0?7,

r
P i’
L/

BEA Weblogic
Integration-

Tutorial: Building Your
First Business Process

Version 8.1 Service Pack 4
Document Date: December 2004

Copyright

Copyright © 2004-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, BEA WebLogic Server, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic
Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise
Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic JRockit, BEA WebLogic
Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

Tutorial: Building Your First Business Process

Tutorial Goals 1-1
Tutorial OVErVIEWt e e 1-2
Steps in This Tutorial.ot e e e e e 1-6

Part |. Build and Run a Simple Business Process
Step 1: Create Your Business Process Application
Working in the Design View
Step 2: Specify How the Process is Started
Step 3: Define Conditions for Alternate Paths of Execution
Step 4: Invoke a Web Service

What is the Tax Calculation Control? 6-1

Design the Interaction Between Your Business Process and a Web Service 6-2

Step 5: Run Your Business Process
Part Il. Call a Business Process Using a Process Control

Step 6: Invoke a Business Process Using a Process Control
Part lll. Adding Looping Logic, Parallel Paths . ..

Tutorial: Building Your First Business Process iii

Step 7: Looping Through Items in a List

Understanding XML Schemas and For Each Nodes.

Design a For Each Loop in Your Business Process

Step 8: Design Parallel Paths of Execution

Create a Parallel Node. i

Create Logic to Assemble Price and Availability Data.

Step 9: Create Quote Document

Convert Price List to XML Quote Document.
Convert Availability List to XML Quote Document

Combine Price and Availability Quotes

Step 10: Write Quote to File System

Step 11: Send Quote From Business Process to Client
Step 12: Run the Request Quote Business Process

Part [V. Using the Message Broker

Introducing the Message Broker.

Understanding the Validation Service Scenario

Tutorial: Building Your First Business Process

Step 13: Publish and Subscribe to Message Broker Channels
Step 14: Designing a Message Path for Your Business Process

Step 15: Run and Test the Request Quote Business Process
With the Quote Validation Service

Understanding the Message Broker Channels in Your Tutorial
Application

Tutorial: Building Your First Business Process v

vi

Tutorial: Building Your First Business Process

CHAPTERo

Tutorial: Building Your First Business
Process

WebLogic Integration’s business process management (BPM) functionality enables the
integration of diverse applications and human participants, as well as the coordinated exchange
of information between trading partners outside of the enterprise.

This tutorial provides a tour of the features available to design business processes in the
WebLogic Workshop graphical design environment. It describes how to create a business process
that orchestrates the processing of a Request for Quote.

Tutorial Goals

The goal of the tutorial is to provide the steps to create and test a business process using the
graphical environment provided in WebLogic Workshop. It includes:

e Designing communication nodes in a business process—that is, creating the interface
between your business process and its clients and resources. Clients of business processes
can be any other resources or services that invoke business processes to perform one or
more operations.

e Designing the interactions with clients, including creating the methods that expose your
business process’s functionality.

e Designing the interactions with resources using controls. WebLogic Platform controls
make it easy to access enterprise resources, such as databases, Enterprise Java Beans
(EJBs), Web services, and other business processes (including those that use RosettaNet
and ebXML business processes) from within your application.

Tutorial: Building Your First Business Process 1-1

Tutorial: Building Your First Business Process

e Handling XML, non-XML, and Java data types in the business process—includes working

with XML schemas and transforming data between disparate data types using the
Transformation tool.

e Designing business processes to publish and subscribe to message broker channels.

Tutorial Overview

The business process in this scenario is started as a result of receiving a Request for Quote from
clients. The business process checks the enterprise’s inventory and pricing systems to determine
whether the order can be filled. Based on the shipping address provided by the client, the process
also determines whether sales tax should be added to the quote. Finally the business process
compiles a single quote document from the sales tax, price, and availability data, logs the quote
by writing it to your file system, and sends it to the client.

1-2

Designing the Request for Quote Business Process

The following sequence summarizes the steps in the request for quote process and describes how
the business process is designed:

1.

Receive a Request for Quote from a client.

You design a Client Request node in your business process to handle the receipt of an
XML document that contains the customer name, shipping address, and the identity and
quantity of the items for which the quote is requested. You design the business process so
that it starts when it receives a Request for Quote message from a client.

Evaluate a condition to determine whether sales tax should be included in the quote.

In this case, you design a Decision node to create different paths of execution based on the
evaluation of a condition. The Decision node includes, on one path, a call to a Web service
that calculates sales tax. Business Processes communicate with other services via controls.
You design a Control Send node to communicate with a Web service that calculates the
sales tax for your quote.

Process the items sent in the Request for Quote message.

The business process must calculate the price and determine the availability of the items
and quantities requested in the incoming XML message. This involves the creation of the
following nodes in your business process:

— For Each: For Each nodes represent points in a business process at which a set of
activities is performed repeatedly, once for each item in a list. For Each nodes include

Tutorial: Building Your First Business Process

Tutorial Overview

an iterator node (on which a list of items is specified) and a loop (in which the
activities to be performed for each item in the list are defined)

— Parallel: Parallel nodes represent points in a business process at which a number of
activities are executed in parallel. In this case, you design a Parallel node containing
two branches: one to execute the events that calculate the price for the quote, the
second to execute the events that determine the availability of items for the quote.

— Control nodes: Control Send and Control Receive nodes on each path handle the
asynchronous exchange of messages between a business process and Web service
resources (via controls). A pricing Web service returns the price for the items in the
Request Quote document. An availability Web service returns information about the
availability of the requested items.

4. Compile price, availability, and tax information calculated by the business process into a
quote document.

Your business process calculates a price quote, availability information, and sales tax rate.
You design your business process to use Transformation controls that map the various
pieces of data to an XML document that is returned to the client as the quote.

5. Keep a record of the quote created by the business process.
Your business process uses a File control to write the quote to your file system.
6. Send a response, containing the quote, to the client.

You design a Client Response node to send a response to the client. The response contains
the data calculated by the business process.

Actors in the Tutorial Scenario

The actors in the tutorial scenario are represented in the following figure and described in the text
that follows the figure:

Tutorial: Building Your First Business Process 1-3

Tutorial: Building Your First Business Process

Request Quote
Business Process

@ln_f

RegestOueee

[s
c:;:mu Qute

& "

st nTan Rt

Sak= Tan Cakoulaion Hesded?

Clients
=
o
g
g g
=
2
_‘—

— = Data Flow

The actors in the scenario include:

4

v

Controls

subscribe

Resources

L3 Awallfrocessos ‘W Servios
i gt
- .} PriceProcessor Wabdaras
== pifice
B oj TamCoke Wb Serace

i
el rabar T

Web Services

o

Chent et

Sub Processes

e The client of your RequestQuote service. Clients of RequestQuote are systems that create
and send Request for Quote messages. A Request for Quote message provides the business
process with a customer name, shipping address, and a list of items and quantity of those
items required by the client. The business process computes and returns a price and
availability quote for the items requested.

e Your RequestQuote business process. The process receives a Request for Quote for
specific items and returns a price and availability quote for the items requested.

e A tax calculation Web service designed to calculate the sales tax to include in the quote,
based on the shipping address provided by a client.

1-4 Tutorial: Building Your First Business Process

Tutorial Overview

e A tax calculation business process designed to calculate the sales tax. The tax calculation
business process serves the same purpose as the tax calculation Web service described in
the preceding item. The RequestQuote business process can call either the Web service or
the business process to request calculation of the sales tax for the quote.

e A pricing Web service designed to calculate the price of the items requested by a client.

e An availability Web service designed to determine the availability of the quantity of items
requested by a client.

e Transformation controls: The business process in this case is started when it receives an
XML document from a client. Data is shared and exchanged between resources in your
application (clients, your business process, Web services and so on) in XML format.
Transformation controls are designed to support the mapping of disparate data formats
used in your application.

e A business process that validates the Request for Quote from clients (ValidateQuote.jpd).
The RequestQuote business process communicates with this ValidateQuote process via
Message Broker channels. In this way, the interaction between the business processes can
be loosely coupled and anonymous.

e Message Broker channels: validateOrder and StopQuote. The RequestQuote business
process communicates via these channels with the ValidateQuote process. In this tutorial,
you design a single ValidateQuote service, but other services can be added and configured
such that communication with the RequestQuote business process takes place by way of
the validateOrder and StopQuote Message Broker channels.

Tutorial: Building Your First Business Process 1-5

Tutorial: Building Your First Business Process

Steps in This Tutorial

1-6

This tutorial creates a business process that meets the following requirements: receives Request
for Quote messages from clients, starts the business process on receipt of the Request for Quote,
validates and processes the request, and sends the status of the Request for Quote to the client.

The tutorial is organized into parts:

Part1
In Part I, you learn how to create a new business process, specify how the process is started
at run time, and design a Decision node that includes asynchronous calls to a Web Service.
Lastly, you can run and test the business process you created. To get started, proceed to
Part 1.

PartII
In Part I, you learn how to replace the asynchronous call to the Web service you designed
in Part I with an asynchronous call to another business process. You learn how to create a
process control and how the control’s framework makes it easy to change the interactions
your business process makes with various resources. To learn about the specific steps to
complete this part, see Part II.

Part 111
In Part III, you add more complex business logic to the business process you created in
the preceding parts. You learn how to create looping logic, design parallel processing
nodes, transform the price and availability data from untyped XML data to typed XML,
use a File control to write your quote to a file system, and use a Client Response node to
return the quote to the client invoking the business process. At the end of this part, you
can run and test the business process you built. To learn about the specific steps to
complete this part, see Part II1.

Part IV
In Part IV, you build on the business process you created in Part III by adding logic that
allows an external message to cause the business process to terminate. Your
RequestQuote business process publishes the Request for Quote message it receives from
a client to a Message Broker channel. A number of services that validate the Request for
Quote in some way can be subscribed to that channel. If the request is determined to be
invalid by one of these services, that service publishes a message on a second Message
Broker channel, to which the RequestQuote process is subscribed. If the running
RequestQuote process receives such a message, it is terminated and a message is sent to
the client indicating why the quote was not processed. To learn about the specific steps to
complete this part, see Part IV.

Tutorial: Building Your First Business Process

http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutsimple/tutWLIProcessCreateApp.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutprocessctrl/tutWLIProcessnavPart2.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutlogic/tutWLIProcessnavPart3.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutbroker/tutWLIProcessnavPart4.html

Part| Build and Run a Simple
Business Process

Part I of the tutorial is comprised of Steps 1 through 5. In this part, you learn how to create a new
business process, specify how the process is started at run time, design a Decision node that
includes asynchronous calls to a Web Service, and run a nd test the business process you create
in this first part.

Specifically, the steps in Part I include:

Chapter 1, “Step 1: Create Your Business Process Application”
Describes step-by-step instructions for creating a business process project in WebLogic
Workshop.

Chapter 3, “Step 2: Specify How the Process is Started”
Describes how to design the start of your business process. In this case, provides a
step-by-step procedure to create a Client Request node, and add a method that receives the
Request for Quote message from the client, which in turn causes the business process to
start.

Chapter 4, “Step 3: Define Conditions for Alternate Paths of Execution”
Describes how to design a decision node and its associated conditions in your business
process. The path of execution through of a decision node is based on the evaluation of
conditions you specify for the decision node.

Chapter 5, “Step 4: Invoke a Web Service”
Describes how to design your business process’s interaction with a Web Service control.

Tutorial: Building Your First Business Process Part |

Chapter 6, “Step 5: Run Your Business Process”
At this point, you have created a business process that you can run and test using the
WebLogic Workshop Test Browser.

CHAPTERo

Step 1: Create Your Business Process
Application

In this step, you use WebLogic Workshop to create the application, in which you build the tutorial
business process (RequestQuote.jpd). The tasks in this step include:

e To Create a Business Process Tutorial Application
e To Begin the Design of Your Request for Quote Business Process
To Create a Business Process Tutorial Application

1. From the WebLogic Workshop menu, click File—New—Application. The New
Application dialog box is displayed.

2. In the left pane of the New Application dialog box, select Tutorial, then in the right pane
select Tutorial: Process Application.

Tutorial: Building Your First Business Process Part | 1-1

Step 1: Create Your Business Process Application

1-2

sl i Tutorial; Java Control
[Portal 8 Tutarial: Web Service
(] PrncasT éﬂ Tutorial: Page Flow
(£ Tueria éﬂ Tutorial: Process Application
éﬂ Tutorial: Enterprise JavaBeans
éﬂ Tutorial: Hello World Process Application
Directory: | D:\bealweblogicdlisamplesidomainstintegration ‘ | Browse. . |
Mame: | Tutorial Process_Application |
Server: | [:\bea|weblogicd 1\samplesidomainsiintegr ation |' ‘ | Browse. . |

Creates a new application containing components For the Process and Data

Transformation kutorials,

In the Directory field, select the directory in which you want to create your application.

In the Name field, enter Tutorial_Process_Application.

Click the arrow beside the Server field to display a list of servers, then choose the sample
integration server. For example, on a Windows system, the path to the integration server is:

BEA_HOME\weblogic81l\samples\domains\integration

where BEA_HOME is the directory in which you installed WebLogic Platform.

Click Create.

The Tutorial Process Application is created and displayed in the Application pane. If the
Application pane is not visible in WebLogic Workshop, choose View—Application from

menu bar.

Tutorial: Building Your First Business Process Part |

3 Tutorial_Process_application
(B schemas
= (=¥ Tutorial_Process_applicationieh
El 29 requestquote
(20 services
(20 testxm
,Jﬂ FileGuate. jox
QP PricedvailTransformations, dif
|##] convertAvailist ToXML.xg
|47] comvertAvailXMLEoXMLOb. xg
|#3] convertPricelist ToRML.xq
|##] convertPriceMLEaRMLOb], g
d% RequestGuote.jpd
Gp RequestQuoteTransfarmation.dtf
3] RequestQuaoteavailProcessor_aval xq
|##] RequestQuaoteavailProcessorGetAval, xg
|##] RequestQuotepriceProcessor_returnPrice.xg
|##] RequestQuatepriceProcessoraetPrice, xq
3] RequestQuaotetaxCalculationRequest TaxRate, xq
p TukorialJoin,dtf
|4#] join.xq
(10 WEB-INF
2] Modules
(2] Libraties
(3 Security Roles

The Application pane displays a hierarchical representation of the files and resources
available in your application. It includes the following components:

Tutorial_Process_Application—The application folder.

Schemas—A Schemas project that contains the XML Schemas and the Message Broker
channel file used in the application.

Tutorial_Process_ApplicationWeb—A Web application project folder. Every application
contains one or more projects. Projects represent WebLogic Server Web applications. In
other words, when you create a project, you are creating a Web application. (The name of
your project is included in the URL that clients use to access your application.)

Web Applications are J2EE deployment units that define a collection of Web resources
such as business processes, Web services, JSPs, servlets, HTML pages, and can define
references to external resources such as EJBs.

Note: The Web application project folder is named by appending Web to the name you gave
your application.

requestquote—Contains your project files and folders:

— services folder contains services with which your business process interacts. The
services folder includes Web services, Web Service controls, business processes and
Process controls.

Tutorial: Building Your First Business Process Part | 1-3

Step 1: Create Your Business Process Application

14

testxml folder contains XML files which you can use to test the completed business
process.

FileQuote.jex—A File control used by your Request for Quote business process to
write a file to the file system.

PriceAvailTransformations.dtf—Contains data transformations used in
RequestQuote. jpd

RequestQuote.jpd—The completed business process. (The tutorial walks you through
rebuilding this business process. It is provided for reference, and allows you to run and
test the business process before you start rebuilding it.)

RequestQuoteTransformation.dtf and TutorialJoin.dtf)—Contains data
transformations used in RequestQuote. jpd.

XQ files—An XQ file for each transformation method on a DTF file. XQ files contain
the queries (written in the XQuery language) called by the DTF files in your project.

Note: If you want to run and test the RequestQuote. jpd provided for you in the

application folder, complete the steps in Step 12: Run the Request Quote Business
Process.

8. In this tutorial, you build the RequestQuote. jpd from scratch. Therefore, to proceed, you
must delete the following files from your Tutorial Process_ApplicationWeb project:

- RequestQuote. jpd

— RequestQuoteTransformation.dtf including its XQ files:

RequestQuoteavailProcessor_avail.xqg
RequestQuoteavailProcessorGetAvail.xqg
RequestQuotepriceProcessor_returnPrice.xq
RequestQuotepriceProcessorGetPrice.xq
RequestQuotetaxCalculationRequestTaxRate.xq

Tutorial: Building Your First Business Process Part |

2 Tutorial_Process_application
(&) schemas
B {33 Tutorial_Process_applicationieb
[= {2 requestquote
(L) services
(2 testuml
LA Filequate.jex
o PricefvailTransformations. dtf
|¢#] convertavaillistToxML xq
[¢#] convertavalXMLEaXMLOb] xq
|¢#] convertPricelistToxXML. xq
[¢#] convertPriceXMLEoXMLOb] xq
5‘0 RequestQuote.jpd
& RequestQuoteTransformation, dtf
|¢#] ReequestQuoteavailProcessor_avail xq
|¢#] RequestQuoteavailProcessorGetAvail xq
|¢#] RequestQuatepricePracessor_returnPrice. xo
|¢#] RequestQuatepriceProcessorGetPrice. xq
|¢#] RequestQuotetaxCalculationRequestTaxRate, =q
& TukorialJoin, dtf
|2#] jain.xq
[Tl WEB-TNF

Note: To delete these files, put your mouse pointer in the Application tab, then press Shift
and select the files you want to delete. Right-click and select Delete 7 files. Delete
only the files listed in this step. You need all other files as you build the business
process. Files are deleted from the Application pane (and from your application
folder in the file system).

To Begin the Design of Your Request for Quote Business Process

In this step you start the process of recreating the RequestQuote. jpd business process in the
requestquote folder.

1. Inthe Application pane, under the Tutorial Process_ApplicationWeb\requestquote
folder, right-click the requestquote folder to display a drop-down menu.

2. Choose New—Process File. The New File dialog box is displayed.

3. In the left pane, select Processes, then select Process File in the right pane.

Tutorial: Building Your First Business Process Part | 1-5

Step 1: Create Your Business Process Application

1-6

x|
= =, Process File
() Business Logic 2, ebml Participant Process File
CaPortal . Rosettaliet Participant Pracess File
(S Processes of}- Transformation File
(] ¥web Services
(0] Web User Interface
23 common

File name:| Recuestiuote. jpd |

Createin: {Tutorial_Process_applicationieb}\requestquatel

4. In the File name field, enter RequestQuote.jpd.

Note: As indicated by the file extension in the New File dialog box, you create a new JPD
(Process Definition for Java) file when you create a process file. A JPD file is a gava
file; it contains code for a Java class. Specifically, it contains the implementation code
for a business process class.

5. Click Create.

The new RequestQuote. jpd file is created and displayed in the Design View (which for
the moment consists only of a Start and a Finish node).

=
‘0'
Reqguestuate
|

—

Starting Event
(double-click for options)

Finigh

Related Topics

Components of Your Application

Tutorial: Building Your First Business Process Part |

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideCreateComponents.html

Working in the Design View

This section describes the components and tools you use to design your business process in the
WebLogic Workshop graphical design environment. Ensure that you are familiar with the
following items—you will use them throughout the tutorial.

Application Pane
Provides a hierarchical representation of the source files in your project, and provides a
place where you can save, open, add, and delete project files. Projects group source files
as WebLogic Server Web applications.

If the Application pane is not visible in WebLogic Workshop, choose
View—Application from the WebLogic Workshop menu

Design View
The Design View is your primary working canvas. It displays the business process as you
design it. When you are working in the Design View, you can access the tools you need
from the WebLogic Workshop menu bar.

You can also right-click a node or a group of nodes in the Design View to access options—
different options are available depending on the process node you are designing. Options
available from the right-click menu include the following: Rename to rename the node,
Add Exception Path to add an exception path to a node or a group of nodes, Add
Message Path to add a message path to a node or group of nodes, Cut, Copy, Delete, and
o on.

To learn more about groups of nodes in the Design View, see Grouping Nodes in Your
Business Process.

Tutorial: Building Your First Business Process Part | 2-1

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideGroups.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideGroups.html

Working in the Design View

2-2

Source View

The Source View displays the source code for the current business process. As you design
your business process, source code is written to the JPD file in keeping with the work you
do in the Design View. You can also design and edit your JPD file in the Source View. To
learn more about the Source View, see Business Process Source Code.

Palette

The Palette displays the nodes that you can add to your business process. Nodes represent
different types of logic in your business process.

If the Palette is not visible in WebLogic Workshop, choose View—Windows—Palette
from the WebLogic Workshop menu.

As you drag a node from the Palette onto the Design View, targets (") appear on your

business process. As you drag the node near a target location, the target is activated .
When this happens, you can release the mouse button and the node snaps to the business
process at the location indicated by the active target. Note that if you create a node at an
invalid location (that is, if you create invalid logic in your business process flow) that node
is marked with the following icon in the Design View: g3 . Move your mouse pointer over
the error icon to see a message that describes the error.

Data Palette

The Data Palette includes the following tabs: Variables and Controls. The Variables tab
displays the variables created in your business process, and allows you to create new
variables. The Controls tab displays the instances of controls in your business process and
allows you to add new instances.

Use the Add command on the Data Palette to create instances of variables and controls
in your project. You can also create variables and instances of controls in other ways as
you work in the Design View to create your process logic. As you work through the
tutorial, you will employ the various methods of designing controls and variables in your
business processes.

If the Data Palette is not visible in WebLogic Workshop, choose
View—Windows—Pata Palette from the menu bar.

Property Editor

Provides read and write access to the properties of a node or group of nodes selected in
the Design View.

Tutorial: Building Your First Business Process Part |

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideSource.html

If the Property Editor is not visible in WebLogic Workshop, choose View—Property
Editor from the menu bar.

Functions and Shortcuts

You will use the following functions and shortcuts frequently throughout the tutorial:

Save: Saves the file currently displayed in the Design or Source View.
Save All (Ctrl+S): Saves all the files in your application.

D Start (Ctrl+F5): Build and run the business process currently open in the Design or Source
View.

& Stop (Shift+F5): Stop building and running the business process currently open in the Design
or Source View and the Test Browser.

rgj Build (F7): Build your application.

F2: To change the label (name) on a node in your business process, click F2 when your mouse is
active on the node in the Design View, enter the name you want to give the node, then click Enter
on your keyboard.

iT Use the up and down arrows on your keyboard to navigate up and down between the nodes
in your business process.

—»
*— Use the right and left arrows on your keyboard to expand and collapse a group of nodes.

Related Topics

Using Keyboard Shortcuts

Tutorial: Building Your First Business Process Part | 2-3

http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howShortcut.html

Working in the Design View

2-4 Tutorial: Building Your First Business Process Part |

CHAPTERa

Step 2: Specify How the Process is
Started

In this step, you specify how your business process is started.

As Web services, business processes expose their functionality through methods, which clients
invoke to make requests. You can also create Process controls from business processes. In the
case of Process controls, other resources can interact with your business process via the controls
interface. You learn more about Process controls in Part II of this tutorial.

In this step, you design the Start node in your business process to receive a Request for Quote
message from a client—the receipt of this message is the trigger that starts the business
process.You also create a variable to hold the incoming Request for Quote message.

In the Design View, the interactions between a business process and a client application are
represented by Client Request and Client Response nodes. In this case, you add a Client
Request node to your business process and subsequently create the code on this node to handle
the receipt of a message from a client.

Complete the following tasks to design the Client Request node that starts your business process:
e To Create a Start Node in Your Business Process

e To Design Your Client Request Node

Tutorial: Building Your First Business Process Part | 3-1

http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutprocessctrl/tutWLIProcessnavPart2.html

Step 2: Specify How the Process is Started

To Create a Start Node in Your Business Process

1. On the Application pane, double-click RequestQuote.jpd. Your RequestQuote business

process is displayed in the Design View.

