
A Component of BEA WebLogic Integration

B E A W e b L o g i c X M L / N o n - X M L T r a n s l a t o r R e l e a s e 2 . 0
D o c u m e n t E d i t i o n 2 . 0

J u l y 2 0 0 1

BEA WebLogic

Plug-In Guide

XML/Non-XML Translator

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebLogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA Campaign Manager for WebLogic, BEA WebLogic Commerce Server, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Collaborate, BEA
WebLogic Enterprise, BEA WebLogic Server, and BEA WebLogic Integration are trademarks of BEA Systems,
Inc.

All other trademarks are the property of their respective company.

BEA WebLogic XML/Non-XML Translator Installation and Configuration Guide

Document Edition Part Number Date Software Version

2.0 N/A July 2001 BEA WebLogic XML/Non-XML
Translator 2.0

Contents

1. Understanding the XML Translator Plug-In
Understanding XML Translation .. 1-1

What is XML Translator?.. 1-3

The Design-Time Component .. 1-4

The Run-Time Component... 1-5

Run-Time Plug-In to WebLogic Process Integrator 1-5

Using the Repository ... 1-6

XML Translator Plug-In Prerequisites .. 1-7

2. Using the XML Translator Plug-In
Data Translation with the XML Translator Plug-In .. 2-2

Translate XML to Binary ... 2-3

Translate Binary to XML ... 2-6

Processing Event Data... 2-8

Enhancing Data Translation Performance... 2-9

Variable Types and the XML Translator Plug-In.. 2-12

Custom Data Types and the XML Translator Plug-In 2-13

Configuring User Defined Data Types... 2-13

Using Format Builder.. 2-13

Using the Repository Import Utility ... 2-15

WebLogic Server Clustering Support ... 2-16

Configuring the XML Translator Plug-in for Clustering 2-16

3. Running the WebLogic Process Integrator Sample
Applications

Prerequisite Considerations ... 3-1

Running the WebLogic Process Integrator Servlet Sample 3-2
BEA WebLogic XML/Non-XML Translator Plug-In Guide iii

What is Included in the Servlet Sample ... 3-2

How to Run the Servlet Sample ... 3-3

Step 1. Configure and Run WebLogic Process Integrator 3-3

Step 2. Deploy the Web Application... 3-4

Step 3. Configure the Mail Session... 3-6

Step 4. Create a New Template and Activate the Workflow 3-8

Step 5. Store the SampleData.mfl File in the Repository.................... 3-9

Step 6. Generate the XML Data and Send the Message 3-10

Running the WebLogic Process Integrator EJB Sample 3-11

What is Included in the EJB Sample .. 3-11

How to Run the EJB Sample .. 3-12

Step 1. Configure and Run WebLogic Process Integrator 3-12

Step 2. Import the Workflow Definition ... 3-13

Step 3. Open the Template .. 3-15

Step 4. Start the Workflow.. 3-18
iv BEA WebLogic XML/Non-XML Translator Plug-In Guide

CHAPTER
1 Understanding the
XML Translator Plug-In

This guide describes the functionality and operation of the XML Translator Plug-In.
The following topics are discussed:

n Understanding the XML Translator Plug-In

n Using the XML Translator Plug-In

n Running the WebLogic Process Integrator Sample Applications

Understanding XML Translation

Data that is sent to, or received from, legacy applications is often platform-specific
binary data that is in the native machine representation. Binary data is not
self-describing, so in order to be understood by an application, the layout of this data
(metadata) must be embedded within each application that uses the binary data.

XML is becoming the standard for exchanging information between applications
because XML embeds a description of the data within the data stream, thus allowing
applications to share data more easily. XML is easily parsed and can represent
complex data structures. As a result, the coupling of applications no longer requires
metadata to be embedded within each application.

When you translate binary to XML data, you convert structured binary data to an XML
document so that the data can be accessed via standard XML parsing methods. You
must create the metadata used to perform the conversion. The translation process
BEA WebLogic XML/Non-XML Translator Plug-In Guide 1-1

1 Understanding the XML Translator Plug-In
converts each field of binary data to XML according to the metadata defined for each
field of data. In the metadata you specify the name of the field, the data type, the size,
and whether the field is always present or optional. It is this description of the binary
data that is used to translate the binary data to XML. Figure 1-1 shows a sample of
XML data translation.

Figure 1-1 XML Data Translation of: Tom;Jones;1345;19;

Applications developed on the WebLogic platform often use XML as the standard data
format. If you want the data from your legacy system to be accessible to applications
on the WebLogic platform, you may use XML Translator to translate it from binary to
XML or from XML to binary. If you need the XML in a particular XML dialect for
end use, you must transform it using an XML data mapping tool.
1-2 BEA WebLogic XML/Non-XML Translator Plug-In Guide

What is XML Translator?
What is XML Translator?

XML Translator, a component of BEA WebLogic Integration, facilitates the
integration of data from diverse enterprise applications by supporting data translations
between binary formats from legacy systems and XML. XML Translator normalizes
legacy data into XML so it may be directly consumed by XML applications,
transformed into a specific XML grammar, or used directly to start workflows in
WebLogic Process Integrator, another component of BEA WebLogic Integration.
XML Translator supports non-XML to XML translation and vice versa and is made up
of three primary components:

n The Design-Time Component

n The Run-Time Component

n The Run-Time Plug-In to Process Integrator

To perform a translation, you create a description of your binary data using the
design-time component (Format Builder). This involves analyzing binary data so that
its record layout is accurately reflected in the metadata you create in Format Builder.
You then create a description of the input data in Format Builder and save this
metadata as a Message Format Language (MFL) document. XML Translator includes
importers that automatically create message format definitions from common sources
of binary metadata, such as COBOL copybooks.

