
BEA WebLogic
Integration™

Tutorial: Building Your
First Business Process

Release 8.1
Document Date: July 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using Controls to Interact With External Resources iii

Contents

1. Tutorial: Building Your First Business Process

Part I. Build and Run a Simple Business Process

2. Step 1: Create Your Business Process Application

3. Working in the Design View

4. Step 2: Specify How the Process is Started

5. Step 3: Define Conditions for Alternate Paths of Execution

6. Step 4: Invoke a Web Service

7. Step 5: Run Your Business Process

Part II. Call a Business Process Using a Process Control

8. Step 6: Invoke a Business Process via a Process Control

Part III. Adding Looping Logic, Parallel Paths ...

9. Step 7: Looping Through Items in a List

10. Step 8: Design Parallel Paths of Execution

11. Step 9: Create Quote Document

12. Step 10: Write Quote to File System

iv Using Controls to Interact With External Resources

13. Step 11: Send Quote From Business Process to Client

14. Step 12: Run the Request Quote Business Process

Part IV. Using the Message Broker

15. Step 13: Publish and Subscribe to Message Broker Channels

16. Step 14: Designing a Message Path for Your Business Process

17. Step 15: Run and Test the Request Quote Business Process
With the Quote Validation Service

18. Understanding the Message Broker Channels in Your
Tutorial Application

CHAPTER
1 Tutorial: Building Your
First Business Process

WebLogic Integration's business process management (BPM) functionality enables
the integration of diverse applications and human participants, as well as the
coordinated exchange of information between trading partners outside of the
enterprise.

This tutorial provides a tour of the features available to design business processes in
the WebLogic Workshop graphical design environment. It describes how to create a
business process that orchestrates the processing of a request for quote.

Tutorial Goals

The goal of the tutorial is to provide the steps to create and test a business process using
the graphical environment provided in WebLogic Workshop. It includes:

Designing communication nodes in a business process—that is, creating the
interface between your business process and its clients and resources. Clients of
business processes can be any other resources or services that invoke business
processes to perform one or more operations.

Designing the interactions with clients, including creating the methods that
expose your business process’ functionality.

Designing the interactions with resources using controls. WebLogic Platform
controls make it easy to access enterprise resources, such as databases,
Enterprise Java Beans (EJBs), Web services, and other business processes
Tutorial: Building Your First Business Process 1-1

1 Tutorial: Building Your First Business Process
(including those that use RosettaNet and ebXML business processes) from
within your application.

Handling XML, non-XML, and Java data types in the business process—
includes working with XML schemas and transforming data between disparate
data types using the Transformation tool.

Designing business processes to publish and subscribe to message broker
channels.

Tutorial Overview

The business process in this scenario is started as a result of receiving a Request for
Quote from clients. The business process checks the enterprise’s inventory and pricing
systems to determine whether the order can be filled. It also determines whether sales
tax should be added to the quote, based on the shipping address provided by the client.
Finally the business process compiles a single quote document from the sales tax,
price, and availability data, logs the quote by writing it to your file system, and sends
it to the client.

Designing the Request for Quote Business Process

The following sequence summarizes the steps in the request for quote process and
describes how the business process is designed:

1. Receive a Request for Quote from a client.

You design a Client Request node in your business process to handle the receipt
of an XML document which contains the customer name, shipping address, and
the identity and quantity of the items for which the quote is requested. You
design the business process so that it starts when it receives a Request for Quote
message from a client.

2. Evaluate a condition to determine whether sales tax should be included in the
quote.

In this case, you design a Decision node to create different paths of execution
based on the evaluation of a condition. The Decision node includes, on one path,
a call to a Web service that calculates sales tax. Business Processes communicate
1-2 Tutorial: Building Your First Business Process

Tutorial Goals
with other services via controls. You design a Control Send node to
communicate with a Web service that calculates the sales tax for your quote.

3. Process the items sent in the Request for Quote message.

The business process must calculate the price and determine the availability of
the items and quantities requested in the incoming XML message. This involves
the creation of the following nodes in your business process:

For Each: For Each nodes represent points in a business process at which a
set of activities is performed repeatedly, once for each item in a list. For
Each nodes include an iterator node (on which a list of items is specified)
and a loop (in which the activities to be performed for each item in the list
are defined)

Parallel: Parallel nodes represent points in a business process at which a
number of activities are executed in parallel. In this case, you design a
Parallel node containing two branches: one to execute the events that
calculate the price for the quote, the second to execute the events that
determine the availability of items for the quote.

Control nodes: Control Send and Control Receive nodes on each path handle
the asynchronous exchange of messages between a business process and Web
service resources (via controls). A pricing Web service returns the price for
the items in the Request Quote document. An availability Web service
returns information about the availability of the requested items.

4. Compile price, availability, and tax information calculated by the business
process into a quote document.

Your business process calculates a price quote, availability information, and
sales tax rate. You design your business process to use Transformation controls
that map the various pieces of data to an XML document of the format that is
returned to the client as the quote.

5. Keep a record of the quote created by the business process.

Your business process uses a File control to write the quote to your file system.

6. Send a response, containing the quote, to the client.

You design a Client Response node to send a response to the client. The
response contains the data calculated by the business process.
Tutorial: Building Your First Business Process 1-3

1 Tutorial: Building Your First Business Process
Actors in the Tutorial Scenario

Actors in the scenario include:

The client of your RequestQuote service. Clients of RequestQuote are systems
that create and send Request for Quote messages. A Request for Quote message
provides the business process with a customer name, shipping address, and a list
of items and quantity of those items required by the client. The business process
computes and returns a price and availability quote for the items requested.

Your RequestQuote business process. The process receives a Request for Quote
for specific items and returns a price and availability quote for the items
requested.

A tax calculation Web service designed to calculate the sales tax to include in
the quote, based on the shipping address provided by a client.

A tax calculation business process designed to calculate the sales tax. The tax
calculation business process serves the same purpose as the tax calculation Web
service described in the preceding item. The RequestQuote business process
can call either the Web service or the business process to request calculation of
the sales tax for the quote.

A pricing Web service designed to calculate the price of the items requested by a
client.

An availability Web service designed to determine the availability of the quantity
of items requested by a client.

Transformation controls: The business process in this case is started when it
receives an XML document from a client. Data is shared and exchanged between
resources in your application (clients, your business process, Web services and
so on) in XML format. Transformation controls are designed to support the
mapping of disparate data formats used in your application.

A business process that validates the Request for Quote from clients
(ValidateQuote.jpd). The RequestQuote business process communicates with this
ValidateQuote process via Message Broker channels. In this way, the interaction
between the business processes can be loosely coupled and anonymous.

Message Broker channels: ValidateOrder and StopQuote. The RequestQuote
business process communicates via these channels with the ValidateQuote
process. We design a single ValidateQuote service in our tutorial scenario, but
1-4 Tutorial: Building Your First Business Process

Tutorial Goals
other services can be added and configured such that communication with the
RequestQuote business process is via these Message Broker channels.

Steps in This Tutorial

Follow the steps in this tutorial to create a business process that meets the following
requirements: receives Request for Quote messages from clients, starts the business
process on receipt of the Request for Quote, validates and processes the request, and
sends the status of the Request for Quote to the client.

The tutorial is organized into parts:

Part I
In Part I, learn how to create a new business process, specify how the process
is started at run time, and design a Decision node that includes asynchronous
calls to a Web Service. Finally, you can run and test the business process you
create in this first part. To get started, proceed to Part I.

Part II
In Part II, learn how to replace the asynchronous call to the Web service you
designed in Part I with an asynchronous call to another business process. You
learn how to create a process control and how the controls framework makes
it easy to change the interactions your business process makes with various
resources. To learn about the specific steps to complete this part, see Part II.

Part III
In Part III, add more complex business logic to the business process you
created in the preceding parts. You learn how to create looping logic, design
parallel processing nodes, transform the price and availability data from
non-typed XML data to typed XML, use a File control to write your quote to
a file system, and use a Client Response node to return the quote to the client
that invoked the business process. At the end of this part, you can run and test
the business process you built. To learn about the specific steps to complete
this part, see Part III.

Part IV
In Part IV, you build on the business process you created in Part III by adding
logic that allows an external message to cause the business process to
terminate. Your RequestQuote business process publishes the Request for
Tutorial: Building Your First Business Process 1-5

1 Tutorial: Building Your First Business Process
Quote message it receives from a client to a Message Broker channel. A
number of services, which validate the Request for Quote in some way, can
be subscribed to that channel. If the request is determined to be invalid by one
of these services, that service publishes a message on a second Message
Broker channel, to which the RequestQuote process is subscribed. If the
running RequestQuote process receives such a message, it is terminated and
a message is sent to the client indicating why the quote is not processed. To
learn about the specific steps to complete this part, see Part IV.
1-6 Tutorial: Building Your First Business Process

Tutorial: Building Your First Business Process

Part I Build and Run a Simple
Business Process

Part I of the tutorial is comprised of Steps 1 through 5. You learn how to create a new business
process, specify how the process is started at run time, design a Decision node, which includes
asynchronous calls to a Web Service, and finally you can run and test the business process you
create in this first part.

Specifically, the steps in Part I include:

Chapter 2, “Step 1: Create Your Business Process Application”
Describes step-by-step instructions for creating a business process project in WebLogic
Workshop.

Chapter 4, “Step 2: Specify How the Process is Started”
Describes how to design the start of your business process. In this case, provides a
step-by-step procedure to create a Client Request node, and add a method that receives
the Request for Quote message from the client, which in turn causes the business process
to start.

Chapter 5, “Step 3: Define Conditions for Alternate Paths of Execution”
Describes how to design a decision node and its associated conditions in your business
process. The path of execution through of a decision node is based on the evaluation of
conditions you specify for the decision node.

Chapter 6, “Step 4: Invoke a Web Service”
Describes how to design your business process’ interaction with a Web Service control.

Chapter 7, “Step 5: Run Your Business Process”
At this point you have created a business process that you can run and test using the
WebLogic Workshop Test Browser.

Tutorial: Building Your First Business Process 2-1

CHAPTER

2 Step 1: Create Your
Business Process
Application

In this step, you use WebLogic Workshop to create the application, in which you build
the tutorial business process (RequestQuote.jpd). The tasks in this step include:

To Create a Business Process Tutorial Application

To Begin the Design of Your Request for Quote Business Process

To Create a Business Process Tutorial Application

1. From the WebLogic Workshop menu, click File→New→Application. The New
Application dialog box is displayed.

2. In the New Application dialog box, select Tutorial in the left pane, and select
Tutorial: Process Application in the right pane.

2 Step 1: Create Your Business Process Application

2-2 Tutorial: Building Your First Business Process

3. In the Directory field, select the directory in which you want to create your
application.

4. In the Name field, enter Tutorial_Process_Application.

5. Click the arrow beside the Server field to display a list of servers. Then choose
the sample integration server. For example, on a Windows system, the path to
the integration server is:

BEA_HOME\weblogic81\samples\domains\integration

where BEA_HOME is the directory in which you installed WebLogic Platform.

6. Click Create.

7. Your Tutorial Process Application is created and displayed in the Application
pane. If the Application pane is not visible in WebLogic Workshop, choose
View→Application from menu bar.

Tutorial: Building Your First Business Process 2-3

The Application pane displays a hierarchical representation of the files and
resources available in your application. It includes the following components:

Tutorial_Process_Application—The application folder.

Schemas—A Schemas project that contains the XML Schemas and the Message
Broker channel file used in the application.

Tutorial_Process_ApplicationWeb—A Web application project folder. Every
application contains one or more projects. Projects represent WebLogic Server
Web applications. In other words, when you create a project, you are creating a
Web application. (The name of your project is included in the URL your clients
use to access your application.)

Web Applications are J2EE deployment units that define a collection of Web
resources such as business processes, Web services, JSPs, servlets, HTML pages,
and can define references to external resources such as EJBs.

Note: The Web application project folder is named by appending Web to the
name you gave your application.

requestquote—Contains your project files:

2 Step 1: Create Your Business Process Application

2-4 Tutorial: Building Your First Business Process

services folder contains services with which your business process interacts.
The services folder includes Web services, Web Service controls, business
processes and Process controls.

testxml folder contains XML files which you can use to test the completed
business process.

RequestQuote.jpd—The completed business process. (The tutorial walks
you through rebuilding this business process. It is provided for reference, and
allows you to run and test the business process before you start rebuilding it.)

DTF files (RequestQuoteTransformation.dtf,
PriceAvailTransformations.dtf, TutorialJoin.dtf)—Contains data
transformations used in RequestQuote.jpd.

XQ files—An XQ file for each transformation method on a DTF file. XQ
files contain the queries (written in the XQuery language) called by the DTF
files in your project.

FileQuote.jcx—A File control used by your Request for Quote business
process to write a file to the file system.

Note: If you want to run and test the RequestQuote.jpd provided for you in the
application folder, complete the steps in Step 12: Run the Request Quote
Business Process.

8. In the tutorial, you build the RequestQuote.jpd from scratch. Therefore, to
proceed, you must delete the following files from your
Tutorial_Process_ApplicationWeb project:

RequestQuote.jpd

RequestQuoteTransformation.dtf

The following XQ files associated with
RequestQuoteTransformation.dtf

RequestQuoteavailProcessor_avail.xq
RequestQuoteavailProcessorGetAvail.xq
RequestQuotepriceProcessor_returnPrice.xq
RequestQuotepriceProcessorGetPrice.xq
RequestQuotetaxCalculationRequestTaxRate.xq

Tutorial: Building Your First Business Process 2-5

Note: Put your mouse pointer in the Application tab, then press Shift and select
the files you want to delete. Right-click and select Delete 7 files. Delete
only the files listed in this step and shown in bold in the preceding figure.
You need all other files as you build the business process. Files are deleted
from the Application pane (and from your application folder in the file
system).

To Begin the Design of Your Request for Quote Business Process

In this step you start the process of recreating the RequestQuote.jpd business
process in the requestquote folder.

1. In the Application pane, right-click the requestquote folder
(Tutorial_Process_ApplicationWeb\requestquote) to display a drop-down
menu.

2. Choose New→Process File. The New File dialog box is displayed.

3. Select Processes in the left pane, then Process File in the right pane.

2 Step 1: Create Your Business Process Application

2-6 Tutorial: Building Your First Business Process

4. Enter RequestQuote.jpd in the File name field.

Note: As indicated by the file extension in the New File dialog box, you create a
new JPD (Process Definition for Java) file when you create a process file.
A JPD file is a JAVA file; it contains code for a Java class. Specifically, it
contains the implementation code for a business process class.

The new RequestQuote.jpd file, which for now consists only of a Start and a
Finish node, is created and displayed in the Design View.

Related Topics

To learn about the components of an application, see Creating a Business Process
Project.

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideCreate.html

Tutorial: Building Your First Business Process 3-1

CHAPTER

3 Working in the Design
View

This section describes the components and tools you use to design your business
process in the WebLogic Workshop graphical design environment. Ensure that you are
familiar with the following items—you will use them throughout the tutorial.

Application Pane
Provides a hierarchical representation of the source files in your project, and
provides a place where you can save, open, add, and delete project files.
Projects group source files as WebLogic Server Web applications.

If the Application pane is not visible in WebLogic Workshop, choose
View→Application from the WebLogic Workshop menu

Design View
The Design View is your primary working canvas. It displays the business
process as you design it. When you are working in the Design View, you can
access the tools you need from the WebLogic Workshop menu bar.

You can also right-click on a node or a group of nodes in the Design View to
access options—different options are available depending on the process
node you are designing. Options available from the right-click menu include
Rename to rename the node, Add Exception Path to add an exception path
to a node or a group of nodes, Add Message Path to add a message path to a
node or group of nodes, Cut, Copy, Delete, and so on.

To learn more about groups of nodes in the Design View, see Grouping
Nodes in Your Business Process.

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideGroups.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideGroups.html

3 Working in the Design View

3-2 Tutorial: Building Your First Business Process

Source View
The Source View displays the source code for the current business process.
As you design your business process, source code is written to the JPD file in
keeping with the work you do in the Design View. You can also edit your JPD
file in the Source View. To learn more about the Source View, see Business
Process Source Code.

Palette

The Palette displays the nodes that you can add to your business process.
Nodes represent different types of logic in your business process.

If the Palette is not visible in WebLogic Workshop, choose
View→Windows→Palette from the WebLogic Workshop menu.

As you drag a node from the Palette onto the Design View, targets appear
on your business process. As you drag the node near a target location, the

target is activated . When this happens, you can release the mouse button
and the node snaps to the business process at the location indicated by the
active target. Note that if you create a node at an invalid location (that is, if
you create invalid logic in your process flow) that node is marked with the

following icon in the Design View: Move your mouse pointer over the
error icon to see a message that describes the error.

Data Palette
The Data Palette includes the following tabs: Variables and Controls. The
Variables tab displays the variables created in your business process, and
allows you to create new variables. The Controls tab displays the instances
of controls in your business process, and allows you to add new instances.

Use the Add command on the Data Palette to create instances of variables
and controls in your project. You can also create variables and instances of
controls in other ways as you work in the Design View to create your process
logic. As you work through the tutorial, you will employ the various methods
of designing controls and variables in your business processes.

If the Data Palette is not visible in WebLogic Workshop, choose
View→Windows→Data Palette from the menu bar.

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideSource.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideSource.html

Tutorial: Building Your First Business Process 3-3

Property Editor
Provides read and write access to the properties of a node or group of nodes
selected in the Design View.

If the Property Editor is not visible in WebLogic Workshop, choose
View→Property Editor from the menu bar.

Functions and Shortcuts

You will use the following functions and shortcuts frequently throughout the tutorial:

Save: Saves the file currently displayed in the Design or Source View.

Save All (Ctrl+S): Saves all the files in your application.

Start (Ctrl+F5): Build and run the business process currently open in the
Design or Source View.

Stop (Shift+F5): Stop building and running the business process currently open
in the Design or Source View and the Test Browser.

Build (F7): Build your application.

F2: To change the label (name) on a node in your business process, click F2 when your
mouse is active on the node in the Design View, enter the name you want to give the
node, then click Enter on your keyboard.

Use the up and down arrows on your keyboard to navigate up and down between
the nodes in your business process.

Use the right and left arrows on your keyboard to expand and collapse a group
of nodes.

3 Working in the Design View

3-4 Tutorial: Building Your First Business Process

Related Topics

Using Keyboard Shortcuts

http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howKeyboard.html

Tutorial: Building Your First Business Process 4-1

CHAPTER

4 Step 2: Specify How the
Process is Started

In this step, you specify how your business process is started.

As Web services, business processes expose their functionality through methods,
which clients invoke to make requests. You can also create Process controls from
business processes. In this case, other resources can interact with your business process
via the controls interface. You learn more about Process controls in Part II of this
tutorial.

In this step, you design the Start node in your business process to receive a Request
for Quote message from a client—the receipt of this message is the trigger that starts
the business process.You also create a variable to hold the incoming Request for Quote
message.

