
BEA
 WebLogic
Integration�

Programming Logic
Plug-Ins for B2B
Integration
Release 7.0
Document Date: June 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED �AS IS� WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server,
BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming Logic Plug-Ins for B2B Integration

Part Number Date Software Version

N/A June 2002 7.0

Contents

About This Document
What You Need to Know ..v
e-docs Web Site... vi
How to Print this Document .. vi
Related Information.. vii
Contact Us! ... vii
Documentation Conventions ... viii

1. Overview
Types of Applications.. 1-1
Logic Plug-Ins ... 1-2

2. Routing and Filtering Business Messages
Business Messages and Message Envelopes... 2-1
Run-Time Message Processing ... 2-2

Send Side.. 2-6
Receive Side... 2-10

Working with Message-Context Documents... 2-13
Working with XPath Expressions ... 2-15

About XPath Expressions... 2-15
Creating Message XPath Expressions.. 2-18
Creating Trading Partner XPath Expressions... 2-19
Creating Business Protocol XPath Expressions 2-20

3. Creating and Adding Logic Plug-Ins (Deprecated)
About Logic Plug-Ins .. 3-1

What Are Logic Plug-Ins?.. 3-2
Programming Logic Plug-Ins for B2B Integration iii

Logic Plug-In Processing Tasks ... 3-2
Chains ... 3-3
System and Custom Logic Plug-Ins ... 3-6

Logic Plug-In API ... 3-7
Rules and Guidelines for Logic Plug-Ins .. 3-9
Developing and Administering Logic Plug-Ins... 3-11

Programming Steps for Logic Plug-Ins.. 3-11
Administrative Tasks.. 3-17

Index
iv Programming Logic Plug-Ins for B2B Integration

About This Document

This document describes how to develop applications to exchange business messages
and monitor run-time activities supporting B2B integration in the WebLogic
Integration� system.

Note: Custom Logic Plug-Ins are deprecated as of this release of WebLogic
Integration. For information about the features that are replacing them, see the
BEA WebLogic Integration Release Notes.

This document is organized as follows:

! Chapter 1, �Overview,� provides an introduction to developing applications for a
WebLogic Integration environment.

! Chapter 2, �Routing and Filtering Business Messages,� describes how routing
and filtering work to support B2B integration in a WebLogic Integration
environment.

! Chapter 3, �Creating and Adding Logic Plug-Ins (Deprecated),� explains how to
manipulate business messages as they travel through a WebLogic Integration
system for the purpose of B2B integration.

What You Need to Know

This document is intended primarily for:

! Business process designers who use the WebLogic Integration Studio to design
workflows that can be integrated with the WebLogic Integration environment.
Programming Logic Plug-Ins for B2B Integration v

! Application developers who write Java applications that manage the exchange of
business messages or monitor run-time statistics in the WebLogic Integration
environment.

! System administrators who set up and administer WebLogic Integration
applications.

For an overview of the WebLogic Integration architecture, see Introducing BEA
WebLogic Integration.

e-docs Web Site

BEA product documentation is available at the following location:

http://e-docs.bea.com

How to Print this Document

You are reading the PDF version of this document, either online or a printout. You can
print the entire document or any portion of the document from Adobe Acrobat Reader.
If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at the following location:

http://www.adobe.com

Alternatively, you can print a copy of the HTML version of this document from a Web
browser, one file at a time, by using the File�>Print option on your Web browser.
vi Programming Logic Plug-Ins for B2B Integration

Related Information

For more information about Java 2 Enterprise Edition (J2EE), Extended Markup
Language (XML), and Java programming, see the Javasoft Web site at the following
URL:

http://java.sun.com

Contact Us!

Your feedback about the WebLogic Integration documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your comments
will be reviewed directly by the BEA professionals who create and update the
WebLogic Integration documentation.

In your e-mail message, please indicate which version of the product you are using.

If you have any questions about this release of WebLogic Integration, or if you have
problems installing and running WebLogic Integration, contact BEA Customer
Support through BEA WebSUPPORT at the following location:

http://www.bea.com

When contacting Customer Support, be prepared to provide the following information:

! Your name, e-mail address, phone number, and fax number

! Your company name and company address

! Your machine type and authorization codes

! The name and version of the product you are using

! A description of the problem and the content of pertinent error messages
Programming Logic Plug-Ins for B2B Integration vii

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and their members, data
types, directories, and filenames and their extensions. Monospace text also indicates text that
you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.
Example:
void commit ()

monospace
italic
text

Identifies variables in code.
Example:
String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR
viii Programming Logic Plug-Ins for B2B Integration

{ } Indicates a set of choices in a syntax line. The braces themselves should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]... [-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself should never be typed.

... Indicates one of the following in a command line:
! That an argument can be repeated several times in a command line
! That the statement omits additional optional arguments
! That you can enter additional parameters, values, or other information
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]... [-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. The vertical ellipsis
itself should never be typed.

Convention Item
Programming Logic Plug-Ins for B2B Integration ix

x Programming Logic Plug-Ins for B2B Integration

CHAPTER
1 Overview

The following sections provide an overview of programming logic plug-ins:

! Types of Applications

! Logic Plug-Ins

Note: Custom Logic Plug-Ins are deprecated as of this release of WebLogic
Integration. For information about the features that are replacing them, see the
BEA WebLogic Integration Release Notes.

Types of Applications

WebLogic Integration provides the following types of applications that can be used for
B2B integration:

! Logic plug-ins�For customized routing, filtering, and information processing.
This document introduces logic plug-ins.

! Management applications�Used to monitor B2B integration activities. Based on
BEA-implemented MBeans.

! Messaging applications�XOCP applications that use the WebLogic Integration
Messaging API. An XOCP application implements a trading partner role and
interacts directly with the B2B engine to manage the conversation and handle
business messages.

For more information about management and messaging applications, see
Programming Management Applications for B2B Integration and Programming
Messaging Applications for B2B Integration.

For an introduction to B2B integration, see Introducing B2B Integration.
Programming Logic Plug-Ins for B2B Integration 1-1

1 Overview
Logic Plug-Ins

Logic plug-ins are Java classes that perform specialized processing of business
messages as those messages pass through the B2B engine. Specifically, logic plug-ins
insert rules and business logic along the path traveled by business messages as they
make their way through the B2B engine. WebLogic Integration provides router and
filter logic plug-ins for each business protocol. A service provider or trading partner
can develop and install custom logic plug-ins to provide additional value in
hub-and-spoke configuration (see �Message Mediation Models� In �Getting Started
with B2B Integration� in Introducing B2B Integration).

Logic plug-ins are defined and stored in the WebLogic Integration repository and
executed in the B2B engine. They are transparent to users.
1-2 Programming Logic Plug-Ins for B2B Integration

CHAPTER
2 Routing and Filtering
Business Messages

The following sections describe how to use routing, filtering, and Xpath expressions
to control the flow of business messages exchanged among trading partners:

! Business Messages and Message Envelopes

! Run-Time Message Processing

! Working with Message-Context Documents

! Working with XPath Expressions

Business Messages and Message Envelopes

A business message is the basic unit of communication exchanged between trading
partners in a conversation. A business message contains the list of intended recipients
for the message. A business message is represented in the B2B integration API by the
com.bea.b2b.protocol.messaging.Message interface. The following classes
implement this interface and represent protocol-specific business messages:

! com.bea.b2b.protocol.xocp.messaging.XOCPMessage

! com.bea.b2b.protocol.rosettanet.messaging.RNMessage

On receipt of a business message, the B2B engine creates a message envelope that acts
as a container for the business message as it is processed through the B2B engine.
Message envelopes are instances of the
com.bea.b2b.protocol.messaging.MessageEnvelope class.
Programming Logic Plug-Ins for B2B Integration 2-1

2 Routing and Filtering Business Messages
The message envelope is used for routing purposes and is analogous to a paper
envelope for a letter: the message envelope contains the business message plus
addressing information, such as the identity of the sender (return address) and a
recipient of the business message (destination address), as shown in the following
figure.

