
BEA WebLogic
Integration™

Using the WebLogic
Integration Studio

Release 2.1 Service Pack 1
Document Date: January 2002

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Portal, BEA WebLogic Server and How Business Becomes
E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using the WebLogic Integration Studio

Part Number Date Software Version

N/A January 2002 2.1 Service Pack 1

Using the WebLogic Integration Studio iii

Contents

About This Document
What You Need to Know .. xiv
Related Information...xv
e-docs Web Site...xv
How to Print the Document... xvi
Contact Us!.. xvi
Documentation Conventions .. xvii

1. Introduction to the WebLogic Integration Studio
About Business Process Management in WebLogic Integration 1-2
About the Studio.. 1-3
Modeling Business Data.. 1-4
Modeling Business Processes.. 1-6

Nodes.. 1-8
Actions ... 1-8
Variables... 1-9
Exception Handlers .. 1-10

Integrating Users, Applications, and Data... 1-10
Integrating Users and Client Applications ... 1-10
Integrating External Components and Applications 1-12
Integrating Workflows ... 1-14
Integrating Data.. 1-16

Workflow Design Approaches and Tasks ... 1-17
Top-Down Approach.. 1-18
Bottom-Up Approach... 1-21

Studio Tools... 1-22

iv Using the WebLogic Integration Studio

2. Using the Studio Interface
Starting and Logging On to the Studio .. 2-1
Overview of the Studio Interface... 2-3

Menu Options ... 2-4
File Menu .. 2-4
View Menu.. 2-4
Configuration Menu .. 2-5
Tools Menu ... 2-6
Help Menu... 2-6

Folder Tree Display.. 2-6
Workflow Design Area and Toolbar .. 2-8
Using the Toolbar ... 2-11

Using Interface View... 2-12
Exiting the Studio .. 2-16

3. Administering Data
Overview of Data Configuration Tasks... 3-1
About Security Realms.. 3-2
Administering Business Calendars .. 3-4

Creating a Calendar .. 3-5
Updating a Calendar ... 3-10
Deleting a Calendar .. 3-11

Maintaining Organizations .. 3-11
Adding an Organization ... 3-12
Updating an Organization... 3-13
Deleting an Organization.. 3-14

Maintaining Users.. 3-14
Creating a User ... 3-15
Adding a User to an Organization .. 3-17
Updating a User.. 3-18
Removing a User from an Organization... 3-19
Deleting a User ... 3-19

Maintaining Roles.. 3-20
Creating a Role ... 3-21
Updating a Role.. 3-23

Using the WebLogic Integration Studio v

Deleting a Role... 3-24
Changing the Mapping for Roles ... 3-24

Assigning Permissions to Users and Roles ... 3-25
Setting Permissions for Roles .. 3-26
Setting Permissions for Users .. 3-27

Administering Task Routings.. 3-28
Viewing Task Routing Specifications.. 3-29
Adding a Routing Specification ... 3-30
Updating a Task Routing Specification ... 3-32
Deleting a Task Routing Specification... 3-32
Refreshing the Rerouting Task List ... 3-33

4. Configuring Workflow Resources
Overview of Resource Configuration Tasks ... 4-1
Configuring Plug-Ins ... 4-3

Viewing Plug-ins.. 4-4
Loading Plug-Ins .. 4-5
Updating a Plug-In Configuration.. 4-6
Deleting a Plug-In Configuration... 4-7

Configuring Business Operations.. 4-7
Viewing Business Operations .. 4-8
Adding a Business Operation... 4-9

Adding a Business Operation for a Java Class 4-11
Adding a Business Operation for a Session EJB 4-13
Adding a Business Operation for an Entity EJB............................... 4-15

Updating a Business Operation .. 4-17
Deleting a Business Operation ... 4-17

Configuring Event Keys .. 4-18
Viewing Event Key Configurations ... 4-19
Adding an Event Key Configuration.. 4-20
Updating an Event Key Configuration... 4-22
Deleting an Event Key Configuration.. 4-22

Managing Entities in the Repository ... 4-23
Viewing the XML Entities in the Repository... 4-23
Working with Folders... 4-26

vi Using the WebLogic Integration Studio

Adding a Folder... 4-26
Updating Folder Information .. 4-27
Deleting a Folder... 4-28

Working with XML Entities... 4-28
Importing an XML Entity into the Repository.................................. 4-29
Updating an Entity .. 4-32
Moving an Entity... 4-33
Exporting an Entity to the File System ... 4-34
Deleting an Entity.. 4-35

5. Defining Workflow Templates
Overview of Template Definition Tasks ... 5-1
Working with Templates ... 5-3

Creating a Workflow Template .. 5-4
Updating Template Properties.. 5-6
Deleting a Template ... 5-6

Working with Template Definitions.. 5-7
Creating a Workflow Template Definition... 5-8
Opening an Existing Template Definition.. 5-10
Saving and Closing a Template Definition .. 5-12
Updating, Labeling, and Activating a Template Definition 5-12
Copying a Workflow Template Definition... 5-14
Printing a Template Definition... 5-15
Deleting a Template Definition .. 5-18

Working with Nodes.. 5-19
Adding, Arranging, and Connecting Nodes ... 5-20
Deleting a Node or Connection .. 5-21
Workflow Design Guidelines and Tips .. 5-21
Working with Node Properties... 5-23

Renaming Nodes ... 5-23
Specifying or Updating Successor Nodes ... 5-23
Adding Notes to a Node .. 5-24
Adding, Updating, Reordering, and Deleting Workflow Actions..... 5-25

Copying Nodes ... 5-25
Viewing Task and Event Usage ... 5-26

Using the WebLogic Integration Studio vii

Working with Variables .. 5-28
Creating a Variable... 5-30
Updating a Variable ... 5-31
Viewing Variable Usage .. 5-31
Deleting a Variable... 5-32

Defining Node Properties .. 5-33
Defining Start Properties .. 5-33

Defining a Timed Start Node .. 5-36
Defining Event And Event-Triggered Start Properties 5-38

Understanding Event Keys ... 5-39
Using XML Content as an Event Key .. 5-40
Using JMS Header or Property Data as an Event Key 5-42
Understanding Event Conditions .. 5-43
Initializing Variables from Event Data ... 5-45
Defining Event-Triggered Start Properties 5-46
Defining Event Properties ... 5-49

Defining Decision Properties ... 5-52
Defining Task Properties.. 5-53

Understanding Task States.. 5-54
About Task Permissions.. 5-56
 About Task Priority.. 5-56
Defining the Task Node .. 5-57

Defining Join Properties... 5-57
Defining Done Properties... 5-58

Working with Exception Handlers .. 5-59

6. Defining Actions
Understanding Actions .. 6-2

Action Categories... 6-2
Understanding Action Types and Placement ... 6-5

Terminal Actions and Non-Terminal Actions 6-6
Synchronous and Asynchronous Execution of Actions 6-6

Placing Actions in Task Nodes .. 6-10
Using the Activated and Executed Tabs ... 6-11
Marking Tasks Done... 6-11

viii Using the WebLogic Integration Studio

Guidelines for Action Placement in Task Nodes 6-13
Overview of Action Definition Tasks ... 6-16
Working with Actions ... 6-17

Adding an Action ... 6-17
Updating an Action... 6-19
Deleting an Action.. 6-19
Copying an Action.. 6-19
Reordering Actions... 6-20
Adding Notes to an Action ... 6-21

Setting a Variable Value.. 6-21
Controlling Program Flow... 6-23

Marking a Task Done ... 6-25
Unmarking a Task Done... 6-26
Canceling a Workflow Event ... 6-27
Marking a Workflow Done .. 6-28
Aborting a Workflow ... 6-28
Executing a Task Automatically .. 6-29
Adding a Placeholder Action.. 6-30

Using Timed Operations.. 6-31
Embedding a Timed Sequence ... 6-32

About Execution Schedules .. 6-32
Executing Triggered Actions Asynchronously and Synchronously . 6-32
Defining a Timed Event .. 6-33

Using Sub-Workflows ... 6-35
Calling a Sub-Workflow... 6-36

Passing Parameters.. 6-36
Executing the Sub-Workflow Asynchronously or Synchronously ... 6-37
Tracking the Sub-Workflow.. 6-37

Embedding a Conditional Sequence... 6-41
Monitoring Run-Time Status... 6-42

Making an Audit Entry... 6-42
Setting Up a Workflow Comment.. 6-43

Setting Up Manual Tasks .. 6-44
Guidelines for Placement of Task Actions... 6-45
Assigning a Task to a User... 6-46

Using the WebLogic Integration Studio ix

Assigning a Task to a Role... 6-47
Assigning a Task Using a Routing Table... 6-49
Setting a Task Due Date... 6-51

Executing Overdue Actions Asynchronously and Synchronously ... 6-52
Setting a Task Comment .. 6-54
Setting a Task Priority.. 6-56
Unassigning a Task .. 6-57
Sending an XML Message to a Client Application.................................. 6-58

Sending a Message Asynchronously or Synchronously 6-58
Extracting Data ... 6-58
Defining the Send XML to Client Action... 6-59
Sending an XML Message to the Worklist Application 6-61

Sending E-Mail Messages ... 6-71
Invoking Components ... 6-75

Calling an Executable Program on the Server ... 6-75
Calling a Business Operation ... 6-77

Calling the Business Operation to Create an EJB or Java Class Instance
6-78

Calling Other Business Operations ... 6-79
Posting an XML Message to a JMS Topic or Queue 6-81

Posting an Event Asynchronously or Synchronously 6-82
Understanding JMS Messaging Options.. 6-84

Destination .. 6-84
Headers ... 6-85
Delivery Mode... 6-86
Time to live.. 6-86
Priority .. 6-87
Transaction Mode ... 6-87
Addressed Messaging.. 6-87
Ordered Messaging ... 6-88

Defining the Post XML Event Action.. 6-88
Transforming XML Documents .. 6-95
Handling Exceptions ... 6-98

x Using the WebLogic Integration Studio

7. Working with XML Entities
Overview of XML Document Management Tasks ... 7-1
Composing and Editing XML Documents .. 7-2

Creating Free-Form Documents ... 7-6
Importing Existing Documents... 7-7
Editing XML Documents ... 7-9
Working with Type-Specified Documents... 7-11

About Storing Referenced Schemas and DTDs 7-11
About Importing Type-Specified Documents 7-12
Creating Type-Specified Documents .. 7-12
Setting a New Content Type for Existing Documents 7-15
Validating Type-Specified Documents ... 7-16

Using the XML Finder to Retrieve and Export XML Entities 7-18
Retrieving XML Entities .. 7-19

Retrieving the Most Recently Used XML Entities 7-19
Retrieving from the Repository... 7-20
Retrieving from the File System ... 7-22
Retrieving from a URL ... 7-23

Exporting XML Entities ... 7-25
Exporting to the Repository .. 7-25
Exporting to the File System... 7-26
Exporting to a Recently Accessed File ... 7-28
Exporting to a File Located by a URL .. 7-28

8. Using Workflow Expressions
About Workflow Expressions ... 8-2
Using Literals .. 8-2
Using Variables ... 8-4
Using Operators ... 8-4
Using Functions ... 8-6

Obtaining Run-time System Data... 8-6
Date()... 8-7

Extracting Run-Time Event Data ... 8-7
 EventAttribute() ... 8-8
EventData() ... 8-9

Using the WebLogic Integration Studio xi

XPath() .. 8-10
XML Element Dot Notation ... 8-12

Obtaining Run-time Workflow Data.. 8-13
CurrentUser() .. 8-13
TaskAttribute().. 8-14
WorkflowAttribute() ... 8-15
WorkflowVariable().. 8-16

Converting Data Types... 8-17
DateToString() .. 8-18
StringToDate() .. 8-19
ToInteger() .. 8-19
ToString().. 8-20

Manipulating Data.. 8-20
Abs().. 8-20
DateAdd().. 8-21
StringLen() .. 8-22
SubString() .. 8-22

Date Function Formats ... 8-23
Data Type Conversions for Variable Assignment... 8-25
Using the Expression Builder .. 8-28
Creating XPath Expressions Using the XPath Wizard.................................... 8-31

Generating XPath Location Expressions from XML Entities.................. 8-33
Viewing XPath Expressions... 8-36
Testing XPath Expressions... 8-38

Testing Location Expressions ... 8-39
Testing Expressions That Contain Functions.................................... 8-41

9. Handling Workflow Exceptions
About Workflow Exception Handling... 9-1
Overview of Exception Handler Definition Tasks .. 9-3
Defining Exception Handlers .. 9-4

Creating a Custom Exception Handler... 9-5
Exiting an Exception Handler .. 9-7
Updating a Custom Exception Handler.. 9-9
Viewing Exception Handler Usage .. 9-9

xii Using the WebLogic Integration Studio

Deleting a Custom Exception Handler ... 9-10
Invoking an Exception Handler from a Workflow.. 9-11

Setting the Workflow Exception Handler .. 9-12
Invoking an Exception Handler.. 9-13

System Error Messages ... 9-15

10. Monitoring Workflows
Overview of Workflow Monitoring Tasks .. 10-1
Working with Workflow Instances.. 10-2

Viewing Workflow Instance Status.. 10-5
Viewing and Updating Workflow Instance Variables.............................. 10-8
Deleting Workflow Instances ... 10-11

Viewing User and Role Worklists ... 10-12
Changing Task Permissions and Priority... 10-14
Changing Task Status and Assignment ... 10-16

Reassigning a Task ... 10-16
Marking a Task Done ... 10-17
Unmarking a Task Done... 10-18

Using Workload Reports ... 10-18
Compiling Workload Report Information .. 10-19
Viewing Workload Reports .. 10-20

Using Statistics Reports... 10-22
Compiling Statistics Report Information.. 10-22
Viewing Statistics Reports ... 10-24

11. Importing and Exporting Workflow Packages
About Import/Export ... 11-1
Exporting Workflow Packages .. 11-2
Importing Workflow Packages .. 11-5
Importing and Exporting Workflow Template Definitions from and to XML Files... 11-10

Exporting Workflow Template Definitions to XML.............................. 11-10
Importing Workflow Template Definitions from XML......................... 11-11

Index

Using the WebLogic Integration Studio xiii

About This Document

This document is a user guide and reference for working with the BEA WebLogic
Integration Studio for business process management (BPM). For a hands-on,
step-by-step introduction to defining a workflow in the Studio, see Learning to Use
BPM with WebLogic Integration.

This document is organized as follows:

� Chapter 1, “Introduction to the WebLogic Integration Studio,” provides an
overview of WebLogic Integration workflow components, methods of
integration with internal and external resources, a description of Studio design
work models and tasks, and additional tools provided by the Studio.

� Chapter 2, “Using the Studio Interface,” explains how to log in to and exit from
the Studio, and describes the Studio user interface.

� Chapter 3, “Administering Data,” explains how to create and maintain
organizations, users, and roles, business calendars, and task routings. It also
describes security concepts and how to set up user and role permissions.

� Chapter 4, “Configuring Workflow Resources,” describes how to configure
external and custom components and resources to make them available for
workflow designers, including custom plug-ins, Java components such as EJBs,
XML-based events, and the WebLogic Integration XML repository.

� Chapter 5, “Defining Workflow Templates,” explains how to define and
maintain WebLogic Integration workflow templates, template definitions, and
workflow components such as nodes, connections and variables, and properties
for each of the six node types. It also provides some guidelines for workflow
design.

� Chapter 6, “Defining Actions,” describes how to use task, workflow, integration,
and miscellaneous actions to accomplish workflow activities. It also provides
some guidelines for workflow design.

xiv Using the WebLogic Integration Studio

� Chapter 7, “Working with XML Entities,” describes the Studio’s built-in XML
editor, and how to retrieve, store, compose, and edit XML entities from various
sources, including the WebLogic Integration XML repository.

� Chapter 8, “Using Workflow Expressions,” describes the workflow expression
language, how to create workflow expressions using the Expression Builder and
the XPath Wizard, and provides a reference listing of workflow functions and
expression syntax.

� Chapter 9, “Handling Workflow Exceptions,” explains how to define and call
exception handlers, and how to use exception handling actions.

� Chapter 10, “Monitoring Workflows,” describes the workflow monitoring
facility, including viewing the status of and updating running workflows and
their variables. It also describes how to collect post run-time data by generating
workload reports and statistics.

� Chapter 11, “Importing and Exporting Workflow Packages,” explains how to
import and export complete workflow packages from and to Java archive files
for sharing among different systems.

What You Need to Know

This document is for integration specialists, system administrators, business analysts
and application developers, who use the WebLogic Integration Studio to design,
develop, and administer workflows.

This document assumes some familiarity with the Java 2 Enterprise Edition™ (J2EE)
platform, Enterprise JavaBeans™ (EJBs), BEA WebLogic Server™, eXtensible
Markup Language (XML), XPath language, Java Message Service (JMS), and the Java
programming language.

Using the WebLogic Integration Studio xv

Related Information

The following BEA WebLogic Integration documents contain information that is
relevant to BPM:

� Learning to Use BPM with WebLogic Integration

� Using the WebLogic Integration Worklist

� Programming BPM Client Applications

� Programming BPM Plug-Ins for WebLogic Integration

� BEA WebLogic Integration Javadoc

� Designing BEA WebLogic Integration Solutions

For information on using the Studio for application integration, see Using Application
Integration.

For information on using the Studio for B2B integration, see Creating Workflows for
B2B Integration.

For information on using the Studio for data integration, see Using the Data
Integration Plug-In.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

xvi Using the WebLogic Integration Studio

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Integration
documentation Home page on the e-docs Web site (and also on the documentation
CD). You can open the PDF in Adobe Acrobat Reader and print the entire document
(or a portion of it) in book format. To access the PDFs, open the WebLogic Integration
documentation Home page, click the PDF files button, and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com.

Contact Us!

Your feedback on the BEA WebLogic Integration documentation is important to us.
Send us e-mail at docsupport@bea.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Integration documentation.

In your e-mail message, please indicate which release of the WebLogic Integration
documentation you are using.

If you have any questions about this version of BEA WebLogic Integration, or if you
have problems installing and running BEA WebLogic Integration, contact BEA
Customer Support through BEA WebSupport at http://www.bea.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

Using the WebLogic Integration Studio xvii

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.
Examples:
#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
italic
text

Identifies variables in code.
Example:
String expr

xviii Using the WebLogic Integration Studio

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.
Examples:
LPT1
SIGNON
OR

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:
� That an argument can be repeated several times in a command line..
� That the statement omits additional optional arguments.
� That you can enter additional parameters, values, or other information.
The ellipsis itself should never be typed.
Example:
buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Using the WebLogic Integration Studio 1-1

CHAPTER

1 Introduction to the
WebLogic Integration
Studio

WebLogic Integration provides a workflow management system that you use to auto-
mate business processes. A business process is a series of interconnected business
activities that produce some desired result. A graphical representation of a business
process is a workflow. You define and monitor workflows using the WebLogic Inte-
gration Studio, a WebLogic Integration client application.

The following sections provide an overview of Studio workflow concepts, modeling
constructs, tasks, and work models:

� About Business Process Management in WebLogic Integration

� About the Studio

� Modeling Business Data

� Modeling Business Processes

� Integrating Users, Applications, and Data

� Workflow Design Approaches and Tasks

� Studio Tools

1 Introduction to the WebLogic Integration Studio

1-2 Using the WebLogic Integration Studio

About Business Process Management in
WebLogic Integration

In an e-business world, businesses must perform effectively at a rapid pace. To achieve
this level of performance, many companies automate their business processes by using
a business process management system: a system that defines, manages, and executes
business processes using software. The order in which business activities are executed
in the process is driven by a computer representation of the process called a workflow.

A workflow automates a business process by controlling the sequence of activities in
the process, and by invoking the appropriate resources required by the various
activities in the process. These resources might be software components that perform
a required activity, or they might be people who respond to messages generated by the
business process.

To achieve this level of workflow automation, a workflow management system
provides support in three broad areas:

� Workflow definition and execution—capturing the definition of the workflow,
managing the execution of workflow processes in an operational environment,
and sequencing the various activities to be performed.

� Data administration—managing the people involved in a workflow, rerouting
tasks when needed, and maintaining business calendars that govern the schedule
of workflow activities.

� Workflow monitoring—tracking the status of workflow processes, and
dynamically configuring the workflow at run time.

WebLogic Integration supports all three areas of workflow management: it supports
the execution of workflows using its run-time process engine, and the definition and
monitoring of workflows with the WebLogic Integration Studio.

An automated business process does not, however, entirely replace people with
computers. People might still be involved in an automated process, either by making
discretionary decisions or by handling exceptions or problems as they arise. Thus,
WebLogic Integration also includes a Worklist application that end users use to view
and execute manual tasks assigned to them. For more information about the Worklist

About the Studio

Using the WebLogic Integration Studio 1-3

application, see Using the WebLogic Integration Worklist. Alternatively, programmers
can develop their own custom worklist applications by using the WebLogic Integration
API. For more information, see Programming BPM Client Applications.

About the Studio

The WebLogic Integration Studio is a client application with a graphical user interface
that provides functionality in the three broad areas of workflow design, workflow
monitoring, and data administration, as follows:

� Data administration functions

� Modeling business units and users of the system

� Configuring levels of permission for users

� Rerouting tasks from one user to another for a specified period of time

� Creating business calendars that are used to control the execution of
workflows

� Workflow design functions

� Drawing graphical process flow diagrams

� Defining variables to store run-time data

� Defining processes to handle run-time exceptions

� Defining interfaces to external components

� Workflow monitoring functions

� Displaying the status of running workflows

� Modifying the tasks associated with running workflows, such as by
reassigning tasks or by forcing work to be redone

� Displaying the workload status of the system in graphical form

� Viewing historical data for workflows to identify bottlenecks and
inefficiencies

� Viewing user or role worklists to maintain workflows dynamically

1 Introduction to the WebLogic Integration Studio

1-4 Using the WebLogic Integration Studio

Modeling Business Data

In the WebLogic Integration Studio, organizational data is subdivided into three
categories:

� Organization—an entire company; a division, region, or location within a
company; or any other distinction that is relevant to the particular business of a
company.

� Role—a common area of responsibility, ability, or authorization level that is
shared by a group of individuals who belong to a particular organization.

� User—an individual assigned to a role who has the necessary permission to
perform a particular task in the workflow, such as responding to messages
generated by a workflow.

Roles allow groups of users to execute manual tasks according to a generic business
role within the organization. Roles are defined uniquely within organizations. This
allows you to divide your organization into organizational units, and to re-use role
names that can have different groups of users attached to them.

Although roles are defined uniquely within organizations, users can belong to one or
more organizations, and to one or more roles with those organizations, as the following
figure illustrates.

Modeling Business Data

Using the WebLogic Integration Studio 1-5

Figure 1-1 Relationship Between Organizations, Users, and Roles

Users Organizations

Roles

Roles

Ellen

Engineering

Engineer

Gary

QA Tester

Manager

Support
Services

Manager

Engineer

QA Tester

Barb

Tim

Kim

Fran

1 Introduction to the WebLogic Integration Studio

1-6 Using the WebLogic Integration Studio

In this example, there are two organizations, Engineering and Support Services, each
containing their own roles of Engineer, QA Tester, and Manager. The relationships
depicted are summarized in the following table:

The other business data you can model are business rules, such as schedules and
workflow routings. You model working hours and schedules with business calendars
that can be associated with organizations, roles, and users. You can also create routing
specifications that redirect activities to different users or roles for specified periods of
time.

Modeling Business Processes

In the Studio, business processes are modelled, diagrammed, and saved as workflow
templates in a database. These templates can be associated with multiple
organizations, and are essentially empty containers for storing different workflow
versions. Templates contain template definitions, which serve as different versions of
the same workflow, and are distinguished by effective and expiry dates that determine
a range of time in which each version may be available for instantiation, that is,
placement in the run-time environment.

The template definition is where you represent the business processes you wish to
model, by drawing and connecting shapes that make up the flow. Program control is
represented visually by nodes and connections, as shown in the following figure.

Table 1-1 Organizations, Roles and Users

Organization Role Members

Engineering Engineer Tim, Gary

QA Tester Ellen

Manager Barbara

Support Services Engineer Gary

QA Tester Ellen, Kim

Manager Fran

Modeling Business Processes

Using the WebLogic Integration Studio 1-7

Figure 1-2 Studio Workflow Template Definition: Design Area

In addition, template definitions contain actions and exception handlers that execute
different activities at run time and variables that collect, store, and distribute run-time
data. Template definition components are discussed in more detail in the following
sections.

1 Introduction to the WebLogic Integration Studio

1-8 Using the WebLogic Integration Studio

Nodes

Nodes are geometric shapes that you use to depict a workflow graphically. The Studio
provides the following seven nodes:

� Start — represents the beginning of a workflow.

� Task — represents a user-assigned task or a grouping of actions (see “Actions”)
that form a unit of work.

� Event — represents a wait state that can be triggered by the receipt of an XML
message. When the event is triggered, the flow proceeds.

� AND Join — represents a merge of multiple workflow paths into a single path
such that all the workflow paths linked by the join node must have completed
before the flow proceeds.

� OR join — represents a merge of multiple workflow paths into a single path
such that only one of the workflow paths linked by the join node must have
completed before the flow proceeds.

� Decision — represents a condition (specified in the node) that must be evaluated
to either true or false. The result of the evaluation determines the path the
workflow follows.

� Done — represents the end of a workflow.

Actions

Actions are, in a sense, the basic building blocks of a workflow because they define
the actual behavior of the workflow. An action can be as simple as assigning a task to
a user or as complicated as sending XML messages or invoking Enterprise JavaBean
(EJB) methods. Actions may be added to all nodes (except Joins), to exception
handlers, and even to other actions.

There are several types of actions:

� Task actions — used to assign manual tasks to users and roles, and to control the
execution of Task nodes.

Modeling Business Processes

Using the WebLogic Integration Studio 1-9

� Workflow actions — used to manage an entire workflow, such as stopping the
current workflow or starting a sub-workflow.

� Integration actions — used to integrate the workflow with external software
components or applications. This can be done by, for example, calling an
executable program or sending an XML message to another application. The
operations that are carried out by integration actions are discussed in more detail
in “Integrating Users, Applications, and Data” on page 1-10.

� Exception handling actions — used to invoke and exit an exception handler, and
to make an exception handler the active one for a workflow.

� Miscellaneous actions — used to perform additional actions, such as sending
e-mail, making an audit entry, or canceling a workflow event.

� Custom actions (plug-ins) — actions that are programmed for the WebLogic
Integration plug-in framework, and that you access from the Studio. For more
information about the plug-in framework, see Programming BPM Plug-Ins for
WebLogic Integration.

Variables

Variables hold run-time values and data obtained usually from outside sources, such
as Java components and incoming XML documents. They can also be set to constant
values by workflow actions. Variables can be used by the workflow for several
purposes, such as evaluating a condition in a decision node, creating a label for a
template definition, or holding workflow run-time information.

WebLogic Integration supports the following types of variables: Boolean, Date,
Double, Entity EJB, Integer, Java Object, Session EJB, String, and XML. Data types
can be extended through the use of plug-in types developed for the plug-in framework.

1 Introduction to the WebLogic Integration Studio

1-10 Using the WebLogic Integration Studio

Exception Handlers

Exception handlers are used to generate, trap, and respond to exception conditions that
are generated internally or externally. Exceptions can be abnormal conditions that you
identify at design time in the workflow that you want to trap, or they can be server
exceptions that you trap and respond to accordingly. Workflows can contain
custom-defined exception handlers consisting of a series of actions that you specify.

Integrating Users, Applications, and Data

As the design tool for WebLogic Integration, the Studio goes beyond business process
management, and helps to integrate all human and automated operations in the
e-business cycle. The Studio provides actions for integrating Web-based and back-end
applications, interacting with clients inside and outside of the firewall, and
transforming data. For more information about the B2B integration, application
integration, and data integration plug-in functionality for BPM, see the following
documents:

� Using Application Integration

� Creating Workflows for B2B Integration

� Using the Data Integration Plug-In

The following sections describe some of the integration scenarios offered by basic
Studio actions, and the means by which workflows interface with external
components, via XML messaging, business operations, and custom-developed
plug-ins.

Integrating Users and Client Applications

Workflows interact with system users via the Worklist or a custom client application
using the following methods:

� Directly through the Worklist or custom client

Integrating Users, Applications, and Data

Using the WebLogic Integration Studio 1-11

� Internal XML/JMS messaging with the Worklist or a custom client application to
perform additional operations, such as displaying forms

� E-mail.

Workflows can also interact with users outside the system by e-mail.

The following figure shows the various interactions that be achieved between
workflows and client applications and users. Each scenario is described below the
figure.

Figure 1-3 Integrating Users and Client Applications

Custom
extension

1

2

3

4

1 Introduction to the WebLogic Integration Studio

1-12 Using the WebLogic Integration Studio

1. The workflow is initiated by a Worklist user.

2. Assigning a task to a user sends a notification to a Worklist user to perform a
task.

3. Sending XML to client sends an XML message to the Worklist application,
instructing it to display a message prompt or form, or call an executable program
or custom component on the client. XML messages are sent in response from the
Worklist application back to the workflow.

4. Sending e-mail allows the process engine to send e-mail to Worklist users and
clients outside the WebLogic Integration system.

Integrating External Components and Applications

Workflows can integrate the following kinds of external software components:

� External systems, including Web components, such as Java Server Pages (JSPs)
and servlets

� Enterprise information systems, such as legacy systems, packaged enterprise
applications

� Database management systems (DBMSs)

Workflows can then exchange data with these external components using the
following methods:

� XML/JMS messaging

� Workflow business operations that represent with EJB or Java class methods.

� Plug-in components consisting of Java classes and EJBs using the plug-in
framework

The following figure shows the different means by which workflows can interface with
external components. Each scenario is described below the figure.

Integrating Users, Applications, and Data

Using the WebLogic Integration Studio 1-13

Figure 1-4 Integrating External Components and Applications

1. The workflow is triggered, and data obtained, by the receipt of an XML message
on an internal JMS queue from a sending application.

2. Performing a business operation invokes pre-existing Java components or
components written specifically for the workflow application, and passes
parameters directly from the workflow to the component and back again.