In Design View, interactions between a business process and a client application are
represented by Client Request and Client Response nodes. In this case, you add a
Client Request node to your business process and subsequently create the code on this
node to handle the receipt of a message from a client.

Complete the following tasks to design the Client Request node that starts your
business process:

To Create a Start Node in Your Business Process

To Design Your Client Request Node

To Specify General Settings

To Specify Receive Data

4 Step 2: Specify How the Process is Started

4-2 Tutorial: Building Your First Business Process

To Create a Start Node in Your Business Process

1. On the Application pane, click RequestQuote.jpd. Your RequestQuote
business process is displayed in Design View.

You must add a node to this Start node to define the start method for your
business process.

2. Double-click the empty Starting Event target on the Start node to display the
Start node builder.

The node builder displays the following options. You select one to specify the
method by which you want your business process to start:

Invoked via a Client Request

Invoked synchronously via a Client Request with Return

Invoked via one of several Client Requests or Subscriptions (Event
Choice)

Subscribe to a Message Broker channel and start via an event (Timer,
Email, File, Adapter, etc.)

3. Select Invoked via a Client Request.

4. Click OK to close the node builder. The empty node that was associated with the
Start node is now populated with a Client Request node.

Tutorial: Building Your First Business Process 4-3

To Design Your Client Request Node

Designing your Client Request node includes creating a method and parameters that
your client uses to trigger the start of your business process, and designing the logic
for handling the receipt of a request from a client.

1. Rename the Client Request node. To do so, click the Client Request node and
press F2. Enter Client Requests Quote as the name to replace Client Request for
the node. Press Enter. Your business process should now resemble that shown in
the following figure:

2. In Design View, double-click the Client Requests Quote node to invoke the
node builder, as shown in the following figure:

Node builders provide a task-driven user interface that helps you design your the
communication between a business process and its clients and other resources.
To access the node builder for any node, double-click the node in Design

4 Step 2: Specify How the Process is Started

4-4 Tutorial: Building Your First Business Process

View—a node builder specific for the node you selected is displayed in-line in
your business process.

As shown in the preceding figure, the node builder for a Client Request node
displays the following tabs to guide your design of the communication between
a client and a business process:

To Specify General Settings

To Specify Receive Data

To Specify General Settings

The following steps describe how to specify the method exposed by your business
process to clients—clients invoke this method to start and make requests on your
business process.

1. In the Method Name field on the General Settings tab, change the default method
name (clientRequest) to quoteRequest.

Note: When you make your business process available as a service, the name you
assign to a method on a Client Request node is the name of the method
that is exposed via the Web Services Description Language (WSDL). In
general, we recommend that you define a name that is representative of the
service offered by your business process.

2. Specify a data type for the parameter to your quoteRequest method:

a. Click Add on the General Settings tab. A panel, which shows the data types
you can use is displayed:

The Request for Quote message from clients is an XML message. Therefore
we are concerned with XML Types at this node.

b. Select XML. The panel is populated with a list of XML Schema files (Typed
XML) and a list of Untyped XML objects available in your project.

Note: (The XML Schemas you need as you build the Quote Request business
process in this tutorial are provided in the
myapplications\Tutorial_Process_Application\Schemas folder,
where myapplications represents the location at which you created your
tutorial application. The Schemas provided include QuoteRequest.xsd,
PriceQuote.xsd, AvailQuote.xsd, Quote.xsd and a system Schema:
Dynamic Properties.xsd.)

Tutorial: Building Your First Business Process 4-5

For XML Schemas to be available to the services in your application, they
must be located in a Schemas project. Schemas projects are represented
the Application pane as folders in the Application folder.To learn about
creating Schemas projects in your applications and importing XML
Schemas, including system Schemas, into your application, see Importing
Schemas.

In this step, we use an XML Schema, specifically QuoteRequest.xsd, to
specify the structure of documents that clients can send to start your
business process.

c. Click the + associated with QuoteRequest.xsd in the list of XML Types.

A graphical representation of the XML Schema defined by
QuoteRequest.xsd is displayed in the node builder pane.

d. Click the quoteRequest node. (It represents the parent element in your XML
document.) The Type field is populated with the XML type:
org.example.request.QuoteRequestDocument.

e. In the Name field, replace the default parameter name (x0) with requestXML.

3. Click OK. The parameter specifications you made (parameter type is
QuoteRequestDocument, parameter name is requestXML) is displayed in
General Settings tab in the node builder.

This step completes the specification of the method exposed to clients by your
business process. Messages from clients are expected to be typed XML. That is,

http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemas.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemas.html

4 Step 2: Specify How the Process is Started

4-6 Tutorial: Building Your First Business Process

the messages received from clients must contain XML that is valid against an
XML Schema (specifically QuoteRequest.xsd, in this case).

Note: Example XML messages (QuoteRequest.xml and
QuoteRequest_a.xml) that can be received from a client are provided in
the testxml folder in your project. You use them later in the tutorial to test
your business process.

The General Settings tab is updated to indicate that you successfully completed
the specification of a method name and parameters: indicates that a task is
complete; indicates that a task is not complete.

To Specify Receive Data

1. Click Receive Data to open the tab that allows you to specify a variable, to which
a Request for Quote message, received from a client, is assigned at run time. By
default, the Receive Data tab opens on the Variable Assignment panel.

Note: Receive Data tabs have two modes:

Variable Assignment—Use this mode when you want to assign the data
received from the client to a variable of the same data type.

Transformation—Use this mode when you want to create a transformation
between the data assigned to a variable and that expected by the method
parameter.

In this case, we use the Variable Assignment mode because we want to assign
the XML message received from the client directly to a variable of the same data
type—that is, in subsequent steps you create a variable of typed XML
(QuoteRequestDocument) to which your process assigns the incoming Request
for Quote from clients.

2. Under Select variables to assign, click the arrow and select Create new
variable...

Tutorial: Building Your First Business Process 4-7

3. In the Create Variable dialog box.

a. In the Variable Name field, enter requestXML.

b. In the Select Variable Type field, ensure that the quoteRequest element is
selected (in QuoteRequest.xsd in the list of XML Types).

The Variable Type field is populated with
org.example.request.QuoteRequestDocument.

c. Click OK. Your new variable is created and displayed in the Receive Data tab.

Note: The requestXML variable is also listed as an XML variable in the Data
Palette.

4. Click Apply.

Both tabs in the node builder (General Settings and Receive Data) are marked
complete .

5. Click Close to close the Client Receive node builder.

In Design View, note that by completing the tasks in the node builder, the
completeness icon associated with the Receive Quote Request node changed
from to indicating that the design of the node is complete.

4 Step 2: Specify How the Process is Started

4-8 Tutorial: Building Your First Business Process

6. Select File→Save to save your work so far.

Related Topics

Components of Your Application

Working With Business Process Variables

Interacting With Resources Using Controls

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideCreate.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypes.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControls.html

Tutorial: Building Your First Business Process 5-1

CHAPTER

5 Step 3: Define
Conditions for
Alternate Paths of
Execution

This step describes how you design a common pattern in business processes—one that
selects one path of execution based on the evaluation of one or more conditions. You
create this pattern by designing a Decision node in your business process.

In this scenario, the business process is designed such that a decision is made, based
on a value the business process extracts from the variable to which the XML message
from the client is assigned. You design a single condition, which is evaluated at run
time to determine whether the shipping address, specified in the incoming Request for
Quote XML, requires that sales tax is calculated for the quote. If the condition
evaluates to true, then sales tax must be calculated, and the flow of execution proceeds
along a branch that calls a Web service to calculate the sales tax. If the condition
evaluates to false, then no sales tax is required for the quote, and the flow of execution
proceeds along the default branch. This step includes the following tasks:

To Add A Decision Node To Your Business Process

To Define a Condition in This Decision Node

5 Step 3: Define Conditions for Alternate Paths of Execution

5-2 Tutorial: Building Your First Business Process

To Add A Decision Node To Your Business Process

1. If the Palette is not visible in WebLogic Workshop, choose
View→Windows→Palette from the WebLogic Workshop menu.

2. Click Decision in the Palette and drag and drop the Decision node onto the
business process in Design View, positioning it immediately after the Client
Requests Quote node you created in Step 2: Specify How the Process is Started.

Note: As you drag a node from the Palette onto the Design View,

targets appear on your business process. As you drag the node near a

target location, the target is activated . When this happens, you can
release the mouse button and the node snaps to the business process at the
location indicated by the active target.

The Decision node includes a node representing the condition (labeled
Condition), and two paths of execution: one for events to be executed in the
case the condition evaluates to true, and the other (the Default path) for events
to be executed in the case the condition evaluates to false.

3. Relabel Decision, Condition, and Default to identify the business tasks for this
node more clearly:

a. To enter a label to replace Decision, double-click Decision and enter Sales Tax
Calculation Needed?

b. To enter a label to replace Condition and identify the true path, double-click
Condition and enter Yes.

c. To enter a label to replace Default and identify the false path, double-click
Default and enter No.

The Decision node in your business process should now appear in Design
View as shown in the following figure:

Tutorial: Building Your First Business Process 5-3

To Define a Condition in This Decision Node

1. Double-click the condition node to invoke the decision builder. It provides a

task-driven user interface that helps you design the decision logic.

5 Step 3: Define Conditions for Alternate Paths of Execution

5-4 Tutorial: Building Your First Business Process

In the decision builder, Schema is selected by default. Do not change the
selection because, in this case, you design the decision based on the value of an
element in an XML document, which is valid against an XML Schema.

2. Select an XML element upon which the decision is made. To do so:

a. In the decision builder, select a variable by clicking Select Variable.

A drop-down list of variables in your project is displayed. In this case, the
variable you created for the Client Request node at the start of your business
process is displayed: requestXML (QuoteRequestDocument).

b. Click requestXML (QuoteRequestDocument).

A representation of the XML schema for the Quote Request XML
(QuoteRequestDocument) is displayed in the Select Node pane:

The elements and attributes of an XML document assigned to this variable,
are represented as nodes in a hierarchical representation, as shown in the
preceding figure. The schema in our example (QuoteRequest.xsd) specifies
a root element (quoteRequest), and child elements: customerName,

shipAddress, and a repeating element (identified by):
widgetRequest. The shipAddress element contains the following
attributes: street, city, state, zip.

3. In the Select Node panel, click the state attribute.

This selects the node in the XML document that represents the element for
which you want to define the condition.

The Left Hand Expression field is populated with the following expression:

$requestXML/ns0:shipAddress/@state

Tutorial: Building Your First Business Process 5-5

4. Select the = operator from the Operator list.

5. Enter CA in the Right Hand Expression field.

6. Click Add to add the condition you created in the Condition List pane.

The following condition is added to the Condition List:

$requestXML/ns0:shipAddress/@state = “CA”

7. From the Join options to the right of the Condition List pane, click to select OR.

This completes the design of the first condition on this node.

8. Repeat steps 5 and 6 three more times, but change the entry you make in the
Right Hand Expression field each time—enter California, NJ, and New Jersey
consecutively.

The conditions you specify are listed in the Condition List pane, as shown in
the following figure:

9. Click Apply, then Close to save your conditions and close the decision builder.

The icon for the Condition node in Design View changes from to . It is a
visual reminder that the condition you defined on this node is based on the
evaluation of XML.

This step completes the design of the condition that is evaluated when the flow
transitions to the Decision node at run time. Your condition logic is written in
source code as an XQuery expression—see the following section: XML
Conditions in the Source Code.

5 Step 3: Define Conditions for Alternate Paths of Execution

5-6 Tutorial: Building Your First Business Process

You are ready to define the actions on the subsequent paths in the flow—proceed
to Step 4: Invoke a Web Service.

XML Conditions in the Source Code

When you define your XML conditions in the decision builder, WebLogic Workshop
writes an XQuery expression to the JPD file. Specifically, XQuery expressions are
written in the Process Language region of the JPD file.

To view the XQuery expression written in keeping with your work in the preceding
section, click the Source View tab, and expand the region of code commented with the
following line:

//* Process Language */

The condition defined by following the example in steps 3 through 8 in the preceding
section creates the following XQuery expression in the source code:

* @jpd:xquery prologue::
* declare namespace ns0="http://www.example.org/request"

* define function cond_requestXML_1(element $requestXML) returns xs:boolean {

* (((data($requestXML/ns0:shipAddress/@state) = "CA") or
(data($requestXML/ns0:shipAddress/@state) = "California")) or
(data($requestXML/ns0:shipAddress/@state) = "NJ")) or
(data($requestXML/ns0:shipAddress/@state) = "New Jersey")
* }

* ::

Related Topics

Defining Conditions for Branching

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDecision.html

Tutorial: Building Your First Business Process 6-1

CHAPTER

6 Step 4: Invoke a Web
Service

By default, a Decision node consists of one condition, a path below the condition node,
which represents the path of execution followed when the condition, or set of
conditions, evaluate to true, and a path to the right of the condition, which represents
the path of execution followed when the condition evaluates to false (the default path).

Note: You can add additional condition nodes and paths to a Decision node, but in
this scenario, we need only one set of conditions, and two paths.

In this step you learn how to add logic to one path of execution for your Decision node
(Sales Tax Calculation Needed?). Specifically, you learn how to design your business
process to interact with resources, via controls. Your business process invokes a Web
service and handles the data returned from the Web service. This step describes the
following topics:

What is the Tax Calculation Control?

Design the Interaction Between Your Process and a Web Service

What is the Tax Calculation Control?

Java Controls are server-side components managed by the Workshop framework.
They encapsulate external resources and business logic for use in Workshop
applications. In other words, controls represent the interfaces between your business
process and other resources. The underlying control implementation takes care of most

6 Step 4: Invoke a Web Service

6-2 Tutorial: Building Your First Business Process

of the details of the interaction for you. Controls expose Java interfaces that may be
invoked directly from your business process. You add an instance of a control to your
project and then invoke its methods.

In this scenario, the business process calls a Web service, which calculates and returns
a sales tax rate. Business Processes invoke Web services via Web Service controls. A
description of how to create the TaxCalc.JWS Web service and its associated control
(TaxCalcControl.jcx) is beyond the scope of this tutorial. The Web service control
(TaxCalcControl.jcx) is created for you and included in your application’s project
(specifically in the
myapplications\Tutorial_Process_Application\Tutorial_Process_Appli
cationWeb\requestquote\services folder, where myapplications represents
the location at which you created your tutorial application). The goal of this section is
to describe how to create the appropriate nodes in your business process, and design
their communication with this Web Service control.

Related Topics

Tutorial: Your First Web Service

Design the Interaction Between Your
Process and a Web Service

This section describes how to create the activities that are performed if the condition
defined in your Decision node evaluates to true. The condition evaluates to true if the
value of shipAddress/state in the XML document received from a client, equals
any one of the following: CA, California, NJ, New Jersey.

In this section, you learn how to invoke a Web service from your business process, and
create a callback handler to receive the data returned by the Web service. It includes
the following tasks:

To Create an Instance of the Web Service Control in Your Project

To Call the Tax Calculation Web Service From Your Business Process

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/tutorial/tutFirstWebServiceIntro.html

What is the Tax Calculation Control?

Tutorial: Building Your First Business Process 6-3

To Receive the Tax Rate Calculation From the Web Service

To Create an Instance of the Web Service Control in Your Project

1. If the Controls tab is not visible in WebLogic Workshop, choose
View→Windows→Data Palette from the menu bar.

2. Click Add on the Data Palette Controls tab to display a drop-down list of
controls that represent the resources with which your business process can
interact.

3. Choose Web Service. The Insert Control dialog box is displayed.

4. In the Insert Control dialog box:

a. In Step 1, enter taxCalculation as the variable name for this control.

b. In Step 2, ensure that the following option is selected: Use a Web Service
control already defined by a JCX file.

c. Click Browse beside the JCX file field, choose TaxCalcControl.jcx from the
\requestquote\services folder in your application, then click Select to
close the file browser.

5. Click Create to close the Insert Control dialog box.

An instance of a Web Service control, named taxCalculation, is created in your
project and displayed on the Data Palette Controls tab.

6 Step 4: Invoke a Web Service

6-4 Tutorial: Building Your First Business Process

6. Select File→Save to save your work.

To Call the Tax Calculation Web Service From Your Business Process

In this step, you create the logic to call the tax calculation control from your business
process.

1. Click the + beside the taxCalculation control in the Data Palette to expand the list
of methods available on the taxCalculation control.

2. Select the following method: void request TaxRate(String stateID).
Then drag and drop it onto the business process in Design View, placing it on the
Sales Tax Calculation Needed? node immediately below the condition node.

A Control Send node is created representing the asynchronous call to your
taxCalculation Web Service control. The node is named according to the name
of the method you dragged onto the business process—in this case:
requestTaxRate.

What is the Tax Calculation Control?

Tutorial: Building Your First Business Process 6-5

Note: This interaction is designed to be asynchronous, meaning that the business
process can send a request to the taxCalculation control from this node,
and does not block waiting for a response from the control. In other words,
the business process can continue processing and receive a response from
the taxCalculation service when that service completes the request.

3. Double-click the requestTaxRate node to open its node builder. The node
builder opens on the General Settings tab. The Control instance and target
methods are already selected: taxCalculation and void request TaxRate(String
stateID), respectively.

4. Click the Send Data tab to open the second tab in the requestTaxRate node.

By default, the Send Data tab opens on the Variable Assignment pane. The
Method Expects field is populated with the data type expected by the
requestTaxRate() method exposed by the taxCalculation Web services:
String stateID.

Note: As you learned in a previous step, Send Data tabs have two modes:

Variable Assignment—Use this mode when you want to assign the data
received from the client to a variable of the same data type.

Transformation—Use this mode when you want to create a transformation
between the data assigned to a variable and that expected by the method
parameter.

In this case, you must switch to the Transformation mode because the data type
required as input to the taxCalculation control is a Java String type, and the
variable in which the Request for Quote message (which includes the value of
shipAddress/state) is stored, is of type XML (that is,
QuoteRequestDocument, which is valid against an XML Schema).

WebLogic Integration provides a powerful data mapping tool to map between
heterogeneous data types. The data transformations you create using the tool are
stored in Data Transformation Format (DTF) files. You can think of DTF files as
another resource with which your business process interacts via controls. That is,
when DTF files containing your data transformations are built, they are built as
controls. The controls expose transformation methods, which business processes
invoke to map disparate data types.

5. Click Transformation to open the pane that allows you to define a
transformation between your variable and the expected data type of the parameter
on the control method.

6 Step 4: Invoke a Web Service

6-6 Tutorial: Building Your First Business Process

6. In Step 1, click Select Variable to display the variables in your project. Then
choose requestXML (QuoteRequestDocument)—that is, the variable you
created for the Client Request node at the start of your business process.

7. In Step 2, click Create Transformation to open the Transformation tool, which
displays a representation of the QuoteRequest XML document in the Source
Schema pane, and a String in the Target Schema pane.

