
BEAWebLogic
Integration™

WebLogic Integration
Internals

Version 8.1 Service Pack 5
Revised: October 2005

Copyright
Copyright © 2004-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

WebLogic Integration Internals iii

Contents

About This Document
Overview Documents for WebLogic Integration. .v

What You Need to Know . vi

How to Print this Document. vi

Related Information .vii

Contact Us! .vii

Documentation Conventions . viii

1. What Does WebLogic Integration Add to WebLogic Workshop?

2. An Example WebLogic Integration Component: A JPD File
HelloWorld.jpd . 2-1

JPD Structure . 2-2

JPD Annotation . 2-2

JPD Conversation Lifetime . 2-2

3. Component Compilation
WebLogic Integration Compilation Artifacts . 3-1

Generated Process Class . 3-1

Generated XML files . 3-1

Component Compilation Products . 3-2

Transport Objects . 3-3

Dispatcher Objects . 3-3

iv WebLogic Integration Internals

Dispatcher EJBs . 3-3

Asynchronous Queues . 3-4

Containers . 3-4

4. Application Directory Structure

5. Component Invocation
Invocation Data Flow . 5-1

Message Transport . 5-2

Request Dispatch. 5-3

Synchronous vs. Asynchronous Dispatch . 5-3

Stateless vs. Stateful Methods . 5-3

Use of JMS . 5-3

Transactions . 5-3

Implicit Timers . 5-4

6. Application Customization
wli-config.properties File . 6-1

Index

WebLogic Integration Internals v

About This Document

This document is an addendum to the WebLogic Workshop Internals white paper available at the
following location:

http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp

Specifically, WebLogic Integration Internals describes the features that WebLogic Integration
adds to the WebLogic Workshop platform, and compares the Java Web Service (JWS) files you
can build with WebLogic Workshop to the Java Process Definition (JPD) files you can build
when you add WebLogic Integration to your BEA development environment.

Overview Documents for WebLogic Integration
This document complements a series of documents that provide an overview of WebLogic
Integration, and that explain how the functionality provided by WebLogic Integration is used at
various stages in the design, development, and deployment of integrated solutions. Readers
should start with these documents to gain a comprehensive understanding of the functionality
provided by WebLogic Integration. The documents in the series are:

Introducing WebLogic Integration—Provides an overview of WebLogic Integration. It
describes the application integration, Trading Partner Integration, business process
management, and data integration functionality provided by WebLogic Integration to solve
e-business integration problems.

Managing WebLogic Integration Solutions—Describes how to administer and manage
applications built using WebLogic Integration.

These and other WebLogic Integration documents are available at the following URL:

http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp
http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp

About Th is Document

vi WebLogic Integration Internals

http://edocs.bea.com/wli/docs81/index.html

Once you are familiar with the contents of the overview documents, you can proceed to the
detailed documentation about the functionality provided by WebLogic Integration.

This document is organized as follows:

Chapter 1, “What Does WebLogic Integration Add to WebLogic Workshop?,” answers
design-time and run-time questions regarding WebLogic Integration application
performance.

Chapter 2, “An Example WebLogic Integration Component: A JPD File,” answers
questions regarding how to WebLogic Integration application configuration.

What You Need to Know
This document is intended primarily for:

Application developers who are creating WebLogic Integration applications.

System administrators who set up, deploy, and administer WebLogic Integration in a
production environment.

Database administrators who set up, deploy, and administer database management systems
for WebLogic Integration in a production environment.

This document assumes that you have read WebLogic Workshop Internals, which is available at
the following location:

http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp

For an overview of the WebLogic Integration architecture, see Introducing WebLogic
Integration.

How to Print this Document
You can print a copy of this document from a Web browser, one file at a time, by using the
File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration documentation CD.
You can open the PDF in Adobe Acrobat Reader and print the entire document (or a portion of
it) in book format.

If you do not have the Adobe Acrobat Reader installed, you can download it for free from the
Adobe Web site at http://www.adobe.com/.

http://edocs.bea.com/wli/docs81/index.html
http://www.adobe.com/
http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp
http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp

Re lated Inf ormat ion

WebLogic Integration Internals vii

Related Information
For information about installing WebLogic Integration, see Installing BEA WebLogic Platform
which is available at the following URL:

http://edocs.bea.com/platform/docs81/index.html

WebLogic Integration documentation is available at the following URL:

http://edocs.bea.com/wli/docs81/index.html

WebLogic Server documentation is available at the following URL:

http://edocs.bea.com/wls/docs81/index.html

Contact Us!
Your feedback on the WebLogic Integration documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the WebLogic Integration
documentation.

