
BEAWebLogic
Integration™

Upgrade Guide

Version 8.1
July 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Integration Upgrade Guide iii

Contents

About This Document
What You Need to Know . viii

e-docs Web Site . ix

How to Print the Document . ix

Related Information . ix

Contact Us! .x

Documentation Conventions .x

1. Introduction to Upgrading
About Upgrading . 1-1

What Is Upgraded by the Upgrade Utilities and Wizard . 1-3

Features That Require Manual Upgrading. 1-3

Contivo Analyst Does Not Require Upgrade. 1-4

Overview of Upgrade Process . 1-5

2. Installing the Upgrade Utilities and Wizard
Install the Upgrade Utilities and Wizard . 2-1

Edit aiExport21 . 2-2

Contents of Upgrade JAR . 2-2

iv BEA WebLogic Integration Upgrade Guide

3. Step 1: Create Application For Upgrade

4. Step 2: Re-deploy Business Operations EJB

5. Step 3: Export Package File from WebLogic Integration BPM
Studio

6. Step 4: Export Trading Partner Management Configuration
Data

7. Step 5: Upgrade TPM Configuration Data
What the Trading Partner Management Upgrade Utility Does. 7-1

Information Not Upgraded by the Utility . 7-2

Limitations . 7-2

Warning Case . 7-2

Using the Trading Partner Management Upgrade Utility . 7-3

8. Step 6: Export Application Views and other AI Repository
Artifacts

Exporting AI Repository Artifacts . 8-1

9. Step 7: Repackage Application Integration Adapters and
Deploy

What the aiRepackageAdapter Utility Does . 9-1

Using the aiRepackageAdapter Utility . 9-2

10.Step 8: Import Application Views and Other AI Repository
Artifacts

What the Import-Export Utility Does . 10-1

Limitations . 10-2

BEA WebLogic Integration Upgrade Guide v

Using the Import-Export Utility . 10-3

Invoking the Import-Export Utility from the Command Line 10-4

Using the Import-Export API . 10-8

11.Step 9: Upgrade Workflows
About the Upgrade Wizard . 11-1

What the Wizard Upgrades . 11-2

Upgrade Wizard Limitations . 11-2

Using the Upgrade Wizard . 11-5

12.Step 10: View the Upgrade Log

13.Step 11: Run and Test Upgraded Business Processes

14.Upgrading Security Features
WebLogic Server Security Upgrade . 14-1

WebLogic BPM Security Upgrade . 14-1

WebLogic BPM Users, Roles, and Organizations . 14-2

WebLogic BPM Users. 14-2

WebLogic BPM Roles and Organizations. 14-2

WebLogic BPM Calendars and Email . 14-3

WebLogic BPM Permissions . 14-3

WebLogic B2B Security Upgrade. 14-4

Upgrading Certificates in WebLogic Integration 2.1 SP2 . 14-4

Upgrading Certificates in WebLogic Integration 7.0 SP2. 14-5

Upgrading Trading Partner Security Configuration . 14-5

Upgrading Use of com.bea.b2b.security Classes . 14-6

WebLogic Application Integration Security Upgrade. 14-6

Repackaging Adapter Code . 14-6

vi BEA WebLogic Integration Upgrade Guide

Upgrading Application View Access Control . 14-7

15.Upgrading Application View Controls Created in WebLogic
Workshop

16.Upgrading Utility Adapters
Use Email Controls and Event Generators Instead of Adapter for Email 16-2

Use File Controls and Event Generators Instead of the Adapter for File 16-2

New Adapter for RDBMS 8.1 . 16-3

17.Upgrading an Adapter Development Project

Index

BEA WebLogic Integration Upgrade Guide vii

About This Document

This document provides information on upgrading WebLogic Integration 2.1 SP2 (Service Pack
2) and WebLogic Integration 7.0 SP2 to WebLogic Integration 8.1.

This document covers the following topics:

Chapter 1, “Introduction to Upgrading” provides information helpful to read before
upgrading to WebLogic Integration 8.1.

Chapter 2, “Installing the Upgrade Utilities and Wizard”

Chapter 3, “Step 1: Create Application For Upgrade” contains information about creating a
WebLogic Integration 8.1 application for your upgrade

Chapter 4, “Step 2: Re-deploy Business Operations EJB” provides information about
re-deploying WebLogic Integration 2.1 SP2 or 7.0 SP2 EJBs in WebLogic Integration 8.1.

Chapter 5, “Step 3: Export Package File from WebLogic Integration BPM Studio” provides
information about exporting workflows from WebLogic Integration 2.1 SP2 or 7.0 SP2.

Chapter 6, “Step 4: Export Trading Partner Management Configuration Data” provides
information for B2B integration users on how to export Trading Partner configuration data
from WebLogic Integration 2.1 SP2 or 7.0 SP2.

Chapter 7, “Step 5: Upgrade TPM Configuration Data” provide information for B2B
integration users on how to import Trading Partner configuration data into WebLogic
Integration 8.1.

About Th is Document

viii BEA WebLogic Integration Upgrade Guide

Chapter 8, “Step 6: Export Application Views and other AI Repository Artifacts” provides
information for application integration users on exporting Application Views from
WebLogic Integration 2.1 SP2 or 7.0 SP2.

Chapter 9, “Step 7: Repackage Application Integration Adapters and Deploy” provides
application integration users with the steps needed to repackage custom or third-party
adapters for use in WebLogic Integration 8.1.

Chapter 10, “Step 8: Import Application Views and Other AI Repository Artifacts”
provides application integration users with information about importing, testing, and
publishing Application Views in WebLogic Integration 8.1

Chapter 11, “Step 9: Upgrade Workflows” describes how to use the Upgrade Wizard to
transform workflows from WebLogic Integration 2.1 SP2 or 7.1 SP2 to business processes
in WebLogic Integration 8.1.

Chapter 12, “Step 10: View the Upgrade Log” provide information about using the
Upgrade log to identify the workflows and parts of workflows that could not be upgraded
by the Upgrade Wizard.

Chapter 13, “Step 11: Run and Test Upgraded Business Processes” provides information
about running, testing, and optimizing the upgraded business processes.

Chapter 14, “Upgrading Security Features” describes how to upgrade security features to
WebLogic Integration 8.1.

Chapter 15, “Upgrading Application View Controls Created in WebLogic Workshop”
provides information about upgrading Application View controls created in WebLogic
Workshop 7.0 SP2.

Chapter 17, “Upgrading an Adapter Development Project” provides information about
upgrading an Adapter Development Project development tree created in WebLogic
Integration 2.1 SP2 or 7.0SP2.

Chapter 16, “Upgrading Utility Adapters” contains information about the correspondence
between utility adapter in WebLogic Integration 2.1 SP2 or 7.0 SP2 and features in
WebLogic Integration 8.1.

What You Need to Know
This document is intended mainly for application developers who have a knowledge of Java;
business process management, especially workflow design; B2B integration; data integration;
and WebLogic Server security as it pertains to the application being upgraded. Additionally, you
should have a complete understanding of WebLogic Integration 8.1 and WebLogic Workshop.

e-docs Web S i te

BEA WebLogic Integration Upgrade Guide ix

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation or go directly to the “e-docs” Product Documentation page
at http://e-docs.bea.com.

How to Print the Document
You can print a copy of this document from a Web browser, one file at a time, by using the
File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration documentation Home
page on the e-docs Web site (and also on the documentation CD). You can open the PDF in
Adobe Acrobat Reader and print the entire document (or a portion of it) in book format. To access
the PDFs, open the WebLogic Integration documentation Home page, click the PDF files button
and select the document you want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe Web site at
http://www.adobe.com/.

Related Information
The following BEA documents contain information that is relevant to upgrading from WebLogic
Integration 2.1 SP2 or 7.0 SP2 to WebLogic Integration 8:

BEA WebLogic Integration 2.1 SP2 documentation at
http://edocs.bea.com/wlintegration/v2_1sp/index.html

BEA WebLogic Integration 7.0 SP2 documentation at
http://edocs.bea.com/wli/docs70/index.html

BEA WebLogic Workshop 7.0 SP2 documentation at
http://edocs.bea.com/workshop/docs70/index.html

BEA WebLogic Integration 8.1 documentation at
http://edocs.bea.com/wli/docs81/index.html

BEA WebLogic Workshop 8.1 documentation at
http://edocs.bea.com/workshop/docs81/index.html

BEA WebLogic Server 8.1 documentation at http://edocs.bea.com/wls/docs81/index.html

http://www.adobe.com/
http://edocs.bea.com/wlintegration/v2_1sp/index.html
http://e-docs.bea.com
http://edocs.bea.com/wli/docs70/index.html
http://edocs.bea.com/wli/docs81/index.html
http://edocs.bea.com/wls/docs81/index.html
http://edocs.bea.com/workshop/docs70/index.html
http://edocs.bea.com/workshop/docs81/index.html

About Th is Document

x BEA WebLogic Integration Upgrade Guide

Contact Us!
Your feedback on the BEA WebLogic Integration documentation is important to us. Send us
e-mail at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the WebLogic Integration
documentation.

In your e-mail message, please indicate that you are using the documentation for the BEA
WebLogic Integration 8.1 release.

If you have any questions about this version of BEA WebLogic Integration, or if you have
problems installing and running BEA WebLogic Integration, contact BEA Customer Support
through BEA WebSupport at www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

Documentat i on Convent ions

BEA WebLogic Integration Upgrade Guide xi

monospace
text

Indicates code samples, commands and their options, data structures and their members, data
types, directories, and file names and their extensions. Monospace text also indicates text that
you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]... [-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself should never be typed.

Convention Item

About Th is Document

xii BEA WebLogic Integration Upgrade Guide

... Indicates one of the following in a command line:

• That an argument can be repeated several times in a command line

• That the statement omits additional optional arguments

• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]... [-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line. The vertical ellipsis
itself should never be typed.

Convention Item

BEA WebLogic Integration Upgrade Guide 1-1

C H A P T E R 1

Introduction to Upgrading

This document provides information on upgrading WebLogic Integration 2.1 SP2 (Service Pack
2) and WebLogic Integration 7.0 SP2 to WebLogic Integration 8.1.

This section provides information about the following topics:

About Upgrading

What Is Upgraded by the Upgrade Utilities and Wizard

Features That Require Manual Upgrading

Contivo Analyst Does Not Require Upgrade

Overview of Upgrade Process

About Upgrading
The following list provides important guidelines for upgrading from WebLogic Integration 2.1
SP2 and 7.0 SP2 to WebLogic Integration 8.1:

Upgrading is intended for the development environment—You cannot upgrade a
production system; no support exists for upgrading a running application.

Upgrading is a developer task—Depending on the complexity of your existing WebLogic
Integration 2.1 SP2 or 7.0 SP2 application, upgrading may require a knowledge of Java;
business process management, especially workflow design, B2B integration, and data
integration; and WebLogic Server security. Some of these terms have changed in
WebLogic Integration 8.1; see Terminology Changes in this list.

I n t roduct i on to Upgradi ng

1-2 BEA WebLogic Integration Upgrade Guide

Familiarity with the application being upgraded—You should have a thorough
understanding the application you are upgrading.

Familiarity with WebLogic Integration 8.1—Before upgrading your application, you
should have a complete understanding of WebLogic Integration 8.1 and WebLogic
Workshop 8.1. The following sections in the WebLogic Workshop Help are especially
helpful:

– Developing Applications with WebLogic Workshop at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/navDevGui
de.html

– Getting Started with WebLogic Workshop at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/getstarte
d/navGettingStartedWorkshop.html

– Tutorial: Building Your First Business Process at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tut
WLIProcessIntro.html

– Tutorial: Your First Data Transformation at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/t
utWLIDataTransIntro.html

Terminology Changes—The following terminology changes have been made in the
WebLogic Integration 8.1 documentation:

– The term business process replaces the term workflow. In this guide, business process is
used when it applies to WebLogic Integration 8.1 and workflow is used when it applies
to WebLogic Integration 2.1 or 7.1 SP2 applications.

– Business process design or process design replaces the term workflow design.

– Data Integration is now called Data Transformation.

– The term trading partner integration is used instead of B2B.

– The term business message is used instead of B2B message.

Note: More information on terminology changes is available in WebLogic Platform
Terminology at the following URL:

http://edocs.bea.com/platform/docs81/upgrade/intro.html

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/navDevGuide.html
http://edocs.bea.com/platform/docs81/upgrade/intro.html
http://edocs.bea.com/platform/docs81/upgrade/intro.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/getstarted/navGettingStartedWorkshop.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/tutorial/tutWLIProcessIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

What I s Upgraded by the Upgrade Ut i l i t i es and W izard

BEA WebLogic Integration Upgrade Guide 1-3

What Is Upgraded by the Upgrade Utilities and Wizard
WebLogic Integration 8.1 includes several utilities and an Upgrade Wizard for helping you
upgrade WebLogic Integration 2.1 SP2 and 7.0 SP2 applications. The following list briefly
describes these utilities:

Export21 utility (aiExport21.cmd)—Use to export application integration (AI) repository
artifacts, such as Application Views, from WebLogic Integration 2.1 SP2. It is located in
the BEA_HOME\weblogic81\integration\upgrade folder.

