
BEAWebLogic
Server Process
Edition™

WebLogic Server
Process Edition
Overview

Version 8.5 Service Pack 5
Revised: October 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Overview of WebLogic Server Process Edition iii

Contents

1. Introduction to WebLogic Server Process Edition
WebLogic Server Process Edition Key Features . 1-2

WebLogic Server Process Edition Installation . 1-6

The WebLogic Server Process Edition Mode . 1-7

WebLogic Server Process Edition Features. 1-8

WebLogic Server Process Edition Component . 1-13

2. Controls: Service Enablement
Integration Controls . 2-1

File Control . 2-2

Email Control . 2-2

WLI JMS Control . 2-3

Service Broker Control . 2-3

HTTP Control . 2-4

MQSeries Control . 2-5

Other Available Application Controls . 2-5

Java Controls. 2-6

Database Control. 2-6

Timer Control . 2-6

Web Service Control . 2-7

EJB Control. 2-7

JMS Control . 2-7

iv Overview of WebLogic Server Process Edition

Using Asynchronous Interfaces . 2-8

Overview of Asynchrony . 2-8

Using Asynchrony . 2-9

Using Callbacks . 2-9

Using Polling . 2-10

Designing Asynchronous Interfaces . 2-11

Using Polling as an Alternative to Callbacks . 2-11

Designing Robust Asynchronous Interfaces. 2-13

Conversations . 2-15

Overview of Conversations . 2-15

Correlating Messages with a Unique Identifier . 2-16

Implementing Conversations . 2-16

Understanding Conversation Context . 2-16

Designing a Web Service to Use Conversations. 2-17

3. Business Process Management: Process Driven Services
Business Process Management Overview. 3-1

Business Process Management Features . 3-2

Web Services Available as Business Process Resources . 3-3

Building a Business Process . 3-4

Stateful and Stateless Processes . 3-5

Stateless Processes . 3-5

Stateful Processes. 3-5

Determining if your Business Process is Stateful or Stateless 3-6

4. Data Transformation
Data Transformation Overview. 4-1

Data Transformation Features. 4-3

Overview of WebLogic Server Process Edition v

5. Process Monitoring and Management
Process Configuration . 5-2

Managing Process Tracking Data. 5-2

Process Security Policies . 5-3

Service Level Agreements . 5-4

Process Versions . 5-4

Dynamic Controls. 5-5

Process Instance Monitoring . 5-5

Index

vi Overview of WebLogic Server Process Edition

Overview of WebLogic Server Process Edition 1-1

C H A P T E R 1

Introduction to WebLogic Server
Process Edition

WebLogic Server Process Edition provides you with the technologies and tools you need to
effectively service-enable your existing resources, create composite services using
process-driven development, and extend these composite services to interact with other
applications and technologies. Each of these phases allows you to take distinct measurable steps
that are effective for both project and enterprise level architectures.

The following sections introduce the key features of WebLogic Server Process Edition, detail the
WebLogic options available when you purchase a WebLogic Server Process Edition license,
provide a brief overview of WebLogic Server Process Edition, and introduce the WebLogic
Server Process Edition mode:

WebLogic Server Process Edition Key Features

WebLogic Server Process Edition Installation

The WebLogic Server Process Edition Mode

WebLogic Server Process Edition Features

WebLogic Server Process Edition Component

In t roduc t i on to WebLog ic Se rve r P rocess Ed i t i on

1-2 Overview of WebLogic Server Process Edition

WebLogic Server Process Edition Key Features
The following table details the key features of WebLogic Server Process Edition and outlines the
benefits that these features provide.

Table 1-1 WebLogic Server Process Edition Key Features

Features Benefits

Service Enable Existing Resources

Extensible Controls Architecture

For more information, see Working with Java
Controls in the WebLogic Workshop Help.

• Consistent mechanism for representing resources.

• Over 30+ pre-built controls to seamlessly interact
with Java and legacy resources.

• One click to a Web service from any resource.

• Leverage IT assets without requiring complex
API-level programming.

• Available uniformly to all BEA WebLogic
Platform™ 8.1 applications.

• Package Java Controls as re-distributable JAR
files, easily leveraged by any developer in any
application.

Resource Connectivity

For more information, see Using Built-In Java
Controls in the WebLogic Workshop Help and
the Introduction to the BEA WebLogic
Adapters.

• Out-of-the-box connectivity to Databases, EJBs,
JMS, Web services, MQ Series, .NET, Tuxedo,
file systems, and e-mail.

• Additional J2CA-based pre-built adapters to
leading enterprise applications and technologies.

http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/navWorkingWithJavaControls.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/navWorkingWithJavaControls.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/navControlsOverview.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/navControlsOverview.html
http://edocs.bea.com/wladapters/docs81/pdf/intro.pdf
http://edocs.bea.com/wladapters/docs81/pdf/intro.pdf

WebLog ic Ser ve r P rocess Ed i t i on Key Featur es

Overview of WebLogic Server Process Edition 1-3

Orchestrate Services using Process-driven
Development

Process Modeling for Composite Services

For more information, see Guide to Building
Business Processes in Building Integration
Applications in the WebLogic Workshop Help.

• Build, view, and change process models, with
drag-and-drop graphical construction of complex
composite service scenarios and two-way editing
between Design and Source views.

• Execute sophisticated Web service orchestration
scenarios using composite process driven
services.

• Automatically accessible as a Web service, can
easily invoke and respond to other Web services,
and can be exported to Business Process
Execution Language (BPEL).

• Built-in support for asynchronous
communication, lifecycle events, security,
transactions, etc.

• Supports proven process operations such as
Synchronous and Asynchronous Communication,
Branching, Nesting, Looping, Parallelism,
Grouping, and Exception Handling.

• Based on Process Definition for Java (PD4J-JSR
207), providing a seamless convergence between
graphical representation of process flows in XML
and Java for logic execution.

Process Monitoring and Management

For more information, see Process
Configuration and Process Instance
Monitoring in Managing WebLogic
Integration Solutions.

• Allows you to monitor the status of end-to-end
processes graphically and measure performance
versus service level agreements.

• View statistics on running processes; drill into
individual details; terminate, delete, or suspend
problematic process instances.

• Allow time calculations according to a
customized business calendar.

• Generate reports of historical process information
by accessing SQL-based repository e.g. average
elapsed time over a month for a process and for
each individual step in the process.

Table 1-1 WebLogic Server Process Edition Key Features (Continued)

http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html
http://e-docs.bea.com/wli/docs81/manage/processconfig.html
http://e-docs.bea.com/wli/docs81/manage/processconfig.html
http://e-docs.bea.com/wli/docs81/manage/processmonitoring.html
http://e-docs.bea.com/wli/docs81/manage/processmonitoring.html

In t roduc t i on to WebLog ic Se rve r P rocess Ed i t i on

1-4 Overview of WebLogic Server Process Edition

Build for Integration

Unified Development Environment and
Run-Time Framework

For more information, see The WebLogic
Workshop Development Environment in the
WebLogic Workshop Help.

• Use a single tool, runtime framework, and
programming model to orchestrate all enterprise
services including custom Java Controls,
Applications, and Web services.

• Easily produce and manage custom-fit enterprise
portals through interoperability with Web
applications and BEA WebLogic Portal.

• Switch from writing code to immediately testing
applications with one-button deployment,
integrated debugger, and automated test harness.

Web Services

For more information, see Building Web
Services in the WebLogic Workshop Help.

• Automatic support for state management,
message correlation, and conversation lifecycles
to handle asynchronous interaction models.

• Support for loose-coupling with a visual tool
enabling a standard and flexible technique to
transform between XML and Java.

• Employ higher-level, coarse-grained messages to
enhance scalability and usability.

• Secure applications with transport-level security
and message-based security (authentication,
signature, and/or encryption).

• Extensibility and integration via SOAP
interceptor mode.

Data Transformation

For more information, see Guide to Data
Transformation in Building Integration
Applications in the WebLogic Workshop Help.

• Transform data between Java and XML using
simple drag-and-drop mapping in an intuitive and
comprehensive graphical interface.

• Gain a convenient Java object-based view of
XML data without losing access to the richness of
the native XML structure through XML Beans.

• Support both the existing industry standard
(XSLT) and the latest, highest performing
standard (XMLQuery) for transforming
documents and XML messages.