3. Calling a program starts an executable program on the server.

External JMS Queue

Internal JMS Queue

External JMS Topic

Java Class

Session EJB

Entity EJB

Session EJB

Entity EJB

Java Class

1

2

3

4

5

6

DBMS

EIS

JSP

Java Servlet

DBMS

EIS

JSP

Java Servlet

1 Introduction to the WebLogic Integration Studio

1-14 Using the WebLogic Integration Studio

4. An event is triggered, and data obtained, while the workflow is in progress, by
the receipt of an XML message on an internal JMS queue from a sending
application.

5. Posting an XML message to an external JMS topic or queue sends notification
and data to an external application that subscribes to the topic or receives
messages from the queue.

6. Performing a plug-in action invokes custom Java code written to integrate other
applications or systems.

Integrating Workflows

Workflows can communicate with each other in the following ways:

� By calling each other directly

� Via XML/JMS messaging

The following figure shows the various interactions between workflows. Each
scenario is described below the figure.

Integrating Users, Applications, and Data

Using the WebLogic Integration Studio 1-15

Figure 1-5 Integrating Workflows

1. The workflow is triggered, and data obtained, by the receipt of an XML message
on an internal JMS queue from another, sending workflow.

2. The workflow is set up with a called start, and is initiated directly by another
workflow, which passes parameters to and from it directly.

3. Posting an XML message to an internal JMS queue sends notification and data to
another workflow, triggering its start, or an event within it. (same as 1)

4. An event is triggered, and data obtained, while the workflow is in progress, by
the receipt of an XML message on an internal JMS queue from another, sending
workflow. (same as 1)

1

2

3

4

Internal JMS Queue

5

1 Introduction to the WebLogic Integration Studio

1-16 Using the WebLogic Integration Studio

5. Starting a workflow initiates a called workflow and passes parameters to and
from it directly. (same as 2)

Integrating Data

In addition to exchanging XML messages, workflows can transform XML documents
from one format to another, to be passed out to external applications.

Figure 1-6 Integrating Data

In this scenario, the workflow uses an Extensible Stylesheet Language (XSL) template
to transform the structure of one XML document into another.

XML input
document

XSL template
document

XML
output

document

Workflow Design Approaches and Tasks

Using the WebLogic Integration Studio 1-17

Workflow Design Approaches and Tasks

Theories of system design suggest that, ideally, systems should be designed using a
top-down approach. In reality, systems are designed from both the top down and the
bottom up. Both approaches are also used for designing WebLogic Integration
workflows, as the following figure shows.

Figure 1-7 Designing Workflows

The top-down approach is the one that has been adopted as the organizing principle of
this document. However, both top-down and bottom-down approaches are not only
valid, but necessary, and you are likely to adopt both in practice. The application of
both approaches to specific Studio design tasks and phases is discussed in the
following sections.

1 Introduction to the WebLogic Integration Studio

1-18 Using the WebLogic Integration Studio

Top-Down Approach

The Studio graphical user interface favors a top-down approach in which most external
component elements have already been developed. In this approach, the workflow
definition process involves moving from mapping out a high-level graphical
representation of the basic activities and logic that the application fulfills, to drilling
down to deeper levels of detailed specifications.

This work model is illustrated in the following flowchart, which summarizes the main
tasks you perform when modeling, designing, defining, and testing WebLogic
Integration workflows in the Studio. In fact, this is the model that is followed by the
structure in this document, and each numbered step, starting with step 3, corresponds
to a topic in this document. The figure is explained in detail below. Note that the
iterative, circular nature of the design process is not actually represented by loops in
the flowchart, for the sake of graphic simplicity.

Workflow Design Approaches and Tasks

Using the WebLogic Integration Studio 1-19

Figure 1-8 Studio Design Work Model: Top-Down Approach

1. The business analysis phase includes identifying your application and data
requirements, taking stock of existing components and applications you want to
integrate, defining a data model that captures the business rules and structure of

Configure
Organizational

Data

Configure
Software

Resources

Import
Templates and

Resources

Define
Templates

Add Nodes
and Define

Flow

Add and
Define

Variables

Define Nodes

Add and
Define Actions

Define XML
Documents

Define
Exception
Handlers

Execute and
Monitor

Templates

Export
Templates and

Resources

Develop
Software

Components

Perform
Business
Analysis

1

2

3

4

5

9

6

7 8

10

11

11

Design Phase

Pre-Design Phase

Execution & Monitoring Phase

Post-Execution Phase

Define
Expressions

1 Introduction to the WebLogic Integration Studio

1-20 Using the WebLogic Integration Studio

your organization, and perhaps even beginning to model a workflow in a
third-party design tool. For more information on this phase, see Designing BEA
WebLogic Integration Solutions.

2. The resource development phase includes developing Java components such as
EJBs and custom Java classes, XML documents and style sheets to be used in
outgoing messages from workflows or incoming messages from connecting
applications or components, and plug-in components. For more information on
this phase, see Designing BEA WebLogic Integration Solutions.

3. In the pre-design phase, you use the Studio to configure business data. The tasks
in this phase are discussed in Chapter 3, “Administering Data.” It is assumed that
you will only need to perform these tasks once initially, and occasionally when
your business rules or personnel change.

4. At this point, you can begin to set up any external resources you have created in
step 2, to make them globally accessible to your workflows. The tasks in this
phase are discussed in Chapter 4, “Configuring Workflow Resources.” You will
likely perform these steps both before and during the design phase, in an iterative
fashion, as the particular requirements of your workflows become clearer.

5. You begin the actual design phase by setting up workflow templates and template
definitions. You then define a high-level process flow, by adding and connecting
nodes to the workflow diagram, creating variables, and defining node properties.
These tasks are described in “Defining Workflow Templates,” and will require
some use of workflow expressions, which are discussed in step 8.

6. Once you have created nodes, you begin to add and define actions, as described
in “Defining Actions.” At this stage, you probably need to further configure
resources as described in step 4, and flows, node definitions, and variables, as in
step 5. Defining actions also involves the tasks described in steps 7, 8, and 9.

7. While defining actions, you may need to import XML documents you have
created and configured in steps 2 and 3, or you may need to compose the XML
content from within workflow actions. These tasks are described in Chapter 7,
“Working with XML Entities.”

8. Throughout the workflow design process, you need to provide data formatted in
the workflow expression language, which can contain literals, constants,
variables, and built-in functions that supply run-time data. The semantics and
syntax of workflow expressions are discussed in Chapter 8, “Using Workflow
Expressions.”

Workflow Design Approaches and Tasks

Using the WebLogic Integration Studio 1-21

9. To add custom exception handlers to the template definition, you define
sub-flows of actions to be performed upon the occurrence of run-time exceptions
and a method of exiting the exception handler and returning to the main program
flow. These tasks are described in Chapter 9, “Handling Workflow Exceptions.”
Once you have defined exception handlers, you once again need to add actions to
nodes to reference them, as described in step 6.

10. At this point, you can run the workflow and test it. The Studio offers several
monitoring features that allow you to view running workflow instances to help
identify design errors, and that are described in Chapter 10, “Monitoring
Workflows.” Once you identify potential design bugs, you need to repeat the
steps in the design process described so far; for example, to re-place actions,
re-formulate expressions, and so on.

11. In the post-execution phase, when your workflow has been thoroughly tested and
is running correctly, you can export workflows and any resources you have
created and configured to Java archive packages for reuse. You can then
re-import exported packages to begin the entire process cycle again. Import and
export tasks are described in Chapter 11, “Importing and Exporting Workflow
Packages.”

Bottom-Up Approach

The bottom-up approach to design tasks in the Studio involves creating a catalog of
reusable, exportable design patterns consisting of variables, actions, nodes, and groups
of nodes that can be copied or imported into template definitions and incorporated into
flows. This approach still requires that you have undertaken the preliminary tasks of
analyzing your application needs and developing required resources. However, rather
than beginning by outlining a high-level program flow, you begin by mapping the
available Studio actions to the common operations that your workflow(s) need to
accomplish, and defining the details of those actions. A suggested work model that
follows this approach includes these steps:

1. Define any global entities that need to be referenced by actions. This includes
business calendars (see “Administering Business Calendars” on page 3-4) and
business operations (see “Configuring Business Operations” on page 4-7).

2. Create or import a workflow template and template definition. These tasks are
described in “Working with Templates” on page 5-3 and “Working with
Template Definitions” on page 5-7.

1 Introduction to the WebLogic Integration Studio

1-22 Using the WebLogic Integration Studio

3. Add and define node archetypes that perform common activities for your
workflows. A description of these types, and the actions that comprise them is
provided in “Understanding Actions” on page 6-2.

4. Identify the workflow functions and other expression components that you may
need to use to take advantage of features such as addressed messaging,
event-triggered processing, communication between workflows, and so on. A
description of functions is provided in “Using Functions” on page 8-6 in “Using
Workflow Expressions.”

5. Define common variables that actions need to reference, such as instance
variables for business operations, XML variables to contain XML documents,
input and output variables for called workflows, and so on. Variable definition
tasks are described in “Working with Variables” on page 5-28.

6. Define all the low-level details for the actions contained in these node types, such
as expressions, parameters for business operations, JMS messaging options for
actions that post XML events, XML document content for actions that embed
XML documents, and so on. For actions that reference users, roles or
organizations, you can even use the default users as placeholders, until you have
defined the entities that represent your business requirements.

7. Define specific node properties for Start, Event, and Task nodes. These tasks are
discussed in “Defining Node Properties” on page 5-33.

8. Set up exception handlers and their actions.

9. Copy the components you have created into new workflow templates (described
in “Copying Nodes” on page 5-25), or export the template definitions to Java
archive files for re-import into new templates.

10. Arrange the predefined nodes into a flow and define high-level organizational
data relevant for the new template definitions.

Studio Tools

In addition to the graphical drawing engine you use to design process flows, the Studio
also provides the following additional tools to help you manage external resources and
define workflow properties:

Studio Tools

Using the WebLogic Integration Studio 1-23

� XML Finder

The XML Finder is a file and content management tool that allows you to access
and organize different types of XML content, including Schemas, document type
definitions, message formats, and so on, that may be stored in a database table or
in files. The XML Finder is described in “Managing Entities in the Repository”
on page 4-23 and “Using the XML Finder to Retrieve and Export XML Entities”
on page 7-18.

� XML editor

Many Studio actions allow you to compose, import and export XML documents
from within workflows. These actions contain an XML editor that you can use to
compose XML document templates from scratch, edit existing documents, and
validate content according to XML Schemas. XML editing features are
described in Chapter 7, “Working with XML Entities.”

� Expression Builder

Many Studio dialog boxes require that you enter data in workflow expression
syntax. The Expression Builder is an editing tool that allows you to select from a
catalogue of operators, literals, workflow functions, and variables you have
created, to construct expressions component by component. When you have
finished building an expression, the Expression Builder validates the syntax and
informs you of any errors. The Expression Builder is described in “Using the
Expression Builder” on page 8-28.

� XPath Wizard

To extract content from incoming XML documents, you use XPath functions to
locate the target data in XML elements and attributes. The XPath Wizard is a
point-and-click tool that allows you to automatically generate XPath expressions
from selected content in sample XML documents or Schema or DTD-generated
XML, without the need to master the syntax of the XPath language. The XPath
Wizard is described in “Creating XPath Expressions Using the XPath Wizard”
on page 8-31.

1 Introduction to the WebLogic Integration Studio

1-24 Using the WebLogic Integration Studio

� Import/Export wizard

The Import/Export wizard allows you to export all workflow templates, template
definitions and associated resources, such as business operations, event keys,
plug-ins, and XML entities, that have been defined in the system. Workflow
objects are exported to a Java archive file and can be re-imported to any system
running the Studio. The Import/Export wizard is discussed in Chapter 11,
“Importing and Exporting Workflow Packages.”

Using the WebLogic Integration Studio 2-1

CHAPTER

2 Using the Studio
Interface

This section explains how to start the Studio, and provides an overview of the Studio
graphical user interface:

� Starting and Logging On to the Studio

� Overview of the Studio Interface

� Using Interface View

� Exiting the Studio

Starting and Logging On to the Studio

To start the Studio, do one of the following:

� On a Windows system, choose Start→Programs→BEA WebLogic E-Business
Platform→WebLogic Integration 2.1→Studio.

� On a UNIX system, go to the bea/wlintegration2.1/bin directory, and
execute the studio.sh script by entering the following command at the prompt:

sh studio.sh

The Logon to WebLogic Integration dialog box is displayed.

2 Using the Studio Interface

2-2 Using the WebLogic Integration Studio

Figure 2-1 Logon to WebLogic Integration Dialog Box

To log on to WebLogic Integration:

1. Enter your user name and password in the appropriate fields. If you have not yet
been assigned a user name and password for the Studio, enter a default user name
and password. For a list of default user names and passwords, see “WebLogic
Integration Users and Passwords” in “Getting Started” in Starting, Stopping, and
Customizing BEA WebLogic Integration.

Note: User names and passwords are case-sensitive. Be sure to enter the user
names and passwords in lower case.

2. In the Server [:port] field, specify the system that is running the WebLogic
Integration server as follows:
t3://host:port

� host is the computer name or IP address of the system that is running the
WebLogic Integration server. Specify localhost if the server is running on
the same computer as the Studio application.

� port is the number you specified for the listen port when the WebLogic
Integration server was installed. The default is 7001.

To log in to clustered servers, enter the following in the Server[:port] field:
t3://host1,host2,host3:port

Overview of the Studio Interface

Using the WebLogic Integration Studio 2-3

In this case, host1, host2, and host3 are the computer names or IP addresses
of the clustered WebLogic Integration servers.

3. Click OK to display the main window of the Studio.

Figure 2-2 WebLogic Integration Studio Main Window

Overview of the Studio Interface

This section describes the parts of the Studio user interface, and the functions they
provide.

2 Using the Studio Interface

2-4 Using the WebLogic Integration Studio

Menu Options

The following sections provide information about using the menu bar in the Studio.

File Menu

Choose File→Option to perform the functions described in the following table.

View Menu

Choose View→Option to perform the functions described in the following table.

Menu Option Function

Logon Log on to the WebLogic Integration server.

Logoff Log off from the WebLogic Integration server.

Exit Log off from the WebLogic Integration server and exit the
WebLogic Integration Studio.

Menu Option Function

Refresh Update the information if changes are made to the database by
other client applications.

Use color on flowcharts View the workflow diagrams in color or black and white.

Sync selection with tree Synchronize the workflow components in the folder tree
hierarchy with the workflow components in the drawing area.
For example, clicking the Start node in a workflow diagram
opens the corresponding Start node folder in the folder tree
hierarchy.

Look and feel Change the look and feel of the Studio display. The choices are:
� Metal
� CDE/Motif
� Windows

Overview of the Studio Interface

Using the WebLogic Integration Studio 2-5

Configuration Menu

Choose Configuration→Option to perform the functions described in the following
table.

Interface View . . . Display additional visual objects to represent business
operations, sub-workflows, XML documents, and plug-ins.
Selecting this menu item displays the Interface View
Preferences dialog box. For details about setting interface view
preferences, see “Using Interface View” on page 2-12. If a start,
event, or done node contains a customized property defined by
a plug-in, a small plug-in icon is displayed in the upper-right
corner of the node icon.

Menu Option Function

Menu Option Function

Organizations Define organizations that represent different business entities,
geographical locations, or any other distinction relevant to the
particular business of the company. For details about defining
organizations, see “Maintaining Organizations” on page 3-11.

Business Operations Define business operations representing a method call on an EJB
or Java Class instance. For details about defining business
operations, see “Configuring Business Operations” on page 4-7.

Events Define event key expressions. For instructions about defining
event key expressions, see “Configuring Event Keys” on page
4-18.

Plugins View and configure the available plug-ins. For details about
configuring plug-ins, see “Configuring Plug-Ins” on page 4-3.

Permissions Define the user and role permission levels. For details about
defining permission levels, see “Setting Permissions for Users”
on page 3-27 and “Setting Permissions for Roles” on page 3-26.

Role Mappings Map the currently-defined roles to WebLogic Server groups. For
details about mapping roles, see “Changing the Mapping for
Roles” on page 3-24.

2 Using the Studio Interface

2-6 Using the WebLogic Integration Studio

Tools Menu

Choose Tools→Option to perform the functions described in the following table.

Help Menu

Choose Help→Option to perform the functions described in the following table.

Folder Tree Display

The WebLogic Integration Studio interface contains a folder tree display, which
organizes workflow components in a standard tree structure.

Menu Option Function

Export Package . . . Export workflow objects as a JAR file. For details about
exporting packages, see Chapter 11, “Importing and Exporting
Workflow Packages.”

Import Package . . . Import workflow objects from a JAR file. For details about
importing packages, see Chapter 11, “Importing and Exporting
Workflow Packages.”

Show XML Finder . . . Display the XML finder dialog box to manage the XML
repository. For details about managing the XML repository
using the XML finder, see “Managing Entities in the
Repository” on page 4-23.

Menu Option Function

Help Topics Access the online help for the Studio.

Plugin Help Access the online help for the loaded plug-ins.

About WebLogic
Integration Studio . . .

Provide software version information about the WebLogic
Integration Studio.

Overview of the Studio Interface

Using the WebLogic Integration Studio 2-7

Figure 2-3 WebLogic Integration Folder Tree Display

To select a different organization, use the Organization drop-down list at the top of the
window.

To view details about any of the following items shown in the folder tree display,
double-click the item to expand it:

� Templates

� Calendars

� Users

� Roles

� Routing

� Workload Report

2 Using the Studio Interface

2-8 Using the WebLogic Integration Studio

� Statistics Reports

For example, double-click the Templates folder to display a list of workflow templates.
Double-click a workflow template to display a list of all workflow template
definitions. Expanding a particular workflow template definition displays folders
containing the Tasks, Decisions, Events, Joins, Starts, Dones, and Variables for that
workflow template definition.

You can right-click most items in the folder tree to display a menu containing options
relevant to the highlighted item. For example, right-click on an existing workflow
template to display a menu with the options shown in the following figure.

Figure 2-4 Workflow Template Menu Options

Workflow Design Area and Toolbar

Once you have created or opened an existing workflow template definition (for
procedures, see “Working with Template Definitions” on page 5-7), the workflow
design area, shown in the following figure, is where you create your workflow designs.
The workflow toolbar contains the shapes representing workflow nodes and the
connections you use to define a workflow.

Overview of the Studio Interface

Using the WebLogic Integration Studio 2-9

Figure 2-5 Workflow Design Window

You can have multiple workflow designs open simultaneously. You can view more
than one workflow, and toggle back and forth between them.

2 Using the Studio Interface

2-10 Using the WebLogic Integration Studio

Figure 2-6 Multiple Workflow Diagrams

Overview of the Studio Interface

Using the WebLogic Integration Studio 2-11

Using the Toolbar

The toolbar also contains the following toggle controls:

By default, the workflow toolbar appears at the top of the drawing area. Depending on
the size of the Studio window or drawing area, you might not be able to see the entire
toolbar. To see the entire toolbar, relocate the toolbar to another part of the Studio
drawing area, or to another location on your desktop.

To relocate the toolbar, click the background area of the toolbar (for example, the
space between the Draw Connection and Zoom Out button), and drag the toolbar to the
desired location.

If you drag the toolbar to another location on your desktop outside of the Studio
drawing area, the toolbar becomes a separate window on your desktop, which you can
minimize, maximize, and close.

Table 2-1 Toolbar Buttons

Toolbar button Description

Zoom out of the diagram. This is helpful if you
are working with a complex diagram and need
to view the overall flow.

Zoom in to the diagram.

Display or hide a grid in the diagram.

Align shapes in the diagram.

Set auto-alignment of shapes on or off.

Toggle Interface View on or off. For more
information about Interface View, see “Using
Interface View” on page 2-12.

2 Using the Studio Interface

2-12 Using the WebLogic Integration Studio

Using Interface View

Once you have created a template definition, begun to define nodes and add actions to
them, it is often useful to see the objects to which a workflow interfaces, according to
the nodes that reference those objects. You can use the Interface View to display the
components in the workflow diagram, plus icons representing the following objects to
which the workflow can interface:

� Sub-workflows — other workflows to which the current workflow connects

� Business operations — software components, such as EJBs and Java classes, that
the workflow invokes to perform a function

� Inbound and outbound XML documents — XML documents that are coming
into the workflow, or that the workflow is sending to another workflow or
application.

� Plug-ins — custom workflow components

Interface View is disabled by default. To use Interface View, you must turn it on for
each template definition, and for each new session in which you access the same
template definition.

By contrast, Interface View preferences, which determine the objects that are visible,
are set system-wide; that is, they apply to all template definitions. They are saved from
session to session in the Studio; they are not saved as part of the template definition.

To specify the objects you want to view:

1. Choose View→Interface View to display the Interface View Preferences dialog
box.

Using Interface View

Using the WebLogic Integration Studio 2-13

Figure 2-7 Interface View Preferences Dialog Box

2. Select the check boxes for the objects you want to display, or clear the check
boxes for the objects you do not want to display.

To toggle between a normal and interface view for the current template definition,

click the following button in the toolbar:

Viewing Inbound XML Document Data

In an interface view, the following icon represents an inbound XML document in the
workflow diagram.

Note: The arrow points toward a template node to indicate inbound direction.

An inbound XML document icon is displayed for Start and Event nodes that respond
to incoming XML documents. Hover the mouse pointer over the XML document icon
in the workflow diagram to display a text box containing the type (inbound or
outbound), root, and key of the XML document.

2 Using the Studio Interface

2-14 Using the WebLogic Integration Studio

Viewing Outbound XML Document Data

In an interface view, the following icon represents an outbound XML document in the
workflow diagram.

Note: The arrow points away from a template node to indicate outbound direction.

An outbound XML document icon is displayed if either a Send XML to Client or Post
XML Event action is defined for an object. You can obtain information about the XML
document as follows:

� Hover the mouse pointer over the XML document icon in the workflow diagram
to display a text box containing the type (inbound or outbound), root, and key of
the XML document.

� Double-click the XML document icon, or right-click the icon and select
Properties from the pop-up menu, to display the dialog box (read-only) for the
defined action, either Send XML to Client or Post XML Event.

For details about the Send XML to Client and Post XML Event actions, see “Sending
an XML Message to a Client Application” on page 6-58 and “Posting an XML
Message to a JMS Topic or Queue” on page 6-81.

Viewing Sub-workflow Data

In an interface view, the following icon represents a sub-workflow in the workflow
diagram.

A sub-workflow icon is displayed if a Start Workflow action is defined for an object.
You can obtain information about the sub-workflow as follows:

Using Interface View

Using the WebLogic Integration Studio 2-15

� Hover the mouse pointer over the sub-workflow icon to display a text box
containing the name of the called sub-workflow.

� Double-click the sub-workflow icon, or right-click the icon, and select Properties
from the pop-up menu, to display the Start Workflow dialog box (read-only).

For details about the Start Workflow action, see “Calling a Sub-Workflow” on page
6-36.

Viewing Business Operation Data

In an interface view, the following icon represents a business operation in the
workflow diagram.

A business operation icon is displayed if a Perform Business Operation action is
defined for an object. You can obtain information about the business operation as
follows:

� Hover the mouse pointer over the business operation icon in the workflow
diagram to display a text box containing the name of the business operation to
be performed.

� Double-click the business operation icon, or right-click the icon and select
Properties from the pop-up menu, to display the Perform Business Operation
dialog box (read-only).

For details about the Perform Business Operation action, see “Calling a Business
Operation” on page 6-77.

Viewing Plug-In Data

In an interface view, the following icon, or a custom icon, represents a plug-in action
in the workflow diagram.

2 Using the Studio Interface

2-16 Using the WebLogic Integration Studio

If a node contains a plug-in action, you can obtain information about the action as
follows:

� Hover the mouse pointer over the plug-in icon in the workflow diagram to
display a text box containing a description of the plug-in action.

� Double-click the plug-in icon, or right-click the icon, and select Properties from
the pop-up menu, to display the corresponding plug-in action dialog box
(read-only).

Note: If a Start, Event, or Done node contains a customized property defined by a
plug-in, a small plug-in icon is displayed in the upper-right corner of the node
icon.

Exiting the Studio

To log off WebLogic Integration and keep the Studio displayed:

1. If you want to save changes to a workflow, right-click the workflow template
definition and choose Save from the menu that is displayed.

2. Choose File→Logoff.

To exit the Studio:

1. If you want to save changes to a workflow, right-click the workflow template
definition and choose Save from the menu that is displayed.

2. Choose File→Exit, or select the System Close box. A dialog box asks you to
confirm your decision. Click Yes to exit.

Note: If you try to exit the Studio without saving your changes, a dialog box prompts
you to do so.

Overview of Data Configuration Tasks

Using the WebLogic Integration Studio 3-1

3 Administering Data

This section describes the following data administration concepts and tasks within the
Studio:

� Overview of Data Configuration Tasks

� About Security Realms

� Administering Business Calendars

� Maintaining Organizations

� Maintaining Users

� Maintaining Roles

� Assigning Permissions to Users and Roles

� Administering Task Routings

Overview of Data Configuration Tasks

Data configuration tasks in the Studio include defining business calendars, creating
organization, users, and roles, configuring security and permissions, and defining task
routings. The following steps outline the recommended order in which you should
perform these tasks when modelling organizational data and configuring the system
initially:

3 Administering Data

3-2 Using the WebLogic Integration Studio

1. Create calendars that may be associated with organizations, users, and roles.
Procedures are given in “Creating a Calendar” on page 3-5. Alternatively, import
previously exported calendars from existing workflow packages; see procedures in
“Importing Workflow Packages” on page 11-5.

2. Add an organization or organizations. Procedures are given in “Adding an
Organization” on page 3-12.

3. Add users to the system. Procedures are given in “Creating a User” on page 3-15.

4. Add users to organizations. Procedures are given in “Adding a User to an
Organization” on page 3-17.

5. Optionally, use the WebLogic Server Administration Console to create a group
which will correspond to a role you define in the Studio. For more information
about roles, see “Maintaining Roles” on page 3-20. For information about
creating WebLogic Integration groups, see “Defining Groups” in “Managing
Security” in the WebLogic Server Administration Guide, at the following URL:
http://edocs.bea.com/wls/docs61/adminguide/cnfgsec.html

6. Define a role or roles within an organization, map the role to a WebLogic Server
group, and associate member users with the role. Procedures are given in
“Creating a Role” on page 3-21.

7. If necessary, modify the levels of permission for the role. Changing the levels of
permission for a role also changes the permissions in the group, and affects any
other roles that are mapped to the group. Procedures are given in “Setting
Permissions for Roles” on page 3-26.

8. Define additional levels of permission for users. Users inherit the permissions of
the role to which they belong, but you can add other levels of permission to users
that are not defined for the role to which the users belong. Procedures are given
in “Setting Permissions for Users” on page 3-27.

About Security Realms

WebLogic Server provides security for applications through a service called a security
realm. A security realm is a logical grouping of users and groups. A user is a specific
individual who performs a certain task, such as programming or sales. A group is a

About Security Realms

Using the WebLogic Integration Studio 3-3

collection of users who perform the same task. In this scheme, Group A might
represent a collection of users who are programmers, and Group B might represent a
collection of users who are sales people. Within a security realm, administrators can
specify the levels of access users and groups have to workflows and other resources.

WebLogic Integration maintains information about roles and users in WebLogic
Server security realms. When you define users and roles in WebLogic Integration, you
need to specify their relationship to users and groups in WebLogic Server. You do this
by mapping the roles you define in the Studio to the groups in a security realm in
WebLogic Server.

A security realm in WebLogic Server can be manageable or non-manageable. This is
defined when the realm is implemented on WebLogic Server. A manageable realm is
one in which an application can make updates to groups and users. A non-manageable
realm is one in which an application can only list the groups and users.

WebLogic Integration detects automatically whether a realm is manageable or
non-manageable. The type of security realm WebLogic Integration detects determines
which data administration functions are available in the Studio.

You can perform the following tasks using the Studio dialog boxes only if WebLogic
Integration detects a manageable realm:

� Map a role to a WebLogic Server group

� Add or delete a user

� Add a user to an organization

� Remove a user from an organization

� Add a user to a role

� Remove a user from a role

If WebLogic Integration detects a non-manageable realm, you can perform the
following tasks using the Studio dialog boxes:

� See a list of users and roles. The functions provided in the Studio dialog boxes
to perform add, delete, and mapping tasks are dimmed, so you cannot select
them.

� Update data managed by WebLogic Integration, and not by WebLogic Server in
a security realm, such as a business calendar or organization.

3 Administering Data

3-4 Using the WebLogic Integration Studio

If you want to add users to a non-manageable realm, you must add them using the
appropriate data administration functions for the realm in the WebLogic Server
Administration Console. You cannot add them using the Studio dialog boxes.

Administering Business Calendars

The business calendar feature defines operating hours for entities represented in
workflows. Business calendars make possible business time-related calculations, such
as “Set a task’s due date to three business days from today.” You should define
business calendars that exclude non-operating days or hours such as weekends or
statutory holidays; organizations that do not use calendars use a 365-day calendar.

Calendars can be associated with the following entities, as described in the sections
indicated:

� Organizations (see “Maintaining Organizations” on page 3-11)

� Users (see “Maintaining Users” on page 3-14)

� Roles (see “Maintaining Roles” on page 3-20)

You can define and assign the same business calendar to organizations, users, roles,
and actions. You can also assign different business calendars to users, roles, and
actions within the same organization.

Calendars are also used within workflows by timed Start nodes (see “Defining a Timed
Start Node” on page 5-36), timed events (see “Embedding a Timed Sequence” on page
6-32), and due dates for user-assigned tasks (see “Setting a Task Due Date” on page
6-51).

Note: To administer business calendars, you must have Configure System
permission. See “Assigning Permissions to Users and Roles” on page 3-25 for
more information.

Calendar assignment is hierarchical in nature. The hierarchy places time-related
actions at the lowest level, followed by roles and users, and finally, organizations at
the highest level. If a time-related action is not assigned a calendar, it will, by default,
be assigned the calendar of the user or role to which it is assigned. If a user or role is

Administering Business Calendars

Using the WebLogic Integration Studio 3-5

not assigned a calendar, it will, by default, be assigned the business calendar
(organization level). In other words, calendar assignment is made at the most detailed
component level.