You can then use XML Translator’s run-time component to translate instances of
binary data to XML. Figure 1-2 shows the event flow for non-XML to XML data
translation. A Plug-In to Process Integrator allows for easy access to configuring
translations.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 1-3

1 Understanding the XML Translator Plug-In
Figure 1-2 Event Flow for Non-XML to XML Translation Using XML
Translator

The Design-Time Component

The design-time component is a Java application called Format Builder. Format
Builder is used to create descriptions of binary data records. Format Builder allows you
to describe the layout and hierarchy of the binary data so that it can be translated to or
from XML. The description you create in Format Builder is saved in an XML grammar
called Message Format Language (MFL). MFL documents are metadata used by the
run-time component of XML Translator and the plug-in to Process Integrator to
translate an instance of a binary data record to an instance of an XML document (or
vice-versa). Format Builder will also create a DTD or XML Schema document that
describes the XML document created from a translation.

For more information on the design-time component, refer to the BEA WebLogic
XML/Non-XML Translator User Guide.
1-4 BEA WebLogic XML/Non-XML Translator Plug-In Guide

What is XML Translator?
The Run-Time Component

The run-time component of XML Translator is a Java class with various methods used
to translate data between binary and XML formats. This Java class can be deployed in
an EJB using BEA WebLogic Server, invoked as a business operation from a workflow
in BEA WebLogic Process Integrator, or integrated into any Java application.

For more information on the run-time component, refer to the BEA WebLogic
XML/Non-XML Translator User Guide.

Run-Time Plug-In to WebLogic Process Integrator

BEA XML Translator Plug-In for WebLogic Process Integrator provides for an
exchange of information between applications by supporting data translations between
binary formats from legacy systems and XML. The XML Translator Plug-In provides
Process Integrator actions that allow you to access XML to Binary and Binary to XML
translations.

In addition to this data translation capability, the XML Translator Plug-In provides
event data processing in binary format, in-memory caching of MFL documents and
translation object pooling to boost performance, a BinaryData variable type to edit
and display binary data, and execution within a WebLogic Server clustered
environment.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 1-5

1 Understanding the XML Translator Plug-In
The following illustration describes the relationship between XML Translator and
Process Integrator.

Using the Repository

The XML Translator repository feature provides a centralized document storage
mechanism that supports the following four document types:

n MFL - Message Format Language document

n DTD - XML Document Type Definition document

n XSD - XML Schema document

n XSLT - XSLT Stylesheet

Start Done
Workflow Task Configured

with XML Translator Actions

Format BuilderXML Document
Repository

BEA XML Translator Plug-In
to Process Integrator

BEA XML
Translator Java

Classes

Translated
XML Document

Input Binary Data
MFL Document Name

MFL
Document

MFL
Document

Optional:
DTD
XML Schema
1-6 BEA WebLogic XML/Non-XML Translator Plug-In Guide

XML Translator Plug-In Prerequisites
The Repository provides access to these document types and allows you to share them
between XML Translator, Process Integrator, Application Integration, and
Collaborate. The repository also includes a batch import utility that allows previously
constructed MFL, DTD, XSD, and XSLT documents to be easily migrated into the
repository.

XML Translator Plug-In Prerequisites

Before using the XML Translator Plug-In, you should perform the following tasks:

n Install BEA WebLogic Integration, specifically the WebLogic Process Integrator
component, following the instructions in the BEA WebLogic Process Integrator
documentation.

n Install XML Translator following the instructions in the BEA WebLogic
XML/Non-XML Translator Installation and Configuration Guide.

n Perform the configuration tasks for the XML Translator Plug-In following the
instructions in the BEA WebLogic XML/Non-XML Translator Installation and
Configuration Guide.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 1-7

1 Understanding the XML Translator Plug-In
1-8 BEA WebLogic XML/Non-XML Translator Plug-In Guide

CHAPTER
2 Using the XML
Translator Plug-In

Within most enterprise application integration (EAI) problem domains, data
translation is an inherent part of an EAI solution. XML is quickly becoming the
standard for exchanging information between applications, and is invaluable in
integrating disparate applications. However, most data transformation engines do not
support translations between binary data formats and XML. XML Translator Plug-In
for WebLogic Process Integrator provides for an exchange of information between
applications by supporting data translations between binary formats from legacy
systems and XML.

In addition to this data translation capability, the XML Translator Plug-In provides a
binary data event handler, in-memory caching of MFL documents and translation
object pooling to boost performance, a BinaryData variable type to edit and display
binary data, and execution within a WebLogic Server clustered environment.

This section provides information about the following topics:

n Data Translation with the XML Translator Plug-In

n Processing Event Data

n Enhancing Data Translation Performance

n Custom Data Types and the XML Translator Plug-In

n WebLogic Server Clustering Support
BEA WebLogic XML/Non-XML Translator Plug-In Guide 2-1

2 Using the XML Translator Plug-In
Data Translation with the XML Translator
Plug-In

The XML Translator Plug-In provides XML and non-XML translation capabilities
from within WebLogic Process Integrator. To perform one of these translation actions,
follow the steps below. For more information on the actions specific to WebLogic
Process Integrator, refer to the WebLogic Process Integrator documentation.