Table 1-1 WebLogic Server Process Edition Key Features (Continued)

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/ovwWorkshopMainTopic.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/ovwWorkshopMainTopic.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/navBuildingWebServices.html
http://edocs.bea.com/workshop/docs81/doc/en/workshop/guide/navBuildingWebServices.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html
http://edocs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html

WebLog ic Ser ve r P rocess Ed i t i on Key Featur es

Overview of WebLogic Server Process Edition 1-5

Standards Support

For more information, see Standards.

• Support latest standards including SOAP 1.2,
WSDL 1.2, UDDI 2.0, and WS-Security.

• XML productivity tools based on emerging, XML
Beans, XML Schema, and XQuery standards.

• Innovative use of annotated code is supported by
several BEA partners and is in the process of
being standardized via the Java Community
Process via JSR 175, JSR 181, and JSR 207.

• Comprehensive support for Enterprise Java Bean
(EJB) development and deployment, including
design views for session and entity beans.

• Implement Web applications based on the
Apache open-source Struts framework.

• Support for BPEL export for cross platform
interoperability.

• Automatic migration to BPEL-J (BEA is a
leading author for the BPEL-J specification).

Table 1-1 WebLogic Server Process Edition Key Features (Continued)

http://dev2dev.com/technologies/standards/overview.jsp

In t roduc t i on to WebLog ic Se rve r P rocess Ed i t i on

1-6 Overview of WebLogic Server Process Edition

WebLogic Server Process Edition Installation
There is no separate installation procedure for WebLogic Server Process Edition. The availability
of features is dependent on the WebLogic Platform product components and licenses installed.

When you install WebLogic Server, WebLogic Workshop, and WebLogic Integration (the
components of WebLogic Platform on which WebLogic Server Process Edition functionality
depends), a development license is included that enables a complete development framework for
the installed components.

To enable the WebLogic Server Process Edition capabilities for production, you must have a
WebLogic Server Process Edition production license installed.

An Enterprise Class Foundation

Industry Leading Application Server • Robust J2EE-certified application server
functionality provides the essential capabilities
and underlying infrastructure for enterprise-class
applications: Security, system management and
monitoring, failover via clustering, performance,
scalability, transactions.

• Native clustering that is completely transparent to
the application.

• Proven scalability and reliability in the most
demanding enterprise environments.

• Ensures that users experience no service
interruption in mission critical applications. Use
of in-memory replication to scale large clusters
while ensuring high availability.

• Allows reuse of different types of connections
required to establish communications with
clients, to databases, application adaptors, and
message factories.

• Delivers proven performance, scalability,
flexibility, clustering, security, transaction
management, and reliability to meet enterprise
needs with confidence.

Table 1-1 WebLogic Server Process Edition Key Features (Continued)

The WebLogic Se rver Pr ocess Ed i t i on Mode

Overview of WebLogic Server Process Edition 1-7

In the development environment, the features available in the WebLogic Workshop IDE are
dependent on:

The WebLogic Platform components installed.

The type of domain in which the server is running.

If you have installed WebLogic Integration and are running the server in a WebLogic Integration
domain, the WebLogic Workshop IDE not only provides access to the controls and other
functionality supported by WebLogic Server Process Edition, it also provides access to
WebLogic Integration features that are not supported by the WebLogic Server Process Edition
production license. To ensure that no unsupported features are used, you must restrict the
development environment by selecting the WebLogic Server Process Edition mode, as described
in the following section.

To learn more about WebLogic Server Process Edition installation and licensing, see WebLogic
Server Process Edition Support in Installing WebLogic Platform.

The WebLogic Server Process Edition Mode
The WebLogic Server Process Edition production license is enforced at run time. However, as
described in the previous section, the functionality available by default in the development
environment is a superset of the functionality supported by the WebLogic Server Process Edition
production license. To ensure that the functionality available is consistent with the functionality
supported by the production license, WebLogic Workshop now supports the WebLogic Server
Process Edition mode of operation.

After starting WebLogic Workshop, you can set the mode by selecting WebLogic Integration
-> WebLogic Server Process Edition from the Tools menu, as shown in the following figure.

Figure 1-2 WebLogic Server Process Edition Menu Selection

http://edocs.bea.com/platform/docs81/install/prepare.html#wls_pe
http://edocs.bea.com/platform/docs81/install/prepare.html#wls_pe

In t roduc t i on to WebLog ic Se rve r P rocess Ed i t i on

1-8 Overview of WebLogic Server Process Edition

If you are developing applications for a WebLogic Server Process Edition production
environment, you must select the WebLogic Server Process Edition mode in WebLogic
Workshop before building any applications to avoid building applications that are not supported
by your license at run time. Once you make this change, the new mode of operation is saved as
an environment setting.

WebLogic Server Process Edition Features
The WebLogic Server Process Edition production license provides business process
management, data transformation, and process monitoring capabilities that are available in
WebLogic Integration, in addition to all the capabilities of WebLogic Server Premium.
WebLogic Server Process Edition does not include the Message Broker, WorkList, application
integration framework, and trading partner integration capabilities that are available in WebLogic
Integration. (For a description of the various offerings, see Licensing.)

The following table details the differences between WebLogic Server Process Edition and
WebLogic Integration.

Table 1-3 Feature Comparison Matrix

Category Feature WebLogic
Server
Process
Edition

WebLogic
Integration

Business Processes Stateless process modeling and automation

Stateful process modeling and automation

Web application-based human interaction

Task-based human interaction (Workflow)

Business calendars

http://bernal.bea.com/stage/platform/docs81/interm/license.html

WebLog ic Ser ve r P rocess Ed i t i on Featur es

Overview of WebLogic Server Process Edition 1-9

Data Transformation XML and Java data transformation

Non-XML data Transformation

Format Builder for Non-XML data transformation

Application Integration Application connectivity via iWay 5.5 Adapters

Application connectivity via BEA WebLogic
Adapters

Application View Design Console

Adapter development kit

RDBMS adapter

Message Broker Inter-process pub/sub

Event generators for external events

Table 1-3 Feature Comparison Matrix (Continued)

Category Feature WebLogic
Server
Process
Edition

WebLogic
Integration

In t roduc t i on to WebLog ic Se rve r P rocess Ed i t i on

1-10 Overview of WebLogic Server Process Edition

Event Generators File

Email

HTTP

JMS

MQ Series

Timer

Trading Partner
Integration

B2B protocols (e.g., ebXML, RosettaNet)

Trading partner management

Table 1-3 Feature Comparison Matrix (Continued)

Category Feature WebLogic
Server
Process
Edition

WebLogic
Integration

WebLog ic Ser ve r P rocess Ed i t i on Featur es

Overview of WebLogic Server Process Edition 1-11

WebLogic Integration
Administration Console
Modules

System Configuration

User Management

Process Configuration

Process Monitoring

Message Broker Management

Event Generators

Worklist Administration

Application Integration Management

Trading Partner Management

Business Calendar Configuration

Table 1-3 Feature Comparison Matrix (Continued)

Category Feature WebLogic
Server
Process
Edition

WebLogic
Integration

In t roduc t i on to WebLog ic Se rve r P rocess Ed i t i on

1-12 Overview of WebLogic Server Process Edition

Integration Controls File control

Email control

WLI JMS control

Service Broker control

Transformation control

Process control

MQ Series control

Message Broker Publish control

Message Broker Subscribe control

Application View control

Task Control

Task Worker control

Rosettanet control

ebXML control

Trading Partner Management control

Table 1-3 Feature Comparison Matrix (Continued)

Category Feature WebLogic
Server
Process
Edition

WebLogic
Integration

WebLog ic Se rve r P rocess Ed i t i on Component

Overview of WebLogic Server Process Edition 1-13

WebLogic Server Process Edition Component
The WebLogic Platform contains numerous component products, as shown in the following
figure. You can use a combination of these components, or just use an individual component, to
build an application.

Figure 1-4 WebLogic Platform Component Products

For more information on the product components displayed in the proceeding figure, see the
WebLogic Platform 8.1 documentation.

http://e-docs.bea.com/platform/docs81/index.html

In t roduc t i on to WebLog ic Se rve r P rocess Ed i t i on

1-14 Overview of WebLogic Server Process Edition

Overview of WebLogic Server Process Edition 2-1

C H A P T E R 2

Controls: Service Enablement

WebLogic Server Process Edition provides a set of out-of-the box controls that enable you to start
integration projects with a portfolio of resources. WebLogic Server Process Edition integration
controls provide easy access to enterprise resources like databases, file systems, etc., from within
your application. You can also access other WebLogic controls like Enterprise Java Beans from
within your application. The control handles the work of connecting to the enterprise resource for
you, so that you can focus on the logic of your business process.

