controls. The controls expose transformation methods, which
business processes invoke to map disparate data types.

a. To create a transformation map, select the Transformation option in the node builder.

The node builder transformation window displays the data types expected by your
method in the Client Sends pane.

b. In Step 1 of the Transformation option window, click Select Variable to select one or
more variables to be used.

Note: To remove a parameter from the node builder pane, select the parameter in the list and
then click Remove. This action removes the variable from the node builder, not from
your business process. The variable is still included in your business process; it is
visible in the Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. If an instance of a Transformation control (defined by a data
transformation file) already exists in your project, then that instance is used to create
the map.

c. If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the XQuery Mapper
tool window. This automatically applies changes to the builder and opens a transformation
editor in a new window.

Star t ing Your Bus iness P rocess

3-10 Guide to Building Business Processes

The XQuery Mapper Tool displays a representation of the source schema and target
schema in Source and Target panes. You can create a map between the data type of
the method parameter and the data type of the variable, or variables, to which you
assign the data. To learn how to create and test a map using the XQuery Mapper Tool,
see the Guide to Data Transformation.

Note: To return to node builder, in the Package Explorer pane, double-click the
Process.java file.

d. If the appropriate instance of a Transformation control is available in your project, click
Advanced... in the node builder. The Advanced Option window opens. In this window
select the Control and Method. If the method arguments and return type matches those
as selected in the Transformation pane, click OK.

e. To close the node builder, click Close.

About Editing Node Configurations
You can edit the configuration at any node by opening the node builder and changing the existing
specifications. If you add or remove variables in a node builder that already contains a configured
transformation, you must edit or recreate the transformation. To do so, add or remove the
variables, then click Edit Transformation or Create Transformation.

Note: When selecting a variable in a node builder’s Transformation pane, and then clicking
Remove, removes the selected variable from the node builder, not from your business
process. The variable is still included in your business process; it is visible in the
Variables pane in the Data Palette.

Specify General Settings for the Return Part of Your Node Group

1. Double-click the icon (lower icon) in the Client Request with Return node in your
business process.

The request part of the node builder is displayed. It contains two tabs: General Settings
and Send Data.

2. In the General Settings tab, enter a name in the Method Name field to specify the name of
the method on this Client Receive with Return node.

The name you assign to the method is the name of the method that is exposed via the Web
Services Description Language (WSDL) when you make your business process available
as a Web service. To learn more about how the methods in your project are exposed to
clients, see Components of Your Application.

http://edocs.bea.com/wli/docs102/dtguide/index.html

Cl ient Request w i th Return S tar t (Synchronous)

Guide to Building Business Processes 3-11

3. In the General Settings tab, click Select and select the type and format of the data your Client
Request with Return node expects to send to clients (that is, the data type for the return
value).

4. Select the type and format of your data. The options available are:

– Simple Types

– Lists Java primitive and classes data types.

– XML Types

Lists the XML Schemas that are available in your business process project and the
untyped XMLObject and XMLObjectList data type.

– Non-XML Types

Lists the Message Format Language (MFL) files available in your business process
project and the untyped RawData data type. WebLogic Integration uses a metadata
language called Message Format Language (MFL), based on XML, to describe the
structure of non-XML data. Every MFL file available in your project is listed in
Non-XML Types. Note that an XML Schema representation of each MFL file is built
by BEA WorkSpace Studio and is also available in the XML Types listing.

For more detailed descriptions of the data types, see Working with Data Types.

5. After you select the data type, click OK. The return type field is populated with the parameter
types you added in the preceding steps.

Specify Send Data Settings for the Return Part of Your Node Group

1. Click the Send Data tab.

This tab allows you to define one or more variables to hold the data your business process
send to clients.

2. If the data types of your return value and the data type of the variables you are going to use
match, you can map your variables to the corresponding return value directly.

a. If not already selected, select the Variable Assignment option. By default, the Send Data
tab opens on the Variable Assignment panel.

The Client Expects field is populated with the return type you specified on the
General Settings tab.

b. If you want to assign a variable that you already created in your project to the return value,
select it from the drop-down menu.

Star t ing Your Bus iness P rocess

3-12 Guide to Building Business Processes

c. If you want to create a new variable and assign it to the method parameter, select Create
new variable..., then follow the instructions in the To Create a New Variable in the Node
Builder section.

d. If the data types of your return value and your variables match, close the node builder by
clicking Close.

3. If the data types of your return value and your variables are different, you can use the XQuery
Mapper tool included in BEA WorkSpace Studio to map between heterogeneous data types.
The data transformations you create using the tool are stored in data transformation files.
When data transformation files containing your data transformations are built, they are built
as controls. The controls expose transformation methods, which business processes invoke to
map disparate data types.

a. To create a transformation map, select the Transformation option.

The node builder transformation window displays the data types expected by your
method displayed in the Client Expects pane.

b. In Step1 of the Transformation option window, click Select Variable to select one or
more variables to be used.

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not from
your business process. The variable is still included in your business process; it is
visible in the Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. If an instance of a Transformation control already exists in your
project, then that instance is used to create the map.

c. If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the XQuery Mapper
tool window. This automatically applies changes to the builder and opens a transformation
editor in a new window.

The XQuery Mapper tool displays a representation of the source schema and target
schema in Source and Target panes. You can create a map between the method
parameter and the variable, or variables, to which you assign the data. To learn how to
create and test a map using the XQuery Mapper tool, see Guide to Data
Transformation.

Note: To return to node builder, in the Package Explorer pane, double-click the
Process.java file.

http://edocs.bea.com/wli/docs102/dtguide/index.html
http://edocs.bea.com/wli/docs102/dtguide/index.html

Cl ient Request w i th Return S tar t (Synchronous)

Guide to Building Business Processes 3-13

d. If the appropriate instance of a Transformation control is available in your project, click
Advanced.... The Advanced Option window opens. In this window select the Control and
Method. If the method arguments and return type matches those as selected in the
Transformation pane, click OK.

e. To close the XQuery Mapper tool window, click Close.

Note: To learn about changing the configuration you design in the Transformation pane of
a node builder, see About Editing Node Configurations.

4. To close the node builder, click Close.

In the Design view, the icon indicates that you completed the configuration and design
of this node.

5. To save your work, select File > Save.

Adding Nodes to Your Client Request with Return Node
Group
The Client Request with Return node functions as a combination of a Client Request node and
a Client Receive node within a synchronous interaction. As such, you can add additional nodes
in between the request and the return part of your Client Request Node but you cannot add any
nodes that wait or block. To add a node to your Client Request with Return node, select the node
you want to add in the Palette and drag and drop it into your Client Request with Return node.

The following nodes can be added:

Client Response (See Create a Client Response Node in Your Business Process.)

Control Send (See Create Control Nodes in Your Business Process.)

Control Send with Return (See Create Control Nodes in Your Business Process.)

Perform (See To Create a Perform Node in Your Business Process.)

Decision (See To Create a Decision Node in Your Business Process.)

Switch (See Creating Case Statements.)

While Do (See To Add A While group to Your Business Process.)

Do While (See To Add A While group to Your Business Process.)

For Each (See To Add A For Each Node to Your Business Process.)

Star t ing Your Bus iness P rocess

3-14 Guide to Building Business Processes

Naming the Methods on Client Request with Return Nodes
The names that you assign to methods on your Client Request with Return nodes correspond to
the names of the methods that are exposed via the Web Services Description Language (WSDL)
when you make your business process available as a Web service. The name must be a valid Java
class name.

Related Topics
Sending Messages to Clients

XQuery Statements

Handling Exceptions

Client Operations and Control Communication Methods

Subscription Start (Asynchronous)
If you specified that your business process is started via the Subscribe to a Message Broker
channel and start via an Event (Time, Email, File, Adapter, etc.) option (see To Define the
Start Method for Your Business Process), your Start node is displayed as shown in Figure 3-5.

Figure 3-5 Subscription Start Node

A static subscription to a Message Broker channel is defined on the Subscription node. Your
business process is started as the result of receiving a message from a Message Broker channel.

Subscr ipt ion S tar t (Asynchronous)

Guide to Building Business Processes 3-15

Note: In WebLogic Integration, subscriptions to Message Broker channels defined at a Start
node are referred to as static subscriptions, and subscriptions defined using a Message
Broker Subscription control are referred to as dynamic subscriptions. See “Note about
Static and Dynamic Subscriptions” in
http://edocs.bea.com/wli/docs102/wli.javadoc/index.html

The following sequence concisely describes the message flow at run time:

1. A service publishes a message to a Message Broker channel, using a MB (Message Broker)
Publish control, a File event generator, Timer event generator, or a JMS event generator. To
learn more about how events are published to Message Broker channels.

2. A business process instance subscribes to, and receives messages from the Message Broker
channel via the Subscription node. To ensure scalability of your application, the inbound
messages by default are buffered on the queue for the current business process. To learn about
buffering, see Buffering Client Messages.

Note: An asynchronous subscription start causes the subscribed business process to run in a
different transaction from the publisher’s transaction. In general, this is the recommended
design pattern to use when you want to design your business process to start when it
receives a message from a Message Broker channel. To learn about the scenarios for
which a synchronous subscription start is recommended, see About Choosing
Synchronous or Asynchronous Subscription Start Nodes.

To Complete the Design of Your Subscription Start Node

1. Double-click the Subscription node associated with the Start node in your business process
to invoke the Subscription node builder.

Tabs on the node builder include:

– General Settings

– Specify Filter

– Receive Data

The following steps describe the tasks available on these tabs.

2. Complete the following tasks on the General Settings tab:

a. In the Method Name field, enter a name for the subscription request method.

The data type and format of the data your subscription request method (that is, the data
type for the method parameter) is specified automatically, based on the configuration of
your channel file.

http://edocs.bea.com/wli/docs102/wli.javadoc/index.html

Star t ing Your Bus iness P rocess

3-16 Guide to Building Business Processes

b. Select a channel name from the drop-down list of Message Broker channels associated
with the Channel Name field (see Figure 3-6).

Figure 3-6 Channel Name

Note: If no appropriate channels are available for you to select, you must create a Channel
file that specifies the Message Broker channels for your application.

3. Click the Specify Filter tab.

Specifying a filter is optional. Filters can be applied to the data type the business process
receives from the channel, or when you have specified a qualified metadata type in your
channel configuration.

The field in the Specify Filter tab is populated with the data type for the subscription
method parameter you specified on the preceding tab. If you specified your channel to be
able to receive qualified metadata, the Qualified Metadata attribute is also listed and you
can filter on that parameter instead.

To specify a filter:

a. Select the input type or schema element on which you want to filter.

b. An XQuery expression is generated, and the Filter field is populated with the XQuery
expression based on your selection in the preceding step.

Note: If you want to filter on an XMLObject parameter, you have to enter the XQuery
statement in the Filter field or edit your source code directly.

c. In the Filter Value field, enter a value against which you want to match the filter.

Subscr ipt ion S tar t (Asynchronous)

Guide to Building Business Processes 3-17

4. Click the Receive Data tab.

This tab allows you to define one or more variables to hold the data that your business
process receives from the channel.

5. If the data types of your method parameters and the data type of the variables you are going
to use are the same, you can map your variables to the corresponding methods directly.

a. If it is not already selected, select the Variable Assignment option.

The Client Sends field is populated with the parameter(s) you specified on the General
Settings tab, in other words, the parameter type of the channel.

b. If you want to assign a variable that you already created in your project to the method
parameters, select it from the drop-down menu.

c. If you want to create a new variable and assign it to the method parameter, select Create
new variable..., then follow the instructions in the To Create a New Variable in the Node
Builder section.

d. If the data types of your method parameters and your variables match, click Close to close
the node builder.

6. If the data types of your method parameters and your variables are different, you can use the
XQuery Mapper tool included in WebLogic Integration to map between heterogeneous data
types. The data transformations you create using the tool are stored in data transformation
files. When the data transformation files containing your data transformations are built, they
are built as controls. The controls expose transformation methods, which business processes
invoke to map disparate data types.

a. To create a transformation map, select the Transformation option.

The node builder transformation screen is displayed; the data types expected by your
method are displayed in the Client Sends pane.

b. In Step 1 on the Transformation option window, click Select Variable to select one or
more variables to be used.

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not
from your business process. The variable is still included in your business
process; it is visible in the Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. Your project must contain an instance of a Transformation control
defined by a data transformation files for you to create the map.

Star t ing Your Bus iness P rocess

3-18 Guide to Building Business Processes

c. If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the transformation
tool. This automatically applies changes to the builder and opens the transformation tool
in a new window.

The transformation tool displays a representation of the source schema and target
schema in Source and Target panes. You can create a map between the data type of
the method parameter and the data type of the variable, or variables, to which you want
to assign the data.

Note: To return to node builder, in the Package Explorer pane, double-click the
Process.java file.

d. If the appropriate instance of a Transformation control is available in your project, click
Advanced.... The Advanced Option window opens. In this window select the Control and
Method. If the method arguments and return type matches those as selected in the
Transformation pane, click OK.

e. Close the Transformation tool by clicking Close.

Note: To learn about changing the configuration you design in the Transformation pane of
a node builder, see About Editing Node Configurations.

7. To close the node builder, click the Close.

In the Design View, the icon indicates that you completed the configuration and design of this
node. To learn about buffering on your subscription node, see Buffering Client Messages.

8. To save your work, select File > Save.

Related Topics
Sending Messages to Clients

Handling Exceptions

Client Operations and Control Communication Methods

Subscription Start (Synchronous)
If you specified that your business process is started via the Subscribe synchronously to a
Message Broker channel and start via an event option (see To Define the Start Method for
Your Business Process), your Start node is displayed as shown in Figure 3-7.

Subscr ip t ion S tar t (Synchronous)

Guide to Building Business Processes 3-19

Figure 3-7 Subscription Start (Synchronous) Node

A synchronous static subscription to a Message Broker channel is defined on the Synchronous
Subscription node. Your business process is started as the result of receiving a synchronous
message from a Message Broker channel.

Note: In WebLogic Integration, subscriptions to Message Broker channels defined at a Start
node are referred to as static subscriptions, and subscriptions defined using a Message
Broker Subscription control are referred to as dynamic subscriptions.

The following sequence summarizes the message flow at run time for the scenario in which you
design a Synchronous Subscription node at the start of your business process:

1. A service publishes a message to a Message Broker channel, using a MB (Message Broker)
Publish control, a File event generator, Timer event generator, or a JMS event generator.

2. A business process instance subscribes to, and receives messages from, the Message Broker
channel via the Synchronous Subscription node.

About Choosing Synchronous or Asynchronous Subscription Start Nodes
In general, an asynchronous subscription start pattern is recommended because it causes the
subscribed business process to run in a different transaction from the publisher’s transaction. In
contrast, a synchronous subscription start causes the subscribed business process to run in the
same transaction as the publisher. This type of subscription decreases loose coupling and can
associate the results of a transaction rollback of one subscriber with an otherwise independent
subscriber. However, there are two scenarios in which the synchronous subscription start pattern
is recommended:

Star t ing Your Bus iness P rocess

3-20 Guide to Building Business Processes

JMS event generators publish to Message Broker channel which has one subscriber.

When a JMS event generator publishes to a channel that is known to have one subscriber,
it generally improves performance to use the synchronous subscription start method on the
subscriber. Note that in this case, the subscriber is doing work on the event generator
thread, so you should adjust the event generator thread count accordingly.

JMS event generators and subscribers use the suppressible attribute.

Setting suppressible to true specifies that the static subscription is suppressed in favor of
dynamic subscriptions. In other words, you use suppressible=true to prevent specific
messages on a Message Broker channel from starting a new business process; instead the
messages can be received, using a dynamic subscription, by a business process that is
already running.

To Complete the Design of Your Synchronous Subscription Start Node

1. Double-click the Subscription node associated with the Start node in your business process
to invoke the Subscription node builder.

Note: You can configure only the node that represents the message received by the business
process. That is, you can only invoke a node builder for the first of the icons in the
pair that represents the Synchronous Subscription Start node.

Tabs on the node builder include:

– General Settings

– Specify Filter

– Receive Data

The following steps describe the tasks available on these tabs.

2. Complete the following tasks on the General Settings tab:

a. Select a channel name from the drop-down list of Message Broker channels associated
with the Channel Name field.

Note: If no appropriate channels are available for you to select, you must create a channel
file that specifies the Message Broker channels for your application.

b. In the Method Name field, enter a name for the subscription request method.

The data type and the format of the data your subscription request method (that is, the
data type for the method parameter) is specified automatically, based on the
configuration of your channel file.

Subscr ip t ion S tar t (Synchronous)

Guide to Building Business Processes 3-21

3. Click the Specify Filter tab.

Specifying a filter is optional. Filters can be applied to the data type the business process
receives from the channel, or when you have specified a qualified metadata type in your
channel configuration.

The field in the Specify Filter tab is populated with the data type for the subscription
method parameter you specified on the preceding tab. If you specified your channel to be
able to receive qualified metadata, the Qualified Metadata attribute is also listed and you
can filter on that parameter instead.

To specify a filter:

a. Select the data type on which you want to filter.

b. An XQuery expression is generated, and the Filter field is populated with the XQuery
expression based on your selection in the preceding step.

Note: If you want to filter on an XMLObject parameter, you will have to enter the XQuery
statement in the Filter field or edit your source code directly.

c. In the Filter Value field, create a value against which you want to match the filter.

4. Click the Receive Data tab.

This tab allows you to define one or more variables to hold the data that your business
process receives from the channel.

5. If the data types of your method parameters and the data type of the variables you are going
to use are the same, you can map your variables to the corresponding methods directly.

a. If it is not already selected, select the Variable Assignment option.

The Client Sends field is populated with the parameter(s) you specified on the General
Settings tab, in other words, the parameter type of the channel.

b. If you want to assign a variable that you already created in your project to the method
parameters, click Select Variable and select it from the drop-down menu. The variable
you select is added to the node builder pane.

c. If you want to create a new variable and assign it to the method parameter, select Create
new variable..., then follow the instructions in the To Create a New Variable in the Node
Builder section.

d. If the data types of your method parameters and your variables match, close the node
builder by clicking Ok.

Star t ing Your Bus iness P rocess

3-22 Guide to Building Business Processes

6. If the data types of your method parameters and your variables are different, you can use the
XQuery Mapper tool included in WebLogic Integration to map between heterogeneous data
types. The data transformations you create using the tool are stored in data transformation
files. When data transformation files containing your data transformations are built, they are
built as controls. The controls expose transformation methods, which business processes
invoke to map disparate data types.

a. To create a transformation map, select the Transformation option.

The node builder transformation pane is displayed; the data types expected by your
method are displayed in the Client Sends pane.

b. In Step 1 on the Transformation option pane, click Select Variable to select one or more
variables to be used.

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not
from your business process. The variable is still included in your business
process; it is visible in the Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. If an instance of a Transformation control already exists in your
project, then that instance is used to create the map.

c. If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the XQuery Mapper
tool. This automatically applies changes to the builder and opens the transformation tool
in a new window.

The transformation tool displays a representation of the source schema and target
schema in Source and Target panes. You can create a map between the data type of
the method parameter and the data type of the variable, or variables, to which you want
to assign the data.

Note: To return to node builder, in the Package Explorer pane, double-click the
Process.java file.

d. If the appropriate instance of a Transformation control is available in your project, click
Advanced.... The Advanced Option window opens. In this window select the Control and
Method. If the method arguments and return type matches those as selected in the
Transformation pane, click OK.

e. To close the node builder, click Close.

Event Cho ice S tar t

Guide to Building Business Processes 3-23

Note: To learn about changing the configuration you design in the Transformation pane of
a node builder, see About Editing Node Configurations.

In the Design view, the check box icon indicates that you completed the configuration and
design of this node.

7. To save your work, select File > Save.

Related Topics
Client Operations and Control Communication Methods

Message Broker

Event Generators

Event Choice Start
If you specified that your business process is Invoked via one of several Client Requests or
Subscriptions (Event Choice), (see To Define the Start Method for Your Business Process),
your Start node is displayed as shown in Figure 3-8.

http://edocs.bea.com/wli/docs102/adminhelp/msgbroker.html
http://edocs.bea.com/wli/docs102/adminhelp/evntgen.html

Star t ing Your Bus iness P rocess

3-24 Guide to Building Business Processes

Figure 3-8 Event Choice Start Node

By default, Event Choice nodes are created with two branches. Click to create additional
branches. A new branch is added on the left or right of the existing branches.

You can add additional nodes to the paths in your Event Choice node to specify the events
executed at run time after the business process starts. The Start Event targets at the start of each
branch indicate that only certain nodes are allowed at these locations: specifically, when you use
an Event Choice node at the start node in your business process, it can contain only Client
Request, Client Request with Return or Subscription nodes.

Note: When you create an Event Choice node at locations other than the Start node in your
business process, it can contain Client Request nodes and Control Receive nodes. To
learn more about designing Event Choice nodes, see Receiving Multiple Events.

Event Cho ice S tar t

Guide to Building Business Processes 3-25

To Complete the Design of Your Event Choice Start Node
To specify the events to be executed on each branch of your Event Choice Start node, complete
the following tasks for each branch of the node:

1. Double-click the Start Event placeholder to invoke the node builder, see Figure 3-9.

Figure 3-9 Node Builder Event

2. From the node builder, select the event for which this branch waits:

– A Client Request

– A Client Request with Return

– A Message Broker Subscription

– A Synchronous Message Broker Subscription

3. Click Close.

The drop target on your Event Choice branch is changed to reflect the event you specified.

4. To complete the specification of events, double-click the event nodes on the Event Choice
branches to invoke the associated node builder:

– To learn how to use the node builder to complete the Client Request node, see Design
Your Client Request Node.

– To learn how to use the node builder to complete the Client Request with Return
node, see To Complete the Design of Your Client Request with Return Node Group.

Star t ing Your Bus iness P rocess

3-26 Guide to Building Business Processes

– To learn how to use the node builder to complete the Message Broker Subscription
node, see To Complete the Design of Your Subscription Start Node.

– To learn how to use the node builder to complete the Synchronous Message Broker
Subscription node, see To Complete the Design of Your Synchronous Subscription
Start Node.

5. To save your work, select File > Save.

Related Topics
Business Process Source Code

Adding Message Paths

Adding Timeout Paths

Exception Handlers on Start Nodes
You can create a global exception handler for your business process by creating an exception path
for the Start node. You create the logic for the exception handler path to define the flow of
execution in the case when an exception is thrown by your business process. A global exception
handler responds to exceptions that are otherwise not handled in the business process.

To learn how to create exception handler paths on Start nodes, see Handling Exceptions.

Guide to Building Business Processes 4-1

C H A P T E R 4

Interacting With Clients

Clients invoke business processes to perform one or more operations. Business Processes expose
their functionality through methods.

Client Request nodes represent the points in a business process at which a client invokes a
method on the business process and possibly sends input to the business process. The names you
assign to methods on Client Request nodes correspond to the names of the methods that are
exposed via the Web Services Description Language (WSDL) when you make your business
process available as a Web service.

Note: The nodes in a business process are always communicating asynchronously with clients,
except for when you invoke a Start node of a business process by using the Client
Request with Return option or configure the starting event on a Message path to wait
for a Client Request with Return. To learn more about using the Client Request with
Return node, see Client Request with Return Start (Synchronous).

Client Response nodes represent the points in a business process at which business processes
send messages to clients.

This section describes how to add nodes to your business process and design the interactions of
business processes with clients. It includes the following topics:

Receiving Messages From Clients—Design nodes in your business process to receive
asynchronous messages from clients. A business process can be started as a result of
receiving a message from a client.

Sending Messages to Clients—Design nodes in your business process to send
asynchronous messages to clients.

In te rac t ing Wi th C l i ents

4-2 Guide to Building Business Processes

Buffering Client Messages—Design your business process in such a way that the messages
sent to clients from Client Response nodes are buffered.

Receiving Messages From Clients
Client Request nodes provide a way for a client to make a request to a business process.

The tasks you must complete to design a Client Request node include:

Create a Client Request Node in Your Business Process

Design Your Client Request Node

Naming the Methods on Client Request Nodes

Create a Client Request Node in Your Business Process
1. On the Package Explorer pane, double-click the business process (Process.java file) you

want to design.Your business process is displayed in the Design view.

2. If the Node Palette is not visible in BEA WorkSpace Studio, choose Window > Show View
> Node Palette from the BEA WorkSpace Studio menu.

3. Drag and drop Client Request from the Node Palette onto the business process in the
Design view, placing it on the business process at the point at which you want to design the
client interaction.

Note: As you drag your selection onto the Design view, targets appear on your business
process. Each target represents a location in the flow where you can place the node.
As you drag the node near a location, the target is activated and the cursor changes

to an arrow . When this happens, you can release the mouse button and the node
snaps to the business process at the location indicated by the active target. If the
location you chose is not a valid one, an will appear next to your node. If you place
your cursor over this icon, BEA WorkSpace Studio will display a message about the
violation.

The Client Request node is displayed in your business process in the Design view.

Note the following properties for the Client Request node:

 indicates that the design of this node is incomplete. To complete the design, see Design
Your Client Request Node.

Rece iv ing Messages F rom C l ients

Guide to Building Business Processes 4-3

By default the name for the node is Client Request. You can change the name in the
following ways:

– Double-click the node name in the Design view and enter a new name to replace Client
Request.

– Right-click the node name in the Design view and select Rename from the drop-down
menu. Then enter a new name to replace Client Request.

– Double-click the Client Request node in your business process to display the node
builder. Click the name beneath the node builder icon and enter a new name to replace
Client Request.

Design Your Client Request Node
After you add any node to your business process, you can design its properties and behavior by
invoking the node builder and completing the tasks appropriate for that node. The following
sections describe how to complete the design of interactions with clients in your Client Request
nodes:

To Specify General Settings

To Specify Receive Data

To Specify General Settings

1. Double-click the Client Request node in your business process.

The node builder is displayed. It contains two tabs: General Settings and Receive Data.

2. In the General Settings tab, enter a name in the Method Name field to specify the name of
the method on this Client Receive node.

The name you assign to the method is the name of the method that is exposed via the Web
Services Description Language (WSDL) when you make your business process available
as a Web service. To learn more about how the methods in your project are exposed to
clients, see Components of Your Application.

3. In the General Settings tab, click Add to select the type and format of the data your Client
Request node expects to receive from clients (that is, the data type for the method parameter).
The node builder displays the following types of data:

– Simple Types

Lists Java primitive and classes data types.

In te rac t ing Wi th C l i ents

4-4 Guide to Building Business Processes

– XML Types

Lists the XML Schemas that are available in your business process project and the
untyped XMLObject and XMLObjectList data types. To learn how to import a Schema
into your project, see Creating and Importing Schema Files.

– Non-XML Types

Lists the Message Format Language (MFL) files available in your business process
project and the untyped RawData data type. WebLogic Integration uses a metadata
language called Message Format Language (MFL), based on XML, to describe the
structure of non-XML data. Every MFL file available in your project is listed in
Non-XML Types. Note that an XML Schema representation of each MFL file is built
by WebLogic Workshop and is also available in the XML Types listing.

For more detailed descriptions of the data types, see Working with Data Types.

4. Click OK.

The parameter specifications you made is displayed in General Setting tab in the node
builder.

Note: If you selected a typed XML or typed non-XML data type in the previous steps, you
can select the Validate box to have the incoming message validated against your
specified schema before the message is received by the node. For more information
about schemas, see Validating Schemas and Creating and Importing Schema Files.

To Specify Receive Data

1. Click the Receive Data tab.

This tab allows you to define one or more variables to hold the data your business process
receives from clients.

2. If the data types of your method parameters and the data type of the variables you are going
to use match, you can map your variables to the corresponding methods directly.

a. If not already selected, select the Variable Assignment option. By default, the Receive
Data tab opens on the Variable Assignment panel.

The Client Sends field is populated with the parameter(s) you specified on the General
Settings tab.

b. If you want to assign a variable that you already created in your project to the method
parameters, select it from the drop-down menu.

http://edocs.bea.com/wli/docs102/dtguide/dtguideMapper.html#wp1315902
http://edocs.bea.com/wli/docs102/dtguide/dtguideMapper.html#wp1315902

Rece iv ing Messages F rom C l ients

Guide to Building Business Processes 4-5

c. If you want to create a new variable and assign it to the method parameter, then under
Select variable to assign, click the arrow and select Create new variable..., then follow
the instructions in To Create a New Variable in the Node Builder.

d. If the data types of your method parameters and your variables match, click Ok. Your new
variable is created and displayed in the Receive Data tab.

3. If the data types of your method parameters and your variables are different, you can use the
Transformation tool included in BEA WorkSpace Studio to map between heterogeneous data
types. The data transformations you create using the tool are stored in data transformation
files. When data transformation files containing your data transformations are built, they are
built as controls. The controls expose transformation methods, which business processes
invoke to map disparate data types.

a. To create a transformation map, select the Transformation option.

The node builder transformation screen is displayed with the data types expected by
your method displayed in the Client Sends pane.

b. In Step 1 of the Transformation option window, click Select Variable to select one or
more variables to be used.

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not
from your business process. The variable is still included in your business
process; it is visible in the Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. Your project must contain an instance of a Transformation control
for you to create the map.

c. If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the Transformation
XQuery Mapper tool window. This automatically applies changes to the builder and opens
a transformation editor in a new window.

The mapping tool displays a representation of the source schema and target schema in
Source and Target panes. You can create a map between the data type of the method
parameter and the data type of the variable, or variables, to which you assign the data.
To learn how to create and test a map using the mapping tool, see Guide to Data
Transformation.

Note: To return to node builder, in the Package Explorer pane, double-click the
Process.java file.

http://edocs.bea.com/wli/docs102/dtguide/index.html
http://edocs.bea.com/wli/docs102/dtguide/index.html

In te rac t ing Wi th C l i ents

4-6 Guide to Building Business Processes

d. If the appropriate instance of a Transformation control is available in your project, click
Advanced.... The Advanced Option window opens. In this window, select the Control
and Method. If the method arguments and return type matches those as selected in the
Transformation pane, click OK.

e. Close the Transformation tool by clicking Ok.

4. To close the node builder, click Close.

In the Design view, the icon indicates that you completed the configuration and design
of this node.

Note: To learn about changing the configuration you design in the Transformation pane of a
node builder, see About Editing Node Configurations.

5. To save your work, select File > Save.

Naming the Methods on Client Request Nodes
The names that you assign to methods on your Client Request nodes correspond to the names of
the methods that are exposed via the Web Services Description Language (WSDL) when you
make your business process available as a Web service. The name must be a valid Java class
name.

Related Topics
XQuery Statements

Handling Exceptions

Client Operations and Control Communication Methods

Adding Message Paths

Adding Timeout Paths

Sending Messages to Clients
Client Response nodes provide a way for a business process to send messages to clients. The
tasks you must complete to design a Client Response node include:

Create a Client Response Node in Your Business Process

Design Your Client Response Node

Sending Messages to C l i ents

Guide to Building Business Processes 4-7

Create a Client Response Node in Your Business Process
1. On the Package Explore pane, click the Process.java file you want to design.Your business

process is displayed in the Design view.

2. If the Node Palette is not visible in BEA WorkSpace Studio, choose Window > Show View
> Node Palette from the BEA WorkSpace Studio menu.

3. Click Client Response in the Node Palette.

4. Drag and drop the Client Response node onto the business process in the Design view,
placing it on the business process at the point in your business process at which you want to
send a message to a client.

Note: As you drag your selection onto the Design view, targets appear on your business
process. Each target represents a location in the flow where you can place the node.
As you drag the node near a location, the target is activated and the cursor changes

to an arrow . When this happens, you can release the mouse button and the node
snaps to the business process at the location indicated by the active target. If the
location you chose is not a valid one, an will appear next to your node. If you place
your cursor over this icon, BEA WorkSpace Studio will display a message about the
violation.

The Client Response node is displayed in your business process in the Design view.

Note the following properties for the Client Response node:

 indicates that the design of this node is incomplete. To complete the design, see Design
Your Client Response Node.

By default the name for the node is Client Response. You can change the name in the
following ways:

– Double-click the node name in the Design view and enter a new name to replace Client
Response.

– Right-click the node name in the Design view and select Rename from the drop-down
menu. Then enter a new name to replace Client Response.

– Double-click the Client Response node in your business process to display the node
builder. Click the name beneath the node builder icon and enter a new name to replace
Client Response.

In te rac t ing Wi th C l i ents

4-8 Guide to Building Business Processes

Design Your Client Response Node
The following sections describe how to complete the design of interactions with clients in your
Client Response nodes:

To Specify General Settings

To Specify Send Data

To Specify General Settings

1. Double-click the Client Response node in your business process.

The node builder is displayed. It contains two tabs: General Settings and Send Data.

2. In the General Settings tab, enter a name in the Method Name field to specify the name of
the method on this Client Response node.