In your e-mail message, please indicate which version of the product and the documentation you
are using.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

http://edocs.bea.com/platform/docs81/index.html
http://edocs.bea.com/wli/docs81/index.html
http://edocs.bea.com/wls/docs81/index.html

About Th is Document

viii WebLogic Integration Internals

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

Documentat i on Convent ions

WebLogic Integration Internals ix

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

• That an argument can be repeated several times in a command line

• That the statement omits additional optional arguments

• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

About Th is Document

x WebLogic Integration Internals

WebLogic Integration Internals 1-1

C H A P T E R 1

What Does WebLogic Integration Add to
WebLogic Workshop?

This paper describes the high-level components that WebLogic Integration adds to WebLogic
Workshop to enable rapid business system integration. It is an addendum to WebLogic Workshop
Internals which you can find at the following location:

http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp

WebLogic Integration provides functionality for developing new applications, integrating them
with existing systems, streamlining business processes, and extending e-business infrastructure
through portal gateways. WebLogic Server, the industry-leading J2EE application server,
provides the critical infrastructure needed to develop integrated solutions, including security,
transaction management, fault tolerance, persistence, and clustering.

Leveraging WebLogic Server as the underlying deployment environment, WebLogic Integration
uses web services to integrate distributed systems inside and outside an organization, and uses the
WebLogic Workshop framework to simplify application development. WebLogic Integration
supports the rapid development of integration applications by adding the following elements to
WebLogic Workshop:

Java Process Definitions (JPDs)

WebLogic Integration Java Controls:

– Application View, to access EIS (Enterprise Information System) applications

– ebXML, to exchange messages with trading partners using the ebXML business
protocol. The ebXML Message Service is sponsored by UN/CEFACT and OASIS. It
provides security and reliability features that are not provided in the specifications for
SOAP and SOAP Messages with Attachments.

http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp
http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp
http://dev2dev.bea.com/products/wlworkshop81/articles/wlw_internals.jsp

1-2 WebLogic Integration Internals

For more information about these and other ebXML specifications, see the ebXML web
site at the following URL:

http://www.ebxml.org/specs/index.htm

– Email, to allow WebLogic Integration business processes to send e-mail to a specific
destination

– File, to read, write, or append to files in a file system

– MB (Message Broker) Publish, MB Subscribe, to provide publish and subscribe
message-based communications for WebLogic Integration business processes

– Process, to allow WebLogic Integration business processes to invoke other business
processes

– RosettaNet, to exchange messages with trading partners using the RosettaNet business
protocol. The RosettaNet Implementation Framework (RNIF) specification is a
guideline for applications that implement RosettaNet Partner Interface Processes (PIPs).
These PIPs are standardized electronic business processes used between trading
partners.

For complete information about the RNIF specification and a list of PIPs, see the
RosettaNet web site at the following URL:

http://www.rosettanet.org

– Service Broker, to allow WebLogic Integration business processes to interface with a
single control that provides relays, based upon decision criteria, to any number of other
services or business processes.

– Task, Task Worker, to allow interaction from end users—such as task creators, task
workers, and task administrators—to business processes for handling process
exceptions, approvals, status tracking, and so forth.

– TPM (Trading Partner Management), to provide WebLogic Integration business
processes with query (read-only) access to trading partner and service information
stored in the TPM repository

– Transformation, to transform XML data in business processes using either XQuery
expressions or eXtensible Stylesheet Language Transformations (XSLTs).

– WLI JMS (WebLogic Integration Java Message Service), to allow WebLogic Integration
business processes to easily interact with messaging systems that provide a JMS
implementation

http://www.ebxml.org/specs/index.htm
http://www.rosettanet.org

WebLogic Integration Internals 1-3

The Application View, ebXML, MB Publish, MB Subscribe, and RosettaNet controls have
associated runtime components, with separate WebLogic Server deployed resources
including EJBs, queues, and so on.

Runtime components not directly associated with controls:

– Process Monitoring and Tracking

– Message Tracking (B2B business process, only)

– Event Generators (JMS, email, file, timer)

– Business Calendar

The difference between the runtime infrastructure for JPDs and JWS (Java Web Service)
definitions is the central topic of this paper.