Import-Export utility (aiimportexport.cmd or aiimportexport.sh)—Use to transform
and import application integration (AI) repository artifacts from WebLogic Integration 2.1
SP2 and 7.0 SP2 into WebLogic Integration 8.1. It is located in the
BEA_HOME\weblogic81\integration\bin folder.

Repackage Adapter utility for WebLogic Integration 2.1 SP2 and 7.0 SP2 adapters
(aiRepackageAdapter.cmd or aiRepackageAdapter.sh)—Use to upgrade any custom
or third-party adapters. It is located in the
BEA_HOME\weblogic81\integration\upgrade folder.

TPM upgrade utility (upgradeTPM.cmd)—Use for upgrading Trading Partner Management
(TPM) configuration data (not run-time state data) and its associated services and profiles.
It is located in the BEA_HOME\weblogic81\integration\upgrade folder.

Upgrade Wizard—Use to upgrade workflow definitions and the data integration MFL,
XSL, and XML files used by worklflows. The Upgrade Wizard provides a best effort
upgrade; some workflows or parts of workflows may not be upgraded. This tool is
available in WebLogic Workshop under Tools→Integration→Upgrade Wizard.

Note: For a detailed list, see “What the Wizard Upgrades” on page 11-2.

Features That Require Manual Upgrading
The following features are not upgraded by the Upgrade Wizard or other utilities and need to be
manually upgraded:

BPM plug-in framework—All custom BPM plug-ins, including non-data integration,
non-AI, B2B integration, and File plug-ins must be manually upgraded. To learn about
developing this functionality in WebLogic Integration 8.1, see the following documents:

– Designing WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs81/design/index.html

http://edocs.bea.com/wli/docs81/design/index.html

I n t roduct i on to Upgradi ng

1-4 BEA WebLogic Integration Upgrade Guide

– Managing WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs81/manage/index.html

– WebLogic Workshop Help at
http://e-docs.bea.com/workshop/docs81/doc/en/core/index.html

Utility adapters—The Email and File adapters in WebLogic Integration 2.1 SP2 and 7.0
SP2 have been replaced with system features in WebLogic Integration 8.1. The Adapter for
RDBMS is replaced by a new RDBMS Adapter for 8.1, which has new capabilities.
Consequently, these three adapters cannot be upgraded and you will need to replace their
implementation with the new features in WebLogic Integration 8.1. For more information,
see “Upgrading Utility Adapters” on page 16-1.

WebLogic Workshop 7.0 SP2 Application View Controls—In WebLogic Workshop 7.0
SP2, you could create Java Web Services (JWS) that used Application View controls for
accessing enterprise systems through a J2EE Connector Architecture adapter. In WebLogic
Integration 8.1, these controls have been completely restructured, and the API has changed.
Therefore, you will need to re-develop your Application View controls in WebLogic
Integration 8.1. To learn how to manually upgrade Application View Controls, see
“Upgrading Application View Controls Created in WebLogic Workshop” on page 15-1.

Workflows that use RosettaNet protocols—You will need to re-develop these business
processes in WebLogic Integration 8.1. To learn more, see the following documents:

– “Building RosettaNet Participant Business Processes” in theWebLogic Workshop Help
at
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfgu

ideRosettaNet.html

– Designing WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs81/design/index.html

BPM APIs—You can achieve the same functionality using various features in WebLogic
Integration 8.1. You will need to rewrite your WebLogic Integration 2.1 SP2 or 7.0 SP2
applications using the APIs in WebLogic Integration 8.1.

Contivo Analyst Does Not Require Upgrade
WebLogic Integration 8.1 does not include Contivo Analyst. Instead BEA provides a more
powerful XQuery mapping functionality as part of WebLogic Workshop. However, if you wish
to continue using Contivo, WebLogic Integration 8.1 provides run-time support for XSLT
transformations. Note that when upgrading using the Upgrade Wizard, existing XSLT
transformation are not converted to the new functionality, but configured to run unchanged. You
continue to maintain XSLT transformations using Contivo Analyst.

http://edocs.bea.com/wli/docs81/design/index.html
http://edocs.bea.com/wli/docs81/manage/index.html
http://e-docs.bea.com/workshop/docs81/doc/en/core/index.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideRosettaNet.html

Ove rv i ew of Upgrade Pr ocess

BEA WebLogic Integration Upgrade Guide 1-5

To learn more about the XQuery mapper functionality, see “Transforming Data Using
XQuery” in the WebLogic Workshop Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguide
Mapper.html

Overview of Upgrade Process
The following is a general upgrade strategy. Depending on your application, the steps you use
may differ from this approach. Details of each step are described in the remainder of this guide.

1. In WebLogic Integration 8.1, create a Process Application for your upgrade. See “Step 1:
Create Application For Upgrade” on page 3-1.

2. Re-deploy the business operations EJB. See “Step 2: Re-deploy Business Operations EJB”
on page 4-1.

3. In WebLogic Integration Studio, generate and export a workflow package (.jar) file. The
JAR will include workflow, XML (Extensible Markup Language), XSLT (eXtensible
Stylesheet Language), and MFL (Message Format Language) files. See “Step 3: Export
Package File from WebLogic Integration BPM Studio” on page 5-1.

Use steps 4 and 5 only if you are using B2B integration.

4. In WebLogic Integration 2.1 SP2 or 7.0 SP2, export B2B Trading Partner Management
(TPM) configuration data using the B2B Console or Bulk Loader. You can export TPM
configuration data from either a development environment and a running production
system. See “Step 4: Export Trading Partner Management Configuration Data” on page 6-1.

5. Use the WebLogic Integration 8.1 TPM upgrade utility for upgrading TPM configuration
data and its associated services and profiles exported from WebLogic Integration 2.1 SP2
and WebLogic Integration 7.0 SP2. See “Using the Trading Partner Management Upgrade
Utility” on page 7-3.

Use steps 6, 7, and 8 only if you are using application integration.

6. Using the Export21 utility (included in WebLogic Integration 8.1) or the WebLogic
Integration 7.0 import/export utility, export application integration (AI) repository artifacts.
These utilities export Application Views, connection factories schemas, and namespaces to
a JAR file. See “Step 6: Export Application Views and other AI Repository Artifacts” on
page 8-1

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideMapper.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideMapper.html

I n t roduct i on to Upgradi ng

1-6 BEA WebLogic Integration Upgrade Guide

7. Using either the Repackage Adapter utility for WebLogic Integration 2.1. SP2 adapters or
WebLogic Integration 7.0 SP2 adapters, upgrade any custom or third-party adapters and
deploy on WebLogic Integration 8.1. See “Step 7: Repackage Application Integration
Adapters and Deploy” on page 9-1.

8. With the WebLogic Integration 8.1 import-export utility, import the AI repository artifacts
that you exported in Step 6 into your WebLogic Integration 8.1 application. See “Step 8:
Import Application Views and Other AI Repository Artifacts” on page 10-1.

9. Using theWebLogic Integration 8.1 Upgrade Wizard, upgrade the workflows definitions and
the data integration MFL, XSL, and XML files used by worklflows. See “Step 9: Upgrade
Workflows” on page 11-1.

10. Examine the upgrade log and use the provided information for fixing business processes,
identifying what needs to be upgraded manually, and optimizing the upgraded business
processes. See “Step 10: View the Upgrade Log” on page 12-1.

11. Run and test your business processes. See “Step 11: Run and Test Upgraded Business
Processes” on page 13-1.

BEA WebLogic Integration Upgrade Guide 2-1

C H A P T E R 2

Installing the Upgrade Utilities and
Wizard

This section describes how to install the Upgrade utilities and Upgrade Wizard. It contains
information on the following topics:

Install the Upgrade Utilities and Wizard

Edit aiExport21

Contents of Upgrade JAR

Install the Upgrade Utilities and Wizard
Before upgrading, you must first install the Upgrade utilities and Upgrade Wizard. These utilities
are in the Upgrade JAR, which is available on the BEA dev2dev Web site at the following URL:

http://dev2dev.bea.com/resourcelibrary/utilitiestools/upgrade.jsp#wliupgrade

After downloading the JAR file, install the utilities with the following steps:

1. If WebLogic Workshop is running, close it.

2. Unjar the upgrade.jar file to a temporary directory.

3. In the temporary directory, open the workshop-lib directory, then copy the
migration.jar to the BEA_HOME/weblogic81/workshop/lib directory.

In the preceding line, BEA_HOME represents the WebLogic Platform 8.1 home directory.

4. From the temporary directory you created, copy the upgrade directory to the
BEA_HOME/weblogic81/integration directory.

http://dev2dev.bea.com/resourcelibrary/utilitiestools/upgrade.jsp#wliupgrade

Instal l ing the Upgrade Ut i l i t i es and Wi zard

2-2 BEA WebLogic Integration Upgrade Guide

The upgrade utilities are installed in the upgrade directory

5. Start WebLogic Workshop.

The Upgrade Wizard and upgrade utilities are now available, as shown in Figure 2-1.

Figure 2-1 Upgrade Wizard is Available

Edit aiExport21
If you plan to upgrade WebLogic Integration 2.1 SP2 Application Views, you need to edit the
aiExport21.cmd file. Specifically, you need to set the correct path for calling the setEnv.cmd
in your WebLogic Integration 2.1 SP2 directory. After installing the Upgrade JAR, the
aiExport21.cmd file is located in the following directory:

BEA_HOME\weblogic81\integration\upgrade

In the preceding line, BEA_HOME represents the WebLogic Platform 8.1 home directory.

For example to set the path for the default installation for WebLogic Integration 2.1 SP2, you
would set the path as follows:

call C:\bea\wlintegration2.1\setEnv.cmd

Contents of Upgrade JAR
The Upgrade JAR file contains the following directories and files:

META-INF directory—Contains the MANIFEST.MF file, which is automatically created for
the JAR file. This file is not used for upgrading.

Contents of Upgrade JAR

BEA WebLogic Integration Upgrade Guide 2-3

upgrade directory—Contains the upgrade utilities and wizard. For a full description of the
utilities, see “What Is Upgraded by the Upgrade Utilities and Wizard” on page 1-3.

workshop-lib directory—Contains the migration.jar file. This file contains the Java
classes that parse the workflows when upgrading WebLogic Integration 2.1 SP2 or 7.0 SP2
to WebLogic Integration 8.1.

readme.txt—Contains instructions on installing the upgrade utilities and the Upgrade
Wizard.

Instal l ing the Upgrade Ut i l i t i es and Wi zard

2-4 BEA WebLogic Integration Upgrade Guide

BEA WebLogic Integration Upgrade Guide 3-1

C H A P T E R 3

Step 1: Create Application For Upgrade

Before upgrading your WebLogic Integration 2.1 SP2 or 7.0 SP2 application, create a WebLogic
Integration 8.1 process application for your upgrade, as described in How Do I: Create a New
Application? in the WebLogic Workshop Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howStart
Newapp.html

In the Name field, specify a name for the application, then click Create, as shown in the
following figure.

http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howStartNewapp.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howStartNewapp.html

Step 1 : C r ea te Appl i ca t ion For Upgrade

3-2 BEA WebLogic Integration Upgrade Guide

Figure 3-1 New Application

BEA WebLogic Integration Upgrade Guide 4-1

C H A P T E R 4

Step 2: Re-deploy Business Operations
EJB

A business operation Enterprise Java Bean (EJB) encapsulates business logic. Business logic is
the code that fulfills the purpose of the application, such as checking inventory or ordering a part.

You can use the same business operation EJBs that you created for WebLogic Integration 2.1 SP2
or 7.0 SP2 in WebLogic Integration 8.1. In WebLogic Integration 2.1 SP2 and 7.0 SP2, the Studio
was used to enable workflows to use business operation EJBs. In WebLogic Integration 8.1, you
use Java and EJB controls to utilize the business logic encapsulated in your business operation
EJB. EJB controls make it easy for you to use an existing, deployed EJB from within an
application.

To re-deploy your business operation EJB, take the following steps:

1. Add the EJB JAR to the Modules folder in your upgrade application, then deploy.

2. For business operations that use Java classes, import the classes into the Libraries folder
of your upgrade application.

To learn about deploying EJBs, see Deployment in the WebLogic Server documentation at the
following URL:

http://edocs.bea.com/wls/docs81/deployment.html

To learn about using Java Controls, see Working with Java Controls in the WebLogic Workshop
Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/nav
WorkingWithJavaControls.html

To learn about using EJB Controls, see Using Integration Controls in the WebLogic Workshop
Help at the following URL:

http://edocs.bea.com/wls/docs81/deployment.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/navWorkingWithJavaControls.html
http://edocs.bea.com//workshop/docs81/doc/en/integration/controls/controlsIntro.html

Step 2 : Re-dep loy Business Opera t i ons E JB

4-2 BEA WebLogic Integration Upgrade Guide

http://edocs.bea.com//workshop/docs81/doc/en/integration/controls/contr
olsIntro.html

BEA WebLogic Integration Upgrade Guide 5-1

C H A P T E R 5

Step 3: Export Package File from
WebLogic Integration BPM Studio

Before upgrading your WebLogic Integration 2.1 SP2 or 7.0 SP2 applications, you must first
export your workflows and other application data to a JAR file.

Note: In some instances, it may be necessary to modify the original WebLogic Integration 2.1
SP2 or 7.0 SP2 workflows. To see if this applies to any of your workflows, see “Upgrade
Wizard Limitations” on page 11-2.