3. In the General Settings tab, click Add to specify the type and format of the data your
business process sends to clients via the Client Response node (that is, the data type for the
method parameter). The node builder displays the following types of data:

– Simple Types

Lists Java primitive and classes data types.

– XML Types

Lists the XML Schemas that are available in your business process project. To learn
how to import a Schema into your project.

– Non-XML Types

Lists the Message Format Language (MFL) files available in your business process
project. WebLogic Integration uses a metadata language called Message Format
Language (MFL), based on XML, to describe the structure of non-XML data. Every
MFL file available in your project is listed in Non-XML Types. Note that an XML
Schema representation of each MFL file is built by WebLogic Workshop and is also
available in the XML Types listing.

4. Click OK.

After you select a data type from the list of supported types, the field is populated.

To Specify Send Data

1. Click the Send Data tab.

Sending Messages to C l i ents

Guide to Building Business Processes 4-9

This tab allows you to define one or more variables to hold the data your business process
sends to clients.

2. If the data types of your method parameters and the data type of the variables you are going
to use match, you can map your variables to the corresponding methods directly.

a. If not already selected, select the Variable Assignment option. By default, the Send Data
tab opens on the Variable Assignment panel.

The Client Expects field is populated with the parameter(s) you specified on the
General Settings tab.

b. If you want to assign a variable that you already created in your project to the method
parameters, select it from the drop-down menu.

c. If you want to create a new variable and assign it to the method parameter, then under
Select variable to assign, click the arrow and select Create new variable...To Create a
New Variable in the Node Builder.

d. If the data types of your method parameters and your variables match, click Ok. Your new
variable is created and displayed in the Send Data tab.

3. If the data types of your method parameters and your variables are different, you can use the
XQuery Mapper tool included in BEA WorkSpace Studio to map between heterogeneous data
types.The data transformations you create using the tool are stored in data transformation
files. When data transformation files containing your data transformations are built, they are
built as controls. The controls expose transformation methods, which business processes
invoke to map disparate data types.

a. To create a transformation map, select the Transformation option.

The node builder transformation screen is displayed with the data types expected by
your method displayed in the Client Expects pane.

b. In Step 1 in the Transformation tab, click Select Variable to select one or more variables
to be used.

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not
from your business process. The variable is still included in your business
process; it is visible in the Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. Your project must contain an instance of a Transformation control
for you to create the map.

In te rac t ing Wi th C l i ents

4-10 Guide to Building Business Processes

c. If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the Transformation
Mapping tool window.

The mapping tool displays a representation of the source schema and target schema in
Source and Target panes. You can create a map between the data type of the method
parameter and the data type of the variable, or variables, to which you assign the data.

Note: To return to node builder, in the Package Explorer pane, double-click the
Process.java file.

d. If the appropriate instance of a Transformation control is available in your project, click
Advanced Option. The Advanced Option window opens. In this window select the
Control and Method. If the method arguments and return type matches those as selected
in the Transformation pane, click OK.

e. To close the node builder, click the Close.

In the Design view, the icon indicates that you completed the configuration and design
of this node.

Note: To learn about changing the configuration you design in the Transformation pane of a
node builder, see About Editing Node Configurations.

4. To save your work, select File > Save.

Adding Dynamic Callback Properties
You can set dynamic callback properties for your Client Response node by using the XQuery
Dynamic Selector. The Dynamic Selector allows you to configure a lookup property based on a
LookupControl or TPM function. You can then configure your business process in the WebLogic
Integration Administration Console such that, at run time, the security of the callback to the client
is handled differently, based on the value of the lookup property that you specified in the
Dynamic Selector.

To Set the Dynamic Callback Property

1. Select the Client Response node for which you want to set a Dynamic Callback property.

2. In the Properties pane, in the xquery field under the ReturnXml section, enter the Dynamic
Selector XQuery data.

For information about how to configure the security information associated with your
dynamic callback property, see Adding or Changing Dynamic Client Callback Selectors in
Using The WebLogic Integration Administration Console.

http://edocs.bea.com/wli/docs102/adminhelp/processconfig.html#wp1041950

Buf fe r ing C l ient Messages

Guide to Building Business Processes 4-11

3. To save your work, select File > Save.

Buffering Client Messages
To ensure the scalability of your business process applications, incoming messages from clients
are buffered by default on the queue for the Web application.

Outgoing messages to clients are not buffered by default, but they can be configured to be
buffered on the same Web application queue.

To Buffer an Outgoing Client Message

1. Select the Client Response node that is configured with the callback method you want to
buffer.

2. In the Properties pane, in the message buffer section do the following:

a. From the enable attribute drop-down menu, select true.

b. Select the retry-count attribute, then enter a value for the callback method. This specifies
how many times the process engine should try to send your message to the queue.

– Select the retry-delay attribute, then enter a value for the callback method. This
specifies the amount of time (in seconds) you want to pass before a retry is attempted.

This completes the configuration of the callback method on the Client Response node; the
callback message is configured to be buffered.

Note: The business process considers a buffered operation completed when the message is
successfully enqueued, not when the message is delivered to the client.

3. To save your work, select File > Save.

In te rac t ing Wi th C l i ents

4-12 Guide to Building Business Processes

Guide to Building Business Processes 5-1

C H A P T E R 5

Interacting With Resources Using
Controls

BEA WorkSpace Studio controls make it easy to access enterprise resources, such as databases,
Enterprise Java Beans (EJBs), and Web services, from within your application.

When you access a resource through a control, your interaction with the resource is greatly
simplified; the underlying control implementation takes care of most of the details for you. You
add an instance of a control to your business process project and then invoke its methods.
Controls expose Java interfaces that can be invoked from your business process.

You can use controls generated from other services built with BEA WorkSpace Studio or
generate controls from WSDL files available from other services (regardless of the programming
language in which those services were implemented).

Designing Interactions Between Business Processes and
Resources

Control Send nodes represent points in business processes at which processes send
asynchronous messages to resources (via controls). Control Receive nodes represent points in
business processes at which processes receive asynchronous messages from resources (via
controls). A business process waits at a Control Receive node until it receives a message from
the specified control. Control Send with Return nodes handle synchronous exchange of
messages between business processes and resources (via controls). These three types of controls
are mutable. In other words, you can change them into another type of control by dragging and
dropping a control method of a different type.

In te rac t ing Wi th Resources Us ing Cont ro ls

5-2 Guide to Building Business Processes

This section describes how to add nodes to your business process that represent the interactions
of your business process with resources. It includes the following topics:

Create Control Nodes in Your Business Process

Designing Your Control Nodes

Adding Instances of Controls to Your Business Process Project

Configuring Control Nodes

Setting Control Properties and Annotations

Create Control Nodes in Your Business Process
To Create a Control Node in Your Business Process
In the Design view, an interaction between a business process and an external resource is
represented by one of three Control nodes: Control Send, Control Receive, or Control Send
with Return. The following steps describe how to add a Control node to your business process:

1. On the Package Explorer pane, double-click the business process (Process.java file) you
want to design.Your business process is displayed in the Design view.

2. Add a control node to your business process using one of the following methods:

– Drag and Drop a Method from a Control in the Data Palette onto the Design View

– Create a Control in the Design View First, Then Assign the Appropriate Method

Drag and Drop a Method from a Control in the Data Palette onto the Design View

a. If the Data Palette is not visible in BEA WorkSpace Studio, choose Window > Show
View > Data Palette from the BEA WorkSpace Studio menu.

b. If you have already added an instance of your control to your business project (see Adding
Instances of Controls to Your Business Process Project), select the relevant method on that
control by clicking the method in the Data Palette.

c. Drag and drop the method onto the business process in the Design view at the location at
which you want to define the interaction.

As you drag your selection onto the Design view, targets appear on your business
process. Each target represents a location in the flow where you can place the node. As
you drag the node near a location, the target is activated and the cursor changes to

Create Cont ro l Nodes in Your Bus iness P rocess

Guide to Building Business Processes 5-3

an arrow . When this happens, you can release the mouse button and the node snaps
to the business process at the location indicated by the active target. If the location you
chose is not a valid one, an will appear next to your node. If you place your cursor
over this icon, WebLogic Workshop will display a message about the violation.

The Control node is created in your business process in the Design view; it is named
according to the method you dragged and dropped from the Data Palette.

Create a Control in the Design View First, Then Assign the Appropriate Method

a. If the Node Palette is not visible in BEA WorkSpace Studio, choose Window > Show
View > Node Palette from the BEA WorkSpace Studio menu.

b. If you have not yet created a control, click the control on the Node Palette that fits the
action you want to create:

 Control Send—Choose the Control Send if you want to create an asynchronous
call from your business process to a control.

 Control Send with Return—Choose the Control Send with Return node if you
want to create a synchronous call from your business process to a control.

 Control Receive—Choose the Control Receive if you want to create a handler
for a callback from a control to your business process.

c. Drag and drop the Control node onto the business process in the Design view at the
location at which you want to define the interaction.

The Control node is created in your business process in the Design view, it is named
Control Send, Control Send with Return, or Control Receive, depending on which
control you dragged onto the Design view from the Node Palette.

The node in the Design view indicates only the type of interaction (asynchronous send,
asynchronous receive, or synchronous send/receive) between your business process and

a resource; it does not identify the resource. is a placeholder for a type of control.
That is, it represents a location in your business process where you must specify the
type of resource (control) with which you want your business process to interact.

d. Specify the control for this placeholder node in one of the following ways:

– Drag a control method from an instance of a control in the Data Palette and drop it
onto the placeholder control in the Design view. (To learn how to add instances of

In te rac t ing Wi th Resources Us ing Cont ro ls

5-4 Guide to Building Business Processes

controls to your project, see Adding Instances of Controls to Your Business Process
Project.)

– Double click the placeholder control in the Design view to open the node
builder for this control and complete the specifications in the node builder.

Note the following properties for the Control nodes:

 indicates that the design of this node is incomplete. To complete the design, see
Configuring Control Nodes.

Each node is labeled with a default name. You can change the name by clicking the name
of the node or right-clicking the node in the Design view and selecting Rename from the
drop-down menu. Then enter a new name to replace Control Send.

3. To save your work, select File > Save.

Designing Your Control Nodes
Designing the Control nodes includes adding an instance of the control with which you want
your business process to interact, then specifying the methods on the control, and the variables to
which the messages exchanged between your business process and the control are assigned. This
section describes how to design Control nodes. It includes the following topics:

Adding Instances of Controls to Your Business Process Project

Configuring Control Nodes

Adding Instances of Controls to Your Business Process
Project

To Add an Instance of a Control to Your Business Process Project

To Edit or Delete an Instance of a Control

To Add an Instance of a Control to Your Business Process Project
Before you can specify the resource with which your business process interacts at this node, you
must add an instance of the associated control to your project.

To add an instance of a control to your project:

Adding Ins tances o f Cont ro ls to Your Bus iness P rocess P ro jec t

Guide to Building Business Processes 5-5

1. If the Data Palette pane is not visible in BEA WorkSpace Studio, choose Window > Show
View > Data Palette from the menu bar.

2. Click on the Data Palette. A drop-down list of controls that represent the resources with
which your business process can interact is displayed. Instances of controls already available
in your project are displayed in the Controls tab.

3. Select a control from the Integrations Controls drop-down menu.

Note: Table 5-1contains information about the standard controls used in WebLogic
Integration. Other custom and plug-in controls may be available.

Table 5-1 Controls in WebLogic Integration

Type of Control Description

ALSB The ALSB control enables a business process to invoke a ALSB proxy service via
RMI with security and transaction context propagation support.

Dynamic Transformation The Dynamic Transformation control provides a business process with the ability
to dynamically select and invoke a query during run time. Specifically, this control
allows a business process to dynamically select a particular XQuery, XSLT, or
MFL file at run time. You use this control after creating and testing your XQuery
files with the Transformation control during design.

ebXML The ebXML control enables BEA WorkSpace Studio business processes to
exchange business messages and data among trading partners via ebXML
(Electronic Business using eXtensible Markup Language). ebXML is a business
protocol that enables enterprises to conduct business over the Internet. The ebXML
control supports both the ebXML 1.0 and ebXML 2.0 messaging services.

Note: The ebXML control is available in BEA WorkSpace Studio only if you are
licensed to use WebLogic Integration.

Email The Email control enables BEA WorkSpace Studio Web services and business
processes to send e-mail to a specific destination. The body of the e-mail message
can be text (plain, HTML, or XML) or can be an XML object. The control is
customizable, allowing you to specify e-mail transmission properties in an
annotation or to use dynamic properties passed as an XML variable.

File File controls can be used to read and write XML and binary files to a local file
system. In addition, through the use of a callback mechanism, the files in a specified
directory can be read as they are created in a directory.

In te rac t ing Wi th Resources Us ing Cont ro ls

5-6 Guide to Building Business Processes

Http This control enables BEA WorkSpace Studio and business processes to work with
HTTP requests and to send responses to a specific URL. It supports two modes for
data transfer: GET and POST. By using the GET mode, you can send your business
data along with the URL. By using the POST mode, you can send binary, XML, and
string documents. You can specify HTTP properties in an annotation, or pass
dynamic properties via an XML variable.

MB Publish Message Broker (MB) Publish controls allow your business process to publish
messages to Message Broker channels.

Publish and subscribe messaging to Message Broker channels is accomplished in
similar fashion to publish and subscribe messaging to JMS topics, but a Message
Broker channel is optimized for use with BPM (business process management)
services. The Message Broker provides typed channels to which messages
can be published and to which services can subscribe to receive messages.
Message Broker also supports a message filtering capability.

Note: The MB Publish control is available in BEA WorkSpace Studio only if you
are licensed to use WebLogic Integration.

MB Subscription Message Broker (MB) Subscription controls allow your business process to
dynamically register for and receive messages from a Message Broker channel.

In WebLogic Integration, subscriptions to Message Broker channels defined at a
Start node are referred to as static subscriptions, and subscriptions defined using a
Message Broker Subscription control are referred to as dynamic subscriptions.

Publish and subscribe messaging to Message Broker channels is accomplished in
similar fashion to publish and subscribe messaging to JMS topics, but a Message
Broker channel is optimized for use with BPM (business process management)
services. The Message Broker provides typed channels to which messages can be
published and to which services can subscribe to receive messages. Message Broker
also supports a message filtering capability.

Note: The MB Subscription control is available in BEA WorkSpace Studio only
if you are licensed to use WebLogic Integration.

MQSeries Control The MQSeries control enables BEA WorkSpace Studio business processes to work
with MQSeries for sending and receiving messages, to and from MQSeries queues.
MQSeries is a middleware product from IBM that runs on multiple platforms and
enables applications to send messages to other applications.

Table 5-1 Controls in WebLogic Integration

Adding Ins tances o f Cont ro ls to Your Bus iness P rocess P ro jec t

Guide to Building Business Processes 5-7

Process A Process control provides an interface to another business process in your project.
Using a process control, your business process can invoke the methods and handle
the callbacks on another business process.

To create a Process control, on the Package Explorer pane, right-click a business
process (Process.java) file to display a drop-down menu. Select Generate >
Process Control from the drop-down menu. BEA WorkSpace Studio creates a
Business Process control file (.java file) in your project

RosettaNet The RosettaNet control enables BEA WorkSpace Studio business processes to
exchange business messages and data among trading partners via RosettaNet.
RosettaNet is a business protocol that enables enterprises to conduct business over
the Internet.

Note: The RosettaNet control is available in BEA WorkSpace Studio only if you
are licensed to use WebLogic Integration.

Service Broker The Service Broker control allows a business process to send requests to and
receive callbacks from another business process, a Web service, or a remote Web
service defined in a WSDL file. The Service Broker control lets you dynamically
set control attributes. This allows you to reconfigure control attributes without
having to redeploy the application.

TPM The TPM (Trading Partner Management) control provides read-only access to
trading partner information stored in the TPM repository.

Note: The TPM control is available in BEA WorkSpace Studio only if you are
licensed to use WebLogic Integration.

Task The Task control creates a single Task instance, manages its state and data, and
provides callback methods to report status. A Task control identifies intimately with
a single Task instance; their relationship is one to one. You generally use a Task
control in a Process.java file like most other WLI controls and is generated
specifically to interact with Task Plan.

Note: The Task control is available in BEA WorkSpace Studio only if you are
licensed to use WebLogic Integration.

Task Batch The Task Batch replaces the Task Worker control from Weblogic Integration 8.x.
A Task Batch helps to manage multiple tasks in its operations and is generated
specifically for a Task Plan.

Note: The Task Batch control is available in BEA WorkSpace Studio only if you
are licensed to use WebLogic Integration.

Table 5-1 Controls in WebLogic Integration

In te rac t ing Wi th Resources Us ing Cont ro ls

5-8 Guide to Building Business Processes

4. After you select a type of control from the Integration Controls list.

An Insert Control dialog box, which contains tasks specific for the control you selected, is
displayed.

Note: For WLI Timer Control and WLW Timer Control, an Insert Control dialog box do
not appear.

5. In the Insert Control dialog box, enter the information specific for the control you want to
create in the Field Name and click Next.

6. Enter the required information in Create Control wizard and click Finish.To learn about
creating and configuring specific controls, see Using Integration Controls.

This step completes the creation of an instance of a specific control in your application.
The controls you create are displayed in the Controls tab.

The methods available on the control are shown in the Controls tab.

7. If you want to use an existing control created in an earlier business process (Process.java file),
you can do it in the following ways:

Tibco The Tibco control helps you to send and receive messages in XML, String, and
Tibco proprietary Rendezvous Message (TibrvMsg) formats.

Transformation Use a Transformation control to achieve data transformations for data in your
business processes. A Transformation control can be created and edited from within
communication nodes in a business process and via the File > New >
Transformation option on the BEA WorkSpace Studio menu.

WLI JMS The WLI JMS control is an extension for the Workshop JMS control, it is used to
exchange JMS messages as part of an integration application. Once a WLI JMS
control is defined, Web services and business processes may use it like any other
WebLogic Workshop control.

The WLI JMS control is available in WebLogic Workshop only if you are licensed
to use WebLogic Integration.

WLI Timer Control A Timer control notifies your application when a specified period of time has
elapsed or when a specified absolute time has been reached.

XML MetaData Cache The XML MetaData Cache control only allows you to retrieve XML metadata from
the XML cache. The XML cache is managed using the WebLogic Integration
Administration Console.

Table 5-1 Controls in WebLogic Integration

http://edocs.bea.com/wli/docs102/controls/index.html

Conf igur ing Cont ro l Nodes

Guide to Building Business Processes 5-9

– Drag an existing control from the Package Explorer pane to the Data Palette,
Controls folder.

– Click Menu tab, on the Data Palette and select Local control. From the drop-down list
select an exiting control.

Note About Transformations
Transformations handle mapping heterogeneous data types in your application. BEA WorkSpace
Studio provides a data mapping tool to map between heterogeneous data types. The data
transformations you create using the tool are stored in data transformation files. They can hold
multiple transformations and are designed to enable packaging, sharing and reuse of
transformation formats. When data transformation files containing your data transformations are
built, they are built as controls. The controls expose transformation methods, which business
processes invoke to map the disparate data types.

In addition to creating Transformations from the Controls tab in the Design view, as described
in this section, you can create them in the following ways:

In a Process perspective or XQuery Transformation perspective, by choosing File > New >
Transformation from the BEA WorkSpace Studio menu.

By choosing File > New > Other > WebLogic IntegratioTransformation from the BEA
WorkSpace Studio menu.

During the design of a node builders for any Control or Client node that sends or receives
data in your business process, you can create a new Transformation, or write new methods
to an existing instance of a Transformation control in your project. In this way you can
create new Transformations or Transformation methods on an existing control from within
a business process node.

To Edit or Delete an Instance of a Control
In the Controls tab, right-click on the control to display a drop-down menu. Select Delete or Edit
from the menu. When you select Edit, the control, including its methods and callbacks, is
displayed in the Design view.

Configuring Control Nodes
This section describes how to finalize the design of Control nodes in your business process.

After you add a Control node specific for the type of interaction you want to design—Control
Send, Control Receive, or Control Send with Return—the Control node you selected is
displayed in your business process in the Design view, see Figure 5-1.

In te rac t ing Wi th Resources Us ing Cont ro ls

5-10 Guide to Building Business Processes

Figure 5-1 Control Nodes

As with other nodes in your business process, you can design the properties and behavior of
Control nodes by invoking their node builders. This section describes how to complete the design
of the interaction with resources via your Control nodes.

To Invoke the Control Node Builders
Double-click the appropriate Control node in your business process to invoke its node builder.

Each Control node builder provides a task-driven interface through which you can design the
communication between the Control node and a control. The tasks are displayed on tabs on
Control node builders: General Settings, Send Data, and Receive Data.

The following sections describe how to specify your control settings on the tabs in the node
builders:

General Settings (Select a Control Instance and a Target Method)

Send Data/Receive Data (Map Variables to the Control Send (or Control Callback) Method
Parameters)

General Settings (Select a Control Instance and a Target Method)

1. In the node builder, click the arrow beside the Control field to display a drop-down list of the
instances of controls that are available in your project. (See Adding Instances of Controls to
Your Business Process Project.)

2. Select a control from the list.

3. The Method panel is populated with the methods available on the control you selected.

Note: Asynchronous send and return methods, as well as synchronous send and receive
methods can be defined for a given control. Only the methods appropriate for the kind
of control node you are designing (Control Send, Control Receive, or Control Send
with Return) are displayed in the list.

4. Select the method you want to specify at this point in your business process.

5. To close the node builder, click Close.

Conf igur ing Cont ro l Nodes

Guide to Building Business Processes 5-11

Send Data/Receive Data
(Map Variables to the Control Send (or Control Callback) Method Parameters)
If your Control node is expecting data or sending data, in other words it is a Control Send, a
Control Receive, or a Control Send with Return, the node builders display either Send Data
or Receive Data tabs in addition to the General Settings tab. Tasks on these tabs allow you to
define one or more variables to map to method parameters. At run time, input data sent by your
business process to controls, or data returned by controls is assigned to these variables.

1. Click the Send Data or Receive Data tab (depending on the type of Control node you are
designing).

This tab allows you to define one or more variables to hold the data that your business
process receives from clients.

2. If the data types of your method parameters and the data type of the variables you are going
to use match, you can map your variables to the corresponding methods directly.

a. If not already selected, select the Variable Assignment option.

The Control Expects field is populated with the parameter(s) you specified on the
General Settings tab.

b. If you want to assign a variable that you already created in your project to the method
parameters, select it from the drop-down menu.

c. If you want to create a new variable and assign it to the method parameter, select Create
new variable..., then follow the instructions in the To Create a New Variable in the Node
Builder section.

d. If the data types of your method parameters and your variables match, click Close to close
the node builder.

3. If the data types of your method parameters and your variables are different, you can use the
data mapping tool included in BEA WorkSpace Studio to map between heterogeneous data
types. The data transformations you create using the tool are stored in data transformation
files. When data transformation files containing your data transformations are built, they are
built as controls. The controls expose transformation methods, which business processes
invoke to map disparate data types.

a. To create a transformation map, select the Transformation option.

The node builder transformation screen is displayed with the data types expected by
your method displayed in the Control Expects pane.

In te rac t ing Wi th Resources Us ing Cont ro ls

5-12 Guide to Building Business Processes

b. In Step 1 of the Transformation option window, click Select Variable to select one or
more variables to be used.

Note: To remove a variable from the node builder pane, select the variable in the list and
then click Remove. This action removes the variable from the node builder, not
from your business process. The variable is still included in your business
process; it is visible in the Variables pane in the Data Palette.

When designing a business process, you use a Transformation to create maps between
disparate data types. Your project must contain an instance of a Transformation control
defined by a data transformation file) for you to create the map.

c. If an appropriate instance of a Transformation control is not available in your project, you
can create a new one by clicking Create Transformation to invoke the Transformation
Mapping tool window. This automatically applies changes to the builder and opens a
transformation editor in a new window.

The mapping tool displays a representation of the source schema and target schema in
Source and Target panes. You can create a map between the data type of the method
parameter and the data type of the variable, or variables, to which you assign the data.

Note: To return to node builder, in the Package Explorer pane, double-click the
Process.java file.

d. If the appropriate instance of a Transformation control is available in your project, click
Advanced.... The Advanced Option window opens. In this window, select the Control
and Method. If the method arguments and return type matches those as selected in the
Transformation pane, click OK.

Note: In the Advanced Option window, if you enter the right input parameter and it matches
with the signature of the transformation method, the Ok button will be enabled.

4. To close the node builder, click Close.

In the Design view, the icon indicates that you completed the configuration and design

of this node and is replaced with an icon that represents the resource with which this
node communicates. That is, a new control-specific icon replaces the former placeholder
icon.

5. To save your work, select File > Save.

Related Topics
Guide to Data Transformation

http://edocs.bea.com/wli/docs102/dtguide/index.html

Set t ing Cont ro l P rope r t i es and Annotat i ons

Guide to Building Business Processes 5-13

Setting Control Properties and Annotations
Instances of controls that you create in your business process are represented in the Data Palette.
You can view and edit the properties of control instances and their parent types in the JPD
Configuration pane and Properties pane.

To View and Edit Properties for Control Types

To View and Edit Annotations for Control Instances

To View and Edit Properties for Control Types
Double-click the control type on the Package Explorer pane.

The file is displayed in the Source view, and its properties are displayed in the JPD
Configuration pane. The properties you see and edit in the JPD Configuration pane depend on
the control you are using.

Values you specify for the properties in the JPD Configuration pane are written to the file. In
other words, the Source view is updated in keeping with the work you do in the JPD
Configuration pane. Properties you specify for the control are inherited by any instances of the
control you create based on this type.

To View and Edit Annotations for Control Types
The file is displayed in the Source view, and its annotations are displayed in the Properties pane.
The properties you see and edit in the Properties pane depend on the control you are using.

Values you specify for the annotations in the Properties pane are written to the file. In other
words, the Source view is updated in keeping with the work you do in the Properties pane.
Annotations you specify for the control are inherited by any instances of the control you create.

Follow the above, to view and edit annotations for control instances.

To View and Edit Annotations for Control Instances
Double-click the control instance in the Data Palette to display its properties in the Properties
pane. The annotations you can see and edit depend on the control you are using. Note that when
you open the Properties pane for an instance of a control, the annotations for that instance, are
listed at the top of the Properties pane. You can edit the referenced control properties by opening
the file as described in To View and Edit Properties for Control Types.

Note: Follow the above instructions for the annotations.

In te rac t ing Wi th Resources Us ing Cont ro ls

5-14 Guide to Building Business Processes

Guide to Building Business Processes 6-1

C H A P T E R 6

Receiving Multiple Events

An Event Choice node group represents a point in a business process at which the business
process waits to receive one of a possible number of events. Once it receives one of the possible
events, the flow of the business process continues. You design other nodes within an Event
Choice node group to handle the incoming events. The first node on each branch of an Event
Choice node group handles the receipt of one event. The flow of execution proceeds along one
branch in an Event Choice node; the branch containing the event that happens first.

If an Event Choice node is used to start a business process, it can contain Client Request, Client
Request with Return, and Subscription nodes. An Event Choice node at a point other than the
Start node in a business process can contain Client Request nodes and Control Receive nodes.

To learn about designing an Event Choice node at the Start of your business process, see
Designing Start Nodes.

Note: The Timer branch of an Event Choice node is not available when the node group is used
as the Starting Event of a business process. To do timed starts of a process, you have to
use a Message Broker subscription in tandem with a Timer event generator. For more
information about Message Broker subscriptions and Timer event generators, see Using
Integration Controls.

This section describes how to design Event Choice nodes at points in your business process other
than the Start node. It contains the following topics:

Create an Event Choice Node in Your Business Process

Design Your Event Choice Group

http://edocs.bea.com/wli/docs102/controls/index.html
http://edocs.bea.com/wli/docs102/controls/index.html

Rece iv ing Mul t ip le Events

6-2 Guide to Building Business Processes

Create an Event Choice Node in Your Business Process
Create an Event Choice node at a point in a business process at which the business process should
wait to receive multiple events. The events can include:

Receiving messages from clients.

Receiving messages from resources, such as a database, a JMS queue, an EJB, and so on.
(A business process interacts with resources using controls.)

A Timer event. The timer starts when the execution of the business process reaches the
Event Choice node and pauses to wait for an event.

To support these types of events, the first node on a branch can be a Client Request, a Control
Receive, or a Timer node. The flow of execution proceeds along one branch in an Event Choice
node; the branch containing the event that happens first.

To create an Event Choice node:

1. On the Package Explorer pane, click the business process (Process.java file) you want to
design.Your business process is displayed in the Design view.

2. If the Node Palette is not visible in BEA WorkSpace Studio, choose Window > Show View
> Node Palette from the BEA WorkSpace Studio menu.

3. Click Event Choice in the Node Palette. Then drag and drop it onto the business
process in the Design view, placing it on the business process at the point in your business
process where you want to handle the receipt of multiple events.

The Design view is updated to contain a representation of the Event Choice node as
shown in Figure 6-1.

Create an Event Cho ice Node in Your Bus iness P rocess

Guide to Building Business Processes 6-3

Figure 6-1 Event Choice Node

Note the following characteristics of the Event Choice node:

– An Event Choice node is, in effect, a group of nodes. You can view and edit the
properties of your Event Choice node by clicking the outline or label (name) of the
group to select it, then viewing the group properties in the Properties pane. To learn
about groups, see Grouping Nodes in Your Business Process.

– By default, Event Choice nodes are created with two branches. Click to create
additional branches. A new branch is added on the left or right of the existing branches.

– You can add additional nodes to the paths in your Event Choice group to specify the
events executed at run time. The empty nodes (labeled Start Event) at the start of each
branch indicate that only certain nodes are allowed at these locations: specifically, you
can add only Client Request or Control Receive nodes at the start of the branches.

– A Timer branch is not included by default. You can add one Timer branch to your
Event Choice group. To do so, right-click the Event Choice group and select Add
Timer Branch—a Timer branch is added as the right-most branch in an Event Choice
group. You can only add one Timer branch per Event Choice group.

Rece iv ing Mul t ip le Events

6-4 Guide to Building Business Processes

Note: The Timer branch of an Event Choice node is not available when the node group is
used as the Start Event of a business process. To do timed starts of a process, you
have to use a Message Broker subscription in tandem with a Timer event generator.
For more information about Message Broker subsrciptions and Timer event
generators, see Using Integration Controls.

– By default, the group is named Event Choice, and each branch is labeled Message
Event, Add Branch, or Timer Event depending on the type of branch. You can
change the names by double-clicking them and entering a new name.

– indicates that the design of this node is incomplete. When you complete the design
of the node, is replaced by . An Event Choice node is complete when all starting
events have been specified.

4. To save your work, select File > Save.

Design Your Event Choice Group
Designing your Event Choice node includes specifying the type of events handled on each
branch of the node, and then adding the activities you want executed on each branch when the
associated event occurs.

The following sections describe how to complete the tasks necessary to design an Event Choice
node:

– To Receive Events From Clients or Resources

– To Receive Timer Events

To Receive Events From Clients or Resources
To design a branch in an Event Choice node to receive messages from clients or resources, you
must create Client Request or Control Receive nodes on the branch:

1. Double-click the empty node (Start Event) on a branch. The options you can use to design
the starting event for the branch are displayed.

2. Select the event for which this branch waits during execution of your business process:

– A Client Request

– A Control Receive

3. Click Close. The drop target on your Event Choice branch is changed to reflect the event you
specified.

http://edocs.bea.com/wli/docs102/controls/index.html

Des ign Your Event Cho ice Group

Guide to Building Business Processes 6-5

4. To complete the specification of events, double-click the starting event node (Client Request
or Control Receive) on the Event Choice branches to invoke the associated node builder:

– To learn how to use the node builder to complete the Client Request node, see Design
Your Client Request Node.

– To learn how to use the node builder to complete the Control Receive node, see
Designing Your Control Nodes.

To Receive Timer Events
A Timer event in a Event Choice node is executed if one of the events on another branch
(Control Receive or Client Request) does not execute before a specified time. To create a Timer
branch, and specify the timer value, in your Event Choice node, complete the following tasks:

1. Right-click the Event Choice node and select Add Timer Branch from the drop-down menu.

A Timer branch, similar to the one shown in Figure 6-2, is added to the Event Choice
node:

Figure 6-2 Time Branch

2. You can set the properties for the Timer branch (and other properties for this group of nodes)
in the Properties pane.

a. If the JPD Configuration pane is not visible in the Design view, choose Window > Show
View > JPD Configuration from the BEA WorkSpace Studio menu.

b. Select the Timer branch. The JPD Configuration pane for the Event Choice node
appears as shown in Figure 6-3.

Rece iv ing Mul t ip le Events

6-6 Guide to Building Business Processes

Figure 6-3 Time Branch Property

c. In the timeout property, select the duration attribute, then specify the number of seconds
before the timer path is triggered. (The expected format is Xs, for example 7s.)