1. Start WebLogic Process Integrator Server and Studio.

2. Open the desired template definition and double-click a task. The Task Properties
dialog opens (Figure 2-1).

Figure 2-1 Task Properties Dialog

3. If the task contains the data translation action, select it from the list and click
Update; then, proceed to step 4. Otherwise, click Add to add a new action. The
Add Action dialog opens (Figure 2-2).
2-2 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Data Translation with the XML Translator Plug-In
Figure 2-2 Add Action dialog

4. Select Integration Actions to expand its action list, then select Data Integration
and choose the action you want to perform (Translate XML to Binary or
Translate Binary to XML).

Translate XML to Binary

To perform an XML to binary translation:

1. From the Add Action dialog (Figure 2-2), choose XML to Binary Translation. The
Translate XML to Binary dialog opens (Figure 2-3).
BEA WebLogic XML/Non-XML Translator Plug-In Guide 2-3

2 Using the XML Translator Plug-In
Figure 2-3 Translate XML to Binary Dialog

2. Enter data in the fields as described in the following table.

Field Description

Message Format Parameters

Name The name of the message format. You can type a name directly in the
text box, or click Browse to select the document from the repository.
2-4 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Data Translation with the XML Translator Plug-In
3. Click OK to save the translation information to the workflow.

Description Displays the description of the message format.

Note: This field is display only. You cannot edit this field.

Notes Displays the notes attached to the message format.

Note: This field is display only. You cannot edit this field.

Debug Enable or disable debug messaging. When you select this option, the
translation actions are written to the WebLogic Server log file.

Message Format Action Buttons

Browse Allows you to browse MFL documents in the repository. Refer to
“Retrieving and Storing Repository Documents” in the BEA
WebLogic XML/Non-XML Translator User Guide for specific
instructions.

View Displays the items contained in the message format so you can verify
that you have selected the correct document type for translation.

Variable Parameters

Input XML
Variable

Displays the XML workflow variables. Select the variable you want
to use in the translation, or create a new variable as follows:

1. Type the name you want to assign to the new variable and click
OK. A confirmation message box displays.

2. Click Yes to create the new variable.

Assign Result To Displays the Binary Data workflow variables. Select the variable you
want to use to store the translated information, or create a new
variable as follows:

1. Type the name you want to assign to the new variable and click
OK.

2. Click Yes to create the new variable.

Field Description
BEA WebLogic XML/Non-XML Translator Plug-In Guide 2-5

2 Using the XML Translator Plug-In
Translate Binary to XML

To perform a binary to XML translation:

1. From the Add Action dialog (Figure 2-2), choose Integration Actions→Data
Integration→Translate Binary to XML. The Translate Binary to XML dialog opens
(Figure 2-4).

Figure 2-4 Translate Binary to XML Dialog
2-6 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Data Translation with the XML Translator Plug-In
2. Enter data in the fields as described in the following table.

Field Description

Message Format Parameters

Name The name of the message format. You can type a name directly in the
text box, or click Browse to select the message format from the
repository.

Description Displays the description of the message format.

Note: This field is display only. You cannot edit this field.

Notes Displays the notes attached to the message format.

Note: This field is display only. You cannot edit this field.

Debug Enable or disable debug messaging. When you select this option, the
translation actions are written to the WebLogic Server log file.

Message Format Action Buttons

Browse Allows you to browse MFL documents in the repository. Refer to
“Retrieving and Storing Repository Documents” in the BEA
WebLogic XML/Non-XML Translator User Guide for specific
instructions.

View Displays the items contained in the message format so you can verify
that you have selected the correct document type for translation.

Variable Parameters

Input Binary
Variable

Displays the binary workflow variables. Select the variable you want
to use in the translation, or create a new variable as follows:

1. Type the name you want to assign to the new variable and click
OK. A confirmation message box displays.

2. Click Yes to create the new variable.

Assign Result To Displays the XML Data workflow variables. Select the variable you
want to use to store the translated information, or create a new
variable as follows:

1. Type the name you want to assign to the new variable and click
OK.

2. Click Yes to create the new variable.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 2-7

2 Using the XML Translator Plug-In
3. Click OK to save the translation information to the workflow.

Processing Event Data

The XML Translator Plug-In provides functionality that allows binary data to trigger
WebLogic Process Integrator workflows by converting the binary data to XML, or
pre-processing it at the front end of WebLogic Process Integrator event processing.
This functionality is referred to as the “event handler.” Publishing JMS messages to a
topic causes the event handler to run.

There are three JMS properties required for the message to be pre-processed by the
XML Translator Plug-In:

n WLPIContentType: "binary/x-application/wlxt"

n WLPIPlugin: "com.bea.wlxt.WLXTPlugin"

n WLPIEventDescriptor:MFL document name

The first two JMS message properties are constant for all messages addressed to the
event handler. The third property contains the name of the MFL document that
describes the binary data in the message.

Note: This MFL document must be stored in the repository.

Listing 2-1 is a sample of the code used to build a message that is to be processed by
the XML Translator event handler.

