
WebLogic Integration™

Tutorial: Building Your First Business
Process

Version 9.2
Document Revised: November 2006

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected by
copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS
REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and WebLogic are registered
trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform, BEA AquaLogic Enterprise
Security, BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA AquaLogic Interaction Collaboration, BEA
AquaLogic Interaction Content Services, BEA AquaLogic Interaction Data Services, BEA AquaLogic Interaction Integration
Services, BEA AquaLogic Interaction Process, BEA AquaLogic Interaction Publisher, BEA AquaLogic Interaction Studio, BEA
AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink,
BEA Kodo, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture
Leveraging Tuxedo, BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise,
BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration,
BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA WebLogic Mobility
Server, BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API,
BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Real Time, BEA WebLogic
RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic RFID Enterprise Server, BEA WebLogic
Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA Workshop for WebLogic
Platform, BEA Workshop JSP, BEA Workshop JSP Editor, BEA Workshop Struts, BEA Workshop Studio, Dev2Dev, Liquid
Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated Knowledge Transfer, AKT, BEA Mission
Critical Support, BEA Mission Critical Support Continuum, and BEA SOA Self Assessment are service marks of BEA Systems,
Inc.

All other names and marks are property of their respective owners.

i2 Building Your First Business Process

Building Your First Business Process 3

Contents

1. Tutorial: Building Your First Business Process
Tutorial Goals . 1-1

Tutorial Overview . 1-2

Steps in This Tutorial . 1-5

Part I. Build and Run a Simple Business Process

2. Step 1: Create Your Business Process Application

3. Working in the Design View
Functions and Shortcuts . 3-3

4. Step 2: Specify How the Process is Started

5. Step 3: Define Conditions for Alternate Paths of Execution

6. Step 4: Invoke a Web Service
What is the Tax Calculation Control? . 6-1

Design the Interaction Between Your Business Process and a Web Service 6-2

7. Step 5: Run Your Business Process

Part II. Call a Business Process Using a Process Control

4 Building Your First Business Process

8. Step 6: Invoke a Business Process Using a Process Control

Part III. Adding Looping Logic, Parallel Paths . . .

9. Step 7: Looping Through Items in a List
Understanding XML Schemas and For Each Nodes . 9-1

Design a For Each Loop in Your Business Process . 9-3

10. Step 8: Design Parallel Paths of Execution
Create a Parallel Node . 10-2

Create Logic to Assemble Price and Availability Data . 10-3

11. Step 9: Create Quote Document
Convert Price List to XML Quote Document . 11-2

Convert Availability List to XML Quote Document . 11-6

Combine Price and Availability Quotes. 11-8

12. Step 10: Write Quote to File System

13. Step 11: Send Quote From Business Process to Client

14. Step 12: Run the Request Quote Business Process

Building Your First Business Process 1-1

C H A P T E R 1

Tutorial: Building Your First Business
Process

WebLogic Integration’s business process management (BPM) functionality enables the integration of
diverse applications and human participants, as well as the coordinated exchange of information
between trading partners outside of the enterprise.

This tutorial provides a tour of the features available to design business processes in the BEA Workshop
graphical design environment. It describes how to create a business process that orchestrates the
processing of a Request for Quote.

Tutorial Goals
The goal of the tutorial is to provide the steps to create and test a business process using the graphical
environment provided in BEA Workshop. It includes:

Designing communication nodes in a business process—that is, creating the interface between
your business process and its clients and resources. Clients of business processes can be any
other resources or services that invoke business processes to perform one or more operations.

Designing the interactions with clients, including creating the methods that expose your business
process’s functionality.

Designing the interactions with resources using controls. WebLogic Platform controls make it
easy to access enterprise resources, such as databases, Enterprise Java Beans (EJBs), Web
services, and other business processes (including those that use RosettaNet and ebXML business
processes) from within your application.

Handling XML, non-XML, and Java data types in the business process—includes working with
XML schemas and transforming data between disparate data types using the Transformation tool.

1-2 Building Your First Business Process

Designing business processes to publish and subscribe to message broker channels.

Tutorial Overview
The business process in this scenario is started as a result of receiving a Request for Quote from clients.
The business process checks the enterprise’s inventory and pricing systems to determine whether the
order can be filled. Based on the shipping address provided by the client, the process also determines
whether sales tax should be added to the quote. Finally the business process compiles a single quote
document from the sales tax, price, and availability data, logs the quote by writing it to your file system
and sends it to the client.

Designing the Request for Quote Business Process
The following sequence summarizes the steps in the request for quote process and describes how the
business process is designed:

1. Receive a Request for Quote from a client.

You design a Client Request node in your business process to handle the receipt of an XML
document that contains the customer name, shipping address, and the identity and quantity of the
items for which the quote is requested. You design the business process so that it starts when it
receives a Request for Quote message from a client.

2. Evaluate a condition to determine whether sales tax should be included in the quote.

In this case, you design a Decision node to create different paths of execution based on the
evaluation of a condition. The Decision node includes, on one path, a call to a Web service that
calculates sales tax. Business Processes communicate with other services via controls. You
design a Control Send node to communicate with a Web service that calculates the sales tax for
your quote.

3. Process the items sent in the Request for Quote message.

The business process must calculate the price and determine the availability of the items and
quantities requested in the incoming XML message. This involves the creation of the following
nodes in your business process:

– For Each: For Each nodes represent points in a business process at which a set of activities
is performed repeatedly, once for each item in a list. For Each nodes include an iterator node
(on which a list of items is specified) and a loop (in which the activities to be performed for
each item in the list are defined)

– Parallel: Parallel nodes represent points in a business process at which a number of activities
are executed in parallel. In this case, you design a Parallel node containing two branches:

Tuto r ia l Goa ls

Building Your First Business Process 1-3

one to execute the events that calculate the price for the quote, the second to execute the
events that determine the availability of items for the quote.

– Control nodes: Control Send and Control Receive nodes on each path handle the
asynchronous exchange of messages between a business process and Web service resources
(via controls). A pricing Web service returns the price for the items in the Request Quote
document. An availability Web service returns information about the availability of the
requested items.

4. Compile price, availability, and tax information calculated by the business process into a quote
document.

Your business process calculates a price quote, availability information, and sales tax rate. You
design your business process to use Transformation controls that map the various pieces of data
to an XML document that is returned to the client as the quote.

5. Keep a record of the quote created by the business process.

Your business process uses a File control to write the quote to your file system.

6. Send a response, containing the quote, to the client.

You design a Client Response node to send a response to the client. The response contains the
data calculated by the business process.

Actors in the Tutorial Scenario
The actors in the tutorial scenario are represented in the following figure and described in the text that
follows the figure:

1-4 Building Your First Business Process

The actors in the scenario include:

The client of your RequestQuote service. Clients of RequestQuote are systems that create and
send Request for Quote messages. A Request for Quote message provides the business process
with a customer name, shipping address, and a list of items and quantity of those items required
by the client. The business process computes and returns a price and availability quote for the
items requested.

Your RequestQuote business process. The process receives a Request for Quote for specific
items and returns a price and availability quote for the items requested.

A tax calculation Web service designed to calculate the sales tax to include in the quote, based
on the shipping address provided by a client.

A tax calculation business process designed to calculate the sales tax. The tax calculation
business process serves the same purpose as the tax calculation Web service described in the
preceding item. The RequestQuote business process can call either the Web service or the
business process to request calculation of the sales tax for the quote.

Tuto r ia l Goa ls

Building Your First Business Process 1-5

A pricing Web service designed to calculate the price of the items requested by a client.

An availability Web service designed to determine the availability of the quantity of items
requested by a client.

Transformation controls: The business process in this case is started when it receives an XML
document from a client. Data is shared and exchanged between resources in your application
(clients, your business process, Web services and so on) in XML format. Transformation controls
are designed to support the mapping of disparate data formats used in your application.

A business process that validates the Request for Quote from clients (ValidateQuote.jpd). The
RequestQuote business process communicates with this ValidateQuote process via Message
Broker channels. In this way, the interaction between the business processes can be loosely
coupled and anonymous.

Steps in This Tutorial
This tutorial creates a business process that meets the following requirements: receives Request for
Quote messages from clients, starts the business process on receipt of the Request for Quote, validates
and processes the request, and sends the status of the Request for Quote to the client.

The tutorial is organized into parts:

Part I
In Part I, you learn how to create a new business process, specify how the process is started at
run time, and design a Decision node that includes asynchronous calls to a Web Service. Lastly,
you can run and test the business process you created. To get started, proceed to Part I, “Build
and Run a Simple Business Process”.

Part II
In Part II, you learn how to replace the asynchronous call to the Web service you designed in
Part I with an asynchronous call to another business process. You learn how to create a process
control and how the control’s framework makes it easy to change the interactions your business
process makes with various resources. To learn about the specific steps to complete this part, see
Part II, “Call a Business Process Using a Process Control”.

Part III
In Part III, you add more complex business logic to the business process you created in the
preceding parts. You learn how to create looping logic, design parallel processing nodes,
transform the price and availability data from untyped XML data to typed XML, use a File
control to write your quote to a file system, and use a Client Response node to return the quote
to the client invoking the business process. At the end of this part, you can run and test the

1-6 Building Your First Business Process

business process you built. To learn about the specific steps to complete this part, see Part III,
“Adding Looping Logic, Parallel Paths . . .”

Building Your First Business Process

Part I Build and Run a Simple
Business Process

Part I of the tutorial is comprised of Steps 1 through 5. In this part, you learn how to create a new
business process, specify how the process is started at run time, design a Decision node that includes
asynchronous calls to a Web Service, and run and test the business process you create in this first part.

Specifically, the steps in Part I include:

Chapter 2, “Step 1: Create Your Business Process Application”
Describes step-by-step instructions for creating a business process project in BEA Workshop.

Chapter 4, “Step 2: Specify How the Process is Started”
Describes how to design the start of your business process. In this case, provides a step-by-step
procedure to create a Client Request node, and add a method that receives the Request for Quote
message from the client, which in turn causes the business process to start.

Chapter 5, “Step 3: Define Conditions for Alternate Paths of Execution”
Describes how to design a decision node and its associated conditions in your business process.
The path of execution through of a decision node is based on the evaluation of conditions you
specify for the decision node.

Chapter 6, “Step 4: Invoke a Web Service”
Describes how to design your business process’s interaction with a Web Service control.

Chapter 7, “Step 5: Run Your Business Process”
At this point, you have created a business process that you can run and test using the BEA
Workshop Test Browser.

For information about how to work with the components and tools you use to design your
business process in the BEA Workshop graphical design environment, see Chapter 3, “Working in the
Design View.”

Building Your First Business Process 2-1

C H A P T E R 2

Step 1: Create Your Business Process
Application

In this step, you use WebLogic Workshop to create the application, in which you build the tutorial
business process (RequestQuote.java). The tasks in this step include:

To Create a Business Process Tutorial Application

To Begin the Design of Your Request for Quote Business Process

To Create a Business Process Tutorial Application

1. From the BEA Workshop for WebLogic menu, click File → New → Other. The Select a Wizard
dialog box is displayed.

2. Expand WebLogic Integration, and select Tutorial:Request Quote Process Application, and
click Next.

2-2 Building Your First Business Process

Figure 2-1 Select a Wizard dialog box

3. In the Request Quote Process Application dialog box, type the following:

a. In the Ear Project Name field, enter Tutorial_Process_Application_Ear.

b. In the Web Project Name field, enter Tutorial_Process_Application_Web.

c. In the Utility Project Name field, enter Tutorial_Process_Application_Utility.

d. Select the Add Weblogic Integration System and Control Schemas in Utility Project
checkbox to add the System schemas to the Schemas folder under the Utility project.

Building Your First Business Process 2-3

Figure 2-2 Creating Request Quote Application

4. Click Finish.

5. In the displayed Open Associated Perspective? dialog box, click Yes to switch from Workshop
Perspective to Process Perspective.

Figure 2-3 Open Associated Perspective

Note: Workshop is the default perspective of the 9.2 Workshop for WebLogic Integration. The
Process perspective contains all the required views like Node Palette, Data Palette, and so on.

2-4 Building Your First Business Process

Similarly, XQueryTransformation perspective contains views pertaining to XQuery
Transformation like Expression Functions, Expression Variables, Target Expression, and
Constraints.

6. The Tutorial Process Application is created and displayed in the Package Explorer pane.

Figure 2-4 Package Explorer pane

The Package Explorer pane displays the files and resources available in the application:

Web Project Name— A project with WebLogic Integration process facet added to it. Every
application contains one or more projects. Projects represent WebLogic Server applications. In
other words, when you create a project, you are creating a Web application. (The name of your
project is included in the URL that clients use to access your application.)

Building Your First Business Process 2-5

Utility Project Name—A project that contains the XML Schemas and the Message Broker
channel file used in the application.

Web Applications are J2EE deployment units that define a collection of Web resources such as
business processes, Web services, JSPs, servlets, HTML pages, and can define references to
external resources such as EJBs.

requestquote—contains the business processes, transformation, xq files

– FileQuote.java—A File control used by your Request for Quote business process to write a
file to the file system.

– PriceAvailTransformations.java—Contains data transformations used in
RequestQuote.java.

– RequestQuote.java—The completed business process. (The tutorial walks you through
rebuilding this business process. It is provided for reference, and allows you to run and test
the business process before you start rebuilding it.)

– RequestQuoteTransformation.java and TutorialJoin.java)—Contains data transformations
used in RequestQuote.java.

XQ files—An XQ file is created for each transformation method on a transformation file. XQ
files contain the queries (written in the XQuery language) called by the transformation files in
your project.

requestquote.services folder contains services with which your business process interacts. The
services folder includes Web services, Web Service controls, business processes and Process
controls.

testxml folder contains XML files which you can use to test the completed business process.

Note: If you want to run and test the RequestQuote.java provided for you in the application
folder, complete the steps in Chapter , “Step 12: Run the Request Quote Business Process.”

7. In this tutorial, you build the RequestQuote.java from scratch. Therefore, to proceed, you must
delete the following files from your Tutorial_Process_Application_WEB project:
– RequestQuote.java

– RequestQuoteTransformation.java including its XQ files:
RequestQuoteavailProcessor_avail.xq
RequestQuoteavailProcessorGetAvail.xq
RequestQuotepriceProcessor_returnPrice.xq
RequestQuotepriceProcessorGetPrice.xq
RequestQuotetaxCalculationRequestTaxRate.xq

2-6 Building Your First Business Process

Figure 2-5 Web Project Files

Note: To delete these files, put your mouse pointer in the Package Explorer tab, then press Shift
and select the files you want to delete. Right-click and select Delete. Click Yes in the Delete
confirmation dialog box. Delete only the files listed in this step. You need all other files as
you build the business process. Files are deleted from the Package Explorer pane (and
from your application folder in the file system).

To Begin the Design of Your Request for Quote Business Process
In this step you start the process of recreating the RequestQuote.java business process in the
requestquote folder.

1. In the Package Explorer pane, under the
Tutorial_Process_ApplicationWeb\src\requestquote folder, right-click the requestquote
folder.