Note that you can change the name of the node, or any of its branches in the Property
Editor.

3. To save your work, select File > Save.

Guide to Building Business Processes 7-1

C H A P T E R 7

Creating Parallel Paths of Execution

A Parallel node represents a point in a business process at which a number of activities are
executed in parallel.

By default, parallel nodes contain an AND join condition. In this case, the activities on all
branches must complete before the flow of execution proceeds to the node following the parallel
node. You can change the join condition to OR. In this case, when the activities on one branch
complete, the execution of activities on all other branches terminates, and the flow of execution
proceeds to the node following the parallel node.

This section describes how to create and define Parallel nodes. It includes the following topics:

Understanding Parallel Execution in Your Business Process

Create a Parallel Node in Your Business Process

Design Your Parallel Node

Understanding Parallel Execution in Your Business
Process

Parallel branches of execution in a business process are logically parallel; physically the branches
are executed serially by the business process engine. Business Processes benefit from this logical
parallelism when communication with external systems can involve waiting for responses from
those external systems. While one branch of execution is waiting for a response, another branch
of execution in the parallel flow can progress.

Creat ing Para l le l Pa ths o f Execut ion

7-2 Guide to Building Business Processes

Parallel branches are synchronized only at their termination points. A join condition is defined at
the termination of multiple branches. It specifies how the termination of branches terminates the
overall parallel activity.

Valid join conditions are AND and OR:

When the join condition is AND, the parallel activity terminates when all of its branch
activities have terminated. When the activities on all branches complete, the flow of
execution proceeds to the node that follows the parallel node.

When the join condition is OR, the parallel activity terminates when one of its branch
activities has terminated—activities associated with other branch activities are terminated
prematurely. In other words, when the activities on one branch complete, the flow of
execution proceeds to the node that follows the parallel node.

Comparing Parallel Nodes and Event Choice Nodes
How does a Parallel node, which specifies an OR join condition, differ from an Event Choice
node?

For a scenario in which an OR join condition is specified for a Parallel node, the business process
executes activities on all branches in parallel. When the activities on one branch complete, the
execution of activities on all other branches terminates, and the flow of execution proceeds to the
node following the Parallel node. In other words, the activities on all parallel branches are
initiated and proceed until the first one finishes, at which point the activities on all other branches
are terminated.

In the case of an Event Choice node, the business process waits to receive multiple events. The
first node on each branch within an Event Choice node handles the receipt of one event. The flow
of execution proceeds along the branch containing the event that happens first. In other words,
the activities on one, and only one branch in an Event Choice node are executed.

Create a Parallel Node in Your Business Process
To Add A Parallel Node to Your Business Process

1. On the Package Explorer pane, double-click the business process (Process.java file) you
want to design.Your business process is displayed in the Design view.

2. If the Node Palette is not visible in BEA WorkSpace Studio, choose Window > Show View
> Node Palette from the BEA WorkSpace Studio menu.

Des ign Your Pa ra l l e l Node

Guide to Building Business Processes 7-3

3. Click Parallel in the Node Palette. Then drag and drop the Parallel node onto the
business process in the Design view, placing it on the business process at the point in your
business process at which you want to create parallel paths of execution.

The Design view is updated to contain a Parallel node, as shown in Figure 7-1.

Figure 7-1 Parallel Node

Note the following characteristics of the Parallel node:

– By default, a Parallel node consists of two branches; you can click to add branches.

– By default, the node is named Parallel, and each branch is labeled Branch or Add
Branch. You can change the names by double-clicking them and entering a new name.

– indicates that the design of this node is incomplete. When you complete the design
of the node, is replaced by . A parallel node is completed when each branch
contains at least one node.

4. To save your work, select File > Save.

Design Your Parallel Node
Designing a Parallel node includes the following tasks:

To Define a Join Condition

To Add Logic to the Branches in Your Decision Node

To Define a Join Condition
A Parallel node is, in effect, a group of nodes. You can set the properties and annotations for a
group of nodes using the JPD Configuration pane and Properties pane.

1. View the properties of your Parallel node by clicking the outline of the group to select it, then
view the group properties in the JPD Configuration pane.

Creat ing Para l le l Pa ths o f Execut ion

7-4 Guide to Building Business Processes

Note: If the JPD Configuration pane is not visible in the Design view, choose Window >
Show View > JPD Configuration from the BEA WorkSpace Studio menu.

2. To change the value of the Join Condition from AND (the default) to OR, in the Properties
pane, select OR from the drop-down menu associated with Join Condition. The node in your
business process will be updated with a to indicate the OR condition.

To learn how the Join Condition affects the flow of execution in a Parallel node, see
Understanding Parallel Execution in Your Business Process.

3. To change the name of the node or any of its branches, in the Property pane, click the name
attribute in the node or branch names, then enter the new name.

To Add Logic to the Branches in Your Decision Node
For each branch in your Parallel node:

1. In the Node Palette, click a Node that represents the type of logic you want to add to the
business process.

2. Drag and drop the node from the Node Palette onto the appropriate branch, see Figure 7-2.

Figure 7-2 Process Nodes

3. Complete the design of the nodes added on each branch. In this way, you create the activities
appropriate for the business logic defined by your business process.

Note: You can create nested Parallel nodes in your business process by dragging a Parallel
node from the Node Palette on to one of the branches in a Parallel node already created
in the Design view.

4. To save your work, select File > Save.

Related Topics
Grouping Nodes in Your Business Process

Des ign Your Pa ra l l e l Node

Guide to Building Business Processes 7-5

Handling Exceptions

Business Process Source Code

Adding Message Paths

Adding Timeout Paths

Creat ing Para l le l Pa ths o f Execut ion

7-6 Guide to Building Business Processes

Guide to Building Business Processes 8-1

C H A P T E R 8

Defining Conditions For Branching

A common design pattern in business processes is one which selects one path of execution based
on the evaluation of one or more conditions. You can create this pattern by designing a Decision
node in your business process.

By default, a Decision node consists of one condition, a path below the condition, which
represents the path of execution followed when the decision evaluates to true, and a path to the
right of the condition, which represents the path of execution followed when the condition
evaluates to false (the default path). A Decision node can contain additional conditions, in which
case if the first condition evaluates to false, the second condition is evaluated. If the second
condition evaluates to false, the next condition is evaluated, and so on. The default path is
executed if no conditions are met.

Note: To create case statements, WebLogic Integration provides a customized node, called a
Switch node. To learn about using Switch nodes and how they differ from Decision
nodes, see Comparing Decision Nodes and Switch Nodes in Creating Case Statements.

This section describes how to add a Decision node to your business process, define conditions,
and define activities for the alternative paths of execution in the Decision node. It contains the
following topics:

Creating a Decision Node in Your Business Process

Designing Your Decision Node

Def in ing Condi t ions Fo r Branch ing

8-2 Guide to Building Business Processes

Creating a Decision Node in Your Business Process
To Create a Decision Node in Your Business Process

1. On the Package Explorer pane, click the business process (Process.java file) you want to
design.Your business process is displayed in the Design view.

2. If the Node Palette is not visible in BEA WorkSpace Studio, choose Window > Show View
> Node Palette from the BEA WorkSpace Studio menu.

3. Click Decision on the Node Palette.

4. Drag and drop the Decision node onto the business process in the Design view, placing it on
the business process at the point in your business process that requires branching to one of
several possible paths of execution, based on the evaluation of one or more conditions.

The Design view is updated to contain a Decision node, as shown Figure 8-1.

Figure 8-1 Decision Node

Note the following characteristics of the Decision node:

Adding a Decision node to a business process adds, by default, a single Condition node,
and a representation for the two paths of execution after the Condition node.

You can add additional condition nodes. To do so, right-click on the Decision node and
select Add Condition from the drop-down list, or click .

At run time, when more than one condition is defined, if the first condition evaluates to
false, the second condition is evaluated. If the second condition evaluates to false, the next
condition is evaluated, and so on. The default path is executed if no conditions are met.

Des ign ing Your Dec i s ion Node

Guide to Building Business Processes 8-3

You can change the name of the Decision node, the Default branch, and each Condition in
a Decision node. To do so, click the name assigned to the Condition, Add Condition
branch, Default branch, or Decision node and enter a new name.

 indicates that the design of this node is incomplete. When you complete the design of
the node, is replaced by (see Example Decision Node). A Decision node is
completed when all conditions have been configured.

A Decision node is, in effect, a group of nodes. You can view and edit the properties of
your Decision node by clicking the outline of the group to select it, then viewing the group
properties in the JPD Configuration pane and Properties pane. To learn about groups, see
Grouping Nodes in Your Business Process.

Related Topics
Creating Case Statements

Designing Your Decision Node
To create logic for your Decision node, you must complete the following steps:

To Design the Condition Logic

To Add Activities to the Paths in Your Decision Node

To Design the Condition Logic

1. Double-click the Condition node to invoke the decision builder.

2. Select one of the options:

– Variable—Select this option if, at run time, you want the business process to make a
decision, based on the value of an element in an XML or non-XML variable.

– Method—Select this option if, at run time, you want the business process to make a
decision, based on a boolean result returned from Java code that you create.

The node builder displays different options depending on whether you select Variable or
Method.

3. Complete the selections in the node builder appropriate for the selection you made in the
preceding step: Variable (Schema) or Method.

Def in ing Condi t ions Fo r Branch ing

8-4 Guide to Building Business Processes

Variable (Schema)
The following steps describe how to select a business process variable that is associated with an
XML or MFL schema.

Note: To learn about creating business process variables and importing schemas to your
project, see Business Process Variables and Data Types.

1. In the condition builder, select a business process variable by clicking .

A drop-down list of business process variables in your project is displayed.

For example, if you imported an XML Schema (QuoteRequest.xsd) into your project,
and created a business process variable (requestXML) of type quoteRequest (based on
the QuoteRequest.xsd schema), the requestXML variable is available in the drop-down
list of business process variables.

2. Click the arrow in the Select Variable drop-down list, then select a variable that contains the
XML or typed non-XML on which you want to build the condition.

A representation of the XML Schema associated with that variable is displayed in the
Select Expression Node field as shown in Figure 8-2.

Figure 8-2 Select Expression Node

The elements and attributes of an XML document, assigned to this variable, are
represented as nodes in a hierarchical representation, as shown in the preceding figure.
Note that the schema in the example (QuoteRequest.xsd) specifies a root element
(quoteRequest), and child elements: customerName, shipAddress, and
widgetQuoteRequests. The widgetQuoteRequests element, in turn, specifies a

Des ign ing Your Dec i s ion Node

Guide to Building Business Processes 8-5

repeating element: widgetQuoteRequest. (A repeating XML element is represented by
 in the GUI representation of the Schema.)

3. In the Select Expression Node field, select the node in the XML Schema for which you want
to define the condition.

To continue with the example, supposed you selected customerName from the XML
variable represented in the preceding figure. The Selected Expression field is populated
with the following expression:

fn:data($requestXML/ns0:customerName)

4. Click Select. Your new variable is displayed in the Left Hand Expression field.

5. Select an operator from the Operator drop-down list.

For example, =

6. In the Right Hand Expression field, enter a value or choose a variable and expression with
which to create the decision logic.

For example, enter BEA.

7. Click Add. The condition you created is added to the condition list.

For example, fn:data($requestXML/ns0:customerName) = “BEA”

8. Select a join option of either AND or OR to qualify your conditions.

9. To add a condition based on an existing value in the Left Hand Expression field:

a. In the condition list pane, select a condition. The Left Hand Expression, Operator, and
Right Hand Expression fields are populated with the appropriate values.

b. In the Right Hand Expression field, select the value.

For example, BEA.

c. Change the entry you selected.

For example, Avitek.

d. Select the arrow beside the Update button, then select Add from the menu.

The new condition is added to the bottom of the condition list.

10. To edit the conditions after you create them:

Def in ing Condi t ions Fo r Branch ing

8-6 Guide to Building Business Processes

a. In the condition list pane, click the condition that you want to change. The Left Hand
Expression, Operator, and Right Hand Expression fields are populated with the
appropriate values.

b. Change the value in any of the fields.

c. Click Update.

Alternatively, you can edit conditions directly in the code. To do so, in the Condition
builder, click View Code in the lower left-hand corner. The XQuery function that was
written to the file from the design work in the condition builder is displayed at the line
of code in your Process.java file; it is indicated by the
@com.bea.wli.commom.XQuery annotation.

11. To edit Join Options after you create them:

a. In the condition list pane, click the Join Option that you want to change.

b. Select the appropriate join option.

c. Click Update.

12. Click Close in the top right-hand corner of the condition builder.

In the Design view, note that the Condition in your Decision node displays the following
icons:

– is a visual reminder that the condition you defined on this node is based on the
evaluation of an XML document.

– is a visual reminder that the condition you defined on this node is based on the
evaluation of a MFL file.

Defining an XML or MFL condition produces an XQuery function that is written to
your Process.java file, which you can see in the Source view. The condition defined by
following the preceding example (in steps 1 through 7) creates the following XQuery
function in the Process.java file:

@com.bea.wli.common.Xquery(prolog =

“ declare namespace ns0 =\http://ww.example.org./quote\”;”+

“ declare function cond_requestXML_1($requestXML) as xs:boolean {“+

“ fn:data($requestXML/customerName) = \"BEA\"”+

and“ fn:data($requestXML/customerName) = \"Avitek\"”+

Des ign ing Your Dec i s ion Node

Guide to Building Business Processes 8-7

“};”)

13. To save your work, select File > Save.

Method
The following steps describe how to select a business process variable that is associated with an
XML or MFL schema.

1. In the Java Method Name field, enter a name for the Java method, or, to choose an existing
method, click .

2. Click View Code in the lower left-hand corner of the node builder.

The Source view is displayed at the line of code in your Process.java file at which the Java
method is written.

3. Edit your Java method.

4. To return to the Design view, click the tab.

5. Close the condition builder by clicking Close.

In the Design view, note that the Condition in your Decision node displays the following
icon: . It is a representation of the condition you defined in source code that specifies
the Java method on which to base the decision. To make any further changes to the
condition represented on this node, you must edit the source code in the Source view.

6. To save your work, select File > Save.

To Add Activities to the Paths in Your Decision Node
After you define the condition, you are ready to define the actions on the paths in the conditions.

1. Add a node (or nodes) to each path in the Decision node to define the activity that is executed
when the conditions you defined on the Condition node at the beginning of the path evaluates
to true.

This can be any node that performs an activity appropriate for your business process
business logic. For example you can use a control to interact with an external resource,
such as a database, a JMS queue, or an EJB.

2. Add a node (or nodes) to the default path that defines which activities are executed when no
condition evaluates to true at run time. The nodes on the default path can be any that define
activities appropriate for your business process business logic.

Def in ing Condi t ions Fo r Branch ing

8-8 Guide to Building Business Processes

When you complete the addition of activities on the paths of your Decision node, your decision
logic is represented as a series of conditions and actions in your business process.

Example Decision Node
Figure 8-3 shows an example Decision node in the Design view.

Figure 8-3 Decision Node

Building on the QuoteRequest example used in building the Variable (Schema) condition, two
Perform nodes are added to the paths on the Decision node. At run time, the following sequence
represents the flow of control in this decision node:

1. The condition defined on the Check Customer condition node is evaluated:

“ fn:data($requestXML/customerName) = \"BEA\"”+

and“ fn:data($requestXML/customerName) = \"Avitek\"”

Note: The XML evaluated by the condition node is assigned to the requestXML business
process variable.

2. If the Check Customer condition evaluates to true at run time, the activities defined on the
BEA Orders node are performed, then the flow exits the Decision node.

3. If the Check Customer condition evaluates to false at run time, the path of execution is the
Default path. The activities defined on the Non BEA Orders node are performed, then the
flow of control exits the Decision node.

Related Topics
Grouping Nodes in Your Business Process

Handling Exceptions

Des ign ing Your Dec i s ion Node

Guide to Building Business Processes 8-9

Adding Message Paths

Adding Timeout Paths

Business Process Source Code

Interacting With Resources Using Controls

Def in ing Condi t ions Fo r Branch ing

8-10 Guide to Building Business Processes

Guide to Building Workflows 9-1

C H A P T E R 9

Creating Case Statements

A Switch node is used to select one path of execution based on the evaluation of an expression
specified on a condition node. A Switch node contains one condition node, one or more case
paths, and one default path. At run time, the expression on the condition node is executed, and
the resulting value is compared to the values associated with each case path. Execution continues
with activities inside the first case path that contains a matching value (case paths are evaluated
left-to-right in the Switch node). When no conditions are met, activities defined on the default
path are executed.

This section describes how to add a Switch node to your business process, define conditions, and
define activities for the alternative paths of execution in the Switch node. It contains the following
topics:

Comparing Decision Nodes and Switch Nodes

Creating a Switch Node

Designing a Switch Node

Comparing Decision Nodes and Switch Nodes
How does a Decision node differ from a Switch node?

A Decision node can include one or more conditions to be evaluated at run time. For a scenario
in which a Decision node is defined, the business process evaluates the conditions (one on each
path) sequentially, and executes the path for the first condition that evaluates as true. (Conditions
are evaluated left-to-right in the Decision node.) In other words, if the first condition evaluates to

Creat ing Case S tatements

9-2 Guide to Building Workflows

false, the second condition is evaluated. If the second condition evaluates to false, the next
condition is evaluated, and so on. The activities defined on the default path are executed if no
conditions are met.

A Switch node includes a single condition. For a scenario in which a Switch node is defined, the
business process evaluates an expression specified on a single condition node and selects one path
of execution based on the evaluation of that expression. The possible paths of execution in a
Switch node include one or more case paths, and one default path. Execution continues with
activities inside the first case path that contains a matching value. (Case paths are evaluated
left-to-right in the Switch node.) If the value resulting from the evaluation of the condition
expression does not match any of the case paths, then the activities defined on the default path
are executed.

Creating a Switch Node
To Create a Switch Node in Your Business Process

1. On the Package Explorer pane, right-click the business process (Process.java file) you want
to design. Your business process is displayed in the Design view.

2. If the Node Palette is not visible in BEA WorkSpace Studio, choose Window > Show View
> Node Palette from the BEA WorkSpace Studio menu.

3. Click Switch in the Node Palette.

4. Drag and drop the Switch node onto the business process in the Design view, placing it on
the business process at the point in your business process that requires branching to one of
several possible paths of execution, based on the evaluation of one or more conditions.

The Design view is updated to contain a Switch node, as shown in Figure 9-1.

Figure 9-1 Switch Node

Des ign ing a Swi tch Node

Guide to Building Workflows 9-3

Note the following characteristics of the Switch node:

Adding a Switch node to a business process adds, by default, a single Switch node, a Case
node, and a Default node.

You can add one or more additional Case nodes. To do so, right-click on the Switch node
and select Add Case from the drop-down list, or click the on either side of the Case
tree.

At run time, the case branch which matches the received data on the node is executed. If
no matching case is found, the default path is executed.

You can change the name of the Switch node and each Case in a Switch node. To do so,
double-click the name assigned to the Case or Switch node and enter a new name.

 indicates that the design of this node is incomplete. When you complete the design of
the node, is replaced by . A Switch node is completed when the condition and all
cases are fully configured.

A Switch node is, in effect, a group of nodes. You can view and edit the properties and
annotations of your Switch node by clicking the outline of the group to select it, then
viewing the group properties and annotations in the JPD Configuration pane and
Properties pane respectively. To learn about groups, see Grouping Nodes in Your Business
Process.

Designing a Switch Node
To create logic for your Switch node, you must complete the following steps:

To Design the Switch Logic

To Specify the Case Statement

To Add Activities to the Paths in Your Switch Node

To Design the Switch Logic

1. Double-click the Switch node to invoke the condition builder.

2. Select the option which you want the left side of your condition to be based on:

– Variable—Select this option if, at run time, you want the business process to evaluate a
match based on the value of an element in an XML document or a MFL file.

Creat ing Case S tatements

9-4 Guide to Building Workflows

– Method—Select this option if, at run time, you want the business process to evaluate a
match, based on a result returned from Java code that you create.

The node builder displays options depending on whether you selected Variable or
Method.

3. Complete the selections in the node builder appropriate for the selection you made in the
preceding step: Variable or Method.

Variable (Schema)
The following steps describe how to select a business process variable, which is associated with
an XML or MFL schema. Select one or more nodes in the schema on which to define a switch or
case node.

1. In the decision builder, select a business process variable by clicking Select Variable.

A drop-down list of business process variables in your project is displayed.

2. Select a variable that you have already created in your project, or select Create new
variable..., to create a new variable to use in your switch node:

a. If you want to use a variable that is already created, select the variable that contains the
XML or typed non-XML on which you want to build the condition.

For example, if we import an XML Schema (QuoteRequest.xsd) into our project, and
create a business process variable (requestXML) of type quoteRequest (based on the
QuoteRequest.xsd schema), the requestXML variable is available in the drop-down
list of business process variables as shown in Figure 9-2.

Figure 9-2 Select Variable

Des ign ing a Swi tch Node

Guide to Building Workflows 9-5

Note: (To learn about creating business process variables and importing schemas to your
project, see Business Process Variables and Data Types and Creating and Importing
Schema Files.)

When you select a variable, a representation of the XML Schema associated with that
variable is displayed in the Select Node pane.

b. If you want to create a new variable, select Create new variable... from the drop-down
list.

The Create Variable dialog box opens.

c. Enter a name for your new variable in the Variable Name field.

d. Select the Simple, XML or nonXML option, depending on whether your variable is
based on an XML document or MFL file and select the appropriate variable type in the
displayed list of type options.

e. Click OK.

The Create Variable dialog box closes and your new variable is displayed in the Select
Node pane.

3. Building on our requestXML variable example, Figure 9-3 shows the XML Schema
represented when the requestXML variable is selected:

Figure 9-3 XML Schema

The elements and attributes of an XML document assigned to this variable, are represented
as nodes in a hierarchical representation, as shown in the preceding figure. Note that the
schema in our example (QuoteRequest.xsd) specifies a root element (quoteRequest),
and child elements: customerName, shipAddress, and widgetQuoteRequests. The
widgetQuoteRequests element, in turn, specifies a repeating element:
widgetQuoteRequest. (A repeating XML element is represented by in the GUI
representation of the Schema.)

http://edocs.bea.com/wli/docs102/dtguide/dtguideMapper.html#wp1315902
http://edocs.bea.com/wli/docs102/dtguide/dtguideMapper.html#wp1315902

Creat ing Case S tatements

9-6 Guide to Building Workflows

4. In the Select Node panel, select the node in the XML Schema for which you want to define
the switch.

5. The node which you selected is displayed in the Selected Element field. For example, if you
selected the element street in the preceding example, the
$requestXML/ns0:shipAddress/@street) is displayed in the Selected Element field.

6. Click Close to return to the Design view.

In the Design view, note that the Condition in your Decision node displays the following
icons:

– is a visual reminder that the condition you defined on this node is based on the
evaluation of an XML document.

– is a visual reminder that the condition you defined on this node is based on the
evaluation of a MFL file.

7. To save your work, select File > Save.

Method

1. Enter a name for the Java method in the Java Method Name field.

Note: To select an existing method, click on the left side of the Java Method Name
field.

2. Click View Code in the lower left-hand corner of the Switch builder.

The Source view is displayed at the line of code in your Process.java file at which the Java
method is written.

3. Edit your Java method and click the Design tab to return to the Design view.

4. Click Close, to close the decision builder.

In the Design view, note that the Condition in your Switch node displays the following
icon: . It is a representation of the condition you defined in source code to specify the
Java method, on which to base the decision. To make any further changes to the condition
represented on this node, you must edit the source code in the Source view.

To Specify the Case Statement

1. Double-click the Case node to invoke the case builder.

2. Select the option which you want the right side of your condition to be based on:

Des ign ing a Swi tch Node

Guide to Building Workflows 9-7

– Schema—Select this option if, at run time, you want the business process to evaluate a
match based on the value of an element in an XML document or an MFL file.

– Method—Select this option if, at run time, you want the business process to evaluate a
match based on a result returned from Java code that you create.

– Constant or Variable—Select this option if, at run time, you want the business process
to evaluate a match based on a constant that you specify.

The node builder displays options depending on whether you selected Schema, Method, or
Constant or Variable.

3. Complete the selections in the node builder appropriate for the selection you made in the
preceding step: Schema, Method, or Constant or Variable.

Schema
For information about how to complete the Case builder when using the Schema option, see
Variable (Schema) in the preceding section.

Method
For information about how to complete the Case builder when using the Method option, see
Method in the preceding section.

Constant or Variable

1. In the Value field, enter the constant value or variable that you want to match the case
statement to.

Note: You can select an existing variable or create a new one by clicking on the right
side of the Constant Value field.

2. To close the node builder, click Close.

To Add Activities to the Paths in Your Switch Node
After you define the condition, you are ready to define the actions on the paths that represent the
paths of execution in the flow.

1. Add a node (or nodes) to each path in the Switch node to define the activity that is executed
when the conditions you defined on the Case nodes at the beginning of the path match at run
time.

This can be any node that performs the activity appropriate for your business process logic.
For example you can use a control to interact with an external resource, such as a database,
a JMS queue, or an EJB.

Creat ing Case S tatements

9-8 Guide to Building Workflows

2. Add a node (or nodes) to the default path, to define activities that are executed when none of
the case statements match at run time. The nodes on the default path can be any that define
activities appropriate for your business process business logic.

When you complete the addition of activities on the paths of your Switch node, your decision
logic is represented as a series of conditions and actions in your business process.

3. To save your work, select File > Save.

Related Topics
Grouping Nodes in Your Business Process

Handling Exceptions

Adding Message Paths

Adding Timeout Paths

Guide to Building Business Processes 10-1

C H A P T E R 10

Writing Custom Java Code in Perform
Nodes

Although users are free to modify and write custom Java code almost anywhere, Perform nodes
provide a means for visually representing custom code within the process diagram. When you add
a Perform node to your business process, a method is created in the Process.java file. You
subsequently customize the method signature in the Source view.

This section describes how to create and customize a Perform node for your business process.

To Create a Perform Node in Your Business Process

1. On the Package Explorer pane, double-click the business process (Process.java file) you
want to add the Perform node to.Your business process is displayed in the Design view.

2. If the Node Palette is not visible in BEA WorkSpace Studio, choose Window > Show View
> Node Palette from the BEA WorkSpace Studio menu.

3. Click Perform in the Node Palette. Then drag and drop the Perform node onto the
business process in the Design view, placing it on the business process at the point in your
business process at which you want to create custom Java code.

The Design view is updated to contain the Perform node.

4. Double-click the Perform node in the Design view to open the node builder.

This node builder allows you to name the node and the associated Java method.

Note: You can select an existing method by clicking on the right side of the Java
Method Name field.

5. Click View Code in the lower left-hand corner of the Perform builder.

Wri t ing Custom Java Code in Pe r fo rm Nodes

10-2 Guide to Building Business Processes

The Source view is displayed at the line of code in your Process.java file at which the Java
method is written.

For example, if you created a method named checkInventory, the following code is
written to the source file.

public void checkInventory() throws Exception {
}

6. Customize this method with your Java code.

7. Click the Design tab to return to the Design view.

8. Click Close, to close the node builder.

Your Process.java file is updated to reflect the changes you made in the node builder.

9. To save your work, select File > Save.

Related Topics
Perform Methods

Handling Exceptions

Guide to Building Business Processes 11-1

C H A P T E R 11

Creating Looping Logic

Frequently, your business logic requires that you create looping logic in your business processes.
That is, you need to design logic in your business process in which the activities enclosed in a
loop are performed repeatedly while a specific condition is true.

While Do, Do While, and For Each node groups represent such points in your business
processes. This section describes how to design looping logic in your business processes. It
includes the following topics:

Understanding While Node Groups

Creating While Node Groups in Your Business Process

Designing While Node Groups

Looping Through Items in a List

Creating For Each Nodes in Your Business Process

Designing For Each Nodes

Understanding While Node Groups
Both While Do and Do While node groups support looping logic. Both types of groups represent
a point in a business process at which the activities enclosed by the group are performed
repeatedly while a specific condition is true. However, While Do and Do While groups represent
different execution logic, as described in the following sections:

While Do Node Groups

Creat ing Loop ing Log ic

11-2 Guide to Building Business Processes

Do While Node Groups

While Do Node Groups
At run time, the condition on a While Do group is evaluated before the activities in the loop are
performed. Therefore, the activities inside While Do groups are performed zero or many times,
depending on the results of the evaluation of the condition.

Do While Node Groups
In the case of Do While groups, business process activities are added before the condition in the
loop. At run time, the activities defined in a Do While loop are performed; then the condition is
evaluated. Therefore, the activities inside a Do While group are performed one or many times,
depending on the results of the evaluation of the condition.

Related Topics
Creating While Node Groups in Your Business Process

Designing While Node Groups

Creating While Node Groups in Your Business Process
To Add A While group to Your Business Process

1. On the Package Explorer pane, click the business process (Process.java file) you want to add
the While group node to.Your business process is displayed in the Design View.

2. If the Node Palette is not visible in BEA WorkSpace Studio, choose Window > Show View
> Node Palette from the BEA WorkSpace Studio menu bar.

3. Determine whether you need While Do or Do While looping logic, and click While Do or
 Do While in the Node Palette.

4. Drag and drop the node group you selected onto the business process, placing it on the
business process at the point in your business process at which you want to design a looping
logic.

The Design view is updated to contain a representation of the group you selected as shown
in Figure 11-1.

Des ign ing Whi le Node Groups

Guide to Building Business Processes 11-3

Figure 11-1 While Node Groups

Note the following characteristics of the While groups:

Each While group represents a placeholder for one or more additional nodes, a looping

mechanism, and a condition builder . The condition builder allows you to build the
condition, which your business process evaluates for each iteration through the loop at run
time.

In the case of While Do groups, the design specifies that the condition on the group is
evaluated before the activities in the loop are performed. In contrast, in the case of the Do
While groups, the design specifies that the activities defined in the loop are executed first
at run time, then the condition is evaluated.

You can change the name of the While groups by double-clicking the name of the group in
the Design view, and entering a new name.

 indicates that the design of a group is incomplete. When you complete the design of the
group, is replaced by . While groups are completed when the condition group is
properly configured.

Designing While Node Groups
To create logic for your While group, you must complete the following steps:

Design the Condition Logic

Add Activities to the Paths in Your While group

Creat ing Loop ing Log ic

11-4 Guide to Building Business Processes

Design the Condition Logic

Double-click in the While group you want to design the condition logic for.

The node builder is displayed. It allows you to create the condition or conditions that are
evaluated at run time by the business process.

Note: The node builder in which you create the conditions for looping is the same as that in
which you create conditions on Decision groups. To learn how to design the condition
logic for the While group, see To Design the Condition Logic in Defining Conditions For
Branching.

Add Activities to the Paths in Your While group
After you define the condition that is evaluated in your While loop at run time, you are ready to
define the actions on the loop. To do so, add a node (or nodes) to the path in the While loop. You
can add any nodes that perform the activities appropriate for the business logic that you require
at this point in your business process.

When you complete the addition of activities on the group, your looping logic is represented by
a condition or conditions and a series of business process nodes in the While loop.

You can view and edit the properties of your While group by clicking the outline of the group to
select it, then viewing the group properties in the JPD Configuration pane.

For any group of nodes in your business process, including While groups, you can collapse the
group to save space on the Design view canvas. Collapsed groups appear in the Design view as
shown in the following Figure 11-2.

Figure 11-2 Collapsed Groups

To expand the group, click .

Related Topics
Defining Conditions For Branching

Looping Through Items in a List

Grouping Nodes in Your Business Process

Des ign ing Whi le Node Groups

Guide to Building Business Processes 11-5

Handling Exceptions

Adding Message Paths

Adding Timeout Paths

Creat ing Loop ing Log ic

11-6 Guide to Building Business Processes

Guide to Building Business Processes 12-1

C H A P T E R 12

Looping Through Items in a List

A frequently designed pattern in your business processes is one that specifies the performance of
a set of activities once for every iteration of the flow over a sequence of XML elements, retrieved
from an XML document.

For Each nodes represent points in a business process at which a set of activities is performed
repeatedly, once for each item in a list. For Each nodes includes an iterator node (on which a list
of items is specified) and a loop (in which the activities to be performed for each item in the list
are defined). An XML document (or a section of an XML document) is passed into the For Each
loop in a business process variable. An iteration variable holds the current element being
processed in the For Each loop, for the life of the loop.

This section describes how to add this looping logic to your business process. It includes the
following topics:

Creating For Each Nodes in Your Business Process

Designing For Each Nodes

Creating For Each Nodes in Your Business Process
To Add A For Each Node to Your Business Process

1. On the Package Explorer pane, click the business process (Process.java file) you want to add
the For Each node to.Your business process is displayed in the Design view.