Discussion of the additional runtime components provided by Weblogic Integration will be
covered in a future version of this paper.

1-4 WebLogic Integration Internals

WebLogic Integration Internals 2-1

C H A P T E R 2

An Example WebLogic Integration
Component: A JPD File

WebLogic Workshop Internals describes the structure of a JWS (Java Web Service) file. A JWS
file is very similar to a JPD (Java Process Definition) file. This section describes the basic outline
of a JPD file.

HelloWorld.jpd
Below is the code for a process version of HelloSync.jpd, a sample process definition that
returns a string result to a web service request:

/**

* @jpd:process process::

* <process name="HelloSync">

* <clientRequest name="Client Request with Return"

* method="clientRequest" returnMethod="clientReturn"/>

* </process>::

*/

public class HelloSync implements com.bea.jpd.ProcessDefinition

{

public static final java.lang.String mReturnVal = "Hello, World";

public void clientRequest()

{

}

public java.lang.String clientReturn()

2-2 WebLogic Integration Internals

{

return this.mReturnVal;

}

}

Note: The JPD comments that normally accompany an IDE-generated JPD file have been
removed for brevity.

JPD Structure
Paralleling the structure of a JWS file, each JPD file contains a single top-level class that
implements a web service. While the file has the special .jpd extension, it contains completely
valid Java source code. The .jpd extension is merely used to identify the file as a business
process web service. When a web service is accessed via its URL, the .jpd extension is used by
the WebLogic Workshop runtime to route the request to the correct subsystem.

A JPD file contains custom Javadoc annotations that indicate various configuration attributes of
the web service which are supported by the WebLogic Workshop runtime. A JPD file may
reference WebLogic Workshop and WebLogic Integration Java controls.

JPD Annotation
In addition to the single top-level implementation class, a JPD has a mandatory process
annotation, jpd:process. This annotation provides message orchestration capability, or a
high-level program counter that can persist across Java calls.

Because the process definition describes the order in which messages are expected, there is no
need to use the jws:conversation annotation. The jpd:process annotation already describes
the start, continue, and finish properties of methods.

JPD Conversation Lifetime
There is one notable use of a JWS annotation in a JPD: jws:conversation-lifetime. This
feature sets an implicit timer to time out the process after a specified idle time.

This has two side effects:

A long running process may unexpectedly time out while waiting for a message.

A short running process will generate many timer messages, which causes excessive
memory consumption.

JPD Conve rsa t ion L i f et ime

WebLogic Integration Internals 2-3

If your WebLogic Integration application doesn’t require the conversation-lifetime feature,
we recommend that you set it to 0 to disable the feature.

2-4 WebLogic Integration Internals

WebLogic Integration Internals 3-1

C H A P T E R 3

Component Compilation

Before a WebLogic Integration application component can be invoked, it must be compiled.
Compilation timing and products for JPDs are generally the same as for compilation of JWS files.
The following sections describe the areas where compilation of JPDs differs from that of JWS
files.

WebLogic Integration Compilation Artifacts
WebLogic Integration process projects generate a few additional artifacts during compilation.

Generated Process Class
When the JPD file is compiled, it generates two classes: the implementation class and the process
class. The process class ends in _wf. The process class is generally invisible, but it will show up
in stack traces (when running performance analyzers, for example).

Generated XML files
In production (non-iterativedev) mode, a WebLogic Integration application listener loads
specific XML files into in-memory tables when the application is deployed.

The com.bea.wlw.runtime.core.servlet.WebappContextListener is defined in the
WEB—the listener INF/web.xml file of a process project. The INF/web.xml file is generated
when creating a process project, and it contains the listener. No user action is necessary to
configure it.

The WebLogic Integration application listener loads the following XML files:

3-2 WebLogic Integration Internals

Version file (META-INF/wli-process.xml)

During compilation, WebLogic Workshop creates a version file describing all versioned
JPDs.

Channel file (META-INF/wli-channels.xml)

During EAR (Enterprise Application Archive) generation, WebLogic Workshop creates an
aggregated channel file combining all .channel files in schema directories for the
application.

Static subscribers file (META-INF/wli-subscriptions.xml)

During EAR generation, WebLogic Workshop creates an aggregated subscriptions file
combining all the jpd:mb-static-subscription annotations and all mbsubscription
control annotations of the application.