To export your workflows, take the following steps:

1. In WebLogic Integration 2.1 SP2 or 7.0 SP2 Studio, generate and export a workflow package
(.jar) file. The JAR will include workflow, XML (Extensible Markup Language), XSLT
(eXtensible Stylesheet Language), and MFL (Message Format Language) files.

Note: To learn about exporting a workflow package in WebLogic Integration 2.1 SP2, see
Importing and Exporting Workflow Packages in Using the WebLogic Integration
Studio at the following URL:

http://e-docs.bea.com/wlintegration/v2_1/studio/ch11.htm

To learn about exporting a workflow package in WebLogic Integration 7.0 SP2, see
Importing and Exporting Workflow Packages in Using the WebLogic Integration
Studio at the following URL:

http://edocs.bea.com/wli/docs70/studio/ch11.htm

2. Transfer the exported TPM XML file to your target environment for the WebLogic
Integration 8.1 application.

3. If you are not upgrading B2B integration or application integration components go to “Step
9: Upgrade Workflows” on page 11-1.

http://e-docs.bea.com/wlintegration/v2_1/studio/ch11.htm
http://edocs.bea.com/wli/docs70/studio/ch11.htm

Step 3 : Expo r t Package F i l e f rom WebLog ic In tegrat ion BPM Stud io

5-2 BEA WebLogic Integration Upgrade Guide

If you are upgrading B2B integration components, go to “Step 4: Export Trading Partner
Management Configuration Data” on page 6-1.

If you are upgrading application integration components, go to “Step 6: Export Application
Views and other AI Repository Artifacts” on page 8-1.

BEA WebLogic Integration Upgrade Guide 6-1

C H A P T E R 6

Step 4: Export Trading Partner
Management Configuration Data

This step applies only if you are upgrading B2B integration components.

Before you can upgrade your Trading Partner Management (TPM) configuration data and its
associated services and profiles from WebLogic Integration 2.1 SP2 or 7.0 SP2, you must first
export this information to an XML file.

Note: If a value does not exist for the WLPI Template Name attribute in your B2B
conversation-definition roles, you may enter one (if applicable) before upgrading. If this
value is missing, the new TPM data will not include the business process or control
service derived from the conversation-definition role.

To learn about conversation definitions in WebLogic Integration 2.1 SP2, see
Configuring Conversation Definitions in Administering B2B Integration at the following
URL:

http://edocs.bea.com/wlintegration/v2_1/b2badmin/cfgtasks.htm#99839

5

To learn about conversation definitions in WebLogic Integration 7.0 SP2, see
Configuring Conversation Definitions in Administering B2B Integration at the following
URL:

http://edocs.bea.com/wli/docs70/b2badmin/cfgtasks.htm#1003805

To export your TPM configuration data, take the following steps:

1. If you are not using a keystore in your WebLogic Integration 2.1 SP2 or 7.0 SP2 B2B
application, you must create one.

http://edocs.bea.com/wli/docs70/b2badmin/cfgtasks.htm#1003805
http://edocs.bea.com/wlintegration/v2_1/b2badmin/cfgtasks.htm#998395

Step 4 : Expo r t T rad ing Par tner Management Conf igura t i on Data

6-2 BEA WebLogic Integration Upgrade Guide

The WebLogic Integration 8.1 Trading Partner Management uses the keystore to manage
trading partner’s certificates. (Trading Partner Management holds only the entry of the
certificate in the keystore). To learn about keystores, see “WebLogic B2B Security
Upgrade” on page 14-4.

2. Export your WebLogic Integration 2.1 or 7.0 SP2 B2B repository information to an XML
file using the Bulk Loader or the WebLogic Integration B2B Console export functions.

Note: If you are exporting repository information from a running system using the
command-line Bulk Loader utility, you must use the -force option.

WebLogic Integration 2.1 SP2: To learn about exporting repository data from this version
of WebLogic Integration, see the following documents:

– Working with the Bulk Loader in Administering B2B Integration at the following URL:

http://e-docs.bea.com/wlintegration/v2_1/b2badmin/bulkload.htm.

– Exporting Repository Data in the Online Help for the WebLogic Integration B2B
Console at the following URL:

http://e-docs.bea.com/wlintegration/v2_1/b2bhelp/admncfg.htm#1000060.

WebLogic Integration 7.0 SP2: To learn about exporting repository information in this
version of WebLogic Integration, see the following documents:

– Exporting Data from the Repository in the WebLogic Integration 7.0 Administering
B2B Integration at the following URL:

http://e-docs.bea.com/wli/docs70/b2badmin/bulkload.htm#1082771

– Exporting Repository Data in the Online Help for the WebLogic Integration B2B
Console at the following URL:

http://e-docs.bea.com/wli/docs70/b2bhelp/admncfg.htm#1000060

3. Transfer the exported TPM XML file to your target environment for the WebLogic
Integration 8.1 application.

4. To import the TPM XML file into your WebLogic Integration 8.1 upgrade application, go to
“Step 5: Upgrade TPM Configuration Data” on page 7-1.

http://e-docs.bea.com/wlintegration/v2_1/b2badmin/bulkload.htm
http://e-docs.bea.com/wlintegration/v2_1/b2bhelp/admncfg.htm#1000060
http://e-docs.bea.com/wli/docs70/b2badmin/bulkload.htm#1082771
http://e-docs.bea.com/wli/docs70/b2bhelp/admncfg.htm#1000060

BEA WebLogic Integration Upgrade Guide 7-1

C H A P T E R 7

Step 5: Upgrade TPM Configuration
Data

This step applies only if you are upgrading B2B integration components.

WebLogic Integration 8.1 provides a TPM upgrade utility for upgrading Trading Partner
Management (TPM) configuration data and its associated services and profiles from WebLogic
Integration 2.1 SP2 and WebLogic Integration 7.0 SP2.

Note: The TPM upgrade utility upgrades configuration data, not run-time state data.

What the Trading Partner Management Upgrade Utility Does
The TPM upgrade utility upgrades the following:

Trading Partner information:

– trading-partner and its attributes, including: name, description, notes, type,
email, phone, fax, and username.

– address

– extended-property-set

– Trading partner’s security certificate. See Chapter 6, “Step 4: Export Trading Partner
Management Configuration Data” and “WebLogic B2B Security Upgrade” on
page 14-4.

– ebxml-binding

– transport (under the <ebxml-binding> element)

– authentication (under the <transport> element)

– rosettaNet-binding

Step 5 : Upgrade TPM Conf igura t i on Data

7-2 BEA WebLogic Integration Upgrade Guide

Service information:

– service—For each conversation-definition where the business-protocol is
either ebxml or rosettanet, there are two roles. For each role, two service
elements are generated in the upgraded WebLogic Integration 8.1 repository XML file,
one for the process-type service and the other for the control-type service.

– service-profile

Information Not Upgraded by the Utility
The following information is not mapped by the TPM upgrade utility:

wlc/logic-plugin, wlc/business-protocol-definition—Replaced by B2B
protocol data in WebLogic Integration 8.1.

wlc/trading-partner/xpath-expression—Applied to XOCP which was deprecated
in WebLogic Integration 7.0 SP2.

wlc/conversation-definition/role/process-implementation—Does not apply in
WebLogic Integration 8.1.

update-count—Does not apply in WebLogic Integration 8.1.

Limitations
The TPM upgrade utility has the following limitations:

Does not upgrade run-time state data.

The deprecated XOCP and cXML business protocols related entries are not upgraded.

Does not upgrade the B2B protocol stack, which is mostly static and provided with
WebLogic Integration 8.1.

The upgraded trading partner data is not formatted. If formatting is needed, use an editor
such as XMLSPY to format this data.

Warning Case
As mentioned in “Step 4: Export Trading Partner Management Configuration Data” on page 6-1,
if a value does not exist for the WLPI Template Name attribute in your B2B
conversation-definition role, you may enter one (if applicable) before upgrading. If this value
does not exist, you will receive the following warning:

Usi ng the T radi ng Par tne r Management Upgrade Ut i l i t y

BEA WebLogic Integration Upgrade Guide 7-3

<date and time> <Error> <Upgrade> <600001> <Missing
wlpi-templateattribute in the conversation-Definition/role element. No
workflow nor control service will be generated for this role.>

You can add this information after using the TPM upgrade utility with the WebLogic Integration
Administration Console. To learn about importing, see Trading Partner Management in
Managing WebLogic Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs81/manage/tpm.html

Using the Trading Partner Management Upgrade Utility
Before you can use the TPM upgrade utility, you must first export this information to an XML
file as described in “Step 4: Export Trading Partner Management Configuration Data” on
page 6-1.

To upgrade your TPM data using the TPM upgrade utility, take the following steps:

1. On a Windows system, open a command window.

2. In both Windows and UNIX, go to the following directory:

BEA_HOME/weblogic81/integration/upgrade

In the preceding line, BEA_HOME represents the WebLogic Platform home directory.

3. Execute the upgrade of B2B configuration data by entering:

Windows: upgradeTPM.cmd <sourceFileName> <targetFileName>
[workflowPath] [ctrlPackage]

UNIX: upgradeTPM.sh <sourceFileName> <targetFileName> [workflowPath]
[ctrlPackage]

Table 7-1 contains the command-line parameters for the upgradeTPM utility.

After the file is successfully transformed, the following message is displayed:

<date and time> <Info> <Upgrade> <600003> <Transformation Completed
Successfully>

Transformation Completed Successfully

If the file is not successfully transformed, an error message is displayed.

Table 7-1 Command-Line Parameters for the upgradeTPM Utility

http://edocs.bea.com/wli/docs81/manage/tpm.html

Step 5 : Upgrade TPM Conf igura t i on Data

7-4 BEA WebLogic Integration Upgrade Guide

4. To verify the upgrade and add optional configuration data, import the upgraded file using
the WebLogic Integration Administration Console. To learn about importing, see Importing
Management Data in Managing WebLogic Integration Solutions at the URL:

http://edocs.bea.com/wli/docs81/manage/tpm.html#1090102

5. If you are upgrading application integration components, go to “Step 6: Export Application
Views and other AI Repository Artifacts” on page 8-1; otherwise, go to “Step 9: Upgrade
Workflows” on page 11-1.

Command Description

sourceFileName The directory path and name of the TPM XML file to be upgraded.

targetFileName The directory path and name of the upgraded TPM XML file.

workflowPath
(Optional)

The path name of the workflow that uses the ebXML control, such
as bea.myOrders.

Note: If you know the workflow path, enter this parameter; otherwise,
leave it blank. After the TPM data is loaded, you can add this
parameter in the WebLogic Integration Administration
Console→Trading Partner Management→ Service
Management→Name field. See Viewing and Changing Services
in Managing WebLogic Integration Solutions at the following
URL:

http://edocs.bea.com/wli/docs81/manage/tpm.ht

ml

ctrlPackage
(Optional)

The package name of the ebXML Control, such as
bea.ebxmlCtrlPackage.

Note: If you know the control package name, enter this parameter;
otherwise, leave it blank. After the TPM data is loaded, you can
add this parameter using the WebLogic Integration Administration
Console→Trading Partner Management→Service

Management→Business Service Name field. See Viewing and
Changing Services in Managing WebLogic Integration Solutions
at the following URL:

http://edocs.bea.com/wli/docs81/manage/tpm.ht
ml

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html#1090102
http://edocs.bea.com/wli/docs81/manage/tpm.html#1090102

BEA WebLogic Integration Upgrade Guide 8-1

C H A P T E R 8

Step 6: Export Application Views and
other AI Repository Artifacts

This step applies only if you are upgrading application integration (AI) components.

Different utilities are needed to export Application Views and other AI repository artifacts from
WebLogic Integration 2.1 SP2 and 7.0 SP2 to JARs that can be imported into your WebLogic
Integration 8.1 upgrade application. These utilities export Application Views, connection
factories schemas, and namespaces into a single JAR file. After exporting, transfer the JAR file
to your target environment for the WebLogic Integration 8.1 application.

Note: Upgrading Application Views should be done only if you are using corresponding
adapters in WebLogic Integration 2.1 SP2 or 7.0 SP2 and WebLogic Integration 8.1 (for
example, WebLogic Adapter for RDBMS 7.1 and WebLogic Adapter for RDBMS for
WebLogic Integration 8.1).

Exporting AI Repository Artifacts
Note: If you are exporting WebLogic Integration 2.1 SP2 repository artifacts, you must edit the

aiExport21.cmd file to use the correct path for the setEnv.cmd, as described in “Edit
aiExport21” on page 2-2. The aiExport21 utility is included in WebLogic Integration 8.1.

To export AI Repository Artifacts, take the following steps:

1. On a Windows system, open a command window.

2. In both Windows and UNIX for artifacts, go to one of the following directories:

WebLogic Integration 2.1 SP2: BEA_HOME/weblogic81/integration/upgrade

WebLogic Integration 7.0 SP2: BEA_HOME/weblogic700/integration/bin

Step 6 : Expo r t App l i ca t i on Views and o the r A I Repos i to ry A r t i f ac ts

8-2 BEA WebLogic Integration Upgrade Guide

In the preceding paragraphs, BEA_HOME represents the WebLogic Platform home directory.