RequestQuote

p—

Staring Event
(ciowhie-click for options)

Finish
You must add a node to this Start node to define the start method for your business
process.

Double-click the empty Starting Event target on the Start node to display the Start node
builder.

The node builder displays with the possible start methods.

F T
4‘ f \ 7

b A

How would wou like this process to start?

(® Invoked via a Client Request

(73 Invoked synchronously via a Client Request with Return

("1 Subscribe ko a Message Broker channel and start via an event {Timer, Email, File, Adapter, etc.)
("3 Subscribe synchronously ko @ Message Broker channel and start via an event

() Invoked via one of several Client Requests or Subscriptions (Event Choice)

3. In the node builder, select Invoked via a Client Request.

4. Click the X in the top right-hand corner. The node builder closes and the empty node that
was associated with the Start node is now populated with a Client Request node.

3-2 Tutorial: Building Your First Business Process Part |

To Design Your Client Request Node

Designing your Client Request node includes creating a method and parameters that your client
uses to trigger the start of your business process, and designing the logic for handling the receipt

of a request from a client.

1. Rename the Client Request node. To do so, click the Client Request node and press F2.
Enter cClient Requests Quote as the name to replace Client Request for the node. Press

Enter. Your business process should now resemble the following figure:

2. In Design View, double-click the Client Requests Quote node. The node builder is

invoked.

|'ﬁ'| lz

RequestQuote

B

Client Requesks Quoke

Finish

s

:@%@

ent Requests Quate
N .

Iz General Settings

- ~
Help
Yiew Code

. 4

Specify a method name and select one or more parameter bypes.,

Method Mamne:

clientRequest

add...

[Remeve |

Settings:

Note: Node builders provide a task-driven user interface that helps you design the
communication between a business process and its clients and other resources. To
access the node builder for any node, double-click the node in the Design View—a
node builder specific for the node you selected is displayed in-line in your business

process.

Tutorial: Building Your First Business Process Part |

Step 2: Specify How the Process is Started

34

As shown in the preceding figure, the node builder for a Client Request node displays the
following tabs to guide your design of the communication between a client and the
business process: General Settings and Receive Data.

— To Specify General Settings

— To Specify Receive Data

To Specify General Settings

The following steps describe how to specify the method exposed by your business process to
clients—clients invoke this method to start and make requests on your business process.

1.

In the Method Name field on the General Settings tab, change the default method name
from clientRequest to quoteRequest.

Note:

When you make your business process available as a service, the name you assign to
a method on a Client Request node is the name of the method that is exposed via the
Web Services Description Language (WSDL). In general, it is recommended that you
define a name that is representative of the service offered by your business process.

Specify a data type for the parameter to your quoteRequest method:

a. Click Add on the General Settings tab. A panel, which shows the data types you can use
is displayed:

@ xML O MonstL O Java

The Request for Quote message from clients is an XML message. Therefore, we are
concerned with XML Types at this node.

b. Ifnecessary, select XML. The panel is populated with a list of XML Schema files (Typed
XML) and a list of Untyped XML objects available in your project.

Note:

The XML Schemas you need as you build the Quote Request business process in this
tutorial are provided in the
myapplications\Tutorial_Process_Application\Schemas folder, where
myapplicationsrepresents the location where you created your tutorial application.
The Schemas provided include QuoteRequest .xsd, PriceQuote.xsd,
AvailQuote.xsd, Quote.xsd and a system Schema: DynamicProperties.xsd.

For XML Schemas to be available to the services in your application, they must be
located in a Schemas project. Schemas projects are represented the Application pane
as folders in the Application folder. To learn about creating Schemas projects in your
applications and importing XML Schemas, including system Schemas, into your
application, see Importing Files into the Schemas Project.

Tutorial: Building Your First Business Process Part |

http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemas.html

In this step, we use an XML Schema, specifically QuoteRequest.xsd, to specify the
structure of documents that clients can send to start your business process.

c. In the list of XML Types, click the + associated with QuoteRequest.xsd.

A graphical representation of the XML Schema defined by QuoteRequest .xsd is
displayed in the node builder pane.

d. Click the quoteRequest node. (It represents the parent element in your XML document.)
The Type field is populated with the XML type:

org.example.request.QuoteRequestDocument.

(@ ¥ML O Non®ML (O Java
G5 %ML Types [=]
=53] Typed
|<—j AvailQuote, xsd
|<—j Priceuote, xsd
|<—j Quote.xsd
|<—j QuoteRequest.xsd
=] customerhan
@ quantity
=] quoteRequest[~ |

[D]

Type: | uest.QuoteRequestDocument|

0 = =

Name:| requestyML |

| oK | |Cancel |

e. Inthe Name field, replace the default parameter name (x0) with requestXML.

3. Click OK. The parameter specifications you made (parameter type is
QuoteRequestDocument, parameter name is requestXML) is displayed in General
Settings tab in the node builder.

This step completes the specification of the method exposed to clients by your business
process. Messages from clients are expected to be fyped XML. That is, the messages
received from clients must contain XML that is valid against an XML Schema (in this
case, QuoteRequest. xsd).

Note: Example XML messages (QuoteRequest.xml and QuoteRequest_a.xml) that can
be received from a client are provided in the testxml folder in your project. You use
them later in the tutorial to test your business process.

The General Settings tab is updated to indicate that you successfully completed the

specification of a method name and parameters: [indicates that a task is complete;
indicates that a task is not complete.

Tutorial: Building Your First Business Process Part | 3-5

Step 2: Specify How the Process is Started

3-6

4
Receive Data

To Specify Receive Data

1.

Click the Receive Data tab, which allows you to specify a variable that receives a Request
for Quote message from a client that is assigned at run time. By default, the Receive Data tab
opens on the Variable Assignment panel.

Note: Receive Data tabs have two modes:

— Variable Assignment—Use this mode when you want to assign the data received from
the client to a variable of the same data type.

— Transformation—Use this mode when you want to create a transformation between
the data assigned to a variable and that expected by the method parameter.

Note: Note that it is also possible to assign typed Non-XML (MFL) data directly to XML
variables in the Receive Data tabs; no transformation is necessary. A discussion of
Non-XML (MFL) data is outside the scope of this tutorial. To learn about MFL files
and the assignment of the data to business process variables, see Business Process
Variables and Data Types.

In this case, we use the Variable Assignment mode because we want to assign the XML
message received from the client directly to a variable of the same data type. In subsequent
steps, you create a variable of typed XML (QuoteRequestDocument) to which your
process assigns the incoming Request for Quote from clients.

2. Under Select variables to assign, click the arrow and select Create new variable...

@) variable Assignment () Transformation

Methaod Expects: Select variables to assign:

QuateRequestDocumen. .. _n

Create new vatiable. ..

The Create Variable dialog box is displayed.

3. In the Create Variable dialog box:

a. In the Variable Name field, enter requestXML.

b. In the Select Variable Type field, in the list of XML Types, select the quoteRequest
element under QuoteRequest.xsd.

Tutorial: Building Your First Business Process Part |

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypes.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypes.html

D Create Yariable x|

Yariable Name: | requestML |

rSelect Yariable Typ
@ XML O MondML O Java

= &5 Typed

|<—j AvailQuate, xsd

|<—j PriceQuate, xsd

|<—j Quote.xsd

|<—j QuateRequest.xsd
customerhiame
quantity

quoteRequest

shipaddress
= C]

=

LI CIRCIR |

Variable type: ‘ ot example.request.QuoteRequestDocument |

The Variable Type field is populated with
org.example.request.QuoteRequestDocument.

c. Click OK. Your new variable is created and displayed in the Receive Data tab.

@) Yariable Assignment (O Transformation

Method Expects: Select variables to assign:

QuoteRequestDocumen. .. requestiL (Quat... |~

Note: The requestXML variable is also listed as an XML variable in the Data Palette.

Property Editor | Data Palette *
Variables Add v
B & XML
Name Type
requestsMl QuoteRequestDo...
El i Non-XML
Name Type
= % Java
Name Type
Both tabs in the node builder (General Settings and Receive Data) are marked

complete [+4.
4. Click the X in the top right-hand corner. The Client Requests Quote node builder closes.

In Design View, note that the completeness icon associated with the Client Requests
Quote node changed from [A to ¥ indicating that the design of the node is complete.

@2

RequestQuate

He

Client Regquests Quote
|

Tutorial: Building Your First Business Process Part | 3-1

Step 2: Specify How the Process is Started

5. From the Workshop menu, select File—Save All.

Related Topics

Components of Your Application
Designing Start Nodes

Working With Data Types

Interacting With Resources Using Controls

Calling Business Processes

3-8 Tutorial: Building Your First Business Process Part |

http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howJpdProxy.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideCreateComponents.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideStartDesign.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypesWorking.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControls.html

CHAPTERo

Step 3: Define Conditions for Alternate
Paths of Execution

This step describes how you design a common pattern in business processes—one that selects one
path of execution based on the evaluation of one or more conditions. You create this pattern by
designing a Decision node in your business process.

In this part of the tutorial scenario, the business process is designed to make a decision based on
a value that the business process extracts from the variable to which the XML message from the
client is assigned. You design a single condition, which is evaluated at run time to determine
whether the shipping address, specified in the incoming Request for Quote XML, requires that
sales tax is calculated for the quote. If the condition evaluates to true, then sales tax must be
calculated, and the flow of execution proceeds along a branch that calls a Web service to calculate
the sales tax. If the condition evaluates to false, then no sales tax is required for the quote, and the
flow of execution proceeds along the default branch. This step includes the following tasks:

e To Add A Decision Node To Your Business Process
e To Define a Condition in This Decision Node
To Add A Decision Node To Your Business Process

1. If the Palette is not visible in WebLogic Workshop, choose View—Windows—Palette from
the WebLogic Workshop menu.

2. In Design View, click 74 Decision in the Palette, then drag and drop the Decision node
onto the business process, positioning it directly below the Client Requests Quote node
that you created in Step 2: Specify How the Process is Started.

Tutorial: Building Your First Business Process Part | 4-1

Step 3: Define Conditions for Alternate Paths of Execution

Note: Asyoudrag anode from the Palette onto the Design View, targets () appear on your
business process. As you drag the node near a target location, the target is

activated () and the cursor changes to an arrow . When this happens, you can
release the mouse button and the node snaps to the business process at the location
indicated by the active target.

The Decision node includes a node representing the condition (labeled Condition), and
two paths of execution: one for events to be executed in the case the condition evaluates to
true, and the other (the Default path) for events to be executed in the case the condition
evaluates to false.

3. Relabel Decision, Condition, and Default to identify the business tasks for this node more
clearly:

a. Inthe node’s Name box, replace Decision, with Sales Tax Calculation Needed?, then
press Enter.

Note: If the Name box is not open, double-click Decision to open it.

b. To enter a label to replace Condition and identify the #7ue path, double-click Condition
and enter Yes, then press Enter.

c. To enter a label to replace Default and identify the false path, double-click Default and
enter No, then press Enter.

4-2 Tutorial: Building Your First Business Process Part |

The Decision node in your business process should now appear in the Design View as
shown in the following figure.

RequestQuote

Hw®

Client Requests Quote

@—E
Mo

Yes

Sales Tax Calculation Needed?

Finish

To Define a Condition in This Decision Node

1. Double-click the condition node @ to invoke the decision builder. It provides a task-driven
user interface that helps you design the decision logic.

X)
; (® Variable Select a variable. For variables with a schema, select one or more nodes to
‘s define the Left Hand Expression for the Condition,
. (O Method Create or select a Java method that returns a boolean and go to Source
Vigw to edit the method.
Left Hand Expression ¥ Operator Right Hand Expression % |:|z|
I—I Join Type:
Hel
Yigw Code
\, r.

In the decisioﬁ builder, Variable is selected by default. Do not change the’selection

because, in this case, you design the decision based on the value of an element in an XML
document, which is valid against an XML Schema.

2. Select an XML element on which the decision is made. To do so, complete the following
steps:

Tutorial: Building Your First Business Process Part | 4-3

Step 3: Define Conditions for Alternate Paths of Execution

a. Inthe decision builder, select a variable by clicking the = for the Left Hand Expression.

A drop-down list of variables in your project is displayed. In this case, the variable you
created for the Client Request node at the start of your business process is displayed:
requestXML.

A representation of the XML schema for the QuoteRequest is displayed in the Select
Expression Node pane:

Select Variable:

requestamL |~ |

Select Expression Node

B[quoteRequest []
\:) customerflame
E-@ shipaddress
'é)', street
@7 ciry
'é)', state
&7 zp K]

The elements and attributes of an XML document assigned to this variable are
represented as nodes in a hierarchical representation, as shown in the preceding figure.
The schema in our example (QuoteRequest .xsd) specifies a root element
(quoteRequest), and child elements: customerName, shipAddress, and a repeating

element (identified by ot): widgetRequest. The shipAddress element contains the
following attributes: street, city, state, zip.

b. Inthe Select Expression Node panel, click the state attribute.

Seleck Mode:

= Q shipaddress
e), street
& iy
Q)? state
e
This selects the node in the XML document that represents the element for which you

want to define the condition.

The Selected Expression ficld is populated with the following expression:

data ($SrequestXML/ns0:shipAddress/@state)
c. Click Select.
The Left Hand Expression field is populated with expression.

d. Ifnecessary, select the = operator from the Operator list.

e. Enter ca in the Right Hand Expression field.

4-4 Tutorial: Building Your First Business Process Part |

Click Add to add the condition you just created:
data ($SrequestXML/ns0:shipAddress/@state) = “CA”

This completes the design of the first condition on this node.

Select the expression in the condition list pane, as shown in the following figure:

(®) Wariable Select a variable, For variables with a schema, select one or more nodes ko
define the Left Hand Expression for the Condition,

(CiMethod Create or select & Java method that returns a boolean and go to Source
View to edit the method,

Left Hand Expression ¥ Operator Right Hand Expression ¥
data($requestsML/nsishipaddre | = |+ |['CA"
ss/@state) |—||

Jain Type:
) AND
® OR

<> data($requestsMLy... =

Change the Join Type option to OR.

In the Right Hand Expression field, select “ca”, then change the entry to California.
The Add button changes to Update.

Select the arrow beside the Update button, then select Add from the menu.

Repeat the process of selecting the expression and then adding it to the condition list
changing the entry in the Right Hand Expression field to NJ and New Jersey
consecutively.

The conditions you specify are listed in the condition list pane, as shown in the
following figure.

Tutorial: Building Your First Business Process Part | 4-5

Step 3: Define Conditions for Alternate Paths of Execution

46

(@) Wariable Select a variable, For variables with a schema, select one or more nodes to
define the Left Hand Expression for the Condition.

() Method Create or select a Java method that returns & boolean and go to Source
Yiew ko edit the method.

Left Hand Expression ¥ Operator Right Hand Expression ¥

O
DHE :E
Qll

< data($requestxML... = "Ca"
or
<> datai$request=mL, .. = “California™
& . or
Help & data($requestxMLy. .. = "N
or
Wi Code i() A \ w u B
b v,

3. Click the X in the top right-hand corner. The decision builder closes.

The icon for the Condition node in the Design View has changed from @ to . Itisa
visual reminder that the condition you defined on this node is based on the evaluation of
XML.

This step completes the design of the condition that is evaluated when the flow transitions
to the Decision node at run time. Your condition logic is written in source code as an
XQuery expression—see the following section: XML Conditions in the Source Code.

You are ready to define the actions on the subsequent paths in the flow—proceed to Step 4:
Invoke a Web Service.

XML Conditions in the Source Code

As you define your XML conditions in the decision builder, WebLogic Workshop writes an
XQuery expression to the JPD file. Specifically, XQuery expressions are written in the Process
Language region of the JPD file.

To view the XQuery expression written in keeping with your work in the preceding section, click

the Source View tab, and expand the region of code indicated with # Frocess Lanmange,

The condition defined by following the example in steps 2 through 9 in the preceding section
creates the following XQuery expression in the source code:

* @jpd:xquery prologue::

*

* declare namespace nsO="http://www.example.org/request"

Tutorial: Building Your First Business Process Part |

define function exprFunctionO (element S$requestXML) returns xs:boolean {
(((data (SrequestXML/ns0:shipAddress/@state) = "CA") or
(data (SrequestXML/ns0:shipAddress/@state) = "Calforinia")) or
(data (SrequestXML/ns0:shipAddress/@state)
(data (SrequestXML/ns0:shipAddress/@state)

"NJ")) or

"New Jersey")

Related Topics

Defining Conditions for Branching

Tutorial: Building Your First Business Process Part | 4-1

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDecision.html

Step 3: Define Conditions for Alternate Paths of Execution

4-8 Tutorial: Building Your First Business Process Part |

CHAPTERa

Step 4: Invoke a Web Service

By default, a Decision node consists of one condition; a path below the condition node, which
represents the path of execution followed when the condition, or set of conditions that evaluate
to true; and a path to the right of the condition, which represents the path of execution followed
when the condition evaluates to false (the default path).

Note: You can add additional condition nodes and paths to a Decision node, but in this scenario,
we need only one set of conditions, and two paths.

In this step, you learn how to add logic to one path of execution for your Decision node (Sales
Tax Calculation Needed?). Specifically, you learn how to design your business process to
interact with resources via controls. Your business process invokes a Web service and handles
the data returned from the Web service. This step describes the following topics:

e What is the Tax Calculation Control?

e Design the Interaction Between Your Business Process and a Web Service

What is the Tax Calculation Control?

Java Controls are server-side components managed by the Workshop framework. They
encapsulate external resources and business logic for use in Workshop applications. In other
words, controls represent the interfaces between your business process and other resources. The
underlying control implementation takes care of most of the details of the interaction for you.
Controls expose Java interfaces that may be invoked directly from your business process. You
add an instance of a control to your project and then invoke its methods.

Tutorial: Building Your First Business Process Part | 5-1

Step 4: Invoke a Web Service

In this scenario, the business process calls a Web service, which calculates and returns a sales tax
rate. Business Processes invoke Web services via Web Service controls. The Web service control
(TaxCalcControl.jcx) is created for you and included in your application’s project
(specifically in the
myapplications\Tutorial_Process_Application\Tutorial_Process_ApplicationWeb
\requestquote\services folder, where myapplications represents the location in which
you created your tutorial application).

A complete description of how to create the TaxCalc.jws Web service and its associated control
(TaxCalcControl.jcx) is beyond the scope of this tutorial. The goal of Step 4 in this tutorial is
to describe how to create the appropriate nodes in your business process, and design their
communication with this Web Service control.

To learn about creating Web services, and creating a control from your Web service, see Tutorial:
Web Services and Controls and Transactions.

Related Topics

Tutorial: Web Services
Buffering Methods and Callbacks

Transaction Boundaries

Design the Interaction Between Your Business Process and a
Webh Service

5-2

This section describes how to create the activities that are performed when the condition defined
in your Decision node evaluates to true. The condition evaluates to true if the value of
shipaddress/state in the XML document received from a client, equals any one of the
following: CA, California, NJ, or New Jersey.

In this section, you learn how to invoke a Web service from your business process, and create a
callback handler to receive the data returned by the Web service. It includes the following tasks:

e To Create an Instance of the Web Service Control in Your Project
e To Call the Tax Calculation Web Service From Your Business Process

e To Receive the Tax Rate Calculation From the Web Service

Tutorial: Building Your First Business Process Part |

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/tutorial/tutFirstWebServiceIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/tutorial/tutFirstWebServiceIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsTransact.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/tutorial/tutFirstWebServiceIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/service/conBufferingMethodsAndCallbacks.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTransaction.html

Design the Interaction Between Your Business Process and a Web Service

To Create an Instance of the Web Service Control in Your Project
1. If Design View is not visible, click the Design View tab.

2. If the Controls tab is not visible in WebLogic Workshop, choose View—Windows—Data
Palette from the menu bar.

3. Click Add on the Data Palette Controls tab. A drop-down list of controls that represent the
resources with which your business process can interact is displayed.

4. Choose Web Service. The Insert Control dialog box is displayed.

Insert Control - Insert Web Service: P X|

STEP L yarisble name for this rontrols | bavcalculation ‘

STEP 2 T would like to :

(@) Use a Web Sarvics control already defined by & JCk Fils

1K Flle: | zquestuuntetservicaszaxCa\chr\tm\.icx| [erowse... |

O Create a new Web Service control to Use,

[Maks this a control Factary that can create multipls instances at runtime:

5. In the Insert Control dialog box:
a. In Step 1, enter taxCalculation as the variable name for this control.

b. In Step 2, ensure that the following option is selected: Use a Web Service control
already defined by a JCX file.

c. Click Browse beside the JCX file field, choose TaxCalcControl.jecx from the
\requestquote\services folder in your application, then click Select. The file browser
closes and requestquote\services\taxCalcControl.jcx is entered in the field.

6. Click Create. The Insert Control dialog box closes.

An instance of a Web Service control, named taxCalculation, is created in your project
and displayed on the Data Palette Controls tab.

Tutorial: Building Your First Business Process Part | 5-3

Step 4: Invoke a Web Service

5-4

|| Data Palette *

Yariables Add »
Bl & xML

Name Type

[#] requestymL QuoteRequestD...
El iz Non-XML

Name Type
=] % Java

Name Type

Controls Add »
Q-j taxCaleulation

7. From the Workshop menu, select File—Save All.

To Call the Tax Calculation Web Service From Your Business Process

In this step, you create the logic to call the tax calculation control from your business process.

1.

In the Data Palette, click the + beside the taxCalculation control. The list of methods
available on the taxCalculation control is displayed.

From the list of taxCalculation control methods, click the following method:
void requestTaxRate(java.lang.String statelID)

Drag and drop the method onto the business process, placing it on the Sales Tax
Calculation Needed? node immediately below the condition (Yes) node

4<|> Ed
Yes K]

(_?

requestTaxRate

Sales Tax Calculation Needed?

A Control Send node is created representing the asynchronous call to your taxCalculation
Web Service control. The node is named according to the name of the method you dragged
onto the business process—in this case: requestTaxRate.

Note: This interaction is designed to be asynchronous, meaning that the business process
can send a request to the taxCalculation control from this node, and does not block

Tutorial: Building Your First Business Process Part |

Design the Interaction Between Your Business Process and a Web Service

waiting for a response from the control. In other words, the business process can
continue processing and receive a response from the taxCalculation service when
that service completes the request.

4. Double-click the requestTaxRate node. The node builder opens on the General Settings
tab. The Control instance and target methods are already selected: taxCalculation and void
request TaxRate(String statelD), respectively.

5. Click the Send Data tab.

By default, the Send Data tab opens on the Variable Assignment pane. The Control
Expects field is populated with the data type expected by the requestTaxRate() method
exposed by the taxCalculation Web services: String stateID.

Note: As you learned in a previous step, Send Data tabs have two modes:

— Variable Assignment—Use this mode when you want to assign the data received from
the client to a variable of the same data type.

— Transformation—Use this mode when you want to create a transformation between
the data assigned to a variable and that expected by the method parameter.

In this case, you must switch to the Transformation mode because the data type required
as input to the taxCalculation control is a Java String type, and the variable in which the
Request for Quote message (which includes the value of shipaddress/state) is stored,
is of type XML (that is, QuoteRequestDocument, which is valid against an XML
Schema).

WebLogic Integration provides a data mapping tool to map between heterogeneous data
types. The data transformations you create using the tool are stored in Data Transformation
Format (DTF) files. You can think of DTF files as another resource with which your
business process interacts via controls. That is, when DTF files containing your data
transformations are built, they are built as controls. The controls expose transformation
methods, which business processes invoke to map disparate data types.

6. Click Transformation. A pane that allows you to define a transformation between your
variable and the expected data type of the parameter on the control method.

7. In Step 1, click Select Variable to display the variables in your project, then choose
requestXML (QuoteRequestDocument)—that is, the variable you created for the Client
Request node at the start of your business process.