Business calendars are rule-based. The calendar facility leads you through the
definition of each rule.

Creating a Calendar

Once you create a calendar, it is globally available for all organizations, users, and
roles in the system.

To create a new calendar:

1. With any organization active, right-click Calendars in the folder tree, and choose
Create Calendar to display the Calendar Properties dialog box.

3 Administering Data

3-6 Using the WebLogic Integration Studio

Figure 3-1 Calendar Properties Dialog Box

2. Enter a meaningful name for the calendar in the Name field.

3. Select a time zone for the calendar from the Time Zone drop-down list.

4. In the Period boxes, select dates from the From and To boxes to specify the time
period for the calendar. (The default is from January to December of the current
year.)

5. To add a rule for the calendar, click Add. The Rule dialog box is displayed.

Administering Business Calendars

Using the WebLogic Integration Studio 3-7

Figure 3-2 Rule Dialog Box

6. Select either Exclude or Include. These buttons determine the method by which
you will define your calendar rules (by exclusion or by inclusion). It is
recommended that you use one or the other method and not both throughout your
rule defining process.

7. Click any of the following buttons to define a rule:

� Days — displays the Days dialog box from which you can select a day or
days to include or exclude. Hold the CTRL key down to select more than one
day of the week. Click OK.

Figure 3-3 Days Dialog Box

3 Administering Data

3-8 Using the WebLogic Integration Studio

� Hours — displays the Hours dialog box, from which you can select a range
of time to include or exclude. Select an hour in the From list and an hour
from the To list, and click OK.

Figure 3-4 Hours Dialog Box

Administering Business Calendars

Using the WebLogic Integration Studio 3-9

� Date — displays the Date dialog box, from which you can select a particular
date. Select a month and date to exclude or include, and click OK.

Figure 3-5 Date Dialog Box

� Month — displays the Month dialog box, from which you can select a month
or months to exclude or include certain month(s) of the year. (Hold the
CTRL key down while clicking with your mouse to select more than one
month of the year from the Month dialog box.)

Figure 3-6 Month Dialog Box

3 Administering Data

3-10 Using the WebLogic Integration Studio

� Date Interval — displays the Date Interval dialog box, from which you can
select a range of dates to be excluded or included. Select a month and date
from the From box and a month and date from the To box, and click OK.

Figure 3-7 Date Interval Dialog Box

8. Click OK in the Rule dialog box to add the rule. The new rule is displayed in the
Rules area of the Calendar Rules dialog box.

9. Continue to add rules to the calendar by repeating steps 7 and 8.

10. Click OK to save the calendar.

Updating a Calendar

To update an existing calendar:

1. With any organization active, in the folder tree, expand the Calendars folder,
right-click the calendar you want to update, and choose Properties.

2. In the Calendar Properties dialog box, make the necessary changes to the time
zone and period for the calendar.

Maintaining Organizations

Using the WebLogic Integration Studio 3-11

3. To update rules for the calendar, delete or update an existing rule by selecting the
appropriate rule from the Rules list and clicking the Delete or Update buttons. To
add a new rule, click Add, and follow the procedures in “Creating a Calendar” on
page 3-5 to define the rule.

4. Click OK to save the changes to the calendar.

Deleting a Calendar

Warning: If you delete a calendar, you will not be warned about references to the
calendar by other workflow objects. Be sure to update users, roles, and
organizations that have been assigned the calendar, as well as any of the
following workflow components that can reference calendars:

Timed Start nodes (see “Defining a Timed Start Node” on page 5-36)

Timed events (see “Embedding a Timed Sequence” on page 6-32)

Task due dates (see “Setting a Task Due Date” on page 6-51)

To delete an existing calendar:

1. Right-click the calendar you want to delete and select Delete from the pop-up
menu.

2. When prompted with the Delete Calendar warning message, click Yes. To cancel
the delete, click No.

Maintaining Organizations

You use the Organization facility to define organizations, which can represent
different business entities, geographical locations, or any other distinction relevant to
the particular business of the company.

Modelling units within your organization as different organizations allows you to
re-use the same role names but map them to different groups. Thus, for example, you
could create multiple roles called Supervisor, which would actually contain different

3 Administering Data

3-12 Using the WebLogic Integration Studio

members according to the organization (for more information, see “Maintaining
Roles” on page 3-20.) Note that organizations are specific to WebLogic Integration,
and do not correspond to any groups on WebLogic Server.

You also assign users to one, or more, organizations. Users can only execute
workflows within the organization to which they belong.

Note: To add, update, or delete organizations, you must have Administer User
permission. For more information about permission levels, see “Assigning
Permissions to Users and Roles” on page 3-25.

The Organization drop-down list located above the folder tree shows the currently
active organization. When an organization is selected in this list, the folder tree
displays roles, users, and workflows defined for that organization.

Adding an Organization

The Add Organization facility adds an organization to the WebLogic Integration
database.

To add an organization:

1. Choose Configuration→Organizations to display the Define Organizations dialog
box.

Figure 3-8 Define Organizations Dialog Box

Maintaining Organizations

Using the WebLogic Integration Studio 3-13

2. In the Define Organizations dialog box, click Add to display the Organization
Properties dialog box.

Figure 3-9 Organization Properties Dialog Box

3. In the Organization ID field, enter a meaningful name for the organization.

4. If you have created a calendar, from the Calendar ID drop-down list, select a
calendar to assign to the organization. For details about this feature, see
“Administering Business Calendars” on page 3-4.

5. Click OK to create the organization.

Updating an Organization

The Update Organization facility allows you to update the business calendar of an
existing organization.

To update an organization:

1. Choose Configuration→Organizations to display the Define Organizations dialog
box.

2. In the Define Organizations dialog box, highlight the organization to update.

3. Click Update to display the Organization Properties dialog box.

3 Administering Data

3-14 Using the WebLogic Integration Studio

Figure 3-10 Organization Properties Dialog Box

4. Make changes as needed to the Organization Id or Calendar Id fields, and click
OK.

Deleting an Organization

The Delete Organization facility allows you to remove an organization from the
WebLogic Integration database, as long as that organization does not have any
workflows defined for it. If the organization has workflows, you must first delete them.
For procedures, see “Deleting a Template Definition” on page 5-18.

To delete an organization:

1. Choose Configuration→Organizations to display the Define Organizations dialog
box.

2. In the Define Organizations dialog box, highlight the organization to delete.

3. When prompted by the Delete Organization warning message, click Yes to
confirm or No to cancel.

Maintaining Users

A user is an individual who has permissions to perform certain tasks. Use the Users
feature to create, update, and delete users in the current security realm in WebLogic
Server. You can also add or remove users from organizations.

Maintaining Users

Using the WebLogic Integration Studio 3-15

The User folder is located in the Studio folder tree. Expanding it displays a list of users
who have already been defined for the current organization.

Note: To add, update or delete users, you must have Administer User permission.
For more information about permission levels, see “Assigning Permissions to
Users and Roles” on page 3-25.

Creating a User

The Create User function adds a user to the current WebLogic Server security realm,
and is available only if the security realm is a manageable one.

To create a user in the security realm and WebLogic Integration database:

1. With any organization active, right-click the Users folder, and select Create Users
to display the Create User dialog box.

Figure 3-11 Create User Dialog Box

2. Enter values in the following fields, and then click OK:

3 Administering Data

3-16 Using the WebLogic Integration Studio

� User Id — uniquely defines the user. The user enters this ID to log in to the
Studio and Worklist client applications.

� Password and Re-enter Password — enter a password for the user.

� E-mail Address — optionally enter the e-mail address of the user.

� Default Organization — select a default organization for the user. This
organization is the one that is shown by default when the user logs on to the
client applications. You can add the user to other organizations once the user
has been created.

� Calendar — optionally select a business calendar for the user.

Maintaining Users

Using the WebLogic Integration Studio 3-17

Adding a User to an Organization

The Add User facility adds a user that is already defined in the WebLogic Server
security realm to the current organization. This facility is accessible only if the
WebLogic Integration Studio is operating within a manageable realm.

Adding a user to an organization allows the user to execute workflows within that
organization at run time. Note, however, that it does not restrict users’ access to
workflow templates at design time; provided that a user has the necessary permission
to open templates, he or she can access templates associated with multiple
organizations.

To add a user to the current organization:

1. From the Organization field above the folder tree, select the Organization to which
you would like to add the user.

2. In the folder tree, right-click the Users folder, and select Add Users to display the
Add Users dialog box.

Figure 3-12 Add Users Dialog Box

3. Click the check box to the left of the user to add, and click OK.

4. The user is added to the folder tree.

3 Administering Data

3-18 Using the WebLogic Integration Studio

Updating a User

You can update a user by changing the user’s ID, e-mail address, default organization,
and business calendar.

Note: To change a password for a user once it has been created, you must use the
WebLogic Server Administration Console. For more information, see
“Updating Passwords” in “Customizing WebLogic Integration” in Starting,
Stopping, and Customizing BEA WebLogic Integration.

To update a user:

1. From the Organization field above the folder tree, select an organization with
which the user is defined.

2. In the folder tree, expand the Users folder, right-click the user name, and choose
Properties from the pop-up menu to display the User Properties dialog box.

Figure 3-13 User Properties Dialog Box

3. Edit the following fields as desired:

� User Id

� E-mail Address

� Default Organization

Maintaining Users

Using the WebLogic Integration Studio 3-19

� Calendar — select a business calendar to assign to the user. For details about
this feature, see “Administering Business Calendars” on page 3-4.

4. Click OK or click Cancel to cancel the operation.

Removing a User from an Organization

The Remove User facility removes a user that is already defined in the WebLogic
Server security realm from the current organization. It does not remove the user from
the security realm.

To remove a user from the current organization:

1. From the Organization field above the folder tree, select the organization from
which you want to remove the user.

2. In the folder tree, expand the Users folder, right-click the user name and select
Remove from the pop-up menu.

3. When prompted with the Remove User warning message, click Yes. To cancel
the delete, click No.

Deleting a User

Deleting a user removes it from the WebLogic Server security realm and WebLogic
Integration database.

Warning: If you delete a user, you will not be warned about any workflow
components that may reference the user. Be sure that you update the
following:

Task routing specifications (see “Administering Task Routings” on page
3-28)

Assign Task to User action (see “Assigning a Task to a User” on page
6-46)

Assign Task Using Routing Table action (see “Assigning a Task Using a
Routing Table” on page 6-49)

3 Administering Data

3-20 Using the WebLogic Integration Studio

Send E-mail Message action (see “Sending E-Mail Messages” on page
6-71)

To delete a user:

1. With any organization active, right-click the Users folder, and select Delete Users
to display the Delete Users dialog box, which displays all users defined in the
system.

Figure 3-14 Delete Users Dialog Box

2. Select the check box to the left of each user that you want to delete, and click
OK.

3. When prompted, click Yes to confirm the deletion.

Maintaining Roles

A role is a common area of responsibility, ability, or authorization level that is shared
by a group of individuals. A role can only be a member of one organization, but you
can use the same name in multiple organizations. For example, you can have a role

Maintaining Roles

Using the WebLogic Integration Studio 3-21

named Supervisor defined in Org1 and Org2. The name of the role is the same, but, in
actual fact, the roles are different. Supervisor in Org1 is not the same as Supervisor in
Org2, even though the names are the same.

Roles are mapped to groups in WebLogic Server. Using the previous roles and
organizations as an example, you can map Supervisor in Org1 to a group called
SupervisorOrg1, and Supervisor in Org2 to a group called SupervisorOrg2.

Roles are defined and displayed within each organization. To display the roles that
belong to a particular organization, select an organization from the Organizations
drop-down list in the WebLogic Integration main window and expand the Roles folder.
To display the properties for that role, double-click the role.

Note: To add, update or delete roles, you must have Administer User permission. For
more information about permission levels, see “Assigning Permissions to
Users and Roles” on page 3-25.

Creating a Role

The Create Role facility allows you to create a new role in the WebLogic Server
security realm, and to map the role to a group in WebLogic Server. This facility is
accessible only if the WebLogic Integration Studio is operating in a manageable realm.

When you create a role, you must map it to a group on WebLogic Server. You can
choose to create the group automatically when you create the role, or you can create
the group in the WebLogic Server Administration Console in advance. For more
information on creating groups in WebLogic Server, see “Defining Groups” in
“Managing Security” in the WebLogic Server Administration Guide, at the following
URL: http://edocs.bea.com/wls/docs61/adminguide/cnfgsec.html

To add a new role:

1. From the Organization field above the folder tree, select the organization in which
you want to create the role.

1. In the folder tree, right-click the Roles folder and choose Create Role from the
menu to display the Create Role dialog box.

3 Administering Data

3-22 Using the WebLogic Integration Studio

Figure 3-15 Create Role Dialog Box

2. In the ID field, enter a meaningful name for the role.

3. Optionally, use the Calendar drop-down list to assign a calendar to the role. For
details about this feature, see “Administering Business Calendars” on page 3-4.

4. Do one of the following:

� Use the WLS Group drop-down list to assign the role to an existing group
defined in WebLogic Server.

� Create a new group in WebLogic Server with the same name as the role by
clicking the Map to a group with the same name as the role check box.

5. In the Members section of the dialog box, select the check box(es) to the left of
the users that you will make members of this role.

Maintaining Roles

Using the WebLogic Integration Studio 3-23

6. Click OK to save the new role. Click Cancel to cancel the operation.

Updating a Role

You can update a role by changing its calendar and members.

To update an existing role:

1. From the Organization field above the folder tree, select the organization in which
the role is defined.

2. In the folder tree, expand the Roles folder, right-click the role name and choose
Properties from the menu to display the Role Properties dialog box.

Figure 3-16 Role Properties Dialog Box

3. Make changes as needed to the calendar and role members.

4. Click OK to save the update. Click Cancel to cancel the operation.

3 Administering Data

3-24 Using the WebLogic Integration Studio

Deleting a Role

Deleting a role removes it from the WebLogic Server security realm and the WebLogic
Integration database.

Warning: If you delete a role, you will not be warned about any workflow actions
that may reference the role. Be sure that you update the following actions,
that may reference the role, to avoid server exceptions at run time:

Task routing specifications (see “Administering Task Routings” on page
3-28)

Assign Task to User action (see “Assigning a Task to a User” on page
6-46)

Assign Task to Role (see “Assigning a Task to a Role” on page 6-47)

Assign Task Using Routing Table (see “Assigning a Task Using a
Routing Table” on page 6-49)

Send E-mail Message (see “Sending E-Mail Messages” on page 6-71)

To delete a role:

1. From the Organization field above the folder tree, select the organization in which
the role is defined.

2. Expand the Roles folder, right-click the role name and choose Delete from the
pop-up menu.

3. When prompted by the Delete Role warning message, click Yes. To cancel the
delete, click No.

Changing the Mapping for Roles

You can change the group in a security realm to which a role is mapped. The new group
must already be defined in WebLogic Server. For more information on creating groups
in WebLogic Server, see “Defining Groups” in “Managing Security” in the WebLogic
Server Administration Guide, at the following URL:
http://edocs.bea.com/wls/docs61/adminguide/cnfgsec.html

Assigning Permissions to Users and Roles

Using the WebLogic Integration Studio 3-25

To change the mapping for a role:

1. From the main Studio window, choose Configuration→Role Mappings.The Role
Mappings dialog box is displayed.

Figure 3-17 Role Mappings Dialog Box

2. From the Organization drop-down list, select the organization containing the
roles you want to assign to WebLogic Server groups. The current mappings are
displayed in a table.

3. In the table, select the role or group you want to remap. A drop-down arrow
appears to the right of the group name to be changed.

4. In the Group field, click the drop-down arrow and, from the drop-down list,
select the new WebLogic Server group to which you want to map the role, from
among all WebLogic Server groups already defined.

5. Click OK to complete the procedure, or Cancel to cancel the operation.

Assigning Permissions to Users and Roles

Levels of permission enable you to protect and control access to Studio functionality.
Roles and users can perform the tasks shown in the following table only if they have
the corresponding level of permission.

3 Administering Data

3-26 Using the WebLogic Integration Studio

Since users inherit permissions from the role to which it belongs, you will want to
define permissions for roles first, and then users. Procedures are provided in the
following sections.

Note: To assign permissions to users and roles, you must have Administer User
permission. For more information about permission levels, see “Assigning
Permissions to Users and Roles” on page 3-25.

Setting Permissions for Roles

A role inherits the levels of permission for the WebLogic Server group to which it is
mapped. You can add and remove levels of permission for a role. Any changes you
make to a role are also reflected in the group to which the role is mapped.

Table 3-1 Levels of Permission

Permission Level Allows User or Role to . . .

Configure System Make application configuration changes, such as adding,
updating, and deleting business calendars

Configure Components � Define, update, and delete business operations
� Load and configure plug-ins

Administer User � Manage users, roles, and organizations
� Specify levels of permission for users and roles
� Work with task routing specifications

Monitor Instance � Monitor workflow instances, including updating workflow
variables and task properties

� Work with workload and statistics reports

Create Template Create templates and template definitions, and open template
definitions

Delete Template Delete templates and template definitions

Execute Template Start a workflow within a within a particular organization form
the Worklist or custom client

Assigning Permissions to Users and Roles

Using the WebLogic Integration Studio 3-27

To set the levels of permission for a role:

1. From the main Studio window, choose Configuration→Permissions. The
Permissions dialog box is displayed

2. Select the Roles tab.

Figure 3-18 Permissions Dialog Box: Roles Tab

3. From the Organization drop-down list, select the organization for which you want
to set the role permissions. The Permissions dialog box displays all the roles in
the organization and the permissions currently assigned.

4. Select or clear the check boxes as desired.

5. Click OK to accept the changes, or Cancel to cancel the operation.

Setting Permissions for Users

A user inherits the levels of permission for the role to which it belongs. You can add
other levels of permission to a user that are not defined for the role to which it belongs,
but you cannot remove the permissions a user inherits from the role to which it
belongs. Any permissions you add to a user are specific to the user, and are not
reflected in the role to which the user belongs.

To set levels of permission for a user:

3 Administering Data

3-28 Using the WebLogic Integration Studio

1. From the main Studio window, choose Configuration→Permissions. The
Permissions dialog box is displayed.

2. Select the Users tab (if it is not already selected).

Figure 3-19 Permissions Dialog Box: Users Tab

The Permissions dialog box displays all the currently defined users, and the
permissions currently assigned. If a permission is checked, but grayed out, you
cannot remove that permission because it was inherited from the role to which
the user belongs.

3. Select or clear the check boxes as desired.

4. Click OK to accept the changes, or Cancel to cancel the operation.

Administering Task Routings

Task routings can be defined on a per-organization basis to reroute currently assigned
tasks from one user to another user or role for a specified, temporary, period of time.
Task routings reroute all tasks assigned to the user you specify. You can route tasks
from users, roles, and users in roles. For more information about these distinctions, and
about task assignment, see “Setting Up Manual Tasks” on page 6-44.

Administering Task Routings

Using the WebLogic Integration Studio 3-29

You can also reroute individual tasks according to particular conditions. This is done
with an action specified within a task node. For more information, see “Assigning a
Task Using a Routing Table” on page 6-49.

Note: To administer task routings, you must have Administer User permission. For
more information about permission levels, see “Assigning Permissions to
Users and Roles” on page 3-25.

Viewing Task Routing Specifications

To view task routing specifications for an organization:

1. From the Organization field above the folder tree, select the organization whose
routings you want to view.

2. Right-click the Routing folder, and select Open from the pop-up menu, to display
the Routing window.

Figure 3-20 Routing Dialog Box

The Routing window displays the following information for each routing
specification:

User The user ID for the user from whom all tasks are to be routed.

Route To The ID of the user, role or user in role to whom all tasks are to be
routed.

3 Administering Data

3-30 Using the WebLogic Integration Studio

Adding a Routing Specification

To add a task routing specification:

1. From the Organization field above the folder tree, select the organization to which
you would like to add a routing specification.

2. In the folder tree, right-click the Routing folder, and from the pop-up menu,
select Open to display the Routing window.

3. In the Routing window, click Add to display the Reroute Tasks dialog box.

Effective The date and time when task routing is to begin.

To The date and time when task routing is to end.

Administering Task Routings

Using the WebLogic Integration Studio 3-31

Figure 3-21 Reroute Tasks Dialog Box

4. From the Route From drop-down list, select the user from which all tasks should
be rerouted.

5. From the Route To drop-down list, select the User, User In Role, or Role to
which all tasks should be rerouted, and select the corresponding radio button.

Note: When you assign to a User in Role, the system performs workload
balancing by first reviewing the number of tasks assigned to all users in the
role, selecting the user with the least number of assigned tasks, and
assigning all of the rerouted tasks to this user.

6. Specify an Effective date by selecting a month and year, and clicking on a day in
the month display.

3 Administering Data

3-32 Using the WebLogic Integration Studio

7. In a similar fashion, specify the Expiry date for the task rerouting.

8. Click OK to save the rerouting specification. Click Cancel to cancel the
operation.

Updating a Task Routing Specification

To update a task rerouting specification:

1. From the Organization field above the folder tree, select the organization to which
you would like to add a routing specification.

2. In the folder tree, right-click the Routing folder, and from the pop-up menu,
select Open to display the Routing window.

3. In the list of displayed task routings, select the task rerouting you want to update.

4. Click Update to display the Reroute Tasks dialog box.

5. Make changes as needed to the Route To, Effective, and Expiry values.

6. Click OK to save the changes. Click Cancel to cancel the operation.

Deleting a Task Routing Specification

To delete a task rerouting specification:

1. From the Organization field above the folder tree, select the organization to which
you would like to add a routing specification.

2. In the folder tree, right-click the Routing folder, and from the pop-up menu,
select Open to display the Routing window.

3. In the list of displayed task routings, select the task rerouting you want to update.

4. When prompted by the Delete Reroute warning message, click Yes. To cancel the
delete, click No.

Administering Task Routings

Using the WebLogic Integration Studio 3-33

Refreshing the Rerouting Task List

Click Refresh in the Routing dialog box to refresh the rerouting task list and display
any changes that have been made since you first invoked the Routing dialog box.

3 Administering Data

3-34 Using the WebLogic Integration Studio

Using the WebLogic Integration Studio 4-1

CHAPTER

4 Configuring Workflow
Resources

This section describes how to configure system and application components, and
includes:

� Overview of Resource Configuration Tasks

� Configuring Plug-Ins

� Configuring Business Operations

� Configuring Event Keys

� Managing Entities in the Repository

Overview of Resource Configuration Tasks

All of the tasks described in this section can be performed before or during workflow
design, but the resources described can be configured without accessing workflow
templates. In some cases, workflow design activities are actually dependent on these
resources having been set up already, such as business operations, which must be
defined before a workflow can call them. Once the resources are defined, they are
available globally for access by all workflows, users, and organizations in the system.
These tasks do not need to be performed in any particular order.

4 Configuring Workflow Resources

4-2 Using the WebLogic Integration Studio

Note: You may also want to familiarize yourself with the workflow expression
language and the Studio’s Expression Builder and XPath Wizard tools if you
will be configuring event keys. Complete information on workflow
expressions is available in Chapter 8, “Using Workflow Expressions.”

� Load and configure plug-ins. If you have developed custom client or server
components that add functionality to be accessed through the Studio, you will
want to configure these beforehand. For information on developing plug-ins, see
Programming BPM Plug-Ins for WebLogic Integration. Information on loading
and configuring plug-ins is provided in “Configuring Plug-Ins” on page 4-3.

� Define business operations. If you have developed Java components, such as
custom classes or Enterprise JavaBeans (EJBs), you need to set up interfaces to
them, in the form of business operations that are then called by workflows to
invoke the functionality provided in the Java component’s methods. Business
operations must be defined before workflows can invoke them. Procedures are
given in “Configuring Business Operations” on page 4-7. Alternatively, import
previously exported business operations from existing workflow packages; see
procedures in “Importing Workflow Packages” on page 11-5.

� Configure event keys. If your workflows or nodes within them are to be
triggered by events, such as incoming XML messages on a Java Message
Service (JMS) queue, you can set up event keys that retrieve the relevant data
from the incoming documents to trigger those events. You can also configure the
event keys while designing workflows, so setting them up ahead of time is
optional. Details are provided in “Configuring Event Keys” on page 4-18.
Alternatively, import previously exported event keys from existing workflow
packages; see procedures in “Importing Workflow Packages” on page 11-5.

� Set up the repository. If you will be using any XML data transformation
operations, or sending outgoing XML messages to an internal queue or an
external topic or queue, you may want to import XML documents, style sheets,
and other entities beforehand into the repository, which provides a centralized
database for convenient access by any connecting Studio client. Information is
provided in “Managing Entities in the Repository” on page 4-23. Alternatively,
import previously exported repository entities from existing workflow packages;
see procedures in “Importing Workflow Packages” on page 11-5.

Configuring Plug-Ins

Using the WebLogic Integration Studio 4-3

Configuring Plug-Ins

A plug-in is a group of Java classes implemented as EJBs that extend the functionality
provided in selected workflow components. Plug-ins provide a way to customize
existing WebLogic Integration features so they are more appropriate for your
environment, and to add functionality that is specific to your environment.

A plug-in can extend the functionality of the following workflow components:

� Workflow templates

� Workflow template definitions

� Start nodes

� Event nodes

� Done nodes

� Variables

� Actions

� Functions (that are part of expressions)

If a plug-in is developed for any of these workflow components, the Studio dialog box
for these components is also modified to include a way for you to access the plug-in’s
functionality. For example, the Studio provides several default methods in the
Properties dialog box of a Start node to trigger the start of a workflow: timed, manual,
called, and event. To extend the default methods, a developer can create a plug-in that
specifies a custom event to trigger a workflow, such as receiving an e–mail message,
which might be the preferred method for starting workflows in your environment. This
plug-in method will appear as an option in the Start Properties dialog box.

Once a plug-in is developed and is deployed on WebLogic Server, it is available for
use by WebLogic Integration. When WebLogic Integration starts, it checks WebLogic
Server to see if any plug-ins are available on the server.

Before you can use an available plug-in, you must load it using the Studio to activate
it. You might also need to specify some configuration settings for the plug-in before
you can use it.

4 Configuring Workflow Resources

4-4 Using the WebLogic Integration Studio

Note: To load or configure a plug-in, you must have Configure Components
permission. For details about permission levels, see “Assigning Permissions to
Users and Roles” on page 3-25.

Viewing Plug-ins

To view a plug-in, choose Configuration→Plugins to display the Plugin configurations
dialog box.

Figure 4-1 Plugin Configurations Dialog Box

The information displayed for each plug-in is explained in the following table.

Configuring Plug-Ins

Using the WebLogic Integration Studio 4-5

You can also obtain information about a plug-in by selecting the plug-in from the list
and clicking About.

Loading Plug-Ins

If a plug-in’s start mode is manual, you can load it each time a WebLogic Integration
server session is started. If a plug-in’s start mode is disabled, you must first change it
to manual or automatic before you can load it.

To load an initialized plug-in:

1. In the Plugin configurations dialog box, select the desired plug-in.

2. Click Load. The status of the plug-in changes to Loaded in the list.

To load a disabled plug-in:

1. In the Plugin configurations dialog box, select the desired plug-in, and click Update
to display the Configuration dialog box.

Plugin Name The name for the plug-in as specified by the plug-in software.

Status Loaded—The plug-in is loaded
Initialized—The plug-in is available but has not been loaded
Missing—The plug-in has a registered configuration, but is not
deployed or available.
Error—The plug-in threw an exception when called, or requires a later
version of the plug-in framework.

Start mode Automatic—The plug-in is loaded each time the server is started
Manual—The plug-in must be loaded manually each time you start the
server
Disabled—The plug-in cannot be loaded

Version The software version for the plug-in

Vendor The name of the company that supplied the plug-in

4 Configuring Workflow Resources

4-6 Using the WebLogic Integration Studio

2. In the Configuration dialog box, change the Start Mode to Automatic or Manual,
and click OK.

3. With the plug-in selected in the Plugin configurations dialog box, click Load.

The status of the plug-in changes to Loaded in the list.

Note: Changes to the plug-in’s start mode do not take effect until the WebLogic
Integration server is restarted.

Updating a Plug-In Configuration

To configure a plug-in:

1. In the Plugin configurations dialog box, select the plug-in you want to configure.

2. Click Update. A configuration dialog box is displayed.

3. Optionally, select the start mode for the plug-in by clicking one of the following
buttons:

� Automatic — Select this option if you want to load the plug-in each time the
server is started

� Manual — Select this option if you want to load the plug-in manually as
required

� Disabled — Select this option to disable the plug-in functionality

Note: The start mode does not become effective until the next time the WebLogic
Integration server is started.

4. Specify configuration settings for the plug-in as appropriate.

For details about defining configuration settings for a plug-in, see the online help
for that plug-in. To access plug-in help, press the F1 key (for context-sensitive
plug-in help), or choose Help→Plugin Help from the main menu in the Studio
and select the appropriate plug-in help from the menu.

5. Click OK to complete the configuration or Cancel to cancel the operation.

Configuring Business Operations

Using the WebLogic Integration Studio 4-7

Deleting a Plug-In Configuration

You can delete a configuration for a plug-in if you no longer need the configuration.
When you delete a configuration, you do not delete the plug-in itself. You just delete
its registered configuration.

Note: You cannot delete the configuration of a plug-in unless the status of that
plug-in is Missing.

To delete a configuration:

1. From the Plugin configurations dialog box, select the plug-in whose configuration
you want to delete.

2. Click Delete. The registered configuration for the selected plug-in is deleted, but
the plug-in remains visible in the Plugin configurations dialog box.

The following table describes the actions that occur when you restart the
WebLogic Integration server after a plug-in configuration has been deleted.

Configuring Business Operations

To enable workflows to invoke software components that perform business logic, such
as Java classes and Enterprise JavaBeans (EJBs), you define business operations. A
business operation represents a method call on a Java class or EJB, including any
variables that are passed to it as parameters, and result values that are returned to the

If the WebLogic Integration
server is restarted and the plug-in
is . . .

Then . . .

Not deployed The plug-in manager does not search for the
plug-in and the plug-in is not listed in the Plugin
configurations dialog box.