3. Execute the exporting of the repository artifacts.

WebLogic Integration 2.1 SP2

Usage for exporting:

aiexport21 <WLS URL> <user name> <password> <file>
[-codepage=<#>][-dump=< <namespace> | <'Root'>] [-append]
< [-export [object name]*] >

Table 8-1 contains the command-line parameters for the aiexport21 utility.

WebLogic Integration 7.0 SP2

Usage for exporting:

aiimportexport <WLS URL> <user name> <password> <file>
[-codepage=<#>][-dump=< <namespace> | <'Root'>] [-append]
< [-export [object name]*] >

Table 8-1 contains the command-line parameters for the aiimportexport and aiexport21
utilities.

Table 8-1 Command-Line Parameters for the aiExport21 and aiimportexport Utilities

Parameter Description

WLS URL URL of WebLogic Server.

user name Your username for the specified WebLogic Server.

password Your password for the specified WebLogic Server.

file The JAR file exported from the WebLogic Integration 2.1 SP2 or 7.0
SP2 application.

BEA WebLogic Integration Upgrade Guide 8-3

4. To upgrade WebLogic Integration 2.1 SP2 and 7.0 SP2 custom or third-party adapters, go to
“Step 7: Repackage Application Integration Adapters and Deploy” on page 9-1.

-codepage Optional. The codepage used when writing to console. It ensures that
characters are displayed correctly.

The default is Cp437 (United States).Other valid values include:

• Cp850 Multilingual (Latin I)

• Cp852 Slavic (Latin II)

• Cp855 Cyrillic (Russian)

• Cp857 Turkish

• Cp860 Portuguese

• Cp861 Icelandic

• Cp863 Canadian-French

• Cp865 Nordic

• Cp866 Russian

• Cp869 Modern Greek

• MS932 Japanese

The value specified must match your console’s codepage.

Note: On Window systems the chcp command displays the console’s
codepage.

-dump Prints a list of all objects within both the specified namespace and other
namespaces nested within it. To print a list of objects for the entire
directory structure, specify Root.

-append Appends exported items to the file specified by file instead of
overwriting it.

-export Specifies an export operation and the name of the objects to be exported
(namespaces and application views) and any objects they contain.
These objects are stored into file. When specifying an object within a
namespace use “.” as the delimiter (for example,
mynamespc.myappview).

Note: To export the entire directory structure, include Root in the list
of object names.

Parameter Description

Step 6 : Expo r t App l i ca t i on Views and o the r A I Repos i to ry A r t i f ac ts

8-4 BEA WebLogic Integration Upgrade Guide

To import Application Views and other AI repository artifacts, go to “Step 8: Import
Application Views and Other AI Repository Artifacts” on page 10-1.

BEA WebLogic Integration Upgrade Guide 9-1

C H A P T E R 9

Step 7: Repackage Application
Integration Adapters and Deploy

This step applies only if your are upgrading application integration (AI) components.

WebLogic Integration 8.1 provides a aiRepackageAdapter utility for upgrading WebLogic
Integration 2.1 SP2 and 7.0 SP2 custom and third-party adapters. Specifically, this utility
converts adapter EARs (Enterprise Archive file) to WebLogic Integration 8.1 EARs.

Note: Note, do not use the aiRepackageAdapter utility for upgrading BEA Adapters. You
should use BEA WebLogic 8.1 Adapters. To learn about BEA adapters, see BEA
WebLogic Adapters 8.1 at the following URL:

http://edocs.bea.com/wladapters/docs81/index.html

What the aiRepackageAdapter Utility Does
Differences exist between the structure of WebLogic Integration 2.1 SP2 or 7.0 SP2 EAR files
and WebLogic Integration 8.1 EAR files. Previous WebLogic Integration EARs contained a
design-time WAR (Web Application file), a run-time RAR (Resource Adapter Archive), and an
event router WAR, while the WebLogic Integration 8.1 EAR contains only a design-time WAR
and a run-time RAR.

The aiRepackageAdapter utility performs the following functions:

Removes the event router WAR and incorporates the event generator classes into the
run-time RAR.

Generates a ResourceAdapter implementation class using the init-param information
from the event router WAR’s web.xml and the other overview information in the run-time
RAR’s ra.xml file. This ResourceAdapter implementation takes the place of the event

http://edocs.bea.com/wladapters/docs81/index.html
http://edocs.bea.com/wladapters/docs81/index.html

Step 7 : Repackage Appl i ca t ion In tegra t i on Adapter s and Deploy

9-2 BEA WebLogic Integration Upgrade Guide

router for accepting event subscriptions and delivering events, and also acts as a container
for connection factories.

Updates the ADK JSP files that have changed and removes obsolete ADK JSP files.
Updates design-time WAR’s web.xml and weblogic.xml to refer to the new JSPs.

Update the adapter properties file with new property information from the ADK.

Provides new versions of all ADK and WLAI JARs.

Using the aiRepackageAdapter Utility
To repackage your adapters, take the following steps:

1. On a Windows system, open a command window.

2. In both Windows and UNIX, go to the following directory:

BEA_Home\weblogic81\integration\upgrade

In the preceding line, BEA_HOME represents the WebLogic Platform home directory.

3. Execute the repackaging of the adapter by entering (without the .EAR extension):

Windows: aiRepackageAdapter.cmd <parent_dir> <Adapter EAR File Name>

UNIX: aiRepackageAdapter.sh <parent_dir> <Adapter EAR File Name>

In the preceding paragraphs, parent_dir represents the parent directory of the WebLogic
Integration 7.0 SP2 EAR file.

For example:

aiRackageAdapter.cmd d:\weblogic700\integration\adapters\dbms\lib
BEA_WLS_DBMS_ADK

The repackaged adapter is named <adapter name>_8.1.ear and located in the parent
directory.

4. Deploy the repackaged adapter in your WebLogic Integration 8.1 application. See
Deploying WebLogic Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs81/deploy/index.html.

Note: When you deploy, the application name should be the name of the adapter without
the _81.ear suffix. If the suffix is used, the adapter cannot be used by WebLogic
Integration 8.1. For example, the application name of a supplier_8.1.ear is
supplier. The module (file) name can remain the same.

http://edocs.bea.com/wli/docs81/deploy/index.html

BEA WebLogic Integration Upgrade Guide 10-1

C H A P T E R 10

Step 8: Import Application Views and
Other AI Repository Artifacts

This step applies only if you upgrading application integration (AI) components.

WebLogic Integration 8.1 provides an import-export utility for importing Application Views and
other AI repository artifacts from a WebLogic Integration 2.1 SP2 or 7.0 SP2 AI repository. This
utility can be executed from the command line, or incorporated into your code with the
import-export API. The output of the utility is a JAR file.

What the Import-Export Utility Does
Upgrading your WebLogic Integration 7.0 SP2 AI repository is required because the WebLogic
Integration 8.1 AI repository is contained in the directory structure of the application’s local file
system, while the repository for WebLogic Integration 7.0 SP2 is contained in a Relational
DataBase Management System (RDBMS) database. Moreover, objects stored in the WebLogic
Integration 8.1 repository have changed, as shown in the following list:

Application View descriptor

– No longer has an Access Control List (ACL). All access control is defined in the
WebLogic Integration Administration Console. See “WebLogic Server Security
Upgrade” on page 14-1.

– Contains an imports section for importing adapter instances and connection factories
for use in event delivery and service invocation.

The Connection factory descriptor is no longer a top-level AI object. This object is now a
child element of the new adapter descriptor.

Step 8 : Impor t Appl i ca t ion V iews and Other A I Repos i to ry A r t i fac ts

10-2 BEA WebLogic Integration Upgrade Guide

Adapter descriptor—This is a new object type in WebLogic Integration 8.1. This descriptor
contains information about the adapter type and inbound messaging (event delivery), as
well as zero or more connection factory descriptors.

Schema descriptor—This descriptor is unchanged for 8.1.

Limitations
Shared connection factories—When an Application View that uses a shared connection factory
is imported into WebLogic Integration 8.1, it will have an invalid adapter instance reference.
When you are ready to test and publish the upgraded Application View, you need to correct the
invalid reference. To make the correction, take the following steps:

1. In the Application Integration Design Console, select the Application View with the invalid
adapter instance reference.

2. After the console page displays the Define Application View page, select the correct
adapter from the Associated Adapter drop list.

3. Click the Reuse Existing Connection button.

4. Select an existing Adapter Instance for the Application View to use.

Note: To learn more about testing and publishing Application Views, see Defining an Application
View in Using the Application Integration Design Console at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/1usrntr.html

Namespace mismatch—Application Views upgraded to WebLogic Integration 8.1 using the
import-export utility will have a namespace added to the request and response schema. If an
XmlObject is used in the upgraded business process, such as in an XPath function, the upgraded
files will not contain the namespace information. Subsequently, the XPath function will not work
properly because of the namespace mismatch. The DTF (Data Transfer Format) file generated by
the Upgrade Wizard must be edited to contain the namespace information. The DTF file is located
in the HOME_BEA/weblogic81/<Upgrade Project>/<Upgrade Project>Web/process
folder.

In the preceding paragraph, BEA_HOME represents the WebLogic Platform home directory.

For example, if a WebLogic Integration 7.0 SP2 document contains the following:

<RowsAffected>1</RowsAffected>

in WebLogic Integration 8.1, it is upgraded to look like this:

http://edocs.bea.com/wli/docs81/aiuser/1usrntr.html
http://edocs.bea.com/wli/docs81/aiuser/1usrntr.html

BEA WebLogic Integration Upgrade Guide 10-3

<ns0:RowsAffected xmlns:ns0="wlai/DemoDBMS_CreateCustomer_response"> 1
</ns0:RowsAffected>

The XPath function that is generated by the import-export utility is:

/**
 * Original xpath = "/RowsAffected/text()"
 * @dtf:transform xquery="string(
$xmlInput/self::RowsAffected/text())"
 *
 */
 abstract public String xpath_2(XmlObject xmlInput);

You must manually add the namespace information so the XPath function can work properly, as
indicated by the bold text:

/**
 * Original xpath = "/RowsAffected/text()"
 * @dtf:transform xquery="declare namespace
ns0='wlai/DemoDBMS_CreateCustomer_response" string(
$xmlInput/self::ns0:RowsAffected/text())"
 *
 */
 abstract public String xpath_2(XmlObject xmlInput);

Using the Import-Export Utility
To upgrade AI repository artifacts using the WebLogic Integration 8.1 import-export utility,
complete the following steps:

Note: Before upgrading your repository, you must have created an application in WebLogic
Workshop, as described in “Step 1: Create Application For Upgrade” on page 3-1. By
default a new application contains a project named “Schemas”. If your application does
not have a Schemas project, you must create one using WLI System Schemas as the
project type. The project determines the location of the repository. To learn about
creating a Schemas project, see How Do I: Create a Schemas Project Folder in the
WebLogic Workshop Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howS

chemasCreate.html

Note: Before you can use the import-export utility, you must first export this information to a
JAR file as described in “Step 6: Export Application Views and other AI Repository
Artifacts” on page 8-1.

http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasCreate.html

Step 8 : Impor t Appl i ca t ion V iews and Other A I Repos i to ry A r t i fac ts

10-4 BEA WebLogic Integration Upgrade Guide

1. Using the WebLogic Integration 8.1 import-export utility, import the JAR into your
applications project’s Schemas folder. Detailed steps are provided in “Invoking the
Import-Export Utility from the Command Line” on page 10-4.

2. (Optional) Create an event properties file. This file provides the properties needed for event
generation within the adapter instance that is created for the named connection factory. BEA
recommends that this file is named <adapter name>-eventProps.properties.

3. (Optional) Create an event properties file. The recommended name for this file is <adapter
name>-eventProps.properties.

The event properties file represents the properties for an event connection that will be
paired with a named connection factory in a newly generated adapter instance.

The event properties file is used to configure event delivery on the newly created adapter
instance that wraps the existing WebLogic Integration 2.1 SP2 or 7.0 SP2 connection
factory descriptors. This is only necessary when the generated adapter instance is used to
support event delivery for Application Views that use events. If you do not specify the
event properties file, and the Application Views that uses that connection factory has
defined events, you will need use the Application Integration Design Console to edit the
event connection being used by the Application View to allow for event delivery on that
Application View.

4. If you do not specify an event properties file when importing connection factories, you will
have to edit your adapter instances using the Application Integration Design Console.

To learn more about specifying event properties, see Defining an Application View in Using the
Application Integration Design Console at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/1usrntr.html

5. Test and publish your imported Application Views and other AI repository artifacts.

Note: You must complete this step before upgrading your workflows, as described in “Step
9: Upgrade Workflows” on page 11-1.

Note: To learn more about testing and publishing Application Views, see Defining an Application
View in Using the Application Integration Design Console at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/1usrntr.html

Invoking the Import-Export Utility from the Command Line
The usage for importing with the import-export utility is:

Usage: aiimportexport <app name> <root dir> <file> <codepage>

http://edocs.bea.com/wli/docs81/aiuser/1usrntr.html
http://edocs.bea.com/wli/docs81/aiuser/1usrntr.html
http://edocs.bea.com/wli/docs81/aiuser/1usrntr.html

BEA WebLogic Integration Upgrade Guide 10-5

-import [-publish]

[-eventProps=<connection factory name>,<properties file name>]*

For example:

aiimportexport UpgradeProcesses
c:bea\weblogic81\samples\integration\UpgradeProcesses
d:bea\weblogic81\integration\70exports\appvies.jar cp437 -import
-publish -eventProps=myFactory,myAdapter-eventProps.properties

In the proceeding command, myFactory is the connection factory name within the JAR
exported from the WebLogic Integration 2.1 SP2 or 7.0 SP2 repository.