Tutorial: Building Your First Business Process Part | 5-5

Step 4: Invoke a Web Service

5-6

() Variable Assignment () Transformation

Step 1: Select variables to map to the method parameters.

Select one or more variables:

Control Expects:

Select Variable I

@ requestXML {quateRequest)

| Remove Skring statelD

8. In Step 2, click Create Transformation. The Transformation tool opens, which displays a
representation of the QuoteRequest XML document in the Source pane, and a String in the

Target pane.

9. Click state in the Source pane and drag your mouse pointer over to String in the Target
pane. A line is drawn between the state and String elements in the XML Map pane. It
represents the transformation between the two data types.

Source

Target

= ? requeskxML
O customerhame
5@ shipaddress
a7
l-J,l' skreet
7
é)' ity
)7 state
&7 zip
= @7 widgetRequest
@ widgetld
@ quantity

ﬁ% String

10. To return to the process, in the Application pane, double-click the RequestQuote.jpd.

Note:

Creating the transformation in the preceding steps creates a Transformation control

in your project: A DTF file, named RequestQuoteTransformation.dtf is created.
An XQ file, which contains the query (written in the XQuery language) for the
transformation method is also created. Both the DTF and XQ files are displayed in
the Application tab. Also, an instance of the Transformation control was created and
is represented as < transformations in the Data Palette (Controls tab).

11. Click the X in top right-hand corner of the Request Tax Rate node builder to close it.

This step completes the design of the Request Tax Rate node.

To Receive the Tax Rate Calculation From the Web Service

The interaction between the business process and the tax calculation control is asynchronous,
which means that the business process can continue performing other work while the tax
calculation service prepares its response. The tax calculation service notifies the business process

when the response is ready.

In the preceding section you designed a call to the tax calculation Web service (via a control). To
add the logic in your business process that receives the tax rate returned by the tax calculation
control, complete the following steps:

Tutorial: Building Your First Business Process Part |

1.

Design the Interaction Between Your Business Process and a Web Service

In the Data Palette, if needed, click the + beside the taxCalculation control to expand the
list of methods available on the taxCalculation control.

From the list of taxCalculation control methods, click the following method:
void returnTaxRate(float taxRate)

Drag and drop the method onto the business process placing it on the Sales Tax
Calculation Needed? node immediately below the requestTaxRate node:

A Control Receive node is created representing the asynchronous response from your Web
Service control.

--------------------- <

S
‘fes Mo

"

requestTaxRate

e

rekurnTaxRate

Sales Tax Calculation Needed?
i

The node is named according to the name of the method you dragged onto the business
process—in this case: returnTaxRate.

Double-click the returnTaxRate node. The node builder opens on the General Settings
tab. The Control instance and target methods are already selected: taxCalculation and
returnTaxRate(float taxRate), respectively.

Click the Receive Data tab. The tab opens with the Variable Assignment pane selected.

The Control Expects field is populated with the data type and name of the parameter
returned by the returnTaxRate () method on the taxCalculation control: float
taxRate.

In the Variable Assignment pane, click the arrow in the field under Select variables to
assign, then select Create new variable.... The Create Variable dialog box opens.

In the Variable Name field, enter taxRate.

In the Select Variable Type field, ensure that Java is selected, then select float.

Tutorial: Building Your First Business Process Part | 5-7

Step 4: Invoke a Web Service

9. In the Default value field, enter 0. This initializes the value of taxRate to zero.

¥ Create Variable x|

Variable Mame: | taxRate ‘

rSelect Yariable Typ
QI EML (O NonXML @ Java

=l g Java Types -

&
i
=

banlean
byte
Date
double
Float

int

long
shart

|

Hrinn

Warisble bype: | float |

Defaul value: | o ‘

10. Click OK. Your new variable, to which the sales tax rate is assigned at run time, is created
and is listed as a Java variable in the Variables tab.

11. Click the X in the top right-hand corner of the node builder. The Control Receive node
builder closes.

This step completes the design of your returnTaxRate node and the design of the
activities performed by your business process when the condition on the Decision node
evaluates to true. In the Design View, your business process resembles that shown in the
following figure:

5-8 Tutorial: Building Your First Business Process Part |

Design the Interaction Between Your Business Process and a Web Service

@E

RequestQuate

e

Client Requests Quote

% ?

Yes Mo

[? @

requestTaxRate

il

returnTaxRate

Sales Tax Calculation Needed?
i

Note that the Start node icon changed from @ to @) after you added the asynchronous
call to the Web Service control. The former icon indicates that your business process is
stateless, and the latter indicates that it is stateful.

The icons reflect the specification for the stateless property for your business process. To
see whether the stateless property is defined as true or false, click the Start node icon @)
and view the Property Editor. To learn about stateful and stateless business processes, see

Building Stateless and Stateful Business Processes. To understand why the property
changed from stateless to stateful, see Transaction Boundaries.

Note: If the Property Editor is not displayed in WebLogic Workshop, choose
View—Property Editor from menu bar.

12. From the Workshop menu, select File—Save All.

Note: No further design is required for this Decision node. If the condition evaluates to true,
the path of execution proceeds via the Yes path and the tax rate for the order is
calculated. If the condition evaluates to false—no sales tax is required—the path of
execution proceeds via the No path and a value of zero is assigned to the variable
taxRate. Remember, you specified that taxRate is initialized to zero when you
designed the taxRate variable in the preceding section.

Tutorial: Building Your First Business Process Part | 5-9

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTransaction.html

Step 4: Invoke a Web Service

5-10

Related Topics

Interacting With Resources Using Controls
Creating and Testing Maps

Guide to Data Transformation

Building Stateless and Stateful Business Processes

Tutorial: Building Your First Business Process Part |

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControls.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappercreatemap.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html

CHAPTERa

Step 5: Run Your Business Process

To run and test the business process that you have created, complete the following steps:

1.

If WebLogic Server is not already running, from the WebLogic Workshop menu, choose
Tools—WebLogic Server—Start WebLogic Server.

When WebLogic Server is running, the following indicator is visible in the status bar at the
bottom of the WebLogic Workshop visual development environment:

@ Server Running
After the Server is running, from the WebLogic Workshop menu, click Build—Build
Application. WebLogic Workshop builds your application.

After the build finishes, click the Start button © on the menu bar to run your business
process. The Workshop Test Browser is launched. You can use it to test your business
process using sample input values.

If the Test Form page is not already open, click the Test Form tab.

You can enter data that your business process can receive as part of a client request directly
on the Test Form page. Alternatively, you can browse your file system and upload a file
which contains your test data. In this case, test XML data are provided in the tutorial
application for you to use.

Open the file browser by clicking Browse beside the xml requestXML (file value) ficld.

Select QuoteRequest.xml from the requestquote\testxml folder in your project.

Tutorial: Building Your First Business Process Part | 6-1

Step 5: Run Your Business Process

The QuoteRequest.xml file is available at the following location in your file system:
myapplications\Tutorial_ Process_Application\
Tutorial_ Process_ApplicationWeb\requestquote\testxml\QuoteRequest .xml

In the preceding line, myapplications represents the location in which you created your
Tutorial_Process_Application application.

7. Click the button labeled with the method name on your business process (quoteRequest) to
start the business process.

quoteRequest

—= npload file: D:ibea\user_projectshiapplicationsiTu =
mworial Process_hpplicatijmiTucorial Process _Applicati
onWeb\requestquoteitest¥nly Quotelequest . xml ——

xml requestXML:

xml regq

L; |D:\bea\userjmjec‘ts\applications\TutoriaI_Pmcess_ﬂpplication\TutoriaI_PrDc{| Browse...

EXM
(file walue:
starts a Process

The Test Form page refreshes to display a summary of your request parameters and the
responses from the Web service in the Message Log.

Monitor
Gra

1054665932559

=% quoteRequest

taxCalculation, requestTaxR abe=+
taxCalculation.returnT ax.ate 4=
Instance 1054665932559 s

Completed.

8. Click Refresh on the Message Log to refresh the entries in the log until this instance of the
business process completes running. Entries in the Message Log correspond to the methods
on your business process:

— The quoteRequest method that starts the business process.

— A call from your business process to the taxCalculation Web service:
taxCalculation.requestTaxRate

— A response from the service to your business process: taxCalculation.returnTaxRate

— The Instance ID—When the business process finishes, a message similar to the
following is displayed in the Message Log:

Instance instanceID is Completed.

6-2 Tutorial: Building Your First Business Process Part |

where instanceIDrepresents the ID generated when the quoteRequest method in
your business process was called.

You can click any of the methods in the Message Log to view the details of the call. For
example, if you click quoteRequest, the Service Request panel displays the XML
message sent by the client (you) when the method was called.

If you click taxCalculation.returnTaxRate, you can view the response from the
taxCalculation service—in this case, the tax rate was calculated, based on the input value
(NJ) for the state eclement in the test XML.

External Service Callback taxCalculation.returnTaxRate

S o |\':'|l:lr'litl:ll' Submitted at Mon Jun 16 16:29:26 POT 2003
+ Graph
=+ quoteRequest
taxCalculation.requestTaxRate=
tarCalculation.returnTarRate+= «(allbackHeader xmins="http: {wwww.openuri.org/200204) soap/conver sation™ =

Instance 1055806157741 is Completed. <conversationID=[1055606157741 JtaxCalculation:172.16.16.146-49c469.f5d 16e353b.-

< albackHeader =

<nsireturnTaxRate xmins:ns="http:/ fw, openuri,org)" =
<nsitaxRate >0.08 </ns:taxRate>
<fns:returnTaxRate =

In the sample XML message you used, state="NJ". That is, the state to which the order is
shipped is NJ. This XML message is designed to cause the flow of execution through the
Yes branch on your Sales Tax Calculation Needed? node. The preceding figure shows the
rate of sales tax returned for this test XML message.

<returnTaxRate xmlns="http://www.openuri.org/">
<taxRate>0.08</taxRate>
</returnTaxRate>

By following these steps you ran and tested a simple business process, which contains a
Start node and a Decision node, and includes an asynchronous call to a Web service, via a
control.

9. To stop the Test Browser, you can simply close it, or return to WebLogic Workshop and
click |5 on the tool bar.

Subsequent steps in this tutorial build on the business process you have created so far.

Note About Additional Functionality in the Test Browser

The following additional links are available from the Test Form page in the Test Browser:

Tutorial: Building Your First Business Process Part | 6-3

Step 5: Run Your Business Process

6-4

Graph

Click Graph to open the Process Graph tab in the Test Browser. The interactive
instance graph is a fully expanded version of the view provided in the Design View. The
interactive process graph requires Adobe SVG Viewer Version 3.0. The first time you
open the Process Graph tab, you will be asked if you would like to download the Viewer
from the Adobe Web site. You can also download the viewer directly from the Adobe
Web site at http: //www.adobe.com/svg/viewer/install/main.html.

Note: This viewer is not available for some configurations that WebLogic Platform 8.1
supports. For details, please see “Browser Requirements for the Interactive
Graph” in Process Instance Monitoring at
http://edocs.bea.com/wli/docs81/manage/processmonitoring.html
in Managing WebLogic Integration Solutions. For detailed information about the
operating systems and browsers WebLogic Platform supports, see WebLogic
Platform Supported Configurations at
http://edocs.bea.com/platform/suppconfigs/index.html.

As previously mentioned, the Process Graph is a graphical representation of your business
process and its execution path. The Process Graph highlights the node currently being
executed. When the instance of the business process completes, the path of execution
followed in your test is highlighted. In this scenario, the Yes path is executed—the No
path is gray on the Process Graph to indicate that this path was not taken during the
execution of this instance of the business process.

Note: Press Alt and drag the mouse pointer over the Process Graph to move and position
it on the Test Browser page. To zoom in, press Ctrl+click; to zoom out, press
Ctrl+Shift+click. Alternately, right-click on the Process Graph and select the
Zoom In or Zoom Out command from the drop-down menu.

You will review your running business process in the Process Graph in a later step in the
tutorial.

Note: Use the back and forward arrows 4+ = to navigate between the pages in the
WebLogic Workshop Test Browser.

Monitor

Tu

Click Monitor to open the WebLogic Integration Administration Console in a Web
Browser. Login using username = weblogic and password = weblogic. The WebLogic
Integration Administration Console opens to the Process Instance Details page. The
WebLogic Integration Administration Console allows you to administer and manage your
WebLogic Integration applications. For example, if you click View Statistics on the
Process Instances navigation pane, you access a Process Instance Statistics page. This

torial: Building Your First Business Process Part |

page displays a summary of business process instances grouped by the process type. To
view the instances of a process type that ran or are running on your server, click the
process name. Processes instances are identified by their instancelD. Note that the
instancelD displayed for your RequestQuote business process matches the instancelD
displayed on the Message Log pane (see the preceding figures in this topic).

Monitor all RequestQuote.jpd processes
Click Monitor all RequestQuote.jpd processes at the top of the Test Form to open the
WebLogic Integration Administration Console. Login using username = weblogic and
password = weblogic. When you use this link to open the Administration Console, it
opens on the Process Instance Summary page, which displays a summary of all the
instances of business processes that ran or are running.

Related Topics

Managing WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs8l/manage/index.html

Tutorial: Building Your First Business Process Part | 6-5

Step 5: Run Your Business Process

6-6 Tutorial: Building Your First Business Process Part |

Part Il Call a Business Process
Using a Process Control

Part II of the tutorial demonstrates how simple it is to interchange calls to different external
resources in your business process.

You learn how to design a call to another business process from your Request for Quote process.
Specifically, you create a new Process control and change the asynchronous call to the Web
Service you designed in Part I, making it instead an asynchronous call to another business
process, via the new Process control.

Proceed to Step 6: Invoke a Business Process Using a Process Control to complete Part IT of the
tutorial.

Tutorial: Building Your First Business Process Part Il

CHAPTERa

Step 6: Invoke a Business Process
Using a Process Control

Process controls are used to send requests to and receive responses from other business processes
in the same domain using Java/RMI. This scenario demonstrates a typical use case for a Process
control—to call a subprocess from a parent business process.

For this part of the tutorial, we going to change the design of the business process you created in
Part I to take advantage of a tax calculation service provided by a business process instead of
using the tax calculation Web service you initially used. You can do so by first creating a Process
control from the tax calculation business process. Then you simply change the Control nodes you
designed in Part I in such a way that, instead of communicating with the tax calculation Web
service via the Web Service control, they communicate with the tax calculation business process,
via the new Process control.

The tasks in this step include:
e To Create a Process Control

e To Change the Control Send Node in the Request Quote Business Process to Interact With
the Process Control

e To Change the Control Receive Node in the Request Quote Business Process to Interact
With the Process Control

e To Test the Request Quote Process and its Call to the Tax Calculation Process

To Create a Process Control

The tutorial application provides you with a simple business process (TaxCalcProcess.jpd)
that calculates the sales tax for a Request for Quote. (See

Tutorial: Building Your First Business Process Part Il 8-1

Step 6: Invoke a Business Process Using a Process Control

8-2

\Tutorial_Process_ApplicationWeb\requestquote\services\TaxCalcProcess.jpd
in the Application pane.) In this step, you learn how to create a Process control for the
TaxCalcProcess. jpd business process.

Note: If the Data Palette is not visible in WebLogic Workshop, choose
View—Windows—Data Palette from the menu bar. Instances of controls already
available in your project are displayed in the Data Palette tab under Controls.

1. Click Add on the Data Palette Controls tab to display a drop-down list of controls that
represent the resources with which your business process can interact.

2. Point to Integration Controls, then select Process to invoke the Insert Control dialog
box.

3. In Step 1, in the Variable name for this control ficld, enter taxCalcProcess as the name
for the instance of the Process control you are about to create.

4. In Step 2, select Create a new Process control to use, then enter TaxCalcProcess in the
New JCX name field.

5. In Step 3, click Browse beside the Choose a JPD field, then choose TaxCalcProcess.jpd
from the \Tutorial_ Process_ApplicationWeb\requestquote\services folder.

The Start Method field is populated with requestTaxRate, which is the start method for
TaxCalcProcess.jpd.

Insert Control - Insert Process ﬂ
STEP1 Yariable name for this control: | taxCalcProcess |
STEP 2 Twouldlike o

(01 Use a Process control already defined by a 13 file

(®) Create a new Process control to use,

Mew IC2 name: | TaxCalcProcess |
STEP 3 &) Choose a JPD:

| ‘eh}-\requestquote\servlces\TaxCaIcProcess.]pd| I Browse. .. |
b) Select a start method From the JPD:
Start Method:‘ requestTaxRate | - |
) Invoke the query builder Query Builder...
Query:

Tutorial: Building Your First Business Process Part Il

6. Click Create. The Process control (TaxCalcProcess.jcx) is created and displayed in the
Applications tab. Also, an instance of the control (taxCalcProcess) is added to the Data
Palette. The Controls tab on the Data Palette should now resemble the following figure:

Controls Add »

% taxCalcProcess
G transformations
' taxCalculation

To Change the Control Send Node in the Request Quote Business Process to Interact With the
Process Gontrol

1. In the Data Palette, click + beside taxCalcProcess to expand the list of methods on the
control.

2. In Design View, select the following method:

void requestTaxRate (QuoteRequestDocument quoteRequest)

3. Drag and drop the method onto the requestTaxRate node in your RequestQuote.jpd. The
following message is displayed:

The Control node is already associated with a control method. Do you
wish to replace this control method?

4. Click Yes. The requestTaxRate node changes to reflect the change in the type of control
with which it is associated. The node representation changes from

| |
(? i to (?

requestTaxRate requestTaxRate

5. Double-click the requestTaxRate node to open its node builder on the General Settings
pane.

6. Confirm that taxCalcProcess is selected in the Control field and that the following method
is selected in the Method field:

void requestTaxRate (QuoteRequestDocument quoteRequest)

7. Click the Send Data tab to open the second pane in the node builder. The Variable
Assignment option is selected by default, and the Control Expects field is populated with
QuoteRequestDocument to indicate the format and type of the message expected by the
tax calculation process.

Note: The tax calculation process expects to receive a message of XML type
QuoteRequestDocument—the same type as the requestXML variable to which the
XML message sent from a client to the RequestQuote.jpd process is assigned.

Tutorial: Building Your First Business Process Part I 8-3

Step 6: Invoke a Business Process Using a Process Control

8-4

8.

Unlike the scenario for sending data to the tax calculation Web service in Step 4:
Invoke a Web Service, no transformation is required on this node—you can create a
direct variable assignment.

Click the arrow in the Select variables to assign ficld, and select
requestXML(QuoteRequest).

@) Yariable Assignment (O Transformation

Select variables to assign: Method Expects:

requestiML (Quot... | ~ | 2] quoteRequestDacumen.. .

Click the X in the top right-hand corner to close the node builder.

This step completes the procedure to remove the call from your Request for Quote business
process to a tax calculation Web Service—changing it to a call to a tax calculation business
process (via the Process control you created).

To Change the Control Receive Node in the Request Quote Business Process to Interact With the
Process Gontrol

1.

In Design View, from the Data Palette, select the following method on the taxCalcProcess:
void returnTaxRate(float salesTaxRate)
Drag and drop the method onto the returnTaxRate node in your RequestQuote.jpd.

The following message is displayed:

The Control node is already associated with a control method. Do you
wish to replace this control method?

Click Yes. The returnTaxRate node changes to reflect the change in the type of control
with which it is associated. The node representation changes from

(ibiﬂi[z to hiDEEH

returnTaxRate returnTaxRate

Double-click the returnTaxRate node to open its node builder on the General Settings
pane.

Confirm that taxCalcProcess is selected in the Control ficld and that the following method
is selected in the Method field:

void returnTaxRate (float salesTaxRate)

Tutorial: Building Your First Business Process Part Il

Click the Receive Data tab to open the second panel in the node builder. The Variable
Assignment option is selected by default, and the Control Returns field is populated with
float salesTaxRate to indicate the type and name of the parameter expected to be returned
by the tax calculation process.

Click the arrow in the Select variables to assign ficld, and select taxRate (float).

(® Variable Assignment () Transformation

Select variables to assign: Method Expects:

[tasRiate (flaat) |~ | [E37 Aot salesTaxRate

Click the X in the top right-hand corner to close the node builder.

This step completes the procedure to remove the callback handler that receives a message
from a tax calculation Web Service—changing it to a callback handler that receives a
message from a tax calculation business process (via the Process control you created).

From the Workshop menu, select File—Save All

Tutorial: Building Your First Business Process Part |l 8-5

Step 6: Invoke a Business Process Using a Process Control

To Test the Request Quote Process and its Call to the Tax Calculation Process

You can run and test the business process, which now contains an asynchronous call to another
business process (via the Process control) in the same way as you tested the business process you
created in Part I. To do so, follow steps 1 through 7, as described in Step 5: Run Your Business
Process.

When you start the operations in the Test Form page, the Message Log refreshes to display a
summary of the calls to, and responses from, the tax calculation business process.

Monitor

1054712980101 :
Graph

=+ quoteRequest

taxCalcProcess.requestTaxRate=+
taxCalcProcess reburnTaxRated=
Instance 1054712980101 is

Completed.

Entries in the Message Log correspond to the methods on your business process:
e The quoteRequest method that starts the business process.

e A call from your RequestQuote business process to the taxCalcProcess business process:
taxCalcProcess.requestTaxRate. Note that in this case, the entire Request for Quote XML
document (contained in the requestXML variable) is passed to the subprocess. This is
different to the case in which your business process called the tax calculation Web service
(Part I)—in that case, only the state field from the Request for Quote XML document was
passed to the Web service.

e A response from the taxCalcProcess business process to your RequestQuote business
process: taxCalcProcess.returnTaxRate. Note that instead of the tax rate being returned
in a Web services SOAP envelope, as it was in the return from the Web service in the
business process you created in Part I, the Process control returns the raw float value
(0.08).

e The Instance ID—When the business process finishes, a message similar to the following
is displayed in the Message Log:

Instance instanceID is Completed.

where instanceID represents the ID generated when the quoteRequest method in your
business process was called.

Note About Additional Functionality in the Test Browser

The following additional links are available from the Test Form page in the Test Browser:

8-6 Tutorial: Building Your First Business Process Part I

http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutsimple/tutWLIProcessnavPart1.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutsimple/tutWLIProcessnavPart1.html

Graph
Click Graph to open the Process Graph tab in the Test Browser. The interactive
instance graph is a fully expanded version of the view provided in the Design View. The
interactive process graph requires Adobe SVG Viewer Version 3.0. The first time you
open the Process Graph tab, you will be asked if you would like to download the Viewer
from the Adobe Web site. You can also download the viewer directly from the Adobe
Web site at http: //www.adobe.com/svg/viewer/install/main.html.

Note: This viewer is not available for some configurations that WebLogic Platform 8.1
supports. For details, please see “Requirements for the Interactive Graph” in
Process Instance Monitoring at
http://edocs.bea.com/wli/docs81/manage/processmonitoring.html
in Managing WebLogic Integration Solutions. For detailed information about the
operating systems and browsers WebLogic Platform supports, see BEA
WebLogic Platform Supported Configurations at
http://e-docs.bea.com/platform/suppconfigs/index.html.

As previously mentioned, the Process Graph is a graphical representation of your business
process and its execution path. The Process Graph highlights the node currently being
executed. When the instance of the business process completes, the path of execution
followed in your test is highlighted. In this scenario, the Yes path is executed—the No path
is gray on the Process Graph to indicate that this path was not taken during the execution
of this instance of the business process.

Note: Press Alt and drag the mouse pointer over the Process Graph to move and position
it on the Test Browser page. To zoom in, press Ctrl+click; to zoom out, press
Ctrl+Shift+click. Alternately, right-click on the Process Graph and select the
Zoom In or Zoom Out command from the drop-down menu.

You will review your running business process in the Process Graph in a later step in the
tutorial.

Note: Use the back and forward arrows 4+ = to navigate between the pages in the
WebLogic Workshop Test Browser.