Component Compilation Products
The compiled components of a JPD project are generally the same as those of a JWS. There’s
another dispatcher type described in Dispatcher EJBs, and different client types are allowed to
access the Dispatcher—Message Broker publishers, B2B protocols (ebXML and RosettaNet),
and Java processes using the process control.

The following figure shows the components of a process project. The shaded areas show overlap
with web service projects; the unshaded areas are specific to process projects. You can see from
this figure that the basic compilation components are the same, but process projects allow the
additional, aforementioned transport clients.

Component Compi la t i on P roduc ts

WebLogic Integration Internals 3-3

Figure 3-1 Invocation Dispatch Detail

Transport Objects
JWS supports two transport protocols by which a client may invoke web services: HTTP and
JMS. As mentioned earlier, JPDs support the same two transport protocols and add support for:

Message Broker publishers (event generators and Java processes)

B2B protocols (RosettaNet and ebXML)

JPDs using the process control

Messages from JPD proxies that come in through a WLI Process Proxy Dispatcher, which
then forwards to the project dispatcher. (Not shown in Figure 3-1.)

Dispatcher Objects

Dispatcher EJBs
WebLogic Integration uses the same SyncDispatcher and AsyncDispatcher as JWS. In
addition, it adds a third Dispatcher EJB: AsyncDispatcherErrorBean.

3-4 WebLogic Integration Internals

AsyncDispatcherErrorBean is a Message Driven Bean that handles invocations of buffered
component methods that have exceeded their JMS retry limits. This condition triggers an
exception handler in the JPD.

Asynchronous Queues
JPD projects use the same type of asynchronous queue as that used by JWS projects. In addition,
JPDs also have an error queue defined. This queue is configured to be an error destination of the
asynchronous queue used for the project. The name of the queue is the name of the project queue
suffixed by _error. For example, the JMS queue configured to handle asynchronous requests to
a JPD named WebServices/async/Buffer.jpd would be named
WebServices.queue.AsyncDispatcher. The error queue would be named
WebServices.queue.AsyncDispatcher_error.

Containers
JPDs use the same internal container mechanism as JWS. Subclassing of internal containers takes
care of minor differences. No user action is required.

WebLogic Integration Internals 4-1

C H A P T E R 4

Application Directory Structure

The application directory structure for a process application is generally the same as that for a
web service application. There are a few additional files produced during compilation of a JPD
file. These files are described in “WebLogic Integration Compilation Artifacts” on page 3-1.

4-2 WebLogic Integration Internals

WebLogic Integration Internals 5-1

C H A P T E R 5

Component Invocation

This section describes what occurs when an XML or SOAP message representing a web service
or business process method invocation arrives at the server.

Invocation Data Flow
The following figure illustrates the data flow for an invocation of a JPD method. The shaded areas
indicate overlap with JWS method calls. The unshaded portions indicate additions to JPD
invocation paths, compared to JWS method calls.

5-2 WebLogic Integration Internals

Figure 5-1 Invocation Dispatch Detail

Transactions begin at the points indicated by the T symbol in the preceding figure.

Message Transport
Requests arriving through JMS and HTTP protocols to a JPD follow the same runtime path as
those going to a JWS.

For the other clients (Message Broker publishers, B2B protocols, Java processes using the
process control, and Java clients using a JPD proxy), slight modifications to the runtime path
occur:

If the message is defined to be XML, then the message is parsed into a token stream. If the
document store threshold (weblogic.wli.DocumentMaxInlineSize) is reached, then the
document is stored in the document store and passed by reference. Otherwise, it is passed
by value.

If the message is defined to be RawData and if the document store threshold is reached
(weblogic.wli.DocumentMaxInlineSize), then the document is stored in the document
store and passed by reference. Otherwise, it is passed by value.

Reques t D ispatch

WebLogic Integration Internals 5-3

To learn more about configuring the document store threshold, see
http://edocs/wli/docs81/deploy/wliconfig_appx.html.

Request Dispatch

Synchronous vs. Asynchronous Dispatch
JPDs handle synchronous and asynchronous calls using the same runtime paths, respectively, as
for JWS. The only difference is in the annotation. Instead of using @jws:message-buffer
enable=”true” annotations, JPD methods are buffered by default. A synchronous method can
be enabled using the returnMethod attribute of a clientRequest element of a process
definition. Only the start method of a JPD can be synchronous.

