
Integration™

Using

V e r s i o n 2 . 1
D o c u m e n t D a t e : O c t o b e r 2 0 0 1

Application Integration

BEA WebLogic

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Server and How Business Becomes
E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using Application Integration

Part Number Date Software Version

N/A October 2001 2.1

Contents

About This Document
What You Need to Know ... vii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... ix

Contact Us! .. ix

Documentation Conventions ...x

1. Introduction to Using Application Integration
Before You Begin.. 1-1

Concepts .. 1-2

When to Use an Application View and When to Write Custom Code 1-2

When to Define an Application View... 1-2

When to Write Custom Code Instead of Defining
an Application View .. 1-3

“Defining” Versus “Using” an Application View...................................... 1-3

Defining: Configuring an Application View and Adding
Events and Services ... 1-3

Using an Application View in a Business Processes 1-4

Defining an Application View ... 1-4

Naming and Configuring Connection Parameters for an
Application View... 1-5

Adding Services and Events to an Application View......................... 1-5

Testing Services and Events ... 1-5

Using an Application View in Business Processes 1-5

Using an Application View in BPM ... 1-6

Using an Application View by Writing Custom Code 1-6
Using Application Integration iii

Deciding Which of the Two Methods to Use...................................... 1-6

2. Defining an Application View
Before You Begin .. 2-2

Introduction to Defining an Application View.. 2-2

The Flow of Events .. 2-2

Steps for Defining an Application View ... 2-4

Logging On to the WebLogic Integration Application
View Console .. 2-5

Defining an Application View.. 2-6

Adding a Service to an Application View.. 2-9

Adding an Event to an Application View... 2-11

Deploying an Application View... 2-13

Undeploying an Application View... 2-18

Testing an Application View’s Services .. 2-19

Testing an Application View’s Events ... 2-22

If You Select Service... 2-23

If You Select Manual .. 2-26

Editing an Application View.. 2-29

3. Using Application Views in Business Process Management
Before You Begin .. 3-2

Introduction to Using Application Views in BPM .. 3-3

Using an Application View in BPM.. 3-3

Scenario 1: Setting Up a Task Node to Call an Application
View Service ... 3-4

Steps for Setting up a Task Node to Call an Application
View Service .. 3-4

Scenario 2: Setting Up an Event Node to Wait for a Response
from an Asynchronous Application View Service............................ 3-11

Receiving an Asynchronous Application View Service Response... 3-11

Handling Errors in an Asynchronous Application View
Service Response ... 3-12

Steps for Receiving an Asynchronous Service Response
(Preferred Method)... 3-13
iv Using Application Integration

Steps for Receiving an Asynchronous Service Response
(Legacy Method).. 3-15

Explanation of Functions Provided by the Application
Integration Plug-in ... 3-18

Scenario 3: Creating a Workflow Started by an Application
View Event.. 3-20

Steps for Creating a Workflow Started by an Application
View Event .. 3-20

Scenario 4: Setting Up an Event Node to Wait for an Application
View Event.. 3-23

Steps for Setting Up a Node to Wait for an Application
View Event .. 3-24

4. Using Application Views by Writing Custom Code
Scenario 1: Connecting Using Specific Credentials.. 4-1

Implementing ConnectionSpec .. 4-2

Calling setConnectionSpec() and getConnectionSpec() 4-2

Using the ConnectionSpec .. 4-3

Scenario 2: Custom Coding a Business Process.. 4-4

About this Scenario .. 4-5

Before You Begin... 4-5

Creating the SyncCustomerInformation Class ... 4-6

Example Code for SyncCustomerInformation... 4-8

5. Using the WebLogic Integration Application View Console
Before You Begin.. 5-2

Introduction to Using the Application View Console 5-2

Steps for Using the Application View Console... 5-2

Logging On to the Application View Console... 5-2

Creating a Folder .. 5-4

Removing an Application View... 5-5

Removing a Folder ... 5-5
Using Application Integration v

A. Migrating Application Integration Data
Overview .. A-1

Migrating Data Within the Same EIS Instance .. A-2

Export .. A-2

Export Example ... A-3

Import .. A-4

Migrating Data Within Different EIS Instances ... A-5

Import Example ... A-6

Recommended Practices... A-9
vi Using Application Integration

About This Document

Using Application Integration is organized as follows:

� “Introduction to Using Application Integration” provides an overview of BEA
WebLogic Integration Framework and explains how it fits into the WebLogic
Server environment and contributes to the BEA EAI solution.

� “Defining an Application View” explains how to log into an adapter, create and
configure application views to represent your enterprise’s business processes.

� “Using Application Views in Business Process Management” explains how to
use application views in the WebLogic Server environment by setting up
workflows using WebLogic Integration Studio.

� “Using Application Views by Writing Custom Code” explains how to use
application views in the WebLogic Server environment by writing custom Java
code.

� “Using the WebLogic Integration Application View Console” explains how to
use namespaces to organize your application views by location or department
instead of by adapter.

� Appendix A, “Migrating Application Integration Data” explains how to migrate
application integration data between WebLogic Server domains.

What You Need to Know

This document is intended for the following users:
Using Application Integration vii

� Business Analysts–Business analysts work with the technical analysts to ensure
accuracy of the business interface functionality, to create application views, and
to use application views within your enterprise.

� Technical Analysts–Technical analysts are responsible for configuring an
adapter, for setting up WebLogic Integration services to execute information
transfers with a legacy system, for configuring solutions using adapters, and for
evaluating, mapping, deploying, and maintaining the WebLogic Server
environment. This guide assumes that the technical analyst has thorough
knowledge of the entire system.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “edocs”
Product Documentation page at http://edocs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File→Print option on your Web browser.

A PDF version of this document is available on the BEA WebLogic Application
Integration documentation home page on the edocs Web site. You can open the PDF
in Adobe Acrobat Reader and print the entire document (or a portion of it) in book
format. To access the PDFs, open the BEA WebLogic Application Integration
documentation home page, click the PDF Files button and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.
viii Using Application Integration

Related Information

The following resources are also available:

BEA WebLogic Server documentation (http://edocs.bea.com)

BEA WebLogic Business Process Management (BPM) documentation
(http://edocs.bea.com)

XML Schema Specification (http://www.w3c.org/TR/xmlschema-formal/)

The Sun Microsystems, Inc. Java site (http://www.javasoft.com/)

The Sun Microsystems, Inc. J2EE Connector Architecture Specification
(http://java.sun.com/j2ee/connector/)

Contact Us!

Your feedback on the BEA WebLogic Application Integration documentation is
important to us. Send us e-mail at docsupport@beasys.com if you have questions or
comments. Your comments will be reviewed directly by the BEA professionals who
create and update the BEA WebLogic Application Integration documentation.

In your e-mail message, please indicate that you are using the documentation for the
BEA WebLogic Application Integration 2.0 release.

If you have any questions about this version of BEA WebLogic Application
Integration, or if you have problems installing and running BEA WebLogic
Application Integration, contact BEA Customer Support through BEA WebSupport at
www.beasys.com. You can also contact Customer Support by using the contact
information provided on the Customer Support Card, which is included in the product
package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address
Using Application Integration ix

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and file names and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

chmod u+w *

c:\startServer

.doc

wls.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr
x Using Application Integration

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other information

Example:

import com.sap.rfc.exception.*;

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item
Using Application Integration xi

xii Using Application Integration

CHAPTER
1 Introduction to Using
Application Integration

This document is Using Application Integration, the manual for using adapters built
using the BEA WebLogic Integration ADK (Adapter Development Kit). This
document explains how to define application view services and events and use them in
your business processes in the WebLogic Integration environment.

The instructions in this document are general instructions. Because each adapter and
application is different, the instructions do not cover any information specific to any
particular adapter or application. If you are looking for a tour of specific adapters
included with the ADK, see the following two sections in Developing Adapters:

� “The E-mail Adapter” in Developing Adapters.

� “The DBMS Adapter” in Developing Adapters.

This section provides information on the following subjects:

� Before You Begin

� Concepts

Before You Begin

Before you can begin using adapters to integrate your enterprise, make sure the
following prerequisites are satisfied:

� You have installed WebLogic Server, including Service Pack 1.
Using Application Integration 1-1

1 Introduction to Using Application Integration
� You have installed JDK 1.3.1. The JDK 1.3 development kit is automatically
installed when you install WebLogic Server 6.1, although you may want to
install your own version, as long as it is 1.3.1-compliant.

� You have installed BEA WebLogic Integration.

� Deploy each adapter for which you will define application views.

Note: For a complete list of prerequisites, see the release notes.

Concepts

This section describes important concepts with which you should familiarize yourself
before you work with adapters and application views. The following concepts are
discussed in detail in “Defining an Application View” on page 2-1 and “Using
Application Views in Business Process Management” on page 3-1. For a broad
overview of application integration, see Introducing Application Integration.

When to Use an Application View and When to Write
Custom Code

To support service invocation and events, you can define application views, or you can
write custom code that accomplishes the same functions. Application views provide
the most convenient interface to an adapter’s resources, but there are other ways to
access an adapter. Normally, for each adapter, you will define application views to
expose the application functions. However, for those who require more control, you
may also write custom code to access the resources of an adapter. For your enterprise,
you must decide whether to define application views or write your own code.

When to Define an Application View

You can define application views to easily integrate most enterprise information
system (EIS) applications. In general, define application views in the following
situations:
1-2 Using Application Integration

Concepts
� You have more than one EIS in your enterprise, and you lack developers who
have detailed, thorough knowledge of all of the systems.

� You want to construct business processes using WebLogic Integration Studio.

� You may need to update the parameters of the adapter or one of its processes.

When to Write Custom Code Instead of Defining an Application View

In general, write custom code as an interface to an adapter only in the following
situations:

� You have only one EIS in your enterprise

� You have access to a developer who has thorough, detailed knowledge of each
EIS involved in the business processes being coded.

� You do not need to use the coded functions in BPM.

� Your code will never change.

“Defining” Versus “Using” an Application View

There are two initial steps in the life cycle of an application view:

� Defining the application view.

� Using the application view.

Defining: Configuring an Application View and Adding Events and Services

When you define an application view, you configure the communication parameters,
then add services and/or events. The application view’s services and events expose
specific functions of the application. The communication parameters of the application
view govern how the application view will connect to the target EIS.

Defining an application view includes the following tasks:

� Entering a unique name for the application view.
Using Application Integration 1-3

1 Introduction to Using Application Integration
� Configuring parameters that establish the network connection between the
application view and the application itself.

� Configuring parameters specific to the application.

� Configuring parameters used for load balancing by the application view.

� Configuring parameters used to manage the pool of connections available to the
application view.

� Defining security privileges for users of the application view.

Using an Application View in a Business Processes

After you define an application view, you can deploy it on WebLogic Server. You can
use deployed application views to implement your enterprise’s business processes in a
business process workflow.

After using an application view in a business process workflow, the end result is a
deployed electronic representation of your enterprise’s business process. The
workflow specifies how your applications will interact with each other to accomplish
the business processes. The application views perform the transactions themselves.

Defining an Application View

When you define an application view for an adapter, you are creating an XML-based
interface between WebLogic Server and a particular EIS application. For detailed steps
for defining application views for adapters, see Chapter 2, “Defining an Application
View.”

Defining an application view involves these basic steps:

1. Naming and Configuring Connection Parameters for an Application View.

2. Adding Services and Events to an Application View.

3. Testing Services and Events.
1-4 Using Application Integration

Concepts
Naming and Configuring Connection Parameters for an Application View

The first step in defining an application view for an adapter is to log on to the
Application View Console, select a folder where the application view will reside, and
configure its EIS connection parameters. For details on creating and configuring an
application view, see the following topics:

� “Logging On to the WebLogic Integration Application View Console” on page
2-5.

� “Defining an Application View” on page 2-6.

Adding Services and Events to an Application View

After defining the EIS connection parameters of the application view, the next step is
to add services and events. Services and events support a subset of an application’s
business processes by allowing other WebLogic Server clients to interact with the
application functions you specify. The application view services and events allow
specific types of transactions between WebLogic Server and the EIS application. For
details on adding services and events to an application view, see the following topics:

� “Adding a Service to an Application View” on page 2-9.

� “Testing an Application View’s Events” on page 2-22.

Testing Services and Events

After adding a service or event to an application view, you must make sure the service
or event interacts properly with the EIS application. For details on testing services and
events, see the following topics:

� “Testing an Application View’s Services” on page 2-19

� “Testing an Application View’s Events” on page 2-22

Using an Application View in Business Processes

Once you define an application view in your WebLogic Integration environment, you
can use the application view in your enterprise’s business processes. There are two
ways to use application views in business processes:
Using Application Integration 1-5

1 Introduction to Using Application Integration
� By designing business process workflows in BPM.

� By writing custom code.

