
BEAWebLogic
Integration™®

Using the Worklist
System

Version 8.1
July 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Managing WebLogic Integration Solutions i

Contents

About This Document
What You Need to Know .vii

e-docs Web Site .vii

How to Print the Document . viii

Related Information . viii

Contact Us! . viii

Documentation Conventions . ix

1. Introduction
What is the WebLogic Integration Worklist System? . 1-2

Worklist Tasks . 1-3

Task Data Values . 1-3

Due Dates . 1-4

Task State . 1-4

Task Owners . 1-4

Assignee Lists and Claimants . 1-5

Request and Response Documents . 1-5

Operations on Tasks . 1-5

Archiving and Purging Task Information . 1-6

Task Queries . 1-7

Controls and Worklist APIs . 1-7

Task Control . 1-7

ii Managing WebLogic Integration Solutions

Task Worker Control . 1-7

Callbacks . 1-8

Operations. 1-8

Controls are Extensible. 1-8

Administration and Management . 1-9

WebLogic Integration Administration Console . 1-9

Worklist User Interfaces . 1-9

2. Using Worklist Controls
Which WebLogic Integration Controls Support the Worklist System? 2-1

Creating a Task Control. 2-2

Creating a Task Worker Control . 2-5

Using Task and Task Worker Controls in Business Processes . 2-7

3. Creating and Managing Worklist Tasks
Overview . 3-2

Task Due Dates . 3-2

Claim and Completion Due Dates . 3-2

To Set Task Due Dates Using Absolute Time . 3-3

To Set Task Due Dates Using Business Time . 3-3

To Specify a Calendar to Use When You Set Due Dates . 3-3

Formats for Business Time Duration . 3-4

Task States . 3-4

Assignment Algorithms . 3-7

assignToUser . 3-7

assignToUserInGroup . 3-7

assignToUsersAndGroups . 3-8

Task Users and Groups . 3-8

Managing WebLogic Integration Solutions iii

Task Owners . 3-8

Assignee Lists . 3-9

Claimants . 3-9

Integration Administrators . 3-9

Task Creators . 3-9

Tasks and User Permissions. 3-10

Who Has Permission to Create Tasks? . 3-10

Who Has Permission to Modify Task Data Values? . 3-11

Who Has Permission to Invoke Task Operations? . 3-11

Task Data Values . 3-13

Request and Response Documents . 3-18

Format and Type of Request and Response Documents. 3-18

Task Operations . 3-19

Archiving and Purging Task Information . 3-20

Task History Tables. 3-22

Task Queries . 3-24

To Specify the Criteria for a Query. 3-24

Note About String Patterns . 3-26

To Specify How the Results Are Sorted . 3-26

To Execute a Query. 3-26

To Limit the Results Set . 3-26

The Relationship Between Processes and Tasks . 3-27

4. Using the Worklist Control Methods
Task Control Active Task Model. 4-2

Creating New Tasks With a Task Control . 4-3

Assigning and Claiming Tasks . 4-4

Reassigning Tasks and Returning Them to Other States . 4-4

iv Managing WebLogic Integration Solutions

Setting Task Data Values. 4-5

Altering State With a Task Control . 4-7

Using Controls to Get Task Status. 4-9

Using XML With the Task Control . 4-9

Creating New Tasks . 4-10

public String createTask(TaskCreationXMLDocument doc) 4-10

In the preceding listing, note the following elements: . 4-11

Setting the request Property for a Task Instance . 4-11

public TaskInfoXMLDocument getTaskInfoXMLDocument() 4-12

public void updateTask(TaskUpdateXMLDocument doc) 4-12

To Import the Worklist Schema into Your Application . 4-12

The Task Control Properties Sheet . 4-13

Using the Task Control Property Editor . 4-15

Use the Property Editor to View and Edit Properties for Control Instances 4-15

Using Callback Methods . 4-16

Permissions . 4-17

Permissions for Modifying Task Properties . 4-19

Modifying Task Data Values. 4-20

Creating Tasks . 4-20

Transactions. 4-20

5. Advanced Topics
Extending Worklist Controls . 5-1

Why Extend the Worklist Controls?. 5-2

Example Extended Task Control . 5-2

Altering Method Signatures—Request and Response . 5-4

Adding Custom Methods . 5-5

Creating Tasks With the Task Control . 5-6

Managing WebLogic Integration Solutions v

Updating Tasks Using the Task and Task Worker Controls . 5-9

State Related Updates Using the Task and Task Worker Controls 5-10

Getting and Setting Task Data Values. 5-12

Adding Callback Methods . 5-13

Querying Tasks Using the Task Worker Control. 5-14

Search Values and Selectors . 5-15

Querying Tasks With Annotations . 5-16

Querying Tasks With TaskSelectors . 5-17

Using Task Control Factories . 5-18

Additional Resources . 5-20

vi Managing WebLogic Integration Solutions

Using the Worklist System vii

About This Document

This document provides information about using the WebLogic Integration 8.1 Worklist System.
It includes the following topics:

Chapter 1, “Introduction.”

Chapter 2, “Using Worklist Controls.”

Chapter 3, “Creating and Managing Worklist Tasks.”

Chapter 4, “Using the Worklist Control Methods.”

Chapter 5, “Advanced Topics.”

What You Need to Know
This document is intended mainly for application developers who have an in-depth knowledge of
Java or other object-oriented programming languages; business process management, especially
business process design; B2B integration; data integration; and WebLogic Server security.
Additionally, you should have a basic understanding of WebLogic Integration 8.1 and WebLogic
Workshop.

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation or go directly to the “e-docs” Product Documentation page
at http://e-docs.bea.com.

http://e-docs.bea.com

About Th is Document

viii Using the Worklist System

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the
File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the PDF in
Adobe Acrobat Reader and print the entire document (or a portion of it) in book format. To access
the PDFs, open the WebLogic Integration documentation Home page, click the PDF files button
and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe Web site at
http://www.adobe.com/.

Related Information
The following WebLogic Integration documents contain information that is relevant to building
Worklist applications:

Tutorial: Building a Worklist Application

Worklist Administration in Managing WebLogic Integration Solutions

Business Calendar Configuration in Managing WebLogic Integration Solutions

Contact Us!
Your feedback on the BEA WebLogic Integration documentation is important to us. Send us
e-mail at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the WebLogic Integration
documentation.

In your e-mail message, please indicate which version of the WebLogic Integration product and
documentation you are using.

If you have any questions about this version of BEA WebLogic Integration, or if you have
problems installing and running BEA WebLogic Integration, contact BEA Customer Support
through BEA WebSupport at www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

http://www.adobe.com/
http://edocs.bea.com/wli/docs81/wltutorial/index.html
http://edocs.bea.com/wli/docs81/manage/worklist.html
http://edocs.bea.com/wli/docs81/manage/index.html
http://edocs.bea.com/wli/docs81/manage/businesscalendar.html
http://edocs.bea.com/wli/docs81/manage/index.html

Documentat i on Convent ions

Using the Worklist System ix

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates items that are displayed on the User Interface.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and their members, data
types, directories, and file names and their extensions. Monospace text also indicates text that
you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

About Th is Document

x Using the Worklist System

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]... [-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself should never be typed.

... Indicates one of the following in a command line:

• That an argument can be repeated several times in a command line

• That the statement omits additional optional arguments

• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]... [-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. The vertical ellipsis
itself should never be typed.

Convention Item

Using the Worklist System 1-1

C H A P T E R 1

Introduction

This section provides an overview to the WebLogic Integration Worklist system. It introduces the
components of the system, including the built-in WebLogic Integration Worklist controls,
Worklist system Tasks, and task administration through Worklist user interfaces and through the
WebLogic Integration Administration Console.

This section includes the following topics:

What is the WebLogic Integration Worklist System?

Worklist Tasks

Task Data Values

Controls and Worklist APIs

Administration and Management

In t roduc t i on

1-2 Using the Worklist System

What is the WebLogic Integration Worklist System?
Business User Integration enables people to use the Web to collaborate in business processes.
Worklist Web interfaces enable task assignment and status tracking. The Worklist system
provides capabilities for user, group, and role management, and routes business process tasks to
the person with the right skills, at the right time, enhancing organizational efficiency and
responsiveness.

People are at the center of the flow of work in an office environment. Decisions are made by
people and work is assigned and managed by people. People do and manage the work that
achieves the goals of enterprises. For people to succeed, the things they do must be managed
carefully—who is doing the work, and how it should be done.

Documents usually accompany the flow of work in an office. Documents supply the background
required to complete tasks. It is important to the flow of work that documents are routed
appropriately within and between enterprises.

A typical example of a documents that provide background for tasks is a purchase order—it must
be approved and forwarded to subsequent people in a defined flow before those people can act
on it.

When work is flowing through people, management must have timely status updates. That is,
they must receive notifications when deadlines pass and work goes overdue. Human activity is
by nature error prone. When work is completed, detailed records are necessary. Management
must study histories to understand where they can alter processes to fine tune them, increase
productivity and lower response times.

Business Process Management (BPM) is commonly used for scenarios in which human activity
combines with automated processing over time (business processes can be short- or long lived;
work can continue over days or months). BPM systems must allow:

People to concentrate on just those parts where they add value—where they are necessary
to make a decision

People to act in specific roles when they work within a process

Business rules to dictate the routing of documents and work

BPM systems must coordinate people, documents, and events as the work in an enterprise
proceeds. They must manage permissions for work items—for example, systems must manage
who can see what documents and queues, and who has ownership of tasks.

Workl i s t Tasks

Using the Worklist System 1-3

Leveraging Worklist features in a BPM system ensures faster response times and higher
productivity. The WebLogic Integration Worklist is such a task management system that allows
enterprises to accomplish the integration of human activity and automated business processes.

Worklist Tasks
The Worklist system allows for the creation, manipulation, and management of Tasks.

A Task Instance represents something that must happen, or some unit of work that must be done
within a certain period of time. When work is done to address a given task, a Task Instance can
be used to record that fact and the details of the work that was done.

Examples of tasks include:

A Manager must read and approve an employee’s vacation request.

A customer must be phoned and their complaint recorded.

A Task Instance is an independent object in the Worklist system at run time. Tasks exist
independently of any processes or controls. Multiple processes can interact with a given task
throughout the lifecycle of that task. Different processes can interact with a given task
simultaneously.

Task Data Values
Task Instances have built-in data values for defining how work should be done, who should do
it, by when it needs to be completed, and so on. These data values also are used to capture what
actually was done when work is completed.

Examples of task data values include:

An assignees list of users and group who can work on the task.

Task Completion Due dates.

The claimant. That is, the user who claims the Task as their own and attempts to complete
the work.

The Task owner. That is, the person responsible for managing the process of the work
getting done.

Request and Response documents that can describe the work to be done and the results of
completing the work.

A state that defines the point at which a Task instance is in its lifecycle.

In t roduc t i on

1-4 Using the Worklist System

A priority that indicates the relative urgency of this task relative to other tasks.

Due Dates
Due dates represent the date and time at which tasks should be claimed and completed. The
Worklist system stores Due Dates as java.util.Date objects, tracks them, and can trigger callbacks
to business processes that are listening for the Task due dates. Due dates can be set using a
specific date and time. Or, they can be set using a business calendar and a business time duration
(an example of a business duration specification is 3 business days from now on the customer
support calendar). Business calendars represent the operating hours of a business. A business
calendar specifies a time zone and a set of time period rules. The time period rules determine the
days, dates, and hours that are free (available for business activities) and busy (unavailable for
business activities).

To learn about Task Due Dates and Business Calendars, see “Task Due Dates” on page 3-2.

Task State
The state of a Task describes the point at which the task is in its life cycle. Each task instance is
in one of the following states: ASSIGNED, CLAIMED, STARTED, COMPLETED,
SUSPENDED, or ABORTED.

Operations on the controls or the API allow you to cause an instance to transition from its current
state to another state.

To learn about Task States, see “Task Due Dates” on page 3-2.

Task Owners
A Task Instance can optionally have a Task Owner, to signify a user or a group of users that play
a managerial role with respect to this task. The owner may not actually complete the Task, but is
responsible for the Task becoming completed, or manages the process of the Task getting
completed. The permission to perform certain managerial operations on a Task instance can be
restricted to only the Task Owner or an administrator.

For example, the manager of a café can be the owner of a task assigned to a chef to prepare a
recently ordered dish. The manager takes responsibility if it does not get done.

To learn about Task Owners, see “Task Users and Groups” on page 3-8 and “Tasks and User
Permissions” on page 3-10.

Task Data Va lues

Using the Worklist System 1-5

Assignee Lists and Claimants
A Task Instance has an assignees list to specify which users can claim the task. The assignees list
can contain both users and groups. When a user on the assignees list claims the task, that user
become the claimant. The claimant takes ownership of the task, and performs the work needed to
complete the task. The State of the Task is set to Claimed when a user claims the Task.

To learn about assignee lists and claimants, see “Task Users and Groups” on page 3-8 and “Tasks
and User Permissions” on page 3-10.

Request and Response Documents
The Task Request is generally used to specify how work should be done, or what should be done.
This value can be read by the task worker who performs the work and completes the task. In
addition, assignees can view this information to decide whether or not to claim the task. For
example, the Task Request can contain a Purchase Order document that needs to be approved by
a user.

The Task Response is generally used to specify what actually took place after a user has worked
on the task. It can describe the results of the work that was done to complete a task. Callbacks can
pass the Response value to business processes that are waiting for a particular task state.

For example, the Task Response can capture the agreement made between a Collections Agent
and a delinquent customer after the two complete a phone conversation. The process that created
the Task to call that customer can use those results to determine what to do next.

To learn about request and response documents, see “Request and Response Documents” on
page 3-18.

Operations on Tasks
Operations are used to create new tasks, alter task states or data values, delete tasks, or read
information about an existing task. Some operations allow combinations of these actions in a
single step. Examples of Task operations include:

Operations to Create Tasks
When a new Task Instance is created, the Worklist system assigns a unique ID (a taskID)
to that instance. The Task state can be defined at creation time as Assigned or Claimed,
depending on the operation. Some Task data values are specified at the time an instance
of a Task is created and can not be changed after the instance is created.

In t roduc t i on

1-6 Using the Worklist System

Operations to Modify Task Properties
Some Task properties can be specified and modified after an instance of a Task is created.

Operations to Get Task Properties
You can use get task operations to access the properties of any Task Instance at any point
during its life cycle.

Operations to Modify Task State
Task Instances can transition between states based on the operations defined for them.
Different operations to modify a task’s state are valid depending on the state in which the
task resides before the operation is invoked.

To learn about the operations on Task and Task Worker controls, see “Using the Worklist Control
Methods” on page 4-1.

Archiving and Purging Task Information
WebLogic Integration supports archiving tracking data for business process instance history,
trading partner message history, and task instance history.