Listing 2-1 Sample Event Handler Code

byte[] bindata = ... the binary data ...
pub = sess.createPublisher(topic);
BytesMessage msg = sess.createBytesMessage();
msg.writeBytes(bindata);
msg.setStringProperty("WLPIPlugin", "com.bea.wlxt.WLXTPlugin");
msg.setStringProperty("WLPIContentType",
 "binary/x-application/wlxt");
msg.setStringProperty("WLPIEventDescriptor", “mymfldoc”);
pub.publish(msg);
2-8 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Enhancing Data Translation Performance
This process is illustrated in the servlet sample application (see Running the WebLogic
Process Integrator Servlet Sample).

Enhancing Data Translation Performance

The XML Translator Plug-In provides a configuration panel to administer and monitor
the MFL document in-memory cache and enable or disable event handler debugging.
Using this panel, you can adjust the in-memory cache and translation object pool to
enhance the performance of your data translations.

Note: You must clear the MFL document in-memory cache in order for any updates
you make to an MFL document to take effect.

To access the configuration panel, follow the steps below. For more information on the
actions specific to WebLogic Process Integrator, refer to the WebLogic Process
Integrator documentation.

1. Start WebLogic Process Integrator Studio.

2. Choose Configuration→Plugins. The Plugin Configuration dialog opens
(Figure 2-5).
BEA WebLogic XML/Non-XML Translator Plug-In Guide 2-9

2 Using the XML Translator Plug-In
Figure 2-5 Plugin Configuration Dialog

3. Choose XML Translator Plug-in and click Update. The Configuration dialog for
the XML Translator Plug-in opens (Figure 2-6).
2-10 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Enhancing Data Translation Performance
Figure 2-6 Configuration Dialog for XML Translator Plug-In

4. Use the fields as described in the table below to monitor and enhance translation
performance.

Field Description

XML Translator Object Pool

Preferred Pool Size Defines the maximum number of permanent objects in the pool. Use
the slider to set the pool size to the desired number.

Note: The translation engine creates temporary pool objects if the
demand exceeds the preferred pool size you have set. These
objects are deleted when they are returned to the pool.

Current Size Displays the number of objects currently in the pool.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 2-11

2 Using the XML Translator Plug-In
The XML Translator Plug-in provides additional display and edit capabilities over the
standard WebLogic Process Integrator functionality. These capabilities are provided
by the Hex Editor component of Format Tester for displaying and editing binary data.

Variable Types and the XML Translator
Plug-In

The XML Translator Plug-In provides a BinaryData variable type, that you can use
to edit and display binary data. The BinaryData variable acts as a container for a
logical group of binary data with additional display capabilities. The BinaryData

High Water Mark Displays the largest number of objects in the pool since the server was
started.

MFL Cache

MFL Requests Displays the total number of requests for translation of MFL
documents.

Cache Hits Displays the number of requests where the MFL document needed
was already in the cache.

Hit Ratio Displays the percentage of requests satisfied by retrieving MFL
documents from the cache, rather than from the database.

MFL Cache Action Buttons

Refresh Sends a request to the server to update the MFL cache statistics.

Clear Clears the MFL document cache. This requires all future translation
requests to load MFL documents from the repository.

Event Handler Options

Enable Debug
Messaging

Enables or disables debug messaging for the Event Handler. If
enabled, debug messages are written to the WebLogic Server log file
during translation.

Field Description
2-12 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Custom Data Types and the XML Translator Plug-In
variable is used by programs that call the actions provided by the XML Translator
Plug-In to pass and receive binary data. It is also used by the Workflow instance
monitor to display and edit the contents of a binary variable.

Custom Data Types and the XML Translator
Plug-In

XML Translator includes a User Defined Type feature that allows you to create custom
data types specific to your unique data type requirements. The User Defined Type
feature allows these custom data types to be plugged in to the XML Translator runtime
engine. Once a user defined data type is plugged-in, it is indistinguishable from a
built-in data type in both features and function.

Configuring User Defined Data Types

User Defined data types used by the XML Translator Plug-In are stored in the XML
Translator repository as CLASS documents. At runtime, the XML Translator Plug-In
loads user defined type classes from the repository as required. In addition, the XML
Translator Plug-In will export the MFL and class files required to support the active
template allowing a template to be imported on another Process Integrator instance
intact. Class documents may be placed in the repository using one of the following
methods:

n Using Format Builder

n Using the Repository Import Utility

Using Format Builder

Perform the following steps to publish a user defined type to the repository using
Format Builder.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 2-13

2 Using the XML Translator Plug-In
1. Start Format Builder by clicking Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.0→xmltranslator→Format Builder. The
Format Builder main window displays.

2. Choose Repository→Log In. The Process Integrator Repository Login window
opens.

3. Enter the userid specified for the server in the User Name field.

4. Enter the password specified for the server in the Password field.

5. Enter the server name and Port number in the Server[:port] field.

Note: The Process Integrator Repository Login window allows up to three
unsuccessful login attempts, after which, a login failure message is
displayed. If you experience three login failures, choose Repository→Log
In to repeat the login procedure.

6. Click Connect. If your login is successful, the Login window disappears and the
Format Builder Title bar displays the server name and port number entered on the
Process Integrator Repository Login window. You may now choose any of the
active repository menu items to access.