8. Click state in the Source Schema pane and drag your mouse pointer over to
String in the Target Schema pane. A line is drawn between the state and String
elements in the XML Map pane. It represents the transformation between the
two data types.

9. Double-click RequestQuote.jpd in the Application pane to return to your
process.

Note: Creating the transformation in the preceding steps creates a
Transformation control in your project: A DTF file, named
RequestQuoteTransformation.dtf is created. An XQ file, which contains
the query (written in the XQuery language) for the transformation method
is also created. Both the DTF and XQ files are displayed in the
Application tab. Also, an instance of the Transformation control was
created and is represented as transformations in the Data Palette
(Controls tab).

10. Click Close in the Request Tax Rate node builder to close the node builder.

This step completes the design of the Request Tax Rate node.

What is the Tax Calculation Control?

Tutorial: Building Your First Business Process 6-7

To Receive the Tax Rate Calculation From the Web Service

The interaction between the business process and the tax calculation control is
asynchronous: the business process can continue performing other work while the tax
calculation service prepares its response. The tax calculation service notifies the
business process when the response is ready.

In the preceding section you designed a call to the tax calculation Web service (via a
control). Complete the following steps to add the logic in your business process to
receive the tax rate returned by the tax calculation control.

1. In the Data Palette, if you have not already done so, click the + beside the
taxCalculation control to expand the list of methods available on the
taxCalculation control.

2. Click the following method: void returnTaxRate(float taxRate). Then
drag and drop it onto the business process in Design View, placing it on the Sales
Tax Calculation Needed? node immediately below the requestTaxRate node. A
Control Receive node is created representing the asynchronous response from
your Web Service control.

The node is named according to the name of the method you dragged onto the
business process—in this case: returnTaxRate.

3. Double-click the returnTaxRate node to open its node builder. The node builder
opens on the General Settings tab. The Control instance and target methods are
already selected: taxCalculation and returnTaxRate(float taxRate),
respectively.

4. Click the Receive Data tab to open the second tab in the returnTaxRate node.

6 Step 4: Invoke a Web Service

6-8 Tutorial: Building Your First Business Process

The Method Returns field is populated with the data type and name of the
parameter returned by the returnTaxRate() method on the taxCalculation
control: float taxRate.

5. In the Variable Assignment pane, click the arrow in the field under Select
variables to assign. Then select Create new variable... to display the Create
Variable dialog box.

6. In the Variable Name field, enter taxRate.

7. In the Select Variable Type field, ensure that Java is selected, then that float is
selected from the list. The Variable Type field is populated with float.

8. Enter 0 in the Default value field. This initializes the value of taxRate to zero.

9. Click OK. Your new variable, to which the sales tax rate is assigned at run time,
is created and is listed as a Java variable in the Variables tab.

10. Click Apply to save your specifications, then Close to close the Control Receive
node builder.

This step completes the design of your returnTaxRate node and the design of
the activities performed by your business process when the condition on the
Decision node evaluates to true. In Design View, your business process
resembles that shown in the following figure:

What is the Tax Calculation Control?

Tutorial: Building Your First Business Process 6-9

Note that the Start node icon changed from to after you added the
asynchronous call to the Web Service control. The former icon indicates that
your business process is stateless, and the latter indicates that it is stateful.

The icons reflect the specification for the stateless property for your business
process. To see whether the stateless property is defined as true or false, click
the Start node icon and view the Property Editor. (If the Property Editor is not
displayed in WebLogic Workshop, choose View→Property Editor from menu
bar.) To learn about stateful and stateless business processes, see Building
Stateless and Stateful Business Processes.

11. Select File→Save All to save your work.

Note: No further design is required for this Decision node. If the condition
evaluates to true, the path of execution proceeds via the Yes path and the
tax rate for the order is calculated. If the condition evaluates to false—no
sales tax is required—the path of execution proceeds via the No path and
a value of zero is assigned to the variable taxRate. Remember, you
specified that taxRate is initialized to zero when you designed the taxRate
variable in the preceding section.

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html

6 Step 4: Invoke a Web Service

6-10 Tutorial: Building Your First Business Process

Related Topics

Creating and Testing Mappings

Guide to Data Transformations

Building Stateless and Stateful Business Processes

Creating and Testing Mappings

Guide to Data Transformations

Building Stateless and Stateful Business Processes

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappercreatemap.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappercreatemap.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html

Tutorial: Building Your First Business Process 7-1

CHAPTER

7 Step 5: Run Your
Business Process

To run and test the business process you created so far, complete the following steps:

1. If it is not already running, start WebLogic Server. Choose Tools→WebLogic
Server→Start WebLogic Server from the WebLogic Workshop menu.

When WebLogic Server is running, the following indicator is visible in the status
bar at the bottom of the WebLogic Workshop visual development environment:

2. From the WebLogic Workshop menu, click Build→Build Application.
WebLogic Workshop builds your application.

3. Click the Start button on the menu bar to run your business process. The
Workshop Test Browser is launched. You can use it to test your business
process using sample input values.

4. If it is not already open, click the Test Form tab to open the Test Form page.

You can enter data that your business process can receive as part of a client
request directly on the Test Form page. Alternatively, you can browse your file
system and upload a file which contains your test data. In this case, test XML
data are provided in the tutorial application for you to use.

5. Click Browse beside the xml requestXML (file value) field to open the file
browser.

6. Select QuoteRequest.xml from the requestquote\testxml folder in your project.

The QuoteRequest.xml file is available at the following location in your file
system: myapplications\Tutorial_Process_Application\

7 Step 5: Run Your Business Process

7-2 Tutorial: Building Your First Business Process

Tutorial_Process_ApplicationWeb\requestquote\testxml\QuoteReque
st.xml

In the preceding line, myapplications represents the location in which you
created your Tutorial_Process_Application application.

7. Click the button labeled with the method name on your business process
(quoteRequest) to start the business process. The Test Form page refreshes to
display a summary of your request parameters and the responses from the Web
service in the Message Log.

Click Refresh on the Message Log to refresh the entries in the log until this
instance of the business process completes running. Entries in the Message Log
correspond to the methods on your business process:

The quoteRequest method that starts the business process.

A call from your business process to the taxCalculation Web service:
taxCalculation.requestTaxRate

A response from the service to your business process:
taxCalculation.returnTaxRate

The Instance ID—When the business process finishes, a message similar to
the following is displayed in the Message Log:

Instance instanceID is Completed.

where instanceID represents the ID generated when the quoteRequest
method in your business process was called.

You can click any of the methods in the Message Log to view the details of the
call. For example, if you click quoteRequest, the Service Request panel
displays the XML message sent by the client (you) when the method was called.

If you click taxCalculation.returnTaxRate, you can view the response from the
taxCalculation service—in this case, the tax rate was calculated, based on the
input value (NJ) for the state element in the test XML.

Tutorial: Building Your First Business Process 7-3

In the sample XML message you used, state="NJ".That is, the state to which
the order is shipped is NJ. This XML message is designed to cause the flow of
execution through the Yes branch on your Sales Tax Calculation Needed?
node. The preceding figure shows the rate of sales tax returned for this test XML
message.

<returnTaxRate xmlns="http://www.openuri.org/">
<taxRate>0.08</taxRate>
</returnTaxRate>

By following these steps you ran and tested a simple business process, which
contains a Start node and a Decision node, and includes an asynchronous call to
a Web service, via a control.

8. To stop the Test Browser, return to WebLogic Workshop and click on the

menu.

Subsequent steps in this tutorial build on the business process you have created so far.

Note About Additional Functionality in the Test Browser

The following additional links are available from the Test Form page in the Test
Browser:

Graph
Click Graph to open the Process Graph tab in the Test Browser. The
Process Graph is a graphical representation of your business process and its
execution path. The Process Graph highlights the node currently being
executed. When the instance of the business process completes, the path of
execution followed in your test is highlighted. In this scenario, the Yes path
is executed—the No path is gray on the Process Graph to indicate that this
path was not taken during the execution of this instance of the business
process.

7 Step 5: Run Your Business Process

7-4 Tutorial: Building Your First Business Process

Note: Press Alt and drag the mouse pointer over the Process Graph to move
and position it on the Test Browser page. To zoom out or in, Press Ctrl+click
or Ctrl+Shift+click, or right-click on the Process Graph and select the Zoom
In or Zoom Out command from the drop-down menu.

You will review your running business process in the Process Graph in a
later step in the tutorial.

Note: Use the back and forward arrows to navigate between the
pages in the WebLogic Workshop Test Browser.

Monitor
Click Monitor to open the WebLogic Integration Administration Console in
a Web Browser. Login using username = weblogic and password = weblogic.
The WebLogic Integration Administration Console allows you to administer
and manage your WebLogic Integration applications. For example, if you
click Process Instance Monitoring on the console’s home page, you access
a Process Instance Statistics page. This page displays a summary of business
process instances grouped by the process type. To view the instances of a
process type that ran or are running on your server, click the process name.
Processes instances are identified by their instanceID. Note that the
instanceID displayed for your RequestQuote business process matches the
instanceID displayed on the Message Log pane (see the preceding figures in
this topic).

Monitor all RequestQuote.jpd processes
Click Monitor all RequestQuote.jpd processes at the top of the Test Form
to open the WebLogic Integration Administration Console. (Login using
username = weblogic and password = weblogic.) When you use this link to
open the Administration Console, it opens on the Process Instance
Summary page, which displays a summary of all the instances of business
processes that ran or are running.

Related Topics

Managing WebLogic Integration Solutions

http://edocs.bea.com/wli/docs81/manage/index.html

Tutorial: Building Your First Business Process

Part II Call a Business Process
Using a Process Control

Part II of the tutorial demonstrates how simple it is to interchange calls to different external
resources in your business process.

You learn how to design a call to another business process from your Request for Quote process.
Specifically, you create a new Process control and change the asynchronous call to the Web
Service you designed in Part I, making it instead an asynchronous call to another business
process, via the new Process control.

Proceed to Step 6: Invoke a Business Process via a Process Control to complete Part II of the
tutorial.

Tutorial: Building Your First Business Process 8-1

CHAPTER

8 Step 6: Invoke a
Business Process via a
Process Control

Process controls are used to send requests to and receive responses from other business
processes in the same domain using Java/RMI. This scenario demonstrates a typical
use case for a Process control—to call a subprocess from a parent process.

Say, for this scenario, you want to change the design of the business process you
created in Part I to take advantage of a tax calculation service provided by a business
process instead of using the tax calculation Web service you initially used. You can do
so by first creating a Process control from the tax calculation business process. Then
you simply change the Control nodes you designed in Part I in such a way that, instead
of communicating with the tax calculation Web service via the Web Service control,
they communicate with the tax calculation business process, via the new Process
control.

The tasks in this step include:

To Create a Process Control

To Change the Control Send Node to Interact With the Process Control

To Change the Control Receive Node to Interact With the Process Control

To Test the Request Quote Process and its Call to the Tax Calculation Process

8 Step 6: Invoke a Business Process via a Process Control

8-2 Tutorial: Building Your First Business Process

To Create a Process Control

A simple business process (TaxCalcProcess.jpd) that calculates the sales tax for a
Request for Quote is provided for you in the tutorial application. (See
\Tutorial_Process_ApplicationWeb\requestquote\services\TaxCalcProc
ess.jpd in the Application pane.) In this step, you learn how to create a Process
control for the TaxCalcProcess.jpd business process.

Note: If the Data Palette is not visible in WebLogic Workshop, choose
View→Windows→Data Palette from the menu bar. Instances of controls
already available in your project are displayed in the Data Palette Controls
tab.

1. Click Add on the Data Palette Controls tab to display a drop-down list of controls
that represent the resources with which your business process can interact.

2. Click Integration Controls, then select Process to invoke the Insert Control
dialog box.

3. In Step 1, in the Variable name for this control field, enter taxCalcProcess as
the name for the instance of the Process control you are about to create.

4. In Step 2, select Create a new Process control to use, then enter
TaxCalcProcess in the New JCX name field.

5. In Step 3, click Browse beside the Choose a JPD field. Then choose
TaxCalcProcess.jpd from the
\Tutorial_Process_ApplicationWeb\requestquote\services folder. The
Start Method field is populated with the start method for TaxCalcProcess.jpd:
requestTaxRate.

Tutorial: Building Your First Business Process 8-3

6. Click Create. The Process control (TaxCalcProcess.jcx) is created and displayed
in the Applications tab. Also, an instance of the control (taxCalcProcess) is
added to the Data Palette. The Controls tab on the Data Palette should now
resemble the following figure:

To Change the Control Send Node to Interact With the Process Control

1. Click + beside taxCalcProcess in the Data Palette to expand the list of methods
on the control.

2. Click the following method and drag and drop it onto the requestTaxRate node
in your RequestQuote.jpd in the Design View:

void requestTaxRate (QuoteRequestDocument quoteRequest)

The following message is displayed:

The control node is already associated with a control method.
Do you wish to replace this control method?

3. Click Yes. The requestTaxRate node changes to reflect the change in the type of
control with which it is associated. The node representation changes from

8 Step 6: Invoke a Business Process via a Process Control

8-4 Tutorial: Building Your First Business Process

4. Double-click the requestTaxRate node to open its node builder on the General
Settings pane.

5. Confirm that taxCalcProcess is selected in the Control field and that the
following method is selected in the Method field:

void requestTaxRate(QuoteRequestDocument quoteRequest)

6. Click the Send Data tab to open the second pane in the node builder. The
Variable Assignment option is selected by default, and the Method Expects
field is populated with QuoteRequestDocument to indicate the format and type
of the message expected by the tax calculation process.

Note: The tax calculation process expects to receive a message of XML type
QuoteRequestDocument—the same type as the requestXML variable to
which the XML message sent from a client to the RequestQuote.jpd
process is assigned. Unlike the scenario for sending data to the tax
calculation Web service in Step 4: Invoke a Web Service, no
transformation is required on this node—you can create a direct variable
assignment.

7. Click the arrow in the Select variables to assign field, and select
requestXML(QuoteRequestDocument).

8. Click Apply and then Close to save the specifications for this node.

This step completes the procedure to remove the call from your Request for
Quote business process to a tax calculation Web Service—making it instead a
call to a tax calculation business process (via the Process control you created).

Tutorial: Building Your First Business Process 8-5

To Change the Control Receive Node to Interact With the Process Control

1. Click the following method on the taxCalcProcess in the Data Palette and drag
and drop it onto the returnTaxRate node in your RequestQuote.jpd in the Design
View:

void returnTaxRate (float salesTaxRate)

The following message is displayed:

The control node is already associated with a control method.
Do you wish to replace this control method?

2. Click Yes. The returnTaxRate node changes to reflect the change in the type of
control with which it is associated. The node representation changes from

3. Double-click the returnTaxRate node to open its node builder on the General
Settings pane.

4. Confirm that taxCalcProcess is selected in the Control field and that the
following method is selected in the Method field:

void returnTaxRate (float salesTaxRate)

5. Click the Receive Data tab to open the second panel in the node builder. The
Variable Assignment option is selected by default, and the Method Expects
field is populated with float salesTaxRate to indicate the type and name of the
parameter expected to be returned by the tax calculation process.

6. Click the arrow in the Select variables to assign field, and select taxRate
(float).

7. Click Apply and then Close to save the specifications for this node.

This step completes the procedure to remove the callback handler that receives a
message from a tax calculation Web Service—making it instead a callback
handler that receives a message from a tax calculation business process (via the
Process control you created).

8 Step 6: Invoke a Business Process via a Process Control

8-6 Tutorial: Building Your First Business Process

To Test the Request Quote Process and its Call to the Tax Calculation Process

You can run and test the business process, which now contains an asynchronous call
to another business process (via the Process control) in the same way as you tested the
business process you created in Part I. To do so, follow steps 1 through 7, as described
in Step 5: Run Your Business Process.

When you start the operations in the Test Form page, the Message Log refreshes to
display a summary of the calls to, and responses from, the tax calculation business
process.

Entries in the Message Log correspond to the methods on your business process:

The quoteRequest method that starts the business process.

A call from your RequestQuote business process to the taxCalcProcess
business process: taxCalcProcess.requestTaxRate. Note that in this case, the
entire Request for Quote XML document (contained in the requestXML
variable) is passed to the subprocess. This is different to the case in which your
business process called the tax calculation Web service (Part I)—in that case,
only the state field from the Request for Quote XML document was passed to
the Web service.

A response from the taxCalcProcess business process to your RequestQuote
business process: taxCalcProcess.returnTaxRate. Note that instead of the tax
rate being returned in a Web services SOAP envelope, as it was in the return
from the Web service in the business process you created in Part I, the Process
control returns the raw float value (0.08).

The Instance ID—When the business process finishes, a message similar to the
following is displayed in the Message Log:

Instance instanceID is Completed.

where instanceID represents the ID generated when the quoteRequest method
in your business process was called.

Tutorial: Building Your First Business Process 8-7

Note About Additional Functionality in the Test Browser

The following additional links are available from the Test Form page in the Test
Browser:

Graph
Click Graph to open the Process Graph tab in the Test Browser. The
Process Graph is a graphical representation of your business process and its
execution path. The Process Graph highlights the node currently being
executed. When the instance of the business process completes, the path of
execution followed in your test is highlighted. In this scenario, the Yes path
is executed—the No path is gray on the Process Graph to indicate that this
path was not taken during the execution of this instance of the business
process.

Note: Press Alt and drag the mouse pointer over the Process Graph to move
and position it on the Test Browser page. To zoom out or in, Press Ctrl+click
or Ctrl+Shift+click, or right-click on the Process Graph and select the Zoom
In or Zoom Out command from the drop-down menu.

You will review your running business process in the Process Graph in a
later step in the tutorial.

Note: Use the back and forward arrows to navigate between the
pages in the WebLogic Workshop Test Browser.

Monitor
Click Monitor to open the WebLogic Integration Administration Console in
a Web Browser. When you use the sample integration server, as you do in this
scenario, login using username = weblogic and password = weblogic. The
WebLogic Integration Administration Console allows you to administer and
manage your WebLogic Integration applications. For example, if you click
Process Instance Monitoring on the console’s home page, you access a
Process Instance Statistics page. This page displays a summary of business
process instances grouped by the process type. To view the instances of a
process type that ran or are running on your server, click the process name.
Processes instances are identified by their instanceID. Note that the
instanceID displayed for your RequestQuote business process matches the
instanceID displayed on the Message Log pane (see the preceding figures in
this topic).

8 Step 6: Invoke a Business Process via a Process Control

8-8 Tutorial: Building Your First Business Process

Monitor all RequestQuote.jpd processes
Click Monitor all RequestQuote.jpd processes at the top of the Test Form
to open the WebLogic Integration Administration Console. (The default
username and password for the sample integration server is
weblogic/weblogic.) When you use this link to open the Administration
Console, it opens on the Process Instance Summary page, which displays a
summary of all the instances of business processes that ran or are running.

To stop the Test Browser, return to WebLogic Workshop and click on the menu.