The following sections describe the WebLogic Server Process Edition integration controls and
the other available WebLogic controls in more detail, before introducing asynchronous interfaces
and conversations:

Integration Controls

Other Available Application Controls

Using Asynchronous Interfaces

Conversations

Integration Controls
The following integration controls are described in this section:

File Control

Email Control

WLI JMS Control

Contr o l s : Se rv i ce Enablement

2-2 Overview of WebLogic Server Process Edition

Service Broker Control

HTTP Control

MQSeries Control

File Control
A File control makes it easy to read, write, or append to a file in a file system. The files can be
one of the following types:

XmlObject

RawData (binary)

String.

When you create a File control, you must select the file type that matches the files present in the
specified directory. The File control supports file operations such as copy, rename, and delete.
You use these operations to manipulate large files, without having to read their entire contents.
You can also list the files stored in the specified directory.

Normally, you configure a separate File control for every individual file you want to manipulate.
You can specify File control settings in several different ways. You can set the File control's
properties in Design view or you can call the setProperties method of the FileControl
interface. You can change File control configuration properties dynamically. To get the current
property settings, use the getProperties() method.

You can also use the ControlContext interface to access a control's properties at run time and to
handle control events. Property values set by a developer who is using the control are stored as
annotations on the control's declaration in a JWS, JSP, or JPD file, or as annotations on its
interface, callback, or method declarations in a JCX file.

For more information, see File Control in Using Integration Controls in the WebLogic Workshop
Help.

Email Control
The Email control enables WebLogic Server Process Edition business processes to send e-mail
to a specific destination. The body of the e-mail message can be text (plain, HTML, or XML) or
an XML object. The Email control is customizable, which allows you to specify e-mail
transmission properties in an annotation, or use dynamic properties passed as an XML variable.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsFile.html

In tegrat ion Cont r o ls

Overview of WebLogic Server Process Edition 2-3

You can use the Email control to send a variety of content types and various combinations of body
and attachments.

When you add an Email control to your business process, you can use an existing Email control
extension file (.jcx) or create a new one.

For more information, see Email Control in Using Integration Controls in the WebLogic
Workshop Help.

WLI JMS Control
JMS (Java Message Service) is a Java API for communicating with messaging systems, which
are often packaged as products known as Message-Oriented Middleware (MOMs). WebLogic
Server includes built in messaging capabilities via WebLogic JMS, but can also work with
third-party MOMs. Messaging systems are often used in enterprise applications to communicate
with legacy systems, or for communication between business components running in different
environments or on different hosts.

The WLI JMS control enables WebLogic Workshop business processes to easily interact with
messaging systems that provide a JMS implementation. A specific WLI JMS control is associated
with particular facilities of the messaging system. Once a WLI JMS control is defined, business
processes may use it like any other WebLogic Workshop control.

The WLI JMS control is an extension of the JMS control, providing additional features such as
RawData message type support, dynamic property configuration, and the ability to control
whether to start a new transaction or remain within the calling transaction.

For more information, see WLI JMS Control in Using Integration Controls in the WebLogic
Workshop Help.

Service Broker Control
The Service Broker control allows a business process to send requests to, and receive callbacks
from, another business process, a Web service, or a Web service or business process defined in a
Web Service Description Language (WSDL) file. The Service Broker control lets you
dynamically set control attributes. This allows you to reconfigure control attributes without
having to redeploy the application.

A remote Web service or business process is accessed using Web services and is described in a
WSDL file. A WSDL file describes the methods and callbacks that a Web service implements,
including method names, parameters, and return types. You can generate a WSDL file for any

http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsEmail.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsJMS.html

Contr o l s : Se rv i ce Enablement

2-4 Overview of WebLogic Server Process Edition

business process by right clicking on a JPD file in the Application pane and choosing Generate
WSDL File.

For more information, see Service Broker Control in Using Integration Controls in the WebLogic
Workshop Help.

HTTP Control
The Hyper Text Transfer Protocol (HTTP) control is built using the features of the WebLogic
Platform control architecture. The HTTP control source file is a wrapper around the Jakarta
Commons HTTP Client package. The HTTP control enables WebLogic Workshop and business
processes to work with HTTP requests and send responses to a specific URL. The HTTP control
supports two HTTP modes for data transfer, namely HTTP GET and HTTP POST. By using the
GET mode, you can send your business data along with the URL. By using the POST mode, you
can also send Binary, XML, and string documents. You can specify HTTP properties in an
annotation, or pass dynamic properties via an XML variable.

The HTTP control comes with the following features and functions:

You can send a HTTP or a HTTPS request to a URL and receive the appropriate HTTP
response header and body data.

You can send business data using the HTTP GET mode, and receive the HTTP response
code and the message corresponding to the response code in an XML document.

You can send Binary, XML, or String type documents as an HTTP POST and receive
HTTP response code and the message corresponding to the response code in an XML
document.

You can configure cookies for both HTTP GET and POST and receive cookies in an XML
document of pre-defined schema.

You can communicate via a secure HTTP (HTTPS) connection with both client-side and
server-side authentication.

You can use a use a proxy server to send HTTP and HTTPS requests.

You can receive response headers in an XML document conforming to a pre-defined
schema.

You can receive response body data of a type that is different from the body data type that
you sent out. This is applicable only when you use the HTTP POST mode.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsService.html

Other Ava i lab le App l i ca t i on Cont r o ls

Overview of WebLogic Server Process Edition 2-5

MQSeries Control
The MQSeries control provides basic MQSeries operations like PUT and GET. You use this
control to set and get MQMD attributes. The MQSeries control supports multiple message
payload formats, such as XML, Binary, and Text.

The MQSeries control enables you to set MQMD properties for every GET and PUT operation.
The GET and PUT methods take an xmlbean object as part of the signature. The xmlbean is
represented by an MQMDHeaders schema which is present in the MQSchemas.jar.

The properties of the MQSeries control are:

Transaction Management Implicit/Explicit

Put a Message

Get a Message

MQMD Support

Support the CICS, IMS and other user defined formats

Supports sending group messages

Reporting options

Exit implementation (send, receive, security) for out bound services

I18N compatible

MQ authorization

Other Available Application Controls
This section describes the following application controls:

Java Controls

Database Control

Timer Control

Web Service Control

EJB Control

JMS Control

Contr o l s : Se rv i ce Enablement

2-6 Overview of WebLogic Server Process Edition

Java Controls
Java controls are reusable components you can use anywhere within a platform application. You
can use built-in controls provided with WebLogic Workshop, or you can create your own. When
you're building WebLogic Server Process Edition applications, Java controls provide a
convenient way to incorporate access to resources and encapsulate business logic.

If you've used WebLogic Workshop, you may be familiar with built-in Java controls such as the
Database control, EJB control, Web Service control, and so on. These are included with the IDE,
but you can also create your own custom Java control. You can use controls from within the many
kinds of components that make up WebLogic Server Process Edition applications. A good
practice is to use the custom Java control to implement your business logic and call built-in
controls when the implementation of the business logic requires this.

For more information, see Working with Java Controls in the WebLogic Workshop Help.

Database Control
A Database control makes it easy to access a relational database from your application. Using the
Database control, you can issue SQL commands to the database. The Database control
automatically performs the translation from database queries to Java objects, so that you can
easily access query results.

A Database control can operate on any database for which an appropriate Java Database
Connectivity (JDBC) driver is available and for which a data source is configured in WebLogic
Server. When you add a new Database control to your application, you specify a data source for
that control. The data source indicates which database the control is bound to.

For more information, see Database Control in Using Built-In Java Controls in the WebLogic
Workshop Help.

Timer Control
Some transactions and events require a certain amount of time to complete. Others can run
indefinitely if not aborted, and eat up resources. Still others must occur at a specific time. The
Timer control provides the developer with a way to respond from code when a specified interval
of time has elapsed or when a specified absolute time has been reached.

A Timer control notifies your application when a specified period of time has elapsed or when a
specified absolute time has been reached. All Timer controls are instances of the
com.bea.control.TimerControl base class. Unlike most controls, a Timer control is declared
directly in a JWS file; there is no subclass created for a Timer control.