2. Select New→Process from the menu that is displayed. The New Process File dialog box is
displayed.

Building Your First Business Process 2-7

Figure 2-6 New Process File Dialog Box

3. In the Name field, enter RequestQuote.

4. Click Finish.

The new RequestQuote.java file is created and displayed in the Design view (which for the
moment consists only of a Start and a Finish node).

Related Topics
Components of Your Application

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideCreateComponents.html

2-8 Building Your First Business Process

Building Your First Business Process 3-1

C H A P T E R 3

Working in the Design View

This section describes the components and tools you use to design your business process in the BEA
Workshop graphical design environment. Ensure that you are familiar with the following items—you
will use them throughout the tutorial.

Package Explorer Pane
Provides a hierarchical representation of the source files in your project, and provides a place
where you can save, open, add, and delete project files.

If the Package Explorer pane is not visible in BEA Workshop, choose
Window→Show View→Other→Java→Package Explorer from the BEA Workshop menu

Design view
The Design view is your primary working canvas. It displays the Business process as you design
it. You can drag and drop Nodes, Controls, variables into the Design view to design your
Business process. There are many views like Property View, Annotations View, Data Palette,
Node Palette, Server view, Problem View, Error log available, to help you in your tasks.

You can also right-click a node or a group of nodes in the Design View to access options—
different options are available depending on the process node you are designing. Options
available from the right-click menu include the following: Rename to rename the node, Add
Exception Path to add an exception path to a node or a group of nodes, Add Message Path to
add a message path to a node or group of nodes, Cut, Copy, Delete, and so on.

To learn more about groups of nodes in the Design View, see Grouping Nodes in Your Business
Process.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideGroups.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideGroups.html

3-2 Building Your First Business Process

Source
The Source displays the source code for the current business process. As you design your
business process, source code is written to the JPD file in keeping with the work you do in the
Design view. You can also design and edit your JPD file in the Source View. To learn more
about the Source view, see Business Process Source Code.

Node Palette

The Node Palette displays the nodes that you can add to your business process. Nodes represent
different types of logic in your business process.

If the Node Palette is not visible in BEA Workshop, choose Windows→Show View→ Node
Palette from the BEA Workshop menu.

As you drag a node from the Node Palette onto the Design view, targets are displayed on
your business process. As you drag the node near a target location, the target is activated .
When this happens, you can release the mouse button and the node snaps to the business process
at the location indicated by the active target. Note that if you create a node at an invalid location
(that is, if you create invalid logic in your business process flow) that node is marked with the
following icon in the Design view: Move your mouse pointer over the error icon to see a
message that describes the error.

Data Palette
The Data Palette includes the following folders: Variables and Controls. The Variables folder
displays the variables created in your business process, and allows you to create new variables.
The Controls folder displays the instances of controls in your business process and allows you
to add new instances.

Use the Add command on the Data Palette to create instances of variables and controls in your
project. You can also create variables and instances of controls in other ways as you work in the
Design view to create your process logic. As you work through the tutorial, you will employ the
various methods of designing controls and variables in your business processes.

If the Data Palette is not visible in BEA Workshop, choose
Windows→Show View→Data Palette from the menu bar.

Property Editor
Provides read and write access to the properties of a node or group of nodes selected in the
Design view.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideSource.html

Building Your First Business Process 3-3

If the Property Editor is not visible in BEA Workshop, choose
Windows→Show View→Properties from the menu bar.

Annotation Editor
Provides read and write access to the annotations.

If the Annotation Editor is not visible in BEA Workshop, choose
Windows→Show View→Annotations.

Functions and Shortcuts
You will use the following functions and shortcuts frequently throughout the tutorial:

 Save: Saves the file currently displayed in the Design or Source View.

Save All (CTRL+S): Saves all the files in your application.

 Build All: (CTRL+B): Build your application. This icon is not available when you select
Project→Build Automatically from the Workshop menu.

F2: To change the label (name) on a node in your business process, click F2 when your mouse is active
on the node in the Design view, enter the name you want to give the node, then click Enter on your
keyboard.

 Use the up and down arrows on your keyboard to navigate up and down between the nodes in your
business process.

 Use the right and left arrows on your keyboard to expand and collapse a group of nodes.

Related Topics
Using Keyboard Shortcuts

http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howShortcut.html

3-4 Building Your First Business Process

Building Your First Business Process 4-1

C H A P T E R 4

Step 2: Specify How the Process is
Started

In this step, you specify how your business process is started.

As Web services, business processes expose their functionality through methods, which clients invoke
to make requests. You can also create Process controls from business processes. In the case of Process
controls, other resources can interact with your business process via the controls interface. You learn
more about Process controls in Part II, “Call a Business Process Using a Process Control” of this
tutorial.

In this step, you design the Start node in your business process to receive a Request for Quote message
from a client—the receipt of this message is the trigger that starts the business process.You also create
a variable to hold the incoming Request for Quote message.

In the Design View, the interactions between a business process and a client application are represented
by Client Request and Client Response nodes. In this case, you add a Client Request node to your
business process and subsequently create the code on this node to handle the receipt of a message from
a client.

Complete the following tasks to design the Client Request node that starts your business process:

To Create a Start Node in Your Business Process

To Design Your Client Request Node

To Create a Start Node in Your Business Process

1. On the Package Explorer pane, double-click RequestQuote.java. Your RequestQuote business
process is displayed in the Design view.

4-2 Building Your First Business Process

You must add a node to this Start node to define the start method for your business process.

2. Double-click the Start node to display the Start node builder.

The node builder displays with the possible start methods.

3. In the node builder, select Invoked via a Client Request.

4. Click Close. The node builder closes and the empty node that was associated with the Start node
is now populated with a Client Request node.

To Design Your Client Request Node
Designing your Client Request node includes creating a method and parameters that your client uses
to trigger the start of your business process, and designing the logic for handling the receipt of a request
from a client.

1. Rename the Client Request node. To do so, click the Client Request node and press F2. Enter
Client Requests Quote as the name to replace Client Request for the node. Press Enter. Your
business process should now resemble the following figure:

Building Your First Business Process 4-3

2. In Design View, double-click the Client Requests Quote node. The node builder is invoked.

Note: Node builders provide a task-driven user interface that helps you design the communication
between a business process and its clients and other resources. To access the node builder
for any node, double-click the node in the Design view—a node builder specific for the
node you selected is displayed in-line in your business process.

As shown in the preceding figure, the node builder for a Client Request node displays the
following tabs to guide your design of the communication between a client and the business
process: General Settings and Receive Data.

– To Specify General Settings

– To Specify Receive Data

4-4 Building Your First Business Process

To Specify General Settings
The following steps describe how to specify the method exposed by your business process to clients—
clients invoke this method to start and make requests on your business process.

1. In the Method Name field on the General Settings tab, change the default method name from
clientRequest to quoteRequest.

Note: When you make your business process available as a service, the name you assign to a
method on a Client Request node is the name of the method that is exposed via the Web
Services Description Language (WSDL). In general, it is recommended that you define a
name that is representative of the service offered by your business process.

2. Specify a data type for the parameter to your quoteRequest method:

a. Click Add on the General Settings tab. A panel, which shows the data types is displayed:

The Request for Quote message from clients is an XML message. Therefore, we are
concerned with XML Types at this node.

b. If necessary, select XML. The panel is populated with a list of XML Schema files (Typed XML)
and a list of Untyped XML objects available in your project.

Note: The XML Schemas you need as you build the Quote Request business process in this
tutorial are provided in the Tutorial_Process_Application_UTILITY\Schemas
folder. The Schemas provided include QuoteRequest.xsd, PriceQuote.xsd,
AvailQuote.xsd, Quote.xsd and a system Schema: DynamicProperties.xsd.

Building Your First Business Process 4-5

For XML Schemas to be available to the services in your application, they must be located
in a project. Projects (Web, or Utility) are represented in the Package Explorer pane as
folders. To learn about creating projects in your applications and importing XML Schemas,
including system Schemas, into your application, see Importing Files into the Project.

In this step, we use an XML Schema, specifically QuoteRequest.xsd, to specify the
structure of documents that clients can send to start your business process.

c. In the list of XML Types, and expand upto QuoteRequest.xsd level, and click the + associated
with QuoteRequest.xsd.

A graphical representation of the XML Schema defined by QuoteRequest.xsd is displayed
in the node builder pane.

d. Click the quoteRequest node. (It represents the parent element in your XML document.) The
Type field is populated with the XML type:
org.example.request.QuoteRequestDocument.

Figure 4-1 Quote Request

e. In the Parameter Name field, replace the default parameter name (x0) with requestXML.

3. Click OK. The parameter specifications you made (parameter type is QuoteRequestDocument,
parameter name is requestXML) is displayed in General Settings tab in the node builder.

This step completes the specification of the method exposed to clients by your business process.
Messages from clients are expected to be typed XML. That is, the messages received from

http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemas.html

4-6 Building Your First Business Process

clients must contain XML that is valid against an XML Schema (in this case,
QuoteRequest.xsd).

Note: Example XML messages (QuoteRequest.xml and QuoteRequest_a.xml) that can be
received from a client are provided in the testxml folder in your project. You use them later
in the tutorial to test your business process.

The General Settings tab is updated to indicate that you successfully completed the specification
of a method name and parameters: indicates that a task is complete; indicates that a task is
not complete.

To Specify Receive Data

1. Click the Receive Data tab, which allows you to specify a variable that receives a Request for Quote
message from a client that is assigned at run time. By default, the Receive Data tab opens on the
Variable Assignment panel.

Note: Receive Data tabs have two modes:

– Variable Assignment—Use this mode when you want to assign the data received from the
client to a variable of the same data type.

– Transformation—Use this mode when you want to create a transformation between the data
assigned to a variable and that expected by the method parameter.

Note: Note that it is also possible to assign typed Non-XML (MFL) data directly to XML
variables in the Receive Data tabs; no transformation is necessary. A discussion of
Non-XML (MFL) data is outside the scope of this tutorial. To learn about MFL files and
the assignment of the data to business process variables, see Business Process Variables and
Data Types.

In this case, we use the Variable Assignment mode because we want to assign the XML
message received from the client directly to a variable of the same data type. In subsequent steps,
you create a variable of typed XML (QuoteRequestDocument) to which your process assigns
the incoming Request for Quote from clients.

2. Under Select variables to assign, click the arrow and select Create new variable...

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypes.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypes.html

Building Your First Business Process 4-7

 The Create Variable dialog box is displayed.

3. In the Create Variable dialog box:

a. In the Variable Name field, enter requestXML.

b. In the Select Variable Type field, in the list of XML Types, select the quoteRequest element
under QuoteRequest.xsd.

The Variable Type field is populated with org.example.request.QuoteRequestDocument.

c. Click OK. Your new variable is created and displayed in the Receive Data tab.

Note: The requestXML variable is also listed as an XML variable in Outline.

Both tabs in the node builder (General Settings and Receive Data) are marked complete .

4-8 Building Your First Business Process

4. Click Close. The Client Requests Quote node builder closes.

In Design view, note that the completeness icon associated with the Client Requests Quote node
changed from to indicating that the design of the node is complete.

5. From the Workshop menu, select File→Save All.

Related Topics
Components of Your Application

Designing Start Nodes

Working With Data Types

Interacting With Resources Using Controls

Calling Business Processes

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideCreateComponents.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideStartDesign.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypesWorking.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControls.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howJpdProxy.html

Building Your First Business Process 5-1

C H A P T E R 5

Step 3: Define Conditions for Alternate
Paths of Execution

This step describes how you design a common pattern in business processes—one that selects one path
of execution based on the evaluation of one or more conditions. You create this pattern by designing a
Decision node in your business process.

In this part of the tutorial scenario, the business process is designed to make a decision based on a value
that the business process extracts from the variable to which the XML message from the client is
assigned. You design a single condition, which is evaluated at run time to determine whether the
shipping address, specified in the incoming Request for Quote xml, requires that sales tax is calculated
for the quote. If the condition evaluates to true, then sales tax must be calculated and the flow of
execution proceeds along a branch that calls a Web service to calculate the sales tax. If the condition
evaluates to false, then no sales tax is required for the quote and the flow of execution proceeds along
the default branch. This step includes the following tasks:

To Add A Decision Node To Your Business Process

To Define a Condition in This Decision Node

To Add A Decision Node To Your Business Process

1. If the Node Palette is not visible in BEA Workshop, choose Windows→Show View→Node
Palette from the BEA Workshop menu. From the Select Perspective dialog box, select Process.
The Node Palette is now visible.

2. Click Decision in the Node Palette, then drag and drop the Decision node onto the business
process, positioning it directly below the Client Requests Quote node that you created in Step 2:
Specify How the Process is Started.

5-2 Building Your First Business Process

Note: As you drag a node from the Node Palette onto the Design view, targets appear on your
business process. As you drag the node near a target location, the target is activated and

the cursor changes to an arrow . When this happens, you can release the mouse button
and the node snaps to the business process at the location indicated by the active target.

The Decision node includes a node representing the condition (labeled Condition) and two paths
of execution: one for events to be executed in the case the condition evaluates to true and the
other (the Default path) for events to be executed in the case the condition evaluates to false.

3. Relabel Decision, Condition, and Default to identify the business tasks for this node more
clearly:

a. In the node’s Name box, place Decision, with Sales Tax Calculation Needed?, then press
Enter.

Note: If the Name box is not open, double-click Decision to open it.

b. To enter a label to replace Condition and identify the true path, double-click Condition and
enter Yes, then press Enter.

c. To enter a label to replace Default and identify the false path, double-click Default and enter
No, then press Enter.

The Decision node in your business process should now appear in the Design view as shown
in the following figure.

Building Your First Business Process 5-3

To Define a Condition in This Decision Node

1. Double-click the condition node to invoke the decision builder. It provides a task-driven user
interface that helps you design the decision logic.

In the decision builder, Variable is selected by default. Do not change the selection because, in
this case, you design the decision based on the value of an element in an XML document, which
is valid against an XML Schema.

2. Select an XML element on which the decision is made. To do so, complete the following steps:

a. In the decision builder, select a variable by clicking the for the Left Hand Expression.

A drop-down list of variables in your project is displayed. In this case, the variable you
created for the Client Request node at the start of your business process is displayed:
requestXML.

A representation of the XML schema for the QuoteRequest is displayed in the Select
Expression Node pane:

5-4 Building Your First Business Process

The elements and attributes of an XML document assigned to this variable are represented as
nodes in a hierarchical representation, as shown in the preceding figure. The schema in our
example (QuoteRequest.xsd) specifies a root element (quoteRequest), and child

elements: customerName, shipAddress, and a repeating element (identified by):
widgetRequest. The shipAddress element contains the following attributes: street,
city, state, zip.

b. In the Select Expression Node panel, click the state attribute.

This selects the node in the XML document that represents the element for which you want
to define the condition.

The Selected Expression field is populated with the following expression:
fn:data($requestXML/ns0:shipAddress/@state)

c. Click Select.