As tasks go through their lifecycle in enterprise processes, their properties are modified, their
states change, their due dates expire, and so on. Worklist task instances generate events that can
be logged in Worklist history tables in the run-time repository. The records created in the archive
tables are intended to be used by reporting applications. Those applications can query the tables
to generate reports or statistical analyses of historical task processing. The following types of
events can be tracked:

Changes in task state and associated values

Expiration of task claim or complete due date

Changes in task owner or assignees

Task requests and task responses

The request and response XML

The tracking data is stored in a database at run time. We recommend that to optimize
performance, the amount of tracking data stored is kept to a minimum. To this end, the archive
and purge process can be configured to run at regular intervals set by an administrator. In addition
to configuring the schedule, the administrator can enable or disable the archiver:

When the archiver is enabled, the process copies the data to an offline database, then
purges it from the runtime database.

Cont r o ls and Work l i s t AP Is

Using the Worklist System 1-7

When the archiver is disabled, the process purges the data from the runtime database
without copying it.

Archived information can be used for generating reports and compiling statistics about task
processing in your WebLogic Integration application. To learn more about archiving and purging
Task data, see “Additional Resources” on page 5-20.

Task Queries
Task Queries allow an application to find all tasks in the Worklist system runtime that meet a
general set of criteria. These queries are directly analogous to SQL and Databases Tables. The
queries specified return results that contain information about all tasks that meet those criteria.

For example, you can create a custom user interface to show all tasks in the system that are
assigned to the current user, have a priority equal to one, and are due in the next three days.

Controls and Worklist APIs
The Worklist API provides operations to leverage all of the functionality available in the Worklist
system for creating and operating on tasks. WebLogic Integration provides two controls to
support the Worklist system: the Task control and the Task Worker control. The Task and Task
Worker controls provide a subset of the functionality of the API. However, they provide the
convenience of the WebLogic Workshop controls framework. Controls can be used easily in your
business processes.

Task Control
In an office environment, there are people that create and specify work to be done. These are
usually managers, and they generally monitor the progress of these work items. The Task control
is designed to provide the common operations required by the manager of a work item, such as
creating the work, assigning the work, and receiving notifications when work completes or
becomes overdue for completion. The most common usage of the Task Control is in business
processes.

Task Worker Control
There are also people that receive assignments and perform the work. The Task Worker control
is designed to provide the common operations needed by those workers. For example, querying
the task system for those that meet custom criteria (for example, a worker can query for the tasks
that are assigned to themselves and due this week), claiming a task to mark ownership of it, or

In t roduc t i on

1-8 Using the Worklist System

completing a task to mark its completion. Because workers typically operate on work items
through a user interface when a task management system is in place, the Task Worker control is
most commonly used in the implementation of a custom Worklist user interface.

In addition, the Task Worker control has operations of an administrative nature, for example
claiming a task on another user's behalf.

Callbacks
Task Controls can notify a process when a Task's state changes in some way. Common callbacks
include the expiration of a completion due date, the task being aborted, or getting completed.
Callbacks allow processes to block somewhere in their logic, effectively waiting until that event
takes place.

Operations
Operations on controls are the general mechanism by which a business process or a user interface
create new tasks, read or alter the task data values, read the current state, cause a transition to a
new state, or delete a task instance.

Controls are Extensible
Task and Task Worker controls have a built-in set of operations and callbacks. Controls are
extensible through Java annotations. For example, you can define custom operations with custom
signatures and custom callbacks for your controls. Through the annotations on these operations,
you can configure a control’s data values, create new tasks, update existing tasks, and so on.

The Task and Task Worker controls provide operations that are commonly used, but they can be
extended to provide operations tailored to specific use cases. Signatures on methods can be
altered to take XML Bean types as arguments, when XML data associated with tasks conforms
to custom defined schemas in your application.

New methods can be added to perform several updates at once. For example, you can write a new
method to add an operation to create a task, set its priority and comment, and assign it to a user
whose name is passed in, all in one step.

Callbacks can be added to detect other state change in a task. For example, you can add a callback
to detect when a task is claimed.

Admi nis t rat ion and Management

Using the Worklist System 1-9

Administration and Management
You can administer and manage the Worklist system, specifically the tasks in the system,
business calendars, task properties, and so on using the Worklist Administration module in the
WebLogic Integration Administration Console and through a custom Worklist client you can
create using the controls and the Worklist API (the Worklist API is available as EJBs and
MBeans):

WebLogic Integration Administration Console

Worklist User Interfaces

WebLogic Integration Administration Console
The Worklist Administration module in the WebLogic Integration Administration Console
allows application administrators to administer and monitor the task instances in your WebLogic
Integration application. The Worklist-specific administration and management functions you can
perform include:

View summary or detailed task status in order to monitor the progress of task completion
against due dates

Perform queries to show individual workload

Reassign tasks in order to speed progress

Change task properties, such as state or due date

Control task routing by creating or changing substitute routing rules

To learn about using the administration console to manage your Worklist Tasks, see Worklist
Administration in Managing WebLogic Integraton Solutions, which is available at the following
URL:

http://edocs.bea.com/wli/docs81/manage/index.html

Worklist User Interfaces
Worklist user interfaces enable end users—task creators, task workers, task administrators—to
interact with running business processes for handling process exceptions, approvals, status
tracking, and so on. A sample Worklist user interface is provided in WebLogic Integration, but
you can also write your own custom user interfaces to support task assignment, approvals, and so
on.

http://edocs.bea.com/wli/docs81/manage/worklist.html
http://edocs.bea.com/wli/docs81/manage/worklist.html
http://edocs.bea.com/wli/docs81/manage/index.html

In t roduc t i on

1-10 Using the Worklist System

The majority of real-world applications involve a custom user interface that leverage the Worklist
system functionality. People typically interact with Tasks in WebLogic Integration through these
custom user interfaces. Pages that interact with the Worklist system are often added to a
company's existing user interfaces. For example, a page can be added to an existing order
fulfillment UI on a company's intranet, allowing a manager to approve very large orders. We
recommend that you study the sample Worklist UI and use the strategies found there to design
your custom UIs.

The Worklist Controls and API provide the operations needed to design custom UI pages that
can:

Query for tasks that meet certain criteria

Access and present detailed information about particular tasks

Collect data on screen and use it to perform operations on tasks that update them in some
way.

You can use NETUI to leverage the Worklist controls in your custom user interfaces. You can
also use the Worklist API with JavaServer Pages (JSPs).

You can create a custom Worklist user interface using the Worklist controls and the Worklist
API. To learn about the Worklist API, see the com.bea.wli.worklist.api package in the
BEA WebLogic Integration Javadoc, which is available at the following URL:

http://edocs.bea.com/wli/docs81/javadoc/index.html

WebLogic Workshop controls can be invoked from a Web page. You can create a custom
Worklist user interface or portal using the WebLogic Workshop tools to manage Web
applications using JSPs and Page Flows. For more information, see Developing Web
Applications and Page Flows and JSPs in the WebLogic Workshop online help.

To access the sample Worklist user interface in your installation of WebLogic Platform, first start
WebLogic Server, then invoke the Worklist:

1. Start WebLogic Workshop.

2. From the WebLogic Workshop menu, select Tools→WebLogic Server→Start WebLogic
Server

3. When the server is running, start the sample Worklist UI by selecting the following options
from the WebLogic Workshop menu:

Tools→WebLogic Integration→Worklist

http://edocs.bea.com/wli/docs81/javadoc/com/bea/wli/worklist/api/package-summary.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/netui/guide/navDevelopingWebApplications.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/netui/guide/navDevelopingWebApplications.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/navPageFlowsAndJSPsHowDoI.html
http://edocs.bea.com/wli/docs81/javadoc/index.html

Admi nis t rat ion and Management

Using the Worklist System 1-11

4. Login to the Worklist—the username and password for the Worklist in the sample
integration domain are weblogic/weblogic.

A JSP page is displayed. It allows you to view and manage the tasks in your application.

In t roduc t i on

1-12 Using the Worklist System

Using the Worklist System 2-1

C H A P T E R 2

Using Worklist Controls

Java Controls are server-side components managed by the Workshop framework. Controls
expose Java interfaces that can be invoked directly from your business process. In other words,
controls represent the interfaces between your business processes and other resources.

This section describes the built-in controls provided by WebLogic Integration to support the
integration of business users with business processes. It includes the following topics:

Which WebLogic Integration Controls Support the Worklist System?

Creating a Task Control

Creating a Task Worker Control

Using Task and Task Worker Controls in Business Processes

Which WebLogic Integration Controls Support the Worklist
System?

WebLogic Integration provides two build-in Java controls to support the integration of business
users via the Worklist system: the Task control and the Task Worker control.

As is the case with other built-in controls in WebLogic Workshop, you use the controls by adding
instances of the controls to your business process and then invoking operations on the controls at
the point in the business process at which you want to integrate the business user logic.

The underlying control implementation takes care of most of the details of the interaction for you.
Business processes invoke operations on the controls using Control Send and Control Send with

Using Work l is t Cont ro ls

2-2 Using the Worklist System

Return nodes. Business processes can block at Control Receive nodes waiting for events to be
returned from controls. In other words, Control Receive nodes are triggered by control callbacks.
You can extend Worklist controls through Java annotations. Common extensions include
implementing callback functions and performing system queries.

The operations invoked on the controls allow the process to create tasks, get information about
tasks, update tasks, and so on.

The Task control enables a business process or UI to create a single Task instance,
manage its state and data, and provide callback methods to report status, such as when the
Task status changes or the Task is overdue. Each Task control operates on a single active
Task instance.

The Task Worker control enables a business process or UI to assume ownership of Tasks,
work on them, complete them, and offers administrative operations, including operations to
start, stop, delete, assign, and so on. Task Worker controls allow operations on several Task
instances at the same time.

Creating a Task Control
An instance of a Task control can be used to create a single task instance. If multiple tasks need
to be created, use a factory type of Task control. (To learn about factories, see “Using Task
Control Factories” on page 5-18.)

A Task control instance can also be used to interact with a task instance that already exists, by
setting its active task id. After creating or setting the active task id, your control instance can be
used to get information about that task or update that task in various ways.

You can customize Task controls for different business purposes, by adding new operations or
callbacks, or by altering the signatures of existing operations or callbacks.

To create a new Task control:

1. Open your WebLogic Integration application in WebLogic Workshop.

2. In the Application pane, double-click the business process (JPD file) to which you want to
add the logic to integrate business users using the Worklist system. The business process is
displayed in the Design View.

3. Click Add→Integration Controls on the Controls tab of the Data Palette to display a list
of integration controls that represent the resources with which your business process can
interact.

Creat ing a Task Cont ro l

Using the Worklist System 2-3

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

4. Choose Task. The Insert Control dialog box is displayed.

5. In the Insert Control dialog box (Step 1), enter a name for the instance of this control. The
name you enter must be a valid Java identifier.

6. In the Insert Control dialog box (Step 2), select one of the following options:

– Use a Task control already defined by a JCX file

Enter a filename for the Task control in the JCX file field, or click Browse to find the
JCX file in your file system.

– Create a new Task control to use

Enter a filename in the New JCX name field.

7. Choose whether you want to make this a control factory by selecting or clearing the Make
this a control factory that can create multiple instances at runtime check box.

To learn about control factories, see “Using Task Control Factories” on page 5-18.

8. Click Create. A new Task control and an instance of it are created and the Insert Control
dialog box is closed.

A new JCX file is created and displayed in the Application tab in the WebLogic
Workshop IDE. (You can double-click on any JCX file to view or edit it in the Design or
Source View.) The instance of the control is displayed in the Controls tab on the Data

Using Work l is t Cont ro ls

2-4 Using the Worklist System

Palette. Expand the control Instance by clicking the + beside its name on the Data Palette
to display the base methods provided on a Task control.

9. After you create an instance of the Task control in your business process, you can design
the interaction of the business process with the Task control by simply dragging and
dropping the Task control methods from the Data Palette onto the Design View at the point
in your business process at which you want to design the interaction.

For examples of designing interactions between a business process and an instance of a
Task control, see “Using Task and Task Worker Controls in Business Processes” on
page 2-7.

10. After you create a Task control in your business process, you can view and edit the
properties of the control type (represented as a JCX file in the Application pane in
WebLogic Workshop) or of the instance of that control type (represented in the Data
Palette) in the Property Editor in the WebLogic Workshop design environment.

Task Instances have data values associated with them, many of which are set when the task
is created. The properties on a Task control can be used to set the default values for some
of these data values, which are used whenever that control instance is used to create a new
task. Note that the properties set on a factory type Task control propagate to any Task
control instances created from that factory.

To learn about Task control properties, see “Using the Task Control Property Editor” on
page 4-15.

Creat ing a Task Worke r Cont ro l

Using the Worklist System 2-5

Note: To learn how to use the Property Editor to specify properties for control types
versus control instances, see Setting Control Properties in the WebLogic Workshop
online help, which is available at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/w
fguideControlsProperties.html

Creating a Task Worker Control
A Task Worker control provides operations for working with one or more Task instances. The control
also provides administrative operations for managing one or more Task instances. You can customize
each Task worker control for different business purposes.

This topic describes how to create a new Task Worker control. Task Worker controls do not have
any properties to configure.

1. If you are not in Design View, click the Design View tab.

2. Click Add→Integration Controls on the Controls tab of the Data Palette to display a list
of controls that represent the resources with which your business process can interact.

Note: If the Controls tab is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

3. Choose Task Worker. The Insert Task Worker dialog box appears.

4. In the Insert Control dialog box (Step 1), enter a name for the instance of this control. The
name you enter must be a valid Java identifier.

5. In the Insert Control dialog box (Step 2), select one of the following options:

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControlsProperties.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControlsProperties.html

Using Work l is t Cont ro ls

2-6 Using the Worklist System

– Use a Task Worker control already defined by a JCX file

Enter a filename for the Task Worker control in the JCX file field, or click Browse to
find the JCX file in your file system.

– Create a new Task Worker control to use

Enter a filename in the New JCX name field.

6. Click Create to close the Insert Control dialog box.

When you click create, the control JCX file is displayed in the Application tab in the
WebLogic Workshop IDE. You can double-click on any JCX file to view or edit it in the
Design or Source View. The instance of the control is displayed in the Controls tab on the
Data Palette. Expand the Control Instance by clicking the + beside its name on the Data
Palette to display the base methods provided for this control. The following figure shows
an example of a Task Worker control instance displayed in the Controls tab on the Data
Palette.

7. After you create an instance of the Task control in your business process, you can design
the interaction of the business process with the Task control by simply dragging and
dropping the Task control methods from the Data Palette onto the Design View at the point
in your business process at which you want to design the interaction.

For examples of designing interactions between a business process and an instance of a
Task control, see “Using Task and Task Worker Controls in Business Processes” on
page 2-7.

Us ing Task and Task Worker Cont ro ls in Busi ness P rocesses

Using the Worklist System 2-7

Using Task and Task Worker Controls in Business Processes
To design the interaction of a Task or Task Worker control with a business process, you must
decide which methods on the control you want to call from the business process to support the
business logic.