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/navWorkingWithJavaControls.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/database/navDatabaseControl.html

Other Ava i lab le App l i ca t i on Cont r o ls

Overview of WebLogic Server Process Edition 2-7

For more information, see Timer Control in Using Built-In Java Controls in the WebLogic
Workshop Help.

Web Service Control
A Web Service control makes it easy to access an external Web service from a WebLogic
Workshop application. You can create a Web Service control for any Web service that publishes
a WSDL (Web Service Definition Language) file. A WSDL file describes the methods and
callbacks that a Web service implements, including method names, parameters, and return types.
It also describes the protocols that a Web service supports.

For more information, see Web Service Control in Using Built-In Java Controls in the WebLogic
Workshop Help.

EJB Control
Enterprise JavaBeans (EJBs) are Java software components of enterprise applications. The Java
2 Enterprise Edition (J2EE) specification defines the types and capabilities of EJBs as well as the
environment (or container) in which EJBs are deployed and executed. From a software
developer’s point of view, there are two aspects to EJBs: first, the development and deployment
of EJBs; and second, the use of existing EJBs from client software. The EJB control makes it easy
to use an existing, deployed EJB from your application.

For more information, see EJB Control in Using Built-In Java Controls in the WebLogic
Workshop Help.

JMS Control
Java Message Service (JMS) is a Java API for communicating with messaging systems.
Messaging systems are often used in enterprise applications to communicate with legacy systems
or to provide communication lanes between business components running in different
environments or on different hosts. The JMS control enables applications built in WebLogic
Workshop to easily interact with messaging systems that provide a JMS implementation, such as
WebLogic Server or Message-Oriented Middleware systems (MOMs).

The JMS control enables WebLogic Workshop Web services to easily interact with messaging
systems that provide a JMS implementation. A specific JMS control is associated with particular
facilities of the messaging system. Once a JMS control is defined, Web services may use it like
any other WebLogic Workshop control.

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/timer/navTimerControl.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/service/navServiceControl.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/ejb/navEJBControl.html

Contr o l s : Se rv i ce Enablement

2-8 Overview of WebLogic Server Process Edition

For more information, see JMS Control in Using Built-In Java Controls in the WebLogic
Workshop Help.

Using Asynchronous Interfaces
Web applications, including Web services, typically use the Hypertext Transport Protocol
(HTTP) to provide communication between a client and a server (the application). HTTP is a
request-response protocol. In a request-response protocol, each operation consists of a request
message sent from the client to a server followed by a response message returned from the server
to the client. The server must always send a response for the operation to complete successfully.
Such requests are called synchronous because during the request the client is synchronized with
the server; the client cannot continue processing until the server responds or the request times out
(the client may time out if a response is not received within a specific period of time).

In a Web application, some of the operations the application performs may be long-running. If an
operation involves human interaction such as approval by a loan officer of a bank, the operation
could take days to complete. It would be a poor design if individual request-response cycles were
allowed to span days; such requests would unnecessarily engage resources on both the client and
server hosts.

With WebLogic Server Process Edition, you can design your application to be asynchronous,
which means that the application notifies the client when the response is ready. This allows the
client to continue performing other work while the application completes the requested operation.
It also keeps each request-response interaction between the client and application as short as
possible.

The following sections provide an overview of asynchrony and asynchronous interfaces:

Overview of Asynchrony

Using Asynchrony

Designing Asynchronous Interfaces

Using Polling as an Alternative to Callbacks

Designing Robust Asynchronous Interfaces

Overview of Asynchrony
Interactions between software components can be synchronous or asynchronous. An interaction
is synchronous if the caller of a method must wait for the method's work to complete before the

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/jms/navJMSControl.html

Using Asynchronous In te r faces

Overview of WebLogic Server Process Edition 2-9

caller can continue its processing. An interaction is asynchronous if the called method returns
immediately, allowing the caller to continue its processing without delay. An asynchronous
interaction typically initiates a computation but does not wait for the result to be available, which
means it must provide some way for the caller to obtain the results of the computation at a later
time.

The distributed nature of Web applications introduces unpredictable and sometimes very long
latencies, which means it may take an operation a long time to complete. If a business process
executing over the network involves human interaction at the back end, an operation can take on
the order of days. If all interactions over the Web were synchronous, clients with pending
operations could consume resources on their host systems for unacceptably long periods of time.

WebLogic Server Process Edition provides tools that make it easy for you to build asynchronous
Web services and Java controls that don't require clients to block execution while waiting for
results. WebLogic Server Process Edition provides multiple approaches for returning results to
your Web services' and Java controls' clients; you can choose the one that best suits each
situation.

Using Asynchrony
To create an asynchronous Web service, you provide one or more methods that accept requests
from clients that begin an operation but do not wait for the operation to complete. Such methods
typically return immediately, supplying the response portion of the initial request-response
interaction but not supplying the actual result of the requested operation. In an asynchronous
interface, you also provide a mechanism for the client to obtain the results of the long-running
operation when the results are ready. There are two ways to accomplish this:

Implement methods that initiate requests and define callbacks to send results.

Implement methods that initiate requests, methods that return request status (for example,
"pending" or "complete"), and methods the return results. This approach is referred to as a
polling interface.

Using Callbacks
When you define a callback for a Web service, you are defining a message for the Web service
to send to the client that notifies the client of an event that has occurred in your Web service. In
this design, the client first calls the Web service with a request. This request call typically returns
immediately (completing the first request-response interaction), meaning that the client does not
have to wait for the operation to be completed. The client can now continue doing other tasks.
When the Web service or Java control has finished processing the client's request, it sends a

Contr o l s : Se rv i ce Enablement

2-10 Overview of WebLogic Server Process Edition

callback, that is, it sends a message back to the client notifying it that the request has been
processed and/or providing the results. Note that a callback constitutes a second request-response
interaction in which the request (not the response) is sent to the client. To learn more about the
callback mechanism, see Using Callbacks to Notify Clients of Events in Getting Started: Using
Asynchrony to Enable Long Running Operations in the WebLogic Workshop Help.

To use a callback, two requirements must be met. First, if a Web service defines a callback the
Web service must be conversational. Conversational Web services keep track of the originator of
a request and can therefore send the callback to the appropriate caller. Secondly, the client must
be capable of receiving and interpreting the callback. If the callback is defined by a Web service,
then in essence the client must itself be a Web service since it must be capable of receiving
messages. It must also be capable of correlating an incoming message with a previous request that
it initiated. To learn more about conversations, see Designing Conversational Web Services in
Designing Asynchronous Interfaces in the WebLogic Workshop Help.

Using Polling
When the client of a Web service or Java control is not conversational, as is the case for Web
pages and non-conversational Web services, callbacks cannot be used to notify the client of
request completion. In addition, if the client of your Web service resides on a host that rejects
unsolicited incoming traffic or is protected by firewalls, the host will reject callbacks because
callbacks are, by nature, unsolicited, and the client will not receive the callback. To handle these
scenarios, Web services and Java controls must provide a polling interface. In a polling interface,
the client first calls the Web service or Java control so that an operation can be initiated. This
request call is synchronous but typically returns immediately, meaning that the client does not
have to wait for the operation to be completed. The client can now continue doing other tasks, but
must periodically call the Web service or Java control to check the status of its pending request.
When a periodic check shows that the request has been completed, the client then calls the Web
service or Java control to obtain the result. To learn more about implementing a polling interface,
see Using Polling as an Alternative to Callbacks.

Polling and callbacks are two different mechanisms to achieve asynchrony. Unless you are
absolutely certain that the clients of your Web service or Java control will always require only
one of these mechanisms, you may want to implement both approaches in order to handle all
situations. Doing so provides the convenience of callbacks to those clients who can handle them,
and a polling interface for clients who cannot accept callbacks.

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/progmodel/conUsingCallbacksToNotifyClientsOfEvents.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/converse/navMaintainingStatewithConversations.html

Using Asynchronous In te r faces

Overview of WebLogic Server Process Edition 2-11

Designing Asynchronous Interfaces
This section discusses the best practices for creating and using Web services and Java controls
with asynchronous interfaces. The first topic describes how to use polling as an alternative to
callbacks. Then, various design questions for designing Web services and Java controls that can
be called by both Web services and JSP (web) pages are answered.