7. Choose Tools→User Defined Types. The Add/Remove User Defined Types
dialog box opens.

With a repository connection established, the Add/Remove User Defined Types
dialog box displays the status of each registered user defined type and allows for
its publication to the repository. The user defined type repository status is
2-14 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Custom Data Types and the XML Translator Plug-In
reflected by an icon of a ball preceding the type name of each installed user
defined type.

The color of the icon associated with each user defined type indicates its status:

l Green - The user defined type has been published to the repository.

l Yellow - The user defined type has been published to the repository,
however, the local version of the class differs from the repository version.

l Red - The user defined type does not exist in the repository.

8. Select the class you want to publish from the list of Installed Types and click
Publish. The icon for the selected entry should become green indicating the class
was successfully placed in the repository.

Using the Repository Import Utility

Perform the following steps to use the repository import utility to import Java class
files, including XML Translator user defined types.

1. Create a wlxt-repository.properties file in the CLASSPATH. The content
of this file should be as follows:

wlxt.repository.url=<server url>
BEA WebLogic XML/Non-XML Translator Plug-In Guide 2-15

2 Using the XML Translator Plug-In
For example:

wlxt.repository.url=t3://localhost:7001

2. Type the following command to pass the class file name on the Import command
line.

java com.bea.wlxt.repository.Import <file name>

For example, the following command imports all the class files in the current
directory:

java com.bea.wlxt.repository.Import *.class

Note: Any Java class file may be imported to the repository using the Repository
Import utility, not just user defined types. This is useful if a user defined type
relies on additional class files that do not extend the
com.bea.wlxt.bintype.Bintype class.

WebLogic Server Clustering Support

The XML Translator Plug-in can operate successfully in a WebLogic Server clustered
environment. In a clustered environment, the plug-in administrator is connected to
only one node of the cluster at any given time. Any commands issued by the
administrator must be propagated to the other nodes in the cluster.

Communication among the various servers in a cluster is handled through the use of a
JMS topic. The topic is used for communication between XML Translator components
on different nodes in a cluster.

Configuring the XML Translator Plug-in for Clustering

If you want to take advantage of the clustering capability, you must configure the XML
Translator Plug-In as follows:

1. Create a JMS topic on one of the servers within the cluster. The JNDI name of this
topic must be as follows:

com.bea.wlxt.cluster.BroadcastTopic
2-16 BEA WebLogic XML/Non-XML Translator Plug-In Guide

WebLogic Server Clustering Support
Note: Refer to the WebLogic Server documentation for more information on
creating JMS topics.

2. Open the config.xml file in a text editor. This file can be found in the config
directory where you have WebLogic Process Integrator installed.

Note: The config directory contains separate subdirectories for each domain
you have created. Each of these subdirectories contains its own
config.xml file. Make sure you open the file under the correct domain.

3. Locate the <Application> section for WebLogic Process Integrator and add the
following anywhere within this section:

<EJBComponent Name=”wlxt-cluster”
 DeploymentOrder=”99”
 Targets=”[server_name]”
 URI=”wlxtmb.jar”
/>

4. Save the config.xml file.

Note: You must restart the server in order for the change to the config.xml file to
be recognized.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 2-17

2 Using the XML Translator Plug-In
2-18 BEA WebLogic XML/Non-XML Translator Plug-In Guide

CHAPTER
3 Running the WebLogic
Process Integrator
Sample Applications

The BEA WebLogic XML/Non-XML Translator software includes two sample
applications designed to illustrate the integration of XML Translator with BEA
WebLogic Process Integrator. This section describes these samples and gives you
step-by-step instructions for running the samples. The following topics are discussed:

n Prerequisite Considerations

n Running the WebLogic Process Integrator Servlet Sample

n Running the WebLogic Process Integrator EJB Sample

Prerequisite Considerations

There are certain software applications that must be installed and tasks that must be
performed prior to running the these samples. Please refer to the BEA WebLogic
XML/Non-XML Translator Release Notes for more information.

Note: The instructions presented in this section assume that you have a good working
knowledge of BEA WebLogic Integration, specifically the WebLogic Process
Integrator component, and BEA WebLogic Server. You should have
BEA WebLogic XML/Non-XML Translator Plug-In Guide 3-1

3 Running the WebLogic Process Integrator Sample Applications
successfully installed the WebLogic Process Integrator component of
WebLogic Integration and run a sample workflow prior to running the sample
applications.

Running the WebLogic Process Integrator
Servlet Sample

This sample application implements a Web Archive (WLPI_sample.war) that installs
a servlet to accept requests for conversion of binary data to XML. The servlet is
accessed via a browser and responds by displaying the generated XML data. In
addition, the data is posted to the WebLogic Process Integrator event topic in either
XML or binary format. The data may then be used to start a WebLogic Process
Integrator workflow.

What is Included in the Servlet Sample

The following table provides a listing and description of the files included in the
WebLogic Process Integrator Servlet sample application. This sample application can
be found in the samples\wpli\servlet directory.

Table 3-1 List of Servlet Sample Application Files

Directory File Description

\servlet\source WLPI_sample.java The source code for the servlet used to present the HTML
screen and process binary data to XML. This XML may
be placed, optionally, onto the WebLogic Process
Integrator JMS topic.

\servlet SampleData.mfl The Message Format Language description of the sample
binary data file used to start the sample WebLogic Process
Integrator workflow.