In the same way you design the interactions between business processes and other controls in the
WebLogic Workshop graphical design interface, you can create the appropriate control node in
your business process (Control Send, Control Receive, and Control Send with Return) and
bind a Worklist control method to that node by simply dragging a control method from the Data
Palette onto the business process in the Design View at the point in your business process at
which you want to design the logic.

To learn how to use Worklist controls in a business process, we recommend you complete the
steps in the following tutorial: Tutorial: Building a Worklist Application, which is available at the
following URL:

http://edocs.bea.com/wli/docs81/wltutorial/index.html

Creating Task and Task Worker Controls is the first step in the process of creating a Worklist
system. Before you begin working with the Task and Task Worker controls, you need to
understand the features and components of the Worklist system available to you. You also need
to work with the control methods and properties. To learn about Task and Task Worker
properties, see “Using the Task Control Property Editor” on page 4-15.

http://edocs.bea.com/wli/docs81/wltutorial/index.html
http://edocs.bea.com/wli/docs81/wltutorial/index.html

Using Work l is t Cont ro ls

2-8 Using the Worklist System

Using the Worklist System 3-1

C H A P T E R 3

Creating and Managing Worklist Tasks

Task Instances have properties that define what work needs to be done, who does the work, how
the work is done, and so on. This section describes the details of working with task instances. It
includes the following topics:

Overview

Task Due Dates

Task States

Task Users and Groups

Tasks and User Permissions

Task Data Values

Task Operations

Archiving and Purging Task Information

Task Queries

The Relationship Between Processes and Tasks

Creat ing and Manag ing Work l i s t Tasks

3-2 Using the Worklist System

Overview
Task instances are part of the WebLogic Integration server and exist independently of Worklist
controls or specific business processes. Tasks remain in the run-time engine indefinitely, until
they are either explicitly deleted or purged by the WebLogic Integration purging process. You
create, delete, and manage Tasks through the following mechanisms:

The Task and Task Worker controls in WebLogic Workshop.

The Worklist module the WebLogic Integration Administration Console.

The public Worklist API, using Enterprise Java Beans, and Message Beans.

There are no task types, all task instance lifecycles conform to the same state diagram and have
the same types of data associated with them. In other words, task instances cannot be extended
(in the Object Oriented sense).

Task Due Dates
Business processes can take steps to handle work that becomes overdue by setting and tracking
Task due dates. For example, a purchase order business process can email the manager assigned
to approve the purchase order if that manager takes more than three business days to do so.

This section describes Task Dates and calendars. It contains the following topics:

Claim and Completion Due Dates

To Set Task Due Dates Using Absolute Time

To Set Task Due Dates Using Business Time

To Specify a Calendar to Use When You Set Due Dates

Formats for Business Time Duration

Claim and Completion Due Dates
You can optionally set one or both of the following due dates for a Task Instances:

Claim Due Date—specifies by what time the task should be Claimed by a user on the
assignees list. Setting claimDueDate to null indicates that there is no due date.

Completion Due Date—specifies by what time the task should have reached the
Completed state. Setting completionDueDate to null indicates that there is no due date.

Task Due Dates

Using the Worklist System 3-3

Due Dates are stored as java.util.Date values. They mark a precise instant in time. You can
specify Due Dates using Business Time or system time. (To learn about business time, see “To
Set Task Due Dates Using Business Time” on page 3-3).

At run time, when the Worklist system detects that a due date has passed, it checks whether the
associated task is claimed or completed. If the task is not claimed or complete, callbacks are
invoked on any Task controls that are blocking on the task becoming overdue. Business processes
can incorporate these callbacks that are invoked when due dates expire, allowing the processes to
execute logic when the task becomes overdue.

To Set Task Due Dates Using Absolute Time
You can set Task due dates by specifying a java.util.Date. The due date is a specific instant
of time. You can unset Task due dates by passing null for the java.util.Date.

To Set Task Due Dates Using Business Time
You can set Task due dates by specifying a duration of business time. Business Time durations
are strings that define a period of time relative to a specified Business Calendar. Business
calendars are required to convert business time durations to real time. In other words, business
time durations have no meaning if they are not associated with a business calendar that converts
the durations to real time. The Worklist system uses the addBusinessTime method to calculate
the due dates.

For example, if a business calendar defines business hours as Mon, Tue, and Wed from 9AM to
5PM. If, on Saturday the 16th, you set a Task's completion due date with a duration of 4 business
days on the specified calendar, the resulting due date is Monday the 30th.

A different due date is calculated if Tuesdays are removed as free time on the specified calendar.

To learn more about business calendars and the WebLogic Integration Administration Console,
see Business Calendar Configuration in Managing WebLogic Integration Solutions

To Specify a Calendar to Use When You Set Due Dates
If you use a business time duration, but do not specify a business calendar to use, the WebLogic
Integration System Business Calendar is used. You specify a business calendar for the system to
use when it calculates due dates by explicitly passing the name of the business calendar to a Task
control. To learn how, see “Specify a Due Date for Completion of the Task” in Step 4. Create
Task and Assign to User in Tutorial: Building a Worklist Application.

http://edocs.bea.com/wli/docs81/wltutorial/createtask.html
http://edocs.bea.com/wli/docs81/wltutorial/createtask.html
http://edocs.bea.com/wli/docs81/manage/businesscalendar.html

Creat ing and Manag ing Work l i s t Tasks

3-4 Using the Worklist System

Alternatively, you can specify a user or group. In this case, the business calendar associated with
that user or group is used to calculate the due date. To learn how to associate business calendars
with users and groups in your system, see “Assigning Business Calendars to Users and Groups”
in Business Calendar Configuration in Managing WebLogic Integration Solutions

Formats for Business Time Duration
Business time durations are strings, in the following format: X d Y h Z min. Note that only days,
hours, and seconds are supported for specifying business time durations. You can specify days,
hours, or minutes only, or some combination of the three. For example, you can specify just days,
or just hours and minutes:

3 business days = 3 d

2 business hours and 30 business minutes = 2 h 30 min.

To learn more about the business calendar options of the WebLogic Integration Administration
Console, see Business Calendar Configuration in Managing WebLogic Integration Solutions.

Task States
The Task and Task Worker controls allow a business process or Worklist UI to cause a Task
Instance to transition from one state to another. Operations on the controls or the API guide the
task through its lifecycle.

A Task can be in one of the states defined in Table 3-1. Many of the methods on Worklist controls
make changes to states or properties of a Task instance. The transitional state operations for
Worklist controls are defined in Table 3-2.

Note: The operations that can be invoked for a given Task are dependent on the state of the task
and the user permissions. To learn about user permissions, see “Tasks and User
Permissions” on page 3-10.

http://edocs.bea.com/wli/docs81/manage/businesscalendar.html

Task S tat es

Using the Worklist System 3-5

Table 3-1 Task States

State Description

ASSIGNED New tasks begin in the ASSIGNED state. The assignees list is important in this
state, as is specifies which users are allowed to become the claimant through the act
of claiming the task.

Note that the assignees list may be empty, in which case the task is assigned to
nobody, effectively unassigned.

CLAIMED Claiming an ASSIGNED task causes the state to become CLAIMED. The claimed
state specifies that a user on the assignees list has taken ownership of the task, and
intends to complete the task. The claimant value will be set when a Task is
CLAIMED.

Although the claimant has ownership of the work, the claimant may not yet have
started working on it.

STARTED The STARTED state indicates that the claimant started working on the task—is
currently spending time on the work required to complete the task. The STARTED
state exists for reporting purposes, allowing companies to track precisely how much
time users spend working on individual tasks.

There can be significant time between declaring ownership of work (claiming the
task) and starting doing that work.

COMPLETED The COMPLETED state indicates that the work required to complete the task is
finished, or as much of the work as is possible to do is finished.

The response document can be used to record the details of how work was done or
the results of doing work.

SUSPENDED A SUSPENDED task is frozen. In other words, it cannot be worked on.
SUSPENDED tasks can be resumed at a later time, returning to the state they were
in when they were suspended.

The SUSPENDED state can be used to temporarily mark that a task cannot progress
for some reason.

ABORTED An ABORTED task is effectively cancelled. The ABORTED state is generally used
to indicate that something went wrong while work was being done on the task.

This state can also be used to mark work that should be permanently abandoned.

Creat ing and Manag ing Work l i s t Tasks

3-6 Using the Worklist System

Table 3-2 Control Methods That Operate on Task States

Operation Description

create Creates a new task instance in the ASSIGNED state.

Some data values, such as the description, can only be set when this operation
is invoked. Note that the currently executing principal must belong to a group
that is specific to the Worklist system before they are granted the permissions
to create a new task.

assign Causes a task to move to the ASSIGNED state. The assignees list must be set
when this operation is performed, specifying which users can claim the task.

This operation can be performed on tasks in a final state, such as COMPLETED
or ABORTED. In this way, the task can be worked on again.

This operation can unassign or reassign a task. Assignment can be performed
on a single task instances multiple times throughout its lifecycle. When
assigning a task, an algorithm must be specified to determine how to set the
assignees list. To learn about the algorithms, see “Assignment Algorithms” on
page 3-7.

This operation is performed by the task owner, task creator, an assignee, or an
administrator.

claim Causes a task in the ASSIGNED state to become CLAIMED. A user that is on
the assignees list is set as the claimant of the task. This signifies that a user on
the assignees list has marked ownership of the task and intends to complete it.
This operation is performed by a user who wishes to become the claimant for a
task, or by an administrator or task owner on behalf of another user.

start Causes a task in the CLAIMED state to become STARTED—signifies that the
claimant is starting to work on the task. This operation is performed by the
claimant, or by an administrator or task owner on behalf of a claimant.

stop Causes a task in the STARTED state to return to the CLAIMED state—
signifies that the claimant is stopping work on the task, possibly temporarily.
They can start it again when they are ready to continue working. This operation
is performed by the claimant, or by an administrator or task owner on behalf of
the claimant.

complete Causes a task in the STARTED state to become COMPLETED—signifies that
the claimant is stopping work on the task, possibly temporarily. They can start
it again when they are ready to continue working. This operation is performed
by the claimant, or by an administrator or task owner on behalf of the claimant.

Task S tat es

Using the Worklist System 3-7

Assignment Algorithms
Whenever a Task is assigned, one of the following assignment methods must be specified:
assignToUser, assignToUserInGroup, assignToUsersAndGroups. These methods specify
how the assignees list is set.

assignToUser
This method sets the assignees list to a specific IntegrationUser. The name of the user must be
specified. Because this user is the only one on the assignees list, this operation automatically
causes the task to be claimed for the specified user. For an example of how to use this method,
see “Assign the Task to a User” in Step 4. Create Task and Assign to User in Tutorial: Building
a Worklist Application.

assignToUserInGroup
This method behaves in the same way as the assignToUser method. However, when you use the
assignToUserInGroup method, a load balancing algorithm is used to select the user in the
specified group that has the fewest claimed tasks that are not completed, aborted, or suspended.
A group name must be specified for this method.

suspend Causes a task to become SUSPENDED—signifies that the task no longer
progresses and should not be worked on, possibly temporarily. The task can be
resumed (using the resume operation) when work should continue. This
operation is performed by an administrator or task owner.

resume Causes a SUSPENDED task to return to the state it was in when it was
suspended. This operation is performed by an administrator or by the task
owner.

abort Causes a task to become ABORTED—signifies that the task should be
cancelled and should not complete. In other words, work on the task is no
longer necessary and should cease. This operation is performed by the
claimant, an administrator, or the task owner.

Operation Description

http://edocs.bea.com/wli/docs81/wltutorial/createtask.html

Creat ing and Manag ing Work l i s t Tasks

3-8 Using the Worklist System

assignToUsersAndGroups
This method sets the assignees list to contain the users and groups specified. This operation
requires a list of user names, or a list of group names, or both. Any of the users on the assignees
list can then claim the task.

Task Users and Groups
People and systems may be play various roles with respect to a task instance. They can be the
Task Owner in the role of managing the task, a user on the assignees list who may claim the task,
the claimant who has declared ownership and intent to complete the task, or an WLI
Administrator.

The following list describes the roles in which a given user can be with respect a task instance.
These roles determine what operations they are permitted to perform on a Task instance.

To learn more about the permissions that allow different groups and users to create and manage
task instances, see “Tasks and User Permissions” on page 3-10.

Task Owners

Assignee Lists

Claimants

Integration Administrators

Task Creators

Task Owners
The Task Owner is the user or group with managerial responsibility for the work required to
complete a Task Instance. For example, a dispatcher at a taxi company can be the task owner for
tasks assigned to drivers to deliver a patron to his required destination.

Although a Task Owner usually does not complete the task, they can perform managerial
operations on the task. For example, the manager in a collections office can reassign the task of
calling a delinquent customer to a different collections officer when the officer originally
assigned to the task (the claimant) is on vacation.

Task owners have administrative privileges for the tasks they own. They are effectively in the role
of the WebLogic Integration Administrator when permissions are checked in the event an
operation is invoked on that task. Note that the Task Owner is set automatically to the current user
when a task is created, unless a different Task Owner is explicitly specified at creation time.

Task User s and Groups

Using the Worklist System 3-9

Assignee Lists
The Assignees List specifies the users or groups that are permitted to take ownership of a task by
claiming it. All instances of Tasks have an associated assignee list. When a task is assigned or
reassigned, the assignee list is updated and the state of the Task is set to ASSIGNED.

The assignees list that is associated with a task can specify several users or groups (or both), but
only one user can claim a Task to perform work. For a user to be on the assignees list, either the
user name is explicitly on the list or a group to which the user belongs is explicitly on the list. The
user in the assignee list that claims the task, becomes the claimant.

Claimants
A Claimant is the users from the Assignees list who claims a Task and performs the work needed
to complete the Task. Certain Task operations require a user to be the claimant.

Any user in the Assignee List can claim a task, thereby becoming the Claimant. The State of the
Task is set to Claimed when a user claims the Task.

Integration Administrators
WebLogic Integration server users with administrative privileges who can perform any operation
on a Task, including the creation of new Tasks. To learn about the default roles and groups in
WebLogic Integration, see User Management in Managing WebLogic Integration Solutions.

Task Creators
Task Creators are users who, like the Integration Administrators, have permissions to create new
Tasks.

WebLogic Integration provides a default group that defines which users can create new tasks. By
default, the anonymous user is a member of this group in a new domain. To learn how you can
enforce strict restraints on who can create new tasks, see Worklist Administration in Managing
WebLogic Integration Solutions.

http://edocs.bea.com/wli/docs81/manage/users.html
http://edocs.bea.com/wli/docs81/manage/worklist.html

Creat ing and Manag ing Work l i s t Tasks

3-10 Using the Worklist System

Tasks and User Permissions
Only Integration administrators and users in the TaskCreationRole can create Tasks and
simultaneously set new Task properties. The Worklist system verifies that the user attempting to
create tasks and invoke operations on Tasks has the required permissions to do so. This section
includes:

Who Has Permission to Create Tasks?

Who Has Permission to Modify Task Data Values?

Who Has Permission to Invoke Task Operations?

