
BEAWebLogic
Integration™

Deploying WebLogic
Integration Solutions

Version 8.1
July 2003

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Deploying WebLogic Integration Solutions v

Contents

About This Document
Overview Documents for WebLogic Integration. xi

What You Need to Know .xii

How to Print this Document. xiii

Related Information . xiii

Contact Us! . xiii

Documentation Conventions . xiv

1. Introduction
Deployment Goals . 1-1

Key Deployment Tasks . 1-2

Roles in Integration Solution Deployment. 1-2

Deployment Specialists. 1-2

WebLogic Server Administrators . 1-3

Database Administrators. 1-3

Key Deployment Resources. 1-3

WebLogic Server Resources . 1-4

Clustering. 1-4

Java Message Service . 1-5

EJB Pooling and Caching . 1-5

JDBC Connection Pools . 1-6

Execution Thread Pool . 1-6

vi Deploying WebLogic Integration Solutions

J2EE Connector Architecture . 1-6

Process Application Resources . 1-7

Process Control Resources. 1-9

Message Broker Resources . 1-10

Event Generator Resources . 1-12

The File, Email and Timer Event Generators . 1-12

The JMS Generator. 1-13

Trading Partner Integration Resources. 1-13

Trading Partner Management Repository. 1-13

Trading Partner Integration Initialization and Run-Time Operations. 1-14

Application Integration Capabilities and Clients . 1-18

Synchronous Service Invocations . 1-18

Asynchronous Service Invocations. 1-19

Events . 1-21

Relational Database Management System Resources . 1-23

Hardware, Operating System, and Network Resources . 1-23

2. Understanding WebLogic Integration Clusters
Understanding WebLogic Integration Clusters. 2-1

Designing a Clustered Deployment. 2-2

Introducing WebLogic Integration Domains . 2-2

Creating Domains . 2-2

Clustered Servers . 2-3

Note About Cluster and Management Domains . 2-3

Deploying WebLogic Integration Resources . 2-3

Clusterable Resources. 2-4

Trading Partner Integration Resource Configuration . 2-10

Two-Phase Deployment of WebLogic Integration . 2-11

Deploying WebLogic Integration Solutions vii

Note About Servers . 2-11

Load Balancing in a WebLogic Integration Cluster . 2-11

Load Balancing HTTP Functions in a Cluster . 2-12

Load Balancing JMS Functions in a Cluster . 2-12

Load Balancing Application Integration Functions in a Cluster 2-12

Synchronous Services . 2-12

Asynchronous Services . 2-13

Events . 2-13

High Availability in a WebLogic Integration Cluster . 2-14

Highly Available JMS . 2-14

High Availability for Asynchronous Service Requests to Application Views . 2-15

High Availability for Event Delivery from Application Views 2-16

Deploying Applications . 2-17

Deploying Adapters . 2-18

Deploying Event Generators . 2-18

File, Email, Timer Event Generators . 2-19

3. Configuring a Clustered Deployment
Step 1. Comply with Configuration Prerequisites . 3-2

Step 2. Prepare a WebLogic Integration Domain . 3-4

Creating a WebLogic Integration Domain Using the Configuration Wizard 3-5

Creating the Database Tables . 3-8

Targeting the JMS Servers for High Availability . 3-9

Step 3. Configure WebLogic Integration Security . 3-10

Step 4. Deploy the WebLogic Integration Application . 3-10

Step 5. Start and Monitor the Managed Servers in the Domain 3-11

Starting the Managed Servers. 3-11

Monitoring and Shutting Down Your Servers . 3-12

viii Deploying WebLogic Integration Solutions

Step 6. Update Your Domain as Your Production Environment Changes 3-12

Adding a New Managed Server . 3-13

Changing an EIS Instance . 3-14

4. Understanding WebLogic Integration High Availability
About WebLogic Integration High Availability . 4-1

Recommended Hardware and Software. 4-1

Regarding JMS File Stores . 4-3

What Happens When a Server Fails . 4-3

Software Faults . 4-3

Hardware Faults . 4-4

Server Migration . 4-4

WebLogic Integration Failure and Recovery . 4-5

Trading Partner Integration . 4-5

RosettaNet. 4-5

ebXML . 4-6

Application Integration . 4-6

Retargeting Services . 4-6

Retargeting Events . 4-7

EIS Instance Failover . 4-7

5. Using WebLogic Integration Security
Overview of WebLogic Integration Security . 5-1

Security and WebLogic Integration Domains . 5-2

WebLogic Integration PasswordStore for Encrypted Passwords 5-2

Keystore for Private Keys and Certificates. 5-3

WebLogic Server Security Principals and Resources Used in WebLogic Integration 5-5

Considerations for Configuring Security . 5-6

Deploying WebLogic Integration Solutions ix

About Digital Certificates. 5-6

Digital Certificate Formats . 5-7

Using the Secure Sockets Layer (SSL) Protocol . 5-7

Using an Outbound Proxy Server or Proxy Plug-In. 5-8

Using an Outbound Proxy Server . 5-8

Using a Web Server with the WebLogic Proxy Plug-In 5-9

Using a Firewall . 5-10

Setting Up a Secure Deployment. 5-10

Step 1: Create the Domain . 5-10

Step 2: Configure WebLogic Server Security . 5-11

Step 3: Configure Application Integration Security . 5-12

Step 4: Configure Web Application and Web Service Security-Related Deployment

Descriptors . 5-12

Step 5: Configure Security Policies and Manage Users . 5-13

Configuring Security Policies for Business Processes 5-14

Configuring Security Policies for Message Broker Channels. 5-15

Configuring Security Policies for Application Views. 5-16

Configuring Security Policies for Adapter Instances . 5-17

Managing Production Users . 5-18

Step 6: Configure Worklist Security. 5-19

Step 7: Configure Trading Partner Integration Security. 5-19

A. Deploying Resource Adapters
Using the weblogic.Deployer Command-Line Utility. .A-1

Deploying the Sample DBMS Adapter .A-1

Using the WebLogic Server Administration Console .A-3

x Deploying WebLogic Integration Solutions

B. Administering Environment-Specific Application Integration
Information

aiConfigurator Utility and Examples . B-1

aiConfigurator Usage . B-2

Switching Database Type/Instance for DBMS Sample Adapter B-5

Index

Deploying WebLogic Integration Solutions xi

About This Document

This document describes how to deploy an integration solution using BEA WebLogic Integration
in a production environment. Specifically, it describes how to deploy an integration solution that
meets goals for high availability, performance, scalability, and security. It defines key
deployment concepts, explains how to deploy integration solutions on a WebLogic Integration
cluster, provides an overview of WebLogic Integration security, and describes how to tune
performance in a production environment.

Overview Documents for WebLogic Integration
This document is one in a series of documents that provide an overview of WebLogic Integration,
and that explain how the functionality provided by WebLogic Integration is used at various stages
in the design, development, and deployment of integrated solutions. Readers should start with
these documents to gain a comprehensive understanding of the functionality provided by
WebLogic Integration. The other documents in the series are:

Introducing BEA WebLogic Integration—Provides an overview of WebLogic Integration. It
describes the application integration, Trading Partner Integration, business process
management, and data integration functionality provided by WebLogic Integration to solve
e-business integration problems.

Designing BEA WebLogic Integration Solutions—Describes how to design an integration
solution in the BEA WebLogic Integration environment. It defines key design concepts,
provides a roadmap for determining integration requirements, based on a comprehensive
analysis of business and technical requirements, and describes how to design an integration
architecture that meets design goals for high availability, scalability, and performance.

About Th is Document

xii Deploying WebLogic Integration Solutions

Managing WebLogic Integration Solutions—Describes how to administer and manage
applications built using WebLogic Integration.

These and other WebLogic Integration documents are available at the following URL:

http://edocs.bea.com/wli/docs81/index.html

Once you are familiar with the contents of these overview documents, you can proceed to the
detailed documentation about the functionality provided by WebLogic Integration.

This document is organized as follows:

Chapter 1, “Introduction,” introduces the WebLogic Integration deployment architecture,
including deployment resources, concepts, tasks, and the roles played by members of a
deployment team.

Chapter 2, “Understanding WebLogic Integration Clusters,” describes how to deploy an
integration solution on a cluster, which is a collection of servers that is managed as a single
unit. It describes key clustering concepts and design tasks, and information about how a
clustered deployment is configured.

Chapter 3, “Configuring a Clustered Deployment,” describes the steps you must take to set
up and configure WebLogic Integration in a clustered environment.

Chapter 4, “Understanding WebLogic Integration High Availability,” describes how high
availability is achieved for WebLogic Integration applications.

Chapter 5, “Using WebLogic Integration Security,” describes how to set up a secure
WebLogic Integration deployment.

What You Need to Know
This document is intended primarily for:

System administrators who set up, deploy, and administer WebLogic Integration in a
production environment.

Database administrators who set up, deploy, and administer database management systems
for WebLogic Integration in a production environment.

For an overview of the WebLogic Integration architecture, see Introducing BEA WebLogic
Integration.

http://edocs.bea.com/wli/docs81/index.html

How to P r in t th is Document

Deploying WebLogic Integration Solutions xiii

How to Print this Document
You can print a copy of this document from a Web browser, one file at a time, by using the File—
>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration documentation CD.
You can open the PDF in Adobe Acrobat Reader and print the entire document (or a portion of
it) in book format.

If you do not have the Adobe Acrobat Reader installed, you can download it for free from the
Adobe Web site at http://www.adobe.com/.

Related Information
For information about installing WebLogic Integration and running the Configuration Wizard,
see Installing BEA WebLogic Platform and Using the Configuration Wizard, which are available
at the following URL:

http://edocs.bea.com/platform/docs81/index.html

WebLogic Integration documentation is available at the following URL:

http://edocs.bea.com/wli/docs81/index.html

WebLogic Server documentation is available at the following URL:

http://edocs.bea.com/wls/docs81/index.html

Contact Us!
Your feedback on the WebLogic Integration documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the WebLogic Integration
documentation.

In your e-mail message, please indicate which version of the product and the documentation you
are using.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

http://www.adobe.com/
http://edocs.bea.com/platform/docs81/index.html
http://edocs.bea.com/wli/docs81/index.html
http://edocs.bea.com/wls/docs81/index.html

About Th is Document

xiv Deploying WebLogic Integration Solutions

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

Documentat i on Convent ions

Deploying WebLogic Integration Solutions xv

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

• That an argument can be repeated several times in a command line

• That the statement omits additional optional arguments

• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

About Th is Document

xvi Deploying WebLogic Integration Solutions

Deploying WebLogic Integration Solutions 1-1

C H A P T E R 1

Introduction

This document describes how to deploy BEA WebLogic Integration solutions in a production
environment. The following sections introduce key concepts and tasks for deploying WebLogic
Integration in your organization:

Deployment Goals

Key Deployment Tasks

Roles in Integration Solution Deployment

Key Deployment Resources

Deployment Goals
WebLogic Integration is a single, unified platform that provides the functionality businesses can
use to develop new applications, integrate them with existing systems, streamline business
processes, and connect with trading partners. When deploying WebLogic Integration solutions,
consider the following goals:

High Availability. A deployment must be sufficiently available and accessible, with
provisions for failover in the event of hardware or network failures.

Performance. A deployment must deliver sufficient performance at peak and off-peak
loads.

Scalability. A deployment must be capable of handling anticipated increases in loads
simply by using additional hardware resources, rather than requiring code changes.

In t roduc t i on

1-2 Deploying WebLogic Integration Solutions

Security. A deployment must sufficiently protect data from unauthorized access or
tampering.

You can achieve these goals and others with every WebLogic Integration deployment.

Key Deployment Tasks
Deploying WebLogic Integration may require that you complete some or all of the following
tasks:

1. Define the goals for your WebLogic Integration deployment, as described in “Deployment
Goals” on page 1-1.

2. Deploy WebLogic Integration applications in a cluster. To do so, you must first design the
cluster, and before you can start designing, you need to understand the components of a
WebLogic Integration deployment. Chapter 2, “Understanding WebLogic Integration
Clusters,” provides descriptions of these components that will help you design the best
possible environment for your application.

3. Deploy WebLogic Integration applications in a clustered environment so that they are
highly available. To do so, you must configure your application as described in Chapter 3,
“Configuring a Clustered Deployment.”

4. Set up security for your WebLogic Integration deployment as described in Chapter 5,
“Using WebLogic Integration Security.”

Roles in Integration Solution Deployment
To deploy an integrated solution successfully, a deployment team must include people who
perform the following roles:

Deployment Specialists

WebLogic Server Administrators

Database Administrators

One person can assume multiple roles, and all roles are not equally relevant in all deployment
scenarios, but a successful deployment requires input by people in each role.

Deployment Specialists
Deployment specialists coordinate the deployment effort. They are knowledgeable about the
features of the WebLogic Integration product. They provide expertise in designing the

Key Dep loyment Resources

Deploying WebLogic Integration Solutions 1-3

deployment topology for an integration solution, based on their knowledge of how to configure
various WebLogic Integration features on one or more servers. Deployment specialists have
experience in the following areas:

Resource requirements analysis

Deployment topology design

Project management

WebLogic Server Administrators
WebLogic Server administrators provide in-depth technical and operational knowledge about
WebLogic Server deployments in an organization. They have knowledge of the hardware and
platform, and experience managing all aspects of a WebLogic Server deployment, including
installation, configuration, monitoring, security, performance tuning, troubleshooting, and other
administrative tasks.

Database Administrators
Database administrators provide in-depth technical and operational knowledge about database
systems deployed in an organization. They have experience in the following areas:

Hardware and platform knowledge

Expertise in managing all aspects of a relational database (RDBMS), including installation,
configuration, monitoring, security, performance tuning, troubleshooting, and other
administrative tasks

Key Deployment Resources
This section provides an overview of resources that can be modified at deployment time:

WebLogic Server Resources

Process Application Resources

Process Control Resources

Message Broker Resources

Event Generator Resources

Trading Partner Integration Resources

In t roduc t i on

1-4 Deploying WebLogic Integration Solutions

Application Integration Capabilities and Clients

Relational Database Management System Resources

Hardware, Operating System, and Network Resources

Note: The term resource is used in this document to refer to technical assets in general, except
in Chapter 5, “Using WebLogic Integration Security,” where it is used to refer only to
those underlying WebLogic Server entities that can be protected from unauthorized
access using security roles and security policies.

WebLogic Server Resources
This section provides general information about BEA WebLogic Server resources that are most
relevant to the deployment of a WebLogic Integration solution. You can configure these
resources from the WebLogic Server Administration Console or through EJB deployment
descriptors.

WebLogic Server provides many configuration options and tunable settings for deploying
WebLogic Integration solutions in any supported environment. The following sections describe
the configurable WebLogic Server features that are most relevant to WebLogic Integration
deployments:

Clustering

Java Message Service

EJB Pooling and Caching

JDBC Connection Pools

Execution Thread Pool

J2EE Connector Architecture

Clustering
To increase workload capacity, you can run WebLogic Server on a cluster: a group of servers that
can be managed as a single unit. Clustering provides a deployment platform that is more scalable
than a single server. For more information about clustering, see Chapter 2, “Understanding
WebLogic Integration Clusters.”

Key Dep loyment Resources

Deploying WebLogic Integration Solutions 1-5

Java Message Service
The WebLogic Java Message Service (JMS) enables Java applications sharing a messaging
system to exchange (create, send, and receive) messages. WebLogic JMS is based on the Java
Message Service Specification version 1.0.2 from Sun Microsystems, Inc.

JMS servers can be clustered and connection factories can be deployed on multiple instances of
WebLogic Server. In addition, JMS event destinations can be configured to handle workflow
notifications and messages, as described in “Process Application Resources” on page 1-7.

For more information about WebLogic JMS, see the following topics:

Introduction to WebLogic JMS in Programming WebLogic JMS

JMS: Configuring and JMS: Monitoring in the Administration Console Online Help

EJB Pooling and Caching
In a WebLogic Integration deployment, the number of EJBs affects system throughput. You can
tune the number of EJBs in the system through either the EJB pool or the EJB cache, depending
on the type of EJB. The following table describes types of EJBs and their associated tunable
parameter.

Table 1-1 Parameters for Tuning EJBs

Group Name Description Type of Resource Group

Message-Driven
Beans

max-beans-in-free-pool1 The maximum number of listeners
that pull work from a queue.

Stateless Session
Beans

max-beans-in-free-pool1 The maximum number of beans
available for work requests.

Stateful Session
Beans

 max-beans-in-cache The number of beans that can be active
at once. A setting that is too low
results in CacheFullExceptions. A
setting that is too high results in
excessive memory consumption.

Entity Beans

1. The WebLogic Server documentation recommends setting the number of execute threads rather than
setting max-beans-in-free-pool. However, in a WebLogic Integration environment, it is more
efficient to control the workload by specifying the max-beans-in-free-pool setting of the event
listener message-driven beans than by setting the number of execute threads.

http://edocs.bea.com/wls/docs81/ConsoleHelp/jms_config.html
http://edocs.bea.com/wls/docs81/ConsoleHelp/jms_monitor.html
http://edocs.bea.com/wls/docs81/jms/intro.html

In t roduc t i on

1-6 Deploying WebLogic Integration Solutions

JDBC Connection Pools
Java Database Connectivity (JDBC) enables Java applications to access data stored in SQL
databases. To reduce the overhead associated with establishing database connections, WebLogic
JDBC provides connection pools that offer ready-to-use pools of connections to a DBMS.

JDBC connection pools are used to optimize DBMS connections. You can tune WebLogic
Integration performance by configuring the size of JDBC connection pools. A setting that is too
low results in delays while WebLogic Integration waits for connections to become available. A
setting that is too high results in slower DBMS performance.

For more information about WebLogic JDBC connection pools, see:

“Overview of Connection Pools” in Introduction to WebLogic JDBC in Programming
WebLogic JDBC.

JDBC Connection Pools in the Administration Console Online Help.

Execution Thread Pool
The execution thread pool controls the number of threads that can execute concurrently on
WebLogic Server. A setting that is too low results in sequential processing and possible
deadlocks. A setting that is too high results in excessive memory consumption and may cause
thrashing.

Set the execution thread pool high enough so that all candidate threads run, but not so high that
performance is hampered due to excessive context switching in the system. The number of
execute threads also determines the number of threads that read incoming socket messages
(socket-reader threads). This number is, by default, one-third of the number of execute threads.
A number that is too low can result in contention for threads for reading sockets and can
sometimes lead to a deadlock. Monitor your running system to empirically determine the best
value for the execution thread pool.

J2EE Connector Architecture
The WebLogic J2EE Connector Architecture (JCA) integrates the J2EE Platform with one or
more heterogeneous Enterprise Information Systems (EIS). The WebLogic JCA is based on the
J2EE Connector Specification, Version 1.0, from Sun Microsystems, Inc.

http://edocs.bea.com/wls/docs81/jdbc/intro.html
http://edocs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html

Key Dep loyment Resources

Deploying WebLogic Integration Solutions 1-7

For information about the WebLogic J2EE-CA, see Overview of WebLogic J2EE Connectors in
Programming WebLogic Server J2EE Connectors.

Process Application Resources
A process application is represented as an EAR file. This is the same as any workshop
application, as described in How Do I: Deploy a WebLogic Workshop Application to a
Production Server? in BEA WebLogic Workshop Help.

The EAR file consists of multiple web applications and some shared class files. (The generated
generated schema files go to the shared class files.). Each web application corresponds to a
project in the IDE workspace, as shown in the following figure.

Figure 1-1 Process Application

Each web application consists of the following items:

A pool of message-driven beans bound to an input JMS queue

A pool of message-driven beans bound to an error JMS queue (this is used for dispatching
exception elements in process definition)

A pool of stateless session beans for each stateless process

A pool of entity beans for each stateful process

Process Application

WebApp

WebApp

Shared Objects
(APP-INF)

http://edocs.bea.com/wls/docs81/jconnector/overview.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howDeployWebLogicWorkshopWebServicestoaProductionServer.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howDeployWebLogicWorkshopWebServicestoaProductionServer.html

In t roduc t i on

1-8 Deploying WebLogic Integration Solutions

Note: The input queues use an optimized, internal format for messages. These queues are not
intended to be used directly by applications—rather they are used implicitly by
WebLogic Integration and platform components—process controls, Message Broker,
buffered messages, and so on. If you are looking for a JMS queue that can be used
directly by an application, look at the WebLogic Workshop SOAP/JMS protocol or the
WebLogic Integration JMS Event Generator

The following figure shows the components in a process web application.

Figure 1-2 Process Web Application

The asynchronous dispatcher has different interactions with stateless and stateful processes. For
an illustration of the interaction between the asynchronous dispatcher and a stateless process, see
the following figure.

Process Web Application

Async
Dispatcher

Error
Async

Dispatcher

Async
 Queue

Async
ErrorQueue

Sync
Dispatcher

Stateless
Process

Stateful
Process

DB Table
Stateful
Process

Key Dep loyment Resources

Deploying WebLogic Integration Solutions 1-9

Figure 1-3 Interaction Between Dispatchers and a Stateless Process

For an illustration of the interaction between the asynchronous dispatcher and a stateful process,
see the following figure.

Figure 1-4 Interaction Between Dispatchers and a Stateful Process

Process Control Resources
The process control allows messages to be sent directly from one process to another, either
through RMI or through JMS using an optimized data format. Normal WebLogic Server load

Async Dispatcher Stateless Process

Dequeue
Begin Transaction

Invoke

Commit Transaction

Perform Operation

Async Dispatcher StatefulProcess

Dequeue
Begin Transaction

Invoke

Commit Transaction

DBMS

Select

Update or Insert

In t roduc t i on

1-10 Deploying WebLogic Integration Solutions

balancing rules apply when using RMI or JMS. (Typically the message will stay on the same
server in a cluster due to server affinity of WebLogic Server load balancing.)