Using an Application View in BPM

The most common way to use an application view in your enterprise’s business
processes is to design a workflow in BPM. BPM provides a GUI-based environment
for designing business process workflows. These workflows can include application
view services and events defined using application integration.

There are four ways to use an application view in a workflow using BPM:

� Scenario 1: Setting Up a Task Node to Call an Application View Service

� Scenario 2: Setting Up an Event Node to Wait for a Response from an
Asynchronous Application View Service

� Scenario 3: Creating a Workflow Started by an Application View Event

� Scenario 4: Setting Up an Event Node to Wait for an Application View Event

For detailed information on each method, see Chapter 3, “Using Application Views in
Business Process Management.”

Using an Application View by Writing Custom Code

If you do not use BPM, the alternate way to use an application view in your enterprise
is to write custom Java code to implement a business process.

For detailed steps for custom coding business processes, see Chapter 4, “Using
Application Views by Writing Custom Code.”

Deciding Which of the Two Methods to Use

For each business process you implement, you will need to decide which of the two
implementation methods to use. You can implement any business processes as a
workflow by using BPM, but you should only attempt to custom code a business
process if it is extremely simple and specialized. In this document, custom coding is
offered only as an alternate method for those who require it.
1-6 Using Application Integration

Concepts
When to Use BPM

In general, use BPM to implement a business process in the following situations:

� When implementing the required business processes would require complicated
error management, persistent processes, and sophisticated conditional branching.

For example, if a business process receives events, selects only a subset of the
events, performs complex branched actions, then generates many complex
messages and sends the messages to a variety of WebLogic Server clients, then
you should use BPM to implement the business process.

� When you will have to make occasional changes to the business process.

BPM reduces the number of compile/test/debug cycles.

� When, like most organizations, your developers are valuable and scarce.

When to Write Custom Java Code

In general, write custom code to implement a business process only in the following
situations:

� When the business process is simple. A simple business process is one that
includes no complicated error recovery, long-lived processes, conditional
branching, or joining of the process flow.

For example, if a business process performs a limited set of actions on an
incoming message, then routes the minimally transformed message to a small
number of client applications, then the business process is simple enough to
express by writing custom code.

� When you will not need to update the business process very often.

When you update custom code, the change requires a full compile/test/debug
cycle, which can be costly.

� When your organization can afford to dedicate developers to implement the
business processes in code.
Using Application Integration 1-7

1 Introduction to Using Application Integration
1-8 Using Application Integration

CHAPTER
2 Defining an
Application View

This section contains information on the following subjects:

� Before You Begin

� Introduction to Defining an Application View

� Steps for Defining an Application View
Using Application Integration 2-1

2 Defining an Application View
Before You Begin

Before you attempt to define an application view, make sure the following
prerequisites are satisfied.

� The appropriate adapter has been developed using the ADK. You can only create
and configure application views for existing adapters.

� Determine which business processes need to be supported by the application
view you are configuring. The required business processes determine the types
of services and events you will include in the application views. Normally, this
means gathering information about the application’s business requirements from
the business analyst. Once you determine the necessary business processes, you
can define and test the appropriate services and events.

Introduction to Defining an Application
View

When you define an application view, you are creating an XML-based interface
between WebLogic Server and a particular EIS application within your enterprise.
Once you create the application view, a business analyst can use it to create business
processes that use the application. For any adapter, you can create any number of
application views, each with any number of services and events.

The Flow of Events

Figure 2-1 shows an overview of the steps involved in defining an application view.
2-2 Using Application Integration

Introduction to Defining an Application View
Figure 2-1 The Flow of Events for Defining and Configuring Application Views

4. Log on to the WebLogic Integration Application View Console. For detailed
information, see “Logging On to the WebLogic Integration Application View
Console” on page 2-5.

5. Click Add Application View to create a new application view for the appropriate
adapter. An application view enables a set of business processes for this adapter’s
target EIS application. For detailed information, see “Defining an Application
View” on page 2-6.

6. At the Configure Connection Parameters page, enter application connection
parameters. For detailed information, see “Defining an Application View” on
page 2-6.
Using Application Integration 2-3

2 Defining an Application View
The information is validated, and the application view is configured to connect
to the system you specified.

7. Click Add Event or Add Service to define the appropriate events and services for
this application view.

8. Deploy the application view on WebLogic Server so other entities can interact
with it according to your security settings.

Note: You can only test an application view if it is deployed.

9. Test the services and events to make sure they can properly interact with the
target EIS application.

Once the services and events are tested and functioning, you can use the
application view in workflows. For more information, see Chapter 3, “Using
Application Views in Business Process Management.”

10. Undeploy the application view if you need to reconfigure its connection
parameters or add services and events.

Note: When an application view is undeployed, no other entities can interact with
it.

Steps for Defining an Application View

This section explains how to define and maintain application views using an EIS
adapter for a hypothetical database EIS called simply “DBMS.” When you create
application views for your enterprise, they may look different than the screens shown
in this document. This is normal, because the application view’s adapter determines
the information required for each application view page, and each enterprise has its
own specialized adapters. For details on an adapter used in your enterprise, consult the
relevant technical analyst or EIS specialist.
2-4 Using Application Integration

Steps for Defining an Application View
Logging On to the WebLogic Integration Application
View Console

The first step in creating a new application view is to log on to the Application View
Console page. The Application View Console displays all the application views in
your WebLogic Integration environment, organized into folders.

To log on to the Application View Console:

1. Open a new browser window.

2. Open the URL for your system’s Application View Console. The actual URL you
enter depends on your system. It should follow the format:

http://localhost:7001/wlai

The Application View Console - Login page is displayed.

3. To log on to the Application View Console, enter your WebLogic Server
username and password, then click Login. The Application View Console is
displayed.
Using Application Integration 2-5

2 Defining an Application View
Note: If you do not see a page like this, consult the WebLogic Server
administrator.

4. To add a folder, click the New Folder icon. For more information, see “Creating a
Folder” on page 5-4.

Defining an Application View

After you log on to the Application View Console and navigate to a folder, click Add
Application View to define an application view.

1. Log on to the Application View Console. For more information, see “Logging On
to the WebLogic Integration Application View Console” on page 2-5.

2. To add a new application view to the current folder, click Add Application View.
The Define New Application View page is displayed.
2-6 Using Application Integration

Steps for Defining an Application View
Note: Once you define the application view, you can not move it to another
folder.

3. In the Application View Name field, enter a name. The name should describe the
set of functions performed by this application. Each application view name must
be unique to its adapter. Valid characters are a–z, A–Z, 0–9, and _ (underscore).

4. In the Description field, enter any relevant notes. These notes are viewed by users
when they use this application view in workflows using business process
management (BPM).

5. From the Associated Adapter list, select the adapter to use to create this
application view.

6. Click OK. The Configure Connection Parameters page is displayed.
Using Application Integration 2-7

2 Defining an Application View
At the Configure Connection Parameters page, you define the network-related
information necessary for the application view to interact with the target EIS.
You need to enter this information only once per application view.

7. Enter your WebLogic Server User Name and Password.

Note: Your page may have different fields than the ones shown. The fields are
determined by the adapter.

8. For any remaining fields, consult the relevant technical analyst or EIS specialist
for the required information.

9. Click Continue. The Application View Administration page is displayed.
2-8 Using Application Integration

Steps for Defining an Application View
Adding a Service to an Application View

After you create and configure an application view, add services that support the
application’s functions.

1. While the application view is open, click Administration. The Application View
Administration page is displayed.
Using Application Integration 2-9

2 Defining an Application View
2. Click Add Service. The Add Service page is displayed.

Note: Your page may have different fields than the ones shown. The fields are
determined by the adapter.
2-10 Using Application Integration

Steps for Defining an Application View
3. In the Unique Service Name field, enter a name. The name should describe the
function performed by this service. Each service name must be unique to its
application view. Valid characters are a–z, A–Z, 0–9, and _ (underscore).

4. In the Description field, enter any relevant notes. These notes are viewed by users
when they use this application view service in workflows using BPM.

5. For any remaining fields, consult the relevant technical analyst or EIS specialist
for the required information or format.

6. When finished, click Add.

Adding an Event to an Application View

After you create and configure an application view, add the appropriate events.

1. While the application view is open, click Administration. The Application View
Administration page is displayed.

2. Click Add Event. The Add Event page is displayed.
Using Application Integration 2-11

2 Defining an Application View
Note: Your page may have different fields than the ones shown. The fields are
determined by the adapter.

3. In the Unique Event Name field, enter a name. Each event name must be unique
to its application view. Valid characters are a–z, A–Z, 0–9, and _ (underscore).

4. In the Description field, enter any relevant notes. These notes are viewed by users
when they use this application view event in workflows using BPM.

5. For any remaining fields, consult the relevant technical analyst or EIS specialist
for the required information or format.

6. When finished, click Add. The Application View Administration page is
displayed.

7. If you are finished adding services and events, click Continue to deploy the
application view.
2-12 Using Application Integration

Steps for Defining an Application View
Deploying an Application View

You may deploy an application view when you have added at least one event or service
to it. You must deploy an application view before you can test its services and events
or use the application view in the WebLogic Server environment. Application view
deployment places relevant metadata about its services and events into a run-time
metadata repository. Deployment makes the application view available to other
WebLogic Server clients. This means business processes can interact with the
application view, and you can test the application view’s services and events.

To deploy an application view:

1. Open the application view. For more information, see “Logging On to the
WebLogic Integration Application View Console” on page 2-5. The Summary for
Application View page is displayed.

2. Click Edit. The Application View Administration page is displayed.
Using Application Integration 2-13

2 Defining an Application View
3. Click Continue. The Deploy Application View page is displayed.
2-14 Using Application Integration

Steps for Defining an Application View
Note: On the Deploy Application View page, the actual fields you see depend on
the adapter. For an explanation of all fields, consult the relevant technical
analyst or EIS specialist.

4. To enable BPM tor other authorized clients to asynchronously call the services (if
any) of this application view, select Enable Asynchronous Service Invocation.

An entity that calls an application view service asynchronously will continue its
process without waiting for a response from the service.

5. If this application view has events, enter the URL of the adapter’s event router.
For example,
http://localhost:7001/YourEIS_EventRouter/EventRouter

Note: If this field is not displayed, it means the application view has no events
defined.

6. In the Minimum Pool Size field, enter the minimum number of connection pools
to be used by this application view. For example, 1.
Using Application Integration 2-15

2 Defining an Application View
7. In the Maximum Pool Size field, enter the maximum number of connection pools
to be used by this application view. For example, 10.

8. In the Target Fraction of Maximum Pool Size field, enter the ideal pool size,
measured from 0 to 1.0. For example, 0.7. If the Maximum Pool Size is 10 and
the Target Fraction is 0.7, this means the adapter will perform load balancing to
attempt to maintain the connection pool size at 70% of the maximum, which in
this case means 7 connections.

9. To automatically delete unused connections, select Allow Pool to Shrink.

10. On the Log Configuration area, select one of the following options according to
your logging preferences:

� Log errors and audit messages

� Log warnings, errors, and audit messages

� Log informationals, warnings, errors, and audit messages

� Log all messages

11. If necessary, click Restrict Access using J2EE Security. The Application View
Security page is displayed.
2-16 Using Application Integration

Steps for Defining an Application View
Use this page to grant or revoke a WebLogic Server user or group’s read and
write access to this application view.

12. When finished setting up permissions, click Apply to save your changes.

13. To return to the Deploy Application View page, click Done.

14. To save the Application View without deploying it, click Save.

15. To automatically redeploy this application view whenever WebLogic Server is
restarted, select Deploy Persistently.

Note: To save the application view for later completion without deploying it
now, click Save at any time.

16. To deploy the application view, click Deploy Application View. The Summary
for Application View page is displayed.
Using Application Integration 2-17

2 Defining an Application View
Undeploying an Application View

Undeploy an application view when you want to edit its connection parameters, add
services and events, or disable clients from using the application view. For information
on editing connection parameters, see “Defining an Application View” on page 2-6.
When an application view is undeployed, no other WebLogic Server clients can
interact with it, and you can not test its services or events.

To undeploy an application view:

1. Click Summary. The Summary for Application View page is displayed.

2. To undeploy the application view from WebLogic Server, click Undeploy. The
Undeploy Application View child window is displayed.
2-18 Using Application Integration

Steps for Defining an Application View
3. Click Confirm. The Summary for Application View page is displayed, indicating
you may deploy the application view again.

Testing an Application View’s Services

After you create and deploy an application view that contains services, test the
application view services. Testing evaluates whether or not the application view
service interacts properly with the target EIS. To test application view services:

1. Define an application view (See “Defining an Application View” on page 2-6.),
add the appropriate services, and deploy the application view (See “Deploying an
Application View” on page 2-13.) if you have not done so already.

You can test an application view only if the application view is deployed and it
contains at least one event or service.

2. On the left navigation area, click Summary. The Summary for Application View
page is displayed.
Using Application Integration 2-19

2 Defining an Application View
3. In the Current Services area, find the service and click Test. The Test Service
page is displayed.