Who Has Permission to Create Tasks?
Only Integration administrators and users in the TaskCreationRole can create Tasks and
simultaneously set new Task properties.

Default WebLogic Integration Users—Any domain that supports WebLogic Integration includes
a set of default WebLogic Integration roles and groups. Default security policies define the roles
authorized to access specific WebLogic Integration resources. You must be logged in as a
member of one of the following groups to make changes to task states: IntegrationAdministrators,
IntegrationUsers, or IntegrationOperators. To learn about the default roles and groups in
WebLogic Integration, see User Management in Managing WebLogic Integration Solutions.

You can configure the TaskCreationRole using the WebLogic Integration Administration
Console. To do so:

1. Open the WebLogic Integration Administration Console.

2. From the home page, select the System Configuration module.

3. From the left panel, select Worklist.

4. On the View Worklist Configuration page, click Configure.

5. From the Task Creation Role drop-down list, select the role.

6. Click Submit to update the setting and return to the View Worklist Configuration page.

By default, the TaskCreationRole role contains the WebLogic Server Anonymous role. Thus,
anonymous users have the permissions to create tasks. You can change this specification if you
want more stringent control over the creation of tasks.

http://edocs.bea.com/wli/docs81/manage/users.html

Tasks and Use r Pe rmiss ions

Using the Worklist System 3-11

Who Has Permission to Modify Task Data Values?
Whether a user can change Task properties after the Task is created depends on the following
parameters:

The state of the Task. You can not change the value of a Task property if the Task is in an
aborted, suspended, or completed state.

The role and group identification of the user executing the property change. Integration
Administrators are never denied permissions to change Task properties in any
circumstances where the operation is allowed; they have no restrictions.

The status of the user executing the property change with respect to the Task:

– For a Task that is in the assigned state, the user who modifies the Task must be an
assignee, the Task owner, or an Integration Administrator.

– For a Task that is in the claimed or started state, the user who modifies the Task must
be the claimant, the Task owner, or an Integration Administrator.

Who Has Permission to Invoke Task Operations?
Any operation on a Task requires the Worklist system to verify that the current principal
executing the operation has the permissions to perform that operation.

Whenever an operation is invoked on a task instance, the Worklist system checks if the currently
executing principal has the permission to do so. The decision to grant a permission is a function
of the role of the current principal with respect to the task, the state of the task, the operation being
invoked, and possibly some of the task data values (for example, the value of
canBeReassigned).

Creat ing and Manag ing Work l i s t Tasks

3-12 Using the Worklist System

A user can take on one of several roles when interacting with a task instance. These roles are
described in “Task Users and Groups” on page 3-8. The following table presents the permissions
that different users have to perform the operations on Tasks that result in a change to the state of
a task. Each row presents the possibilities for a given starting Task state.

Table 3-3 User Roles and Task Operations

Starting State Ending State Relevant
Operations

Permitted Users

Assigned

Claimed

Completed

Started

Aborted abortTask Assignee list users and groups (if
can-be-aborted property true)

claimant (if can-be-aborted property true)

Task Owner

Integration Administrator

Assigned,
Claimed Started

Aborted abortTask Assignees List, if task is ASSIGNED and
canBeAborted is TRUE. Claimant if
canBeAborted is true. Task Owner and
Integration Administrator

Assigned,
Claimed, Started

Suspended suspendTask Task Owner and Integration Administrator

Suspended Whatever the Task
State was when
suspended

resumeTask Task Owner and Integration Administrator

Assigned Assigned assignToUsersAnd
Groups

Assignees List if canBeReassigned is
TRUE. Task Owner and Integration
Administrator

Completed or
Aborted

Assigned assignToUsersAnd
Groups

Task Owner and Integration Administrator

Assigned Claimed claimTask Assignees List. Task Owner and
Integration Administrator

Claimed Assigned returnTask Claimant if canBeReturned is true. Task
Owner and Integration Administrator

Assigned Claimed assignToUserInGro
up, assignToUser

Assignees List if canBeReassigned is
TRUE. Task Owner and Integration
Administrator

Task Data Va lues

Using the Worklist System 3-13

Task Data Values
There are various data values associated with Task Instances. They provide a mechanism for
describing the work that needs to be done to complete a task, describing work that is already done,
who should do the work, by when, the results of work, and so on.

Some of these values are specified once at the time a new Task is created; some values can
modified throughout the life cycle of the instance. Each data value has rules that specify the users
that have permissions to modify the value.

The following table describes the Task Instance data values:

Completed or
Aborted

Claimed assignToUserInGro
up, assignToUser

Claimant if canBeReassigned is TRUE.
Task Owner and Integration Administrator

Claimed Started startTask Claimant.Task Owner and Integration
Administrator

Started Claimed stopTask Claimant.Task Owner and Integration
Administrator

Started Completed completeTask Claimant. Task Owner and Integration
Administrator

Any Not Existing deleteTask Task Owner and Integration Administrator

Starting State Ending State Relevant
Operations

Permitted Users

Creat ing and Manag ing Work l i s t Tasks

3-14 Using the Worklist System

Table 3-4 Task Instance Data Values

Name Purpose How to Set Type Unset
Value

Default Notes Only
Admin.
Can
Modify

TaskId Identifies Task
instance

Unique Value

System
sets at
creation
time, user
cannot set

String always
non-null

NA NA

Name Any String Set by user
at creation
time only.

String always
non-null

NA NA

Description description of
the task

Set by user
at creation
time only.

String can be
null

Null NA

ParentProcessURI The business
process type that
created this task,
if any.

System
sets at
creation
time, user
cannot set

String can be
null

NA NA

ParentProcessId The instance id
of the process
that created this
task, if any.

System
sets at
creation
time, user
cannot set

String can be
null

NA NA

Assignees The assignees
list for this task,
those users that
can claim it.

Set by user
using an
assignment
operation.

String
Array

Can be
empty
list, but
non-null

empty List of user
and group
names. All
should be
members of
Integration
Users group

NA

Task Data Va lues

Using the Worklist System 3-15

Claimant Tracks who
claimed the task
This user
completes the
task.

Set by user
using a
claim(…)
operation.

String can be
null

Null Must be a
user name, a
user that is
on the
assignees
list, or a
member of a
group on the
assignees
list.

NA

Comment Any Set by user String can be
null

Null False

Priority Can be any
integer > 0.
System doesn't
do anything with
this, completely
up to the
application to
interpret or
ignore.

Set by user Integer always
non-null

1 True

CreationDate When was the
task created.

Set by
Worklist
system

java.util.
Date

always
non-null

NA NA

CanBeReassigned Can a user on the
assignees list
assign the task
again,
effectively
reassigning it.
Otherwise
requires
administrative
privileges.

Set by user boolean always
non-null

True True

Name Purpose How to Set Type Unset
Value

Default Notes Only
Admin.
Can
Modify

Creat ing and Manag ing Work l i s t Tasks

3-16 Using the Worklist System

CanBeReturned Can the claimant
return the task
after claiming it,
otherwise
requires
administrative
privileges.

Set by user boolean always
non-null

True True

CanBeAborted Can the claimant
abort the task.
otherwise
requires
administrative
privileges.

Set by user boolean always
non-null

True True

Request Can describe
what work
should be done,
how to do it, or
info needed to
complete the
work

Set by user byte array
can hold
XML,
String,
RawData,
and so on.

can be
null

Null False

Response Can describe
what was done,
or how the work
was done, what
problems were
encountered, and
so on.

Set by user byte array
can hold
XML,
String,
RawData,
and so on.

can be
null

Null False

Name Purpose How to Set Type Unset
Value

Default Notes Only
Admin.
Can
Modify

Task Data Va lues

Using the Worklist System 3-17

State Describes where
in the Task life
cycle the task is
currently.
ASSIGNED,
CLAIMED,
STARTED,
COMPLETED,
ABORTED,
SUSPENDED.

System
maintains
this,
operations
cause it to
change.

String always
non-null

NA NA

Request Type and
Response Type

Can be used to
describe the
format of the
Request or
Response value
of this task
instance.

Set by user
when
Request or
Response
are set.

String can be
null

NA System does
nothing with
this value;
application
can interpret
and use.

False

Owner Can be user or
group name

Set by user String can be
null

princip
al
executi
ng
when
task is
created

User or
Group must
be member
of
Integration
Users group

True

ClaimDueDate By what time
should some
user have
claimed the
task?

Set by user java.util.
Date

can be
null

Null Null means
no due date

True

Name Purpose How to Set Type Unset
Value

Default Notes Only
Admin.
Can
Modify

Creat ing and Manag ing Work l i s t Tasks

3-18 Using the Worklist System

Request and Response Documents
Documents can be associated with task instances: the documents describe what work needs to be
completed for the task, the status of what is being done, or the results of what was attempted or
completed for the task. These documents populate the request and response data values, as
described in the preceding table.

A Task Request is used to specify what work needs to be done to complete a task, or how that
work is to be done. For example, a Task Request can contain a Purchase Order document that
needs to be approved by a user. This value of a Task Request can be read by the person who
performs the work and completes the task. In addition, assignees can view this information to
decide whether or not to claim the task.

The Task Response is used to specify the work that took place after a user worked on the task, or
the resulting data generated as the result of the work done to complete the task, or both. Callbacks
can return the Response value to business processes that are waiting for a particular task state.

For example, the Task Response can capture the agreement made between a collections agent and
a delinquent customer after the two complete a telephone conversation. The process that created
the Task to call that customer can use those results to decide what to do next.

Format and Type of Request and Response Documents
The Request and Response documents are stored as byte arrays in the Worklist system. Therefore
they can hold any type of object. Methods and callbacks on the controls can set or get these values
as XmlObjects, Strings, Raw Data Types, or XML Bean types.

CompletionDueDate By what time
should the
claimant have
completed the
task?

Set by user java.util.
Date

can be
null

Null Null means
no due date.

True

Arbitrary, User
Defined Properties

Any Set by user String can be
null

NA True

Name Purpose How to Set Type Unset
Value

Default Notes Only
Admin.
Can
Modify

Task Operat ions

Using the Worklist System 3-19

For example, you can create a Task that matches purchase orders with receipts, and include an
electronic version of a purchase order as request data. When the Task completes, it can include a
matching receipt with the purchase order, along with a document that explains any differences,
as response data.

The RequestType and ResponseType task properties can be used to specify the data assigned to
the Request or Response type. The values of RequestType and ResponseType are provided for
the interpretation of the application; they are not used by the Worklist system.

For example, the RequestType can be set to xml, string, word document, or
com.xyz.PurchaseOrder. A custom Worklist UI can use these values to determine how to
display a request or response value to the user.

Task Operations
Operations are used to create new tasks, alter task states or properties, delete tasks, or read
information about an existing task. Some operations allow combinations of these actions in a
single step. Examples of Task operations include:

Operations to Create Tasks

Operations to Modify Task Properties

Operations to Get Task Properties

Operations to Modify Task State

Operations to Create Tasks
When a new Task Instance is created, the Worklist system assigns a unique ID (a taskID)
to that instance. The Task State can be defined at creation time as Assigned or Claimed,
depending on the operation. Some Task Properties are specified at the time an instance of
a Task is created and can not be changed after the instance is created.

Operations to Modify Task Properties
Some Task Properties can be specified and modified after an instance of a Task is created.

Operations to Get Task Properties
You can use Get Task operations to access the properties of any Task Instance at any point
during its lifecycle.

Operations to Modify Task State
Task Instances can transition between states based on the operations defined for them.
Different operations to modify a Task’s State are valid depending on the State in which
the task is to start.

Creat ing and Manag ing Work l i s t Tasks

3-20 Using the Worklist System

Archiving and Purging Task Information
WebLogic Integration supports archiving tracking data for business process instance history,
trading partner message history, and task instance history.

As tasks go through their lifecycle in enterprise processes, their properties are modified, their
states change, their due dates expire, and so on. Worklist task instances generate events that can
be logged in Worklist history tables in the runtime repository. The following types of events can
be tracked:

Changes in task state and associated values
The type of transition and associated values. For example, a task is reassigned or claimed.
In this case, the change in state and identity of the new assignee or claimant can be
tracked.

Expiration of task claim or complete due date
The task is unclaimed or incomplete on the due date for claiming or completing.

Changes in task owner or assignees
The type of change and new values can be tracked.

Task requests and task responses
The request and response XML.

The Task Worker controls provide the following methods for archiving and deleting Tasks:

archiveTask—for placing Task instance information into Task history tables for any Task
in the completed or aborted state (see “Task History Tables” on page 3-22).

deleteTask—for permanently removing Tasks from the WebLogic Integration server. The
deleteTask method can be used for a Task that is in any state, including the suspended
state.

Warning: Use the deleteTask method with caution—there is no mechanism for rollback
or retrieval of deleted Tasks.

purgeTask—for deleting all archived Tasks from the runtime.

The archiveTask and purgeTask methods function according to the settings of the process
archiver in the WebLogic Integration Administration Console:

If the process archiver is off, the archiveTasks method does not function and the
purgeTasks method removes all completed and aborted archived Tasks that have existed
longer than the purgeDelay setting.

Arch iv i ng and Purg ing Task In fo rmat i on

Using the Worklist System 3-21

If the process archive is on, the purgeTasks method removes all the aborted and
completed Tasks that are in existence longer than the time specified by the purgeDelay
setting, and were archived previously.

The process archiver provides the following tracking settings: Basic, Full, None. The
achiveTask method works with the process archiver according to the task tracking
settings:

– Basic—the process archiver archives all the Tasks in the completed or aborted states as
well as all the Task operations and state transitions.

– Full—the process archiver archives the tasks, operations and state transitions according
to the Basic setting, and also archives all the requests and responses.

– None—the process archiver does nothing if Task tracking is set to none.

To learn more about configuring your application for archiving and purging Task data, see
System Configuration in Managing WebLogic Integration Solutions, which is available at the
following URL:

http://edocs.bea.com/wli/docs81/manage/index.html

To learn about the Task states and the operations available for archival, see “Task Operations”
on page 3-19.

To optimize performance, the amount of tracking data stored in the runtime database should be
kept to a minimum. To this end, the archive and purge process can be configured to run at regular
intervals set by an administrator. In addition to configuring the schedule, the administrator can
enable or disable the archiver:

When the archiver is enabled, the process copies the data to an offline database, then
purges it from the runtime database.

When the archiver is disabled, the process purges the data from the run-time database
without copying it.

Archived information can be used for generating reports and compiling statistics about task
processing in your WebLogic Integration application. To learn more about configuring your
application for archiving and purging Task data, see System Configuration in Managing
WebLogic Integration Solutions, which is available at the following URL:

http://edocs.bea.com/wli/docs81/manage/index.html

http://edocs.bea.com/wli/docs81/manage/system.html
http://edocs.bea.com/wli/docs81/manage/index.html
http://edocs.bea.com/wli/docs81/manage/system.html
http://edocs.bea.com/wli/docs81/manage/index.html

Creat ing and Manag ing Work l i s t Tasks

3-22 Using the Worklist System

Task History Tables
As described in the preceding section, worklist task instances generate events that can be logged
in worklist history tables in the runtime repository. By default, the archiveTask method stores
Task instance information in the following history tables:

wli_task_archiving

wli_task_data_archiving

The following tables show the task information that can be stored in the history tables.