The Left Hand Expression field is populated with expression.

d. If necessary, select the = operator from the Operator list.

e. Enter “CA” in the Right Hand Expression field.

f. Click Add to add the condition you just created:

fn:data($requestXML/ns0:shipAddress/@state) = “CA”

This completes the design of the first condition on this node.

g. Select the expression in the condition list pane, as shown in the following figure:

Building Your First Business Process 5-5

h. Change the Join Type option to OR.

i. In the Right Hand Expression field, select “CA”, then change the entry to “California”.

j. The Add button changes to Update.

k. Select the arrow beside the Update button, then select Add from the menu.

l. Repeat the process of selecting the expression and then adding it to the condition list changing
the entry in the Right Hand Expression field to NJ and New Jersey consecutively.

The conditions you specify are listed in the condition list pane, as shown in the following
figure.

5-6 Building Your First Business Process

3. Click Close to close the decision builder.

The icon for the Condition node in the Design view has changed from to . It is a visual
reminder that the condition you defined on this node is based on the evaluation of XML.

This step completes the design of the condition that is evaluated when the flow transitions to the
Decision node at run time. Your condition logic is written in source code as an XQuery
expression—see the following section: XML Conditions in the Source Code.

You are ready to define the actions on the subsequent paths in the flow—proceed to
Step 4: Invoke a Web Service.

XML Conditions in the Source Code
As you define your XML conditions in the decision builder, BEA Workshop writes an XQuery
expression to the JPD file. Specifically, XQuery expressions are written in the Process Language
region of the JPD file.

To view the XQuery expression written in keeping with your work in the preceding section, click the
Source tab.

The condition defined by following the example in steps 2 through 9 in the preceding section creates
the following XQuery expression in the source code:

@com.bea.wli.common.XQuery(prolog=

"declare namespace ns0=\"http://www.example.org/request\";" +

Building Your First Business Process 5-7

"declare function cond_requestXML_1($requestXML as element()) as

xs:boolean {" +

" (((data($requestXML/ns0:shipAddress/@state) = \"CA\") or

(data($requestXML/ns0:shipAddress/@state) = \"California\"))

or (data($requestXML/ns0:shipAddress/@state) = \"NJ\")) or

(data($requestXML/ns0:shipAddress/@state) = \"New Jersey\")" + "};" +

"declare function get_requestXML1($requestXML as element())

as element()* { " +

"$requestXML/ns0:widgetRequest" +

"};",

Related Topics
Defining Conditions for Branching

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDecision.html

5-8 Building Your First Business Process

Building Your First Business Process 6-1

C H A P T E R 6

Step 4: Invoke a Web Service

By default, a Decision node consists of one condition; a path below the condition node, which
represents the path of execution followed when the condition, or set of conditions that evaluate to true;
and a path to the right of the condition, which represents the path of execution followed when the
condition evaluates to false (the default path).

Note: You can add additional condition nodes and paths to a Decision node, but in this scenario, we
need only one set of conditions, and two paths.

In this step, you learn how to add logic to one path of execution for your Decision node (Sales Tax
Calculation Needed?). Specifically, you learn how to design your business process to interact with
resources via controls. Your business process invokes a Web service and handles the data returned from
the Web service. This step describes the following topics:

What is the Tax Calculation Control?

Design the Interaction Between Your Business Process and a Web Service

What is the Tax Calculation Control?
Java Controls are server-side components managed by the Workshop framework. They encapsulate
external resources and business logic for use in Workshop applications. In other words, controls
represent the interfaces between your business process and other resources. The underlying control
implementation takes care of most of the details of the interaction for you. Controls expose Java
interfaces that may be invoked directly from your business process. You add an instance of a control to
your project and then invoke its methods.

6-2 Building Your First Business Process

In this scenario, the business process calls a Web service, which calculates and returns a sales tax rate.
Business Processes invoke Web services via Web Service controls. The Web service control
(TaxCalcControl.java) is created for you and included in your application’s project (specifically in
the Tutorial_Process_Application_WEB\requestquote\services folder, where
myapplications represents the location in which you created your tutorial application).

A complete description of how to create the TaxCalc.java Web service and its associated control
(TaxCalcControl.java) is beyond the scope of this tutorial. The goal of Step 4 in this tutorial is to
describe how to create the appropriate nodes in your business process, and design their communication
with this Web Service control.

To learn about creating Web services, and creating a control from your Web service, see Tutorial: Web
Services and Controls and Transactions.

Related Topics
Tutorial: Web Services

Buffering Methods and Callbacks

Transaction Boundaries

Design the Interaction Between Your Business Process and a
Web Service
This section describes how to create the activities that are performed when the condition defined in your
Decision node evaluates to true. The condition evaluates to true if the value of shipAddress/state
in the XML document received from a client, equals any one of the following: CA, California, NJ, or
New Jersey.

In this section, you learn how to invoke a Web service from your business process, and create a callback
handler to receive the data returned by the Web service. It includes the following tasks:

To Create an Instance of the Web Service Control in Your Project

To Call the Tax Calculation Web Service From Your Business Process

To Receive the Tax Rate Calculation From the Web Service

To Create an Instance of the Web Service Control in Your Project

1. If Design view is not visible, click the Design tab.

2. From the BEA Workshop menu choose Windows→Show View→Data Palette.

http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/tutorial/tutFirstWebServiceIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/tutorial/tutFirstWebServiceIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsTransact.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/tutorial/tutFirstWebServiceIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/guide/controls/service/conBufferingMethodsAndCallbacks.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTransaction.html

What i s the Tax Ca lcu la t ion Cont ro l?

Building Your First Business Process 6-3

3. Click on the Data Palette Controls tab. A drop-down list of controls that represent the
resources with which your business process can interact is displayed.

4. Select Local control, select TaxCalcControl - requestQuote.services.

5. Enter the Field Name in the Insert Control:TaxCalcControl - requestQuote.services dialog
box.

Note: You can also drag and drop the TaxCalcControl.java from the Package Explorer pane to
the Data Palette. The file is available at
Tutorial_Process_application_WEB/src/requestquote.services/TaxCalcContro

l.java.

To Call the Tax Calculation Web Service From Your Business Process
In this step, you create the logic to call the tax calculation control from your business process.

1. In the Data Palette, click the + beside the taxCalcControl. The list of methods available on the
taxCalcControl is displayed.

2. From the list of taxCalcControl methods, click the following method:

void requestTaxRate(String stateID_arg)

3. Drag and drop the method onto the business process, placing it on the Sales Tax Calculation
Needed? node immediately below the condition (Yes) node

A Control Send node is created representing the asynchronous call to your taxCalculation Web
Service control. The node is named according to the name of the method you dragged onto the
business process—in this case: requestTaxRate.

Note: This interaction is designed to be asynchronous, meaning that the business process can send
a request to the taxCalcControl from this node, and does not block waiting for a response
from the control. In other words, the business process can continue processing and receive
a response from the taxCalcControl service when that service completes the request.

6-4 Building Your First Business Process

4. Double-click the requestTaxRate node. The node builder opens on the General Settings tab. The
Control instance and target methods are already selected: taxCalcControl and void request
TaxRate(String stateID), respectively.

5. Click the Send Data.

By default, the Send Data opens on the Variable Assignment pane. The Control Expects field
is populated with the data type expected by the requestTaxRate() method exposed by the
taxCalcControl Web services: String stateID.

Note: As you learned in a previous step, Send Data tabs have two modes:

– Variable Assignment—Use this mode when you want to assign the data received from the
client to a variable of the same data type.

– Transformation—Use this mode when you want to create a transformation between the data
assigned to a variable and that expected by the method parameter.

In this case, you must switch to the Transformation mode because the data type required as
input to the taxCalcControl control is a Java String type, and the variable in which the Request
for Quote message (which includes the value of shipAddress/state) is stored, is of type XML
(that is, QuoteRequestDocument, which is valid against an XML Schema).

BEA Products provides a data mapping tool to map between heterogeneous data types. The data
transformations you create using the tool are stored in Data Transformation files. You can think
of transformation files as another resource with which your business process interacts via
controls. That is, when transformation files containing your data transformations are built, they
are built as controls. The controls expose transformation methods, which business processes
invoke to map disparate data types.

6. Click Transformation. A pane that allows you to define a transformation between your variable
and the expected data type of the parameter on the control method.

7. Click Select Variable to display the variables in your project, then choose requestXML
(QuoteRequestDocument)—that is, the variable you created for the Client Request node at the
start of your business process. Click Next.

8. In the next dialog box, click Create Transformation. The Transformation tool opens, which
displays a representation of the QuoteRequest XML document in the Source pane, and a String
in the Target pane.

What i s the Tax Ca lcu la t ion Cont ro l?

Building Your First Business Process 6-5

9. Click state in the Source pane and drag your mouse pointer over to String in the Target pane. A
line is drawn between the state and String elements in the XML Map pane. It represents the
transformation between the two data types.

10. Save the .xq file before switching to the process, and in the Package Explorer pane, and click the
RequestQuote.java tab.

Note: Creating the transformation in the preceding steps creates a Transformation control in your
project: A Java file, named RequestQuoteTransformation.java is created. An XQ file,
which contains the query (written in the XQuery language) for the transformation method
is also created. Both the Java and XQ files are displayed in the Package Explorer tab. Also,
an instance of the Transformation control was created and is represented as
transformations in the Data Palette (Controls folder).

11. Click Close to close the Request Tax Rate node builder.

This step completes the design of the Request Tax Rate node.

To Receive the Tax Rate Calculation From the Web Service
The interaction between the business process and the tax calculation control is asynchronous, which
means that the business process can continue performing other work while the tax calculation service
prepares its response. The tax calculation service notifies the business process when the response is
ready.

In the preceding section you designed a call to the tax calculation Web service (via a control). To add
the logic in your business process that receives the tax rate returned by the tax calculation control,
complete the following steps:

1. In the Data Palette, if needed, click the + beside the taxCalcControl to expand the list of methods
available on the taxCalcControl.

2. From the list of taxCalcControl methods, click the following method:

void returnTaxRate(float taxRate)

3. Drag and drop the method onto the business process placing it on the Sales Tax Calculation
Needed? node immediately below the requestTaxRate node:

6-6 Building Your First Business Process

A Control Receive node is created representing the asynchronous response from your Web
Service control.

The node is named according to the name of the method you dragged onto the business
process—in this case: returnTaxRate.

4. Double-click the returnTaxRate node. The node builder opens on the General Settings tab. The
Control instance and target methods are already selected: taxCalculation and
returnTaxRate(float taxRate), respectively.

5. Click the Receive Data tab. The tab opens with the Variable Assignment pane selected.

The Control Expects field is populated with the data type and name of the parameter returned
by the returnTaxRate() method on the taxCalculation control: float taxRate.

6. In the Variable Assignment pane, click the arrow in the field under Select variables to assign,
then select Create new variable.... The Create Variable dialog box is displayed.

7. In the Variable Name field, enter taxRate.

8. From the Simple tab, expand Primitive, and then select float.

9. In the Default value field, enter 0. This initializes the value of taxRate to zero.

What i s the Tax Ca lcu la t ion Cont ro l?

Building Your First Business Process 6-7

10. Click OK. Your new variable, to which the sales tax rate is assigned at run time, is created and is
listed as a Java variable in the Variables tab.

11. Click Close in the node builder. The Control Receive node builder closes.

This step completes the design of your returnTaxRate node and the design of the activities
performed by your business process when the condition on the Decision node evaluates to true.
In the Design view, your business process resembles that shown in the following figure:

6-8 Building Your First Business Process

Note that the Start node icon changed from to after you added the asynchronous call to
the Web Service control. The former icon indicates that your business process is stateless, and
the latter indicates that it is under state.

The icons reflect the specification for the stateless property for your business process. To see
whether the stateless property is defined as true or false, click the Start node icon and view
the Property Editor. To learn about stateful and stateless business processes, see Building
Stateless and Stateful Business Processes. To understand why the property changed from
stateless to stateful, see Transaction Boundaries.

Note: If the Property Editor is not displayed in BEA Workshop, choose
Windows→ShowView→Property Editor from menu bar.

12. From the Workshop menu, select File→Save All.

Note: No further design is required for this Decision node. If the condition evaluates to true, the
path of execution proceeds via the Yes path and the tax rate for the order is calculated. If the

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTransaction.html

What i s the Tax Ca lcu la t ion Cont ro l?

Building Your First Business Process 6-9

condition evaluates to false—no sales tax is required—the path of execution proceeds via
the No path and a value of zero is assigned to the variable taxRate. Remember, you
specified that taxRate is initialized to zero when you designed the taxRate variable in the
preceding section.

Related Topics
Interacting With Resources Using Controls

Creating and Testing Maps

Guide to Data Transformation

Building Stateless and Stateful Business Processes

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideControls.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappercreatemap.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideState.html

6-10 Building Your First Business Process

Building Your First Business Process 7-1

C H A P T E R 7

Step 5: Run Your Business Process

To run and test the business process that you have created, complete the following steps:

1. If WebLogic Server is not already running, from the BEA Workshop menu, choose Window→
Show View →Other →Server→ Servers, and click OK. A Server view is displayed in which the
Server and its state are shown.

2. In the Package Explorer, select and right-click on RequestQuote.java, click Run As, and click
Run On Server.

3. In the Define a New Server dialog box, select either a Choose an existing server option or
Manually define a server (if there is no server defined), and click Next.

4. In the BEA WebLogic v9.2 Server dialog box, to manually define a server, click Browse, and
select the samples integration domain directory from the product installation directory available at
BEA_HOME\weblogic92\samples\domains\integration, where BEA_HOME represents the
directory in which you installed WebLogic Platform. Click Finish.

The samples domain integration server is started, and the RequestQuote application is deployed
on it. When WebLogic Server is running, the following indicator is visible in the Servers view:

5. After the application is deployed, the Test Browser is displayed.

6. Click the Test Form tab. Open the file browser by clicking Browse beside the xml requestXML
(file value) field.

7. Select RequestQuote.xml from the requestquote\testxml folder in your project.

7-2 Building Your First Business Process

The QuoteRequest.xml file is available at the following location in your file system:
Tutorial_Process_Application_WEB\src\testxml\QuoteRequest.xml

8. Click the Test Form tab. In the Test Form page, click the button labeled with the method name
on your business process (quoteRequest) to start the business process.

The Test Form page refreshes to display a summary of your request parameters and the
responses from the Web service in the Message Log.

9. Click Refresh on the Message Log to refresh the entries in the log until this instance of the
business process completes running. Entries in the Message Log correspond to the methods on
your business process:

– The quoteRequest method that starts the business process.

– A call from your business process to the taxCalculation Web service:
taxCalculation.requestTaxRate

– A response from the service to your business process: taxCalculation.returnTaxRate

– The Instance ID—When the business process finishes, a message similar to the following is
displayed in the Message Log:

Instance instanceID is Completed.

where instanceID represents the ID generated when the quoteRequest method in your
business process was called.

Building Your First Business Process 7-3

You can click any of the methods in the Message Log to view the details of the call. For
example, if you click quoteRequest, the Service Request panel displays the XML message sent
by the client (you) when the method was called.