\servlet SampleData.data The sample data file used as input to start the sample
WebLogic Process Integrator workflow.
3-2 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Running the WebLogic Process Integrator Servlet Sample
How to Run the Servlet Sample

Follow the steps below to run the servlet sample. For instructions on the tasks specific
to WebLogic Server and WebLogic Process Integrator, refer to the documentation that
accompanies those applications.

Step 1. Configure and Run WebLogic Process Integrator

1. Start the WebLogic Process Integrator Server.

2. Copy the WLPI_sample.war file to the default web application directory. By
default, these directories are:

\servlet SampleWorkflow.xml The exported WebLogic Process Integrator workflow
used in the sample. This workflow should be imported via
the WebLogic Process Integrator Studio GUI to setup the
workflow tasks involved in the sample.

\servlet Makefile Make file for building the sample source to a .jar file.

\servlet build.cmd Builds the .jar file from source.

\servlet WLPI_sample.war A Web Archive file containing all executable sample code
and configuration files.

\servlet\images bealogo.jpg The BEA logo image displayed on the HTML page
rendered by the sample servlet.

\servlet\WEB-INF hello.html The HTML page used by the sample servlet to obtain
input data from the user.

\servlet\WEB-INF web.xml The J2EE configuration file defining deployment
information for the sample servlet.

\servlet\WEB-INF weblogic.xml The BEA configuration file defining WebLogic-specific
information for the sample servlet.

\servlet\WEB-INF
\lib

*.jar Utility libraries, including XML Translator, that are used
in the execution of the sample code.

Table 3-1 List of Servlet Sample Application Files

Directory File Description
BEA WebLogic XML/Non-XML Translator Plug-In Guide 3-3

3 Running the WebLogic Process Integrator Sample Applications
C:\bea\wlserver6.0\config\mydomain\applications (for Windows NT
or Windows 2000)

$BEA_HOME/wlserver6.0/config/mydomain/applications (for Unix)

Step 2. Deploy the Web Application

1. If your WebLogic Server has auto-deployment enabled, the sample web application
is deployed within several seconds. Verify the deployment setting using the
WebLogic Server Console, as shown in Figure 3-1.

Figure 3-1 WebLogic Server Console
3-4 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Running the WebLogic Process Integrator Servlet Sample
2. If you have disabled auto-deployment on your WebLogic Server, you must
statically deploy the web application using the WebLogic Server Console. To do
this, follow the steps below:

a. From the tree in the left pane, choose Web Applications.

b. In the right pane, click Install a New Web Application.

c. Enter the path and file name of the WLPI_sample.war file and press Upload.

After the WLPI_sample.war file is successfully uploaded, WLPI_sample
appears in the tree under Web Applications.

d. Select the new WLPI_sample node from the tree.

e. Click the Deployed checkbox in the right pane and click Apply.

f. Select the Targets tab.

g. Move your server name from the Available column to the Chosen column, as
shown in Figure 3-2.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 3-5

3 Running the WebLogic Process Integrator Sample Applications
Figure 3-2 WebLogic Server Console Targets Tab

Step 3. Configure the Mail Session

1. From the tree in the left pane, choose Mail→wlpiMailSession.

2. Enter the appropriate information to configure your mail host. Figure 3-3 shows
an example of the Mail Session Configuration screen.
3-6 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Running the WebLogic Process Integrator Servlet Sample
Figure 3-3 WebLogic Server Console Mail Session Configuration Tab

3. Select the Targets tab.

4. Move your mail server name from the Available column to the Chosen column,
as shown in Figure 3-4.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 3-7

3 Running the WebLogic Process Integrator Sample Applications
Figure 3-4 WebLogic Server Console Mail Session Targets Tab

Step 4. Create a New Template and Activate the Workflow

1. Start WebLogic Process Integrator Studio and log on.

2. Select Templates in the left pane, click the right mouse button and choose Create
to create a new template.
3-8 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Running the WebLogic Process Integrator Servlet Sample
3. Select the newly created template, click the right mouse button and choose
Import Template Definition.

4. Select the file \samples\wlpi\servlet\SampleWorkFlow.xml.

5. Select the newly imported workflow, click the right mouse button and choose
Open. The workflow opens.

6. Select the newly imported workflow, click the right mouse button and choose
Properties. The Properties dialog displays.

7. Select Active and click OK.

8. Select the workflow, click the right mouse button and choose Save.

Step 5. Store the SampleData.mfl File in the Repository

There are two methods for storing files in the repository. Both methods are described
below.

Using Format Builder

1. Start XML Translator Format Builder.

2. Open the samples\wlpi\servlet\SampleData.mfl file.

3. Log in to the repository.

4. Choose Repository→Store As to store the sample file in the repository.

Using the command line

At the console command prompt, invoke the Batch Import Utility using the following
command.

java com.bea.wlxt.repository.Import [-v] [-n] [-t type] [-f folder]
files...

The following information describes the commands and their options.

-v
specifies that verbose mode is on. This switch may appear anywhere within
the command line and affects all operations that follow. Verbose mode is
disabled by default.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 3-9

3 Running the WebLogic Process Integrator Sample Applications
-n
specifies that verbose mode is off. This switch may appear anywhere within
the command line and affects all operations that follow. Verbose mode is
disabled by default.

-f
Optional switch specifying the parent folder of all the following files.
Multiple -f switches may be specified to change folders during an import
execution. By default, documents are imported into the root folder of the
repository. A special -f switch argument of @ may be used to specify the root
folder.