Table 3-5 Data in the Task History Tables

The following table presents the action types and state types (see action_type and state_type
in the preceding table) that can be archived, along with the integer that represents the action type
or state type in the history tables.

Table 3-6 Integers That Represent Action and State Types in the History Tables

Name Description

task_id The unique Task ID.

action_type An integer that represents the action recorded. For more
information, see Table 3-6.

state_type An integer that represents the state of the Task. For more
information, see Table 3-6.

action_time The time of the action.

action_user The user for which the action happens.

details Any other relevant information.

Action Type Integer State Type 1 Integer

create 0 assigned 0

assign 1 claimed 1

claim 2 started 2

Arch iv i ng and Purg ing Task In fo rmat i on

Using the Worklist System 3-23

suspend 3 suspended 3

resume 4 completed 4

complete 5 aborted 5

abort 6

return 7

start 8

stop 9

updateComment 10

updatePriority 11

updateExpirationDate 12

updateClaimDate 13

updateOwner 14

updateCanBeReassigned 15

updateCanBeReturned 16

updateCanBeAborted 17

updateRequest 18

updateResponse 19

addListener 20

removeListener 21

claimExpire 22

expire 23

1. State types can be used in queries using the @jc:selector
annotation tag or TaskSelector objects. To learn more about
queries, see “Querying Tasks Using the Task Worker Control” on
page 5-14.

Action Type Integer State Type 1 Integer

Creat ing and Manag ing Work l i s t Tasks

3-24 Using the Worklist System

Task Queries
Task Queries allow a business process or UI to find tasks in the Worklist system that meet user
defined criteria. This is analogous to SQL queries executed on Database Tables. The application
defines the criteria, executes the query, and is returned results for each task that matches the
criteria.

Business processes can use the task query mechanism to find tasks relevant to the business
process, and then perform work on the tasks that are returned. For example, a manufacturing
application can find all tasks related to a cancelled order and abort them.

You can create custom UI Pages that use the query mechanism to find tasks relevant to the user
that is using the page, and display information about those tasks. For example, a bug tracking UI
can allow users to query for tasks that are assigned to them, have a certain priority or higher, and
are due within a certain number of days.

This section includes the following topics:

To Specify the Criteria for a Query

To Specify How the Results Are Sorted

To Execute a Query

To Limit the Results Set

To Specify the Criteria for a Query
The criteria you specify in when you define a query determine the tasks that are returned by the
query. You can set the following criteria when you specify a query

Table 3-7 To Specify Criteria for a Query

Query Criteria Description

Task Ids Returns only those tasks for which the instance id is matched.

Task Name Returns only those tasks for which the name matches the value passed in.
You can optionally specify that the value matches a pattern. For example:

OrderNumber%1.

Comment Returns only those tasks for which the comment matches the value passed
in. You can optionally specify that the value matches a patterns.

Task Quer ies

Using the Worklist System 3-25

Description Returns only those tasks for which the description matches the value
passed in. You can optionally specify that the value matches a pattern.

Owners Returns only those tasks for which the task owner is on the specified list.
You can specify a list of user and group names.

Claimant Returns only those tasks for which the claimant is on the specified list. You
can specify a list of user and group names.

Assignee Returns only those tasks for which the associated assignees list contains the
specified assignee.

State Returns only those tasks for which the state is on the list of specified values.

ParentProcessId Returns only those tasks that were created by one of the processes whose
id is in the specified list.

ParentProcessURI Returns only those tasks that were created by a processes whose URI
matches the value passed in. You can optionally specify that the value
matches a pattern. Example: %PurchaseOrderProcess%

Completion Due Date You can specify whether the date should be before or after the specified
date.

ClaimDueDate Returns only those tasks whose date is before or after the specified
java.util.Date.

Creation Date Returns only those tasks that were created before or after the specified
java.util.Date. You can specify whether the date should be before or
after the specified date.

canBeReassigned Returns only those tasks whose data value matches the boolean specified.

canBeAborted

canBeReturned

Priority You can specify a maximum and minimum range. Returns only those tasks
for which the priority falls within the specified range.

User Defined Property
Name

Returns only those tasks with a named property defined—the name is
specified in the query.

User Defined Property
Value

Returns only those tasks for which a named property has a value equal to
the String specified.

Query Criteria Description

Creat ing and Manag ing Work l i s t Tasks

3-26 Using the Worklist System

Note About String Patterns
Some query criteria can be patterns that match strings with wildcards. These strings can contain
the following wildcards:

% characters to match any sequence of characters

_ characters to match any single character.

For example:

A query for task names like %Process_ returns PurchaseOrderProcess1, but not
PurchaseOrderProcess23455.

If you want to apply patterns checking, the query must specify that explicitly. Special characters
can be escaped using a back slash: \%, or _.

To Specify How the Results Are Sorted
A query can return results that are sorted according to the specified criteria. To define the sort
order, you set an integer value for each sort criteria.

For example, if you specify the sort value for name to be 1, and the sort value for comment to be
2, the results of the query are sorted first by name, then by comment.

The values are returned sorted first by the lowest number, then the second lowest, and so on. By
default, all the criteria are set to the same value. In this way, they are all weighted equally in the
sort. Specifically, the default sort value is set as java.lang.short.MAX_VALUE.

To Execute a Query
The Task Worker control can be used to execute a query and return results. The API also provides
operations on the com.bea.wli.worklist.api.WorklistManager interface to execute
queries.

To Limit the Results Set
You can specify a maximum results value for a query. It limits the maximum number of results
returned by the query.

1. See the Note About String Patterns.

http://edocs.bea.com/wli/docs81/javadoc/com/bea/wli/worklist/api/WorklistManager.html

The Rela t i onship Be tween Pr ocesses and Tasks

Using the Worklist System 3-27

Results can be returned as either an array of TaskInfo objects or an array of Task Ids. TaskInfo
objects contain a summary of the state and data values of a task instance.

The Relationship Between Processes and Tasks
For the case in which a business process creates a task, the Worklist system tracks not only the
task, but also the business process that created it. For example, the Worklist system tracks
business processes that are blocking, waiting for a callback from a given task instance.

You can view and manage this tracking information using the WebLogic Integration
Administration Console. For a given task instance, the console reports the processes that are
currently blocking on a given task instance. For a given process, the console reports the tasks that
are blocking a given business process.

The Worklist Task system in WebLogic Integration keeps track of the following relationships
between task instances and process instances:

Which business processes are blocking on a given Task

Which business processes, if any, created each Task instance

In your queries, you can specify the following IDs and URIs to access information about task
instances for which the specified processes are listening, or to access information about tasks that
were created by the specified processes:

listeningProcessIds—identifies the process ID of a listening process such as a URI

listeningProcessUri—identifies the type of the URI invoking a control

parentProcessIds—identifies the process ID of the parent process that invokes a control

parentProcessUri—identifies the URI of any parent processes that invoke a control

To learn how to extend to a Task Worker control to query WebLogic Integration Tasks instance
properties, see “Querying Tasks Using the Task Worker Control” on page 5-14.

Creat ing and Manag ing Work l i s t Tasks

3-28 Using the Worklist System

Using the Worklist System 4-1

C H A P T E R 4

Using the Worklist Control Methods

After you create an instance of a Task or Task Worker control, you can invoke its methods from
within your business processes to perform operations on Task Instances. Your business processes
can also wait to receive callbacks from task instances. Note that the Task and Task Worker
controls can be extended to add customized methods and additional callbacks.

This section includes the following topics:

Task Control Active Task Model

Creating New Tasks With a Task Control

Setting Task Data Values

Altering State With a Task Control

Using Controls to Get Task Status

Using XML With the Task Control

Using the Task Control Property Editor

Using Callback Methods

Permissions

Modifying Task Data Values

Creating Tasks

Using the Work l is t Cont ro l Me thods

4-2 Using the Worklist System

Task Control Active Task Model
Each instance of a Task Control operates on a single task instance only. Each task has a unique
ID—the Active Task ID on a control uses this ID to identify the task instance on which a task
control operates. All operations on a task control are performed on the active task.

The Active Task Id is set either by creating a new task, or by invoking the setActiveTaskId
method. When a new task is created, the Active Task Id is automatically set to the ID of the newly
created task. In this way, subsequent operations are performed on the new task.

A consequence of the active task model is that a Task control instance can create a single task
only. However, you can use a Task control factory to create new instances of Task controls
dynamically. In other words, a Task control factory can be used to create a new Control instance
every time a new Task is required. To learn more about control factories, see “Using Task Control
Factories” on page 5-18.

Because it is possible to use the Task Id to define on which task a control operates or receives
callbacks, multiple business processes can incorporate controls that all operate on the same task.
New processes—that is, processes that are instantiated after a task is already in existence can
interact with that task using the setActiveTaskId method.

Note that the Task Worker control does not use the active task model. Task ids are passed
explicitly to methods on the Task Worker control to specify which tasks need to be updated.

For example, the business process shown in the following figure is designed to receive a Task Id
from another business process that created a new task. The business process sets the Active Task
Id for a Task control, and then waits for the onCompletion callback, which indicates that the task
is completed.

Creat ing New Tasks Wi th a Task Cont ro l

Using the Worklist System 4-3

Creating New Tasks With a Task Control
A Task Control can be used to create a new Task with the following operations:

String createTaskByName(String name)

String createTask(TaskCreationXMLDocument xml)

Both operations create a new Task, return the instance id of that new task, and set the task
control's Active Task Id to the id of the new task.

The createTaskByName(String name) method sets the task name to the value specified in the
input parameter; other data values are set to their default values or values specified in the Property
Editor.

The createTask(TaskCreationXMLDocument xml) first creates a new task and names it
according to the name specified in the XML document. Then it alters the task in some way, using
the elements in the XML document to do so.

Using the Work l is t Cont ro l Me thods

4-4 Using the Worklist System

Assigning and Claiming Tasks
Worklist controls assign Tasks according the following methods.

assignTaskToUser methods and the ToUser property
These methods and properties place Tasks in a claimed state and set a user as the
claimant.

assignTaskToUserInGroup methods and the ToUserInGroup property
These methods and properties accept the name of a group. The method and property use
a load balancing mechanism to select a single user from that group to be the claimant,
and then place the Task in a claimed state.

The load balancing algorithm selects the user with the fewest claimed Tasks that are not
in completed, aborted, or suspended states. If more than one user is identified (that is if
two or more users in the group have the same number of claimed tasks, then the
algorithm chooses one user randomly among them.

assignTaskToUsersAndGroup methods and the ToUsersAndGroups property
These methods and properties accept values for the assignees list, and place a Task in an
assigned state. Any user on the assignees list can claim the Task.

Although you can assign multiple users and groups to a Task, only one user on the assignee list
can place a Task in a claimed state. If the assignee list contains only one user, the Task goes
directly into a claimed state, and that user becomes the claimant.

If you create a Task with no users or groups on the assignees list, the Task behaves as if it were
unassigned.

Reassigning Tasks and Returning Them to Other States
Worklist controls allow a Task instance to be returned to the assigned state from the claimed state.
The ability to assign a previously claimed Task depends on the privileges of the user initiating
the assignment. To learn about the permissions required for changing task states, see
“Permissions for Modifying Task Properties” on page 4-19.

You can reassign Tasks, placing them back into the assigned state while changing the assignee
list, effectively giving them to different users. You can also return Tasks, placing them back into
the assigned state with the same assignee list. You can return or reassign Tasks for work that
repeats on a continuing basis.

The following methods, among others, allow a Task to be put back into an assigned state:

assignTaskToUsersAndGroups

Set t ing Task Data Va lues

Using the Worklist System 4-5

assignTaskToUserInGroup (through load balancing)

returnTask

resumeTask

To learn about Task states and operations, see “Task Operations” on page 3-19. To learn more
about the Worklist API, see the com.bea.wli.worklist.api package in the BEA WebLogic
Integration Javadoc.

Setting Task Data Values
You can set the data values for tasks depending on the permissions you are granted in the system.
To learn about the Data values for task instances, the permissions you need to alter the task data,
and the valid values for each type of data, see “Task Data Values” on page 3-13.

The Task control supports an operation that takes a TaskUpdateXML document. You can use this
operation to set multiple data values in a single step. To learn how, see “Using XML With the
Task Control” on page 4-9.

The following list describes the operations on the controls that can be used to set individual data
values. describes the permissions required to perform these operations.

Table 4-1 Setting Data Values With Operations

Operation Description

setClaimDueBusinessDate(String
duration, String calendarID)

Sets the claim due date using a business time duration and a
calendar name.

The specified calendar is used to convert the business time
duration to an absolute date. Conversions to absolute dates
using the calendar are done relative to the current time.

To learn more about business dates and Tasks, see “Task Due
Dates” on page 3-2.

setClaimDueBusinessDateSystemCalendar
(String duration)

Sets the claim due date using a business time duration.

The system calendar is used to convert the business time
duration to an absolute date.

To learn more about business dates and Tasks, see “Task Due
Dates” on page 3-2.

http://edocs.bea.com/wli/docs81/javadoc/index.html
http://edocs.bea.com/wli/docs81/javadoc/index.html

Using the Work l is t Cont ro l Me thods

4-6 Using the Worklist System

setClaimDueDate(Date date) Sets the claim due date to an absolute date. You can specify
null to unset the due date.

To learn more about dates and Tasks, see “Task Due Dates” on
page 3-2.

setCompletionDueBusinessDate(String
duration, String calendarID)

Sets the completion due date using a business time duration and
a calendar name.

That calendar is used to convert the business time duration to an
absolute date. Conversions to absolute dates using the calendar
are done relative to the current time.

setCompletionDueBusinessDateSystemCal
endar(String duration)

Sets the completion due date using a business time duration.
The system calendar is used to convert the business time
duration to an absolute date.

setCompletionDueDate(Date date) Sets the completion due date to an absolute date. You can
specify null to unset the due date.

setComment(String comment) Sets the task comment. You can specify null to unset the
comment.

setOwner(String owner) The specified String sets the Task Owner as the user or group
name. You can specify null to unset the owner. In other
words, no owner is specified for the task.

public void setPermissions(Boolean
aborted, Boolean returned, Boolean
reassigned)

Sets the boolean values that pertain to permissions for a given
task.

setPriority(Integer priority) Sets the task priority. The value you specify for priority
must be a positive integer.

setRequest(XmlObject xml) and
setResponse(XmlObject xml)

Sets the request and response values to contain an XML
document. You can specify null to unset the value.

setProperty(String name, String value) Sets a user defined property with the given name to the given
value. This method creates the specified property if it doesn't
exist.

You cannot specify null for either the name or the value
parameter in this case.