Monitor
Click Monitor to open the WebLogic Integration Administration Console in a Web
Browser. Login using username = weblogic and password = weblogic. The WebLogic
Integration Administration Console opens to the Process Instance Details page. The
WebLogic Integration Administration Console allows you to administer and manage your
WebLogic Integration applications. For example, if you click View Statistics on the
Process Instances navigation pane, you access a Process Instance Statistics page. This
page displays a summary of business process instances grouped by the process type. To

Tutorial: Building Your First Business Process Part |l 8-7

Step 6: Invoke a Business Process Using a Process Control

8-8

view the instances of a process type that ran or are running on your server, click the
process name. Processes instances are identified by their instancelD. Note that the
instancelD displayed for your RequestQuote business process matches the instancelD
displayed on the Message Log pane (see the preceding figures in this topic).

Monitor all RequestQuote.jpd processes
Click Monitor all RequestQuote.jpd processes at the top of the Test Form to open the
WebLogic Integration Administration Console. (Login using username = weblogic and
password = weblogic.) When you use this link to open the Administration Console, it
opens on the Process Instance Summary page, which displays a summary of all the
instances of business processes that ran or are running.

To stop the Test Browser, you can simply close it, or return to WebLogic Workshop and click
@ on the tool bar.

This step completes Part II of the tutorial.

Related Topics
Process Control

Managing WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs8l/manage/index.html

Tutorial: Building Your First Business Process Part |l

http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsProcess.html

Part Ill Adding Looping Logic,
Parallel Paths . . .

Part I1I is comprised of Steps 7 through 12. You add more complex business logic to the business
process you created in Parts I and Part II. You learn how to create looping logic, design parallel
processing nodes, transform the price and availability data from untyped XML data to typed
XML, use a File control to write your quote to a file system, and use a Client Response node to
return the quote to the client that invoked the business process. The final step in Part III is to run
and test the business process you built.

The steps in Part III include:

Chapter 1, “Step 7: Looping Through Items in a List”
Describes how to create the logic to extract a list of items from the Request for Quote
document received from a client and performs a set of activities repeatedly, once for
each item in the list.

Chapter 2, “Step 8: Design Parallel Paths of Execution”
Describes how to design your business process to execute tasks in parallel. This step also
includes instructions about how to design your business process to interact with
resources via controls and transform the data exchanged with those controls, as required.

Chapter 3, “Step 9: Create Quote Document”
Describes how to transform the price and availability data from untyped XML data to
typed XML, and then combine the price and availability data, which is returned to the
Request Quote business process by a number of external services, to produce a single
Quote document.

Chapter 4, “Step 10: Write Quote to File System”
Describes how to write business process data to a log using a File control.

Tutorial: Building Your First Business Process Part Il

http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutsimple/tutWLIProcessnavPart1.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutprocessctrl/tutWLIProcessnavPart2.html

Chapter 5, “Step 11: Send Quote From Business Process to Client”
Describes how to send the final guote message from the business process to a client.

Chapter 6, “Step 12: Run the Request Quote Business Process”
Describes how to compile and test the business process you created by following the
steps in Part I11.

CHAPTERo

Step /: Looping Through ltems in a List

In this step, you create the logic to extract a list of items from the Request for Quote document
received from a client, and begin the work of designing the business process to determine the
price and availability of the items requested by the client.

A For Each node represents a point in a business process where a set of activities is performed
repeatedly, once for each item in a list. A For Each node includes an iterator node (on which a
list of items is specified) and a loop (in which the activities to be performed for each item in the
list are defined). An iteration variable holds the current element being processed in the For Each
loop, for the life of the loop.

This section includes the following topics:
e Understanding XML Schemas and For Each Nodes

e Design a For Each Loop in Your Business Process

Understanding XML Schemas and For Each Nodes

The business process you build in this tutorial is designed to start when it receives a Request for
Quote XML document from a client. The Request for Quote document must contain valid XML,
that is, XML valid against an XML Schema, specifically QuoteRequest .xsd. The
QuoteRequest.xsd Schema is located in your application at the following location:
myapplications\Tutorial_Process_Application\Tutorial_Process_ApplicationwWe
b\Schemas.

In the preceding line, myapplications represents the location of your tutorial application.

Tutorial: Building Your First Business Process Part Il 1-1

Step 7: Looping Through Items in a List

1-2

Note:

To make the Schemas in your project available in your business process, you must place
them in a Schemas project. A Schemas project is one of the types of projects that
Workshop applications can contain. The Schemas projects added to your WebLogic
Workshop applications are represented in the WebLogic Workshop file hierarchy as
child folders of your application folder. To learn about creating and populating Schemas
projects in your WebLogic Integration applications, see Related Topics.

XML Schemas in your application’s Schemas folder are compiled to generate XML Beans. In
this way, WebLogic Workshop generates a set of interfaces that represent different aspects of
your XML Schemas. XML Bean types correspond to types in the XML Schema itself. XML
Beans provides Java counterparts for all built-in Schema types, and generates Java counterparts
for any derived types in your Schema.

In Step 2: Specify How the Process is Started, you created a variable (requestxML) to which the
Request for Quote document (which your business process receives from a client) is assigned.
When you work with such variables in the Design View, you work with a graphical representation
of the XML Schema that is associated with the variable. The following figure is a graphical
representation of the quoteRequest element in the QuoteRequest . xsd schema, against which
the Request for Quote document from clients is valid:

= @ quoteRequest
Q customerMame
E-@ shipaddress
TP
e) * street
a2 .
&7 city
Q')? state
I ?
&7 zp
= Q+ widgetRequest
@ widgetid
@ quarkicy

Note the following characteristics of the QuoteRequest .xsd Schema:

The elements and attributes of the XML schema are represented as nodes. Note that
quoteRequest is a root element.

The quoteRequest element specifies the following child elements: customerName,
shipAddress, and widgetRequest.

The shipaddress element specifies the following attributes: street, city, state,
and zip.

The widgetRequest element is a repeating element (represented graphically by ©%).
In other words, there can be one or more occurrences of the widgetRequest element

Tutorial: Building Your First Business Process Part Il

Design a For Each Loop in Your Business Process

in an associated XML document. The widgetRequest element, in turn, contains two
elements: widgetId and quantity.

The business process in this scenario dictates that each pair of widget1d and quantity elements
received in the Request for Quote documents from clients is processed. This processing begins
with a For Each node—each iteration through the For Each loop processes one of a set of
widgetRequest items.

In this section, you design the For Each node to first extract a list of items (the widgetRequest
items) from the requestxML variable, and then to perform an activity (or set of activities)
repeatedly, once for each item in the list.

Related Topics
How Do I: Create a Schemas Project Folder?

How Do I: Import Files into a Schemas Project Folder?

Design a For Each Loop in Your Business Process

Complete the following steps to create the logic that causes your business process to iterate over
the sequence of nodes in the Request for Quote XML document:

e To Add a For Each Node to Your Business Process
e To Select a Repeating XML Element Over Which to Iterate
e To Design the Activities in Your For Each Loop

To Add a For Each Node to Your Business Process

1. Click 74 For Each in the Palette.

2. In Design View, drag and drop the For Each node onto the RequestQuote business process
placing it immediately after the Sales Tax Calculation Needed? (Decision) node.

3. Press Enter to name the node For Each.

The Design View is updated to contain the For Each node:

Tutorial: Building Your First Business Process Part |l 1-3

http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasCreate.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasImport.html

Step 7: Looping Through Items in a List

requestTaxRate

o[®

refurnTaxRate

Sales Tax Caleulation Needed?

For Each
|

To Select a Repeating XML Element Over Which to Iterate
1. Inthe Design View, double-click the For Each node to invoke its node builder.

2. In the node builder, click Select Variable. A drop-down list of variables (of typed XML) in
your project is displayed.

3. Select requestXML (QuoteRequestDocument). The requestXML variable contains the
repeating XML element over which you want to design the iteration logic. A representation
of the XML in the requestxML variable is displayed in the Select Node pane. The
repeating element is identified by @+ .

= @ quoteRequest
@ customerame
=@ shipaddress
T ?
)7 street
(I ?
&7 city
Q)? state
(a? .
&7 zip
= Q"’ widgetR equest
@ widgetld
Q quankity

4. In the Select Node pane, if not already selected, click *widgetRequest.

The Repeating Element and Iteration Variable fields are populated with the following
data:

— Repeating element—Contains the following XPath expression, which when applied
against the incoming XML document, returns the set of repeating XML elements:

SrequestXML/ns0:widgetRequest

1-4 Tutorial: Building Your First Business Process Part Il

Design a For Each Loop in Your Business Process

— Iteration Variable—Contains the name of an iteration variable: iter forEachl. At
run time, the current element being processed in the For Each loop is assigned to the
iteration variable.

5. Click the X in the top right-hand corner to close the node builder.

The iteration variable, iter_forEachi, is created and added to the list of variables in the
Data Palette. This variable is of XML type WidgetRequestDocument.

To learn how the iteration variable is used in the For Each loop, see To Design the Create
PriceList Node.

This step completes the design of the iteration logic for your For Each node. Note that in
the Design View, the node is updated graphically to reflect the work you did to define the

condition:
.

ForEach
|

[

[indicates that the design of the task on the node is complete, as compared to [/, which
indicates that the design is not complete. =] indicates that an XML query is defined on

the node.

To Design the Activities in Your For Each Loop

After you create the iteration logic in your For Each node, you must define the activity or set of
activities performed during each iteration over the items in the list you created.

You add activities to the For Each loop by creating nodes within it that support your business
logic. In the next step in this tutorial, you create a Parallel node, and design it so that the business
process executes two sets of activities in parallel: the request for price, and the determination of
availability for the items requested by the client. To learn how to design a Parallel node, see Step
8: Design Parallel Paths of Execution.

Related Topics
Business Process Variables and Data Types
Looping Through Items in a List

Grouping Nodes in Your Business Process

Tutorial: Building Your First Business Process Part lll 1-5

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypes.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideForEach.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideGroups.html

Step 7: Looping Through Items in a List

1-6 Tutorial: Building Your First Business Process Part IlI

CHAPTERa

Step 8: Design Parallel Paths of
Execution

In the preceding step, you created a For Each loop to iterate over a set of repeating elements in
a Request for Quote document. In this step, you design the activities within the For Each loop.
That is, you design the activities that are performed for each iteration your business process
makes through the loop.

When your business process interacts with multiple different systems, as is the case during the
price and availability processing in this scenario, you can increase throughput in the business
process by executing tasks in parallel. You add Parallel nodes to your business process when you
want to create two or more such parallel branches of execution.

In our example scenario, the business process must determine both price and availability
information so that a quote can be prepared and returned to the client. This business process can
benefit from parallelism because it communicates with two external systems: one for the price
calculation; one for the availability calculation. The business process expects a response from
each of the external systems.

The external systems can be any resource (other business processes, Web services, EJBs,
databases, file systems, and so on) that returns the information your business process requires.
Your business process interacts with the resources via controls. The tutorial uses two Web
services: one returns the price for each widget 1D specified in the client’s request document; a
second service returns availability information, based on the widgetID and the quantity
specified in the request document. The controls with which your RequestQuote business process
interacts are provided for you in your project folder:

\Tutorial_ Process_ApplicationWeb\requestquote\services. The controls are

PriceProcessorControl.jcx and AvailProcessorControl.jcx.

Tutorial: Building Your First Business Process Part Il 2-1

Step 8: Design Parallel Paths of Execution

Related Topics

Understanding Parallel Execution in Your Business Process

Create a Parallel Node

To Add A Parallel Node to Your Business Process

1. Make sure that your business process (RequestQuote.jpd) is displayed in Design View.

2. InDesign View, select 5 Parallel in the Palette, then drag and drop the Parallel node
onto the business process, placing it inside the For Each loop.

3. Press Enter to name the node Parallel.

The Design View is updated to contain a representation of the Parallel node as shown in
the following figure:

Branch Branch

For Each
|

4. Change the names of the branches contained within the Parallel node to identify the
activities that your business process executes in parallel:

— Double-click the label on the left Branch and enter Get Price, then press Enter.

— Double-click the label on the right Branch and enter Get Availability, then press
Enter.

2-2 Tutorial: Building Your First Business Process Part IlI

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideParallelUnderstand.html

Create Logic to Assemble Price and Availability Data

Note About Join Conditions

By default, Parallel nodes specify an AND join condition, represented by @ on the Parallel
branch lines. In this case, the activities on all branches must complete before the flow of
execution proceeds to the node following the parallel node.

In the case of your RequestQuote business process, because you want both branches of the
Parallel node to complete, do not change the default AND join condition.

If an OR join condition is specified, when the activities on one branch complete the execution of
activities on all other branches terminates, and the flow of execution proceeds to the node
following the Parallel node. (The OR join condition is represented as 4 in the Design View.)

In Design View, you can view and edit the join condition property in the Property Editor. Click
@ or & (at the top of the Parallel node) to display the properties of the Parallel node in the
Property Editor. The Property Editor for your Parallel node should resemble that shown in
the following figure:

l_l Property Editor X

Parallel - Parallel
general
narne Parallel
notes
parallel
join condition AND
continue transac false

Create Logic to Assemble Price and Availability Data

In this section, you learn how to:

e Invoke the price and availability services (via controls) from the parallel branches you
created.

e Design callbacks on your branches to wait for and handle the responses from the controls.

e Construct an XML document, to which the response data from controls is appended for
each iteration through the For Each loop. (Review your business process in Design View:
your Parallel node is within the For Each loop, meaning that the flow of execution is
through the Parallel node for each iteration through the loop.)

To design the Parallel node to interact with the price and availability Web services, complete the
following tasks:

e To Create Instances of the PriceProcessor and AvailProcessor Controls in Your Project

Tutorial: Building Your First Business Process Part |l 2-3

Step 8: Design Parallel Paths of Execution

24

e To Add Control Nodes to Your Business Process
e To Design the Activities on the Get Price Branch
e To Design the Activities on the Get Availability Branch

To Create Instances of the PriceProcessor and AvailProcessor Controls in Your Project

The Web service controls (PriceProcessorControl.jcx and
AvailProcessorControl.jcx) are provided for you in your application’s project (specifically
in
myapplications\Tutorial_Process_Application\Tutorial_Process_ApplicationwWeb
\requestquote\services folder, where myapplications represents the location at which
you created your tutorial application). The goal of this section is to describe how to create the
appropriate controls in your application, and then design the communication between your
business process and these controls.

1. Click Add on the Data Palette Controls tab to display a list of controls that represent the
resources with which your business process can interact.

2. Choose Web Service. The Insert Control dialog box is displayed.
3. In Step 1, enter priceProcessor as the variable name for this control.

4. In Step 2, ensure that the following option is selected: Use a Web Service control already
defined by a JCX file.

5. Click Browse beside the JCX file field, browse to the

\Tutorial_ Process_ApplicationWeb\requestquote\services folder, choose
PriceProcessorControl.jcx, then click Select. The file browser closes.

6. Click Create.

The Insert Control dialog box closes and an instance of the Web Service control is
created in your project and displayed in the Data Palette.

7. Repeat steps 1 through 6, but enter availProcessor as the variable name for the control, and
choose the AvailProcessorControl.jex control, which is already defined in the following
folder, as the control file on which to base your instance:
\Tutorial_Process_ApplicationWeb\requestquote\services folder.

The availProcessor Web Service control instance is added to the Data Palette:

Tutorial: Building Your First Business Process Part Il

Create Logic to Assemble Price and Availability Data

Controls Add v

availProcessor
priceProcessor
%taxCalcProcess
taxCaIcuIation
@ transformations

To Add Control Nodes to Your Business Process

You learned in Parts I and II that you can create Control nodes in your business process by
dragging the methods from the appropriate control on the Data Palette onto the business process
in the Design View. You can also create Control nodes by selecting Control Send, Control
Receive, or Control Send with Return from the Palette and dragging them onto the business
process. You subsequently bind the appropriate methods to the control node you created. In this
section you will use the latter approach.

Add the following nodes from the Palette to each branch on your Parallel node:

o = Control Send

e _@ Control Receive

e i@ Control Send with Return

In Design View, select each of the listed nodes, then drag and drop the node onto the business
process, placing the nodes on the Parallel branches until you create a Parallel group as shown in
the following figure:

[=0
=
)
ey =
8 &
GetPrice Get Availability
Gdl) Gdl)
Caontrol Send Caontrol Send
N | o
Control Receive Control Receive
W W
Contral Send with Return Contral Send with Return

Parallel

Tutorial: Building Your First Business Process Part lll 2-5

Step 8: Design Parallel Paths of Execution

2-6

In this way, each branch is designed for the following flow of execution:
1. Call a resource (via a control) from the Control Send node.
2. Wait for a response from the control at the Control Receive node.

3. Make a synchronous call to a control at the Control Send with Return node. At this node
you call a Transformation that constructs an XML document. The response data from
controls is appended to this XML document for each iteration through the For Each loop.

To Design the Activities on the Get Price Branch

1. Rename the nodes on the Get Price Branch (in the order in which they are executed) as
follows: Request Price, Receive Price, Create PriceList.

2. Complete the following tasks:

e To Design the Request Price Node

e To Design the Receive Price Node

e To Design the Create PriceList Node
To Design the Request Price Node

1. Double-click the Request Price node to open its node builder. The node builder opens on the
General Settings tab.

2. Click the arrow beside the Control field to display a drop down list of the instances of the
controls in your project and select priceProcessor.

The Method panel is populated with a list of the asynchronous send methods you can
invoke on the priceProcessor control.

3. Select the following method: void getPrice(int itemID)

4. Click Send Data to open the second tab in the node builder.

By default, the Send Data tab opens on the Variable Assignment pane. (The Control
Expects field is populated with the data type expected by the getpPrice() method exposed
by the priceProcessor Web service: int itemID.)

Note: The priceProcessor service takes the ID of the item requested as input, and returns
the price of the widget.

5. Select Transformation to switch modes in the Send Data tab.

Tutorial: Building Your First Business Process Part Il

Create Logic to Assemble Price and Availability Data

(") Wariable Assignment (8 Transformation

Step 1: Select variables to map to the method parameters,

Select one or more variables: Control Expects:
| Seleck Variable | | | | ink ikemID |

Note: In this case, you must switch modes because the data type required as input to the
priceProcessor control is int, and the iter_forEach1 variable, which holds the
value of widgetId in the For Each loop, is of type XML
(WidgetRequestDocument valid against an XML Schema).

The iteration variable was created for you when you specified the repeating element
over which the For Each loop iterates. At run time, it holds the current
widgetRequest element—that is, the one currently being processed in the For Each
loop. (See Design a For Each Loop in Your Business Process.)

6. In Step 1, click Select Variable to display the variables in your project, then choose
iter_forEachl (widgetRequest).

(") Mariable Assignment (8) Transformation

Step 1: Select variables ko map to the method parameters,
Select one or more wariables: Contral Expects:

Select Variable |Remuve intitemID ‘

@ iter_forEachi {widgetRequest)

|
7. In Step 2, click Create Transformation.

The Transformation tool opens and displays a representation of the iter_forEachl
(widgetRequest) variable in the Source pane, and an int in the Target pane.

8. Click widgetID in the Source pane and drag your mouse over to int in the Target pane. A
line is drawn between the widgetID and int elements in the map pane. It represents the
transformation between the two data types.

| Source || Target |
B @? iter_forEachl ,— int
&) widgetld
@ quantity

As you draw the line in the map pane, WebLogic Workshop will display the following
warning:

The datatype of the source node: [widgetId] and target node: [int] do not
match, a type conversion will be applied.

Note: Creating this transformation creates a new method under the
RequestQuoteTransformation.dtf already created in your project and prebuilt
for you in the tutorial application. It is available in the

Tutorial: Building Your First Business Process Part lll 2-1

Step 8: Design Parallel Paths of Execution

Tutorial_Process_ApplicationWeb\requestquote folder. A new XQ file,
which contains the query for this transformation method, is also created. See Note
About Transformations.

9. In the Application pane, double-click RequestQuote.jpd to return to your process.

10. To close the Request Price node builder, click the X in the top right-hand corner of the
node builder.

This step completes the design of the Request Price node.
To Design the Receive Price Node

1. Double-click the Receive Price node to open its node builder. The node builder opens on the
General Settings tab.

2. Click the arrow beside the Control field to display a list of the instances of controls in your
project and select priceProcessor.

The Method panel is populated with a list of the asynchronous receive methods on the
priceProcessor control.

3. Select the following method from the list:
void returnPrice(int itemID, float price)
4. Click Receive Data to open the second tab in the node builder.

The Control Returns field is populated with the data types returned by the
returnPrice(int itemID, float price) method on the priceProcessor Web service.

(%) Yariable Assignment () Transformation

Select variables to assign: Control Returns:

The PriceProcessor service takes the itemID (an int) as input and returns an int and a
float—containing values for the itemID and the price, respectively.

In this case, you must switch from the Variable Assignment mode displayed in the
preceding figure to the Transformation mode because you want to assign the data
returned by the priceProcessor service to a variable of type XML. To do so, your business
process must transform the Java data types returned from the priceProcessor service to
typed XML.

5. Click Transformation. The Receive Data tab is displayed as shown in the following
figure:

2-8 Tutorial: Building Your First Business Process Part IlI

Create Logic to Assemble Price and Availability Data

(O Variable Assignment @ Transformation

Step 1: Select varisbles to map ta the method parameters.

Select one or more variables: Control Returns:
[Select variabie | [| [it emio
]] float price

6. In Step 1, click Select Variable, then Create new variable.... The Create Variable dialog
box is displayed.

7. In the Variable Name field, enter price.
8. In the Select variable Type pane, ensure that XML is selected.

9. Click the + beside priceQuote.xsd in XML Types to expand the list, then select
priceRequest from the list. The Variable Type field is populated with
org.example.price.PriceRequestDocument.

= |<_j PriceCuoke, xsd
[] price
[#] pricerequests
[widget1d
[#] shipaddress
=[] priceRequest
) widgetld
@ price
[#] pricequote
[=] customertiame

10. Click OK. The Create Variable dialog box closes and the new variable is displayed in the
Receive Data tab. It is also listed as an XML Type variable in the Data Palette.

11. In Step 2 on the Receive Data tab, click Create Transformation. The Transformation tool
opens and displays a representation of the int (itemID) and float (price) in the Source
pane, and the price variable in the Target pane.

12. Map the elements in the Source pane to the elements in the Target pane, as shown in the
following figure:

itemID to widgetld
price to price
Source " Target
iternlD = ? priceRequest
price Q 5 widgetld
@ 5 price

Note: Creating this transformation creates a new method under the
RequestQuoteTransformation.dtf already created in your project and prebuilt in
the tutorial application. It is available in the

Tutorial: Building Your First Business Process Part |l 2-9

Step 8: Design Parallel Paths of Execution

2-10

Tutorial_Process_Application\Webrequestquote folder. A new XQ file,
which contains the query for this transformation method, is also created.

13. To return to your business process, double-click RequestQuote.jpd in the Application
pane.

14. To close the Receive Price node builder, click the X in the top right-hand corner of the
node builder.

This step completes the design of the Receive Price node.

To Design the Create PriceList Node

In this step, you use a Transformation control (PriceAvailTransformations) provided in your
project to append the price data returned from the priceProcessor control (on each iteration
through the For Each loop) to a single variable.

Previously, when you designed nodes in the business process, you created transformation
methods on a Transformation as necessary to map the data your business process sent to or
received from clients and controls. In this case, you also use a Transformation, but in a different
way. In the case of the Create PriceList node, the data is not sent to a client or control. Instead,
the Transformation takes, as input from your business process, typed XML data and returns
untyped XML (xm10bject). The business process must append the data returned on every
iteration of the For Each loop to a single variable, thus creating a repeating sequence of XML
data. A variable that can hold this type of repeating sequence of XML data in a For Each loops
is of type XmlObjectList. Both typed and XmlObject variables can be appended to variables of
type XmlObjectList. (See Note About Using the XmlObjectList Data Type.)