Figure 2-1 Message Envelope Containing an XOCP Business Message

Message envelopes also contain other information about the business message. For
detailed information about the MessageEnvelope class, see the BEA WebLogic
Integration Javadoc.

Run-Time Message Processing

The WebLogic Integration B2B engine uses logic plug-ins, acting as either routers or
filters, to direct the flow of business messages to trading partners. The following
example illustrates how this process is implemented for XOCP business messages.

Note: The XOCP business protocol is deprecated as of this release of WebLogic
Integration. For information about the features that are replacing it, see the
BEA WebLogic Integration Release Notes.

! After a trading partner sends an XOCP business message to the B2B engine, a
logic plug-in, acting as an XOCP router, determines the trading partners to
which the message is sent. The router logic plug-in is on the send side of
message processing and determines the intended recipients for the message.

Message Envelope
Sender URL

Recipient / Destination URL

XOCP Business Message
2-2 Programming Logic Plug-Ins for B2B Integration

Run-Time Message Processing
! Before WebLogic Integration sends the business message to a recipient trading
partner, a second logic plug-in, acting as an XOCP filter, determines whether or
not the trading partner should receive the message. The second filter logic
plug-in is on the receive side of message processing. It can prevent a specific
trading partner from receiving a specific business message.

The following figure provides an overview of how the B2B engine processes a
message.

Figure 2-2 Overview of Message Processing
Programming Logic Plug-Ins for B2B Integration 2-3

2 Routing and Filtering Business Messages
WebLogic Integration provides a router for supported business protocol. The
following figure provides a detailed look at the routers.

Figure 2-3 WebLogic Integration B2B Routers

WebLogic Integration provides a filter for supported business protocol. The following
figure provides a detailed look at the filters.

Figure 2-4 WebLogic Integration B2B Filters

The following figure provides a detailed look at how the B2B engine processes an
XOCP business message. Processing for RosettaNet business messages is handled in
a similar manner, as discussed in Implementing RosettaNet for B2B Integration.
2-4 Programming Logic Plug-Ins for B2B Integration

Run-Time Message Processing
Figure 2-5 XOCP Message Processing
Programming Logic Plug-Ins for B2B Integration 2-5

2 Routing and Filtering Business Messages
The following sections explain how the send and receive sides of the B2B engine
process an XOCP business message:

! Send Side

! Receive Side

Send Side

The following sections describe the components on the send side of the B2B engine
and explain how they process an XOCP business message:

! Message XPath Expression

! Transport Service

! Decoder

! Scheduling Service

! XOCP Router

! Routing Service

Message XPath Expression

When sending an XOCP business message, the B2B engine for the sending trading
partner can specify a message XPath expression that defines the intended recipients of
the business message. This message XPath expression is defined in a business process
management (BPM) workflow or in a locally-run B2B integration application. For
more information about message XPath expressions, see �Creating Message XPath
Expressions� on page 2-18.
2-6 Programming Logic Plug-Ins for B2B Integration

Run-Time Message Processing
Transport Service

The transport service reads the incoming XOCP business message and does the
following:

1. Wraps the message in a message envelope to expedite processing as it travels
through the B2B engine.

2. Forwards the message to the appropriate decoder based on the business protocol,
such as XOCP, RosettaNet, or cXML. The URL at which the transport service
receives the message identifies the protocol and the delivery channel. Each
delivery channel/business protocol combination has a unique URL. A trading
partner uses this URL to access a particular delivery channel using a particular
business protocol.

Warning: A URL for a delivery channel/business protocol combination can be
used only by the B2B engine. If customer-supplied software uses one
of these URLs, messages are not processed correctly.

For information about configuring business protocols, see Administering B2B
Integration.

Decoder

The decoder does the following:

1. Processes the protocol-specific message headers.

2. Identifies the sending trading partner.

3. Enlists the sending trading partner in a conversation.

4. Prepares a reply to return to the sender.

5. Forwards the message to the scheduling service.

Scheduling Service

The scheduling service enqueues the message to store it for subsequent retrieval by the
XOCP router.
Programming Logic Plug-Ins for B2B Integration 2-7

2 Routing and Filtering Business Messages
XOCP Router

The XOCP router is a chain of logic plug-ins that specifies the recipients for the XOCP
business message. Each logic plug-in can add trading partners to or remove trading
partners from the set of recipient trading partners.

The logic plug-ins in the XOCP router are arranged in the following order:

1. XOCP router logic plug-in�provided by WebLogic Integration

2. Customer-supplied logic plug-ins�optional logic plug-ins that you can create

3. XOCP router enqueue logic plug-in�provided by WebLogic Integration

The following sections describe these logic plug-ins.

XOCP Router Logic Plug-In

The XOCP router logic plug-in does the following:

1. Creates a message-context document.

A message-context document is an XML document that the XOCP router logic
plug-in generates from the XOCP business message and associated information
in the repository. The message-context document describes header and content
information about the XOCP business message, such as the business protocol,
conversation, sending trading partner, and receiving trading partners. The XOCP
router logic plug-in uses XPath expressions to evaluate the message-context
document. For more information about message-context documents, see
�Working with Message-Context Documents� on page 2-13.

2. Evaluates the message-context document against the XPath routing expressions,
which can refer to values in the message-context document. This evaluation
results in a set of trading partners that are targeted to receive the XOCP business
message.

The XOCP router logic plug-in uses the XPath router expressions in the
following order:

a. Message XPath expression

Message XPath expressions are included in the business message and
therefore always apply to the routing of that business message.

b. Trading partner XPath router expressions
2-8 Programming Logic Plug-Ins for B2B Integration

Run-Time Message Processing
These XPath router expressions are defined in the repository for the sending
trading partner and apply to all XOCP business messages sent by that trading
partner. Each sending trading partner can have multiple trading partner XPath
router expressions.

Each trading partner XPath router expression can examine different parts of
the message-context document and select a different set of recipient trading
partners. The trading partners produced by each expression can either replace
the previously generated set of recipient trading partners or add to the current
set.

c. Business protocol XPath router expressions

These XPath router expressions are defined in the repository and apply to all
XOCP business messages using a particular business protocol.

As with trading partner XPath router expressions, each business protocol
XPath router expression can examine different parts of the message-context
document and select a different set of recipient trading partners. The trading
partners produced by each expression can either replace the previously
generated set of recipient trading partners or add to the current set.

You can add XPath expressions to the repository for use by the XOCP router
logic plug-in. For information about XPath expressions, see �Working with
XPath Expressions� on page 2-15.

3. Discards the message-context document.

4. The B2B engine continues to process the message, unless the set of recipient
trading partners is empty. In that case, the XOCP router logic plug-in does not
forward the message to the next component for processing.