Stateless vs. Stateful Methods
In a JWS, a process is made stateful by the presence of the jws:conversation attribute. JPDs
use the process definition attribute to deduce whether a process is stateful or not.

A process is stateless if it has:

no explicit transactions

no implicit timers

no control receives

no returnMethod methods with a process node following the associated clientRequest
node

Otherwise, a process is stateful.

Use of JMS
A JPD uses the same internal project queues as a JWS.

Transactions
A JPD generally uses the same implicit transaction model as a JWS, as shown in Figure 5-1.

Note: There is one important difference between transaction boundaries for the JPD and JWS
transaction models. When a Java process calls another Java process (or when an EJB

http://edocs/wli/docs81/deploy/wliconfig_appx.html

5-4 WebLogic Integration Internals

container calls using a JPD proxy), the current transaction is propagated to the
Dispatcher. A new transaction is not started.

In a JWS, a transaction ends on a method boundary. In a JPD, a transaction ends when:

A client receive or control callback node is reached

In this case, the process code returns from the container EJB, and waits for a client receive
or control callback to start a new transaction.

A parallel node is started or ended

The JPD sends itself a JMS message for each branch in the parallel node. It then returns
from the container EJB and waits for the Dispatcher to restart the JPD from the JMS
message.

Note: You can disable this behavior by using the continueTransaction attribute of the
parallel node. To learn more about configuring this attribute, see
http://edocs.bea.com/wli/docs81/relnotes/relnotesLimit.html.

An explicit transaction is started

The JPD sends itself a JMS message to start the explicit transaction. It then returns from
the container EJB and waits for the Dispatcher to restart the JPD from the JMS message.

A returnMethod method is executed, and a process node follows the associated
clientRequest node

The JPD sends itself a JMS message to start the next node after the client request node. It
returns from the container EJB with the result of the returnMethod, and waits for the
Dispatcher to restart the JPD from the JMS message.

If any uncaught exception occurs during the invocation of the component method, the
encapsulating transaction is rolled back. If the JPD was invoked from the AsyncDispatcher
(either through a buffered message, buffered callback or one of the transaction restarts described
above), then the request is retried according to the redelivery delay and the redelivery delay of
the project asynchronous dispatcher queue. When retries are exhausted, the message is sent to the
JMS error destination associated with that queue. The JPD AsyncErrorDispatcher will then
invoke the JPD exception handler, or terminate the process if an exception handler doesn’t exist.

Implicit Timers
JPDs make use of JMS timer messages. These are messages sent to the JMS project asynchronous
dispatcher queue with a delivery time value set to a point in the future.

The following constructs send JMS timer messages:

http://edocs.bea.com/wli/docs81/relnotes/relnotesLimit.html

Impl ic i t T imers

WebLogic Integration Internals 5-5

the jws:conversation-lifetime attribute

For more information about jws:conversation-lifetime, see “JPD Conversation
Lifetime” on page 2-2.

the timer branch of an event choice

the timer control, which sends these messages explicitly

There is some memory overhead for timer messages, as JMS keeps the indexing in memory.
Messages are never cancelled; “cancelled” messages (where the timer callback is no longer
expecting the message) are simply ignored when they are delivered.

JMS timer messages appear in the messages pending column in the WebLogic Server console.

5-6 WebLogic Integration Internals

WebLogic Integration Internals 6-1

C H A P T E R 6

Application Customization

In addition to the base configuration files, JPD applications use the wli-config.properties
file to enable additional application customization.

wli-config.properties File
The wli-config.properties file contains infrequently used parameters which are not
configurable through the WebLogic Integration console.

You can find documentation for the wli-config.properties file at:

http://edocs/wli/docs81/deploy/wliconfig_appx.html

http://edocs/wli/docs81/deploy/wliconfig_appx.html

6-2 WebLogic Integration Internals

WebLogic Integration Internals Index-1

Index

A
annotations

jpd:mb-static-subscription 3-2
jpd:process 2-2
jws:conversation 2-2, 5-3
jws:conversation-lifetime 2-2, 2-3, 5-5
jws:message-buffer 5-3
mbsubscription 3-2

application listener 3-1
Application View control 1-3
AsyncDispatcher 3-3, 5-4
AsyncDispatcherErrorBean 3-3, 3-4
AsyncErrorDispatcher 5-4