4. If necessary, enter the service input data in the Input fields. If the application
view service processes this data correctly, the test is successful.
2-20 Using Application Integration

Steps for Defining an Application View
Note: Your Test Service page may have different fields than the ones shown. The
fields are determined by the application view service. For an explanation
of the fields, consult the relevant technical analyst or EIS specialist.

5. Click Test after entering the service input data. The Test Result page is displayed.
This page displays the input and output documents.

6. Repeat the test procedure for each service you want to test.
Using Application Integration 2-21

2 Defining an Application View
7. When finished testing the application view’s services, you may keep the
application view deployed or undeploy it (See “Undeploying an Application
View” on page 2-18.) to edit the application view.

Testing an Application View’s Events

After creating and deploying an application view that contains events, test the
application view events. Testing evaluates whether or not the application view
responds correctly to the EIS application. To test application view events:

1. Define an application view (See “Defining an Application View” on page 2-6.),
add the appropriate events, and deploy the application view (See “Deploying an
Application View” on page 2-13.) if you have not done so already.

You can test an application view only if it is deployed and contains at least one
event or service.

2. Click Summary. The Summary for Application View page is displayed.

3. In the Current Events area, find your event and click Test. The Test Event page is
displayed.
2-22 Using Application Integration

Steps for Defining an Application View
Note: Your Test Event page may have different fields than the ones shown. The
fields are determined by the application view service. For an explanation
of the fields, consult the relevant technical analyst or EIS specialist.

4. Select the method to use to generate the test event:

� Service (See “If You Select Service” on page 2-23.): Select Service when
you want to use one of the application view’s own services to generate a
“canned” event.

� Manual (See “If You Select Manual” on page 2-26.): Select Manual when
you want to generate the event by logging on to an EIS application and
perform the appropriate event-generating function.

If the application view event correctly responds before the specified time
elapses, the test is successful.

If You Select Service

a. On the Service menu, select a service that will trigger the event you are testing.
For example, if you are testing the “NewCustomer” event, select a service that
will invoke it, such as “Insert Customer.”
Using Application Integration 2-23

2 Defining an Application View
b. In the Time field, enter a reasonable time to wait, in milliseconds. If this time
elapses before the event succeeds, the test will time out and display a failure
message.

c. Click “Test.” The triggering service is executed.

If the service requires input data, an input page is displayed.

d. If necessary, enter the service input data in the fields, then click Test.

The service executes. If the test succeeds, the Test Result page is displayed.
A successful test result displays the event document, the service input
document, and the service output document.
2-24 Using Application Integration

Steps for Defining an Application View
If the test fails, the Test Result page displays only a Timed Out message.
Using Application Integration 2-25

2 Defining an Application View
e. If the test failed, edit the event definition, or contact the system administrator
or application manager.

f. If the test succeeded, repeat the test procedure for each remaining event you
want to test.

g. When finished, save the application view.

If You Select Manual

a. In the Time field, enter a reasonable time to wait, in milliseconds. (One minute
= 60,000 ms.) If this time elapses before the event succeeds, the test will time
out and display a failure message.

b. Open the application you will use to trigger the event, if the application is not
already open.

c. Click Test. The test waits for an event to trigger it.

d. Using the triggering application, perform an action that will execute the service
that will test the application view event.

If the test succeeds, the Test Result page is displayed. A successful test result
displays the event document from the application, the service input
document, and the service output document.
2-26 Using Application Integration

Steps for Defining an Application View
If the test fails or takes too long, the Test Result page is displayed, including
a Timed Out message.
Using Application Integration 2-27

2 Defining an Application View
e. If the test failed, edit the event definition, or contact the system administrator
or application manager.

f. If the test succeeded, repeat the test procedure for each remaining event you
want to test.

g. When finished, save the application view.
2-28 Using Application Integration

Steps for Defining an Application View
Editing an Application View

When you define an application view, you must configure its connection parameters.
After you add and test services and events, you may want to reconfigure the connection
parameters or remove services and events. To edit an existing application view:

1. Open the application view.

2. Click Summary. The Summary for Application View page is displayed.

3. Click Edit. The Application View Administration page is displayed.
Using Application Integration 2-29

2 Defining an Application View
4. To reconfigure the application view’s connection parameters, click Configure
Connection (See “Defining an Application View” on page 2-6.)

5. To add services and events, click Add Service or Add Event. For more
information, see “Adding a Service to an Application View” on page 2-9 or
“Adding an Event to an Application View” on page 2-11.
2-30 Using Application Integration

CHAPTER
3 Using Application
Views in Business
Process Management

This section contains information on the following subjects:

� Before You Begin

� Introduction to Using Application Views in BPM

� Using an Application View in BPM
Using Application Integration 3-1

3 Using Application Views in Business Process Management
Before You Begin

The following prerequisites must have been met before you can invoke an application
view service or receive an application view event in business process management
(BPM):

� You have created an application view and defined services and events for the
application view.

� The application view and its adapter are functional and saved. If you plan on
calling application view services and events from a running workflow, the
application view must be deployed, as well.

� BPM is running.

� Application integration is running.

� The application integration plug-in has been loaded.

� You have received information about the required business logic for the
workflows you are defining. This information usually comes from the business
analyst or someone similar.

� A workflow template definition is open.
3-2 Using Application Integration

Introduction to Using Application Views in BPM
Introduction to Using Application Views in
BPM

After you create all the required application view services and events for your
enterprise, use the application views to execute your business processes. The simplest
way to do this is by using BPM to design business process workflows that use the
application view services and events.

BPM provides a GUI-based environment for designing business process workflows.
These workflows can include application view services and events defined using
application integration. For complete information on BPM, see Using the WebLogic
Integration Studio.

Using an Application View in BPM

There are four ways to use application view services and events in BPM:

� Scenario 1: Setting Up a Task Node to Call an Application View Service

� Scenario 2: Setting Up an Event Node to Wait for a Response from an
Asynchronous Application View Service

� Scenario 3: Creating a Workflow Started by an Application View Event

� Scenario 4: Setting Up an Event Node to Wait for an Application View Event

Use these scenarios in combination with each other to create your own workflows.
This document does not fully explain how to use BPM. For complete information on
BPM, see Using Business Process Management or see http://edocs.bea.com.
Using Application Integration 3-3

3 Using Application Views in Business Process Management
Scenario 1: Setting Up a Task Node to Call an Application
View Service

In your organization, there may be situations in which you want to call an application
view service from within a workflow. To do this, add a task node to the workflow, then
add an appropriate Application View Service action to the task node. When the
workflow is saved and activated, the application view service will be called whenever
the task node executes.

Steps for Setting up a Task Node to Call an Application View Service

Follow these steps to create a task node that calls an application view service:

1. Within WebLogic Integration Studio, open a template definition. The Workflow
Design window is displayed.

2. Create a task node if one does not already exist.

3. Double-click the task node that will call the application view service. The Task
Properties dialog box is displayed.
3-4 Using Application Integration

Using an Application View in BPM
4. In the Actions area, select the tab from which you want the service to be called.
Your tab choice depends on your business processes.

5. Click Add. The Add Action dialog box is displayed.

6. In the navigation tree, select AI Actions→Call Application View Service and
click OK. The Call Service dialog box is displayed.
Using Application Integration 3-5

3 Using Application Views in Business Process Management
7. In the navigation tree, navigate to and select the service you want to call.

The navigation tree organizes application view services by folder (for example,
EastCoast.Sales) and application view (for example, CustomerManagement). All
application view services are at the lowest level of the navigation tree.

Note: To check for recently saved application views and events at any time, click
Refresh Tree.

If the navigation tree is missing or appears too narrow, it may be because
an XML or string variable name is too long. Try renaming your XML or
string variables so they are shorter.
3-6 Using Application Integration

Using an Application View in BPM
8. In the Request Document Variable list, select an existing XML variable that
contains the input data for the application view service.

9. If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, where you can create a new XML variable.

10. In the Name field, enter a name for the variable.

11. In the Type menu, select XML. XML is the only menu option.

For details on defining new variables, see Using the WebLogic Integration
Studio.

12. Click OK to return to the Call Service dialog box.

13. (Optional) Click Set ... or Edit ... to display the Service Request Template dialog
box, where you can create a service request template for the selected service (Set
...) or edit an existing service request template (Edit ...).
Using Application Integration 3-7

3 Using Application Views in Business Process Management
The Service Request Template dialog box displays the template to apply to all
service requests of this type. This template is based on the input schema for the
service.

When this action executes, the template data will be assigned to the specified
request document variable and used as the input document for the service. This
template will override any previous setting for the variable.

For details on using the Service Request Template dialog box, see Using the
WebLogic Integration Studio.

14. Click OK to return to the Call Service dialog box.

15. If you need to examine the XML schema of the input document, click View
Request Definition. The View Definition dialog box is displayed.
3-8 Using Application Integration

Using an Application View in BPM
16. Click Close when finished.

17. To call the application view synchronously, select Synchronous, or select
Asynchronous to call the application view asynchronously.

Note: A node that synchronously calls a service will wait for the service to return
a response document before the workflow can continue. If the node
asynchronously calls a service, the workflow will continue.

18. For synchronous services that require storage of the response, select a predefined
XML variable in the Response Document Variable list. When BPM receives the
response from the application view service, the response document variable
stores the response. If you do not care about the response data, leave this field
empty.

19. If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, where you can create a new XML variable. For details, see step 9. in
“Scenario 1: Setting Up a Task Node to Call an Application View Service”.

For details on defining new variables, see Using the WebLogic Integration
Studio.

20. If you need to examine the XML schema of the response document, click View
Response Definition. The View Definition dialog box is displayed.

21. Click Close when finished.

22. For asynchronous services that require storage of the request ID, select a
predefined string variable in the Request ID Variable list.

23. If no suitable string variable exists, select <new> to open the Variable Properties
dialog box, where you can create a new string variable.
Using Application Integration 3-9

3 Using Application Views in Business Process Management
24. In the Name field, enter a name for the variable.

25. In the Type menu, select String. String is the only menu option.

For details on defining new variables, see Using the WebLogic Integration
Studio.

Note: When you set up a task node to call an asynchronous application view
service, the result will be returned to BPM. The workflow identifies this
response using the request ID variable you selected. To set up an event
node to receive the response, make sure to use the same request ID variable
for the event node. For more information on creating such an event node,
see “Scenario 2: Setting Up an Event Node to Wait for a Response from an
Asynchronous Application View Service” on page 3-11.

26. Click OK to save the action.

27. On the Task Properties dialog box, click OK to save the node.
3-10 Using Application Integration

Using an Application View in BPM
Scenario 2: Setting Up an Event Node to Wait for a
Response from an Asynchronous Application View
Service

This section explains how to receive an asynchronous application view service
response and handle any errors it may contain.

Receiving an Asynchronous Application View Service Response

In a workflow, whenever an action calls an application view service asynchronously
(See “Scenario 1: Setting Up a Task Node to Call an Application View Service” on
page 3-4.), the application view service will return a response. Normally, if you care
about the response, you will want to set up a corresponding asynchronous event node
to wait for the response. This section explains a highly simplified scenario in which an
event node receives an application view service response without checking for errors.

To set up an asynchronous event node to wait for a response from an asynchronous
application view service, create an event node, then set up the event node to wait for
an event of type AI Async Response.

You can use one of two methods to set up the event node to receive the asynchronous
service response:

� By using the Response Document tab (preferred method). When you use this
method, you receive the asynchronous service response by selecting the request
ID variable and a response document variable. The request ID variable is a string
and the response document variable is of type XML. For details on using this
method, see “Steps for Receiving an Asynchronous Service Response (Preferred
Method)” on page 3-13.

� By using the Asynchronous Variable tab (legacy method). When you use this
method, you receive the asynchronous service response by selecting the request
ID variable and an asynchronous service response variable. The request ID
variable is a string and the asynchronous service response variable is of type
AsyncServiceResponse. For details on using this method, see “Steps for
Receiving an Asynchronous Service Response (Legacy Method)” on page 3-15.

Note: The preferred method is the response document method because it
provides a universal means of receiving both asynchronous and
Using Application Integration 3-11

3 Using Application Views in Business Process Management
synchronous responses. When you use the response document method, an
XML document is received regardless of whether the response is
asynchronous or synchronous, and you do not need to query the value of
the asynchronous service response variable.

Use a response document variable to receive asynchronous service responses
whenever possible. Whenever you set up an Event Properties dialog box to wait for an
event of type AI Async Response, you may or may not have the choice of using an
asynchronous variable to receive the response.

� If you edit an existing AI Async Response event node that was previously set up
to use an Asynchronous Service Response variable to receive the response, then
two tabs will be displayed in the Event Properties dialog box: an Asynchronous
Variable tab (legacy method) and a Response Document tab (preferred method).
In this case, you can select one of the two methods to receive the service
response.