Note: This usage is specific to importing JAR files that have been exported from WebLogic
Integration 2.1 and 7.0 SP2 applications. For full usage, see Importing and Exporting
Application Views in the Using the Application Integration Design Console at the
following URL:

http://edocs.bea.com/wli/docs81/aisuer/imp_appx.html

The following table contains the command-line parameters for the import-export utility.

Parameter Description

app name The name of the J2EE application that receives the artifacts from the
WebLogic Integration 2.1 or 7.0SP2 JAR.

root dir The root directory of the AI repository within the WebLogic Integration
8.1 application.

Note: You only need to specify the root directory of the application,
not the location of the Schemas folder.

file The JAR file exported from the WebLogic Integration 2.1 SP2 or 7.0
SP2 application.

http://edocs.bea.com/wli/docs81/aiuser/imp_appx.html
http://edocs.bea.com/wli/docs81/aiuser/imp_appx.html

Step 8 : Impor t Appl i ca t ion V iews and Other A I Repos i to ry A r t i fac ts

10-6 BEA WebLogic Integration Upgrade Guide

-codepage The codepage used when writing to console. It ensures that characters
are displayed correctly.

The default is Cp437 (United States).Other valid values include:

• Cp850 Multilingual (Latin I)

• Cp852 Slavic (Latin II)

• Cp855 Cyrillic (Russian)

• Cp857 Turkish

• Cp860 Portuguese

• Cp861 Icelandic

• Cp863 Canadian-French

• Cp865 Nordic

• Cp866 Russian

• Cp869 Modern Greek

• MS932 Japanese

The value specified must match your console’s codepage.

Note: On Window systems the chcp command displays the console’s
codepage.

-import Specifies that objects contained in the JAR should be imported into the
repository.

-publish
(Optional)

Used only with -import. Requests the import/export utility to
publish the imported Application Views to the target
application. This generates the EJB JAR for the Application
View and prepares the Application View for use in the target
application.

Parameter Description

BEA WebLogic Integration Upgrade Guide 10-7

-eventProps
(Optional)

Used only with -import and when importing a WebLogic
Integration 2.1 or 7.0 SP2 JAR. Defines a mapping between the
qualified connection factory name and a properties file. This properties
file provides the properties needed for event generation within the
adapter instance that is created for the named connection factory.

If needed, you may use multiple -eventProps arguments.These
properties are specified in WebLogic Integration 2.1 or 7.0 SP2 within
the EventRouter WAR file’s web.xml. You can extract the name and
value from the init-param elements of the web.xml and place them
in a Java properties file where name is the key and the value is the value
portion on each line in the file.

When creating the properties file for the -eventProps arguments,
you should take the property name/value pairs from the init-param
elements in the web.xml of the WebLogic Integration 2.1 or 7.0 SP2
adapter’s EventRouter WAR file.

You do not need to put the following properties in web.xml
properties in the -eventProps properties file:

• eventGeneratorClassName

• RootLogContext

• AdditionalLogContext

• LogConfigFile

• LogLevel

• MessageBundleBase

• LanguageCode

• CountryCode

If the -eventProps argument does not exist or if it is not defined so
that it maps a properties file to the qualified name for a connection
factory, the adapter instance generated will have inbound messaging
disabled. After importing, you can specify event properties for the
adapter instance your using the Application Integration Design
Console. To learn more about specifying event properties, see Defining
an Application View in the Using the Application Integration Design
Console at the following URL:

http://edocs.bea.com/wli/docs81/aiuser/2usrdef.ht
ml

Parameter Description

http://edocs.bea.com/wli/docs81/aiuser/2usrdef.html
http://edocs.bea.com/wli/docs81/aiuser/2usrdef.html

Step 8 : Impor t Appl i ca t ion V iews and Other A I Repos i to ry A r t i fac ts

10-8 BEA WebLogic Integration Upgrade Guide

The following properties are typically found in a WebLogic Integration 7.0 SP2 EventRouter
web.xml file. You can safely not include them in the event properties file.

eventGeneratorClassName

RootLogContext

AdditionalLogContext

LogConfigFile

LogLevel

MessageBundleBase

LanguageCode

CountryCode

Using the Import-Export API
You can invoke the import-export utility directly from the API. The class name for the
import-export API is com.bea.wlai.client.ImportExport. The following code provides an
example for importing.

Listing 10-1 Sample Code for Importing

String exportFilename = "myExportFile.jar";

String appName = "MyApp";

String appRootDir = "d:\\apps\\MyApp";

boolean overwrite = true;

boolean publish = true;

List errors = new LinkedList(); // List of Exception objects

connection factory
name

The qualified name of the connection factory that is mapped to the
properties file.

Defines a mapping between the qualified connection factory name and
a properties file.

properties file name The name of the properties file that the properties from the web.xml
file are mapped to.

Parameter Description

BEA WebLogic Integration Upgrade Guide 10-9

Map eventPropsMap = new HashMap();

// Add properties file names (String) as the values keyed by the

// qualified names of the connection factories the properties are

// to be used with. This list can be null if you don't want any

// mappings applied.

eventPropsMap.put("Folder1.AppView1_connectionFactory",

 "d:/myFiles/propsFor_Folder1.AppView1_connectionFactory");

ImportExport ie = new ImportExport(new File(exportFilename));

try

{

 ie.connect(appName, appRootDir);

 ie.importNamespaceObjects(overwrite, publish, eventPropsMap, errors);

}

catch (Exception e)

{

 System.err.println("Fatal errors encountered:\n");

 e.printStackTrace();

 return;

}

if (errors.size() > 0)

{

 System.err.println("Non-fatal errors encountered:\n");

 int pos = 1;

 Iterator i = errors.iterator();

 while (i.hasNext())

 {

 Exception e = (Exception) i.next();

 System.err.println("Error " + pos + ": " + e);

 e.printStackTrace(m_out);

 pos++;

Step 8 : Impor t Appl i ca t ion V iews and Other A I Repos i to ry A r t i fac ts

10-10 BEA WebLogic Integration Upgrade Guide

 }

}

BEA WebLogic Integration Upgrade Guide 11-1

C H A P T E R 11

Step 9: Upgrade Workflows

WebLogic Integration 8.1 provides an Upgrade Wizard for upgrading workflows and other
application information developed in WebLogic Integration 2.1 SP2 and 7.0 SP2 to WebLogic
Integration 8.1. This section contains the following topics:

About the Upgrade Wizard

What the Wizard Upgrades

Upgrade Wizard Limitations

Using the Upgrade Wizard

About the Upgrade Wizard
The Upgrade Wizard automatically upgrades most workflows, including business process
templates that use Data Integration, (DI), Application Integration (AI) and B2B plug-ins.
Basically, the wizard takes an exported JAR file from WebLogic Integration 2.1 or 7.0 SP2 that
contains workflows, business operations definitions, event keys, and data integration MFL, XSL,
and XML files and transforms them into a business process file (.jpd), control files (.jcx), and
extracted DI files. The Upgrade Wizard provides success, warning, error, and failure messages
about the upgrade process and records this information to a log file.

The Upgrade Wizard optimizes the upgraded business processes as much as possible. However,
upgraded processes may not be as optimal as if they were created in WebLogic Integration 8.1.
Additionally, some processes cannot be fully upgraded, especially if they are extremely complex
or improperly designed. These processes may require manual upgrading or redesign.

Step 9 : Upgrade Workf lows

11-2 BEA WebLogic Integration Upgrade Guide

To learn about developing business processes, see Designing WebLogic Integration Solutions at
the following URL:

http://edocs.bea.com/wli/docs81/design/index.html

and the Guide to Building Business Processes in the WebLogic Workshop Help at the following
URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguide
Intro.html

What the Wizard Upgrades
The following list provides an overview of what the Upgrade Wizard upgrades:

Workflow (business process) definitions, including the following:

– Flow chart, start, task, branch, condition, join/or, and done.

– Process actions, such as assign task, post XML event, set variable, call sub workflow,
and call business-operations.

– Process event subscription, such as event start and event resume.

Data integration MFL, XSL, and XML files used by workflows.

Upgrade Wizard Limitations
As previously mentioned, the Upgrade Wizard cannot upgrade some components of particular
workflows. You will need to manually upgrade these parts. The following list contains
information on the Upgrade Wizard limitation and references to documents that can help you
re-develop these components.

Running applications—You cannot upgrade a production system.

Unstructured parallel workflows—WebLogic Integration 8.1 supports only structured
parallel business processes (All parallel paths coming out of a node should merge at the
same Join node). If your WebLogic Integration 2.1 or 7.0 SP2 application, contains
unstructured parallel workflows (cross paths between potential threads and Join nodes as
Task nodes), the Upgrade Wizard cannot upgrade these workflows and you will need to
re-develop them. To learn about structured business process design, see Designing
WebLogic Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs81/design/index.html

http://edocs.bea.com/wli/docs81/design/index.html
http://edocs.bea.com/wli/docs81/design/index.html
http://edocs.bea.com/wli/docs81/design/index.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html

Upgrade Wi za rd L imi tat ions

BEA WebLogic Integration Upgrade Guide 11-3

Workflows That Send Email—After upgrading a workflow that sends email, you must
manually edit the SMTP server settings in the annotation for email control the upgraded
process. This is required because the SMTP server information is not contained in the
original workflow, it is part of the domain configuration. To learn about editing the SMTP
server settings, see Configuring an Email Control in the WebLogic Workshop at the
following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/con
trolsEmailConfig.html

Run-time exception if output parameter is not initialized—In WebLogic Integration
Studio, in the Variable Properties dialog box, if the Output parameter is checked, the
callback to the client will include this variable as one of its arguments. However, if you do
not initialize this variable, a run-time exception is thrown. Primitive type and String are
exceptions to this rule, as they have a default value when declared.

WebLogic Integration 7.0 SP2 DI plug-in binary event messages—The DI plug-in
supports data translations between binary formats and XML using a message format
language (MFL) document. The Upgrade Wizard upgrades workflows that can handle only
XML based events even though the actual incoming event may consist of binary data. In
this case, you need to do one of the following:

– If the receiving WebLogic Integration 8.1 business process can determine the MFL for
transforming the binary data after it receives the incoming message, it will translate the
data to XML. See Transforming Non-XML Data in the WebLogic Workshop Help at
the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtgu
ideNonXML.html

– If the receiving WebLogic Integration 8.1 business process cannot determine the MFL
for transforming the incoming binary data, you can use Java or another business
process to utilize MFL to convert the message to XML before sending the binary data.
See the Guide to Building Business Processes in the WebLogic Workshop Help at the
following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfgu
ideIntro.html

Custom business operation classes—For upgrading workflows with business operations,
you need to import any custom business operation classes into your upgrade project’s
HOME_BEA/weblogic81/<upgrade_project>/WEB-INF/classes folder or, for JAR
files, the WEB-INF/lib folder, where BEA_HOME represents the WebLogic Platform home
directory.

http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideNonXML.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsEmailConfig.html

Step 9 : Upgrade Workf lows

11-4 BEA WebLogic Integration Upgrade Guide

Workflows using the same Application View service synchronously and
asynchronously—You need to manually change the WebLogic Integration 2.1 SP2 or 7.0
SP2 workflow to make the service be used either synchronously or asynchronously before
running the Upgrade Wizard.

Multiple Start Nodes—The Upgrade Wizard cannot separate the different possible threads
of workflow execution when multiple start nodes exist. You need to manually upgrade
these workflows.

Workflows node without inbound connection—Normally, the only workflow node that
does not have an inbound connection is the Start node. If any other node in a workflow
lacks an inbound connection, the workflow cannot be upgraded by the Upgrade Wizard, as
shown in the following figure:

Timeouts—During upgrade, timeouts are set to have a count of at least one second; any
timeouts that are set to less than a second are reset to one second. If you require less than
one second, use the sleep() function after upgrading.

Session EJB and Entity EJB variables—Although WebLogic Integration 7.0 SP2
workflow variables of type Session EJB and Entity EJB are upgraded to WebLogic
Integration 8.1 EJB controls, these variables cannot be passed between business processes
in WebLogic 8.1. In WebLogic 7.0 SP2, these variables could be passed between
workflows.

Timed starts—When upgrading a workflow that uses a timed start, the upgraded business
process contains a Subscription start node. Subscription start nodes start processes on
receipt of a message from a Message Broker channel. Subsequently, you need to configure
the channel to have a Timer event generator that publishes to the Subscription start node
using the WebLogic Integration Administration Console. See Event Generators in
Managing WebLogic Integration Solutions at the following URL:

http://e-docs.bea.com/wli/docs81/manage/evntgen.html

Transaction boundaries—To allow the transaction of the caller to propagate into
subprocesses, the Upgrade Wizard introduces the Client Request with Return construct
into any upgraded business process that has a called start. Other than this contsruct, the
Upgrade Wizard does not deliberately set transaction boundaries in upgraded processes.
However, transactional boundaries can sometimes be different in an upgraded business
process for the following reasons:

http://e-docs.bea.com/wli/docs81/manage/evntgen.html

Us ing the Upgrade W iza rd

BEA WebLogic Integration Upgrade Guide 11-5

– Whenever a parallel construct is found, boundaries change because each branch is its
own transaction block.