Customer-Supplied Router Logic Plug-Ins

You can create logic plug-ins and add them to the XOCP router. If you create a new
logic plug-in, you must add it to the chain after the XOCP router logic plug-in and
before the XOCP router enqueue logic plug-in. The order of the logic plug-ins in the
XOCP router chain is specified in the XOCP business protocol definition.

A customer-supplied logic plug-in does not have to provide router functionality to be
part of the XOCP router. For example, a customer-supplied logic plug-in can provide
billing functionality by keeping track of the number of messages sent by a particular
sending trading partner and then billing the trading partner for those messages. Even
when a customer-supplied logic plug-in does not provide routing or filtering
Programming Logic Plug-Ins for B2B Integration 2-9

2 Routing and Filtering Business Messages
functionality, it can be added only to the XOCP router or the XOCP filter. For more
information about customer-supplied logic plug-ins, see Chapter 3, �Creating and
Adding Logic Plug-Ins (Deprecated).�

After customer-supplied router logic plug-ins are processed, the B2B engine continues
to process the message, unless the set of recipient trading partners is empty. In that
case, the customer-supplied router logic plug-in does not forward the message to the
next component for processing.

XOCP Router Enqueue Logic Plug-In

The XOCP router enqueue logic plug-in does the following:

1. Enqueues the XOCP business message along with the intended recipients.

2. Forwards the message to the routing service.

Routing Service

The routing service does the following:

1. Performs the final validation of the message recipients.

2. Creates a separate message envelope for each validated recipient trading partner.

3. Forwards each copy of the message envelope to the XOCP filter.

Receive Side

The following sections describe the components on the receive side of the B2B engine
and explain how they process an XOCP business message:

! XOCP Filter

! Scheduling Service

! Encoder

! Transport Service
2-10 Programming Logic Plug-Ins for B2B Integration

Run-Time Message Processing
XOCP Filter

The XOCP filter is a chain of logic plug-ins that determines whether or not to send an
XOCP business message to the intended recipient. These logic plug-ins are evaluated
after the XOCP router logic plug-ins; they can modify or override the XOCP router
results. Each logic plug-in can determine not to send the message.

The logic plug-ins in the XOCP filter are arranged in the following order:

1. Customer-supplied logic plug-ins�optional logic plug-ins that you can create

2. XOCP filter logic plug-in�provided by WebLogic Integration

The following sections describe these logic plug-ins.

XOCP Filter Logic Plug-In

The XOCP filter logic plug-in does the following:

1. Creates a message-context document.

A message-context document is an XML document that the XOCP filter logic
plug-in generates from the XOCP business message and associated information
in the repository. The message-context document describes header and content
information about the XOCP business message, such as the business protocol,
conversation, sending trading partner, and receiving trading partner. The XOCP
filter logic plug-in uses XPath expressions to evaluate the message-context
document. For more information about message-context documents, see
�Working with Message-Context Documents� on page 2-13.

2. Evaluates the message-context document against the XPath filter expressions,
which can refer to values in the message-context document. This evaluation
determines whether or not to send the message to the intended recipient.

The XOCP filter logic plug-in uses the XPath filter expressions in the following
order:

a. Trading partner XPath filter expressions.

These XPath filter expressions are defined in the repository for a recipient
trading partner, and apply to all XOCP business messages destined for that
trading partner. Each recipient trading partner can have multiple trading
partner XPath filter expressions.
Programming Logic Plug-Ins for B2B Integration 2-11

2 Routing and Filtering Business Messages
Each trading partner XPath filter expression can examine different parts of
the message-context document and return a Boolean result that indicates
acceptance or rejection of the message. Processing continues until an
expression evaluates to false or all expressions have been processed.

b. Business protocol XPath filter expressions

These XPath filter expressions are defined in the repository and apply to all
XOCP business messages.

As with trading partner XPath filter expressions, each business protocol
XPath filter expression can examine different parts of the message-context
document and return a Boolean result that indicates acceptance or rejection
of the message. Processing continues until an expression evaluates to false or
all expressions have been processed.

You can add XPath expressions to the repository for use by the XOCP filter
logic plug-in. For information about XPath expressions, see �Working with
XPath Expressions� on page 2-15.

3. Discards the message-context document.

4. If the XOCP filter logic plug-in cancels delivery of the XOCP business message
to the intended recipient, then the XOCP filter logic plug-in does not forward the
message to the next component in the B2B engine. Otherwise, the B2B engine
continues to process the message.

Customer-Supplied Filter Logic Plug-Ins

You can create logic plug-ins and add them to the XOCP filter. If you create a new
logic plug-in, you must add it to the chain before the XOCP filter logic plug-in. The
order of the logic plug-ins in the XOCP filter chain is specified in the XOCP business
protocol definition.

A customer-supplied logic plug-in does not have to provide filter functionality to be
part of the XOCP filter. For example, a customer-supplied logic plug-in can provide
sampling functionality by keeping track of the types of messages sent to a particular
recipient trading partner. Even when a customer-supplied logic plug-in does not
provide routing or filtering functionality, it can be added only to the XOCP router or
the XOCP filter. For more information about logic plug-ins, see Chapter 3, �Creating
and Adding Logic Plug-Ins (Deprecated).�
2-12 Programming Logic Plug-Ins for B2B Integration

Working with Message-Context Documents
If the customer-supplied logic plug-ins cancel delivery of the XOCP business message
to the intended recipient, then the customer-supplied filter logic plug-in does not
forward the message to the next component in the B2B engine. Otherwise, the B2B
engine continues to process the message.

Scheduling Service

The scheduling service does the following:

1. Performs additional internal operations related to quality of service issues and
conversation management. For information about quality of service, see
Programming Management Applications for B2B Integration.

2. Forwards the message to the encoder.

Encoder

The encoder transforms the message as necessary to support the business protocol and
forwards the message to the transport service.

Transport Service

The transport service sends the message to the recipient.

Working with Message-Context Documents

For information about how message-context documents are created and used, see
�XOCP Router Logic Plug-In� on page 2-8 and �XOCP Filter Logic Plug-In� on page
2-11.
Programming Logic Plug-Ins for B2B Integration 2-13

2 Routing and Filtering Business Messages
The following listing is the Document Type Definition (DTD) for the message-context
document.

Listing 2-1 Document Type Definition for Message-Context Document

<!--Copyright (c) 2001 BEA Systems, Inc. -->
<!--All rights reserved -->

<!-- This DTD describes the message context document for XPATH routers and filters
-->

<!ELEMENT wlc (business-protocol, conversation, sender, trading-partner+) >
<!ATTLIST wlc context (message-router | trading-partner-router | hub-router |
trading-partner-filter | hub-filter) #REQUIRED >

<!ELEMENT business-protocol EMPTY >
<!ATTLIST business-protocol name CDATA #REQUIRED >
<!ATTLIST business-protocol version CDATA #REQUIRED >

<!ELEMENT conversation EMPTY >
<!ATTLIST conversation name CDATA #REQUIRED >
<!ATTLIST conversation version CDATA #REQUIRED >
<!ATTLIST conversation sender-role CDATA #REQUIRED >
<!ATTLIST conversation receiver-role CDATA #REQUIRED >

<!-- A sender is a trading-partner that has sent a message from a role in a
conversation. -->
<!ELEMENT sender (trading-partner) >

<!-- A Trading Partner represents an entity such as a company that sends or
receives messages. -->
<!ELEMENT trading-partner (address, extended-property-set*) >
<!ATTLIST trading-partner email CDATA #IMPLIED >
<!ATTLIST trading-partner fax CDATA #IMPLIED >
<!ATTLIST trading-partner name ID #REQUIRED >
<!ATTLIST trading-partner phone CDATA #IMPLIED >

<!ELEMENT address ANY >

<!ELEMENT extended-property-set ANY >
<!ATTLIST extended-property-set name CDATA #REQUIRED >
2-14 Programming Logic Plug-Ins for B2B Integration

Working with XPath Expressions
Working with XPath Expressions

This section describes XPath expressions and how to create them:

! About XPath Expressions

! Creating Message XPath Expressions

! Creating Trading Partner XPath Expressions

! Creating Business Protocol XPath Expressions

About XPath Expressions

XPath is the XML path language that is defined by the World Wide Web Consortium.
The XOCP router logic plug-in and the XOCP filter logic plug-in use XPath
expressions to evaluate message-context documents. You can add XPath expressions
to the repository for use by the XOCP router logic plug-in and the XOCP filter logic
plug-in.