� If you edit an existing AI Async Response event node that does not use an
Asynchronous Service Response variable or you are creating a new
AI Async Response event node, then the Event Properties dialog box will
display a tabless dialog box, where you can set up a response document to
receive the service response (preferred method).

Handling Errors in an Asynchronous Application View Service Response

Although this scenario does not handle errors returned in the application view service
response, you will normally want to handle errors in your own workflows. To handle
asynchronous service response errors in your workflows that use an
AsyncServiceResponse variable, use the features included in the application
integration plug-in.

The application integration plug-in includes the variable type AsyncServiceResponse
and three functions:

� AIHasError()

� AIGetErrorMsg()

� AIGetResponseDocument()

For complete documentation of these functions, see “Explanation of Functions
Provided by the Application Integration Plug-in” on page 3-18.
3-12 Using Application Integration

Using an Application View in BPM
Steps for Receiving an Asynchronous Service Response (Preferred Method)

To set up an asynchronous event node to wait for a response from an asynchronous
application view service, create an event node, then set up the event node to wait for
an event of type AI Async Response.

Follow these steps to set up an event node to use an XML variable to receive an
asynchronous service response:

1. Within WebLogic Integration Studio, open a workflow template definition. The
Workflow Design window is displayed.

2. Create an event node if one does not already exist. This event node will wait for
an asynchronous response from a designated application view service.

3. Double-click the event node. The Event Properties dialog box is displayed.
Using Application Integration 3-13

3 Using Application Views in Business Process Management
4. (Optional) In the Description field, enter a name.

5. In the Type list, select AI Async Response.

6. Select the Response Document (preferred) tab.

Note: If your workflow does not use an AsyncServiceResponse variable or you
are creating a new AI Async Response event node, then the Event
Properties dialog box will display a tabless dialog box instead. Use it to set
up a response document to receive the service response (preferred
method).

7. In the Request ID Variable list, select an already-defined string variable. BPM
will listen for an asynchronous response with an ID matching this variable.
3-14 Using Application Integration

Using an Application View in BPM
8. If no suitable string variable exists, select <new> to open the Variable Properties
dialog box, where you can create a new string variable. For details, see step 23. in
“Scenario 1: Setting Up a Task Node to Call an Application View Service”.

For details on defining new variables, see Using the WebLogic Integration
Studio.

Note: The purpose of this event node is to wait for a response to a Call
Application View Service action that was called asynchronously earlier in
the workflow. The Call Application View Service action sets the request
ID variable. To make the action and this event node work together, they
must both use the same request ID variable. For more information on
setting up the Call Application View Service action, see “Scenario 1:
Setting Up a Task Node to Call an Application View Service” on page 3-4.

9. For asynchronous services that require storage of the response, select a
predefined XML variable in the Response Document Variable list. When BPM
receives the response from the application view service, the response document
variable stores the response. If you do not care about the response data, skip this
step.

10. If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, where you can create a new variable. For details, see step 9. in
“Scenario 1: Setting Up a Task Node to Call an Application View Service”.

For details on defining new variables, see Using the WebLogic Integration
Studio.

11. Click OK to save the event node.

Steps for Receiving an Asynchronous Service Response (Legacy Method)

The preferred method for receiving an asynchronous service response is to use a
response document variable of type XML. However, if an existing workflow contains
an asynchronous event node that was previously set up to use an
AsyncServiceResponse variable to wait for a response from an asynchronous
application view service, you can modify the event node.

Follow these steps to modify an event node that uses an AsyncServiceResponse
variable to receive an asynchronous service response:

1. Within WebLogic Integration Studio, open a workflow template definition. The
Workflow Design window is displayed.
Using Application Integration 3-15

3 Using Application Views in Business Process Management
2. Double-click the asynchronous event node. The Event Properties dialog box is
displayed.
3-16 Using Application Integration

Using an Application View in BPM
3. Select the Asynchronous Variable (legacy) tab.

4. In the Request ID Variable list, select an already-defined string variable. BPM
will listen for an asynchronous response with an ID matching this variable.

Note: The purpose of this event node is to wait for a response to a Call
Application View Service action that was called asynchronously earlier in
the workflow. The Call Application View Service action sets the request
ID variable. To make the action and this event node work together, they
must both use the same request ID variable. For more information on
setting up the Call Application View Service action, see “Scenario 1:
Setting Up a Task Node to Call an Application View Service” on page 3-4.

5. In the Asynchronous Service Response Variable list, select an
AsyncServiceResponse variable to store the response data.
Using Application Integration 3-17

3 Using Application Views in Business Process Management
Note: Because you are modifying an existing asynchronous event node, the
asynchronous service response variable field will already be populated. If
you do not care about the response, select the Response Document
(preferred) tab. For details on using the preferred method, see “Steps for
Receiving an Asynchronous Service Response (Preferred Method)” on
page 3-13.

6. Click OK to save the event node.

Explanation of Functions Provided by the Application Integration Plug-in

When using the application integration plug-in, use the functions AIHasError(),
AIGetErrorMsg(), and AIGetResponseDocument() to interrogate
AI Async Response variables, if applicable. If the application integration plug-in is
installed in BPM, then you have access to these functions. Using these functions, you
can set up decision nodes to handle success and failure conditions.

Note: These functions support only the asynchronous variable method for
receiving asynchronous service responses. For details, see “Steps for
Receiving an Asynchronous Service Response (Legacy Method)” on page
3-15.

AIHasError()

Use AIHasError() to determine the status of an asynchronous service response.

Operands:

AsyncServiceResponse variable

Preconditions:

You have created a variable of type AsyncServiceResponse. You have called
an asynchronous application view service. The application view service has
returned a response, which is stored in your AsyncServiceResponse variable.

Returns:

Boolean

Output explanation:

False: The asynchronous application view service call was successful.
3-18 Using Application Integration

Using an Application View in BPM
True: The asynchronous application view service call failed.

AIGetErrorMsg()

Use AIGetErrorMsg() to retrieve the error message string returned by an
asynchronous application view service.

Operands:

AsyncServiceResponse variable

Preconditions:

You have created a variable of type AsyncServiceResponse. You have called
an asynchronous application view service. The application view service has
returned a response, which is stored by your AsyncServiceResponse variable.

Returns:

String

Output explanation:

Error string: Returns an error string explaining why the asynchronous
application view response failed.

Empty string: There was no error.

AIGetResponseDocument()

Use AIGetResponseDocument() to retrieve the actual XML response document
returned by an asynchronous application view service.

Operands:

AsyncServiceResponse variable

Preconditions:

You have created a variable of type AsyncServiceResponse. You have called
an asynchronous application view service. The application view service has
returned a response, which is stored by your AsyncServiceResponse variable.

Returns:
Using Application Integration 3-19

3 Using Application Views in Business Process Management
XML

Output explanation:

XML document: Returns an XML document representing the asynchronous
service response.

Null: No response document was returned, because an error ocurred.

Scenario 3: Creating a Workflow Started by an
Application View Event

You may want to create a workflow that starts whenever a designated application view
event occurs. To set up a workflow to be started by an application view event, edit the
workflow’s start node so it responds to an event of type AI Start, then select the
appropriate application view event. If necessary, you can set up conditions on which
to filter the event. After you save and activate the workflow, the start node will execute
each time the application view event occurs.

Steps for Creating a Workflow Started by an Application View Event

Follow these steps to set up a workflow with a start node that is triggered by an
application view event.

1. Within WebLogic Integration Studio, open a template definition. The
Workflow Design window is displayed.
3-20 Using Application Integration

Using an Application View in BPM
2. Create a start node if one does not already exist. This start node will respond to
an application view event that you specify.

3. Double-click the start node. The Start Properties dialog box is displayed.

4. (Optional) In the Description field, enter a name.

5. Click Event.

6. In the Event list, select AI Start.

7. In the navigation tree, navigate to and select the application view event.
Using Application Integration 3-21

3 Using Application Views in Business Process Management
The navigation tree organizes application view events by folder (for example,
EastCoast.Sales) and application view (for example, CustomerManagement). All
application view events are at the lowest level of the hierarchy.

Note: To check for recently saved application views and events at any time, click
Refresh Tree.

If the navigation tree is missing or appears too narrow, it may be because
an XML or string variable name is too long. Try renaming your XML or
string variables so they are shorter.

8. If necessary, filter the event by entering a condition in the Condition field, or
click the A + B button to display the Expression Builder dialog box.

For information on setting up conditions and XPath expressions, see Using the
WebLogic Integration Studio.

9. In the Event Document Variable list, select an XML variable. When the start
node receives data from the application view event, this variable stores the data.
If you do not care about the event data, skip this step.

10. If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, where you can create a new variable. For details, see step 9. in
“Scenario 1: Setting Up a Task Node to Call an Application View Service”.

For details on defining new variables, see Using the WebLogic Integration
Studio.

11. If you need to examine the XML schema of the event document, click View
Definition. The View Definition dialog box is displayed.
3-22 Using Application Integration

Using an Application View in BPM
12. Click Close to return to the Start Properties dialog box.

13. On the Start Properties dialog box, click OK. The start node is saved.

Scenario 4: Setting Up an Event Node to Wait for an
Application View Event

In a workflow, you may want to create an event node that is triggered by an application
view event. To set up an event node to respond to an application view event, edit the
event node so it responds to an event of type AI Event, then select the appropriate
application view event. If necessary, you can set up conditions on which to filter the
application view event. After you save and activate the workflow, the workflow will
progress to this event node, wait for a specified application view event, and continue
processing.
Using Application Integration 3-23

3 Using Application Views in Business Process Management
Steps for Setting Up a Node to Wait for an Application View Event

Follow these steps to set up an event node to be triggered by an application view event.

1. Within WebLogic Integration Studio, open a template definition. The
Workflow Design window is displayed.

2. Create an event node if one does not already exist. This event node will be
triggered by a designated application view event.

3. Double-click the event node. The Event Properties dialog box is displayed.
3-24 Using Application Integration

Using an Application View in BPM
4. (Optional) In the Description field, enter a name.

5. In the Type list, select AI Event.

6. In the navigation tree, navigate to and select an application view event.

The navigation tree organizes application view events by folder (for example,
EastCoast.Sales) and application view (for example, CustomerManagement). All
application view events are at the lowest level of the hierarchy.

Note: To check for recently saved application views and events at any time, click
Refresh Tree.

If the navigation tree is missing or appears too narrow, it may be because an
XML or string variable name is too long. Try renaming your XML or string
variables so they are shorter.
Using Application Integration 3-25

3 Using Application Views in Business Process Management
7. If necessary, filter the event by entering a condition in the Condition field, or
click the A + B button to display the Expression Builder dialog box.

For information on setting up conditions and XPath expressions, see Using the
WebLogic Integration Studio.

On the Event Properties dialog box, select an XML variable in the Event
Document Variable list. When the event node receives data from the application
view event, this variable stores the data. If you do not care about the event data,
skip this step.

8. If no suitable XML variable exists, select <new> to open the Variable Properties
dialog box, where you can create a new variable. For details, see step 9. in
“Scenario 1: Setting Up a Task Node to Call an Application View Service”.

For details on defining new variables, see Using the WebLogic Integration
Studio.

9. If you need to examine the XML schema of the event document, click View
Definition. The View Definition dialog box is displayed.
3-26 Using Application Integration

Using an Application View in BPM
10. Click Close when finished.

11. On the Event Properties dialog box, click OK.
Using Application Integration 3-27

3 Using Application Views in Business Process Management
3-28 Using Application Integration

CHAPTER
4 Using Application
Views by Writing
Custom Code

If you are a developer, you may want to modify an application view by writing custom
code. You can use most application view features by using its Web-based GUI, but
there are some application view features you can use only by custom coding.

This section contains information on the following subjects:

� Scenario 1: Connecting Using Specific Credentials

� Scenario 2: Custom Coding a Business Process

Scenario 1: Connecting Using Specific
Credentials

If necessary, you can invoke methods on an application view that let you set the
security level before invoking services on the application view.

Use the new ApplicationView methods setConnectionSpec() and
getConnectionSpec() to set the credentials for an EIS. Both methods use a
ConnectionSpec object. To instantiate a ConnectionSpec object, you can use the
ConnectionRequestInfoMap class provided by the BEA WebLogic Integration
Using Application Integration 4-1

4 Using Application Views by Writing Custom Code
Adapter Development Kit (ADK), or you can implement your own class. If you
implement your own class, you must include the interfaces ConnectionSpec,
ConnectionRequestInfo, Map, and Serializable.

Implementing ConnectionSpec

Before you can use setConnectionSpec() or getConnectionSpec(), you must
instantiate a ConnectionSpec object. Use the ConnectionRequestInfoMap class
provided by the ADK, or derive your own class.