Note: This transformation is prebuilt for you in the tutorial application. It is available in the
Tutorial_Process_Application\Webrequestquote folder.

A description of how to create the PriceAvailTransform.dtf file is beyond the
scope of this tutorial. To learn more about Transformations, see Note About
Transformations.

To Create an Instance of the PriceAvailTransformations Control in Your Project

1. If the Data Palette pane is not visible in WebLogic Workshop, choose
View—Windows—DPata Palette from the menu bar.

2. On the Applications pane, click the priceAvailTransformations.dtf file.

Tutorial: Building Your First Business Process Part Il

3.

Create Logic to Assemble Price and Availability Data

{3 Tutorial_Process_Application
(B schemas
1433 Tutorial_Process_applicationWeb
=29 requestquate
(2 services
(20 testaxml
5= PricefwailTransformations, dtf
2] convertAvailistToxML.xg
2] convertAvailiMLEDXMLOb] . xq
|57] convertPricelist TaXML.xq
|£7] conwertPriceMLtoRMLObj. xq
0;'0 RegquestQuote.jpd*

Drag the PriceAvailTransformations.dtf file from the Applications pane onto the
Controls pane of the Data Palette. The instance of your control
(priceAvailTransformations) is created and displayed in the Data Palette as shown in the
following figure:

| Data Palette

Controls

G availProcessor
=g pricefivailTransformations
2 AvailQuoteDocument convertavailistToxML(com . bea.xml, ¥miObjectList _XmlobjectListDoc)
7 smiobject convertawailMLEDRMLObI 0. example. avail, AvailRequestDocument _availR equestDoc)
2 smiobject convertPriceXMLE0XMLOb(org. example. price, PriceRequestDocument _priceRequestDoc)
: PriceCuoteDocument converkPricelistToxML{org, example. request. QuoteRequestDocument _guoteRequestDoc, com.bea, xml, =ml
G priceProcessor
0%1 taxCalcProcess

@ taxCalculation

To Design the Interaction of the Create PriceList Node With the Transformation

1.

In the Data Palette, expand the priceAvailTransformations instance, as shown in the
preceding figure, then click the following method:

XmlObject
convertPriceXMLtoXMLOb]j (org.example.price.PriceRequestDocument
_priceRequestDoc)

Drag the method from the Data Palette and drop it on the Create PriceList node in the
Design View. The Create Price List node changes to reflect the binding of the method, as
shown in the following figure:

=W’ « @

Create Pricelisk Create Pricelisk

Double-click the Create PriceList node to open its node builder. The node builder opens
on the General Settings tab.

4. Confirm that the method you dragged onto the node is selected:

Tutorial: Building Your First Business Process Part |l 2-11

Step 8: Design Parallel Paths of Execution

2-12

10.

11.

12.

XmlObject
convertPriceXMLtoXMLOb]j (org.example.price.PriceRequestDocument
_priceRequestDoc)

Click Send Data to open the second tab in the node builder.

The Control Expects field is populated with the data type and name of the parameter
expected by the convertPricexMLtoxMLObj() method on the
priceAvailTransformations control: PriceRequestDocument _priceRequestDoc.

Click the arrow on the field under Select variable to assign to display a list of variables,
then select price (PriceRequestDocument).

In this case, note that the data type of your price variable (PriceRequestDocument)
matches that of the data expected by the priceAvailTransformations.

Click Receive Data to open the third tab in the node builder.

The Control Returns field is populated with the data type of the parameter returned by the
convertPriceXMLtoxXMLOb]() method on the priceAvailTransformations control:
XmlObject.

An xmlObject is a Java data type that specifies data in untyped XML format. In other
words, this data type represents XML data that is not valid against an XML Schema.

Click the arrow on the field under Select variable to assign and sclect Create new
variable The Create Variable dialog box opens.

In the Variable Name field, enter priceList.

If necessary, in the Select Variable Type pane, select XML to display a representation of
the XML data types in your application. (XmlObject is selected by default. You must
change this selection in the following step).

Select XmlObjectList and click OK.

The priceList variable is created and assigned to receive the XmlObject data returned by
the priceProcessor service.

(® Variable Assignment () Transformation

Select variables to assign: Method Expects:

5™ pricaList (¥miCb... | ~ | [E"™ smiChject

To close the Create PriceList node builder, click the X in the top right-hand corner.

This step completes the design of the Get Price branch on the Parallel node. At run time,
by executing this branch, your business process appends the XmlObject, which contains

Tutorial: Building Your First Business Process Part Il

Create Logic to Assemble Price and Availability Data

the data returned by the priceProcessor control (during the current iteration through the
For Each loop), to the priceList variable.

13. From the Workshop menu, select File—Save All

To Design the Activities on the Get Availability Branch

1.

2.

Rename the nodes on the Get Availability Branch (in the order in which they are executed)
as follows: Request Availability, Receive Availability, Create AvailList.

Complete the following tasks:

e To Design the Request Availability Node
e To Design the Receive Availability Node

e To Design the Create AvailList Node

To Design the Request Availability Node

1.

Double-click the Request Availability node. The node builder opens on the General
Settings tab.

Click the arrow beside the Control field to display a list of the instances of controls
available in your project and select availProcessor.

The Method panel is populated with a list of the asynchronous send methods you can
invoke on the availProcessor control.

Select the following method from the list:
void getAvail (int itemID, int quantity)
Click Send Data to open the second tab in the node builder.

By default, the Send Data tab opens on the Variable Assignment pane. The Control
Expects field is populated with the data types and names of the parameters expected by the
getavail() method exposed by the availProcessor Web service: int itemID and int
quantity.

Note: The availProcessor service takes, as input, the itemID (int) and the quantity (int)
requested by the client. It returns the itemID (int), the quantity available (int), a
boolean to indicate whether the widgets are in stock, and a ship date (String).

Select Transformation to switch modes in the Send Data tab.

Tutorial: Building Your First Business Process Part |l 2-13

Step 8: Design Parallel Paths of Execution

2-14

() Variable Assignment (@ Transformation

Step 1: Select variables to map to the method parameters.

Select one or more variables: Control Expects:
‘ Select Variable | | | ink kernlD
‘ | ink quankity

Note: In this case, you must switch modes because you must transform the data you input
to availProcessor. The availProcessor control requires its input as int data types,
and the iter_forEach1 variable, which holds the value of widgetId and quantity
in the For Each loop, is of type XML (widgetRequestDocument valid against an
XML Schema).

In Step 1, click Select Variable to display the variables in your project, then choose
iter_forEachl (WidgetRequest).

() Variable Assignment () Transformation

Step 1: Select variables to map to the method parameters.
Select one or more variables: Control Expects:
Select Variable | | |nt itemlD
int quantit:
(@] iter_forEach1 (widgetRequest) (i int q Y

In Step 2, click Create Transformation.

The Transformation tool opens and displays a representation of the iter_forEachl variable
in the Source pane, and the integer arguments to the availProcessor transformation
method in the Target pane.

Map the elements in the Source pane to the elements in the Target pane, as shown in the
following figure:

widgetID to itemID
quantity to quantity
Source " || Target
E @? iter_forEachl = IEP availProcessorgetfvailzz20bjeck
@ widgetId [¢ itemin
@ quartity 5 quantity

A line is drawn between the elements in the map pane. It represents the transformation
between the data types.

Note: Creating this transformation creates a new method under the
RequestQuoteTransformation.dtf already created in your project and prebuilt in
the tutorial application. It is available in the
Tutorial_Process_ApplicationWeb/requestquote folder. A new XQ file,
which contains the query for this transformation method, is also created.

9. Double-click RequestQuote.jpd in the Application pane to return to your process.

Tutorial: Building Your First Business Process Part Il

Create Logic to Assemble Price and Availability Data

10. To close the Request Price node builder, click the X in the top right-hand corner of the
node builder.

This step completes the design of the Request Availability node.
To Design the Receive Availability Node

1. Double-click the Receive Availability node. The node builder opens on the General Settings
tab.

2. Click the arrow beside the Control field to display a list of the instances of controls
available in your project and select availProcessor.

The Method panel is populated with a list of the asynchronous receive methods on the
availProcessor control.

3. Select the following method from the list:
void avail (int itemID, int gty, boolean avail, String date)
4. Click Receive Data to open the second tab in the node builder.

The Control Returns fields are populated with the data types and names of the parameters
returned by the avail (int itemID, int gty, boolean avail, String date)
method on the availProcessor Web service.

Note: In this case, you must switch from the Variable Assignment mode to the
Transformation mode on the Receive Data tab because you want to assign the data
returned by the availProcessor service to a variable of type XML. To do so, your
process must transform the Java data types returned to typed-XML.

5. Click Transformation. The Receive Data tab is displayed as shown in the following
figure:

(O Variable Assignment @ Transformation

Step 1: Select varisbles to map ta the method parameters.
Select one or more variables: Control Returns:
Selert Variable | [ink itemID

ink gty

[bodlean avail

String date

6. Click Select Variable, then Create new variable.... The Create Variable dialog box is
displayed.

7. In the Variable Name field, enter avail.

8. In the Select variable Type pane, ensure that XML is selected.

Tutorial: Building Your First Business Process Part |l 2-15

Step 8: Design Parallel Paths of Execution

2-16

9. In XML Types, click the + beside availQuote.xsd to expand the list, then select
availRequest from the list. The Variable Type field is populated with
org.example.avail. AvailRequestDocument.

¥ Create Variable ‘ x|

Variable Mame: | avail ‘

rSelect Yariable Typ

@ XML (O NonXML) Java
=1 5] XML Types -

B i Typed
= |<—_§| Availguote.xsd

[# availquote
= 2] avairequest
@) widgettd
@ requestedGuantity
@ quantityAvail
@7 shippate
[5] yanbibedwsil]

wariable type: | org.example. avall AvailRequestDocument |

10. Click OK. The Create Variable dialog box is closed and your new variable is created and
is listed as an XML Type variable in the Data Palette.

11. In Step 2, click Create Transformation to open the Transformation tool, which displays a
representation of the data types returned by the availProcessor control in the Source pane,
and the avail variable in the Target pane.

12. Map the Source values to the Target elements as shown in the following:

itemID to widgetld
qty to requestedQuantity
avail to quantityAvail

date to shipDate)
Source || Target
iternIDr = @? availRequest
[/l gty @ ¢ widgetld
avail Q 5 requestedQuantity
7 date —— @ ¢ quantitydwai

S U;, shipDate

Note: Creating this transformation creates a new method under the

RequestQuoteTransformation.dtf already created in your project and prebuilt in

the tutorial application. It is available in the

requestquote\Tutorial_Process_ApplicationWeb folder. A new XQ file,

which contains the query for this transformation method, is also created.

Tutorial: Building Your First Business Process Part Il

Create Logic to Assemble Price and Availability Data

13. Double-click RequestQuote.jpd in the Application pane to return to your business
process.

14. To close the Receive Availability node builder, click the X in the top right-hand corner of
the node builder.

This step completes the design of the Receive Availability node.

To Design the Create AvailList Node

In the same way as you designed the business process to append the price data to a single variable
when you designed the Get Price branch of the Parallel node, in this step, you call a method on
the priceAvailTransformations control to append the availability data returned to a single
variable, of type XmlObjectList. (See Note About Using the XmlObjectList Data Type.)

1. If necessary, expand the priceAvailTransformations control instance in the Data Palette,
then click the following method:

XmlObject
convertAvailXMLtoXMLObj (org.example.avail.AvailRequestDocument
_availRequestDoc)

2. Drag the method from the Data Palette and drop it on the Create AvailList node in the
Design View. The Create AvailList node changes to reflect the binding of the method, as
shown in the following figure:

(2@ -to - (2

Create Availlist Create Availist
| |

3. Double-click the Create AvailList node. The node builder opens on the General Settings
tab.

4. Confirm that the priceAvailTransformations control is selected in the Control field, and
that the method you dragged onto the node is selected in the Method field:

XmlObject convertAvailXMLtoXMLObJj (org.example.AvailRequestDocument
_availRequestDoc)

5. Click Send Data to open the second tab in the node builder.

The Control Expects field is populated with AvailRequestDocument, which is the data
type expected by the

convertAvailXMLtoXMLObJ (org.example.avail.AvailRequestDocument
_availRequestDoc) method on the priceAvailTransformations control.

Tutorial: Building Your First Business Process Part |l 2-11

Step 8: Design Parallel Paths of Execution

6. Click the arrow on the field under Select variable to assign to display a list of variables.
Select avail (AvailRequest).

In this case, note that the data type of your avail variable (AvailRequest) matches that of
the data expected by the priceAvailTransformations control.

7. Click Receive Data to open the third tab in the node builder.

The Control Returns field is populated with xm10bject, which is the data type returned
by the convertavailXMLtoxMLOb]() method on the priceAvailTransformations control.

An xmlObject is a Java data type that specifies data in untyped XML format. In other
words, this data type represents XML data that is not valid against an XML Schema.

8. Click the arrow on the field under Select variable to assign and select Create new
variable The Create Variable dialog box is displayed.

9. In the Variable Name field, enter availList.

Create Yariable

L

Wariable Mame: | availlist

rSelect Yariable Typ
@ ML CNonxML O Java

=1 g XML Types
-5 Typed
|<—_§| Availguote.xsd
13 Pricequate.xsd
|<—_§| Quote.xsd
|<—_§| QuoteRequest, xsd
Bl g Untyped
™ xmiCbject
=3 HmiobjectList

‘arisble type: | com.bea.xml. XmlObjectList |

10. In the Select Variable Type pane, if necessary, select XML to display a representation of
the XML data types in your application.

11. Select XmlObjectList, then click OK.

The availList variable is created and assigned to receive the XmlObject data returned by
the availProcessor service.

(%) Yariable Assignment () Transformation

Select variables to assign: Control Returns:

@* availlist (ZmlObie. .. | - @ smidbject

12. To close the Create AvailList node builder, click the X in the top right-hand corner of the
node builder.

2-18 Tutorial: Building Your First Business Process Part IlI

Create Logic to Assemble Price and Availability Data

This step completes the design of the Get Availability branch on the Parallel node. At run
time, by executing this branch, your business process appends the XmlObject, which
contains the data returned by the availProcessor control (during the current iteration
through the For Each loop), to the availList variable.

13. From the Workshop menu, select File—Save All
Note About Using the XmlObjectList Data Type

On each iteration through the For Each loop, the priceProcessor service returns price data, which
is assigned to the price variable; and the availProcessor service returns availability data, which
is assigned to the avail variable. Your business process must collect the price data returned on
each iteration and create a list of price data; one item is assigned to the list for each iteration
through the loop. Similarly, a list of availability data is created on the Get Availability branch of
the Parallel node for each iteration through the loop.

An xmlObjectList is a Java data type that specifies a sequence of untyped XML format data.
In other words, this data type represents a sequence of XML elements (a set of repeating
elements). As the final step of each iteration through the Get Price branch in your Parallel node,
your business process assigns the data from the price variable to the priceList variable (of
type XxmlObjectList). In this way, a single variable holds the price data for each of the widgets
in the Request for Quote over which the For Each loop iterates. In the same way, a single variable
holds the availability data for each widget.

To learn how the XmlObjectList variable is used, see To Design the Create PriceList Node and
To Design the Create AvailList Node.

Related Topics

Note About Transformations
Creating Maps

Testing Maps in the Test View
Guide to Data Transformation

Understanding Parallel Execution in Your Business Process

Tutorial: Building Your First Business Process Part |l 2-19

http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappertestmap.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappercreatemap.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideParallelUnderstand.html

Step 8: Design Parallel Paths of Execution

2-20 Tutorial: Building Your First Business Process Part IlI

CHAPTERa

Step 9: Create Quote Document

As a result of the work you did when you designed the Parallel node, at the point at which the
business process exits the For Each node, the price quote data are assigned to the priceList
variable, and the availability quote data are assigned to the availList variable. Both the
priceList and the availList variables are of data type XmlObjectList (a untyped sequences
of XML data).

In this step, you first transform the data in the priceList and availList variables from untyped
XML data (xm10bjectList) to typed XML (that is, to XML that is valid against the XML
Schemas provided in your project). Subsequently, you combine the XML-typed price and
availability data to produce a single guote document, which comprises the response your business
process sends to the client that invoked it.

Note About Transformations

WebLogic Integration allows you to create Transformations in the following ways:

e Using the node builders in your business process. You are already familiar with creating a
Transformation control and transformation methods in this way.
RequestQuoteTransformation.dtf was created for you the first time you created a
transformation from a node builder, that is, when you needed to map the data types from
the Request for Quote message to the input of the taxCalculation control. (To review,
see “To Call the Tax Calculation Web Service From Your Business Process” in Step 4:
Invoke a Web Service) You subsequently created several additional transformation
methods on RequestQuoteTransformation.dtf (and associated XQ files) on Control
nodes within the Parallel node you designed.

Tutorial: Building Your First Business Process Part Il 3-1

http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutsimple/tutWLIProcessWebSvcCTRL.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutsimple/tutWLIProcessWebSvcCTRL.html

Step 9: Create Quote Document

e By choosing File—New—Iransformation File from the WebLogic Workshop menu.
Transformation files you create in this way can be called from your business process via
Control nodes.

The following Transformation files were created using this method, and are provided for
you in the tutorial application: PriceAvailTransformations.dtf and
TutorialJoin.dtf. You used PriceAvailTransformations.dtf in the previous step
(Step 8: Design Parallel Paths of Execution) and you will use it again in this step, as well
as TutorialJoin.dtf in this step.

In this step, you design the logic in your business process that creates a single quote document
from the price and availability data already calculated. This involves designing Control nodes

that call the PriceAvailTransformations.dtf and TutorialJoin.dtf Transformation
files.

Note: A description of how to create these Transformation files is outside the scope of this
tutorial. However, to learn how to create TutorialJoin.dtf, see Tutorial: Building
Your First Data Transformation.

In this step, in which you create a single quote document for a client, you must complete the
following tasks:

e Convert Price List to XML Quote Document
e Convert Availability List to XML Quote Document

e Combine Price and Availability Quotes

Convert Price List to XML Quote Document

Complete the following steps to design a node to transform the price list (created as a result of
iteration through the For Each loop) to a variable whose data type is typed-XML. To do so, you
use methods on the priceAvailTransformations control.

3-2 Tutorial: Building Your First Business Process Part IlI

http://e-docs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

Convert Price List to XML Quote Document

To Design the Interaction With the Transformation Control

1. With the priceAvailTransformations control instance expanded in the Data Palette, click
the following method:

PriceQuoteDocument convertPriceListToXML
(QuoteRequestDocument _guoteRequestDoc, XmlObjectList _XmlObjectListDoc)

| DataPalstte x

&

Controls Add

& availProcessor
=16 pricedvailTransformations
T AvailQuoteDocument convertAvailistToXML{com, bea,xml, XmiObjectList _BmiCbjectlistDoc)
2 ¥miobject corvertivailkMLEoRMLObj(org. example, avail, AvalRequestDocument _availtequestDoc)
T ¥miobject corvertPriceXMLEoEMLCbj(org, example, price, PriceRequest Document, _priceRequestDoc)
7 PriceQuoteDocument convertPricelistToXML{org, example.request. QuoteRequestDocument _guoteRequestDoc, com, bea,xml, smiChjectList _¥miObjectListDoc)
% priceProcessor
2, taxCalcProcess
&5 taxCalculation
& transformations

[l

2. Drag the method from the Data Palette and drop it on your RequestQuote business
process in the Design View, placing it immediately after, and outside, the For Each block.

Parallel

‘ For Each

}
=k

convertPricelistTaxML

Finish

3. Rename the node from convertPriceListToXML to Convert PriceList To PriceQuote
XML.

4. Double-click the Convert PriceList To PriceQuote XML node to open its node builder.

5. Verify that the priceAvailTransformations control and the following method are selected
on the General Settings tab:

PriceQuoteDocument convertPriceListToXML
(org.example.request.QuoteRequestDocument _guoteRequestDoc,
com.bae.xml.XmlObjectList _XmlObjectListDoc)

6. Click Send Data to open the second tab in the node builder.

Tutorial: Building Your First Business Process Part |l 3-3

Step 9: Create Quote Document

The Control Expects field is populated with the data type expected by the
convertPriceListToxML() method on the priceAvailTransformations control:

(%) Yariable Assignment () Transformation

Select variables to assign: Control Expects:

Note: The convertPriceListToxML () method on the priceAvailTransformations
control is designed to achieve two goals: First, to transform the xm10bjectList
price data to typed XML, and then to combine the customer name, the shipping
address, and the price quote data (the price list) in a single variable. The
convertPriceListToxML () method receives the price list in a parameter of type
XmlObjectList, and the customer name and shipping address in a parameter of type
QuoteRequestDocument. To learn more about the priceAvailTransformations
control, see Note About the Transformation on This Node.

7. On the Send Data tab, under Select variables to assign, assign the variables that hold the
data required by the priceAvailTransformations control as follows:

— Click the arrow in the variable assignment field associated with
QuoteRequestDocument, and select requestXML (QuoteRequestDocument). (The
requestXML variable holds the customer name and shipping address).

— Click the arrow in the variable assignment field associated with XmlObjectList, and
select priceList (XmlObjectList).

(%) Yariable Assignment () Transformation

Select variables to assign: Control Expects:

(2] requestimL (quote... | ~ | |[2] QuoterequestDocumen. ..
(il priceList (¥miobie... | = | [F)* smicbiectList _xmiobj...

8. Click Receive Data to open the third tab in the node builder.

The Control Returns field is populated with PriceQuoteDocument, which is the data
type returned by the convertPricelListToxML() method on the
priceAvailTransformations control.

9. Click the arrow associated with the Select variables to assign field, and click Create new
variable The Create Variable dialog box is displayed.

3-4 Tutorial: Building Your First Business Process Part Il

Convert Price List to XML Quote Document

H Create Variable E x|

Variable Mame: | priceCuote ‘

rSelect Yariable Typ
@ XML (O NonXML) Java

ER=Ry =]
|<—_§| Availguote.xsd
= [+ Pricequote.xsd
=] customerhlame
= price

B [pricequote
@) customerhlame
@ shipaddress
@) priceRequests
[2] pricerequest [

“Watiable type:| org.example. price. PriceQuoteDocument |

[o | [

10. In the Variable Name field, enter priceQuote.

11. In the Select Variable Type field, select priceQuote in the XML Types list. The Variable
Type field is populated with org.example.price.PriceQuoteDocument.

12. Click OK to close the Create Variable dialog box.

13. To close the node builder, click the X in the top right-hand corner.

This step completes the design of the Convert PriceList to PriceQuote XML node. At
run time, the price quote data (in typed-XML format), and the customer name and shipping
address are assigned to the priceQuote variable.

Note About the Transformation on This Node

The convertPriceListToxML() method on the priceAvailTransformations control does the
work of creating the price quote XML data in the preceding step.

In brief, the input to the Transformation method includes the original data sent by the client (in
the requestXML variable), and the price data returned by the priceProcessor control (in the
priceList variable) after the iterations in the For Each node complete.

The convertPriceListToxML() method extracts the customer name and shipping address from
the requestXML variable, and a list of widget IDs and prices from the priceList variable, and
maps the data to the new variable (priceQuote).

It is left as an exercise to the reader to view this and other transformation methods on the
priceAvailTransformations control. For example, you can double-click
PriceAvailTransformations.dtf in the Application pane to display the Transformation control
in the Design View. Right-click on the convertPriceListToXML method, and select Goto

Tutorial: Building Your First Business Process Part lll 3-5

Step 9: Create Quote Document

XQuery Document to open the Transformation tool. Use the Design View and Source View tabs
in the transformation tool to see the data map that represents the transformation and the
corresponding XQuery. Use the Test View tab to test the XQuery. For example the following
figure shows the map for the convertPriceListToxML () method:

Source Target
= 27 _quoteRequestDoc B &7 pricequote
© customerhame @ 5 customerhiame
@ shipaddress @ shipaddress
&) street B strest
(-D? city e'); ciby
&7 state BF state
&7 zp Dz
B @ widgetRequest =@ priceRequests
© widgstrd = @7F pricsRequest
@ quartity]
[E* _smiobjectListDac @

Related Topics

Guide to Data Transformation

Tutorial: Building Your First Data Transformation

Convert Availability List to XML Quote Document

3-6

Complete the following steps to design a node to transform the availability list (created as a result
of iteration through the For Each loop) to a variable whose data type is typed-XML. To do so,
you use methods on the priceAvailTransformations control.