XPath expressions in the XOCP router logic plug-in and XOCP filter logic plug-in
perform the following functions:

! An XPath router expression uses the XPath syntax to select a set of trading
partners from the message-context document. These trading partners are the
intended recipients of the XOCP business message. Each XPath router
expression must evaluate to a set of trading partners.

In the XOCP router logic plug-in, XPath expressions specify the business criteria
for message distribution. For example, a buyer can use an XPath router
expression to send bid requests to all sellers in a particular area code or to sellers
that can handle large orders.

! An XPath filter expression uses the XPath syntax to return a Boolean result that
indicates acceptance or rejection of the message. Each XPath filter expression
must evaluate to a Boolean true or false result.

In the XOCP filter logic plug-in, XPath expressions determine whether or not
the B2B engine sends a particular business message to a particular trading
partner. An XPath filter expression in the XOCP filter logic plug-in acts as a
Programming Logic Plug-Ins for B2B Integration 2-15

2 Routing and Filtering Business Messages
gatekeeper that filters out unwanted business messages for a receiving trading
partner.

The following table provides an overview of the various types of XPath expressions.

Table 2-1 Overview of Types of XPath Expressions

Type of XPath
Expression

XOCP Router Logic Plug-In XOCP Filter Logic Plug-In

Message Evaluated: first
of XPath expressions: one
Defined in: BPM workflows or B2B Java
applications
Purpose: defines recipients
Applies to: XOCP business messages
from the sender BPM workflows or B2B
application

Not applicable

Trading partner Evaluated: second
of XPath expressions: one or more
Defined in: repository (via WebLogic
Integration B2B Console or Bulk Loader)
Purpose: adds and removes recipients
Applies to: all XOCP business messages
from the sender trading partner

Evaluated: fourth
of XPath expressions: one or more
Defined in: repository (via WebLogic
Integration B2B Console or Bulk
Loader)
Purpose: determines whether or not to
send the message to the recipient
Applies to: all XOCP business messages
to the recipient trading partner

Business protocol Evaluated: third
of XPath expressions: one or more
Defined in: repository (via WebLogic
Integration B2B Console or Bulk Loader)
Purpose: adds and removes recipients
Applies to: all XOCP business messages
from all sender trading partners

Evaluated: fifth
of XPath expressions: one or more
Defined in: repository (via WebLogic
Integration B2B Console or Bulk
Loader)
Purpose: determines whether or not to
send the message to the recipient
Applies to: all XOCP business messages
to all recipient trading partners
2-16 Programming Logic Plug-Ins for B2B Integration

Working with XPath Expressions
In the XOCP router logic plug-in, each XPath router expression can examine different
parts of the message-context document and select a different set of recipient trading
partners. The trading partners produced by each expression can either replace the
previously generated set of recipient trading partners or add to the current set.

The following table steps through an example that shows how XPath router
expressions can be used.

In the XOCP filter logic plug-in, each XPath filter expression can examine different
parts of the message-context document to determine whether or not to forward the
message to the recipient trading partner. Each XPath filter expression can return true
or false using different selection criteria. When an XPath filter expression returns
false, the message is blocked from further evaluation and is not sent to the intended
recipient.

An XPath expression can refer to the following kinds of information:

! Trading partner attributes, including:

" Standard attributes, such as the trading partner name or a postal code

" Extended attributes, which are custom attributes defined in the WebLogic
Integration B2B Console

! Message information, such as the type of business document, a purchase order
number, or an invoice amount

Table 2-2 Example for XPath Router Expressions

XPath Expression Resulting Set of Recipient
Trading Partners

1. The message XPath expression selects trading partners A and B. A, B

2. The first trading partner XPath router expression adds trading partner C. A, B, C

3. The second trading partner XPath router expression replaces all previously
selected trading partners with trading partner D.

D

4. The first business protocol router expression, adds trading partners B and F. D, B, F

5. The second business protocol router expression removes trading partner F. D, B
Programming Logic Plug-Ins for B2B Integration 2-17

2 Routing and Filtering Business Messages
For more information on XPath Expressions, see �Advanced Configuration Tasks� in
Administering B2B Integration.

Creating Message XPath Expressions

When sending an XOCP business message, the sender trading partner can specify a
message XPath expression, which defines the intended recipients for the business
message. The message XPath router expression is defined in a business process
management workflow or in a WebLogic Integration B2B Java application. This
XPath expression selects a subset of <trading-partner> nodes from the
message-context XML document that the XOCP router logic plug-in generates.

The sending trading partner defines this XPath expression and sends it along with the
message. An XPath expression is defined for B2B integration as follows:

! If a BPM workflow is used to exchange business messages, the XPath
expression is defined in the workflow template and applied when a trading
partner sends the message to another trading partner. Use the Send Business
Message dialog box in the WebLogic Integration Studio to define the XPath
expression. For more information, see Creating Workflows for B2B Integration.

! If a Java application is used to exchange business messages, the XPath
expression is defined in the Java application. Call the setExpression method
on the com.bea.b2b.protocol.messaging.Message instance, passing the
XPath expression as the parameter. For more information, see Creating
Workflows for B2B Integration.

Note: In many cases, a trading partner sends a business message to another
single, known trading partner; for example, when replying to a request
from that trading partner. In this case, the sender trading partner can bypass
the evaluation of XPath expressions in the XOCP router logic plug-in by
specifying the name of the recipient trading partner instead of an XPath
expression. To specify a trading partner name, call the setRecipient
method instead of setExpression on the
com.bea.b2b.protocol.messaging.Message instance.
2-18 Programming Logic Plug-Ins for B2B Integration

Working with XPath Expressions
Creating Trading Partner XPath Expressions

A trading partner XPath expression is an XPath expression that is defined for a trading
partner. For routing, a trading partner XPath expression is used by the XOCP router
logic plug-in and is defined for the sending trading partner. For filtering, a trading
partner XPath expression is used by the XOCP filter logic plug-in and is defined for
the receiving trading partner.