2. If the Node Palette is not visible in BEA WorkSpace Studio, choose Window > Show View
> Node Palette from the BEA WorkSpace Studio menu.

Loop ing Through I tems in a L is t

12-2 Guide to Building Business Processes

3. Click For Each in the Node Palette. Then drag and drop the For Each node onto the
business process, placing it on the business process at the point in your business process at
which you want to design a pattern in which a set of activities is performed repeatedly, once
for each item in a list.

The Design view is updated to contain a representation of the For Each node as shown in
Figure 12-1.

Figure 12-1 For Each Node

Note the following characteristics of the For Each node:

– The For Each node represents a placeholder for one or more additional nodes, and a
looping mechanism. The node builder, which is described in Designing For Each
Nodes, allows you to easily select a sequence of nodes from a business process
variable.

– By default, the node is named For Each. You can change the name by double-clicking
the name and entering the new name.

– indicates that the design of this node is incomplete. When you complete the design
of the node, is replaced by . A For Each node is completed when the iterator has
been specified in the node builder.

Designing For Each Nodes
Before you can add the logic that causes the iteration over a sequence of XML nodes in your
business process, your project must contain an XML Schema or MFL file that defines the
repeating XML or MFL element over which you want your business process to iterate. To learn
how to import an XML Schema or MFL file into your project, see Creating and Importing
Schema Files.

After importing an XML Schema or MFL file into your project, you can complete the design of
the For Each node. It includes the following tasks:

To Select a Repeating XML or MFL Element Over Which to Iterate

http://edocs.bea.com/wli/docs102/dtguide/dtguideMapper.html#wp1315902
http://edocs.bea.com/wli/docs102/dtguide/dtguideMapper.html#wp1315902

Des ign ing Fo r Each Nodes

Guide to Building Business Processes 12-3

To Add Activities to the For Each Node

To Select a Repeating XML or MFL Element Over Which to Iterate
The For Each node only iterates over repeating elements. The node builder allows you to select
a repeating node from the variable you created in the preceding section.

1. In the Design view, double-click the For Each node to invoke its node builder.

2. Click Select Variable to select a variable that you have already created in your project or
create a new variable to use in your decision node:

a. If you want to use a variable that is already created, select the variable that contains the
XML or typed non-XML on which you want to build the condition.

For example, if we import an XML Schema (QuoteRequest.xsd) into our project, and
create a business process variable (requestXML) of type quoteRequest (based on the
QuoteRequest.xsd schema), the requestXML variable is available in the drop-down
list of business process variables as shown in Figure 12-2.

Figure 12-2 Select Variable

Note: To learn about creating business process variables and importing schemas to your
project, see Business Process Variables and Data Types.

b. If you want to create a new variable, select Create new variable... from the drop-down
list.

The Create Variable dialog box opens.

c. Enter a name for your new variable in the Variable Name field.

Loop ing Through I tems in a L is t

12-4 Guide to Building Business Processes

d. Select the XML or Non-XML option, depending on if your variable is based on a XML
document or MFL file and select the appropriate variable type in the displayed list of type
options.

e. Click OK.

The Create Variable dialog box closes and your new variable is displayed in the Select
Node pane.

A representation of the XML in the requestXML variable is displayed in the Select Node panel,
see Figure 12-3.

Figure 12-3 XML Representation

Note the following characteristics of the QuoteRequest.xsd schema as displayed in the
preceding figure:

– The elements and attributes of the XML Schema are represented as nodes. Note that the
Schema in the example (QuoteRequest.xsd) specifies a root element named
quoteRequest.

– Child elements include: customerName, shipAddress, and widgetRequest.

– The shipAddress element specifies the following attributes: street, city, state,
zip.

– The widgetRequest element is a repeating element.

There can be one or more occurrences of the widgetRequest element in an associated
XML document; this is represented by in the GUI representation of the schema.
The widgetRequest element, in turn, contains two elements: widgetId and
quantity.

Note: In the example in the preceding figure, the repeating XML element (one or more
occurrences) is represented by in the GUI representation of the schema. A
repeating XML element that specifies zero or more occurrences is represented by .

Des ign ing Fo r Each Nodes

Guide to Building Business Processes 12-5

3. Select a repeating element in the Select Node field.

The Repeating Element and Iteration Variable fields are populated with data:

– Repeating Element—Contains an XPath expression, which when applied against the
XML document associated with the XML variable, returns the set of repeating XML
elements. Building on our example, if you select the repeating element widgetRequest
in the Select Node panel, the Repeating Element field is populated with the following
expression: $requestXML/ns0:widgetRequest. This expression returns all the
widgetRequest elements in an XML document.

– Iteration Variable—Contains the name of an iteration variable. An iteration variable is
generated to hold the current element being processed in the For Each loop at run
time. In our example, the iteration variable is named iter_forEach1, by default. You
can change the name by entering a new name in the Iteration Variable field.

4. Click Close, to close the node builder and return to the Design view.

In the Design view, note that the icon in your For Each node displays the following
graphics:

– is a visual reminder that the iteration variable you defined on this node is based on
an XML element.

– is a visual reminder that the iteration variable you defined on this node is based on a
MFL or typed non-XML element.

5. To save your work, select File > Save.

To Add Activities to the For Each Node
You must define the activity or set of activities that are performed for each item in the list you
created in the preceding step (To Select a Repeating XML or MFL Element Over Which to
Iterate). Each iteration of the For Each loop executes the activity or activities you specify in a
node (or nodes) in the loop.

1. In the Node Palette, click a node that represents the logic you want to add to the business
process.

2. Drag and drop the node from the Node Palette onto the business process in the Design view,
placing it on the business process within the For Each loop.

As you drag a node onto the For Each loop, a target appears on the loop, representing
a valid location in the For Each loop where you can place the node. As you drag the node

Loop ing Through I tems in a L is t

12-6 Guide to Building Business Processes

near the valid location, the target is activated and the cursor changes to an arrow .
You can release the mouse button and the node snaps to the For Each loop.

3. On the node (or nodes) you add to the For Each loop, create the activities appropriate for your
business process’s business logic.

Related Topics
Creating Looping Logic

Grouping Nodes in Your Business Process

Handling Exceptions

Adding Message Paths

Adding Timeout Paths

Guide to Building Business Processes 13-1

C H A P T E R 13

Specifying Endpoints in Your Business
Process

When you create a business process, it contains by default a Start and a Finish node. You can
specify additional (optional) endpoints of your business process by adding Finish nodes to those
locations where you want the business process to cease execution. A Finish node is always the
last node in a business process. You can place a Finish node at the end of the main flow or on
any branch of a business process.

To Create a Finish Node in Your Business Process

1. On the Package Explorer pane, click the business process (Process.java file) you want to
design. Your business process is displayed in the Design view.

2. If the Node Palette is not visible in BEA WorkSpace Studio, choose Window > Show View
> Node Palette from the BEA WorkSpace Studio menu.

3. Click Finish in the Node Palette.

4. Drag and drop the Finish node onto the business process, placing it on a branch in the
business process at the point where you want to specify the termination of your business
process.

The Design view is updated to contain your Finish node.

5. To save your work, select File > Save.

Spec i f y ing Endpo ints in Your Bus iness P rocess

13-2 Guide to Building Business Processes

Guide to Building Business Processes 14-1

C H A P T E R 14

Grouping Nodes in Your Business
Process

You can create a group from one or more nodes or other groups. You can simplify the display of
your business process in the Design view, by collapsing a group of nodes into a single node. A
group can provide an extra level of exception handling logic—exception handlers that you
specify for a group catch exceptions that are not handled by exception handlers defined for nodes
inside the group.

You can specify groups of nodes in a business process. Also, some business process nodes are
implicit groups—Client Request with Return, Decision, For Each, Do While, While Do, Parallel,
Switch and Event Choice. Groups that represent these nodes and groups defined by you have the
same characteristics.

This section describes how to work with groups in your business processes. It includes the
following topics:

To Create Groups—Alternative 1

To Create Groups—Alternative 2

To Delete, Ungroup, Collapse, or Expand Groups

To Activate Exception, Message, and Timeout Paths for Groups

To Create Groups—Alternative 1

1. In the Design view, click and drag your mouse around the nodes you want to group.

2. Right-click one of the selected nodes and select Group Selected from the drop-down menu.

The specified nodes are grouped inside a collapsible box in the Design view.

Group ing Nodes in Your Bus iness P rocess

14-2 Guide to Building Business Processes

You can name the group by double-clicking the default name (Group) and entering the
name you want to assign.

Note: If you select a set of nodes and right-click to display the drop-down menu, the Group
Select command is unavailable if the grouping of these nodes would create an invalid
business process. For example if you drag a Client Response node to a Group node
throws an assertion error.

To Create Groups—Alternative 2

1. In the Design View, drag and drop Group from the Node Palette onto the business
process, placing it on the business process at the point at which you want to create a group.

An empty Group is created in the business process.

2. Drag and drop nodes from the Node Palette that you want to add to the group onto the
business process, placing them within the group.

To Delete, Ungroup, Collapse, or Expand Groups

1. Click the outline or label (name) of a group to select it.

2. Right-click to display the drop-down menu.

– To collapse the group into a single entity, select Collapse. The group is collapsed.

– To expand the representation of the group again, right-click the collapsed group, select
Expand.

– To undo the grouping of the node, select Ungroup.

Note: You must first expand a collapsed group to ungroup it.

Collapsing simplifies the view of your business process in the Design view.

You can also toggle between collapsed and expanded groups by clicking or in the
upper left-hand corner of the group.

– Select Delete to delete the group.

WARNING: When you delete a group, you delete all the contents of that group.

To Activate Exception, Message, and Timeout Paths for Groups
Activate an exception, a message, or a timeout path for a group of nodes in the following way:

Guide to Building Business Processes 14-3

1. In the Design view, click the outline of the group to select it.

2. Right-click and select Add Exception Path, Add Message Path, or Add Timeout Path from
the drop-down menu.

– The following graphic associated with a group indicates that an exception handling path
is activated for the group:

Figure 14-1 Exception Path

For more information about exception paths and how to configure them, see Handling
Exceptions. To learn about the settings in the JPD Configuration pane, see Creating
Exception Handler Paths.

– The following graphic associated with a group indicates that a message path is
activated for the group:

Figure 14-2 Message Path

For information about how to configure your message path, see Adding Message Paths.

– The following graphic associated with a group indicates that an Timeout path is
activated for the group:

Figure 14-3 Time Path

Group ing Nodes in Your Bus iness P rocess

14-4 Guide to Building Business Processes

For information about how to configure your timeout path, see Adding Timeout Paths.
You can add business process nodes to the paths shown in the preceding figure, as required to define the
exception handling logic.

Related Topics
Handling Exceptions

Adding Message Paths

Adding Timeout Paths

Defining Conditions For Branching (Decision nodes)

Creating Case Statements (Switch nodes)

Receiving Multiple Events (Event Choice nodes)

Creating Looping Logic (While Do and Do While nodes)

Looping Through Items in a List (For Each nodes)

Guide to Building Business Processes 15-1

C H A P T E R 15

Handling Exceptions

Business Process exceptions are Java exceptions that are not caught by the Java handler methods.
This section describes the ways in which you can handle exceptions in your business processes.
It includes the following topics:

Types of Exception Handlers

Creating Exception Handler Paths

Deleting Exception Handler Paths

Order of Execution of Exception Handlers

Handling Exceptions in Transaction Blocks

Using Exception Handlers for Compensation

Unhandled Exceptions

Types of Exception Handlers
You can use the Design view to create exception paths on business process nodes, collapsible
groups of nodes, and the Start node. Specifically, using the Design view, you can create the
following types of exception handlers in your business process:

Global exception handler

You can create a global exception handler for your business process by creating an
exception path for the Start node. You create logic for the exception handler path to define

Handl ing Except ions

15-2 Guide to Building Business Processes

the flow of execution in case of an exception. A global exception handler responds to
exceptions that are otherwise not handled in the business process.

Exception handler for a group of nodes

You can associate an exception path with a group of nodes and create logic for the
exception path that defines the flow of execution in case of an exception.

Exception handler for an individual node

You can associate an exception path with an individual node and create logic for the
exception path that defines the flow of execution in case of an exception.

In general, exceptions propagate upwards from a node exception path, to a group exception path,
to a global exception path until they are handled. In other words, the exception path associated
with a node executes first, then the path associated with a group executes, and then the path
associated with a start node (global path) executes. The exception is only handled once, unless
the exception path throws an exception, then the exception propagates upward again in the same
order. You can take advantage of this behavior and create exception path logic that satisfies the
particular exception handling necessary for your business process. For more information, see
Order of Execution of Exception Handlers.

Note: The exception path is not applicable to the following: <if> and <default> blocks inside
Decision nodes, <branch> blocks inside Parallel nodes, <finish> nodes,
<messageEvent>, <timeoutEvent>, and the <onException> path itself.

Creating Exception Handler Paths
You can associate an exception handler path with individual nodes in your business process and
with groups of nodes. An exception path that you associate with a Start node is a special case.
That is, the exception path associated with a Start node is the global exception handler for the
business process. To learn more about Start nodes, see Starting Your Business Process. This
section contains the following steps and procedures:

To Create an Exception Path

To Configure an Exception Path

To Create an Exception Path

1. Select the node or groups of nodes for which you want to create an exception path. For
information on how to group nodes, see Grouping Nodes in Your Business Process.

Creat ing Except i on Handle r Pa ths

Guide to Building Business Processes 15-3

2. Right-click the node or group of nodes and select Add Exception Path from the drop-down
menu.

An exception path is added to your node or group of nodes, as shown in Figure 15-1.

Figure 15-1 Exception Path

You can rename the exception path to anything you like by double-clicking OnException
and entering the new name. You can also change the name in the name field of the
Properties view.

To Configure an Exception Path

1. Select the exception path which you want to configure.

The related properties are displayed in the JPD Configuration view. If the JPD
Configuration view is not visible in BEA WorkSpace Studio, choose Window > Show
View > JPD Configuration from the BEA WorkSpace Studio menu bar.

2. In the JPD Configuration view, configure the following properties:

general

– name—Enter the name you want to be displayed in the graphical design environment
for this exception path.

– notes—Enter any notes you want to be associated with this exception path. These notes
can then be accessed through the WebLogic Integration Administration Console.

exception

– after execute—Select the action you want to take place after an exception path is
executed and all retries have been exhausted. Choose from:

skip—Skip the node or group with which the exception path is associated. That is,
resume execution of the process at the node following the node or group for which the
exception path is defined.

resume—Execution resumes after the closest transaction block, exception block, or
failing node on the stack. In other words, the execution of the process resumes at the
node following the one that threw the exception (this could be within a group, or if the

Handl ing Except ions

15-4 Guide to Building Business Processes

node that threw the exception is the last in a group, the node following a group of
nodes).

rethrow—Nodes on the exception path are executed and then the same exception is
rethrown and handled by the exception handler at the next level up.

Note: when there is an exception path attached to a node and the exception is rethrown
(afterExecute="rethrow") the context_onException() will not be called.

– execute on rollback—Set this to true if you want this exception path executed when
the associated transaction is rolled back.

The execute on rollback parameter enables exception handlers to be used for
compensation. By grouping nodes and adding an exception path to that group with the
execute on rollback property set to true, you can specify that the exception handler
should be run before transaction rollback, thereby providing an opportunity to clean-up
non-transactional resources that would otherwise not be effected by the rollback. For
more information, see Using Exception Handlers for Compensation.

– retry count—Specify how many times, after the first attempt, the process engine tries
to execute the node or group of nodes contained in the path, before the afterExecute
path is taken. The counter is evaluated and incremented at the end of handler execution.

Note: Be aware of the following behavior when you specify a retry count in combination
with setting the after execute parameter to resume: Specifying a retry count on an
exception handler that is attached to a group causes the retry to start at the beginning
of the group—not at the offending node. However, if you also specify the resume
option for the after execute property, after all the retries are exhausted, the execution
can continue from a point within the group, following the offending node.

3. Add any business process nodes to the exception path, as required to define the exception handling logic.
If you want your process to stop after catching an exception, place a Finish node on the
exception path. For information about how to create a Finish node, see To Create a Finish
Node in Your Business Process.

Viewing Exception Handlers in the Design View
When you create an exception handler path, the following icon appears beside a node (or group
of nodes) in the Design view, which indicates that an exception path is activated for the specified
node:

De le t ing Except i on Handle r Pa ths

Guide to Building Business Processes 15-5

To collapse the view of any exception handler (or message or timeout path), click the grey arrow
of the exception path icon. The following figure shows the icon associated with your node to
indicate a collapsed path.

Deleting Exception Handler Paths
To Delete an Exception Path:

1. If the exception path that you want to delete is collapsed, expand it.

2. Right-click the exception path, then select Delete from the drop-down menu.

The exception path is deleted and removed from the Design view.

WARNING: Deleting an exception path deletes any business process nodes you defined on that
path. When you attempt to delete an exception path, a dialog box displays a
warning message that you must acknowledge before proceeding with the deletion.

Order of Execution of Exception Handlers
If an exception occurs, the normal flow of execution stops. The business process executes the
activities inside the exception handler path defined closest to the point of the exception.

Table 15-1 Exception Path

This icon represents the exception path in your business process. In this
case, the path appears empty, indicating that the logic to handle an
exception is not defined yet.

To define the exception handling logic, add business process nodes by
dragging the nodes from the Business Node Palette and dropping them
on the exception path.

Table 15-2 Collapse and Expanded View

You can toggle between collapsed and expanded views of paths in the Design
view by clicking the exception path icon.

Handl ing Except ions

15-6 Guide to Building Business Processes

You typically define a number of exception handlers in your business process. The following
sequence defines the order of their execution when an exception is thrown:

1. The business process engine first executes the exception handler at the node on which the
exception occurs.

2. If the exception handler path completes execution normally, the business process resumes
execution at the node following the node associated with the executed exception handler,
based on the post-execute parameter setting.

3. If the exception handler throws an exception while it is executing, the exception is propagated
upwards to be handled either by an exception handler on the group of nodes in which the node
is contained, or by the global exception handler defined on the Start node.

Note: If you have the after execute property set to rethrow, the exception itself will also
propagate upwards.

4. When a business process fails and there is no exception handler configured to handle the
exception thrown, the business process is placed into an aborted state and no recovery is
possible. However, if the business process is configured to freeze on failure, the business
process rolls-back to the last commit point and the state is persisted if it fails. The process can
then be restarted from the WebLogic Integration Administration Console. To learn more about
the freeze on failure property see, Setting the Business Process Properties.

Note: If an exception occurs within a transaction block, the transaction is rolled back and the
exception handler is called at a later time. However, if the business process is marked
freeze on failure, instead of calling the exception handler later, the process freezes and
the exception handler is never called. In this case, when freeze on failure is configured
inside a transaction block, you should either not use a transaction block or include global
transaction logic within your transaction blocks. In 8.x, Supports Global Transaction
with Emulate Two-Phase Commit was the default setting, however on 10.2 Supports
Global Transaction is off by default, so you need to enable it, when using the non-XA
drivers.

Handling Exceptions in Transaction Blocks
If a node or group within a transaction throws an exception, the transaction will only see the
exception if the exception is not handled or if an exception handler throws an exception. The
following algorithm is used to handle the exception:

If the transaction is not marked for rollback only, the exception is dispatched to the
exception handlers defined within the transaction block, if any.

Using Except ion Hand le rs f o r Compensat ion

Guide to Building Business Processes 15-7

If an exception handler within the transaction block does not throw or rethrow an
exception, the transaction is not rolled back, and execution resumes after the block that
enclosed the exception handler.

If the transaction is marked for rollback only, or if there is no exception handler within the
transaction block, or if all the exception handlers throw exceptions, the transaction is rolled
back. After exhausting a specified number of retries, a business process exception is
thrown from the transaction block in a new transaction. The business process exception is a
generic exception, because there is no way to retain the root cause exception on a rollback.

Note: Whether a transaction is marked for rollback only depends on the types of transactional
resources you use in your business process.

For transactional resources that force a transaction to roll back immediately in the case
of an error, an exception handler on a node or group of nodes does not run before the
transaction rolls back. However, you can use exception handlers with the execute on
rollback property for compensation and to clean up the non-transactional resources. For
more information, see Using Exception Handlers for Compensation.

Using Exception Handlers for Compensation
Transactional resources are any resources that communicate with your business process through
a Control Request node or any of the transactional controls: Database, JMS, Worklist, Timer,
EJB, Message Broker, and Transformation.

For transactional resources that force a transaction to roll back immediately in the case of an error,
an exception handler on a node or group of nodes does not run by default. However, you can force
the exception handler to run before the rollback occurs by placing an exception path inside an
explicit transaction block in your business process, and setting the execute on rollback property
of that path to true. In this way, the exception path has access to the current state (the process
variables, and so on) and the logic added to the exception path can be used for compensation and
to clean up the non-transactional resources, as described in the Compensation Example.

To learn about the Control Request node, see Create a Client Request Node in Your Business
Process.

Compensation Example
Figure 15-2 shows an example of how to use an exception path for compensation.

Handl ing Except ions

15-8 Guide to Building Business Processes

Figure 15-2 Exception Path for Compensation

In the example, two nodes are running in the same transaction. The first node writes to a file
(non-transactional) and the second node updates a database (transactional). Both nodes are within
a group that has an associated exception handler. The exception handler execute on rollback
property is set to true to force the exception handler to run before any rollback occurs.

In this example, if the database operation fails and marks the transaction for rollback only, the
following sequence of events occurs:

1. The exception handler runs before the rollback occurs.

2. The transaction handler path is executed and the node on the path deletes the file that was
written earlier.

3. The transaction rolls back.

Note: The above example is for an implicit transaction. You can use the same technique for
compensation with explicit transactions. However, be sure that you put the exception
handler path inside the explicit transaction. Putting it on the explicit transaction itself
does not result in the desired behavior. Figure 15-3 shows an example of an explicit
transaction with an exception handler path with compensation logic.

Unhandled Except ions

Guide to Building Business Processes 15-9

Figure 15-3 Explicit Transaction

Unhandled Exceptions
If you do not handle exceptions in a business process, the exception will be wrapped in one of the
following:

ProcessControlException

ServiceControlException

JpdProxyException

If you need to obtain the original exception, you can call getCause() on the unhandled process
exception. To learn more about this method, see getCause() in the Java 2 Platform, Standard
Edition, v 1.4.2 API Specification, which is available at the following URL:
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Throwable.html#getCause(
)

http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/control/ProcessControlException.html
http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/control/classic/ServiceControlException.html
http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/bpm/proxy/JpdProxyException.html
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Throwable.html#getCause()
http://java.sun.com/j2se/1.4.2/docs/api/java/lang/Throwable.html#getCause()

Handl ing Except ions

15-10 Guide to Building Business Processes

Related Topics
Grouping Nodes in Your Business Process

Writing Custom Java Code in Perform Nodes

Adding Message Paths

Adding Timeout Paths

Transaction Boundaries

Guide to Building Workflows 16-1

C H A P T E R 16

Adding Message Paths

A Message Path is used to interrupt an executing process on delivery of a message from either a
client or a control. This allows the process to halt the current stream of execution and take
alternate actions. You can have as many message paths as you like in your business process.

A Message path can be associated with a node that can receive messages. For example, a client
request node, a control receive node, or a client request with return node.

Note: Message paths are not supported on the following individual nodes: Perform, Client
Response, Control Send, and Control Send with Return.

A Message Path can contain a Client Request or Control Receive node at which it receives the
message. For the case in which an On Message path is specified for the process (that is, specified
at the Start node) the first node on the path can be a Client Request with Return node.

This section contains the following topics:

Creating a Message Path

Deleting Message Paths

Creating a Message Path
You can associate a message path with individual nodes in your business process, with groups of
nodes, or with the whole process (global). You create a global message path by adding a message
path to the start node of your process.

Adding Message Paths

16-2 Guide to Building Workflows

This section contains the following topics:

To Create a Message Path

To Configure a Message Path

To Delete a Message Path

To Create a Message Path

1. Select the node or groups of nodes for which you want to create a message path. (To learn
about grouping nodes, see Grouping Nodes in Your Business Process)

2. Right-click the node or group of nodes and select Add Message Path from the drop-down
menu.

A message path is added to your node or group of nodes and is displayed as shown in
Figure 16-1.

Figure 16-1 Message Path

You can rename the path anything you like by double-clicking OnMessage and entering
the new name. You can also change the name in the name field of the JPD Configuration
pane.

To Configure a Message Path

1. Double-click Start node to invoke the starting event node builder.

2. Select the event which you want your message branch to wait for. Choose one of the following
options:

– A Client Request—Select this option if you want your message path to wait for a
message from a client.

– A Client Request with Return—Select this option if you want your message path to
wait for a message from a client and then send a synchronous response back to the

Creat ing a Message Path

Guide to Building Workflows 16-3

client. You can add optional nodes between the receive and send nodes inside the Client
Request with Return node.

Note: This option is only available when a Message Path is added to a Start node of a
business process.

– A Control Receive—Select this option if you want your message path to wait for a
message from a specified control.

3. Click Close, to close the node builder.

The node you selected is added as the starting event to your message path. To configure
your starting node see, step 6

4. Select the message path which you want to configure.

The related properties are displayed in the JPD Configuration view. If the JPD
Configuration view is not visible in BEA WorkSpace Studio, choose Window > Show
View > JPD Configuration from the BEA WorkSpace Studio menu bar.

5. In the JPD Configuration pane, configure the following properties:

general

– name—Enter the name you want displayed in the BEA WorkSpace Studio for this path.

– notes—Enter any notes you want associated with this message path. These notes can
then be accessed through the WebLogic Integration Administration Console.

message

– after execute—Select the action you want to take place after a message path is
executed. Choose from:

skip—Skip the node or group with which the message path is associated. That is,
resume execution of the process at the node following the node or group for which the
path is defined.

resume—Resume execution of the process at the node that was executing when the
message was received. The process state returns to what it was before the message path
executed and the message port is still active.

exclusive— Blocks process execution until the handler completes.

– retry count—Specify how many times, after the first attempt, the process engine tries
to execute the node or group of nodes contained in the path, before the afterExecute
path is taken.

Adding Message Paths

16-4 Guide to Building Workflows

6. Configure your starting event by double-clicking the node you chose as the starting event. The
node builder is invoked. For information on how to configure:

– Client Request with Return nodes, see To Complete the Design of Your Client Request
Node.

– Client Request nodes, see Design Your Client Request Node.

– Control Receive nodes, see Designing Your Control Nodes.

7. Add any business process nodes to the exception path, as required to define the message path logic.

8. To configure the annotations, go to Properties view. If the Properties view is not visible in
BEA WorkSpace Studio, choose Window > Show View > Properties from the BEA
WorkSpace Studio menu bar.

Viewing Message Paths in the Design View
When you create message path, the following icon appears beside a node (or group of nodes) in
the Design view to indicate that an exception path is activated for the specified node:

You can collapse the view of any message path (or exception handler or timeout path) by clicking
the grey arrow of the message path icon. The following figure shows the icon associated with
your node to indicate a collapsed path.

Table 16-1 Message Path

This icon represents the message path in your business
process. In this case, the path appears empty, indicating
that the logic to execute when a message is received is not
defined yet.

To define the exception handling logic, add business
process nodes by dragging the nodes from the Node
Palette and dropping them on the message path.

Table 16-2 Collapsed and Expanded View

You can toggle between collapsed and expanded views of paths in the Design
view by clicking the message path icon.

Dele t ing Message Paths

Guide to Building Workflows 16-5

Deleting Message Paths
To Delete a Message Path

1. Right-click the path which you want to delete.

2. Select Delete from the drop-down menu.

The path is deleted and removed from the Design view.

WARNING: Deleting a path deletes any business process nodes you defined on that path.
When you attempt to delete a path, a dialog box displays a warning message that
you must acknowledge before proceeding with the deletion.

Related Topics
Grouping Nodes in Your Business Process

Writing Custom Java Code in Perform Nodes

Handling Exceptions

Adding Timeout Paths

Transaction Boundaries

Adding Message Paths

16-6 Guide to Building Workflows

Guide to Building Workflows 17-1

C H A P T E R 17

Adding Timeout Paths

A timeout path is used to interrupt an executing process after a certain amount of time has lapsed.
Timeout paths can be associated with individual nodes, a group of nodes, or with the process
(global). If you add a Timeout path to a start node, the timer starts when the process begins. If
you add a Timeout path to any other node, or group of nodes, the timer starts when the process
reaches that point of execution.

Note: Perform, Client Response, and any of the Control nodes do not support timeout paths on
individual nodes.

This section contains the following topics:

Creating a Timeout Path

Deleting Timeout Paths

Creating a Timeout Path
You can associate a timeout path with individual nodes in your business process, with groups of
nodes, or with the whole process (global). You create a global timeout path by adding a timeout
path to the start node of your process. If you add a Timeout path to a start node, the timer starts
when the process begins. If you add a Timeout path to any other node, or group of nodes, the timer
starts when the process reaches that point of execution. This section contains the following topics:

To Create a Timeout Path

To Configure a Timeout Path

Adding T imeout Paths

17-2 Guide to Building Workflows

To Delete a Timeout Path

To Create a Timeout Path

1. Select the node or groups of nodes for which you want to create a timeout path. (For
information on how to group nodes, see Grouping Nodes in Your Business Process)

2. Right-click on the node or group of nodes and select Add Timeout Path from the drop-down
menu.

A timeout path is added to your node or group of nodes (see Figure 17-1).

Figure 17-1 Timeout Path

You can rename the path anything you like by double-clicking OnTimeout and entering
the new name. You can also change the name in the name field of the Property pane.

Note: You cannot add a Timeout Path to stateless JPD

To Configure a Timeout Path

1. Select the Timeout path which you want to configure.

The related properties are displayed in the JPD Configuration view. If the JPD
Configuration view is not visible in BEA WorkSpace Studio, choose Window > Show
View > JPD Configuration from the BEA WorkSpace Studio menu bar.

2. In the JPD Configuration pane, configure the following properties:

general

– name—Enter the name you want to be displayed in the BEA WorkSpace Studio for this
path.

– notes—Enter any notes you want to be associated with this timeout path. These notes
can then be accessed through the WebLogic Integration Administration Console.

Creat ing a T imeout Path

Guide to Building Workflows 17-3

timeout

– after execute—Select the action you want to take place after a timeout path is
executed.

skip—Skip the node or group with which the Timeout path is associated. That is,
resume execution of the process at the node following the node or group for which the
Timeout path is defined.

resume—Resume execution of the process at the node that was executing when the
timeout was triggered. The process state returns to that before the On Timeout path
executed, and the On Timeout path resets (that is, timeout begins again).

– duration—Specify the number of seconds, minutes, days, month, or year that should
lapse before the path is triggered. (Expected format is Xs, for example 5s.

– exclusive— Block process execution until the handler completes.

– retry count—Specify how many times, after the first attempt, the process engine tries
to execute the node or group of nodes contained in the path, before the afterExecute
path is taken.

3. Add any business process nodes to the exception path, as required to define the timeout path logic.

4. To configure the annotations, choose Window > Show View > Properties from the BEA
WorkSpace Studio menu bar. For information on annotations see
http://edocs.bea.com/wli/docs102/wli.javadoc/index.html.

Viewing Timeout Paths in the Design View
When you create a timeout path, the following icon appears beside a node (or group of nodes) in
the Design view to indicate that an exception path is activated for the specified node:

Table 17-1 Timeout Path

This icon represents the timeout path in your business process. In this
case, the path appears empty, indicating that the logic to execute
when a timeout is received is not defined yet.

To define the exception handling logic, add business process nodes
by dragging the nodes from the Node Palette and dropping them on
the timeout path.

http://edocs.bea.com/wli/docs102/wli.javadoc/index.html
http://edocs.bea.com/wli/docs102/wli.javadoc/index.html

Adding T imeout Paths

17-4 Guide to Building Workflows

You can collapse the view of any timeout pate (or exception handler or message path) by clicking
the grey arrow of the exception path icon. The following figure shows the icon associated with
your node to indicate a collapsed path.ode

Deleting Timeout Paths
To Delete a Timeout Path

1. Right-click the path that you want to delete.

2. Select Delete from the drop-down menu.

The path is deleted and removed from the Design view.

WARNING: Deleting a timeout path deletes any business process nodes you defined on that
path. When you attempt to delete a timeout path, a dialog box displays a warning
message that you must acknowledge before proceeding with the deletion.

Related Topics
Grouping Nodes in Your Business Process

Writing Custom Java Code in Perform Nodes

Handling Exceptions

Adding Message Paths

Transaction Boundaries

Table 17-2 Collapsed and Expanded

You can toggle between collapsed and expanded views of paths in the Design
view by clicking the path icon.

Guide to Building Business Processes 18-1

C H A P T E R 18

Running and Testing Your Business
Process

BEA Workshop for WebLogic Platform provides a browser-based interface with which you can
test the functionality of your business process. Using this Test View interface, you play the role
of the client, invoking the business process’s methods and viewing the responses.