An in-memory dispatcher table provides the detailed information needed by the process control
to send the message at run time. This dispatcher table is automatically updated when an
application is deployed or redeployed.

The behavior of a process call depends on whether it is being used for a synchronous or
asynchronous dispatch. The following figure shows the behavior of a process control used for a
synchronous dispatch.

Figure 1-5 Process Control Used for a Synchronous Dispatch

The following figure shows the behavior of a process control used for an asynchronous dispatch.

Figure 1-6 Process Control Used for an Asynchronous (Buffered) Call

Message Broker Resources
Any time the Message Broker publishes a message, via a Message Broker publish control or event
generator, the following actions occur:

A list of subscribers is retrieved from the in-memory subscription information table.

Client Process
(stateless

session bean)

Target Process
(stateless

sesion bean)

In-memory
Dispatcher
InfoTable

control send

Sync
Dispatcher
(stateless

session bean)

Async Queue
Client Process

(statless
session bean)

Target Process
(stateless

session bean)

In-memory
Dispatcher
InfoTable

Async
Dispatcher
(stateless

session bean)

Key Dep loyment Resources

Deploying WebLogic Integration Solutions 1-11

For each static subscriber (a subscriber that has a subscription on a start operation)
interested in receiving messages listening on a particular channel:

– If the subscription has no filter, it is sent.

– If the subscription has a filter, it is evaluated and if it matches, the message will be
sent.

Note: Database tables are never used for static subscribers.

For each dynamic subscriber (a subscriber that has a subscription on a Message Broker
subscriber control) interested in receiving messages listening on a particular channel:

– The subscriber updates the dynamic subscribers table when doing a “subscribe”
operation.

– For each unique filter declared on subscription controls, the XQuery declared on the
subscription is used to extract an XML fragment from the to-be-published document or
metadata. The XML fragment is then effectively used as a select value into the dynamic
subscribers table. The result set from the select is then used as the list of subscribers to
publish to for that unique filter.

The Message Broker uses the same JMS asynchronous queue that the process control
uses. Once a message is enqueued, it follows the same code path as if it were sent using
the process control. For more information about publishing using the Message Broker
control, see the following figure.

In t roduc t i on

1-12 Deploying WebLogic Integration Solutions

Figure 1-7 Publishing Using the Message Broker Publish Control

Event Generator Resources
WebLogic Integration has several native event generators: JMS, File, Email, and Timer. In
addition, event generators are used for EIS events. (For additional information regarding event
generators for EIS adapters, see “Application Integration Capabilities and Clients” on page 1-18.)

The File, Email and Timer Event Generators
These event generators are “polling” event generators, in that they poll for events to happen. To
do this, each event generator is packaged as message-driven bean pool and configured with a
specific JMS queue. Messages are sent from the event generator to its associated queue with a
delivery time of poll-interval in the future.

The queue is shared between event generators of the same type (file, email, and so on), and a
selector is used to share messages in the queue.

Because the polling event generators would contend with each other during their polls, they are
restricted to a single managed server in a cluster. More configuration options will be offered in a
future release.

Async Queue
Publisher
Process

Subscribing
Process

In-memory
Dispatcher
Info Table

Async
Dispatcher

Dynamic
Subscribers

Table

In-memory
subscribers info

table

Key Dep loyment Resources

Deploying WebLogic Integration Solutions 1-13

The JMS Generator
The JMS event generator is packaged as a message-driven bean pool. It can be freely targeted to
any number of managed servers in a cluster. It would typically be targeted to either a single
managed server when using a physical JMS destination, or to the cluster when using distributed
destinations.

Trading Partner Integration Resources
Trading Partner Integration (TPI) provides a framework for peer-to-peer business protocols,
implementing RosettaNet (versions 1.1 and 2.0) and ebXML (versions 1.0 and 2.0).

When you deploy WebLogic Integration to a clustered domain, all Trading Partner Integration
resources, with the exception of resources for the administration server, must be deployed
homogeneously in the cluster. That is, to achieve high availability, scalability, and performance
improvements, Trading Partner Integration resources must be targeted to all clustered servers in
a domain.

For more information about Trading Partner Integration resources and clustering, see “Designing
a Clustered Deployment” on page 2-2. For information about resources that can be configured to
accommodate Trading Partner Integration loads, see Trading Partner Management in Managing
WebLogic Integration Solutions.

Trading Partner Management Repository
The Trading Partner Management Repository is an important part of Trading Partner Integration.
Database operations on this repository and for all of Trading Partner Integration are performed
through the JDBCTxDataSource named cgDataSource using the JDBCPool named cgPool.

Data Caching
Data from the Trading Partner Management Repository is cached during server startup to
improve performance by reducing access to this resource. In a cluster environment, the Trading
Partner Management Repository data is cached on the administration server and each managed
server. These caches are synchronized through the mechanism shown in the following figure.

http://edocs.bea.com/wli/docs81/manage/tpm.html

In t roduc t i on

1-14 Deploying WebLogic Integration Solutions

Figure 1-8 Trading Partner Management Repository Cache Synchronization

Managing the Data Cache
The WebLogic Integration Administration Console enables you to perform updates, imports, and
deletions to the Trading Partner Management Repository. For information about using the
WebLogic Integration Administration Console to perform these operations, see Trading Partner
Management in Managing WebLogic Integration Solutions.

Trading Partner Integration Initialization and Run-Time Operations
Trading Partner Integration is initialized during server startup by the WLI-B2B1 Startup EJB.

Note: The WLI-B2B Startup EJB has an initial-beans-in-pool setting of 1. Changing this
value will cause Trading Partner Integration startup to fail.

At run-time, outgoing and incoming Trading Partner Integration messages traverse different
paths. The following sections describe the paths and process flows for outgoing and incoming
business messages.

1. Some resource names contain abbreviations that are a legacy from prior WebLogic Integra-
tion releases. Trading Partner Integration was formerly known as B2B. The Trading Partner
Integration resources currently retain B2B as part of their names.

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Key Dep loyment Resources

Deploying WebLogic Integration Solutions 1-15

Outgoing Messages
The following figure shows the path of an outgoing business message.

Figure 1-9 Outgoing Message Path

The preceding figure illustrates the following process flow:

1. A message is sent from a WebLogic Integration business process using a Trading Partner
Integration control (ebXML or RosettaNet).

2. The Trading Partner Integration layer (RosettaNet or ebXML) uses input from the control
(the message, annotations, and so on) and constructs the appropriate message to be sent.

3. The Trading Partner Integration layer persists this message in the WebLogic Integration
document store and forwards it to a JMS queue. RosettaNet and ebXML have their own
JMS queues— wli.internal.b2b.rosettanetencoder.queue and
wli.internal.b2b.ebxmlencoder.queue, respectively.

4. Each of these queues has its own message-driven bean(s) listening to the queue. The
message-driven beans are WLI-B2B RosettaNet for RosettaNet and WLI-B2B ebXML for
ebXML. The pool size of these message-driven beans can be increased as needed to support
customer environments that experience high message volume.

5. The message-driven beans send out the message asynchronously over HTTP(S).

In t roduc t i on

1-16 Deploying WebLogic Integration Solutions

6. Message tracking information for outbound messages is sent to the Trading Partner
Integration message tracking queue, wli.internal.msgtracking.queue. The WLI
Message Tracking message-driven bean listens to this queue. It will update the various
message tracking tables based on the tracking level set in the Trading Partner Management
module of the WebLogic Integration Administration Console.

For information about using the WebLogic Integration Administration Console to set
tracking levels, see Trading Partner Management in Managing WebLogic Integration
Solutions.

http://edocs.bea.com/wli/docs81/manage/tpm.html

Key Dep loyment Resources

Deploying WebLogic Integration Solutions 1-17

Incoming Messages
The following figure shows the path of an incoming business message.

Figure 1-10 Incoming Message Path

The preceding figure illustrates the following process flow:

1. A message sent to a trading partner is received by the TPI Transport Servlet Filter, specified
in B2BdefaultWebApp/WEB-INF/web.xml. The filter inspects the URL and decides if the
incoming request is a TPI URL / request. If it is not destined for Trading Partner Integration,
the message continues on to other filters and the final destination servlet.

2. If it is a Trading Partner Integration message, the filter forwards to the Transport Servlet,
WLI-B2B HTTP Transport. This servlet is packaged in b2b.war.

3. The message is then sent to the Trading Partner Integration decoder. There is a different
decoder for each business protocol. The appropriate decoder unpacks the message.

4. The decoder persists the message in WLI Document Store.

5. The decoder determines the destination and originator parties, the service name, and other
relevant information that helps in dispatching the message.

In t roduc t i on

1-18 Deploying WebLogic Integration Solutions

6. The message is then dispatched to the Async Dispatcher Queue. If the decoder determines
this message is part of a new exchange, a new process instance will be requested. If,
however, this message is part of an ongoing exchange, the decoder will request that this be
dispatched to a particular receive node within an existing process instance. The message
parts will be packaged as appropriate for the receive node’s method signature.

7. The Async Dispatcher Module dispatches the message to the appropriate business process.

8. Message tracking information for inbound messages is sent to the Trading Partner
Integration Message Tracking queue, wli.internal.msgtracking.queue. The WLI
Message Tracking message-driven bean listens to this queue. It will update the various
message tracking tables based on the tracking level set in the Trading Partner Management
module of the WebLogic Integration Administration Console.

For information about using the WebLogic Integration Administration Console to set
tracking levels, see Trading Partner Management in Managing WebLogic Integration
Solutions.

Application Integration Capabilities and Clients
The following sections describe the major capabilities of WebLogic Application Integration and
how clients make use of those capabilities:

Synchronous Service Invocations

Asynchronous Service Invocations

Events

For information about clustering and application integration, see Chapter 2, “Understanding
WebLogic Integration Clusters.”

Application integration functionality is integrated in the WebLogic Integration product. In order
to use application integration with other components of the WebLogic Platform (such as
WebLogic Workshop or WebLogic Portal) you must configure a domain that includes each of
those components. For information about creating domains, see Creating a New WebLogic
Domain in Creating WebLogic Configurations Using the Configuration Wizard.

Synchronous Service Invocations
Use synchronous invocations when the underlying EIS can respond quickly to requests, or when
the client application can afford to wait.

The following figure illustrates the flow of a synchronous service invocation.

http://edocs.bea.com/platform/docs81/confgwiz/newdom.html
http://edocs.bea.com/platform/docs81/confgwiz/newdom.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Key Dep loyment Resources

Deploying WebLogic Integration Solutions 1-19

Figure 1-11 Synchronous Service Invocations

In a synchronous service invocation, a client (for example, a BPM process) calls the application
view (for example, as a control in the BPM process). The application view calls the adapter using
a synchronous Common Client Interface (CCI) request. The service adapter is a J2EE-CA service
adapter that actually processes the request.

Note: When a process acts as a client to an EIS, the process is stalled while it waits for the
request to complete, tying up a WebLogic execute thread, BPM process, EJB instances,
and other resources. To optimize throughput, consider using asynchronous invocations
instead unless the underlying EIS system can respond quickly to the request.

Asynchronous Service Invocations
The following figure illustrates asynchronous service processing in WebLogic Integration.

Figure 1-12 Asynchronous Service Invocations—Programmatic/Custom Client

Application View
Client

ApplicationView
Instance

Service
Connection

Single JTA Transaction

EIS

Service is invoked,
causing a chain of method
calls leading into the EIS

In t roduc t i on

1-20 Deploying WebLogic Integration Solutions

Note: When using the Application View control from a WebLogic Integration process or
WebLogic Workshop Web service, the asynchronous response is delivered directly to the
EJB for the process or Web service without being posted to the asynchronous response
JMS queue.

The following figure shows the processing that takes place during asynchronous service
invocations in a WebLogic Integration process client.

Figure 1-13 Asynchronous Service Invocations—WebLogic Integration Process Client

The preceding diagram illustrates the following process flow:

1. An application view client instantiates an application view instance:

– In the case of a WebLogic Integration process (see the preceding graphic), the
ApplicationView Instance is encapsulated in an ApplicationView Control instance.
Asynchronous requests are tagged with a process handle that allows the
AsyncServiceProcessor to route the response back to this process instance.

– In the case of a programmatic/custom client (see the figure titled “Asynchronous
Service Invocations—Programmatic/Custom Client earlier in this section), the
ApplicationView Instance is used directly.

2. The application view instance creates an AsyncServiceRequest object and sends it to the
wli.internal.ai.async.request queue.

Key Dep loyment Resources

Deploying WebLogic Integration Solutions 1-21

3. The AsyncServiceProcessor message-driven bean receives the message from the queue in a
first in, first out (FIFO) manner. The AsyncServiceProcessor uses the
AsyncServiceRequest object in the JMS ObjectMessage to determine the qualified name,
service name, request document, and response destination for the Application View.

4. The AsyncServiceProcessor uses an Application View EJB to invoke the service
synchronously. The service is translated into a synchronous CCI-based request/response
message for the resource adapter.

5. The AsyncServiceProcessor receives the response. The response is subsequently
encapsulated into an AsyncServiceResponse object and sent to the response destination
provided in the AsyncServiceRequest object:

– In the case of a WebLogic Integration process client, the response is dispatched back to
the process handle tagged to the request.

– In the case of a programmatic/custom client, the response is placed onto the
wli.internal.ai.async.request queue.

6. The client receives the asynchronous response:

– In the case of a WebLogic Integration process client, the response is delivered via a
callback (onServiceNameResponse) on the ApplicationView control instance.

– In the case of a programmatic/custom client, the client receives the
AsyncServiceResponse message as a JMS ObjectMessage and passes it to the
AsyncServiceResponseListener supplied in the invokeServiceAsync() call shown in
step 2.

Events
Application integration adapters generate events that are consumed by BPM or WebLogic
Workshop. Events are then delivered to Application View clients via one of two methods:

Events are delivered to WebLogic Integration process clients via a MessageBroker event
channel (named for the ApplicationView and event type for the event).

In the case of a programmatic/custom client, events are delivered via an EventListener
object provided by the client. The event is actually delivered to the EventListener via a
JMS topic and JMS MessageListener instance (provided by the ApplicationView instance)
on that topic.

In t roduc t i on

1-22 Deploying WebLogic Integration Solutions

The following figure illustrates event processing in WebLogic Integration.

Figure 1-14 Events via Message Broker

The preceding figure illustrates the following sequence of steps for event processing:

1. An event occurs in an enterprise information system (EIS).

2. The event data is transferred to the event generator in the adapter instance. The details of
this transfer and the data transferred are adapter-specific. The event generator transforms
the EIS-specific event data into an XML document and posts an IEvent object to the
embedded event router instance in the adapter instance. The event generator and embedded
event router instance together constitute the event connection for an adapter instance.

3. The event connection passes the IEvent object to all registered ApplicationView event
subscription objects that have indicated interest in this event type. Subscription objects are
registered at ApplicationView deployment time.

Key Dep loyment Resources

Deploying WebLogic Integration Solutions 1-23

4. The event subscription object delivers the IEvent object to both the MessageBroker event
channel for the event type (named for ApplicationView/event) and the
wli.internal.ai.event JMS topic.

5. Clients receive the event by one of two methods:

– WebLogic Integration process clients receive the event via the event channel.

– Programmatic/custom clients receive the event via an EventListener instance provided
by the client. The EventListener instance is called from a JMS message listener
registered on the event topic.

Relational Database Management System Resources
WebLogic Integration relies extensively on database resources for handling run-time operations
and ensuring that application data is durable. Database performance is a key factor in overall
WebLogic Integration performance. For information on turning your database, see your database
vendor’s documentation.

Hardware, Operating System, and Network Resources
Hardware, operating system, and network resources play a crucial role in WebLogic Integration
performance. Deployments must comply with the hardware and software requirements described
in the BEA WebLogic Integration Release Notes.

http://edocs.bea.com/wli/docs81/relnotes/index.html

In t roduc t i on

1-24 Deploying WebLogic Integration Solutions

Deploying WebLogic Integration Solutions 2-1

C H A P T E R 2

Understanding WebLogic Integration
Clusters

The following sections describe how WebLogic Integration is configured and deployed in a
clustered environment. It contains the following topics:

Understanding WebLogic Integration Clusters

Designing a Clustered Deployment

Load Balancing in a WebLogic Integration Cluster

High Availability in a WebLogic Integration Cluster

Deploying Adapters

Understanding WebLogic Integration Clusters
Clustering allows WebLogic Integration to run on a group of servers that can be managed as a
single unit. In a clustered environment, multiple machines share the processing load. WebLogic
Integration provides load balancing so that resource requests are distributed proportionately
across all machines. A WebLogic Integration deployment can use clustering and load balancing
to improve scalability by distributing the workload across nodes. Clustering provides a
deployment platform that is more scalable than a single server.

Unders tandi ng WebLog ic In tegrat i on C lus te rs

2-2 Deploying WebLogic Integration Solutions

A WebLogic Server cluster domain consists of only one administration server, and one or more
managed servers. The managed servers in a WebLogic Integration domain can be grouped in a
cluster. When you configure WebLogic Integration clusterable resources, you normally target the
resources to a named cluster. The advantage of specifying a cluster as the target for resource
deployment is that it makes it possible to increase capacity dynamically by adding managed
servers to your cluster.

The topics in this section provide the information you need to configure WebLogic Integration in
a clustered environment. Although some background information about how WebLogic Server
supports clustering is provided, the focus is on procedures that are specific to configuring
WebLogic Integration for a clustered environment.

Before proceeding, we recommend that you review the following sections of the WebLogic
Server documentation to obtain a more in-depth understanding of clustering:

Using WebLogic Server Clusters

“Using WebLogic Server Clusters to Inprove Performance” in Tuning WebLogic Server in
BEA WebLogic Server Performance and Tuning

Designing a Clustered Deployment
The following sections provide the information you need to design a clustered deployment:

Introducing WebLogic Integration Domains

Deploying WebLogic Integration Resources

Load Balancing in a WebLogic Integration Cluster

Introducing WebLogic Integration Domains
Before you begin designing the architecture for your clustered domain, you need to learn how
WebLogic Server clusters operate.

Creating Domains
Domain and cluster creation are simplified by a Configuration Wizard that lets you generate
domains from basic and extension domain templates. Based on user queries, the Configuration
Wizard generates a domain, server, and enterprise application with the appropriate components
preconfigured and assets included. For information about the templates available for different

http://edocs.bea.com/wls/docs81/cluster/index.html
http://edocs.bea.com/wls/docs81/perform/WLSTuning.html

Des igning a C lust er ed Dep loyment

Deploying WebLogic Integration Solutions 2-3

domains, see Template Reference in Creating WebLogic Configurations Using the Configuration
Wizard.

For information about creating WebLogic Integration domains using the Configuration Wizard,
see Creating a New WebLogic Domain in Creating WebLogic Configurations Using the
Configuration Wizard.

Clustered Servers
A server can be either a managed server or an administration server. A WebLogic Server running
the administration service is called an administration server and hosts the Administration
Console. In a domain with multiple WebLogic Servers, only one server is the administration
server; the other servers are called managed servers. Each managed server obtains its
configuration at startup from the administration server.

For general information about WebLogic clusters, see Using WebLogic Server Clusters in the
WebLogic Server documentation set. This document includes details regarding recommended
basic, multi-tiered, and proxy architectures. For information about security considerations in the
design of WebLogic clusters, see “Security Options for Cluster Architectures” under
“Configuring WebLogic JMS Clustering” in Cluster Architectures in Using WebLogic Server
Clusters.

Note About Cluster and Management Domains
Although it is possible for a WebLogic Server management domain and cluster domain to be
different (that is, it is possible for WebLogic Server clusters to have nodes that belong to different
management domains), you must design your WebLogic Integration deployment such that the
cluster domain equals the management and security domain.

Deploying WebLogic Integration Resources
For each server in a clustered domain, you can configure a variety of attributes that define the
functionality of the server in the domain. These attributes are configured using the Servers node
in the Administration Console.

This section describes WebLogic Integration resources and how they can be partitioned and
distributed in a cluster. It contains the following topics:

Clusterable Resources

Two-Phase Deployment of WebLogic Integration

http://edocs.bea.com/platform/docs81/confgwiz/tempref.html
http://edocs.bea.com/wls/docs81/cluster/index.html
http://edocs.bea.com/platform/docs81/confgwiz/newdom.html
http://edocs.bea.com/wls/docs81/cluster/planning.html

Unders tandi ng WebLog ic In tegrat i on C lus te rs

2-4 Deploying WebLogic Integration Solutions

Trading Partner Integration Resource Configuration

Clusterable Resources
For a description of WebLogic Integration deployment resources, see the table titled “WebLogic
Integration Deployment Resources” later in this section. It contains the following information:

Resource Target—The target for a resource depends on the resource’s type.

– For queues and topics, the target is a single, migratable JMS server, a JMS server on
the administration server, or a distributed destination.

For information about migratable JMS servers and distributed destinations, see “JMS as
a Migratable Service in a Cluster” and “JMS Distributed Destination in a Cluster” in
Managing WebLogic JMS in Programming WebLogic JMS.

– For all other resources (including deployments, JMS and JDBC services) the target is
either the administration server or a cluster.

Resource—The name of the resource as shown in theWebLogic Server Administration
Console and the individual package or service (in a resource group).

Note that some resources contain abbreviations that are a legacy from prior WebLogic
Integration releases:

– b2b corresponds to Trading Partner Integration

– wlai corresponds to application integration

Administration Console Navigation—Route through the WebLogic Server Administration
Console navigation tree to the specified package or service. All resources can be viewed
and modified in the Administration Console.

http://edocs.bea.com/wls/docs81/jms/config.html

Des igning a C lust er ed Dep loyment

Deploying WebLogic Integration Solutions 2-5

The following table describes the WebLogic Integration deployment resources.