Trading partner XPath expressions are defined in the repository. You can use the
following tools to create trading partner XPath expressions for the XOCP router logic
plug-in and the XOCP filter logic plug-in:

! Bulk Loader as described in �Working with the Bulk Loader� in Administering
B2B Integration. The format for an XPath expression in a repository data file is:

<xpath-expression expression="//TradingPartner1"
location="ROUTER" type="APPEND"/>

For more information about XPath syntax and usage, see the �XML Path
Language Specification,� published by the World Wide Web Consortium, at the
following URL:
http://www.w3.org/TR/xpath.html

! WebLogic Integration B2B Console as described in �Using Logic Plug-Ins� in
Online Help for the WebLogic Integration B2B Console.

The following table describes the properties that you set when using the B2B
Console to define XPath expressions.

For example, a trading partner might want to route requests to trading partners
that are located in California. To do this, the sender trading partner can use the

Table 2-3 Properties for XPath Expressions in the B2B Console

Component Description

XPath Expression XPath router or filter expression as previously described.

Type Flag that specifies whether the results of evaluating the XPath
expression append or replace the results of the evaluations of the
previous XPath expressions.
Programming Logic Plug-Ins for B2B Integration 2-19

2 Routing and Filtering Business Messages
detail window on the Trading Partners tab in the B2B Console to create the
following XPath expression for the XOCP router logic plug-in:
/wlc/trading-partner[extended-property-set/state='California']

Creating Business Protocol XPath Expressions

A business protocol XPath expression is an XPath expression that is defined in the
WebLogic Integration repository for a particular business protocol. Business protocol
XPath router expressions apply to all incoming business messages using that protocol.
Business protocol XPath filter expressions apply to all outgoing XOCP business
messages.

Business protocol XPath expressions are defined in the repository. You can use the
following tools to create XPath expressions for the XOCP router logic plug-in and the
XOCP filter logic plug-in:

! Bulk Loader as described in �Working with the Bulk Loader� in Administering
B2B Integration. The format for an XPath expression in a repository data file is:

<xpath-expression expression="//TradingPartner1"
location="ROUTER" type="APPEND"/>

For more information about XPath syntax and usage, see the �XML Path
Language Specification,� published by the World Wide Web Consortium, at the
following URL:
http://www.w3.org/TR/xpath.html

! WebLogic Integration B2B Console as described in �Using Logic Plug-Ins� in
Online Help for the WebLogic Integration B2B Console.

Table 2-3 describes the properties that you set when using the B2B Console to
define an XPath expression.

For example, an administrator might want to filter messages for trading partners
that are shippers so that they receive only shipping requests, while all other types
of trading partners receive all messages. To do this, the administrator can use the
Business Protocol Definitions tab in the B2B Console to create the following
XPath expression for the XOCP filter logic plug-in:
(/wlc/trading-partner/extended-property-set/business='shipper') OR
(/wlc/trading-partner/extended-property-set/business!='shipper')
2-20 Programming Logic Plug-Ins for B2B Integration

CHAPTER
3 Creating and Adding
Logic Plug-Ins
(Deprecated)

The following sections describe how to develop logic plug-ins with WebLogic
Integration:

! About Logic Plug-Ins

! Logic Plug-In API

! Rules and Guidelines for Logic Plug-Ins

! Developing and Administering Logic Plug-Ins

About Logic Plug-Ins

The following sections describe logic plug-ins and related concepts:

! What Are Logic Plug-Ins?

! Logic Plug-In Processing Tasks

! Chains

! System and Custom Logic Plug-Ins
Programming Logic Plug-Ins for B2B Integration 3-1

3 Creating and Adding Logic Plug-Ins (Deprecated)
What Are Logic Plug-Ins?

Note: Custom Logic Plug-Ins are deprecated as of this release of WebLogic
Integration. For information about the features that are replacing them, see the
BEA WebLogic Integration Release Notes.

Logic plug-ins are Java classes that perform specialized processing of business
messages as those messages pass through a B2B engine. They can be developed, as
custom services, by WebLogic Integration providers or trading partners.

Logic plug-ins insert rules and business logic at strategic locations along the path
traveled by business messages as they make their way through a WebLogic Integration
B2B system. Logic plug-ins are instances of Java classes that are created when
business protocols are created in WebLogic Integration. They are activated when a
trading partner�s delivery channel is started and invoked when a message passes
through the B2B engine.

Logic plug-ins are business protocol-specific: they process only those messages that
are exchanged using a particular business protocol. For example, if a particular plug-in
is associated with the XOCP protocol, then it processes only XOCP business
messages.

Logic Plug-In Processing Tasks

WebLogic Integration provides a router logic plug-in and a filter logic plug-in for
supported business protocols. In addition to routing and filtering, custom logic
plug-ins can perform a wide range of services. For example, for billing purposes, a
custom logic plug-in can track the number of messages sent from each trading partner.
3-2 Programming Logic Plug-Ins for B2B Integration

About Logic Plug-Ins
Logic plug-ins perform the types of tasks described in the following table.

Chains

Routers and filters consist of one or more logic plug-ins that are executed when a
business message passes through the routers and filters. Multiple logic plug-ins that
share the same business protocol are sequenced as a logic plug-in chain.

In a chain, logic plug-ins are processed sequentially at run time. After one logic plug-in
has finished executing, the next logic plug-in in the chain is activated. Each successive
logic plug-in can access any changes made previously to the shared message
information as a business message is processed in the B2B engine.

Note: The position of a logic plug-in in a chain is configured in the repository,
through the WebLogic Integration B2B Console, as described in Online Help
for the WebLogic Integration B2B Console.

Table 3-1 Tasks Performed by Logic Plug-Ins

Task Purpose Examples

Route
Modification

To change the list of intended recipients for a
business message. Subject to conversation and
collaboration agreement validation of the
recipient. (This functionality is provided by
WebLogic Integration B2B system plug-ins and
custom plug-ins.)

! �If a computer chip order over $1M is
placed, make sure that NewChipCo is one
of the recipients.�

! �After January 1, 2000, no orders should
be sent to OldChipCo.�

Examination To examine the contents of a business message
and take certain actions based on the results of
the examination. (This functionality is provided
by custom plug-ins.)

Note: Most business messages that are
examined do not include encrypted
contents.

! �Log all senders of messages for billing
purposes.�

! �For messages of type X, how many are
conversation version 1 versus
conversation version 2?�
Programming Logic Plug-Ins for B2B Integration 3-3

3 Creating and Adding Logic Plug-Ins (Deprecated)
The following figure shows an example chain of XOCP logic plug-ins in the router.

Figure 3-1 Sample XOCP Router Chain

Router

XOCP
Business
Message

Queue

XOCP Router Chain

XOCP-Router-Enqueue

XOCP-MessageInspector

XOCP-Router

XOCP-MessageTracker
3-4 Programming Logic Plug-Ins for B2B Integration

About Logic Plug-Ins
Note that even when custom logic plug-ins do not provide routing or filtering
capability, they must still be part of a router or filter logic plug-in chain. In this
example, the chain contains four logic plug-ins that are processed in the order
described in the following table.

In this example, only XOCP business messages trigger the logic plug-ins in the XOCP
router chain. NonXOCP business messages (such as RosettaNet or cXML messages)
are processed separately by the router chain associated with those business protocols.

Table 3-2 Logic Plug-Ins in the Sample XOCP Router Chain

Logic Plug-In Description

XOCP router System logic plug-in. WebLogic Integration provides this logic plug-in, which can
modify the list of recipients for an XOCP business message based on XPath router
expressions configured in the repository. This logic plug-in must be the first one in
the XOCP router chain.