This step describes how to test a business process you have created in BEA Workshop for
WebLogic Platform using the Test Browser tool. It includes the following topics:

Using the Test Browser

Understanding the Service URL

Using the Test Browser
To Launch the Test Browser

1. On the Package Explorer pane, click the business process (Process.java file) you want to
test.Your business process is displayed in the Design view.

2. If the Server view is not visible in BEA WorkSpace Studio menu, choose Window > Show
View > Other > Server > Servers, and click Ok. A Server view is displayed.

3. On the Package Explorer pane, select and right-click the business process (Process.java file)
you want to test.

4. Click Run As, and Run On Server.

5. In the Define a New Server dialog box, select either a Choose an existing server option or
Manually define a new server (if there is no server defined), and click Next.

Running and Test ing Your Bus iness P rocess

18-2 Guide to Building Business Processes

6. In the BEA WebLogic Server v10.0 dialog box, to manually define a server, click Browse,
and select the samples integration domain directory from the product installation directory
available at BEA_HOME\wlserver_10.0\samples\domains\integration, where
BEA_HOME represents the directory in which you installed WebLogic Platform. Click
Finish.

7. The samples domain integration server is started, and the application is deployed on it. When
WebLogic Server is running, the following indicator is visible in the Servers view (see
Figure 18-1).

Figure 18-1 Server Status

8. After the application is deployed, the Test Browser is displayed.

The Workshop Test Browser contains the following tabs:

Overview

This tab displays public information about your business process. Code in this area is
generated automatically and 2-way editing is fully supported in the Process Language.
Changes you make here will appear in the Design view.

The Overview tab displays public information about the web service, including:

• A link to the WSDL that describes the public contract for the web service. Clients of
the web service use the WSDL file to determine how to call the web service and
what data will be returned. The WSDL describes both methods and callbacks on the
web service.

• The callback WSDL for clients that cannot handle the callbacks described in the
complete WSDL. Clients wishing to receive callbacks by implementing a callback
listening service can communicate with the web service using this WSDL.

• The Java source code for a BEA Workshop for WebLogic Platform service control
for the web service. A developer using BEA Workshop for WebLogic Platform who
wishes to call your web service from their BEA Workshop for WebLogic Platform
application can use this source to construct a Service control.

• The Java proxy for calling the web service from a Java client. A Java client can call
your web service by creating a class from the Java proxy and invoking its methods.

• The description of the web service, which lists the web service's methods and
callbacks.

• Links to useful information such as specifications for WSDL and SOAP.

Using the Tes t Browser

Guide to Building Business Processes 18-3

Console

This tab displays private information about your business process, such as how services are
implemented on the back end, and with what version of BEA Workshop for WebLogic
Platform it was created. It also displays information about log settings, such as how many
log messages to keep and the number of characters after which log entries are truncated.

Test Form

This tab provides a simple test environment for the public methods of your business
process. You can provide parameters for a method and examine its return value. You can
also track and test the different parts of a conversation.

Test SOAP

This tab shows the XML data that is being sent to your business process when you test its
XML methods. You can use this page to examine and modify the XML data that is passed
to a method of your business process.

Message Broker

This tab provide a space for you to publish messages to channels available in channel files
in your application. It allows you to test your process interactions with asynchronous
events and simulate Timer, Email, File, JMS, and other event generators.

Process Graph

This tab allows you to view an interactive or printable graph of the deployed process type.
The graphical view represents your business process and its interactions with clients and
resources, such as databases, JMS queues, file systems. It shows the path taken thus far by
the business process and provides additional information about the state of each node in the
process. If your browser is not already configured with the SVG plug-in when you click
this tab, BEA Workshop for WebLogic Platform will offer to download and install it for
you.

For specific information about how to use the Test Form, Message Broker, and Process Graph
tabs, see To Test the Public Methods of Your Business Process, To Test a Message Broker
Channel, and To View a Process Graph.

WARNING: As you use the Test Browser, take care to not run very large or data intensive
business processes. Doing so may cause the Test Browser to fail.

Running and Test ing Your Bus iness P rocess

18-4 Guide to Building Business Processes

Testing the Public Methods of Your Business Process
To Test the Public Methods of Your Business Process

1. Launch the Workshop Test Browser. (To learn more, see To Launch the Test Browser).

2. Click Test Form tab.

You can enter data that your business process can receive as part of a client request directly
on the Test Form page. Alternatively, you can browse your file system and upload a file
which contains your test data.

3. If your client operation accepts input, enter the required information in to the field or fields.
To upload a file to test data, click Browse beside the xml requestXML (file value) field to
open the file browser, then select the file that contains the test data you want to use.

Note: An input xml file URI with space is not supported in the Test Form.

You can also enter the test data by entering (copy/paste) the content of a file into the field.

4. Click the button labeled with your business process’s method name to invoke the method with
the values you entered. The Test Form page refreshes to display a summary of your request
parameters and your business process’s response:

– Under Service Request, a summary of the data that was sent by the client (you) when
the method was called, including the values of method parameters, is displayed.

– For business processes that involve multiple communications with clients, or
communications with resources such as other Web services, the Message Log on the
left side of the Test Form page displays an entry for each call to a method or callback
so that you can view the data for each. Click any log entry to see the details of that
interaction.

– Business Processes participate in conversations with clients. The Test Browser displays
the instance ID in the Message Log. Select the instance ID or to access
continue and finish methods in that conversation.

5. When the business process finishes, a message similar to the following is displayed in the
Message Log:

Instance instanceID is Completed.

In the preceding line, instanceID represents the ID generated when the first method in
your business process was called.

6. Click the Test SOAP tab.

Using the Tes t Browser

Guide to Building Business Processes 18-5

The Test SOAP tab displays the XML data that is being sent to your business process when
you test its methods in the soap body field. You can use this page to examine and modify
the XML data that is passed to a method of your business process.

7. Click the button with the name of your method to start a new conversation.The Test Form
page refreshes to display a summary of your request parameters and your business process's
response.

When the business process finishes, a message similar to the following is displayed in the
Message Log:

Instance instanceID is Completed.

In the preceding line, instanceID represents the ID generated when the first method in
your business process was called.

Testing a Message Broker Channel
To Test a Message Broker Channel

1. Launch the Workshop Test Browser. (To learn more, see To Launch the Test Browser).

2. Click Test Form and enter test data that can be used for to test the public methods that are
published on your channel. To learn more, see To Test the Public Methods of Your Business
Process.

3. Click the Message Broker tab.

The Message Broker test tab is displayed with details of the conversation routed through
your channel. The conversation id is displayed in the message log. Click any of the
methods displayed in your message log to view details on the right side of the window
about the external services communications (callbacks and responses).

Viewing the Process Graph
The Process Graph tab of the Workshop Test Browser provides a SVG graph of your process as
it is running. The graph represents your business process and its interactions with clients and
resources, such as databases, JMS queues, and file systems.

The interactive instance graph is a fully expanded version of the view provided in the Design
View. The interactive process graph requires Adobe SVG Viewer Version 3.0 or Java Batik SVG
Viewer (for more information, see Requirement for the Interactive Graph). The first time you

http://edocs.bea.com/wli/docs102/adminhelp/processmonitoring.html#wp1038314

Running and Test ing Your Bus iness P rocess

18-6 Guide to Building Business Processes

open the Process Graph tab, you will be asked if you would like to accept the Software License
Agreement for the Adobe Viewer :

This viewer is not available for some configurations that the WebLogic Platform 10.2 supports.
For details, please see Process Monitoring.

For detailed information about the operating systems and browsers WebLogic Platform supports,
see BEA WebLogic Platform Supported Configurations.

To View a Process Graph

1. Launch the Workshop Test Browser. (To learn more, see To Launch the Test Browser.)

2. Click the Process Graph tab.

The SVG Viewer displays the interactive view. The Process Graph Visual cues are
provided to indicate node status as described in the following table:

To learn about business process tracking levels, see “Viewing and Changing Process
Details” in Process Configuration.

The top panel of the Process Graph tab displays selected process properties. To learn more
about the properties displayed, see “Viewing Process Instance Details” in Process Instance
Monitoring.

3. Do any of the following:

– To display node status, click the node. The node name, type, and description are
displayed in the Node Info panel. If the tracking level is set to Full, the start time,

Table 18-1 Mode Details

If the node . . . And the tracking level is . . . The node appears . . .

Has been visited Full or Node Normal

Minimum Normal

Is currently executing Full or Node Highlighted

Minimum Highlighted

Has not been visited Full or Node Dimmed

Minimum Normal

http://e-docs.bea.com/platform/suppconfigs/index.html
http://edocs.bea.com/wli/docs102/adminhelp/processmonitoring.html
http://edocs.bea.com/wli/docs102/adminhelp/processmonitoring.html
http://edocs.bea.com/wli/docs102/adminhelp/processconfig.html
http://edocs.bea.com/wli/docs102/adminhelp/processmonitoring.html

Unders tanding the Se rv ice URL

Guide to Building Business Processes 18-7

elapsed time, finish time, and completed visits are also displayed. If the tracking level
is set to Node or Minimum, this additional information is not available.

– To scroll the view, press and hold down the Alt key. The cursor changes to a hand
tool. Click and drag to scroll the process graph vertically or horizontally.

– To zoom in, press and hold down the Ctrl key. The cursor changes to a zoom in
tool. Click to zoom in.

– To zoom out, press and hold down the Ctrl+Shift keys. The cursor changes to a zoom

out tool. Click to zoom out.

– To change to a printable view, click Print View. The process graph is displayed as a
PDF.

Understanding the Service URL
In the Test browser, a URL is displayed in the upper-right corner of the Test Form tab. The URL
you see when you launch Test View for your business process should be similar to the following
URL:

http://localhost:7051/samples/myBusinessProcess.jpd

In the preceding line:

http://locahost:7051/—Represents the machine name and its default listening port
(7051). Specifically, this means that the request (the call to the business process) from your
Test browser is intercepted by WebLogic Server on port number 7051 of your local
machine.

samples/— This refers to the Web application of which the service is a part. When you
create a project in WebLogic Workshop, you are also creating a WebLogic Server Web
application. The project name becomes part of the URL for all Web services in that
project. Keep that in mind when naming new projects so that the resulting Web service
URLs are meaningful and appropriate.

myBusinessProcess.jpd— “myBusinessProcess” is the name of the business process.
“.jpd” extension is retained for the URL and it maps to “myBusinessProcess.java”.
Weblogic Server is configured to recognize the JPD extension and respond appropriately
by serving the request as a Web service—rather than, say, an HTML page or a JSP.

Running and Test ing Your Bus iness P rocess

18-8 Guide to Building Business Processes

Guide to Building Business Processes 19-1

C H A P T E R 19

Business Process Variables and Data
Types

In the Design view, the Variables tab displays the variables associated with the Java class that
constitutes your business process. All business process variables are global to the business
process instance.

This section describes business process variables and their data types. It includes the following
topics:

Creating Variables

Deleting Variables

Working with Data Types

Assigning MFL Data to XML Variables and XML Data to MFL Variables

Creating Variables
There are two ways of creating variables for your business process. Variables can be created in
the Data Palette by clicking Menu tab on the Data Palette menu and scroll down the list, select
Add a Variable... or they can be created in the node builder when you are configuring the Send
Data or Receive Data section of a Client Request, Client Request with Return (Start Node
only), Client Response, Subscription (Start Node only), Control Send, Control Send with
Return, or Control Receive node for your business process nodes. Whichever method you
choose, you can always access your variables from the Data Palette after they are created. When
you select a variable in the list on the Data Palette, its properties are displayed in the JPD
Configuration view.

Bus iness P rocess Var iab les and Data Types

19-2 Guide to Building Business Processes

Before you can create an XML variable of a particular XML Schema type, you must first import
the XSD file that contains the XML Schema into the WebLogic Integration schemas project

Before you can create a non-XML variable of a particular non-XML type, you must first import
the MFL file that contains the schema for the non-XML type into the WebLogic Integration
schemas project.

Before you can create a variable of a Java class, the Java class file must be available in the
Workshop project.

To Create a New Variable in the Data Palette
You can create variables using the Add a Variable... option on the Menu tab. To learn how to
create variables in the node builder, see To Create a New Variable in the Node Builder.

1. If the Data Palette pane is not visible in BEA WorkSpace Studio, choose Window > Show
View > Data Palette from the menu bar.

The Data Palette, which contains a Menu drop-down button, is displayed in the BEA
WorkSpace Studio.

2. In the Menu tab, scroll down the list and click Add a Variable..., the Create Variable dialog
box is displayed, as shown in Figure 19-1.

Figure 19-1 Create Variable

p

Creat ing Var iab les

Guide to Building Business Processes 19-3

A description of the possible variable types options are as follows:

– Simple Types

Lists Java primitive and classes data types.

– XML Types

Lists the XML Schemas that are available in your business process project and the
untyped XMLObject and XMLObjectList data types.

– Non-XML Types

Lists the Message Format Language (MFL) files available in your business process
project and the untyped RawData data type. WebLogic Integration uses a metadata
language called Message Format Language (MFL), based on XML, to describe the
structure of non-XML data. Every MFL file available in your project is listed in
Non-XML Types. Note that an XML Schema representation of each MFL file is built
by BEA WorkSpace Studio and is also available in the XML Types listing.

For more detailed descriptions of the data types, see Working with Data Types.

3. From the menu, select the appropriate variable types from the selected option: Simple, XML,
or NonXML.

4. In the Variable Name field, enter a name for your variable.

5. In the Type Name field, select or in the Type Name field, enter a variable type:

– For a Simple class type variable, enter the full package name of the class in the Type
Name field. For example, for a class named Book in the package named library,
enter: library.Book. (For Java simple types, see step 7.)

– For all other all variable types, select a variable type from the available list.

The Type Name field is populated with the variable type you selected.

6. If you want to assign a default value to your variable, enter it in the Default value field.

7. If your variable is a Simple type and you want it to be a constant that cannot be updated, select
Declare as constant, then enter the constant value in the Default value field. This will create
the variable as static and final.

8. Click OK to create the new variable.

Bus iness P rocess Var iab les and Data Types

19-4 Guide to Building Business Processes

The Variables tab in the Data Palette is populated with the variable you created; the name
and type of the variable is displayed. When you select a variable in the list, the variable
properties are displayed in the Properties view.

To Create a New Variable in the Node Builder
You can create variables directly in the node builder while you are configuring a node’s Receive
or Send Data tab.

1. In the Receive or Send Data tab, select the Variables Assignment option if necessary.

2. From the Select variables to assign: drop-down menu, click the arrow and select Create new
variable.... The Create Variable dialog box is displayed.

Note: The other fields in the dialog box are already populated with the variable types
expected by the method you specified on the General Settings tab.

3. In the Variable Name field, enter a name for your variable.

4. If you would like to use a variable of a type other than what is expected by the method you
specified on the General Setting tab:

a. Select a variable type option for your variable:

– Simple Types

Lists Java primitive and classes data types

– XML Types

Lists the XML Schemas that are available in your business process project and the
untyped XMLObject and XMLObjectList data types.

– Non-XML Types

Lists the Message Format Language (MFL) files available in your business process
project and the untyped RawData data type. WebLogic Integration uses a metadata
language called Message Format Language (MFL), based on XML, to describe the
structure of non-XML data. Every MFL file available in your project is listed in
Non-XML Types. Note that an XML Schema representation of each MFL file is built
by BEA WorkSpace Studio and is also available in the XML Types listing.

For more detailed descriptions of the data types, see Working with Data Types.

The Type Name field is populated with the variable type you selected.

5. Select or enter a variable type:

Creat ing Var iab les

Guide to Building Business Processes 19-5

– For a Simple class type variable in the Type Name field enter the full package name of
the class in the Variable type field. For example, for a class named Book in the
package named library, enter: library.Book. (For Java simple types, see step 6.)

– For all other all variable types, select a variable type from the available list.

The Variable type field is populated with the variable type you selected.

6. If your variable is a Java simple type and you want it to be a constant that cannot be updated,
select Declare as constant, then enter the constant value in the Default value field. This will
create the variable as static and final.

7. If you want to assign a default value to your variable, enter it in the Default value field.

8. Click OK to create the new variable.

The new variable you created is displayed in the Select variables to assign: drop-down
menu in the node builder and is added to the Variables tab in the Data Palette; the name
and type of the variable is displayed. When you select a variable in the list, the variable
properties are displayed in the Properties pane.

To Convert Application Variable Data Types
The node builders support assigning typed data to untyped process variables, and untyped data to
typed process variables in the following ways:

Typed to Untyped

– You can assign strongly typed XML data (XML Bean) to untyped XML variables
(XMLObject).

– You can assign typed non-XML data (MFLObject) to untyped non-XML variables
(RawData).

Untyped to Typed

– You can assign untyped XML data (XMLObject) to strongly typed XML variables
(XML Bean).

– You can assign untyped non-XML data (RawData) to typed non-XML variables
(MFLObject).

Related Topics
Deleting Variables

Working with Data Types

Bus iness P rocess Var iab les and Data Types

19-6 Guide to Building Business Processes

Assigning MFL Data to XML Variables and XML Data to MFL Variables

Deleting Variables
To Delete a Variable
On the Data Palette, in the Variables tab, right-click the name of a variable and choose Delete
from the drop-down menu. The variable is deleted from the Variables tab and from the source
code for your application. To learn about variables in your source code, see Variables in Business
Process Source Code.

Working with Data Types
The data types supported for your business process applications include:

XML Types

Non-XML Types

Simple Types

XML Types
XML Schemas are an XML vocabulary that describe the rules that your business data must
follow. XML Schemas specify the structure of documents, and the data type of each element and
attribute contained in the document. XML Schema files have an XSD file suffix. You can create
new schemas or import schemas into your schemas folder.

Note: To make the Schemas in your project available in your business process, you must place
them in the schemas folder. To learn about the Application and project folders in the
Design view, see Components of Your Application and Designing Your Application.

When you add XML Schemas to the Schemas folder in your business process project, they are
compiled to generate XML Beans. In this way, BEA WorkSpace Studio generates a set of
interfaces that represent aspects of your Schema. XML Bean types correspond to types in the
XML Schema itself. XML Beans provides Java counterparts for all built-in Schema types, and
generates Java counterparts for any derived types in your Schema. In addition when creating a
variable or an xquery transformation method, xsd simple types would be mapped to java type
names.

When you load an XML file that conforms to a particular XML Schema into an XML Bean
generated from the Schema, you can access the XML as instances of the XML Bean types.

Work ing wi th Data Types

Guide to Building Business Processes 19-7

The XML untyped data includes:

XMLObject—This XML data type specifies untyped XML format data. In other words, this data
type represents XML data that is not valid against an XML Schema.

XMLObjectList—This XML data type specifies a sequence of untyped XML format data. In
other words, this data type represents a set of repeating elements of XML elements that are not
valid against an XML Schema.

Tip for XML Object
When you assign an XMLObject variable or typed XML variable to an XMLObjectList, the
XML document is added to the list (instead of directly assigning the variable).

Tip for Creating XML Schemas
When you create XML Schema definitions, which contain declarations for attributes, we
recommend that you make these declarations inside, or local to, the element declarations. If you
declare attributes at the top level of the XML Schema document (that is, immediately under the
xsd:schema root), they must be qualified by a target namespace, if one exists. Consequently, for
an XML instance document to be valid against such a Schema, the attributes within the XML
document must be qualified with a namespace prefix associated with the target namespace. If you
do not specify this prefix in an XML instance document, transformations or validations against
the Schema fails.

Note: When creating a schema file supporting two imports with the same namespace, the
XQuery Mapper ignores the second import.

Non-XML Types
WebLogic Integration uses a metadata language called Message Format Language (MFL), based
on XML, to describe the structure of (typed) non-XML data. The Format Builder tool creates and
maintains metadata as a data file, called an MFL document.

Note: When you create MFL files for use in your business process project, to make them
available in your application, you must add the files to your schema folder. To learn
about the Application and project folders in the Design View, see Components of Your
Application.

Every MFL file available in your project is listed in Non-XML Types in the Create Variable
dialog box. However, an XML Schema representation of each MFL file is built by WebLogic
Workshop. This XML Schema representation of your MFL data is available in the XML Types
listing. In other words, you can work with every MFL file in your project in its non-XML data

Bus iness P rocess Var iab les and Data Types

19-8 Guide to Building Business Processes

representation (in non-XML MFL format) and in its XML Schema representation (XML typed
data). For example if you add an MFL file named mydata.mfl to your business process project,
mydata.mfl.xsd is listed in Non XML Types, and the corresponding XML Schema
representation, mydata.mfl, is listed in XML Types. Although you are provided with a typed
XML version of your typed non-XML format, both types are not automatically populated. That
is, if you receive data in a typed non-XML format and then assign it to a typed non-XML variable
and you create a variable for the corresponding typed XML version, it will not automatically
contain the data that is in the typed non-XML variable. You must use a transformation map to
accomplish this.

Note: Non-XML variables are equivalent to Binary variables in prior versions of WebLogic
Integration.

The non-XML type data also includes the RawData type that specifies non-XML data
for which no MFL file exists and therefore no known schema.

Although both XMLObject and RawData are both untyped data types in WebLogic
Integration, the XMLObject data type is still XML and therefore has a structure that
can be parsed. RawData is just a stream of data that has no known structure. Therefore,
you cannot do things like use a RawData parameter in a XQuery expression or in a
transformation method.

RawData type supports the following file type:

• ASCII file types (for example, .html .shtml .php .pl .cgi .txt .css etc).

• XML types

• MFL types.

Simple Types
Contains the following Java data types:

Primitive Data Types—boolean, byte,char, double, float, int, long, and short.

Classes—Variables can be created from the Java classes in the current project. However, the Java
classes available in the project are not listed in the Select variable to assign pane in the node
builders. You must explicitly specify the Java class in the Type Name field as described in the
following sections: To Create a New Variable in the Data Palette and To Create a New Variable
in the Node Builder.

Java class variables can be used in business processes without any conversion. When you use
Java classes in data transformations, WebLogic Integration converts the Java class into an

Ass ign ing MFL Data to XML Var iab les and XML Data to MFL Var iab les

Guide to Building Business Processes 19-9

internal XML Schema representation of the Java class file. The fields of Java class that cannot be
converted to an XML Schema type are ignored.

Related Topics
Validating Schemas

Variables in Business Process Source Code

Assigning MFL Data to XML Variables and XML Data to MFL
Variables

As described in Non-XML Types, an XML Schema representation of each MFL file in your
application is built by BEA WorkSpace Studio. You can work with every MFL file in your
project in its non-XML data representation (in non-XML MFL format) and in its XML Schema
representation (XML typed data).

The variable assignment panes in the WebLogic Integration node builders treat MFL and their
corresponding XML variables interchangeably, such that you can assign MFL data directly to the
corresponding variables of type XML and XML data directly to the corresponding variables of
type MFL; no data transformation is required.

In other words, the BEA WorkSpace Studio graphical design environment allows you to assign
MFL data (that is passed into a business process from a client or a control) to strongly typed-XML
variables directly, and to assign typed-XML data (sent from a business process to a client or a
control) directly to MFL variables.

The node builders for the following nodes support the direct assignment of MFL data to XML
variables and XML data to MFL variables: Client Request, Client Response, Control Send,
Control Return, Control Send with Return. The example described in the following section
describes a Client Request and a Client Response node; the steps are similar for any node.

Example Scenario—Requires Assignment of MFL Data to an XML Variable and Assignment of
XML Data to an MFL Variable
Consider the following example:

Your business process is started by a request from a client. The request contains a purchase order
document in MFL format, which is represented by an MFL file in a Schemas folder in your
application.

Bus iness P rocess Var iab les and Data Types

19-10 Guide to Building Business Processes

To process the purchase order, your business process must first assign the MFL data to an XML
variable (at a Client Request node). This XML variable is used in the processing of the purchase
order at subsequent nodes. When the processing is complete, the business process sends a
response document (from a Client Response node) to the client. The processed data (a price
quote) is in XML format in your business process; because the client expects MFL data, a Client
Response node assigns the XML data to a variable of type MFL before sending the response.

The business process in this scenario includes a Client Request node, a Client Response node,
and the nodes between them (not described in this example) at which the processing logic is
designed, as shown in Figure 19-2.

Figure 19-2 Processing Logic

The following steps describe how to design the Client Request and Client Response nodes to
do the MFL-to-XML and XML-to-MFL assignments required for the scenario described in this
example.

To Design the Client Request Node

1. In the Design View, double-click the Client Request node to invoke its node builder.

Ass ign ing MFL Data to XML Var iab les and XML Data to MFL Var iab les

Guide to Building Business Processes 19-11

2. In the General Settings tab, enter a name in the Method Name field to specify the name of
the method on this Client Receive node (by default, the method is named clientRequest).

3. In the General Settings tab, click Add to select the type and format of the data your Client
Request node expects to receive from clients (that is, the data type for the method parameter).
As shown in the following figure, the XML option is selected by default and XML Types are
displayed. However, Non-XML Types and Simple Types are also available. To display the
Non-XML and Java data types, select the NonXML or Simple tab on the panel, see
Figure 19-3.

Figure 19-3 Data Types

Note: Every MFL file type in your project is listed in the Non-XML Types pane and every
XML file type in your project is listed in the XML Types pane. In addition, because
an XML Schema representation of each MFL file is built by WebLogic Workshop,
an XML Schema representation of your MFL data is also available in the XML Types
list.

4. Select NonXML to display the Non-XML Types (Typed and Untyped) in your application,
as shown in Figure 19-4.

Bus iness P rocess Var iab les and Data Types

19-12 Guide to Building Business Processes

Figure 19-4 Non-XML

5. Click the + associated with the name of the MFL file that represents the type of the request
the client makes to the business process. In this example, we click the + beside
myMFLFile.mfl to display the root element MyMessageFormatMflObject.

6. Click the root element—in this case, MyMessageFormatMflObject. The data type is
displayed in the Type field.

7. Enter a name for the method parameter in the Name field (in this example, we entered
requestMFL), and click OK. The parameter type is displayed in the node builder:

8. Click the Receive Data tab.

The Receive Data tab allows you to define the variable to hold the data your business
process receives from clients.

The Client Sends field is populated with the parameter (or parameters) you specified on
the General Settings tab. In this example, the data is of type
MyMessageFormatMflObject:

9. Create a new variable to which the data supplied in the method parameter will be assigned.

To create a new variable, from the Select variables to assign drop-list, select Create new
variable...

The Create Variable dialog box is displayed with the fields already populated with the
variable types expected by the method you specified on the General Settings tab.

10. Select the XML option.

11. Click the XML Schema that corresponds to the MFL data your business process expects to
receive at this node. In this example, click the + beside myMFLFile.mfl.xsd to expand its
structure.

12. Click the root node of the schema. In this case, click MyMessageFormat. The Variable Type
field is populated with the data type: mymflfile.MyMessageFormatDocument.

13. In the Variable Name field, enter a name. In this example, we entered requestXML.

Ass ign ing MFL Data to XML Var iab les and XML Data to MFL Var iab les

Guide to Building Business Processes 19-13

14. Click OK. The node builder displays the assignment.

15. Click Close, to close the node builder.

16. To save your work, select File→Save.

The preceding steps described how to design a Client Request node to do a direct assignment of
MFL data to an XML variable using the graphical design environment; no data transformation is
required.

To Design the Client Response Node
For this example scenario, assume that some processing is done by the business process to
process the purchase order request. As a result of the processing, the business process creates a
typed-XML price quote document. The client expects a quote in MFL format (the quote message
must be valid against an MFL schema named POquote.mfl). Therefore, the business process
stores the price quote data in an XML variable that is valid against the XML schema associated
with this MFL file (in this case named POquote.mfl.xsd)

Before sending the response to the client, the typed-XML price quote must be assigned to a typed
non-XML (MFL) variable at the Client Response node. The following steps describe how to
design the Client Response node for this XML-to-MFL scenario:

1. In the Design View, double-click the Client Response node to invoke its node builder.

2. In the General Settings tab, enter a name in the Method Name field to specify the name of
the method (by default, the method is named clientResponse).

3. In the General Settings tab, click Add to select the data type for the method parameter for
your Client Request node.

4. Click the + associated with the name of the XSD file that represents the type of the price quote
created by the business process. In the example scenario, we click the + beside
POquote.mfl.xsd to display the root element POQuote.

5. Click the root element: in this case, POQuote. The data type is displayed in the Type field
(poquote.POquoteDocument):

6. In the Name field, enter a name for the parameter (in this example, we entered quoteXML),
and then click OK. The parameter type is displayed in the node builder:

7. Click the Send Data tab. The Client Expects field is populated with the parameter you
specified on the General Settings tab. In the example, the method expects data of type
poquote.POquoteDocument.

Bus iness P rocess Var iab les and Data Types

19-14 Guide to Building Business Processes

8. Create a new variable to which the data supplied in the method parameter will be assigned.
To create a new variable, from the Select variables to assign drop-list, select Create new
variable.... The Create Variable dialog box is displayed and the fields are populated with the
variable types expected by the method you specified on the General Settings tab.

9. Select NonXML in the Select Variable Type pane to display the Non-XML types in your
application.

10. Click the MFL Schema that specifies to the MFL data your client expects to receive from the
business process. In this example, click the + beside POQuote.mfl to expand its structure.

11. Click the root node of the schema. In this case, click POquote. The Variable type field is
populated with the data type: poquote.POquoteMflObject, as shown in the preceding figure.

12. Enter a name in the Variable Name field. In this example, enter responseMFL.

13. Click OK. The node builder displays the assignment.

14. Click Close, to close the node builder.

15. To save your work, click File > Save.

The preceding steps described how to design a Client Response node to do a direct assignment
of XML data to its corresponding MFL variable using the graphical design environment; no data
transformation is required.

Guide to Building Business Processes 20-1

C H A P T E R 20

Validating Schemas

In addition to the validation check box on the node builders, you can validate XML Schemas in
the source code by using the code examples illustrated in this section.

If you check the Validate check box in the business process nodes, and at run time a validation
error occurs, a SOAP fault is thrown and your request is stopped before it gets to the business
process or any exception handler defined for your business process. To design the validation of
schemas and handling of their related exceptions within a business process, you can use the
validate() method as described in the examples in the following section.

The examples in this section describe only validation procedures to validate against XML
Schemas. You can accomplish similar tasks for MFL data by using the WebLogic Integration
MflObject interface.

The following validation scenarios are described:

Validating a Typed XML Variable

Typing and Validating an Untyped XML Type

Validating a Typed XML Variable
In this example, we assume that the type of XML received by the business process is known at
design time. That is, a document received by the business process is known to be strongly-typed
XML. The following code describes how to deliver the XML to the business process and validate
the XML data against the corresponding XML schema:

Va l idat ing Schemas

20-2 Guide to Building Business Processes

 public void receiveTypedXML(POORDERDocument lineItem) {

 if (lineItem.validate()) {

 //

 } else {

 // Handle error

 }

 }

In the preceding example, POORDERDocument is the name of the XML schema against which you
want to validate the XML data received by your business process.

Typing and Validating an Untyped XML Type
In this example, we take an untyped XML data received by your business process, convert it to a
strongly typed XML data, and subsequently validate it against an XML schema associated with
the type.

This can be accomplished by writing the following code:

 public void receiveUntypedXML(XmlObject xml) {

 if (xml instance of POSUBLINEDocument) {

 POSUBLINEDocument sublineItem = (POSUBLINEDocument) xml;

 if (sublineItem.validate()) {

 // item is valid

 } else {

 // item is not valid

 }

 } else {

 // Handle error - the XmlObject is not a POSUBLINEDocument

 }

 }

In the preceding example, POSUBLINEDocument is the name of the XML schema against which
you want to validate the XML data.

Related Topics
Working with Data Types

Guide to Building Workflows 21-1

C H A P T E R 21

Versioning Business Processes

By using the WebLogic Integration versioning feature in the BEA WorkSpace Studio graphical
design environment, you can make changes to your business process without interrupting any
instances of the process that are currently running. Versioning provides the ability for any new
process instances to use the newly-activated version, while process instances that are already in
progress run to completion using the version that was active when they started.

Note: Before using versioning with long-running business processes, please read Using
Versioning with Long-Running Business Processes.

When you version a business process, you create a child version of a business process that shares
the same public URI (interface) as its parent. At run time, the version of the process that is marked
as active is the process that will be accessed by external clients through the public URI.

Caution: You can version business processes, but not the individual controls associated with
that process or other business process related components, such as schemas and
transformations. When you version a business process, you must also version the
subprocesses of that process; they are not versioned automatically when their parent
process is versioned. This means that any changes to you make to these components
also impact any instances of prior process versions that are currently running. To
avoid this problem, as you make the necessary changes, create duplicates of these
components and utilize the duplicates instead of the originals.