Table 2-1 WebLogic Integration Deployment Resources

Resource
Target

Resource Administration
Console Navigation

Admin
Server

WLI Console

wliconsole.war

Console

WLI Calendar Persistence

wli-ejbs.ear/calendar/generic

Domain→
Deployments→
Applications→
WLI System EJBsWLI AI RAR Upload

wli-ejbs.ear/wlai-rarupload-ejb.jar

wli.internal.configfile.update.topic1

(Update topic for configuration manager)

Domain→
Services→
JMS→
Servers→
cgJMSServer

wli.internal.configfile.request.queue1

(Return queue to configuration manager)

wli.internal.b2b.events.topic1

(Topic for cluster events)

Domain→
Services→
JMS→
Servers→
cgJMSServer

B2BDefaultWebAppApplication

.applications/B2BDefaultWebApp

Domain→
Deployments→
Web Application
Modules

WLI-B2B Startup

b2b-startup.jar

Domain→
Deployments→
Applications→
WLI-B2B

Unders tandi ng WebLog ic In tegrat i on C lus te rs

2-6 Deploying WebLogic Integration Solutions

Cluster WLI Admin

wli-ejbs.ear/wliadmin

Domain→
Deployments→
Applications→
WLI System EJBs

WLI Admin Helper

wli-ejbs.ear/adminhelper

WLI Process Tracking

wli-ejbs.ear/tracking

WLI Worklist Persistence

wli-ejbs.ear/worklist/persistence/generic

WLI Worklist Selection

wli-ejbs.ear/worklist/selection

worklistApp.ear/.workshop/worklist/EJB/GenericStatel

ess1

(Worklist user interface)

Domain→
Deployments→
Applications→
WLI Worklist Worker
User InterfaceworklistApp.ear/.workshop/worklist/EJB/ProjectBeans1

(Worklist user interface)

wlai

wlia.war

Domain→
Deployments→
Applications→
WLI-AI Design-timeWLI-AI Manager EJBs

wlai-designtime.ear\wlai-manager-ejb.jar

Table 2-1 WebLogic Integration Deployment Resources (Continued)

Resource
Target

Resource Administration
Console Navigation

Des igning a C lust er ed Dep loyment

Deploying WebLogic Integration Solutions 2-7

Cluster
(continued)

WLI Message Tracking

msgtracking.jar

Domain→
Deployments→
Applications→
WLI-B2BWLI-B2B ebXML

b2b-ebxml.jar

WLI-B2B HTTP Transport

lib/b2b.war

WLI-B2B RosettaNet

b2b-rosettanet.jar

WLI-B2B Startup

b2b-startup.jar

WLI Post-Activation Startup Class

com.bea.wli.init.
BPMStartupAfterActivation

Domain→
Deployments→
Startup & Shutdown

WLI Shutdown Class

com.bea.wli.init.BPMShutdown

WLI Startup Class

com.bea.wli.init.BPMStartup

WLI-B2B Shutdown Class

com.bea.wli.b2b.server.Shutdown

cgQueue1

(WLI/WLW Connection factory)

Domain→
Services→
JMS→
Connection FactoriesWLI-B2B System Topic Factory

(WLI-B2B Connection factory)

Table 2-1 WebLogic Integration Deployment Resources (Continued)

Resource
Target

Resource Administration
Console Navigation

Unders tandi ng WebLog ic In tegrat i on C lus te rs

2-8 Deploying WebLogic Integration Solutions

Cluster
(continued)

cgPool1

(WLI/WLW JDBC Pool)

Domain→
Services→
JDBC→
Connection PoolsbpmArchPool1

(WLI JDBC Pool for Archiving Database Tables)

bpmArchDataSource1

(WLI Data Source for Archiving)

Domain→
Services→
JDBC→
Data SourcescgDataSource1

(WLI/WLW Data Source)

WLAI_DataSource1

(Data source for WLAI Sample DBMS Adapter)

B2BDefaultWebAppApplication

.applications/B2BDefaultWebApp

Domain→
Deployments→
Web Application
Modules

Each
managed
server

cgJMSServer1, 2

(WLI/WLW JMS Server)

Domain→
Services→
JMS→Servers

wli.internal.msgtracking.queue1

(Message tracking JMS queue)

Domain→
Services→
JMS→
Servers→
cgJMSServer

wli.internal.ai.async.request1

(Application Integration asynchronous request queue)

wli.internal.ai.async.response1

(Application Integration asynchronous response queue)

wli.internal.ai.event_suspend1

(Application Integration suspended event queue)

Table 2-1 WebLogic Integration Deployment Resources (Continued)

Resource
Target

Resource Administration
Console Navigation

Des igning a C lust er ed Dep loyment

Deploying WebLogic Integration Solutions 2-9

Each
managed
server

(continued)

wli.internal.ai.event1

(Application Integration event topic)

Domain→
Services→
JMS→
Servers→
cgJMSServer

Distributed
Destination

wli.internal.tracking.buffer1

(Queue for process tracking)

wli.internal.worklist.timer.queue1

(Queue for worklist timers)

wli.internal.b2b.

rosettanetencoder.queue1

(RosettaNet outbound JMS queue)

wli.internal.b2b.ebxmlencoder.

queue1

(ebXML outbound JMS queue)

wli.b2b.failedmessage.queue1

(Failed message JMS queue)

wli.internal.ai.async.request1

(Application Integration asynchronous request queue)

wli.internal.ai.async.response1

(Application Integration asynchronous response queue)

wli.internal.ai.event_suspend1

(Application Integration suspended event queue)

wli.internal.ai.event1

(Application Integration event topic)

Table 2-1 WebLogic Integration Deployment Resources (Continued)

Resource
Target

Resource Administration
Console Navigation

Unders tandi ng WebLog ic In tegrat i on C lus te rs

2-10 Deploying WebLogic Integration Solutions

Trading Partner Integration Resource Configuration
Trading Partner Integration components must be deployed homogeneously to a cluster. You must
configure Trading Partner Integration resources identically on every managed server so that there
is no single point of failure.

When configuring Trading Partner Integration in a cluster, keep in mind the following
considerations:

The HTTP/HTTPS endpoints you specify in the bindings of trading partners must be the
the host and port number of the hardware or software router. This protects the identity of
your managed servers (which are normally behind a firewall), and allows managed servers
to change operational status without impacting the external customer.

You perform Trading Partner Management configuration updates through the WebLogic
Integration Administration Console. A JMS broadcast mechanism propagates these
changes to the managed servers. Changes take place quickly, but not instantaneously. There

Migratable
Server

wli.internal.scheduling.queue1

(Timer queue for process archiving)

Domain→
Services→
JMS→
Servers→
cgJMSServer

wli.internal.SQLStore.cleanup.

documents1

(Timer queue for doc store cleanup)

wli.internal.egfile.queue1

(Timer queue for file event generator)

wli.internal.egmail.queue1

(Timer queue for email event generator)

wli.internal.egtimer.queue1

(Timer queue for timer event generator)

1. WebLogic Server Administration Console displays the package or service name.
2. The Configuration Wizard labels JMS Servers uniquely for each managed server with names like
cgJMSServer_auto_1.

Table 2-1 WebLogic Integration Deployment Resources (Continued)

Resource
Target

Resource Administration
Console Navigation

Load Ba lancing in a WebLog ic Int eg ra t i on C lus te r

Deploying WebLogic Integration Solutions 2-11

is a brief window during which the managed servers have a mix of old and new
configuration information. You can minimize the impact of these changes on users by
performing changes when the resources you are updating are inactive.

Note that the ebXML and RN protocols are very nearly stateless. As a result, multiple
messages within the same conversation are normally processed by different nodes in the
cluster.

Two-Phase Deployment of WebLogic Integration
It is essential to have all WebLogic Integration application components deployed before your
system attempts to process messages. To guarantee this, specify the TwoPhase attribute when you
deploy WebLogic Integration. The following excerpt from a sample config.xml file illustrates
an Application element, which specifies deployment of WebLogic Integration.

Listing 2-1 Deploying the WebLogic Integration Application

<Domain Name="MyCluster">

...

 <Application Name="WebLogic Integration" Path="WL_HOME/lib"

TwoPhase="true">

...

Note About Servers
If the administration server for a cluster is down, deployment or undeployment requests are
interrupted, but managed servers should continue serving requests. You can boot or reboot
managed servers using an existing configuration. However, you cannot change configuration for
the cluster (for example, add new nodes to the cluster or modify Trading Partner Integration
configuration) until the administration server is recovered.

Load Balancing in a WebLogic Integration Cluster
One of the goals of clustering your WebLogic Integration application is to achieve scalability. In
order for a cluster to be scalable, each server must be fully utilized. Load balancing distributes
the workload proportionally among all the servers in a cluster so that each server can run at full
capacity. The following sections describe load balancing for various functional areas in a
WebLogic Integration cluster:

Unders tandi ng WebLog ic In tegrat i on C lus te rs

2-12 Deploying WebLogic Integration Solutions

Load Balancing HTTP Functions in a Cluster

Load Balancing JMS Functions in a Cluster

Load Balancing Application Integration Functions in a Cluster

For more information, see Load Balancing in a Cluster in Using WebLogic Server Clusters.

Load Balancing HTTP Functions in a Cluster
Both Web services (SOAP or XML over HTTP) and WebLogic Trading Partner Integration
protocols can use HTTP load balancing. External load balancing can be accomplished through
the WebLogic HttpClusterServlet, a WebServer plugin, or a hardware router.

WebLogic Server supports load balancing for HTTP session states and clustered objects. For
more information, see Communications in a Cluster in Using WebLogic Server Clusters.

Load Balancing JMS Functions in a Cluster
Most JMS queues used by WebLogic Integration or WebLogic Integration applications are
configured as distributed destinations. The exceptional cases are JMS queues that are targeted to
single managed servers.

Load Balancing Application Integration Functions in a Cluster
Application integration allows for load balancing of both services and events within a cluster.
Each type is discussed in a following section.

Synchronous Services
Synchronous services are implemented as method calls on a session EJB. As such, they will be
load balanced within the cluster according to EJB load balancing rules. After being published at
design-time, each ApplicationView is represented as two session EJBs: one stateless and one
stateful.

In normal operation, the services are invoked using the stateless session EJB, and thus load
balancing will occur on a per-service basis. The means that each time you invoke a service on an
ApplicationView, you may actually be routed to a different EJB on a different WebLogic
managed server instance.

When using the local transaction facilities of the ApplicationView and during a local transaction,
services are invoked using the stateful session EJB. The stateful session EJB is used to hold open
the connection to the EIS, so that the local transaction state can persist between service

http://edocs.bea.com/wls/docs81/cluster/load_balancing.html
http://edocs.bea.com/wls/docs81/cluster/features.html

Load Ba lancing in a WebLog ic Int eg ra t i on C lus te r

Deploying WebLogic Integration Solutions 2-13

invocations. In this mode, service invocations become pinned to a single EJB instance on a single
managed server within the cluster. Once the local transaction completes (either through a commit
or rollback), normal per-service load balancing applies.

Asynchronous Services
Asynchronous services are always invoked as method calls on a stateless session EJB. You
cannot use the local transaction facility of the ApplicationView for asynchronous service
invocations.

A single asynchronous service invocation translates to two method invocations on (potentially)
two different stateless session EJB instances. Thus, load balancing for asynchronous service
occurs on two occasions: upon receipt of the request, and in the execution of the request and
delivery of the response.

In addition, both the asynchronous service request and response are posted to a distributed JMS
queue. As a result of this, JMS load balancing applies to both the request and response. This
means that the invokeServiceAsync method of the ApplicationView may be serviced on one
managed server, the request delivered to a second managed server where the request is processed
and the response generated, and the response delivered to a third server for retrieval by the client.

Note: When using the ApplicationView control from a WebLogic Integration process or
WebLogic Workshop Web service, the asynchronous response is delivered directly to the
EJB for the process or Web service without being posted to the asynchronous response
JMS queue.

Events
Application integration adapters generate events that are consumed by WebLogic Integration
processes or by WebLogic Workshop Web services. Events are generated inside an EIS instance
outside the WebLogic Integration cluster. Application integration is made aware of these events
by event objects created by event connections within adapter instances. Those adapter instances
reside on individual managed servers within the cluster.

The behavior of event delivery from the point of origin in the EIS to the point where they are
handed off to application integration is adapter-specific and not defined by application
integration. However, once an event generator has delivered the event into application
integration, the event is load balanced for delivery to clients on any managed server in the cluster.

The behavior of event delivery within a cluster depends on whether or not the following
conditions exist:

Unders tandi ng WebLog ic In tegrat i on C lus te rs

2-14 Deploying WebLogic Integration Solutions

The adapter for the EIS supports multiple event connections within a cluster for a single
ApplicationView or event type

The event connection delivering the events has been deployed to more than one managed
server in the cluster

If both of these conditions exist, event delivery and the subsequent processing of those events by
processes and Web services will scale as the number of managed servers in the cluster scales.

Support for multiple event connections within a cluster for a single ApplicationView or event
type depends on the design of the adapter. For example, the DBMS sample adapter included in
the Adapter Development Kit does provide this support. Consult your adapter vendor or adapter
documentation to determine if the adapter you are using provides this support.

Deployment of the event connection to more than one managed server in the cluster depends on
how you have configured the event connection and adapter instance. Using the WebLogic
Integration console, WebLogic Integration administrators can target an event connection at zero
or more managed servers in the cluster. If the adapter supports multiple event generators in a
cluster, it is best practice to deploy the event connection to all managed servers in the cluster.

For information about how WebLogic Integration processes adapter events, see “Events” on
page 1-21.

High Availability in a WebLogic Integration Cluster
Message-driven beans consume messages from JMS destinations. A number of message-driven
beans are deployed on each WebLogic Integration destination. For a complete list of WebLogic
Integration destinations (JMS queues and topics), see the resource type of Services—JMS in
Table 2-1, “WebLogic Integration Deployment Resources,” on page 2-5.

Highly Available JMS
The ability to configure multiple physical destinations as members of a single distributed
destination set provides a highly available implementation of WebLogic JMS. Specifically, for
each node in a cluster, an administrator should configure one physical destination for a distributed
destination. If one node in the cluster fails, making the physical destination for that node
unavailable, then other physical destinations configured as members of the distributed destination
can provide service to JMS producers and consumers. (This is the way the Configuration Wizard
generates domains for a cluster.)

Message-driven beans consume messages from distributed destinations. Distributed destinations
contain one physical destination for each instance of WebLogic Server. A single message

High Ava i lab i l i t y in a WebLog ic Int egrat ion C lus te r

Deploying WebLogic Integration Solutions 2-15

producer on a distributed queue is bound to a single physical destination. Message-driven beans
are bound to the physical destination in the server on which they are deployed (server affinity).

When a managed server fails in a cluster, the message-driven beans from the failed server are
migrated atomically, but not automatically, to prevent multiple message processing. In the case
of those destinations that must be deployed as singletons in a clustered environment, high
availability is still achieved because a JMS server and all of its destinations can be migrated to
another WebLogic Server within a cluster.

The following sections describe examples of how WebLogic Integration uses distributed
destinations and server affinity to achieve high availability in a clustered deployment:

High Availability for Asynchronous Service Requests to Application Views

High Availability for Event Delivery from Application Views

High Availability for Asynchronous Service Requests to Application Views
Application integration uses a distributed JMS queue (wli.internal.ai.async.request) to
manage asynchronous requests entered by ApplicationView clients. The Asynchronous Service
Request Processor is the message-driven EJB that processes these requests, and this bean is
deployed to all servers in a cluster. The method that application integration uses to return the
asynchronous response to the ApplicationView client depends on the type of the client that
submitted the request:

For clients submitting a request directly from the ApplicationView client, application
integration posts responses to a distributed JMS queue
(wli.internal.ai.async.response).

For clients submitting a request using the ApplicationView control from a WebLogic
Integration process or WebLogic Workshop web service, application integration delivers
responses using the WebLogic Workshop service callback dispatching mechanism. This
dispatch is a sequence of synchronous method calls encapsulated in a single JTA
transaction.

If a physical queue fails before an asynchronous service request is received by a message-driven
bean, the request is unavailable until the physical queue comes back on line. The same scenario
is true for asynchronous service responses. In the event of a managed server failure, the messages
being managed by the JMS server on that managed server become unavailable. Messages being
managed by JMS servers on other managed servers remain available and will be processed
normally.

Unders tandi ng WebLog ic In tegrat i on C lus te rs

2-16 Deploying WebLogic Integration Solutions

Note: Asynchronous service requests that have not yet been enqueued to the asynchronous
request queue will be lost if the managed server on which the ApplicationView instance
resides fails.

All asynchronous requests registered on the asynchronous request queue are dequeued and
processed in the scope of a JTA transaction. Applications requiring highly available processing
of requests should use the ApplicationView control to invoke the asynchronous service. This will
cause the asynchronous response to be delivered to the containing process and web service
instance in the same transaction that dequeued the asynchronous request and processed that
request against the EIS.

When a server fails, asynchronous requests being processed at that time will be rolled back onto
the request queue. When WebLogic transaction manager performs transaction recovery for the
failed server, any XA-capable resource managers that have been used by the ApplicationView
will be asked to rollback their work.

WebLogic Integration process client service invocations made through the ApplicationView
control occur in a JTA transaction. When a managed server fails, the process will be rolled back
to the last commit point. If the process was started using the MessageBroker or other persistent
message system, then the entire process can be retried after the start message is delivered.

ApplicationView clients using an AsyncServiceResponseListener instance are actually
receiving those messages using the JMS client acknowledge mode. If the server hosting the
asynchronous response fails, the message is not acknowledged and will remain on the server.

For information about processing of synchronous and asynchronous invocations for application
integration functions, see “Application Integration Capabilities and Clients” on page 1-18.

High Availability for Event Delivery from Application Views
Application integration adapters generate events that are consumed by WebLogic Integration
processes or by WebLogic Workshop web services. Events are generated inside an EIS instance
that is located outside of the WebLogic Integration cluster. Application integration is made aware
of these events by event objects created by event connections within adapter instances. These
adapter instances reside on individual managed servers within the cluster.

The behavior of event delivery from the point of origin in the EIS to the point where events are
handed off to application integration is adapter-specific and not defined by application
integration. For information about how adapter events are processed once the event is delivered
to application integration, see “Events” on page 1-21.

Deploy ing App l i cat ions

Deploying WebLogic Integration Solutions 2-17

In the case of a single managed server failure, any event in the process of being delivered to
application integration on the failed node may be lost. Uninterrupted delivery of other events will
continue if the following conditions exist:

The adapter for the EIS supports multiple event connections within a cluster for a single
ApplicationView or event type

The event connection delivering the events has been deployed to more than one managed
server in the cluster and at least one of those managed servers is still operational

Support for multiple event connections within a cluster for a single ApplicationView or event
type depends on the design of the adapter. For example, the DBMS sample adapter included in
the Adapter Development Kit does provide this support. If your adapter does not support multiple
event generators, then deploying them in such a configuration could lead to multiple events being
delivered to subscribers for a single EIS event. Consult your adapter vendor or adapter
documentation to determine if the adapter you are using provides this support.

Deployment of the event connection to more than one managed server in the cluster depends on
how you have configured the event connection and adapter instance. Using the WebLogic
Integration Administration Console, WebLogic Integration administrators can target an event
connection at zero or more managed servers in the cluster. If the adapter supports multiple event
generators in a cluster, it is best practice to deploy the event connection to all managed servers in
the cluster.

For information on how to target event connections using the WebLogic Integration
Administration Console, see Application Integration in Managing WebLogic Integration
Solutions.

For information about how adapter events are processed by WebLogic Integration, see “Events”
on page 1-21.

Deploying Applications
Applications are deployed in production after creating EAR files from a workshop application.
Deploying a process application uses the same steps as deploying a web service application. For
more information, see Deploying Applications in the BEA Weblogic Workshop Help.

When deploying a WebLogic Integration application to a cluster, keep in mind the following
considerations:

When deploying to a cluster, we recommend that the queues referred to in
wlw-manifest.xml be configured as JMS Distributed Queues, with a member of the
distributed queue configured on each managed server. For information on configuring these

http://edocs.bea.com/wli/docs81/manage/ai.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/deployment/navDeployingApplications.html

Unders tandi ng WebLog ic In tegrat i on C lus te rs

2-18 Deploying WebLogic Integration Solutions

queues, see "To Manually Create Required Resources on the Production Server" in How do
I: Deploy WebLogic Workshop Web Services to a Production Server in the BEA Weblogic
Workshop Help.

When using the process control to communicate between processes, a target process must
be deployed on the same managed server as the client process. If the target process is not
deployed on the same server as the client process, the dispatching table will not be updated
and the client process will lack the necessary dispatching information to call the target
process.

Like communication between processes using the process control, subscriber processes
must be deployed on the same server as the publisher.

For a full overview of application deployment, see Deploying WebLogic Server Applications.

Deploying Adapters
An application integration adapter is typically composed of two components:

A resource adapter deployed from a RAR file

A design-time Web application deployed from a WAR file

The resource adapter (RAR) file should be deployed to the cluster. At a minimum, the resource
adapter (RAR) file must be deployed to those managed servers where any ApplicationView using
the adapter will be deployed. If an ApplicationView is deployed to a managed server that lacks
the required adapter, the deployment of any adapter instances used by the ApplicationView and
the ApplicationView deployment itself will fail.

The design-time Web application (WAR) file should not be targeted within the cluster. The
design-time Web application file is used for development purposes only. WebLogic Integration
production environments do not utilize this file.