If you click taxCalculation.returnTaxRate, you can view the response from the taxCalculation
service—in this case, the tax rate was calculated, based on the input value (NJ) for the state
element in the test XML.

In the sample XML message you used, state="NJ". That is, the state to which the order is
shipped is NJ. This XML message is designed to cause the flow of execution through the Yes
branch on your Sales Tax Calculation Needed? node. The preceding figure shows the rate of
sales tax returned for this test XML message.
<returnTaxRate xmlns="http://www.openuri.org/">
<taxRate>0.08</taxRate>
</returnTaxRate>

By following these steps you ran and tested a simple business process, which contains a Start
node and a Decision node, and includes an asynchronous call to a Web service, via a control.

Subsequent steps in this tutorial build on the business process you have created so far.

Note About Additional Functionality in the Test Browser
The following additional links are available from the Test Form page in the Test Browser:

Graph
Click Graph to open the Process Graph tab in the Test Browser. The interactive instance
graph is a fully expanded version of the view provided in the Design View. The interactive
process graph requires Adobe SVG Viewer Version 3.0. The first time you open the Process
Graph tab, you will be asked if you would like to download the Viewer from the Adobe Web
site. You can also download the viewer directly from the Adobe Web site at
http://www.adobe.com/svg/viewer/install/main.html.

7-4 Building Your First Business Process

Note: This viewer is not available for some configurations that WebLogic Platform 9.2
supports. For details, please see “Browser Requirements for the Interactive Graph” in
Process Instance Monitoring at
http://edocs.bea.com/wli/docs92/adminhelp/processmonitoring.html in
WebLogic Integration Admin Console Online Help. For detailed information about the
operating systems and browsers WebLogic Platform supports, see WebLogic Platform
Supported Configurations at
http://edocs.bea.com/platform/suppconfigs/index.html.

As previously mentioned, the Process Graph is a graphical representation of your business
process and its execution path. The Process Graph highlights the node currently being executed.
When the instance of the business process completes, the path of execution followed in your test
is highlighted. In this scenario, the Yes path is executed—the No path is gray on the Process
Graph to indicate that this path was not taken during the execution of this instance of the
business process.

Note: Press Alt and drag the mouse pointer over the Process Graph to move and position it on
the Test Browser page. To zoom in, press Ctrl+click; to zoom out, press
Ctrl+Shift+click. Alternately, right-click on the Process Graph and select the Zoom In
or Zoom Out command from the drop-down menu.

You will review your running business process in the Process Graph in a later step in the
tutorial.

Note: Use the back and forward arrows to navigate between the pages in the BEA
Workshop Test Browser.

Monitor
Click Monitor to open the BEA Products Administration Console in a Web Browser. Login
using username = weblogic and password = weblogic. The BEA Products Administration
Console opens to the Process Instance Details page. The WebLogic Integration Administration
Console allows you to administer and manage your BEA Products applications. For example, if
you click View Statistics on the Process Instances navigation pane, you access a Process
Instance Statistics page. This page displays a summary of business process instances grouped
by the process type. To view the instances of a process type that ran or are running on your
server, click the process name. Processes instances are identified by their instanceID. Note that
the instanceID displayed for your RequestQuote business process matches the instanceID
displayed on the Message Log pane (see the preceding figures in this topic).

Monitor all RequestQuote.jpd processes
Click Monitor all RequestQuote.jpd processes at the top of the Test Form to open the BEA
Products Administration Console. Login using username = weblogic and password =

Building Your First Business Process 7-5

weblogic. When you use this link to open the Administration Console, it opens on the Process
Instance Summary page, which displays a summary of all the instances of business processes
that ran or are running.

Related Topics
Managing WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs92/manage/index.html

7-6 Building Your First Business Process

Building Your First Business Process

Part II Call a Business Process
Using a Process Control

Part II of the tutorial demonstrates how simple it is to interchange calls to different external
resources in your business process.

You learn how to design a call to another business process from your Request for Quote process.
Specifically, you create a new Process control and change the asynchronous call to the Web Service
you designed in Part I, making it instead an asynchronous call to another business process, via the new
Process control.

Proceed to Chapter 8, “Step 6: Invoke a Business Process Using a Process Control,” to complete Part
II of the tutorial.

Building Your First Business Process 8-1

C H A P T E R 8

Step 6: Invoke a Business Process
Using a Process Control

Process controls are used to send requests to and receive responses from other business processes in the
same domain using Java/RMI. This scenario demonstrates a typical use case for a Process control—to
call a subprocess from a parent business process.

For this part of the tutorial, we are going to change the design of the business process you created in
Part I to take advantage of a tax calculation service provided by a business process instead of using the
tax calculation Web service you initially used. You can do so by first creating a Process control from
the tax calculation business process. Then you simply change the Control nodes you designed in Part I
in such a way that, instead of communicating with the tax calculation Web service via the Web Service
control, they communicate with the tax calculation business process, via the new Process control.

The tasks in this step include:

To Create a Process Control

To Change the Control Send Node in the Request Quote Business Process to Interact With the
Process Control

To Change the Control Receive Node in the Request Quote Business Process to Interact With the
Process Control

To Test the Request Quote Process and its Call to the Tax Calculation Process

To Create a Process Control
The tutorial application provides you with a simple business process (TaxCalcProcess.java) that
calculates the sales tax for a Request for Quote. (See
\Tutorial_Process_ApplicationWeb\requestquote\services\TaxCalcProcess.java in the

8-2 Building Your First Business Process

Package Explorer.) In this step, you learn how to create a Process control for the
TaxCalcProcess.java business process.

Note: If the Data Palette is not visible in WebLogic Workshop, choose
Windows→Show View→Data Palette from the menu bar. Instances of controls already
available in your project are displayed in the Data Palette tab in the Controls folder.

1. Select the Controls folder, and click to display a drop-down list of controls that represent the
resources with which your business process can interact.

2. Point to Integration Controls, then select Process to view the Insert Control:Process dialog
box.

3. Enter taxCalcProcess as the name for the instance of the Process control you are about to create
in the Field Name field, and click Next.

4. In the Create Control dialog box, enter TaxCalcProcess in the Name field, and click Next.

5. In the Insert Control - Process dialog box, click Browse beside the Process field, then choose
TaxCalcProcess.java from the
/Tutorial_Process_Application_WEB/src/requestquote/services folder.

The Start Method field is populated with requestTaxRate, which is the start method for
TaxCalcProcess.java.

Building Your First Business Process 8-3

6. Click Finish. The Process control (TaxCalcProcess.java) is created and displayed in the
Applications tab. Also, an instance of the control (taxCalcProcess) is added to the Data Palette.
The Controls tab on the Data Palette should now resemble the following figure:

To Change the Control Send Node in the Request Quote Business Process to Interact With the Process
Control

1. In the Data Palette, click + beside taxCalcProcess under the Controls folder to expand the list of
methods on the control.

2. In Design view, select the following method:

void requestTaxRate (QuoteRequestDocument quoteRequest)

3. Drag and drop the method onto the requestTaxRate node in your RequestQuote.java. The
following message is displayed:
The Control node is already associated with a control method. Do you wish
to replace this control method?

4. Click OK. The requestTaxRate node changes to reflect the change in the type of control with
which it is associated. The node representation changes from:

5. Double-click the requestTaxRate node to open its node builder on the General Settings pane.

6. Confirm that taxCalcProcess is selected in the Control field and that the following method is
selected in the Method field:

void requestTaxRate(QuoteRequestDocument quoteRequest)

7. Click the Send Data tab to open the second pane in the node builder. The Variable Assignment
option is selected by default, and the Control Expects field is populated with
QuoteRequestDocument to indicate the format and type of the message expected by the tax
calculation process.

Note: The tax calculation process expects to receive a message of XML type
QuoteRequestDocument—the same type as the requestXML variable to which the XML
message sent from a client to the RequestQuote.java process is assigned. Unlike the
scenario for sending data to the tax calculation Web service in Chapter , “Step 4: Invoke a

8-4 Building Your First Business Process

Web Service,” no transformation is required on this node—you can create a direct variable
assignment.

8. Click the arrow in the Select variables to assign field, and select requestXML(QuoteRequest).

9. Click Close to close the node builder.

This step completes the procedure to remove the call from your Request for Quote business
process to a tax calculation Web Service—changing it to a call to a tax calculation business
process (via the Process control you created).

To Change the Control Receive Node in the Request Quote Business Process to Interact With the
Process Control

1. In Design view, from the Data Palette, select the following method on the taxCalcProcess:

void returnTaxRate(float salesTaxRate)

2. Drag and drop the method onto the returnTaxRate node in your RequestQuote.java.

The following message is displayed:
The Control node is already associated with a control method. Do you wish
to replace this control method?

3. Click OK. The returnTaxRate node changes to reflect the change in the type of control with
which it is associated. The node representation changes from.

4. Double-click the returnTaxRate node to open its node builder on the General Settings pane.

5. Confirm that taxCalcProcess is selected in the Control field and that the following method is
selected in the Method field:

void returnTaxRate(float salesTaxRate)

6. Click the Receive Data tab to open the second panel in the node builder. The Variable
Assignment option is selected by default, and the Control Returns field is populated with float
salesTaxRate to indicate the type and name of the parameter expected to be returned by the tax
calculation process.

Building Your First Business Process 8-5

7. Click the arrow in the Select variables to assign field, and select taxRate (float).

8. Click Close to close the node builder.

This step completes the procedure to remove the callback handler that receives a message from a
tax calculation Web Service—changing it to a callback handler that receives a message from a
tax calculation business process (via the Process control you created).

9. From the Workshop menu, select File→Save All.

To Test the Request Quote Process and its Call to the Tax Calculation Process
You can run and test the business process, which now contains an asynchronous call to another business
process (via the Process control) in the same way as you tested the business process you created in Part
I. To do so, follow steps 1 through 7, as described in Chapter , “Step 5: Run Your Business Process.”

When you start the operations in the Test Form page, the Message Log refreshes to display a summary
of the calls to, and responses from, the tax calculation business process.

Entries in the Message Log correspond to the methods on your business process:

The quoteRequest method that starts the business process.

A call from your RequestQuote business process to the taxCalcProcess business process:
taxCalcProcess.requestTaxRate. Note that in this case, the entire Request for Quote XML
document (contained in the requestXML variable) is passed to the subprocess. This is different
to the case in which your business process called the tax calculation Web service (Part I)—in that
case, only the state field from the Request for Quote XML document was passed to the Web
service.

A response from the taxCalcProcess business process to your RequestQuote business process:
taxCalcProcess.returnTaxRate. Note that instead of the tax rate being returned in a Web

8-6 Building Your First Business Process

services SOAP envelope, as it was in the return from the Web service in the business process you
created in Part I, the Process control returns the raw float value (0.08).

The Instance ID—When the business process finishes, a message similar to the following is
displayed in the Message Log:

Instance instanceID is Completed.

where instanceID represents the ID generated when the quoteRequest method in your business
process was called.

Note About Additional Functionality in the Test Browser
The following additional links are available from the Test Form page in the Test Browser:

Graph
Click Graph to open the Process Graph tab in the Test Browser. The interactive instance
graph is a fully expanded version of the view provided in the Design View. The interactive
process graph requires Adobe SVG Viewer Version 3.0. The first time you open the Process
Graph tab, you will be asked if you would like to download the Viewer from the Adobe Web
site. You can also download the viewer directly from the Adobe Web site at
http://www.adobe.com/svg/viewer/install/main.html.

Note: This viewer is not available for some configurations that WebLogic Platform 9.2
supports. For details, please see “Requirements for the Interactive Graph” in Process
Instance Monitoring at
http://edocs.bea.com/wli/docs92/adminhelp/processmonitoring.html in
WebLogic Integration Admin Console Online Help. For detailed information about the
operating systems and browsers WebLogic Platform supports, see BEA WebLogic
Platform Supported Configurations at
http://e-docs.bea.com/platform/suppconfigs/index.html.

As previously mentioned, the Process Graph is a graphical representation of your business
process and its execution path. The Process Graph highlights the node currently being executed.
When the instance of the business process completes, the path of execution followed in your test
is highlighted. In this scenario, the Yes path is executed—the No path is gray on the Process
Graph to indicate that this path was not taken during the execution of this instance of the
business process.

Note: Press Alt and drag the mouse pointer over the Process Graph to move and position it on
the Test Browser page. To zoom in, press Ctrl+click; to zoom out, press
Ctrl+Shift+click. Alternately, right-click on the Process Graph and select the Zoom In
or Zoom Out command from the drop-down menu.

Building Your First Business Process 8-7

You will review your running business process in the Process Graph in a later step in the
tutorial.

Note: Use the back and forward arrows to navigate between the pages in the BEA
Workshop Test Browser.

Monitor
Click Monitor to open the BEA Products Administration Console in a Web Browser. Login
using username = weblogic and password = weblogic. The BEA Products Administration
Console opens to the Process Instance Details page. The WebLogic Integration Administration
Console allows you to administer and manage your BEA Products applications. For example, if
you click View Statistics on the Process Instances navigation pane, you access a Process
Instance Statistics page. This page displays a summary of business process instances grouped
by the process type. To view the instances of a process type that ran or are running on your
server, click the process name. Processes instances are identified by their instanceID. Note that
the instanceID displayed for your RequestQuote business process matches the instanceID
displayed on the Message Log pane (see the preceding figures in this topic).

Monitor all RequestQuote.java processes
Click Monitor all RequestQuote.java processes at the top of the Test Form to open the BEA
Products Administration Console. (Login using username = weblogic and password =
weblogic.) When you use this link to open the Administration Console, it opens on the Process
Instance Summary page, which displays a summary of all the instances of business processes
that ran or are running.

To stop the Test Browser, you can simply close it, or return to BEA Workshop and click on the tool
bar.

This step completes Part II of the tutorial.

Related Topics
Process Control

Managing WebLogic Integration Solutions at
http://edocs.bea.com/wli/docs81/manage/index.html

http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsProcess.html

8-8 Building Your First Business Process

Building Your First Business Process

Part III Adding Looping Logic,
Parallel Paths . . .

Part III is comprised of Steps 7 through 12. You add more complex business logic to the business
process you created in Part I, “Build and Run a Simple Business Process” and Part II, “Call a Business
Process Using a Process Control”. You learn how to create looping logic, design parallel processing
nodes, transform the price and availability data from untyped XML data to typed XML, use a File
control to write your quote to a file system, and use a Client Response node to return the quote to the
client that invoked the business process. The final step in Part III is to run and test the business process
you built.

The steps in Part III include:

Chapter 9, “Step 7: Looping Through Items in a List”
Describes how to create the logic to extract a list of items from the Request for Quote document
received from a client and performs a set of activities repeatedly, once for each item in the list.

Chapter 10, “Step 8: Design Parallel Paths of Execution”
Describes how to design your business process to execute tasks in parallel. This step also
includes instructions about how to design your business process to interact with resources via
controls and transform the data exchanged with those controls, as required.

Chapter 11, “Step 9: Create Quote Document”
Describes how to transform the price and availability data from untyped XML data to typed
XML, and then combine the price and availability data, which is returned to the Request Quote
business process by a number of external services, to produce a single Quote document.