This step completes Part II of the tutorial.

Related Topics

Process Control

Managing WebLogic Integration Solutions

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsProcess.html
http://edocs.bea.com/wli/docs81/manage/index.html

Tutorial: Building Your First Business Process

Part III Adding Looping Logic,
Parallel Paths ...

Part III is comprised of Steps 7 through 12. You add more complex business logic to the business
process you created in Parts I and II. You learn how to create looping logic, design parallel
processing nodes, transform the price and availability data from non-typed XML data to typed
XML, use a File control to write your quote to a file system, and use a Client Response node to
return the quote to the client that invoked the business process. The final step in Part III is to run
and test the business process you built.

The steps in Part III include:

Chapter 9, “Step 7: Looping Through Items in a List”
Describes how to create the logic that extracts a list of items from the Request for Quote
document received from a client and performs a set of activities repeatedly, once for
each item in the list.

Chapter 10, “Step 8: Design Parallel Paths of Execution”
Describes how to design your business process to execute tasks in parallel. This step also
includes instructions about how to design your business process to interact with
resources via controls and transform the data exchanged with those controls, as required.

Chapter 11, “Step 9: Create Quote Document”
Describes how to transform the price and availability data from non-typed XML data to
typed XML, and then combine the price and availability data, which is returned to the
Request Quote business process by a number of external services, to produce a single
Quote document.

Chapter 12, “Step 10: Write Quote to File System”
Describes how to write business process data to a log using a File control.

Chapter 13, “Step 11: Send Quote From Business Process to Client”
Describes how to send the final quote message from the business process to a client.

Chapter 14, “Step 12: Run the Request Quote Business Process”
Describes how to compile and test the business process you created by following the
steps in Part III.

Tutorial: Building Your First Business Process 9-1

CHAPTER

9 Step 7: Looping
Through Items in a List

In this step, you create the logic that extracts a list of items from the Request for Quote
document received from a client, and begin the work of designing the business process
to determine the price and availability of the items requested by the client.

A For Each node represents a point in a business process at which a set of activities is
performed repeatedly, once for each item in a list. A For Each node includes an
iterator node (on which a list of items is specified) and a loop (in which the activities
to be performed for each item in the list are defined). An iteration variable holds the
current element being processed in the For Each loop, for the life of the loop.

This section includes the following topics:

Understanding XML Schemas and For Each Nodes

Design a For Each Loop in Your Business Process

Understanding XML Schemas and For Each
Nodes

The business process you build in this tutorial is designed to start when it receives a
Request for Quote XML document from a client. The Request for Quote document
must contain valid XML, that is, XML valid against an XML Schema, specifically
QuoteRequest.xsd. The QuoteRequest.xsd Schema is located in your application

9 Step 7: Looping Through Items in a List

9-2 Tutorial: Building Your First Business Process

at the following location:
myapplications\Tutorial_Process_Application\Tutorial_Process_Appli
cationWeb\Schemas.

In the preceding line, myapplications represents the location at which you created
your tutorial application.

Note: To make the Schemas in your project available in your business process, you
must place them in a Schemas project. A Schemas project is one of the types
of projects that Workshop applications can contain. Schemas projects you add
to your WebLogic Workshop applications are represented in the WebLogic
Workshop file hierarchy as child folders of your application folder. To learn
about creating and populating Schemas projects in your WebLogic Integration
applications, see Related Topics.

XML Schemas in your application’s Schemas folder are compiled to generate XML
Beans. In this way, WebLogic Workshop generates a set of interfaces that represent
aspects of your XML Schemas. XML Bean types correspond to types in the XML
Schema itself. XML Beans provides Java counterparts for all built-in Schema types,
and generates Java counterparts for any derived types in your Schema.

In Step 2: Specify How the Process is Started, you created a variable (requestXML) to
which the Request for Quote document your business process receives from a client is
assigned. When you work with such variables in Design View, you work with a
graphical representation of the XML Schema that is associated with the variable. The
following figure is a graphical representation of the quoteRequest element in the
QuoteRequest.xsd schema, against which the Request for Quote document from
clients is valid:

Note the following characteristics of the QuoteRequest.xsd Schema:

The elements and attributes of the XML schema are represented as nodes.
Note that quoteRequest is a root element.

Understanding XML Schemas and For Each Nodes

Tutorial: Building Your First Business Process 9-3

The quoteRequest element specifies the following child elements:
customerName, shipAddress, widgetRequest.

The shipAddress element specifies the following attributes: street, city,
state, zip.

The widgetRequest element is a repeating element (represented graphically

by). In other words, there can be one or more occurrences of the
widgetRequest element in an associated XML document. The
widgetRequest element, in turn, contains two elements: widgetId and
quantity.

The business process in this scenario dictates that each pair of widgetId and
quantity elements received in the Request for Quote documents from clients is
processed. This processing begins with a For Each node—each iteration through the
For Each loop processes one of a set of widgetRequest items.

In this section, you design the For Each node to first extract a list of items (the
widgetRequest items) from the requestXML variable, and then to perform an
activity (or set of activities) repeatedly, once for each item in the list.

Related Topics

How Do I: Create a Schemas Project?

How Do I: Import Files into a Schemas Project?

Design a For Each Loop in Your Business
Process

Complete the following steps to create the logic that causes your business process to
iterate over the sequence of nodes in the Request for Quote XML document:

To Add a For Each Node to Your Business Process

To Select a Repeating XML Element Over Which to Iterate

http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasCreate.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasImport.html

9 Step 7: Looping Through Items in a List

9-4 Tutorial: Building Your First Business Process

To Design the Activities in Your For Each Loop

To Add a For Each Node to Your Business Process

1. Click For Each in the Palette.

2. Drag and drop the For Each node onto the RequestQuote business process in
Design View, placing it immediately after the Decision node.

Design View is updated to contain the For Each node:

To Select a Repeating XML Element Over Which to Iterate

1. In Design View, double-click the For Each node to invoke its node builder.

2. In the node builder, click Select Variable. A drop-down list of variables (of
typed XML) in your project is displayed.

3. Select requestXML (QuoteRequestDocument). requestXML contains the
repeating XML element over which you want to design the iteration logic. A
representation of the XML in the requestXML variable is displayed in the Select

Node pane. The repeating element is identified by .

Understanding XML Schemas and For Each Nodes

Tutorial: Building Your First Business Process 9-5

4. In the Select Node pane, click +widgetRequest.

The Repeating Element and Iteration Variable fields are populated with the
following data:

Repeating element—Contains the following XPath expression, which when
applied against the incoming XML document, returns the set of repeating
XML elements:

$requestXML/ns0:widgetRequest

Iteration Variable—Contains the name of an iteration variable:
iter_requestXML1. At run time, the current element being processed in the
For Each loop is assigned to the iteration variable.

5. Click Apply, then Close.

The iteration variable, iter_requestXML1, is created and added to the list of
variables in the Data Palette. This variable is of XML type
WidgetRequestDocument.

To learn how the iteration variable is used in the For Each loop, see To Design
the Create PriceList Node.

This step completes the design of the iteration logic for your For Each node.
Note that in the Design View the node is updated graphically to reflect the work
you did to define the condition:

9 Step 7: Looping Through Items in a List

9-6 Tutorial: Building Your First Business Process

 indicates that the design of the task on the node is complete (compare to

before you defined the condition). indicates that an XML query is defined

on the node.

To Design the Activities in Your For Each Loop

After you create the iteration logic in your For Each node, you must define the activity
or set of activities performed during each iteration over the items in the list you created.

You add activities to the For Each loop by creating on it any nodes that support your
business logic. In the next step in this tutorial, you create a Parallel node, and design
it so that the business process executes two sets of activities in parallel: the request for
price, and the determination of availability for the items requested by the client. To
learn how to design a Parallel node, see Step 8: Design Parallel Paths of Execution.

Related Topics

Business Process Variables and Data Types

Guide to Building Business Processes: Looping Through Items in a List

Grouping Nodes in Your Business Process

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypes.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideForEach.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideGroups.html

CHAPTER
10 Step 8: Design Parallel
Paths of Execution

In the preceding step, you created a For Each loop to iterate over a set of repeating
elements in a Request for Quote document. In this step, you design the activities within
the For Each loop. That is, you design the activities that are performed for each
iteration your business process makes through the loop.

When your business process interacts with multiple different systems, as is the case
during the price and availability processing in this scenario, you can increase
throughput in the business process by executing tasks in parallel. You add Parallel
nodes to your business process when you want to create two or more such parallel
branches of execution.

In our example scenario, the business process must determine both price and
availability information so that a quote can be prepared and returned to the client. This
business process can benefit from parallelism because it communicates with two
different external systems and expects a response from those external systems.

The external systems can be any resource (other business processes, Web services,
EJBs, databases, file systems, and so on) that returns the information your business
process requires. Your business process interacts with the resources via controls. The
tutorial uses two Web services: one returns the price for each widgetID specified in
the client’s request document; a second service returns availability information, based
on the widgetID and the quantity specified in the request document. The controls
with which your RequestQuote business process interacts are provided for you in
your project folder:
\Tutorial_Process_ApplicationWeb\requestquote\services. The controls
are PriceProcessorControl.jcx and AvailabilityProcessorControl.jcx.
Tutorial: Building Your First Business Process 10-1

10 Step 8: Design Parallel Paths of Execution
Related Topics

Understanding Parallel Execution in Your Business Process

Create a Parallel Node

To Add A Parallel Node to Your Business Process

1. On the Application pane, click RequestQuote.jpd to ensure that your business
process is displayed in Design View.

2. Click Parallel in the Palette. Then, drag and drop the Parallel node onto the
business process in Design View, placing it inside the For Each loop. The
Design View is updated to contain a representation of the Parallel node as shown
in the following figure:

3. Change the names of the branches contained within the Parallel node to identify
the activities that your business process executes in parallel:

Double click the label on the left Branch and enter Get Price.

Double click the label on the right Branch and enter Get Availability.
10-2 Tutorial: Building Your First Business Process

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideParallelUnderstand.html

Note About Join Conditions

By default, Parallel nodes specify an AND join condition, represented by on the
Parallel branch lines. In this case, the activities on all branches must complete before
the flow of execution proceeds to the node following the parallel node.

In the case of your RequestQuote business process, because you want both branches
of the Parallel node to complete, do not change the default AND join condition.

If an OR join condition is specified, when the activities on one branch complete, the
execution of activities on all other branches terminates, and the flow of execution
proceeds to the node following the Parallel node. (The OR join condition is

represented as in the Design View.)

You can view and edit the join condition property in the Property Editor. Click

or at the top of the Parallel node in Design View to display the properties of the
Parallel node in the Property Editor. The Property Editor for your Parallel node
should resemble that shown in the following figure:

Create Logic to Assemble Price and
Availability Data

In this section, you learn how to:

Invoke the price and availability services (via controls) from the parallel
branches you created.

Design callbacks on your branches to wait for and handle the responses from the
controls.
Tutorial: Building Your First Business Process 10-3

10 Step 8: Design Parallel Paths of Execution
Construct an XML document, to which the response data from controls is
appended for each iteration through the For Each loop. (Review your business
process in Design View: your Parallel node is within your For Each loop,
meaning that the flow of execution is through the Parallel node for each
iteration through the loop.)

To design the Parallel node to interact with the price and availability Web services,
complete the following tasks:

To Create Instances of the PriceProcessor and AvailProcessor Controls in Your
Project

To Add Control Nodes to Your Business Process

To Design the Activities on the Get Price Branch

To Design the Activities on the Get Availability Branch

To Create Instances of the PriceProcessor and AvailProcessor Controls in
Your Project

The Web service controls (PriceProcessorControl.jcx and
PriceProcessorControl.jcx) are provided for you in your application’s project
(specifically in
myapplications\Tutorial_Process_Application\Tutorial_Process_Appli
cationWeb\requestquote\services folder, where myapplications represents
the location at which you created your tutorial application). The goal of this section is
to describe how to create the appropriate controls in your application, and then design
the communication of your business process with these controls.

1. Click Add on the Data Palette Controls tab to display a list of controls that
represent the resources with which your business process can interact.

2. Choose Web Service. The Insert Control dialog box is displayed.

3. In the Insert Control dialog box, enter priceProcessor as the variable name for
this control. Then, ensure that the following option is selected: Use a Web
Service control already defined by a JCX file.

4. Click Browse beside the JCX file field, browse to the
\Tutorial_Process_ApplicationWeb\requestquote\services folder,
choose PriceProcessorControl.jcx, then click Select to close the file browser.
10-4 Tutorial: Building Your First Business Process

5. Click Create to close the Insert Control dialog box. An instance of the Web
Service control is created in your project and displayed in the Data Palette.

6. Repeat steps 1 through 5, but enter availProcessor as the variable name for the
control, and choose the AvailProcessorControl.jcx control, which is already
defined in the following folder, as the control file on which to base your instance:
\Tutorial_Process_ApplicationWeb\requestquote\services folder.

To Add Control Nodes to Your Business Process

You learned in Parts I and II that you can create Control nodes in your business process
by dragging the methods from the appropriate control on the Data Palette onto the
business process in the Design View. You can also create Control nodes by selecting
Control Send, Control Receive, or Control Send with Return from the Palette and
dragging them onto the business process. You subsequently bind the appropriate
methods to the control node you created. In this section you will use the latter
approach.

You must add the following nodes to each branch on your Parallel node: Control
Send, Control Receive, Control Send with Return.

To do so, select the appropriate node in the Palette(Control Send, Control

Receive, or Control Send with Return), and drag and drop the node onto the
business process in Design View—place the nodes on the Parallel branches until you
create a Parallel group as shown in the following figure:
Tutorial: Building Your First Business Process 10-5

10 Step 8: Design Parallel Paths of Execution
In this way, each branch is designed for the following flow of execution:

1. Call a resource (via a control) from the Control Send node.

2. Wait for a response from the control at the Control Receive node.

3. Make a synchronous call to a control at the Control Send with Return node. At
this node you call a Transformation control that constructs an XML document.
The response data from controls is appended to this XML document for each
iteration through the For Each loop.

To Design the Activities on the Get Price Branch

Rename the nodes on the Get Price Branch (in the order in which they are executed)
as follows: Request Price, Receive Price, Create PriceList. Complete the following
tasks:

1. To Design the Request Price Node

2. To Design the Receive Price Node

3. To Design the Create PriceList Node

To Design the Request Price Node

1. Double-click the Request Price node to open its node builder. The node builder
opens on the General Settings tab.

2. Click the arrow beside the Control field to display a drop down list of the
instances of the controls in your project and select priceProcessor. The Method
panel is populated with a list of the asynchronous send methods you can invoke
on the priceProcessor control.

3. Select the following method: void getPrice(int itemID)

4. Click Send Data to open the second tab in the node builder.

By default, the Send Data tab opens on the Variable Assignment pane. (The
Method Expects field is populated with the data type expected by the
getPrice() method exposed by the priceProcessor Web service: int itemID.)

Note: The priceProcessor service takes as input the ID of the item requested and
returns the price of the widget.

5. Select Transformation to switch modes in the Send Data tab.
10-6 Tutorial: Building Your First Business Process

Note: In this case, you must switch modes because the data type required as input
to the priceProcessor control is int, and the iter_requestXML1 variable,
which holds the value of widgetId in the For Each loop, is of type XML
(WidgetRequestDocument valid against an XML Schema).

The iteration variable was created for you when you specified the repeating
element over which the For Each loop iterates. At run time, it holds the
current widgetRequest element—that is, the one currently being
processed in the For Each loop. (See Design a For Each Loop in Your
Business Process.)

6. In Step 1, click Select Variable to display the variables in your project. Then
choose iter_requestXML1 (WidgetRequestDocument).

7. In Step 2, click Create Transformation.

The Transformation tool opens and displays a representation of the
iter_requestXML1 variable in the Source Schema pane, and an int in the
Target Schema pane.

8. Click widgetID in the Source Schema pane and drag your mouse over to int in
the Target Schema pane. A line is drawn between the widgetID and int
elements in the XML Map pane. It represents the transformation between the
two data types.

Note: Creating this transformation creates a new method on the
RequestQuoteTransformation control already created in your project. A
new XQ file, which contains the query for this transformation method is
also created.
Tutorial: Building Your First Business Process 10-7

10 Step 8: Design Parallel Paths of Execution
9. Double-click RequestQuote.jpd in the Application pane to return to your
process.

10. Click Close in the Request Price node builder to save your specifications for this
node, and close its node builder.

This step completes the design of the Request Price node.

To Design the Receive Price Node

1. Double-click the Receive Price node to open its node builder. The node builder
opens on the General Settings tab.

2. Click the arrow beside the Control field to display a list of the instances of
controls in your project and select priceProcessor. The Method panel is
populated with a list of the asynchronous receive methods on the priceProcessor
control.

3. Select the following method from the list:

void returnPrice(int itemID, float price)

4. Click Receive Data to open the second tab in the node builder.

The Method Expects fields are populated with the data types returned by the
returnPrice(int itemID, float price) method on the priceProcessor
Web service.

The PriceProcessor service takes the itemID (an int) as input and returns an
int and a float—containing values for the itemID and the price, respectively.

In this case, you must switch from the Variable Assignment mode displayed in
the preceding figure to the Transformation mode because you want to assign
the data returned by the priceProcessor service to a variable of type XML. To
do so, your business process must transform the Java data types returned from
the priceProcessor service to typed XML.

5. Click Transformation. The Receive Data tab is displayed as shown in the
following figure:
10-8 Tutorial: Building Your First Business Process

6. In Step 1, click Select Variable, then Create new variable... to invoke the
Create Variable dialog box.

7. In the Variable Name field, enter price.

8. In the Select variable Type pane, ensure that XML is selected.

9. Click the + beside priceQuote.xsd in XML Types to expand the list, then
select priceRequest from the list. The Variable Type field is populated with
org.example.price.PriceRequestDocument.

10. Click OK. The Create Variable dialog box is closed and your new variable is
created. It is displayed in the Receive Data tab and is listed as an XML Type
variable in the Data Palette.

11. In Step 2 on the Receive Data tab, click Create Transformations to open the
Transformation tool, which displays a representation of the int and float in the
Source Schema pane, and the price variable in the Target Schema pane.

12. Map $_intDoc and $_floatDoc in the Source Schema pane to widgetId and
price in the Target Schema pane, respectively.

Note: Creating this transformation creates a new method on the
RequestQuoteTransformations control already created in your project.
Tutorial: Building Your First Business Process 10-9

10 Step 8: Design Parallel Paths of Execution
A new XQ file, which contains the query for this transformation method is
also created.

13. Double-click RequestQuote.jpd in the Application pane to return to your
business process.

14. Click Close in the Receive Price node builder to save your specifications for this
node, and close its node builder.

This step completes the design of the Receive Price node.

To Design the Create PriceList Node

In this step, you use a Transformation control (PriceAvailTransformations) provided
in your project to append the price data returned from the priceProcessor control (on
each iteration through the For Each loop) to a single variable.