For information about using the weblogic.Deployer command-line utility or the WebLogic
Server Administration Console to deploy resource adapters to a running cluster, see Appendix A,
“Deploying Resource Adapters.” For more information about deploying adapters in the
WebLogic Integration environment, see Deploying Adapters in Developing Adapters.

Deploying Event Generators
WebLogic Integration event generators (File, Email, Timer and JMS) are deployed through the
WebLogic Integration Administration Console. For information about how to deploy event

http://edocs.bea.com/wls/docs81/deployment/index.html
http://edocs.bea.com/wli/docs81/devadapt/9deploy.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howDeployWebLogicWorkshopWebServicestoaProductionServer.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/howdoi/howDeployWebLogicWorkshopWebServicestoaProductionServer.html

Dep lo y ing Event Gene ra to rs

Deploying WebLogic Integration Solutions 2-19

generators, see “Creating and Deploying Event Generators” in Event Generators in Managing
WebLogic Integration Solutions.

File, Email, Timer Event Generators
The file, email, and timer event generators should be targeted to the cluster. They will be active
on the managed server containing the migratable server with the queues associated with the
specific event generator (for example, wli.internal.egmail.queue for email event generator).

JMS Event Generator
The JMS event generator should be targeted depending on the destination JNDI name of the JMS
event generator as indicated in the following table:

If the JMS destination is a. . . Target the. . .

Distributed destination Cluster

Destination on a migratable server Cluster

Note: The event generator will only be active on the
managed server that currently hosts the destination.

Destination on a non-migratable server Managed server with the destination.

http://edocs.bea.com/wli/docs81/manage/evntgen.html

Unders tandi ng WebLog ic In tegrat i on C lus te rs

2-20 Deploying WebLogic Integration Solutions

Deploying WebLogic Integration Solutions 3-1

C H A P T E R 3

Configuring a Clustered Deployment

This section describes the tasks that you must perform to configure WebLogic Integration for
deployment in a clustered environment.

For information about deploying WebLogic Integration on a single server, see “Using the Express
Option to Create a New Domain” in Creating a New WebLogic Domain in Creating WebLogic
Configurations Using the Configuration Wizard.

Plan the architecture of your clustered domain, as described in “Designing a Clustered
Deployment” on page 2-2; then set up WebLogic Integration in a clustered environment. To do
this, you must configure a router (hardware or software), an administration server, and managed
servers and deploy WebLogic Integration resources to the servers. The persistent configuration
for a domain of WebLogic Server instances and clusters is stored in an XML configuration file
(config.xml) on the administration server.

To set up and deploy WebLogic Integration in a clustered domain, complete the following steps:

Step 1. Comply with Configuration Prerequisites

Step 2. Prepare a WebLogic Integration Domain

Step 3. Configure WebLogic Integration Security

Step 4. Deploy the WebLogic Integration Application

Step 5. Start and Monitor the Managed Servers in the Domain

Step 6. Update Your Domain as Your Production Environment Changes

http://edocs.bea.com/platform/docs81/confgwiz/newdom.html

Conf i gur i ng a C lust er ed Dep loyment

3-2 Deploying WebLogic Integration Solutions

Step 1. Comply with Configuration Prerequisites
This section describes prerequisites for configuring WebLogic Integration to run in a clustered
environment:

Obtain a WebLogic Server cluster license for each required installation.

To use WebLogic Server in a clustered configuration, you must have a special cluster
license. Contact your BEA representative for information about obtaining one.

Obtain an IP address for the administration server you will use for the cluster.

All WebLogic Server instances in a cluster use the same administration server for
configuration and monitoring. When you add servers to a cluster, you must specify the
administration server that each will use.

Define a multicast address for each cluster

Note: You are prompted to provide a multicast address when you create a WebLogic
Integration domain using the Configuration Wizard. (See “Step 2. Prepare a
WebLogic Integration Domain” on page 3-4.)

The multicast address is used by cluster members to communicate with each other.
Clustered servers must share a single, exclusive multicast address. For each cluster on a
network, the combination of multicast address and port must be unique. If two clusters on a
network use the same multicast address, they should use different ports. If the clusters use
different multicast addresses, they can use the same port or accept the default port, 7001.
To support multicast messages, the administration server and the managed servers in a
cluster must be located on the same subnet.

Define IP addresses for the servers in your cluster. You can do this in a number of ways:

Note: You are prompted to provide a listen addresses for servers when you create a
WebLogic Integration domain using the Configuration Wizard. (See “Step 2. Prepare
a WebLogic Integration Domain” on page 3-4.)

– Assign a single IP address and different listen port numbers to the servers in the cluster.

By assigning a single IP address for your clustered servers with a different port number
for each server, you can set up a clustered environment on a single machine without the
need to make your machine a multihomed server.

Step 1 . Comply w i th Conf igurat i on P re requi s i t es

Deploying WebLogic Integration Solutions 3-3

To access such an IP address from a client, structure the IP address and port number in
your URL in one of the following ways:

– Assign a static IP address for each WebLogic Server instance to be started on each
machine in the cluster.

In this case, when multiple servers are run on a single machine, that machine must be
configured as a multihomed server, that is, multiple IP addresses are assigned to a
single computer. Under these circumstances, you structure the cluster address as a
comma-separated list of IP addresses.

For example, the following listing is an example of a cluster address specified in a
config.xml file. It specifies a static IP address for each of the four servers in a cluster
named MyCluster:

<Cluster
ClusterAddress="127.0.0.1:7001,127.0.0.2:7001,127.0.0.3,127.0.0.4:70
01" Name="MyCluster"/>

You can also use a DNS approach to identifying servers.

For more information on addressing issues, see “Avoiding Listen Address Problems” in
Setting Up WebLogic Clusters in Using WebLogic Server Clusters.

Note: In test environments, it is possible to have multiple WebLogic Server instances on a
single machine. In these circumstances, you can have some WebLogic Server instances
on the same node with different port numbers and some on different nodes with the same
port number.

Configure an Oracle or DB2 database for your clustered domain.

ipAddress:portNumber-portNumber When the port numbers are sequential, for
example:

127.0.0.1:7003-7005

ipAddress:portNumber+...+portNumber When the port numbers are not sequential, for
example:

 127.0.0.1:7003+7006+7008

ipAddress:portNumber,ipAddress:portNumber,
...

Verbose, explicit specification, for example:

127.0.0.1:7003,127.0.0.1:7004,127
.0.0.1:7005

http://edocs.bea.com/wls/docs81/cluster/setup.html

Conf i gur i ng a C lust er ed Dep loyment

3-4 Deploying WebLogic Integration Solutions

Include a shared file system. A shared file system is required for any cluster you want to
be highly available. We recommend either a Storage Area Network (SAN) or a multiported
disk system.

For information about configuring a highly available cluster, see “Configuring WebLogic
JMS Clustering” in Managing WebLogic JMS in Programming WebLogic JMS.

Configure a hardware or software router for your system. Load balancing of servlets and
JSPs can be accomplished using either the built-in load balancing capabilities of a
WebLogic proxy plug-in, or separate load balancing hardware.

For information about hardware and software routers, see Using WebLogic Server Clusters.

Note: Additional requirements apply when you design your domain to include one or more
firewalls. For details, see Communications in a Cluster in Using WebLogic Server
Clusters.

For more information about setting up clustered WebLogic Server instances, see Setting Up
WebLogic Clusters in Using WebLogic Server Clusters.

Note: When deploying an application to a cluster, the concurrency-strategy must be set to
"database" for stateful workflow entity beans. To do this, set the entity bean concurrency
strategy to "database" in the wlw-config.xml file. For additional information, see
wlw-config.xml Configuration File in BEA WebLogic Workshop Help.

Step 2. Prepare a WebLogic Integration Domain
When preparing a WebLogic Integration domain, you must add a definition for each managed
server to the domain configuration file (config.xml), assign all managed servers to a cluster,
specify the WebLogic Integration components on the servers in your domain, and so on.

To prepare a WebLogic Integration environment in a clustered domain, complete the tasks
described in the following sections:

Creating a WebLogic Integration Domain Using the Configuration Wizard

Targeting the JMS Servers for High Availability

Starting the Managed Servers

http://edocs.bea.com/wls/docs81/cluster/index.html
http://edocs.bea.com/wls/docs81/cluster/setup.html
http://edocs.bea.com/wls/docs81/cluster/setup.html
http://edocs.bea.com/wls/docs81/cluster/features.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/reference/configfiles/con_wlw-config_xml_ConfigurationFile.html
http://edocs.bea.com/wls/docs81/jms/config.html

Step 2 . P repare a WebLog ic Int eg rat i on Domain

Deploying WebLogic Integration Solutions 3-5

Creating a WebLogic Integration Domain Using the
Configuration Wizard
You begin the definition of a clustered WebLogic Integration deployment by creating a domain
using the BEA Configuration Wizard.

Note: The procedure described in this section for setting up your domain is based on the
assumption that you are running the Configuration Wizard in GUI mode from the
Windows Start menu. For information about using the Configuration Wizard in different
modes, see Creating WebLogic Configurations Using the Configuration Wizard.

To create a WebLogic Integration domain using the Configuration Wizard, complete the
following steps:

1. From the Start Menu, choose Programs→BEA WebLogic Platform 8.1→Configuration
Wizard.

The Configuration Wizard is launched. It prompts you for data with which to configure
your domain.

2. Respond to the Configuration Wizard prompts by providing the information described in the
following table.

In this window . . . Perform the following action . . .

Choose new domain or
extend an old one

Select Create a new Weblogic configuration.

Choose a Domain Type and
Name

Select the Basic Weblogic Integration Domain template

Choose Express or Custom
Configuration

Select Custom.

http://edocs.bea.com/platform/docs81/confgwiz/index.html

Conf i gur i ng a C lust er ed Dep loyment

3-6 Deploying WebLogic Integration Solutions

Configure the
Administration Server

Accept all the default values.

Note: When you configure the administration server, we recommend that you
accept the default Server Name (cgServer), as prompted by the
Configuration Wizard. If you specify a server name other than the default,
you must change the name of the following directory in your domain, by
replacing myserver with the new name you specified:
DOMAIN_HOME/applications/DefaultWebApp_cgServer

In the preceding path, DOMAIN_HOME represents the root directory of the
custom domain you created using the Configuration Wizard.

Start Managed Server
Configuration

Do you want to distribute your WebLogic configuration across managed servers,
clusters and physical machines? Select yes.

Add managed servers Add as many managed servers as required.

Note: If you need a http router for load balancing, add it here.

Configure Cluster Add a cluster.

Note: WebLogic Integration is intended to work with no more than one cluster
per domain.

Add the managed servers to
the cluster

Add all of the previously created managed servers to the cluster.

Note: If you had previously configured a managed server as an http router, do
not add it to the cluster.

Configure machines Configure the type of physical machines used in the cluster.

Configure JDBC
components

Do you want to define JDBC components, such as Connection Pools, Data
Sources, and MultiPools? Select yes.

Configure JDBC
Connection Pools

Configure the JDBC Connection Pools for WebLogic Integration.

Note: You must configure cgPool and bpmArchPool for WebLogic
Integration to function. You may choose additional Connection Pools as
well for application use.

No more than one non-XA datasource can be used in the same transaction.

WebLogic Integration may not be certified with all drivers. For a list of
certified drivers, see “Supported Databases and Drivers” in Supported
Configurations for WebLogic Platform in Supported Configurations.

http://edocs.bea.com/platform/docs81/support/supp_plat.html
http://edocs.bea.com/platform/docs81/support/supp_plat.html

Step 2 . P repare a WebLog ic Int eg rat i on Domain

Deploying WebLogic Integration Solutions 3-7

Configure JDBC
MultiPools

Configure any Multipools needed by the application. Multipools are not required
for the operation of WebLogic Integration itself.

Configure JDBC Data
Sources

Accept the defaults for cgDataSource, bpmArchDataSource and
WLAI_DataSource, and add any application-specific data sources.

Note: WLAI_DataSource is needed only when using the sample DBMS
adapter.

Test JDBC Connections Optional test

JMS Options Do you want to define JMS components, such as Stores, Topics, and Queues?
Select yes.

Note: Exercise caution in changing JMS option settings. Inappropriate settings
may cause your cluster to function unpredictably.

Configure JMS Connection
Factories

Accept the defaults for cgQueue and WLI-B2B System Topic Factory.

Configure JMS Destination
Keys

Configure any keys needed for the application. None are needed for the operation
of WebLogic Integration.

Configure JMS Templates Configure any templates needed for the application. None are needed for the
operation of WebLogic Integration.

Configure JMS File Stores Accept the defaults for rmfilestore and add any file stores needed by the
application.

Configure JMS JDBC Store You should see one JMS Server for the administration server and one for each of
the managed servers. Take the default, plus add any JDBC stores needed by the
application

Configure JMS Servers Note: We recommend that you use one JMS Server per server rather than
creating additional servers. WebLogic Integration System Queues can be
mixed with Application Queues within the same JMS Server.

Assign JMS Servers to
WebLogic Servers

Accept the defaults.

Configure JMS Topics Accept the defaults, and add any user-defined topics.

Configure JMS Queues Accept the defaults, and add any user-defined queues.

Configure JMS Distributed
Topics

Accept the defaults, and add any user-defined distributed topics.

Conf i gur i ng a C lust er ed Dep loyment

3-8 Deploying WebLogic Integration Solutions

When you complete the domain configuration using the Configuration Wizard, your new domain
is created in the location you specified. A configuration file (config.xml) is created in the
domain. It contains a definition for the administration server and each managed server in the
cluster, and it assigns the managed servers to the cluster.

Creating the Database Tables
When preparing a production environment (working in “noniterativedev” mode), you must create
the WebLogic Integration database tables. For the procedure to create these tables, see “Creating

Configure JMS Distributed
Queues

Accept the defaults, and add any user-defined distributed queues.

Add JMS Distributed
Destinations to Servers or
Clusters

Accept the defaults.

Configure JMS Distributed
Topic Members

Accept the defaults. There should be members for each configured managed
server.

Assign JMS Distributed
Destinations

Accept the defaults.

Configure JMS Distributed
Topic Members

Accept the defaults.

Configure JMS Distributed
Queue Members

Accept the defaults.

Applications and Services
Targeting Options

Do you want to target servers and clusters onto which Applications, JMS
component services, JDBC component services, and other services are deployed?
Select yes.

Target Services to Servers
or Clusters

Accept the defaults.

Configure Administrative
Username and Password

Select user names and passwords.

Configure Server Start
Mode and Java SDK

Select Production Mode, and then select either the Sun SDK or JRockit SDK.

Create WebLogic
Configuration

Select the name of your custom domain.

Step 2 . P repare a WebLog ic Int eg rat i on Domain

Deploying WebLogic Integration Solutions 3-9

the WebLogic Integration Tables” in Production Database in Managing WebLogic Integration
Solutions.

Targeting the JMS Servers for High Availability
You use the WebLogic Server Administration Console to configure the JMS servers in your
domain for high availability.

1. Start the WebLogic Server Administration Console.

For the procedure to start the WebLogic Server Administration Console (and the
administration server, if necessary), see “Starting the Administration Console” in Overview
of WebLogic Server System Administration in Configuring and Managing WebLogic
Server.

2. In the WebLogic Server Administration Console navigation tree, select the JMS servers in
the domain you created (Domain_Name→Services→JMS→Servers→Server_Name).
The default Server_Name name is cgJMSServer_auto_N

3. For each JMS Server on the managed servers, select the Target and Deploy tab, and then
select migratable from the Target drop-down menu.

For example, for a server having the name new_managedServer_1, you would set
new_managedServer_1 (migratable).

Note: After retargeting the JMS servers to migratable targets, you must target event generator
EJBs to all managed servers when creating new event generators. The event generator
EJBs will be active only on the managed server that holds their associated singleton
queues, and will “migrate” with the associated JMS server as necessary.

4. Display the distributed destinations for the domain
(Domain_Name→Services→JMS→Distributed Destination), and then delete the
following distributed destinations:

-wli.internal.egmail.queue_auto
-wli.internal.egfile.queue_auto

5. Display the JMS queues for each managed server in the domain
(Domain_Name→Services→JMS→Servers→Server_Name→Destinations), and then
delete the following queues:

-wli.internal.egmail.queue_auto_N
-wli.internal.egfile.queue_auto_N

6. Add the following JMS queues into one managed server that hosts the event generator:

http://edocs.bea.com/wli/docs81/manage/database.html
http://edocs.bea.com/wls/docs81/adminguide/overview.html
http://edocs.bea.com/wls/docs81/adminguide/overview.html

Conf i gur i ng a C lust er ed Dep loyment

3-10 Deploying WebLogic Integration Solutions

-wli.internal.egmail.queue
-wli.internal.egfile.queue

For more information on configuring clusters, see Understanding Cluster Configuration and
Application Deployment in Using WebLogic Server Clusters. For more information about high
availability JMS, see Chapter 2, “Understanding WebLogic Integration Clusters.”

Step 3. Configure WebLogic Integration Security
If you want to configure SSL for your cluster, you can do so by using the WebLogic Server
Administration Console. For a domain in which security functionality is deployed in a multinode
cluster, you also need to configure keystores, server certificate and private key for each managed
server, and so on, for every machine in a cluster. You either need to use a separate keystore for
each machine or you can use a single keystore if it is available to all machines.

The security administrator also has to make sure that the contents of shared or individual
keystores in a cluster is consistent. Inconsistencies can be introduced when adding new
certificates, if private keys must also be added. For example, if you add certificates for remote
trading partners using the WebLogic Integration Administration Console, they can optionally be
imported in the identity keystore used by each each managed server in a cluster. However, this
mechanism is not available (for security reasons) if private keys must be inserted in these
keystores.

For information about the tasks you must complete, see:

Configuring SSL in Managing WebLogic Security.

Chapter 5, “Using WebLogic Integration Security.”

Step 4. Deploy the WebLogic Integration Application
Once you have configured and secured your WebLogic Integration domain, you can deploy a
WebLogic Integration application to your cluster. You use the WebLogic Server Administration
Console to deploy the EAR file that contains your WebLogic Integration application.

Note: You can update environment-specific information in your Application Views and adapter
instances either before or after deploying your WebLogic Integration application:

To update before deployment, use the aiConfigurator as described in Appendix B,
“Administering Environment-Specific Application Integration Information.”

http://edocs.bea.com/wls/docs81/secmanage/ssl.html
http://edocs.bea.com/wls/docs81/cluster/config.html
http://edocs.bea.com/wls/docs81/cluster/config.html

Step 5. Star t and Mon i t or the Managed Se rver s i n the Domain

Deploying WebLogic Integration Solutions 3-11

To update after deployment (and redeploy, as necessary), use the WebLogic
Integration Administration Console as described in Application Integration in
Managing WebLogic Integration Solutions.

For the procedure to deploy an EAR file, see “Configuring and Deploying a New Enterprise
Application or Web Service” in Enterprise Applications in the Administration Console Online
Help.

Step 5. Start and Monitor the Managed Servers in the Domain
This section describes how to start the servers in your clustered domain:

Starting the Managed Servers

Monitoring and Shutting Down Your Servers

Starting the Managed Servers
To start servers in a domain for which the Node Manager is configured, complete the following
procedure:

1. If you have not done so already, start the Node Manager on each machine that hosts managed
servers.

For information about starting the Node Manager, see in Configuring, Starting, and
Stopping Node Manager in Configuring and Managing WebLogic Server.

2. If you have not done so already, start the WebLogic Server Administration Console.

For the procedure to start the WebLogic Server Administration Console (and the
administration server, if necessary), see “Starting the Administration Console” in Overview
of WebLogic Server System Administration in Configuring and Managing WebLogic
Server.

3. In the WebLogic Server Administration Console navigation tree, select the name of each
managed server, in turn.

4. Select the Configuration tab, and then select the Remote Start tab. Set the properties for
Node Manager to use for the managed server.

For information about the setting the properties for Node Manager use, see Configure
Startup Arguments for Managed Servers in Starting and Stopping Servers in WebLogic
Server Adminstration Console Online Help.

5. Select the Control tab.

http://edocs.bea.com/wli/docs81/manage/ai.html
http://edocs.bea.com/wls/docs81/adminguide/confignodemgr.html
http://edocs.bea.com/wls/docs81/adminguide/confignodemgr.html
http://edocs.bea.com/wls/docs81/adminguide/overview.html
http://edocs.bea.com/wls/docs81/adminguide/overview.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/startstop.html
http://edocs.bea.com/wls/docs81/ConsoleHelp/applications.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/startstop.html#Configure_Startup_Arguments_for_Managed_Servers
http://e-docs.bea.com/wls/docs81/ConsoleHelp/startstop.html#Configure_Startup_Arguments_for_Managed_Servers

Conf i gur i ng a C lust er ed Dep loyment

3-12 Deploying WebLogic Integration Solutions

6. Click Start this Server.

For information about how the Start Server command is affected by other settings made via
the WebLogic Server Administration Console, see the WebLogic Server Adminstration
Console Online Help, which is available from the software and at the following URL:

http://edocs.bea.com/wls/docs81/ConsoleHelp/index.html

Monitoring and Shutting Down Your Servers
Once startup is complete, you can use the WebLogic Server Administration Console to verify
deployments and status. For information about using WebLogic Server Administration Console
to monitor your servers, see Monitoring a WebLogic Server Domain in Configuring and
Managing WebLogic Server.

Note: In cluster configurations, while running business processes or using the WebLogic
Integration Administration Console, the following error message may appear in the
WebLogic Server console window for the WebLogic Server that hosts the WebLogic
Server Administration Console:

Failed to initialize clustered process configuration backend

If you encounter this problem, you must set the ClusterAddress attribute for the cluster.
To learn how, see "Cluster Address" in Setting Up WebLogic Clusters in Using
WebLogic Server Clusters.