XOCP-MessageTracker Custom logic plug-in. A WebLogic Integration owner or trading partner can
provide such a custom logic plug-in to track the number of business messages sent
from each trading partner for billing purposes.

XOCP-MessageInspector Custom logic plug-in. A WebLogic Integration owner or trading partner can
provide such a custom logic plug-in to examine and maintain statistics for the types
of business documents being exchanged through the B2B engine (for example,
purchase orders, invoices, and so on).

XOCP router enqueue System logic plug-in. WebLogic Integration provides this logic plug-in, which
enqueues the XOCP business message in an internal WebLogic Integration B2B
router message queue. This logic plug-in must be the last one in the XOCP router
chain.
Programming Logic Plug-Ins for B2B Integration 3-5

3 Creating and Adding Logic Plug-Ins (Deprecated)
System and Custom Logic Plug-Ins

To provide standard services for processing business messages, WebLogic Integration
B2B offers the following logic plug-ins.

In addition to using the system logic plug-ins, trading partners built on WebLogic
Integration can develop their own custom logic plug-ins to provide specialized
services. Each logic plug-in is a Java class that implements the logic plug-in API, as
described in �Programming Steps for Logic Plug-Ins� on page 3-11.

Table 3-3 System Logic Plug-Ins

Logic Plug-In Description

XOCP router Modifies the list of recipients for an XOCP business message based on XPATH
router expressions configured in the repository. This system logic plug-in should be
first in the router logic plug-in chain so that custom logic plug-ins can subsequently
process a business message after its list of intended recipients is known.

XOCP router enqueue Enqueues the XOCP business message in the WebLogic Integration B2B router
message queue. This system logic plug-in must be last in the XOCP router logic
plug-in chain.

XOCP filter Determines whether an XOCP business message is sent to a specific trading partner
based on XPATH filter expressions configured in the repository. This system logic
plug-in must be last in the XOCP filter logic plug-in chain.

RosettaNet router enqueue Enqueues the RosettaNet business message in the WebLogic Integration B2B
router message queue. This system logic plug-in must be last in the RosettaNet
router logic plug-in chain.

RosettaNet filter Determines whether a RosettaNet business message is sent to a specific trading
partner. This system logic plug-in must be last in the RosettaNet filter logic plug-in
chain.
3-6 Programming Logic Plug-Ins for B2B Integration

Logic Plug-In API
Logic Plug-In API

WebLogic Integration provides a logic plug-in API that allows WebLogic Integration
B2B applications to:

! Add or remove target trading partners from the message recipient list when using
XOCP multicast.

! Retrieve, examine, and process parts of business messages. To ensure that the
contents of business messages are not altered or misrepresented
programmatically, the logic plug-in API provides methods for examining
business messages, but not for changing their contents.

The following table lists the components of the logic plug-in API. For more
information, see the BEA WebLogic Integration Javadoc.

Table 3-4 Logic Plug-In API

Class/Interface Description

com.bea.b2b.protocol.PlugIn Tagging interface that represents a generic logic plug-in,
that is, code that can be inserted, for execution, into a
router or a filter.

com.bea.b2b.protocol.PlugInException Exception class that is thrown if an error occurs while a
logic plug-in is being executed.

com.bea.b2b.protocol.messaging.
MessageEnvelope

Represents the container (envelope) for a business
message. The MessageEnvelope contains the actual
business message plus high-level routing and processing
information associated with the business message, such as
the sender URL and the URL for one recipient (There is a
single message envelope for each recipient). A Java
InputStream is available in case access to the native
message is needed (because message content modification
is not allowed, however, no OutputStream is
provided).
Programming Logic Plug-Ins for B2B Integration 3-7

3 Creating and Adding Logic Plug-Ins (Deprecated)
com.bea.b2b.protocol.messaging.
Message

The Message interface contains all of the information
required for processing a business message in the
WebLogic Integration B2B engine. It provides
information to be used to properly route a message
between trading partners. It also contains information
specific to the particular business protocol being used for
this business message. Depending on the protocol used,
the Message class usually includes subclasses to provide
additional protocol-specific information about the
message.

com.bea.b2b.protocol.messaging.
PayloadPart

Represents a component of the message payload. Specific
classes that implement this information are provided for
some of the different types of parts of a business message,
such as XML or nonXML parts, or to assist in accessing
business protocol-specific information.

com.bea.b2b.protocol.conversation.
ConversationType

Represents a single role in a specific conversation
definition. It contains information such as the
conversation name, conversation version, and trading
partner role.

com.bea.b2b.tpa.CAInstance Represents a collaboration agreement instance. The
available methods allow you to retrieve a variety of
information about the collaboration agreement. Because
no modification of the collaboration agreement is allowed
from this API, only retrieval and verification methods are
provided.

com.bea.b2b.tpa.PartyInstance Represents a party in a collaboration agreement. The
available methods allow you to verify or retrieve
information about the collaboration agreement party, such
as the delivery channel used by it.

com.bea.b2b.tpa.
TradingPartnerInstance

Represents a trading partner instance at run time. This is
used in conjunction with PartyInstance or in a
stand-alone mode with a router or filter.

Table 3-4 Logic Plug-In API (Continued)

Class/Interface Description
3-8 Programming Logic Plug-Ins for B2B Integration

Rules and Guidelines for Logic Plug-Ins
Rules and Guidelines for Logic Plug-Ins

Logic plug-ins should conform to the following rules and guidelines:

! Logic plug-ins must be thread-safe and, therefore, stateless. At run time, logic
plug-in instances are cached and shared by multiple threads. Using instance
variables is not recommended.

! If access to shared resources is required, use the synchronized Java keyword to
restrict access to the shared resource. Certain resources, such as instance
variables within the class, shared objects, or external system resources (such as
files) might need shared access. Using the synchronized keyword can affect
overall application performance, so use it only when necessary.

! Logic plug-ins can modify the message envelope and the list of recipients, but
they cannot modify the message contents. Changing the business message
invalidates the digital signature, if present. The logic plug-in API provides
mutator methods for modifying the message envelope only.

! Logic plug-ins must be self-contained: they are not interdependent with other
logic plug-ins; they cannot exchange variables; and they do not return a variable.
The message envelope is the only input and the only output. If the logic plug-in
makes a change to the message envelope, it outputs the message envelope as
modified.

! The main logic plug-in class must implement the
com.bea.b2b.protocol.PlugIn interface.

! To ensure secure messaging, logic plug-ins are generally not able to inspect
encrypted business messages. The business messages that are examined are
usually those that do not have encrypted contents. To examine the encrypted
contents of a business message, the logic plug-in must decrypt the message,
inspect its contents, and then encrypt it again. Users must have their own public
key infrastructure.

! It is the responsibility of the plug-in provider to ensure that any custom logic
plug-ins that are installed on WebLogic Integration are properly debugged and
designed from a security perspective.

! A logic plug-in is always associated with at least one business protocol in the
repository. The logic plug-in is triggered only when a business message that uses
Programming Logic Plug-Ins for B2B Integration 3-9

3 Creating and Adding Logic Plug-Ins (Deprecated)
that protocol passes through the B2B engine. For example, a RosettaNet
business message does not trigger an XOCP logic plug-in, and vice versa.

! A single logic plug-in can be associated with multiple protocols in the
repository. For example, the same logic plug-in class named SentMessages can
be associated with the XOCP and RosettaNet protocols. In the WebLogic
Integration B2B Console, you can define separate logic plug-ins for each
business protocol (such as XOCP-SentMessages, RN-SentMessages, and
cXML-SentMessages), although each points to the same SentMessages class.
Alternatively, the same logic plug-in can be used in two different protocol
chains; such chains share initialization parameters, but they are separate
instances.