At nodes you designed in the business process before this, you created transformation
methods on a Transformation control as necessary to map data your business process
sent or received to or from clients and controls. In this case, you also use a
Transformation control, but in a different way. In the case of this Create PriceList
node, the data is not sent to a client or control. Instead, the Transformation control
takes, as input from your business process, typed XML data and returns non-typed
XML (XmlObject). The business process must append the data returned on every
iteration of the For Each loop to a single variable, thus creating a repeating sequence
of XML data. A variable that can hold this type of repeating sequence of XML data in
your For Each loops is of type XmlObjectList. Only data assigned to variables of
type XmlObject can be appended to variables of type XmlObjectList. (See Note
About Using the XmlObjectList Data Type.)

Note: The transformation control is prebuilt for you in the tutorial application. It
is available in the requestquote folder in your
Tutorial_Process_ApplicationWeb project folder.

A description of how to create this PriceAvailTransform.dtf control is
beyond the scope of this tutorial. To learn more about Transformation
controls, see Note About Transformation Controls.

To Create an Instance of the PriceAvailTransformations Control in Your
Project

1. If the Data Palette is not visible in WebLogic Workshop, choose
View→Windows→Data Palette from the menu bar.
10-10 Tutorial: Building Your First Business Process

2. On the Applications pane, click the priceAvailTransformations.dtf file.

3. Drag the PriceAvailTransformations.dtf file from the Applications pane onto
the Data Palette. The instance of your control (priceAvailTransformations) is
created and displayed in the Data Palette as shown in the following figure:

To Design the Interaction of the Create PriceList Node With the
Transformation Control

1. Expand the priceAvailTransformations control instance in the Data Palette, as
shown in the preceding figure. Then click the following method:

XmlObject
convertPriceXMLtoXMLObj(org.example.price.PriceRequestDocument
_priceRequestDoc)

2. Drag the method from the Data Palette and drop it on the Create PriceList node
in the Design View. The Create Price List node changes to reflect the binding of
the method, as shown in the following figure:

3. Double-click the Create PriceList node to open its node builder. The node
builder opens on the General Settings tab.
Tutorial: Building Your First Business Process 10-11

10 Step 8: Design Parallel Paths of Execution
4. Confirm that the method you dragged onto the node is selected:

XmlObject
convertPriceXMLtoXMLObj(org.example.price.PriceRequestDocument
_priceRequestDoc)

5. Click Send Data to open the second tab in the node builder.

The Method Expects field is populated with the data type and name of the
parameter expected by the convertPriceXMLtoXMLObj() method on the
priceAvailTransformations control: PriceRequestDocument
_priceRequestDoc.

6. Click the arrow on the field under Select variable to assign to display a list of
variables. Select price (PriceRequestDocument).

In this case, note that the data type of your price variable
(PriceRequestDocument) matches that of the data expected by the
priceAvailTransformations control.

7. Click Receive Data to open the third tab in the node builder.

The Method Expects field is populated with the data type of the parameter
returned by the convertPriceXMLtoXMLObj() method on the
priceAvailTransformations control: XmlObject.

An XmlObject is a Java data type that specifies data in non-typed XML format.
In other words, this data type represents XML data that is not valid against an
XML Schema.

8. Click the arrow on the field under Select variable to assign and select Create
new variable ... to invoke the Create Variable dialog box.

9. In the Variable Name field, enter priceList.

10. In the Select Variable Type pane, select XML to display a representation of the
XML data types in your application. (XmlObject is selected by default. You
must change this selection in the following step).

11. Select XmlObjectList and click OK.
10-12 Tutorial: Building Your First Business Process

The priceList variable is created and assigned to receive the XmlObject data
returned by the priceProcessor service.

12. Click Apply, then Close to save your specifications and close the Create
PriceList node builder.

This step completes the design of the Get Price branch on the Parallel node. At
run time, via this branch, your business process appends the XmlObject, which
contains the data returned by the priceProcessor control (during the current
iteration through the For Each loop), to the priceList variable.

13. Select File→Save All to save your work so far.

To Design the Activities on the Get Availability Branch

Rename the nodes on the Get Availability Branch (in the order in which they are
executed) as follows: Request Availability, Receive Availability, Create AvailList.

 Complete the following tasks:

1. To Design the Request Availability Node

2. To Design the Receive Availability Node
Tutorial: Building Your First Business Process 10-13

10 Step 8: Design Parallel Paths of Execution
3. To Design the Create AvailList Node

To Design the Request Availability Node

1. Double-click the Request Availability node to open its node builder. The node
builder opens on the General Settings tab.

2. Click the arrow beside the Control field to display a list of the instances of
controls available in your project and select availProcessor. The Method panel
is populated with a list of the asynchronous send methods you can invoke on the
availProcessor control.

3. Select the following method from the list:

void getAvail(int itemID, int quantity)

4. Click Send Data to open the second tab in the node builder.

By default, the Send Data tab opens on the Variable Assignment pane. (The
Method Expects field is populated with the data types and names of the
parameters expected by the getAvail() method exposed by the availProcessor
Web service: int itemID and int quantity.)

Note: The availProcessor service takes, as input, the itemID (int) and the
quantity (int) requested by the client. It returns the itemID (int), the
quantity available (int), a boolean to indicate whether the widgets are in
stock, and a ship date (String).

5. Select Transformation to switch modes in the Send Data tab.

Note: In this case, you must switch modes because you must transform the data
we input to availProcessor. The availProcessor control requires input as
int data types, and the iter_requestXML1 variable, which holds the
value of widgetId and quantity in the For Each loop, is of type XML
(WidgetRequestDocument valid against an XML Schema).

6. In Step 1, click Select Variable to display the variables in your project. Then
choose iter_requestXML1 (WidgetRequestDocument).
10-14 Tutorial: Building Your First Business Process

7. In Step 2, click Create Transformation.

The Transformation tool opens and displays a representation of the
iter_requestXML1 variable in the Source Schema pane, and the int arguments
to the availProcessor transformation method in the Target Schema pane.

8. Create a transformation as follows:

Map widgetID in the Source Schema pane to arg1 in the Target Schema
pane.

Map quantity in the Source Schema pane to arg2 in the Target Schema
pane.

A line is drawn between the elements in the XML Map pane. It represents
the transformation between the data types.

Note: Creating this transformation creates a new method on the
RequestQuoteTransformation control already created in your project. A
new XQ file, which contains the query for this transformation method is
also created.

9. Double-click RequestQuote.jpd in the Application pane to return to your
process.

10. Click Close in the Request Price node builder to save your specifications for this
node, and close its node builder.

This step completes the design of the Request Availability node.
Tutorial: Building Your First Business Process 10-15

10 Step 8: Design Parallel Paths of Execution
To Design the Receive Availability Node

1. Double-click the Receive Availability node to open its node builder. The node
builder opens on the General Settings tab.

2. Click the arrow beside the Control field to display a list of the instances of
controls available in your project and select availProcessor. The Method panel
is populated with a list of the asynchronous receive methods on the
availProcessor control.

3. Select the following method from the list:

void avail(int itemID, int qty, boolean avail, String date)

4. Click Receive Data to open the second tab in the node builder.

The Method Expects fields are populated with the data types and names of the
parameters returned by the avail(int itemID, int qty, boolean avail,
String date) method on the availProcessor Web service.

Note: In this case, you must switch from the Variable Assignment mode to the
Transformation mode on the Receive Data tab because you want to
assign the data returned by the availProcessor service to a variable of type
XML. To do so, your process must transform the Java data types returned
to typed-XML.

5. Click Transformation. The Receive Data tab is displayed as shown in the
following figure:

6. Click Select Variable, then Create new variable... to invoke the Create
Variable dialog box.

7. In the Variable Name field, enter avail.

8. In the Select variable Type pane, ensure that XML is selected.

9. Click the + beside availQuote.xsd in XML Types to expand the list, then
select availRequest from the list. The Variable Type field is populated with
org.example.price.AvailRequestDocument.
10-16 Tutorial: Building Your First Business Process

10. Click OK. The Create Variable dialog box is closed and your new variable is
created and is listed as an XML Type variable in the Data Palette.

11. In Step 2, click Create Transformations to open the Transformation tool, which
displays a representation of the data types returned by the availProcessor control
in the Source Schema pane, and the avail variable in the Target Schema pane.

12. Map the Source Schema values to the Target Schema elements, as shown in the
following figure:

Note: Creating this transformation creates a new method on the
RequestQuoteTransformation control already created in your project. A
new XQ file, which contains the query for this transformation method is
also created.

13. Double-click RequestQuote.jpd in the Application pane to return to your
business process.

14. Click Close in the Receive Availability node builder to save your specifications
for this node, and close its node builder.

This step completes the design of the Receive Availability node.
Tutorial: Building Your First Business Process 10-17

10 Step 8: Design Parallel Paths of Execution
To Design the Create AvailList Node

In the same way as you designed the business process to append the price data to a
single variable when you designed the Get Price branch of the Parallel node, in this
step, you call a method on the priceAvailTransformations control to append the
availability data returned to a single variable, of type XmlObjectList. (See Note
About Using the XmlObjectList Data Type.)

1. Expand the priceAvailTransformations control instance in the Data Palette, as
shown in the preceding figure. Then click the following method:

XmlObject convertAvailXMLtoXMLObj(AvailRequestDocument
_availRequestDoc)

2. Drag the method from the Data Palette and drop it on the Create AvailList node
in the Design View. The Create AvailList node changes to reflect the binding of
the method, as shown in the following figure:

3. Double-click the Create AvailList node to open its node builder. The node
builder opens on the General Settings tab.

4. Confirm that the priceAvailTransformations control is selected in the Control
field, and that the following method (the method you dragged onto the node) is
selected in the Method field:

XmlObject convertAvailXMLtoXMLObj(AvailRequestDocument
_availRequestDoc)

5. Click Send Data to open the second tab in the node builder.

The Method Expects field is populated with the data type expected by the
convertAvailXMLtoXMLObj(AvailRequestDocument _availRequestDoc)
method on the priceAvailTransformations control: AvailRequestDocument

6. Click the arrow on the field under Select variable to assign to display a list of
variables. Select avail (AvailRequestDocument).

In this case, note that the data type of your avail variable
(AvailRequestDocument) matches that of the data expected by the
priceAvailTransformations control.
10-18 Tutorial: Building Your First Business Process

7. Click Receive Data to open the third tab in the node builder.

The Method Expects field is populated with the data type returned by the
convertAvailXMLtoXMLObj() method on the priceAvailTransformations
control: XmlObject.

An XmlObject is a Java data type that specifies data in non-typed XML format.
In other words, this data type represents XML data that is not valid against an
XML Schema.

8. Click the arrow on the field under Select variable to assign and select Create
new variable ... to invoke the Create Variable dialog box.

9. In the Variable Name field, enter availList.

10. In the Select Variable Type pane, select XML to display a representation of the
XML data types in your application. (XmlObject is selected by default. You
must change this selection in the following step).

11. Select XmlObjectList and click OK.

The availList variable is created and assigned to receive the XmlObject data
returned by the availProcessor service.

12. Click Apply, then Close to save your specifications and close the Create
AvailList node builder.
Tutorial: Building Your First Business Process 10-19

10 Step 8: Design Parallel Paths of Execution
This step completes the design of the Get Availability branch on the Parallel
node. At run time, via this branch, your business process appends the
XmlObject, which contains the data returned by the availProcessor control
(during the current iteration through the For Each loop), to the availList
variable.

13. Select File→Save All to save your work so far.

Note About Using the XmlObjectList Data Type

On each iteration through the For Each loop, the priceProcessor service returns price
data, which is assigned to the price variable, and the availProcessor service returns
availability data, which is assigned to the avail variable. Your business process must
collect the price data returned on each iteration and create a list of price data; one item
is assigned to the list for each iteration through the loop. Similarly, a list of availability
data is created on the Get Availability branch of the Parallel node for each iteration
through the loop.

An XmlObjectList is a Java data type, which specifies a sequence of non-typed XML
format data. In other words, this data type represents a sequence of XML elements (a
set of repeating elements). As the final step of each iteration through the Get Price
branch in your Parallel node, your business process assigns the data from the price
variable to the priceList variable (of type XmlObjectList). In this way, a single
variable holds the price data for each of the widgets in the Request for Quote over
which the For Each loop iterates. In the same way, a single variable holds the
availability data for each widget.

To learn how the XmlObjectList variable is used, see To Design the Create PriceList
Node and To Design the Create AvailList Node.

Related Topics

Note About Transformation Controls

Creating and Testing Mappings

Guide to Data Transformations

Understanding Parallel Execution in Your Business Process
10-20 Tutorial: Building Your First Business Process

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappercreatemap.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideParallelUnderstand.html

Tutorial: Building Your First Business Process 11-1

CHAPTER

11 Step 9: Create Quote
Document

As a result of the work you did when you designed the Parallel node, at the point at
which the business process exits the For Each node, the price quote data are assigned
to the priceList variable, and the availability quote data are assigned to the
availList variable. Both the priceList and the availList variables are of data
type XmlObjectList (a non-typed sequences of XML data).

In this step, you first transform the data in the priceList and availList variables
from non-typed XML data (XmlObjectList) to typed XML (that is, to XML that is
valid against the XML Schemas provided in your project). Subsequently, you combine
the XML-typed price and availability data to produce a single quote document, which
comprises the response your business process sends to the client that invoked it.

Note About Transformation Controls

WebLogic Integration allows you to create Transformation controls in the following
ways:

Via the node builders in your business process—You are already familiar with
creating a Transformation control and transformation methods in this way.
RequestQuoteTransformation.dtf was created for you the first time you
created a transformation from a node builder—that is, when you needed to map
the data types from the Request for Quote message to the input of the
taxCalculation control. (To review, see To Call the Tax Calculation Web
Service From Your Business Process.) You subsequently created several
additional transformation methods on RequestQuoteTransformation.dtf
(and associated XQ files) on Control nodes within the Parallel node you
designed.

11 Step 9: Create Quote Document

11-2 Tutorial: Building Your First Business Process

By choosing File→New→Other File Types→Transformation File from the
WebLogic Workshop menu. Transformation files you create in this way can be
called from your business process via Control nodes.

The following Transformation files were created using this method, and are
provided for you in the tutorial application:
PriceAvailTransformations.dtf and TutorialJoin.dtf. You used
PriceAvailTransformations.dtf in the previous step (Step 8: Design
Parallel Paths of Execution) and use it again in this step; you also use
TutorialJoin.dtf in this step.

In this step, you design the logic in your business process that creates a single quote
document from the price and availability data already calculated. This involves
designing Control nodes that call the PriceAvailTransformations.dtf and
TutorialJoin.dtf Transformation files.

Note: A description of how to create these Transformation files is outside the scope
of this tutorial. However, to learn how to create TutorialJoin.dtf, see
Tutorial: Building Your First Data Transformation.

In this step, in which you create a single quote document for a client, you must
complete the following tasks:

1. Convert Price List to XML Quote Document

2. Convert Availability List to XML Quote Document

3. Combine Price and Availability Quotes

Convert Price List to XML Quote Document

Complete the following steps to design a node to transform the price list (created as a
result of iteration through the For Each loop) to a variable whose data type is
typed-XML. To do so, you use methods on the priceAvailTransformations control.

http://edocs.bea.com/wil/docs81/dttutorial/tutWLIDataTransIntro.html

Tutorial: Building Your First Business Process 11-3

To Design the Interaction With the Transformation Control

1. With the priceAvailTransformations control instance expanded in the Data
Palette, click the following method:

PriceQuoteDocument convertPriceListToXML
(QuoteRequestDocument _quoteRequestDoc, XmlObjectList
_XmlObjectListDoc)

2. Drag the method from the Data Palette and drop it on your RequestQuote
business process in the Design View, placing it immediately after, and outside,
the For Each block.

3. Click convertPriceListToXML, press F2, then enter the following to rename the
node: Convert PriceList To PriceQuote XML. Press Enter.

4. Double-click the Convert PriceList To PriceQuote XML node to open its node
builder.

5. Verify that the priceAvailTransformations control and the following method are
selected on the General Settings tab:

11 Step 9: Create Quote Document

11-4 Tutorial: Building Your First Business Process

PriceQuoteDocument convertPriceListToXML
(QuoteRequestDocument _quoteRequestDoc, XmlObjectList
_XmlObjectListDoc)

6. Click Send Data to open the second tab in the node builder.

The Method Expects field is populated with the data type expected by the
convertPriceListToXML() method on the priceAvailTransformations
control:

The convertPriceListToXML()method on the priceAvailTransformations
control is designed to achieve two goals: first, to transform the XmlObjectList
price data to typed XML, and then to combine the customer name, the shipping
address, and the price quote data (the price list) in a single variable. The
convertPriceListToXML() method receives the price list in a parameter of
type XmlObjectList, and the customer name and shipping address in a
parameter of type QuoteRequestDocument. To learn more about the
priceAvailTransformations control, see Note About the Transformation on This
Node.

7. On the Send Data tab, under Select variables to assign, assign the variables that
hold the data required by the priceAvailTransformations control:

Click the arrow in the variable assignment field associated with
QuoteRequestDocument, and select requestXML
(QuoteRequestDocument). (The requestXML variable holds the customer
name and shipping address).

Click the arrow in the variable assignment field associated with
XmlObjectList, and select priceList (XmlObjectList).

8. Click Receive Data to open the third tab in the node builder.

Tutorial: Building Your First Business Process 11-5

The Method Returns field is populated with the data type returned by the
convertPriceListToXML() method on the priceAvailTransformations
control: PriceQuoteDocument.

9. Click the arrow associated with the Select variables to assign field, and click
Create new variable ... to invoke the Create Variable dialog box.

10. In the Variable Name field, enter priceQuote.

11. In the Select Variable Type field, ensure that priceQuote is selected in the XML
Types list. The Variable Type field is populated with
org.example.price.PriceQuoteDocument.

12. Click OK to close the Create Variable dialog box.

13. Click Apply, then Close to save your specifications and close the node builder.

This step completes the design of the Convert PriceList to PriceQuote XML
node. At run time, the price quote data (in typed-XML format), and the customer
name and shipping address are assigned to the priceQuote variable.

Note About the Transformation on This Node

The convertPriceListToXML() method on the priceAvailTransformations control
does the work of creating the price quote XML data in the preceding step.

In brief, the input to the Transformation method includes the original data sent by the
client (in the requestXML variable), and the price data returned by the
priceProcessor control (in the priceList variable) after the iterations in the For Each
node complete.

11 Step 9: Create Quote Document

11-6 Tutorial: Building Your First Business Process

The convertPriceListToXML() method extracts the customer name and shipping
address from the requestXML variable, and a list of widget IDs and prices from the
priceList variable, and maps the data to the new variable (priceQuote).