Using Polling as an Alternative to Callbacks
Because callbacks are, by definition, separated from the original request to which the callback is
a response, they appear as unsolicited messages to the client's host. Many hosts refuse unsolicited
network traffic, either because they directly reject such traffic or because they are protected by
firewalls or other network security apparatus. Clients that run in such environments are therefore
not capable of receiving callbacks.

Another requirement for handling callbacks is that the client is persistent by being conversational.
If the client is a Web application, that is, a JSP page, or a non-conversational Web service, it
cannot handle callbacks.

In order to allow clients that can't accept callbacks to use your Web services, you can supply a
polling interface as an alternative. In a polling interface, you provide one or more methods that a
client can call periodically to determine whether the result of a previous request is ready.
Although the Web service or Java control will still be asynchronous in design, the interactions
with a client are handled with synchronous (unbuffered) methods.

A typical design of a polling interface will have these three methods:

A start_request method that the client will call to initiate a request. If the client calls a Web
service, the start_request method will start a conversation.

A check_status method that the client will periodically call to check the status of the
request. The method returns a boolean value indicating whether or not the request has been
handled. If the client calls a Web service, the check_status method will continue the
conversation.

A get_results method that the client will call to get the results of the request. The results
may for instance be returned as a String or an object of some kind, or null if the request
could not be processed successfully. If the client calls a Web service, the get_results
method will finish the conversation.

Notice that a client using a polling interface needs to periodically check the status of the request,
because the Web service or Java control cannot notify the client when its request has been
processed. Also notice that the three methods will not be buffered. The check_status and

Contr o l s : Se rv i ce Enablement

2-12 Overview of WebLogic Server Process Edition

get_results methods do not return void and cannot be buffered, while the start_request method
cannot be buffered because you need to ensure that this method has been handled before the
check_status is handled. (Remember that the relative handling order of buffered and unbuffered
methods is uncertain. For more information, see Using Buffering to Create Asynchronous
Methods and Callbacks in Getting Started: Using Asynchrony to Enable Long Running
Operations in the WebLogic Workshop Help).

There are several other ways to implement a polling interface. The following example taken from
the source code of the Conversation.jws Sample Web service shows one such variation:

public class Conversation {

/**

* @common:operation

* @jws:conversation phase="start"

*/

public void startRequest()

{

...

}

/**

* @common:operation

* @jws:conversation phase="continue"

*/

public String getRequestStatus()

{

...

}

/**

* @common:operation

* @jws:conversation phase="finish"

*/

public void terminateRequest()

{ }

}

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/progmodel/conUsingAsynchronousMethods.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/progmodel/conUsingAsynchronousMethods.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/samples/samConversationSample.html

Using Asynchronous In te r faces

Overview of WebLogic Server Process Edition 2-13

A client uses the startRequest method to initiate a request from a conversational Web service.
The client then calls getRequestStatus periodically to check on the result. As before, the client
is free to perform other processing between calls to getRequestStatus. The
getRequestStatus method returns an indication that the request is pending until the request is
complete. The next time the client calls getRequestStatus after the request is complete, the
result is returned to the client. The client then calls terminateRequest to finish the
conversation.

Designing Robust Asynchronous Interfaces
This section explores several typical design solutions that constitute a good design and create a
successful and robust Web service or Java control.

Do I Need an Asynchronous Interface?
The first question you might need to answer for a Web service or Java control is whether the
service or control needs to be asynchronous. There are certainly cases where a
non-conversational, synchronous service or control will suffice, especially when the functionality
it implements is relatively small, the request handling is relatively short, and the underlying
infrastructure supporting this Web service is solid; for instance if you are working on a fail-proof
intranet or if your control is called by a (synchronous) Web service on the same server. However,
if any of these factors are not true or uncertain at the time of design, you will want to make your
service or control asynchronous.

Do I Need to Use Callbacks?
Callbacks are a powerful approach to designing asynchronous Web services or Java controls,
relieving the client from periodically checking a request's status, as is required with polling.
Especially when it is unclear how long a request will take to process, or if processing times vary
wildly, using a callback is likely the most elegant implementation of asynchrony and loose
coupling. Using callbacks in combination with buffering of both methods and callbacks is
particularly effective in dealing with high-volume traffic. However, callbacks require that the
client is designed to accept incoming messages and is hosted in an environment that supports
message delivery.

Contr o l s : Se rv i ce Enablement

2-14 Overview of WebLogic Server Process Edition

Do I Need to Use Polling?
All asynchronous Web services and Java controls should provide a polling interface. If the Web
service or Java control is asynchronous, a polling interface is required by any client that cannot
accept callbacks; a polling interface is the only way such a client can obtain the results of
operations initiated by asynchronous method invocations. You should think of a polling interface
as the foundation interface of a Web service or Java control, and callbacks as "extra" functionality
that is convenient for clients who can handle callbacks.

The exception to this guideline is a Java control for which the only clients will be conversational
Web services or Java controls invoked by conversational Web services. Conversational
WebLogic Workshop Web services can always accept callbacks. However, Java controls should
be designed to be reusable. Assuming that the only clients a Java control will ever have are
WebLogic Workshop Web services limits the reusability of the Java control.

A Robust Web Service or Java Control
To create an asynchronous Web service or Java control that is robust and handles all situations,
it is recommended that you implement both a callback and a polling interface. Your design might
(among others) include the following methods:

A start_request_asynch buffered method that the client will call to initiate a request. The
method starts a conversation and notes that the callback mechanism will be used when the
results are ready.

A callback_results buffered callback that sends the results to the client when the request is
completed and finishes the conversation.

A start_request_synch buffered method that the client will call to initiate a request. The
method starts a conversation and notes that the polling mechanism will be used when the
results are ready.

A check_status unbuffered method that the client will periodically call to check the status
of the request. The method continues a conversation and returns a Boolean value indicating
whether or not the request has been completely handled.

A get_results unbuffered method that the client will call to get the results of the request.
The method finishes the conversation.

Other implementations of this design are possible. For a variation, see Using Polling as an
Alternative to Callbacks.

For more information, see Designing Asynchronous Interfaces in the WebLogic Workshop Help.

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/navAsynchronousInterfaces.html

Conve rsat ions

Overview of WebLogic Server Process Edition 2-15

Conversations
A single Web service may communicate with multiple clients at the same time, and it may
communicate with each client multiple times. In order for the Web service to track data for the
client during asynchronous communication, it must have a way to remember which data belongs
to which client and to keep track of where each client is in the process of operations. In WebLogic
Server Process Edition, you use conversations to uniquely identify a given communication
between a client and your Web service and to maintain state between operations.

Conversations are essential for any Web service involved in asynchronous communication. This
includes Web services that communicate with clients using callbacks or polling interfaces, and
Web services that use controls with callbacks.

The following sections provide more information on conversations:

Overview of Conversations

Correlating Messages with a Unique Identifier

Implementing Conversations

Designing a Web Service to Use Conversations

Overview of Conversations
A Web service and a client may communicate multiple times to complete a single task. Also,
multiple clients may communicate with the same Web service at the same time. Conversations
provide a straightforward way to keep track of data between calls and to ensure that the Web
service always responds to the right client.

Conversations meet two challenges inherent in persisting data across multiple communications:

Conversations uniquely identify a communication between a client and a Web service, so
that messages are always returned to the correct client. For example, in a shopping cart
application, a conversational Web service keeps track of which shopping cart belongs to
which customer.

Conversations maintain state between calls to the Web service; that is, they keep track of
the data associated with a particular client between calls. Conversations ensure that the
data associated with a particular client is saved until it is no longer needed or the operation
is complete. For example, in a shopping cart application, a conversational Web service
remembers which items are in the shopping cart while the customer continues shopping.

Contr o l s : Se rv i ce Enablement

2-16 Overview of WebLogic Server Process Edition

Correlating Messages with a Unique Identifier
When a client begins a conversation with a service, WebLogic Server Process Edition creates a
context in which to keep track of state-related data during the exchange. This new context is
identified by a conversation ID, a string that uniquely identifies the conversation. The Web
service uses this conversation ID to correlate messages to the client through each operation it
performs. The conversation ID ensures that a message sent or received by the Web service is
always associated with the appropriate client. You can see the conversation ID in action when
you test an asynchronous Web service in Test View.

For more information, see Overview: Conversations in Designing Conversational Web Services
in the WebLogic Workshop Help.