! An efficient logic plug-in quickly determines whether a business message
qualifies for processing and, if not, exits immediately.

! Logic plug-ins can call other modules, including shared methods in a utility
library (for example, a module that accesses a database).

! Logic plug-ins are initialized one time, when the delivery channel is activated.

" If the delivery channel is shut down (that is, if the shutdown method is
called on the associated
com.bea.b2b.management.hub.runtime.DeliveryChannelMBean), then
all protocol-specific logic plug-ins associated with that delivery channel are
shut down as well. The delivery channel must be restarted for the logic
plug-ins to be active.

" If the B2B engine is shut down (that is, if the shutdown method is called on
the associated com.bea.b2b.management.runtime.WLCMBean), then all
logic plug-ins running on that B2B engine are shut down as well. The B2B
engine and the delivery channel must be restarted.

" If logic plug-in definitions change in the WebLogic Integration repository,
such as when the chain is resequenced or when logic plug-in definitions are
added, changed, or removed, then the delivery channel must be shut down
and restarted to reflect the repository changes.

! The WebLogic Server instance must be restarted (and the Java Virtual Machine,
or JVM, reloaded) if an upgraded version of logic plug-in source code is
installed.
3-10 Programming Logic Plug-Ins for B2B Integration

Developing and Administering Logic Plug-Ins
Developing and Administering Logic
Plug-Ins

Implementing a custom logic plug-in requires a combination of development and
administrative tasks. The following steps describe the required procedures:

! Programming Steps for Logic Plug-Ins

! Administrative Tasks

Programming Steps for Logic Plug-Ins

This section describes the programming steps that you must perform in the logic
plug-in code. Although each logic plug-in processes business messages in its own way,
all logic plug-ins must perform certain tasks.

To implement a logic plug-in, complete the following steps:

! Step 1: Import the Necessary Packages

! Step 2: Implement the PlugIn Interface

! Step 3: Specify the Exception Processing Model

! Step 4: Implement the Process Method

! Step 5: Get the Business Message from the Message Envelope

! Step 6: Validate the Business Message

! Step 7: Get the Business Message Properties

! Step 8: Process the Business Message as Needed
Programming Logic Plug-Ins for B2B Integration 3-11

3 Creating and Adding Logic Plug-Ins (Deprecated)
This section uses code excerpts from a logic plug-in that:

! Intercepts a business message en route through the WebLogic Integration B2B
engine

! Obtains the names of the message sender, its target recipient, and its associated
conversation definition

! Inserts a row with this information in the billing database

Step 1: Import the Necessary Packages

At a minimum, a logic plug-in needs to import the following packages:

! com.bea.b2b.protocol.*

! com.bea.b2b.protocol.messaging.*

The following listing from the SentMsgCounter.java file shows how to import the
necessary packages.

Listing 3-1 Importing the Necessary Packages

import java.util.Hashtable;
import com.bea.b2b.protocol.*;
import com.bea.b2b.protocol.messaging.*;
import com.bea.eci.logging.*;
import javax.naming.*;
import javax.sql.DataSource;

// This package is needed to access the DB pool
import java.sql.*;
3-12 Programming Logic Plug-Ins for B2B Integration

Developing and Administering Logic Plug-Ins
Step 2: Implement the PlugIn Interface

A logic plug-in needs to implement the com.bea.b2b.protocol.PlugIn interface,
as shown in the following listing.

Listing 3-2 Implementing the PlugIn Interface

public class SentMsgCounter implements PlugIn
{

...
}

Step 3: Specify the Exception Processing Model

A PlugInException is thrown if:

! A run-time exception (such as a NullPointerException) is thrown by a logic
plug-in and caught by WebLogic Integration processing code.

! The logic plug-in throws an exception to indicate problems encountered during
logic plug-in processing. The logic plug-in might handle the exception directly
or it might notify the WebLogic Integration processing code.
Programming Logic Plug-Ins for B2B Integration 3-13

3 Creating and Adding Logic Plug-Ins (Deprecated)
The exception processing model specified in a logic plug-in determines what happens
if an exception is thrown. Logic plug-ins must implement the
exceptionProcessingModel method and specify one of the return values described
in the following table.

If a business message is rejected, what happens next depends on the business protocol,
as well as on the specified Quality of Service associated with the message. For
example, the B2B application that sent the message might be notified that message
delivery failed and it might then attempt to send the business message again.

The following listing shows how the SentMsgCounter plug-in implements the
exceptionProcessingModel method.

Table 3-5 Options for the Exception Processing Model

Class/Interface Description

EXCEPTION_CONTINUE Indicates that if a PlugInException is thrown, processing should not stop; it
should continue to the next logic plug-in in the chain.
Use this option to allow a business message to continue being processed even if an
error occurs while the logic plug-in is being executed.

EXCEPTION_STOP Indicates that if a PlugInException is thrown, processing should stop at this
logic plug-in. The business message does not continue to the next logic plug-in in
the chain.
Use this option to cancel message processing and prevent a message from being
processed further. For example, a logic plug-in that is validating business
documents can reject any documents that contain insufficient or incorrect data.

EXCEPTION_UNWIND Indicates that processing should unwind if a PlugInException is thrown. The
business message does not continue to the next logic plug-in in the chain.
Use this option to reject a message; to prevent its further progress through the B2B
engine; and to undo any changes made by this plug-in, along with any changes
made by previous plug-ins in the chain. If an exception is thrown and this is the
exception processing model, then the unwind methods in all previous plug-ins in
the chain (but not the current logic plug-in), are invoked in reverse order. In effect,
unwinding cancels all changes made by the chain.
For example, if a logic plug-in inserts a row in a database table, its unwind method
should delete that row.

Note: To use this exception processing model, all logic plug-ins in the chain
must implement the unwind method, even if the method does nothing.
3-14 Programming Logic Plug-Ins for B2B Integration

Developing and Administering Logic Plug-Ins
Listing 3-3 Specifying the Exception Processing Model

public int exceptionProcessingModel()
{
 return EXCEPTION_CONTINUE;

}

Step 4: Implement the Process Method

To process a business message, a logic plug-in must implement the process method,
which accepts the message envelope of the business message as its only parameter. In
the following listing, the SentMsgCounter class begins its implementation of the
process method by defining the variables that it later uses to store message properties.

Listing 3-4 Implementing the Process Method

public void process(MessageEnvelope mEnv) throws PlugInException
{

 String sender, conversation;
 String tRecipient;
 Connection conn = null;
 Statement stmt = null;
 Message bMsg = null;
 ...
}

Note: When processing a business message, a logic plug-in is allowed to modify
only the message envelope, not the business message.

Step 5: Get the Business Message from the Message Envelope

If a logic plug-in needs to inspect the contents of a business message, it must call the
getMessage method on the MessageEnvelope instance, which retrieves the business
message as a Message object.
Programming Logic Plug-Ins for B2B Integration 3-15

3 Creating and Adding Logic Plug-Ins (Deprecated)
In the following listing, the SentMsgCounter class gets the business message from the
message envelope by calling the getMessage method.