Deployed The plug-in is automatically loaded using the
default configuration values defined by the
plug-in.

4 Configuring Workflow Resources

4-8 Using the WebLogic Integration Studio

workflow. You can use the business operations facility to create customized functions
that invoke existing applications or applications that are built specifically for the
workflow. The business operations facility displays all Java classes and EJBs
registered in WebLogic Server, as well as their methods and parameters.

Note: For information about deploying Java classes and EJBs so that they are visible
in the Studio, see “Deploying EJBs and Java Classes for Business Operations”
in “Customizing WebLogic Integration” in Starting, Stopping, and
Customizing BEA WebLogic Integration.

Once the business operation is defined, it is then globally available for all workflows
in the system to invoke. You can also export and import business operations as part of
Java archive package files, with or without the workflows that reference them (for
more information, see Chapter 11, “Importing and Exporting Workflow Packages.”)

Within an individual workflow, you use the Perform Business Operation action to
invoke the business operation and, optionally, assign the results of the method call to
a workflow variable. For more information, see “Calling a Business Operation” on
page 6-77.

Note that before a workflow can call a method on an EJB or a non-static method on a
Java class, the workflow must call its constructor method to create an instance of the
EJB or Java class on the server. Therefore, you must be sure to create a business
operation for the create() method of EJBs and a constructor method of Java classes,
and a variable to store a reference to the instance. More information is provided in the
following sections, which describe how to add and define business operations for each
Java component type, and in “Calling a Business Operation” on page 6-77, which
describes the steps for calling the necessary methods and assigning variables. An
example of defining business operations is also provided in “Creating and Performing
a Business Operation: Defining the Check Inventory Task” in Learning to Use BPM
with WebLogic Integration.

Note: To add, define, or delete a business operation, you must have Configure
Components permission. For details about permission levels, see “Assigning
Permissions to Users and Roles” on page 3-25.

Viewing Business Operations

To view a business operation, choose Configuration→Business Operations to display
the Business Operations dialog box.

Configuring Business Operations

Using the WebLogic Integration Studio 4-9

Figure 4-2 Business Operations Dialog Box

The information displayed for each business operation is explained in the following
table.

Adding a Business Operation

To create and define a business operation:

1. From the Business Operations dialog box, click Add to display the Define Business
Operation dialog box.

Description The name that you define for the business operation.

EJB/Class The Enterprise JavaBean (EJB) or Java class to be invoked.

Method The method in the EJB or Java class to be called.

4 Configuring Workflow Resources

4-10 Using the WebLogic Integration Studio

Figure 4-3 Define Business Operation Dialog Box

2. In the Name field, enter a meaningful description of the business operation. A
business operation that returns the number of items available in stock might be
called, for example, Check Inventory. For methods that create an instance of
the Java class or EJB at run time, give the business operation a name that
indicates the purpose of the method and the name of the class or Bean that it
creates, such as Create Order Processing EJB Instance.

Note: You will also need to create a corresponding variable to reference the
instance.

3. Specify the software component the business operation is invoking. The choices
are:

� Java Class — the business operation calls a method in a Java class on
WebLogic Server. The Java class can be serializable or non-serializable.

Configuring Business Operations

Using the WebLogic Integration Studio 4-11

Non-serializable Java class references persist for the duration of a transaction
only, and will need to be recreated each time the workflow instance reaches a
quiescent state. Follow the steps given in “Adding a Business Operation for a
Java Class” on page 4-11.

� Session EJB — the business operation calls a method in a session EJB on
WebLogic Server. Stateful session EJB references persist for the duration of
a transaction only, and will need to be recreated each time the workflow
instance reaches a quiescent state. Stateless session EJB references persist for
the duration of a workflow instance. Follow the steps given in “Adding a
Business Operation for a Session EJB” on page 4-13.

� Entity EJB — the business operation calls a method in an entity EJB on
WebLogic Server. Entity EJBs represent persistent data, and persist for at
least the duration of the workflow instance and, often, beyond the life of a
workflow instance. Follow the steps given in “Adding a Business Operation
for an Entity EJB” on page 4-15.

4. In the Define Business Operations dialog box, click OK to save the business
operation. The business operation is added to the list of valid business operations
in the Business Operation dialog box.

Adding a Business Operation for a Java Class

If you are creating business operations for non-static methods in a Java class, you must
also create a business operation for a constructor method for the class. (Details are
given in “Calling the Business Operation to Create an EJB or Java Class Instance” on
page 6-78.) Be sure to give this business operation a meaningful name that identifies
its function, as it will need to be called from the workflow before any non-static
methods in the class may be called. You will also need to create a variable of type Java
Object to hold a reference to the Java class instance when the instance is created at run
time. For information on variables, see “Working with Variables” on page 5-28.

Finally, when you name your business operation, it is a good idea to indicate whether
the business operation calls a static or non-static method, so the workflow designer will
know whether or not a constructor method needs to be called first.

To define a business operation for a Java class, proceed as follows:

1. Select the Java Class radio button.

2. Click Set to display the Java Class Name dialog box.

4 Configuring Workflow Resources

4-12 Using the WebLogic Integration Studio

Figure 4-4 Java Class Name Dialog Box

3. Enter a fully qualified Java class name (for example, java.lang.String), and
click OK. The Java class name is set in the Fully Qualified Java Class Name field
of the Define Business Operation dialog box.

Figure 4-5 Define Business Operation Dialog Box: Java Class Option

Configuring Business Operations

Using the WebLogic Integration Studio 4-13

4. In the Method to Call drop-down list, select a method to call upon invoking the
business operation in the workflow. There are three types of Java class methods
in the list:

� Constructor Type — these method types are first in the list. Constructor
methods return an object of the type you entered as the Java Class Name.

� Method Type — these are second in the list. They are invoked on Java
objects and can return any type.

� Static Type — these are last in the list and begin with the word Static.
Static methods require no object to be created and can return any type.

5. Optionally, give the method’s parameters meaningful names by highlighting a
parameter in the Parameters list and clicking Update to display the Parameter
dialog box.

Figure 4-6 Parameter Dialog Box

6. In the Name field, enter a descriptive name for the parameter and click OK.

7. Repeat steps 5 and 6 for all parameters in the Parameters in the list.

Adding a Business Operation for a Session EJB

In addition to creating business operations that call methods that provide business logic
for your workflow, you must create a business operation for the create() method of
the Session EJB whose methods you are calling via a business operation. (Details are
given in “Calling the Business Operation to Create an EJB or Java Class Instance” on
page 6-78.) Be sure to give this business operation a meaningful name that identifies
its function, as it will need to be called from the workflow in each transaction that calls
other methods. You will also need to create a variable of type Session EJB to hold a
reference to the EJB instance when the instance is created at run time. For information
on variables, see “Working with Variables” on page 5-28.

4 Configuring Workflow Resources

4-14 Using the WebLogic Integration Studio

All Session EJBs deployed on WebLogic Server are displayed in a list in the Define
Business Operations dialog box according to their Java Naming and Directory
Interface (JNDI) name.

Figure 4-7 Define Business Operation: Session EJB Option

To define a business operation for a Session EJB:

1. Select the Session EJB radio button to display fields relevant to Session EJBs in the
Define Business Operation dialog box.

2. From the JNDI Name for Session EJB drop-down list, select the JNDI name for
the Session EJB.

3. In the Method to Call drop-down list, select a method to call upon invoking the
business operation in the workflow.

Configuring Business Operations

Using the WebLogic Integration Studio 4-15

4. Optionally, give the method’s parameters meaningful names by highlighting a
parameter in the Parameters list and clicking Update to display the Parameter
dialog box.

5. In the Name field, enter a descriptive name for the parameter and click OK.

6. Repeat steps 4 and 5 for all parameters in the Parameters in the list.

Adding a Business Operation for an Entity EJB

In addition to creating business operations that call methods that provide business logic
for your workflow, you must create a business operation for the create() method of
the Entity EJB whose methods you are calling via a business operation. (Details are
given in “Calling the Business Operation to Create an EJB or Java Class Instance” on
page 6-78.) Be sure to give this business operation a meaningful name that identifies
its function, as it will need to be called from the workflow before other methods in the
EJB may be called. You will also need to create a variable of type Entity EJB to hold
a reference to the EJB instance when the instance is created at run time. For
information on variables, see “Working with Variables” on page 5-28.

All Entity EJBs deployed on WebLogic Server are displayed in a list in the Define
Business Operations dialog box according to their JNDI name.

4 Configuring Workflow Resources

4-16 Using the WebLogic Integration Studio

Figure 4-8 Define Business Operation: Entity EJB Option

To define a business operation for an Entity EJB:

1. Select the Entity EJB radio button to display fields relevant to Entity EJBs in the
Define Business Operation dialog box.

2. From the JNDI Name for Entity EJB drop-down list, select the JNDI name for
the Entity EJB.

3. In the Method to Call drop-down list, select a method to call upon invoking the
business operation in the workflow.

4. Optionally, give the method’s parameters meaningful names by highlighting a
parameter in the Parameters list and clicking Update to display the Parameter
dialog box.

Configuring Business Operations

Using the WebLogic Integration Studio 4-17

5. In the Name field, enter a descriptive name for the parameter and click OK.

6. Repeat steps 4 and 5 for all parameters in the Parameters in the list.

Updating a Business Operation

When updating a business operation, you should be sure to update any Perform
Business Operation actions that reference the business operation from workflows. For
more information on this action, “Calling a Business Operation” on page 6-77.

To update a business operation:

1. In the Business Operations dialog box, select the business operation you want to
update, and click Update. The Define Business Operation dialog box is displayed.

2. Make changes as needed, and click OK when done.

Deleting a Business Operation

Warning: Before deleting a business operation, make sure that the business
operation is not referenced by any workflows using the Perform Business
Operation action, or you will not be able to activate the workflow. When
making a deletion, you will not be warned if any references exist, so be
sure to update the Perform Business Operation action accordingly (for
information, see “Calling a Business Operation” on page 6-77).

To delete a business operation:

1. In the Business Operations dialog box, select the business operation you want to
delete, and click Delete.

2. When prompted by a warning message, click OK to confirm the delete, or Cancel
to cancel.

4 Configuring Workflow Resources

4-18 Using the WebLogic Integration Studio

Configuring Event Keys

A workflow can be started, or nodes within a workflow triggered, by an event. An
event is an asynchronous notification from another workflow or from an external
source, such as another application. Start nodes can be defined as event-triggered, and
Event nodes are always asynchronous nodes that can only be triggered by an external
event.

An event notification most typically takes the form of an XML document contained in
a Java Message Service (JMS) message and received on a JMS queue, although it may
also be plug-in defined, which means that the event notification can be a custom trigger
rather than an XML document. (For more information, see Programming BPM
Plug-Ins for WebLogic Integration).

In an XML event type, the actual trigger is either the document type declaration
(DOCTYPE) specified in the prolog of the XML message, or it is the root element of
the XML message. You specify the DOCTYPE or root element with which you want
to trigger the event or start the workflow in a Start or Event node’s properties dialog
box. The event is not triggered unless the DOCTYPE or root element specified in the
node’s properties dialog box matches that in the incoming XML message.

In addition to using the DOCTYPE or root element, you can further qualify an event
with an event key. An event key allows you to specify the contents of incoming XML
messages or of JMS header or property fields that will trigger a Start or Event node.
That is, rather than allowing all incoming XML documents with a particular
DOCTYPE or root element to trigger the node, you can filter the instances of incoming
XML messages according to specific values contained in the document or header, so
that only a message, or messages, containing those values can trigger the node in the
running workflow.

An event key consists of two parts:

� Key value expression

You specify the key value expression in the Properties dialog box for Start or
Event nodes. The key value expression is a workflow expression that is
evaluated at run time to specify the exact data that the incoming message must
contain for the node to be triggered. In a Start node, the expression typically
contains a constant that refers to particular, recurring data contained in the
incoming XML document, or it could be the value of a JMS header. In an Event

Configuring Event Keys

Using the WebLogic Integration Studio 4-19

node, the expression typically contains variables or functions to obtain a unique
value at run time. Examples of key value expressions are given in
“Understanding Event Keys” on page 5-39 and steps for defining key value
expressions are given in “Defining Event-Triggered Start Properties” on page
5-46 and “Defining Event Properties” on page 5-49.

� Event key expression

This is an expression that returns the key value from the header or body of the
incoming message at run time and converts it to the data type required by the
corresponding key value expression in a Start or Event node. You specify the
event key expression in an event key expression dialog box that you access from
the Configuration menu. The expression typically contains an XPath language
expression to parse the XML document, or an EventAttribute() function
expression to extract a value from a JMS message header.

In the event key configuration, you specify an event descriptor, which corresponds to
the DOCTYPE or root element specified in a Start or Event node properties dialog box.
You then specify an event key expression, which corresponds to a key value
expression defined in the Start or Event properties dialog box, so that the process
engine can compare the two values at run time and determine if there is a match. The
relationship between event descriptors and DOCTYPE/Root elements, and between
event key expressions and key value expressions is discussed more fully, with
examples, in “Understanding Event Keys” on page 5-39.

However, since you can configure event keys independently of workflows, the
procedures for doing so are given below. Once you have configured an event key
expression, it is available for all workflows in all organizations. If you know the
contents of your incoming messages, you can configure your event key expressions in
advance to make them available to the workflow designer who will set up
corresponding key value expressions in Start or Event nodes. You can also export and
import event keys to and from a Java archive package file, with or without the
workflows that reference them; for more information, see Chapter 11, “Importing and
Exporting Workflow Packages.”

Viewing Event Key Configurations

To view an event key configuration, choose Configuration→Events to display the
Event Key Expressions dialog box.

4 Configuring Workflow Resources

4-20 Using the WebLogic Integration Studio

Figure 4-9 Event Key Expressions Dialog Box

The information displayed for each event key is explained in the following table.

Adding an Event Key Configuration

To add an event key configuration:

1. From the Event Key Expressions dialog box, click Add to display the Define Event
Key Expression dialog box.

Content Type By default, this is preset to text/xml and cannot be edited, unless a
plug-in event type is available with a loaded plug-in.

Event
Descriptor

For an XML/JMS event, this is the DOCTYPE or root element of the
incoming XML document contained in the JMS message.

Expression The expression that returns the key value from the header or body of
the incoming message at run time and converts it to the data type
required by the corresponding key value expression in a Start or Event
node.

Configuring Event Keys

Using the WebLogic Integration Studio 4-21

Figure 4-10 Define Event Key Expression Dialog Box

2. In the Content Type field, select text/xml for an XML/JMS message.

3. In the Event Descriptor field, enter the DOCTYPE or root element of the
incoming XML document.

4. In the Expression field, enter one of the following:

� To extract a value from a JMS header or property field, construct an
expression using the EventAttribute() function, with the name of the
field inside the parentheses.

� To extract a value from the XML body, use an expression using the XPath()
function (see “XPath()” on page 8-10), or the dot notation for XML elements
to be returned as strings (for information, see “XML Element Dot Notation”

on page 8-12). You can also use the Expression button to invoke the
XPath Wizard, from which you can generate XPath expressions
automatically from a sample incoming document. For information, see
“Creating XPath Expressions Using the XPath Wizard” on page 8-31.

For more information on the syntax for event key expressions, see “Extracting
Run-Time Event Data” on page 8-7. Note also that an XPath() or
EventAttribute() function must be wrapped in a typecasting function to return a
data type that matches the type returned by the key value expression defined in
the corresponding Event or Start node. For information on typecasting functions,
see “Converting Data Types” on page 8-17.

Note also that the event key expression that you enter here should return a value
that matches a value specified by a key value expression in a Start or Event
node. For more information, see for defining key value expressions in Start or
Event nodes, see “Defining Event And Event-Triggered Start Properties” on
page 5-38.

4 Configuring Workflow Resources

4-22 Using the WebLogic Integration Studio

5. Click OK. The event key is stored in an event key table in the WebLogic
Integration database, and is displayed in the Event Key Expressions dialog box.

6. Click Close.

Updating an Event Key Configuration

When updating an event key configuration, you can only update the expression, but not
the event descriptor.

To update an event key:

1. From the Event Key Expressions dialog box, select the event key you wish to
update, and click Update to display the Define Event Key Expression dialog box.

2. Edit the Expression as necessary.

3. Click OK when done.

Deleting an Event Key Configuration

When deleting an event key, take care that the key value is not referenced by key value
expressions used in Start or Event nodes in workflows, or these events will not be
triggered.

To delete an event key:

1. From the Event Key Expressions dialog box, select the event key you wish to
delete, and click Delete.

2. When prompted by a warning message, click OK to confirm the delete, or click
Cancel.

Managing Entities in the Repository

Using the WebLogic Integration Studio 4-23

Managing Entities in the Repository

The WebLogic Integration repository contains a database table that is used to store
XML entities, such as XML documents, DTD files, and XSL template documents. You
can use the Studio to view, organize, and populate the repository, to make existing
XML entities available globally for use and reuse by all workflows in the system. If
you have previously-stored XML documents that you would like to reference in the
workflows you create, you can set up your repository so that these documents are
available to any client logged on to the system.

For example, if you will be using the Send XML to Client action to interact with a
Worklist user (for information, see “Sending an XML Message to the Worklist
Application” on page 6-61), you can populate the repository with the document type
definition (DTD) files that are used to send messages to the Worklist, so that any
Studio client user can easily access them in a central place. Or if you will be using the
XSL Transform action to translate XML documents at run time (for information, see
“Transforming XML Documents” on page 6-95), you may want to store your XSL
stylesheet transform documents in the repository for easy access when defining that
action.

In this section, we discuss how to set up the repository initially. However, the
repository and all of the functions described in this section can be also be accessed
from within workflow dialog boxes, as described in Chapter 7, “Working with XML
Entities.” You can also export entities contained in the repository to a file on disk (this
option is discussed in “Exporting an Entity to the File System” on page 4-34) and to a
Java archive package file for re-import into another system (for more information on
import/export, see Chapter 11, “Importing and Exporting Workflow Packages.”)

Viewing the XML Entities in the Repository

To view the XML entities in the repository:

1. Choose Tools→Show XML Finder. The XML Finder dialog box opens with the
Repository tab selected.

2. In the left pane, select XML Repository. This displays the XML entities in the
repository.

4 Configuring Workflow Resources

4-24 Using the WebLogic Integration Studio

Figure 4-11 XML Entities in the Repository

The following table describes information displayed in the Repository window.

Type The type of entity, including folders, documents, and other XML
entities (for information on XML entity types, see “Working with
XML Entities” on page 4-28).

Name The name of the folder or entity.

Created The date the entity was first created in the repository.

Modified The date the entity was last modified.

Description The description of a folder or entity that was entered when the entity
was created.

Folders A list of all folders contained in the repository.

Entities A list of all entities contained in the repository.

Managing Entities in the Repository

Using the WebLogic Integration Studio 4-25

To view the contents of a folder:

1. In the left pane, expand all folders and select the folder whose contents you wish
to view. A list of the entities contained in the folder appear in the right pane, along
with any description or notes that were entered for the folder when it was created.

Figure 4-12 XML Entities in the Selected Folder

2. Select an entity in the list to display any description or notes that were entered for
the entity when it was created.

3. Optionally, with an entity selected, click Preview to display the Preview
Document window and view the document’s content.

4 Configuring Workflow Resources

4-26 Using the WebLogic Integration Studio

Figure 4-13 Preview Document Window

4. Click OK to close the Preview Document dialog box.

For more information about entities, see “Working with XML Entities” on page 4-28.

The left panel shows you a tree view of the repository with folders and sub-folders
arranged hierarchically. The top-most panel on the right shows you the contents of the
selected folder. The Description field contains a description of the selected folder, and
the Notes field contains any notes about the selected folder.

Working with Folders

You can perform several different actions on a folder, including adding, updating, and
deleting. To perform actions on a folder:

Adding a Folder

To add a folder:

1. In the left pane of the Repository window, right-click the XML Repository icon or
any sub-folder, and from the pop-up menu, select Add Folder to display the Add
Folder dialog box.

Managing Entities in the Repository

Using the WebLogic Integration Studio 4-27

Figure 4-14 Add Folder Dialog Box

2. In the Name field, enter the name of the folder.

3. Optionally, enter a description and notes about the folder in the Description and
Notes fields, respectively.

4. Click OK. The new folder appears in the XML Finder dialog box.

Updating Folder Information

To update a folder:

1. In the left pane of the Repository window, right-click the folder you want to update,
and from the pop-up menu, select Update Folder Info to display the Update Folder
Info dialog box.

4 Configuring Workflow Resources

4-28 Using the WebLogic Integration Studio

Figure 4-15 Update Folder Info Dialog Box

2. Change the contents of the Name, Description, and Notes fields as necessary.

3. Click OK.

Deleting a Folder

A folder may only be deleted when it has no sub-folders.

To delete a folder:

1. In the left pane of the Repository window, right-click the folder you want to delete,
and from the pop-up menu, select Delete Folder.

2. When prompted, confirm the deletion.

Working with XML Entities

The repository stores different types of XML entities, each one represented by a
symbol, as shown in the following table.

Symbol XML Entity Type

Document Type Definition (DTD) file

Managing Entities in the Repository

Using the WebLogic Integration Studio 4-29

You can perform several different actions on XML entities in folders in the repository,
including adding, updating, moving, and deleting entities.

Importing an XML Entity into the Repository

To add an XML entity:

1. In the left pane of the Repository window, expand folders, right-click the folder to
which you want to add the entity, and from the pop-up menu, select Add Entity to
display the Add Entity dialog box.

Message Format Language (MFL) file

Schema (XSD) file

Text file

XML document

Extensible Stylesheet Language (XSL) template document

Symbol XML Entity Type

4 Configuring Workflow Resources

4-30 Using the WebLogic Integration Studio

Figure 4-16 Add Entity Dialog Box

2. In the Name field, enter a unique name for the entity you are adding.

3. From the Type drop-down list, select the type of entity you are adding.

4. Optionally, enter a description and notes about the entity in the Description and
Notes fields, respectively.

5. In the Content URL field, enter a URL for the entity you are adding, or use
Browse to locate the entity on a local or mapped network drive. The Open dialog
box appears.

Managing Entities in the Repository

Using the WebLogic Integration Studio 4-31

Figure 4-17 Open Dialog Box

6. From the Look in drop-down list, select the folder containing the file whose
contents you want to import.

7. In the File name field, enter the filename and extension, or select the file, and
click Open.

8. The URL for the file is returned to the Add Entity dialog box.

9. Optionally, click View to display the contents of the entity you are adding.

4 Configuring Workflow Resources

4-32 Using the WebLogic Integration Studio

10. Click Cancel to close the window and return the content to the Add Entity dialog
box.

11. Click OK. The new entity appears in the XML Finder dialog box in the selected
folder.

Updating an Entity

You can use the Update Entity feature to change the content of an entity you have
defined. You cannot, however, change the entity type. To change the type of an entity,
you must create a new entity with the desired content type. For details, see “Importing
an XML Entity into the Repository” on page 4-29.

To update an entity:

1. In the left pane of the Repository window, expand folders, select the folder
containing the entity you want to update.

2. In the right pane of the window, right-click the entity you want to update, and
from the pop-up menu, select Update Entity Definition to display the Update
Entity Definition dialog box.

Managing Entities in the Repository

Using the WebLogic Integration Studio 4-33

Figure 4-18 Update Entity Definition Dialog Box

3. Change the contents of the Name, Description, and Notes fields as necessary.

4. In the Content URL field, enter the URL for the source of the new content you
want to add, or use Browse to locate the entity on a local or mapped network
drive.

5. Optionally, click View to display the new content for the entity.

6. Click OK to close the Update Entity Definition dialog box. The selected entity is
updated.

Moving an Entity

You can move an entity from one folder to another by cutting it from the source folder
and pasting it to the target folder.

To move an entity:

1. In the left pane of the Repository window, expand folders, and select the folder
containing the entity you want to cut.

4 Configuring Workflow Resources

4-34 Using the WebLogic Integration Studio

2. In the right pane of the window, right-click the entity you want to cut, and from
the pop-up menu, select Cut.

3. In the left pane of the Repository window, expand folders, right-click the folder
into which you want to paste the entity, and from the pop-up menu, select Paste.
The entity is pasted into the target folder.

Exporting an Entity to the File System

You can save an XML entity from the repository database table to the local file system
or a network drive mapped to the local machine.

To export an entity to a file:

1. In the left pane of the Repository window, expand the folders and select the folder
containing the entity you want to export.

2. In the right pane of the window, right-click the entity you want to export, and
from the pop-up menu, select Export Entity to display the Save dialog box.

Figure 4-19 Save Dialog Box

Managing Entities in the Repository

Using the WebLogic Integration Studio 4-35

3. From the Look in drop-down list, select the drive and folder to which you want to
export the entity.

4. In the File name field, specify a name for the file to which you want to export the
entity, or select an existing file. If you do not specify a name, the system assigns
the name of the entity by default. If you select an existing file, you are prompted
to overwrite it.

5. Click Save. The file is saved to disk with the appropriate extension for the file
type.

Deleting an Entity

If you delete an entity that is referenced by the XSL Transform action in a workflow,
be sure to update this action in order to avoid WebLogic Integration server exceptions
at run time (for more information on this action, see “Transforming XML Documents”
on page 6-95).

To delete an entity:

1. In the left pane of the Repository window, expand the folders and select the folder
containing the entity you want to delete.

2. In the right pane of the window, right-click the entity you want to delete, and
from the pop-up menu, select Delete Entity.

3. When prompted, confirm the deletion.

4 Configuring Workflow Resources

4-36 Using the WebLogic Integration Studio

Using the WebLogic Integration Studio 5-1

CHAPTER

5 Defining Workflow
Templates

This section discusses concepts and tasks pertaining to defining and maintaining
workflow templates, template definitions, workflow variables and nodes. It includes:

� Overview of Template Definition Tasks

� Working with Templates

� Working with Template Definitions

� Working with Nodes

� Working with Variables

� Defining Node Properties

� Working with Exception Handlers

Overview of Template Definition Tasks

Defining a complete workflow template definition includes creating a template,
creating a template definition, designing the flow, defining variables, specifying node
properties, and, optionally, defining exception handlers. While defining workflows is
an iterative process, which requires revision and refinement at each level, the
following steps outline the recommended order in which you should perform these
tasks when defining a new template definition:

5 Defining Workflow Templates

5-2 Using the WebLogic Integration Studio

Note: You may also want to familiarize yourself with the workflow expression
language and the Studio’s Expression Builder and XPath Wizard tools before
beginning to define workflow templates. Many of the tasks described in this
section, such as creating a label for a template definition, defining a condition
for a Decision node, and defining events, require entering expressions into
dialog box fields. Complete information on workflow expressions is available
in Chapter 8, “Using Workflow Expressions.”

1. Create a workflow template. Procedures are given in “Creating a Workflow
Template” on page 5-4. Alternatively, import a template from a previously
exported workflow package. Procedures are given in “Importing Workflow
Packages” on page 11-5.

2. Within the template, create a template definition. Procedures are given in
“Creating a Workflow Template” on page 5-4. Alternatively, import a template
definition from a previously exported workflow package or XML file. Procedures
are given in “Importing Workflow Packages” on page 11-5 and “Importing
Workflow Template Definitions from XML” on page 11-11.

3. Create a high-level workflow by adding shapes and connections to the design
area. Procedures are given in “Working with Nodes” on page 5-19.

4. Rename Task, Event, and Start node shapes so that their intended functions are
easily recognizable. Procedures are given in “Renaming Nodes” on page 5-23.

5. Begin to create variables. Procedures are given in “Creating a Variable” on page
5-30.

6. Rename Decision nodes by defining conditions for them. Procedures for defining
Decision properties are given in “Defining Decision Properties” on page 5-52.

7. Specify properties for Start nodes by defining the trigger type and properties,
variable initializations, and, optionally, by configuring event keys for
event-triggered starts and calendars for timed starts. For details about event keys,
see “Configuring Event Keys” on page 4-18. For details about calendars, see
“Administering Business Calendars” on page 3-4.

Alternatively, you can import previously exported event keys and calendars from
existing workflow packages. For details, see “Importing Workflow Packages” on
page 11-5. For procedures for defining Start properties, see “Defining
Event-Triggered Start Properties” on page 5-46.

8. Specify properties for Event nodes, and optionally configure event keys for the
events. For details, see “Configuring Event Keys” on page 4-18.

Working with Templates

Using the WebLogic Integration Studio 5-3

Alternatively, you can import previously exported event keys from existing
workflow packages. For details, see “Importing Workflow Packages” on page
11-5. For procedures for defining Event node properties, see “Defining Event
Properties” on page 5-49.

9. Specify Task node properties for manually assigned tasks. Explanations and
procedures are given for task properties in “Defining Task Properties” on page
5-53.

10. Begin to add actions to Task nodes and other nodes, if necessary. Procedures for
adding and defining actions are given in Chapter 6, “Defining Actions.”

11. Optionally, define exception handlers for the template definition and add actions
to invoke them. Exception handlers are discussed in Chapter 9, “Handling
Workflow Exceptions.”

12. Save the template definition. Procedures are given in “Saving and Closing a
Template Definition” on page 5-12.

13. When you are ready to run the workflow, activate the template definition, as
described in “Updating, Labeling, and Activating a Template Definition” on page
5-12, and save it.

Working with Templates

A workflow template is, in essence, a folder or a container for WebLogic Integration
workflow template definitions. Each workflow template can hold one or more
workflow template definitions. Workflow template definitions are identified in the
folder tree by an Effective and Expiry date and time, as described in “Working with
Template Definitions” on page 5-7.

Figure 5-1 Workflow Templates and Workflow Template Definitions

Workflow template

Workflow template definitions

5 Defining Workflow Templates

5-4 Using the WebLogic Integration Studio

A template has a one-to-many relationship with organizations, which means that a
template is unique within the system, but can be defined for multiple organizations. A
template is visible in the folder tree for each organization for which it is defined, along
with all its template definitions. Any changes that are made to a template definition in
the folder tree of one organization, including deletions, automatically appear in the
folder tree in all other organizations with which the template is associated.

When you import templates and template definitions using the Import/Export function,
templates may be overwritten, but template definitions may not. If you import a
template definition with the same dates as an existing one, the existing template
definition will not be overwritten, but another one will be created. (For more
information on importing templates, see “Importing Workflow Packages” on page
11-5).