Folder names specified in the -f switch are always absolute pathnames from
the repository root folder. Folder names within a path should be separated by
a forward slash.

-t
Optional switch specifying the default type of all the following files. The
default type is assigned to documents when the document type cannot be
determined by the file extension. Valid values are .mfl, .dtd, .class, .xsl, and
.xsd.

files
specifies one or more filenames to be imported. Wildcards may be used based
on the current command line shell.

Step 6. Generate the XML Data and Send the Message

1. Using a text editor, open the file \samples\wlpi\servlet\SampleData.data.
Replace the text user@bea.com with a valid email address. This is the address the
workflow uses to deliver the email message.

2. Open a browser and go to the following URL:

http://<weblogic server/port>/WLPI_sample/WLXTTest

3. Enter SampleData into the MFL text field.

4. Browse to the following data file:

samples\wlpi\servlet\SampleData.data

5. Select the option to invoke WebLogic Process Integrator and click Submit. A
short email message is sent to the address you supplied in the data file.
3-10 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Running the WebLogic Process Integrator EJB Sample
Running the WebLogic Process Integrator
EJB Sample

This sample simulates a dataflow from an HR system to a payroll system, initiated by
the entry of payroll data. The employee data is obtained from a legacy payroll system
that uses binary data. The data is translated to XML in order to perform a calculation
to determine the employee’s pay information. The result of the calculation is translated
back to binary and sent on to the payroll system.

What is Included in the EJB Sample

The following table provides a listing and description of the files included in the
WebLogic Process Integrator EJB sample application. This sample application can be
found in the samples\wpli\ejb directory.

Table 3-2 List of EJB Sample Application Files

Directory File Description

\ejb Makefile Make file for building the sample source to a .jar file.

\ejb WLXTExample.jar Exported sample workflow from WebLogic Process
Integrator.

\ejb HR.mfl MFL file for binary data returned from the Sample HR
Bean.

\ejb Payroll.mfl MFL file for binary data passed to the Sample Payroll
Bean.

\ejb Autopay.cmd Windows NT command script to initiate the workflow
from the command line.

\ejb Autopay.sh Unix shell script to initiate the workflow from a
command prompt.

\ejb build.cmd Builds wlxtejb.jar from source.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 3-11

3 Running the WebLogic Process Integrator Sample Applications
How to Run the EJB Sample

Follow the steps below to run the EJB sample. For specific instructions on performing
the tasks in WebLogic Process Integrator and WebLogic Server, please refer to the
documentation that accompanies those applications.

Step 1. Configure and Run WebLogic Process Integrator

1. Copy the file WLXTEJB.jar from the \samples\wlpi\ejb\lib directory where
you have XML Translator installed to the \lib directory where you have
WebLogic Process Integrator installed.

2. Open the file config.xml in a text editor. This file can be found in the config
directory where you have BEA WebLogic Process Integrator installed.

Note: The config directory contains separate subdirectories for each domain
you have created. Each of these subdirectories contains its own
config.xml file. Make sure you open the file under the correct domain.

\ejb\lib WLXTEJB.jar Executables for the sample application.

\ejb\source Payroll.java Sample EJB to represent legacy payroll system.

\ejb\source PayrollHome.java Sample EJB to represent legacy payroll system.

\ejb\source PayrollBean.java Sample EJB to represent legacy payroll system.

\ejb\source HR.java Sample EJB to represent legacy HR system.

\ejb\source HRHome.java Sample EJB to represent legacy HR system.

\ejb\source HRBean.java Sample EJB to represent legacy HR system.

\ejb\source AutoPay.java Program to place a pre-formatted message on the WLPI
Event Topic to start the sample workflow.

\ejb\source HexDump.java Utility class used by the sample EJBs.

\ejb\source EmployeeRecord.java Employee data class used by the sample HR EJB.

Table 3-2 List of EJB Sample Application Files

Directory File Description
3-12 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Running the WebLogic Process Integrator EJB Sample
3. Add the following lines to the end of the WebLogic Process Integrator
Application section of the file:

<EJBComponent
Name=”wlxt-sample”
Targets=”<your_machine_name>”
URI=”WLXTEJB.jar”

/>

4. Start the WebLogic Process Integrator Server.

Step 2. Import the Workflow Definition

To import the workflow definition:

1. Run WebLogic Process Integrator Studio.

2. Choose Tools→Import Package. The Import: Select File dialog opens
(Figure 3-5).

Figure 3-5 Import: Select File Dialog
BEA WebLogic XML/Non-XML Translator Plug-In Guide 3-13

3 Running the WebLogic Process Integrator Sample Applications
3. Click Browse, select the definition file WLXTExample.jar, and click Open. Click
Next, the Import: Select Components to Import dialog opens (Figure 3-6).

Figure 3-6 Import: Select Components to Import

4. Make sure all components are selected and click Import. The Import: Review
Import Summary dialog opens (Figure 3-7).
3-14 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Running the WebLogic Process Integrator EJB Sample
Figure 3-7 Import: Review Import Summary

5. Confirm that the correct components are listed. If not, click Back and select the
components again. If so, click Close. You are now ready to open the template.

Step 3. Open the Template

To open the template:

1. Expand the WLXT Example template imported in the previous step in the tree view.
Select the template definition 1-1-00-12:00-AM and click the right mouse button.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 3-15

3 Running the WebLogic Process Integrator Sample Applications
2. Choose Open. The workflow created for this sample application displays.