To Design the Interaction With the Transformation Control

1. Expand the priceAvailTransformations control instance in the Data Palette, then click the
following method:

AvailQuoteDocument convertAvaillListToXML (com.bea.xml.XmlObjectList
_XmlObjectListDoc)

*

| Data Palette

% availProcessor 2]
[=1-6 priceAvailTransformations

2 AvailQuoteDocument convertAvailistToXMLicom. bea, xml. ZmiObjectList _¥miohjectListDoc)

2 xmiObject convertavailMLtoXMLObj{org.example. avail AvailR equestDocument _availRequestDoc)

2 «miObject convertPriceXMLEoXMLObj{org.example. price. PriceRequestDacument _priceRequestDoc)

2 PriceQuoteDocument convertPricelistToXMLiorg.example, request, QuoteRequestDocument _quoteRequestDoc, com.bea, xml. ¥miObjectList _XmlobjectListDoc)
% priceProcessor
d% taxCalcProcess
% taxCaleulation
4 transformations

K1}

Tutorial: Building Your First Business Process Part Il

http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

Convert Availability List to XML Quote Document

2. Drag the method from the Data Palette and drop it on your RequestQuote business
process in the Design View, placing it immediately after the Convert PriceList to
PriceQuote XML node.

L
[
Sl
Corwvert Pricelist To PriceCuote XML
<
convertAvaillistToxML
Finish

3. Rename the node from convertAvailListToXML to Convert AvailList to AvailQuote
XML.

4. Double-click the Convert AvailList to AvailQuote XML node to open its node builder.

5. Verify that the priceAvailTransformations control and the following method are selected
on the General Settings tab:

AvailQuoteDocument convertAvailListToXML (com.bea.xml.XmlObjectList
_XmlObjectListDoc)

6. Click Send Data to open the second tab in the node builder.

The Control Expects ficld is populated with xm10bjectList, which is the data type
expected by the convertaAvailListToxML() method on the priceAvailTransformations
control.

7. On the Send Data tab, under Select variables to assign, click the arrow in the variable
assignment field, and select availList (XmlObjectList).

8. Click Receive Data to open the third tab in the node builder.

The Control Returns field is populated with AvailQuoteDocument, which is the data
type returned by the convertavailListToxML() method on the
priceAvailTransformations control.

9. Click the arrow associated with the Select variables to assign field, and click Create new
variable The Create Variable dialog box is displayed.

10. In the Variable Name ficld, enter availQuote.

Tutorial: Building Your First Business Process Part lll 3-1

Step 9: Create Quote Document

3-8

¥ Create Variable E |

Variable Mame: | avallquote ‘

rSelect Yariable Typ
@ XML (O NonXML) Java

=T AL TYRE
- Typed
B[] Availuote xsd
availguote
avaiRequest
quantity il
requeskedQuantity
shipDate
u widgetld
G_‘E Global Types IZ‘

‘ariable type:| org.example. avall. AvallQuoteDocument |

0

11. In the Select Variable Type field, click the + beside AvailQuote.xsd in the XML Types
list, then select availQuote from the list. The Variable Type field is populated with
org.example.avail.AvailQuoteDocument.

12. Click OK to close the Create Variable dialog box.

13. To close the node builder, click the X in the top right-hand corner.

This step completes the design of the Convert AvailList to AvailQuote XML node. At
run time, the availability quote data in XML format are assigned to the availQuote
variable.

Note About the Transformation on This Node

The convertaAvaillListToxML() method on the priceAvailTransformations control does the
work of creating the availability quote XML data. The input to convertAvailListToxXML() is
the availability data returned by the availProcessor control after the iterations in the For Each
node complete.

You can double-click PriceAvailTransformations.dtf in the Application pane to display the
Transformation control in Design View. Right click on convertavailListToxML method, and
select Go to XQuery Document to open the Transformation tool. The following figure shows
the map for the convertaAvailListToxML() method:

Source || ” Target
@* _xmiObjectlistDoc =85} ? availQuate

=] \:)$ availRequest

oooC

Tutorial: Building Your First Business Process Part Il

Combine Price and Availability Quotes

The preceding figure shows the transformation of the data in a variable of type xm10bjectList,
which contains a repeating set of untyped XML data, to the repeating element in an XML-typed
variable. Note that to achieve this transformation, the repeating element in the target schema mus¢
be the single child of a root element. In this case, availRequest is the repeating element, and it
is the single child of the availguote element. Click the Source View tab in the Transformation
tool to see the corresponding XQuery.

Combine Price and Availability Quotes

Complete the following tasks:
e To Create an Instance of the TutorialJoin Control in Your Project
e To Design the Process Interaction With the TutorialJoin Control

To Create an Instance of the Tutorialloin Control in Your Project

The TutorialJdoin.dtf control is provided in your tutorial application. It is available in the
requestquote folder in your Tutorial Process_ApplicationWeb project folder. To learn how to
build the TutorialJdoin.dtf control, see Tutorial: Building Your First Data Tansformation.

Complete the following steps to add an instance of this control to your business process.

1. If the Data Palette is not visible in WebLogic Workshop, choose View—Windows—Data
Palette from the menu bar.

2. On the Applications pane, click the TutorialJoin.dtf file.

(9 Tutorial_Process_application
(& schemas
[= 23 Tutorial_Process_Applicationteb
£l 2 requestquote
() services
() testsml
A Filequote.jex
& PriceAvailTransformations, dtf
|£#] convertavaillistToxML.xq
|£#] convertAwailsMLE0EMLOb] . xq
|¢#] comwertPricelist TaxML.xq
|£#] convertPricexMLE0REMLOb] . xq
m% RequestQuote.jpd
p RequestQuoteTransformation.dtf
|4#] RequestquoteavailProcessar_avail. xq
|£#] RequestquoteavailProcessarGet Avail.xg
|##] RequestQuotepricePracessar_teturnPrice.xq
|¢#] RequestQuotepricePracessorGetPrice. xq
|4#] RequestquotetaxCalculstionRequest TaxRate, xq
A TaxCalcProcess. jox
& = TutatialJoin.def
[¢#] join.xq

Tutorial: Building Your First Business Process Part |l 3-9

http://e-docs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

Step 9: Create Quote Document

3-10

3. Drag the TutorialJoin.dtf file from the Applications pane onto the Data Palette. The
instance of your control (tutorialJoin) is created and displayed in the Data Palette as
shown in the following figure:

Controls Add v

Qj availProcessor

o pricefvalTransformations

Qj priceProcessor

d% taxCalcProcess

Qj taxCaleulation

4 transformations

(=& tutorialloin
T_' QuateDocument join{org.example.price. PriceQuateDocument _priceQuoteDaoc, org)
2 float calculateTotalPrice(float taxRate,int quantity,Float price,boolean Fillorder)

To Design the Process Interaction With the Tutorialloin Control

In this step, you design the business process to call the following method on the tutorialJoin
control:

join (PriceQuoteDocument _priceQuoteDoc,

AvailQuoteDocument _availQuoteDoc, float taxRate)

This join method does the work of combining the data returned to your business process from
different systems and creating a single XML response document (quote), which is subsequently
returned to the business process’ client.

1. Expand the tutorialJoin control instance in the Data Palette, then click the following
method:

QuoteDocument join(org.example.price.PriceQuoteDocument _priceQuoteDoc,
org.example.avail.AvailQuoteDocument _availQuoteDoc, float taxRate)

2. In the Design View, drag the method from the Data Palette and drop it on your
RequestQuote business process placing it immediately after the Convert AvailList to
AvailQuote XML node.

3. Rename the node from join to Combine Price and Avail Quotes.

Tutorial: Building Your First Business Process Part Il

7.

Combine Price and Availability Quotes

v
(2 -

Conrverk PriceList To PriceCuote XML

%[
Convert Availlist To AwailQuote XML

|
=/

Combine Price: and Avail Quates

Double-click the Combine Price and Avail Quotes node. The node builder opens on the
General Settings tab.

Confirm that tutorialJoin is displayed in the Control field, and that the following method,
which you dragged onto the node from the Data Palette, is selected in the Method field:

QuoteDocument join(org.exampel .price.PriceQuoteDocument _priceQuoteDoc,
org.example.avail.AvailQuoteDocument _availQuoteDoc, float taxRate

Click Send Data to open the second tab in the node builder.

The Control Expects ficld is populated with the data type expected by the join method
on the tutorialJoin control, as shown in the following figure:

@ Variable Assignment) Transformation

Select variables to assign: Control Expects:

Under Select variables to assign, select the variables such that their data types match the
data type expected (Control Expects) in the input parameters to the join() method, as
follows:

— For PriceQuoteDocument select priceQuote (PriceQuote).

priceQuote holds the price quote data, which is returned from the priceProcessor
service in the For Each loop in your business process.

— For AvailQuoteDocument, sclect availQuote (AvailQuote).

availQuote holds the availability quote data, which is returned from the availProcessor
service in the For Each loop in your business process.

Tutorial: Building Your First Business Process Part |l 3-11

Step 9: Create Quote Document

— For float taxRate, select taxRate (float).

taxRate holds the rate of sales tax applied to the quote, based on the shipping address,
which is returned to your business process from the taxCalculation service.

(%) Yariable Assignment () Transformation

Select variables to assign: Control Expects:

[pricequate {priceq... | ~ | |[2] PriceQuoteDocument ...
[~ avaluote (availqu...| ~ [2] AwailQuoteDocument ..
=i =

[T taxrate (float) |~ [Fi7] float taxRate

8. Click Receive Data to open the third tab in the node builder.

On the Receive Data tab, the Control Returns field is populated with QuoteDocument,
which is the data type returned by the join() method.

9. Click the arrow in Select variable to assign, then choose Create new variable.... The
Create Variable dialog box is displayed.

@) variable Assignment (0 Mapping and Transformation

Select variables to assign: Method Expects:

t Create new varisble... | ¥ QuoteDocument

Create new variable. ..
'k availlist (xmiChjectlist)
S pricelist (XmiCbjectList)

10. In the Variable Name ficld, enter Quote.

11. In the Select Variable Type field, select quote from the list of XML types, as shown in the
following figure:

=155 %ML Types
B Typed
|<—j Availuote, xsd
|<—j PriceQuote. xsd
=l |<—j Quote,xsd
=] quote
e_'ﬂ Global Tvpes

The Variable Type field is populated with org. example.quote.QuoteDocument.

12. Click OK to create the new variable. The Quote variable is displayed in the Receive Data
tab, and also in the XML list in the Data Palette.

13. To close the node builder, click the X in top right-hand corner.

This step completes the design of the Combine Price and Avail Quotes node. At run time,
the availability quote data in XML format is assigned to the Quote variable.

3-12 Tutorial: Building Your First Business Process Part IlI

Combine Price and Availability Quotes

14. From the Workshop menu, select File—Save All.

To complete Part III of the tutorial, it only remains to write the quote to your file system
(an optional step), and to create the Client Response node in your business process. The
business process returns the quote you created to the client via the Client Response node.

Step 10: Write Quote to File System

Step 11: Send Quote From Business Process to Client

Related Topics

To learn how to create Transformation controls, and specifically to learn how to design the
TutorialJoin.dtf control used in this section, see Tutorial: Building Your First Data
Tansformation.

Tutorial: Building Your First Business Process Part |l 3-13

http://e-docs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

http://e-docs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

Step 9: Create Quote Document

3-14 Tutorial: Building Your First Business Process Part IlI

CHAPTERo

Step 10: Write Quote to File System

Complete this step to create a node, at which your business process writes the quote created in
the preceding step to your file system. A File control makes it easy to read, write, or append to a
file in a file system.

Complete the following tasks to design your business process to write the combined price and
availability quote to your file system:

e To Create an Instance of a File Control in Your Project

e To Design a Control Send Node in Your Business Process to Interact With Your File
Control

The following tasks are optional. They are provided to deepen your understanding of File controls
but are not required for the completion of the tutorial.

e To Assign File Control Properties to a Variable in Your Business Process
e To Use the File Control Properties in Your Business Process

To Create an Instance of a File Control in Your Project

In this scenario, you add one instance of the File control to your business process.

1. Click Add on the Data Palette Controls tab to display a list of controls that represent the
resources with which your business process can interact.

2. Select Integration Controls—File. The Insert Control dialog box is displayed.

3. In the Insert Control dialog box:

Tutorial: Building Your First Business Process Part Il 4-1

Step 10: Write Quote to File System

42

®

In Step 1, enter myFileQuote as the variable name for this control.

b. In Step 2, select Create a new File control to use, then enter MyFileQuote in the New
JCX name field.

c. In Step 3, enter values in the following fields:

directory-name—Enter the location in which you want the File control to write the
file. You can use any location on your file system.

file-mask—Enter a name for the file. For example, enter quote . xm1.

file-type—Select XmlObject from the drop-down list.

d. Click Create to close the Insert Control dialog box.

An instance of a File control, named myFileQuote, is created in your project and
displayed in the Controls tab.

4. From the Workshop menu, select File—Save.

Note: In the simple case, each instance of the File control allows you to manipulate a separate

file. To learn about how your File control can operate on multiple files, see File Control.

To Design a Control Send Node in Your Business Process to Interact With Your File Control

1.

Expand the myFileQuote control instance in the Data Palette, then click the following
method:

FileControlPropertiesDocument write (com.bea.xml.XmlObject someData)

From the Data Palette, drag the method and drop it on your RequestQuote business
process, placing it immediately after the Combine Price and Avail Quotes node (and
immediately before the Finish node). The node is named write by default.

Rename the node from write to Write Quote to File.

Double-click the Write Quote to File node. Its node builder opens on the General Settings
tab.

Confirm that myFileQuote is displayed in the Control field and that the following method
is selected in the Method field:

FileControlPropertiesDocument write (XmlObject someData)

Click Send Data to open the second tab in the node builder. The Control Expects field is
populated with xm10bject someData, which is the data type expected by the write()
method.

Tutorial: Building Your First Business Process Part Il

http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsFile.html

7. In the Select variables to assign field, click the arrow to display the list of variables in your
project, then choose Quote (quote). (Recall that you created the Quote variable to hold the
quote in Step 9: Create Quote Document.)

Note: The node builder for this node contains a Receive Data tab. You can use this tab to
specify a variable to which the data returned by the File control is assigned. For the
purposes of this tutorial scenario, it is not required that you specify this variable; you
can ignore the Receive Data tab. However, to learn how to specify a variable on the
Receive Data tab, and a scenario in which you might subsequently use the variable,
proceed to Note About File Control Properties.

8. To continue with the tutorial without specifying a variable on the Receive Data tab, close
the node builder by clicking the X in the top right-hand corner.

9. From the Workshop menu, select File—Save.

This step completes the design of your File control node. At run time, the quote document
you created in Step 9: Create Quote Document is written to your file system in the location
specified by you.

10. Proceed to Step 10: Write Quote to File System.

Note About File Control Properties

This optional section provides additional steps you can use to further define the Write Quote to
File node you created in the preceding section. You are not required to complete the steps in this
section to complete the tutorial. The steps are provided to help you understand and use the File
Control Properties returned to your business process by the File control’s
FileControlPropertiesDocument write (XmlObject someData) method.

When you use a File control to write a file to the file system as you do in this step, the control
returns information about the file you wrote. The information is returned in a document of type
XML: FileControlPropertiesDocument. The FileControlPropertiesDocument is valid
against an XML Schema: DynamicProperties.xsd. The Schema is provided for you in the
Schemas project in your tutorial application. (See the Schemas project in the Application tab.)

To Assign File Control Properties to a Variable in Your Business Process

The following steps describe how to design the Write Quote to File node in your business
process to include assigning a variable to which the File Control Properties are assigned:

Note: Before starting this section, you should have completed steps 1 through 7 as described in
To Design a Control Send Node in Your Business Process to Interact With Your File
Control.

Tutorial: Building Your First Business Process Part lll 4-3

Step 10:

44

Write Quote to File System

If the Write Quote to File node builder is not open, double-click the node.

Click Receive Data to open the third tab in the node builder. The Control Returns field is
populated with FileControlPropertiesDocument, which is the data type returned by the
write() method.

In the Select variables to assign field, click the arrow to display the list of variables in your
project, then choose create new variable.... The Create Variable dialog box is displayed.

=] |<_§| syskem/DynamicProperties, xsd |E|
[2] ProcessControlPropertiss
f] FileControlFilsList
[EBXMLControlPropertiss
[EmailControlProperties
[2] DynamicProperties
[PublishControlProperties
[2] RosettabetControlProperties
[+] FileControlProperties
[#] ServiceBrokerControlProperties E

In the Variable Name ficld, enter fileProperties.

In the Select Variable Type pane, expand system/DynamicProperties.xsd, then select
FileControlProperties. The Variable type field populated with

com.bea.wli.control.dynamicProperties.FileControlPropertiesDocument.

Click OK. The new variable is displayed in the node builder.

(®) Variable Assignment () Transformation

Select variables to assign: Control Returns:

| fileProperties (File ... | A | @ FileControlPropertiesho. ..

To close the node builder, click the X in the top right-hand corner.

From the Workshop menu, select File—Save.

This step completes the design of your File control node. At run time, the quote document
you create in Step 9: Create Quote Document is written to your file system in the location
specified by you. Information about the file you wrote is returned to the RequestQuote
business process, and assigned to the fileProperties variable you created.

Note: The Dynamic Properties.xsd XML Schema must be available in a Schemas
project in your application before you can create a variable to hold the file control
properties that are returned to your business process from the File control. Dynamic
Properties.xsd is one of the system schemas available to you when you create

Tutorial: Building Your First Business Process Part Il

WebLogic Integration applications in WebLogic Workshop. To create a project that
contains system schemas in your application, choose File—New—Project from the
WebLogic Workshop menu to open the New Project dialog box. Select Schema in
the left pane, then WLI System Schemas in the right pane. Enter a name for your
project in the Project name field and click Create.

To Use the File Control Properties in Your Business Process

In the preceding steps, you assigned the data returned from the File control to a variable named
fileProperties. You can derive information about the file you wrote from fileProperties.

Click the Source View tab to view your RequestQuote.jpd file in Source View. By completing
the steps described in the preceding section, the following code is written in your JPD file in
keeping with the work you did in the Design View.

The fileProperties variable declaration is shown in the following listing:

public com.bea.wli.control.dynamicProperties.FileControlPropertiesDocument
fileProperties;

The write () method on the myFileQuote control is shown in the following listing:

public void myFileQuoteWrite() throws Exception
{
//#START: CODE GENERATED - PROTECTED SECTION - you can safely add code
above this comment in this method. #//

// input transform
// return method call
this.fileProperties = myFileQuote.write(this.Quote) ;
// output transform
// output assignments
//#END: CODE GENERATED - PROTECTED SECTION - you can safely add code below
this comment in this method. #//
}
You can edit this method (outside the PROTECTED SECTION of code) to write code that derives
information from the fileProperties variable. For example, the following line of code returns the
FileMask:

this.fileProperties.getFileControlProperties() .getFileMask()

To illustrate this example further, edit the public void fileQuoteWrite () method in Source
View to include the line of code shown in bold in the following listing:

//#END: CODE GENERATED - PROTECTED SECTION - you can safely add code below

this comment in this method. #//

Tutorial: Building Your First Business Process Part lll 4-5

Step 10: Write Quote to File System

System.out.println ("The RequestQuote Process logged the quote in the following
file "
+ this.fileProperties.getFileControlProperties() .getFileMask());

Note that you must add the code after the PROTECTED SECTION comment. Code completion in
the Source View helps you write the code. When you switch back to the Design View, note that

the Write Quote to File node changes to include the following icon: g . This is a visual reminder
that you edited the code associated with this node in the Source View.

When you run the business process, the name you gave the file (the FileMask) is printed to the
console.

Related Topics

File Control

Using Integration Controls

How Do I: Create a Schemas Project Folder?

How Do I: Import Files into a Schemas Project Folder?

4-6 Tutorial: Building Your First Business Process Part Il

http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsFile.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasCreate.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasImport.html

CHAPTERa

Step 11: Send Quote From Business
Process to Client

A business process must be able to send and receive messages to and from its clients. You
designed your business process to receive messages from a client in Step 2: Specify How the
Process is Started. This section describes how to add operations that send messages from your
business process to a client. That is, in this section you learn how to design Client Response
nodes.

This step describes the following tasks:
e To Add a Client Response Node to Your Business Process
e To Design Your Send Quote Node

To Add a Client Response Node to Your Business Process

1. On the Application pane, double-click RequestQuote.jpd to ensure that your business
process is displayed in Design View.

2. In Design View, select @, Client Response in the Palette, then drag and drop the node
onto the business process immediately before the Finish node. The Design View is updated
to contain the Client Response node.

3. Change the name of the node from Client Response to Send Quote.

Tutorial: Building Your First Business Process Part Il 5-1

Step 11:

5-2

Send Quote From Business Process to Client

ek

Write Quate ko File

He

Send Quote

Finish

To Design Your Send Quote Node

This section describes how to complete the design of the interaction with clients for this business
process. Specifically, at this point in the process, the business process sends a quote containing
price and availability information to clients.

In this step, you specify the structure of documents that your business process sends to clients
from this node.

1.
2.

Double-click the Send Quote node in your business process. The node builder is displayed.

In the General Settings tab, change the name in the Method Name field from
clientResponse to quoteResponse.

. Click Add to display the panel of data types.

Note: Inthe Combine Price and Avail Quotes node, you created an XML variable to hold
the quote. This data assigned to this variable is valid against the Quote.xsd Schema.
Therefore we are concerned with XML Types at this node.

If it is not already selected, select XML.
a. Ifnecessary, click the + beside XML Types to see a list of XML Schemas in your project.
b. Expand Quote.xsd, then click the quote node. The Type field is populated with

org.example.qguote.QuoteDocument.

c. In the Name field, replace x0 with responseXML. In this way, you name the parameter
that returns the QuoteDocument.

Click OK. The QuoteDocument responseXML parameter is added to the General

Settings tab in the node builder and the General Settings tab is marked complete: ¥4

Click the Send Data tab. A tab that allows you to define one or more variables to hold the
data your business process sends to clients is displayed.

Tutorial: Building Your First Business Process Part Il

The Client Expects field is populated with the data type and the name of the parameter
you specified on the General Settings tab: QuoteDocument responseXML

. Under Select variables to assign, select the Quote (quote) variable.

@ Variable Assignment) Transformation

Client Expects: Select variables to assign:

[=] QuateDocument respon. .. Quote {quote) | ~

. To close the Client Response node builder, click the X in the top right-hand corner of the
node builder.

. From the Workshop menu, select File—Save.

This step completes the design of your RequestQuote business process. To run it, proceed
to Step 12: Run the Request Quote Business Process.

Tutorial: Building Your First Business Process Part lll

5-3

Step 11: Send Quote From Business Process to Client

5-4 Tutorial: Building Your First Business Process Part Il

CHAPTERa

Step 12: Run the Request Quote
Business Process

You can run and test the functionality of the business process you created using WebLogic
Workshop’s browser-based interface. Using the Workshop Test Browser, you play the role of the
client, invoking the methods on the business process and viewing the responses.

To Launch the Test Browser

1.
2.

In the Application pane, select RequestQuote.jpd—the business process you want to test.

If it not already selected, click the Design View tab. The business process you selected in
the Application pane is displayed in the Design View.