– Called business processes have a Client Request with Return that gets as close as
possible to the quiescent point in the original workflow and still maintains structured
logic.

– Upgraded nodes are inherently different because WebLogic Integration 8.1 uses
controls and WebLogic Integration 7.0 SP2 BPM uses actions in. This incongruence
may introduce slight transactional boundary changes.

Addressed messaging—To enable upgrading of addressed messaging, you must add a
comment in the original subscribing workflow’s Notes field. To do this, include the word
addressedTarget in the Notes field for either the workflow Notes (Right-click the template
definition in the workflow tree in WebLogic Integration 7.0 SP2 Studio.) or the Event node
(under the properties for the Event node). Enabling addressed messaging at the workflow
level is the same as enabling it individually for every event node in the workflow.

Using the Upgrade Wizard
Before using the Upgrade Wizard, you must first export the workflows you created in WebLogic
Integration 2.1 SP2 or 7.0 SP2 as described in “Step 3: Export Package File from WebLogic
Integration BPM Studio” on page 5-1.

To upgrade your workflows, take the following steps:

1. Start WebLogic Workshop and WebLogic Server, as described in How Do I: Start WebLogic
Workshop? in the WebLogic Workshop Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSt
artWorkshop.html

2. Open the Process Application for your upgrade that you created in “Step 1: Create
Application For Upgrade” on page 3-1.

3. From the WebLogic Workshop menu, choose Tools→WebLogic Integration→Upgrade
Processes.

The Upgrade Wizard is displayed.

4. In Upgrade Wizard - Step1: Select Process:

a. In the Select a JAR File field, enter the JAR that contains a set of exported workflows
from a previous version of WebLogic Integration. Alternatively, click Browse to navigate
to the JAR.

http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howStartWorkshop.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/howdoI/howStartWorkshop.html

Step 9 : Upgrade Workf lows

11-6 BEA WebLogic Integration Upgrade Guide

b. In the Select Workflows to Upgrade field, select one or more workflows from the list of
workflows.

Note: If multiple workflow template definitions exist, you must choose which template
definition you want to upgrade. The Upgrade Wizard allows only a single
definition to be used for creating the JPD.

c. In the Project drop list, select the project for your upgraded workflows. It should be the
name of your application with Web appended. For example, UpgradeProcessesWeb. See
the following figure.

Figure 11-1 Upgrade Wizard - Step 1: Select Process

d. In the Package Name field, enter the name “processes” (which is the location of the
default.jpd).

e. Click Next.

The Upgrade Wizard - Step2: Upgrade is displayed, as shown in the following figure.

Us ing the Upgrade W iza rd

BEA WebLogic Integration Upgrade Guide 11-7

Figure 11-2 Upgrade Wizard - Step 2: Upgrade

5. If you do not want to use the default name for the upgrade log, enter a name in the Log file
field.

6. Click Start Upgrade.

Messages indicating the status of the business process upgrade are displayed in the
Upgrade Wizard. These messages indicate which steps in the upgrade process succeed and
which steps fail; whether or not the JPD file is generated; the number or errors, warnings,
and notices; and the type of errors, warnings, and notices, as shown in the following figure:

Step 9 : Upgrade Workf lows

11-8 BEA WebLogic Integration Upgrade Guide

Figure 11-3 Upgrade Messages

7. Click Finish.

The Upgrade message field displays the results of the upgrade. The errors, warnings,
failures, and notices are also recorded in the upgrade log. To learn more about using these
messages, see “Step 10: View the Upgrade Log” on page 12-1.

A Design View of the generated business process is displayed and the upgraded workflows
(now called business processes) are saved in the directory specified the Package Path
field, as shown in the following figure.

Us ing the Upgrade W iza rd

BEA WebLogic Integration Upgrade Guide 11-9

Figure 11-4 Original Workflow and Upgraded Workflow

Note: Some nodes may not display properly.

8. To view the source code of the generated business process, select Source View.

Note: Some nodes in business processes generated by the Upgrade Wizard may not display
properly in the Design View. However, these parameters are visible in the source view.

Step 9 : Upgrade Workf lows

11-10 BEA WebLogic Integration Upgrade Guide

BEA WebLogic Integration Upgrade Guide 12-1

C H A P T E R 12

Step 10: View the Upgrade Log

The upgrade log helps you with upgrading workflows. You can use the upgrade log to identify
the workflows and parts of workflows that could not be upgraded by the Upgrade Wizard. The
messages in the log provide guidance for fixing, redeveloping, and optimizing the upgraded
business processes. In general, they provide the following:

Notices indicate successful upgrade and identifies quiescent nodes.

Warnings indicate success, but you may need to modify a part of a workflow or otherwise
modify it to improve its functionality.

Errors require minor to moderate fixes to the business process.

Errors with a failure to produce a JPD file means you must fix the original workflow or
redevelop it in WebLogic Integration 8.1.

The following steps will help you use the upgrade log most effectively:

1. To view the log, select upgrade.log in the Application pane. The log is in the
Project/ProjectWeb/processes folder.

2. Examine the upgrade log and use it to identify the workflows and parts of workflows that
could not be upgraded. The log also provides information about the upgraded business
process that you can you use to improve their performance.

3. Consult the “Upgrade Wizard Limitations” on page 11-2 section of the Upgrade Wizard for
information about specific limitations and solutions.

4. If an entire workflow cannot be upgraded, you need to redevelop that workflow (business
process) in WebLogic Integration 8.1.

Step 10 : V iew the Upgrade Log

12-2 BEA WebLogic Integration Upgrade Guide

5. If a part of a workflow cannot be upgraded, you can add the missing functionality to that
workflow (business process) using WebLogic Integration 8.1.

To learn about creating and modifying business processes, see Building Integration Applications
in the WebLogic Workshop Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/navIntegration.
html

To learn about optimizing business processes and your application, see Designing WebLogic
Integration Solutions at the following URL:

http://edocs.bea.com/wli/docs81/design/index.html

http://edocs.bea.com/workshop/docs81/doc/en/integration/navIntegration.html
http://edocs.bea.com/wli/docs81/design/index.html
http://edocs.bea.com/wli/docs81/design/index.html

BEA WebLogic Integration Upgrade Guide 13-1

C H A P T E R 13

Step 11: Run and Test Upgraded
Business Processes

To learn about running and testing business processes, see Running and Testing Your Business
Process at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguide
Test.html

You may be able to further optimize the upgraded business processes. To learn about improving
the efficiency of business processes, see Designing WebLogic Integration Solutions at the
following URL:

http://edocs.bea.com/wli/docs81/design/index.html

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTest.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTest.html
http://edocs.bea.com/wli/docs81/design/index.html

Step 11 : Run and Tes t Upgraded Bus iness Pr ocesses

13-2 BEA WebLogic Integration Upgrade Guide

BEA WebLogic Integration Upgrade Guide 14-1

C H A P T E R 14

Upgrading Security Features

When upgrading from WebLogic Integration 2.1 SP2 or 7.0 SP2 to 8.1, security features must be
upgraded manually. This section contains information about these procedures:

WebLogic Server Security Upgrade

WebLogic BPM Security Upgrade

WebLogic B2B Security Upgrade

WebLogic Application Integration Security Upgrade

WebLogic Server Security Upgrade
WebLogic Server ACLs, users, groups, certificates, and so on must be upgraded by following the
Security section of the WebLogic Server 8.1 Upgrade Guide at the following URL:

http://edocs.bea.com/wls/docs81/security.html

WebLogic Integration 8.1 uses the Default Security Configuration in WebLogic Server 8.1. For
more information refer to Managing WebLogic Security.

WebLogic BPM Security Upgrade
Upgrading WebLogic business process management (BPM) security affects users, roles,
organizations, calendars, email, and permissions.

http://edocs.bea.com/wls/docs81/security.html
http://edocs.bea.com/wls/docs81/secmanage/index.html

Upgrad ing Secur i t y Fea tu res

14-2 BEA WebLogic Integration Upgrade Guide

WebLogic BPM Users, Roles, and Organizations
WebLogic business process management (BPM) security upgrades to users are handled
separately from roles and organizations.

WebLogic BPM Users
All WebLogic BPM users must become WebLogic Server users.

User wlisystem is no longer a special user. The following table shows its replacement in
WebLogic Integration 8.1.

Table 14-1 WebLogic Integration 2.1 SP2 and 7.0 SP2 wlisystem User vs 8.1 Functionality

WebLogic BPM Roles and Organizations
The following table shows the replacement in WebLogic Integration 8.1 for BPM roles and
organizations.

Table 14-2 WebLogic Integration 2.1 SP2 and 7.0 SP2 BPM Roles and Organizations vs 8.1 Functionality

WebLogic Integration 2.1 and 7.0 SP2 wlisystem
User

Replacement in WebLogic Integration 8.1

The wlisystem user was used when an event or
trigger invoking a workflow had no associated user.

A business process started by a message will be
run as user anonymous by default, unless the
business process defines the <run-as> attribute.

Business processes that have been migrated using
the upgrade wizard will use <run-as>
wlisystem as the running user.

WebLogic Integration 2.1 SP2 and 7.0 SP2 Roles
and Organizations

Replacement in WebLogic Integration 8.1

Users had roles and were assigned to organizations. A BPM role and organization are combined and
mapped to a WebLogic Server group.

Note: The concept of an organization no longer
exists.

WebLog ic BPM Secur i t y Upgrade

BEA WebLogic Integration Upgrade Guide 14-3

WebLogic BPM Calendars and Email
WebLogic Integration BPM Calendars and Email have been replaced with new functionality. The
following table shows the change in WebLogic Integration 8.1 for BPM calendars and email.

Table 14-3 WebLogic Integration 2.1 SP2 and 7.0 SP2 BPM Calendars and Email vs 8.1 Functionality

WebLogic BPM Permissions
Permissions in WebLogic Integration 8.1 are set via the WebLogic Integration Administration

Console. The following table shows the change in WebLogic Integration 8.1 for BPM
permissions.

Table 14-4 WebLogic Integration 2.1 SP2 and 7.0 SP2 BPM permissions vs 8.1 Functionality

WebLogic Integration 2.1 SP2 and 7.0 SP2 BPM
Calendars and Email

Replacement in WebLogic Integration 8.1

Calendars existed at the organization, role, and user
levels.

Calendars now exists only at the user level, and are
configured via the WebLogic Integration
Administration Console.

Email addresses for users must be reentered via the
WebLogic Integration Administration Console.

Upgrad ing Secur i t y Fea tu res

14-4 BEA WebLogic Integration Upgrade Guide

WebLogic B2B Security Upgrade
Upgrading WebLogic B2B security affects certificates, trading partner configuration, and the
packaging of some Java classes you may be using.

For WebLogic Integration 8.1, the B2B system user is no longer used. Instead you will use the
users and roles provided when you create a new WebLogic Integration domain.

Certificates must be placed in keystores before they can be upgraded. In WebLogic Integration
2.1 SP2 keystores were not available. In WebLogic Integration 7.0 SP2 the use of keystores was
optional.

Upgrading Certificates in WebLogic Integration 2.1 SP2
Certificates used by WebLogic Integration 2.1 SP2 B2B must be imported into the WebLogic
Integration 8.1 keystore one at a time by using a JavaSoft JDK keytool utility, or the WebLogic

WebLogic Integration 2.1 SP2 and 7.0 SP2 BPM
permissions

Replacement in WebLogic Integration 8.1

Permissions were set for users and roles. Permissions are defined using specially named
roles that must be configured via the WebLogic
Integration Administration Console. The
following permissions should be associated with
the admin role:

ConfigureSystems

ConfigureComponents

MonitorInstances

CreateTemplate

DeleteTemplate

AdministerUser

Note: The ExecuteTemplate permission has
been replaced by the security policy on
business process methods.

WebLog ic B2B Secur i t y Upgrade

BEA WebLogic Integration Upgrade Guide 14-5

ImportPrivateKey utility as described in “ImportPrivateKey” in the Using the WebLogic Java
Utilities section of the WebLogic Server Administration Guide at the following URL:

http://edocs.bea.com/wls/docs70/adminguide/utils.html

and in the Configuring the Keystore section of the WebLogic Integration 7.0 B2B Security Guide
at the following URL:

http://edocs.bea.com/wli/docs70/b2bsecur/keystore.htm

Upgrading Certificates in WebLogic Integration 7.0 SP2
To upgrade certificates used by WebLogic Integration 7.0 SP2 B2B to 8.1, your certificates must
be in a private keystore and your trusted certificate authorities must be in the CA keystore. If you
have not yet set up these keystores, follow the instructions in the Configuring the Keystore
section of the WebLogic Integration 7.0 B2B Security Guide.at the following URL:

http://edocs.bea.com/wli/docs70/b2bsecur/keystore.htm

The main steps are:

1. Generate and configure the private and CA keystores.

2. Specify the password for the keystores.

3. In WebLogic Integration 7.0 SP2, enable the auto-migrate mode to allow bulk loading of
certificates into the keystore.

After your certificates are in keystores, you can upgrade to WebLogic Integration 8.1 following
these steps:

1. Copy the keystore files to another location.

2. Configure the WebLogic Server keystore to use the new keystore files. Note that in
WebLogic Integration 8.1, clustered keystore configuration is node-specific. If you have
clustered nodes, they will need to access a shared directory containing the keystores, or the
keystores must be replicated on each node.