This section contains the following topics:

Creating a New Version of a Business Process

Configuring the New Versions of Your Business Process

Ve rs i on ing Bus iness Processes

21-2 Guide to Building Workflows

Editing Versions of Business Processes

Deleting Versions of a Business Process

Using Versioning with Long-Running Business Processes

Importing Versioned Business Processes

Creating a New Version of a Business Process
The first time you create a new version of a business process, the content of your original process
is copied into the new version and the old process is no longer editable. If you ever want to return
to the original state of your business process, it is recommended that you leave the first version
of the process intact and only make any edits or updates to the second version of your process.
To create a new version of your business process, complete the procedures in the following
sections:

To Create the First Version of a Business Process

To Create a New Version of Your Process

To Create the First Version of a Business Process

1. On the Package Explorer pane, right-click the business process (Process.java file) for which
you want to create a new version and select Process Versioning > Create Version.

The Create Version window opens.

2. In the Create Version window, enter the following properties:

– Public URI—This is the URI (instance) by which external clients access the most
active version of your business process. The default value is the public instance by
which clients accessed the original version of the business process.

– Version URI—This is the name of the versioned file and also the URI by which this
version of the business process can be accessed in the BEA WorkSpace Studio.

3. Click OK.

The Create Version window closes and the new version of your business process is added
to the Package Explorer pane (see Figure 21-1).

Creat ing a New Vers ion o f a Bus iness P rocess

Guide to Building Workflows 21-3

Figure 21-1 Version

The indicates that this version of the business process is the active version of the
process. By default, the first version of a process becomes the new version since and the
original version becomes a virtual URI which points to the active version of the process.
All currently running instances of the process will run to completion using the original
process, but the next time an instance of the business process is invoked through the public
URI, the version you just created will be used for processing.

Note: When you are creating process or service broker controls by right-clicking the virtual
URI, the control will be created based on the active version of the business process with
that URI. If you create the control by right-clicking the public URI of a version of a
process, the control will be created based on the version of the business process that you
selected and the Process.java file is not visible.

To Create a New Version of Your Process

1. On the Package Explorer pane, right-click the business process (Process.java file) which you
want to create a new version for and select Process Versioning > Create Version.

The Create New Version File window opens.

2. In the Create Version window, enter a value for the Version URI, that is the URI by which
this version of the business process can be accessed in the BEA WorkSpace Studio.

3. If you want this version of the business process to be the active version of the process, select
the Active Version check box. You can change a version of a business process to be active at
any time, see To Make a Version of a Business Process the Active Version.

4. Click OK.

The Create Version window closes and the new version of your business process is added
to the Package Explorer pane.

The indicates that this version of the business process is the active version of the
process. All currently running instances of the process will finish processing, but the next
time an instance of the business process is invoked through the public URI, the version you
just created will be used for processing.

Ve rs i on ing Bus iness Processes

21-4 Guide to Building Workflows

Configuring the New Versions of Your Business Process
To Make a Version of a Business Process the Active Version
You can change which version of your business process you want to be the active version at any
time. To do so:

1. On the Package Explorer pane, right-click the business process (Process.java file) that you
want to set to active and select Process Versioning > Make Active Version.

The version of the business process that you selected is updated in the Application pane to

be the new active version, by changing its icon to . All currently running instances of
the process will finish processing, but the next time an instance of the business process is
invoked through the public URI, the version you just marked as active will be used for
processing.

Editing Versions of Business Processes
You edit any version of a process the same way that you edit any original business process.
However, there are a some things you should keep in mind:

If you add or change a client operation in a version of a business process, all other versions
of that business process will be out of synchronization with the public URI. This is
indicated on the Package Explorer pane by changing the icon of the process.java file(s) to

.

Note: The error icon will not appear if the business process is not save. Go to File and click
Save All.

If you edit or add any internal resources, such as variables, they will only be available in
the process in which they were edited or created. Other versions of the process will not be
able to access them.

If you edit any external resources, such as transformations files in a process, these changes
will affect older versions of the business process, possibly breaking them. Additionally, any
calls to that external resource from older version of the process may no longer be valid.
Therefore, it is recommended that rather than editing an external resource, you create a
copy of that resource and give it a new name and edit any calls to that resource within your
version of the process to reflect the new name. The easiest way to do this is to use the
search and replace function in the Source view.

Dele t ing Ve rs ions o f a Bus iness P rocess

Guide to Building Workflows 21-5

Deleting Versions of a Business Process
To Delete a Version of a Business Process

1. On the Package Explorer pane, right-click the business process (Process.java file) that you
want to delete and select Process Versioning > Delete Version.

The version of the business process you selected is deleted and removed from the Package
Explorer pane.

Notes: If you delete the active version of a business process, the newest version of that business
process automatically become the active version. If you delete the last remaining version
of a business process, the content of that process is copied into the original Process file
and the Package Explorer pane is updated accordingly.

Using Versioning with Long-Running Business Processes
Some business processes are by nature long-running—meaning that they have a prolonged life
span during which an ongoing business task is being automated or managed. By default,
WebLogic Integration’s versioning capability allows only process modifications to be applied to
new process instances, not to those already in progress at the time of the change. However, in the
case of long-running processes, it is sometimes desirable to make changes to the process
definition to reflect changing business conditions and to have these changes applied to process
instances already in progress. To accomplish this goal, BEA recommends the following design
practices:

Split long-running business processes into multiple subprocesses.

Specify the version strategy as loose-coupling (between business processes and sub
processes). This allows uptake of new subprocess versions when appropriate. See To
Specify the Version Strategy of a Business Process.

Whenever possible, use generalized or untyped interfaces between processes and
subprocesses. This further reduces the impact of changes made to subprocesses. For
example, Client Requests should take XmlObjects, not a specific schema type. This
ensures that when the schema is changed, the control method signature does not also have
to change.

Note: You can enable, disable, or set the activation time for versions using the WebLogic
Integration Administration Console.

Ve rs i on ing Bus iness Processes

21-6 Guide to Building Workflows

To Specify the Version Strategy of a Business Process

1. Select the Start node of the business process which version strategy parameter you want to
change.

2. In the Properties view, select the version strategy method that you want to use for the sub
processes process logic. From the list box, select one of the following:

– loosely-coupled—select this option if you want the subprocess version to be set at the
time that the subprocess is invoked. In other words, if an instance of your business
process is currently running but has not yet reached the state of invoking the subprocess
that you have created a new version for, the new version of your subprocess will be
used when the process invokes the subprocess.

– tightly-coupled—select this method if you want the subprocess version to be set at the
time the parent process is invoked. In other words, if an instance of your business
process is currently running but has not yet reached the state of invoking the subprocess
that you have created a new version for, the old version of your subprocess will be used
when the process invokes the sub process. The next time the main process is invoked, it
will use the new version of the sub process when it invokes the subprocess.

Importing Versioned Business Processes
When you import multiple versions of a business process (Process.java) from another
application, the the versioning relationship is not preserved in the imported business process
(Process.java). You need to manually edit the wlw-config.xmlconfiguration file, which is
located in the \Web\WEB-INF folder of your application.

Guide to Building Business Processes 22-1

C H A P T E R 22

Building Stateless and Stateful
Business Processes

Business Processes are either Stateless or Stateful, depending on the transactions contained in the
process.

Stateless—A business process which is compiled into a stateless session bean and runs
within one JTA transaction.

Stateful—A business process which is compiled into an entity bean and runs within the
scope of one or more JTA transactions.

Stateless processes are intended to support business scenarios that involve short-running logic
and have high-performance requirements. Because a stateless process does not persist its state to
a database, it is optimized for lower-latency, higher-performance execution. An example of a
stateless process is one that receives a message asynchronously from a client, transforms the
message, and then sends it asynchronously to a resource using a control. Another example is a
process that starts with a message broker subscription, transforms a message, and publishes it to
another message broker channel. Such a process is analogous to the kinds of routing rules used
by traditional message brokering or message routing system.

Stateful processes are intended to support business scenarios that involve complex, long-running
logic and therefore have specific reliability and recovery requirements. A process is made stateful
by the addition of stateful nodes or logic that forces transaction boundaries (see, Transaction
Boundaries). For example, a process that receives a message, transforms it, sends it to a business
partner, and then waits for an asynchronous response is stateful because the act of waiting forces
a transaction boundary. This is necessary to ensure that:

The process can recover and continue execution without loss of data in the event of a
system outage during this waiting period.

Bui ld ing State l ess and Stat e fu l Bus iness P rocesses

22-2 Guide to Building Business Processes

System resources are used efficiently during this waiting period.

By default, a business process is Stateless until you add any blocking construct to the data flow,
that is, add any process that affects a transaction boundary. For more information about
transaction boundaries (see, Transaction Boundaries).

To View Whether Your Business Process is Stateless or Stateful
The Start node view indicates whether a business process is Stateless or Stateful in two different
ways:

The Stateless property in the JPD Configuration view of your Start node.

The icon of the Start node in the Design view.

The following table summarizes the ways in which BEA WorkSpace Studio indicates if your
Business Process is Stateless or Stateful.

Table 22-1 Stateless or Stateful Business Process

You can use the persistence property in the JPD Configuration view to set how a stateful
business process is persisted. For more information about the Start node JPD Configuration view,
see Setting the Business Process Properties.

Working with Variables in Stateless Processes
Because stateless processes are compiled into stateless session beans and because these stateless
session beans are reused at run-time to provide the performance advantage enjoyed by stateless
processes, some care is required when working with variables. If a default value is specified for
a variable in a stateless process, that variable will only be initialized the first time the process is
run. Subsequent process instances will reuse the same stateless session bean instance, and
therefore will inherit the last known value of the variable in question.

Stateless Stateful

JPD Configuration
Pane

stateless = true stateless = false

Start Node Icon

Work ing wi th Var iab les in S tate less P rocesses

Guide to Building Business Processes 22-3

When building stateless processes that require variables with default values, you should place a
Perform node at the start of the process (immediately following the Start node) and manually
initialize the variables at that location. This way, you can be assured that the variables will be
initialized with each run of the process, because the Perform node will be explicitly executed each
time. For more information about how to create Perform nodes, see Writing Custom Java Code
in Perform Nodes.

If your goal is merely to have a variable with a constant value, this does not pose an issue in the
case of stateless processes. When creating the variable, select the Declare as Constant check box
in the Create Variable dialog box. This creates the variable as static and final and ensures that
the constant behaves as expected during each run of the stateless process. For more information
about how to create variables, see Creating Variables.

Related Topics
Transaction Boundaries

Starting Your Business Process

Writing Custom Java Code in Perform Nodes

Creating Variables

Setting the Business Process Properties

Bui ld ing State l ess and Stat e fu l Bus iness P rocesses

22-4 Guide to Building Business Processes

Guide to Building Business Processes 23-1

C H A P T E R 23

Building Synchronous and
Asynchronous Business Processes

Business Processes are synchronous or asynchronous, depending on which method you choose
to invoke your business process. However, both methods can contain both types of activity.

Synchronous—A business process that is invoked by a synchronous method. In other
words, the Starting Event is represented by a Client Request with Return node or a
Synchronous Subscription node.

A synchronous business process can contain asynchronous operations, but they must be
added after the starting event in the process flow. That is, at run time, the processes are
executed after the synchronous starting event is complete. You cannot put stateful logic
inside a synchronous operation. To learn more about stateful and stateless business
processes, see Building Stateless and Stateful Business Processes.

Note: If your synchronous process requires asynchronous operations within the Client
Request with Return node, see Synchronous Clients for Asynchronous Business
Processes.

Asynchronous—A business process that is invoked by an asynchronous method. In other
words, the Starting Event is represented by an asynchronous node. This includes business
processes that are invoked via a Client Request node, an Asynchronous Subscription node,
or one of several Client Request or Subscription nodes (that is, an Event Choice node). A
asynchronous process can call a synchronous or asynchronous methods without additional
configuration.

Synchronous to Asynchronous—Enables synchronous clients to interact with business
processes that have asynchronous interactions with resources. To learn more, see
Synchronous Clients for Asynchronous Business Processes.

Bui ld ing Synchronous and Asynchronous Bus iness Processes

23-2 Guide to Building Business Processes

Working with Subprocesses
A subprocess is any process that is called to from your business process through a process control
or a service broker control. They can be called synchronously or asynchronously.

Synchronous Subprocesses
The Process control allows a business process (also a BEA WorkSpace Studio Web service or
pageflow) to send requests to (and receive callbacks from) another business process. Process
control invocations are Java Remote Method Invocation (RMI) calls. The target business process
must be hosted on the same WebLogic Server domain as the caller. Transaction contexts are
propagated from the parent processes to the subprocesses over the Process control calls.

The Service Broker control allows a business process (or a Web service) to invoke and receive
callbacks from another service using one of several protocols; the most commonly used protocol
is SOAP over HTTP. (To learn about the protocols. The target service must expose a WSDL
interface. Because the transport used is HTTP or JMS, the transaction contexts are not propagated
over the Service Broker control calls.

A synchronous subprocess called through a Process control runs in the same transaction as its
caller (parent) process. Synchronous subprocesses behave differently than asynchronous
subprocesses, particularly when it comes to un-handled exceptions.

An un-handled exception in a subprocess causes the shared transaction to be marked as rollback
only, which causes both the subprocess and the caller (parent) process to roll back. This behavior
is the default because it prevents a scenario in which one of the processes is rolled back, leaving
the other process in an inconsistent or uncompensated state.

You can override the default behavior by setting the on sync failure property for the subprocess
to rethrow. You do so in the JPD Configuration view in the BEA WorkSpace Studio graphical
design environment.

To Configure the On Sync Failure Property

1. In the Design view, select the Start node of the subprocess for which you want to configure
the on sync failure property.

Note: If the JPD Configuration view is not visible, from the menu bar, choose Window >
Show View > JPD Configuration.

2. In the JPD Configuration view, from the on sync failure drop-down menu, select rethrow.

Your subprocess is now configured to throw exceptions in the case of failure.

Work ing w i th Subprocesses

Guide to Building Business Processes 23-3

Note: Setting the on sync failure property does not force a rollback, it only causes the
subprocess to throw an exception.

Asynchronous Subprocesses
For asynchronous operations, the transaction is never propagated to the subprocess. In other
words, a subprocess runs in its own transaction. Messages sent to subprocesses are buffered on
the process queue of the subprocess. The caller process considers message delivery successful if
the message is properly delivered to the queue. Consequently, failure of the subprocess is not
communicated to the caller. For example, an unhandled exception causes the subprocess to fail,
but the caller process is not notified.

Note: The business process (Java file) generated session beans have a default time-out value of
300 seconds. If this value is insufficient and leads to the timing out of long-running
processes, you can alter this value. Information about this value, is located in the
WebLogic Server documentation.

Since asynchronous failure is not automatically visible to the caller business process, you
should consider the following design pattern for your process to subprocess
communication:

Design your subprocess such that it contains multiple callbacks for communicating success
or failure. For example, use an exception handler path to catch any thrown exceptions and
add a node on the path that makes a callback to the caller process that communicates that
there was a failure.

Use an Event Choice node in the caller business process to block and wait for either type
of callback (success or failure) and take action as appropriate, as illustrated in Figure 23-1.

Bui ld ing Synchronous and Asynchronous Bus iness Processes

23-4 Guide to Building Business Processes

Figure 23-1 Asynchronous Subprocesses

Synchronous Clients for Asynchronous Business
Processes

You can enable synchronous clients to interact with business processes that have asynchronous
interactions with resources. For example, a synchronous BEA WorkSpace Studio client, such as
a JSP or Portal page that uses a Java control, may need to invoke a business process and then
block. While the client is blocking, the business process may perform asynchronous activities,
such as enqueueing a JMS message and waiting for a JMS receive, and then return the response
to the client, after which the client unblocks.Figure 23-2 demonstrates this scenario.

Synchronous C l i ents fo r Asynchronous Bus iness P rocesses

Guide to Building Business Processes 23-5

Figure 23-2 Synchronous Clients for Asynchronous Business Processes

While it is not possible to create a synchronous process that requires asynchronous operations
within a Client Request with Return node, as shown in the following figure (and indicated by

 on the Control Receive node), you can create an asynchronous process with Client Request
and Client Response nodes that accomplishes this task. This business process will appear to be
synchronous to clients that use its web service interface. Additionally, this scenario will work for
Java clients created with the WebLogic Server clientgen utility or with a BEA WorkSpace
Studio entity that uses the Service Broker control. See Figure 23-3.

Bui ld ing Synchronous and Asynchronous Bus iness Processes

23-6 Guide to Building Business Processes

Figure 23-3 Asynchronous Operations

To enable synchronous clients to interact with business processes that have asynchronous
interactions with resources, you can create a business process with a Client Request node with
an attribute property called sync/async callback name. This Client Request node property holds
the name of the callback method used by the associated Client Response node. The Client
Request and Client Response nodes delineate the activities (including asynchronous activities)
that occur while the client is blocking. After setting this property, you need to generate the
sync-to-async WSDL. The synchronous WSDL generation process replaces the SOAP address of
the service with a modified SOAP address. The modified address causes the synchronous servlet
to process the client request and subsequent return action. The generated service entry looks like
the following:

Normal WSDL
<service name="syncAsync">

<port name="syncAsyncSoap" binding="s0:syncAsyncSoap">
<soap:address

location="http://localhost:7001/SyncAsyncWeb/processes/syncAsync.jpd"/>
</port>

Synchronous C l i ents fo r Asynchronous Bus iness P rocesses

Guide to Building Business Processes 23-7

Synchronous WSDL
<service name="syncAsync">

<port name="syncAsyncSoap" binding="s0:syncAsyncSoap">
<soap:address

location="http://localhost:7001/sync2AsyncIM/SyncAsyncWeb/processes/syncAs
ync.sync2JPD"/>

</port>

To learn how to generate the sync-to-async WSDL, see To Generate a Sync-to-Async WSDL
File.

Note: To see an example of a synchronous client that invokes an asynchronous business process
and waits (blocks) for the process to return information.

To Create a Synchronous Client for an Asynchronous Processes

Note: Before designing your business process, be sure to read the Limitations section.

1. In Design view, create a business process with a Client Request as the Starting Event.

2. From the Node Palette, drag-and-drop the following nodes between the Client Request and
Finish nodes:

Note: If the Node Palette is not visible in BEA WorkSpace Studio, from the BEA
WorkSpace Studio menu, choose Window > Show View > Node Palette.

a. Control Send

b. Control Receive

c. Client Response

The business process should now resemble the business process on the left side as shown
in Figure 23-4.

Bui ld ing Synchronous and Asynchronous Bus iness Processes

23-8 Guide to Building Business Processes

Figure 23-4 Synchronous Client for an Asynchronous Processes

3. Configure each node as required by your design.

4. In the Design view, click the Client Request node.

5. In the JPD Configuration pane, do the following:

– Click the sync/async callback name field, then enter the name of the callback method.
You can find this name in the method name property in the associated Client
Response node.

If you enter the wrong name, an appears next to the Client Request node.

– Change the jmsSoap property field value to true, the default value is false.

Note: If the JPD Configuration view is not visible, from the menu bar, choose Window >
Show View > JPD Configuration.

6. Generate a Sync-to-Async WSDL file, as described in To Generate a Sync-to-Async WSDL
File.

Synchronous C l i ents fo r Asynchronous Bus iness P rocesses

Guide to Building Business Processes 23-9

7. To learn about security for these processes, see Synchronous-Asynchronous Security.

To Generate a Sync-to-Async WSDL File
WSDL files are used to communicate interface information between web service producers and
consumers. A WSDL description allows a client to utilize a web service’s capabilities without
knowledge of the implementation details of the web service.

Note: Before you can generate a WSDL file, you must first set the sync/async callback name
attribute property on the Client Request node.

1. In the Package Explorer pane, right-right click the business process (Process.java file) for
which you want to generate the WSDL file.

2. From the drop-down menu, choose Generate > Sync/Async WSDL.

BEA WorkSpace Studio generates the WSDL file and displays it in the Package Explorer
pane directly below the Process.java file. If the name of the Java file is HelloWorld.java,
the name of the WSDL file would be HelloWorldSyncContract.wsdl.

Limitations

Mixing of Synchronous and Asynchronous Pairs is Not Allowed
You cannot mix synchronous and asynchronous Client Request and Client Response pairs in the
same business process. Mixing synchronous and asynchronous pairs causes an error when
generating the Sync/Async WSDL for the business process.

Bui ld ing Synchronous and Asynchronous Bus iness Processes

23-10 Guide to Building Business Processes

Figure 23-5 Synchronous and Asynchronous Pairs

A Client Request within a Synchronous Pair is Not Allowed
You cannot place a Client Request node inside of a synchronous pair.

Figure 23-6 Synchronous pair

A Synchronous Client Cannot Call an Asynchronous Process with SOAP
Attachment in a Client Request Node
Attachments are supported only on HTTP SOAP 1.1 and HTTP SOAP 1.2 bindings. Calling an
asynchronous process from a synchronous process requires that JMS SOAP to be set as a binding.
Subsequently, this scenario is not supported because of the conflicting requirements.

Synchronous C l i ents fo r Asynchronous Bus iness P rocesses

Guide to Building Business Processes 23-11

Synchronous-Asynchronous Security
The SyncAsyncTransportServlet is a transport object in the web tier. It provides HTTP protocol
support for invoking WebLogic Integration components that are synchronously invoked from
asynchronous internal and external clients.

Synchronous invocations to business processes from asynchronous clients that arrive via HTTP
are received by the SyncAsyncTransportServlet transport. You can set basic authentication
security on specific business process URLs that are invoked with the J2EE Web application
web.xml and weblogic.xml deployment descriptors of the SyncAsyncTransportServlet.

To Configure Basic Authentication for Resources Accessed via SyncAsyncServlet
The SyncAsyncTransportServlet is packaged within WebLogic Integration System EJBs. The
deployment descriptor (web.xml) for this servlet is contained in the jpd-ejbs.ear file. This file
is located in the BEA_HOME\weblogic92\integration\lib directory, where BEA_HOME is the
directory in which you installed the WebLogic Platform. The web.xml is located in the
transport/http/WEB-INF directory in the jpd-ejbs.ear file. To add basic authentication
security settings for the business process URLs that are invoked from the
SyncAsyncTransportServlet, you must modify the web.xml for the servlet.

Related Topics
Transaction Boundaries

Starting Your Business Process

Building Stateless and Stateful Business Processes

Handling Exceptions

Bui ld ing Synchronous and Asynchronous Bus iness Processes

23-12 Guide to Building Business Processes

Guide to Building Workflows 24-1

C H A P T E R 24

Transaction Boundaries

Business processes in WebLogic Integration are transactional in nature. Every step of a process
is executed within the context of a JTA transaction. A transaction ensures that one or more
operations execute as an atomic unit of work. If one of the operations within a transaction fails,
then all of them are rolled-back so that the application is returned to its prior state. Depending on
whether you design your business process logic such that your process is stateful or stateless (see,
Building Stateless and Stateful Business Processes), there may be one or more transactions within
the context of a given business process.

When you are building a business process, implicit transaction boundaries are formed based on
where in the process you place blocking elements. The transaction boundaries within a business
process change as you add process nodes to the business process. You can also create explicit
transaction boundaries by selecting contiguous nodes and declaring them to be in a transaction
separate from those created implicitly by the application. Resources accessed by a business
process may also be part of the transaction, depending on the nature of the resource and the
control that provides the access.

Implicit transactions are implicit both because their behavior is automatically determined (or
implied) by your business process logic and because they are not visible in your process diagram.
In the section, An Implicit Transaction Boundary Example, the implicit transaction boundaries in
the diagrams are added for illustration; implicit transaction boundaries are not visible in the BEA
WorkSpace Studio graphical design environment. Explicit transactions, on the other hand, are
explicit because they are defined by you and they are visible in the business process diagram in
BEA WorkSpace Studio.

This following sections deal specifically with transactions in the context of WebLogic Integration
and business processes:

Transac t i on Boundar ies

24-2 Guide to Building Workflows

Implicit Transaction Boundary Rules

An Implicit Transaction Boundary Example

Explicit Transaction Boundaries

Handling Exceptions in Transaction Blocks

Implicit Transaction Boundary Rules
Recall that implicit transaction boundaries are formed based on where in the process you place
blocking elements and that these boundaries change as you add process nodes to the business
process. Additionally, a business process is stateless by default, and blocking elements that
change transaction boundaries can change the process to stateful (see, Building Stateless and
Stateful Business Processes). For more information about The following rules apply to
transaction boundaries when you are building a business process:

Adding any receive (blocking) nodes (Client Request or Control Receive nodes) to a
business process changes the transaction boundaries:

– Unless the node is in the beginning of a business process, the new receive node marks
the beginning of a new transaction.

– The node immediately preceding the new receive node marks the end of the preceding
transaction.

Adding a Parallel group node to a business process changes the transaction boundaries:

– The node immediately preceding the Parallel group node marks the end of the
preceding transaction.

– The beginning of each branch in a Parallel group node marks the beginning of a new
transaction.

– The end of each branch in a Parallel group node marks the end of the new transaction.

– The node immediately following the Parallel group node marks the beginning of the
next transaction.

Note: By default, the beginning and the end of a parallel group node mark the boundaries
of new transactions. However, you can specify that the active transaction is continued
when entering and exiting a parallel block. To use this functionality, in Design view,
select a Parallel node in your business process, then, in the JPD Configuration pane,
change the continue transaction property to true.

Adding an Event Choice node to a business process changes the transaction boundaries:

An Impl i c i t T ransact i on Boundary Example

Guide to Building Workflows 24-3

– The node immediately preceding the Event Choice group marks the end of the
preceding transaction.

– The new group node marks the beginning of a new transaction.

– Unlike the case of a Parallel node, in which each branch in the Parallel node has its
own transaction context, the end of the Event Choice group does not mark the end of
the transaction. Execution continues in the same transaction after the Event Choice
group until a node that forces an implicit transaction boundary or an explicit boundary
is reached.

Existing transaction boundaries are unaffected by adding one or more nodes (within those
boundaries) that do not themselves force a transaction boundary.

An Implicit Transaction Boundary Example
The following example illustrates the rules listed in the Implicit Transaction Boundary Rules
section. In each of the figures in this section, the transaction boundaries are added to illustrate
where they are implied in WebLogic Integration business processes.

1. Start with an empty business process, as shown in Figure 24-1.

Figure 24-1 Empty Business Process

2. If we configure the Starting Event to be a Client Receive node, the following transaction
boundaries are implied, as shown in Figure 24-2.

Transac t i on Boundar ies

24-4 Guide to Building Workflows

Figure 24-2 Transaction for Client Receive Node

3. When we add a Control Send node, the implied transaction boundary extends to include the
new node (see Figure 24-3).

Figure 24-3 Implied Transaction Boundary

4. By adding a Control Receive node, we add a blocking element to the business process and
therefore create a new transaction (see Figure 24-4).

An Impl i c i t T ransact i on Boundary Example

Guide to Building Workflows 24-5

Figure 24-4 New Transaction Boundaries

Since the business process now contains two transactions, the Start node icon changes to

indicate that the business has changed from Stateless to Stateful . For more
information about Stateless and Stateful business processes, see Building Stateless and
Stateful Business Processes.

5. If we add a Client Response node to the business process, the second transaction’s boundaries
expands to include the new node as shown in Figure 24-5.

Transac t i on Boundar ies

24-6 Guide to Building Workflows

Figure 24-5 Client Response Node Transaction node

This concludes the implicit boundaries example, you can also create transactions by adding
explicit transaction boundaries to your business process. For information about how to do
this, see Explicit Transaction Boundaries.

Explicit Transaction Boundaries
Recall that you define explicit transaction boundaries and that they are visible in the business
process diagram in BEA WorkSpace Studio.You can create explicit transaction boundaries in
your business process by selecting contiguous nodes and declaring them to be within their own
transaction. The following rules apply for explicit transaction boundaries:

The selected nodes must be contiguous.

Exp l ic i t T ransact ion Boundar i es

Guide to Building Workflows 24-7

The selected nodes cannot include a Client Request or Control Receive node.

The selected nodes cannot include a Parallel or Event Choice group node where including
them in an explicit transaction would nest the transaction for their branches.

The selected nodes cannot be inside an existing explicit transaction.

If you violate any of these rules when you create your business process, the application displays
the transaction boundaries, but the offending nodes are marked with a . If you place your cursor
over this icon, BEA WorkSpace Studio will display a message about the violation.

To invoke a JWS using JMS transport using request/response paradigm the caller must not be
within a transaction. When business process is the caller, user must explicitly suspend the current
business process transaction before calling the service control that sends the message to the JWS
and resume the transaction after the invocation. The implications of suspending and resuming a
transaction is as follow:

Transaction savedTxn =

TransactionHelper.getTransactionHelper().getTransactionManager().forceSusp

end();

//call service control

TransactionHelper.getTransactionHelper().getTransactionManager().forceResu

me(savedTxn);

Creating Explicit Transaction Boundaries
To Create an Explicit Transaction—Alternative 1

1. Select the nodes that you want to include in your transaction by clicking and dragging your
mouse around them, or holding down your Ctrl key while clicking them.

2. Right-click one of the selected nodes and select Create Transaction from the drop-down
menu.

Explicit transaction boundaries are drawn around the nodes you selected as shown in
Figure 24-6.

Transac t i on Boundar ies

24-8 Guide to Building Workflows

Figure 24-6 Explicit Transaction Boundaries

You can rename your transaction block by right-clicking Transaction and selecting
Rename from the drop-down menu.

To Create an Explicit Transaction—Alternative 2

1. In the Design view, drag and drop Transaction from the Node Palette onto the business
process, placing it on the business process at the point at which you want to create explicit
transaction boundaries.

Transaction boundaries are created in the business process.

2. Drag and drop nodes from the Node Palette onto the business process, placing them within
the transaction boundaries.

Setting the Explicit Transaction Properties
After you create an explicit transaction, you can set the properties for the transaction in the
Properties view.

Handl ing Except i ons in T ransact ion B locks

Guide to Building Workflows 24-9

To Set the Transaction Properties

1. Select the transaction for which you want to set the properties.

The related properties are displayed in the JPD Configuration view. If the JPD
Configuration view is not visible in BEA WorkSpace Studio, choose Window > Show
View > JPD Configuration from the BEA WorkSpace Studio menu bar.

2. In the JPD Configuration pane, set the following properties:

general

– name—Enter the name you want displayed in the BEA WorkSpace Studio for this
transaction.

– notes—Enter any notes you want associated with this transaction.

transaction

– retry count—Specify how many times, after the first attempt, the process engine
should try to execute the node or group of nodes contained in the transaction.

– retry delay—Enter the amount of time (in seconds) you want to pass before a retry is
attempted.

Handling Exceptions in Transaction Blocks
To learn about exception handling in business processes, see Handling Exceptions. How
exceptions are handled in transaction blocks is described in Handling Exceptions in Transaction
Blocks.

Related Topics
Building Stateless and Stateful Business Processes

Transac t i on Boundar ies

24-10 Guide to Building Workflows

Guide to Building Business Processes 25-1

C H A P T E R 25

Business Process Source Code

As you design business processes using the graphical tools in BEA WorkSpace Studio, it writes
source code to a business process file (Process. java file), in keeping with your work in the Design
view. This Process.java contains annotations and the implementation code intended specifically
for a business process.

You can access the source code for business processes you are creating in the Design view, by
clicking the Source tab.

This section describes the source code in a business process (Java) file, and how it is related to
the work you do while creating your business process graphically in the Design view. It includes
the following topics:

Overview

Business Process Language

Variables

Control Declarations

Client Operations and Control Communication Methods

Perform Methods

XQuery Statements

Bus iness P rocess Source Code

25-2 Guide to Building Business Processes

Overview
To organize the source code in a Java file, the code generated for you as you work in the Design
view is hidden in collapsible regions in the Source view. Methods that you write for conditions
in Decision, For Each, While nodes, and so on, are shown inside their own collapsible regions
in the Java file in the Source view.

Specific regions in the Source view represent variable declarations, control declarations, XQuery
annotations, and methods associated with client operations and communication with controls. In
the Source view, you can expand these collapsed regions of code to add or edit the contained
code. The BEA WorkSpace Studio environment supports two-way editing of your business
process (Java) class—the extent to which you can add code or change the code generated by BEA
WorkSpace Studio is indicated by comments in the source code and described in the following
sections.

Business Process Language
To view the business process annotation that describes the business process you created in the
Design view, choose Window > Show View > Properties.

The Process annotation contains the business process definition, created for you as you add nodes
to your business process in the Design view. The Java methods and variables defined in this Java
file can be referenced by the flow logic described in annotation.

The <process> element is the top-level container for the business process logic. A business
process is composed of a set of activities with defined ordering. The business process element
contains a name attribute, which specifies the name of your business process. Lines of XML
describe the nodes in your business process. A line of XML is written in this area of code for each
node you add to your business process in the Design view.