Creating a Workflow Template

Note: To create a template, you must have Create Template permission. For details
about permission levels, see “Assigning Permissions to Users and Roles” on
page 3-25.

To create a workflow template:

1. With any organization active, right-click on the Templates folder in the Studio main
window.

2. Select Create Template from the pop-up menu to display the Template Properties
dialog box.

Working with Templates

Using the WebLogic Integration Studio 5-5

Figure 5-2 Template Properties Dialog Box

3. In the Name field, enter a unique, meaningful name for the workflow template.
All workflow template definitions defined within this workflow template use this
name for identification, once they are placed into run time and become workflow
instances.

4. In the Organizations section of the dialog box, select the organization (or
organizations) with which you want to associate this workflow template. To make
the workflow template available to all organizations, click All Orgs; to clear
organizations and reset them, click Clear Orgs.

Note: If you associate a template with multiple organizations, any changes you
make to the template are automatically reflected when viewing the
template from different organizations.

5. Click OK. The new workflow template appears under the Templates folder in the
folder tree.

5 Defining Workflow Templates

5-6 Using the WebLogic Integration Studio

Updating Template Properties

You can assign a template to additional organizations after it has been created or
imported (for procedures, see “Importing Workflow Packages” on page 11-5), by
using the Template Properties dialog box.

To update template properties:

1. From the Organization field above the folder tree, select an organization with
which the template which you want to update is defined.

2. In the folder tree, expand the Templates folder, right-click the template, and from
the pop-up menu, select Properties to display the Template Properties dialog box.

3. Make any additional changes to the organizations associated with this template.

4. Click OK to save your changes and exit the dialog box.

Deleting a Template

When you delete a workflow template, the following occurs:

� The template is removed from all organizations associated with it.

� All template definitions contained in the template are deleted.

� All instances of the template’s definitions are deleted (including all tasks
regardless of their current status).

� All history relating to the template’s definitions is deleted and is, therefore, no
longer available in statistical or workload reports.

Note: To delete a template, you must have Delete Template permission. For details
about permission levels, see “Assigning Permissions to Users and Roles” on
page 3-25.

To delete a workflow template:

1. If the template contains open template definitions, close them by clicking the “X”
in the upper right corner of the drawing window, or right-clicking on the template
definition in the folder tree, and selecting Close from the pop-up menu.

Working with Template Definitions

Using the WebLogic Integration Studio 5-7

2. Right-click on the workflow template name in the folder tree.

3. From the pop-up menu, select Delete.

4. When prompted by the Delete Template warning message, click Yes to delete the
workflow template and all of its workflow template definitions, or click No to
cancel the delete.

If there are instances of the template, you are prompted to delete the instances
also. Click Yes to delete the instances, or click No to cancel the delete.

Working with Template Definitions

In the folder tree, a workflow template definition name consists of its effective and
expiry dates and times. The effective and expiry dates and times represent the range of
time within which the workflow template definition is available for instantiation, or
run-time execution. Note that you may have multiple template definitions with the
same effective and expiry dates.

To make a template definition available for instantiation, you must activate it first. At
design time, you can activate as many template definitions as you want, with the only
restriction being that you cannot activate template definitions with the same effective
(starting) date.

The advantage of the effective and expiry feature is that it allows you to make
workflow template definitions valid for exact periods of time, without having to
manually inactivate and activate different template definitions over the course of the
calendar year. For example, perhaps you have a cyclical business, which requires you
to run a particular workflow template definition from January to March, followed by a
second workflow template definition having different tasks or variables from April to
June, followed by a third defined for July to September. Rather than having to
manually inactivate one template definition and activate another for each quarterly
period, you simply specify different effective and expiry dates, mark them all as active,
and the server automatically selects the correct version when the workflow is
instantiated.

On the other hand, although you can have multiple active template definitions, only
one template definition can actually be instantiated at run time, which means that you
should take care to design your effective and expiry dates in a rolling fashion, and

5 Defining Workflow Templates

5-8 Using the WebLogic Integration Studio

avoid overlapping dates. If you have active template definitions with overlapping
dates, for example, one from January to March, and another from February to April,
the process engine will simply pick up the first one that it finds in the database, which
is usually the first one to have been created at design time.

Note: If you want to specify different flows according to different business
conditions, you should use multiple start nodes in the same template
definition. For more information, see “Defining Start Properties” on page
5-33.

Creating a Workflow Template Definition

When you create a template definition, you specify its effective and expiry dates.

You can also enable auditing, which enables logging of run-time workflow
information, such as client access and execution times, and allows you to make custom
entries at points throughout a workflow by using the Make Audit Entry action (for
more information, see “Making an Audit Entry” on page 6-42). The audit information
is posted in an XML message to the default JMS audit topic,
com.bea.wlpi.AuditTopic, and is written to a text file, myserver.log, located in
the logs directory of the active WebLogic Integration domain on the server.

Note: To create a template definition, you must have Create Template permission.
For details about permission levels, see “Assigning Permissions to Users and
Roles” on page 3-25.

To create a workflow template definition:

1. From the Organization field above the folder tree, select an organization with
which the template is defined to which you want to add a template definition.

2. In the folder tree, expand the Templates folder, right-click the template, and
select Create Template Definition from the pop-up menu to display the Template
Definition dialog box, which appears with the name of the template to which the
template definition belongs.

Working with Template Definitions

Using the WebLogic Integration Studio 5-9

Figure 5-3 Template Definition Dialog Box

3. On the General tab, specify the following:

� Effective — select the exact date when this workflow template definition will
become effective. The time is automatically supplied by the system, and
corresponds to the time the template definition is first created.

� Expiry — optionally select this check box to set an expiry date for the
workflow template definition. The time is automatically supplied by the
system, and is always 11:59 PM of the expiry date.

Note: If the Expiry option is not selected, the workflow template definition will
always be valid and effective.

4. Optionally, select Enable auditing, which allows run-time workflow information
to be logged.

5. Optionally, enter a note in the Notes field to record a general comment describing
the template definition.

6. Click OK to display the workflow design area.

5 Defining Workflow Templates

5-10 Using the WebLogic Integration Studio

In the workflow design area, a default workflow template definition is presented along
with a toolbar containing drawing shapes used for defining the workflow template. The
default workflow template definition contains three shapes: Start, Task, and Done.

Figure 5-4 Workflow Design Area

You can begin to define the template definition by adding nodes and connections, as
described in “Working with Nodes” on page 5-19 or by adding variables, as described
in “Working with Variables” on page 5-28.

Opening an Existing Template Definition

Although you can view read-only properties for a template definition by right-clicking
any of its folders in the folder tree and selecting Properties from the pop-up menu, you
cannot modify a template definition unless it is opened. Once you open a definition, it
is locked and can only be opened in read-only mode by another user.

Note: To open a template definition, you must have Create Template permission. For
details about permission levels, see “Assigning Permissions to Users and
Roles” on page 3-25.

To open an existing workflow template definition:

Working with Template Definitions

Using the WebLogic Integration Studio 5-11

1. From the Organization field above the folder tree, select an organization with
which the template definition which you want to open is defined.

2. In the folder tree, expand the Templates folder, expand the template folder
containing the desired template definition, right-click the template definition, and
select Open from the pop-up menu.

If there are existing instances of the selected workflow template definition,
meaning that the selected workflow template definition has been started and an
instance of the template definition exists in the server, a warning message will
appear, as in the following figure.

Figure 5-5 Existing Instances Dialog Box

3. Select from the following options:

� Open Read-Only — opens the selected workflow template definition for
viewing purposes only. All user interface options relating to making changes
to workflows are not accessible, and you cannot modify the workflow.

� Open — opens the selected workflow template definition for viewing and
updating.

� Cancel — closes this dialog box and does not open the workflow template
definition.

Note: You should not try to modify a template definition that has running instances,
as this can cause unpredictable exceptions in those instances. If you want to
make changes to such a template definition, you should do the following:

� In a production environment, first allow all running instances to
complete, and then create and activate a new template definition with
different effective and expiry dates. To copy existing workflow
information to the new template definition, follow the procedure in
“Copying a Workflow Template Definition” on page 5-14.

5 Defining Workflow Templates

5-12 Using the WebLogic Integration Studio

� In a development environment, delete all instances of the template
definition before making changes to it. For procedures, see “Deleting
Workflow Instances” on page 10-11.

Saving and Closing a Template Definition

In the Studio folder tree, an asterisk (*) appears to the left of each workflow template
definition that needs to be saved.

To save a template definition, do one of the following:

� In the folder tree, right-click the template definition and select Save from the
pop-up menu.

� Anywhere in the workflow design area, right-click and select Save from the
pop-up menu.

When you close a template definition, it is unlocked and available for use by another
user.

To close a workflow template definition, do one of the following:

� In the folder tree, right-click the template definition and select Close from the
pop-up menu.

� In the upper right corner of the workflow design window for the template
definition, click the “X”.

Updating, Labeling, and Activating a Template Definition

After you have created and opened a template definition, you can update the properties
you specified when you created it (as described in “Creating a Workflow Template
Definition” on page 5-8), add a label to it, and activate it.

The workflow label you create here is displayed to a Worklist user in the Workflow
Label column of the task list at run time. It also appears in the Workflow Label field
of the Workflow Instances dialog box in the Studio at run time (for more information,
see “Viewing Workflow Instance Status” on page 10-5). It is used to help identify the
instance of the workflow, and could include information such as date and time, invoice

Working with Template Definitions

Using the WebLogic Integration Studio 5-13

number, customer name, or other relevant information that differentiates it from others.
The label is formulated in workflow expression language, and can include constants,
variables, operators, and other expression components. For more information about
workflow expression features and syntax, see Chapter 8, “Using Workflow
Expressions.”

When you create a new template definition, it defaults to inactive status. Often
template definitions that are currently in development are inactive to prevent
premature invocation. However, before a workflow can be instantiated, or placed into
the run-time environment, you must activate one of its template definitions.

To update the properties of a workflow template definition:

1. With the workflow template definition open, right-click anywhere in the design
window, or right-click the template definition in the folder tree, and choose
Properties from the pop-up menu to display the Template Definition dialog box.

Figure 5-6 Updating Template Definition Properties

5 Defining Workflow Templates

5-14 Using the WebLogic Integration Studio

2. In the General tab of the Template Definition dialog box, in the Workflow Label
field, enter an expression that will be evaluated at run time to generate the label.
For information on constructing workflow expressions, see Chapter 8, “Using
Workflow Expressions.”

3. To activate the template definition, select the Active check box.

4. Optionally, update the Effective and Expiry dates, and enable or disable auditing.

5. Optionally, in the Exception Handlers tab of the Template Definition dialog box,
add, update, or delete any Exception Handlers as necessary. For detailed
information on exception handling, see Chapter 8, “Using Workflow
Expressions.”

6. Click OK to save changes and exit the dialog box.

Copying a Workflow Template Definition

The Studio allows you to copy an existing workflow template definition within the
same template. When this is done, all of the assigned workflow template definition
properties are copied as well. This saves you time when you must create more than one
workflow template definition with similar properties. The properties of the new
workflow template definition can be modified as needed.

Note: The copied (new) workflow template definition will not be marked active. If
you want to make it available for instantiation, you must activate it first. See
“Updating, Labeling, and Activating a Template Definition” on page 5-12 for
details.

To copy an existing workflow template definition:

1. Right-click the workflow template definition to be copied, and choose Copy from
the pop-up menu. A copy of the selected workflow template definition is instantly
pasted as the last workflow template definition in the folder tree with the same
effective and expiry dates as the original workflow template definition, and is
opened in the design area.

2. To rename the template definition or change its properties, follow the procedure
in “Updating, Labeling, and Activating a Template Definition” on page 5-12.

Working with Template Definitions

Using the WebLogic Integration Studio 5-15

Printing a Template Definition

You can print workflow template definition diagrams from the Studio. There are two
methods for invoking the print facility.

� Right-click the workflow template definition in the folder tree of the Studio and
select Print from the pop-up menu.

� Right-click anywhere in the workflow template definition diagram in the
drawing area and select Print from the pop-up menu.

5 Defining Workflow Templates

5-16 Using the WebLogic Integration Studio

Figure 5-7 Print Workflow Text

The Text tab contains information relevant to each workflow node, including action
and node notes, as well as details on actions within tasks, events, decisions and done
nodes, including sub-actions within actions.

Working with Template Definitions

Using the WebLogic Integration Studio 5-17

The Graphics tab contains a diagram of the workflow template definition.

Figure 5-8 Print Workflow Graphics

Click Print to print the information on the selected tab, or click Print All to print both
the information contained in the Text tab and the diagram contained in the Graphics
tab.

In the Print dialog box, select the appropriate settings to print the workflow.

5 Defining Workflow Templates

5-18 Using the WebLogic Integration Studio

Deleting a Template Definition

When you delete a workflow template definition, the following occurs:

� The template definition is removed from all organizations associated with the
template that contains the template definition.

� All instances of that workflow template definition are deleted (including all tasks
regardless of their current status).

� All history relating to that workflow template definition is deleted and is
therefore no longer available in statistical reports.

� Workload reports that refer specifically to the deleted workflow template
definition are changed to refer instead to all remaining workflow template
definitions.

Note: To delete a template definition, you must have Delete Template permission.
For details about permission levels, see “Assigning Permissions to Users and
Roles” on page 3-25.

To delete a workflow template definition:

1. If the template definition is open, close it by clicking the “X” in the upper right
corner of the drawing window, or right-clicking on the template definition in the
folder tree, and selecting Close from the pop-up menu.

2. Right-click on the workflow template definition in the folder tree.

3. From the pop-up menu, select Delete.

4. When prompted by the Delete Workflow warning message, click Yes to delete
the workflow template definition, or click No to cancel the delete.

If there are instances of the template definition, you are prompted to delete the
instances also. Click Yes to delete the instances, or click No to cancel the delete.

Working with Nodes

Using the WebLogic Integration Studio 5-19

Working with Nodes

After you first create a workflow template definition, by default, the design area
contains three shapes (nodes): Start, Task, and Done. The start node is set to a manual
start by default and the task node assigns the task to the Worklist user who initiates the
workflow. These are the minimal properties required to create a workflow that can be
run. (For more information on editing Start node properties, see “Defining
Event-Triggered Start Properties” on page 5-46, and for more information on editing
Task node properties, see “Defining Task Properties” on page 5-53.)

The following table lists workflow shapes, their node name, and purpose.

Table 5-1 Workflow Shapes and Connections

Symbol Node Type Purpose

Start Indicates the start of the workflow, which can be triggered by
different means: manually, at a specific time, by an event, or by
another workflow. For more information about Start nodes, see
“Defining Start Properties” on page 5-33.

Event Represents an event that can be triggered by an XML message
received on an internal JMS queue from an external application or
from another workflow, or by a plug-in-defined event. For more
information about Event nodes, see “Defining Event Properties” on
page 5-49.

Task Represents a node in which various actions can be defined. Also
defines a user-assigned task. For more information about Task
nodes, see “Defining Task Properties” on page 5-53.

Decision Represents a condition in the workflow that evaluates to True or
False. True and False results branch into different workflow paths.
For more information, see “Defining Decision Properties” on page
5-52.

And Join Merges two separate paths with an AND gate. Both paths must have
finished executing before the flow can proceed. You can also change
an AND to an OR join after you have added it to the workflow; for
more information, see “Defining Join Properties” on page 5-57.

5 Defining Workflow Templates

5-20 Using the WebLogic Integration Studio

Adding, Arranging, and Connecting Nodes

To manipulate shapes in the design area, you can do the following:

� Place a shape in the design area by clicking the shape on the toolbar, placing
your cursor on the design area, and then clicking again to drop the shape onto
the design area. A node is also created in the folder tree after you have placed a
shape in the design area.

� Move a shape within the design area by clicking and dragging the shape with
your mouse.

� Connect shapes by clicking the Draw Connection button in the toolbar, then
clicking on the source node, dragging to the target node, and releasing the mouse
button. When you create a connection from a Decision shape, you are prompted
by the Create Connection dialog box to specify whether the connection is True
or False.

Note: For more information about the toolbar, see “Using the Toolbar” on page 2-11.

Or Join Merges two separate paths with an OR gate. Only one path must
have finished executing before the flow can proceed. Once control
has passed from a single path to the nodes succeeding the Join, all
preceding unexecuted tasks are not executed. You can also change
an OR to an AND join after you have added it to the workflow; for
more information, see “Defining Join Properties” on page 5-57.

Done Indicates the end of the workflow. For more information, see
“Defining Done Properties” on page 5-58.

Connection Used to connect workflow nodes. The arrow indicates the next node
to be executed in the flow.

Table 5-1 Workflow Shapes and Connections

Symbol Node Type Purpose

Working with Nodes

Using the WebLogic Integration Studio 5-21

Once you have added a node to the design area, it immediately appears in the folder
tree as well. Nodes are given default names, with a number indicating the order in
which you placed the shape in the design area, such as T1, T2, T3, etc. for Task nodes.
To rename a node and edit its properties, see “Working with Node Properties” on page
5-23.

Deleting a Node or Connection

To delete a node:

1. Do one of the following:

� In the design area, right-click the node you want to delete, and select Delete
from the pop-up menu.

� In the folder tree, expand the folder that contains the node you want to
delete, right-click the node, and from the pop-up menu, select Delete.

2. When prompted by a warning message, click OK to confirm the deletion, or
Cancel to cancel.

To delete a connection:

1. Right-click a connection and select Delete from the pop-up menu.

2. Confirm the deletion when prompted. All connections that have been made to
and from the node are also deleted.

Workflow Design Guidelines and Tips

As you are adding, connecting and arranging shapes, you may wish to keep in mind
the following design guidelines:

� A workflow must include at least one Start node, and it can also include multiple
Start nodes to start different paths within the same template definition.

� If a workflow does not contain a Done node, it never terminates.

5 Defining Workflow Templates

5-22 Using the WebLogic Integration Studio

� You can add multiple Done nodes to end different paths in the flow, but as soon
as the first Done node is reached at run time, the workflow terminates,
regardless of whether other paths have finished executing.

� You should ideally create one Task node for each major activity to be performed
by an action, to keep your logic as graphically visible as possible. For more
information on the relationship between actions and tasks, see Chapter 6,
“Defining Actions.”

� To split a flow into multiple paths, connect a single node to multiple nodes.

� To merge multiple paths back into a single flow, connect multiple nodes to a
single Join node. Use an AND join to ensure that all paths are executed before
the merge. Use an OR join to ensure that only one path is executed before the
merge.

� To create loops in the workflow, follow these guidelines:

� To create a loop, connect a node in a backwards fashion to a previous node
in the flow, and include a Decision node in the loop to test the current value
of a counter. If you do not implement a counter or decision, the result will be
an infinite loop.

� To create a loop to the same node, you cannot use the Draw Connection
button, but must use the Next tab in a node’s properties dialog box to specify
the successor node as the current one. For information, see “Specifying or
Updating Successor Nodes” on page 5-23. To evaluate the value of a counter
in this case, you would need to use the Evaluate Condition action embedded
in the node. (For more information on this action, see “Embedding a
Conditional Sequence” on page 6-41.)

� For very complex workflows, you may want to divide the flow into several
workflows that can call each other. For more information on using sub-flows,
see “Calling a Sub-Workflow” on page 6-36. For information on using XML
messaging to communicate between workflows, see “Defining Event And
Event-Triggered Start Properties” on page 5-38 and “Posting an XML Message
to a JMS Topic or Queue” on page 6-81.

Working with Nodes

Using the WebLogic Integration Studio 5-23

Working with Node Properties

Once you have placed node shapes into the workflow design area, you can begin
specifying their properties. One of the first tasks you will want to do, for example, is
to rename nodes to give them an easily recognizable view of the function they are to
perform in the workflow. The following sections provide explanations and procedures
for working with properties that are common to all types of nodes. For properties that
are specific to each type of node, refer to the sections that discuss each node type.

To access node properties, do one of the following:

� In the design area, double-click the node.

� In the design area, right-click the node and select Properties from the pop-up
menu.

� In the folder tree, expand the folder for the node type, right-click the desired
node, and select Properties from the pop-up menu.

Renaming Nodes

You can provide a meaningful name for all node types, except Joins and Dones. Also,
Decisions require that you enter a conditional expression to identify them. For
information, see “Defining Decision Properties” on page 5-52.

To rename a node:

1. Display the properties dialog box for an Event, Start, or Task node.

2. In the Name field, enter a meaningful name which describes the action it will
perform, such as Check Inventory.

3. Click OK to save your changes.

Specifying or Updating Successor Nodes

All node properties dialog boxes contain a Next tab which displays a list of all nodes
in the current workflow. The next node in the flow is indicated by a check next to the
node name. You can use this tab to specify the successor node (or nodes) to the current

5 Defining Workflow Templates

5-24 Using the WebLogic Integration Studio

node or change the successor nodes defined in the design area. Selecting or deselecting
check boxes on this tab automatically redraws the connection lines drawn in the design
area.

Figure 5-9 Next Tab of Node Properties Dialog Boxes

Adding Notes to a Node

All node properties dialog boxes contain a Notes text box that you can use to enter a
comment about the node or actions contained in it. This is helpful for other users who
access the same workflow and need to understand the workflow logic or design.

Figure 5-10 Notes Tab of Node Properties Dialog Box

Additionally, Decision nodes and Task nodes also contain an Action Notes tab that lets
you view notes defined for an action (see “Adding Notes to an Action” on page 6-21).
Select an action in the left pane of the Task Properties or Decision Properties dialog
box and the note that has been entered for it in the action definition is displayed.

Working with Nodes

Using the WebLogic Integration Studio 5-25

Adding, Updating, Reordering, and Deleting Workflow Actions

All nodes, with the exception of Joins (AND and OR), allow you to add, update,
reorder and delete actions within their properties dialog boxes.

Figure 5-11 Actions Tab of Node Properties Dialog Boxes

Actions define the operations that you want to perform when the node is activated.
Actions specified on the Actions tabs of node properties dialog boxes are performed
before the workflow proceeds to the next node (and the actions contained in it).

While Task nodes require that you add actions to them, adding actions to other nodes
is optional and not recommended, since in many cases the same logic can be
implemented by adding successor Task nodes. Complete information for adding,
updating, deleting re-ordering, and defining actions is provided in “Working with
Actions” on page 6-17.

Copying Nodes

You can copy a shape representing a node within a workflow template definition and
paste it into the current workflow template definition or into another open workflow
template definition. Since any actions and properties that have been defined within the
node are also copied, you can use the copying function to create reusable design
patterns which may only require minor modifications.

5 Defining Workflow Templates

5-26 Using the WebLogic Integration Studio

Note: If you are copying nodes between template definitions, be sure that any
variables referenced by the node and its actions have been created in the target
template definition, and that other referenced objects, such as roles, users and
business calendars, are defined for the organization with which the template is
associated.

Any properties and actions that have been defined within the node are also copied.

To copy a node and its properties within and between template definitions:

1. Do one of the following:

� In the design area, right-click the node that you want to copy, and from the
pop-up menu, select Copy.

� In the folder tree, expand the folder which contains the node you want to
copy, right-click the node you want to copy, and, from popup menu, select
Copy.

2. Do one of the following:

� Place your cursor in the design area of the target template definition,
right-click and from the pop-up menu that appears, select Paste.

� In the folder tree, right-click the folder for the appropriate node type, and
from the pop-up menu, select Paste.

The copied node appears in the design area and in the folder tree. The properties
dialog box for the action is displayed, with all settings copied from the source
action.

3. Modify the properties of the node as needed.

Viewing Task and Event Usage

You can view the different places where Event or Task nodes may be referenced, for
example, by Task actions or the Cancel Workflow Event action. For more information,
see “Action Categories” on page 6-2.

To see where a Task or Event node is used:

Working with Nodes

Using the WebLogic Integration Studio 5-27

1. Right-click on the desired Event or Task node in the design area or in the folder
tree, and from the pop-up menu, select Usage to display the Task or Event Usage
dialog box.

Figure 5-12 Task Usage Dialog Box

2. Expand the folders until you see the item that references the selected node.

3. Optionally, use the following buttons in the dialog box to do the following:

� Update — select to open the dialog box for the selected object that
references the node.

� Delete — select to delete the selected object.

4. Click OK to close the Task or Event Usage dialog box.

5 Defining Workflow Templates

5-28 Using the WebLogic Integration Studio

Working with Variables

Each workflow template definition can have a set of variables associated with it.
Variables can hold values that are returned by business operations, that are extracted
from XML documents, or that are set explicitly by workflow actions. Variables can
also be used by the workflow for several other purposes, such as to evaluate a condition
in a decision node, or to store the result of a response from the Worklist client
application.

Not all workflow template definitions require variables. However, for those workflow
template definitions containing processes that require variables, you can define these
before you begin defining other workflow components such as node properties and
actions, or add variables during the design process.

Workflow variables have a workflow-global scope. That is, a single variable is shared
by all objects within a workflow template definition instance. Variables are, therefore,
defined at the workflow template definition level in the folder tree and are referred to
as workflow variables.

Variables can be of the following types:

Table 5-2 Workflow Variable Types and Initial Values

Variable Type Contains . . . Initialized to . . .

Boolean Boolean value True or False false

Date Java date object current date

Double Double-precision floating-point number 0.0

Entity EJB Reference to an Entity EJB called by the Perform Business
Operation action (see “Calling a Business Operation” on page
6-77)

null

Integer Long type integer 0

Java Object Reference to a Java class called by the Perform Business
Operation action (see “Calling a Business Operation” on page
6-77)

null

Working with Variables

Using the WebLogic Integration Studio 5-29

Note: If a plug-in is defined for variable types, additional variable types may be
available.

Note: Initial values listed in the table above are determined by a setting in the server
startup script. You can change initial values for all data types to be NULL by
modifying this setting. For more information, see “Configuring BPM to
Support Null Variables” in “Customizing WebLogic Integration” in Starting,
Stopping, and Customizing BEA WebLogic Integration.

In addition, if the workflow is to be called by another workflow (for more information,
see “Defining Start Properties” on page 5-33), you need to specify whether the variable
is to serve as an input or output parameter. An input parameter indicates that the
variable is to receive its value from the calling, or parent, workflow. An output
parameter indicates that the variable contains a value that will be passed back to the
calling workflow.

Additionally, for input parameters, you can specify whether or not they are mandatory.
If the input parameter is mandatory, the workflow does not start until the value for the
variable is received from the calling, or parent, workflow. If the value is not received,
the workflow does not start, and an exception is thrown.

For details about passing parameters to called workflows, see “Calling a
Sub-Workflow” on page 6-36.

To set the initial value of a variable, you must use the Set Workflow Variable action
inside a node (for information, see “Setting a Variable Value” on page 6-21), or use
the Variables tab of a Start or Event node, an Exception Handler, or the Send XML to
Client action (for information, see “Initializing Variables from Event Data” on page
5-45).

Session EJB Reference to a Session EJB called by the Perform Business
Operation action (see “Calling a Business Operation” on page
6-77)

null

String Character string “ ” (empty string)

XML XML document (for information, see “Setting a Variable
Value” on page 6-21)

null

Table 5-2 Workflow Variable Types and Initial Values

Variable Type Contains . . . Initialized to . . .

5 Defining Workflow Templates

5-30 Using the WebLogic Integration Studio

When a variable is used in a workflow expression, the variable name is preceded by
the dollar sign ($) or colon (:) or other characters. For more information on variable
notation, see “Using Variables” on page 8-4.

Creating a Variable

To create a variable:

1. In the folder tree, right-click Variables under the appropriate workflow template
definition, and choose Create Variable to display the Variable Properties dialog
box.

Figure 5-13 Variable Properties Dialog Box

2. In the Name field, enter a meaningful name for the variable, such as OrderID.

Note: Variable names cannot contain spaces.

3. From the Type drop-down list, select a variable type, as listed in Table 5-2.

Working with Variables

Using the WebLogic Integration Studio 5-31

4. Optionally, if the workflow is a called workflow, specify a Parameter, and
whether it is Input or Output. For Input parameters, specify whether the
parameter is mandatory.

The parameter is used by a calling workflow to pass values to and receive values
from a called subworkflow. The input parameter contains the values passed to
the subworkflow, and the output parameter contains the return values from the
subworkflow.

Note: When instantiating the workflow programmatically, you can set the
variables that are specified as input variables only. For more information
about instantiating the workflow programmatically, see “Manually
Starting Workflows” in Programming BPM Client Applications.

Once the workflow has been instantiated, you can set the value of any
variable, including input and output variables, as described in “Monitoring
Run-time Variables” in Programming BPM Client Applications.

For details about starting another workflow, see “Calling a Sub-Workflow” on
page 6-36.

5. Optionally, in the Notes text box, enter a note about the variable.

6. Click OK to save the variable definition. The new variable appears in the folder
tree under the Variables folder.

Updating a Variable

To update an existing variable:

1. Right-click an existing variable in the folder tree and choose Properties from the
pop-up menu. The Variable Properties dialog box is displayed.

2. Make changes to the variable as needed, and click OK.

Viewing Variable Usage

To see where a variable is used within the workflow:

5 Defining Workflow Templates

5-32 Using the WebLogic Integration Studio

1. In the folder tree, right-click the variable and select Usage from the pop-up menu
to display the Variable Usage dialog box, which lists the places within the
workflow where the selected variable is used or a value is assigned to it.

Figure 5-14 Variable Usage Dialog Box

2. Expand the folders until you see the item that references the selected variable.

3. Optionally, use the following buttons in the dialog box to do the following:

� Update — select to open the dialog box for the selected object that
references the variable.

� Delete — select to delete the selected object.

4. Click OK to close the Variable Usage dialog box.

Deleting a Variable

You can only delete variables that have not yet been referenced in any workflow nodes,
actions, or expressions. To view the places where a referenced variable is used, follow
the procedure in “Viewing Variable Usage” on page 5-31.

Defining Node Properties

Using the WebLogic Integration Studio 5-33

To delete a variable:

1. In the folder tree, expand the Variables folder, right-click the variable you want to
delete, and from the pop-up menu, select Delete.