Implementing Conversations
Conversations maintain a Web service's state-related data and correlate communications between
the Web service, its clients, and other resources. You should implement conversations in any
Web service design that is asynchronous or involves multiple communications with a client or
Java control in connection with a single request.

Understanding Conversation Context
When a client calls a service operation that is annotated to start a conversation, WebLogic Server
Process Edition creates a conversation context through which to correlate calls to and from the
service and to persist its state-related data.

When a conversation starts, WebLogic Server Process Edition does the following:

Creates a context through which to maintain the scope of the conversation and associates it
with a conversation ID.

Starts an internal timer to measure idle time.

Starts an internal timer to measure the conversation's age.

When WebLogic Server Process Edition performs all of these tasks, it creates a context for the
conversation. Each piece of information—including the conversation ID, persistent data, idle
time and age—is part of the conversation's context.

The conversation ID is a particularly useful item in the conversation’s context. It attaches to each
communication, which helps each of the resources, Web services, and clients involved in the
conversation identify which communications belong to which conversation. To learn more about
conversation IDs, see Overview of Conversations.

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/converse/ovwWhatAreConversations.html

Conve rsat ions

Overview of WebLogic Server Process Edition 2-17

Designing a Web Service to Use Conversations
As you build services that support conversations, you should keep in mind a few characteristics
of conversations. First, WebLogic Server Process Edition automatically handles correlation
between two Web services that support conversations. In other words, if your Web service
supports conversations and calls the conversational methods of another Web service that supports
conversations, WebLogic Server Process Edition manages the conversation, including the
conversation ID, automatically.

However, the scope of conversation context is limited to the service itself. You cannot assume
that the state of another Web service is being persisted simply because your service calls one of
its methods during the course of a conversation. The other Web service is responsible for its own
state maintenance.

Also keep in mind that a Web service's state is only updated on the successful completion of
methods or callback handlers that are marked with the conversation phase attributes start,
continue, or finish. This excludes internal methods of your service, which are not operations
and so can not be conversational.

For more information, see Implementing Conversations in Designing Conversational Web
Services in the WebLogic Workshop Help.

For more information on conversations, see Designing Conversational Web Services in
Designing Asynchronous Interfaces in WebLogic Workshop Help.

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/converse/conDefiningConversationScope.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/converse/navMaintainingStatewithConversations.html

Contr o l s : Se rv i ce Enablement

2-18 Overview of WebLogic Server Process Edition

Overview of WebLogic Server Process Edition 3-1

C H A P T E R 3

Business Process Management:
Process Driven Services

WebLogic Server Process Edition allows you to model and execute business processes that span
multiple internal systems, external resources, and users. From the business process management
(BPM) perspective, the enterprise is a set of business services that are accessed through controls
that can be orchestrated to model a business process. Business processes allow you to orchestrate
the execution of business logic and the exchange of business documents among back-end
systems, users, and trading partners (systems and users) in a loosely coupled fashion.

The following sections provide further information on BPM and the Web services available as
business process resources:

Business Process Management Overview

Business Process Management Features

Web Services Available as Business Process Resources

Building a Business Process

Stateful and Stateless Processes

Business Process Management Overview
The business process engine enables you to easily create a graphical representation of your
business process, allowing you to focus on the application logic rather than on implementation
details. You create a graph of component nodes in your business process by dragging components
from the Business Process Palette and dropping them onto the Design View pane. Program
control is represented visually by these nodes (or shapes) and the connections between them.

Bus iness P rocess Management : Pr ocess D r i ven Se rv i ces

3-2 Overview of WebLogic Server Process Edition

Effectively, you create a graphical representation of your business process and its interactions
with clients and resources, such as databases, JMS queues, file systems, and other components.
The following figure provides an example of the visual business process editor.

Figure 3-1 Visual Business Process Editor

As you build a business process, WebLogic Workshop writes source code to a business process
file (a JPD file).

For more information on building business processes, see Guide to Building Business Processes
in Building Integrated Applications in the WebLogic Workshop Help.

Business Process Management Features
The following table details the key features of WebLogic Server Process Edition business process
management (BPM).

Table 3-2 BPM Key Features

Feature Description

Unified access to resources
through Controls

This enables you to view business activities as services and model the
business process to orchestrate integration and automation. Business
processes seamlessly interact with users, applications, back-end resources,
and resources inside and outside the firewall.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/navIntegration.html

Web Se rv ices Avai l ab le as Bus iness Pr ocess Resources

Overview of WebLogic Server Process Edition 3-3

Web Services Available as Business Process Resources
WebLogic Server Process Edition leverages Web services, asynchronous communication, and
XML messaging at the platform level. You can use these services across internal and external
integrations to simplify development and integration of loosely coupled and asynchronous
applications.

WebLogic Server Process Edition features native support for Web services, including Web
service security and reliable messaging. You can invoke Web services from within a WebLogic
Server Process Edition business process. You can also expose business processes as a Web
service and make them available as resources to other applications and application components.
The following figure shows a Web service invoked from a business process.

New simplified structured
business processes

The new simplified structure provides XML for the business process flow
and Java for the operations.

Graphical business process
editing for high-level
integration scenarios

This allows you to carry out message-based, transformation routing. As the
business processes are Java classes, the business process (JPD) files also
contain the metadata that describes the business process logic.
Additionally, you can perform two-way editing.

Support for Java code in
business process nodes

You are only a click away from Java coding.

Support for synchronous
and asynchronous business
process invocations

Messages (including synchronous starts) can be sent from external Java
clients via Remote Method Invocation (RMI).

Process implementation
optimization for
performance

The following processes are supported:

• Stateless synchronous

• Stateless asynchronous

• Stateful asynchronous

Table 3-2 BPM Key Features (Continued)

Bus iness P rocess Management : Pr ocess D r i ven Se rv i ces

3-4 Overview of WebLogic Server Process Edition

Figure 3-3 Web Services Invoked from a Business Process

For more information on Web services, see Getting Started with Web Services in Building Web
Services in the WebLogic Workshop Help.

Building a Business Process
WebLogic Server Process Edition’s business process management (BPM) functionality enables
the integration of diverse applications and human participants, as well as the coordinated
exchange of information between trading partners outside of the enterprise. Business Processes
allow you to orchestrate the execution of business logic and the exchange of business documents
among back-end systems, users, and trading partners (systems and users) in a loosely coupled
fashion.

The first step in the design of your business process is to build a graphical representation of the
business process that meets the business requirements for your project. You create a graph of
component nodes in your business process by dragging components from the Business Process
Palette and dropping them onto the Design View pane. Program control is represented visually
by these nodes (or shapes) and the connections between them. Effectively, you create a graphical
representation of your business process and its interactions with clients and resources, such as
databases, JMS queues, file systems, and other components.

For more information, see Guide to Building Business Processes in Building Integrated
Applications in the WebLogic Workshop Help.

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/getstarted/navGettingStartedWebService.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideIntro.html

Sta te fu l and S tat e less P rocesses

Overview of WebLogic Server Process Edition 3-5

Stateful and Stateless Processes
There are two types of business processes; Stateful and Stateless. A Stateful process is a business
process which is compiled into an entity bean and runs within the scope of one or more JTA
transactions. A Stateless process is a business process which is compiled into a Stateless session
bean and runs within one JTA transaction. By default, a business process is Stateless until you
add a blocking construct to the data flow, i.e. add a process that affects a transaction boundary.
For more information about transaction boundaries, see Transaction Boundaries in the Guide to
Building Business Process in the WebLogic Workshop Help.

The following sections provide more information on Stateful and Stateless processes:

Stateless Processes

Stateful Processes

Determining if your Business Process is Stateful or Stateless

Stateless Processes
Stateless processes support business scenarios that involve short-running logic and have high
performance requirements. A Stateless process is optimized for lower-latency,
higher-performance execution because it does not persist its state to a database. For example, a
Stateless process is one that receives a message asynchronously from a client, transforms the
message, and then sends it asynchronously to a resource using a control. Another example is a
process that starts with a message broker subscription, transforms a message, and publishes it to
another message broker channel. Such a process is analogous to the kinds of routing rules used
by traditional message brokering or message routing systems.

For information on working with variables in a Stateless process, see Building Stateless and
Stateful Business Processes in Guide to Building Business Processes in the WebLogic Workshop
Help.