If it is not already running, start WebLogic Server. To do so, from the WebLogic Workshop
menu, choose Tools—WebLogic Server—Start WebLogic Server.

If WebLogic Server is running, the following indicator is visible in the status bar at the
bottom of the WebLogic Workshop visual development environment:

@ Server Running

From the WebLogic Workshop menu, click Build—Build Application. WebLogic
Workshop builds your application.

When the build is complete, click the Start button £ on the menu bar to run your business
process. If the build is successful, the Workshop Test Browser is launched, through which
you can test your business process using sample input values.

Note: Ifyoucompleted Step 6 in the tutorial to replace the tax calculation Web Service with
a Process control, you may get a build warning about the taxCalculation Web service
when you run your process. You can ignore this warning. It occurs because you have

Tutorial: Building Your First Business Process Part Il 6-1

Step 12: Run the Request Quote Business Process

6-2

an unused Web Service control (taxCalculation) in the RequestQuote.jpd. If
you remove or comment out the declaration of taxCalculation in the
RequestQuote. jpd, the business process builds without warnings. The following
lines show the control declaration in your JPD file:
/ * %
* @common:control
*/
private requestquote.services.TaxCalcControl taxCalculation;
If the browser is not already open on the Test Form page, click the Test Form tab to open
the Test Form page.

You can enter data that your business process can receive as part of a client request directly
on the Test Form page. Alternatively, you can browse your file system and upload a file
which contains your test data. In this case, test XML data are provided in the tutorial
application for you to use.

Click Browse beside the xml requestXML (file value) field to open the file browser.

Select QuoteRequest.xml from the testxml folder, which is available at the following
location in your file system:

myapplications\Tutorial_Process_Application\
Tutorial_Process_ApplicationWeb\requestquote\testxml\QuoteRequest.xml.

In the preceding line, myapplications represents the location in which you created your
Tutorial_Process_Application application.

Click the button labeled with the method name on your business process (quoteRequest) to
invoke the method and start the business process. The Test Form page refreshes to display
a summary of your request parameters and the response from the external services in the
Message Log:

External Service Callback priceProcessor.returnPrice

Submitted at Wed Jun 04 23:0%:32 PDT 2003
1054793063803

= quoteRequest
taxCalcProcess.request TaxRate=F

taxCalcProcess returnTaxRate =
priceProcessor. getPrice=#
availProcessar . getivail=+
priceProcessor, returnPrice =
avaiPracessor, avail =
pricePracessor. getPrice==+
availProcessor.getivail=+

priceProcessor.returnPrice +=

availProcessor. availé=
priceProcessor. getPrice=+
availProcessor, getivail =+
priceProcessor, returnPrice =
availProcessor, avail €=
4= calback.quoteResponse
Instance 1054793063803 is

Completed.
I TrT—

<iCallbackHeader xmins="http: ffrwmw, openuri.org/200204/ soapjconversation)" =
<conversationID=[1054 793063803]priceProcessor:192.168.11.135-182ab3e.f5965885be.
«JCallbackHeader >

«nsireturnPrice xminsins="http: fjwwe . openuri.org)" >
<ns:itemID=134</ns ikemlD>
<ns:price =1 750 </ns:price >

«ns:returnPrice

Context Event context_onAcquire on Control priceProcessor
Submitted at Wed Jun 04 23:0%:33 PDT 2003

Method: com.bea.whw.runtime, core.control. ServiceControlImpl. context_onacauire
Event source: context

Arguments:

Callskack:

Tutorial: Building Your First Business Process Part Il

10.

11.

12.

For business processes that involve multiple communications with clients (as is the case in
this scenario), or communications with resources such as other Web services, the Message
Log at the left of the Test Form page displays an entry for each call to a method or a
response from the service so that you can view the data for each.

Note that the sequence of calls displayed in the Message Log when you run your business
process may be different from the sequence shown in the preceding figure. In your
Message Log, you should see the following calls:

a. The quoteRequest call you made to invoke the business process.
b. A call to and a response from the tax calculation service.

c. Three sets of price request and responses and three sets of availability request and
responses—a total of 12 messages. Because the requests to the price and availability
services are made in parallel, the requests and responses can be in a different order each
time you run your process. However, the For Each loop ensures that the processing for a
given line item (in this case, for each widgetID) is completed before the next line item is
processed.

d. The quoteResponse call from the business process to the client that invoked.

Click any log entry to see the details of that interaction. For example, if you click
priceProcessor.returnPrice, the browser displays the message returned from the
priceProcessor during one iteration through the For Each loop.

When the business process finishes, a message similar to the following is displayed in the
Message Log:

Instance instanceID is Completed.

where instanceIDrepresents the ID generated when the quoteRequest method in your
business process was called.

If you included a call to a File control in your business process, as described in Step 10:
Write Quote to File System, a file containing the quote document is created in the location
in your file system that you specified when you designed the interaction between your
business process and the File control.

Note: If you are running the RequestQuote.jpd business process provided for you when
you created your Tutorial Process_Application application for the first time, the
File control writes a file named quote.xml to your working directory. In this case,
the working directory is the directory in which the integration server is running:
BEA_HOME\weblogic8l\samples\domains\integration.

Tutorial: Building Your First Business Process Part |l 6-3

Step 12: Run the Request Quote Business Process

13. To display a graphical representation of your running process, click Graph on the Message
Log panel.

14. To stop the Test Browser, you can simply close it, or return to WebLogic Workshop and
then click @ on the menu.

To Monitor Instances of Your Business Process

You can use the WebLogic Integration Administration Console to monitor running processes or
view statistics for processes that already ran.

e Click Monitor to open the WebLogic Integration Administration Console in a Web
Browser. Login using username = weblogic and password = weblogic. The WebLogic
Integration Administration Console opens to the Process Instance Details page. The
WebLogic Integration Administration Console allows you to administer and manage your
WebLogic Integration applications. For example, if you click View Statistics on the
Process Instances navigation pane, you access a Process Instance Statistics page. This
page displays a summary of business process instances grouped by the process type. To
view the instances of a process type that ran or are running on your server, click the
process name. Processes instances are identified by their instancelD. Note that the
instancelD displayed for your RequestQuote business process matches the instancelD
displayed on the Message Log pane (see the preceding figures in this topic).

e Click Monitor all RequestQuote.jpd processes at the top of the Test Form to open the
WebLogic Integration Administration Console. Login using the default username:
weblogic and password: weblogic. When you use this link to open the Administration
Console, it opens on the Process Instance Summary page, which displays a summary of
all the instances of business processes that ran or are running. It allows you to:

— View process instance statistics, including the number of instances in each state
(running, suspended, aborted, and completed).

— View the summary or detailed status for selected instances.

— Suspend, resume, or terminate, selected instances.

e Other ways to invoke the WebLogic Integration Administration Console include the
following:

— From the WebLogic Workshop Tools menu, select Tools—WebLogic
Integration—WebLogic Integration Administration Console

— Entering the following URL in a Web browser:
http://localhost:7001/wliconsole

6-4 Tutorial: Building Your First Business Process Part Il

The default username is weblogic and password is weblogic for the sample
integration server.

To learn about using the WebLogic Integration Administration Console, see the console’s online
help and Managing WebLogic Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs8l/manage/index.html

Related Topics

Managing WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs8l/manage/index.html

Understanding the Service URL

Testing Your Application with Test View

Tutorial: Building Your First Business Process Part lll 6-5

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTest.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/reference/ui/navTestView.html

Step 12: Run the Request Quote Business Process

6-6 Tutorial: Building Your First Business Process Part IlI

Part IV Using the Message
Broker

Part IV of this tutorial is comprised of Steps 13 through 15. You build on the business process
you created in Part III.

The Message Broker provides a publish and subscribe message-based communication model for
WebLogic Integration business processes, and includes a message filtering capability. In this
scenario, your RequestQuote business process publishes the Request for Quote message it
receives from a client to a Message Broker channel. A number of services, which validate the
Request for Quote in some way, can subscribe to that channel. If the request is determined to be
invalid by one of these services, that service publishes a message on a second Message Broker
channel, to which the RequestQuote process is subscribed. If the running RequestQuote process
receives such a message, it is terminated and a message is sent to the client indicating why the
quote is not processed.

One external service that validates the Request for Quote as well as a Channel file that specifies
two Message Broker channels are provided for you to support the tutorial scenario. You learn
about creating Message Broker channels, publishing and subscribing to those channels, and
designing your business process to handle the receipt of an out-of-bound message that causes it
to terminate.

To learn about the WebLogic Integration Message Broker, see Introducing the Message Broker.
For a description of the scenario modeled in this part of the tutorial, see Understanding the
Validation Service Scenario.

Tutorial: Building Your First Business Process Part [V

http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutlogic/tutWLIProcessnavPart3.html

The steps in Part IV include:

Step 13: Publish and Subscribe to Message Broker Channels
Build on the business process you created in Parts I through III of the tutorial by designing
nodes in your RequestQuote business process that specify how the business process
publishes the Request for Quote to a Message Broker channel and how it subscribes to a
Message Broker channel.

Step 14: Designing a Message Path for Your Business Process
Add a message path to handle the callback from the Message Broker channel to which
your business process is subscribed, and specify the actions taken by the RequestQuote
process when such a callback is received.

Step 15: Run and Test the Request Quote Business Process With the Quote Validation
Service
Run and test your expanded Request for Quote business process.

Introducing the Message Broker

The Message Broker provides typed channels, to which messages can be published, and to which
services can subscribe to receive messages. You can design your system for subject-based or
content-based routing of messages:

e The Message Broker provides typed channels, which you can use to design subject-based
routing of messages. Messages can be published to these typed channels, and business
processes can subscribe to the channels that receive those messages.

e The Message Broker includes a message filtering capability that allows you to design
content-based routing. Using XQuery filters, subscribers to Message Broker channels can
filter messages on the channels based on content and process rules. WebLogic Integration
provides a mapping tool that allows you to create the XQuery filters.

Two Message Broker controls are available when you build WebLogic Integration applications:
Message Broker (MB) Publish and Message Broker (MB) Subscription. Business processes
use MB Publish controls to publish messages to channels and MB Subscription controls to
dynamically subscribe to channels and receive messages:

e You bind the Message Broker channel to the MB Publish control when you declare the
control, but it can be overridden dynamically.

e When you create an instance of a MB Subscription control for your business process, you
bind the channel and optionally, an XQuery expression for filtering messages. However, in
the case of a MB Subscription control, the bindings cannot be overridden dynamically.

In addition to the dynamic subscriptions you design at the Control nodes in your business
process, you can design static subscriptions at Start nodes. A business process that is subscribed
to a Message Broker channel at its Start node starts when a message is received on the channel to
which it is subscribed.

To learn more about using the Message Broker controls in WebLogic Integration applications,
see Message Broker Controls.

Understanding the Validation Service Scenario

A service that validates a Request for Quote and a channel file that defines two Message Broker
channels are provided for you in the tutorial application. The validation service is a process
(ValidateOrder.jpd) that subscribes to a Message Broker channel named ValidateOrder. It
validates the client’s Request for Quote based on the number of widgets requested.
ValidateOrder.jpd starts when a Request for Quote message is published to the
ValidateOrder Message Broker channel. In this part of the tutorial scenario, if the number of
widgets requested is greater than 400, the Request for Quote is determined to be invalid and the
ValidateOrder.jpd process publishes a message to a second Message Broker channel (named
StopQuote). Your RequestQuote business process subscribes to the StopQuote Message
Broker channel—when it receives the message from that channel, the RequestQuote business
process is terminated.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsBroker.html

The following figure outlines the flow of execution at run time for the RequestQuote business
process you build in Part IV and the interaction with the ValidateOrder business process:

e
OrMessage —
| . StopQuote
_________ F
(l- i P [MB Channel J
= & onMessage ~ 7 1
= \
@ - |
Requesttuate R P é @ !
e ¥ s !
. ~ walidatecrder 1
Deny Quote S — | = 1
S e
Subseribe ko WalidateOrder ME Channel !
RequestQuate ’ L :
e & subscribes to 5 . 1 —
|QJ Q.,J StopQuote channel i [% < 1A
= 5 .
Client Requests Quate - 4 2’ T :
7 2 : @
v _ P /l @ o@]
= " 1
(_‘? “ id ValidateOrder | ¢ |
T = 1= 72 3 RE Channel ves Noo)
publish // rrerr———— \ v
" =k
v
_-? =1 Fublish Deny Quote
w
subscrine E
; Finish
i .
LD,_‘ D L Valid Order?
" Send Quate
| For Each Widget

Finish Finish

The interactions between the business processes via the Message Broker channels is indicated by
the numbers in the figure. The following steps describe the flow:

1. Your RequestQuote business process publishes the Request for Quote message to the
ValidateOrder Message Broker channel.

2. The ValidateOrder business process starts when it receives a message on the
ValidateOrder channel to which it is subscribed.

3. Ifthe ValidateOrder business process determines that the order in the Request for Quote
message is invalid, it publishes a message to the StopQuote Message Broker channel.

4. The RequestQuote business process subscribes to the StopQuote Message Broker channel
and receives the message from the channel on the onMessage path. A response is sent to the
client from the Deny Quote node on the onMessage path, and the RequestQuote business
process is terminated.

Proceed to the next topic to start the steps included in Part IV of the tutorial.

CHAPTERo

Step 13: Publish and Subscribe to
Message Broker Channels

To design the Message Broker functionality described in Understanding the Validation Service
Scenario, you create nodes in your RequestQuote business process: one that publishes to the
ValidateOrder Message Broker channel and one that subscribes to the StopQuote Message
Broker channel. Subsequently, you create a message path on your business process. On the
message path, you create the logic to handle the callback from the channel (StopQuote) to which
the ValidateOrder service posts a message. That logic specifies that the RequestQuote business
process terminates after it receives a callback from the channel to which it is subscribed.

This step includes the following tasks:
e To Publish the Request for Quote Message to a Message Broker Channel
e To Subscribe to a Message Broker Channel to Receive Messages from a Validation Service

To Publish the Request for Quote Message to a Message Broker Channel

You must first create a Message Broker Publish control in your project, then bind a method from
the control to a node in your business process. To do so, complete the following steps:

1. Inthe Application pane, double-click RequestQuote.jpd to ensure that it is displayed in the
Design View.

2. Ifthe Data Palette is not visible in WebLogic Workshop, click View—Windows—Pata
Palette from the menu bar.

3. In the Data Palette Controls tab, select Add—Integration Controls—MB Publish. The
Insert Control dialog box is displayed.

Tutorial: Building Your First Business Process Part IV 1-1

Step 13: Publish and Subscribe to Message Broker Channels

1-2

Insert Control - MB Publish x|

STEP 1 yariable name For this control: | mbPubvalidate

STEP2 Iwouldlike to:

(01 Use a MB Publish control already defined by a JCX file

@ Create a new ME Publish control to use,
Mew ICE name: | MEPubYalidate |
STEP 3 Mame of the channel to publish ko
channel-name: ‘ {TutorialPrefix/ TutorialfvalidateCrder [|

Type of message to publish

message type: org.example.request, QuoteRequestDocument

Twpe of metadats ko publish
metadata bype:

In Step 1, enter mbPubValidate as the variable name for this control.

In Step 2, select Create a new MB Publish control to use, then in the New JCX name
field, enter MBPubValidate.

In Step 3, click the arrow associated with the channel-name field to display the channels
available in your application:

/TutorialPrefix/Tutorial/ValidateOrder
/TutorialPrefix/Tutorial/StopQuote

Note: The following channels are also available: /deadletter/xml,
/deadletter/string, /deadletter/rawData.To learn about using dead letter
channels in your applications, see “Dead Letter Channels” in How Do I: Create
Message Broker Channels.

Select /TutorialPrefix/Tutorial/ValidateOrder. This specifies the channel to which your
business process publishes the Request for Quote messages it receives from clients.

The message type field is populated with the data type of the message that is published to
the ValidateOrder channel: org.example.request.QuoteRequestDocument.

Note: Ifthe channels are not available for you to select in the channel-name field, you must
build your Schemas project. To do so, first click Cancel in the Insert Control dialog
box to close it. Then right-click on the Schemas folder in the Application tab and
choose Build Schemas from the drop-down menu. When the Schemas project
finishes building, click Add—¥ntegration Controls—MB Publish on the Data
Palette Controls tab to open the Insert Control dialog box. Repeat steps 4 through

Tutorial: Building Your First Business Process Part [V

http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howChannel.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howChannel.html

6, as described above. The channels are now available in the channel-name field.
(The channel files that define Message Broker channels in your application are
located in a Schemas project, and must be built in that project for them to be available
in your application. To learn how the ValidateOrder channel is defined, see
Understanding the Message Broker Channels in Your Tutorial Application.

8. Click Create. An instance of the MB Publish control in your project is created, the Insert
Control dialog box is closed, and the MBPub Validate.jcx file is created and is visible in
the Application pane. The instance of the mbPubValidate control you created is displayed
in the Data Palette:

= =) mbPubyalidate
T PublishCortrolPropertiesDocument getProperties()
= oid publish{QuoteRequestDocument value)
=+ yoid publishiwithMetadatalXmlObject metadata, QuoteRequestDocument value)
= yoid setCutputHeaders{Element[] argl)
=+ yoid setProperties(PublishControlPropertiesDocument argl)

9. In the Data Palette, click the following method in the mbPubValidate control:

void publish (QuoteRequestDocument value)

10. Drag and drop the method onto the RequestQuote business process placing it immediately
after the Client Requests Quote Start node.

@IZ

RequestCuote

|
e ®

Client Reguests Quoke

(:?

publish

Sales Tax Calculation Needed?
i

A Control Send node is created. By default, the node is named publish.

11. Double-click the publish node. The node builder opens on the General Settings tab. The
mbPubValidate control and the void publish (QuoteRequestDocument value)
method are already selected.

12. Click Send Data to open the second tab in the node builder, in which you can specify the
message to be published to the ValidateOrder Message Broker channel.

The Control Expects field is populated with the data type of the parameter expected by
the control: QuoteRequestDocument.

Tutorial: Building Your First Business Process Part [V 1-3

Step 13: Publish and Subscribe to Message Broker Channels

14

13. In the Select variables to assign field, click the arrow to display the variables in your
project, then select requestXML (QuoteRequest).

Note: Recall that when you designed the Start node for your business process at the
beginning of the tutorial, you assigned the Request for Quote messages from clients
to the requestXML variable.

14. To close the node builder, click X in the top right-hand corner.

To Subscribe to a Message Broker Channel to Receive Messages from a Validation Service

You must create a Message Broker Subscription control in your project, then bind a method from
the control to a node in your business process. Using the Message Broker Subscription control,
your process subscribes to a channel on which Validation services can publish messages if the
Request for Quote from the client is invalid. In the tutorial scenario, a ValidateOrder service
determines that a Request for Quote is invalid if the number of widgets requested by a client is
greater than 400. Complete the following steps:

1. Ensure that the RequestQuote business process is displayed in the Design View.

2. On the Data Palette Controls tab, click Add—Integration Controls—MB Subscription.
The Insert Control dialog box is displayed.

Insert Control- MB Subscription ﬂ

STEP 1 Variable name For this cantrol: | mbSubvalidate |

STEP2 Iwould ke to:

1 Use a ME Subscription contral already defined by a 1C: file

|

@®) Create a new MB Subscription control to use,

Mew JCk name: | MBSubYalidate |

STEP3 Mame of the channel to subscribe to

channel-name: ‘ ITukarialPrefix/ TutorialfStopQuote |v |

Type of message bo receive

message type: java.lang.String

Type of metadata to receive

metadata type:

[This subscription will be Filkered

3. In Step 1, enter mbSubValidate as the variable name for this control.

4. In Step 2, select Create a new MB Subscription control to use. In the New JCX name
field, enter MBSubValidate.

Tutorial: Building Your First Business Process Part [V

5. In Step 3, select /TutorialPrefix/Tutorial/StopQuote.

This specifies the channel to which your business process subscribes. It is also the channel
to which the ValidateOrder service publishes messages when it determines that a Request
for Quote is invalid.

Note: The message type field is populated with the data type of the message that is
published to the StopQuote channel: java.lang.String. To learn how the
StopQuote channel is defined, see Understanding the Message Broker Channels in
Your Tutorial Application.

6. Click Create to create an instance of the MB Subscription control in your project.

The Insert Control dialog box is closed and the MBSub Validate.jcx file is created and is
visible in the Application pane. The instance of the mbSubValidate control you created is
displayed in the Data Palette:

B =1 mhSubyalidate
=+ v0id subscribe)
= void unsubscribe)
+= v0id onlMessage(String message)

7. In the Data Palette, click the following method in the mbSubValidate control:

void subscribe ()

8. Drag and drop the method onto the RequestQuote business process in the Design View,
placing it immediately after the publish node.

@‘Q

RequestQuate

I~ © @

Client Requests Quate

=k

publish

*E°

subscribe

Sales Tax Calculation Meeded?
|

A Control Send node is created. By default, the node is named subscribe. Note that the
[# indicates that the specifications on this node are complete—no further work is required
to design this node.

Tutorial: Building Your First Business Process Part IV 1-5

Step 13: Publish and Subscribe to Message Broker Channels

1-6

Note: Message Broker Subscription controls do not define callback methods for you. You must
define a custom callback to specify how the business process expects to receive the event
messages. To define the callback for your business process, proceed to Step 14:
Designing a Message Path for Your Business Process.

This step completes the design of the nodes that specify how your RequestQuote process
publishes and subscribes to Message Broker channels.

Related Topics

Understanding the Message Broker Channels in Your Tutorial Application
Message Broker Controls

How Do I: Create Message Broker Channels?

Tutorial: Building Your First Business Process Part [V

http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsBroker.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howChannel.html

GHAPTERa

Step 14: Designing a Message Path for
Your Business Process

In this step, you create a message path on your business process that specifies the logic to handle
a callback from the channel to which the ValidateOrder service posts a message.

In this case, you associate the Message path you create with the Start node in your business
process. It is also possible to associate Message paths with individual nodes or groups of nodes.
For the case in which a Message path is associated with the Start node, the logic defined within
the path applies to the entire business process in the event a message is received on this path. (The
same is true for Exception paths and Timeout paths created on business process Start nodes.) The
logic defined for paths associated with individual nodes or groups of nodes applies to those
individual or groups of nodes. To learn more about Message, Exception, and Timeout paths for
business processes, see Related Topics.

This step includes the following tasks:

e To Create a Message Path on Your Business Process That Handles Messages Routed via a
Channel to Which Your Process is Subscribed

e To Design a Node to Receive the Message Event From the StopQuote Channel

e To Specify the Behavior of Your Business Process in the Event that the Message Path is
Triggered

e To Design a Node to Send a Message to Clients in the Event the Business Process
Receives a StopQuote Message From the StopQuote Channel

Tutorial: Building Your First Business Process Part [V 2-1

Step 14: Designing a Message Path for Your Business Process

2-2

To Create a Message Path on Your Business Process That Handles Messages Routed via a
Channel to Which Your Process is Subscribed

In this step, you learn how to create a message path on your business process that handles the
following tasks:

e Receives the message event from the StopQuote Message Broker channel to which your
process is subscribed.

e Specifies the run-time behavior of the process in the event the message path is executed: if
a message is received from the StopQuote channel, the process sends a message to the
client from which the Request for Quote originated, and terminates the Request for Quote
business process.

Message paths can be associated with individual nodes or groups of nodes that contain a blocking

element, or with the business process (global). In this case, you design a global message path for
the business process by specifying the message path at the Start node.

To Design a Node to Receive the Message Event From the StopQuote Channel
1. Ensure that the RequestQuote business process is displayed in the Design View.

2. Right-click the Start node, then choose Add Message Path from the drop-down menu.

A path, which contains a placeholder for the event that invokes the path at run time, is
created to the right of the Start node in the Design View:

OnMessage
CE
.
RequestQuote Skarting Event
{double-click For opkions)

TR
Client Requests Quate
Note: The Message Broker Subscription control you created in Step 13 does not define
callback methods for you. You design a Control Receive node on this message path
to define a custom callback that specifies how the business process expects to receive
the event messages from the StopQuote channel to which it is subscribed.