Operation Description

A l te r ing S ta te Wi th a Task Cont ro l

Using the Worklist System 4-7

Altering State With a Task Control
Some methods on the Task control cause the state of a task instance to transition to a new state.
Some of these methods also set related data values for the task instance in the process. The
following list describes the operations that affect task state.

Table 4-2 See updateStateOperations.xls.

Methods Controls Description

abortTask Task

Task Worker

Invokes the abort operation on a task. To
learn about Task states, see “Task States” on
page 3-4.

assignTaskToUser Task
Task Worker

Assigns tasks to the user whose name you
provide as an argument to the method.

The user specified must belong to the
WebLogic Integration Users Group.

The assignees list is set accordingly for the
task instance.

The task is then automatically claimed for the
specified user.

To learn about users and groups for Worklist
controls, see “Task Users and Groups” on
page 3-8.

assignTaskToUserInGroup Task

Task Worker

Assigns the task to a user in the group whose
name you provide as an argument to the
method.

The Worklist system uses a load balancing
algorithm to choose the least busy user in the
group.

assignTaskToUsersAndGroups Task

Task Worker

Assigns the task, and sets the assignees list to
contain the users and groups you provide as
an argument to the method.

The users and groups specified must belong
to the WebLogic Integration Users Group.

resumeTask Task

Task Worker

Invokes the resume operation on the task. To
learn about Task states, see “Task States” on
page 3-4.

Using the Work l is t Cont ro l Me thods

4-8 Using the Worklist System

suspendTask Task

Task Worker

Invokes the suspend operation on the task. To
learn about Task states, see “Task States” on
page 3-4.

updateTask Task Alters the state through assignment. To learn
more about Task properties and XML, see
“Using XML With the Task Control” on
page 4-9.

archiveTasks Task Worker Causes completed and aborted tasks to be
archived. To learn more about Task archival,
see “Additional Resources” on page 5-20.

purgeTasks Task Worker This method purges all archived tasks from
the archival tables. For more information
about archiving, see “Additional Resources”
on page 5-20.

claimTask Task Worker Causes the claim operation to be called. The
currently executing principal claims the task.
To learn about Task states, see “Task States”
on page 3-4.

claimTaskOnBehalfOf Task Worker Causes the claim operation to be called.
Claims the task on behalf of the user whose
name is specified as an argument to the
method. This is an administrative function.

completeTask Task Worker Invokes the complete operation on a task. To
learn about Task states, see “Task States” on
page 3-4.

deleteTask Task Worker Removes the task instance completely and
permanently at run time. You can also use the
WebLogic Integration to remove task
instances.

This is an administrative function To learn
about Task states, see “Task States” on
page 3-4.

Methods Controls Description

Using Cont ro ls t o Ge t Task S ta tus

Using the Worklist System 4-9

Using Controls to Get Task Status
The Task and Task Worker controls provide operations to access data values associated with a
task instance. You can use these operations to access individual values, to receive a
TaskInfoXMLDocument, and to return a com.bea.wli.worklist.api.TaskInfo object:

A TaskInfoXMLDocument contains a summary of the task and data values in a single
XML document. To learn about the TaskInfoXMLDocument, see “Using XML With the
Task Control” on page 4-9.

A com.bea.wli.worklist.api.TaskInfo object contains a summary of the task and
data values in a Java object.

Using XML With the Task Control
Several operations on the Worklist controls offer an XML interface for ease of use. WebLogic
Integration provides a system XML Schema, Worklist.xsd, which defines the structure of
XML documents. To use the Worklist.xsd schema, you must import it into a Schemas project
in your application. To learn how, see “To Import the Worklist Schema into Your Application”
on page 4-12.

These operations are concise and convenient. They allow you to configure and perform multiple
operations on a Task instance in a single step; they allow you to access the summary for a task
instance in a single document. The real power of these operations, however, is through their use
with the XML mapper.

returnTask Task Worker Invokes the return operation on a task. This
method places Tasks back into the assigned
state and makes no changes to the assignee
list. To learn about Task states, see “Task
States” on page 3-4.

startTask Task Worker Invokes the start operation on a task. To learn
about Task states, see “Task States” on
page 3-4.

stopTask Task Worker Invokes the stop operation on a task. To learn
more about Task states, see “Task States” on
page 3-4.

Methods Controls Description

Using the Work l is t Cont ro l Me thods

4-10 Using the Worklist System

For example, if a business process contains several variables, all of which contain information
relevant to the creation of a new task, the XML mapper can be used to extract the values from
each of these variables and construct a single XML document that specifies aspects of a new task.
You can review the XML document in the mapper to get an overview of the data values that will
be set for a given task.

Similarly, you can use the mapper to extract several values from a Task Status XML document.to
set several values for a business process at once.

Creating New Tasks
A TaskCreationXML document can be used to create a new Task instance and configure that new
instance in a single step. Operations on the Task Control take the document as an argument and
use it to create a Task. Each element in the TaskCreationXML causes the new Task to be updated
in a different way. This section describes the following methods:

public String createTask(TaskCreationXMLDocument doc)

public TaskInfoXMLDocument getTaskInfoXMLDocument()

public void updateTask(TaskUpdateXMLDocument doc)

public String createTask(TaskCreationXMLDocument doc)
The worklist system calls the following method using the value of the name element in the
TaskCreationXMLDocument.

public String createTask(TaskCreationXMLDocument doc)

Then the method parses the document, element by element, invoking a state related operation or
a data setting operation on the task instance for each.

For example, the following is an example of an XML document you can use to create a new task
named My Task, assign it to a user named Bill Smith, set the priority to 5, specify a task
comment, specify the completion due date for 3 business days and specify that the due date is
calculated based on the CustomerSupport group's business calendar:

<TaskCreationXML xmlns="http://www.bea.com/wli/worklist/xml">
<name>My Task</name>
<comment>This work is important</comment>
<priority>5</priority>
<completionDueBusinessDate>

<day>3</day>
<calendar>

<userOrGroup>CustomerSupport</userOrGroup>
</calendar>

Usi ng XML Wi th the Task Cont ro l

Using the Worklist System 4-11

</completionDueBusinessDate>
<assignee>

<user>BillSmith</user>
<algorithm>ToUser</algorithm>

</assignee>
</TaskCreationXML>

In the preceding listing, note the following elements:

completionDueBusinessDate—Allows optional specification of a Business Calendar,
either specifying the Calendar's name, or the name of a user or group whose calendar
should be used. This calendar is used to convert the business time duration to an absolute
time to set the due date as a java.util.Date.

assignee—Used to assign the task directly to a user, a user in a group, or to set the
Assignees list to contain a list of users and/or groups. The example XML in the preceding
listing shows how to specify the assignee as a single user (assignToUser). The following
XML is also valid to assign a task to a user in a group, and to specify a list of users and
groups for the Assignees list:

– To assignToUserInGroup

<assignee>
<group>CollectionsGroup</ group >
<algorithm>ToUsnGroup</algorithm>

</assignee>

– To assignToUsersAndGroups

<assignee>
<user>UserA</user>
<user>UserB</user>
<group>GroupA</ group >
<group>GroupB</ group >
<algorithm>ToUsersAndGroups</algorithm>

</assignee>

Setting the request Property for a Task Instance
An XML element can be used to set the request property for the Task Instance. The message
value of this element can be any XML appropriate for the task instance. The mime-type element
is for informational purposes only and can be interpreted by the application. To learn more about
the mime-type elements, see “Request and Response Documents” on page 3-18.

<request>

<message>

<line:line-item xmlns:line="http://www.bea.com/line-item">

Using the Work l is t Cont ro l Me thods

4-12 Using the Worklist System

<line:name>Widget</line:name>

<line:quantity>100</line:quantity>

</line:line-item>

</message>

<mime-type>LineItem</mime-type>

</request>

public TaskInfoXMLDocument getTaskInfoXMLDocument()
The following method can be used to get a TaskInfoXMLDocument on the Worklist Controls. It
contains the task properties, state, and so on in a single document:

public TaskInfoXMLDocument getTaskInfoXMLDocument()

public void updateTask(TaskUpdateXMLDocument doc)
You can use a TaskUpdateXML document as an argument to the following method to update an
existing Task instance in various ways in a single step:

public void updateTask(TaskUpdateXMLDocument doc)

Each element in the TaskUpdateXML document causes the Task to be updated in a different way.
The XML document is similar to the TaskCreationXML document described for public String
createTask(TaskCreationXMLDocument doc).

To Import the Worklist Schema into Your Application
1. In the Application tab, right-click on the top-level application folder. (If the Application tab

is not visible in WebLogic Workshop, choose View →Application from the menu bar.)

2. From the drop-down menu, select New →Project....

The New Project dialog box is displayed.

3. In the right-most pane of the New Project dialog box, select WLI System Schemas.

The Schemas project you create contains WebLogic Integration System XSD files,
including Worklist.xsd.

4. In the Project name field, enter a name (for example: Schemas).

Note: You can name your schemas project anything you want, except for the case in which
you plan to use the project for application view channels and schemas. In that case,
you must name it Schemas.

The Task Cont ro l Pr ope r t ies Shee t

Using the Worklist System 4-13

The Task Control Properties Sheet
The Task Control Properties Sheet allows the user to set defaults that will be used for properties
of new task instances created with that control.

When a new task is created with the control, any value in the properties sheet will be used, unless
the creation operation passes a parameter in to explicitly override the value. If the value is not set
by the method parameters and doesn't exist in the properties sheet, the Worklist system defaults
will be used for those values.

For example, say the properties sheet specifies values for the task name, task owner, and priority.
Say the user creates a new task with a TaskCreationXML document that specifies just the task
description and priority.

The description is not specified in the properties sheet; therefore the value from the
TaskCreationXML is used. The priority is specified in the XML and the properties sheet;
therefore the properties sheet value is used. The task comment is not specified in the XML or the
properties sheet; therefore the system default is used.

The following table shows the task control properties:

Table 4-3 Task Control Properties

Property Section Property Purpose Valid Values

Task Name Sets the task name String

Task Description Sets the task description String

Task Comment Sets the task comment String

Task Priority Sets the task priority Integer

Task Owner Sets the task owner String

Assignee Algorithm Specifies how to assign new task Strings: ToUser
ToUserInGroup

Assignee User If algorithm is ToUser, specifies
the user name

String

Assignee Group If algorithm is ToUserInGroup,
specifies the group name

Using the Work l is t Cont ro l Me thods

4-14 Using the Worklist System

Advanced can-be-reassigned Sets the task property called
canBeReassigned

True or False

Advanced can-be-returned Sets the task property called
canBeReturned.

True or False

Advanced can-be-aborted Sets the task property called
canBeAborted.

True or False

Advanced claim-due-business-date Sets the due date for the task to be
claimed, using a business time
duration.

String, format
must be valid
business time
duration

Advanced completion-due-business-date Sets the due date for the task to be
completed using a business time
duration.

String, format
must be valid
business time
duration

Advanced completion-user-calendar Sets the name of the user whose
Business Calendar should be used
to convert the
completion-due-business-date to a
java.util.Date.

String user name

Advanced claim-user-calendar Sets the name of the user whose
Business Calendar should be used
to convert the
claim-due-business-date to a
java.util.Date.

String user name

Advanced completion-calendar Sets the name of the Business
Calendar that should be used to
convert the
completion-due-business-date to a
java.util.Date.

String calendar
name

Advanced claim-calendar Sets the name of the Business
Calendar that should be used to
convert the
claim-due-business-date to a
java.util.Date.

String calendar
name

Property Section Property Purpose Valid Values

Usi ng the Task Cont ro l Pr ope r ty Ed i to r

Using the Worklist System 4-15

Using the Task Control Property Editor
Controls you create in your application are represented as JCX files in the Application pane in
WebLogic Workshop. Instances of controls that you create in your business process are
represented in the Data Palette. You can view and edit the properties of control instances and
their parent types in the Property Editor when you work in the WebLogic Workshop graphical
design environment.

Use the Property Editor to View and Edit Properties for Control
Instances
1. On the Application pane, click the JPD file you are designing. The business process is

displayed in Design View.

2. In the Data Palette, double-click an instance of a Task control. Its properties are displayed
in the Property Editor.

Note: If the Data Palette or the Property Editor is not visible in WebLogic Workshop,
click View→Windows→Data Palette or View→Property Editor from the menu
bar

Note that when you open the Property Editor for an instance of a control, the properties
for that instance, are listed at the top of the Property Editor and the properties specified
for the parent control (that is, the control on which the current instance is based) are listed
at the bottom—in the Referenced Control section. The properties displayed in the
Referenced Control section are read-only. You can edit the referenced control properties
by opening the JCX file.

To learn how to use the Property Editor to specify properties for control types versus
control instances, see Setting Control Properties in the WebLogic Workshop online help,
which is available at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguide
ControlsProperties.html

For example, if you create an instance of a File control in your business process, and name it
taskCTRL, the instance is displayed in the Data Palette. Click taskCTRL in the Data Palette
to highlight it in the Data Palette and cause its properties to be displayed in the Property Editor.

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControlsProperties.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControlsProperties.html

Using the Work l is t Cont ro l Me thods

4-16 Using the Worklist System

The following figure shows the Property Editor for our example taskCTRL instance:

Default properties for Task control instances appear encoded in the Worklist control JCX file as
attributes of the @jc (Java control) annotations. For detailed information on the @jc annotations
and their attributes, see Worklist Control Annotations, which is available in the WebLogic
Workshop online help.

Using Callback Methods
Task controls provide callback methods. Other resources can use the callback interface to receive
notification of events, such as changes in states or properties. The Task control includes the
following callback methods.

http://edocs.bea.com/workshop/docs81/doc/en/integration/reference/refWorklistAnnotation.html

Permiss ions

Using the Worklist System 4-17

Table 4-4 Task Control Callback Methods

To learn more about Task states, see “Task States” on page 3-4.

You can also create custom callback methods. To learn more about building your own Worklist
callback methods, see “Querying Tasks Using the Task Worker Control” on page 5-14.

Permissions
When any operation is invoked on a Task, the Worklist system verifies that the current principal
that is executing the operation, has the permission to do so. Permission is granted based on the
role to which the user is assigned (see “Tasks and User Permissions” on page 3-10), the state of
the task, the operation being invoked, and possibly data values associated with the task instance.

The following table describes which roles are allowed to perform operations that modify the state
of a Task instance.

Method Description

onTaskAborted This is a callback method that another resource (for example, a
business process) can implement to receive notification when a
Task is in an aborted state.

onTaskCompleted This is a callback method that another resource (for example, a
business process) can implement to receive notification when a
Task is in a completed state.

onTaskOverdue This is a callback method that another resource (for example, a
business process) can implement to receive notification when a
Task completion due date is past.

Using the Work l is t Cont ro l Me thods

4-18 Using the Worklist System

Table 4-5 State Transitions for Tasks

Start States End State Relevant Operations Permitted Users

ASSIGNED,
CLAIMED,
STARTED

ABORTED abortTask Assignees List, if task is
ASSIGNED and canBeAborted
is TRUE.