Two-way editing is supported for the process language. In other words, changes you make to the
code in this region of the Process.java file appear in the Design view. For example, you can:

Create a new line of XML to describe a node in your business process. In the Design view,
the business process is updated with the new node, in keeping with your work in the
Source view. If the XML you add is not well formed, a new node is not added in the
Design view. Instead, BEA WorkSpace Studio displays a compiler error.

Write a line of process language that references a method. However, the method is not
created automatically; you must create it in the Java file.

Var iab les

Guide to Building Business Processes 25-3

Edit the process language that was already created for you. Your changes are reflected in
the Design view.

Delete lines that correspond to a business process node. The business process in the Design
view is updated accordingly.

If the line of process language you delete references a method, which is already written in
the file, the method is not deleted. You can leave the method in your file—if it is not
referenced in the process language at run time, it is ignored by the run-time engine. Delete
only methods that you are sure are not referenced in your process language. If you delete
referenced methods, errors will be generated in your application.

Note: BEA WorkSpace Studio flags errors you make in the process language with red,
wavy underlines and error messages visible in mouseover text.

Variables
Business process variables are defined within the region of code in the Source view.

Two-way editing is supported for variables. In other words, changes you make to the code in this
region of the Java file appear in the Design view, specifically the Variables section on the Data
Palette.

You can create, edit, or delete a business process variable in the Source view. The Variables tab
on the Data Palette, is updated to reflect your changes. If the variable is not declared correctly,
the error is identified in the Source view with red, wavy, underlines, and the variable does not
appear on the Variables tab.

Control Declarations
Declarations for controls are defined in the region of code in the Source view.

Two-way editing is supported for control declarations. In other words, changes you make to the
code in this region of the Process.java file appear in the Design view.

You can create, edit, or delete a control declaration in the Source view. The Design view,
specifically the Controls tab on the Data Palette, is updated to reflect your changes. If the
control is not declared correctly, the error is identified in the Source View with red, wavy,
underlines, and the control does not appear on the Controls tab.

WARNING: Changing declarations for controls already in use by your application generates
errors in your application if you do not remove or update references to the control.

Bus iness P rocess Source Code

25-4 Guide to Building Business Processes

To learn about working with controls in the Design view, see Interacting With Resources Using
Controls.

Client Operations and Control Communication Methods
Every client operation and communication method associated with a control is defined in its own
collapsed region of code in the Source view. Code in these regions is generated automatically.

Can You Edit Code?
In the Source view, you can add and edit the code within the blocks of code that specify client
operations and control methods.

After you add or edit the code, the following icon is associated with the appropriate node (Client
Request, Client Response, Control Send, Control Receive, Control Send with Return) in the
Design view: . Two-way editing is still supported. In other words, you can continue to design
the node in either the Source view or the Design view. The icon () in the Design view is a
visual reminder that you edited the code in the Source view.

For example your business process can include a Client Receive node that you configured using
the Client Receive node builder. In the Design view, the node is displayed as shown Figure 25-1.

Figure 25-1 Client Receive

If you right-click the node and select View Code from the drop-down menu, your view is
switched to the Source view at the appropriate method.

After you add your custom code, you can open the Design view by clicking the Design view tab.
Note that the representation of the node associated with this code changed from:

You can make subsequent changes to the design of the node using either the Design view or the
Source view. To learn about designing client and control operations in the Design view, see
Interacting With Clients and Interacting With Resources Using Controls.

Pe r fo rm Methods

Guide to Building Business Processes 25-5

Perform Methods
Methods you create for Perform nodes and methods you write for conditions in Decision, For
Each, or While nodes are shown outside (and below) the collapsed regions of code in the Java
file in the Source view.

public void perform() throws Exception {
}

You can write code (perform methods) in the Source view to perform any logic you want. The
Design view for your business process is not updated in keeping with your work on such perform
methods until you create a reference to the methods in the Business Process Language.

To learn about creating Perform nodes in the Design view, see To Create a Perform Node in
Your Business Process.

XQuery Statements
XQuery statements are written to the Java file in the region of code in the Source view.

The XQuery statements are preceded by the following annotation:

@com.bea.wli.common.XQuery

For example, when you select a repeating XML node using the For Each node builder, as
described in Designing For Each Nodes, an XQuery expression is created in your Java file. The
expression returns the set of XML elements over which the For Each node iterates. XQuery
expressions are written in your Process.java file when you create conditions on Decision nodes
and it also define the transformations you create between disparate data types using the mapping
tool.

To learn more about For Each nodes, Decision nodes, and data transformations, see the
following topics:

Looping Through Items in a List

Defining Conditions For Branching

Bus iness P rocess Source Code

25-6 Guide to Building Business Processes

Guide to Building Business Processes 26-1

C H A P T E R 26

Building ebXML Participant Business
Processes

The ebXML protocol (Electronic Business using eXtensible Markup Language) is a modular
suite of specifications that enables enterprises of any size and in any geographical location to
conduct business over the Internet. It is sponsored by UN/CEFACT and OASIS. To learn about
ebXML, see the following URL:

http://www.ebXML.org

This topic focuses on participant business processes for ebXML. For initiator business
processes, you use the ebXML control, which provides methods for sending and receiving
ebXML messages in a conversation.

This topic describes the template that you can use to build an ebXML participant business process
in BEA WorkSpace Studio. It contains the following sections:

About the ebXML Participant Business Process

Creating an ebXML Participant Business Process

Customizing an ebXML Participant Business Process

About the ebXML Participant Business Process
The generated ebXML participant business process file provides a head start for building public
participant business processes for ebXML conversations. Although this file is not required to
build ebXML participant business processes, it includes the nodes and business process
annotations needed to integrate easily with ebXML initiator business processes.

Bui ld ing ebXML Par t i c ipant Bus iness P rocesses

26-2 Guide to Building Business Processes

The generated ebXML participant business process file consists of the following nodes, which
are linked in the following sequence:

Table 26-1 ebXML Nodes

Creating an ebXML Participant Business Process
To create an ebXML participant business process

1. If you have not already done so, create a new application or a new project within an existing
application.

1. From the BEA WorkSpace Studio menu, choose File > New > Other. The Select a wizard
dialog box is displayed.

2. Expand WebLogic Integration and select ebXml Participant Process and click Next.

3. In the Name field, enter the name of the Java file.

4. If you want to create the Java file in a directory other than the one displayed in the Source
folder field, then click the Browse button and select the target directory and click Ok.

5. Click Finish,

BEA WorkSpace Studio creates a new ebXML participant process Java file and displays it
in the Design view pane.

Node Name Node Type Method Name Description

Start Start To learn about Start nodes, see Starting Your
Business Process.

Receive Request Client Request request Starts the ebXML participant business process upon
receiving an ebXML message from the initiator.
To learn about Client Request nodes, see
Receiving Messages From Clients.

Respond to
Request

Client Response response Sends the response document back to the initiator.
To learn about Client Response nodes, see Sending
Messages to Clients.

Finish Finish Ends the ebXML participant business process.
To learn about Finish nodes, see Specifying
Endpoints in Your Business Process.

Customiz ing an ebXML Par t i c ipant Bus iness P rocess

Guide to Building Business Processes 26-3

6. To save your work, select File > Save.

After you create the process.java file, the name of the Java file becomes available as a
service on the Services tab in the WebLogic Integration Administration Console.

Customizing an ebXML Participant Business Process
After you create an ebXML participant business process, you must customize it for the associated
ebXML conversation. Common customization tasks include:

Configuring Business Process Annotations (Required)

Customizing Names and Argument Types (Optional)

Retrieving the ebXML Message Envelope (Optional)

Depending on your implementation requirements, you might make additional customization to
the participant business process as needed. For example, participant business processes typically
invoke other controls (such as the File, JMS, or Application View controls), or a subprocess, to
accomplish the necessary backend integration.

Configuring Business Process Annotations (Required)
The generated ebXML participant business process file specifies the following default
annotations:

ebxmlActionMode="non-default,ebxmlServiceName="eBXML"
"protocol-name="ebxml"

These properties are set in the Properties view that is visible when you have the Start node of
your business process selected. Review and edit (if needed) the following annotations:

Bui ld ing ebXML Par t i c ipant Bus iness P rocesses

26-4 Guide to Building Business Processes

Note: If the Properties view is not visible in the Design view, choose Window > Show
View > Properties from the BEA WorkSpace Studio menu.

To learn more about ebXML annotations, see
http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/jpd/EbXML.html. To learn about
configuring business process properties, see Business Process Language.

Table 26-2 ebXML Annotations

Property Default Description

ebxmlActionMo
de

non-default Action mode for this business process. Determines the value specified
in the eb:Action element in the message header of the ebXML
message, which becomes important in cases where multiple message
exchanges occur within the same conversation. Select one of the
following values:
• default—Sets the eb:Action element to SendMessage

(default name).
• non-default—Sets the eb:Action element to the name of the

method (on the ebXML control) that sends the message in the
initiator business process. For sending a message from the initiator
to the participant, this name must match the method name of the
Client Request node in the corresponding participant business
process. For sending a message from the participant to the initiator,
the method name in the callback interface for the Client Callback
node in the participant business process must match the method
name (on the ebXML control) in the control callback interface in
the initiator business process. Using non-default is
recommended to ensure recovery and high availability.

If unspecified, the ebxml-action-mode is set to non-default.

service-name serviceName Name of the ebXML service associated with this business process. The
name specified here must match the service name specified on the
initiator side (for example, in the ebxml-service-name annotation
on the ebXML control in the initiator business process). You provide
this service name to your trading partners.

protocolName ebxml Do not change.

http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/jpd/EbXML.html

Customiz ing an ebXML Par t i c ipant Bus iness P rocess

Guide to Building Business Processes 26-5

Customizing Names and Argument Types (Optional)
By default, the ebXML participant business process includes a Client Request node, named
Receive request, to handle an incoming ebXML request message from an initiator. For business
processes that involve multiple round-trips, you need to create additional Client Request nodes
for any other operations that involve that receive an ebXML message from the initiator. To add
the node to a business process, drag Client Request from the Node Palette onto the business
process.

After creating a Client Request node, for the request method, specify the attachment and its
Java data type for the incoming message. The data type must match the contents of the incoming
message and can be one of the following values:

Note: Attachments can also be typed XML or typed MFL data as long as you specify the
corresponding XML Bean or MFL class name in the parameter. To learn more about data
types, see Working with Data Types.

The following restrictions apply to payload specifications:

If an array of any type is used, an argument of the same type cannot follow that array in
the argument list. In other words, that array must be the last argument specified.

Table 26-3 Data Type

Data Type Description

XmlObject Default. Represents data in untyped XML format. The XML
data is not specified at design time.

XmlObject[] An array containing one or more XmlObject elements.

RawData Represents any non-XML structured or unstructured data for
which no MFL file (and therefore no known schema) exists.

RawData[] An array containing one or more RawData elements.

MessageAttachment[] Array containing one or more parts of an ebXML business
message. Message parts can be untyped XML data
(XmlObject data type) or non-XML data (RawData data
type). Used when sending different kinds of payloads (XML
and non-XML) in the same message. The actual number of
message parts might not be known until processed.

Bui ld ing ebXML Par t i c ipant Bus iness P rocesses

26-6 Guide to Building Business Processes

If a MessageAttachment[] type is one of your arguments, no other array (including a
MessageAttachment[]) is allowed immediately before or after it.

Retrieving the ebXML Message Envelope (Optional)
You can retrieve the message envelope of an incoming ebXML message by using the
message-envelope annotation in the @jpd:ebxml-method tag, as shown in the following
example:

/**
*com.bea.wli.jpd.EbXMLMethod message-envelope="{env}"
*/
public void request(XmlObject payload, XmlObject env) {
}

Note: You can rename the default value (env) as long as it matches the name of the parameter
specified in the method.

Guide to Building Business Processes 27-1

C H A P T E R 27

Building RosettaNet Participant
Business Processes

This topic describes how to build public participant business processes for RosettaNet
conversations using the RosettaNet participant business process file in BEA WorkSpace Studio.

The following sections are included:

About the RosettaNet Participant Business Process

Creating a RosettaNet Participant Business Process

Customizing a RosettaNet Participant Business Process

RosettaNet is a consortium of major companies working to create and implement industry-wide,
open e-business process standards. These standards form a common e-business language,
aligning processes between supply chain partners on a global basis. RosettaNet is a subsidiary of
the Uniform Code Council, Inc. (UCC). To learn about RosettaNet, see the following URL:

http://www.rosettanet.org

This topic focuses on public, participant two-action business processes based on the RosettaNet
PIP3A4. For initiator business processes, you use the RosettaNet control, which provides
methods for sending and receiving RosettaNet messages in a conversation.

About the RosettaNet Participant Business Process
The RosettaNet participant business process provides a head start for building public participant
business processes for RosettaNet conversations. Although this file is not required to build
RosettaNet participant business processes, it includes the nodes and business process annotations
needed to integrate easily with RosettaNet initiator business processes.

Bui ld ing Rose t taNet Par t ic ipant Bus iness P rocesses

27-2 Guide to Building Business Processes

The RosettaNet participant business process is intended to serve as an example of the type of
processes you can build for RosettaNet message exchange. The file consists of the following
nodes:

Table 27-1 RosettaNet Nodes

Example Node Name Example Node
Types

Description

Start Start This marks the beginning of your business process. In
the Annotation pane of the Start node, you can define
the following properties:
• pipName
• pipRole
• pipVersion
• protocolName
• protocolVersion

To learn more about these annotation, see
Configuring Business Process Annotations
(Required).

To learn about Start nodes, see Starting Your
Business Process.

On Error Message

 (global error handling)

Message Path Use the Message Path to interrupt an executing
process upon delivery of a message from either a
client or a control. This allows the process to halt the
current stream of execution and take the specified
alternate actions. To learn more about Message Paths,
see Adding Message Paths.

On Error

(Global message path)

Client Request Use this node, or any other nodes in its place, to
handle the error processing you want to take place
when an error message is received. To learn about
Client Request nodes, see Receiving Messages From
Clients

Alert local administrator

(Global message path)

Perform Use this node, or any other nodes in its place, to send
a failure message to an administrator. To learn more
about Perform nodes, see Writing Custom Java Code
in Perform Nodes

About the Rose t taNe t Par t i c ipant Bus iness P rocess

Guide to Building Business Processes 27-3

Receive Message Client Request Starts the RosettaNet participant business process
upon receiving a RosettaNet message from the
initiator. To learn about Client Request nodes, see
Receiving Messages From Clients.

Send receipt acknowledgment. Client Response Sends an acknowledgement to the initiator that the
request message was received. To learn about Client
Response nodes, see Interacting With Resources
Using Controls.

Send private message

(Invoke private process group)

Perform Use this node, or any other nodes in its place, to send
a request to the private process. To learn more about
Perform nodes, see Writing Custom Java Code in
Perform Nodes.

Receive private message

(Invoke private process group)

Perform Use this node, or any other nodes in its place, to
receive a response from the private process. To learn
more about Perform nodes, see Writing Custom Java
Code in Perform Nodes.

Send reply

(Retry block)

Client Response Use this node, or any other node in its place, to send
the response back to the initiator. To learn about
Client Response nodes, see Sending Messages to
Clients.

Receive receipt acknowledgment

(Retry block)

Client Request Use this node, or any other node in its place, to listen
for an acknowledgment from the initiator process. To
learn more about Client Request nodes, see Receiving
Messages From Clients.

OnTimeout

(Timeout path on Retry block)

Timeout Path Use the Timeout Path to interrupt the execution of an
iteration of the nodes in the Retry block group after a
certain amount of time has lapsed. To learn more
about grouping nodes, see Grouping Nodes in Your
Business Process. To learn more about Timeout
Paths, see Adding Timeout Paths.

Example Node Name Example Node
Types

Description

Bui ld ing Rose t taNet Par t ic ipant Bus iness P rocesses

27-4 Guide to Building Business Processes

To learn more about how to customize the nodes in the RosettaNet participant template, see
Customizing a RosettaNet Participant Business Process.

This business process is modeled on the Two-Action Activity (Asynchronous) choreography that
is specified in the RosettaNet Implementation Framework Core Specification (version
V02.00.01). To learn about this choreography, see the following URL:

http://www.rosettanet.org

Creating a RosettaNet Participant Business Process
You can use the RosettaNet participant business process file to create a public participant
business process. The RosettaNet participant template is based PIP3A4, but you can use it for
other PIPs as well with only slight variations (such as the PIP schema and PIP identifying
information in the annotations).

Check retries

(Timeout path on Retry block)

Condition Use this node, or any other nodes in its place, to select
a path of execution based on the evaluation of one or
more conditions, in this case, the number of iterations
of the Retry block group. To learn more about
Decision nodes, see Defining Conditions For
Branching.

Notification of Failure

(Timeout path on Retry block)

Perform Place this node, or any other node in its place, inside
the Decision node to handle failure notifications to
the initiator if an iteration of the Retry block group
times out. This node is where you would normally
invoke a PIP0A1 notification of failure. To learn
more about Perform nodes, see Writing Custom Java
Code in Perform Nodes. To learn more about
customizing this node, see Setting Up the
Notification of Failure (Required).

Finish Finish Ends the RosettaNet participant business process. To
learn about Finish nodes, see Specifying Endpoints
in Your Business Process.

Example Node Name Example Node
Types

Description

Customiz ing a Rose t taNe t Par t i c ipant Bus iness P rocess

Guide to Building Business Processes 27-5

To create a RosettaNet participant business process

1. If you have not already done so, create a new application or a new project within an existing
application.

2. From the BEA WorkSpace Studio menu, choose File > New > Other. The Select a wizard
dialog box is displayed.

3. Expand WebLogic Integration and select RosettaNet Participant Process and click Next.

4. In the Process dialog box enter a valid java class name for the Java file in the Name field.

Note: This name is used as the default value for the pip-name attribute in the
com.bea.wli.jpd.RosettaNet annotation. Before you run your RosettaNet
participant business process in production mode, you must change the pip-name
attribute to a valid PIP code. For more information see, Customizing a RosettaNet
Participant Business Process.

5. If you want to create the Java file in a directory other than the one displayed in Source folder,
then click the Browse button and select the target directory and click Ok.

6. Click Finish.

BEA WorkSpace Studio creates a new RosettaNet participant process Java file and displays
it in the Design view pane.

7. To save your work, select File > Save.

Customizing a RosettaNet Participant Business Process
After you create a RosettaNet participant business process, you must customize it for the
associated RosettaNet conversation. Common customization tasks include:

Configuring Business Process Annotations (Required)

Customizing Argument Types (Optional)

Configuring Data Transformation (Required)

Integrating with the Private Participant Process (Required)

Setting Up the Notification of Failure (Required)

Depending on your implementation requirements, you might make additional customizations to
the participant business process as needed.

Bui ld ing Rose t taNet Par t ic ipant Bus iness P rocesses

27-6 Guide to Building Business Processes

Configuring Business Process Annotations (Required)
The RosettaNet participant business process file specifies the following default annotations:

com.bea.wli.jpd.RosettaNet protocol-name="rosettanet"

protocol-version="2.0"

pip-name="processName" pip-version="1.0" pip-role="Seller"

These properties are set in the Properties view that is visible when you have the Start node of
your business process selected. Review and edit (if needed) the following properties:

Table 27-2 Business Process Annotations

Note: If the Properties view is not visible in Design view, choose Window > Show View
> Properties from the BEA WorkSpace Studio menu.

To learn more about these annotations, see
http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/jpd/RosettaNet.html. To learn about
configuring business process properties, see Business Process Language.

Property Default Description

pipName processName Change to the RosettaNet PIP code, such as 3B2. Must be
a valid PIP code as defined in

http://www.rosettanet.org.

pipRole Seller Change to the RosettaNet name of the participant’s role as
defined in the PIP specification (example: Receiver for
PIP3B2).

pipVersion 1.0 Change to your RosettaNet PIP version (example: v01.01
for PIP3B2). Must be a valid version number associated
with the PIP.

protocolName rosettanet Do not change.

protocolVersion 2.0 Change to 1.1 if you are using RNIF (RosettaNet
Implementation Framework) version 1.1 instead.

http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/jpd/RosettaNet.html
http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/jpd/RosettaNet.html

http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/jpd/RosettaNet.html

Customiz ing a Rose t taNe t Par t i c ipant Bus iness P rocess

Guide to Building Business Processes 27-7

Customizing Argument Types (Optional)
By default, the RosettaNet participant business process includes a Client Request node, named
Receive Message, to handle an incoming RosettaNet request message from an initiator. For the
response and callback.sendReply methods, you might need to specify the attachment and its
Java data type. The data type must match the contents of the incoming message and can be one
of the following values:

Table 27-3 Data Description

Note: Attachments can also be typed XML or typed MFL data as long as you specify the
corresponding XML Bean or MFL class name in the parameter.

To learn more about data types, see Working with Data Types.

Configuring Data Transformation (Required)
Public and private business processes often use different document formats. Public business
processes use the associated PIP schema. Private processes use whatever format is required by
the internal process (XML or binary), such as a proprietary ERP format. If a private business
process does not use the PIP format, then the public business process needs to transform data
between the PIP format to the format used in the private business process.

To configure data transformation, you need to:

Data Type Description

XmlObject Default. Represents data in untyped XML format. The
XML data is not specified at design time.

RawData Represents any non-XML structured or unstructured data
for which no MFL file (and therefore no known schema)
exists.

MessageAttachment[] Array containing one or more parts of a RosettaNet
business message. Message parts can be untyped XML
data (XmlObject data type) or non-XML data (RawData
data type). Used when sending different kinds of payloads
(XML and non-XML) in the same message. The actual
number of message parts might not be known until
processed. To learn about working with
MessageAttachment objects.

Bui ld ing Rose t taNet Par t ic ipant Bus iness P rocesses

27-8 Guide to Building Business Processes

Import the schemas you need for data transformation into the project, including any
schemas associated with the PIP and the format used in the internal process.

Add a Transformation to the project, add methods to perform the transformations, and then
drag these methods into the business process. To learn more about using transformations,
see Transforming Data Using XQuery Mapper.

Integrating with the Private Participant Process (Required)
After you create a RosettaNet public participant business process, you need to link it to the
private participant process that handles the initiator’s request privately. BEA WorkSpace Studio
provides many ways for communicating with other business processes, including:

Control Send and Control Receive nodes (for asynchronous communication) or a Control
Send with Return node (for synchronous communication). To learn more about control
nodes, see Interacting With Resources Using Controls.

JMS (Java Message Service) controls.

Perform nodes for non-WebLogic Integration systems. To learn more about Perform
nodes, see Writing Custom Java Code in Perform Nodes.

Setting Up the Notification of Failure (Required)
In this participant business process, if a time-out occurs while awaiting a reply from the initiator
to the response document, the participant needs to send a Notification of Failure (PIP0A1) to the
initiator. To learn more about PIP0A1, see the following URL:

http://www.rosettanet.org

To notify the initiator of the failure, you need to create a separate initiator business process that
implements PIP0A1, and then start the initiator business process:

If the initiator business process is created in BEA WorkSpace Studio, you can use a
Control Send and Control Receive nodes (for asynchronous communication) or a Control
Send with Return node (for synchronous communication). To learn more about control
nodes, see Interacting With Resources Using Controls.

If the initiator business process is not created in BEA WorkSpace Studio, you can use a
Perform node instead. To learn more about Perform nodes, see Writing Custom Java
Code in Perform Nodes.

http://edocs.bea.com/wli/docs102/dtguide/index.html

Guide to Building Business Processes 28-1

C H A P T E R 28

Building and Deploying Integration
Applications

This topics includes the following sections:

Working in Iterative Development Mode

Deploying Applications in EAR Format

Working in Iterative Development Mode
If you start WebLogic Server when you work in iterative development mode in BEA WorkSpace
Studio, your application is, by default, deployed on the server as an exploded directory. Changes
to those source files are dynamically noted by the server and affect the running process.

The WebLogic Integration Administration Console allows you to monitor and manage the
entities and resources for your WebLogic Integration applications.

Note: If you delete a business process (Process.java file) from your application, the data
associated with instances of that process remain in the run-time database after the
application is redeployed. You can purge the data for completed and terminated process
instances using the WebLogic Integration Administration Console. However, before the
data can be purged from the database, any instances of the deleted process that did not
run to completion must be terminated. Terminate the instances of a business process in
one of the following pages in the administration console: Process Instance Detail page,
Process Instance Summary page. To learn how, see “Suspending, Resuming,
Terminating, or Unfreezing Process Instances” in Process Instance Monitoring in Using
the WebLogic Integration Administration Console.

If the purge process is scheduled to run regularly, tracking data, which includes process
history, task history, and trading partner integration message history, is purged from the

http://edocs.bea.com/wli/docs102/adminhelp/processmonitoring.html
http://edocs.bea.com/wli/docs102/adminhelp/processmonitoring.html

Bui ld ing and Dep lo y ing In tegrat ion App l icat ions

28-2 Guide to Building Business Processes

run-time database according to the specified schedule. You can also run the purge
process manually from the System Configuration module in the administration console.
To learn how, see System Configuration in Using the WebLogic Integration
Administration Console.

Deploying Applications in EAR Format
You can also deploy your applications in enterprise application archive (EAR) format. To do so,
you must build an EAR file for your application and deploy it to WebLogic Server. To learn how
to do so for applications that you create in BEA WorkSpace Studio, see Deploying WLI
Applications.

Related Topics
Deploying WebLogic Integration Solutions

http://edocs.bea.com/wli/docs102/deploy/index.html
http://edocs.bea.com/wli/docs102/deploy/index.html

Guide to Building Workflows 29-1

C H A P T E R 29

Calling Business Processes

How you call a business process from another application depends on your business
requirements, including whether the client is in the same application as the business process it
calls, and whether the client is a WebLogic Workshop component, such as a Web service (JWS),
business process (JPD), or pageflow (JPF). To learn about invoking business processes, see the
following topics:

How Do I: Call Business Processes?

How Do I: Use a JPD Proxy to a Call Business Process?

How Do I: Call Business Processes?
Business Processes can expose their functionality to clients in several ways, including through
WSDL files, Process Controls, Service Broker Controls, and Business Process (Process.java)
Proxies.

You can only use Process controls and Service Broker controls between WebLogic Workshop
components: Web services (JWS), business processes (Process.java), or pageflows (JPF).

The Process control allows a Web service, business process, or pageflow to send requests to, and
receive callbacks from, a business process. Process control invocations are Java Remote Method
Invocation (RMI) calls. The target business process must be hosted on the same WebLogic Server
domain as the caller. The Process control is typically used to call a subprocess from a parent
business process. Transaction contexts are propagated from the parent processes to the
subprocesses over the Process control calls. In other words, the target business process runs in the
same transaction as the caller.

Cal l ing Bus iness P rocesses

29-2 Guide to Building Workflows

The Service Broker control allows a business process or Web service to invoke and receive
callbacks from another service using one of several protocols; the most commonly used protocol
is SOAP over HTTP. (To learn about the protocols, see Using Dynamic Binding.) The target
service must expose a WSDL interface; it can be a business process, Web service, or remote
(non-Workshop) Web service. Because the transport used is HTTP or JMS, the transaction
contexts are not propagated over the Service Broker control calls. Typically, the Service Broker
control calls are to remote services.

To call business processes from non-Workshop clients, use a JPD Proxy. You can use a JPD
Proxy to communicate with a business process from any Java code. When you invoke a business
process using a JPD Proxy, the calls are Java RMI calls. Transaction contexts are propagated
from the client to the business process over the JPD Proxy calls. In other words, if the client has
a transaction context, the target business process runs in the same transaction as the client. JPD
Proxies are typically used by non-Workshop J2EE clients or standalone Java clients to invoke
business processes.

Depending on the nature of the client and where it is with respect to the target business processes,
clients call the business processes in different ways. The following sections describe the
scenarios:

Workshop Client Invokes a Business Process in a Different Domain

Workshop Client Invokes a Business Process in the Same Workshop Application

Workshop Client Invokes a Business Process in a Different Workshop Application, in the
Same Domain

A Non-Workshop Java Client (EJB, servlet or JSP) Invokes a Business Process

Workshop Client Invokes a Business Process in a Different Domain
If the client is a Workshop client (a Web service, a business process, or a pageflow) and the target
business process is in a different domain than the client, use a Service Broker control. In this case,
create a Service Broker control from the target business process and call the business process
using that control. To learn how to create and use Service Broker controls, see Service Broker
Control.

You can also use a JPD Proxy in this case. To learn how, see How Do I: Use a JPD Proxy to a
Call Business Process?

Workshop Client Invokes a Business Process in the Same Workshop Application
If the client is a Workshop client (a Web service, a business process, or a pageflow) and the target
business process is in the same WebLogic Workshop application, we recommend that you use a

http://edocs.bea.com/wli/docs102/controls/controlsService.html
http://edocs.bea.com/wli/docs102/controls/controlsService.html
http://edocs.bea.com/wli/docs102/controls/controlsService.html#wp1084971

How Do I : Use a JPD Proxy to a Ca l l Bus iness Process?

Guide to Building Workflows 29-3

Process control. That is, create a Process control from the target business process and call the
business process using that control. To learn how to create and use Process controls, see Process
Control.

You can also use a Service Broker control in this case. To learn how, see Service Broker Control.

Workshop Client Invokes a Business Process in a Different Workshop Application, in the Same
Domain

If the client is a Workshop business process or a pageflow and the target business process
is in another WebLogic Workshop application in the same domain, we recommend that
you use a Process control. You can also use a Service Broker control in this scenario.

If the client is a Workshop Web service and the target business process is in another
WebLogic Workshop application in the same domain, you must use a Service Broker
control.

A Non-Workshop Java Client (EJB, servlet or JSP) Invokes a Business Process
If the client is a standalone Java program, a non-workshop J2EE client (EJB, servlet, or JSP), use
a JPD Proxy to call the target business process. To learn how, see How Do I: Use a JPD Proxy to
a Call Business Process?

Because JPD Proxy calls are RMI calls, the client and the target business process must be in the
same organization.

Warning: Business processes that include client callbacks send those callbacks to the client
that started the process. JPD Proxies cannot receive callbacks from business
processes. An error will occur in your business process if a client uses a JPD Proxy
to start a business process that includes client callbacks; the business process fails at
run time when it tries to send the callback to the client (the JPD Proxy) that started it.

How Do I: Use a JPD Proxy to a Call Business Process?
You can use a JPD Proxy to call any business process (synchronous and asynchronous, stateful,
and stateless) from any Java client, including standalone Java applications, EJBs, JSPs and
Servlets. Using a Java proxy for a business process requires different steps depending on whether
the client application that uses the proxy is in the same JVM as the target business process.

This topic includes the following sections:

What is a JPD Proxy?

How Do I: Get a JPD Proxy for a Business Process?

http://edocs.bea.com/wli/docs102/controls/controlsProcess.html#wp1087147
http://edocs.bea.com/wli/docs102/controls/controlsProcess.html#wp1087147
http://edocs.bea.com/wli/docs102/controls/controlsService.html

Cal l ing Bus iness P rocesses

29-4 Guide to Building Workflows

How Do I: Use a JPD Proxy From a Java Client?

How Do I: Use a JPD Proxy From a JSP?

How Do I: Use a JPD Proxy From an EJB?

What is a JPD Proxy?
A JPD Proxy is an RMI client to a business process (JPD). An interface that matches a business
process’ client requests is associated with each business process. This interface is called the JPD
public contract. Each method on the JPD public contract has the same signature as the
corresponding client request. A JPD Proxy is a JAR that contains the compiled class file for the
JPD contract. You can use the class file to access the JPD as though it were a local Java class.
JPD Proxy calls are over Java RMI. JPD Proxy calls propagate the transaction context from the
clients to the business processes.

You can download the JPD Proxy JAR file from the JPD Proxy link on the WebLogic Workshop
Test Browser Overview page (see How Do I: Get a JPD Proxy for a Business Process?).

Warning: Business processes that include client callbacks send those callbacks to the client
that started the process. JPD Proxies cannot receive callbacks from business
processes. An error will occur in your business process if a client uses a JPD Proxy
to start a business process that includes client callbacks; the business process fails at
run time when it tries to send the callback to the client (the JPD Proxy) that started it.

The JpdProxy class is a factory class for proxies to a WebLogic Integration business process
type. Clients call one of the create() methods on the class to get a proxy instance. The
create() methods take the JPD contract class (java.lang.Class) as input.

An example JPD contract interface for a business process named RequestQuote.java is shown
in the following listing.

Listing 29-1 Example JPD Contract Interface

package weblogic.wli.jpdproxy;

import org.example.request.QuoteRequestDocument;

public interface RequestQuote {

public void quoteRequest(org.example.request.QuoteRequestDocument

requestXML);

public static final String SERVICE_URI =

How Do I : Ge t a JPD Proxy fo r a Bus iness P rocess?