2. When prompted by a warning, click OK to confirm, or Cancel to cancel the
deletion.

Defining Node Properties

This section describes how to define node properties, according to each specific type
of node:

� Defining Start Properties

� Defining Event And Event-Triggered Start Properties

� Defining Decision Properties

� Defining Task Properties

� Defining Join Properties

� Defining Done Properties

Defining Start Properties

Every workflow has at least one start shape that indicates the beginning of the
workflow. The first node after the start will be the first activated node of the workflow,
which can be a Task, Decision, or Event node.

Note: If no Start node is specified, no node activation can occur in the workflow.

Start nodes can have four types of triggers:

� Manual — the workflow is started manually by an end user from the Worklist or
custom client application. This type of start requires that the end user know the
specific business conditions that determine when to start the workflow. You

5 Defining Workflow Templates

5-34 Using the WebLogic Integration Studio

might create a manual start when you cannot create a trigger that captures all
required conditions.

� Called — the workflow is started by a call from another workflow using the
Start Workflow action. For details, see “Calling a Sub-Workflow” on page 6-36.

� Event — the workflow starts upon an external event trigger, such as the receipt
of an XML document on a JMS queue, or a plug-in-defined event. For more
information, see “Defining Event-Triggered Start Properties” on page 5-46.

� Timed — the workflow runs as a time-scheduled job, starting on the date and
time you define. For more information, see “Defining a Timed Start Node” on
page 5-36.

Note: When you create a template definition, the default Start node is set to a manual
start.

You can also specify more than one Start node, for various purposes, for example:

� To specify separate, independent paths of work to start simultaneously. This can
be accomplished by setting all the start nodes to a manual start, to the same start
time, or to the same event trigger.

� To specify separate, independent paths of work to start at different times. This
can be done by specifying different trigger types in each node.

� To specify different conditions, that is, different triggering events, to start the
same path of work.

Note: To specify workflows that use sequential, rolling times, so that one flow
expires and another one starts, you should define separate template definitions
with the appropriate effective and expiry dates. For more information, see
“Working with Template Definitions” on page 5-7.

Finally, you can use the Start node to initialize any variables created for the workflow.
For example, you might have a counter in your workflow that you wish to take the
value of 1 at the start of the workflow. You can assign this value to the counter variable
upon activation of the start node. For more information, see “Initializing Variables
from Event Data” on page 5-45.

To define a Start node:

1. Double-click the Start node or right-click it in the folder tree and choose Properties
to display the Start Properties dialog box.

Defining Node Properties

Using the WebLogic Integration Studio 5-35

Figure 5-15 Start Properties Dialog Box

2. Optionally, in the Description field, modify the name of the Start node as needed
to create a unique, identifiable name.

3. Select a workflow triggering method. If you select Timed, follow the procedure
given in “Defining a Timed Start Node” on page 5-36 to specify additional
options. If you select Event, follow the procedure given in “Defining
Event-Triggered Start Properties” on page 5-46.

4. Optionally, to initialize variables when the workflow starts, select the Variables
tab and click add to display the Workflow Variable Assignment dialog box.

5 Defining Workflow Templates

5-36 Using the WebLogic Integration Studio

Figure 5-16 Workflow Variable Assignment Dialog Box

5. From the Variable drop-down list, select a variable to initialize.

6. In the Expression field, enter the expression that is evaluated at run time to
produce the value for the variable. To specify a constant, use the syntax provided
in “Using Literals” on page 8-2.

7. Optionally, add actions to be performed when the start node is initiated. For
further details about actions, see Chapter 6, “Defining Actions.”

8. Click OK to save your changes.

Defining a Timed Start Node

You can start a workflow at an exact time and date by specifying a start date
expression. To start a workflow, you also need to specify the organization in which the
workflow should be started.

You can also specify an interval at which the workflow will be restarted, such as every
two days. In this case, an instance of the workflow will start every two days until the
template expiry date. After the template expiry date, no additional workflows will be
started.

Defining Node Properties

Using the WebLogic Integration Studio 5-37

Figure 5-17 Start Properties Dialog Box: Timed Option

To define a timed Start node:

1. In the Start Properties dialog box, select the Timed option.

2. In the Start Date Expression field, enter an expression that specifies the start date
and time for the workflow, as an absolute or relative value. The expression must
return a Date object, so you must use a date function, as follows:

5 Defining Workflow Templates

5-38 Using the WebLogic Integration Studio

� Use the StringToDate() function to specify an absolute date and time
value. For details, see “StringToDate()” on page 8-19.

� Use DateAdd() to specify a value relative to a constant base date and time.
For details, see “DateAdd()” on page 8-21.

3. Optionally, in the Reschedule field, specify an interval of time at which the
workflow will be restarted by entering a value in the field, and selecting a unit of
time from the drop-down list.

Set the Recoverable checkbox to indicate whether or not you would like a timed
workflow to be recovered (that is, deferred until the server restarts) or skipped, if
the server is not running at its scheduled start time.

4. Optionally, select a business calendar that is used to evaluate the start date.

5. In the Start Organization field, select an organization in which to start the
workflow, by doing one of the following:

� Select an organization from the drop-down list.

� Select the Use workflow expression check box, and in the Start Organization
field, enter a string, surrounded by quotation marks, that specifies the
organization, or an expression that will be evaluated at run time and become
the name of an organization.

6. Click OK to save the Start node.

Defining Event And Event-Triggered Start Properties

A workflow can be started, or nodes within a workflow triggered, by an event. An
event is an asynchronous notification from another workflow or from an external
source, such as another application. Start nodes can be defined as event-triggered, and
Event nodes can only be triggered by an external event.

An event notification most typically takes the form of an XML document contained in
a Java Message Service (JMS) message and received on a JMS queue, although it may
also be plug-in defined, which means that the event notification can be a custom trigger
rather than an XML document. (For more information, see Programming BPM
Plug-Ins for WebLogic Integration).

Defining Node Properties

Using the WebLogic Integration Studio 5-39

The JNDI name of the default internal JMS queue for WebLogic Integration, from
which messages are consumed by workflows, is com.bea.wlpiEventQueue.
However, you can also set up alternate message queues; for more, information see
“Configuring a Custom Java Message Service Queue” in “Customizing WebLogic
Integration” in Starting, Stopping, and Customizing BEA WebLogic Integration.

In an XML event type, the actual trigger is either the document type declaration
(DOCTYPE) specified in the prolog of the XML message, or it is the root element of
the XML message. You specify the DOCTYPE or root element with which you want
to trigger the event or start the workflow in a Start or Event node’s properties dialog
box. The event is not triggered unless the DOCTYPE or root element specified in the
node’s properties dialog box matches that in the incoming XML message.

In addition to using the DOCTYPE or root element, you can further qualify an event
with an event key and an event condition. These are described below.

Understanding Event Keys

An event key allows you to specify the contents or JMS header or property values of
incoming XML messages that will trigger a Start or Event node. That is, rather than
allowing all incoming XML documents with a particular DOCTYPE or root element
to trigger the node, you can filter the instances of incoming XML messages according
to specific values contained in the XML body or JMS header fields, so that only a
particular message, or messages, containing those values can trigger the node in the
running workflow.

An event key consists of two parts:

� Key value expression

You specify the key value expression in the Properties dialog box for Start or
Event nodes. The key value expression is a workflow expression that is
evaluated at run time to specify the exact data that the incoming message must
contain for the node to be triggered. In a Start node, the expression typically
contains a constant that refers to particular, recurring data contained in the
incoming XML document or a JMS header. In an Event node, the expression
typically contains variables or functions to obtain a unique value at run time. If
you use event keys, each event node should specify a unique key.

Examples of key value expressions are given in the following sections, and steps
for defining key value expressions are given in “Defining Event-Triggered Start
Properties” on page 5-46 and “Defining Event Properties” on page 5-49.

5 Defining Workflow Templates

5-40 Using the WebLogic Integration Studio

� Event key expression

This is an expression that returns the key value from the header or body of the
incoming message at run time and converts it to the data type required by the
corresponding key value expression in a Start or Event node. You specify the
event key expression in an event key expression dialog box that you access from
the Configuration menu. The expression typically contains an XPath language
expression to parse the XML document, or an EventAttribute() function
expression to extract a value from a JMS message header. Once an event key
expression is configured, it is available for all workflows in all organizations.
Examples of event key expressions are given in the following sections, while
procedures for configuring event key expressions are given in “Configuring
Event Keys” on page 4-18.

Note: A detailed description of the workflow expression language is provided in
Chapter 8, “Using Workflow Expressions.” Specific information on XPath
and EventAttribute() functions is provided in “Extracting Run-Time
Event Data” on page 8-7.

Using XML Content as an Event Key

As a simple example, imagine that you have regularly incoming XML messages that,
among other things, report customer account information from an accounts receivable
application. These messages contain the following elements, among other data:

Listing 5-1 Example Incoming XML Document

<account>
.
.
.
<number>847365</number>
<customer>John Doe</customer>
<balance>

<status>past due</status>
<date_due>7-11-2001</date_due>
<amount_due>5670.85</amount_due>

</balance>
<credit_limit>7500.00</credit_limit>

</account>

Defining Node Properties

Using the WebLogic Integration Studio 5-41

Let us say that you have a workflow that processes overdue accounts, so that only
incoming documents with a balance status of “past due” (as opposed to “OK” or
“pending”, for example) should trigger the workflow. First, you specify that the root
element of the incoming document must be <account> for the document to even be
considered as a trigger for this workflow. Then, you create an event key to correspond
to the value of past due. At run time, the event processor compares the value returned
by the balance status element in the incoming XML document with the value specified
in the Start node. If there is a match, the workflow is triggered.

Start nodes typically use a constant as an event key so that multiple instances of the
workflow can be started by multiple instances of the incoming XML document. In
contrast, an Event node inside of a workflow will typically need to be triggered only
by a specific instance of an XML document that contains some specific data already
captured elsewhere in the current workflow; for example, in a variable initialization in
the Start node (see “Initializing Variables from Event Data” on page 5-45). Since this
value can not be determined at design time, it must be expressed as a workflow
variable or function that can return the desired value at run-time. For example, using
the document in Listing 5-1, an event key could specify the value of the account
number, for example, to ensure that the event instance is only triggered by the XML
instance containing the correct account number, in this case, 847365. At run time, the
event processor compares the value returned by the account number in the incoming
XML document with the value returned by the expression specified in the Event node.
If there is a match, the event is triggered.

Let us now look at how we would construct our key value and event key expressions
in light of our example. For our Start node, our key value expression would consist of
a constant (surrounded by quotation marks, as required by workflow expression
syntax) as follows:

“past due”

The event key expression required to return this value from the XML document, that
you specify in the event key configuration, is:

ToString(XPath(“/account/balance/status/text()”))

For our Event node, our key value expression would consist of a variable (expressed
by the dollar sign in workflow expression syntax) that we have created in the
workflow, and whose value has presumably been set earlier by the running workflow
instance:

$AccountNumber

5 Defining Workflow Templates

5-42 Using the WebLogic Integration Studio

Assuming that the account number is stored as a string in the workflow variable, the
expression required in the event key configuration to return this value from the XML
document is:

ToString(XPath(“/account/number/text()”))

Note: An event key expression must evaluate to the same data type as that used by
the key value expression in a Start or Event node. Since XPath expressions
return a node list type, you will usually need to use a typecasting function
provided in the workflow expression language to return the correct data type.
For more information on these functions, see “Converting Data Types” on
page 8-17. If the returned data type is a string, you can also use the XML dot
notation. See “XML Element Dot Notation” on page 8-12 for details.

The following figure summarizes the event key mechanism for XML content.

Figure 5-18 Event Key Mechanism

Using JMS Header or Property Data as an Event Key

You can also use the EventAttribute() function to retrieve specific values from
JMS headers or properties. The mechanism functions exactly the same way as for an
XML document, but rather than parsing the XML document for the target value, the
value can be extracted from a JMS property.

Defining Node Properties

Using the WebLogic Integration Studio 5-43

For example, let us say the sending application uses a property field to indicate the
country from which a message is originating, that we will call Country, and that you
have different workflows that should be started according to the country of origin.
Your event key expression would look like the following:

ToString(EventAttribute(“Country”))

Note: An Event key configuration expression must evaluate to the same data type as
that by the key value expression in a Start or Event node. Since
EventAttribute() expressions return an object type, you will usually need
to use a typecasting function provided in the workflow expression language to
return the correct data type. For more information on these functions, see
“Converting Data Types” on page 8-17.

For a workflow that should only process information pertaining to Canada, the key
value expression in your start node could be:

“Canada”

Now let us say that also contained in this message is a property called Province.
Within your start node, you extract this information and store it in a variable for
containing province names. Once the workflow is instantiated, you want to ensure that
only messages coming in for that particular province are used to trigger another event
instance in the workflow, say for example, to call a business operation that will
calculate a sales tax value. In this case, you could create an event key for the province.
The event key expression would be:

ToString(EventAttribute(“Province”))

The key value expression would consist of the variable name:

$ProvinceName

Understanding Event Conditions

To even further qualify the trigger of an Event or Start node, you can specify a
condition that must be evaluated. In this way, even if the event processor has identified
an event key match, the event will still not be triggered unless the condition is met.

Note: Although you can use an event condition without an event key, this is not
recommended. The event key mechanism provides significantly better
performance than a simple event condition, as it stores the target value in
memory and involves much less DOM parsing on the incoming XML

5 Defining Workflow Templates

5-44 Using the WebLogic Integration Studio

document. You should only use an event condition as an additional filter,
along with an event key, when you wish to further restrict the XML message
instance that should trigger the event.

Again using the example of the XML document listed in Listing 5-1, imagine there is
an event within a workflow that issues a credit freeze on accounts that are past due and
have balances over a certain amount, say 75 percent of the credit limit on the account.
The workflow has previously extracted the values from the <amount_due> and
<credit_limit> elements and stored them in two variables, Amount_Due and
Credit_Limit, respectively. You could use the following expression as a condition to
ensure that the event is only triggered (and the operations to perform the credit freeze)
if the balance exceeds 75 percent of the credit limit:

$Amount_Due > .75 * $Credit_Limit

In the case of the example document instance in Listing 5-1, the condition would
evaluate to true, and the event would be triggered.

You can also use XPath() and EventAttribute() functions in event conditions to
directly extract content from XML or JMS header or property data and compare it with
other data, including constants, variables or even other functions. To continue the
country example, you could have an event that should only be fired if the country of
origin is one that you specify. Imagining that the country information were embedded
in an XML element, such as <country>, your condition would look like this:

ToString(XPath(“/root_element/child_element/country/text()”)) =
“Canada”

If the country value were embedded in a JMS property called Country, your condition
would look like this:

ToString(EventAttribute(“Country”)) = “Canada”

Note: If you use conditions with functions such as XPath() or EventAttribute(),
keep in mind that the expressions on both sides of the equation must evaluate
to the same data type, or the server will not be able to process the condition.
For more information on Studio typecasting functions, see “Converting Data
Types” on page 8-17. You can also use XML dot notation for string values.
See “XML Element Dot Notation” on page 8-12 for details.

Defining Node Properties

Using the WebLogic Integration Studio 5-45

Initializing Variables from Event Data

The properties dialog boxes of Start and Event nodes contain a Variables tab that you
can use to add, update, or delete variables whose values you want to set when a
workflow is started or an event is triggered. (For information on variables, see
“Working with Variables” on page 5-28.)

Figure 5-19 Variables Tab of Start and Event Node Properties Dialog Boxes

Clicking Add displays the Workflow Variable Assignment dialog box, which you can
use to assign values to any variables already defined for the workflow. These are listed
in the Variable drop-down list, from which you select the variable you want to
initialize.

Figure 5-20 Workflow Variable Assignment Dialog Box

Note: You can also use the Set Workflow Variable action on the Actions tab to
accomplish the same thing. In fact, for all nodes except Starts or Events, or if
you want to assign an XML document to an XML variable, you must use this
action. (For more information, see “Setting a Variable Value” on page 6-21.)

5 Defining Workflow Templates

5-46 Using the WebLogic Integration Studio

Note, however, that in Start or Event nodes, when the workflow is executed,
variables specified on the Variables tab are initialized before any actions are
executed, in the sequence in which they are listed on the Actions tab.

Although you can use this feature in a Start node to initialize variables to constant
values when the workflow starts, it is probably most useful for capturing incoming
event data that is to be used to set multiple variable values. For example, if the node is
to be triggered by an incoming XML document in a JMS message, you can use
multiple expressions to initialize variables with values contained in the document, or
specified by JMS header or property fields.

You can also use track attributes of other workflows such as instance IDs or template
names that may be passed via XML documents or JMS properties to the current
workflow. For example, you will need to extract these values and store them in
variables if you want to use them later in addressed message replies to the workflows
that initiated the conversation. You can also use the mechanism to gather together
multiple workflow attributes that you can forward in a single JMS property header in
a message delivered to an external application via a JMS topic or queue. (For more
information about addressed messaging and inserting workflow attributes as JMS
properties, see “Posting an XML Message to a JMS Topic or Queue” on page 6-81.)

To update a variable value, you highlight the variable name in the list, and click Update
to invoke the Workflow Variable Assignment dialog box.

To delete a variable assignment, you select the variable name in the list, and click
Delete.

Defining Event-Triggered Start Properties

When you define an event-triggered start, you need to specify the organization in
which the workflow should be started. You can specify the organization at design time
or use an expression that determines the organization at run time, for example, by
extracting the data specified in the incoming event message.

To define an event-triggered Start node:

1. In the Start Properties dialog box, select the Event option.

Defining Node Properties

Using the WebLogic Integration Studio 5-47

Figure 5-21 Start Properties Dialog Box: Event Option

2. In the Document Type/Root Element field, enter the DOCTYPE or root element
in the XML message that should trigger the start of the workflow.

3. In the Key Value Expression field, optionally define a key value for the XML
message by entering a workflow expression that will evaluate to the exact XML
content or JMS header or property field value at run time that should trigger the

5 Defining Workflow Templates

5-48 Using the WebLogic Integration Studio

event. The expression will typically consist of a constant literal. For more
information on key value expressions, see “Understanding Event Keys” on page
5-39. For more information on constructing expressions, see Chapter 8, “Using
Workflow Expressions.”

Note: You also need to define an event key configuration that locates the key
value in the incoming XML message, so the process engine can compare
it against the key value you specify in this field. For details, see
“Configuring Event Keys” on page 4-18.

4. In the Condition field, optionally define a condition that needs to be evaluated
before the workflow can start. For more information on event conditions, see
“Understanding Event Conditions” on page 5-43.

5. In the Start Organization field, select an organization in which to start the
workflow, by doing one of the following:

� Select an organization from the drop-down list.

� Select the Use workflow expression check box, and in the Start Organization
field, enter a string, surrounded by quotation marks, that specifies the
organization, or an expression that will be evaluated at run time and become
the name of an organization. This could be an expression that extracts
organization information from the incoming XML message, with the
XPath() or EventAttribute() functions.

6. Select the Variables tab to initialize variables from the incoming event data or
otherwise, and click Add to display the Workflow Variable Assignment dialog
box.

Figure 5-22 Workflow Variable Assignment Dialog Box

7. From the Variable drop-down list, select a variable to store incoming data.

Defining Node Properties

Using the WebLogic Integration Studio 5-49

8. In the Expression field, enter the expression that is evaluated at run time to
produce the value for the variable, by doing one of the following:

� To specify a constant, use the syntax provided in “Using Literals” on page
8-2.

� To capture incoming JMS header data, use an EventAttribute() function.
(For information, see “EventAttribute()” on page 8-8.

� To capture incoming XML content, use an XPath() function (for
information, see “XPath()” on page 8-10), or the dot notation for XML
elements to be returned as strings (for information, see “XML Element Dot

Notation” on page 8-12). You can also use the Expression button to
invoke the XPath Wizard, from which you can generate XPath expressions
automatically from a sample incoming document. For information, see
“Creating XPath Expressions Using the XPath Wizard” on page 8-31.

9. Click OK. The variable initialization appears in the list on the Variables tab of the
Start Properties dialog box.

10. Repeat steps 6 to 9 for all variables you want to initialize.

11. Click OK to save your changes.

Defining Event Properties

To define an Event node:

1. Double-click the event node or right-click it in the folder tree and choose Properties
to display the Event Properties dialog box.

5 Defining Workflow Templates

5-50 Using the WebLogic Integration Studio

Figure 5-23 Event Properties Dialog Box

2. In the Description field, modify the default name to create a unique, identifiable
name for the event, such as Wait for New Inventory.

3. In the Document Type/Root Element field, enter the DOCTYPE or root element
in the XML message that triggers the event.

4. In the Key Value Expression field, optionally define a key value for the XML
message by entering a workflow expression that will evaluate to the exact XML
content or JMS header or property field value at run time that should trigger the
event. The expression will typically consist of a variable or workflow function.
For more information on key value expressions, see “Understanding Event Keys”
on page 5-39. For more information on constructing expressions, see Chapter 8,
“Using Workflow Expressions.”

Defining Node Properties

Using the WebLogic Integration Studio 5-51

Note: You also need to define the expression that locates the key value in the
incoming XML message, so the process engine can compare it against the
key value you specify in this field. For details, see “Configuring Event
Keys” on page 4-18.

5. In the Condition field, optionally define a condition that needs to be evaluated
before the event can be triggered. For more information on event conditions, see
“Understanding Event Conditions” on page 5-43.

6. Select the Variables tab to initialize variables from the incoming event data or
otherwise, and click Add to display the Workflow Variable Assignment dialog
box.

Figure 5-24 Workflow Variable Assignment Dialog Box

7. From the Variable drop-down list, select a variable to store incoming data.

8. In the Expression field, enter the expression that is evaluated at run time to
produce the value for the variable, by doing one of the following:

� To specify a constant, use the syntax provided in “Using Literals” on page
8-2.

� To capture incoming JMS header data, use an EventAttribute() function.
(For information, see “EventAttribute()” on page 8-8.

� To capture incoming XML content, use an XPath() function (for
information, see “XPath()” on page 8-10), or the dot notation for XML
elements to be returned as strings (for information, see “XML Element Dot

Notation” on page 8-12). You can also use the Expression button to
invoke the XPath Wizard, from which you can generate XPath expressions
automatically from a sample incoming document. For information, see
“Creating XPath Expressions Using the XPath Wizard” on page 8-31.

5 Defining Workflow Templates

5-52 Using the WebLogic Integration Studio

9. Click OK. The variable initialization appears in the list on the Variables tab of the
Event Properties dialog box.

10. Repeat steps 6 to 9 for all variables you want to initialize.

11. Optionally, add actions to be performed when the event is triggered. For further
details about actions, see Chapter 6, “Defining Actions.”

12. Click OK to save your changes.

Defining Decision Properties

A workflow can use any number of decision. Each decision node contains a condition
that is evaluated when a transition to that decision node occurs. The result is either
True or False, with subsequent flow of control passed to different paths, according to
the result.

Additionally, it is possible to specify actions to be executed on both a True and a False
evaluation of the condition. Actions defined on the True and/or False tab are performed
before nodes specified as targets of a true or false branch. They are also listed under
True and False folders under Decision folders in the folder tree.

Figure 5-25 Decision Properties Dialog Box

To define a Decision node:

Defining Node Properties

Using the WebLogic Integration Studio 5-53

1. Double-click the Decision node or right-click it in the folder tree and choose
Properties to display the Decision Properties dialog box.

2. In the Condition field, specify the conditional expression that will be evaluated at
run time. The condition can contain constants, variables, or functions. For more
information on constructing expressions, see Chapter 8, “Using Workflow
Expressions.”

3. Optionally, add actions to the False and/or True tabs specify actions to be
performed depending on the result (true or false) of the condition at run time.
These actions will be performed before actions specified in the successor node.

For further details about actions, see Chapter 6, “Defining Actions.”

4. Click OK to save your changes.

Defining Task Properties

A task node represents the following:

� A unit of work, containing actions that are performed manually or automatically
by software components

� A task that is assigned to a Worklist or custom client application user for manual
execution

Task nodes are the building blocks of a workflow and should ideally represent a single
operation within the flow, although this may need to be implemented by multiple
workflow actions.

In the workflow transaction model, workflow nodes enter states of activation and
execution that determine how a transaction is processed, as described in
“Understanding the BPM Transaction Model” in Programming BPM Client
Applications. For all nodes other than tasks, these states are not explicitly represented
in the Studio. For Task nodes, however, you must specify actions according to one of
four task states, and it is important that you understand their meaning to be able to
effectively manage control of your flow.

5 Defining Workflow Templates

5-54 Using the WebLogic Integration Studio

Figure 5-26 Task Properties Dialog Box

Understanding Task States

Each task node progresses through four different states: Created, Activated, Executed,
and Marked Done. For each state, you can specify a list of actions that are performed
when the task reaches that state. The following table shows each task state, and when
the actions specified in each state are executed:

Table 5-3 Task States

Task states Actions specified in this state are
executed . . .

Actions typically specified here are...

Created When a new workflow instance is created.
The task remains in the Created state until the
the Task node is reached in the workflow.

You are unlikely to need to specify any actions
in this state, since you can initialize variables in
a Start node.

Activated When the previous node has completed its
processing.
The task remains in Activated state until it is
executed by:
� a Worklist or custom client user
� the Execute task action,
� programmatically by an API call.

� Actions that precede or do not include any
user-assigned task actions.

� User-assigned task actions.

Defining Node Properties

Using the WebLogic Integration Studio 5-55

All task nodes, unlike other nodes, must be marked done to signal the completion of
the node, or the workflow will not proceed. For manually assigned tasks, you can set
a permission (see below) that allows a user to mark the task done at run time. More
typically, however, you explicitly mark a task done at design time by adding a Mark
Task as Done action.

The tab on which the Mark Task as Done action should be placed depends on whether
the task can be executed by any of the means listed in Table 5-3. If it is executed, you
specify the Mark Task as Done action on the Executed tab; if it is not, you specify the
Mark Task as Done action on the Activated tab. For more information, see “Marking
Tasks Done” on page 6-11.

Actions defined in the Task properties dialog box are also displayed in the folder tree
under Created, Activated, Executed, and Marked Done folders according to their
placement.

Executed � When a user has manually executed the task
using the Worklist or custom client
application

� When an Execute Task action has been
specified

� Programmatically, using the WebLogic
Integration APIs

The task remains in the Executed state, and the
flow will not proceed, until the task is marked
done.

Actions that follow user-assigned task actions.

Marked
Done

� When a user manually marks the task done
in the Worklist or Studio applications

� When the Mark Task as Done action has
been specified

� Programmatically using the WebLogic
Integration APIs

You are unlikely to need to specify any actions
in this state, since you can specify actions in the
following node.

Table 5-3 Task States

Task states Actions specified in this state are
executed . . .

Actions typically specified here are...

5 Defining Workflow Templates

5-56 Using the WebLogic Integration Studio

About Task Permissions

You can assign permissions to a task, to control the types of operations that can be
performed for a task at run time by a Worklist (or custom client) user or by an
administrator monitoring instances in the Studio. For more information on performing
operations on tasks at run time in the Studio, see “Changing Task Permissions and
Priority” on page 10-14 and “Changing Task Status and Assignment” on page 10-16.
For more information on performing operations on tasks at run time in the Worklist,
see Using the WebLogic Integration Worklist.

When you create a Task node, by default, no permissions are initially assigned, but you
can enable any of the available task permissions as listed in the following table.

 About Task Priority

For manually assigned tasks, you can assign a priority level. The priority has no effect
on how the node or its actions are executed at run time, but is simply displayed to
Worklist users, who can execute and sort their tasks accordingly.

Table 5-4 Task Permissions

Permission Explanation

Mark done without executing Allows a Worklist user or Studio administrator to mark the task done
without it having been executed, and manually set the task's
completed date.

Re-execute if marked done Allows a Worklist user to re-execute a task even if it has already
been completed.

Unmark if marked done Allows a Worklist user or Studio administrator to change the status
of the task back to not done when the task is marked as done. (If a
user marks a completed task as not done, the task status is set to
Active; it does not, however, reverse the effects of any actions that
have been executed.)

Modify at execution Allows a Worklist user or Studio administrator to change the
permissions for a task before it has been executed.

Reassign at execution Allows a Worklist user to take or reassign the task, or a Studio
administrator to reassign the task to another user or role before it has
been executed.

Defining Node Properties

Using the WebLogic Integration Studio 5-57

Priority options are low, medium, and high. The default value is medium.

Defining the Task Node

To define a Task node:

1. Double-click the task node or right-click the task in the folder tree and choose
Properties to display the Task Properties dialog box.

2. In the Task Name field, modify the default name to create a unique, identifiable
name, such as Confirm Order. This value is used primarily in the Worklist
application, but it is visible from the various Studio monitoring reports.

3. Add actions to be performed for each task state under the appropriate tabs. For
more information about these states, refer to Table 5-3. For details about
specifying actions, see Chapter 6, “Defining Actions.”

4. Optionally, for manually assigned tasks, assign permissions to the task by
selecting check boxes on the Permissions tab, as described in Table 5-4.

5. Optionally, for manually assigned tasks, assign a priority to the task by selecting
Low, Medium, or High.

6. For non-manually assigned tasks, or manually assigned tasks that do not enable
Mark Done Without Executing permission, mark the task done. For more
information, see “Marking Tasks Done” on page 6-11.

7. Click OK to save your changes.

Defining Join Properties

Join nodes are used to merge multiple paths of Task, Event, and Decision nodes into a
single path. An AND join causes the workflow to wait until all preceding paths have
finished executing before proceeding to the next node. An OR join causes the
workflow to proceed to the next node after a single preceding path has finished
executing, blocking any preceding unexecuted nodes from executing.

Once you have created a Join, you can change it from AND to OR and vice versa. The
shape for the Join is automatically updated in the design area.

5 Defining Workflow Templates

5-58 Using the WebLogic Integration Studio

Figure 5-27 Join Properties Dialog Box

To define a Join node:

1. Double-click the Join node or right-click it in the folder tree and choose Properties
to display the Join Properties dialog box.

2. Enable one of the following options:

� And—changes the node to an AND join.

� Or—changes the node to an OR join.