Chapter 12, “Step 10: Write Quote to File System”
Describes how to write business process data to a log using a File control.

Chapter 13, “Step 11: Send Quote From Business Process to Client”
Describes how to send the final quote message from the business process to a client.

Chapter 14, “Step 12: Run the Request Quote Business Process”
Describes how to compile and test the business process you created by following the steps in
Part III.

Building Your First Business Process 9-1

C H A P T E R 9

Step 7: Looping Through Items in a List

In this step, you create the logic to extract a list of items from the Request for Quote document received
from a client, and begin the work of designing the business process to determine the price and
availability of the items requested by the client.

A For Each node represents a point in a business process where a set of activities is performed
repeatedly, once for each item in a list. A For Each node includes an iterator node (on which a list of
items is specified) and a loop (in which the activities to be performed for each item in the list are
defined). An iteration variable holds the current element being processed in the For Each loop, for the
life of the loop.

This section includes the following topics:

Understanding XML Schemas and For Each Nodes

Design a For Each Loop in Your Business Process

Understanding XML Schemas and For Each Nodes
The business process you build in this tutorial is designed to start when it receives a Request for Quote
XML document from a client. The Request for Quote document must contain valid XML, that is, XML
valid against an XML Schema, specifically QuoteRequest.xsd. The QuoteRequest.xsd Schema is
located in your application at the following location:
Tutorial_Process_Application_WEB\Schemas.

In the preceding line, myapplications represents the location of your tutorial application.

9-2 Building Your First Business Process

Note: To make the Schemas in your project available in your business process, you must place them
in a Schemas folder in Utility project which is currently
Tutorial_Process_Application_UTILITY. A project is one of the types of folders project
that Workshop applications can contain. The projects added to your BEA Workshop
applications are represented in the BEA Workshop file hierarchy as child folders of your
application folder. To learn about creating and populating projects in your BEA Products
applications, see Related Topics.

XML Schemas in your application’s Schemas folder are compiled to generate XML Beans. In this way,
BEA Workshop generates a set of interfaces that represent different aspects of your XML Schemas.
XML Bean types correspond to types in the XML Schema itself. XML Beans provides Java
counterparts for all built-in Schema types, and generates Java counterparts for any derived types in your
Schema.

In Chapter , “Step 2: Specify How the Process is Started,” you created a variable (requestXML) to
which the Request for Quote document (which your business process receives from a client) is
assigned. When you work with such variables in the Design view, you work with a graphical
representation of the XML Schema that is associated with the variable. The following figure is a
graphical representation of the quoteRequest element in the QuoteRequest.xsd schema, against
which the Request for Quote document from clients is valid:

Note the following characteristics of the QuoteRequest.xsd Schema:

– The elements and attributes of the XML schema are represented as nodes. Note that
quoteRequest is a root element.

– The quoteRequest element specifies the following child elements: customerName,
shipAddress, and widgetRequest.

– The shipAddress element specifies the following attributes: street, city, state, and zip.

– The widgetRequest element is a repeating element (represented graphically by). In
other words, there can be one or more occurrences of the widgetRequest element in an

Unders tand ing XML Schemas and Fo r Each Nodes

Building Your First Business Process 9-3

associated XML document. The widgetRequest element, in turn, contains two elements:
widgetId and quantity.

The business process in this scenario dictates that each pair of widgetId and quantity elements
received in the Request for Quote documents from clients is processed. This processing begins with a
For Each node—each iteration through the For Each loop processes one of a set of widgetRequest
items.

In this section, you design the For Each node to first extract a list of items (the widgetRequest items)
from the requestXML variable, and then to perform an activity (or set of activities) repeatedly, once for
each item in the list.

Related Topics
How Do I: Create a Schemas Folder?

How Do I: Import Files into a Schemas Folder?

Design a For Each Loop in Your Business Process
Complete the following steps to create the logic that causes your business process to iterate over the
sequence of nodes in the Request for Quote XML document:

To Add a For Each Node to Your Business Process

To Select a Repeating XML Element Over Which to Iterate

To Design the Activities in Your For Each Loop

To Add a For Each Node to Your Business Process

1. Click For Each in the Node Palette.

2. In Design view, drag and drop the For Each node onto the RequestQuote business process
placing it immediately after the Sales Tax Calculation Needed? (Decision) node.

3. Press Enter to name the node For Each.

The Design view is updated to contain the For Each node:

http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasCreate.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasImport.html

9-4 Building Your First Business Process

To Select a Repeating XML Element Over Which to Iterate

1. In the Design view, double-click the For Each node to invoke its node builder.

2. In the node builder, click Select Variable. A drop-down list of variables (of typed XML) in your
project is displayed.

3. Select requestXML (QuoteRequestDocument). The requestXML variable contains the
repeating XML element over which you want to design the iteration logic. A representation of the
XML in the requestXML variable is displayed in the Select Node pane. The repeating element is
identified by .

4. In the Select Node pane, if not already selected, click +widgetRequest.

The Repeating Element and Iteration Variable fields are populated with the following data:

– Repeating element—Contains the following XPath expression, which when applied against
the incoming XML document, returns the set of repeating XML elements:

$requestXML/ns0:widgetRequest

Unders tand ing XML Schemas and Fo r Each Nodes

Building Your First Business Process 9-5

– Iteration Variable—Contains the name of an iteration variable: iter_forEach1. At run
time, the current element being processed in the For Each loop is assigned to the iteration
variable.

5. Click Close to close the node builder.

The iteration variable, iter_forEach1, is created and added to the list of variables in the Data
Palette. This variable is of XML type WidgetRequestDocument.WidgetRequest.

To learn how the iteration variable is used in the For Each loop, see To Design the Create
PriceList Node.

This step completes the design of the iteration logic for your For Each node. Note that in the
Design view, the node is updated graphically to reflect the work you did to define the condition:

 indicates that the design of the task on the node is complete, as compared to , which
indicates that the design is not complete. indicates that an XML query is defined on the
node.

To Design the Activities in Your For Each Loop
After you create the iteration logic in your For Each node, you must define the activity or set of
activities performed during each iteration over the items in the list you created.

You add activities to the For Each loop by creating nodes within it that support your business logic. In
the next step in this tutorial, you create a Parallel node, and design it so that the business process
executes two sets of activities in parallel: the request for price, and the determination of availability for
the items requested by the client. To learn how to design a Parallel node, see Step 8: Design Parallel
Paths of Execution.

Related Topics
Business Process Variables and Data Types

Looping Through Items in a List

Grouping Nodes in Your Business Process

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideDataTypes.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideForEach.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideGroups.html

9-6 Building Your First Business Process

Building Your First Business Process 10-1

C H A P T E R10

Step 8: Design Parallel Paths of
Execution

In the preceding step, you created a For Each loop to iterate over a set of repeating elements in a
Request for Quote document. In this step, you design the activities within the For Each loop. That is,
you design the activities that are performed for each iteration your business process makes through the
loop.

When your business process interacts with multiple different systems, as is the case during the price
and availability processing in this scenario, you can increase throughput in the business process by
executing tasks in parallel. You add Parallel nodes to your business process when you want to create
two or more such parallel branches of execution.

In our example scenario, the business process must determine both price and availability information
so that a quote can be prepared and returned to the client. This business process can benefit from
parallelism because it communicates with two external systems: one for the price calculation; one for
the availability calculation. The business process expects a response from each of the external systems.

The external systems can be any resource (other business processes, Web services, EJBs, databases, file
systems, and so on) that returns the information your business process requires. Your business process
interacts with the resources via controls. The tutorial uses two Web services: one returns the price for
each widgetID specified in the client’s request document; a second service returns availability
information, based on the widgetID and the quantity specified in the request document. The controls
with which your RequestQuote business process interacts are provided for you in your project folder:
\Tutorial_Process_ApplicationWeb\requestquote\services. The controls are
PriceProcessorControl.java and AvailProcessorControl.java.

10-2 Building Your First Business Process

Related Topics
Understanding Parallel Execution in Your Business Process

Create a Parallel Node
To Add A Parallel Node to Your Business Process

1. Make sure that your business process (RequestQuote.java) is displayed in Design View.

2. In Design view, select Parallel in the Node Palette, then drag and drop the Parallel node
onto the business process, placing it inside the For Each loop.

3. Press Enter to name the node Parallel.

The Design view is updated to contain a representation of the Parallel node as shown in the
following figure:

4. Change the names of the branches contained within the Parallel node to identify the activities that
your business process executes in parallel:

– Double-click the label on the left Branch and enter Get Price, then press Enter.

– Double-click the label on the right Branch and enter Get Availability, then press Enter.

Note About Join Conditions

By default, Parallel nodes specify an AND join condition, represented by on the Parallel branch
lines. In this case, the activities on all branches must complete before the flow of execution proceeds to
the node following the parallel node.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideParallelUnderstand.html

Building Your First Business Process 10-3

In the case of your RequestQuote business process, because you want both branches of the Parallel
node to complete, do not change the default AND join condition.

If an OR join condition is specified, when the activities on one branch complete the execution of
activities on all other branches terminates, and the flow of execution proceeds to the node following the
Parallel node. (The OR join condition is represented as in the Design View.)

In Design View, you can view and edit the join condition property in the Property Editor. Click
or (at the top of the Parallel node) to display the properties of the Parallel node in the Property
Editor. The Property Editor for your Parallel node should resemble that shown in the following
figure:

Create Logic to Assemble Price and Availability Data
In this section, you learn how to:

Invoke the price and availability services (via controls) from the parallel branches you created.

Design callbacks on your branches to wait for and handle the responses from the controls.

Construct an XML document, to which the response data from controls is appended for each
iteration through the For Each loop. (Review your business process in Design View: your
Parallel node is within the For Each loop, meaning that the flow of execution is through the
Parallel node for each iteration through the loop.)

To design the Parallel node to interact with the price and availability Web services, complete the
following tasks:

To Create Instances of the PriceProcessor and AvailProcessor Controls in Your Project

To Add Control Nodes to Your Business Process

To Design the Activities on the Get Price Branch

To Design the Activities on the Get Availability Branch

10-4 Building Your First Business Process

To Create Instances of the PriceProcessor and AvailProcessor Controls in Your Project
The PriceProcessorControl.java and AvailProcessorControl.java are provided for you in
the Data Palette. The controls are available in the
Tutorial_Process_Application_WEB\src\requestquote.services folder in the Package
Explorer. The goal of this section is to describe how to create the appropriate controls in your
application, and then design the communication between your business process and these controls.

1. Click on the Data Palette Controls tab to display a list of controls that represent the resources
with which your business process can interact.

2. Choose Local Controls, and select priceProcessorControl - requestquote.Services. The Insert
Control dialog box is displayed.

3. Enter priceProcessorControl in the Field Name field, and click Finish.

4. Similarly, choose Local Controls, and select availProcessorControl -
requestquote.Services.The Insert Control dialog box is displayed.

5. Enter availProcessorControl in the Field Name field, and click Finish.

The priceProcessorControl and availProcessorControl Web Service control instances are
added to the Data Palette:

To Add Control Nodes to Your Business Process
You learned in Parts I and II that you can create Control nodes in your business process by dragging
the methods from the appropriate control on the Data Palette onto the business process in the Design
view. You can also create Control nodes by selecting Control Send, Control Receive, or Control
Send with Return from the Node Palette and dragging them onto the business process. You
subsequently bind the appropriate methods to the control node you created. In this section you will use
the latter approach.

Add the following nodes from the Node Palette to each branch on your Parallel node:

Control Send

Building Your First Business Process 10-5

Control Receive

Control Send with Return

In Design view, select each of the listed nodes, then drag and drop the node onto the business process,
placing the nodes on the Parallel branches until you create a Parallel group as shown in the following
figure:

In this way, each branch is designed for the following flow of execution:

1. Call a resource (via a control) from the Control Send node.

2. Wait for a response from the control at the Control Receive node.

3. Make a synchronous call to a control at the Control Send with Return node. At this node you
call a Transformation that constructs an XML document. The response data from controls is
appended to this XML document for each iteration through the For Each loop.

To Design the Activities on the Get Price Branch

1. Rename the nodes on the Get Price Branch (in the order in which they are executed) as follows:
Request Price, Receive Price, Create PriceList.

2. Complete the following tasks:

10-6 Building Your First Business Process

To Design the Request Price Node

To Design the Receive Price Node

To Design the Create PriceList Node

To Design the Request Price Node

1. Double-click the GetPrice node to open its node builder. The node builder opens on the General
Settings tab.

2. Click the arrow beside the Control field to display a drop down list of the instances of the
controls in your project and select priceProcessorControl.

The Method panel is populated with a list of the asynchronous send methods you can invoke on
the priceProcessorControl.

3. Select the following method: void getPrice(int itemID)

4. Click Send Data to open the second tab in the node builder.

By default, the Send Data tab opens on the Variable Assignment pane. (The Control Expects
field is populated with the data type expected by the getPrice() method exposed by the
priceProcessor Web service: int itemID.)

Note: The priceProcessor service takes the ID of the item requested as input, and returns the price
of the widget.

5. Select Transformation to switch modes in the Send Data tab.

Note: In this case, you must switch modes because the data type required as input to the
priceProcessorControl is int, and the iter_forEach1 variable, which holds the value of
widgetId in the For Each loop, is of type XML (WidgetRequestDocument is valid
against an XML Schema).

The iteration variable was created for you when you specified the repeating element over
which the For Each loop iterates. At run time, it holds the current widgetRequest
element—that is, the one currently being processed in the For Each loop. (See Design a
For Each Loop in Your Business Process.)

6. Click Select Variable to display the variables in your project, then choose iter_forEach1
(widgetRequest).

Building Your First Business Process 10-7

7. Click Create Transformation.

The Transformation tool opens and displays a representation of the iter_forEach1
(widgetRequest) variable in the Source pane, and an int in the Target pane.

8. Click widgetID in the Source pane and drag your mouse over to int in the Target pane. A line is
drawn between the widgetID and int elements in the map pane. It represents the transformation
between the two data types.

As you draw the line in the map pane, BEA Workshop will display the following warning:

The datatype of the source node: [widgetId] and target node: [int] do not
match, a type conversion will be applied.

Note: Creating this transformation creates a new method under the
RequestQuoteTransformation.java already created in your project and prebuilt for
you in the tutorial application. It is available in the
Tutorial_Process_Application_WEB\requestquote folder. A new XQ file called
RequestQuotepriceProcessorControlgetPrice.xq, which contains the query for this
transformation method, is also created. See Note About Transformations.

9. In the Navigation pane, click RequestQuote.java to return to your process.

10. To close the Request Price node builder, click Close.

This step completes the design of the Request Price node.

To Design the Receive Price Node

1. Double-click the Receive Price node to open its node builder. The node builder opens on the
General Settings tab.

2. Click the arrow beside the Control field to display a list of the instances of controls in your
project and select priceProcessor.

The Method panel is populated with a list of the asynchronous receive methods on the
priceProcessor control.