Stateful Processes
Stateful processes support business scenarios that involve complex, long-running logic and
therefore have specific reliability and recovery requirements. A process is made Stateful by the
addition of Stateful nodes or logic that forces transaction boundaries. For more information on
transaction boundaries, see Transaction Boundaries in the Guide to Building Business Process in
the WebLogic Workshop Help.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTransaction.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTransaction.html

Bus iness P rocess Management : Pr ocess D r i ven Se rv i ces

3-6 Overview of WebLogic Server Process Edition

For example, a process that receives a message, transforms it, sends it to a business partner, and
then waits for an asynchronous response is Stateful because the act of waiting forces a transaction
boundary. This is necessary to ensure that:

The process can recover and continue execution without loss of data in the event of a
system outage during this waiting period.

System resources are used efficiently during this waiting period.

For information on working with variables in a Stateful process, see Building Stateless and
Stateful Business Processes in Guide to Building Business Processes in the WebLogic Workshop
Help.

Determining if your Business Process is Stateful or Stateless
The Start node Property Editor displays whether a business process is Stateless or Stateful. If a
process is Stateless, the Property Editor displays the message “Stateless = True” and the Start

node icon displays the icon. If a process is Stateful, the Property Editor displays the message

“Stateless = False” and the Start node icon displays the icon.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html

Overview of WebLogic Server Process Edition 4-1

C H A P T E R 4

Data Transformation

Data transformation is the mapping and conversion of data from one format to another. For
example, XML data can be transformed from XML data valid to one XML Schema to another
XML document valid to a different XML Schema. Other examples include the data
transformation from non-XML data to XML data.

Data transformation enables you to translate between XML, non-XML, and Java data formats,
allowing you to rapidly integrate heterogeneous applications regardless of the format used to
represent data. The data transformation functionality is available through a Transformation
Control, and data transformations can be packaged as controls and re-used across multiple
business processes and applications.

The following sections provide an overview of data transformation and introduce the key features
of data transformation:

Data Transformation Overview

Data Transformation Features

Data Transformation Overview
In a WebLogic Workshop business process, you can transform XML data using XQuery
expressions or eXtensible Stylesheet Language Transformations (XSLTs). WebLogic Server
Process Edition provides the functionality for executing existing XSLTs in business processes,
and also offers a new and easier path to data transformation through XQuery. XQuery is a
standards-based query language with the familiar simplicity of SQL-like expressions and an
easy-to-use data mapping tool.

Data Trans fo rmat ion

4-2 Overview of WebLogic Server Process Edition

WebLogic Server Process Edition features a powerful visual data mapping tool, the XQuery
Transformation Mapper, that enables you to easily generate complex transformations. The
following figure shows the XQuery Transformation Mapper. The mapper functionality of
WebLogic Workshop enables the conversion of data of different types. In addition, you can
assign untyped data to typed variables, include parameter names and custom Java classes in maps,
and display links implied from user-edited functions and structural relationships in maps.

Figure 4-1 XQuery Transformation Mapper

WebLogic Workshop generates a query from this graphical representation of a data
transformation. The generated query is invoked during run time by the business process to
transform data. The query is written in the XQuery language—a language defined by the World
Wide Web Consortium (W3C) that provides a vendor independent language for the query and
retrieval of XML data.

You can also import an existing XSLT into WebLogic Workshop for data transformation. An
XSLT is written in the eXtensible Stylesheet Language (XSL)—an older language defined by the
W3C that supports the use of stylesheets for the conversion of XML data. In WebLogic
Workshop, the preferred method for data transformations is queries in the XQuery language. Data
transformations using XSL transformations is supported primarily for legacy applications.

Data Trans fo rmat ion Fea tur es

Overview of WebLogic Server Process Edition 4-3

Data Transformation Features
The following table details the key data transformation features.

For more information on data transformation, see Guide to Data Transformation in Building
Integrated Applications in the WebLogic Workshop Help.

Table 4-2 Data Transformation Features

Feature Properties

Data transformation You can package transformations as controls that can be treated as
resources and reused across multiple processes and integration solutions.
Data transformation can take place between any of the following
input-output data types: XML Data, Non-XML Data, Java Primitives, and
Java classes. WebLogic Server Process Edition allows multiple-input
sources to a transformation and supports complex relations and constraints
including joins, unions, and grouping by key fields. WebLogic Server
Process Edition also enables transformation of XML grammars.

Integration with business
processes

WebLogic Server Process Edition enables the transformation of data in a
business process using transformations written in XQuery or eXtensible
Stylesheet Language Transformations (XSLT).

WebLogic Server Process Edition transforms data:

• Received as an incoming message into the business process.

• Before the business process sends an outgoing message.

• Inside the business process.

XQuery Transformation
Mapper

WebLogic Server Process Edition provides you with a visual modeling tool
for transformation between any combination of XML, non-XML, and Java
data formats. WebLogic Server Process Edition enables the visual
transformation of data from one format to another through a drag-and-drop
mechanism and engages the power of XQuery functions and operators.

Data transformation
tutorial

A step-by-step tutorial is provided that illustrates the use of business
process actions for data transformation.

Format builder tutorial A tutorial is provided that instructs you how to create metadata to describe
non-XML data.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html

Data Trans fo rmat ion

4-4 Overview of WebLogic Server Process Edition

Overview of WebLogic Server Process Edition 5-1

C H A P T E R 5

Process Monitoring and Management

This chapter presents an overview of the Process Configuration and Process Instance Monitoring
modules of the WebLogic Server Process Edition Administration Console.

You use the Process Configuration module to:

View process type information and locate specific processes for configuration.

View or update process type properties, such as the display name, tracking level, and
archiving policy.

View or update the security policies for a process.

Configure the activation time for a newly deployed process version, or rollback to a
previous version.

View an interactive or printable process type graph.

View or update the selectors used to dynamically set control attributes for a Process or
Service Broker control.

You use the Process Instance Monitoring module to:

View summary statistics that reflect system health.

View the summary or detailed status for selected instances.

View an interactive or printable process instance graph.

Terminate or suspend instances, resume previously suspended instances, or unfreeze frozen
instances.

Process Mon i to r ing and Management

5-2 Overview of WebLogic Server Process Edition

The following sections provide more information on the Process Configuration and Process
Instance Monitoring modules:

Process Configuration

Process Instance Monitoring

Process Configuration
You must be logged in as a member of the Administrators, IntegrationAdministrators, or
IntegrationOperators group to make changes to the configuration for a process or dynamic
control. IntegrationOperators cannot modify process security policies.

The following sections provide an overview of information related to business process
administration:

Managing Process Tracking Data

Process Security Policies

Service Level Agreements

Process Versions

Dynamic Controls

Managing Process Tracking Data
The data generated as process instances execute is initially stored in the run time database. The
monitoring information provided in the console is based on this data. In order to optimize
performance, it is important to keep the amount of tracking data stored in the run time database
to a minimum. This is accomplished by:

Capturing only the necessary data.

Archiving the data to an offline database if required for later analysis.

Purging the data from the runtime database when it is no longer needed for monitoring
from the console.

A combination of system and process properties control the management of tracking data.

For more information, see “Managing Process Tracking Data” in Process Configuration in
Managing WebLogic Integration Solutions.

http://e-docs.bea.com/wli/docs81/manage/processconfig.html

Process Conf igu ra t i on

Overview of WebLogic Server Process Edition 5-3

Process Security Policies
To ensure process security, the administrator can configure the following security policies for a
process:

Execution policy for process operations

The execution policy specifies whether the operations in the process are run as the start user
or the caller's ID:

– If start user is specified, each operation assumes the identity of the user that started the
process.

– If the caller's ID is specified, the operation after the call in assumes the identity of that
interrupting call.

In addition, the administrator configures whether or not a single principal is required. If a
single principal is required, then all incoming client requests must come from the same user.

Execution policy controls the identity used to access external or backend resources. It allows
the administrator to specify whether a process accesses an external system as the invoking
application or as an application that called into the process later. For example, suppose a
process listens for a message on a channel and then waits for a client request. The
administrator can set the execution policy to use the identity from the client request when the
process subsequently accesses SAP.

Process authorization policy

The role(s) authorized to invoke the process methods (client requests). All methods in the
process inherit the role(s) specified in the process authorization policy.

Note: If the process authorization policy is not defined, everyone is authorized.