3. Click OK to save your changes. The shape is updated in the design area.

Defining Done Properties

A Done node represents the point within the workflow where the process completes.
Once a done node is reached in the workflow, the running instance of the workflow is
marked done, regardless of whether all the done nodes have been reached or not.

Working with Exception Handlers

Using the WebLogic Integration Studio 5-59

You can specify any number of Done nodes in a workflow. If a workflow can exit from
various points, you have the option of placing separate done nodes wherever needed.

Although you can add actions to a Done node, this is not recommended.

To define a Done node:

1. Double-click the Done Node or right-click it in the folder tree and choose
Properties to display the Done Properties dialog box.

Figure 5-28 Done Properties Dialog Box

2. Optionally, add actions to be performed when the Done node is reached.

3. Click OK to save your changes.

Working with Exception Handlers

Exception handlers function like sub-flows of actions within a main workflow, which
are triggered by the occurrence of a server exception, or can be invoked with the
Invoke Exception Handler action. Complete information on defining and invoking
exception handlers is provided in Chapter 9, “Handling Workflow Exceptions.”

5 Defining Workflow Templates

5-60 Using the WebLogic Integration Studio

Using the WebLogic Integration Studio 6-1

CHAPTER

6 Defining Actions

The following sections introduce and explain how to use WebLogic Integration actions
to accomplish various workflow activities:

� Understanding Actions

� Overview of Action Definition Tasks

� Working with Actions

� Setting a Variable Value

� Controlling Program Flow

� Using Timed Operations

� Using Sub-Workflows

� Monitoring Run-Time Status

� Setting Up Manual Tasks

� Sending E-Mail Messages

� Invoking Components

� Posting an XML Message to a JMS Topic or Queue

� Transforming XML Documents

� Handling Exceptions

6 Defining Actions

6-2 Using the WebLogic Integration Studio

Understanding Actions

While nodes and connections serve to specify the logical sequence and control of
business processes, it is actions that perform the real work of a workflow definition.
An action is the most basic unit of a workflow that can perform some activity. This
activity may be as simple as initializing a variable, or as complex as calling a custom
application on a client system. Actions can be added to all types of nodes (except
Joins), to exception handlers, and even to other actions.

The following sections provide important background information for using actions to
perform activities in workflows. It includes:

� Action Categories

� Understanding Action Types and Placement

� Placing Actions in Task Nodes

Action Categories

Actions are organized into categories in the Studio. In this guide, however, we
categorize actions into the major activities that you can perform. The following table
lists the categories, the actions contained within them, the activities they accomplish,
and the sections of the guide where each one is described in more detail.

Understanding Actions

Using the WebLogic Integration Studio 6-3

Category Actions Use to . . .

Task � Mark Task as Done
� Unmark Task Done
� Execute Task

Control main program flow
For information, see “Controlling Program Flow” on page
6-23

� Assign Task to User
� Assign Task to Role
� Assign Task Using Routing

Table
� Unassign Task
� Set Task Comment
� Set Task Priority

Assign and set properties of manual tasks
For more information, see “Setting Up Manual Tasks” on
page 6-44.

� Set Task Due Date Set a due date for manual and non-manual tasks or
introduce a time delay
For more information, see “Setting Up Manual Tasks” on
page 6-44.

Workflow � Mark Workflow as Done
� Abort Workflow

Control main program flow
For information, see “Controlling Program Flow” on page
6-23

� Start Workflow Call a sub-workflow
For more information, see “Using Sub-Workflows” on
page 6-35.

� Set Workflow Variable Initialize variables
For more information, see “Setting a Variable Value” on
page 6-21.

� Set Workflow Comment Monitor run-time status
For more information, see “Monitoring Run-Time Status”
on page 6-42.

6 Defining Actions

6-4 Using the WebLogic Integration Studio

Integration � Perform Business Operation
� Call Program

Integrate the workflow with external software
components, such as EJBs and Java classes, or executable
programs.
For more information, see “Invoking Components” on
page 6-75.

� Send XML to Client Perform different operations on a Worklist or custom
client system.
For more information, see “Setting Up Manual Tasks” on
page 6-44.

� Post XML Event Exchange XML messages between workflows,
components, and applications.
For more information, see “Posting an XML Message to a
JMS Topic or Queue” on page 6-81.

� XSL Transform Transform an XML document from one format to another
according to a style sheet.
For more information, see “Transforming XML
Documents” on page 6-95.

Exception
Handling

� Set Workflow Exception
Handler

� Exit Exception Handler

Manage the exception handler(s) to be used for a
workflow
For more information, see Chapter 9, “Handling
Workflow Exceptions.”

� Invoke Exception Handler Call a sub-workflow to handle exceptions
For more information, see Chapter 9, “Handling
Workflow Exceptions.”

Category Actions Use to . . .

Understanding Actions

Using the WebLogic Integration Studio 6-5

Understanding Action Types and Placement

In addition to the action categories presented by the Studio, such as Task, Workflow,
Integration, Exception Handling, and Miscellaneous categories, you should be aware
of other distinctions between actions and their behavior:

� Terminal actions versus non-terminal actions, which can contain other actions

� Synchronous versus asynchronous execution of actions or sub-actions, which
allows parallel processing

These distinctions are significant, as they can affect the order in which workflow
operations are executed. Each of these distinctions is described in more detail in the
following sections.

Miscellaneous � No Operation
� Cancel Workflow Event

Control main program flow
For information, see “Controlling Program Flow” on page
6-23.

� Evaluate Condition Embed a conditional sub-workflow
For more information, see “Using Sub-Workflows” on
page 6-35.

� Timed Event Embed a timed sub-workflow and introduce a time delay
For more information, see “Using Timed Operations” on
page 6-31.

� Send E-Mail Message Send e-mail to a user, role or external client
For more information, see “Sending E-Mail Messages” on
page 6-71.

� Make Audit Entry Monitor run-time status and debug workflow design
For more information, see “Monitoring Run-Time Status”
on page 6-42.

Category Actions Use to . . .

6 Defining Actions

6-6 Using the WebLogic Integration Studio

Terminal Actions and Non-Terminal Actions

Most actions are terminal, meaning that they cannot contain any other actions.
However, some actions allow you to define sub-actions inside of them that are
performed according to specific conditions, depending on the nature of the parent
action. The following actions can have sub-actions defined within them and are,
therefore, non-terminal:

� Evaluate Condition—sub-actions may be performed according to the true or
false result of a condition that you define.

� Timed Event—sub-actions are executed according to a date and time, and may
be re-executed according to a schedule.

� Send XML to Client—sub-actions may be performed when the workflow
receives a reply from the client application.

� Start Workflow—sub-actions may be performed when the called workflow is
completed.

� Set Task Due Date — sub-actions may be performed after a due time on a task
has passed.

Note that sub-actions are only visible in the Properties dialog box for these
non-terminal actions, but do not appear in the folder tree.

The special relevance of non-terminal actions is that, while most terminal actions are
always executed in a synchronous fashion, which means that the workflow waits until
they have finished executing, non-terminal actions can perform operations that are
executed in both a synchronous or asynchronous fashion. Asynchronous execution of
non-terminal actions means that the workflow does not wait for the action’s operations,
or its sub-actions, to complete before proceeding, but continues to be processed in
parallel. This distinction is explained in more detail in the next section.

Synchronous and Asynchronous Execution of Actions

All actions are synchronous, which means that the workflow does not proceed to the
next action until the operations performed by the current action have completed, with
the exception of the following:

� Call Program—This action invoke an executable which always runs in parallel
with the workflow.

Understanding Actions

Using the WebLogic Integration Studio 6-7

� Post XML Event—This action sends off an XML message in a “fire and forget”
model, so that any workflows or applications that are triggered by the receipt of
the message are executed in parallel. (However, for information on forcing a
synchronous functioning of this action, see “Posting an XML Message to a JMS
Topic or Queue” on page 6-81.)

However, the following actions, and any sub-actions they may contain, can be
executed in a synchronous or asynchronous fashion, depending on how you place the
action:

� Timed Event—sub-actions may be performed asynchronously or synchronously

� Send XML to Client—XML message transmission, receipt of reply, and optional
callback sub-actions may be performed asynchronously or synchronously

� Start Workflow—the sub-workflow and optional sub-actions may be executed
asynchronously or synchronously

� Set Task Due Date —optional overdue sub-actions may be performed
asynchronously or synchronously

These non-terminal actions and their sub-actions are performed asynchronously in the
following conditions:

� If the action is placed in a Start, Event, or Decision node.

� If the action is placed in a Task node, and the Mark Task as Done action is
placed in the Task Properties, as in the following figure.

6 Defining Actions

6-8 Using the WebLogic Integration Studio

Figure 6-1 Non-Terminal Action in Task Node with Task Marked Done from
Task Properties

In these cases, the action’s operations, and any specified sub-actions, are simply
performed in parallel with the subsequent nodes in the workflow, as illustrated in the
following figure.

Figure 6-2 Asynchronous Execution of Workflow Actions

Action 1

Action 3

Action 4

operation

Sub-Action 1

Action 2

Sub-Action 2

Sub-Action 3

Action 1

operation

Sub-Action 1

Action 2

Sub-Action 2

Sub-Action 3

Mark Task Done

Action 3

Action 4

Understanding Actions

Using the WebLogic Integration Studio 6-9

By contrast, non-terminal actions and their sub-actions are performed synchronously
if the Task node in which they are placed is marked done in the action’s properties, as
illustrated in the following figure.

Figure 6-3 Non-Terminal Action with Task Marked Done in Action Properties

That is, the workflow waits until all operations and sub-actions are completed before
proceeding to the next node, as illustrated in the following figure.

6 Defining Actions

6-10 Using the WebLogic Integration Studio

Figure 6-4 Synchronous Execution of Workflow Actions

More information on action design issues is provided in the following topics:

� “Calling a Sub-Workflow” on page 6-36

� “Embedding a Timed Sequence” on page 6-32

� “Setting a Task Due Date” on page 6-51

� “Sending an XML Message to a Client Application” on page 6-58

More information on marking tasks done is provided in the following sections.

Placing Actions in Task Nodes

When you use Task nodes, you need to know how to place actions in order to perform
a particular activity. This requires that you do the following: place the action on the
correct tab of the Task Properties dialog box (Activated or Executed), and mark the
task done at the appropriate point. For more information on Task Properties dialog box
tabs, see “Understanding Task States” on page 5-54.

Action 1

operation

Sub-Action 1

Action 2

Mark Task DoneAction 3

Action 4

Sub-Action 3

Sub-Action 2

Understanding Actions

Using the WebLogic Integration Studio 6-11

Using the Activated and Executed Tabs

The only ways a task can be executed are:

� By using the Assign Task to User action to assign the task to a Worklist or
custom client user, who executes it manually

� By using the Execute Task action

� Programmatically, through an API call.

Thus, in general, you can follow these guidelines when considering action placement:

� Any actions that should be performed before a user manually executes a task (or
it is executed by the other means listed above) should be placed on the Activated
tab.

� The Assign Task to User action is always placed at the end of the list on the
Activated tab. Any actions listed after this action on the Activated tab are not
performed.

� Place any actions to follow an Assign Task to User action on the Executed tab.

A detailed table with guidelines for using Task Properties dialog box tabs to perform
each of the major activities identified in this guide is provided in “Guidelines for
Action Placement in Task Nodes” on page 6-13.

Marking Tasks Done

All tasks must be marked done, either manually by a Worklist or custom client user, if
the Mark Done Without Executing permission is assigned to the task (for more
information, see “About Task Permissions” on page 5-56), or explicitly at design time
by using the Mark Task as Done action.

If a task is not marked done, the workflow will not proceed from the Task node.
Conversely, any actions that are listed after a Mark Task as Done action in the Task
Properties dialog box are not performed, unless they are placed on the Marked Done
tab of the Task Properties dialog box.

Note: In a similar fashion, any actions placed after the Mark Task as Done action in
the action properties dialog box for a non-terminal action (as described in
“Synchronous and Asynchronous Execution of Actions” on page 6-6) are not
performed.

6 Defining Actions

6-12 Using the WebLogic Integration Studio

These are general guidelines you can use for marking tasks done:

� If the task does not contain an action that can execute it, place the Mark Task as
Done action as the last action on the Activated tab, as shown in the following
figure.

Figure 6-5 Marking Non-Executed Tasks Done

� If the task does contain an action that can execute it, such as Assign Task to
User, or Execute task, place the Mark Task as Done action as the last action on
the Executed tab.

Understanding Actions

Using the WebLogic Integration Studio 6-13

Figure 6-6 Marking Executed Tasks Done

� To perform a non-terminal action and its subactions asynchronously, place the
Mark Task as Done action in the Task Properties dialog box, as the last action on
the Activated or Executed tab as appropriate. (See Figure 6-1.)

� To perform a non-terminal action and its subactions synchronously, place the
Mark Task as Done action as the last action in the action’s properties dialog box.
(See Figure 6-3.)

A detailed table with guidelines for using Task Properties dialog box tabs to perform
each of the major activities identified in this guide is provided in the following section.

Guidelines for Action Placement in Task Nodes

In general, you should try to place actions in Task nodes only, and avoid using them in
other types of nodes. You should also use shorter action lists in more Task nodes,
rather than longer action lists in fewer Task nodes. Using a “shallow” or “flat” design
approach ensures that the logic and transactional units of your workflows remain
immediately apparent in their graphical representations.

In some cases, however, it will be necessary to specify more than one action in the
same node, for example, when you need to specify various properties of a
user-assigned task. (For more information, see “Setting Up Manual Tasks” on page
6-44.) Similarly, you may find it more efficient in some cases to simply add an action
to nodes other than Tasks, or even to the action list in a Task node, rather than to

6 Defining Actions

6-14 Using the WebLogic Integration Studio

complicate the graphical flow with an extra Task node. This may be the case for simple
activities such as setting variable values, setting task or workflow comments, or
making audit entries.

The following table provides guidelines you can use as a reference for designing
reusable node patterns that perform major common activities.

Table 6-1 Guidelines for Action Placement

Activity In a Task node,
place this action . . .

on this
tab . . .

Mark the
task done
on this
tab . . .

For more
information, see . . .

Calling a Java Component Perform Business
Operation

Activated Activated “Calling a Business
Operation” on page
6-77.

Calling an Executable
Program

Call Program Activated Activated “Calling an Executable
Program on the Server”
on page 6-75

Transforming XML
Documents

XSL Transform Activated Activated “Transforming XML
Documents” on page
6-95

Sending E-mail Send E-mail Message Activated Activated “Sending E-Mail
Messages” on page
6-71

Posting an XML Message
to a JMS Topic or Queue

Post XML Event Activate Activated “Posting an XML
Message to a JMS
Topic or Queue” on
page 6-81

Using a Plug-In Action custom action Activated Activated

Understanding Actions

Using the WebLogic Integration Studio 6-15

Assigning a Manual Task Set Task Comment
(optional)
Set Task Due Date
(optional)
Assign Task to
User/Role/Using
Routing Table

Activated Executed “Setting Up Manual
Tasks” on page 6-44

Send XML to Client
(optional)

Executed Callback
Actions in
the Send
XML to
Client
dialog box

“Sending an XML
Message to a Client
Application” on page
6-58

Calling a Sub-Workflow
Synchronously

Start Workflow Activated Actions tab
in the Start
Workflow
dialog box

“Calling a
Sub-Workflow” on
page 6-36

Introducing a Time Delay Set Task Due Date Activated Overdue
Actions tab
in the Set
Task Due
Date dialog
box

“Setting a Task Due
Date” on page 6-51

Timed Event Activated Actions
when
triggered
tab in the
Timed
Event
dialog box

“Embedding a Timed
Sequence” on page
6-32

Table 6-1 Guidelines for Action Placement

Activity In a Task node,
place this action . . .

on this
tab . . .

Mark the
task done
on this
tab . . .

For more
information, see . . .

6 Defining Actions

6-16 Using the WebLogic Integration Studio

Overview of Action Definition Tasks

Once you have created a workflow and configured required resources, you can begin
to add actions to nodes and other objects. Adding and defining actions is an iterative
process, which will undoubtedly entail adding additional nodes, creating additional
variables, reconfiguring data and resources, defining XML documents, and so on.
Defining actions involves the following tasks, that you can perform in any order:

Note: You may also want to familiarize yourself with the workflow expression
language and the Studio’s Expression Builder and XPath Wizard tools before
beginning to define actions, since most actions require entering expressions
into dialog box fields. Complete information on workflow expressions is
available in Chapter 8, “Using Workflow Expressions.”

� Define business operations as described in “Configuring Business Operations”
on page 4-7, in order to define a Perform Business Operation action.

� Optionally, define users, as described in “Maintaining Users” on page 3-14, to
specify users for an Assign Task to User, Assign Task Using Routing Table, or
Send E-mail Message action.

� Optionally, define roles, as described in “Maintaining Roles” on page 3-20, to
specify roles for an Assign Task to Role, Assign Task Using Routing Table, or
Send E-mail Message action.

� Optionally, define business calendars, as described in “Administering Business
Calendars” on page 3-4, for a Timed Event or Set Task Due Date action.
Alternatively, you can import previously exported calendars from existing
workflow packages; see procedures in “Importing Workflow Packages” on page
11-5.

� Add nodes to a template definition. Procedures are given in “Working with
Nodes” on page 5-19.

� Create variables to be referenced by actions. Procedures are given in “Working
with Variables” on page 5-28.

� Add actions to Task nodes, and if necessary, Start, Event, and Decision nodes.
Procedures for adding actions are given in “Adding an Action” on page 6-17.

� Add actions to non-terminal actions.

Working with Actions

Using the WebLogic Integration Studio 6-17

� Add the Mark Task as Done action to Task nodes or non-terminal actions.
Procedures are given in “Marking a Task Done” on page 6-25.

� Add Exception Handlers. Procedures for defining exception handlers are given
in “Defining Exception Handlers” on page 9-4.

� Add actions to exception handlers. Procedures for defining exception handlers
are given in “Defining Exception Handlers” on page 9-4.

� Add additional nodes to the workflow to refine your design to ensure that each
discrete activity is represented by a node. Procedures for adding nodes are given
in “Adding, Arranging, and Connecting Nodes” on page 5-20.

� Compose or import XML documents that are required for any of the actions that
embed XML documents into workflows, such as Post XML Event, Send XML
to Client, and Set Workflow Variable. Procedures for working with XML
documents with action properties dialog boxes are given in Chapter 7, “Working
with XML Entities.”

Working with Actions

You add and update actions in Task, Decision, Event, Done and Start node properties
dialog boxes, as well as in custom Exception Handlers, and the action properties dialog
boxes listed in “Terminal Actions and Non-Terminal Actions” on page 6-6. Each
dialog box has an Actions tab which you use for action placement and maintenance.
This section describes the functions that are common to all actions.

Adding an Action

To add an action:

1. Do one of the following:

� In the design area, double-click the node to which you want to add the
action, and in the Properties dialog box that appears, select the appropriate
Action tab and click Add.

6 Defining Actions

6-18 Using the WebLogic Integration Studio

� In the folder tree, expand the folder representing the object to which you
want to add the action, right-click on the Actions folder, and, from the dialog
box that appears, select Create Action.

The Add Action dialog box is displayed.

Figure 6-7 Add Action Dialog Box

Note: If a plug-in is defined for actions, this dialog box contains the new action.

2. Double-click an action type folder to expand it, select an action, and click OK. A
properties dialog box specific to the selected action is displayed.

3. Complete the fields in the dialog box and click OK. Detailed procedures for each
action type are provided in the remainder of this guide.

The action is added to the properties dialog box for the node you selected and
immediately appears in the folder tree under the folder representing the node or
exception handler that contains it.

Working with Actions

Using the WebLogic Integration Studio 6-19

Updating an Action

To update an action:

1. Do one of the following:

� In the properties dialog box which contains the action you want to update,
select the appropriate action and click Update.

� In the folder tree, expand the folder that contains the action you want to
update, right-click the action, and from the pop-up menu, select Properties.

The properties dialog box for the selected action is displayed.

2. Make changes to the action definition as desired, and click OK when done.

Deleting an Action

To delete an action:

1. Do one of the following:

� In the properties dialog box which contains the action you want to delete,
select the appropriate action and click Delete.

� In the folder tree, expand the folder that contains the action you want to
delete, right-click the action, and from the pop-up menu, select Delete.

2. When prompted by a warning message, click OK to confirm the deletion, or
Cancel to cancel.

Copying an Action

You can copy actions within or between a workflow node within or between workflow
template definitions (and templates) to create reusable design patterns. Since any
properties that have been defined within the action are also copied, you can save time
by simply making minor modifications to the action.

6 Defining Actions

6-20 Using the WebLogic Integration Studio

Note: If you are copying actions between template definitions, be sure that any
variables referenced by the action have been created in the target template
definition, and that other referenced objects, such as roles, users, or business
calendars, are defined for the organization with which the template is
associated.

To copy an action and its properties within or between nodes:

1. Do one of the following:

� In the design area, double-click the node that contains the action you want to
copy. In the Properties dialog box, select the appropriate Actions tab,
right-click the action, and select Copy from the popup menu.

� In the folder tree, expand the folder which contains the action you want to
copy, right-click the action you want to copy, and, from popup menu, select
Copy.

2. If you are pasting to a different node or template definition, do one of the
following:

� Click OK to close the node Properties dialog, and from the design area of the
target template definition, right-click the node shape to which you will paste
the defined action. In the Properties dialog box, select the appropriate
Actions tab, right-click, and select Paste from the pop-up menu.

� In the folder tree, expand the folder in which you want to paste the action,
right-click the Actions folder, and select Paste from the pop-up menu.

The properties dialog box for the action is displayed, with all settings copied
from the source action.

3. In the action’s properties dialog box, make any changes to the settings as
necessary.

4. Click OK to save the changes and add the action to the target object.

Reordering Actions

Actions are displayed in the sequence that they will be executed. To re-sequence
actions, select an action from the list in the Properties dialog box and press the up or
down arrow to move its position in the list.

Setting a Variable Value

Using the WebLogic Integration Studio 6-21

Adding Notes to an Action

All action properties dialog boxes contain a Notes text box in which you can enter a
comment about the action. This is helpful for other users who access the same
workflow and need to understand the workflow logic or design.

Figure 6-8 Notes Text Box

Setting a Variable Value

You use the Set Workflow Variable action to assign a value to an existing workflow
variable at any point in the workflow, in any type of node. For example, to design a
loop, you can use this action to increment a counter. For details about defining
variables, see “Working with Variables” on page 5-28.

The value you assign to the variable can be an expression or a constant. The expression
is evaluated at run time when the action is executed, and the result assigned to the
variable you specify.

You can also use this action to compose or import an existing XML document and
store the content in an XML or string type variable. You can then reuse the variable to
reference the XML content in various places in a workflow, such as for posting an
XML event action (see “Posting an XML Message to a JMS Topic or Queue” on page
6-81).

6 Defining Actions

6-22 Using the WebLogic Integration Studio

Note: For non-XML variables, you can also use the Variables tab of Start and Event
node, Send XML to Client, and Exception Handler properties dialog boxes to
set variable values.

Figure 6-9 Set Workflow Variable Dialog Box

Controlling Program Flow

Using the WebLogic Integration Studio 6-23

To assign a value to a variable:

1. From the Workflow Actions folder in the Add Action dialog box, select Set
Workflow Variable and click OK to display the Set Workflow Variable dialog box.

2. From the Variable to be set drop-down list, select an existing variable to which
you will assign a value, or type one in. (For details, see “Working with
Variables” on page 5-28.)

3. Choose one of the following options:

� From Expression — enter an expression that is evaluated at run time to
produce the value. For information on workflow expression components and
syntax, see Chapter 8, “Using Workflow Expressions.” To enter a constant,
use the syntax described in “Using Literals” on page 8-2.

� By Composing — set the value for an XML or string type variable by
specifying an XML document. To create a new free-form document, click the
Add Child button to begin adding nodes. To specify an existing XML
document, click the Import button to load the document and edit as
necessary. To create a new type-specified XML document, click the Set
Content Type button to load a Schema document. For detailed procedures on
all these options, see “Composing and Editing XML Documents” on page
7-2.

 The XML document you define is stored in the workflow template definition.

Note: An XML document that is stored in a string type variable will first be
converted to a string.

4. Click OK to add the Set Workflow Variable action.

Controlling Program Flow

In general, you should try to control the program flow through the use of nodes and
connections. In some cases, however, you may need to specify alternate paths of
execution from within nodes. For example, you may have an event defined that should
only be allowed to be triggered up until a certain node in the workflow, and then should
be disabled. Or you may need to automatically execute a task from within a different

6 Defining Actions

6-24 Using the WebLogic Integration Studio

node, depending on a condition. Most importantly, you can control whether
sub-actions or even entire sub-workflows are to be performed synchronously or
asynchronously by the placement of the Mark Task as Done action.

Thus, the following actions may be used for program control:

� Mark Task as Done—In addition to manual tasks executed by users, you need to
mark task nodes as done that contain entirely automatic actions, to ensure that
the flow proceeds correctly. This action is key to ensuring your workflows
execute as desired, and is described in “Marking a Task Done” on page 6-25.

� Unmark Task Done—Unmarks a task done that has already been marked done.
Described in “Unmarking a Task Done” on page 6-26.

� Cancel Workflow Event—Cancels an event that you specify, ensuring that it can
no longer be triggered after this point in the workflow. Described in “Canceling
a Workflow Event” on page 6-27.

� Mark Workflow Done—This action has the same effect as proceeding to a done
node. Described in “Marking a Workflow Done” on page 6-28.

� Abort Workflow—Terminates a running instance and removes it from the
database. Described in “Aborting a Workflow” on page 6-28.

� Execute Task—Automatically executes a task node and performs any actions
listed on the Executed tab of the node. Described in “Executing a Task
Automatically” on page 6-29.

� No Operation—This action does not actually have any effect on the workflow,
but acts as a placeholder for the workflow designer. It is described in “Adding a
Placeholder Action” on page 6-30.

� Timed Event—Can be used to create a time delay in a workflow. Described in
“Embedding a Timed Sequence” on page 6-32.

� Set Task Due Date—Can be used to create a time delay in a workflow.
Described in “Setting a Task Due Date” on page 6-51.

Controlling Program Flow

Using the WebLogic Integration Studio 6-25

Marking a Task Done

Unless a user-assigned task is defined with a permission to allow a user to manually
mark the task done at run time (for information, see “Defining Task Properties” on
page 5-53), every Task node must specify the Mark Task as Done action either in its
Task Properties dialog box, or in the Actions tab of a non-terminal action. For more
information on using this action, see “Understanding Action Types and Placement” on
page 6-5.

Figure 6-10 Mark Task as Done Dialog Box

To mark a task done:

1. From the Task Actions folder in the Add Action dialog box, select Mark Task as
Done and click OK to display the Mark Task as Done dialog box.

2. In the Task to mark as done field, select the task that is to be marked done when
the action is executed. Only one task at a time can be selected.

3. Click OK to add the Mark Task as Done action.

6 Defining Actions

6-26 Using the WebLogic Integration Studio

Unmarking a Task Done

The Unmark Task Done action marks the task as not done. A task that is assigned this
action becomes Active on the Worklist and can be executed again. Use this action to
allow a task to be executed again in, for example, a loop or a parallel workflow.

Note: A task that is marked not done does not have its activated state triggered again.
To trigger the activated state for the task, the workflow must initiate the task
again. For details about task states, see “Understanding Task States” on page
5-54.

Figure 6-11 Unmark Task Done Dialog Box

To unmark a task done:

1. From the Task Actions folder in the Add Action dialog box, select Unmark Task as
Done and click OK to display the Unmark Task Done dialog box.

2. In the Task to unmark as done field, select the task that is to be marked done
when the action is executed. Only one task at a time can be selected.

Controlling Program Flow

Using the WebLogic Integration Studio 6-27

3. Click OK to add the Unmark Task as Done action.

Canceling a Workflow Event

Use the Cancel Workflow Event action when you want to cancel an Event node or
nodes that have been defined within a workflow. This action prevents an event from
being triggered after a certain point in a workflow, so you can use it as an “expiry”
mechanism for the Event node. For example, in an order processing workflow, you
may have an event that waits for a cancellation notice from a customer, and performs
some actions accordingly; to ensure that the cancellation cannot be issued after the
order is shipped, you can define the Cancel Workflow action at the point where the
shipping task is executed in the workflow, to disable the order cancellation event from
being triggered.

Figure 6-12 Cancel Workflow Event Dialog Box

To cancel an event:

1. From the Miscellaneous Actions folder in the Add Action dialog box, select Cancel
Workflow Event and click OK to display the Cancel Workflow Event dialog box.

6 Defining Actions

6-28 Using the WebLogic Integration Studio

2. In the Event to Cancel field, highlight the workflow event to be canceled. (Hold
down the CTRL key to highlight more than one event.)

3. Click OK to add the Cancel Workflow Event action.

Marking a Workflow Done

The Mark Workflow as Done action marks the current workflow as done and serves
the same purpose as a workflow reaching a Done node. It could be used, for example,
in a Decision node, where you would like to skip all intervening actions before the
Done node and terminate the workflow at that point.

Figure 6-13 Mark Workflow as Done

To mark a workflow as done:

1. From the Workflow Actions folder in the Add Action dialog box, select Mark
Workflow as Done and click OK to display the Mark Workflow as Done dialog
box.

2. Click OK to add the Mark Workflow as Done action.

Aborting a Workflow

The Abort Workflow action permanently stops a workflow that is currently in process.
This action can be used in exceptional conditions where an instance must be
terminated.

Controlling Program Flow

Using the WebLogic Integration Studio 6-29

Note: A workflow instance that is aborted will be deleted from the database, and
cannot be monitored. To specify that a workflow should simply terminate,
while retaining a record of the instance, you should use a Done node or the
Mark Workflow as Done action.

Figure 6-14 Abort Workflow Dialog Box

To abort a workflow:

1. From the Workflow Actions folder in the Add Action dialog box, select Abort
Workflow and click OK to display the Abort Workflow dialog box.

2. Click OK to add the Abort Workflow action.

Executing a Task Automatically

You can use the Execute Task action to allow the workflow, rather than a user, to
execute any task in the workflow explicitly. This action places the task in the executed
state, and performs all the actions listed in the Executed tab of the Task Properties
dialog box. For information on task states, see “Understanding Task States” on page
5-54.