Figure 3-8 Workflow for XML Translator Example

3. Select the XML Translator Example template definition again from the tree view
and click the right mouse button.

4. Choose Properties. The Template Definition properties dialog displays.
3-16 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Running the WebLogic Process Integrator EJB Sample
Figure 3-9 Template Definition

5. Click Active to confirm that the template is active and click OK.

6. Select the XML Translator Example template definition a third time from the tree
view and click the right mouse button again.

7. Choose Save to save the template definition with the changes you made.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 3-17

3 Running the WebLogic Process Integrator Sample Applications
Step 4. Start the Workflow

There are two ways to start the workflow created in the sample:

n From the WebLogic Process Integrator Worklist

n From the Command Line

From the WebLogic Process Integrator Worklist

To start the sample workflow from the Weblogic Process Integrator Worklist:

1. Start WebLogic Process Integrator Worklist and choose Workflow→Start a
Workflow.

2. Select WLXT Example. Click OK.

Figure 3-10 XML Translator Example Worklist

3. Select the Enter Payroll Data task and click the right mouse button.

4. Choose Execute. The Enter Payroll Data dialog displays.
3-18 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Running the WebLogic Process Integrator EJB Sample
Figure 3-11 Enter Payroll Data

5. Enter the payroll data and click OK. The task is started and the workflow runs.

Note: For this example, the employee numbers 1 through 4 are valid. You can
enter any period ending date and any number of hours worked.

From the Command Line

To start the sample workflow from a command line prompt:

1. Open the script file (Autopay.cmd on Windows NT systems; Autopay.sh on
Unix systems) in a text editor and check the location of the WebLogic Process
Integrator Server. By default, the location is localhost and port:7001.

2. Change the location information to match the host and port for your system.

3. Set the environment variable WL_HOME to the home directory for WebLogic
Server on your system. For example:

set WL_HOME=c:\bea\wlserver6.0

4. Run the command scripts for your system (Windows NT or Unix), passing the
same parameters shown in Figure 3-11. For example:

Autopay 1 2000-11-30 60

Figure 3-12 shows the WebLogic Process Integrator output from executing the
workflow.
BEA WebLogic XML/Non-XML Translator Plug-In Guide 3-19

3 Running the WebLogic Process Integrator Sample Applications
Figure 3-12 WebLogic Process Integrator Server Console
3-20 BEA WebLogic XML/Non-XML Translator Plug-In Guide

Index

B
BinaryData variable 2-12

C
cache hits 2-12
clustering

configuring XML translator plug-in 2-16
WebLogic Server 2-16

com.bea.wlxt.cluster.BroadcastTopic 2-17
config.xml file 2-17
current size 2-11

D
data translation 2-2
debug messaging 2-12
design-time component 1-4

E
EJB sample

files 3-11
event data

processing 2-8

H
high water mark 2-12
hit ratio 2-12

I
import

repository 2-15

M
mail session

configuring 3-6
message format language (MFL) 1-4
mfl requests 2-12

P
performance 2-9
plug-in prerequisites 1-7
preferred pool size 2-11
prerequisites

plug-in 1-7
processing event data 2-8

R
refresh 2-12
repository

using 1-6
repository input utility 2-15
run-time component 1-5
run-time plug-in to WebLogic Process

integrator 1-5
BEA Laguna User Guide I-21

S
servlet sample

included files 3-2
running 3-3

U
user defined data types

configuring 2-13

W
WebLogic Server clustering 2-16
WLPI_sample.war file 3-5
WLXTExample.jar file 3-14
wlxt-repository.properties file 2-15
workflow

starting 3-18
workflow definition

importing 3-13
I-22 BEA Laguna User Guide

	1 Understanding the XML Translator Plug-In
	Understanding XML Translation
	What is XML Translator?
	The Design-Time Component
	The Run-Time Component
	Run-Time Plug-In to WebLogic Process Integrator

	Using the Repository
	XML Translator Plug-In Prerequisites

	2 Using the XML Translator Plug-In
	Data Translation with the XML Translator Plug-In
	Translate XML to Binary
	Translate Binary to XML

	Processing Event Data
	Enhancing Data Translation Performance
	Variable Types and the XML Translator Plug-In
	Custom Data Types and the XML Translator Plug-In
	Configuring User Defined Data Types
	Using Format Builder
	Using the Repository Import Utility

	WebLogic Server Clustering Support
	Configuring the XML Translator Plug-in for Clustering

	3 Running the WebLogic Process Integrator Sample Applications
	Prerequisite Considerations
	Running the WebLogic Process Integrator Servlet Sample
	What is Included in the Servlet Sample
	How to Run the Servlet Sample
	Step 1. Configure and Run WebLogic Process Integrator
	Step 2. Deploy the Web Application
	Step 3. Configure the Mail Session
	Step 4. Create a New Template and Activate the Workflow
	Step 5. Store the SampleData.mfl File in the Repository
	Step 6. Generate the XML Data and Send the Message

	Running the WebLogic Process Integrator EJB Sample
	What is Included in the EJB Sample
	How to Run the EJB Sample
	Step 1. Configure and Run WebLogic Process Integrator
	Step 2. Import the Workflow Definition
	Step 3. Open the Template
	Step 4. Start the Workflow

	Index