B
business calendar 1-3

C
clientRequest 5-3
com.bea.wlw.runtime.core.servlet.WebappCont
extListener 3-1
compilation artifacts

generated process class 3-1
generated XML files 3-1

containers 3-4
continueTransaction 5-4
controls

Application View 1-1, 1-3
ebXML 1-1, 1-3
email 1-2
file 1-2

MB Publish 1-2, 1-3
MB Subscribe 1-2, 1-3
process 1-2, 3-2, 3-3
RosettaNet 1-2, 1-3
service broker 1-2
task 1-2
task worker 1-2
timer 5-5
TPM (Trading Partner Management) 1-2
transformation 1-2
with runtime components 1-3
without runtime components 1-3
WLI JMS (WebLogic Integration Java

Message Service) 1-2

D
data transformation 1-2
dispatch

asynchronous 5-3
request 5-3
synchronous 5-3

Dispatcher
AsyncDispatcher 3-3
AsyncDispatcherErrorBean 3-3, 3-4
EJBs 3-2, 3-3
invocation details 3-3
objects 3-3
restarting JPD 5-4
SyncDispatcher 3-3
transactions propagated to 5-4
WLI Process Proxy Dispatcher 3-3

document store threshold

Index-2 WebLogic Integration Internals

and RawData messages 5-2
and XML messages 5-2
weblogic.wli.DocumentMaxInlineSize 5-2

E
ebXML

accessing Dispatcher 3-2
as transport object 3-3
control 1-1, 1-3
message runtime path 5-2
specifications 1-2

EJBs
calls using a JPD proxy 5-3
Dispatcher 3-2

email control 1-2
event generator

as transport object 3-3
runtime component 1-3

exceptions
and AsyncDispatcherErrorBean 3-4
uncaught 5-4

excessive memory consumption 2-2
eXtensible Stylesheet Language Transformations
(XSLTs) 1-2

F
file

channel 3-2
compilation artifacts 3-1
control 1-2
generated XML 3-1
INF⁄web.xml 3-1
META-INF⁄wli-channels.xml 3-2
META-INF⁄wli-process.xml 3-2
META-INF⁄wli-subscriptions.xml 3-2
static subscribers file 3-2
version 3-2
wli-config.properties 6-1
See also JPD (Java Process Definitions) file

H
HelloWorld.jpd 2-1
HTTP 5-2

J
JMS (Java Message Services)

internal project queues 5-3
requests arriving through 5-2
retry limits 3-4

JPD (Java Process Definition) file
and WLI Process Proxy Dispatcher 3-3
application directory structure compared to

JWS (Java Web Services) file 4-1
as transport object 3-3
channel file 3-2
compilation compared to JWS (Java Web

Services) file 3-1
compilation products 3-2
containers 3-4
conversation lifetime 2-2
custom Javadoc annotations 2-2
data flow compared to JWS (Java Web

Services) method 5-1
data flow for method compared to JWS (Java

Web Services) method 5-2
data runtime paths 5-2
HelloWorld.jpd 2-1
mandatory process annotation 2-2
message transport 5-2
method buffering 5-3
proxy 5-3
queues 3-4
structure compared to JWS (Java Web

Service) file 2-2
subscriptions file 3-2
transaction boundaries 5-3
transaction model 5-3
transaction model compared with that of

JWS (Java Web Services) 5-4
transport objects 3-3

WebLogic Integration Internals Index-3

version file 3-2
jpd:mb-static-subscription 3-2
jpd:process 2-2
JWS (Java Web Services)

container mechanism 3-4
data flow compared to JPD 5-1
Dispatcher EJBs 3-3
file compilation compared to JPD file 3-1
file structure compared to that of JPD file

2-2
jws:conversation 5-3
queues 3-4
request dispatch 5-3
runtime paths 5-2
transaction model 5-3
transport protocols 3-3

jws:conversation 2-2, 5-3
jws:conversation-lifetime 2-2, 2-3, 5-5
jws:message-buffer 5-3

M
MB Publish control 1-3
MB Subscribe control 1-3
mbsubscription 3-2
message

and document store threshold 5-2
as transport object 3-3
cancelled 5-5
causing timeout 2-2
from JPD proxies 3-3
in WebLogic Server console 5-5
JMS 5-4
orchestration 2-2
runtime paths 5-2
starting transaction 5-4
timer 2-2
tracking 1-3
transport 5-2