It is left as an exercise to the reader to view this and other transformation methods on
the priceAvailTransformations control. For example, you can double-click
PriceAvailTransformations.dtf in the Application pane to display the
Transformation control in Design View. Right click on the convertPriceListToXML
method, and select Goto XQuery Document to open the Transformation tool. Use the
Design View and Source View tabs in the transformation tool to see the data map that
represents the transformation and the corresponding XQuery. Use the Test View tab to
test the XQuery. For example the following figure shows the map for the
convertPriceListToXML() method:

Related Topics

Guide to Data Transformations

Tutorial: Building Your First Data Transformation

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

Tutorial: Building Your First Business Process 11-7

Convert Availability List to XML Quote
Document

Complete the following steps to design a node to transform the availability list (created
as a result of iteration through the For Each loop) to a variable whose data type is
typed-XML. To do so, you use methods on the priceAvailTransformations control.

To Design the Interaction With the Transformation Control

1. Expand the priceAvailTransformations control instance in the Data Palette.
Then click the following method:

AvailQuoteDocument convertAvailListToXML(XmlObjectList
_XmlObjectListDoc)

2. Drag the method from the Data Palette and drop it on your RequestQuote
business process in the Design View, placing it immediately after the Convert
PriceList to PriceQuote XML node.

11 Step 9: Create Quote Document

11-8 Tutorial: Building Your First Business Process

3. Click convertAvailListToXML, press F2, then enter the following to rename the
node: Convert AvailList to AvailQuote XML. Press Enter.

4. Double-click the Convert AvailList to AvailQuote XML node to open its node
builder.

5. Verify that the priceAvailTransformations control and the following method are
selected on the General Settings tab:

AvailQuoteDocument convertAvailListToXML(XmlObjectList
_XmlObjectListDoc)

6. Click Send Data to open the second tab in the node builder.

The Method Expects field is populated with the data type expected by the
convertAvailListToXML() method on the priceAvailTransformations
control: XmlObjectList.

7. On the Send Data tab, under Select variables to assign, click the arrow in the
variable assignment field, and select availList (XmlObjectList).

8. Click Receive Data to open the third tab in the node builder.

The Method Returns field is populated with the data type returned by the
convertAvailListToXML() method on the priceAvailTransformations
control: AvailQuoteDocument.

9. Click the arrow associated with the Select variables to assign field, and click
Create new variable ... to invoke the Create Variable dialog box.

10. In the Variable Name field, enter availQuote.

Tutorial: Building Your First Business Process 11-9

11. In the Select Variable Type field, click the + beside AvailQuote.xsd in the XML
Types list, then select availQuote from the list. The Variable Type field is
populated with org.example.avail.AvailQuoteDocument.

12. Click OK to close the Create Variable dialog box.

13. Click Apply, then Close to save your specifications and close the node builder.

This step completes the design of the Convert AvailList to AvailQuote XML
node. At run time, the availability quote data in XML format are assigned to the
availQuote variable.

Note About the Transformation on This Node

The convertAvailListToXML() method on the priceAvailTransformations control
does the work of creating the availability quote XML data. The input to
convertAvailListToXML() is the availability data returned by the availProcessor
control after the iterations in the For Each node complete.

You can double-click PriceAvailTransformations.dtf in the Application pane to
display the Transformation control in Design View. Right click on
convertAvailListToXML method, and select Go to XQuery Document to open the
Transformation tool. The following figure shows the map for the
convertAvailListToXML() method:

The preceding figure shows the transformation of the data in a variable of type
XmlObjectList (which contains a repeating set of non-typed XML data) to the
repeating element in an XML-typed variable. Note that to achieve this transformation,
the repeating element in the target schema must be the single child of a root element.
In this case, availRequest is the repeating element, and it is the single child of the
availQuote element. Click the Source View tab in the Transformation tool to see the
corresponding XQuery.

11 Step 9: Create Quote Document

11-10 Tutorial: Building Your First Business Process

Combine Price and Availability Quotes

Complete the following tasks:

To Create an Instance of the TutorialJoin Control in Your Project

To Design the Process Interaction With the TutorialJoin Control

To Create an Instance of the TutorialJoin Control in Your Project

The TutorialJoin.dtf control is provided in your tutorial application. It is available
in the requestquote folder in your Tutorial_Process_ApplicationWeb project folder.
To learn how to build the TutorialJoin.dtf control, see Tutorial: Building Your
First Data Tansformation.

Complete the following steps to add an instance of this control to your business
process.

1. If the Data Palette is not visible in WebLogic Workshop, choose
View→Windows→Data Palette from the menu bar.

2. On the Applications pane, click the TutorialJoin.dtf file

3. Drag the TutorialJoin.dtf file from the Applications pane onto the Data Palette.
The instance of your control (tutorialJoin) is created and displayed in the Data
Palette as shown in the following figure:

http://edocs.bea.com/wli/docs81/dttutorial/tutWLIDataTransIntro.html
http://edocs.bea.com/wli/docs81/dttutorial/tutWLIDataTransIntro.html

Tutorial: Building Your First Business Process 11-11

To Design the Process Interaction With the TutorialJoin Control

In this step, you design the business process to call the join (PriceQuoteDocument
arg1, AvailQuoteDocument arg 2, float arg3) method on the tutorialJoin
control. This join method does the work of combining the data returned to your
business process from different systems and creating a single XML response document
(quote), which is subsequently returned to the business process’ client.

1. Expand the tutorialJoin control instance in the Data Palette. Then click the
following method:

QuoteDocument join (PriceQuoteDocument _priceQuoteDoc,
AvailQuoteDocument _availQuoteDoc, float _floatDoc)

2. Drag the method from the Data Palette and drop it on your RequestQuote
business process in the Design View, placing it immediately after the Convert
AvailList to AvailQuote XML node.

3. Rename the node as follows: Combine Price and Avail Quotes.

4. Double-click the Combine Price and Avail Quotes node to open its node
builder. The node builder opens on the General Settings tab.

11 Step 9: Create Quote Document

11-12 Tutorial: Building Your First Business Process

5. Confirm that tutorialJoin is displayed in the Control field, and that the
following method, which you dragged onto the node from the Data Palette, is
selected in the Method field:

QuoteDocument join (PriceQuoteDocument _priceQuoteDoc,
AvailQuoteDocument _availQuoteDoc, float _floatDoc)

6. Click Send Data to open the second tab in the node builder.

The Method Expects field is populated with the data type expected by the join
method on the tutorialJoin control, as shown in the following figure:

7. Under Select variables to assign, select the variables such that their data types
match the data type expected in the input parameters to the join() method.

a. For the case in which the method expects PriceQuoteDocument, choose
priceQuote (PriceQuoteDocument).

priceQuote holds the price quote data, which is returned from the
priceProcessor service in the For Each loop in your business process.

b. For the case in which the method expects AvailQuoteDocument, choose
availQuote (AvailQuoteDocument).

availQuote holds the availability quote data, which is returned from the
availProcessor service in the For Each loop in your business process.

c. For the case in which the method expects float, choose taxRate (float).

taxRate holds the rate of sales tax applied to the quote, based on the
shipping address, which is returned to your business process from the
taxCalculation service.

Tutorial: Building Your First Business Process 11-13

8. Click Receive Data to open the third tab in the node builder.

On the Receive Data tab, the Method Returns field is populated with the data
type returned by the join() method: QuoteDocument.

9. Click the arrow in Select variable to assign, then choose Create new variable...

The Create Variable dialog box is displayed.

10. In the Variable Name field, enter Quote.

11. In the Select Variable Type field, ensure that quote from the list of XML types,
as shown in the following figure:

The Variable Type field is populated with
org.example.quote.QuoteDocument.

12. Click OK to save your new variable. The Quote variable is displayed in the
Receive Data tab, and also in the XML list in the Data Palette.

13. Click Apply, then Close to save your specifications and close the node builder.

This step completes the design of the Combine Price and Avail Quotes node.
At run time, the availability quote data in XML format is assigned to the Quote
variable.

To complete Part III of the tutorial, it only remains to write the quote to your file
system (an optional step), and to create the Client Response node in your
business process. The business process returns the quote you created to the client
via the Client Response node.

Step 10: Write Quote to File System

Step 11: Send Quote From Business Process to Client

11 Step 9: Create Quote Document

11-14 Tutorial: Building Your First Business Process

Related Topics

To learn how to create Transformation controls, and specifically to learn how to design
the TutorialJoin.dtf control used in this section, see Tutorial: Building Your First
Data Tansformation.

../dttutorial/tutWLIDataTransIntro.html

../dttutorial/tutWLIDataTransIntro.html

Tutorial: Building Your First Business Process 12-1

CHAPTER

12 Step 10: Write Quote to
File System

Complete this step if you want to create a node, at which your business process writes
the quote created in the preceding step to your file system. A File control makes it easy
to read, write, or append to a file in a file system.

Complete the following tasks to design your business process to write the combined
price and availability quote to your file system:

To Create an Instance of a File Control in Your Project

To Design a Control Send Node in Your Business Process to Interact With Your
File Control

To Create an Instance of a File Control in Your Project

In this scenario, you add one instance of the File control to your business process.

1. Click Add on the Data Palette Controls tab to display a list of controls that
represent the resources with which your business process can interact.

2. Click Integration Controls, then choose File. The Insert Control dialog box is
displayed.

3. In the Insert File Control dialog box:

a. In Step 1, enter myFileQuote as the variable name for this control.

b. In Step 2, ensure that the following option is selected: Create a new File
control to use. Then, enter MyFileQuote in the New JCX name field.

12 Step 10: Write Quote to File System

12-2 Tutorial: Building Your First Business Process

c. In Step 3, enter values in the following fields:

directory-name—Enter the location in which you want the File control to
write the file. You can use any location on your file system.

file-mask—Enter a name for the file. For example, enter quote.xml.

file-type—Select XmlObject from the drop-down list.

d. Click Create to close the Insert Control dialog box.

An instance of a File control, named myFileQuote, is created in your project
and displayed in the Controls tab.

4. Select File→Save to save your work.

Note: In the simple case, each instance of the File control allows you to manipulate
a separate file. To learn about how your File control can operate on multiple
files, see File Control.

To Design a Control Send Node in Your Business Process to Interact With
Your File Control

1. Expand the myFileQuote control instance in the Data Palette. Then click the
following method:

FileControlPropertiesDocument write(com.bea.xml.XmlObject
someData)

2. Drag the method from the Data Palette and drop it on your RequestQuote
business process in the Design View, placing it immediately after the Combine
Price and Avail Quotes node (and immediately before the Finish node). The
node is named write by default.

3. Rename the node, replacing write with Write Quote to File.

4. Double-click the Write Quote to File node to open its node builder on the
General Settings tab.

5. Confirm that myFileQuote is displayed in the Control field and that the
following method is selected in the Method field:

FileControlPropertiesDocument write(com.bea.xml.XmlObject
someData)

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsFile.html

Tutorial: Building Your First Business Process 12-3

6. Click Send Data to open the second tab in the node builder. The Method
Expects field is populated with the data type expected by the write() method:
XmlObject someData.

7. In the Select variables to assign field, click the arrow to display the list of
variables in your project. Then choose Quote (QuoteDocument). (Remember,
you created the Quote variable to hold the quote in Step 9: Create Quote
Document.)

8. Click Apply.

Note: The node builder for this node contains a Receive Data tab. You can use
this tab to specify a variable to which the data returned by the File control
is assigned. For the purposes of this tutorial scenario, it is not required that
you specify this variable. You can ignore the Receive Data tab, and
proceed to the next step. That is, apply the changes you made on the
General Settings and Send Data tabs and close the node builder.

To learn how to specify a variable on the Receive Data tab, and a scenario
in which you might subsequently use the variable, see Note About File
Control Properties.

9. Click Close.

This step completes the design of your File control node. At run time, the quote
document you created in Step 9: Create Quote Document is written to your file
system in the location specified by you.

Note About File Control Properties

This section provides additional steps you can use to further define the Write Quote
to File node you created in the preceding section. You are not required to complete the
steps in this section to complete the tutorial. The steps are provided to help you
understand and use the File Control Properties returned to your business process by
the File control’s FileControlPropertiesDocument
write(com.bea.xml.XmlObject someData) method.

When you use a File control to write a file to the file system as you do in this step, the
control returns information about the file you wrote. The information is returned in a
document of type XML: FileControlPropertiesDocument. The

12 Step 10: Write Quote to File System

12-4 Tutorial: Building Your First Business Process

FileControlPropertiesDocument is valid against an XML Schema:
DynamicProperties.xsd. The Schema is provided for you in the Schemas project in
your tutorial application. (See the Schemas project in the Application tab.)

To Assign File Control Properties to a Variable in Your Business Process

The following steps describe how to design the Write Quote to File node in your
business process to include assigning a variable to which the File Control Properties
are assigned:

1. Complete steps 1 through 7 as described in To Design a Control Send Node in Your
Business Process to Interact With Your File Control.

2. Click Receive Data to open the third tab in the node builder. The Method
Expects field is populated with the data type returned by the write() method:
FileControlPropertiesDocument.

3. In the Select variables to assign field, click the arrow to display the list of
variables in your project. Then choose create new variable...

The Create Variable dialog box opens and displays a representation of the
DynamicProperties.xsd in the Select Variable Type pane. (The Dynamic
Properties.xsd is available in the Schemas project in your application. To learn
about the dynamic properties for your File control, see Note About File Control
Properties.)

4. In the Variable Name field, enter fileProperties.

5. In the Select Variable Type pane, select FileControlProperties.

6. Click Apply, then Close.

Tutorial: Building Your First Business Process 12-5

This step completes the design of your File control node. At run time, the quote
document you create in Step 9: Create Quote Document is written to your file system
in the location specified by you. Information about the file you wrote is returned to the
RequestQuote business process, and assigned to the fileProperties variable you
created.

Note: The Dynamic Properties.xsd XML Schema must be available in a Schemas
project in your application before you can create a variable to hold the file
control properties returned to your business process from the File control.
Dynamic Properties.xsd is one of the system schemas available to you when
you create WebLogic Integration applications in WebLogic Workshop. To
create a project that contains system schemas in your application, choose
File→New→Project from the WebLogic Workshop menu to open the New
Project dialog box. Select Schema in the left pane, then WLI System
Schemas in the right pane. Enter a name for your project in the Project name
field and click Create.

To Use the File Control Properties in Your Business Process

In the preceding steps, you assigned the data returned from the File control to a
variable named fileProperties. You can derive information about the file you wrote
from fileProperties.

Click the Source View tab to view your RequestQuote.jpd file in Source View. By
completing the steps described in the preceding section, the following code is written
in your JPD file in keeping with the work you did in the Design View.

The fileProperties variable declaration is shown in the following listing:

public com.bea.wli.control.dynamicProperties.FileControlPropertiesDocument
fileProperties;

The write() method on the myFileQuote control is shown in the following listing:

public void myFileQuoteWrite() throws Exception
 {
 //#START: CODE GENERATED - PROTECTED SECTION - you can safely add code
above this comment in this method. #//

 // input transform
 // method call

 this.fileProperties = myFileQuote.write(this.Quote);

 // output transform
 // output assignments

12 Step 10: Write Quote to File System

12-6 Tutorial: Building Your First Business Process

 //#END: CODE GENERATED - PROTECTED SECTION - you can safely add code below
this comment in this method. #//
 }

You can edit this method (outside the PROTECTED SECTION of code) to derive
information from the fileProperties variable. For example, the following line of code
returns the FileMask:

this.fileProperties.getFileControlProperties().getFileMask()

You can for example edit the public void fileQuoteWrite() method in Source
View to include the line of code shown in bold in the following listing:

 :
 :

//#END: CODE GENERATED - PROTECTED SECTION - you can safely add code below this
comment in this method. #//

System.out.println ("The RequestQuote Process logged the quote in the following
file >>>
" + this.fileProperties.getFileControlProperties().getFileMask());

}

Note that you must add the code after the PROTECTED SECTION comment. Code
completion in the Source View helps you write the code. When you switch back to the
Design View, note that the Write Quote to File node changes to include the following

icon: . This is a visual reminder that you edited the code associated with this node
in the Source View.

When you run the business process, the name you gave the file (the FileMask) is
printed to the console.

Related Topics

File Control

Using Controls to Interact with Resources

How Do I: Create a Schemas Project?

How Do I: Import Files into a Schemas Project?

http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasCreate.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsFile.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasImport.html

Tutorial: Building Your First Business Process 13-1

CHAPTER

13 Step 11: Send Quote
From Business Process
to Client

A business process must be able to send and receive messages to and from its clients.
You designed your business process to receive messages from a client in Step 2:
Specify How the Process is Started. This section describes how to add operations that
send messages from your business process to a client, that is, how to design Client
Response nodes.

This step describes the following tasks:

To Add a Client Response Node to Your Business Process

To Design Your Send Quote Node

To Add a Client Response Node to Your Business Process

1. On the Application pane, click RequestQuote.jpd to ensure that your business
process is displayed in Design View.

2. Click Client Response in the Palette. Then drag and drop the node onto the
Design View, placing it on the business process immediately before your Finish
node. Design View is updated to contain the Client Response node.

3. Change the name of the node from Client Response to Send Quote.

13 Step 11: Send Quote From Business Process to Client

13-2 Tutorial: Building Your First Business Process

To Design Your Send Quote Node

The following section describes how to complete the design of the interaction with
clients for this business process. Specifically, at this point in the process, the business
process sends a quote containing price and availability information to clients.

In this step, you specify the structure of documents that your business process sends to
clients from this node.

1. Double-click the Send Quote node in your business process.

2. In the General Settings tab, change the name in the Method Name field from
clientResponse to quoteResponse.

3. Click Add to display the panel of data types.

Note: In the Combine Price and Avail Quotes node, you created an XML
variable to hold the quote. This data assigned to this variable is valid
against the Quote.xsd Schema. Therefore we are concerned with XML
Types at this node.

4. Select XML.

a. In the list of data types displayed, click the + beside XML Types to see a list of
XML Schemas in your project.

b. Expand Quote.xsd in the list to display a graphical representation of the XML
Schema defined by Quote.xsd.

c. Click the quote node. The Type field is populated with
org.example.quote.QuoteDocument.

d. In the Name field, replace x0 with responseXML. In this way, you name the
parameter that returns the QuoteDocument.

Tutorial: Building Your First Business Process 13-3

5. Click OK. The QuoteDocument responseXML parameter is added to the
General Settings tab in the node builder and the General Settings tab is marked
complete:

6. Click the Send Data tab. A tab that allows you to define one or more variables to
hold the data your business process sends to clients is displayed.

The Method Expects field is populated with the data type and the name of the
parameter you specified on the General Settings tab: QuoteDocument
responseXML

7. Under Select variables to assign, select the Quote (QuoteDocument) variable.

8. Click Apply, then Close to close the Client Response node builder.

In Design View, note that by completing the tasks in the node builder, the
completeness icon associated with the Send Quote node changed from to
indicating that the design of the node is complete.

9. Select File→Save to save your work.

This step completes the design of your RequestQuote business process. To run it,
proceed to Step 12: Run the Request Quote Business Process.