If you need to shut down your WebLogic Integration application, use the WebLogic Server
Administration Console.

Note: It is recommended that you do not close the command window or press Ctrl+c to stop
WebLogic Integration.

For the procedure to shut down your application gracefully, see “Graceful Shutdown of All
Servers” and “Start/Stop a Server” in Tasks in the WebLogic Server Adminstration Console
Online Help.

Step 6. Update Your Domain as Your Production Environment
Changes

Production environments change over time and as application use increases. This section
describes how to update your domain in response to common production environment change
scenarios:

Adding a New Managed Server

http://edocs.bea.com/wls/docs81/ConsoleHelp/clusters.html
http://edocs.bea.com/wls/docs81/ConsoleHelp/index.html
http://edocs.bea.com/wls/docs81/cluster/setup.html
http://edocs.bea.com/wls/docs81/adminguide/monitoring.html

Step 6 . Update Your Domai n as Your Pr oduct ion Env i ronment Changes

Deploying WebLogic Integration Solutions 3-13

Changing an EIS Instance

Adding a New Managed Server
As the use of an application grows, you may need to add new managed servers to a WebLogic
Server cluster to provide extra capacity. For information about adding a new managed server to
a cluster, see “Adding and Removing Servers in an Existing Domain” in Creating, Configuring,
and Monitoring Servers in WebLogic Server Adminstration Console Online Help.

Once you have added the new managed server and started it within the cluster, you can begin to
move processing responsibility onto that new server. To do this, complete the following
procedure.

1. Decide which Application Views will be targeted at the new managed server.

2. Determine the list of adapters required to support the list of Application Views you arrived
at in step 1.

3. Using the WebLogic Server Administration Console, target the RAR component of all the
adapters identified in step 2 to the new managed server. Wait for the deployment to
complete.

For information about targeting a RAR component, see General tab in “Connector
Component→Configuration→General” in the WebLogic Server Adminstration Console
Online Help.

4. Using the WebLogic Server Administration Console, target the Application View EJBs to
the new managed server. Wait for the deployment to complete.

For information about targeting Application View EJBs, see “Deploying a New EJB
Module” in EJB in the WebLogic Server Adminstration Console Online Help.

5. Using the WebLogic Integration Administration Console, verify that the Application Views
you just targeted appear in the ApplicationView list as having a Deployed status.

For information about verifying Application View status, see “Listing and Viewing
Application Views” in Application Integration in the Managing WebLogic Integration
Solutions.

6. If you have targeted the event connection for the Application Views to the cluster, event
delivery will automatically begin from the new managed server. Otherwise, you (optionally)
can specify the new managed server in the targets list for the event connection in the

http://e-docs.bea.com/wls/docs81/ConsoleHelp/servers.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/servers.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/domain_connectorcomponent_config_general.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/ejb.html
http://iepro/docbuild/projects/ebooks_81GA/stage/html/manage/ai.html

Conf i gur i ng a C lust er ed Dep loyment

3-14 Deploying WebLogic Integration Solutions

WebLogic Integration Administration Console on the Adapter Instance Event Connection
page (Application Integration→Adapter Instances→Adapter_Instance_ID→Edit
Event Connections).

For more information about setting target lists for event connections, see “Changing Event
Generation Targets” in Application Integration in the Managing WebLogic Integration
Solutions.

After completing this procedure, Application View events should be coming from (if so
configured) and Application View services should be invoked on the new managed server.

Changing an EIS Instance
In some cases, EIS instances are phased out, and new instances (possibly with new versions of
EIS software, new hardware, and so on) are brought online. When this happens, WebLogic
Integration administrators need to gracefully transition Application Views and adapter instances
to the new EIS instance, and away from the old.

This situation is similar to an EIS instance failure, but not as urgent. In this case, you suspend the
Application Views and adapter instances pointing at the old EIS instance, and then follow the
instructions in “EIS Instance Failover” on page 4-7 to point the Application Views and adapter
instances to the new EIS instance.

http://iepro/docbuild/projects/ebooks_81GA/stage/html/manage/ai.html

Deploying WebLogic Integration Solutions 4-1

C H A P T E R 4

Understanding WebLogic Integration
High Availability

A clustered WebLogic Integration application provides scalability and high availability. A highly
available deployment has recovery provisions in the event of hardware or network failures, and
provides for the transfer of control to a backup component when a failure occurs.

The following sections describe clustering and high availability for a WebLogic Integration
deployment:

About WebLogic Integration High Availability

WebLogic Integration Failure and Recovery

About WebLogic Integration High Availability
For a cluster to provide high availability, it must be able to recover from service failures.
WebLogic Server supports failover for replicated HTTP session states, clustered objects, and
services pinned to servers in a clustered environment. For information about how WebLogic
Server handles such failover scenarios, see Communications in a Cluster in Using WebLogic
Server Clusters.

Recommended Hardware and Software
The basic components of a highly available WebLogic Integration environment include the
following:

An administration server.

A set of managed servers in a cluster.

http://edocs.bea.com/wls/docs81/cluster/features.html

Unders tandi ng WebLog ic In tegrat ion H igh Ava i lab i l i t y

4-2 Deploying WebLogic Integration Solutions

An HTTP load balancer (router.)

Physically shared, highly available disk subsystems for transaction recovery—Transaction
logs from a failed server must be available to a managed server in order for migration to
occur. A typical and recommended way to do this is by using a multi-ported disk
subsystem or SAN, and allowing two or more servers to mount file systems within the disk
subsystem. Note that it is not necessary for the file system to be simultaniously shared, it is
only necessary for one server to mount a file system at any one time.

An Oracle database—You should take advantage of any high availability or failover
solutions offered by your database vendor. (For more information, see your database
vendor’s documentation.)

A full discussion of how to plan the network topology of your clustered system is beyond the
scope of this section. For information about how to fully utilize load balancing and failover
features for your Web application by organizing one or more WebLogic Server clusters in
relation to load balancers, firewalls, and Web servers, see Cluster Architectures in Using
WebLogic Server Clusters.

For a simplified view of a cluster, showing the http load balancer, highly available database and
multi-ported file system, see the following figure.

http://edocs.bea.com/wls/docs81/cluster/planning.html

About WebLog ic Int egrat ion H igh Ava i lab i l i t y

Deploying WebLogic Integration Solutions 4-3

Figure 4-1 Simplified View of a Cluster

Regarding JMS File Stores
The default WLI domain configuration uses a JDBC store for JMS servers. A file store can be
used for JMS persistence in cases where a highly available multi-ported disk can be shared
between managed servers, as described in the configuration shown in the preceding graphic. This
will typically be more performant than a JDBC store.

What Happens When a Server Fails
A server can fail due to either software or hardware problems. The following sections describe
the processes that occur automatically in each case and the manual steps that must be taken in
these situations.

Software Faults
If a software fault occurs, the node manager (if configured to do so) will restart the WebLogic
Server. For information about the Node Manager, see Overview of Node Manager in Configuring
and Managing WebLogic Server. For information about the steps to take to prepare for recovering

Multi-ported
Storage

Subsystemhttp load balancer

Highly Available
Database Server

File System

Admin Server

Managed Server-1

Managed Server-2

File System

http://edocs.bea.com/wls/docs81/adminguide/nodemgr.html

Unders tandi ng WebLog ic In tegrat ion H igh Ava i lab i l i t y

4-4 Deploying WebLogic Integration Solutions

a secure installation, see “Backing Up Configuration and Security Data” in Recovering Failed
Servers in Configuring and Managing WebLogic Server.

Hardware Faults
If a hardware fault occurs, the physical machine may need to be repaired and could be out of
operation for an extended period. In this case, the following events occur:

The http load balancer will detect the failed server and will redirect to other managed
servers. (The actual algorithm for doing this will depend on the vendor for the http load
balancer.)

All new internal requests, either RMI or JMS, will be redirected to other managed servers
(JMS, if using distributed destinations).

All in-flight transactions on the failed server are terminated.

Another managed server can access process state, since it is held in the highly available
database server. (A process will be in the state of the last successful transaction commit.)

JMS messages that are already enqueued are not automatically migrated, but must be
manually migrated. For more information, see “Server Migration” on page 4-4.

Server Migration
In the case of a failure of extended duration, it may be necessary to migrate to another, operational
managed server. When manually migrating a failed server to another managed server:

The transaction logs from the failed server must be made available to the new migrated
server. If you are using a shared disk subsystem, you would simply mount the file system
from the failed server containing the transaction logs on the migrated server.

The server must be manually migrated using the WebLogic Server Console (or,
alternatively, through the command line utility).

When JTA is migrated, it will read the TLOGs from the failed server and recover any
in-doubt transactions. We recommend that you migrate JTA before migrating JMS.

When JMS is migrated, it will allow access to the messages enqueued on the failed server.

Any “singleton” Message Driven Beans (message driven beans that were tied to physical
queues rather than distributed destination) will be activated, if the migrated JMS server
contains the physical queues needed by the message driven beans.

http://edocs.bea.com/wls/docs81/adminguide/failures.html
http://edocs.bea.com/wls/docs81/adminguide/failures.html

WebLog ic Int eg ra t i on Fa i lu re and Recovery

Deploying WebLogic Integration Solutions 4-5

For detailed information regarding WebLogic Server migration, see the following topics in the
WebLogic Server documentation set:

Failover and Replication in a Cluster in Using WebLogic Server Clusters

Recovering Failed Servers in Configuring and Managing WebLogic Server

WebLogic Integration Failure and Recovery
In addition to the high availability features of WebLogic Server, WebLogic Integration has
failure and recovery characteristics that are based on the implementation and configuration of
your WebLogic Integration solution. The following sections discuss failure and recovery topics
for specific WebLogic Integration functional areas:

Trading Partner Integration

Application Integration

Trading Partner Integration
RosettaNet and ebXML handle failure and recovery differently because of differences in the
business protocols. However, both protocols send messages that fail to be delivered after the
configured number of retries to wli.b2b.failedmessage.queue. If you require additional
processing of failed messages, you can implement custom message listeners for this queue.

RosettaNet
When message delivery fails in the case of RosettaNet messages, the WebLogic Integration
protocol layer does not retry messages. It returns HttpStatus code to the workflow layer, instead.
RosettaNet workflows are usually designed to handle retries.

The WebLogic Integration Administration Console enables you to specify retry intervals, retry
counts, and process timeouts for various trading partners based on the PIP(s) being used. For
example, RosettaNet typically supports three retries, at two-hour intervals, with an overall
24-hour limit on the life of the actual PIP exchange. For information about changing these
settings, see “Viewing and Changing Bindings” in Trading Partner Management in Managing
WebLogic Integration Solutions.

If one instance of WebLogic Integration sends a message to another instance, but the destination
instance has failed, you may see one or more error messages, followed by a stack trace, in the
server console.

http://edocs.bea.com/wls/docs81/cluster/failover.html
http://edocs.bea.com/wls/docs81/adminguide/failures.html
http://edocs.bea.com/wli/docs81/manage/tpm.html

Unders tandi ng WebLog ic In tegrat ion H igh Ava i lab i l i t y

4-6 Deploying WebLogic Integration Solutions

ebXML
You can specify ebXML message retries using the WebLogic Integration Administration
Console, Trading Partner Management Bulkloader, or third-party Trading Partner Management
message beans. If you set ebXML Delivery Semantics to OnceAndOnlyOnce or AtLeastOnce,
messages will be retried according to the values you specify for Retry Count and Retry Interval.
For information about using the WebLogic Integration Administration Console to set ebXML
message retries, see “Defining Protocol Bindings” in Trading Partner Management in Managing
WebLogic Integration Solutions.

For ebXML processes, set the action mode value to non-default to guarantee recovery and high
availability. For information about setting the action mode, see “ebXML Business Processes” in
Introducing ebXML Solutions in Introducing Trading Partner Integration.

Application Integration
WebLogic Integration provides you with great flexibility in managing application integration
resources for high availability. The following sections describe how application integration
resources behave in the case of software or hardware failures, and actions you can take to recover
when failover is not automatic:

Retargeting Services

Retargeting Events

EIS Instance Failover

Retargeting Services
In most cases, service invocations will continue uninterrupted because the Application View
containing the service is deployed to more than one managed server in the cluster. If this is not
the case, use the WebLogic Server Administration Console to target the Application View EJB
and the adapter for the Application View to a live managed server.

For information about using the WebLogic Server Administration Console to retarget services,
see the following topics in the WebLogic Server Adminstration Console Online Help:

“Setting an EJB Module’s Target Server and/or Cluster” in Tasks

“Changing the Target Servers for a Deployment” in Tasks

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wli/docs81/tpintro/ebxml.html
http://edocs.bea.com/wls/docs81/ConsoleHelp/ejb.html
http://edocs.bea.com/wls/docs81/ConsoleHelp/deployment.html

WebLog ic Int eg ra t i on Fa i lu re and Recovery

Deploying WebLogic Integration Solutions 4-7

Retargeting Events
In the case of a single managed server failure, delivery of events targeted to other managed
servers in the cluster continues. Uninterrupted delivery of events targeted to the failed managed
server will continue if both of the following conditions exist:

The event connection delivering the events has been deployed to more than one managed
server in the cluster and at least one of those managed servers is still operational

The adapter for the EIS supports multiple event connections within a cluster for a single
Application View or event type

If the event connection was targeted to the failed managed server only, use the WebLogic
Integration Administration Console to target the event connection to a live managed server on
which the Application View is deployed. Retargeting the event connection will cause event
delivery to resume on the targeted managed server.

For information about using WebLogic Integration Administration Console to retarget event
connections, see “Changing Event Generation Targets” in Application Integration in Managing
WebLogic Integration Solutions.

EIS Instance Failover
When an EIS instance fails, all service invocations and event deliveries cease. Asynchronous
service requests to the failed EIS instance will fail until the affected Application Views and
adapter instances are placed in the Suspended state. If there is an operational instance of the EIS
available, you can edit the affected Application Views and adapter instances to make use of the
operational instance. (You use the WebLogic Integration Administration Console to perform
these edits.) Otherwise, service invocations and event deliveries continue when you take
Application Views and adapter instances out of the Suspended state.

The following sections describe suspending Application Views and adapters, resuming operation
of Application Views and adapter instances, and retargeting Application Views and adapter
instances to a different EIS instance:

Suspending Application Views and Adapter Instances

Resuming Operation

Retargeting to an Operational EIS Instance

http://edocs.bea.com/wli/docs81/manage/ai.html

Unders tandi ng WebLog ic In tegrat ion H igh Ava i lab i l i t y

4-8 Deploying WebLogic Integration Solutions

Suspending Application Views and Adapter Instances
In the case of an EIS failure, service requests and attempts at event delivery generate errors until
the affected Application Views and adapter instances are suspended. Application Views and
adapter instances may be suspended automatically or manually:

If you have enabled the AutoSuspend option for Application Views and adapter instances
(and the adapter supports auto suspend functionality), the Application Views and adapter
instances automatically go into the Suspended state in the case of an EIS instance failure.

For information about using the WebLogic Integration Administration Console to enable
the AutoSuspend option for Application Views, see “Viewing and Changing Application
View Auto Suspend Settings” in Application Integration in Managing WebLogic
Integration Solutions.

For information about enabling the AutoSuspend option for adapter instances, see the
JavaDoc for the AdapterDeploymentMBean.

Note: The WebLogic Integration Administration Console allows you to enable the auto
suspend option for all adapters, whether or not they provide auto suspend
functionality. Contact your adapter vendor to verify that your adapter supports auto
suspend. (The DBMS sample adapter supports auto suspend.)

If you have not enabled the AutoSuspend option or the adapter does not support auto
suspend functionality, you must first detect the EIS failure and then manually suspend the
affected Application Views and adapter instances using the WebLogic Integration
Administration Console.

For information about using the WebLogic Integration Administration Console to suspend
Application Views or adapter instances, see “Suspending or Resuming an Application
View or Adapter Instance” in Application Integrationin Managing WebLogic Integration
Solutions.

You can detect an EIS instance failure using a monitoring tool for the EIS or by monitoring the
error counts for the Application View or adapter instance in the WebLogic Integration
Administration Console. For information about monitoring errors using the WebLogic
Integration Administration Console, see Application Integration in Managing WebLogic
Integration Solutions.

Resuming Operation
Once an EIS instance is again operational, you must remove the affected Application Views and
adapter instances from their Suspended state in order for service requests and event delivery to
resume.

http://edocs.bea.com/wli/docs81/manage/ai.html
http://edocs.bea.com/wli/docs81/manage/ai.html
http://edocs.bea.com/wli/docs81/manage/ai.html
http://edocs.bea.com/wli/docs81/javadoc/com/bea/wlai/management/deployment/AdapterDeploymentMBean.html

WebLog ic Int eg ra t i on Fa i lu re and Recovery

Deploying WebLogic Integration Solutions 4-9

For information about using the WebLogic Integration Administration Console to return
Application Views or adapter instances to the Deployed state, see “Suspending or Resuming an
Application View or Adapter Instance” in Application Integration in Managing WebLogic
Integration Solutions.

Retargeting to an Operational EIS Instance

If you expect that an EIS instance failure will have an extended duration, you can point
Application Views and adapter instances at an alternate, operational EIS instance.If an adapter
instance already exists that points to an operational EIS instance, you can edit the Event
Connection and Service Connection properties of any Application View pointing to the failed EIS
instance so that they are set to the adapter instance pointing to the operational EIS instance.

For information about using the WebLogic Integration Administration Console to change the
adapter for an Application View, see “Changing Event Connections for an Application View”
and “Changing Service Connections for an Application View” in Application Integration in
Managing WebLogic Integration Solutions.

You can also edit the Event Connection and Service Connection properties that point to the old
EIS instance, and give the Event and Service Connections new property values to point them to
the new, operational EIS instance.

For more information on changing Event and Service Connection properties, see “Viewing and
Changing Event Connection Properties” and “Viewing and Changing Service Connection
Properties” in Application Integration in Managing WebLogic Integration Solutions.

http://edocs.bea.com/wli/docs81/manage/ai.html
http://edocs.bea.com/wli/docs81/manage/ai.html
http://edocs.bea.com/wli/docs81/manage/ai.html

Unders tandi ng WebLog ic In tegrat ion H igh Ava i lab i l i t y

4-10 Deploying WebLogic Integration Solutions

Deploying WebLogic Integration Solutions 5-1

C H A P T E R 5

Using WebLogic Integration Security

The following sections describe how to set up and manage security for WebLogic Integration
solution deployments:

Overview of WebLogic Integration Security

Considerations for Configuring Security

Setting Up a Secure Deployment

Before you proceed with the remainder of this topic, see Introducing WebLogic Platform 8.1
Security in Introducing Security.

Overview of WebLogic Integration Security
The foundation of every secure deployment of a WebLogic Integration solution is the set of
security features provided by WebLogic Server. After you configure security for the underlying
WebLogic Server layer of your environment, you need to configure and manage security for
those WebLogic Server entities that are specific to WebLogic Integration:

Users of the WebLogic Integration solution and WebLogic Integration Administration
Console, the groups to which they belong, and the roles they are assigned

Trading partners for which security management is particularly important, because trading
partners are required to produce digital certificates for sending and receiving business
messages in a secure environment

As the security administrator for your environment, you need to focus your efforts on a set of
predefined principals and resources that are created along with a WebLogic Integration domain.

http://edocs.bea.com/platform/docs81/secintro/secure.html
http://edocs.bea.com/platform/docs81/secintro/secure.html

Using WebLog ic In tegrat i on Secur i t y

5-2 Deploying WebLogic Integration Solutions

This introduction presents the following topics to give you a high-level view of WebLogic
Integration security:

Security and WebLogic Integration Domains

WebLogic Server Security Principals and Resources Used in WebLogic Integration

Note: For a secure deployment, avoid running WebLogic Integration in the same WebLogic
Server instance as any applications for which security is not provided. Internal WebLogic
Integration API calls are not protected from such collocated applications.

Security and WebLogic Integration Domains
When you create a WebLogic Integration domain using the BEA Configuration Wizard, the
domain is configured to include:

Default WebLogic Integration roles and groups. Default security policies define the roles
authorized to access specific WebLogic Integration resources. For more information, see
“Default Groups, Roles, and Security Policies” in User Management in Managing
WebLogic Integration Solutions.

PasswordStore, which is described in “WebLogic Integration PasswordStore for Encrypted
Passwords” on page 5-2.

Default identity and trust keystores, which are described in “Keystore for Private Keys and
Certificates” on page 5-3.

B2BDefaultWebApp, on which you can configure policies to authorize access to Trading
Partner Integration.

For information about using the Configuration Wizard, see Creating WebLogic Configurations
Using the Configuration Wizard.

WebLogic Integration PasswordStore for Encrypted Passwords
All passwords are kept in encrypted form in the PasswordStore. WebLogic Integration does not
require clear-text passwords. The PasswordStore the uses Sun JCE provider for password-based
encryption. Access to passwords is controlled through an MBean API and passwords are accessed
using password-aliases.

http://edocs.bea.com/platform/docs81/confgwiz/index.html
http://edocs.bea.com/wli/docs81/manage/users.html

Overv iew of WebLogi c In teg ra t ion Secur i t y

Deploying WebLogic Integration Solutions 5-3

You use the WebLogic Integration Administration Console to manage passwords in the
PasswordStore. For more information, see the following topics in Trading Partner Management
in Managing WebLogic Integration Solutions:

“Adding Passwords to the PasswordStore”

“Listing and Locating Password Aliases”

“Changing the Password for a Password Alias”

“Deleting Passwords from the PasswordStore”

Keystore for Private Keys and Certificates
WebLogic Integration requires that you use keystores to store all private keys and certificates.
A keystore is a protected database that holds keys and certificates. If you have keys and
certificates and use message encryption, digital signatures, or SSL, you must use a keystore for
storing those keys and certificates and make the keystore available to applications that might need
it for authentication or signing purposes.