To implement ConnectionSpec:

1. Decide whether to use the ConnectionRequestInfoMap class, provided by the
ADK, or implement your own class.

2. If you are implementing your own ConnectionSpec class, include the following
interfaces in it:

� ConnectionSpec interface (JCA class)

� ConnectionRequestInfo interface (JCA class)

� Map interface (SDK class)

� Serializable interface (SDK class)

Calling setConnectionSpec() and getConnectionSpec()

After you implement the ConnectionSpec class and instantiate a ConnectionSpec
object, you can use it in conjunction with the following two new ApplicationView

methods:

� setConnectionSpec()

� getConnectionSpec()

Listing 4-1 Complete Code for setConnectionSpec()

/**
* Sets the connectionSpec for connections made to the EIS. After the
4-2 Using Application Integration

Scenario 1: Connecting Using Specific Credentials
* ConnectionSpec is set it will be used to make connections to the
* EIS when invoking a service. To clear the connection spec, and use
* the default connection parameters, call this method using null.
*
* @params connectionCriteria connection criteria for the EIS.
*/
public void setConnectionSpec(ConnectionSpec connectionCriteria)
{
m_connCriteria = connectionCriteria;
}

Listing 4-2 Complete Code for getConnectionSpec()

/**
* Returns the ConnectionSpec set by setConnectionSpec. If no
* ConnectionSpec has been set null is returned.
*
* @returns ConnectionSpec
*/
public ConnectionSpec getConnectionSpec()
{
return m_connCriteria;
}

Using the ConnectionSpec

To set the ConnectionSpec, pass it a properly initialized ConnectionSpec object. To
clear the ConnectionSpec, pass it a ConnectionSpec object with a null value.

Listing 4-3 shows a specific example for using ConnectionSpec.

Listing 4-3 An Example That Uses ConnectionSpec

Properties props = new Properties();
ApplicationView applicationView = new
ApplicationView(getInitialContext(props),"appViewTestSend");

ConnectionRequestInfoMap map = new ConnectionRequestInfoMap();
// map properties here
map.put("PropertyOne","valueOne");
Using Application Integration 4-3

4 Using Application Views by Writing Custom Code
map.put("PropertyTwo","valueTwo");
.
.
.
//set new connection spec
applicationView.setConnectionSpec(map);

IDocumentDefinition requestDocumentDef =
applicationView.getRequestDocumentDefinition("serviceName");

SOMSchema requestSchema = requestDocumentDef.getDocumentSchema();

DefaultDocumentOptions options = new DefaultDocumentOptions();
options.setForceMinOccurs(1);
options.setRootName("ROOTNAME");
options.setTargetDocument(DocumentFactory.createDocument());
IDocument requestDocument = requestSchema.createDefaultDocument(options);

requestDocument.setStringInFirst("//ROOT/ElementOne","value");
requestDocument.setStringInFirst("//ROOT/ElementTwo","value");
.
.
.
// the service invocation will use the connection spec set to connect to the EIS
IDocument result = applicationView.invokeService("serviceName",
requestDocument);
System.out.println(result.toXML());

Scenario 2: Custom Coding a Business
Process

Although the primary way to use application views in business processes is to use
business process management (BPM), an alternate way is to write custom Java code to
represent the business process. If you are a developer who uses the custom coding
method, this section uses a simple example to demonstrate how to custom code a
business process.

For a thorough comparison of the two ways to use application views, see “Deciding
Which of the Two Methods to Use” on page 1-6.
4-4 Using Application Integration

Scenario 2: Custom Coding a Business Process
About this Scenario

In the simple example used throughout this section, the following business logic is
implemented:

An enterprise has a customer relationship management (CRM) system and an order
processing (OP) system. You want a business process that coordinates the
synchronization of customer information between these two systems. That means that
whenever a customer is created on the CRM system, it should trigger the creation of a
corresponding customer record on the OP system. The attached Java class
SyncCustomerInformation implements this business logic.

This example does not cover everything you can do using custom code. It only
demonstrates the basic steps you take when you implement your own organization’s
business processes.

Your role is to use this example code as a template for custom coding your own
business processes.

This scenario uses a concrete example class called SyncCustomerInformation to
explain how to write custom code. In general, you must do the following two steps to
create custom code that uses an application view in a business process:

1. Make sure a Java class exists to represent the application that implements the
business process.

2. Within this Java class, supply the code to implement the business logic.

Before You Begin

The following prerequisites must be met before you write custom code to implement
a business process:

� Create an application view and define one or more events or services within the
application view.

� Obtain information about the required business logic for the business process
workflow you are defining. This information usually comes from a business
analyst. You have all the information necessary to connect to WebLogic Server,
Using Application Integration 4-5

4 Using Application Views by Writing Custom Code
including the host server name and port number, and a WebLogic Server user ID
and password.

In addition, this particular scenario assumes the following prerequisites are already
complete:

� Application views for the source CRM system and the target OP system are
defined and working. For details on defining application views, see “Defining an
Application View” on page 2-1.

� Both application views exist in the “East Coast” folder. The source application
view is named “East Coast.Customer Mgmt” and the target application view is
named “East Coast.Order Processing.”

Note: Your organization will have its own folders and application views.

� You are familiar with the application integration API or are working closely with
a Java programmer who is.

� You have all the information necessary to connect to the application integration
server that hosts the application views.

Note: For your organization, get this information from the system administrator.

Creating the SyncCustomerInformation Class

When writing custom code, a Java class must exist to represent each application
required for the business process. Create the necessary Java classes if they do not exist
already. This example calls for one application class called
SyncCustomerInformation. Of course, your own code will use different variable
names. To create the SyncCustomerInformation Java class:

1. See “Example Code for SyncCustomerInformation” on page 4-8 for the complete
source code for the Java application class.

Note: For your own projects, use the SyncCustomerInformation code as a
template or guide. The SyncCustomerInformation example code is
thoroughly commented.

2. Make sure the code does the following things (steps 3 through 11):

3. Create code to listen for East Coast.New Customer.
4-6 Using Application Integration

Scenario 2: Custom Coding a Business Process
4. Obtain a reference to the NamespaceManager (variable name m_namespaceMgr)
and ApplicationViewManager (variable name m_appViewMgr) within
WebLogic Server. Accomplish this using a JNDI lookup from WebLogic Server.

5. Using the NamespaceManager, obtain a reference to the “root” namespace by
calling nm.getRootNamespace(). This reference is stored in a variable called
root.

6. Using the root variable, obtain a reference to the East Coast namespace by
calling root.getNamespaceObject(“East Coast”). This reference is stored
into a variable called eastCoast.

7. Using the eastCoast variable, obtain a temporary reference to the Customer
Management ApplicationView and store it into a variable called
custMgmtHandle.

8. This custMgmtHandle temporary reference will be used to obtain an actual
reference to an ApplicationView instance for Customer Management. Do this
by calling the ApplicationViewManager as
avm.getApplicationViewInstance

(custMgmtHandle.getQualifiedName()). Store the returned reference into a
variable called custMgmt.

9. Begin listening for New Customer events by calling
custMgmt.addEventListener(“New Customer”, listener), where
listener is an object that can respond to New Customer events (see the
application integration API for a full discussion of event listeners and the
EventListener interface).

10. Implement the onEvent method of the listener class used in the step above.

When a New Customer event is received, the onEvent method of the listener is
called.

The onEvent method should then call a method to respond to the event. In this
example, the onEvent method provides the event object that contains the data
associated with the event. The method is called handleNewCustomer.

11. Implement the handleNewCustomer method that will respond to the New
Customer event.

The following things happen:
Using Application Integration 4-7

4 Using Application Views by Writing Custom Code
a. The handleNewCustomer method transforms the XML document in the event
to the form expected by the East Coast.Order Processing.Create Customer
service. This transformation may be performed using XSLT or manually using
custom transformation code. The end result of the transformation is an XML
document that conforms to the schema for the request document of the East
Coast.Order Processing.Create Customer service. Store this document in a
variable called createCustomerRequest.

b. handleNewCustomer will then obtain a reference to an instance of the East
Coast.Order Processing ApplicationView in the same way described for the
East Coast.Customer Management ApplicationView. This reference is
stored into a variable called orderProc.

c. handleNewCustomer will then invokes the Create Customer service on the
East Coast.Order Processing ApplicationView by calling
orderProc.invokeService(“Create Customer”,

createCustomerRequest). Recall that createCustomerRequest is the
variable holding the request document for the Create Customer service. The
response document for this service is stored in a variable named
createCustomerResponse.

d. handleNewCustomer is finished and returns, leaving itself ready to handle the
next incoming New Customer event.

When you are finished, a new Java class exists called
SyncCustomerInformation. This class implements the Sync Customer
Information business logic. This SyncCustomerInformation class uses the
application integration API to get events from the CRM system and to invoke
services on the OP system.

Example Code for SyncCustomerInformation

The following code listing is the full source code for the SyncCustomerInformation
Java class. It implements the business logic for the scenario described earlier in this
chapter. Use this example code as a guide for writing your own custom code to
implement your enterprise’s business processes.
4-8 Using Application Integration

Scenario 2: Custom Coding a Business Process
Listing 4-4 Full Class Source Code for SyncCustomerInformation

import java.util.Hashtable;
import javax.naming.*;
import java.rmi.RemoteException;
import com.bea.wlai.client.*;
import com.bea.wlai.common.*;
import com.bea.document.*;

/**
* This class implements the business logic for the 'Sync Customer Information'
* business process. It uses the WLAI API to listen to events from the CRM
* system, and to invoke services on the OP system. It assumes that there
* are two ApplicationViews defined and deployed in the 'EastCoast'
* namespace. The application views and their required events and services
* are shown below.
*
* CustomerManagement
* events (NewCustomer)
* services (none)
*
* OrderProcessing
* events (none)
* services (CreateCustomer)
*/

public class SyncCustomerInformation
implements EventListener

{
/**
* Main method to start this application. No args are required.
*/
public static void
main(String[] args)
{
// Check that we have the information needed to connect to the server.

if (args.length != 3)
{

System.out.println("Usage: SyncCustomerInformation ");
System.out.println(" <server url> <user id> <password>");
return;

}

try
{

// Create an instance of SyncCustomerInformation to work with
Using Application Integration 4-9

4 Using Application Views by Writing Custom Code
SyncCustomerInformation syncCustInfo =
new SyncCustomerInformation(args[0], args[1], args[2]);

// Get a connection to WLAI

InitialContext initialContext = syncCustInfo.getInitialContext();

// Get a reference to an instance of the 'EastCoast.CustomerManagement'
// Application View

ApplicationView custMgmt =
new ApplicationView(initialContext, "EastCoast.CustomerManagement");

// Add the listener for 'New Customer' events. In this case we have
// our application class implement EventListener so it can listen for
// events directly.

custMgmt.addEventListener("NewCustomer", syncCustInfo);

// Process up to 10 events and then quit.

syncCustInfo.setMaxEventCount(10);
syncCustInfo.processEvents();

}
catch (Exception e)
{
e.printStackTrace();

}

return;
}

/**
* EventListener method to respond to 'New Customer' events
*/
public void
onEvent(IEvent newCustomerEvent)
{

try
{
// Print the contents of the incoming 'New Customer' event.

System.out.println("Handling new customer: ");
System.out.println(newCustomerEvent.toXML());

// Handle it

IDocument response = handleNewCustomer(newCustomerEvent.getPayload());
4-10 Using Application Integration

Scenario 2: Custom Coding a Business Process
// Print the response

System.out.println("Response: ");
System.out.println(response.toXML());

// If we have processed all the events we want to, quit.

m_eventCount++;
if (m_eventCount >= m_maxEventCount)
{
quit();

}
}
catch (Exception e)
{

e.printStackTrace();
System.out.println("Quitting...");
quit();

}
}

/**
* Handles any 'New Customer' event by invoking the 'Create Customer'
* service on the 'Order Processing' ApplicationView. The response
* document from the service is returned as the return value of this
* method.
*/
public IDocument
handleNewCustomer(IDocument newCustomerData)
throws Exception

{
// Get an instance of the 'OrderProcessing' ApplicationView.
if (m_orderProc == null)
{

m_orderProc =
new ApplicationView(m_initialContext, "EastCoast.OrderProcessing");

}

// Transform the data in newCustomerData to be appropriate for the
// request document for 'Create Customer' on the 'Order Processing'
// ApplicationView.