Claimant if canBeAborted is true.
Task Owner and Integration
Administrator

ASSIGNED,
CLAIMED,
STARTED

SUSPENDED suspendTask Task Owner and Integration
Administrator

SUSPENDED Whatever the
Task State was
when suspended

resumeTask Task Owner and Integration
Administrator

ASSIGNED ASSIGNED assignToUsersAndGroups Assignees List if
canBeReassigned is TRUE.
Task Owner and Integration
Administrator

COMPLETED or
ABORTED

ASSIGNED assignToUsersAndGroups Task Owner and Integration
Administrator

ASSIGNED CLAIMED claimTask Assignees List. Task Owner and
Integration Administrator

CLAIMED ASSIGNED returnTask Claimant if canBeReturned is
true. Task Owner and Integration
Administrator

ASSIGNED CLAIMED assignToUserInGroup,
assignToUser

Assignees List if
canBeReassigned is TRUE.
Task Owner and Integration
Administrator

COMPLETED or
ABORTED

CLAIMED assignToUserInGroup,
assignToUser

Task Owner and Integration
Administrator

CLAIMED STARTED startTask Claimant. Task Owner and
Integration Administrator

Permiss ions

Using the Worklist System 4-19

Permissions for Modifying Task Properties
Whether a user has permission to modify a Task property depends on factors including the state
of the task, the current user executing, and the particular property to be modified.

Some properties can only be modified by the Task Owner or an Integration Administrator, no
matter the state of the Task.

Properties cannot be modified on Tasks that are in any of the following states: suspended,
completed, and aborted. If you need to modify the properties for a task that is any of these states,
you must first transition it out of that state. To do so, you can resume the task, or reassign it and
claim it.

Only the task owner, a member of the assignees list, or an Integration Administrator can modify
Task properties for tasks that are in the assigned state.

Only the claimant, the task owner, or an Integration Administrator can modify Task properties
for tasks that are in the claimed or started states.

To learn about Task states and moving tasks between states, see “Task States” on page 3-4 and
“Task Operations” on page 3-19.

Permissions for Reassigning Tasks and Returning Them to
Other States
Task owners and Integration Administrators are always granted the permission to reassign and
return Tasks. In addition, Worklist controls provide the following boolean properties to specify
whether an assignee or claimant can reassign or return a Task:

can-be-reassigned (valid values are true and false)

STARTED CLAIMED stopTask Claimant. Task Owner and
Integration Administrator

STARTED COMPLETED completeTask Claimant. Task Owner and
Integration Administrator

ANY DOES NOT
EXIST

deleteTask Task Owner and Integration
Administrator

Start States End State Relevant Operations Permitted Users

Using the Work l is t Cont ro l Me thods

4-20 Using the Worklist System

can-be-returned (valid values are true and false)

To learn about the methods provided on the Worklist controls that allow a Task to be put back
into an assigned state, see “Reassigning Tasks and Returning Them to Other States” on page 4-4.

Modifying Task Data Values
The users and groups that are granted permissions to modify a task property depend on several
factors: the state of the task, the current user executing the operation, and the property to be
modified.

Some data values can only be modified by the Task Owner or an Integration Administrator,
regardless of the state of the task. (To learn about the data values and the permissions required to
modify them, see “Task Data Values” on page 3-13.)

Data values can not be modified for states in the SUSPENDED, COMPLETED, and ABORTED
states. The task must be resumed or reassigned and claimed before you can modify data values
on tasks in these states.

The current user must be on the assignees list, be the task owner, or be an Integration
Administrator to modify Task Data values for tasks that are in the ASSIGNED state.

Only the claimant, task owner, and Integration Administrators can modify task data values for
tasks that are in the CLAIMED and STARTED states.

Creating Tasks
Only certain users can create tasks. For more information, see “Task Users and Groups” on
page 3-8 and “Tasks and User Permissions” on page 3-10.

Transactions
Task instances work with transaction contexts in the following ways:

Method invocation made within a Transaction Context
The invocation of a method on the Worklist API or a control operation is done within the
context of the current transaction. If the transaction rolls back, the effects of the operations
on the task are undone.

Method invocation made outside of a Transaction Context
The Worklist system starts a new transaction when a new method is called. The
transaction is committed on successful completion of that method.

T ransact ions

Using the Worklist System 4-21

All operations on Task instances behave like an EJB operation with a required transaction
attribute.

Using the Work l is t Cont ro l Me thods

4-22 Using the Worklist System

Using the Worklist System 5-1

C H A P T E R 5

Advanced Topics

This section includes the following topics:

Extending Worklist Controls

Querying Tasks Using the Task Worker Control

Using Task Control Factories

Additional Resources

Extending Worklist Controls
This section provides information about extending the base Worklist controls provided in
WebLogic Integration to override the default method signatures, create custom methods and
callbacks, query Tasks, and so on. It includes the following topics:

Why Extend the Worklist Controls?

Example Extended Task Control

Altering Method Signatures—Request and Response

Adding Custom Methods

Creating Tasks With the Task Control

Updating Tasks Using the Task and Task Worker Controls

State Related Updates Using the Task and Task Worker Controls

Advanced Top ics

5-2 Using the Worklist System

Getting and Setting Task Data Values

Adding Callback Methods

Why Extend the Worklist Controls?
When a new Task or Task Worker control is created from the Data Palette in WebLogic
Workshop, it provides a standard interface of operations and callbacks. These basic signatures
offer the most common operations used by the processes that create, configure and manage tasks,
and by those who actually take ownership of tasks and perform their work.

You can extend the control instances and therefore customize them in the following ways:

Signatures can be altered to accept specific data types as arguments. For example, you can
design methods to accept XML Beans created from schemas specific to the application at
hand.

New methods can be added to wrap several different task modifications into a single
method.

Additional callbacks can be added to detect different types of state changes within a
business process.

Example Extended Task Control
The following listing shows an example of a Task control that is customized for managing tasks
related to an automated taxi dispatching system.

Listing 5-1 Customized Task Control

/**

* @jc:task

*/

public interface AutoTaxiDispatcher

extends TaskControl, com.bea.control.ControlExtension

{

/**

* @jc:task-create

* name="Pick up {passengerName}"

* description="Find customer at {pickupAddress}"

Extend ing Work l i s t Cont r o ls

Using the Worklist System 5-3

* claim-due-business-date="5 min"

* claim-calendar="24by7Calendar"

* completion-due-business-date="15 min"

* completion-calendar="24by7Calendar"

* request="<destination>{destinationAddress}</destination>"

* request-type="taxiRideDestination.xsd"

* @jc:task-assign

* group="{locality}Group"

* algorithm="ToUsersAndGroups"

*/

public String passengerReady(String passengerName,

String destinationAddress, String pickupAddress, String locality);

/**

* @jc:task-abort enabled="true"

*/

public void cancelPickup();

/**

* @jc:task-update

* request="<destination>{destinationAddress}</destination>"

*/

public void changeDestination(String dest);

public interface Callback extends TaskControl.Callback {

/**

* @jc:task-event event-type="claim"

* time="{time}" user="{driver}"

*/

void passengerClaimed(Date time, String driver);

/**

* @jc:task-event event-type="complete"

* time="{time}" user="{driver}"

*/

void passengerPickup(Date time, String driver);

/**

* @jc:task-event event-type="claimExpire" time="{time}"

Advanced Top ics

5-4 Using the Worklist System

response="{location}"

*/

void nobodyClaimedPassenger(Date time, XmlObject location);

/**

* @jc:task-event event-type="expire" time="{time}"

response="{location}"

*/

void nobodyPickedUpPassenger(Date time, XmlObject location);

}

}

Altering Method Signatures—Request and Response
Operations can have arguments that take, as input, the value of a Request or Response document.
Callbacks can have return types that return those values.

Since the Request and Response can consist of various formats, operation and callback signatures
can be modified to enforce specific types of Request and Response content. The enforcement of
the data types can be done when these values are set, or when the values already set are returned.

Method parameters you use to set the Request or Response (and Return types in method
signatures that are used to return the value of the Request or the Response) can be set to the
following types:

XmlObject

XML Beans

String

RawData

byte[]

It is the responsibility of the application to ensure that callbacks return Request or Response types
that are compatible with the signatures in the relevant controls. The Worklist system must cast
the value that is stored in the system—a mismatch causes an exception to be thrown.

Extend ing Work l i s t Cont r o ls

Using the Worklist System 5-5

The request type and the response type data values can be used by the application to determine
the type of data that is stored in the Request or Response. An application can be designed to use
this information in any way.

The following examples of code show how you can write a method to set the request and response
using different data types, and how you can design a callback that returns the Response as a
Purchase Order XML Bean.

Listing 5-2 A Method That Sets the Request and the Response as Different Data Types…

/**

* @jc:task-update

* request={req}

* response={res}

*/

public void setRequestAndResponse(XmlObject req, String res);

Listing 5-3 A Callback That Returns the Response as a Purchase Order XML Bean

/**

* @jc:task-event event-type="complete" response="{response}"

*/

void onTaskCompleted(com.bea.purchaseOrderDocument response);

Adding Custom Methods
Methods on the controls can create or update tasks. Creating or updating Tasks can involve
altering data values or affecting the task's state. Custom methods can be added to the controls to
wrap several update steps into one operation.

First you define your method, passing the parameters needed to create or update the task. Then
you ensure that the method annotations specify to the Worklist system what aspects of the task to
alter using each parameter.

Advanced Top ics

5-6 Using the Worklist System

Constants can be used to alter the task in a fixed way. For example, you can set the task name to
CallDelinquentCustomer for every new task created. In this way, you do not need to provide
the same value as input to the method, repeatedly—the value you provide is a constant.

Note that the default methods on a new Task control or Task Worker control use the annotations
mechanism. You can look at the default methods on the controls and use them as an example of
how to create custom methods.

Note that, in addition to creating new methods for a control, you can customize a control by
deleting some of its default methods.

Creating Tasks With the Task Control
Methods that create new tasks can also configure the new tasks in several ways. Operations that
allow you to create and configure new tasks are identified by the following annotation:
jc:task-create. The annotation identified by jc:task-create contains a sequence of
annotations, which specify the way or ways in which the new task is to be configured. Each
annotation can specify a parameter to be used to set a particular aspect of the task instance.

Each annotation can specify which parameter should be used to set that particular aspect of the
task instance

Table 5-1 Annotations to Use When You Create and Configure Tasks

Aspect of Task to
Modify

Annotation Parameter Type Notes

Name name1 String Required annotation

Description description String

Comment comment String

Priority priority int

Claim Due Date claim-due-date java.util.Date Use this annotation or the
claim-due-business-date
annotation.

Extend ing Work l i s t Cont r o ls

Using the Worklist System 5-7

claim-due-business-date String Business time format.

Use this or the claim-due-date
annotation.

claim-calendar String Name of the business calendar
to use if you want to specify a
calendar in the method call.

This is only used with
claim-due-business-date.

claim-user-calendar String Name of the user whose
calendar to use if you want to
specify a calendar in the
method call.

This is only used with
claim-due-business-date.

Completion completion-due-date java.util.Date Use this annotation or the
claim-due-business-date
annotation.

completion-due-business-date String Business time format.

Use this or the claim-due-date
annotation.

completion-calendar String Name of the business calendar
to use if you want to specify a
calendar in the method call.

This is only used with
claim-due-business-date.

completion-user-calendar String Name of the user whose
calendar to use if you want to
specify a calendar in the
method call.

This is only used with
claim-due-business-date.

canBeReassigned can-be-reassigned boolean

Aspect of Task to
Modify

Annotation Parameter Type Notes

Advanced Top ics

5-8 Using the Worklist System

The following code examples show how to associate annotations with the methods you write to
create and configure tasks.

Listing 5-4 Create a Task, Set the Name, Description, Comment, and Priority

/**

* @jc:task-create

* name="{name}"

* description="{desc}"

* comment="{comment}"

* priority="{priority}"

*/

public String newCollectionsTask (String name, String desc, int priority,

String comment);

canBeAborted can-be-aborted boolean

canBeReturned can-be-returned boolean

Owner owner String Name of user or group.

Request request See section on
parameter types.

Request content.

Request Type request-mime-type String Use only if you use the request
annotation.

1. Note the name annotation is required when you create new tasks; other annotations are
optional. To specify a parameter to use as input to the annotations, enter the name of the
parameter in curly braces. The following examples show you how.

Aspect of Task to
Modify

Annotation Parameter Type Notes

Extend ing Work l i s t Cont r o ls

Using the Worklist System 5-9

Listing 5-5 Create a Task, Set the Due Dates (Using an Absolute Date and Referencing a Calendar)

/**

* @jc:task-create

* name="{name}"

* claim-due-date="{claimDate}"

* completion-due-business-date="{completeDuration}"

* completion-calendar="{completeCal}"

*/

public String createNewTask(

String name, Date claimDate, String completeCal, String completeDuration);

Listing 5-6 Create a Task, Specify the request and request-mime-type

/**

* @jc:task-create

* name="{name}"

* request="{req}"

* request-mime-type="{reqType}"

*/

public String createWithRequest(String name, XmlObject req, String

reqType);

Updating Tasks Using the Task and Task Worker Controls
In addition to the ability to create and configure new tasks, you can update existing tasks in
multiple ways using a single custom method. The same annotations are supported for update
operations as for create operations on the Task Control, with the exception of name and
description. You use them in the same way. Annotations you associate with update methods are
identified with the following annotation: jc:task-update.

Note that response and response-type annotations are supported for update operations. They are
analogous to request and request-type annotations for create operations. the following example
code shows the use of the response and response-mime-type annotations.

Advanced Top ics

5-10 Using the Worklist System

Listing 5-7 Task Update Annotations

/**

* @jc:task-update

* comment="{comment}"

* response="{resp}"

* response-mime-type="{ respType }"

*/

public String responseAndComment(String comment, XmlObject resp, String

respType);

State Related Updates Using the Task and Task Worker
Controls
You can use annotations to configure methods that alter task state. The following method
annotations are supported for state transition:

Annotations to Use With State Transition Operations for Task Controls

Annotations to Use With State Transition Operations for Task Worker Controls

Table 5-2 Annotations to Use With State Transition Operations for Task Controls

State
Transition

Annotation Parameter
Type

Notes

Assignment jc:task-assign NA Assign the task

user String If algorithm is ToUser, use a String value

If algorithm is ToUsersAndGroups, can use a
String[] value

group String If algorithm is ToUser, use a String value

If algorithm is ToUsersAndGroups, can use a
String[] value

algorithm String Must specify: ToUser, ToUserInGroup, or
ToUsersAndGroups

Extend ing Work l i s t Cont r o ls

Using the Worklist System 5-11

Table 5-3 Annotations to Use With State Transition Operations for Task Worker Controls

Resume jc:task-resume Resume the task

Suspend jc:task-suspend Suspend the task

Abort jc:task-abort Abort the task

State
Transition

Annotation Parameter
Type

Notes

State
Transition

Annotation Parameter
Type

Notes

Assignment jc:task-assign NA Assign the task

user String If algorithm is ToUser, use a String value

If algorithm is ToUsersAndGroups, can use a
String[] value

group String If algorithm is ToUser, use a String value

If algorithm is ToUsersAndGroups, can use a
String[] value

algorithm String Must specify: ToUser, ToUserInGroup, or
ToUsersAndGroups

Resume jc:task-resume Resume the task

Suspend jc:task-suspend Suspend the task

Abort jc:task-abort Abort the task

Claim jc:task-claim Claim the task

claimant Use with task-claim, if claiming on behalf of
another user.