Types of Keystores
When you set up a WebLogic Integration domain for trading partner integration collaborations,
the following keystores are configured.

Table 5-1 Types of Certificates Used in WebLogic Integration

Type of KeyStore Description

Identity keystore Stores private keys for local trading partners and certificates for both the local
trading partner and remote trading partners. Certificates are of the following
types: client, server, signature, and encryption certificates. WebLogic
Integration retrieves private keys and certificates from this keystore to use for
SSL, message encryption, and digital signatures. For more information about
certificates, see “About Digital Certificates” on page 5-6.

Trust keystore WebLogic Server uses the trust keystore to locate trusted CAs for SSL.
WebLogic Integration uses it to locate the trusted CAs while verifying
signature and encryption.

http://edocs.bea.com/wli/docs81/manage/tpm.html

Using WebLog ic In tegrat i on Secur i t y

5-4 Deploying WebLogic Integration Solutions

Default Keystores for the Test Environment
When you create a new domain using the WebLogic Platform Configuration Wizard and the
WebLogic Integration template, the new domain contains Demo Keystores of type JKS. The
Demo KeyStores performs the following actions:

Utilizes the JDK bundled Java KeyStore (JKS) provider, which implements the keystore as
a file

Protects each private key with an individual password

Protects the entire keystore with a password

Keystores in a Production Environment
You can use the Demo keystores in a development / testing environment, but you must either
create or use existing identity and trust keystores suitable for production environment. To create
a keystore and make it available for trading partner integration:

1. If the identity and trust keystores do not already exist in your domain, create them according
to the instructions in “Storing Private Keys, Digital Certificates, and Trusted Certificate
Authorities” in Configuring SSL in Managing WebLogic Security.

2. Configure the keystores using the WebLogic Server Administration Console according to
the instructions in “Configuring KeyStores” in Configuring SSL in Managing WebLogic
Security.

3. Add trading partner certificates to the identity keystore. For more information, see “Step 3:
Configure Application Integration Security” on page 5-12.

4. Add trusted certificate authority certificates to the trust keystore.

For information about refreshing the keystore using the WebLogic Integration Administration
Console, see “Refreshing the Keystore” in Trading Partner Management in Managing WebLogic
Integration Solutions.

In a clustered domain, you need to create and configure a separate keystore for each WebLogic
Server.

http://edocs.bea.com/wli/docs81/manage/tpm.html
http://edocs.bea.com/wls/docs81/secmanage/ssl.html
http://edocs.bea.com/wls/docs81/secmanage/ssl.html

Overv iew of WebLogi c In teg ra t ion Secur i t y

Deploying WebLogic Integration Solutions 5-5

WebLogic Server Security Principals and Resources Used in
WebLogic Integration
WebLogic Integration supports role-based authorization. Although the specific users (principals)
that require access to the components that make up your WebLogic Integration application may
change depending upon the deployment environment, the roles that require access are typically
more stable. Authorization involves granting an entity permissions and rights to perform certain
actions on a resource.

In role-based authorization, security policies define the roles that are authorized to access the
resource. In addition to the built-in roles that are associated with certain administrative and
monitoring privileges, security policies that control access to the following resources can be
configured from the WebLogic Integration Administration Console:

Process operations
Policies define the role required to invoke the process operations. For more information on
the policies you can set, see “Process Security Policies” under “About Process
Configuration” in Processes Configuration in Managing WebLogic Integration Solutions.

Message Broker channels
Policies define the roles required to subscribe and publish to a given channel. For more
information, see “About Message Broker Channels” in Message Broker in Managing
WebLogic Integration Solutions.

Application Views
Policies define the roles required to execute services and subscribe for events on an
application view. For more information, see “Managing Security” in Application
Integration in Managing WebLogic Integration Solutions.

Trading Partner Integration Transport
Policies define the roles required to accept messages from remote trading partners at URIs
in B2BDefaultWebApp.

Once the roles required for access are set, the administrator can map users or groups to the roles
as required.

Unlike membership in a group, which is directly assigned, membership in a security role is
dynamically calculated based on the set of conditions that define the role statement. Each
condition specifies user names, group names, or time of day. When a principal (user) is “in” a
role based on the evaluation of the role statement, the access permissions of the role are conferred
on the principal.

http://edocs.bea.com/wli/docs81/manage/processconfig.html
http://edocs.bea.com/wli/docs81/manage/msgbroker.html
http://edocs.bea.com/wli/docs81/manage/ai.html
http://edocs.bea.com/wli/docs81/manage/ai.html

Using WebLog ic In tegrat i on Secur i t y

5-6 Deploying WebLogic Integration Solutions

Considerations for Configuring Security
Before you configure the security for your WebLogic Integration domain, consider the following:

About Digital Certificates

Using the Secure Sockets Layer (SSL) Protocol

Using an Outbound Proxy Server or Proxy Plug-In

Using a Firewall or NonWebLogic Server Proxy Server

The following sections present a high-level discussion of these considerations and describe how
they affect your WebLogic Integration security configuration.

About Digital Certificates
Digital certificates are electronic documents used to identify principals and objects as unique
entities over networks such as the Internet. A digital certificate securely binds the identity of a
user or object, as verified by a trusted third party known as a certificate authority, to a particular
public key. The combination of the public key and the private key provides a unique identity for
the owner of the digital certificate.

When you set up a WebLogic Integration environment as the foundation of your interenterprise
commerce, using Trading Partner Integration capabilities, you need to obtain and configure a
specific set of digital certificates and keys. This set includes the following:

Server certificate—Required for SSL for the WebLogic Server instance on the local
machine.

Root Certificate Authority—Trusted third-party organization or company that is willing to
vouch for the identities of those to whom it issues digital certificates and public keys.
Verisign and Baltimore are examples of CAs.

Trading partner certificates—Required for each local and remote trading partner that is
involved in Trading Partner Integration collaborations. These certificates include the client
certificate; they may also include encryption and signature certificates, as well. They are
used for authentication, authorization, signature support, and message encryption.

Cons idera t i ons fo r Conf igur ing Secur i t y

Deploying WebLogic Integration Solutions 5-7

Digital Certificate Formats
Make sure that the formats and packaging standards of your digital certificates are compatible
with WebLogic Server. Digital certificates have various encoding schemes, including the
following:

Privacy Enhanced Mail (PEM)

Definite Encoding Rules (DER)

Public Key Cryptography Standards 7 and 12 (PKCS7 and PKCS12)

The public key infrastructure (PKI) in WebLogic Server recognizes digital certificates that
comply with either versions 1 and 3 of X.509, X.509v1 and X.509v3. We recommend obtaining
digital certificates from a certificate authority, such as Verisign or Entrust.

Note: If a trading partner in a conversation uses Microsoft IIS as a proxy server, all the
certificates used in the conversation must be trusted by a well-known Certificate
Authority, such as Verisign or Entrust. The use of self-signed certificates will cause a
request passed through the IIS proxy server to fail. This is a restriction in IIS, not
WebLogic Integration.

For more details, see “Transport-Level Security” in Trading Partner Integration Security in
Introducing Trading Partner Integration.

Using the Secure Sockets Layer (SSL) Protocol
The SSL protocol provides secure connections by supporting two functions:

It enables each of two applications linked through a network connection to authenticate the
other’s identity

It encrypts the data exchanged between the applications for each trading partner using SSL.

An SSL connection begins with a handshake during which the applications exchange digital
certificates, agree on the encryption algorithms to be used, and generate encryption keys that are
then used for the remainder of the session.

If you are using SSL for trading partner authentication and authorization, which we strongly
recommend for Trading Partner Integration collaborations, you need to configure the following:

SSL for each machine in your WebLogic Integration domain.

Set of digital certificates and private keys for each trading partner

Server certificate for each machine in the WebLogic Integration domain

http://edocs.bea.com/wli/docs81/tpintro/security.html

Using WebLog ic In tegrat i on Secur i t y

5-8 Deploying WebLogic Integration Solutions

Certificates of trusted Certificate Authorities (CA)

Not required by SSL, but strongly recommended, is the creation and use of identity and trust
keystores for storing all the certificates and keys used in your WebLogic Integration domain. For
more information about SSL, certificates, and keystores, see Configuring SSL in Managing
WebLogic Security.

Using an Outbound Proxy Server or Proxy Plug-In
This section discusses the implications of using either an outbound proxy server or the WebLogic
proxy plug-in.

Using an Outbound Proxy Server
A proxy server allows trading partners to communicate across intranets or the Internet without
compromising security. If you are using WebLogic Integration in a security-sensitive
environment, you may want to use WebLogic Integration behind a proxy server. Specifically, a
proxy server is used to:

Hide, from external hackers, the local network addresses of the WebLogic Server instances
that host WebLogic Integration

Restrict access to the external network

Monitor external network access to the local instances of WebLogic Server that host
WebLogic Integration

When proxy servers are configured on the local network, network traffic (sent with the SSL and
HTTP protocols) is tunneled through the proxy server to the external network.

If an outbound proxy server is used in your environment, be careful when specifying the transport
URI endpoints for the local trading partner. If you are using an HTTPS proxy, then you need to
specify the ssl.ProxyHost and ssl.ProxyPort Java system properties. For details, see
“Configuring Trading Partner Integration to Use an Outbound HTTP Proxy Server” in Trading
Partner Integration Security in Introducing Trading Partner Integration.

http://edocs.bea.com/wls/docs81/secmanage/ssl.html

http://edocs.bea.com/wli/docs81/tpintro/security.html

http://edocs.bea.com/wli/docs81/tpintro/security.html

Cons idera t i ons fo r Conf igur ing Secur i t y

Deploying WebLogic Integration Solutions 5-9

Using a Web Server with the WebLogic Proxy Plug-In
As an alternative to using an outbound proxy server, you may want to configure WebLogic
Integration with a Web server, such as an Apache server, that is programmed to handle business
messages from a remote trading partner. The Web server can provide the following services:

Receive business messages from a remote trading partner

Authenticate digital certificates from the trading partner

The Web server then uses the WebLogic proxy plug-in, which you can configure to provide the
following services:

Forwarding of business messages received by the Web server to WebLogic Integration,
which is running inside a secure internal network.

Extraction of the remote trading partner certificate from the Web server and delivery of it
to WebLogic Server for authentication. WebLogic Integration can then authenticate the
trading partner certificate and business message.

To configure the WebLogic proxy plug-in, consider the following:

Make sure you configure the proxy server with the WebLogic proxy plug-in to direct
requests to WebLogic Server.

Decide which protocol you want to use for the network connection between the proxy
server and the WebLogic Integration domain. The default protocol is HTTP. Configure the
proxy plug-in to use one-way SSL only if you prefer to use SSL.

When configuring the transport for remote trading partners, specify the remote URI
endpoint with the HTTPS protocol, even though the HTTP protocol is used in the network
connection between the WebLogic proxy plug-in and the WebLogic Integration domain.

When relaying a business message from one trading partner to another, some proxy servers
include only the leaf certificate, instead of the entire CA certificate chain. In such
instances, trading partner authentication may fail. To prevent such failures, we recommend
you specify the leaf certificate as the trusted CA certificate. (For more information about
leaf certificates, see “Certificate Authorities” in Trading Partner Integration Security in
Introducing Trading Partner Integration.)

If the local trading partner site uses a Web server configured with a WebLogic proxy
plug-in, then you can specify the trading partner transport URI endpoints in the usual
manner.

http://edocs.bea.com/wli/docs81/tpintro/security.html

Using WebLog ic In tegrat i on Secur i t y

5-10 Deploying WebLogic Integration Solutions

If the remote trading partner is also using WebLogic Integration, but is using a proxy
server other than the WebLogic proxy server, then it is likely that the remote site is
configured with the WebLogic proxy plug-in. When you are configuring a remote trading
partner under these circumstances, you must specify the host and port of the trading
partner’s proxy server as the transport URI endpoints. The WebLogic proxy plug-in
performs the necessary URL transformations to business messages received for that remote
trading partner.

Using a Firewall
If your WebLogic Integration environment is configured with a firewall, make sure your firewall
is configured properly so that business messages can flow freely to and from local trading
partners via the HTTP or HTTPS protocols.

Setting Up a Secure Deployment
The following sections provide instructions for the tasks you must complete to set up a secure
deployment:

“Step 1: Create the Domain” on page 5-10

“Step 2: Configure WebLogic Server Security” on page 5-11

“Step 3: Configure Application Integration Security” on page 5-12

“Step 4: Configure Web Application and Web Service Security-Related Deployment
Descriptors” on page 5-12

“Step 5: Configure Security Policies and Manage Users” on page 5-13

“Step 6: Configure Worklist Security” on page 5-19

“Step 7: Configure Trading Partner Integration Security” on page 5-19

Step 1: Create the Domain
Create the WebLogic Integration domain using the BEA Configuration Wizard, as described in
“Creating a New WebLogic Domain” in Creating WebLogic Configurations Using the
Configuration Wizard.

Note: Make sure you use a Basic WebLogic Integration Domain template when creating the
new domain. We recommend that you configure your domain with SSL enabled.

http://edocs.bea.com/platform/docs81/confgwiz/newdom.html
http://edocs.bea.com/platform/docs81/confgwiz/newdom.html

Set t ing Up a Secure Dep loyment

Deploying WebLogic Integration Solutions 5-11

The WebLogic Server Administration Console enables you to make additional customizations to
your WebLogic Integration domain and default security realm. For information about
customizing security features using the WebLogic Server Administration Console, see
“Customizing the Default Security Configuration” in Managing WebLogic Security.

Step 2: Configure WebLogic Server Security
When configuring WebLogic Server security, be sure to do the following:

1. Obtain the server certificates for the local and remote trading partners. For SSL, server
certificates are required for each instance of WebLogic Server involved in a trading partner
request.

2. Consider the following questions:

– Does the common name of the certificate match the host name of the machine on which
the corresponding instance of WebLogic Server is running?

If the two names are not the same, then the local WebLogic Server instance must be
configured with hostname verification disabled. This requirement applies to the server
certificate for any trading partner in any B2B collaboration/Trading Partner Integration.
You can disable hostname verification in the WebLogic Server Administration Console
by checking the Hostname Verification Ignored attribute on the SSL tab for the Server
node.

Note: We do not recommend configurations that require you to disable hostname
verification. Hostname verification prevents some types of security attacks.

– Are the formats of the server certificate and private key for a remote trading partner
supported by WebLogic Server?

“About Digital Certificates” on page 5-6 lists the supported certificate formats. For
server certificates, PEM encoded X.509 V1 or V3 is the most commonly accepted
format by SSL servers.

For private keys, PKCS8, which is the password-encrypted private key, is the most
common format. Be sure to set the private key password so that WebLogic Server can
read the private key.

– What is the CA certificate chain for the WebLogic Server server certificate?

A certificate chain is an array of digital certificates for trusted CAs, each of which is
the issuer of the previous digital certificate.

You may specify one file containing all the intermediate and root CA certificates. (Note
that if the file contains more than one CA certificate, WebLogic Server requires a PEM

http://edocs.bea.com/wls/docs81/secmanage/realm.html

Using WebLog ic In tegrat i on Secur i t y

5-12 Deploying WebLogic Integration Solutions

encoded file.) If you use the trust keystore to store trusted CA certificates, be sure to
import the whole chain in to the trust keystore.

3. Configure the WebLogic identity and trust keystores. For information on creating and
configuring keystores, see Configuring SSL in Managing WebLogic Security.

Note: Note the following considerations for using keystores:

One caveat to using a keystore is that once you import a key and certificate with an
alias into a keystore, overwriting that certificate file with a new certificate does not
import of the new certificate into the keystore.

Make sure that your keystore is up-to-date with your current set of certificates and
keys, and make sure that the WebLogic Integration repository reflects the relevant
content of your keystore.

Step 3: Configure Application Integration Security
WebLogic Integration provides the following security mechanisms for those parts of an
integration solution that are created and maintained with application integration functionality:

To connect to an Enterprise Information System (EIS), an application might need to
provide certain credentials, such as a login name and password.

For more information, see “Scenario 1: Connecting Using Specific Credentials” in Using
Application Views by Writing Custom Code in Using the Application Integration Design
Console.

When deploying an application view, you can configure security settings to grant or revoke
read and write access to the application view by a WebLogic Server user or group.

For more information, see “Steps for Defining an Application View” in Defining an
Application View in Using the Application Integration Design Console.

Step 4: Configure Web Application and Web Service
Security-Related Deployment Descriptors
Using WebLogic Workshop, a developer can edit web application settings and web service
security-related deployment descriptors in the following three XML files before building and
packaging the EAR file that contains your WebLogic Integration application:

web.xml

weblogic.xml

http://edocs.bea.com/wls/docs81/secmanage/ssl.html

http://edocs.bea.com/wli/docs81/aiuser/4usrcust.html

http://edocs.bea.com/wli/docs81/aiuser/4usrcust.html

http://edocs.bea.com/wli/docs81/aiuser/2usrdef.html

http://edocs.bea.com/wli/docs81/aiuser/2usrdef.html

Set t ing Up a Secure Dep loyment

Deploying WebLogic Integration Solutions 5-13

wlw-config.xml

A system administrator at deployment time may have more information regarding the production
environment and security requirements. Under these circumstances, you can reconfigure the web
application settings and web service security-related deployment descriptors in your EAR file as
necessary by performing the following procedure.

Note: A developer typically adds any ServiceBrokerControl, ProcessControl or callback
selector annotations that are necessary for security to jcx or jpd files before packaging the
EAR for deployment. However, these annotations can also be added or changed during
this procedure.

1. Explode the EAR file that contains your WebLogic Integration application, and verify the
configuration of the following items:

In web.xml and weblogic.xml, security-related deployment descriptors for web
applications that contain JPDs should be set to appropriate user credentials, method of
authentication, and location of resources.

For information about these deployment descriptors, see the following:

– “Web Application Security-Related Deployment Descriptors” in Securing Web
Applications in Programming WebLogic Security

– “Defining a Protected Web Resource” in Security in the WebLogic Workshop Online
Help.

In wlw-config.xml, the web service exposure protocol should be set to HTTPS.

For information about configuring security options in wlw-config.xml, see
“wlw-config.xml Configuration Files” in WebLogic Workshop Reference in the WebLogic
Workshop Online Help.

2. Repackage the EAR, and deploy it to the production WebLogic Integration domain.

For information about packaging and deploying EAR files, see “Deploying an Application to a
Production Server” in Deploying Applications in the WebLogic Workshop Online Help.

Step 5: Configure Security Policies and Manage Users
Once the WebLogic Integration application has been deployed on your production hardware, you
can use the WebLogic Integration Administration Console to configure security policies and
manage users.

http://edocs.bea.com/workshop/docs81/doc/en/workshop/reference/configfiles/con_wlw-config_xml_ConfigurationFile.html
http://edocs.bea.com/workshop/docs81/doc/en/core/index.html
http://edocs.bea.com/wls/docs81/security/thinclient.html
http://edocs.bea.com/wls/docs81/security/thinclient.html
http://edocs.bea.com/workshop/docs81/doc/en/core/index.html

Using WebLog ic In tegrat i on Secur i t y

5-14 Deploying WebLogic Integration Solutions

For the procedure to start the WebLogic Server Administration Console see “Starting the
Administration Console” in Introducing the WebLogic Integration Administration Console in
Managing WebLogic Integration Solutions.

The following sections provide instructions for the tasks you must complete to configure security
policies and manage users:

“Configuring Security Policies for Business Processes” on page 5-14

“Configuring Security Policies for Message Broker Channels” on page 5-15

“Configuring Security Policies for Application Views” on page 5-16

“Configuring Security Policies for Adapter Instances” on page 5-17

“Managing Production Users” on page 5-18

Configuring Security Policies for Business Processes
1. On the home page of the WebLogic Integration Administration Console, click Process

Configuration.

The Process Property Summary page lists every business process in the WebLogic
Integration application.

2. Click the display name of a process to access the Process Type Details page.

From the Process Type Details page, you can configure the following security settings for
the business process:

– Dynamic Client Callback Properties

– Execution Policy

– Process Authorization Policy

– Method Authorization Policy

– Control Callback Authorization Policy

For descriptions of these settings and the procedures to configure them, see “Viewing and
Changing Process Details” in Processes Configuration in Managing WebLogic Integration
Solutions.

3. Click View Process Summary to return to the Process Property Summary page, and repeat
step 2 for each business process.

4. After configuring each business process, click View Dynamic Controls.

http://edocs.bea.com/wli/docs81/manage/intro.html

http://edocs.bea.com/wli/docs81/manage/processconfig.html

Set t ing Up a Secure Dep loyment

Deploying WebLogic Integration Solutions 5-15

The View Dynamic Controls Summary page lists every dynamic control in the WebLogic
Integration application.

5. Select the Edit link to the right of a selector value to display the Edit Service Broker
Control Selector or Edit Process Control Selector page, depending on the type of the
control.

On these pages, you can configure the client certificate or username/password settings used
in outbound calls by the selected service broker or process control. For descriptions of
these settings and the procedures to configure them, see “Adding or Changing Dynamic
Control Selectors” in Processes Configuration in Managing WebLogic Integration
Solutions.

6. Click View Dynamic Controls to return to the View Dynamic Controls Summary page, and
repeat step 5 for each dynamic control.

7. After configuring the security settings for each business process and dynamic control, click

 in the module navigation bar to return to the home page.

Configuring Security Policies for Message Broker Channels
1. On the home page of the WebLogic Integration Administration Console, click Message

Broker.

The Channel Summary List page displays every channel in the Message Broker.