IDocument createCustomerRequest =
transformNewCustomerToCreateCustomerRequest(newCustomerData);

// Invoke the service

IDocument createCustomerResponse =
m_orderProc.invokeService("CreateCustomer", createCustomerRequest);
Using Application Integration 4-11

4 Using Application Views by Writing Custom Code
// Return the response

return createCustomerResponse;
}

// ---
// Member Variables
// ---

/**
* The url for the WLAI server (e.g. t3://localhost:7001)
*/
private String m_url;

/**
* The user id to use when logging into WLAI.
*/
private String m_userID;

/**
* The password to use when logging in to WLAI as the user given in
* m_userID.
*/
private String m_password;

/**
* The initial context to use when communicating with WLAI
*/
private InitialContext m_initialContext;

/**
* An instance of the 'East Coast.Order Processing' ApplicationView for
* use in handleNewCustomer.
*/
private ApplicationView m_orderProc;

/**
* Hold the maximum number of events to be processed in handleNewCustomer
*/
private int m_maxEventCount;

/**
* Count of the events processed in handleNewCustomer
*/
private int m_eventCount;

/**
4-12 Using Application Integration

Scenario 2: Custom Coding a Business Process
* A monitor variable to enable us to wait until we are asked to quit
*/
private String m_doneMonitor = new String("Done Monitor");

/**
* A flag indicating we are done or not.
*/
private boolean m_done = false;

// --
// Utility Methods
// --

/**
* Constructor.
*/
public SyncCustomerInformation(String url, String userID, String password)
{
m_url = url;
m_userID = userID;
m_password = password;

}

/**
* Establish an initial context to WLAI.
*/
public InitialContext
getInitialContext()
throws NamingException

{
// Set up properties for obtaining an InitialContext to the WLAI server.

Hashtable props = new Hashtable();

// Fill in the properties with the WLAI host, port, user id, and password.

props.put(Context.INITIAL_CONTEXT_FACTORY,
"weblogic.jndi.WLInitialContextFactory");

props.put(Context.PROVIDER_URL, m_url);
props.put(Context.SECURITY_PRINCIPAL, m_userID);
props.put(Context.SECURITY_CREDENTIALS, m_password);

// Connect to the WLAI server

InitialContext initialContext = new InitialContext(props);

// Store this for later

m_initialContext = initialContext;
Using Application Integration 4-13

4 Using Application Views by Writing Custom Code
return initialContext;
}

/**
* Transform the document in the 'New Customer' event to the document
* required by the 'Create Customer' service.
*/
public IDocument
transformNewCustomerToCreateCustomerRequest(IDocument newCustomerData)

throws Exception
{

// We could do an XSLT transform here, or manually move data from the
// source to the target document. The details of this transformation
// are out of the scope of this sample. For information on XSLT see
// http://www.w3.org/TR/xslt. For more information on manually moving
// data between documents, see the JavaDoc documentation for the
// com.bea.document.IDocument interface.

return newCustomerData;
}

/**
* Event processing/wait loop
*/
public void
processEvents()
{

synchronized(m_doneMonitor)
{
while (!m_done)
{
try
{

m_doneMonitor.wait();
}
catch (Exception e)
{

// ignore
}

}
}

}

/**
* Sets the max number of events we want to process.
*/
public void
4-14 Using Application Integration

Scenario 2: Custom Coding a Business Process
setMaxEventCount(int maxEventCount)
{
m_maxEventCount = maxEventCount;

}

/**
* Method to force this application to exit (cleanly)
*/
public void
quit()
{
synchronized(m_doneMonitor)
{

m_done = true;
m_doneMonitor.notifyAll();

}
}

}

Using Application Integration 4-15

4 Using Application Views by Writing Custom Code
4-16 Using Application Integration

CHAPTER
5 Using the WebLogic
Integration Application
View Console

This section contains information on the following subjects:

� Before You Begin

� Introduction to Using the Application View Console

� Steps for Using the Application View Console
Using Application Integration 5-1

5 Using the WebLogic Integration Application View Console
Before You Begin

Before you attempt to work with Application View Console, ensure that application
integration is running.

Introduction to Using the Application View
Console

Use the Application View Console to access, organize, and edit all application views
in your enterprise. You can use the Application View Console to create new folders
and to add new application views to the folders. These folders allow you to organize
your application views according to your own navigation scheme, regardless of the
adapter to which the application view belongs.

Steps for Using the Application View
Console

This section explains how to organize application views into folders using the
Application View Console. The actual folders you set up depend on your organization.

Logging On to the Application View Console

The first step in managing application views is to log on to the Application View
Console. To log on:

1. Launch a browser window.
5-2 Using Application Integration

Steps for Using the Application View Console
2. Open the URL for your system’s Application View Console. The actual URL you
enter depends on your system. It should follow the format:

http://<yourserver>:<yourport>/wlai

For example, http://wli1:7001/wlai

The logon page is displayed.

Note: If you have already logged in to WebLogic Server as system, then you will
automatically skip the Application View Console logon page.

3. To log on to the Application View Console, enter your WebLogic Server
username and password, then click OK. The Application View Console is
displayed.
Using Application Integration 5-3

5 Using the WebLogic Integration Application View Console
Creating a Folder

Create folders to organize the application views in your enterprise. Folders can contain
application views and other folders. Once you create a folder, you cannot move it to
another folder, and you can remove the folder only if it is empty. Once you create an
application view in a folder, you can remove the application view, but you cannot
move it to another folder. To create a folder:

1. While logged on to the Application View Console, navigate to the folder where you
want to create the new folder.

2. Click the New Folder icon. The Add Folder page is displayed.

3. In the New Folder field, enter a name. Valid characters are a–z, A–Z, 0–9, and _
(underscore).

4. Click Save.
5-4 Using Application Integration

Steps for Using the Application View Console
Removing an Application View

Remove application views when they become obsolete or the application is retired.

You can remove an application view only if the following conditions are true:

� You have undeployed the application view. (See “Undeploying an Application
View” on page 2-18.) That is, the application view status reads Not Deployed.

� You are logged on to WebLogic Server using a user account that has the
appropriate write privileges.

To remove an application view:

1. While logged on to the Application View Console, navigate to the folder where the
target application view is located.

2. Click Remove to delete the application view.

Removing a Folder

Remove folders that are no longer needed. Before you can remove a folder, you must
remove all of its application views and subfolders. To remove a folder:

1. While logged on to the Application View Console, navigate to the folder where the
target folder is located.
Using Application Integration 5-5

5 Using the WebLogic Integration Application View Console
2. Click Remove to delete the folder. A confirmation page is displayed.

3. Click Confirm to delete the folder.
5-6 Using Application Integration

APPENDIX
A Migrating Application
Integration Data

This section includes information on the following topics:

� Overview

� Migrating Data Within the Same EIS Instance

� Migrating Data Within Different EIS Instances

� Recommended Practices

Overview

Application integration configuration data is stored in the same repository as data for
business process management (BPM). Therefore, you can use the same tools to
migrate application integration when migrating BPM data. However, there are some
special considerations for migrating application integration data and deploying the
migrated data in the target environment.

Migrating application integration data is straightforward when migrating between
WebLogic Server domains the Enterprise Information System (EIS) when instances do
not change. However, if the EIS instances do change, you must follow special
procedures to ensure a working solution in the target environment.

This section provides information on migrating application integration data between
WebLogic Server domains in the following scenarios:
Using Application Integration A-1

A Migrating Application Integration Data
� Migrating Data Within the Same EIS Instance

� Migrating Data Within Different EIS Instances

Migrating Data Within the Same EIS
Instance

This section describes how to migrate application integration data between WebLogic
Server domains, when the EIS instances involved do not change. An example of this
type of migration is moving application view definitions between repositories for
different domains of WebLogic Integration. In this case, only the WebLogic
Integration domain changes, but the target EIS instances referred to in the application
views remain the same.

In this case, the BPM package import/export utility makes migrating data simple. It
involves exporting a package from BPM in the source domain, and importing that
package into BPM in the target domain.

For more information on the BPM package import/export utility, see “Importing and
Exporting Workflow Packages” in Using the WebLogic Integration Studio.

Export

When exporting a workflow that utilizes application integration, the BPM export tool
automatically identifies the application views and other resources the workflow
depends on. Listing A-1and Listing A-2 show general values identifying an
application view and the resources it depends on in the export tool. In general, the
application view will be located (in the BPM export tool) in the location shown in
Listing A-1.

Listing A-1 Application View Location in the BPM Export Tool

All Workflow Objects
|-- XML Repository
A-2 Using Application Integration

Migrating Data Within the Same EIS Instance
|-- Folder: WLAI.Namespace.Root
|-- Folder: WLAI.Namespace.Root.<first folder>
|-- Folder: WLAI.Namespace.Root.<first folder>.<nth folder>

|-- Entity: WLAI.ApplicationView.Root.<first folder>.
<nth folder>.<appview name>

In general, all entities related to the application view can be found under the <nth
folder>, and will be named according to the convention shown in Listing A-2. All
application views may not follow this convention.

Listing A-2 Application View Resource Locations in BPM Export Tool

Entity: WLAI.<entity type>.Root.<first folder>.<nth folder>.<appview
name>_<event/service name>_<adapter_specific>

To fully export an application view, you must select all entities that are related to the
application view, if not already selected. This includes entities of type Schema and type
ConnectionFactory.

Export Example

For example, an application view named CustomerManagement in the folder
EastCoast.Sales would be displayed in the BPM export tool at the location shown
in Listing A-3.

Listing A-3 Application View in the BPM Export Tool

All Workflow Objects
|-- XML Repository

|-- Folder: WLAI.Namespace.Root
|-- Folder: WLAI.Namespace.Root.EastCoast
|-- Folder: WLAI.Namespace.Root.EastCoast.Sales

|-- Entity:WLAI.ApplicationView.Root.EastCoast.
Sales.CustomerManagement
Using Application Integration A-3

A Migrating Application Integration Data
In order to fully export the CustomerManagement application view, the export tool
automatically selects all entities that conform to the following pattern

Entity: WLAI.<entity type>.Root.EastCoast.Sales.CustomerManagement

For example, the CustomerManagement application view may contain several events
and services. The export utility shows one Schema type entity for each event and two
Schema type entities for each service. For example, where the CustomerManagement
application view uses the DBMS adapter and has one event namedCustomerCreated
and one service named CreateCustomer, the entities shown in Listing A-4 are shown
in the BPM export utility.

Listing A-4 Entities Used by the Application View

Entity: WLAI.Schema.Root.EastCoast.Sales.CustomerManagement_CustomerCreated_
CUSTOMER_TABLE_insert

Entity: WLAI.Schema.Root.EastCoast.Sales.CustomerManagement_CreateCustomer_input

Entity: WLAI.Schema.Root.EastCoast.Sales.CustomerManagement_
CreateCustomer_output

The CustomerManagement application view also includes a single connection factory.
The entity name for this connection factory is as follows:

Entity: WLAI.ConnectionFactory.Root.EastCoast.Sales.CustomerManagement.
ConnectionFactory

Each of these entities must be selected to properly export the CustomerManagement
application view.

Import

Use the BPM package import utility to import a package containing application
integration data. This utility automatically imports all entities you exported into the
package. Before you can use the application views you just imported, you must ensure
that they are deployed.
A-4 Using Application Integration

Migrating Data Within Different EIS Instances
Deploy your imported application views using the WebLogic Integration Application
View Console (generally located at http://<server>:<port>/wlai). Navigate
through the imported folders to find the imported application view. Select the
application view, and click the Deploy button on the Application View Summary page.
This makes the application view ready for use in the target environment.

Migrating Data Within Different EIS
Instances

This and the previous scenarion use the same procedures for export and import;
however, some additional steps are required in the import procedure.

Special care must be taken when migrating data between WebLogic Server domains
and between different instances of an EIS, because application views defined against
one EIS instance contain identifiers and other data specific to that EIS instance. This
is also true of the connection factory used by the application view.

You must manually change EIS-instance-specific data in your application view or
connection factory. You can make these changes from the Application View Console
by navigating to the desired application view and editing the application view. You
must identify and update all EIS-specific data in the application view and its events,
services and associated connection factory. Search for any EIS-instance-specific
references, and replace them with references to the new EIS instance in the target
environment.

In particular, you must edit the application view and connection factory definitions.
Application view definitions may need changes in the following areas:

� The EventRouterURL parameter of the ApplicationView deploy screen. This
must refer to the event router in the target environment.

� Parameters in the service definitions. These are adapter-specific data that might
refer to EIS-instance-specific data. Use the Edit feature to change any EIS
instance-specific parameters for the service.

� Parameters in the event definitions. These are adapter-specific data that may
refer to EIS-instance-specific data. Use the Edit feature on the Application View
Summary page to change any EIS instance-pecific parameters for the service.
Using Application Integration A-5

A Migrating Application Integration Data
Import Example

In the CustomerManagement example, we have a database called CUST in the source
environment, and we have a database called CustDB in the target environment.
Listing A-5 shows the XML text that represents the application view and connection
factory. More specifically, the example shows the application view descriptor for the
CustomerManagement application view. When you use the Application View
Console, you will need to use the appropriate fields in the design-time UI forms to see
view and edit this information.