Listing 3-5 Retrieving the Business Message from the Message Envelope

if((bMsg = mEnv.getMessage())== null)
{

throw new PlugInException("message is NULL");
}

Step 6: Validate the Business Message

Optionally, a logic plug-in can determine whether a message is a valid business
message that should be processed, or a system message that should be ignored by the
logic plug-in. To check a business message, the logic plug-in can call the
isBusinessMessage method on the Message instance. In the following listing, the
SentMsgCounter class uses the isBusinessMessage method.

Listing 3-6 Validating the Business Message

if (bMsg.isBusinessMessage())
{
 ...
}

Step 7: Get the Business Message Properties

Optionally, a logic plug-in can retrieve certain properties of the business message by
calling methods on the MessageEnvelope or Message instance. In the following
listing, the SentMsgCounter class gets the name of the conversation definition
associated with the conversation in which this message was sent, the name of the
sender of the business message, and the name of the recipient trading partner.
3-16 Programming Logic Plug-Ins for B2B Integration

Developing and Administering Logic Plug-Ins
Listing 3-7 Retrieving Business Message Properties

conversation= bMsg.getConversationType().getName();
sender = mEnv.getSender();
tRecipient = mEnv.getRecipient();

Step 8: Process the Business Message as Needed

After a logic plug-in obtains the required information from the business message, it
processes this information as necessary. For example, the SentMsgCounter plug-in
updates the billing database with the message statistics it has collected.

Administrative Tasks

An administrator adds the logic plug-in definition to the repository by performing the
following tasks from the Logic Plug-Ins tab of the WebLogic Integration B2B
Console:

1. Specify the following logic plug-in properties:

" Name of the logic plug-in.

" Java class that implements the PlugIn interface. This class can call auxiliary
classes in the class library, but it must be the main point of entry for the logic
plug-in. In addition, the Java class file must reside in a location specified by
the CLASSPATH.

" Parameter name/value pairs to use when initializing the Java class.

2. Assign a logic plug-in to a business protocol.

3. Specify the position of the logic plug-in in the chain.

For more information about administrative tasks, see Administering B2B Integration
and Online Help for the WebLogic Integration B2B Console.
Programming Logic Plug-Ins for B2B Integration 3-17

3 Creating and Adding Logic Plug-Ins (Deprecated)
3-18 Programming Logic Plug-Ins for B2B Integration

Index

A
administrative tasks 3-17
API 3-7
applications 1-1

B
business messages

getting from message envelopes 3-15
overview 2-1
properties 3-16
receiving 2-13
sending 2-7
validating 3-16
XOCP processing 2-2

C
CAInstance class 3-8
chains 3-3
classes

CAInstance 3-8
ConversationType 3-8
MessagesEnvelope 3-7
PartyInstance 3-8
PlugInException 3-7
TradingPartnerInstance 3-8

contact information vii
ConversationType class 3-8
creating XPath expressions 2-15, 2-18
customer support vii

customer-supplied logic plug-ins
filtering 2-12
routing 2-9

D
decoders 2-7
developer tasks 3-11
documents

message-context 2-8, 2-13
printing vi
where to find vi

E
encoder 2-13
enqueue

RosettaNet 3-6
XOCP 3-6

envelopes See message envelopes.
exception processing model 3-13
EXCEPTION_CONTINUE 3-14
EXCEPTION_STOP 3-14
EXCEPTION_UNWIND 3-14

F
filtering

customer-supplied logic plug-ins 2-12
scheduling service, receiving 2-13

filters
RosettaNet 3-6
Programming Logic Plug-Ins for B2B Integration I-1

XOCP 2-11, 3-6

G
getting business messages 3-15
guidelines 3-9

H
how to program 3-11

I
importing packages 3-12
interfaces

Message 3-8
PayloadPart 3-8
PlugIn 3-7, 3-13

L
language, XPath 2-15
logic plug-ins

API 3-7
customer-supplied 2-9, 2-12
RosettaNet filters 3-6
RosettaNet router enqueue 3-6
system 3-6
XOCP filters 3-6
XOCP router enqueue 3-6
XOCP routers 3-6
See also filter logic plug-ins.
See also router logic plug-ins.

M
message envelopes

getting business messages 3-15
overview 2-1

Message interface 3-8
message processing

receive side 2-10

send side 2-6
XOCP 2-2
XPath expressions 2-6
See also XOCP message processing.

message-context documents 2-8, 2-13
MessageEnvelope class 3-7
messages. See business messages.
methods, process 3-15
model, exception processing 3-13

P
packages, importing 3-12
PartyInstance class 3-8
PayloadPart interface 3-8
PlugIn interface 3-7, 3-13
PlugInException class 3-7
printing documents vi
process method 3-15
processing XOCP messages 2-2
programming steps 3-11
properties

business messages 3-16
XPath expressions 2-19

R
receive side 2-10
receiving messages 2-13
related information vii
RosettaNet

filters 3-6
router enqueue 3-6

router logic plug-ins 2-8
routers

RosettaNet enqueue 3-6
XOCP 2-8, 3-6
XOCP enqueue 3-6

routing
customer-supplied logic plug-ins 2-9
scheduling service, sending 2-7
I-2 Programming Logic Plug-Ins for B2B Integration

routing services 2-10
rules 3-9

S
scheduling services

XOCP filtering 2-13
XOCP routing 2-7

send side 2-6
sending messages 2-7
services

scheduling 2-7, 2-13
transport 2-7, 2-13

steps for programming 3-11
support

customer vii
technical vii

system logic plug-ins 3-6

T
tasks for programming 3-11
technical support vii
trading partners, creating XPath expressions

2-19
TradingPartnerInstance class 3-8
transport services

XOCP message processing 2-7
XOCP message processing, receiving 2-

13

V
validating business messages 3-16

X
XOCP

filters 3-6
router enqueue 3-6
routers 3-6

XOCP filtering. See filtering.

XOCP message processing
customer-supplied logic plug-ins 2-9, 2-

12
decoders 2-7
encoders 2-13
filters 2-11
message-context documents 2-8
router logic plug-ins 2-8
routers 2-8
routing service 2-10
scheduling services (receiving) 2-13
scheduling services (sending) 2-7
transport services 2-7
transport services, receiving 2-13
XPath expressions 2-6
See also message processing.

XOCP routing. See routing.
XPath expressions 2-6

creating 2-15, 2-18
creating for trading partners 2-19
description 2-15
properties 2-19

XPath language 2-15
Programming Logic Plug-Ins for B2B Integration I-3

I-4 Programming Logic Plug-Ins for B2B Integration

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print this Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview
	Types of Applications
	Logic Plug-Ins

	2 Routing and Filtering Business Messages
	Business Messages and Message Envelopes
	Run-Time Message Processing
	Send Side
	Receive Side

	Working with Message-Context Documents
	Working with XPath Expressions
	About XPath Expressions
	Creating Message XPath Expressions
	Creating Trading Partner XPath Expressions
	Creating Business Protocol XPath Expressions

	3 Creating and Adding Logic Plug-Ins (Deprecated)
	About Logic Plug-Ins
	What Are Logic Plug-Ins?
	Logic Plug-In Processing Tasks
	Chains
	System and Custom Logic Plug-Ins

	Logic Plug-In API
	Rules and Guidelines for Logic Plug-Ins
	Developing and Administering Logic Plug-Ins
	Programming Steps for Logic Plug-Ins
	Administrative Tasks

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	L
	M
	P
	R
	S
	T
	V
	X