3. Double-click the Starting Event node on the message path to display the types of nodes
you can choose for this path.

4. Choose A Control Receive, then click the X in the top right-hand corner of the node
builder.

Tutorial: Building Your First Business Process Part [V

A Control Receive node is added to the OnMessage path. This node specifies that this
path waits to receive a message from a control.

. On the Data Palette, click the following method in the mbSubValidate control:
void onMessage (String message)

= =1 mbaubvalidate

=+ vaid subscribef)

=+ yoid unsubscribe)

4= void onMessage{String message)
. Drag and drop the method onto the message path (OnMessage), placing it on the Control
Receive node.

The Control Receive node in the OnMessage path changes to reflect the binding of the
Subscription control method: the node is named onMessage and the Start node icon
reflects a Message Broker Subscription control. Your message path should resemble that
displayed in the following figure:

“
o OnMs‘ssage
© '%’J .

Rsuuss‘tQuuts onMessage

. Double-click the onMessage node. The node builder opens on the General Settings tab.
The mbSubValidate control and its void onMessage (String message) method are already
selected.

. Click Receive Data to open the second tab in the node builder, in which you can assign a
variable to which the message that is received from the StopQuote channel is stored.

The Control Returns field is populated with the data type and the name of the parameter
expected by the control: String message.

. In the Select variables to assign field, click the arrow to display the variables in your
project, then select Create new variable.... The Create Variable dialog box is displayed.

10. In the Variable Name field, enter stopQuote.

11. In the Select Variable Type pane, select String in the list of Java Types. The Variable
type field is populated with java.lang.String.

12. Click OK. The stopQuote variable is created and is displayed in the Receive Data tab (and

on the Data Palette Variables tab).

Tutorial: Building Your First Business Process Part IV

2-3

Step 14: Designing a Message Path for Your Business Process

24

(% Variable Assignment () Transformation

Select variables to assign: Conkrol Returns:
stopQuote (String) | hd Shring message

This completes the assignment of the message from the StopQuote Message Broker
channel to the stopQuote variable.

13. To close the onMessage node builder, click the X in the top right-hand corner.

This step completes the design of the callback handler that handles a message event on the
StopQuote channel to which your RequestQuote business process is subscribed.

To Design a Node to Send a Message to Clients in the Event the Business Process Receives a
StopQuote Message From the StopQuote Channel

1.

2.

Ensure that your RequestQuote business process open in the Design View.

Click @. Client Response in the Palette, then drag and drop the node onto the business
process, placing it on the message path, immediately after the onMessage subscription
node. The Design View is updated to contain the Client Response node.

=

OnMessage

ek

onfessage

o7

RequestCQuobe | I
e

Deny Quaote

. Change the name of the node from Client Response to Deny Quote.

Double-click the Deny Quote node to open its node builder.

In the General Settings tab, change the default name in the Method Name field to
denyQuote.

Click Add to display the panel of data types.

Note: Inapreceding step, you created a variable of type String to hold the message received
from the ValidateOrder service, via the StopQuote channel. This is the message
your RequestQuote business process sends to clients in the event that the Request for
Quote is invalid. Therefore we are concerned with String Java Types at this node.

Tutorial: Building Your First Business Process Part [V

7. Select Java on the panel of data types, then in the list of Java Types, select String. The
Type field is populated with java.lang.String.

8. In the Name field, replace the default x0 by entering stopQuote and click OK.

9. Click the Send Data tab to open the tab that allows you to assign the variable that holds the
data your business process sends to clients.

The Client Expects field is populated with the data type and parameter name you specified
on the General Settings tab: String stopQuote.

10. Under Select variables to assign, select stopQuote (String).

(% Variable Assignment () Transformation

Client Expects: Select variables to assign:

Skring stopQuote stopQuote (string) | - |

11. To close the Client Response node builder, click the X in the top right-hand corner.

In the Design View, note that by completing the tasks in the node builder, the
completeness icon associated with the Send Quote node changed from [/ to [# indicating
that the design of the node is complete.

12. From the Workshop menu, select File—Save.
To Specify the Behavior of Your Business Process in the Event that the Message Path is
Triggered

In this step you learn how to specify the run-time behavior of your business process in the event
this message path is triggered. To do so, you use the Property Editor to set the after execute
property for your message path.

1. In Design View, click the OnMessage path icon. The Property Editor displays properties
for the OnMessage path.

Note: If the Property Editor is not visible in WebLogic Workshop, select
View—Property Editor from the menu bar.

Ll Property Editor s

OnMessage - OnMessage
general
narne: OnMessage
notes
message
after execute skip
retry count 1]

Tutorial: Building Your First Business Process Part IV 2-5

Step 14: Designing a Message Path for Your Business Process

2-6

2. Verify the following properties for the OnMessage path:

— name—Displays the name of the message path: OnMessage. Click on this property if
you want to enter a new name for the path.

— notes—You can click ... in the notes field rotes [=] to invoke a
text editor in which you can add text. For example, you can use it to document
something about this node.

— after execute—Specifies the behavior of the business process when this message node
is activated at run time. skip is specified by default.

Valid options for this property include skip and resume, described here for heuristic
purposes. In our scenario, you should not change the default specification.

skip—Specifies that after execution of the message path, the process engine skips the
node or group with which the message path is associated. That is, the process engine
resumes execution of the process at the node following the node or group for which the
message path is defined. In the special case of a global message path—one defined for
the business process on the Start node—the process is terminated after execution of the
message path.

resume—Specifies that after execution of the message path, the process engine
resumes execution of the business process at the node that was executing when the
message was received. That is, the process state returns to what it was before the
message path executed and the On Message port is still active.

— retry count—Specifies how many times the process engine retries to execute the nodes
contained in the Message path after the first attempt to execute them and before the
after execute path is taken. Zero is specified by default.

This step completes the design of the message path on your RequestQuote business process.

By completing this section, you created the logic that allows your RequestQuote business
process to publish the Request for Quote message it receives from clients to a Message Broker
channel. (A validation service is subscribed to that channel). You also created a dynamic
subscription to another Message Broker channel to allow your RequestQuote business process
to receive messages published by the validation service.

To run the business process you created by following the steps in Part I'V of this tutorial, proceed
to Step 15: Run and Test the Request Quote Business Process With the Quote Validation Service.

Tutorial: Building Your First Business Process Part [V

Related Topics

To learn about designing Message paths, Exception paths, and Timeout paths for your business
process, see the following topics in the Guide to Building Business Processes:

Handling Exceptions

Adding Message Paths

Adding Timeout Paths

Tutorial: Building Your First Business Process Part IV 2-1

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideException.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideMessage.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideMessage.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTimeout.html

Step 14: Designing a Message Path for Your Business Process

2-8 Tutorial: Building Your First Business Process Part IV

CHAPTERa

Step 15: Run and Test the Request Quote Business
Process With the Quote Validation Service

In the same way you ran and tested the business process you created when you finished Part I11
of the tutorial, you can run and test the functionality of the business process you created in Part
IV using WebLogic Workshop’s browser-based interface.

To Launch the Test Browser

1.
2.

Ensure that the RequestQuote business process is displayed in the Design View.

If the WebLogic Server is not already running, from the WebLogic Workshop menu,
choose Tools—WebLogic Server—Start WebLogic Server.

If WebLogic Server is running, the following indicator is visible in the status bar at the
bottom of the WebLogic Workshop visual development environment:

@ Server Running

From the WebLogic Workshop menu, click Build—Build Application. WebLogic
Workshop builds your application.

Click the Start button ® on the menu bar to run your business process. The Workshop
Test Browser is launched, through which you can test your business process using sample
input values.

If necessary, open the Test Form page.

You can enter data that your business process can receive as part of a client request
directly on the Test Form page. Alternatively, you can browse your file system and upload
a file which contains your test data. In this case, test XML data are provided in the tutorial
application for you to use.

Tutorial: Building Your First Business Process Part [V 3-1

http://e-docs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutlogic/tutWLIProcessnavPart3.html

Step 15: Run and Test the Request Quote Business Process With the Quote Validation Service

6. Click Browse beside the xml requestXML (file value) field to open the file browser.

7. Select QuoteRequest_a.xml from the testxml folder in your project
(Tutorial_Process_ApplicationWeb\requestquote\testxml\QuoteRequest_a .xm

1).

Note: QuoteRequest a.xml contains data that specify an order for a quantity of widgets
of 400 or more. This data is designed to fail the validation check carried out by the
ValidateOrder business process.

8. Click the button labeled with the method name on your business process (quoteRequest) to
invoke the method. The Test Form page refreshes to display a summary of your request
parameters and the response from the external services in the Message Log:

Client Callback
Subritted at Fri Ock 10 14:48:10 PDT 2003
1065822488851 denyQuote(Request for Quote Rejected. Reason: Cannot process quote for orders of mare than 400 widgets.)
No Response
Subritted at Fri Oct 10 14:45:10 PDT 2003
The original client is the Test User Interface

tor
s Graph

— quakeRequest
mbPubValidate publish=+
taxCalcPracess requestTaxRate =+
mbSub¥alidate. onMessage 4=
taxCalcProcess. returnTaxRate 4=
4= callback.denyQuote

Instance 1065622488851 s Completed.
| xEM

The message log reflects the order of execution of methods in your RequestQuote
business process and the services it calls. For the scenario logged in the preceding figure,
note the following entries in the message log:

— quoteRequest—Was called by the client (you in this test instance) to start the
RequestQuote business process.

— mbPubValidate.publish—The publish node in your business process published the
Request for Quote to the ValidateOrder Message Broker channel.

— taxCalcProcess.requestTaxRate—The RequestQuote business process continues to
execute. In this case, it calls the requestTaxRate () method on the tax calculation
business process before it is interrupted by the mbSubValidate.onMessage message.

— mbSubValidate.onMessage—In this scenario, when the ValidateOrder process
determines that the Request for Quote is invalid, it publishes a message to the
StopQuote Message Broker channel. Your RequestQuote business process subscribes
to the StopQuote channel—when RequestQuote receives the message, it executes the
logic in the OnMessage path, sends a response to the client that sent the Request for
Quote (see callback.denyQuote in the Message Log in the preceding figure), and
terminates the business process.

— taxCalcProcess.returnTaxRate—The business process receives a response from the
tax calculation service (returnTaxRate ()) before it executes the logic in the
OnMessage path. (Remember that the after execute property on the OnMessage path
specifies that the process engine terminates the business process affer execution of the

3-2 Tutorial: Building Your First Business Process Part IV

message path. In other words, in this case, the returnTaxRate call is received as part
the normal flow of execution because the logic in the OnMessage path is not yet
executed.)

— callback.denyQuote—Your RequestQuote business process sends a denyQuote
message to the client that sent the Request for Quote.

— Instance instancelD is finished—The quote is determined to be invalid by the
ValidateOrder service. Therefore, further processing of the quote via the
RequestQuote business process is not required. After the callback.denyQuote
message is sent to the client from the message path, the business process is terminated.

instanceID represents the ID generated when the first method in your business
process was called.

Note: For this business process, the first and second messages in your Message Log are
quoteRequest and mbPubValidate.publish. However, the order of subsequent
messages can vary depending on your system. For the case shown in the preceding
figure, the asynchronous message (taxCalcProcess.requestTaxRate) was sent to the
tax calculation service before the interrupt message (mbSubValidate.onMessage)
was received from the Stop Quote Message Broker channel. In addition, a response
message (taxCalcProcess.returnTaxRate) was received from the tax calculation
service before the business process was terminated as a result of receiving the
mbSubValidate.onMessage message.

You can click any log entry to see the details of that interaction in the right panel of
the Test Form.

To Monitor Instances of Your Business Process
You can use the WebLogic Integration Administration Console to monitor your processes.
1. Invoke the Administration Console in one of the following ways:
— Click Monitor on the Message Log in the Test Browser’s Test Form page.
— From your WebLogic Workshop Tools menu:
Tools—WebLogic Integration—WebLogic Integration Administration Console
— By entering the following URL in a Web browser:

http://localhost:7001/wliconsole

The default username is weblogic and the password for the sample integration server is
also weblogic.

Tutorial: Building Your First Business Process Part [V 3-3

Step 15: Run and Test the Request Quote Business Process With the Quote Validation Service

2. The WebLogic Integration Administration Console opens on the Process Instance Details
page.

| @ Home Process Instance Monitoring | WELCOME WEBLOGIC | APRIL1E, 2004
|

5% Process Instance Details

This page displays details about a process instance.

Instance 1D 1082131184245
Service URI fMutarial_Process_ApplicationWeb/requestquote/RequestCuate. jpd
Status Completed
Process Lahel
' SLA Status Mot Applicable
Start Time Friday, April 16, 2004 10:00:12 AM WDT
Elapsed Time 2 mins 49 secs 243 msecs
Completion Time Friday, April 16, 2004 10:03:08 AW MDT

3. Click Process Instance Monitoring to open a page that allows you to:

— View process instance statistics, including the number of instances in each state
(running, suspended, aborted, and completed).

— View the summary or detailed status for selected instances.
— Suspend, resume, or terminate, selected instances.

If you invoked the Process Instance Monitoring page after running the RequestQuote
business process, as described in this step, three business processes are listed in the Process
Instance Statistics page: RequestQuote, TaxCalcProcess, and Validate Order.

£hea Weblogic Integration Administration Console f o= ?

Process Ingtance Monitoring

Process Instances VWELCOME WEBLOGIC | OCTOBER 10, 2003 4:50:58 PM PDT

& View Statistics 5‘% Process Instance Statistics URI or Name
& Wiew Al

@ Advanced Search This page displays a summary of process instances grouped by the process
@ System Health type. To view instances of a process type, click the process name.

Related Modules

& Process Configuration RequestCuote Emil2s 0 0 0 0 3
& Message Broker TaxCalcProcess 0.1 secs A 0 0 0 0
WalidateOrder 0.1 secs MEA 1} 1} 1} 1}

Display Mame v [Ave

4. Click the name of any business process in the Display Name column to go to a page that
displays more information about that process. For example, to learn more about the instance
of the ValidateOrder business process that ran in your test:

5. Click ValidateOrder in the Display Name column on the Process Instance Statistics page
displayed in the preceding figure.

6. A Process Instance Summary page is displayed. This page lists all the instances of the
ValidateOrder business process that ran or are running.

3-4 Tutorial: Building Your First Business Process Part [V

7. To display a page which contains more details about any instance, click the Instance ID in
the ID column on the Process Instance Summary page.

8. On the Process Instance Details page, click Graphical View to display a graphical
representation of this instance of the ValidateOrder business process.

9. To display information about the nodes, click each node of the ValidateOrder business
process. Note that if you started your RequestQuote business process in the WebLogic
Workshop Test Browser with the QuoteRequest_a.xml test data, the ValidateOrder
process determines that the order is not valid. In that case, the No path on the Valid Order?
Decision node is executed and highlighted in the Process Graph; the Yes path is gray,
indicating that this path was not executed for this instance.

To learn more about Process Instance Monitoring in the WebLogic Integration Administration
Console, see the Process Instance Monitoring topic in the Administration Console online help.
To Monitor the Message Broker Channels

You can use the WebLogic Integration Administration Console to monitor the Message Broker
channels in your system, specifically the name, status, and the number of subscribers for each
channel.

Open the Channel Summary List page in one of the following ways:
e From the Administration Console’s Home page, click Message Broker:

@ l
Maonitor the volumes routed through the meseage broker, or view subscribers to

various channels. Channel message counts can he tracked and reset
periodically for manthly or weekly business reporting

e In the left pane of any Process Instance Monitoring page, click Message Broker:

P Process Instances

& View Statistics
& View Al

& Advanced Search
& System Health

Related Modules:

® Process Configuration
® Message Broker

The Channel Summary List page is displayed. The list displays all the channels in your system
(in the samples integration domain in this case). Note that the
TutorialPrefix/Tutorial/StopQuote and TutorialPrefix/Tutorial/ValidateOrder channels
used by your business process in Part IV of the tutorial are displayed:

Tutorial: Building Your First Business Process Part IV 3-5

Step 15: Run and Test the Request Quote Business Process With the Quote Validation Service

I @ Home Message Broker | VWELCOME WEBLOGIC | OCTOBER 14, 2003 12:03:57 PM PDT
|
@ Channel Summary List l—_lV‘EW T =
| This page displays channels in the Message Broker and the name, status, and the number of
subscribers for each channel. To view subscription rules for a channel, click the channel narme.
n Channel MName = Message Type & |Message Count & |Subscriber Count & |Dead Letter Count &
1| T | MutorialPrefix/Tutorial/StopGuote string 2 1 1]
T |/TutorialPrefixTutonalalidateOrder xml 4 1 o

Note the following information about the Message Broker channels:

e The Message Type for each channel is displayed: String for the StopQuote channel and
XML for the ValidateOrder channel.

e The Message Count records the number of messages routed through the channels. These
numbers reflect the number of times you ran the business process from the Test Browser.

e The Subscriber Count displays the number of subscribers to a particular channel that are
deployed on your system. If you have one tutorial application deployed on your system,
you should see a Subscriber Count of 1 for each of the StopQuote and ValidateOrder
Message Broker channels.

e The Dead Letter Count reflects the number of messages sent to the dead letter queue
since the count was last reset. When the Message Broker is unable to determine the URI to
send a message to (that is, no subscribers are found), the message is sent to the dead letter
channel that corresponds to the channel type. To learn about the deadletter channels in
your WebLogic Integration applications, see Dead Letter Channels in How Do I: Create
Message Broker Channels?

To learn more about the Message Broker module in the WebLogic Integration Administration
Console, see the Message Broker topic in the Administration Console online help.

Related Topics

Managing WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs81l/manage/index.html

Running and Testing Your Business Process

3-6 Tutorial: Building Your First Business Process Part IV

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTest.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howChannel.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howChannel.html

CHAPTERo

Understanding the Message Broker
Channels in Your Tutorial Application

This topic provides information about the Message Broker channels used in Part IV of the
tutorial. You are not need to perform any of the steps described in this topic to complete the
tutorial.

Channel files define the Message Broker channels available in a WebLogic Integration
application. Channel files must be placed in a Schemas project in your application. Otherwise,
they are not visible to your application components. A channel file, named Validate.channel, is
provided for you in the Schemas project in your tutorial application. Validate.channel specifies
two Message Broker channels: ValidateOrder and StopQuote.

This topic includes the following sections:

e Creating Channel Files in Your Application

e Understanding the Channels Specified for the Tutorial
Creating Channel Files in Your Application
1. Locate a Schemas project in the Application pane.

2. Right-click the Schemas project and choose New—€hannel File from the drop-down
menu. The New File dialog box is displayed.

3. Ensure that Processes is selected in the left pane, and Channel File is selected in the right
pane.

4. Enter a name for the file in the File name field.

Tutorial: Building Your First Business Process Part [V 4-1

Understanding the Message Broker Channels in Your Tutorial Application

Note: As indicated by the file extension in the New File dialog box, the Channel File is
automatically appended with channel as its suffix.

5. Click Create.

Your new channel file is created and displayed in your Schemas folder on the Application
tab. This file is a template file that you edit to define the Message Broker channels for your
application.

6. To view the contents of the template file, go to the Application pane, then double-click the
file you created in the Schemas folder. The file is displayed in the Source View.

Channel files are XML files that are valid against an XML Schema. The Schema is
available at the following location in your WebLogic Platform installation:

BEA HOME\weblogic8l\integration\lib\xmlschema\config\ChannelFile.xsd

In the preceding line, BEA HOME represents the directory in which you installed WebLogic
Platform.

Understanding the Channels Specified for the Tutorial

Click the Validate.channel file provided for you in your Schemas project. The file is displayed
in the Source View. The following listing displays the channel definitions in

Validate.channel:

<?xml version="1.0"?>

<channels channelPrefix="/TutorialPrefix"
xmlns="http://www.bea.com/wli/broker/channelfile"

xmlns:et="http://www.example.org/request">
<channel name ="Tutorial" messageType="none">

<channel messageType="xml" name="ValidateOrder"

qualifiedMessageType="et:quoteRequest"/>
<channel messageType="string" name="StopQuote"/>
</channel>
</channels>
Note the following characteristics of the validate.channel file:

® channelPrefix="/TutorialPrefix”

4-2 Tutorial: Building Your First Business Process Part [V

Helps define the URI for the Message Broker channel. The channelPrefix is used to
scope the use of the Message Broker channels across a domain. To ensure that you do not
unintentionally send or receive messages to and from other applications in your domain, it
is recommended that you create a unique channelPrefix for an application (for example,
you can use the same name as your application name). However, if you want to use the
Message Broker for communication among two or more applications, these applications
should use the same prefix for the channels.

® xmlns="http://www.bea.com/wli/broker/channelfile"

A namespace that references the names used in the channel file Schema.

® xmlns:et="http://www.example.org/request"

A namespace that references the names used in the RequestQuote.xsd Schema, against
which the messages sent from clients to the RequestQuote business process is validated.

e Two channels are defined in this file: ValidateOrder and StopQuote:
— For the ValidateOrder channel:
- name="ValidateOrder" specifies the name of the channel.
- messageType="xml" specifies the data type of the messages routed by that channel.

- qualifiedMessageType="et:quoteRequest" specifies the quoteRequest
element in the Schema referenced by the following namespace:
http://www.example.org/request. The et: prefix is associated with an XML
Schema namespace through the following declaration, which appears in the channels
element: xmlns:et="http://www.example.org/request". In other words, the
qualifiedMessageType specifies that the XML is Typed XML—valid against the
QuoteRequest.xsd Schema referenced by the http://www.example.org/request
namespace. The QuoteRequest.xsd Schema file is located in the Schemas project in
your application.

Warning: Make sure that the namespaces you reference in your channel files exist in your
application. If they do not, although you do not get an error at compile time, you
will get an error when you try to run your application.

— For the StopQuote channel:
- name="StopQuote" specifies the name of the channel

- messageType="string" specifies the data type of the messages routed by the
StopQuote channel: java.lang.String

Tutorial: Building Your First Business Process Part IV 4-3

Understanding the Message Broker Channels in Your Tutorial Application

Related Topics

Message Broker Controls

4-4 Tutorial: Building Your First Business Process Part [V

http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsBroker.html

	Copyright
	Tutorial: Building Your First Business Process
	Tutorial Goals
	Tutorial Overview
	Steps in This Tutorial

	Part I Build and Run a Simple Business Process
	Step 1: Create Your Business Process Application
	Working in the Design View
	Functions and Shortcuts

	Step 2: Specify How the Process is Started
	Step 3: Define Conditions for Alternate Paths of Execution
	Step 4: Invoke a Web Service
	What is the Tax Calculation Control?
	Design the Interaction Between Your Business Process and a Web Service

	Step 5: Run Your Business Process

	Part II Call a Business Process Using a Process Control
	Step 6: Invoke a Business Process Using a Process Control

	Part III Adding Looping Logic, Parallel Paths . . .
	Step 7: Looping Through Items in a List
	Understanding XML Schemas and For Each Nodes
	Design a For Each Loop in Your Business Process

	Step 8: Design Parallel Paths of Execution
	Create a Parallel Node
	Create Logic to Assemble Price and Availability Data

	Step 9: Create Quote Document
	Convert Price List to XML Quote Document
	Convert Availability List to XML Quote Document
	Combine Price and Availability Quotes

	Step 10: Write Quote to File System
	Step 11: Send Quote From Business Process to Client
	Step 12: Run the Request Quote Business Process

	Part IV Using the Message Broker
	Step 13: Publish and Subscribe to Message Broker Channels
	Step 14: Designing a Message Path for Your Business Process
	Step 15: Run and Test the Request Quote Business Process With the Quote Validation Service
	Understanding the Message Broker Channels in Your Tutorial Application

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