Listing A-5 Example XML Text for the Application View and Connection
Factory

<?xml version="1.0"?>
<!DOCTYPE applicationView>
<applicationView asyncEnabled="true"
connectionFactory="com.bea.wlai.connectionFactories.EastCoast.Sales.
CustomerManagement_connectionFactoryInstance"
connectionFactoryName="EastCoast.Sales.CustomerManagement_connectionFactory"
eventRouterURL="http://localhost:7001/DbmsEventRouter/EventRouter"

name="CustomerManagement"
ownsConnectionFactory="true">

<description>Manages customers in the east coast sales database</description>

…

<service interactionSpecClass="com.bea.adapter.dbms.cci.InteractionSpecImpl"
name="CreateCustomer"
ownsRequestSchema="true"
ownsResponseSchema="true"

requestDocumentType="EastCoast.Sales.CustomerManagement_CreateCustomer_input/In
put"
responseDocumentType="EastCoast.Sales.CustomerManagement_CreateCustomer_output/
RowsAffected">

<description>create a new customer in database</description>
<interactionSpecProperty

name="functionName">executeUpdate</interactionSpecProperty>
<interactionSpecProperty name="sql">insert into CUST.dbo.CUSTOMER_TABLE

(FirstName, LastName, DOB) values ([FirstName varchar], [LastName varchar], [DOB
timestamp])</interactionSpecProperty>

</service>

<event name="CustomerCreated"
ownsSchema="true"
A-6 Using Application Integration

Migrating Data Within Different EIS Instances
rootElementName="CUSTOMER_TABLE.insert"

schemaName="EastCoast.Sales.CustomerManagement_CustomerCreated_CUSTOMER_TABLE_i
nsert">

<description>New customer created in database</description>
<eventProperty name="tableName">CUSTOMER_TABLE</eventProperty>
<eventProperty name="triggerType">insert</eventProperty>
<eventProperty name="catalogName">CUST</eventProperty>
<eventProperty name="schemaName">dbo</eventProperty>
</event>

</applicationView>

Note that this application view contains:

� Explicit reference to the event router URL (likely different in the target domain
if you changed EIS instances).

� interactionSpecProperty elements with explicit SQL statements (the
<service> element) that refer to the CUST database, the dbo schema, and the
CUSTOMER_TABLE table.

� eventProperty elements that refer to catalogName as CUST and schemaName

as dbo. In this example, all references (highlighted in the above text) to CUST

must be changed to CustDB. If the schema were different, the schema references
must also be changed.

Each adapter places different properties into the service and event descriptors of
application view descriptors it creates. Refer to your adapter documentation for
information on what properties must be changed to operate successfully against a new
EIS instance.

The connection factory descriptor will also need to be changed to refer to the new EIS
instance. Listing A-6 shows sample connection factory.

Listing A-6 Example Connection Factory

<?xml version="1.0"?>
<!DOCTYPE connection-factory-dd>
<connection-factory-dd name="CustomerManagement_connectionFactory">
<jndi-

name>com.bea.wlai.connectionFactories.EastCoast.Sales.CustomerManagement_connec
Using Application Integration A-7

A Migrating Application Integration Data
tionFactoryInstance</jndi-name>
<pool-parms allowPoolToShrink="true"

maxPoolSize="10"
minPoolSize="0"
targetFractionOfMaxPoolSize="0.1"/>

<mcf-parm name="MessageBundleBase">
<mcf-parm-value>BEA_WLS_DBMS_ADK</mcf-parm-value>

</mcf-parm>
<mcf-parm name="DataSourceName">

<mcf-parm-value>eventSource</mcf-parm-value>
</mcf-parm>
<mcf-parm name="AdditionalLogContext">

<mcf-parm-value>CustomerManagement</mcf-parm-value>
</mcf-parm>
<mcf-parm name="UserName">

<mcf-parm-value>system</mcf-parm-value>
</mcf-parm>
<mcf-parm name="Password">

<mcf-parm-value>security</mcf-parm-value>
</mcf-parm>
<mcf-parm name="RootLogContext">

<mcf-parm-value>BEA_WLS_DBMS_ADK</mcf-parm-value>
</mcf-parm>
<mcf-parm name="PingTable">

<mcf-parm-value>CUST.dbo.CUSTOMER_TABLE</mcf-parm-value>
</mcf-parm>
<mcf-parm name="LogLevel">

<mcf-parm-value>WARN</mcf-parm-value>
</mcf-parm>
<mcf-parm name="LogConfigFile">

<mcf-parm-value>BEA_WLS_DBMS_ADK.xml</mcf-parm-value>
</mcf-parm>
<adapter-logical-name>BEA_WLS_DBMS_ADK</adapter-logical-name>

</connection-factory-dd>

Note that this connection factory descriptor refers to directly to the CUST database and
to a JDBC data source named eventSource. To ensure this connection factory will
operate properly in the target environment, you must change the reference to CUST to
be CustDB, and change the eventSource JDBC data source reference to refer to a
valid JDBC data source (pointing at the new DBMS hosting CustDB) in the target
domain.
A-8 Using Application Integration

Recommended Practices
At this point, you have modified references and ensured that all the resources needed
by the application view and connection factory exist in the target domain. You may
now deploy all the application views you imported. Deploy application views using the
Application View Console (generally located at http://<host>:<port>/wlai).

Recommended Practices

The following are suggestions to help reduce the effort needed to migrate application
integration data between environments.

� Wherever possible, set up identical EIS instances in both the source and target
domain. For example, use a source and target database (for application views
that use the DBMS adapter) that have the same type (for example, MS SQL
Server to MS SQL Server), the same name, user accounts, and database objects.
This eliminates the need to manually edit application view and connection
factory descriptors.

� Remember to change the event router URL to reflect the event router’s location
in the target environment. This can be changed by editing the application view
from the application integration Application View Console.

� Remember to deploy your application views after they are imported using the
Application View Console.
Using Application Integration A-9

A Migrating Application Integration Data
A-10 Using Application Integration

Index

A
Adapter Development Kit (ADK) 1-1
AI Async Response event 3-13, 3-15
AI Event events 3-23
AI Start events 3-20
application integration plug-in

AIGetErrorMsg() function 3-19
AIGetResponseDocument() function

3-19
AIHasError() function 3-18

Application View Console 5-2
application view events

adding 2-11
setting up workflows to wait for 3-23
starting workflows using 3-20
testing manually 2-26
testing with a service 2-23

application view folders
creating 5-4
removing 5-5

application view services
adding 2-9
calling 3-4

application views
adding events to 2-11
adding services to 2-9
configuring connection parameters 2-7
defining 2-2
deploying 2-13
editing 2-29
removing 5-5

security 2-16
testing events 2-22
users of 1-5
using by writing custom code 1-6
using in WebLogic Integration Studio

1-6
when to define 1-2

asynchronous application view services
calling from workflows 3-4
receiving responses from 3-11

AsyncServiceResponse variable
in AIGetErrorMsg() 3-19
in AIGetResponseDocument() 3-19
in AIHasError() 3-18

B
business process management (BPM)

AI Async Response event 3-13, 3-15
using 3-1
when to use 1-7
with the application integration plug-in

3-12
workflows 3-3

business processes
in workflows 1-6
using custom code 1-6
Using Application Integration I-1

C
connection parameters 2-7
custom code

for business processes
when to use 1-7
writing 4-1

for defining application views 1-3
Customer Support ix

D
documentation

how to print viii
where to find it viii

E
e-docs Web site viii
event nodes

receiving service responses 3-11
waiting for application view events 3-23

events
See application view events

J
J2EE Connector Architecture Specification

ix
Java

custom coding in 4-1

R
Related Information

J2EE Connector Architecture
Specification ix

Sun Microsystems Java site ix
WebLogic Server documentation ix
XML Schema Specification ix

request ID variables
when calling services 3-9

when receiving service responses 3-14,
3-17

response document variables
when receiving service responses 3-9,

3-11, 3-12, 3-13

S
security 2-16
start nodes 3-20
Studio

See WebLogic Integration Studio
Sun Microsystems ix
Sun Microsystems, Inc. Java site ix
support

technical ix
synchronous application view services

calling 3-9

T
Target Fraction parameter 2-16
task nodes 3-4

W
WebLogic Integration Studio

AI Async Response event 3-13, 3-15
using 3-1
when to use 1-7
with the application integration plug-in

3-12
workflows 3-3

WebLogic Server ix
workflows

using application views in 3-3

X
XML Schema Specification ix
I-2 Using Application Integration

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introduction to Using Application Integration
	Before You Begin
	Concepts
	When to Use an Application View and When to Write Custom Code
	When to Define an Application View
	When to Write Custom Code Instead of Defining an Application View

	“Defining” Versus “Using” an Application View
	Defining: Configuring an Application View and Adding Events and Services
	Using an Application View in a Business Processes

	Defining an Application View
	1. Naming and Configuring Connection Parameters for an Application View.
	2. Adding Services and Events to an Application View.
	3. Testing Services and Events.
	Naming and Configuring Connection Parameters for an Application View
	Adding Services and Events to an Application View
	Testing Services and Events

	Using an Application View in Business Processes
	Using an Application View in BPM
	Using an Application View by Writing Custom Code
	Deciding Which of the Two Methods to Use
	When to Use BPM
	When to Write Custom Java Code

	2 Defining an Application View
	Before You Begin
	Introduction to Defining an Application View
	The Flow of Events
	Figure 2�1 The Flow of Events for Defining and Configuring Application Views
	4. Log on to the WebLogic Integration Application View Console. For detailed information, see “Lo...
	5. Click Add Application View to create a new application view for the appropriate adapter. An ap...
	6. At the Configure Connection Parameters page, enter application connection parameters. For deta...
	7. Click Add Event or Add Service to define the appropriate events and services for this applicat...
	8. Deploy the application view on WebLogic Server so other entities can interact with it accordin...
	9. Test the services and events to make sure they can properly interact with the target EIS appli...
	10. Undeploy the application view if you need to reconfigure its connection parameters or add ser...

	Steps for Defining an Application View
	Logging On to the WebLogic Integration Application View Console
	1. Open a new browser window.
	2. Open the URL for your system’s Application View Console. The actual URL you enter depends on y...
	3. To log on to the Application View Console, enter your WebLogic Server username and password, t...
	4. To add a folder, click the New Folder icon. For more information, see “Creating a Folder” on p...

	Defining an Application View
	1. Log on to the Application View Console. For more information, see “Logging On to the WebLogic ...
	2. To add a new application view to the current folder, click Add Application View. The Define Ne...
	3. In the Application View Name field, enter a name. The name should describe the set of function...
	4. In the Description field, enter any relevant notes. These notes are viewed by users when they ...
	5. From the Associated Adapter list, select the adapter to use to create this application view.
	6. Click OK. The Configure Connection Parameters page is displayed.
	7. Enter your WebLogic Server User Name and Password.
	8. For any remaining fields, consult the relevant technical analyst or EIS specialist for the req...
	9. Click Continue. The Application View Administration page is displayed.

	Adding a Service to an Application View
	1. While the application view is open, click Administration. The Application View Administration ...
	2. Click Add Service. The Add Service page is displayed.
	3. In the Unique Service Name field, enter a name. The name should describe the function performe...
	4. In the Description field, enter any relevant notes. These notes are viewed by users when they ...
	5. For any remaining fields, consult the relevant technical analyst or EIS specialist for the req...
	6. When finished, click Add.

	Adding an Event to an Application View
	1. While the application view is open, click Administration. The Application View Administration ...
	2. Click Add Event. The Add Event page is displayed.
	3. In the Unique Event Name field, enter a name. Each event name must be unique to its applicatio...
	4. In the Description field, enter any relevant notes. These notes are viewed by users when they ...
	5. For any remaining fields, consult the relevant technical analyst or EIS specialist for the req...
	6. When finished, click Add. The Application View Administration page is displayed.
	7. If you are finished adding services and events, click Continue to deploy the application view.

	Deploying an Application View
	1. Open the application view. For more information, see “Logging On to the WebLogic Integration A...
	2. Click Edit. The Application View Administration page is displayed.
	3. Click Continue. The Deploy Application View page is displayed.
	4. To enable BPM tor other authorized clients to asynchronously call the services (if any) of thi...
	5. If this application view has events, enter the URL of the adapter’s event router. For example,...
	6. In the Minimum Pool Size field, enter the minimum number of connection pools to be used by thi...
	7. In the Maximum Pool Size field, enter the maximum number of connection pools to be used by thi...
	8. In the Target Fraction of Maximum Pool Size field, enter the ideal pool size, measured from 0 ...
	9. To automatically delete unused connections, select Allow Pool to Shrink.
	10. On the Log Configuration area, select one of the following options according to your logging ...
	11. If necessary, click Restrict Access using J2EE Security. The Application View Security page i...
	12. When finished setting up permissions, click Apply to save your changes.
	13. To return to the Deploy Application View page, click Done.
	14. To save the Application View without deploying it, click Save.
	15. To automatically redeploy this application view whenever WebLogic Server is restarted, select...
	16. To deploy the application view, click Deploy Application View. The Summary for Application Vi...