3. Enter the primary key password using the Trading Partner Management (TPM) console.
Note that the TPM must be running.

Upgrading Trading Partner Security Configuration
A script is provided to upgrade your trading partner security and message encryption
configuration.

http://edocs.bea.com/wls/docs70/adminguide/utils.html
http://edocs.bea.com/wls/docs70/adminguide/utils.html
http://edocs.bea.com/wli/docs70/b2bsecur/keystore.htm
http://edocs.bea.com/wli/docs70/b2bsecur/keystore.htm

Upgrad ing Secur i t y Fea tu res

14-6 BEA WebLogic Integration Upgrade Guide

On Windows, run:

BEA_HOME/weblogic81/integration/upgrade/upgradeTPM.cmd

On UNIX, run:

BEA_HOME/weblogic81/integration/upgrade/upgradeTPM.sh

In these commands, BEA_HOME represents the WebLogic Platform home directory.

Upgrading Use of com.bea.b2b.security Classes
You will need to change and recompile your applications that use the com.bea.b2b.security
package. The following table shows the changes in class names:

Table 14-5 WebLogic Integration 2.1 SP2 and 7.0 SP2 Classes vs 8.1 Classes

WebLogic Application Integration Security Upgrade
Upgrading WebLogic Application Integration security affects EIS authentication and
authorization, and application view access control.

Repackaging Adapter Code
Java classes for adapters must conform to a new package scheme. A script is provided to
repackage your adapter code.

On Windows, run:

BEA_HOME/weblogic81/integration/upgrade/aiRepackageAdapter.cmd

On UNIX, run:

BEA_HOME/weblogic81/integration/upgrade/aiRepackageAdapter.sh

WebLogic Integration 2.1 SP2 and 7.0 SP2 Classes Replacement in WebLogic Integration 8.1

com.bea.b2b.security.AuditLogger com.bea.wli.security.audit.AuditLo
gger

com.bea.b2b.security.CertificateVer
ification

com.bea.wli.security.verification.
CertificateVerification

com.bea.b2b.security.Timestamp com.bea.wli.security.time.Timestam
p

WebLogi c App l i cat i on In teg ra t i on Secur i t y Upgrade

BEA WebLogic Integration Upgrade Guide 14-7

In these commands, BEA_HOME represents the WebLogic Platform home directory.

Upgrading Application View Access Control
The security information for WebLogic Application Integration is no longer held in ACL format.
Instead, a role-based authorization scheme uses the underlying WebLogic Server 8.1 security
infrastructure. Go to the Application Integration section of the WebLogic Integration 8.1 console
to reconfigure the security information to access the application view.

Upgrad ing Secur i t y Fea tu res

14-8 BEA WebLogic Integration Upgrade Guide

BEA WebLogic Integration Upgrade Guide 15-1

C H A P T E R 15

Upgrading Application View Controls
Created in WebLogic Workshop

In WebLogic Workshop 7.0 SP2, you could create Java Web Services (JWS) that used
Application View controls for accessing enterprise systems through a J2EE Connector
Architecture adapter. In WebLogic Integration 8.1, these controls have been completely
restructured, and the API has changed. Therefore, you will need to manually upgrade your
Application View controls, as described in the following steps:

1. Make sure your Application Views and other artifacts (Application View descriptors,
connection factory descriptors, and schemas) have been imported into a WebLogic
Integration 8.1 application using the import-export utility. To learn about this utility, see “Step
8: Import Application Views and Other AI Repository Artifacts” on page 10-1.

2. Copy the JWS file from your WebLogic Workshop 7.0 SP2 project and perform any
conversion needed for the JWS files. To learn about upgrading JWS files, see “Run the
jwsUpgrade Command-line Tool” in Upgrading Workshop Applications in the WebLogic
Workshop Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/migration
/conMigratingWorkshopApplications.html

3. Remove all member variable declarations for Application View controls from the JWS file
and record the variable names and their associated Application Views. You will need this
information later.

For example, in a file called DMBS1Service.jws:

public class DBMS1Service
{

/**
* @jws:control

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/migration/conMigratingWorkshopApplications.html

Upgrad ing App l i ca t i on Vi ew Cont ro l s C reated i n WebLog ic Workshop

15-2 BEA WebLogic Integration Upgrade Guide

*/
private DBMS1Control m_dbms;
/** @jws:context */
JwsContext context;
...

a. Remove the member variable declaration.

/**
* @jws:control

*/
private DBMS1Control m_dbms;

b. Write down the variable name.

m_dbms

For example, in the DBMS1Control.ctrl file:

import weblogic.jws.control.ApplicationViewControl;
/**
* @jws:av-identity name="DBMS.DBMS1" user-id="system"
password="password"
*/

c. Write down the name of the application:

DBMS.DBMS1

4. Create an Application View control in WebLogic Workshop 8.1 for all Application Views
you recorded. When providing the variable name for the control, use the variable name you
recorded previously. This creates the control instances and links them to your JWS as
variable declarations.

Note: To learn about creating an Application View control, see Creating a New Application
View Control in the WebLogic Workshop Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/
controlsAppViewCreate.html

5. Examine your JWS code and change the places where the Application View control
variables are used, using the following guidelines:

Note: A control created in WebLogic Workshop 7.0 SP2 has a.ctrl extension, while a
control created in WebLogic Workshop 8.1 has a .jcx extension.

– In WebLogic Integration 7.0, the request/response Java types for the control were
generated as static inner classes within the control’s CTRL file. For example, for a
control named DBMS1Control, a service called GetAllCustomers, and a response
schema describing the following document:

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsAppViewCreate.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsAppViewCreate.html

BEA WebLogic Integration Upgrade Guide 15-3

<Rows>
 <Row>
 <FIRSTNAME>Joe</FIRSTNAME>
 <LASTNAME>User</LASTNAME>
 </Row>
</Rows>

The inner class within the DBMS1Control.ctrl file is as follows:

public static class GetAllCustomersResponse
 implements java.io.Serializable
{
 public static class Rows implements java.io.Serializable
 {
 public Row[] Row;
 }

 public static class Row implements java.io.Serializable
 {
 public java.lang.String FIRSTNAME;
 public java.lang.String LASTNAME;
 }
}

Additionally, code would exist in the JWS to get the first and last names from the
response rows as follows:

DBMS1Control.GetAllCustomersResponse.Rows rows =
 m_dbms.GetAllCustomers();
DBMS1Control.GetAllCustomersResponse.Rows.Row[] custs =
 rows.Row;

for (int i=0; i < custs.length; i++)
{
 DBMS1Control.GetAllCustomersResponse.Row cust = custs[i];
 String firstName = cust.FIRSTNAME;
 String lastName = cust.LASTNAME;
 System.out.println("First name=" + firstName + "last name=" +
 lastName);
}

Note: The variable name m_dbms refers to the Application View control instance
DBMS1Control.

– In WebLogic Integration 8.1, the same functionality is achieved using an XBean type.
No static inner classes are generated inside the CTRL file. Instead, the XBean type is
compiled directly from the schema for the request/response. This makes it available to
all code within the application, not only the JWS. In WebLogic Integration 8.1, you

Upgrad ing App l i ca t i on Vi ew Cont ro l s C reated i n WebLog ic Workshop

15-4 BEA WebLogic Integration Upgrade Guide

would have a control instance generated from the DBMS1 Application View called
DBMS1.jcx as follows:

public interface DBMS1 extends ApplicationViewControl
{
 public wlai.dbms1GetAllCustomersResponse.RowsDocument
 GetAllCustomers()
 throws Exception;

}

and the code in the JWS (or a business process JWF file) that looks like this:

wlai.dbms1GetAllCustomersResponse.RowsDocument response =
 m_dbms.GetAllCustomers();
wlai.dbms1GetAllCustomersResponse.Rows.Row[] custs =
 response.getRows().getRowArray();

for (int i=0; i < custs.length; i++)
{
 wlai.dbms1GetAllCustomersResponse.Rows.Row cust = custs[i];
 String firstName = cust.getFIRSTNAME();
 String lastName = cust.getLASTNAME();
 System.out.println(“First name=” + firstName + “ last name=” +
 lastName);
}

As you may have noted, the code is similar in both the WebLogic Integration 7.0 and
WebLogic Integration 8.1 JWS files. However, the class/interface names have changed.
In general, the name for the XBean type for the request is structured as follows:

wlai.<mangled namespace URI name>.<decapitalized AppView
name><Service name>.<Root element name>Document

Mangling replaces slashes with dots, and changes the first character of each qualifier to
lower case.

The mangled namespace URI name equals the qualified name of the namespace that
contains the schema in the application integration (AI) repository. For instance,
Folder1.Folder2.Schema1 uses Folder1/Folder2 as the URI. The mangled name
is folder1.folder2. The mangled lower-cased AppView name equals the lower case
first letter of the AppView name.

Note: WebLogic Workshop provides context-sensitive code help that will guide you in
using the XBean types correctly.

BEA WebLogic Integration Upgrade Guide 16-1

C H A P T E R 16

Upgrading Utility Adapters

The Utility adapters, Email and File, in WebLogic Integration 2.1 SP2 and 7.0 SP2, have been
replaced in WebLogic Integration 8.1 with system features. Consequently, these two adapters
cannot be upgraded and you will need to replace their implementation with the new features.

Note: The Adapter for RDBMS had been replaced by a new RDBMS Adapter for 8.1 and has
new capabilities.

Table 16-1 shows the WebLogic Integration 2.1 and 7.0 SP2 adapters and their replacement in
WebLogic Integration 8.1.

Table 16-1 WebLogic Integration 2.1 and 7.0 SP2 Utility Adapter vs 8.1 Functionality

WebLogic Integration 2.1 and 7.0 SP2 Adapters Replacement in WebLogic Integration 8.1

Adapter for Email Email Control (send e-mail)
Email Event Generator (receive e-mail)

Adapter for File File Control (read, write, or append files)
File Event Generator (receive file from polled
directory)

Adapter for RDBMS Adapter for RDBMS 8.1

Upgrad ing Ut i l i t y Adapter s

16-2 BEA WebLogic Integration Upgrade Guide

Use Email Controls and Event Generators Instead of Adapter
for Email
Email controls enable WebLogic Integration business processes to send e-mails to specific
destinations. To learn more about Email controls, see Email Control in the WebLogic Workshop
Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/contro
lsEmail.html

Business processes use Email event generators to read e-mail messages from a Post Office
Protocol (POP3) or Internet Message Access Protocol (IMAP) account on a mail server and
publish the contents to Message Broker channels. To learn more about Email event generators,
see Using Event Generators to Publish to Message Broker Channels in the WebLogic Workshop
Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/con
trolsBrokerEventGenerators.html

Use File Controls and Event Generators Instead of the Adapter
for File
File controls read, write, or append to a file in a file system. The files can be one of the following
types: XmlObject, Binary (raw data), or String. In addition, the File control supports file
operations such as copy, rename, and delete. Typically, you use these operations to manipulate
large files, without having to process them in any way. To learn more about File controls, see File
Control in the WebLogic Workshop Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/contro
lsFile.html

File event generators poll for files in file systems and publish the files to Message Broker
channels. Business processes use File event generators to receive events—for example, a
business process receives an event when a file appears in a file system that is polled by a File
event generator. To learn more about File event generators, see Using Event Generators to
Publish to Message Broker Channels in the WebLogic Workshop Help at the following URL:

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/contro
lsBrokerEventGenerators.html

http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsEmail.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsBrokerEventGenerators.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsFile.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsFile.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsBrokerEventGenerators.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/controls/controlsBrokerEventGenerators.html

BEA WebLogic Integration Upgrade Guide 16-3

New Adapter for RDBMS 8.1
The Adapter for RDBMS 8.1 provides a similar user experience to the previous WebLogic
Integration RDBMS adapters. However, several important features have been added, including
the following:

Support for stored procedure calls.

Multiple mechanisms for event handling, including triggering, shadow tables, and
destructive gets (where the table that is polled for events is a staging table in which rows
are removed after they are processed).

Metadata browsing is now available from the WebLogic Integration – Application
Integration Design Console.

Support for all JDBC (Java Database Connectivity) native types, including BLOB (Binary
Large Object) and CLOB (Character Large Object Block).

To learn about the Adapter for RDBMS, see BEA WebLogic Adapters 8.1 at the following URL:

http://edocs.bea.com/wladapters/docs81/index.html

http://edocs.bea.com/wladapters/docs81/index.html

Upgrad ing Ut i l i t y Adapter s

16-4 BEA WebLogic Integration Upgrade Guide

BEA WebLogic Integration Upgrade Guide 17-1

C H A P T E R 17

Upgrading an Adapter Development
Project

This section describes the steps for converting a WebLogic Integration 7.0 SP2 Adapter
Development Kit (ADK) adapter development tree to an 8.1 ADK adapter development tree.

1. Implement WebLogic Integration Resource Adapter by extending
AbstractWLIResourceAdapter using
BEA_HOME/weblogic81/integration/adapters/sample/src/sample/spi/Resource
AdapterImpl.java as a guide, where BEA_HOME represents the WebLogic Platform 8.1
home directory. Keep the following in mind as you implement the adapter.