10-8 Building Your First Business Process

3. Select the following method from the list:

void returnPrice(int itemID_arg,float price_arg)

4. Click Receive Data to open the second tab in the node builder.

The Control Returns field is populated with the data types returned by the returnPrice(int
itemID, float price) method on the priceProcessor Web service.

The PriceProcessor service takes the itemID (an int) as input and returns an int and a
float—containing values for the itemID and the price, respectively.

In this case, you must switch from the Variable Assignment mode displayed in the preceding
figure to the Transformation mode because you want to assign the data returned by the
priceProcessor service to a variable of type XML. To do so, your business process must
transform the Java data types returned from the priceProcessor service to typed XML.

5. Click Transformation. The Receive Data tab is displayed as shown in the following figure:

6. Click Select Variable, then Create new variable.... The Create Variable dialog box is
displayed.

7. In the Variable Name field, enter price.

8. In the Select variable Type pane, ensure that XML is selected.

9. Click the + beside priceQuote.xsd in XML Types to expand the list from the Typed folder,
then select priceRequest from the list. The Variable Type field is populated with
org.example.price.PriceRequestDocument.

Building Your First Business Process 10-9

10. Click OK. The Create Variable dialog box closes and the new variable is displayed in the
Receive Data tab. It is also listed as an XML Type variable in the Data Palette.

11. On the Receive Data tab, click Create Transformation. The Transformation tool opens and
displays a representation of the int (itemID) and float (price) in the Source pane, and the price
variable in the Target pane.

12. Map the elements in the Source pane to the elements in the Target pane, as shown in the
following figure:

itemID to widgetId
price to price

Note: Creating this transformation creates a new method under the
RequestQuoteTransformation.java already created in your project and prebuilt in the
tutorial application. It is available in the
Tutorial_Process_Application_WEB\requestquote folder. A new XQ file, which
contains the query for this transformation method, is also created.

13. To return to your business process, click RequestQuote.java in the Package Explorer.

14. To close the Receive Price node builder, click Close.

This step completes the design of the Receive Price node.

To Design the Create PriceList Node
In this step, you use a Transformation control (PriceAvailTransformations) provided in your project
to append the price data returned from the priceProcessor control (on each iteration through the For
Each loop) to a single variable.

Previously, when you designed nodes in the business process, you created transformation methods on
a Transformation as necessary to map the data your business process sent to or received from clients

10-10 Building Your First Business Process

and controls. In this case, you also use a Transformation, but in a different way. In the case of the
Create PriceList node, the data is not sent to a client or control. Instead, the Transformation takes, as
input from your business process, typed XML data and returns untyped XML (XmlObject). The
business process must append the data returned on every iteration of the For Each loop to a single
variable, thus creating a repeating sequence of XML data. A variable that can hold this type of repeating
sequence of XML data in a For Each loops is of type XmlObjectList. Both typed and XmlObject
variables can be appended to variables of type XmlObjectList. (See Note About Using the
XmlObjectList Data Type.)

Note: This transformation is prebuilt for you in the tutorial application. It is available in the
Tutorial_Process_Application_WEB\requestquote folder.

A description of how to create the PriceAvailTransform.java file is beyond the scope
of this tutorial. To learn more about Transformations, see Note About Transformations.

To Create an Instance of the PriceAvailTransformations Control in Your Project

1. If the Data Palette pane is not visible in BEA Workshop, choose
Windows→Show View→Data Palette from the menu bar.

2. On the Package Explorer pane, click the priceAvailTransformations.java file.

3. Drag the PriceAvailTransformations.java file from the Package Explorer pane onto the
Controls pane of the Data Palette. The instance of your control (priceAvailTransformations) is
created and displayed in the Data Palette as shown in the following figure:

To Design the Interaction of the Create PriceList Node With the Transformation

1. In the Data Palette, expand the priceAvailTransformations instance, as shown in the preceding
figure, then click the following method:

XmlObject convertPriceXMLtoXMLObj(org.example.price.PriceRequestDocument
_priceRequestDoc)

Building Your First Business Process 10-11

2. Drag the method from the Data Palette and drop it on the Create PriceList node in the Design
view. The Create Price List node changes to reflect the binding of the method, as shown in the
following figure:

3. Double-click the Create PriceList node to open its node builder. The node builder opens on the
General Settings tab.

4. Confirm that the method you dragged onto the node is selected:

XmlObject convertPriceXMLtoXMLObj(org.example.price.PriceRequestDocument
_priceRequestDoc)

5. Click Send Data to open the second tab in the node builder.

The Control Expects field is populated with the data type and name of the parameter expected
by the convertPriceXMLtoXMLObj() method on the priceAvailTransformations control:
PriceRequestDocument _priceRequestDoc.

6. Click the arrow on the field under Select variable to assign to display a list of variables, then
select price (PriceRequestDocument).

In this case, note that the data type of your price variable (PriceRequestDocument) matches
that of the data expected by the priceAvailTransformations.

7. Click Receive Data to open the third tab in the node builder.

The Control Returns field is populated with the data type of the parameter returned by the
convertPriceXMLtoXMLObj() method on the priceAvailTransformations control: XmlObject.

An XmlObject is a Java data type that specifies data in untyped XML format. In other words,
this data type represents XML data that is not valid against an XML Schema.

8. Click the arrow on the field under Select variable to assign and select Create new variable
The Create Variable dialog box is displayed.

9. In the Variable Name field, enter priceList.

10. If necessary, in the Select Variable Type pane, select XML to display a representation of the
XML data types in your application. (XmlObject is selected by default. You must change this
selection in the following step).

11. Select XmlObjectList and click OK.

10-12 Building Your First Business Process

12. In the Receive Data tab, select priceList(XmlObjectList) from the Select variables to assign:
down list.

The priceList variable is created and assigned to receive the XmlObject data returned by the
priceProcessor service.

13. To close the Create PriceList node builder, click Close.

This step completes the design of the Get Price branch on the Parallel node. At run time, by
executing this branch, your business process appends the XmlObject, which contains the data
returned by the priceProcessor control (during the current iteration through the For Each loop),
to the priceList variable.

14. From the Workshop menu, select File→Save All.

To Design the Activities on the Get Availability Branch

1. Rename the nodes on the Get Availability Branch (in the order in which they are executed) as
follows: Request Availability, Receive Availability, Create AvailList.

2. Complete the following tasks:

To Design the Request Availability Node

To Design the Receive Availability Node

To Design the Create AvailList Node

To Design the Request Availability Node

1. Double-click the Request Availability node. The node builder opens on the General Settings tab.

2. Click the arrow beside the Control field to display a list of the instances of controls available in
your project and select availProcessor.

The Method panel is populated with a list of the asynchronous send methods you can invoke on
the availProcessor control.

3. Select the following method from the list:

void getAvail(int itemID_arg,int quantity_arg)

Building Your First Business Process 10-13

4. Click Send Data to open the second tab in the node builder.

By default, the Send Data tab opens on the Variable Assignment pane. The Control Expects
field is populated with the data types and names of the parameters expected by the getAvail()
method exposed by the availProcessor Web service: int itemID and int quantity.

Note: The availProcessor service takes, as input, the itemID (int) and the quantity (int) requested
by the client. It returns the itemID (int), the quantity available (int), a boolean to indicate
whether the widgets are in stock, and a ship date (String).

5. Select Transformation to switch modes in the Send Data tab.

Note: In this case, you must switch modes because you must transform the data you input to
availProcessor. The availProcessor control requires its input as int data types, and the
iter_forEach1 variable, which holds the value of widgetId and quantity in the For
Each loop, is of type XML (WidgetRequestDocument valid against an XML Schema).

6. In Step 1, click Select Variable to display the variables in your project, then choose
iter_forEach1 (WidgetRequest).

7. In Step 2, click Create Transformation.

The Transformation tool opens and displays a representation of the iter_forEach1 variable in the
Source pane, and the integer arguments to the availProcessor transformation method in the
Target pane.

8. Map the elements in the Source pane to the elements in the Target pane, as shown in the
following figure:

widgetID to itemID_arg
quantity to quantity_arg

10-14 Building Your First Business Process

A line is drawn between the elements in the map pane. It represents the transformation between
the data types.

Note: Creating this transformation creates a new method under the
RequestQuoteTransformation.java already created in your project and prebuilt in the
tutorial application. It is available in the
Tutorial_Process_Application_WEB/requestquote folder. A new XQ file, which
contains the query for this transformation method, is also created.

9. Click RequestQuote.java in the Package Explorer to return to your process.

10. To close the Request Price node builder, click Close.

This step completes the design of the Request Availability node.

To Design the Receive Availability Node

1. Double-click the Receive Availability node. The node builder opens on the General Settings tab.

2. Click the arrow beside the Control field to display a list of the instances of controls available in
your project and select availProcessor.

The Method panel is populated with a list of the asynchronous receive methods on the
availProcessor control.

3. Select the following method from the list:

void avail(int itemID, int qty, boolean avail, String date)

4. Click Receive Data to open the second tab in the node builder.

The Control Returns fields are populated with the data types and names of the parameters
returned by the avail(int itemID_arg, int qty_arg, boolean avail_arg, String
date_arg) method on the availProcessor Web service.

Note: In this case, you must switch from the Variable Assignment mode to the Transformation
mode on the Receive Data tab because you want to assign the data returned by the
availProcessor service to a variable of type XML. To do so, your process must transform
the Java data types returned to typed-XML.

5. Click Transformation. The Receive Data tab is displayed as shown in the following figure:

Building Your First Business Process 10-15

6. Click Select Variable, then Create new variable.... The Create Variable dialog box is
displayed.

7. In the Variable Name field, enter avail.

In the Type Name pane, ensure that XML is selected.

8. In XML Types, click the + beside availQuote.xsd to expand the list, then select availRequest
from the list. The Variable Type field is populated with
org.example.avail.AvailRequestDocument.

9. Click OK. The Create Variable dialog box is closed and your new variable is created and is
listed as an XML Type variable in the Data Palette.

10. In Step 2, click Create Transformation to open the Transformation tool, which displays a
representation of the data types returned by the availProcessor control in the Source pane, and
the avail variable in the Target pane.

11. Map the Source values to the Target elements as shown in the following:

10-16 Building Your First Business Process

itemID to widgetId
qty to requestedQuantity
avail to quantityAvail
date to shipDate)

Note: Creating this transformation creates a new method under the
RequestQuoteTransformation.java already created in your project and prebuilt in the
tutorial application. It is available in the
requestquote\Tutorial_Process_Application_WEB folder. A new XQ file, which
contains the query for this transformation method, is also created.

12. Click File →Save All.

13. Click RequestQuote.java in the Package Explorer to return to your business process.

14. To close the Receive Availability node builder, click Close.

This step completes the design of the Receive Availability node.

To Design the Create AvailList Node
In the same way as you designed the business process to append the price data to a single variable when
you designed the Get Price branch of the Parallel node, in this step, you call a method on the
priceAvailTransformations control to append the availability data returned to a single variable, of
type XmlObjectList. (See Note About Using the XmlObjectList Data Type.)

1. Expand the priceAvailTransformations control instance in the Data Palette, then click the
following method:

XmlObject convertAvailXMLtoXMLObj(org.example.avail.AvailRequestDocument
_availRequestDoc)

2. Drag the method from the Data Palette and drop it on the Create AvailList node in the Design
view. The Create AvailList node changes to reflect the binding of the method, as shown in the
following figure:

Building Your First Business Process 10-17

3. Double-click the Create AvailList node. The node builder opens on the General Settings tab.

4. Confirm that the priceAvailTransformations control is selected in the Control field, and that the
method you dragged onto the node is selected in the Method field:

XmlObject convertAvailXMLtoXMLObj(org.example.AvailRequestDocument
_availRequestDoc)

5. Click Send Data to open the second tab in the node builder.

The Control Expects field is populated with AvailRequestDocument, which is the data type
expected by the convertAvailXMLtoXMLObj(org.example.avail.AvailRequestDocument
_availRequestDoc) method on the priceAvailTransformations control.

6. Click the arrow on the field under Select variable to assign to display a list of variables. Select
avail (AvailRequestDocument).

In this case, note that the data type of your avail variable (AvailRequest) matches that of the
data expected by the priceAvailTransformations control.

7. Click Receive Data to open the third tab in the node builder.

The Control Returns field is populated with XmlObject, which is the data type returned by the
convertAvailXMLtoXMLObj() method on the priceAvailTransformations control.

An XmlObject is a Java data type that specifies data in untyped XML format. In other words,
this data type represents XML data that is not valid against an XML Schema.

8. Click the arrow on the field under Select variable to assign and select
Create new variable The Create Variable dialog box is displayed.

9. In the Variable Name field, enter availList.

10-18 Building Your First Business Process

10. In the Select Variable Type pane, if necessary, select XML to display a representation of the
XML data types in your application.

11. Select XmlObjectList, under Untyped, then click OK.

The availList variable is created and assigned to receive the XmlObject data returned by the
availProcessor service.

12. To close the Create AvailList node builder, click Close.

This step completes the design of the Get Availability branch on the Parallel node. At run time,
by executing this branch, your business process appends the XmlObject, which contains the data
returned by the availProcessor control (during the current iteration through the For Each loop),
to the availList variable.

13. From the Workshop menu, select File→Save All.

Note About Using the XmlObjectList Data Type
On each iteration through the For Each loop, the priceProcessor service returns price data, which is
assigned to the price variable; and the availProcessor service returns availability data, which is
assigned to the avail variable. Your business process must collect the price data returned on each

Building Your First Business Process 10-19

iteration and create a list of price data; one item is assigned to the list for each iteration through the loop.
Similarly, a list of availability data is created on the Get Availability branch of the Parallel node for
each iteration through the loop.

An XmlObjectList is a Java data type that specifies a sequence of untyped XML format data. In other
words, this data type represents a sequence of XML elements (a set of repeating elements). As the final
step of each iteration through the Get Price branch in your Parallel node, your business process assigns
the data from the price variable to the priceList variable (of type XmlObjectList). In this way, a
single variable holds the price data for each of the widgets in the Request for Quote over which the For
Each loop iterates. In the same way, a single variable holds the availability data for each widget.

To learn how the XmlObjectList variable is used, see To Design the Create PriceList Node and To
Design the Create AvailList Node.

Related Topics
Note About Transformations

Creating Maps

Testing Maps in the Test View

Guide to Data Transformation

Understanding Parallel Execution in Your Business Process

http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappercreatemap.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguidemappertestmap.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideParallelUnderstand.html

10-20 Building Your First Business Process

Building Your First Business Process 11-1

C H A P T E R11

Step 9: Create Quote Document

As a result of the work you did when you designed the Parallel node, at the point at which the business
process exits the For Each node, the price quote data are assigned to the priceList variable, and the
availability quote data are assigned to the availList variable. Both the priceList and the
availList variables are of data type XmlObjectList (an untyped sequences of XML data).

In this step, you first transform the data in the priceList and availList variables from untyped XML
data (XmlObjectList) to typed XML (that is, to XML that is valid against the XML Schemas provided
in your project). Subsequently, you combine the XML-typed price and availability data to produce a
single quote document, which comprises the response your business process sends to the client that
invoked it.