13 Step 11: Send Quote From Business Process to Client

13-4 Tutorial: Building Your First Business Process

Tutorial: Building Your First Business Process 14-1

CHAPTER

14 Step 12: Run the
Request Quote
Business Process

You can run and test the functionality of the business process you created using
WebLogic Workshop’s browser-based interface. Using the Workshop Test Browser,
you play the role of the client, invoking the methods on the business process and
viewing the responses.

To Launch the Test Browser

1. In the Application pane, select RequestQuote.jpd—the business process you
want to test.

2. If it not already selected, select the Design View tab. The business process you
selected in the Application pane is displayed in Design View.

3. If it is not already running, start WebLogic Server. To do so, choose
Tools→WebLogic Server→Start WebLogic Server from the WebLogic
Workshop menu.

If WebLogic Server is running, the following indicator is visible in the status bar
at the bottom of the WebLogic Workshop visual development environment:

4. From the WebLogic Workshop menu, click Build→Build Application.
WebLogic Workshop builds your application.

14 Step 12: Run the Request Quote Business Process

14-2 Tutorial: Building Your First Business Process

5. When the build is complete, click the Start button on the menu bar to run
your business process. The Workshop Test Browser is launched, through which
you can test your business process using sample input values.

6. Click the Test Form tab to open the Test Form page.

You can enter data that your business process can receive as part of a client
request directly on the Test Form page. Alternatively, you can browse your file
system and upload a file which contains your test data. In this case, test XML
data are provided in the tutorial application for you to use.

7. Click Browse beside the xml requestXML (file value) field to open the file
browser.

8. Select QuoteRequest.xml from the testxml folder in your project
(Tutorial_Process_ApplicationWeb\requestquote\testxml\QuoteRequ
est.xml).

Note: The QuoteRequest.xml file is available at the following location in your
file system: myapplications\Tutorial_Process_Application\
Tutorial_Process_ApplicationWeb\requestquote\testxml\Quo

teRequest.xml.

In the preceding line, myapplications represents the location in which
you created your Tutorial_Process_Application application.

9. Click the button labeled with the method name on your business process
(quoteRequest) to invoke the method. The Test Form page refreshes to display a
summary of your request parameters and the response from the external services
in the Message Log:

Tutorial: Building Your First Business Process 14-3

As is the case in this scenario, for business processes that involve multiple
communications with clients, or communications with resources such as other
Web services, the Message Log at the left of the Test Form page displays an
entry for each call to a method or a response from the service so that you can
view the data for each.

Note that the sequence of calls displayed in the Message Log when you run
your business process may be different from the sequence shown in the
preceding figure. In your Message Log, you should see the following calls:

a. The quoteRequest call you made to invoke the business process.

b. A call to and a response from the tax calculation service.

c. Three sets of price request and responses and three sets of availability request
and responses—a total of 12 messages. Because the requests to the price and
availability services are made in parallel, the requests and responses can be in
a different order each time you run your process. However, the For Each loop
ensures that the processing for a given line item (in this case, for each
widgetID) is completed before the next line item is processed.

d. The quoteResponse call from the business process to the client that invoked.

10. Click any log entry to see the details of that interaction. For example, if you click
priceProcessor.returnPrice, the browser displays the message returned from the
priceProcessor during one iteration through the For Each loop.

11. When the business process finishes, a message similar to the following is
displayed in the Message Log:

Instance instanceID is Completed.

where instanceID represents the ID generated when the quoteRequest method
in your business process was called.

12. If you included a call to a File control in your business process, as described in
Step 10: Write Quote to File System, a file containing the quote document is
created in the location in your file system that you specified when you designed
the interaction between your business process and the File control.

Note: If you are running the RequestQuote.jpd business process provided for
you when you created your Tutorial_Process_Application application for
the first time, the File control writes a file named quote.xml to your
working directory. In this case, the working directory is the directory in

14 Step 12: Run the Request Quote Business Process

14-4 Tutorial: Building Your First Business Process

which the integration server is running:
BEA_HOME\weblogic81\samples\domains\integration.

13. You can click Graph on the Message Log panel to display a graphical
representation of your running process.

14. To stop the Test Browser, you can simply close it, or return to WebLogic

Workshop and click on the menu.

To Monitor Instances of Your Business Process

You can use the WebLogic Integration Administration Console to monitor running
processes or view statistics for processes that already ran.

Click Monitor on the Message Log pane to open the WebLogic Integration
Administration Console in a Web Browser. When you use the sample integration
server, as you do in this scenario, login using username = weblogic and
password = weblogic. The WebLogic Integration Administration Console allows
you to administer and manage your WebLogic Integration applications. For
example, if you click Process Instance Monitoring on the console’s home page,
you access a Process Instance Statistics page. This page displays a summary of
business process instances grouped by the process type. To view the instances of
a process type that ran or are running on your server, click the process name.
Processes instances are identified by their instanceID. Note that the instanceID
displayed for your RequestQuote business process matches the instanceID
displayed on the Message Log pane (see the preceding figures in this topic).

Click Monitor all RequestQuote.jpd processes at the top of the Test Form to
open the WebLogic Integration Administration Console. Login using the default
username and password for the sample integration server: weblogic/weblogic.
When you use this link to open the Administration Console, it opens on the
Process Instance Summary page, which displays a summary of all the
instances of business processes that ran or are running. It allows you to:

View process instance statistics, including the number of instances in each
state (running, suspended, aborted, and completed).

View the summary or detailed status for selected instances.

Suspend, resume, or terminate, selected instances.

Tutorial: Building Your First Business Process 14-5

Note: You can also invoke the WebLogic Integration Administration Console in one
of the following ways:

From your WebLogic Workshop Tools menu:

Tools→WebLogic Integration→WebLogic Integration Administration
Console

By entering the following URL in a Web browser:

http://localhost:7001/wliconsole

The default username and password is weblogic/weblogic for the sample integration
server.

To learn about using the WebLogic Integration Administration Console, see the
console’s online help and Managing WebLogic Integration Solutions.

Related Topics

Managing WebLogic Integration Solutions

Understanding the Service URL

Understanding the Overview and Console Tabs

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTest.html
http://edocs.bea.com/wli/docs81/manage/index.html
http://edocs.bea.com/wli/docs81/manage/index.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/reference/ui/navTestView.html

14 Step 12: Run the Request Quote Business Process

14-6 Tutorial: Building Your First Business Process

Tutorial: Building Your First Business Process

Part IV Using the Message
Broker

Part IV is comprised of Steps 13 through 15. You build on the business process you created in
Part III.

The Message Broker provides a publish and subscribe message-based communication model for
WebLogic Integration business processes, and includes a message filtering capability. In this
scenario, your RequestQuote business process publishes the Request for Quote message it
receives from a client to a Message Broker channel. A number of services, which validate the
Request for Quote in some way, can subscribe to that channel. If the request is determined to be
invalid by one of these services, that service publishes a message on a second Message Broker
channel, to which the RequestQuote process is subscribed. If the running RequestQuote process
receives such a message, it is terminated and a message is sent to the client indicating why the
quote is not processed.

One external service that validates the Request for Quote, and a Channel file that specifies two
Message Broker channels are provided for you to support the tutorial scenario. You learn about
creating Message Broker channels, publishing and subscribing to those channels, and designing
your business process to handle the receipt of an out-of-bound message that causes it to terminate.

To learn about the WebLogic Integration Message Broker, see Introducing the Message Broker.
For a description of the scenario modeled in this part of the tutorial, see Understanding the
Validation Service Scenario.

The steps in Part IV include:

Step 13: Publish and Subscribe to Message Broker Channels
Build on the business process you created in Parts I through III of the tutorial by
designing nodes in your RequestQuote business process that specify how the business

process publishes the Request for Quote to a Message Broker channel and how it
subscribes to a Message Broker channel.

Step 14: Designing a Message Path for Your Business Process
Add a message path to handle the callback from the Message Broker channel to which
your business process is subscribed, and specify the actions taken by the RequestQuote
process when such a callback is received.

Step 15: Run and Test the Request Quote Business Process With the Quote Validation Service
Run and test your expanded Request for Quote business process.

Introducing the Message Broker

The Message Broker provides typed channels, to which messages can be published, and to which
services can subscribe to receive messages. Subscribers to Message Broker channels can filter
messages on the channels using XQuery filters. WebLogic Integration supports a mapping tool
that allows you to create the XQuery filters. Business processes can filter documents on channels,
based on the type of document, or on a specific instance of a document type. For example, you
can design a filter that filters on all stock symbol documents, or one that filters on a specific
purchase order number within an instance of a document.

Two Message Broker controls are available when you build WebLogic Integration applications:
Message Broker (MB) Publish and Message Broker (MB) Subscription. Your business
process uses a MB Publish control to publish messages to channels and a MB Subscription
control to dynamically subscribe to channels and receive messages. You bind the Message Broker
channel to the MB Publish control when you declare the control, but it can be overridden
dynamically. When you create an instance of a MB Subscription control for your business
process, you bind the channel and optionally, an XQuery expression for filtering messages.
However, in the case of a MB Subscription control, the bindings cannot be overridden
dynamically. In addition to the dynamic subscriptions you design at Control nodes in your
business process, you can design static subscriptions at Start nodes. A business process that is
subscribed to a Message Broker channel at its Start node starts when a message is received on the
channel to which it is subscribed.

To learn more about using the Message Broker controls in WebLogic Integration applications,
see Message Broker Controls.

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsBroker.html.

Understanding the Validation Service
Scenario

A service that validates a Request for Quote and a channel file that defines two Message Broker
channels are provided for you in the tutorial application. The validation service is a process
(ValidateOrder.jpd) that subscribes to a Message Broker channel named ValidateOrder. It
validates the client’s Request for Quote based on the number of widgets requested.
ValidateOrder.jpd starts when a Request for Quote message is published to the
ValidateOrder Message Broker channel. If the Request for Quote is determined to be invalid (in
this scenario, if the number of widgets requested is greater than 400), the ValidateOrder.jpd
process publishes a message to a second Message Broker channel (named StopQuote). Your
RequestQuote business process subscribes to the StopQuote Message Broker channel—when it
receives the message from that channel, the RequestQuote business process is terminated.

The following figure outlines the flow of execution at run time for the RequestQuote business
process you build in Part IV and the interaction with the ValidateOrder business process:

The interactions between the business processes via the Message Broker channels is indicated by
the numbers in the figure. The following steps describe the flow:

1. Your RequestQuote business process publishes the Request for Quote message to the
ValidateOrder Message Broker channel.

2. The ValidateOrder business process starts when it receives a message on the
ValidateOrder channel to which it is subscribed.

3. If the ValidateOrder business process determines that the order in the Request for Quote
message is invalid, it publishes a message to the StopQuote Message Broker channel.

4. The RequestQuote business process subscribes to the StopQuote Message Broker channel
and receives the message from the channel on the onMessage path. A response is sent to the
client from the Deny Quote node on the onMessage path, and the RequestQuote business
process is terminated.

Proceed to the next topic to start the steps included in Part IV of the tutorial.

Tutorial: Building Your First Business Process 15-1

CHAPTER

15 Step 13: Publish and
Subscribe to Message
Broker Channels

You create nodes in your RequestQuote business process: one that publishes to the
ValidateOrder Message Broker channel and one that subscribes to the StopQuote
Message Broker channel. Subsequently, you create a message path on your business
process. On the message path, you create the logic to handle the callback from the
channel (StopQuote) to which the ValidateOrder service posts a message. That logic
specifies that the RequestQuote business process terminates after it receives a
callback from the channel to which it is subscribed.

This step includes the following tasks:

To Publish the Request for Quote Message to a Message Broker Channel

To Subscribe to a Message Broker Channel to Receive Messages from a
Validation Service

To Publish the Request for Quote Message to a Message Broker Channel

You must first create a Message Broker Publish control in your project, then bind a
method from the control to a node in your business process. Complete the following
steps:

1. In the Application pane, click RequestQuote.jpd to ensure that it is displayed in
the Design View.

2. If the Data Palette is not visible in WebLogic Workshop, click
View→Windows→Data Palette from the menu bar.

15 Step 13: Publish and Subscribe to Message Broker Channels

15-2 Tutorial: Building Your First Business Process

3. On the Data Palette Controls tab, click Add→Integration Controls→MB
Publish. The Insert Control dialog box is displayed.

4. In Step 1, enter mbPubValidate as the variable name for this control.

5. In Step 2, select Create a new MB Publish control to use. In the New JCX
name field, enter MBPubValidate.

6. In Step 3, click the arrow associated with the channel-name field to display the
channels available in your application: /TutorialPrefix/Tutorial/ValidateOrder
and /TutorialPrefix/Tutorial/StopQuote. Select
/TutorialPrefix/Tutorial/ValidateOrder. This specifies the channel to which
your business process publishes the Request for Quote messages it receives from
clients.

Note: If the channels are not available for you to select in the channel-name
field, you must build your Schemas project. To do so, first click Cancel in
the Insert Control dialog box to close it. Then right-click on the Schemas
folder in the Application tab and choose Build Schemas from the
drop-down menu. When the Schemas project finishes building, click
Add→Integration Controls→MB Publish on the Data Palette Controls
tab to open the Insert Control dialog box. Repeat steps 4 through 6, as
described above. The channels are now available in the channel-name
field. (The channel files that define Message Broker channels in your
application are located in a Schemas project, and must be built in that
project for them to be available in your application. To learn how the

Tutorial: Building Your First Business Process 15-3

ValidateOrder channel is defined, see Understanding the Message Broker
Channels in Your Tutorial Application.)

The message type field is populated with the data type of the message that is
published to the ValidateOrder channel:
org.example.request.QuoteRequestDocument.

7. Click Create to create an instance of the MB Publish control in your project. The
Insert Control dialog box is closed, the mbPubValidate.jcx file is created and is
visible in the Application pane. The instance of the mbPubValidate control you
created is displayed in the Data Palette:

8. In the Data Palette, click the following method in the mbPubValidate control:

void publish(QuoteRequestDocument value)

9. Drag and drop the method onto the RequestQuote business process in the Design
View, placing it immediately after the Client Requests Quote Start node.

A Control Send node is created. By default, the node is named publish.

10. Double click the publish node to open its node builder. The node builder opens
on the General Settings tab—the mbPubValidate control and the void publish
(QuoteRequestDocument value) method are already selected.

15 Step 13: Publish and Subscribe to Message Broker Channels

15-4 Tutorial: Building Your First Business Process

11. Click Send Data to open the second tab in the node builder, in which you can
specify the message to be published to the ValidateOrder Message Broker
channel. The Method Expects field is populated with the data type of the
parameter expected by the control: QuoteRequestDocument.

12. In the Select variables to assign field, click the arrow to display the variables in
your project. Then select requestXML (QuoteRequestDocument).

Recall that when you designed the Start node for your business process at the
beginning of the tutorial, you assigned the Request for Quote messages from
clients to the requestXML variable.

13. Click Apply, then Close to save your specifications and close the node builder
for the publish node.

To Subscribe to a Message Broker Channel to Receive Messages from a
Validation Service

You must create a Message Broker Subscription control in your project, then bind a
method from the control to a node in your business process. Using the Message Broker
Subscription control, your process subscribes to a channel on which Validation
services can publish messages if the Request for Quote from the client is invalid. In the
tutorial scenario, a ValidateOrder service determines that a Request for Quote is
invalid if the number of widgets requested by a client is greater than 400. Complete the
following steps:

1. Ensure that the RequestQuote business process is displayed in the Design View.

2. On the Data Palette Controls tab, click Add→Integration Controls→MB
Subscription. The Insert Control dialog box is displayed.

Tutorial: Building Your First Business Process 15-5

3. In Step 1, enter mbSubValidate as the variable name for this control.

4. In Step 2, select Create a new MB Subscription control to use. In the New
JCX name field, enter MBSubValidate.

5. In Step 3, two channels are available in the channel-name field: ValidateOrder
and StopQuote. Select StopQuote. This specifies the channel to which your
business process subscribes. (It is also the channel to which the ValidateOrder
service publishes messages when it determines that a Request for Quote is
invalid.)

Note: The message type field is populated with the data type of the message that
is published to the StopQuote channel: java.lang.String. To learn how the
StopQuote channel is defined, see Understanding the Message Broker
Channels in Your Tutorial Application.

6. Click Create to create an instance of the MB Subscription control in your
project. The Insert Control dialog box is closed, the mbSubValidate.jcx file is
created and is visible in the Application pane. The instance of the
mbSubValidate control you created is displayed in the Data Palette:

tutWLIProcessChannels.html
tutWLIProcessChannels.html

15 Step 13: Publish and Subscribe to Message Broker Channels

15-6 Tutorial: Building Your First Business Process

7. In the Data Palette, click the following method in the mbSubValidate control:

void subscribe()

8. Drag and drop the method onto the RequestQuote business process in the Design
View, placing it immediately after the publish node.

A Control Send node is created. By default, the node is named subscribe. Note
that the indicates that the specifications on this node are complete—no
further work is required to design this node.

Note: Message Broker Subscription controls do not define callback methods for you.
You must define a custom callback to specify how the business process
expects to receive the event messages. To define the callback for your business
process, proceed to Step 14: Designing a Message Path for Your Business
Process.

This step completes the design of the nodes that specify how your RequestQuote
process publishes and subscribes to Message Broker channels.

Tutorial: Building Your First Business Process 15-7

Related Topics

Understanding the Message Broker Channels in Your Tutorial Application

Message Broker Controls

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsBrokerOview.html

15 Step 13: Publish and Subscribe to Message Broker Channels

15-8 Tutorial: Building Your First Business Process

Tutorial: Building Your First Business Process 16-1

CHAPTER

16 Step 14: Designing a
Message Path for Your
Business Process

In this step, you create a message path on your business process that specifies the logic
to handle a callback from the channel to which the ValidateOrder service posts a
message.

In this case, you associate the Message path you create with the Start node in your
business process. It is also possible to associate Message paths with individual nodes
or groups of nodes. For the case in which a Message path is associated with the Start
node, the logic defined within the path applies to the entire business process in the
event a message is received on this path. The logic defined for paths associated with
individual nodes or groups of nodes applies to those individual or groups of nodes.
(The same is true for Exception paths and Timeout paths created on business process
Start nodes.) To learn more about Message, Exception, and Timeout paths for business
processes, see Related Topics.

This step includes the following tasks:

To Create a Message Path on Your Business Process That Handles Messages
Routed via a Channel to Which Your Process is Subscribed

To Design a Node to Receive the Message Event From the StopQuote Channel

To Specify the Behavior of Your Business Process in the Event the Message
Path is Triggered

To Design a Node to Send a Message to Clients in the Event the Business
Process Receives a StopQuote Message via the StopQuote Channel

16 Step 14: Designing a Message Path for Your Business Process

16-2 Tutorial: Building Your First Business Process

To Create a Message Path on Your Business Process That Handles Messages
Routed via a Channel to Which Your Process is Subscribed

In this step, you learn how to create a message path on your business process that
handles the following tasks:

Receives the message event from the StopQuote Message Broker channel to
which your process is subscribed.