2. Click a channel name to access the View Channel Details page, and then click Edit Security
Details.

On the Edit Channel Subscribe and Publish Policies page, you can configure the following
security settings for the channel:

– Publish Roles

– Subscribe Roles

– Dispatch As (the user under which messages are sent to subscribers)

For descriptions of these settings and the procedures to configure them, see “Viewing and
Changing Process Details” in Processes Configuration in Managing WebLogic Integration
Solutions.

3. Click View All to return to the Channel Summary List page, and repeat step 2 for each
channel.

http://edocs.bea.com/wli/docs81/manage/processconfig.html

http://edocs.bea.com/wli/docs81/manage/processconfig.html

Using WebLog ic In tegrat i on Secur i t y

5-16 Deploying WebLogic Integration Solutions

4. After configuring the security settings for each channel, click in the module
navigation bar to return to the home page.

Configuring Security Policies for Application Views
1. On the home page of the WebLogic Integration Administration Console, click Application

Integration, and then choose the Application Views tab to list the AppViewID for each
application view in the WebLogic Integration application.

2. Click an AppViewID to access the Application View Details page.

From the Application View Details page, you can configure the following security settings:

– Roles authorized to execute services and subscribe for events for the application view.

For the procedure to configure these security policies, see “Updating Security Policies”
in Application Integration in Managing WebLogic Integration Solutions.

– Container-managed sign-on.

Enabling container-managed sign-on for an Application View allows Application Views
to utilize any principal map that has been configured for the service connection. If
container-managed sign-on is enabled for an Application View and the service
connection it uses has been configured with a principal map, then at runtime the
services invoked on the Application View will execute within the EIS instance with the
identity of the EIS principal that maps to the WebLogic Server principal in effect when
the service was invoked. If container-managed sign-on is disabled or no principal map
exists on the service connection, then the authentication properties in the service
connection itself (if any) are used to connect to the EIS instance

For the procedure to configure this setting, see “Changing Application View
Container-Managed Sign-On Settings” in Application Integration in Managing
WebLogic Integration Solutions

3. Click View All to return to the Application View Summary page, and repeat step 2 for each
application view.

4. After configuring the security settings for each application view, click in the
module navigation bar to return to the home page.

http://edocs.bea.com/wli/docs81/manage/ai.html

http://edocs.bea.com/wli/docs81/manage/ai.html

Set t ing Up a Secure Dep loyment

Deploying WebLogic Integration Solutions 5-17

Configuring Security Policies for Adapter Instances
1. On the home page of the WebLogic Integration Administration Console, click Application

Integration, and then choose the Adapter Instances tab.

The Adapter Instance Summary page lists the ID for each adapter instance in the
WebLogic Integration application.

2. Click an ID to access the Adapter Instance Details page, and then click Select Service
Connection to display the Adapter Instance Service Connection page.

The Adapter Instance Service Connection page lists the name of each service connection
for the adapter instance.

3. Click the name of a service connection to access the Adapter Instance Service Connection
Details page.

From the Adapter Instance Service Connection Details page, you can configure the
following security settings:

– Roles authorized to obtain service connections from the connection factory

For the procedure to configure these security policies, see “Updating Security Policies”
in Application Integration in Managing WebLogic Integration Solutions.

– WebLogic Server to EIS principal mappings

For the procedure to configure this map, see “Viewing and Changing WebLogic Server
to EIS Principal Mappings” in Application Integration in Managing WebLogic
Integration Solutions.

4. Repeat step 3 for each service connection.

5. After configuring the security settings for each service connection, click View All to return
to the Adapter Instance Summary page, and repeat steps 2, 3, and 4 for each adapter
instance.

6. After configuring the security settings for each channel, click in the module
navigation bar to return to the home page.

http://edocs.bea.com/wli/docs81/manage/ai.html

http://edocs.bea.com/wli/docs81/manage/ai.html

Using WebLog ic In tegrat i on Secur i t y

5-18 Deploying WebLogic Integration Solutions

Managing Production Users
1. On the home page of the WebLogic Integration Administration Console, click User

Management.

The View and Edit Users page displays a list of all users within WebLogic Integration.
From this page you can create new users, delete users, or access details—including group
membership—for a selected user.

For information about managing users, see the following topics in User Management in
Managing WebLogic Integration Solutions:

– “Adding a User”

– “Viewing and Changing User Properties”

2. Choose the Groups tab.

The View and Edit Groups page displays a list of all groups within WebLogic Integration.
From this page you can create new groups, delete groups, or access details—including
group membership—for a selected group.

For information about managing groups, see the following topics in User Management in
Managing WebLogic Integration Solutions:

– “Adding a Group”

– “Viewing and Changing Group Properties”

3. Choose the Roles tab.

The View and Edit Roles page displays a list of all roles within WebLogic Integration.
From this page you can create new roles, delete roles, or access details—including role
conditions—for a selected role.

For information about managing roles, see the following topics in User Management in
Managing WebLogic Integration Solutions:

– “Adding a Role”

– “Viewing and Setting Role Conditions”

http://edocs.bea.com/wli/docs81/manage/users.html

http://edocs.bea.com/wli/docs81/manage/users.html

http://edocs.bea.com/wli/docs81/manage/users.html

Set t ing Up a Secure Dep loyment

Deploying WebLogic Integration Solutions 5-19

Step 6: Configure Worklist Security
WebLogic Integration domains includes the following default WebLogic Integration groups and
roles that have access to worklist functionality:

IntegrationUser—All users performing worklist tasks must be assigned to the
IntegrationUser role. Users automatically inherit the IntegrationUser role through their
default membership in the IntegrationUsers group.

TaskCreationRole—Users and groups creating worklist tasks must be manually assigned to
the TaskCreationRole.

The process of configuring worklist security is basically one of assigning users to groups, groups
to roles, and ensuring that those roles have appropriate permission levels by defining policies.
(For information on how to make these assignments, see “Managing Production Users” on
page 5-18.) Once you have configured worklist security, you can manage owners for tasks in a
worklist.

The WebLogic Integration Administration Console provides tools that allow you to manage
users, groups, roles, and policies, along with worklist task ownership. For more information about
configuring worklist security, see User Management and Worklist Administration in Managing
WebLogic Integration Solutions.

Step 7: Configure Trading Partner Integration Security
WebLogic Integration solutions that involve the exchange of messages between trading partners
across firewalls have special security requirements, including trading partner authentication and
authorization, as well as nonrepudiation.

To configure Trading Partner Integration security, you must perform the following tasks:

Obtain the certificates and keys required for conducting Trading Partner Integration
collaborations. Required certificates include those for the trusted CAs, as well as the
trading partner certificates and keys mentioned earlier, and the server certificate and key
for each instance of WebLogic Server used in your environment.

Configure keystores to store certificates and private keys used in a WebLogic Integration
environment.

Configure local trading partners.

Configure remote trading partners.

http://edocs.bea.com/wli/docs81/manage/worklist.html

http://edocs.bea.com/wli/docs81/manage/users.html

Using WebLog ic In tegrat i on Secur i t y

5-20 Deploying WebLogic Integration Solutions

Configure security for the business protocols used including transport level security and
message level security.

Implement the security requirements for the business protocols used.

For detailed information and procedures regarding configuration of Trading Partner Integration,
see Trading Partner Integration Security in Introducing Trading Partner Integration.

http://edocs.bea.com/wli/docs81/tpintro/security.html

Deploying WebLogic Integration Solutions A-1

A P P E N D I X A

Deploying Resource Adapters

This section describes how to deploy resource adapters after you start the servers in your cluster.
For information about how to set up and start your clustered deployment, and which adapters are
deployed by default in your WebLogic Integration domains, see Chapter 3, “Configuring a
Clustered Deployment.”

After you start the servers in your cluster, you can deploy resource adapters by using one of the
following methods:

Using the weblogic.Deployer Command-Line Utility

Using the WebLogic Server Administration Console

Using the weblogic.Deployer Command-Line Utility
The weblogic.Deployer utility is a Java-based deployment tool that provides a command-line
interface to the WebLogic Server deployment API. For information, see “weblogic.Deployer
Utility” in Deployment Tools Reference in Deploying WebLogic Server Applications.

Deploying the Sample DBMS Adapter
The following example demonstrates how to deploy the sample DBMS adapter, which you
received with your WebLogic Integration software, into a cluster named MyCluster. The cluster
contains two managed servers: MyServer1 and MyServer2. The following table describes the
cluster configuration.

http://edocs.bea.com/wls/docs81/deployment/tools.html

Dep loy ing Resource Adapter s

A-2 Deploying WebLogic Integration Solutions

Use the following command to deploy the DBMS adapter in this example cluster.

Note: The following code listing represents a single command. It is shown here on multiple
lines for the sake of readability. On your command line, however, it must be entered as
one physical line.

Listing A-1 weblogic.Deployer Command Line to Deploy the DBMS Adapter

java -classpath WL_HOME\lib\weblogic.jar weblogic.Deployer

-adminurl t3://127.0.0.5:7005 -user username -password password

-upload -stage

-source WL_HOME\adapters\dbms\lib\BEA_WLS_DBMS_ADK.ear

-name BEA_WLS_DBMS_ADK

-targets BEA_WLS_DBMS_ADK.rar@MyCluster

-activate

In the preceding command line:

-adminurl—Specifies the URL for the administration server in the cluster.

-user—Specifies the username used for authentication by the administration server.

-password—Specifies the username used for authentication by the administration server.

-upload—Uploads the EAR file to the administration server. You can omit this option
when you run the weblogic.Deployer utility on the administration server. However, it is
required when you are not running the weblogic.Deployer utility on the administration
server.

Server Name Server Type Listen Address:Port

MyAdmin Administration Server 127.0.0.5:7005

MyServer1 Managed Server 127.0.0.1:7001

MyServer2 Managed Server 127.0.0.1:7002

Us ing the WebLog ic Se rve r Admini st ra t ion Console

Deploying WebLogic Integration Solutions A-3

-stage—Instructs the WebLogic Server deployment facility to stage the EAR file to all
managed servers prior to activation.

-source—Specifies the location of the EAR file for the resource adapter. (WL_HOME
represents the directory in which you installed WebLogic Integration, for example
C:\bea\weblogic81\integration.)

-name—Specifies the name of the enterprise application for the resource adapter, which
should be the same as the logical name for the adapter. This is a unique identifier for a
resource adapter.

-targets—Specifies the subcomponents contained in the previously specified EAR file
for the adapter.

This is a comma-separated list of subcomponents. (There are no spaces between the items
in the list.) This sample command specifies that the RAR is deployed to the cluster.

Note: The RAR component from the EAR—not the design-time Web application—is the
target for deployment.

For details about valid target components, see “Clusterable Resources” on page 2-4.

-activate—Activates the application in the domain.

Using the WebLogic Server Administration Console
1. Start the WebLogic Server Administration Console.

For the procedure to start the WebLogic Server Administration Console (and the
administration server, if necessary), see “Starting the Administration Console” in Overview
of WebLogic Server System Administration in Configuring and Managing WebLogic
Server.

2. In the WebLogic Server Administration Console navigation tree, select
(Domain_Name→Deployments→Applications) the Applications node in the domain in
which you want to deploy an adapter.

3. Click Configure a New Application.

The WebLogic Server wizard is displayed in the main console window. It guides you
through the process of configuring and deploying your adapter.

http://edocs.bea.com/wls/docs81/adminguide/overview.html
http://edocs.bea.com/wls/docs81/adminguide/overview.html

Dep loy ing Resource Adapter s

A-4 Deploying WebLogic Integration Solutions

4. Locate the EAR, WAR, JAR, or RAR file you would like to configure for use with
WebLogic Server. For example, to deploy the sample DBMS adapter, which you received
with your WebLogic Integration software, select the BEA_WLS_DBMS_ADK.ear file in the
following directory:

 WL_HOME\adapters\dbms\lib\BEA_WLS_DBMS_ADK.ear

In the preceding line, WL_HOME represents the directory in which you installed WebLogic
Integration, for example, C:\bea\weblogic81\integration.

Note: When you configure an exploded application or component directory, WebLogic
Server deploys all components it finds in and below the specified directory.

5. Complete the configuration and deployment by responding to the prompts in the wizard.
For example, you must specify the targets and the staging mode. For more information, see
the -targets and -stage options in “Using the weblogic.Deployer Command-Line
Utility” on page A-1.

For information about using the WebLogic Server Administration Console to deploy
applications, see “Configuring and Deploying a New Enterprise Application or Web Service” in
Applications in the WebLogic Server Adminstration Console Online Help.

http://edocs.bea.com/wls/docs81/ConsoleHelp/applications.html

Deploying WebLogic Integration Solutions B-1

A P P E N D I X B

Administering Environment-Specific
Application Integration Information

This section describes how to use the aiConfigurator utility to modify environment-specific
information for application view, adapter, and connection factory descriptors.

aiConfigurator Utility and Examples
Application views, by using environment variables, can have environment-specific information
parameterized and isolated from business-oriented information. With this parameterization
comes the need to modify the parameter values to reflect the needs of new environments. Adapter
instances and connection factories can also include environment-specific information.

The aiConfigurator utility (based on java class
com.bea.wlai.management.util.Configurator) allows an administrator to modify
environment-specific information across application view, adapter, and connection factory
descriptors. This allows an administrator to preconfigure application integration resources to
deploy correctly in a new target environment. Further tuning of these resources can then be
performed using the WebLogic Integration Administration Console. The aiConfigurator
utility is located in:

WL_HOME/integration/bin/aiConfigurator.cmd (or .sh)

This utility updates the WebLogic Integration configuration persistent store, and optionally
publishes application view EJB contents, to reflect the needs of the new environment. At runtime,
the newly tailored information is fetched from the persistent store and applied to the in-memory
state of the application view, adapter instance, or connection factory.

“Switching Database Type/Instance for DBMS Sample Adapter” on page B-5 provides an
example of the use of the aiConfigurator utility, and shows how to change database

Admin ist er ing Env i ronment -Spec i f i c Appl ica t ion In teg ra t i on In format ion

B-2 Deploying WebLogic Integration Solutions

types/instances when using the DBMS sample adapter. For more information on the DBMS
sample adapters, see Developing Adapters.

aiConfigurator Usage
The aiConfigurator utility is ordinarily used to override application view environment
variables, and adapter or connection factory settings at runtime, leaving the original descriptors
intact. This utility also allows for the default values of application view environment variables to
be replaced with the values specified, and adapter instance or connection factory settings to be
persisted into the original descriptors. The latter capability is useful for samples that the
administrator expects users to edit later.

The usage of the aiConfigurator utility is as follows:

aiConfigurator -appName app_name -appFile app_file

-domainRootDir domain_root_dir [-updateDesignTime]

Plus one of the following groups of arguments:

[-configAppView

-appViewName app_view_name

[-dump |

< -vars vars|properties_file

-var name=value

-eventAdapterName qualified_name

-serviceAdapterName qualified_name

-serviceFactoryName name

-autoSuspendEnabled true|false

-autoSuspendTimeout integer_seconds

-suspendedRequestRetryInterval integer_seconds

-suspendedEventRetryInterval integer_seconds

>

]

]

[-configAdapter

-appViewName app_view_name

-adapterName adapter_instance_name

[-dump |

< -props props|properties_file

aiConf igurato r U t i l i t y and Examples

Deploying WebLogic Integration Solutions B-3

-prop name=value

-inboundMessagingTargets comma-separated_server_names

-autoSuspendEnabled true|false

-autoSuspendTimeout integer_seconds

>

]

]

[-configFactory

-appViewName app_view_name

-adapterName adapter_instance_name

-factoryName connection_factory_name

[-dump |

< -props props|properties_file

-prop name=value

-minPoolSize integer

-maxPoolSize integer

>

]

]

where:

appName is the name of the application to configure

appFile is the directory or EAR archive containing the application

domainRootDir is the root directory of the domain the application is to be deployed into

updateDesignTime is used to force the changed values back into the design-time artifacts
and the WebLogic Integration persistent configuration store. If this argument is not used,
all changes are saved adjacent to the unchanged design-time artifacts in the WebLogic
Integration persistent configuration store. For application views, the only changes that are
persisted back to the design-time descriptor are variable values. All other settings are
persisted only to the WebLogic Integration persistent configuration store.

vars and props are in form name=value

Admin ist er ing Env i ronment -Spec i f i c Appl ica t ion In teg ra t i on In format ion

B-4 Deploying WebLogic Integration Solutions

For application views, you can update the following types of information:

Note: The only application view information that can be updated for the design-time descriptor
using the -updateDesignTime argument are the environment variables.

Environment variables—Supply name and value pairs with -var arguments or as a
properties file given with a -vars argument.

Event adapter—Supply the event adapter name with the -eventAdapterName argument.

Note: Use this option with caution. The name you specify should be fully qualified and must
represent an adapter instance you know will already be deployed in the integration
server (for example, if another application view uses the adapter instance, and you
have guaranteed the other application view will deploy before the current application
view based on DeploymentOrder and other settings).

Service adapter—Supply the service adapter name with the -serviceAdapterName
argument.

Note: Use this option with caution. The name you specify should be fully qualified and must
represent an adapter instance you know will already be deployed in the integration
server (for example, if another application view uses the adapter instance, and you
have guaranteed the other application view will deploy before the current application
view based on DeploymentOrder and other settings).

Service connection factory—Supply the connection factory name with the
-serviceFactoryName argument.

Note: The name you give must be the name of a connection factory within the adapter
instance used for services on this application view (-serviceAdapterName
argument).

Enable or disable the auto suspend feature—You can enable or disable the auto-suspend
feature by setting the -autoSuspendEnabled argument to true or false.

Auto suspend timeout—Supply the number of seconds for the auto-suspend timeout using
the -autoSuspendTimeout argument.

Suspended request retry interval—Supply the suspended request retry interval (in seconds)
with the -suspendedRequestRetryInterval argument.

Suspended event retry interval—Supply the suspended event retry interval (in seconds)
with the -suspendedEventRetryInterval argument.

Note: Currently, the suspended event retry interval value is not used by the
aiConfigurator utility, and the AppViewDeploymentMBean does not define a

aiConf igurato r U t i l i t y and Examples

Deploying WebLogic Integration Solutions B-5

setSuspendedEventRetryInterval() method. The suspended request retry
interval value is used for both asynchronous service request and event retry intervals.

For adapter instances you can update the following information:

Note: The only adapter instance information that can be updated for the design-time descriptor
using the -updateDesignTime argument are the event generation properties.

Event generation properties—Supply name and value pairs or a properties file with a
-props argument.

Inbound messaging target—Supply a comma-separated list of machines to which inbound
messaging is targeted using the –inboundMessagingTargets argument.

Enable or disable the auto suspend feature—You can enable or disable the auto-suspend
feature by setting the -autoSuspendEnabled argument to true or false.

Auto suspend timeout—Supply the number of seconds for the auto-suspend timeout using
the -autoSuspendTimeout argument.

For connection factories you can update the following information:

Note: The only connection factory information that can be updated for the design-time
descriptor using the -updateDesignTime argument are the service invocation
properties.

Service invocation properties—Supply name and value pairs or a properties file with
-prop arguments.

Pool size—Supply the minimum and maximum pool size for connections with the
-minPoolSize and -maxPoolSize arguments.

You can determine the current settings for each application integration artifact type by passing
the -dump argument after the –config* argument. This is useful if the environment-specific
configuration occurs in steps, or changes over time.

Switching Database Type/Instance for DBMS Sample Adapter
As an example of how to use the aiConfigurator utility, this section discusses the WebLogic
Integration sample application and how to configure the samples in this application to execute on
an Oracle database as opposed to the PointBase database.

In order to configure the samples, run the aiConfigurator utility against each application
integration artifact that needs to be reconfigured. The current
sampleApp/ApplicationIntegration directory contains two application views

Admin ist er ing Env i ronment -Spec i f i c Appl ica t ion In teg ra t i on In format ion

B-6 Deploying WebLogic Integration Solutions

(FunctionDemo.CustomerMgmt and InsertBasedEvents). These application views each use
a single adapter instance, and a single connection factory within this adapter instance. The
aiConfigurator utility is run against each of these artifacts in turn.

For each application view, update its variable set to reflect the new Oracle environment. For the
DBMS sample adapter, this means setting the catalog and schema qualifiers for the tables that are
used in events and services.

For the application integration samples, we’ve defined three variables:

myCatalog—The catalog containing the schema that contains the CUSTOMER_TABLE
used for the insert and update events in CustomerMgmt and InsertBasedEvents,
respectively.

mySchema—The schema containing the CUSTOMER_TABLE.

myTableQualifiers—A variable combining catalog and schema to form a prefix for
table names in SQL queries.

For the adapter instances, the event generation properties need to be updated to reflect the correct
catalog and schema for the event staging tables.

For the connection factories, the DB type, JDBC driver URL, and other properties specific to the
original PointBase environment need to be updated. These properties are changed using the
switchDB script for your platform. This script uses the -updateDesignTime argument of the
aiConfigurator utility to force updates back into the design-time artifacts, thus allowing edits
of these artifacts from within the Oracle design-time environment.

In summary, to switch databases used by the application integration samples and the samples
domain, do the following:

1. Change the JDBCConnectionPool elements in the domain’s config.xml file to point to the
Oracle instance. This involves specifying the JDBC driver class name and JDBC URL, and
setting the pool properties user/password for the new database instance. See your WebLogic
Server documentation for details.