	Undeploying an Application View
	1. Click Summary. The Summary for Application View page is displayed.
	2. To undeploy the application view from WebLogic Server, click Undeploy. The Undeploy Applicatio...
	3. Click Confirm. The Summary for Application View page is displayed, indicating you may deploy t...

	Testing an Application View’s Services
	1. Define an application view (See “Defining an Application View” on page 2�6.), add the appropri...
	2. On the left navigation area, click Summary. The Summary for Application View page is displayed.
	3. In the Current Services area, find the service and click Test. The Test Service page is displa...
	4. If necessary, enter the service input data in the Input fields. If the application view servic...
	5. Click Test after entering the service input data. The Test Result page is displayed. This page...
	6. Repeat the test procedure for each service you want to test.
	7. When finished testing the application view’s services, you may keep the application view deplo...

	Testing an Application View’s Events
	1. Define an application view (See “Defining an Application View” on page 2�6.), add the appropri...
	2. Click Summary. The Summary for Application View page is displayed.
	3. In the Current Events area, find your event and click Test. The Test Event page is displayed.
	4. Select the method to use to generate the test event:
	If You Select Service
	a. On the Service menu, select a service that will trigger the event you are testing. For example...
	b. In the Time field, enter a reasonable time to wait, in milliseconds. If this time elapses befo...
	c. Click “Test.” The triggering service is executed.
	d. If necessary, enter the service input data in the fields, then click Test.
	e. If the test failed, edit the event definition, or contact the system administrator or applicat...
	f. If the test succeeded, repeat the test procedure for each remaining event you want to test.
	g. When finished, save the application view.

	If You Select Manual
	a. In the Time field, enter a reasonable time to wait, in milliseconds. (One minute =�60,000�ms.)...
	b. Open the application you will use to trigger the event, if the application is not already open.
	c. Click Test. The test waits for an event to trigger it.
	d. Using the triggering application, perform an action that will execute the service that will te...
	e. If the test failed, edit the event definition, or contact the system administrator or applicat...
	f. If the test succeeded, repeat the test procedure for each remaining event you want to test.
	g. When finished, save the application view.

	Editing an Application View
	1. Open the application view.
	2. Click Summary. The Summary for Application View page is displayed.
	3. Click Edit. The Application View Administration page is displayed.
	4. To reconfigure the application view’s connection parameters, click Configure Connection (See “...
	5. To add services and events, click Add Service or Add Event. For more information, see “Adding ...

	3 Using Application Views in Business Process Management
	Before You Begin
	Introduction to Using Application Views in BPM
	Using an Application View in BPM
	Scenario 1: Setting Up a Task Node to Call an Application View Service
	Steps for Setting up a Task Node to Call an Application View Service
	1. Within WebLogic Integration Studio, open a template definition. The Workflow Design window is ...
	2. Create a task node if one does not already exist.
	3. Double-click the task node that will call the application view service. The Task Properties di...
	4. In the Actions area, select the tab from which you want the service to be called. Your tab cho...
	5. Click Add. The Add Action dialog box is displayed.
	6. In the navigation tree, select AI�ActionsÆCall Application View Service and click OK. The Call...
	7. In the navigation tree, navigate to and select the service you want to call.
	8. In the Request Document Variable list, select an existing XML variable that contains the input...
	9. If no suitable XML variable exists, select <new> to open the Variable Properties dialog box, w...
	10. In the Name field, enter a name for the variable.
	11. In the Type menu, select XML. XML is the only menu option.
	12. Click OK to return to the Call Service dialog box.
	13. (Optional) Click Set�... or Edit�... to display the Service Request Template dialog box, wher...
	14. Click OK to return to the Call Service dialog box.
	15. If you need to examine the XML schema of the input document, click View Request Definition. T...
	16. Click Close when finished.
	17. To call the application view synchronously, select Synchronous, or select Asynchronous to cal...
	18. For synchronous services that require storage of the response, select a predefined XML variab...
	19. If no suitable XML variable exists, select <new> to open the Variable Properties dialog box, ...
	20. If you need to examine the XML schema of the response document, click View Response Definitio...
	21. Click Close when finished.
	22. For asynchronous services that require storage of the request ID, select a predefined string ...
	23. If no suitable string variable exists, select <new> to open the Variable Properties dialog bo...
	24. In the Name field, enter a name for the variable.
	25. In the Type menu, select String. String is the only menu option.
	26. Click OK to save the action.
	27. On the Task Properties dialog box, click OK to save the node.

	Scenario 2: Setting Up an Event Node to Wait for a Response from an Asynchronous Application View...
	Receiving an Asynchronous Application View Service Response
	Handling Errors in an Asynchronous Application View Service Response
	Steps for Receiving an Asynchronous Service Response (Preferred Method)
	1. Within WebLogic Integration Studio, open a workflow template definition. The Workflow Design w...
	2. Create an event node if one does not already exist. This event node will wait for an asynchron...
	3. Double-click the event node. The Event Properties dialog box is displayed.
	4. (Optional) In the Description field, enter a name.
	5. In the Type list, select AI�Async�Response.
	6. Select the Response Document (preferred) tab.
	7. In the Request ID Variable list, select an already-defined string variable. BPM will listen fo...
	8. If no suitable string variable exists, select <new> to open the Variable Properties dialog box...
	9. For asynchronous services that require storage of the response, select a predefined XML variab...
	10. If no suitable XML variable exists, select <new> to open the Variable Properties dialog box, ...
	11. Click OK to save the event node.

	Steps for Receiving an Asynchronous Service Response (Legacy Method)
	1. Within WebLogic Integration Studio, open a workflow template definition. The Workflow Design w...
	2. Double-click the asynchronous event node. The Event Properties dialog box is displayed.
	3. Select the Asynchronous Variable (legacy) tab.
	4. In the Request ID Variable list, select an already-defined string variable. BPM will listen fo...
	5. In the Asynchronous Service Response Variable list, select an AsyncServiceResponse variable to...
	6. Click OK to save the event node.

	Explanation of Functions Provided by the Application Integration�Plug-in
	AIHasError()
	AIGetErrorMsg()
	AIGetResponseDocument()

	Scenario 3: Creating a Workflow Started by an Application View Event
	Steps for Creating a Workflow Started by an Application View Event
	1. Within WebLogic Integration Studio, open a template definition. The Workflow�Design window is ...
	2. Create a start node if one does not already exist. This start node will respond to an applicat...
	3. Double-click the start node. The Start�Properties dialog box is displayed.
	4. (Optional) In the Description field, enter a name.
	5. Click Event.
	6. In the Event list, select AI�Start.
	7. In the navigation tree, navigate to and select the application view event.
	8. If necessary, filter the event by entering a condition in the Condition field, or click the A�...
	9. In the Event Document Variable list, select an XML variable. When the start node receives data...
	10. If no suitable XML variable exists, select <new> to open the Variable Properties dialog box, ...
	11. If you need to examine the XML schema of the event document, click View Definition. The View ...
	12. Click Close to return to the Start Properties dialog box.
	13. On the Start Properties dialog box, click OK. The start node is saved.

	Scenario 4: Setting Up an Event Node to Wait for an Application View Event
	Steps for Setting Up a Node to Wait for an Application View Event
	1. Within WebLogic Integration Studio, open a template definition. The Workflow�Design window is ...
	2. Create an event node if one does not already exist. This event node will be triggered by a des...
	3. Double-click the event node. The Event�Properties dialog box is displayed.
	4. (Optional) In the Description field, enter a name.
	5. In the Type list, select AI�Event.
	6. In the navigation tree, navigate to and select an application view event.
	7. If necessary, filter the event by entering a condition in the Condition field, or click the A�...
	8. If no suitable XML variable exists, select <new> to open the Variable Properties dialog box, w...
	9. If you need to examine the XML schema of the event document, click View Definition. The View D...
	10. Click Close when finished.
	11. On the Event Properties dialog box, click OK.

	4 Using Application Views by Writing Custom Code
	Scenario 1: Connecting Using Specific Credentials
	Implementing ConnectionSpec
	1. Decide whether to use the ConnectionRequestInfoMap class, provided by the ADK, or implement yo...
	2. If you are implementing your own ConnectionSpec class, include the following interfaces in it:

	Calling setConnectionSpec() and getConnectionSpec()
	Listing 4-1 Complete Code for setConnectionSpec()
	Listing 4-2 Complete Code for getConnectionSpec()
	Using the ConnectionSpec
	Listing 4-3 An Example That Uses ConnectionSpec
	Properties props = new Properties(); ApplicationView applicationView = new ApplicationView(getIni...

	Scenario 2: Custom Coding a Business Process
	About this Scenario
	1. Make sure a Java class exists to represent the application that implements the business process.
	2. Within this Java class, supply the code to implement the business logic.

	Before You Begin
	Creating the SyncCustomerInformation Class
	1. See “Example Code for SyncCustomerInformation” on page 4�8 for the complete source code for th...
	2. Make sure the code does the following things (steps 3 through 11):
	3. Create code to listen for East Coast.New Customer.
	4. Obtain a reference to the NamespaceManager (variable name m_namespaceMgr) and ApplicationViewM...
	5. Using the NamespaceManager, obtain a reference to the “root” namespace by calling nm.getRootNa...
	6. Using the root variable, obtain a reference to the East Coast namespace by calling root.getNam...
	7. Using the eastCoast variable, obtain a temporary reference to the Customer Management Applicat...
	8. This custMgmtHandle temporary reference will be used to obtain an actual reference to an Appli...
	9. Begin listening for New Customer events by calling custMgmt.addEventListener(“New Customer”, l...
	10. Implement the onEvent method of the listener class used in the step above.
	11. Implement the handleNewCustomer method that will respond to the New Customer event.
	a. The handleNewCustomer method transforms the XML document in the event to the form expected by ...
	b. handleNewCustomer will then obtain a reference to an instance of the East Coast.Order Processi...
	c. handleNewCustomer will then invokes the Create Customer service on the East Coast.Order Proces...
	d. handleNewCustomer is finished and returns, leaving itself ready to handle the next incoming Ne...

	Example Code for SyncCustomerInformation
	Listing 4-4 Full Class Source Code for SyncCustomerInformation
	import java.util.Hashtable; import javax.naming.*; import java.rmi.RemoteException; import com.be...

	5 Using the WebLogic Integration Application View Console
	Before You Begin
	Introduction to Using the Application View Console
	Steps for Using the Application View Console
	Logging On to the Application View Console
	1. Launch a browser window.
	2. Open the URL for your system’s Application View Console. The actual URL you enter depends on y...
	3. To log on to the Application View Console, enter your WebLogic Server username and password, t...

	Creating a Folder
	1. While logged on to the Application View Console, navigate to the folder where you want to crea...
	2. Click the New Folder icon. The Add Folder page is displayed.
	3. In the New Folder field, enter a name. Valid characters are a–z, A–Z, 0–9, and _ (underscore).
	4. Click Save.

	Removing an Application View
	1. While logged on to the Application View Console, navigate to the folder where the target appli...
	2. Click Remove to delete the application view.

	Removing a Folder
	1. While logged on to the Application View Console, navigate to the folder where the target folde...
	2. Click Remove to delete the folder. A confirmation page is displayed.
	3. Click Confirm to delete the folder.

	A Migrating Application Integration Data
	Overview
	Migrating Data Within the Same EIS Instance
	Export
	Listing A-1 Application View Location in the BPM Export Tool
	All Workflow Objects ��|-- XML Repository ����|-- Folder: WLAI.Namespace.Root ������|-- Folder: W...
	Listing A-2 Application View Resource Locations in BPM Export Tool

	Entity: WLAI.<entity type>.Root.<first folder>.<nth folder>.<appview name>_<event/service name>_<...

	Export Example
	Listing A-3 Application View in the BPM Export Tool
	All Workflow Objects ��|-- XML Repository ����|-- Folder: WLAI.Namespace.Root ������|-- Folder: W...
	Entity: WLAI.<entity type>.Root.EastCoast.Sales.CustomerManagement
	Listing A-4 Entities Used by the Application View

	Entity: WLAI.Schema.Root.EastCoast.Sales.CustomerManagement_CustomerCreated_ CUSTOMER_TABLE_insert
	Entity: WLAI.Schema.Root.EastCoast.Sales.CustomerManagement_CreateCustomer_input
	Entity: WLAI.Schema.Root.EastCoast.Sales.CustomerManagement_ CreateCustomer_output
	Entity: WLAI.ConnectionFactory.Root.EastCoast.Sales.CustomerManagement. ConnectionFactory

	Import

	Migrating Data Within Different EIS Instances
	Import Example
	Listing A-5 Example XML Text for the Application View and Connection Factory
	<?xml version="1.0"?> <!DOCTYPE applicationView> <applicationView asyncEnabled="true" connectionF...
	Listing A-6 Example Connection Factory

	<?xml version="1.0"?> <!DOCTYPE connection-factory-dd> <connection-factory-dd name="CustomerManag...

	Recommended Practices
	Index