Method authorization policy

The role(s) authorized to invoke the process methods (client requests). All methods inherit the
role(s) specified in the process authorization policy. Additional roles can be added to the
authorization policy for the method.

Callback authorization policy

The roles authorized to invoke the process callback.

Note: If the callback authorization policy is not defined, everyone is authorized.

To learn how to set the security policies, see “Updating Security Policies” in Process
Configuration in Managing WebLogic Integration Solutions.

http://e-docs.bea.com/wli/docs81/manage/processconfig.html
http://e-docs.bea.com/wli/docs81/manage/processconfig.html

Process Mon i to r ing and Management

5-4 Overview of WebLogic Server Process Edition

Service Level Agreements
A service level agreement (SLA) specifies a performance target for a process. It is typically an
internal or external commitment that a process will be executed within a specified period of time.

To assist you in achieving the SLA for a process, the WebLogic Server Process Edition
Administration Console allows you to set the following thresholds:

SLA threshold, which represents the commitment applicable to the process type (number
of seconds, minutes, hours, or days).

SLA warning threshold, which is a percent of the total SLA.

Process status relative to these thresholds is tracked for each process instance as follows:

When the elapsed time for a process instance reaches the warning threshold, a warning is
displayed on the Process Instance Summary and Detail pages. The amount of time
remaining until the SLA threshold will be reached is also displayed.

When the elapsed time exceeds the SLA set, a red flag is displayed. The amount of time
the SLA threshold has been exceeded is also displayed.

This ability to set SLA thresholds allows you to easily identify processes that do not execute
within the target time frame. You can then make the changes necessary to meet agreements
between suppliers and customers, or to achieve your own performance goals. To learn how to set
the SLA for a process, see “Viewing and Changing Process Details” in Process Configuration in
Managing WebLogic Integration Solutions.

Process Versions
When developers need to modify a deployed process, they must create a new process version and
then release it into production along with older versions. When multiple versions are deployed,
the system determines which version to use when creating new instances.

The administrator controls the release of a process version by:

Enabling or disabling a version.

Setting the activation time for a version.

When creating a new instance, the system selects the version with the most recent activation time
from among the enabled versions. (A disabled version is not available for selection.)

http://e-docs.bea.com/wli/docs81/manage/processconfig.html

Process I ns tance Mon i to r ing

Overview of WebLogic Server Process Edition 5-5

When an administrator activates a process by setting its activation time, instances currently
running are not affected. Only instances that are created after the new version becomes active are
created based on the new version.

If a newly activated version experiences problems, a rollback is easily accomplished by doing one
of the following:

Updating the activation time on the prior version.

Disabling the problem version. In this case, the enabled version with the most recent
activation date becomes the active version.

To learn more about how to enable or disable a version, or to configure the activation time, see
“Managing Process Versions” in Process Configuration in Managing WebLogic Integration
Solutions.

Dynamic Controls
Dynamic controls, which currently include the Service Broker and Process controls, provide the
means to dynamically set control attributes through a combination of look-up rules and look-up
values. This process is known as dynamic binding. In dynamic binding, the process developer
specifies look-up rules, and the administrator defines the look-up values. This design pattern
allows control attributes to be reconfigured for a running application, without redeployment.

The look-up or selector values are stored in the DynamicProperties.xml file, which is located
in the wliconfig subdirectory of the domain root. You can manage the values stored in the
DynamicProperties.xml file from the View Dynamic Control Properties page of the Process
Configuration module.

Dynamic binding changes made in the WebLogic Server Process Edition Console override both
configuration changes made in the Workshop development environment and static annotations.

For more information on Process Configuration, see Process Configuration in Managing
WebLogic Integration Solutions.

Process Instance Monitoring
The information displayed in the Process Monitoring module is based on the tracking data stored
in the run time database. A combination of system-level and process-level properties control the
capture and archiving of data. To learn more about how tracking data is managed, see Managing
Process Tracking Data.

http://e-docs.bea.com/wli/docs81/manage/processconfig.html
http://e-docs.bea.com/wli/docs81/manage/processconfig.html

Process Mon i to r ing and Management

5-6 Overview of WebLogic Server Process Edition

The following table lists the pages you can access from the Process Instance Monitoring module.
The tasks associated with each page are detailed.

For more information on Process Instance Monitoring, see Process Instance Monitoring in
Managing WebLogic Integration Solutions.

Table 5-1 Process Instance Monitoring Tasks

Page Associated Tasks

Process Instance Statistics • For each process type, the average elapsed time and a count of the
number of instances in each state (running, suspended, aborted, frozen,
terminated, completed, and above SLA) are displayed.

• Filter the list by URI or display name. Use ? to match any single
character or * to match zero or more characters.

Process Instance Summary • View a list of process instances. Instance ID, display name, process
label, start time, elapse time, and status (running, completed, frozen,
aborted, suspended) are displayed.

• Filter the list by process status (for example, running, frozen, or over
SLA), instance ID, or process label.

• Access the Process Instance Details page for a selected process.

• Set the number of instances to display per page.

• Suspend, Resume, Terminate, or Unfreeze process instances.

Advanced Search • Construct an advanced search using process properties such as status,
time started or completed, elapsed time, or SLA status.

System Health • View general indicators of system health and performance trends by
process type, including the process types that are taking the longest to
execute, those that have not completed within SLA thresholds, and
those that are failing to complete.

Process Instance Details • View process instance properties, including variable values for the
running instance, worklist tasks created by or associated with the
process, and business messages associated with the process.

• Suspend, Resume, Terminate, or Unfreeze the process instance.

• Access an interactive or printable process graph.

http://e-docs.bea.com/wli/docs81/manage/processmonitoring.html

Overview of WebLogic Server Process Edition index-i

Index

A
asynchronous interfaces

designing 2-11
designing robust interfaces 2-13

asynchrony
overview 2-8
using 2-9

B
bpm 3-1

key features 3-2
overview 3-1

business process editor 3-2
business process resources 3-3

C
callbacks 2-9
control

database 2-6
ejb 2-7
jms 2-7
timer 2-6
web service 2-7

conversations
designing a web service to use 2-17
implementing 2-16
overview 2-15
understanding context 2-16

D
data transformation

features 4-3
overview 4-1

database control 2-6

E
ejb control 2-7
e-mail control 2-2

F
file control 2-2

H
http control 2-4

I
integration controls 2-1

e-mail 2-2
file 2-2
http 2-4
mqseries 2-5
service broker 2-3
wli jms 2-3

J
java controls 2-6
jms control 2-7

M
messages

index-ii Overview of WebLogic Server Process Edition

unique identifier 2-16
mqseries control 2-5

P
polling 2-10
process

building a business 3-4
configuration 5-2
instance monitoring 5-5
security policies 5-3
versions 5-4

process configuration 5-2
process edition

component 1-13
options 1-8

process tracking data
managing 5-2

processes
stateful 3-5
stateless 3-5

S
service broker control 2-3
stateful process 3-5
stateless process 3-5

T
timer

control 2-6

W
web service

designing 2-17
web service control 2-7
wli jms control 2-3

X
XQuery transformation mapper 4-2

	Introduction to WebLogic Server Process Edition
	WebLogic Server Process Edition Key Features
	WebLogic Server Process Edition Installation
	The WebLogic Server Process Edition Mode
	WebLogic Server Process Edition Features
	WebLogic Server Process Edition Component

	Controls: Service Enablement
	Integration Controls
	File Control
	Email Control
	WLI JMS Control
	Service Broker Control
	HTTP Control
	MQSeries Control

	Other Available Application Controls
	Java Controls
	Database Control
	Timer Control
	Web Service Control
	EJB Control
	JMS Control

	Using Asynchronous Interfaces
	Overview of Asynchrony
	Using Asynchrony
	Designing Asynchronous Interfaces

	Conversations
	Overview of Conversations
	Implementing Conversations

	Business Process Management: Process Driven Services
	Business Process Management Overview
	Business Process Management Features
	Web Services Available as Business Process Resources
	Building a Business Process
	Stateful and Stateless Processes
	Stateless Processes
	Stateful Processes
	Determining if your Business Process is Stateful or Stateless

	Data Transformation
	Data Transformation Overview
	Data Transformation Features

	Process Monitoring and Management
	Process Configuration
	Managing Process Tracking Data
	Process Security Policies
	Service Level Agreements
	Process Versions
	Dynamic Controls

	Process Instance Monitoring

	Index