2. Run the switchDb script specific to your operating system within the
WL_HOME/samples/integration/sampleApp/ApplicationIntegration directory.
This updates the application view, adapter, and connection factory descriptors contained in
the sampleApp to reflect the new database type/instance. Note that usage for the switchDb
utility is:

Usage: switchDb (db_type) (db_server) (db_name) (db_user) (db_password)

Deploying WebLogic Integration Solutions Index-1

Index

A
adapter instances

resuming operation of 4-8
security 5-17
suspending 4-8

AdapterDeploymentMBean 4-8
adapters

components 2-18
configuring A-1
deploying 2-18, A-1

administration server
configuring 3-6
deployment 2-10
resources targeted to 2-5

administrator username 3-8
aiConfigurator

about B-1
usage B-2

Application Integration
and custom client 1-19
and WebLogic Integration Process Client

1-20
configuring with aiConfigurator B-1
events 1-21
failure and recovery 4-6
load balancing 2-12
security 5-12
synchronous service invocations 1-19
WebAppComponent A-1
WLI AI RAR Upload 2-5
wli.internal.ai.async.request 1-20, 1-21, 2-8,

2-9
wli.internal.ai.async.response 2-8, 2-9

wli.internal.ai.event 2-9
wli.internal.ai.event_suspend 2-8, 2-9
wlia.war 2-6
WLI-AI Manager EJBs 2-6
See also adapters

Application Views
and WebLogic Workshop Web service 1-20
configuring B-1
resuming operation of 4-8
retargeting 4-9
security 5-5, 5-16
suspending 4-8

AsyncServiceProcessor 1-21
audience xii
AutoSuspend option 4-8

B
b2b.war 1-17
B2BDefaultWebAppApplication 2-5, 2-8
b2b-ebxml.jar 2-7
b2b-rosettanet.jar 2-7
b2b-startup.jar 2-5, 2-7
bpmArchDataSource 2-8, 3-7
bpmArchPool 2-8
business processes

application structure 1-7
load balancing 2-12
security 5-19
web application 1-8

C
CacheFullExceptions 1-5

Index-2 Deploying WebLogic Integration Solutions

caching 1-13
certificates

about 5-6
for certificate authority 5-6
format 5-7
server 5-6
trading partner client 5-6

cgDataSource 1-13, 2-8, 3-7
cgJMSServer 2-8
cgPool 1-13, 2-8
cgQueue 2-7, 3-7
client

custom 1-19
WebLogic Integration process 1-20

clusters
about clusters 1-4, 2-1
configuration tasks 3-1
designing 2-2
domains in 2-2, 2-3
machines in 3-6
prerequisites for configuring 3-2
resources targeted to 2-6
retargeting events in 4-7
retargeting services in 4-6
security 3-10
simplified view of 4-3
targeting applications and services to 3-8

com.bea.wli.b2b.server.Shutdown 2-7
com.bea.wli.init.BPMShutdown 2-7
com.bea.wli.init.BPMStartup 2-7
com.bea.wli.init.BPMStartupAfterActivation
2-7
Common Client Interface (CCI) request 1-19
config.xml 3-4, 3-8
configuration

administrative username and password 3-8
aiConfigurator B-1
application integration 5-12
application integration in clusters 2-12
business process security 5-19
clusters 3-1

JMS 3-7
JMS for high availability 3-9
of administration server 3-6
of Java SDK 3-8
of JDBC 3-6
of JRockit SDK 3-8
of machines in cluster 3-6
of Trading Partner Integration 2-10
security 3-10
server start mode 3-8
WebLogic Server security 5-11

Configuration Wizard 3-4, 3-5
connection factories 3-7
connection pools 1-6, 3-6
controlled failover 4-9
conventions, documentation xiv
credential stores

Keystore 5-3
PasswordStore 5-2

customer support xiii

D
data sources 3-7
database administrators 1-3
database tables 3-8
DBMS adapter 2-8, 2-18, 3-7, A-1
DbmsEventRouter 2-18, A-1
definite encoding rules format 5-7
deployment

and administration server 2-11
concurrency-strategy setting 3-4
containers 2-4
EAR file 3-10
goals 1-1
order 2-3
resources

Application Integration 1-18
databases 1-23
deployment containers 2-4
event generator 1-12

Deploying WebLogic Integration Solutions Index-3

hardware 1-23
Message Broker 1-10
network 1-23
operating system 1-23
overview 1-3
process application 1-7
process control 1-9
resource groups 2-3
Trading Partner Integration 1-13
WebLogic Server 1-4

specialists 1-2
tasks 1-2, 3-1
two phase 2-3
two-phase 2-11

DER 5-7
destination keys 3-7
dispatcher

asynchronous
and stateful process 1-9
and stateless process 1-9
and Trading Partner Integration 1-18
process control as 1-10

in-memory table 1-10
synchronous

process control as 1-10
distributed destinations 2-9
Document Store 1-17
documentation

conventions xiv
overview documents xi
printing xiii

domains
adding managed server to 3-12
clustered servers in 2-3
clustering in 2-3
Configuration Wizard, using the 3-4
creating 2-2, 3-1, 3-4, 5-10
creating using Configuration Wizard 3-5
management and security 2-3
naming 3-8
shutting down servers in 3-12

starting servers in 3-10, 3-11
template 3-5
updating 3-12
WebLogic Integration 2-2

E
EAR file

contents 1-7
deploying 3-10

ebXML
action mode 4-6
Delivery Semantics 4-6
high availability 4-6
outbound JMS queue 2-9
supported versions 1-13
WLI-B2B ebXML 2-7

EIS
changing an instance 3-14
event processing 1-22

EJBs
AsyncServiceProcessor 1-21
cache 1-5
parameters

initial-beans-in-pool 1-14
max-beans-in-free-cache 1-5
max-beans-in-free-pool 1-5

pools 1-5, 1-7
WLI Admin 2-6
WLI Admin Helper 2-6
WLI Process Tracking 2-6
WLI Worklist Persistence 2-6
WLI Worklist Selection 2-6
WLI-AI Manager 2-6
WLI-B2B ebXML 1-15
WLI-B2B RosettaNet 1-15, 2-7
WLI-B2B Startup 1-14, 2-7

event generator Web application 2-18, A-1
event generators

email 1-12
file 1-12

Index-4 Deploying WebLogic Integration Solutions

JMS 1-13
queues 2-10
timer 1-12

EventListener 1-23
events

Application Integration 1-21, 1-22
EIS 1-22
high availability 4-7
load balancing of 2-13
retargeting 4-7

execution thread pool 1-6

F
failover

controlled 4-9
file stores 3-7, 4-3
file system 3-2
firewall, using 5-10

G
goals 1-1

H
hardware faults 4-4
hardware router 3-4
high availability

about high availability 4-1
and JDBC 4-3
and JMS file stores 4-3
Application Integration 4-6
ebXML 4-6
events 4-7
JMS 2-14, 3-9
services 4-6
Trading Partner Integration 4-5

HttpClusterServlet 2-12
HttpStatus code 4-5

I
IEvent object 1-22
IIS, proxy servers

IIS 5-7
initial-beans-in-pool 1-14
IntegrationUser 5-19
invokeServiceAsync 1-21
IP addresses 3-2

J
J2EE Connector Architecture (J2EE-CA) 1-6
J2EE Connector Architecture See JCA
J2EE-CA service adapter 1-19
Java KeyStore 5-4
Java Message Service (JMS) 1-5
Java SDK 3-8
JCA 1-6
JDBC

and high availability 4-3
configuration of 3-6
connection pools 1-6, 3-6
data sources 3-7
multipools 3-7
testing connections 3-7

JMS
and Message Broker 1-11
configuring 3-7
connection factories 3-7
destination keys 3-7
distributed queues 3-8
distributed topics 3-7
event generator 1-13
file stores 3-7, 4-3
high availability 2-14, 3-9
ObjectMessage 1-21
queues 1-7, 1-12, 3-7

wli.internal.b2b.ebxmlencoder.queue
1-15, 2-9

wli.internal.b2b.failedmessage.queue
2-9

Deploying WebLogic Integration Solutions Index-5

wli.internal.b2b.rosettanetencoder.queu
e 1-15, 2-9

wli.internal.egfile.queue 2-10
wli.internal.egmail.queue 2-10
wli.internal.egtimer.queue 2-10
wli.internal.msgtracking.queue 1-16,

1-18, 2-8
wli.internal.scheduling.queue 2-10
wli.internal.SQLStore.cleanup.docume

nts 2-10
retargeting server 3-9
server 3-7
templates 3-7
topics 3-7

wli.internal.ai.event 1-23
wli.internal.b2b.events.topic 2-5
wli.internal.configfile.request.queue

2-5
wli.internal.configfile.update.topic 2-5

JRockit SDK 3-8

K
Keystore 5-3
keystores

cluster configuration 3-10
configuring with WebLogic Server 5-11
default keystores 5-4
production environment 5-4
types of 5-3

L
license, cluster 3-2
load balancing

Application Integration 2-12
asynchronous services 2-13
business processes 2-12
events 2-13
router 3-4
synchronous services 2-12
WebLogic Server 2-12

M
managed servers

adding to domain 3-6, 3-12
polling event generators on 1-12
resources targeted to 2-8
shutting down 3-12
starting 3-10, 3-11

management domains 2-3
manual migration 4-9
max-beans-in-free-cache 1-5
max-beans-in-free-pool 1-5
Message Broker

event processing 1-22
JMS queue usage 1-11
publish actions 1-10
publish control 1-12
queues 1-15, 1-16
security 5-5, 5-15
subscription information table 1-10

Microsoft IIS 5-7
migration

of EJBs with JMS server 3-9
to healthy node, manual 4-9

msgtracking.jar 2-7
multicast addresses 3-2
multihome machine 3-2
multipools 3-7

N
Node Manager 3-11
noniterativedev mode 3-8
non-XA datasource 3-6

O
ObjectMessage 1-21
onServiceNameResponse 1-21
order of deployment 2-3

Index-6 Deploying WebLogic Integration Solutions

P
passwords

and PasswordStore 5-2
configuring administrator 3-8
encrypted 5-2

PasswordStore 5-2
PEM 5-7
PKCS12 5-7
PKCS7 5-7
PKI format 5-7
pool size 1-5, B-5
port numbers 3-2
prerequisites xii
principals, WebLogic Server security 5-5
printing product documentation xiii
privacy enhanced mail format 5-7
process application 1-7
process control

as asynchronous call 1-10
as synchronous dispatch 1-10
in-memory dispatcher table 1-10

product support xiii
Production Mode 3-8
production users

security 5-18
proxy plug-in, using 5-8
proxy servers

and WebLogic proxy plug-in 5-9
using 5-8

public key cryptography format 5-7
publish actions 1-10
publish control 1-12

Q
queues

configuring 3-7
distributed 3-8
JMS 1-7
process tracking 2-9
WLAI_ASYNC_REQUEST_QUEUE 2-15

WLAI_ASYNC_RESPONSE_QUEUE
2-15

wli.internal.ai.async.request 1-21, 2-9
wli.internal.ai.async.response 2-9
wli.internal.ai.event_suspend 2-9
wli.internal.b2b.ebxmlencoder.queue 2-9
wli.internal.b2b.failedmessage.queue 2-9
wli.internal.b2b.rosettanetencoder.queue

2-9
wli.internal.tracking.buffer 2-9
wli.internal.worklist.timer.queue 2-9

R
recovery

from hardware faults 4-4
from software faults 4-3

resource adapters 2-18, A-1
rmfilestore 3-7
RMI 1-10
roles

database administrators 1-3
deployment specialists 1-2
security

IntegrationUser 5-19
TaskCreationRole 5-19

WebLogic Server administrators 1-3
root CA certificate 5-6
RosettaNet

message delivery 4-5
outbound JMS queue 2-9
supported versions 1-13
WLI-B2B RosettaNet 2-7

router 2-12, 3-4

S
security

about security 5-1
and cluster domain 2-3
and proxy servers 5-8
and WebLogic Integration domains 5-2

Deploying WebLogic Integration Solutions Index-7

and WebLogic Proxy plug-in 5-9
application integration 5-12
configuring

adapter instances 5-17
application integration 5-12
Application Views 5-16
business processes 5-13, 5-19
in clusters 3-10
Message Broker channels 5-15
production users 5-18
Trading Partner Integration 5-19
WebLogic Server 5-11
worklist 5-19

digital certificates 5-6
firewall 5-10
Keystore 5-3
PasswordStore 5-2
setting up, in a deployment 5-10
WebLogic Server security principals 5-5

server affinity 2-14
server certificate 5-6
servers

adding to domain 3-12
and deployment 2-11
failure and recovery 4-3
in domains 2-3
JMS 3-7, 3-9
migratable 2-10
multiple instances on single machine 3-3
retargeting 3-9
shutting down in the domain 3-12
start mode 3-8
starting in the domain 3-10, 3-11
targeting applications and services to 3-8
See also administration servers, managed

servers
service invocations

asynchronous 1-19, 1-20, 2-15
synchronous 1-18, 1-19

services
high availability 4-6

load balancing of asynchronous 2-13
load balancing of synchronous 2-12
manual migration of 4-9
retargeting 4-6

shared file system 3-2, 3-4
shutting down servers 3-12
SOAP 1-8, 2-12
software faults 4-3
software router 3-4
starting servers 3-10, 3-11
stateful process 1-9
stateless process 1-9
subscription information table 1-10
support xiii

T
TaskCreationRole 5-19
technical support xiii
templates

domain 3-5
JMS 3-7

threads, execution 1-6
trading partner certificate 5-6
Trading Partner Integration

about 1-13
B2BDefaultWebAppApplication 2-5
b2b-startup.jar 2-5
clustered resources

b2b-ebxml.jar 2-7
b2b-rosettanet.jar 2-7
b2b-startup.jar 2-7
com.bea.wli.b2b.server.Shutdown 2-7
msgtracking.jar 2-7
WLI Message Tracking 2-7
WLI-B2B ebXML 2-7
WLI-B2B RosettaNet 2-7
WLI-B2B Shutdown Class 2-7
WLI-B2B Startup 2-7
WLI-B2B System Topic Factory 2-7

configuring resources 2-10

Index-8 Deploying WebLogic Integration Solutions

failure and recovery 4-5
high availability 4-5
incoming message path 1-17
initialization 1-14
outgoing message path 1-15
process timeouts 4-5
queues

wli.internal.b2b.ebxmlencoder.queue
2-9

wli.internal.b2b.failedmessage.queue
2-9

wli.internal.b2b.rosettanetencoder.queu
e 2-9

retry counts 4-5, 4-6
retry intervals 4-5, 4-6
security 5-5, 5-19
Transport Servlet Filter 1-17
WLI-B2B Startup 2-5

Trading Partner Management Repository
about 1-13
cache synchronization 1-14

Transport Servlet Filter 1-17
two-phase deployment 2-3
typographic conventions xiv

W
web application

contents 1-7
Web server, using with the WebLogic proxy
plug-in 5-9
web.xml 1-17, 5-13
WebAppComponent, adapters A-1
WebLogic Integration domains 2-2
WebLogic Keystore provider, configuring 5-11
WebLogic Server administrators 1-3
weblogic.xml 5-13
WLAI_DataSource 2-8, 3-7
WLI Admin 2-6
WLI Admin Helper 2-6
WLI AI RAR Upload 2-5

WLI Calendar Persistence 2-5
WLI Console 2-5
WLI Message Tracking 2-7
WLI Post-Activation Startup Class 2-7
WLI Process Tracking 2-6
WLI Shutdown Class 2-7
WLI Startup Class 2-7
WLI Worklist Persistence 2-6
WLI Worklist Selection 2-6
wli.internal.ai.async.request 1-20, 1-21, 2-8, 2-9
wli.internal.ai.async.response 2-8, 2-9
wli.internal.ai.event 1-23, 2-9
wli.internal.ai.event_suspend 2-8, 2-9
wli.internal.b2b.ebxmlencoder.queue 1-15, 2-9
wli.internal.b2b.events.topic 2-5
wli.internal.b2b.failedmessage.queue 2-9
wli.internal.b2b.rosettanetencoder.queue 1-15,
2-9
wli.internal.configfile.request.queue 2-5
wli.internal.configfile.update.topic 2-5
wli.internal.egfile.queue 2-10, 3-10
wli.internal.egfile.queue_auto 3-9
wli.internal.egmail.queue 2-10, 3-10
wli.internal.egmail.queue_auto 3-9
wli.internal.egtimer.queue 2-10
wli.internal.msgtracking.queue 1-16, 1-18, 2-8
wli.internal.scheduling.queue 2-10
wli.internal.SQLStore.cleanup.documents 2-10
wli.internal.tracking.buffer 2-9
wli.internal.worklist.timer.queue 2-9
wlia.war 2-6
WLI-AI Manager EJBs 2-6
WLI-B2B ebXML 1-15, 2-7
WLI-B2B HTTP Transport 2-7
WLI-B2B RosettaNet 1-15, 2-7
WLI-B2B Shutdown Class 2-7
WLI-B2B Startup 1-14, 2-5, 2-7
WLI-B2B System Topic Factory 2-7, 3-7
wlw-config.xml 3-4, 5-13
worklist

IntegrationUser 5-19

Deploying WebLogic Integration Solutions Index-9

security 5-12, 5-19
TaskCreationRole 5-19
user interface resources 2-6
WLI Worklist Selection 2-6
wli.internal.worklist.timer.queue 2-9

X
X.509 format 5-7
XML 1-11, 1-22, 2-12
XQuery 1-11

Index-10 Deploying WebLogic Integration Solutions

	About This Document
	Overview Documents for WebLogic Integration
	What You Need to Know
	How to Print this Document
	Related Information
	Contact Us!
	Documentation Conventions

	Introduction
	Deployment Goals
	Key Deployment Tasks
	Roles in Integration Solution Deployment
	Deployment Specialists
	WebLogic Server Administrators
	Database Administrators

	Key Deployment Resources
	WebLogic Server Resources
	Clustering
	Java Message Service
	EJB Pooling and Caching
	JDBC Connection Pools
	Execution Thread Pool
	J2EE Connector Architecture

	Process Application Resources
	Process Control Resources
	Message Broker Resources
	Event Generator Resources
	The File, Email and Timer Event Generators
	The JMS Generator

	Trading Partner Integration Resources
	Trading Partner Management Repository
	Trading Partner Integration Initialization and Run-Time Operations

	Application Integration Capabilities and Clients
	Synchronous Service Invocations
	Asynchronous Service Invocations
	Events

	Relational Database Management System Resources
	Hardware, Operating System, and Network Resources

	Understanding WebLogic Integration Clusters
	Understanding WebLogic Integration Clusters
	Designing a Clustered Deployment
	Introducing WebLogic Integration Domains
	Creating Domains
	Clustered Servers
	Note About Cluster and Management Domains

	Deploying WebLogic Integration Resources
	Clusterable Resources
	Trading Partner Integration Resource Configuration
	Two-Phase Deployment of WebLogic Integration
	Note About Servers

	Load Balancing in a WebLogic Integration Cluster
	Load Balancing HTTP Functions in a Cluster
	Load Balancing JMS Functions in a Cluster
	Load Balancing Application Integration Functions in a Cluster
	Synchronous Services
	Asynchronous Services
	Events

	High Availability in a WebLogic Integration Cluster
	Highly Available JMS
	High Availability for Asynchronous Service Requests to Application Views
	High Availability for Event Delivery from Application Views

	Deploying Applications
	Deploying Adapters
	Deploying Event Generators
	File, Email, Timer Event Generators

	Configuring a Clustered Deployment
	Step 1. Comply with Configuration Prerequisites
	Step 2. Prepare a WebLogic Integration Domain
	Creating a WebLogic Integration Domain Using the Configuration Wizard
	Creating the Database Tables
	Targeting the JMS Servers for High Availability

	Step 3. Configure WebLogic Integration Security
	Step 4. Deploy the WebLogic Integration Application
	Step 5. Start and Monitor the Managed Servers in the Domain
	Starting the Managed Servers
	Monitoring and Shutting Down Your Servers

	Step 6. Update Your Domain as Your Production Environment Changes
	Adding a New Managed Server
	Changing an EIS Instance

	Understanding WebLogic Integration High Availability
	About WebLogic Integration High Availability
	Recommended Hardware and Software
	Regarding JMS File Stores

	What Happens When a Server Fails
	Software Faults
	Hardware Faults
	Server Migration

	WebLogic Integration Failure and Recovery
	Trading Partner Integration
	RosettaNet
	ebXML

	Application Integration
	Retargeting Services
	Retargeting Events
	EIS Instance Failover

	Using WebLogic Integration Security
	Overview of WebLogic Integration Security
	Security and WebLogic Integration Domains
	WebLogic Integration PasswordStore for Encrypted Passwords
	Keystore for Private Keys and Certificates

	WebLogic Server Security Principals and Resources Used in WebLogic Integration

	Considerations for Configuring Security
	About Digital Certificates
	Digital Certificate Formats

	Using the Secure Sockets Layer (SSL) Protocol
	Using an Outbound Proxy Server or Proxy Plug-In
	Using an Outbound Proxy Server
	Using a Web Server with the WebLogic Proxy Plug-In

	Using a Firewall

	Setting Up a Secure Deployment
	Step 1: Create the Domain
	Step 2: Configure WebLogic Server Security
	Step 3: Configure Application Integration Security
	Step 4: Configure Web Application and Web Service Security-Related Deployment Descriptors
	Step 5: Configure Security Policies and Manage Users
	Configuring Security Policies for Business Processes
	Configuring Security Policies for Message Broker Channels
	Configuring Security Policies for Application Views
	Configuring Security Policies for Adapter Instances
	Managing Production Users

	Step 6: Configure Worklist Security
	Step 7: Configure Trading Partner Integration Security

	Using the weblogic.Deployer Command-Line Utility
	Deploying the Sample DBMS Adapter

	Using the WebLogic Server Administration Console
	aiConfigurator Utility and Examples
	aiConfigurator Usage
	Switching Database Type/Instance for DBMS Sample Adapter

	Index