Note About Transformations
BEA Products allows you to create Transformations in the following ways:

Using the node builders in your business process. You are already familiar with creating a
Transformation control and transformation methods in this way.
RequestQuoteTransformation.java was created for you the first time you created a
transformation from a node builder, that is, when you needed to map the data types from the
Request for Quote message to the input of the taxCalculation control. (To review, see “To
Call the Tax Calculation Web Service From Your Business Process” in Step 4: Invoke a Web
Service) You subsequently created several additional transformation methods on
RequestQuoteTransformation.java (and associated XQ files) on Control nodes within the
Parallel node you designed.

By choosing File→New→Transformation File from the BEA Workshop menu. Transformation
files you create in this way can be called from your business process via Control nodes.

11-2 Building Your First Business Process

The following Transformation files were created using this method, and are provided for you in
the tutorial application: PriceAvailTransformations.java and TutorialJoin.java. You
used PriceAvailTransformations.java in the previous step (Step 8: Design Parallel Paths of
Execution) and you will use it again in this step, as well as TutorialJoin.java in this step.

In this step, you design the logic in your business process that creates a single quote document from the
price and availability data already calculated. This involves designing Control nodes that call the
PriceAvailTransformations.java and TutorialJoin.java Transformation files.

Note: A description of how to create these Transformation files is outside the scope of this tutorial.
However, to learn how to create TutorialJoin.java, see Tutorial: Building Your First Data
Transformation.

In this step, in which you create a single quote document for a client, you must complete the following
tasks:

Convert Price List to XML Quote Document

Convert Availability List to XML Quote Document

Combine Price and Availability Quotes

Convert Price List to XML Quote Document
Complete the following steps to design a node to transform the price list (created as a result of iteration
through the For Each loop) to a variable whose data type is typed-XML. To do so, you use methods
on the priceAvailTransformations control.

To Design the Interaction With the Transformation Control

1. With the priceAvailTransformations control instance expanded in the Data Palette, click the
following method:

PriceQuoteDocument convertPriceListToXML
(QuoteRequestDocument _quoteRequestDoc, XmlObjectList _XmlObjectListDoc)

2. Drag the method from the Data Palette and drop it on your RequestQuote business process in
the Design view, placing it immediately after, and outside, the For Each block.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

Building Your First Business Process 11-3

3. Rename the node from convertPriceListToXML to Convert PriceList To PriceQuote XML.

4. Double-click the Convert PriceList To PriceQuote XML node to open its node builder.

5. Verify that the priceAvailTransformations control and the following method are selected on the
General Settings tab:

PriceQuoteDocument convertPriceListToXML
(org.example.request.QuoteRequestDocument _quoteRequestDoc,
com.bae.xml.XmlObjectList _XmlObjectListDoc)

6. Click Send Data to open the second tab in the node builder.

The Control Expects field is populated with the data type expected by the
convertPriceListToXML() method on the priceAvailTransformations control:

Note: The convertPriceListToXML()method on the priceAvailTransformations control is
designed to achieve two goals: First, to transform the XmlObjectList price data to typed
XML, and then to combine the customer name, the shipping address, and the price quote
data (the price list) in a single variable. The convertPriceListToXML() method receives
the price list in a parameter of type XmlObjectList, and the customer name and shipping
address in a parameter of type QuoteRequestDocument. To learn more about the
priceAvailTransformations control, see Note About the Transformation on This Node.

11-4 Building Your First Business Process

7. On the Send Data tab, under Select variables to assign, assign the variables that hold the data
required by the priceAvailTransformations control as follows:

– Click the arrow in the variable assignment field associated with QuoteRequestDocument,
and select requestXML (QuoteRequestDocument). (The requestXML variable holds the
customer name and shipping address).

– Click the arrow in the variable assignment field associated with XmlObjectList, and select
priceList (XmlObjectList).

8. Click Receive Data to open the third tab in the node builder.

The Control Returns field is populated with PriceQuoteDocument, which is the data type
returned by the convertPriceListToXML() method on the priceAvailTransformations control.

9. Click the arrow associated with the Select variables to assign field, and click Create new
variable The Create Variable dialog box is displayed.

10. In the Variable Name field, enter priceQuote.

11. In the Select Variable Type field, select priceQuote in the XML Types list. The Variable Type
field is populated with org.example.price.PriceQuoteDocument.

Building Your First Business Process 11-5

12. Click OK to close the Create Variable dialog box.

13. To close the node builder, click Close.

This step completes the design of the Convert PriceList to PriceQuote XML node. At run
time, the price quote data (in typed-XML format), and the customer name and shipping address
are assigned to the priceQuote variable.

Note About the Transformation on This Node
The convertPriceListToXML() method on the priceAvailTransformations control does the work of
creating the price quote XML data in the preceding step.

In brief, the input to the Transformation method includes the original data sent by the client (in the
requestXML variable), and the price data returned by the priceProcessor control (in the priceList
variable) after the iterations in the For Each node complete.

The convertPriceListToXML() method extracts the customer name and shipping address from the
requestXML variable, and a list of widget IDs and prices from the priceList variable, and maps the
data to the new variable (priceQuote).

It is left as an exercise to the reader to view this and other transformation methods on the
priceAvailTransformations control. For example, you can double-click
PriceAvailTransformations.java in the Package Explorer to display the Transformation control in
the Source view. Right-click on the convertAvailXMLtoXMLObj method, and select Goto XQuery
Document to open the Transformation tool. Use the Design view and Source view tabs in the
transformation tool to see the data map that represents the transformation and the corresponding
XQuery. Use the Test View tab to test the XQuery. For example the following figure shows the map
for the convertAvailXMLtoXMLObj() method:

Related Topics
Guide to Data Transformation

Tutorial: Building Your First Data Transformation

http://e-docs.bea.com/workshop/docs81/doc/en/integration/dtguide/dtguideIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

11-6 Building Your First Business Process

Convert Availability List to XML Quote Document
Complete the following steps to design a node to transform the availability list (created as a result of
iteration through the For Each loop) to a variable whose data type is typed-XML. To do so, you use
methods on the priceAvailTransformations control.

To Design the Interaction With the Transformation Control

1. Expand the priceAvailTransformations control instance in the Data Palette, then click the
following method:
AvailQuoteDocument convertAvailListToXML(com.bea.xml.XmlObjectList
_XmlObjectListDoc)

2. Drag the method from the Data Palette and drop it on your RequestQuote business process in
the Design view, placing it immediately after the Convert PriceList to PriceQuote XML node.

3. Rename the node from convertAvailListToXML to Convert AvailList to AvailQuote XML.

4. Double-click the Convert AvailList to AvailQuote XML node to open its node builder.

5. Verify that the priceAvailTransformations control and the following method are selected on the
General Settings tab:

Building Your First Business Process 11-7

AvailQuoteDocument convertAvailListToXML(com.bea.xml.XmlObjectList
_XmlObjectListDoc)

6. Click Send Data to open the second tab in the node builder.

The Control Expects field is populated with XmlObjectList, which is the data type expected
by the convertAvailListToXML() method on the priceAvailTransformations control.

7. On the Send Data tab, under Select variables to assign, click the arrow in the variable
assignment field, and select availList (XmlObjectList).

8. Click Receive Data to open the third tab in the node builder.

The Control Returns field is populated with AvailQuoteDocument, which is the data type
returned by the convertAvailListToXML() method on the priceAvailTransformations control.

9. Click the arrow associated with the Select variables to assign field, and click Create new
variable The Create Variable dialog box is displayed.

10. In the Variable Name field, enter availQuote.

11. In the Select Variable Type field, click the + beside AvailQuote.xsd in the XML Types list, then
select availQuote from the list. The Variable Type field is populated with
org.example.avail.AvailQuoteDocument.

12. Click OK to close the Create Variable dialog box.

13. To close the node builder, click Close.

11-8 Building Your First Business Process

This step completes the design of the Convert AvailList to AvailQuote XML node. At run time,
the availability quote data in XML format are assigned to the availQuote variable.

Note About the Transformation on This Node
The convertAvailListToXML() method on the priceAvailTransformations control does the work of
creating the availability quote XML data. The input to convertAvailListToXML() is the availability
data returned by the availProcessor control after the iterations in the For Each node complete.

You can double-click PriceAvailTransformations.java in the Package Explorer to display the
Transformation control in Source view. Right click on convertAvailListToXML method, and select
Go to XQuery Document from the drop-down menu to open the Transformation tool. The following
figure shows the map for the convertAvailListToXML() method:

The preceding figure shows the transformation of the data in a variable of type XmlObjectList, which
contains a repeating set of untyped XML data, to the repeating element in an XML-typed variable. Note
that to achieve this transformation, the repeating element in the target schema must be the single child
of a root element. In this case, availRequest is the repeating element, and it is the single child of the
availQuote element. Click the Source view tab in the Transformation tool to see the corresponding
XQuery.

Combine Price and Availability Quotes
Complete the following tasks:

To Create an Instance of the TutorialJoin Control in Your Project

To Design the Process Interaction With the TutorialJoin Control

To Create an Instance of the TutorialJoin Control in Your Project
The TutorialJoin.java control is provided in your tutorial application. It is available in the
requestquote folder in your Tutorial_Process_ApplicationWeb project folder. To learn how to build
the TutorialJoin.java control, see Tutorial: Building Your First Data Tansformation.

Complete the following steps to add an instance of this control to your business process.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

Building Your First Business Process 11-9

1. If the Data Palette is not visible in BEA Workshop, choose Windows→Show View→Data
Palette from the menu bar.

2. On the Package Explorer pane, click the TutorialJoin.java file.

3. Drag the TutorialJoin.java file from the Package Explorer pane onto the Data Palette. The
instance of your control (tutorialJoin) is created and displayed in the Data Palette as shown in
the following figure:

To Design the Process Interaction With the TutorialJoin Control
In this step, you design the business process to call the following method on the tutorialJoin control:

join(PriceQuoteDocument _priceQuoteDoc,

AvailQuoteDocument _availQuoteDoc, float taxRate)

This join method does the work of combining the data returned to your business process from
different systems and creating a single XML response document (quote), which is subsequently
returned to the business process’ client.

1. Expand the tutorialJoin control instance in the Data Palette, then click the following method:

QuoteDocument join(org.example.price.PriceQuoteDocument _priceQuoteDoc,
org.example.avail.AvailQuoteDocument _availQuoteDoc,float taxRate)

11-10 Building Your First Business Process

2. In the Design view, drag the method from the Data Palette and drop it on your RequestQuote
business process placing it immediately after the Convert AvailList to AvailQuote XML node.

3. Rename the node from join to Combine Price and Avail Quotes.

4. Double-click the Combine Price and Avail Quotes node. The node builder opens on the
General Settings tab.

5. Confirm that tutorialJoin is displayed in the Control field, and that the following method, which
you dragged onto the node from the Data Palette, is selected in the Method field:

QuoteDocument join(org.exampel.price.PriceQuoteDocument _priceQuoteDoc,
org.example.avail.AvailQuoteDocument _availQuoteDoc,float taxRate

6. Click Send Data to open the second tab in the node builder.

The Control Expects field is populated with the data type expected by the join method on the
tutorialJoin control, as shown in the following figure:

7. Under Select variables to assign, select the variables such that their data types match the data
type expected (Control Expects) in the input parameters to the join() method, as follows:

– For PriceQuoteDocument select priceQuote (PriceQuote).

Building Your First Business Process 11-11

priceQuote holds the price quote data, which is returned from the priceProcessor service in
the For Each loop in your business process.

– For AvailQuoteDocument, select availQuote (AvailQuote).

availQuote holds the availability quote data, which is returned from the availProcessor
service in the For Each loop in your business process.

– For float taxRate, select taxRate (float).

taxRate holds the rate of sales tax applied to the quote, based on the shipping address, which
is returned to your business process from the taxCalculation service.

8. Click Receive Data to open the third tab in the node builder.

On the Receive Data tab, the Control Returns field is populated with QuoteDocument, which
is the data type returned by the join() method.

9. Click the arrow in Select variable to assign, then choose Create new variable.... The Create
Variable dialog box is displayed.

10. In the Variable Name field, enter Quote.

11. In the Select Variable Type field, select quote from the list of XML types, as shown in the
following figure:

11-12 Building Your First Business Process

The Variable Type field is populated with org.example.quote.QuoteDocument.

12. Click OK to create the new variable. The Quote variable is displayed in the Receive Data tab,
and also in the XML list in the Data Palette.

13. To close the node builder, click Close.

This step completes the design of the Combine Price and Avail Quotes node. At run time, the
availability quote data in XML format is assigned to the Quote variable.

14. From the Workshop menu, select File→Save All.

To complete Part III of the tutorial, it only remains to write the quote to your file system (an
optional step), and to create the Client Response node in your business process. The business
process returns the quote you created to the client via the Client Response node.

Step 10: Write Quote to File System

Step 11: Send Quote From Business Process to Client

Related Topics
To learn how to create Transformation controls, and specifically to learn how to design the
TutorialJoin.java control used in this section, see Tutorial: Building Your First Data Tansformation.

http://e-docs.bea.com/workshop/docs81/doc/en/integration/dttutorial/tutWLIDataTransIntro.html

Building Your First Business Process 12-1

C H A P T E R12

Step 10: Write Quote to File System

Complete this step to create a node, at which your business process writes the quote created in the
preceding step to your file system. A File control makes it easy to read, write, or append to a file in a
file system.

Complete the following tasks to design your business process to write the combined price and
availability quote to your file system:

To Create an Instance of a File Control in Your Project

To Design a Control Send Node in Your Business Process to Interact With Your File Control

The following tasks are optional. They are provided to deepen your understanding of File controls but
are not required for the completion of the tutorial.

To Assign File Control Properties to a Variable in Your Business Process

To Use the File Control Properties in Your Business Process

To Create an Instance of a File Control in Your Project
In this scenario, you add one instance of the File control to your business process.

1. Click on the Data Palette Controls tab to display a list of controls that represent the resources
with which your business process can interact.

2. Select Integration Controls→File. The Insert Control dialog box is displayed.

3. In the Insert Control dialog box:

a. Enter myFileQuote as the variable name for this control, and click Next.

12-2 Building Your First Business Process

b. In the Create Control dialog box, select Create a new File control to use, then enter
MyFileQuote in the Name field.

c. In the Insert Control - File dialog box, enter values in the following fields:

directory-name—Enter the location in which you want the File control to write the file. You
can use any location on your file system.

file name filter—Enter a name for the file. For example, enter quote.xml.

Type of data—Select XmlObject from the drop-down list.

d. Click Finish to close the Insert Control dialog box.

An instance of a File control, named myFileQuote, is created in your project and displayed
under the Controls folder.

4. From the Workshop menu, select File→Save.

Note: In the simple case, each instance of the File control allows you to manipulate a separate file. To
learn about how your File control can operate on multiple files, see File Control.

To Design a Control Send Node in Your Business Process to Interact With Your File Control

1. Expand the myFileQuote control instance in the Data Palette, then click the following method:

FileControlPropertiesDocument write(XmlObject someData)

2. From the Data Palette, drag the method and drop it on your RequestQuote business process,
placing it immediately after the Combine Price and Avail Quotes node (and immediately before
the Finish node). The node is named write by default.