– The AbstractResourceAdapter class defines the properties needed for the generic
adapter object that will hold both the inbound and outbound adapter sections. For use in
this situation, this property set is the set of properties you have in your Event Router
web.xml without the ADK standard properties.

– Generally, if the sample adapter’s ResourceAdapterImpl does not have a particular
property from your event router web.xml and the property is not specific to your
adapter, do not include it on the ResourceAdapterImpl class.

– You must have a setter/getter pair of methods for each property on the
ResourceAdapterImpl class.

– Using BEA_HOME/weblogic81/integration/adapters/sample/src/wli-ra.xml
as a guide, add the wli-ra.xml file to your <adapter root>/src directory (for
example, MyAdapter/src/wli-ra.xml). This file has the format of the Connector 1.5
draft specification and describes the ResourceAdapterImpl class you are creating.

To learn about this specification, see JSR 112: J2EE Connector Architecture 1.5 in the
Java Community Process (JCP) program at the following URL:

http://jcp.org/en/jsr/detail?id=112

Upgrad ing an Adapter Deve lopment Pr o jec t

17-2 BEA WebLogic Integration Upgrade Guide

http://jcp.org/en/jsr/detail?id=112

2. The following steps prepare your WebLogic Integration 7.0 SP2 adapter properties file to
work in the build scheme for WebLogic Integration 8.1. The new scheme separates the
adapter-specific properties from the ADK-defined properties into separate files. These files
are merged at build time. See step 5 below for the build changes.

a. Rename the adapter properties file named <Adapter Logical Name>.properties to
<Adapter Logical Name>-base.properties (for example,
MyAdapter_1_0.properties is renamed to MyAdapter_1_0-base.properties).

b. In the renamed file, remove all properties not related to the JSP pages in your adapter’s
source tree. For example remove any properties starting with depappvw_ because the
depappvw.jsp exists in the ADK, not your adapter.

c. Remove all properties not related to the run-time messages that your adapter explicitly
defines. The rule of thumb is that if the property or message exists in ADK.properties
do not include it in your adapter properties file.

3. The following steps prepare your WebLogic Integration 7.0 SP2 design-time Web
application’s web descriptors (web.xml, weblogic.xml) to work in WebLogic Integration
8.1 build scheme. The new scheme separates the adapter-specific information in these
descriptors into separate files from the generic (ADK or WebLogic Server defined)
information. The new scheme generates the web.xml and weblogic.xml based on a simple
properties file that you provide in your adapter source. See step 5 below for the build
changes.

a. Create a new .properties file called web-gen.properties in your WebLogic
Integration 8.1 <adapter root>/src/war/WEB-INF directory. The properties that go
into this file are described in the steps that follow. Basically, these properties will be
derived from the contents of the web.xml file in the same directory.

b. Add a property called display-name, and give it the value you used for the
display-name of you web.xml descriptor. For example, the following display-name
element in the web.xml:

<web-app>
<display-name>BEA_WLS_SAMPLE_ADK</display-name>
…

becomes

display-name=BEA_WLS_SAMPLE_ADK

c. Add a property called version, and give it the value of the context-param element in
web.xml with param-name of version.

BEA WebLogic Integration Upgrade Guide 17-3

d. Add a property called request-handler-class and give its value as the class name for
your design-time request handler. This value can be found in the existing web.xml in the
controller servlet definition’s RequestHandlerClass init-param. It looks like this in
web.xml:

<!-- Controller servlet -->

<servlet>
 <servlet-name>controller</servlet-name>
 <servlet-class>com.bea.web.ControllerServlet</servlet-class>

 <init-param>
 <param-name>MessageBundleBase</param-name>
 <param-value>BEA_WLS_SAMPLE_ADK</param-value>
 <description>…</description>
 </init-param>

 …

 <init-param>
 <param-name>RequestHandlerClass</param-name>
 <param-value>sample.web.DesignTimeRequestHandler</param-value>
 <description>Class that handles design time requests</description>
 </init-param>

 …
 <load-on-startup>1</load-on-startup>

</servlet>

e. Add a property called adapter-logical-name and give its value as the logical name for
your adapter (for example, MyAdapter_1_0).

f. Add a property called debug-setting and give it the value on or off. This should be the
same value as the value in your controller servlet’s init-params in the old web.xml.

g. Add a property called extra-jsp-list that lists the JSP pages you have added for your
adapter, above and beyond those defined in the ADK This list is a comma-separated list
of extra JSPs. The standard JSPs are addevent, addservc, confconn, edtevent,
edtservc, event, service, and testform; do not include them in the
extra-jsp-list. For example if you add a JSP called mybrowser.jsp, your
extra-jsp-list would look like the following:

extra-jsp-list=mybrowser

Upgrad ing an Adapter Deve lopment Pr o jec t

17-4 BEA WebLogic Integration Upgrade Guide

h. Delete your existing web.xml and weblogic.xml descriptors. You can make a back-up
copy of these files if you have customized them. Most adapters do not have custom
web.xml and weblogic.xml descriptors.

4. Edit the <adapter root>/src/ear/META-INF/application.xml and remove the web
module definition for the event router. For example, the text removed for the sample adapter
is as follows:

<module>
 <web>
 <web-uri>BEA_WLS_SAMPLE_ADK_EventRouter.war</web-uri>
 <context-root>BEA_WLS_SAMPLE_ADK_EventRouter</context-root>
 </web>
</module>

5. Modify your <adapter root>/build.xml, as follows:

Note: The following instructions assume that your build.xml is based on the build.xml
provided with the ADK. If your build.xml in not based on the ADK’s build.xml
or you have heavily modified it, you will need to adjust these instructions to account
for these differences.

a. Eliminate the event router JAR and WAR.

b. In build.xml, delete the eventrouter_jar and eventrouter_war targets and any
references to them.

c. Add <your adapter package>/event/*.class to the class includes definition of
the JAR target. It looks like this:

...

<!--
From the adapter's source directory, include the "includes" list
For this adapter, all the classes in the sample/cci, sample/event
and sample/spi packages are included as well as the log configuration
file and message bundles
-->
<fileset dir='${SRC_DIR}'
 includes='sample/cci/*.class,sample/event/*.class,
 sample/spi/*.class, sample/eis/*.class,
 .xml,.properties'/>

...

d. Add the following to the JAR command under your EAR target after the zipfileset
element for the adk.jar file:

BEA WebLogic Integration Upgrade Guide 17-5

<zipfileset src='${WLI_LIB_DIR}/adk-eventgenerator.jar'>
 <exclude name='META-INF/MANIFEST.MF'/>
</zipfileset>

e. Add the following text to the top of your packages build target. This text calls ant tasks in
the ADK that generate the web descriptors (web.xml and weblogic.xml) for your
adapter. It also merges your adapter-specific properties file with the ADK.properties
properties file to yield the final merged properties file required for proper operation of the
adapter.

<!-- Generate web descriptors. NOTE: You can turn this off if you want
 to tightly control your web.xml/weblogic.xml. In this case,
 simply maintain these files in your src/war/WEB-INF instead of
 web-gen.properties -->
 <ant dir='${WLI_HOME}/adapters/utils/ant'
 target='generate_web_descriptors'
 inheritAll='false'>
 <property name='web_gen_props_file'
 value='${SRC_DIR}/war/WEB-INF/web-gen.properties'/>
 </ant>

 <!-- Merge the ADK.properties file and your adapter-specific
properties
 into the final properties file that will be used by the adapter
 -->
 <ant dir='${WLI_HOME}/adapters/utils/ant'
 target='merge_properties'
 inheritAll='false'>
 <property name='props_dir' value='${SRC_DIR}'/>
 <property name='adapter_props_file'
 value='BEA_WLS_DBMS_ADK-base.properties'/>
 <property name='target_props_file'
 value='BEA_WLS_DBMS_ADK.properties'/>
 </ant>

6. Remove the entire <adapter root>/src/eventrouter directory.

7. Change the SYSTEM identifier in <adapter
root>/src/rar/META-INF/weblogic-ra.xml from

PUBLIC '-//BEA Systems, Inc.//DTD WebLogic 6.0.0 Connector//EN'
'http://www.bea.com/servers/wls600/dtd/weblogic600-ra.dtd'

to

PUBLIC '-//BEA Systems, Inc.//DTD WebLogic 8.1.0 Connector//EN'
'http://www.bea.com/servers/wls810/dtd/weblogic810-ra.dtd'

Upgrad ing an Adapter Deve lopment Pr o jec t

17-6 BEA WebLogic Integration Upgrade Guide

8. Change the <shrink-period-minutes> element in <adapter
root>/src/weblogic-ra.xml to <shrink-frequency-seconds> and multiply the
current element’s value by 60.

This completes upgrading your ADK.

BEA WebLogic Integration Upgrade Guide Index-1

Index

A
about upgrade utilities 1-3
adapter development kit (ADK) 17-1
adapter for RDBMS 8.1 16-3
aiExport21.cmd file, editing 2-2

B
business operation EJBs 4-1

C
CA keystore 14-5
contents of Upgrade JAR 2-2
Contivo Analyst 1-4
controls

email 16-2
file 16-2

creating an upgrade application 3-1

E
edit aiExport21.cmd file 2-2
EJBs, business operations 4-1
email controls 16-2
exporting

application views from WebLogic
Integration 2.1 SP2 or 7.0 SP2 8-1

TPM configuration data from WebLogic
Integration 2.1 SP2 or 7.0 SP2 6-1

workflows 5-1

F
features requiring manual upgrade 1-3
file controls 16-2

G
general upgrade strategy 1-5
guidelines for upgrading 1-1

I
importing application views into WebLogic
Integration 8.1 10-1
importing TPM configuration data 7-1
installing upgrade utilities and wizard 2-1

P
permissions 14-3
platform terminology changes 1-2

R
RDBMS 8.1 adapter 16-3
RosettaNet protocols 1-4
running and testing business processes 13-1

T
terminology changes 1-2

U
upgrade log 12-1

Index-2 BEA WebLogic Integration Upgrade Guide

upgrade strategy overview 1-5
upgrade utilities, about 1-3
upgrade wizard 11-1

limitations 11-2
upgrading

adapter development kit (ADK) 17-1
application integration (AI) components 9-1
application view controls 15-1
B2B security 14-4
BPM APIs 1-4
BPM plug-in framework 1-3
calendars 14-3
Contivo Analyst 1-4
email 14-3
guidelines 1-1
manual 1-3
roles and organizations 14-2
security features 14-1
TPM configuration data 7-1
trading partner security 14-5
utility adapters 1-4, 16-1
WebLogic Workshop 7.0 SP2 application

view controls 1-4
workflows 11-1
workflows that use RosettaNet protocols 1-4

using the upgrade wizard 11-5
utility adapters 16-1

W
what it upgrades 11-1

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	Introduction to Upgrading
	About Upgrading
	What Is Upgraded by the Upgrade Utilities and Wizard
	Features That Require Manual Upgrading
	Contivo Analyst Does Not Require Upgrade
	Overview of Upgrade Process

	Installing the Upgrade Utilities and Wizard
	Install the Upgrade Utilities and Wizard
	Edit aiExport21
	Contents of Upgrade JAR

	Step 1: Create Application For Upgrade
	Step 2: Re-deploy Business Operations EJB
	Step 3: Export Package File from WebLogic Integration BPM Studio
	Step 4: Export Trading Partner Management Configuration Data
	Step 5: Upgrade TPM Configuration Data
	What the Trading Partner Management Upgrade Utility Does
	Information Not Upgraded by the Utility
	Limitations
	Warning Case
	Using the Trading Partner Management Upgrade Utility

	Step 6: Export Application Views and other AI Repository Artifacts
	Exporting AI Repository Artifacts

	Step 7: Repackage Application Integration Adapters and Deploy
	What the aiRepackageAdapter Utility Does
	Using the aiRepackageAdapter Utility

	Step 8: Import Application Views and Other AI Repository Artifacts
	What the Import-Export Utility Does
	Limitations
	Using the Import-Export Utility
	Invoking the Import-Export Utility from the Command Line
	Using the Import-Export API

	Step 9: Upgrade Workflows
	About the Upgrade Wizard
	What the Wizard Upgrades
	Upgrade Wizard Limitations
	Using the Upgrade Wizard

	Step 10: View the Upgrade Log
	Step 11: Run and Test Upgraded Business Processes
	Upgrading Security Features
	WebLogic Server Security Upgrade
	WebLogic BPM Security Upgrade
	WebLogic BPM Users, Roles, and Organizations
	WebLogic BPM Users
	WebLogic BPM Roles and Organizations

	WebLogic BPM Calendars and Email
	WebLogic BPM Permissions

	WebLogic B2B Security Upgrade
	Upgrading Certificates in WebLogic Integration 2.1 SP2
	Upgrading Certificates in WebLogic Integration 7.0 SP2

	Upgrading Trading Partner Security Configuration
	Upgrading Use of com.bea.b2b.security Classes

	WebLogic Application Integration Security Upgrade
	Repackaging Adapter Code
	Upgrading Application View Access Control

	Upgrading Application View Controls Created in WebLogic Workshop
	Upgrading Utility Adapters
	Use Email Controls and Event Generators Instead of Adapter for Email
	Use File Controls and Event Generators Instead of the Adapter for File
	New Adapter for RDBMS 8.1

	Upgrading an Adapter Development Project
	Index