Guide to Building Workflows 29-5

"/myApplication/requestquote/RequestQuote.jpd";

}

Note the following characteristics in the preceding example contract interface:

The class name of the interface matches the JPD class name (in this case, you download a
JAR file named RequestQuoteProxy.jar that contains a class file named
RequestQuote.class).

One method is available: public void
quoteRequest(org.example.request.QuoteRequestDocument requestXML).

Note: When you write your client application, you can determine which client request
methods are available for you to use through the JPD Proxy by reviewing the source
code for the business process. To do so, ensure that the business process (JPD) is open
in the WebLogic Workshop graphical design environment, identify the Client
Request calls in the Design view, then open the Source view to view the method
names and signatures.

The JPD contract references a strongly typed XML argument: requestXML, which is of
type QuoteRequestDocument.

The JPD contract interface includes a SERVICE_URI static final field. The String value of
the SERVICE_URI field is the URI for the business process at the time the JPD Proxy is
downloaded from the WebLogic Workshop test browser. The client can pass this constant
to the create method, or can pass a different value.

A different value for SERVICE_URI is required if the business process (JPD) is deployed to
a different location after the JPD Proxy JAR was generated. For example, you can create
the JPD Proxy from the business process while the process is deployed in a development
environment. Subsequently, the business process can be moved to a different location for
production. Therefore, the business process is accessible through a different URI; clients
must pass the new URI value to the create method.

How Do I: Get a JPD Proxy for a Business Process?
1. Open your business process in WorkSpace Studio.

2. On the menu bar, click Run, to run the business process.

If the WebLogic Server is not running, a window is displayed asking if you want to start
your server. To start the server, click OK.

Note: To learn about generating JPD Proxies for business processes that are versioned, see
About Versioned Business Processes.

Cal l ing Bus iness P rocesses

29-6 Guide to Building Workflows

3. After the Workshop Test Browser appears, click the Overview tab.

4. On the Overview page, under the Process Clients section, click JPD Proxy. You are
prompted to save the file to disk

Note: By default, the package is weblogic.wli.jpdproxy. If you want to specify a
different package for the generated JPD Proxy, enter a package name in the Java
package field associated with the JPD Proxy button.

5. Save the file to your disk according to how you want to use the proxy:

– To Use the JPD Proxy From a WebLogic Workshop Application (an EJB, JSP, or
Servlet)

Save the JAR file to one of the following directories:

WEB-INF/lib—Save the JAR to the WEB-INF/lib directory of the Web application
from which you want to use the proxy (the client application). In the WebLogic
Workshop graphical design environment, the JAR file is displayed in the WEB-INF/lib
folder on the Package Explorer pane.

APP-INF/lib—If you want to use the JPD Proxy JAR from more than one project in
your (client) application, save the JAR to the APP-INF/lib directory at the root of
your application. In the WebLogic Workshop graphical design environment, the JAR
file is displayed in the Libraries folder at the root of your application in the Package
Explorer pane.

– To Use the JPD Proxy From a Standalone Java Application

If you are using the JPD Proxy from a standalone Java client (outside of WebLogic
Server), save the JAR to any location that is convenient for your client Java application
and add the JAR to the client’s CLASSPATH environment variable.

Note: The default name of the JAR file is <business-process-name>Proxy.jar, where
business-process-name represents the name of the business process for which
you are generating the JPD Proxy. Accept the default name unless it conflicts with an
existing JAR file.

6. If you plan to use the JPD Proxy from an application running in a different JVM to that in
which the target business process is running, append the following JAR files to the client’s
CLASSPATH environment variable:

– <business-process-name>Proxy.jar—The JPD Proxy you downloaded from the
WebLogic Workshop Test Browser (where business-process-name represents the
name of the business process for which you generated the JPD Proxy).

How Do I : Ge t a JPD Proxy fo r a Bus iness P rocess?

Guide to Building Workflows 29-7

– jpdproxy_client.jar—A support JAR that contains business process-independent
client-side classes. It is located in the following directory in your WebLogic Platform
installation:

BEA_HOME\wli_10.2\lib

In the preceding line, BEA_HOME represents the location where you installed WebLogic
Platform.

This JAR contains an abstract proxy-factory class called JpdProxy, a proxy
implementation JpdProxyImpl, and other client-side run-time classes.

– Schemas.jar—If the JPD Proxy (<business-process-name>Proxy.jar) file you
downloaded contains references to strongly typed XML or MFL arguments, add the
Schemas.jar file to the classpath. (Schemas represents the name you gave to the
Schemas project in your application.) The Schemas.jar file is available in
APP-INF\lib at the root of your application.

– weblogic.jar—This file is available in the following location in your WebLogic
Platform installation: BEA_HOME\wlserver_10.0\server\lib.

– wlcipher.jar—If you are using a client with two-way SSL, add this JAR to the
CLASSPATH. The wlcipher.jar is available in the following location in your
WebLogic Platform installation: BEA_HOME\wlserver_10.0\server\lib.

In the preceding line, BEA_HOME represents the location at which you installed
WebLogic Platform.

About Versioned Business Processes
If the target business process is versioned, you can run the active version of the process to invoke
the Test Browser (in this case, the Test Browser is opened on the virtual URI) or you can run any
other version of the process (in which case the Test Browser is opened on a specific physical
URI). To learn about creating versions of business processes, see Versioning Business Processes.

If you subsequently download a JPD Proxy from the Test Browser, its JPD contract interface
matches the virtual JPD or the physical JPD, accordingly. When you create a Java client, you pass
the JPD contract and a service URI to the proxy factory method. In most cases the JPD contract
interfaces for all versions of a business process are identical, but a specific version of a business
process can extend the public interface of the original process. In this case, you must ensure that
the service URI and JPD contract interface passed to the proxy factory method are consistent.

Cal l ing Bus iness P rocesses

29-8 Guide to Building Workflows

How Do I: Use a JPD Proxy From a Java Client?
This section uses example code to describe how to use a JPD Proxy from a Java client. It includes
the following topics:

To Use a JPD Proxy From a Java Client

To Use a JPD Proxy From a Java Client With Two-Way SSL

To Use a JPD Proxy From a Java Client
This topic describes how to use a JPD Proxy from a Java client. The code listing in Listing 29-2
is an example of a Java client that invokes a business process using a JPD Proxy. This example
includes basic username-password authentication. A second example (Listing 29-5) describes
how to add two-way SSL to the Java client.

You obtain the JPD Proxy JAR for the business process by first running the purchase order
business process in WebLogic Workshop to invoke the Test Browser. Then select the JPD Proxy
link on the Overview page of the Test Browser.

The following sections reference the code example in Example Java Client to describe how a JPD
Proxy Client is used from a Java client:

Example Java Client

To Import the Proxy Classes

To Use the Proxy Factory (JpdProxy.create()) Method

To Call the Methods on the Target Business Process

About Strongly-Typed XML or MFL Arguments in Business Processes

About Conversation Management

To Run the Java Client

Limitation Using JPD Proxies for Business Processes That Include Client Callbacks

Example Java Client
The code listing in Listing 29-2 is an example of a Java client that invokes a business process
using a JPD Proxy. It invokes a business process named PoRequest.java. This example
includes basic username-password authentication. A second example (Listing 29-5) describes
how to add two-way SSL to the Java client.

How Do I : Use a JPD Pro xy F rom a Java C l i ent?

Guide to Building Workflows 29-9

Listing 29-2 Example Java Client

package your.package;

// Proxy classes are located in the com.bea.wli.bpm.proxy package.
import com.bea.wli.bpm.proxy.JpdProxy;
import com.bea.wli.bpm.proxy.JpdProxySession;

import weblogic.wli.jpdproxy.PoProcess;

/**
* Import any packages required for your application. For example, if the business
* process uses XML Beans, you must import the appropriate packages.
*/
import requisitionpo.www.purchase.PurchaseDocument;
import requisitionpo.www.purchaserequestreq.PurchaseRequestReqDocument

import javax.naming.Context;
import javax.naming.NamingException;
import javax.naming.InitialContext;
import weblogic.jndi.Environment;
import java.io.*;

public class startPoProcess
{

public static void main(String[] args)
{

try
{

PoProcess p = (PoProcess)
JpdProxy.create(

PoProcess.class,
PoProcess.SERVICE_URI,

 new JpdProxy.ContextHandler()
{

public Context getContext() throws NamingException
{

Environment env = new Environment();
env.setProviderUrl("t3://localhost:7001");
env.setSecurityPrincipal("weblogic");
env.setSecurityCredentials("weblogic");
return env.getInitialContext();

}
});

PoDocument document = PoDocument.Factory.newInstance();
Po po = document.addNewPo();
po.setSku("abc");

Cal l ing Bus iness P rocesses

29-10 Guide to Building Workflows

PoReferenceDocument ref = p.processPO(document);
p.done();

}
catch (Exception e) { ... }

}
}

To Import the Proxy Classes
Note that the following packages are imported in our example Java client:

import com.bea.wli.bpm.proxy.JpdProxy;

import com.bea.wli.bpm.proxy.JpdProxySession;

Proxy classes are located in the com.bea.wli.bpm.proxy package. Clients can typecast proxies
returned by JpdProxy.create() to JpdProxySession to set and get the conversation ID that
is used when a business process is invoked. To learn about setting and getting conversation IDs,
see About Conversation Management.

To Use the Proxy Factory (JpdProxy.create()) Method
The proxy factory method (JpdProxy.create()) provides two signatures: one to use when the
client is running in the same WebLogic Server domain as the target business process (JPD), the
other to use when the client is running in a different domain than the target business process:

Method Detail for the create() Method—Use When the Client is Running in the Same
WebLogic Server Domain as the Target JPD

Method Detail for the create() Method—Use When the Client is Running in a Different
Domain Than the Target JPD

Method Detail for the create() Method—Use When the Client is Running in the Same WebLogic
Server Domain as the Target JPD
The JpdProxy.create() method creates a client proxy for a business process (JPD).
JpdProxy.create() accepts the public-contract interface that describes the methods of the JPD
as input. The result of this call can be typecast to the public contract class. A service URI uniquely
identifies the business process (JPD) on the server.

How Do I : Use a JPD Pro xy F rom a Java C l i ent?

Guide to Building Workflows 29-11

Use the following method when the client is running on the same WLS domain as the target JPD.

Listing 29-3 JpdProxy.create()

public static final Object create(Class publicContract, String serviceUri)
throws JpdProxyException

In the preceding code listing:

publicContract specifies the public-contract interface of the JPD.

serviceUri specifies the URI of the JPD.

Note: In most cases, the public-contract interfaces for all versions of a business process are
identical, but a specific version of a business process can extend the public interface of
the original process. In this case, you must ensure that the service URI and JPD contract
interface passed to the proxy factory method are consistent. To learn about generating
JPD Proxies for versioned business processes, see About Versioned Business Processes.

The method returns a proxy object that can be cast to the public-contract interface.

The method throws the JpdProxyException, which wraps the checked exceptions that are
thrown during construction of the proxy.

Method Detail for the create() Method—Use When the Client is Running in a Different Domain
Than the Target JPD
This method signature is shown in Listing 29-4, and is used in the example code in Listing 29-2.

The JpdProxy.create() method creates a client proxy for a business process (JPD).
JpdProxy.create() accepts, as input, the public contract interface that describes the methods
of the business process. The result of this call can be typecast to the public-contract class. A
service URI uniquely identifies the business process on the server. For the case in which your
client is running in a different domain than the target JPD, the JpdProxy.ContextHandler is
invoked by the proxy to obtain the JNDI context used to login to the server and lookup server-side
resources.

If you use the version of JpdProxy.create() that does not take a ContextHandler, the client’s
JNDI context is used to look up the ProxyDispatcher EJB.

You need a ContextHandler in the following scenarios:

Cal l ing Bus iness P rocesses

29-12 Guide to Building Workflows

When the client is running in WebLogic Server but on a different domain than the target
business process.

When the client is a standalone Java application.

When the client is running in the same WebLogic Server as the target business process, but
the credentials of the client are not appropriate. (For example, the client may be running as
anonymous, and the JPD Proxy dispatcher bean or business process requires a different set
of credentials.)

Note: The ProxyDispatcher EJB is a WebLogic Integration system stateless session bean
that handles incoming requests from JPD Proxies. Its scope is the WebLogic Server
domain. ProxyDispatcher is targeted to all managed servers in a cluster.
Administrators can set authentication and authorization policies on this EJB using the
WebLogic Server Administration Console. BEA recommends using the Java
Authentication and Authorization Service (JAAS) rather than JNDI to associate a User
with a security context. To learn more, see the following WebLogic Server
documentation:

WebLogic JNDI

Using JAAS Authentication in Java Clients

The JpdProxy implementation does not explicitly authenticate to the server. Instead, it
relies on JNDI authentication when it looks up the ProxyDispatcherHome with the
JNDI context returned by the ContextHandler.

Use the following method when you need a ContextHandler:

Listing 29-4 JpdProxy.create()

public static final Object create(Class publicContract, String serviceUri,
JpdProxy.ContextHandler ch) throws JpdProxyException

In the preceding code listing:

publicContract specifies the public contract interface of the JPD.

serviceUri specifies the URI of the JPD.

ch specifies a context handler. Clients pass an instance of this
JpdProxy.ContextHandler interface to the create method and the proxy implementation

http://e-docs.bea.com/wls/docs100/jndi/jndi.html
http://e-docs.bea.com/wls/docs100/security/fat_client.html

How Do I : Use a JPD Pro xy F rom a Java C l i ent?

Guide to Building Workflows 29-13

uses this instance at run time to allocate a JNDI context. This context is used to login to
the server and look up server side resources that handle incoming proxy requests.

Listing 29-2 shows the getContext() method used in the Java client.

To learn more about the context handler interface, see Interface JpdProxy.ContextHandler
in the WebLogic Integration Javadoc.

To learn more about creating an initial context, see Class Environment in the WebLogic
Integration Javadoc.

The method returns a proxy object that can be cast to the public contract interface.

The method throws the JpdProxyException, which wraps checked exceptions thrown
during construction of the proxy.

To Call the Methods on the Target Business Process
To determine which client request methods are available for you to use via the JPD Proxy, review
the source code for the business process. To do so, ensure that the business process (JPD) is open
in the WebLogic Workshop graphical design environment, identify the Client Request calls in the
Design view, then open the Source view, where you can view the method names and signatures.
To learn more about the Client Request and Client Response methods in business processes, see
Designing Start Nodes.

JPD Proxies cannot receive callbacks from business processes. See Limitation Using JPD Proxies
for Business Processes That Include Client Callbacks.

About Strongly-Typed XML or MFL Arguments in Business Processes
Business processes can accept (as input) and return typed XML (XML Beans) and typed binary
data (MFL). The JPD contract interface generated from such business process references these
types. (For an example of an XML type referenced in a JPD contract, see the code listing in What
is a JPD Proxy?)

Note that in our example Java client, in Listing 29-2, the following packages are imported to
support the XML Bean types used in the PoProcess business process:

import requisitionpo.www.purchase.PurchaseDocument;

import requisitionpo.www.purchaserequestreq.PurchaseRequestReqDocument

About Conversation Management
You can use the JpdProxySession interface to set and get the conversation ID used when a
business process is invoked. To use the JpdProxySession interface, clients can simply typecast
proxies returned by JpdProxy.create() to JpdProxySession.

http://edocs.bea.com/wli/docs102/wli.javadoc/com/bea/wli/bpm/proxy/JpdProxy.ContextHandler.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideStartDesign.html

Cal l ing Bus iness P rocesses

29-14 Guide to Building Workflows

The dynamic proxy returned by JpdProxy.create() implements the JpdProxySession
interface. The methods on the JpdProxySession interface include:

String getConversationID()
Returns the current conversation ID in use by the JPD Proxy.

void reset()
Resets the conversation ID to null.

void setConversationID(String conversationID)
Sets the conversation ID for future invocations of the same instance of the business
process.

The conversation ID is initialized to null. If the conversation ID is null when a method on a
business process is invoked through the JPD Proxy, a unique conversation ID is generated. This
unique ID is maintained in the run-time state on the client side. In other words, the value is
maintained for subsequent invocations, until the client specifies a new conversation ID or resets
it to null.

The same JPD Proxy instance can be used to call methods on different instances of a business
process. However, clients should take care to avoid making a call with the wrong conversation
ID. Specifically, when a client application is finished invoking an instance of a business process
through its JPD Proxy and wants to start a new conversation, it must either explicitly set the
conversation ID for the second conversation or call JpdProxySession.reset(), which causes
the JPD Proxy to reset the conversation ID to null.

To learn more about the JpdProxySession interface, see Interface JpdProxySession in the
WebLogic Integration Javadoc.

To Run the Java Client
The following command line describes the options that you must set when you run the example
Java client (startPoProcess) shown in Listing 29-2.

java -Dbea.home=C:\bea startPoProcess

where -Dbea.home=C:\bea specifies the location of the BEA license file (license.bea).

Limitation Using JPD Proxies for Business Processes That Include Client Callbacks
JPD Proxies cannot receive callbacks from business processes. Business processes that include
client callbacks send those callbacks to the client that started the business process. If a client uses
a JPD Proxy to start a business process that includes client callbacks, the business process fails
at run time when it tries to send the callback to the client that started it (the JPD Proxy).

How Do I : Use a JPD Pro xy F rom a Java C l i ent?

Guide to Building Workflows 29-15

To Use a JPD Proxy From a Java Client With Two-Way SSL
The example described in this section shows you how to add two-way SSL to a Java client. This
section also describes the command-line options required to run the Java client so that the
two-way SSL handshake can take place between the Java client and the SSL server. This section
includes the following topics:

Example Java Client With Two-Way SSL

To Run the Java Client

Example Java Client With Two-Way SSL
The following example demonstrates how to add two-way SSL to a Java client. The example code
is explained in the text that follows the listing.

Listing 29-5 Example Java Client With Two-Way SSL

import weblogic.wli.jpdproxy.MyProcess;
import javax.naming.Context;
import javax.naming.NamingException;
import weblogic.jndi.Environment;
import com.bea.wli.bpm.proxy.JpdProxy;
import java.io.*;
import javax.naming.InitialContext;

public class startMyProcess
{

public static void main(String[] args)
{

try {

InputStream key = new
FileInputStream("C:\\certcmds\\qa\\pki\\keys\\newParent.key");

InputStream cert = new
FileInputStream("C:\\keystore\\newParentx509.cer");

final InputStream FStream[] = {key,cert};
MyProcess tm = (MyProcess)
JpdProxy.create(MyProcess.class,MyProcess.SERVICE_URI,

new JpdProxy.ContextHandler()
{

public Context getContext() throws NamingException
{

Environment env = new Environment();

Cal l ing Bus iness P rocesses

29-16 Guide to Building Workflows

//Use t3s – secure port for ssl
env.setProviderUrl("t3s://localhost:7002");
//Client Certificate and Private Key for that certificate.
env.setSSLClientCertificate(FStream);
env.setSSLClientKeyPassword("testing123");
return env.getInitialContext();

}
});
String str = tm.requestQuote();
System.out.println("Return String = " + str);
}
catch (Exception ex)
{

//Got an exception
System.out.println("Got Exception: " + ex);
ex.printStackTrace();

}
}

}

This example builds on the information provided in the previous section (To Use a JPD Proxy
From a Java Client) by demonstrating how to add two-way SSL to the Java client. The example
code in Listing 29-5 shows a Java client that uses a JPD Proxy to invoke a business process
named MyProcess.java.

The following items describe the lines of code used to set up the two-way SSL between the client
and WebLogic Server:

import weblogic.wli.jpdproxy.MyProcess;

This client accesses the business process via proxy classes found in MyProcess.jar, in the
default package: weblogic.wli.jpdproxy.

final InputStream FStream[] = {key,cert};

To pass the digital certificates to JNDI, an array of InputStreams opened on files
containing DER-encoded1 digital certificates is created. The first element in the array is a
private key file; it is followed by the Java client’s digital certificate file, or files2. (The
digital certificate file contains the public key for the Java client.)

Note:
If you have PEM-encoded data, you can wrap your InputStreams in
PEMInputStream classes before passing them in. To do so, add the following lines
of code after you create instances of the PEM-encoded key and certificates in your
file:

How Do I : Use a JPD Pro xy F rom a Java C l i ent?

Guide to Building Workflows 29-17

// wrap input streams if key/cert are in pem files
key = new PEMInputStream(key);
cert = new PEMInputStream(cert);

The weblogic.security.PEMInputStream class reads digital certificates stored in PEM
files.

The private key is the first input stream in the array; subsequent input streams in the
array can be a single certificate (as in our example) or a chain of X.509 certificates.

Environment env = new Environment();

You must create a new Environment object for each call to the getInitialContext()
method. Once you specify a User object and security credentials, both the user and their
associated credentials remain set in the Environment object.

Specify the following parameters. The WebLogic JNDI Environment class creates a hash
table to store these parameters:

– env.setProviderURL—The client calls this method to specify the URL of the
WebLogic Server instance acting as the SSL server. In this example, the URL specifies
the t3s protocol which is a WebLogic Server proprietary protocol built on the SSL
protocol.

Note: In addition to the t3 and t3s protocols, WebLogic Server clients can use the RMI
over IIOP protocol. To learn about using RMI over IIOP, see Programming
WebLogic RMI over IIOP in the WebLogic Server documentation.

– env.setSSLClientCertificate—Specifies a certificate (or a chain of certificates) to
use for the SSL connection. You use this method to specify the input stream array that
consists of a private key and a certificate.

– env.setSSLClientKeyPassword—Sets the password for an encrypted RSA private
key. If you aren’t using an encrypted private key then you do not need to set this value.

return env.getInitialContext();

When the JNDI getInitialContext() method is called, the Java client and WebLogic
Server execute mutual authentication. An exception is thrown if the digital certificates
cannot be validated or if the Java client’s digital certificate cannot be authenticated in the
default (active) security realm. The authenticated user object is stored on the Java client’s
server thread and is used for checking the permissions governing the Java client’s access to
any protected WebLogic resources.

http://e-docs.bea.com/wls/docs100/javadocs/weblogic/security/PEMInputStream.html
http://e-docs.bea.com/wls/docs100/rmi/iiop_basic.html
http://e-docs.bea.com/wls/docs100/rmi/iiop_basic.html

Cal l ing Bus iness P rocesses

29-18 Guide to Building Workflows

To Run the Java Client
The following command line describes the options that you must set when you run the example
Java client (startMyProcess) shown in Listing 29-5. Setting these options ensures that the
two-way SSL handshake can take place between the Java client and WebLogic Server.

java -Dbea.home=C:\bea
-Djava.protocol.handler.pkgs=com.certicom.net.ssl
-Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=CustomTrust
-Dweblogic.security.CustomTrustKeyStoreFileName=c:\keystore\trustCA.jks
-Dweblogic.security.CustomTrustKeyStoreType=jks
startMyProcess

The command-line options you use depend on the type of trust set up on WebLogic Server. In
this example, WebLogic Server was set up with a Custom Trust. (Other options include the
WebLogic Server Demo Trust and Java Standard Trust.)

In the preceding command line:

-Dbea.home=C:\bea—Specifies the location of the BEA license file (license.bea).

-Djava.protocol.handler.pkgs—Specifies the protocol handler.

Note: SSL Client License Requirement—Any stand-alone Java client that uses WebLogic
SSL classes (weblogic.security.SSL) to invoke an Enterprise Java Bean (EJB)
must use the BEA license file. When you run your client application, you must set the
-Dbea.home and the -Djava.protocol.handler.pkgs system properties on the
command line:

-Dweblogic.security.SSL.ignoreHostnameVerification—Disables host-name
verification. Specifically, the client does not verify that the host name, which the SSL
server returns in its digital certificate, matches the host name of the URL used to connect
to the SSL server. We recommend that you enable hostname verification when you run
your application in production.

-Dweblogic.security.TrustKeyStore—Specifies the keystore used by the the server
instance to which you want to connect. In this example, the server is using a custom
keystore: CustomTrust.

-Dweblogic.security.CustomTrustKeyStoreFileName—Specifies the fully qualified
path to the trust keystore.

-Dweblogic.security.CustomTrustKeyStoreType—This optional command-line
argument specifies the type of the keystore. The value defaults to the keystore type
specified in the JDK’s java.security file. Generally, the value is jks.

How Do I : Use a JPD Proxy F rom a JSP?

Guide to Building Workflows 29-19

Note: If the custom keystore is protected by a password, include the following:
-Dweblogic.security.CustomTrustKeystorePassPhrase=password.

Our example trusts the CA certificates in a custom keystore. The command-line options you use
depend on the type of trust set up on WebLogic Server. For instance:

To trust only the CA certificates in the Java Standard Trust keystore
(SDK_HOME\jre\lib\security\cacerts), you do not need to specify command-line
arguments, unless the keystore is protected by a password. If the Java Standard Trust
keystore is protected by a password, use the following command-line argument:
-Dweblogic.security.JavaStandardTrustKeystorePassPhrase=password

To trust both the CA certificates in the Java Standard Trust keystore and in the
demonstration trust keystore
(BEA_HOME\wlserver_10.0\server\lib\DemoTrust.jks), include the following
argument:

-Dweblogic.security.TrustKeyStore=DemoTrust

This argument is required if the server instance to which you want to connect is using the
demonstration identity and certificates. If the Java Standard Trust keystore is protected by
a password, include the following command-line argument:
-Dweblogic.security.JavaStandardTrustKeystorePassPhrase=password

To learn more about using SSL authentication in Java clients, see the WebLogic Server
documentation:

Related Topics
Weblogic JNDI Environment Class

weblogic.Admin Command-Line Reference

How Do I: Use a JPD Proxy From a JSP?
To Create a JSP file that Calls a Business Process Using the JPD Proxy

1. In your JSP file, add an import statement for the JPD Proxy package, as shown in the
following lines:

<%@ page import="com.bea.wli.bpm.proxy.JpdProxy"%>
<%@ page import="com.bea.wli.bpm.proxy.JpdProxySession"%>

To learn about using the JpdProxySession interface, see To Import the Proxy Classes.

http://e-docs.bea.com/wls/docs100/javadocs/weblogic/jndi/Environment.html
http://e-docs.bea.com/wls/docs100/javadocs/weblogic/jndi/Environment.html
http://e-docs.bea.com/wls/docs100/admin_ref/cli.html
http://e-docs.bea.com/wls/docs100/admin_ref/cli.html

Cal l ing Bus iness P rocesses

29-20 Guide to Building Workflows

2. Create an instance of the proxy class.

Using the same example as we used in How Do I: Use a JPD Proxy From a Java Client?,
the code should resemble the following code:

try
{

PoProcess p = (PoProcess)
JpdProxy.create(

PoProcess.class,
PoProcess.SERVICE_URI,

 new JpdProxy.ContextHandler()
{

public Context getContext() throws NamingException
{

Environment env = new Environment();
env.setProviderUrl("t3://localhost:7001");
env.setSecurityPrincipal("weblogic");
env.setSecurityCredentials("weblogic");
return env.getInitialContext();

}
});

PoDocument document = PoDocument.Factory.newInstance();
Po po = document.addNewPo();
po.setSku("abc");

PoReferenceDocument ref = p.processPO(document);
p.done();

}
catch (Exception e) { ... }

}
%>
</html>

Note: To learn about the signatures of the JpdProxy.create() class, see To Use the Proxy
Factory (JpdProxy.create()) Method.

How Do I: Use a JPD Proxy From an EJB?
You can use a JPD Proxy to invoke a business process from an EJB in the same way as you use
a JPD Proxy from any Java file. To learn how, see How Do I: Use a JPD Proxy From a Java
Client?

To learn about developing EJBs, see Programming WebLogic Enterprise JavaBeans.

http://e-docs.bea.com/wls/docs100/ejb

	Guide to Building Business Processes
	Topics Included in This Section

	Creating a Business Process Application
	Components of Your Application
	Designing Your Application
	Creating a Business Process Application
	Setting the Business Process Properties
	Setting the Business Process Annotations

	Starting Your Business Process
	Designing Start Nodes
	Client Request Start (Asynchronous)
	Client Request with Return Start (Synchronous)
	Adding Nodes to Your Client Request with Return Node Group
	Naming the Methods on Client Request with Return Nodes

	Subscription Start (Asynchronous)
	Subscription Start (Synchronous)
	Event Choice Start
	Exception Handlers on Start Nodes

	Interacting With Clients
	Receiving Messages From Clients
	Create a Client Request Node in Your Business Process
	Design Your Client Request Node
	Naming the Methods on Client Request Nodes

	Sending Messages to Clients
	Create a Client Response Node in Your Business Process
	Design Your Client Response Node
	Adding Dynamic Callback Properties

	Buffering Client Messages

	Interacting With Resources Using Controls
	Designing Interactions Between Business Processes and Resources
	Create Control Nodes in Your Business Process
	Designing Your Control Nodes
	Adding Instances of Controls to Your Business Process Project
	Configuring Control Nodes
	Setting Control Properties and Annotations

	Receiving Multiple Events
	Create an Event Choice Node in Your Business Process
	Design Your Event Choice Group

	Creating Parallel Paths of Execution
	Understanding Parallel Execution in Your Business Process
	Create a Parallel Node in Your Business Process
	Design Your Parallel Node

	Defining Conditions For Branching
	Creating a Decision Node in Your Business Process
	Designing Your Decision Node

	Creating Case Statements
	Comparing Decision Nodes and Switch Nodes
	Creating a Switch Node
	Designing a Switch Node

	Writing Custom Java Code in Perform Nodes
	Creating Looping Logic
	Understanding While Node Groups
	Creating While Node Groups in Your Business Process
	Designing While Node Groups

	Looping Through Items in a List
	Creating For Each Nodes in Your Business Process
	Designing For Each Nodes

	Specifying Endpoints in Your Business Process
	Grouping Nodes in Your Business Process
	Handling Exceptions
	Types of Exception Handlers
	Creating Exception Handler Paths
	Deleting Exception Handler Paths
	Order of Execution of Exception Handlers
	Handling Exceptions in Transaction Blocks
	Using Exception Handlers for Compensation
	Compensation Example

	Unhandled Exceptions

	Adding Message Paths
	Creating a Message Path
	Deleting Message Paths

	Adding Timeout Paths
	Creating a Timeout Path
	Deleting Timeout Paths

	Running and Testing Your Business Process
	Using the Test Browser
	Testing the Public Methods of Your Business Process
	Testing a Message Broker Channel
	Viewing the Process Graph

	Understanding the Service URL

	Business Process Variables and Data Types
	Creating Variables
	Deleting Variables
	Working with Data Types
	Assigning MFL Data to XML Variables and XML Data to MFL Variables

	Validating Schemas
	Validating a Typed XML Variable
	Typing and Validating an Untyped XML Type

	Versioning Business Processes
	Creating a New Version of a Business Process
	Configuring the New Versions of Your Business Process
	Editing Versions of Business Processes
	Deleting Versions of a Business Process
	Using Versioning with Long-Running Business Processes
	Importing Versioned Business Processes

	Building Stateless and Stateful Business Processes
	Working with Variables in Stateless Processes

	Building Synchronous and Asynchronous Business Processes
	Working with Subprocesses
	Synchronous Subprocesses
	Asynchronous Subprocesses

	Synchronous Clients for Asynchronous Business Processes
	Limitations
	Synchronous-Asynchronous Security

	Transaction Boundaries
	Implicit Transaction Boundary Rules
	An Implicit Transaction Boundary Example
	Explicit Transaction Boundaries
	Creating Explicit Transaction Boundaries
	Setting the Explicit Transaction Properties

	Handling Exceptions in Transaction Blocks

	Business Process Source Code
	Overview
	Business Process Language
	Variables
	Control Declarations
	Client Operations and Control Communication Methods
	Can You Edit Code?

	Perform Methods
	XQuery Statements

	Building ebXML Participant Business Processes
	About the ebXML Participant Business Process
	Creating an ebXML Participant Business Process
	Customizing an ebXML Participant Business Process
	Configuring Business Process Annotations (Required)
	Customizing Names and Argument Types (Optional)
	Retrieving the ebXML Message Envelope (Optional)

	Building RosettaNet Participant Business Processes
	About the RosettaNet Participant Business Process
	Creating a RosettaNet Participant Business Process
	Customizing a RosettaNet Participant Business Process
	Configuring Business Process Annotations (Required)
	Customizing Argument Types (Optional)
	Configuring Data Transformation (Required)
	Integrating with the Private Participant Process (Required)
	Setting Up the Notification of Failure (Required)

	Building and Deploying Integration Applications
	Calling Business Processes
	How Do I: Call Business Processes?
	How Do I: Use a JPD Proxy to a Call Business Process?
	How Do I: Get a JPD Proxy for a Business Process?
	How Do I: Use a JPD Proxy From a Java Client?
	How Do I: Use a JPD Proxy From a JSP?
	How Do I: Use a JPD Proxy From an EJB?