3. Rename the node from write to Write Quote to File.

4. Double-click the Write Quote to File node. Its node builder opens on the General Settings tab.

5. Confirm that myFileQuote is displayed in the Control field and that the following method is
selected in the Method field:

FileControlPropertiesDocument write(XmlObject someData)

6. Click Send Data to open the second tab in the node builder. The Control Expects field is
populated with XmlObject someData, which is the data type expected by the write() method.

7. In the Select variables to assign field, click the arrow to display the list of variables in your
project, then choose Quote (quote). (Recall that you created the Quote variable to hold the quote
in Step 9: Create Quote Document.)

http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsFile.html

Building Your First Business Process 12-3

Note: The node builder for this node contains a Receive Data tab. You can use this tab to specify
a variable to which the data returned by the File control is assigned. For the purposes of this
tutorial scenario, it is not required that you specify this variable; you can ignore the Receive
Data tab. However, to learn how to specify a variable on the Receive Data tab, and a
scenario in which you might subsequently use the variable, proceed to Note About File
Control Properties.

8. To continue with the tutorial without specifying a variable on the Receive Data tab, click Close to
close the node builder.

9. From the Workshop menu, select File→Save.

This step completes the design of your File control node. At run time, the quote document you
created in Step 9: Create Quote Document is written to your file system in the location specified
by you.

10. Proceed to Step 10: Write Quote to File System.

Note About File Control Properties
This optional section provides additional steps you can use to further define the Write Quote to File
node you created in the preceding section. You are not required to complete the steps in this section to
complete the tutorial. The steps are provided to help you understand and use the File Control Properties
returned to your business process by the File control’s FileControlPropertiesDocument
write(XmlObject someData) method.

When you use a File control to write a file to the file system as you do in this step, the control returns
information about the file you wrote. The information is returned in a document of type XML:
FileControlPropertiesDocument. The FileControlPropertiesDocument is valid against an
XML Schema: DynamicProperties.xsd. The Schema is provided for you in the project in your
tutorial application. (See the project in the Package Explorer tab.)

To Assign File Control Properties to a Variable in Your Business Process
The following steps describe how to design the Write Quote to File node in your business process to
include assigning a variable to which the File Control Properties are assigned:

Note: Before starting this section, you should have completed steps 1 through 7 as described in To
Design a Control Send Node in Your Business Process to Interact With Your File Control.

1. If the Write Quote to File node builder is not open, double-click the node.

12-4 Building Your First Business Process

2. Click Receive Data to open the third tab in the node builder. The Control Returns field is
populated with FileControlPropertiesDocument, which is the data type returned by the
write() method.

3. In the Select variables to assign field, click the arrow to display the list of variables in your
project, then choose create new variable.... The Create Variable dialog box is displayed.

4. In the Variable Name field, enter fileProperties.

5. The Variable type field populated with
com.bea.wli.control.dynamicProperties.FileControlPropertiesDocument. In the
Select Variable Type pane, expand system/DynamicProperties.xsd, then select
FileControlProperties.

Note: By default the
com.bea.wli.control.dynamicProperties.FileControlPropertiesDocument is
selected in the Variable type field.

6. Click OK. The new variable is displayed in the node builder.

7. To close the node builder, click Close.

8. From the Workshop menu, select File→Save.

This step completes the design of your File control node. At run time, the quote document you
create in Step 9: Create Quote Document is written to your file system in the location specified
by you. Information about the file you wrote is returned to the RequestQuote business process,
and assigned to the fileProperties variable you created.

Building Your First Business Process 12-5

Note: The Dynamic Properties.xsd XML Schema must be available in a project in your
application before you can create a variable to hold the file control properties that are
returned to your business process from the File control. Dynamic Properties.xsd is one
of the system schemas available to you when you create BEA Products applications in BEA
Workshop.

To Use the File Control Properties in Your Business Process
In the preceding steps, you assigned the data returned from the File control to a variable named
fileProperties. You can derive information about the file you wrote from fileProperties.

Click the Source view tab to view your RequestQuote.java file in Source view. By completing the
steps described in the preceding section, the following code is written in your JAVA file in keeping with
the work you did in the Design view.

The fileProperties variable declaration is shown in the following listing:

public com.bea.wli.control.dynamicProperties.FileControlPropertiesDocument
fileProperties;

The write() method on the myFileQuote control is shown in the following listing:

public void myFileQuoteWrite() throws Exception
 {
 //#START: CODE GENERATED - PROTECTED SECTION - you can safely add code
above this comment in this method. #//

 // input transform
 // return method call
 this.fileProperties = myFileQuote.write(this.Quote);
 // output transform
 // output assignments

//#END: CODE GENERATED - PROTECTED SECTION - you can safely add code below
this comment in this method. #//
 }

You can edit this method (outside the PROTECTED SECTION of code) to write code that derives
information from the fileProperties variable. For example, the following line of code returns the
FileMask:

this.fileProperties.getFileControlProperties().getFileMask()

To illustrate this example further, edit the public void fileQuoteWrite() method in Source View
to include the line of code shown in bold in the following listing:

//#END: CODE GENERATED - PROTECTED SECTION - you can safely add code below this

comment in this method. #//

12-6 Building Your First Business Process

System.out.println ("The RequestQuote Process logged the quote in the following
file "
 + this.fileProperties.getFileControlProperties().getFileMask());

}

Note that you must add the code after the PROTECTED SECTION comment. Code completion in the
Source View helps you write the code. When you switch back to the Design view, note that the Write
Quote to File node changes to include the following icon: . This is a visual reminder that you edited
the code associated with this node in the Source view.

When you run the business process, the name you gave the file (the FileMask) is printed to the console.

Related Topics
File Control

Using Integration Controls

How Do I: Create a project Folder?

How Do I: Import Files into a project Folder?

http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsFile.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/controls/controlsIntro.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasCreate.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/howdoI/howSchemasImport.html

Building Your First Business Process 13-1

C H A P T E R13

Step 11: Send Quote From Business
Process to Client

A business process must be able to send and receive messages to and from its clients. You designed
your business process to receive messages from a client in Chapter , “Step 2: Specify How the Process
is Started.” This section describes how to add operations that send messages from your business process
to a client. That is, in this section you learn how to design Client Response nodes.

This step describes the following tasks:

To Add a Client Response Node to Your Business Process

To Design Your Send Quote Node

To Add a Client Response Node to Your Business Process

1. On the Package Explorer pane, double-click RequestQuote.java to ensure that your business
process is displayed in Design view.

2. In the Node Palette, select Client Response, then drag and drop the node onto the business
process immediately before the Finish node. The Design view is updated to contain the Client
Response node.

3. Change the name of the node from Client Response to Send Quote.

13-2 Building Your First Business Process

To Design Your Send Quote Node
This section describes how to complete the design of the interaction with clients for this business
process. Specifically, at this point in the process, the business process sends a quote containing price
and availability information to clients.

In this step, you specify the structure of documents that your business process sends to clients from this
node.

1. Double-click the Send Quote node in your business process. The node builder is displayed.

2. In the General Settings tab, change the name in the Method Name field from clientResponse to
quoteResponse.

3. Click Add to display the panel of data types.

Note: In the Combine Price and Avail Quotes node, you created an XML variable to hold the
quote. This data assigned to this variable is valid against the Quote.xsd Schema. Therefore
we are concerned with XML Types at this node.

4. If it is not already selected, select XML.

a. If necessary, click the + beside XML Types to see a list of XML Schemas in your project.

b. Expand Quote.xsd, then click the quote node. The Type field is populated with
org.example.quote.QuoteDocument.

c. In the Name field, replace x0 with responseXML. In this way, you name the parameter that
returns the QuoteDocument.

5. Click OK. The QuoteDocument responseXML parameter is added to the General Settings tab
in the node builder and the General Settings tab is marked complete:

Building Your First Business Process 13-3

6. Click the Send Data tab. A tab that allows you to define one or more variables to hold the data
your business process sends to clients is displayed.

The Client Expects field is populated with the data type and the name of the parameter you
specified on the General Settings tab: QuoteDocument responseXML

7. Under Select variables to assign, select the Quote (quote) variable.

8. To close the Client Response node builder, click Close.

9. From the Workshop menu, select File→Save.

This step completes the design of your RequestQuote business process. To run it, proceed to Step
12: Run the Request Quote Business Process.

13-4 Building Your First Business Process

Building Your First Business Process 14-1

C H A P T E R14

Step 12: Run the Request Quote
Business Process

You can run and test the functionality of the business process you created using WebLogic Workshop’s
browser-based interface. Using the Workshop Test Browser, you play the role of the client, invoking
the methods on the business process and viewing the responses.

To Launch the Test Browser
To run and test the business process that you have created, complete the following steps:

1. If WebLogic Server is not already running, from the BEA Workshop menu, choose Window→
Show View →Other →Server→ Servers, and click OK. A Server view is displayed in which the
Server and its state are shown.

2. In the Package Explorer, select and right-click on requestquote.java, click Run As, and click
Run On Server.

3. In the Define a New Server dialog box, select either a Choose an existing server option or
Manually define a server (if there is no server defined), and click Next.

4. In the BEA WebLogic v9.2 Server dialog box, to manually define a server, click Browse, and
select the samples integration domain directory from the product installation directory available at
BEA_HOME\weblogic92\samples\domains\integration, where BEA_HOME represents the
directory in which you installed WebLogic Platform. Click Finish.

The samples domain integration server is started, and the RequestQuote application is deployed
on it. When WebLogic Server is running, the following indicator is visible in the Servers view.

5. After the application is deployed, the Test Browser is displayed.

14-2 Building Your First Business Process

6. Click the Test Form tab. Open the file browser by clicking Browse beside the xml requestXML
(file value) field.

7. Select RequestQuote.xml from the requestquote\testxml folder in your project.

The QuoteRequest.xml file is available at the following location in your file system:
Tutorial_Process_Application_WEB\src\testxml\QuoteRequest.xml

8. Click the Test Form tab. In the Test Form page, click the button labeled with the method name
on your business process (quoteRequest) to start the business process.

The Test Form page refreshes to display a summary of your request parameters and the
responses from the Web service in the Message Log.

9. Click Refresh on the Message Log to refresh the entries in the log until this instance of the
business process completes running. Entries in the Message Log correspond to the methods on
your business process:

– The quoteRequest method that starts the business process.

– A call from your business process to the taxCalculation Web service:
taxCalculation.requestTaxRate

– A response from the service to your business process: taxCalculation.returnTaxRate

– The Instance ID—When the business process finishes, a message similar to the following is
displayed in the Message Log:

Instance instanceID is Completed.

where instanceID represents the ID generated when the quoteRequest method in your
business process was called.

You can click any of the methods in the Message Log to view the details of the call. For
example, if you click quoteRequest, the Service Request panel displays the XML message sent
by the client (you) when the method was called.

Building Your First Business Process 14-3

If you click taxCalculation.returnTaxRate, you can view the response from the taxCalculation
service—in this case, the tax rate was calculated, based on the input value (NJ) for the state
element in the test XML.

In the sample XML message you used, state="NJ". That is, the state to which the order is
shipped is NJ. This XML message is designed to cause the flow of execution through the Yes
branch on your Sales Tax Calculation Needed? node. The preceding figure shows the rate of
sales tax returned for this test XML message.
<returnTaxRate xmlns="http://www.openuri.org/">
<taxRate>0.08</taxRate>
</returnTaxRate>

By following these steps you ran and tested a simple business process, which contains a Start
node and a Decision node, and includes an asynchronous call to a Web service, via a control.

To Monitor Instances of Your Business Process
You can use the BEA Products Administration Console to monitor running processes or view statistics
for processes that already ran.

Click Monitor to open the BEA Products Administration Console in a Web Browser. Login
using username = weblogic and password = weblogic. The BEA Products Administration
Console opens to the Process Instance Details page. The WebLogic Integration Administration

14-4 Building Your First Business Process

Console allows you to administer and manage your BEA Products applications. For example, if
you click View Statistics on the Process Instances navigation pane, you access a Process
Instance Statistics page. This page displays a summary of business process instances grouped
by the process type. To view the instances of a process type that ran or are running on your
server, click the process name. Processes instances are identified by their instanceID. Note that
the instanceID displayed for your RequestQuote business process matches the instanceID
displayed on the Message Log pane (see the preceding figures in this topic).

Click Monitor all RequestQuote.java processes at the top of the Test Form to open the BEA
Products Administration Console. Login using the default username: weblogic and password:
weblogic. When you use this link to open the Administration Console, it opens on the Process
Instance Summary page, which displays a summary of all the instances of business processes
that ran or are running. It allows you to:

– View process instance statistics, including the number of instances in each state (running,
suspended, aborted, and completed).

– View the summary or detailed status for selected instances.

– Suspend, resume, or terminate, selected instances.

Other ways to invoke the BEA Products Administration Console include the following:

– From the BEA Workshop Tools menu, select Tools→WebLogic Integration→WebLogic
Integration Administration Console

– Entering the following URL in a Web browser: http://localhost:7001/wliconsole

The default username is weblogic and password is weblogic for the sample integration
server.

To learn about using the BEA Products Administration Console, see the console’s online help at
http://edocs.bea.com/wli/docs92/adminhelp/index.html.

Related Topics
WebLogic Integration Admin console Online Help at

http://edocs.bea.com/wli/docs92/adminhelp/index.html

Understanding the Service URL

Testing Your Application with Test View

http://edocs.bea.com/wli/docs92/adminhelp/index.html
http://edocs.bea.com/wli/docs92/adminhelp/index.html
http://e-docs.bea.com/workshop/docs81/doc/en/integration/wfguide/wfguideTest.html
http://e-docs.bea.com/workshop/docs81/doc/en/workshop/reference/ui/navTestView.html

	Tutorial: Building Your First Business Process
	Tutorial Goals
	Tutorial Overview
	Steps in This Tutorial

	Part I Build and Run a Simple Business Process
	Step 1: Create Your Business Process Application
	Working in the Design View
	Functions and Shortcuts

	Step 2: Specify How the Process is Started
	Step 3: Define Conditions for Alternate Paths of Execution
	Step 4: Invoke a Web Service
	What is the Tax Calculation Control?
	Design the Interaction Between Your Business Process and a Web Service

	Step 5: Run Your Business Process
	Part II Call a Business Process Using a Process Control
	Step 6: Invoke a Business Process Using a Process Control
	Part III Adding Looping Logic, Parallel Paths . . .
	Step 7: Looping Through Items in a List
	Understanding XML Schemas and For Each Nodes
	Design a For Each Loop in Your Business Process

	Step 8: Design Parallel Paths of Execution
	Create a Parallel Node
	Create Logic to Assemble Price and Availability Data

	Step 9: Create Quote Document
	Convert Price List to XML Quote Document
	Convert Availability List to XML Quote Document
	Combine Price and Availability Quotes

	Step 10: Write Quote to File System
	Step 11: Send Quote From Business Process to Client
	Step 12: Run the Request Quote Business Process