Message Broker
accessing Dispatcher 3-2

as transport object 3-3
jpd:mb-static-subscription annotation 3-2
MB Publish control 1-2, 1-3
MB Subscribe control 1-2, 1-3
mbsubscription annotation 3-2
message runtime path 5-2
META-INF⁄wli-subscriptions.xml 3-2

META-INF⁄wli-channels.xml 3-2
META-INF⁄wli-process.xml 3-2
META-INF⁄wli-subscriptions.xml 3-2
methods

boundary 5-4
returnMethod 5-4
start 5-3
stateful 5-3
stateless 5-3
synchronous 5-3

N
nodes

callback 5-4
clientRequest 5-4
parallel 5-4

O
OASIS 1-1

P
process

clientRequest 5-3
control 1-2
control as transport object 3-3
generated class 3-1
generating many timer messages 2-2
HelloWorld.jpd example 2-1
mandatory JPD (Java Process Definition)

file annotation 2-2
monitoring and tracking 1-3
project, components of 3-2, 3-3

Index-4 WebLogic Integration Internals

returnMethod 5-3
start method 5-3
stateful 5-3
stateless 5-3
termination 5-4
timeout condition 2-2

production mode 3-1

Q
queues

asynchronous dispatcher 5-4
error 3-4
naming conventions for 3-4

R
RawData 5-2
repository 1-2
retry limits 3-4
returnMethod 5-3
RosettaNet

accessing Dispatcher 3-2
as transport object 3-3
control 1-2, 1-3
message runtime path 5-2
Partner Interface Processes (PIPs) 1-2
specification 1-2

runtime components
business calendar 1-3
controls having 1-3
event generators 1-3
message tracking 1-3
not associated with controls 1-3
process monitoring and tracking 1-3

S
service broker control 1-2
SOAP 1-1
start method 5-3
stateful method 5-3

stateful processs 5-3
stateless method 5-3
stateless process 5-3
SyncDispatcher 3-3

T
task control 1-2
task worker control 1-2
timer

control 5-5
JMS messages 5-4
jws:conversation-lifetime annotation 2-2

Trading Partner Management (TPM)
control 1-2
repository 1-2

transactions
and Dispatcher 5-4
boundaries of 5-3
end conditions 5-4
explicit 5-4
model of 5-3
start conditions 5-4

transformation control 1-2
transport objects

ebXML 3-3
event generators 3-3
JPD (Java Process Definition) file 3-3
Message Broker publishers 3-3
messages from JPD proxies 3-3
RosettaNet 3-3

transport protocols
HTTP 3-3
JMS (Java Message Services) 3-3

U
UN/CEFACT 1-1

W
WebLogic Server 1-1, 5-5

WebLogic Integration Internals Index-5

weblogic.wli.DocumentMaxInlineSize 5-2
WLI JMS (WebLogic Integration Java Message
Service) control 1-2
WLI Process Proxy Dispatcher 3-3
wli-config.properties 6-1

X
XML

and document store threshold 5-2
com.bea.wlw.runtime.core.servlet.Webapp

ContextListener 3-1
generated files 3-1
INF⁄web.xml file 3-1
META-INF⁄wli-channels.xml 3-2
META-INF⁄wli-process.xml 3-2
META-INF⁄wli-subscriptions.xml 3-2
transformation 1-2

XQuery 1-2

Index-6 WebLogic Integration Internals

	About This Document
	Overview Documents for WebLogic Integration
	What You Need to Know
	How to Print this Document
	Related Information
	Contact Us!
	Documentation Conventions

	What Does WebLogic Integration Add to WebLogic Workshop?
	An Example WebLogic Integration Component: A JPD File
	HelloWorld.jpd
	JPD Structure
	JPD Annotation
	JPD Conversation Lifetime

	Component Compilation
	WebLogic Integration Compilation Artifacts
	Generated Process Class
	Generated XML files

	Component Compilation Products
	Transport Objects
	Dispatcher Objects
	Dispatcher EJBs
	Asynchronous Queues
	Containers

	Application Directory Structure
	Component Invocation
	Invocation Data Flow
	Message Transport
	Request Dispatch
	Synchronous vs. Asynchronous Dispatch
	Stateless vs. Stateful Methods

	Use of JMS
	Transactions
	Implicit Timers

	Application Customization
	wli-config.properties File

	Index