For the case in which a message is received from the StopQuote channel, sends
a message to the client from which the Request for Quote originated, and
terminates the Request for Quote business process.

Message paths can be associated with individual nodes or groups of nodes that contain
a blocking element, or with the business process (global). In this case, you design a
global message path for the business process. To do so, you specify the message path
at the Start node. You specify the run-time behavior of the process in the event the
message path is executed.

To Design a Node to Receive the Message Event From the StopQuote Channel

1. Ensure that the RequestQuote business process is displayed in the Design View.

2. Right click the Start node: Then choose Add Message Path from the
drop-down menu. A path, which contains a placeholder for the event that invokes
the path at run time, is created to the right of the Start node in the Design View:

Note: The Message Broker Subscription control you created in Step 13 does not
define callback methods for you. You design a Control Receive node on
this message path to define a custom callback that specifies how the
business process expects to receive the event messages from the
StopQuote channel to which it is subscribed.

Tutorial: Building Your First Business Process 16-3

3. Double-click the Starting Event node on the message path to display the types of
nodes you can choose for this path.

4. Choose A Control Receive to specify that this path waits to receive a message
from a control. A Control Receive node is added to the OnMessage path.

5. In the Data Palette, click the following method in the mbSubValidate control:

void onMessage(String message)

6. Drag and drop the method onto the message path (OnMessage) in the Design
View, placing it on the Control Receive node.

The Control Receive node in the OnMessage path changes to reflect the
binding of the Subscription control method: the node is named onMessage and
the Start node icon reflects a Message Broker Subscription control. Your
message path should resemble that displayed in the following figure:

7. Double click the onMessage node to open its node builder. The node builder
opens on the General Settings tab—the mbSubValidate control and its void
onMessage (String message) method are already selected.

8. Click Receive Data to open the second tab in the node builder, in which you can
assign a variable to which the message received from the StopQuote channel is
stored. The Method Expects field is populated with the data type of the
parameter expected by the control: String.

9. In the Select variables to assign field, click the arrow to display the variables in
your project. Then select Create new variable... to open the Create Variable
dialog box.

10. In the Variable Name field, enter stopQuote.

16 Step 14: Designing a Message Path for Your Business Process

16-4 Tutorial: Building Your First Business Process

11. In the Select Variable Type pane, ensure that String in the list of Java Types.
The Variable type field is populated with java.lang.String.

12. Click OK. The stopQuote variable is created and is displayed in the Data
Palette Variables tab.

13. Click Apply, then Close in the onMessage node builder to complete the
assignment of the message from the StopQuote Message Broker channel to the
stopQuote variable.

This step completes the design of the callback handler that handles a message
event on the StopQuote channel to which your RequestQuote business process
is subscribed.

To Design a Node to Send a Message to Clients in the Event the Business
Process Receives a StopQuote Message via the StopQuote Channel

1. Ensure that your RequestQuote business process open in the Design View.

2. Click Client Response in the Palette. Then drag and drop the node onto the
Design View, placing it on the message path, immediately after the onMessage
subscription node, in the Design View. The Design View is updated to contain
the Client Response node.

3. Change the name of the node from Client Response to Deny Quote.

4. Double-click the Deny Quote node to open its node builder.

Tutorial: Building Your First Business Process 16-5

5. In the General Settings tab, change the name in the Method Name field from
clientResponse1 to denyQuote.

6. Click Add to display the panel of data types.

Note: In the preceding step, you created a variable of type String to hold the
message received from the ValidateOrder service, via the StopQuote
channel. This is the message your RequestQuote business process sends
to clients in the event that the Request for Quote is invalid. Therefore we
are concerned with Java Types at this node.

7. Select Java. Then in the list of Java Types, select String. The Type field is
populated with java.lang.String.

8. In the Name field, replace the default x0 by entering stopQuote and click OK.

9. Click the Send Data tab to open the tab that allows you to assign the variable that
holds the data your business process sends to clients. The Method Expects field
is populated with the data type you specified on the General Settings tab:
String.

10. Under Select variables to assign, select stopQuote (String).

11. Click Apply, then Close to close the Client Response node builder.

In Design View, note that by completing the tasks in the node builder, the
completeness icon associated with the Send Quote node changed from to
indicating that the design of the node is complete.

12. Select File→Save to save your work.

16 Step 14: Designing a Message Path for Your Business Process

16-6 Tutorial: Building Your First Business Process

To Specify the Behavior of Your Business Process in the Event the Message
Path is Triggered

In this step you learn how to specify the run-time behavior of your business process in
the event this message path is triggered. To do so, you use the Property Editor to set
the after execute property for your message path.

1. Click the OnMessage path icon in the Design View:

2. If the Property Editor is not visible in WebLogic Workshop, select
View→Property Editor from the menu bar. The Property Editor displays
properties for the OnMessage path.

Note the following properties for the OnMessage path:

name—Displays the name of the message path: OnMessage. Click on this
property if you want to enter a new name for the path.

notes—You can click on ... in the notes field to invoke a text editor in which
you can add text. For example, you can use it to document something about
this node.

after execute—Specifies the behavior of the business process when this
message node is activated at run time. skip is specified by default.

Valid options for this property include skip and resume—they are described
here for completeness. In our scenario, you should not change the default
specification.

skip—Specifies that after execution of the message path, the process engine
skips the node or group with which the message path is associated. That is,
resume execution of the process at the node following the node or group for
which the message path is defined. In the special case of a global message
path, that is one defined for the business process on the Start node, the
process is terminated after execution of the message path.

resume—Specifies that after execution of the message path, the process
engine resumes execution of the business process at the node that was

Tutorial: Building Your First Business Process 16-7

executing when the message was received. That is, the process state returns
to what it was before the message path executed and the On Message port is
still active.

retry count—Specifies how many times the process engine retries to execute
the nodes contained in the Message path after the first attempt to execute
them and before the after execute path is taken. 0 is specified by default.

This step completes the design of the message path on your RequestQuote business
process.

By completing this section you created the logic that allows your RequestQuote
business process to publish the Request for Quote message is receives from clients to
a Message Broker channel, to which a validation service is subscribed. You also
created a dynamic subscription to another Message Broker channel to allow your
RequestQuote business process to receive messages published by the validation
service.

To run your the business process you created by following the steps in Part IV of this
tutorial, proceed to Step 15: Run and Test the Request Quote Business Process With
the Quote Validation Service.

Related Topics

To learn about designing Message paths, Exception paths, and Timeout paths for your
business process, see the following topics in Guide to Building Business Processes:
Handling Exceptions, Adding Message Paths, and Adding Timeout Paths.

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideException.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideMessage.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTimeout.html

16 Step 14: Designing a Message Path for Your Business Process

16-8 Tutorial: Building Your First Business Process

Tutorial: Building Your First Business Process 17-1

CHAPTER

17 Step 15: Run and Test
the Request Quote
Business Process With
the Quote Validation
Service

You can run and test the functionality of the business process using WebLogic
Workshop’s browser-based interface, in the same way you ran and tested the business
process you created when you finished Part III of the tutorial.

To Launch the Test Browser

1. In the Application pane, select RequestQuote.jpd.

2. If it not already selected, select the Design View tab. The business process you
selected in the Application pane is displayed in Design View.

3. If it is not already running, start WebLogic Server. To do so, choose
Tools→WebLogic Server→Start WebLogic Server from the WebLogic
Workshop menu.

If WebLogic Server is running, the following indicator is visible in the status bar
at the bottom of the WebLogic Workshop visual development environment:

17 Step 15: Run and Test the Request Quote Business Process With the Quote Validation

17-2 Tutorial: Building Your First Business Process

4. From the WebLogic Workshop menu, click Build→Build Application.
WebLogic Workshop builds your application.

5. Click the Start button on the menu bar to run your business process. The
Workshop Test Browser is launched, through which you can test your business
process using sample input values.

6. Click the Test Form tab to open the Test Form page.

You can enter data that your business process can receive as part of a client
request directly on the Test Form page. Alternatively, you can browse your file
system and upload a file which contains your test data. In this case, test XML
data are provided in the tutorial application for you to use.

7. Click Browse beside the xml requestXML (file value) field to open the file
browser.

8. Select QuoteRequest_a.xml from the testxml folder in your project
(Tutorial_Process_ApplicationWeb\requestquote\testxml\QuoteRequ
est_a.xml).

Note: QuoteRequest_a.xml contains test data that specify an order for a
quantity of widgets of 400 or more. This data is designed to fail the
validation check carried out by the ValidateOrder business process.

9. Click the button labeled with the method name on your business process
(quoteRequest) to invoke the method. The Test Form page refreshes to display a
summary of your request parameters and the response from the external services
in the Message Log:

The message log reflects the order of execution of methods in your
RequestQuote business process and the services it calls. For the scenario logged
in the preceding figure, note the following entries in the message log:

Tutorial: Building Your First Business Process 17-3

quoteRequest—Was called by the client (you in this test instance) to start
the RequestQuote business process.

mbPubValidate.publish—The publish node in your business process
published the Request for Quote to the ValidateOrder Message Broker
channel.

taxCalcProcess.requestTaxRate—The RequestQuote business process
continues to execute. In this case, it calls the requestTaxRate() method on
the tax calculation business process before it is interrupted by the
mbSubValidate.onMessage message.

mbSubValidate.onMessage—In this scenario, when the ValidateOrder
process determines that the Request for Quote is invalid, it publishes a
message to the StopQuote Message Broker channel. Your RequestQuote
business process subscribes to the StopQuote channel—when RequestQuote
receives the message, it executes the logic in the OnMessage path, sends a
response to the client that sent the Request for Quote (see
callback.denyQuote in the Message Log in the preceding figure), and
terminates the business process.

callback.denyQuote—Your RequestQuote business process sends a
denyQuote message to the client that sent the Request for Quote.

Instance instanceID is finished—The quote is determined to be invalid by
the ValidateOrder service. Therefore, further processing of the quote via the
RequestQuote business process is not required. After the
callback.denyQuote message is sent to the client from the message path, the
business process is terminated.

instanceID represents the ID generated when the first method in your
business process was called.

Note: You can click any log entry to see the details of that interaction in the right
panel of the Test Form.

To Monitor Instances of Your Business Process

You can use the WebLogic Integration Administration Console to monitor your
processes.

1. Invoke the Administration Console in one of the following ways:

Click Monitor on the Message Log in the Test Browser’s Test Form page

From your WebLogic Workshop Tools menu:

17 Step 15: Run and Test the Request Quote Business Process With the Quote Validation

17-4 Tutorial: Building Your First Business Process

Tools→WebLogic Integration→WebLogic Integration Administration
Console

By entering the following URL in a Web browser:

http://localhost:7001/wliconsole

The default username and password for the sample integration server is
weblogic/weblogic.

2. Click Process Instance Monitoring to open a page that allows you to:

View process instance statistics, including the number of instances in each
state (running, suspended, aborted, and completed).

View the summary or detailed status for selected instances.

Suspend, resume, or terminate, selected instances.

If you invoke the Process Instance Monitoring page after running the
RequestQuote business process, as described in this step, three business
processes are listed in the Process Instance Statistics page: RequestQuote,
TaxCalcProcess, and Validate Order.

Click the name of any business process in the Display Name column to go to a page
that displays more information about that process. For example, to learn more about
the instance of the ValidateOrder business process that ran in your test:

1. Click ValidateOrder in the Display Name column on the Process Instance
Statistics page displayed in the preceding figure.

2. A Process Instance Summary page is displayed. This page lists all the instances
of the ValidateOrder business process that ran or are running.

3. To display a page which contains more details about any instance, click the
Instance ID in the ID column on the Process Instance Summary page.

Tutorial: Building Your First Business Process 17-5

4. On the Process Instance Details page, click Graphical View to display a
graphical representation of this instance of the ValidateOrder business process.

5. Click on the nodes of the ValidateOrder business process to display information
about each node. Note that if you started your RequestQuote business process in
the WebLogic Workshop Test Browser with the QuoteRequest_a.xml test data,
the ValidateOrder process determines that the order is not valid. In that case, the
No path on the Valid Order? Decision node is executed and highlighted in the
Process Graph; the Yes path is gray to indicate that it was not executed for this
instance.

To learn about using the WebLogic Integration Administration Console, see the
console’s online help.

To stop the Test Browser, return to WebLogic Workshop and click on the menu.

Related Topics

Managing WebLogic Integration Solutions

Understanding the Service URL

Understanding the Overview and Console Tabs

http://edocs.bea.com/wli/docs81/manage/index.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTest.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/reference/ui/navTestView.html

17 Step 15: Run and Test the Request Quote Business Process With the Quote Validation

17-6 Tutorial: Building Your First Business Process

Tutorial: Building Your First Business Process 18-1

CHAPTER

18 Understanding the
Message Broker
Channels in Your
Tutorial Application

This topic provides information about the Message Broker channels used in Part IV of
the tutorial. You are not required to complete any of the steps described in this topic to
complete the tutorial.

Channel files define the Message Broker channels available in a WebLogic Integration
application. Channel files must be placed in a Schemas project in your application.
Otherwise, they are not visible to your application components. A channel file, named
Validate.channel, is provided for you in the Schemas project in your tutorial
application. Validate.channel specifies two Message Broker channels:
ValidateOrder and StopQuote.

This topic includes the following sections:

Creating Channel Files in Your Application

Understanding the Channels Specified for the Tutorial

Creating Channel Files in Your Application

1. Locate a Schemas project in the Application pane.

2. Right-click the Schemas project and choose New→Channel File from the
drop-down menu. The New File dialog box is displayed.

18 Understanding the Message Broker Channels in Your Tutorial Application

18-2 Tutorial: Building Your First Business Process

3. Ensure that Processes is selected in the left pane, and Channel File is selected in
the right pane.

4. Enter a name for the file in the File name field.

Note: As indicated by the file extension in the New File dialog box, the Channel
File is automatically appended with channel as its suffix.

5. Click Create.

Your new channel file is created and displayed in your Schemas folder, in the
Application tab. It is a template file that you edit to define the Message Broker
channels for your application.

6. To view the contents of the template file, click on the file you created in the
Schemas folder. The file is displayed in the Design View.

Channel files are XML files and are valid against an XML Schema. The Schema
is available at the following location in your WebLogic Platform installation:

BEA_HOME\weblogic81\integration\lib\xmlschema\config\ChannelFil
e.xsd

In the preceding line, BEA_HOME represents the directory in which you installed
WebLogic Platform.

Understanding the Channels Specified for the Tutorial

Click on the Validate.channel file provided for you in your Schemas project. The file
is displayed in the Design View. The following listing displays the channel definitions
in Validate.channel:

<?xml version="1.0"?>

:

<channels channelPrefix="/TutorialPrefix"
 xmlns="http://www.bea.com/wli/broker/channelfile"

 xmlns:et="http://www.example.org/request">

<channel name ="Tutorial" messageType="none">

<channel messageType="xml" name="ValidateOrder"
 qualifiedMessageType="et:quoteRequest"/>

<channel messageType="string" name="StopQuote"/>

</channel>

Tutorial: Building Your First Business Process 18-3

</channels>

Note the following characteristics of the Validate.channel file:

channelPrefix="/TutorialPrefix"

Helps define the URI for the Message Broker channel. The channelPrefix is
used to scope the use of the Message Broker channels across a domain. To
ensure that you don't unintentionally send or receive messages to and from other
applications in your domain, we recommend you create a unique channelPrefix
for an application (for example, you can use the same name as your application
name). However, if you want to use the Message Broker for communication
among two or more applications, these applications should use the same prefix
for the channels.

xmlns="http://www.bea.com/wli/broker/channelfile"

A namespace that references the names used in the channel file Schema.

xmlns:et="http://www.example.org/request"

A namespace that references the names used in the RequestQuote.xsd Schema,
against which the messages sent from clients to the RequestQuote business
process is validated.

Two channels are defined in this file: ValidateOrder and StopQuote:

For the ValidateOrder channel:

- name="ValidateOrder" specifies the name of the channel.

- messageType="xml" specifies the data type of the messages routed by
that channel.

- qualifiedMessageType="et:quoteRequest" specifies the
quoteRequest element in the Schema referenced by the following
namespace: http://www.example.org/request. The et: prefix is
associated with an XML Schema namespace through the following
declaration, which appears in the channels element:
xmlns:et="http://www.example.org/request". In other words, the
qualifiedMessageType specifies that the XML is Typed XML—valid
against the QuoteRequest.xsd Schema referenced by the
http://www.example.org/request namespace. The QuoteRequest.xsd
Schema file is located in the Schemas project in your application.

Warning: Make sure that namespaces you reference in your channel files exist in
your application. If they do not, although you do not get an error at

18 Understanding the Message Broker Channels in Your Tutorial Application

18-4 Tutorial: Building Your First Business Process

compile time, you will get an error when you try to run your
application.

For the StopQuote channel:

- name="StopQuote" specifies the name of the channel

- messageType="string" specifies the data type of the messages routed
by the StopQuote channel: java.lang.String

Related Topics

Message Broker Controls

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsBrokerOview.html

	1 Tutorial: Building Your First Business Process
	Tutorial Goals
	Tutorial Overview
	Steps in This Tutorial

	Part�I Build and Run a Simple Business Process
	2 Step 1: Create Your Business Process Application
	3 Working in the Design View
	Functions and Shortcuts

	4 Step 2: Specify How the Process is Started
	5 Step 3: Define Conditions for Alternate Paths of Execution
	6 Step 4: Invoke a Web Service
	What is the Tax Calculation Control?
	Design the Interaction Between Your Process and a Web Service

	7 Step 5: Run Your Business Process

	Part�II Call a Business Process Using a Process Control
	8 Step 6: Invoke a Business Process via a Process Control

	Part�III Adding Looping Logic, Parallel Paths ...
	9 Step 7: Looping Through Items in a List
	Understanding XML Schemas and For Each Nodes
	Design a For Each Loop in Your Business Process

	10 Step 8: Design Parallel Paths of Execution
	Create a Parallel Node
	Create Logic to Assemble Price and Availability Data
	Related Topics

	11 Step 9: Create Quote Document
	Convert Price List to XML Quote Document
	Convert Availability List to XML Quote Document
	Combine Price and Availability Quotes

	12 Step 10: Write Quote to File System
	13 Step 11: Send Quote From Business Process to Client
	14 Step 12: Run the Request Quote Business Process
	Related Topics

	Part�IV Using the Message Broker
	Introducing the Message Broker
	Understanding the Validation Service Scenario
	15 Step 13: Publish and Subscribe to Message Broker Channels
	16 Step 14: Designing a Message Path for Your Business Process
	17 Step 15: Run and Test the Request Quote Business Process With the Quote Validation Service
	Related Topics

	18 Understanding the Message Broker Channels in Your Tutorial Application