Delete jc:task-delete Delete the task

Return jc:task-return Return the task

Advanced Top ics

5-12 Using the Worklist System

Getting and Setting Task Data Values
The default methods on the Task and Task Worker controls can get, set, and remove control data
values. For information about the data values you can set and get for the Task and Task Worker
controls, see “Task Data Values” on page 3-13. The following examples show annotations you
can use with get, set, and remove methods on the controls.

Listing 5-8 Annotations to Use With Get, Set, and Remove Operations

/**

* @jc:task-get-property name="{name}"

*/

public String getProperty(String name);

/**

* @jc:task-set-property name="{name}" value="{value}"

*/

public void setProperty(String name, String value);

/**

* @jc:task-remove-property name="{name}"

*/

public void removeProperty(String name);

Start jc:task-start Start the task

Stop jc:task-stop Stop the task

Complete jc:task-complete Complete the task

State
Transition

Annotation Parameter
Type

Notes

Extend ing Work l i s t Cont r o ls

Using the Worklist System 5-13

Adding Callback Methods
Callbacks provide a way for a control to asynchronously notify a client that an event has occurred.
A callback is a method signature that is defined by a control and for which the method
implementation is provided by the client. For example, a business process can implement a
callback handler to enable reception of a callback from a control.

You can extend Task controls with callback methods to report state or property changes, or
events. You can implement callback methods on Task controls only, not on Task Worker
controls, because only Task controls identify with a single active instance of a Task.

Callbacks can optionally return up to three arguments:

user—the user who executes the operation to make the state transition

time—the time at which the due date expired or the operation was invoked

response—the response document

The following example displays the user, time, and response annotations associated with a
callback method

Listing 5-9 Callback Method Using User, Time, and Response Annotations

/**

* @jc:task-event event-type="complete"

* response="{response}"

* time="{time}"

* user="{user}"

*/

void onTaskCompleted(XmlObject response, Date time, String user);

Set the event-type annotation to specify the state transition that triggers the callback. Use the
appropriate annotation for the type of event that triggers your method. The following table
describes the types of events and the associated annotations.

Advanced Top ics

5-14 Using the Worklist System

Querying Tasks Using the Task Worker Control
This section explains how to extend a Task Worker control to query WebLogic Integration tasks.
The @jc:select annotation accepts values to search for Tasks, including TaskSelector
objects, and returns a set of Task IDs.

This section includes:

Search Values and Selectors

Querying Tasks With Annotations

Querying Tasks With TaskSelectors

Type of Event . . . Annotation . . .

CREATE create

ASSIGN assign

CLAIM claim

SUSPEND suspend

RESUME resume

COMPLETE complete

ABORT abort

RETURN return

START start

STOP stop

CLAIM_EXPIRE claimExpire

EXPIRE expire

Quer y ing Tasks Us ing the Task Worke r Cont ro l

Using the Worklist System 5-15

Search Values and Selectors
The Java annotations for a Task Worker control provide a set of properties you can use to query
on the @jc:select tag. The following table describes these properties.

Table 5-4 Task Control Properties to Use With the jc:select Java Annotation
.

Search Property Description

assigned-group Search by groups on the assignee list for a Task.

assigned-user Search by users on the assignee list for a Task.

claimant Search by the claimant for a Task.

claim-due-date-after Search by Tasks with a due date after the value you provide.

claim-due-date-before Search by Tasks with a claim due date before the value you
provide.

comment Search by the Task comments.

completion-due-date-after Search by Tasks with a completion due date after the value you
provide.

completion-due-date-before Search by Tasks with a completion due date before the value you
provide.

creation-date-after Search by Tasks with a creation date after the value you provide.

creation-date-before Search by Tasks with a creation date before the value you
provide.

max-property Search by Tasks with no greater priority than the value you
provide.

min-priority Search by Tasks with no lesser priority of the value you provide.

owner Search by The Task owner.

property-name Search by Tasks with a given property.

property-value Search by Tasks with a given value for the property defined by
property-name.

Advanced Top ics

5-16 Using the Worklist System

Querying Tasks With Annotations
To create custom queries, you must extend the Task Worker control to provide a method for your
search. You can start by taking a method that already uses the @jc:select annotation tag to
perform a search and modify this method.

For example, the Task Worker control provides the following @jc:select tag and method:

/**

* @jc:task-get-info enabled="true"

* @jc:select task-id="{taskIds}"

*/

public TaskInfoXMLDocument[] getTaskInfoXML(String[] taskIds);

The TaskInfoXMLDocument method allows you to search through Tasks by Task ID. You can
extend this control to search through Tasks by some additional attribute, such as the claimant. To
do so, you can take advantage of extensibility built into the TaskInfoXMLDocument method that
allows you to pass additional arguments to the method, as shown in the following example. (Bold
text is used in the following example code to indicate the additions made to the preceding
example code.)

/**

* @jc:task-get-info enabled="true"

selector Search by the configuration of the TaskSelector object you
provide for this value. To learn more about using this value to
pass arguments to TaskSelector objects, see “Querying
Tasks With TaskSelectors” on page 5-17.

states Search by Tasks by state. Values can be as follows:

• A String or String array of valid state types such as
completed or assigned.

• An Integer or Integer array representation of state
types.

• A com.bea.wli.worklist.api.StateType or
StateType array

task-id Search by the unique Task ID.

task-name Search by the groups on the assignee list for a Task.

Search Property Description

Quer y ing Tasks Us ing the Task Worke r Cont ro l

Using the Worklist System 5-17

* @jc:select claimant="James Gosling" task-id="{taskIds}"

*/

public TaskInfoXMLDocument[] getTaskInfoXML(String user,String[]

taskIds);

In the previous code sample, the TaskInfoXMLDocument is extended to query for a claimant.

You can extend your control without setting a default value for the claimant. For example, you
can provide a value within curly brackets to indicate the claimant must be a user. You must pass
a value for the user parameter to the method at run time.

/**

* @jc:task-get-info enabled="true"

* @jc:select claimant="{user}" task-id="{taskIds}"

*/

public TaskInfoXMLDocument[] getTaskInfoXML(String user,String[]

taskIds);

To learn more about Worklist control annotations, see Worklist Control Annotations in the
WebLogic Workshop online help.

Querying Tasks With TaskSelectors
The Worklist API provides the functionality to create a more advanced search functionality than
you can using the @jc:select Java annotation, described in the preceding section. You can
query on all Task instance properties by making a call to a TaskSelector object. This allows
you to order the results of queries, find parent process IDs, use regular expressions, and so on.

To use a TaskSelector, you must include the selector annotation and argument with a
method. The following code shows a method in the Task Worker control that you can use as a
starting point to extend your control.

/**

* @jc:task-get-info

* @jc:select selector="{selector}"

*/

public TaskInfoXMLDocument[] getTaskIdsWithSelector(TaskSelector

selector);

The method described in the preceding example expects, as input, a TaskSelector that is
defined to query by Task ID. The method returns a TaskInfoXMLDocument array of resulting
Task properties with Task IDs that match your query.

http://edocs.bea.com/workshop/docs81/doc/en/integration/reference/refWorklistAnnotation.html

Advanced Top ics

5-18 Using the Worklist System

For more information about the constructor and methods of the TaskSelector class, see Class
TaskSelector in the com.bea.wli.worklist.api package, in the BEA WebLogic Integration
Javadoc, which is available at the following URL:

http://edocs.bea.com/wli/docs81/javadoc/index.html

Using Task Control Factories
There are two circumstance in which you must use a Factory type of Task Control.

You are creating multiple tasks in a loop, or you want the number of tasks created to be
specified at run time.

You are interacting with multiple existing tasks in a loop, or with a number of tasks that is
not known until run time.

Task Control properties can be useful when using factory type Task Controls. Defining the
control's properties in the Property Editor specifies default values for new tasks that are created
by any control instance that was created from that factory.

For example, say you want your process to loop over a sequence of order elements, creating a
new task to approve each order in the body of the loop. Say, the task name changes on each
iteration, but the assignee is always the same manager. In that case you can set the assignee in the
factory control's properties using the property editor. You need not specify it when creating a new
task, that default assignee will be used.

The basic pattern is to create two Task controls in your business process: one is a factory type and
the other is not. The following example describes a scenario for which you want to create a task
for each iteration through a loop in a business process:

1. From the Data Palette, create a new Task control called MyTaskCtrl (name the Task control
instance: factoryCtrl). As you do so, the Insert Control dialog box prompts you to specify
if you want to make the control a factory that can create multiple instances at run time. Select
this option.

2. Create another Task Control from the Data Palette. This time, in the Insert Control dialog
box, select the option to Use a task control already defined by a JCX file, and specify the
existing MyTaskCtrl.jcx file. (Name the Task control instance: myTaskCtrl.) Do not
select the option to make this control a control factory.

The controls variables in the business process are written as shown in the following code.

/**
* @common:control

http://edocs.bea.com/wli/docs81/javadoc/com/bea/wli/worklist/api/TaskSelector.html
http://edocs.bea.com/wli/docs81/javadoc/com/bea/wli/worklist/api/TaskSelector.html
http://edocs.bea.com/wli/docs81/javadoc/index.html
http://edocs.bea.com/wli/docs81/javadoc/index.html
http://edocs.bea.com/wli/docs81/javadoc/index.html

Us ing Task Cont ro l Fact or ies

Using the Worklist System 5-19

*/
private processes.MyTaskCtrlFactory factoryCtrl;

/**
* @common:control
*/
private processes.MyTaskCtrl myTaskCtrl;

3. Open the business process you are designing in the Design View.

4. In the body of a loop, or any other place you want to create a new task or want to do work
on an existing task, create a new control instance using factoryCtrl and store it in a variable
named myTaskCtrlVariable. You design this logic in a Perform node. The code for the
Perform node should resemble the following:

public void factoryCreate() throws Exception
{

this.myTaskCtrl = this.factoryCtrl.create();
}

In this way, you create a new control that you can use to create a new task or set the Task
Id (setTaskId (String id)) to the ID of an existing task

Because you are designing the process to create a new control instance in a loop, you must
create the instance using the factory control.

The following figure shows the simple business process described in this example:

Advanced Top ics

5-20 Using the Worklist System

Additional Resources
To learn more about working with the Worklist system, see the following resources:

Tutorial: Building a Worklist Application

http://edocs.bea.com/wli/docs81/wltutorial/index.html

Worklist Control Annotations

http://edocs.bea.com/workshop/docs81/doc/en/integration/reference/refWo
rklistAnnotation.html

Worklist Control Interfaces

http://edocs.bea.com/workshop/docs81/doc/en/integration/reference/refWo
rklistInterfaces.html

http://edocs.bea.com/workshop/docs81/doc/en/integration/reference/refWorklistAnnotation.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/reference/refWorklistInterfaces.html
http://edocs.bea.com/wli/docs81/wltutorial/index.html

Add i t i ona l Resources

Using the Worklist System 5-21

Worklist Administration in Managing WebLogic Integration Solutions

http://edocs.bea.com/wli/docs81/manage/index.html

BEA WebLogic Integration Javadoc

http://edocs.bea.com/wli/docs81/javadoc/index.html

http://edocs.bea.com/wli/docs81/javadoc/index.html
http://edocs.bea.com/wli/docs81/manage/worklist.html

Advanced Top ics

5-22 Using the Worklist System

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Introduction
	What is the WebLogic Integration Worklist System?
	Worklist Tasks
	Task Data Values
	Due Dates
	Task State
	Task Owners
	Assignee Lists and Claimants
	Request and Response Documents
	Operations on Tasks
	Archiving and Purging Task Information
	Task Queries

	Controls and Worklist APIs
	Task Control
	Task Worker Control
	Callbacks
	Operations
	Controls are Extensible

	Administration and Management
	WebLogic Integration Administration Console
	Worklist User Interfaces

	Using Worklist Controls
	Which WebLogic Integration Controls Support the Worklist System?
	Creating a Task Control
	Creating a Task Worker Control
	Using Task and Task Worker Controls in Business Processes

	Creating and Managing Worklist Tasks
	Overview
	Task Due Dates
	Claim and Completion Due Dates
	To Set Task Due Dates Using Absolute Time
	To Set Task Due Dates Using Business Time
	To Specify a Calendar to Use When You Set Due Dates
	Formats for Business Time Duration

	Task States
	Assignment Algorithms
	assignToUser
	assignToUserInGroup
	assignToUsersAndGroups

	Task Users and Groups
	Task Owners
	Assignee Lists
	Claimants
	Integration Administrators
	Task Creators

	Tasks and User Permissions
	Who Has Permission to Create Tasks?
	Who Has Permission to Modify Task Data Values?
	Who Has Permission to Invoke Task Operations?

	Task Data Values
	Request and Response Documents
	Format and Type of Request and Response Documents

	Task Operations
	Archiving and Purging Task Information
	Task History Tables

	Task Queries
	To Specify the Criteria for a Query
	Note About String Patterns

	To Specify How the Results Are Sorted
	To Execute a Query
	To Limit the Results Set

	The Relationship Between Processes and Tasks

	Using the Worklist Control Methods
	Task Control Active Task Model
	Creating New Tasks With a Task Control
	Assigning and Claiming Tasks
	Reassigning Tasks and Returning Them to Other States

	Setting Task Data Values
	Altering State With a Task Control
	Using Controls to Get Task Status
	Using XML With the Task Control
	Creating New Tasks
	public String createTask(TaskCreationXMLDocument doc)

	In the preceding listing, note the following elements:
	Setting the request Property for a Task Instance
	public TaskInfoXMLDocument getTaskInfoXMLDocument()
	public void updateTask(TaskUpdateXMLDocument doc)

	To Import the Worklist Schema into Your Application

	The Task Control Properties Sheet
	Using the Task Control Property Editor
	Use the Property Editor to View and Edit Properties for Control Instances

	Using Callback Methods
	Permissions
	Permissions for Modifying Task Properties

	Modifying Task Data Values
	Creating Tasks
	Transactions

	Advanced Topics
	Extending Worklist Controls
	Why Extend the Worklist Controls?
	Example Extended Task Control
	Altering Method Signatures—Request and Response
	Adding Custom Methods
	Creating Tasks With the Task Control
	Updating Tasks Using the Task and Task Worker Controls
	State Related Updates Using the Task and Task Worker Controls
	Getting and Setting Task Data Values
	Adding Callback Methods

	Querying Tasks Using the Task Worker Control
	Search Values and Selectors
	Querying Tasks With Annotations
	Querying Tasks With TaskSelectors

	Using Task Control Factories
	Additional Resources