You may use this action, for example, from within an exception handler, when you
want to re-execute actions in a task node after the actions in the exception handler have
been completed. Or you might use it to create a loop that would be too difficult to
represent graphically.

6 Defining Actions

6-30 Using the WebLogic Integration Studio

Figure 6-15 Execute Task Dialog Box

To execute a task automatically:

1. From the Task Actions folder in the Add Action dialog box, select Execute Task
and click OK to display the Execute Task dialog box.

2. In the Task to execute field, select the task that you want to execute. Only one
task at a time can be selected.

3. Click OK to add the Execute Task action.

Adding a Placeholder Action

The No Operation action does not affect the workflow; it simply acts as a placeholder
to remind an analyst to add an action at a later time.

Using Timed Operations

Using the WebLogic Integration Studio 6-31

Figure 6-16 No Operation Dialog Box

To add a placeholder action:

1. From the Miscellaneous Actions folder in the Add Action dialog box, select No
Operation and click OK to display the No Operation dialog box.

2. In the Description field, enter a descriptive name for the No Operation action,
preferably a name that will remind you to add an action at a later time.

3. Click OK to add the No Operation action.

Using Timed Operations

The following actions allow you to set up timed operations:

� Timed Event—Specifies a series of sub-actions that should be performed and,
optionally, re-executed, according to an exact time schedule. Can also be used to
create a time delay in a workflow. Described in “Embedding a Timed Sequence”
on page 6-32.

� Set Task Due Date—Specifies a date by which a task should be executed and,
optionally, a series of sub-actions to be performed after the due date. Can also be
used to introduce a time delay in a workflow. Described in “Setting a Task Due
Date” on page 6-51.

6 Defining Actions

6-32 Using the WebLogic Integration Studio

Embedding a Timed Sequence

You can use the Timed Event action to create a timed sequence of actions that will be
triggered at an exact time and date and be optionally re-executed according to a
specified schedule.

About Execution Schedules

If you want to reschedule timed events, you must specify an execution stop method,
according to two options:

� When the workflow is done. In this case, the timed event is re-executed until the
workflow is done.

� When the task is done. In this case, the timed event is re-executed until the Task
node that contains it is marked done. This option should only be used if two
conditions are met:

� The Timed Event action is specified in a Task node.

� The containing Task node is marked done from outside the task node itself,
such as from a Decision node, or another action. The node cannot be marked
done from within the Task node, or from within the Timed Event dialog
box’s sub-actions tab, because marking the task done in this fashion would
effectively terminate any repeated execution of the timed event.

Executing Triggered Actions Asynchronously and Synchronously

Actions specified in a timed sequence can be performed in either a synchronous or
asynchronous mode. In asynchronous mode, the sub-actions are performed in parallel,
while the workflow continues to the next node. To set up the action in this way, you
use the Timed Event in a Task node and mark the task containing the action done in
the task node itself, or in any other type of node.

In synchronous mode, this action can serve to create a time delay in the workflow, as
the workflow must wait until the trigger date and time are reached, and any sub-actions
are performed, before it proceeds. To set up the action in this way, you must use the
action in a Task node, and add the Mark Task as Done action to the Actions when
Triggered tab of the Timed Event dialog box.

Using Timed Operations

Using the WebLogic Integration Studio 6-33

Note that in all of these cases, if you want to reschedule the timed event, you should
stop the execution only when the workflow is done.

Figure 6-17 Timed Event: Trigger Event Tab

Defining a Timed Event

To define a timed event:

1. From the Miscellaneous Actions folder in the Add Action dialog box, select Timed
Event and click OK to display the Timed Event dialog box.

2. On the Trigger Event tab, specify the time at which the sub-actions should be
performed, by selecting one of the following options:

� From action execution—Select this option to start the triggered actions at a
specific interval of time after the timed event is executed, that is, when the
Timed Event action is reached in a node’s action list. Use the drop-down list
to the right to select the unit of time, and in the field to the left, enter a
number. For example, if you choose “4 Minutes,” the sub-actions will be
executed four minutes after the Timed Event action is reached in the
workflow.

� To Expression—Select this option to specify an absolute or relative date and
time that you define by entering an expression in the field.

3. If you selected To Expression, enter a date function in the field to return a Java
Date object, as follows:

6 Defining Actions

6-34 Using the WebLogic Integration Studio

� Use the StringToDate() function to specify an absolute date and time
value. For details, see “StringToDate()” on page 8-19.

� Use the DateAdd() function to specify a value relative to a constant or
variable base date and time. For details, see “DateAdd()” on page 8-21.

4. If you do not specify a business calendar as a parameter in the DateAdd()
function, optionally, specify a business calendar as follows:

� For Organization — use the business calendar assigned to the organization
for which the workflow template definition instance will be executed.

� For Assignee — only if the timed event is defined in a task node that assigns
a manual task to a user, use the calendar that belongs to the user or role
assigned the task that contains the event to be triggered.

5. Optionally, on the Execution Schedule tab, to repeat the triggered actions, in the
Reschedule every field, enter a value to represent the interval of time that should
elapse between each re-execution of the triggered actions, and select a unit of
time from the drop-down list. For example, if you choose “4 Minutes,” the
sub-actions will be performed every four minutes after the initial triggering until
specified execution stop.

Set the Recoverable checkbox to indicate whether or not you would like a timed
event to be recovered (that is, deferred until the server restarts) or skipped, if the
server is not running at its scheduled start time.

Figure 6-18 Timed Event: Execution Schedule tab

Using Sub-Workflows

Using the WebLogic Integration Studio 6-35

6. If you specified an execution schedule, select a Stop execution when option to
specify when the trigger should stop:

� Workflow is done—Select to stop the trigger when the entire workflow is
completed.

� Task is done—Select to stop the trigger will stop when the task in which this
action is specified is marked as done. Select this option only if the Timed
Event action is specified in a Task node, and the Task node is marked done
from outside the node, and outside the action. For more information, see
“About Execution Schedules” on page 6-32.

7. On the Actions when triggered tab, click Add to open the Add Action dialog box
to select and define the sub-actions to be executed when the event is triggered. If
you want to ensure that sub-actions are performed synchronously, or you want to
use this action to create a time delay in the workflow, add the Mark Task as Done
action at the end of the action list here. In the Mark Task as Done dialog box,
select the Task node containing the Timed Event action.

8. Click OK to add the Timed Event action.

Using Sub-Workflows

Several actions allow you to specify sub-workflows that are not represented in the
design area. These are described below.

Note: You can also invoke a sub-workflow by posting an XML message to an
internal JMS queue to start an event-triggered workflow. For more
information, see “Posting an XML Message to a JMS Topic or Queue” on page
6-81.

� Start Workflow—Calls an entirely different workflow, that has been defined with
a called Start. Described in “Calling a Sub-Workflow” on page 6-36.

� Evaluate Condition—Embeds a decision branch within a single node, by
specifying alternate sub-actions to be performed according to a true or false
result of a condition. Described in “Embedding a Conditional Sequence” on page
6-41.

6 Defining Actions

6-36 Using the WebLogic Integration Studio

� Timed Event—Specifies a series of sub-actions that should be performed and,
optionally, re-executed, according to an exact time schedule. Described in
“Embedding a Timed Sequence” on page 6-32.

� Invoke Exception Handler—Calls a series of sub-actions that are defined within
an exception handler at a given point in the workflow, regardless of whether an
exception has occurred. For information about this action, see Chapter 9,
“Handling Workflow Exceptions.”

Calling a Sub-Workflow

You may want to organize your processes into multiple workflows to break down
large, complex workflows into multiple parts, or to use sub-workflows for processes
that are only invoked according to specific conditions.

You can use the Start Workflow action to start another workflow from the current one.
The workflow being started is referred to as a sub-workflow, or as a called or child
workflow. The workflow that starts the sub-workflow is called the calling or parent
workflow.

In order for a workflow to be called, the workflow template must contain at least one
template definition that contains a Called Start node, is marked active, and specifies
currently valid effective and expiry dates. Only one workflow template definition
within that workflow template can be started at a time, this being the most effective of
the active workflow template definitions. For an explanation, see “Working with
Template Definitions” on page 5-7.

Passing Parameters

If the sub-workflow has any variables defined as input parameters, this means that it
expects to populate those variables with values received from the parent workflow.
Thus, in the Start Workflow action properties, you must specify values to be passed as
input parameters to the sub-workflow; usually these values will be taken from
corresponding variables defined in the parent workflow.

Similarly, if the sub-workflow has any variables defined as output parameters, this
means that the sub-workflow will pass values it has obtained or calculated back to the
parent workflow. Again, in the Start Workflow action properties, you need to specify
parent workflow variables that are to receive those result values.

Using Sub-Workflows

Using the WebLogic Integration Studio 6-37

Executing the Sub-Workflow Asynchronously or Synchronously

The Start Workflow action can be used to start a workflow in both synchronous and
asynchronous modes. In synchronous mode, the calling workflow waits for the
sub-workflow to complete before proceeding to the next node. To set up the action this
way, you must use the Start Workflow action in a Start or Decision node, or in a Task
node, and mark the task done as a sub-action of the Start Workflow action, rather than
in the Task node.

In asynchronous mode, the calling workflow does not wait for the called workflow to
complete, but continues to the next node, so that both workflows execute in parallel.
To set up the action in this way, you can use it in a Task node, and mark the task done
in the Task node itself, or use it in any other type of node, such as a Decision, Start, or
Event.

Note: You can also cause another workflow to be executed both asynchronously or
synchronously by posting an XML message to an internal JMS queue to
trigger an event-triggered workflow. Interaction between the two workflows,
including parameter passing, is accomplished through XML/JMS messaging,
and control of execution is accomplished by the use of Event nodes in the
parent workflow to receive responses back from the sub-workflow. In fact, if
you are running WebLogic Integration in a clustered environment, this method
provides better load balancing control. For more information, see “Posting an
XML Message to a JMS Topic or Queue” on page 6-81.

Regardless of whether or not the parent workflow waits for the sub-workflow to finish
executing before proceeding, you can also define an optional set of sub-actions that are
performed when the called workflow has completed.

Tracking the Sub-Workflow

You can assign the called workflow instance ID to a variable defined in the calling
workflow. The instance ID is returned as a string, so be sure that the variable you create
is defined as a String type (for procedures, see “Working with Variables” on page
5-28). The calling workflow can then use the reference variable in expressions using
the WorkflowVariable() function to retrieve variables from the called
sub-workflow. For details about using the instance ID in the WorkflowVariable()
function, see “Obtaining Run-time Workflow Data” on page 8-13.

6 Defining Actions

6-38 Using the WebLogic Integration Studio

Figure 6-19 Start Workflow Dialog Box

To call a sub-workflow:

1. From the Workflow Actions folder in the Add Action dialog box, select Start
Workflow and click OK to display the Start Workflow dialog box.

2. In the Workflow to Start field, select the workflow template to start when the
action is executed. This field displays all workflow templates associated with the
current organization that contain at least one template definition with a called
start, currently valid effective and expiry dates, and that is marked active. When

Using Sub-Workflows

Using the WebLogic Integration Studio 6-39

you have selected a workflow, any variables that have been defined as input or
output in that workflow appear on the Parameters and Results tabs at the bottom
of the dialog box.

3. In the Start in Organization field, select one of the following options:

� Current organization — select to start the workflow in the current
organization (the organization selected from the Organization drop-down list
above the folder tree).

� Expression — select to start the workflow for an organization determined at
run time by a workflow expression, and enter a string, surrounded by
quotation marks, that specifies the organization, or an expression that will be
evaluated at run time and become the name of an organization. For example,
this could be a variable that has previously stored organization information
from an incoming XML message received by another node.

4. Optionally, from the Reference via field, select a variable from the list of
variables available for the current workflow. When the called workflow is
instantiated, its instance ID is assigned automatically to the selected variable.

Note: The variable must be a string type.

5. From the Parameters list on the Parameters tab, select a parameter and click
Update to display the Set Parameter dialog box, which you use to specify a value
to pass to the called workflow.

Figure 6-20 Set Parameter Dialog Box

6. In the Expression field, enter the value to be passed to the sub-workflow as an
expression. The value will typically consist of a corresponding variable value in
the parent workflow.

6 Defining Actions

6-40 Using the WebLogic Integration Studio

7. Click OK. The parameter and its value appear in the list on the Parameters tab of
the Start Workflow dialog box.

8. Repeat steps 5 to 7 for all parameters in the list.

9. From the Results list on the Results tab, select a result and click Update to
display the Set Variable from Result Parameter dialog box, which you use to
specify the variable in the parent workflow in which you want to store the value
returned by the sub-workflow.

Figure 6-21 Set Variable from Result Dialog Box

10. From the Variable drop-down list, select a variable in which to store the value
returned by the corresponding output variable defined in the sub-workflow.

11. Click OK. The result and its value appear in the list on the Result tab of the Start
Workflow dialog box.

12. Repeat steps 8 to 10 for all results in the list.

13. Optionally, select the Actions tab and click Add to display the Add Action dialog
box to select and define sub-actions to be performed when the sub-workflow has
completed. If you want the sub-workflow to complete before any other nodes are
executed in the parent workflow, be sure to add the Mark Task as Done action to
this tab. In the Mark Task as Done dialog box, select the Task node in which you
have specified the Start Workflow action.

14. Click OK to add the Start Workflow action.

Using Sub-Workflows

Using the WebLogic Integration Studio 6-41

Embedding a Conditional Sequence

The Evaluate Condition action functions in the same way as a Decision node, that is,
to evaluate a conditional expression at run time and perform alternative sequences of
sub-actions depending on the result. Normally, you should use a Decision node to
accomplish this type of flow. However, there may cases where you want to embed a
conditional sub-workflow within a main workflow, by specifying a conditional set of
actions inside another node, rather than as a distinct node on its own. This is necessary
in cases where there is no other way to specify a condition, such as in an Exception
Handler.

You define a series of actions to be performed if the condition evaluates to true, and/or
a series of actions to perform if the condition evaluates to false.

Figure 6-22 Evaluate Condition Dialog Box

6 Defining Actions

6-42 Using the WebLogic Integration Studio

To evaluate a condition:

1. From the Miscellaneous Actions folder in the Add Action dialog box, select
Evaluate Condition and click OK to display the Evaluate Condition dialog box.

2. In the Condition field, enter a valid workflow condition that will be evaluated at
run time to determine which set of sub-actions to perform. For more information
on constructing expressions, see Chapter 8, “Using Workflow Expressions.”

3. On the False and/or True tab, click Add to invoke the Add Action dialog box and
select and define the sub-actions to be executed if the condition evaluates to false
or true, respectively, by using the following buttons:

4. Click OK to add the Evaluate Condition action.

Monitoring Run-Time Status

You can use two actions for workflow monitoring purposes:

� Make Audit Entry—Adds an entry whose content you specify to an audit log
maintained for running workflow instances. Described in “Making an Audit
Entry” on page 6-42.

� Set Workflow Comment—Displays explanatory or instructive comment to an
administrator monitoring a workflow instance at run time in the Studio.
Described in “Setting Up a Workflow Comment” on page 6-43.

Making an Audit Entry

WebLogic Integration provides a default audit facility whereby all major user
interactions and changes are published to a JMS topic and to a log file, myserver.log,
located in the logs directory of the active WebLogic Integration domain on the server.

You can use the Make Audit Entry action in any node in your workflow to define
additional run-time workflow information you would like to publish to the audit log
over the course of a workflow. The date and time of each entry is noted, and you define
an expression that will provide the data you want to record at run time, containing

Monitoring Run-Time Status

Using the WebLogic Integration Studio 6-43

variables, functions or constants. For example, you could use the CurrentUser()
function in a task that is assigned to a role, to record the user who executed it. (For
information on functions that return run-time workflow information, see “Obtaining
Run-time Workflow Data” on page 8-13.)

Note: Auditing must be enabled in the Template Definition properties dialog box for
the workflow for this action to take effect. For further information, see
“Creating a Workflow Template Definition” on page 5-8.

Figure 6-23 Make Audit Entry Dialog Box

To make an audit entry:

1. From the Miscellaneous Actions folder in the Add Action dialog box, select Make
Audit Entry and click OK to display the Make Audit Entry dialog box.

2. In the Audit entry expression field, enter an expression that will be evaluated to
to produce the audit entry information at run time. For more information on
constructing expressions, see Chapter 8, “Using Workflow Expressions.”

3. Click OK to add the action.

Setting Up a Workflow Comment

You can use the Set Workflow Comment action to specify a comment for the workflow
instance. The comment will be displayed in the Comment column of the Workflow
Instances dialog box of the Studio when the action is executed at run time (for more
information, see “Working with Workflow Instances” on page 10-2). The text is
typically informative and indicates the status of the workflow at that point.

6 Defining Actions

6-44 Using the WebLogic Integration Studio

Figure 6-24 Set Workflow Comment Dialog Box

To set a workflow comment:

1. From the Workflow Actions folder in the Add Action dialog box, select Set
Workflow Comment and click OK to display the Set Workflow Comment dialog
box.

2. In the Comment field, enter an expression that will be evaluated at run time to
produce the comment. The expression will typically consist of strings and
variables. For more information on expressions and their syntax, see Chapter 8,
“Using Workflow Expressions.”

Note: Workflow comments are limited to a maximum of 254 characters.
Comments exceeding this limit are truncated and no exception is thrown.

3. Click OK to add the Set Workflow Comment action.

Setting Up Manual Tasks

You can use the following Task actions to assign manual tasks or interact with
WebLogic Integration Worklist or custom client application users.

� Assign Task to User—Assigns a manual task to a specific user or to a user based
on workload balancing. Described in “Assigning a Task to a User” on page 6-46.

� Assign Task to Role—Assigns a manual task to a role. Described in “Assigning
a Task to a Role” on page 6-47.

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-45

� Assign Task Using Routing Table—Assigns the same task to different users or
roles, depending on conditions that you specify. Described in “Assigning a Task
Using a Routing Table” on page 6-49.

� Set Task Due Date—Specifies a due date by which the assignee should execute
the task. Described in “Setting a Task Due Date” on page 6-51.

� Set Task Comment—Displays a comment or instruction for the user executing
the task at run time. Described in “Setting a Task Comment” on page 6-54.

� Set Task Priority—Displays a priority level for the task to the user at run time.
Described in “Setting a Task Priority” on page 6-56.

� Unassign Task—Unassigns a task. Described in “Unassigning a Task” on page
6-57.

� Send XML to Client—Sends an XML message to the Worklist or custom client
application, to display a form or prompt to a user, or call a program or custom
extension on the client. Described in “Sending an XML Message to a Client
Application” on page 6-58.

Guidelines for Placement of Task Actions

When assigning manual tasks, follow these guidelines for action placement:

� You must place all actions pertaining to the same task in the same Task node.

� To ensure that a comment or due date is displayed to the user who views the task
before he or she executes it, you should place the Set Task Comment and Set
Task Due Date actions before the Assign Task to User/Role/Using Routing Table
actions.

� Mark the task done on the Executed tab of the task Properties dialog box.

� If you want to send an XML message to the client application to display a
prompt message or call additional software components on the client, first assign
the task to a user or role, and then place the Send XML to Client action on the
Executed tab of the Task Properties dialog box.

6 Defining Actions

6-46 Using the WebLogic Integration Studio

Assigning a Task to a User

Use the Assign Task to User action to assign a specified task to an individual user.
Assigning a task to a user causes a notification to be sent to the user who views and
executes the task from the Worklist or custom client application. For more information
about the Worklist application, see Using the WebLogic Integration Worklist.

You can specify a particular user to whom to assign the task, or you can specify a role
member, which causes the system to determine the user with the fewest pending tasks
among all users belonging to a particular role at run time. The system then assigns the
task to that user. The user or role can be specified as a constant or taken from a
workflow expression to be provided at run time.

Figure 6-25 Assign Task to User Dialog Box

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-47

To assign a task to a user:

1. From the Task Actions folder in the Add Action dialog box, select Assign Task to
User and click OK to display the Assign Task to User dialog box.

2. In the Task to assign field, select the task that you want to assign. Only one task
at a time can be selected.

3. To specify a user, select from the following options:

� To specify a user name, select the name from the User drop-down list. Only
users associated with the current organization appear in this list.

� To assign the task to a role member, select the Assign to role member, and in
the User in Role drop-down list that appears, select the Role name. Only
roles defined for the current organization appear in this list. At run-time the
user belonging to that role who has the fewest tasks assigned to him/her will
be assigned the task.

� To specify a user whose identity will be determined at run time, select Use
Workflow Expression, and in the User field, enter an expression that returns
the appropriate user at run-time.

4. Click OK to add the Assign Task to User action.

Assigning a Task to a Role

Use can use the Assign Task to Role action when it is not desirable to assign a task to
a particular user. Assigning a task to a role allows any user who belongs to the role to
view and execute the task, although there is no explicit notification of the task in the
Worklist.

To assign a task to a role, you specify the role name or provide an expression to
determine the role at run time.

6 Defining Actions

6-48 Using the WebLogic Integration Studio

Figure 6-26 Assign Task to Role Dialog Box

To assign a task to a role:

1. From the Task Actions folder in the Add Action dialog box, select Assign Task to
Role and click OK to display the Assign Task to Role dialog box.

2. In the Task to assign field, select the task that you want to assign. Only one task
at a time can be selected.

3. To specify a role, select from the following options:

� To specify a role name, select the name from the Role drop-down list. Only
roles defined in the current organization appear in this list.

� To specify a role whose identity will be determined at run time, select Use
Workflow Expression, and in the Role field, enter an expression that returns
the appropriate role at run-time. For more information on functions and

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-49

expressions, and expression syntax, see Chapter 8, “Using Workflow
Expressions.”

4. Click OK to add the Assign Task to Role action.

Assigning a Task Using a Routing Table

You can assign a task to different users or roles depending on a set of conditions. A
routing table consists of a sequence of one or more routing conditions. A routing
condition specifies a potential assignee (user or role) for the task, together with a
specification of the conditions under which the assignment should be made. When the
action is executed at run time, the system evaluates each condition in sequence until it
encounters one that yields a True result. If such a condition is encountered, the task is
assigned to the corresponding user or role, and any subsequent conditions are ignored.

Note: If no routing condition is satisfied, a run-time exception occurs.

If you would like to route all tasks for a particular user or role for a specific period of
time, rather than according to a condition, you create a routing specification for an
organization. For more information, see “Administering Task Routings” on page 3-28.

6 Defining Actions

6-50 Using the WebLogic Integration Studio

Figure 6-27 Assign Task Using Routing Table Dialog Box

To assign a task using a routing table:

1. From the Task Actions folder in the Add Action dialog box, select Assign Task
Using Routing Table and click OK to display the Assign Task Using Routing Table
dialog box.

2. In the Task to assign field, select the task that you want to assign. Only one task
at a time can be selected.

3. Next to the Routing Table field, click add to display the Define Routing
Condition dialog box.

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-51

Figure 6-28 Define Routing Condition Dialog Box

4. In the Condition field, enter a valid workflow conditional expression that yields a
logical result (True or False). For information on constructing expressions, see
Chapter 8, “Using Workflow Expressions.”

5. In the Assign To field, select one of the following options: User, User in Role, or
Role.

6. In the drop-down list, select the desired user or role name.

7. Click OK to add the routing condition to the routing table.

8. Continue to add as many routing conditions as required. Use the Delete button to
delete a routing, the Update button to edit a routing, and the arrow keys to
re-order routings in the table.

9. Click OK to add the Assign Task Using Routing Table action.

Setting a Task Due Date

You can use the Set Task Due Date action to set the due date by which a task should
be executed. The due date is displayed to the Worklist or custom client user to whom
the task has been assigned. You can express the due date in minutes, hours, days,
weeks, or months, or as an expression to determine the date and time at run time.

6 Defining Actions

6-52 Using the WebLogic Integration Studio

You can also use this action for non-manual tasks, without the use of the Assign Task
to User action, to specify actions to be performed in parallel after a certain date, or to
introduce a time delay into a workflow.

Executing Overdue Actions Asynchronously and Synchronously

If the task is not executed by the due date, you can specify sub-actions that should be
performed after the due date, in either a synchronous or asynchronous mode. In
asynchronous mode, the sub-actions are performed in parallel, while the workflow
continues to the next node. To set up the action in this way, you mark the task
containing the action done in the Task node itself. This is normally how the action is
used for manually assigned tasks.

In synchronous mode, this action can serve to create a time delay in the workflow, as
the workflow must wait until the due date is reached, and any overdue actions are
performed, before it proceeds. To set up the action in this way, you place the action in
a Task that is assigned to a user or not, and mark the task containing the action done
by adding the Mark Task as Done action to the Overdue Actions tab of the Set Task
Due Date dialog box.

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-53

Figure 6-29 Set Task Due Date Dialog Box

To set a task due date:

1. From the Task Actions folder in the Add Action dialog box, select Set Task Due
Date and click OK to display the Set Task Due Date dialog box.

2. In the Task for which to set due date field, select the task that is to have its due
date set when the action is executed. Only one task at a time can be selected.

3. On the Due Date tab, in the Set to expression field, enter an expression to specify
an absolute or relative date and time. The expression must return a Java Date
object, so you must use a function, as follows:

� Use the StringToDate() function to specify an absolute date and time
value. For details, see “StringToDate()” on page 8-19.

6 Defining Actions

6-54 Using the WebLogic Integration Studio

� Use the DateAdd() function to specify a value relative to a constant or
variable base date and time. For details, see “DateAdd()” on page 8-21.

4. If you do not specify a business calendar as a parameter in the DateAdd()
function, optionally, specify a business calendar as follows:

� For Organization — use the business calendar assigned to the organization
for which the workflow template definition instance will be executed.

� For Assignee — only if the due date is defined in a task node that assigns a
manual task to a user, use the calendar that belongs to the user or role
assigned the task that contains the Set Due Date action.

5. Optionally, select the Overdue Actions tab and click Add to display the Add
Action dialog box to select and define sub-actions to be performed when the due
date is reached. If you want the workflow to wait until the due date is reached
before proceeding, use the action in a Task node, and be sure to add the Mark
Task as Done action to this tab. In the Mark Task as Done dialog box, select the
Task node in which you have specified the Set Due Date action.

6. Click OK to add the Set Task Due Date action.

Setting a Task Comment

You can use the Set Task Comment action to set a comment for the task instance,
which displays a text message to a user viewing the task in the Worklist or the Studio
when the action is executed at run time. The text typically provides information or
instructions for manual work which the user is asked to perform. The text message is
displayed in the Comment column next to the task in the task list in the Worklist
application, or in the Workflow Instances or Worklist dialog boxes in the Studio. (For
more information, see Chapter 10, “Monitoring Workflows.”

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-55

Figure 6-30 Set Task Comment Dialog Box

To set a task comment:

1. From the Task Actions folder in the Add Action dialog box, select Set Task
Comment and click OK to display the Set Task Comment dialog box.

2. In the Task for which to set comment, select the appropriate task. Only one task
at a time can be selected.

3. In the Comment field, enter an expression that will be evaluated at run time to
produce the comment. The expression will typically consist of strings and
variables. For more information on expressions and their syntax, see Chapter 8,
“Using Workflow Expressions.”

Note: Task comments are limited to a maximum of 254 characters. Comments
exceeding this limit are truncated and no exception is thrown.

4. Click OK to add the Set Task Comment action.

6 Defining Actions

6-56 Using the WebLogic Integration Studio

Setting a Task Priority

You can use the Set Task Priority action set a task priority to Low, Medium, or High.
The priority has no effect on how the node or its actions are executed at run time, but
is simply displayed to Worklist users, who can execute and sort their tasks accordingly.

Since you can set a priority for the current task in the Task’s properties dialog box, you
may wish to use this action as the result of a condition to specify the priority of a task
elsewhere in the workflow.

Figure 6-31 Set Task Priority Dialog Box

To set a task priority:

1. From the Task Actions folder in the Add Action dialog box, select Set Task Priority
and click OK to display the Set Task Priority dialog box.

2. In the Task for which to set priority, select the appropriate task. Only one task at
a time can be selected.

3. From the Priority drop-down list, select Low, Medium, or High.

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-57

4. Click OK to add the Set Task Priority action.

Unassigning a Task

You can use the Unassign Task action to remove the current task assignment. The task
is no longer assigned to a user or role. You may wish to unassign a task as a result of
a condition.

Figure 6-32 Unassign Task Dialog Box

To unassign a task:

1. From the Task Actions folder in the Add Action dialog box, select Unassign Task
and click OK to display the Unassign Task dialog box.

2. In the Task to unassign field, select the task that you want to unassign. Only one
task at a time can be selected.

3. Click OK to add the Unassign Task action.

6 Defining Actions

6-58 Using the WebLogic Integration Studio

Sending an XML Message to a Client Application

Once you have assigned a task to a user, you can use the Send XML to Client action
to communicate between a workflow and the Worklist or custom client application by
sending an XML document to the client. The client application must be programmed
to identify the XML document, perform the appropriate action, and return an XML
document in response to the workflow. For the Worklist application, you can send
XML messages to display message prompts and forms to users, and to call custom
components or executable programs on the client system. For information on
developing custom client applications, see Programming BPM Client Applications.

Note that the Send XML to Client action does not actually specify the client machine
or application to which the XML is being sent. Thus, you must first assign a task to a
user or role, and the XML message will be sent to the client that executes the task. For
more information, see “Setting Up Manual Tasks” on page 6-44.

Sending a Message Asynchronously or Synchronously

You can send an XML message to a client application asynchronously or
synchronously. In synchronous mode, the workflow waits for a response from the
client before proceeding to the next node. To set up the action this way, you must use
mark the Task containing the action done as a sub-action on the Callback Actions tab
of the Send XML to Client dialog box, rather than in the Task node.

In asynchronous mode, the workflow does not wait for a response from the client, but
continues to the next node, while any operations on the client execute in parallel. To
set up the action in this way, mark the task done in the Task node itself.

Extracting Data

If your application responds to the workflow by sending a return XML message, you
must create variables to store the data returned by the response document (see
“Working with Variables” on page 5-28 for procedures), and initialize those variables
by using XPath expressions (or dot notation) to retrieve data values from the response
XML document. If your application uses JMS properties in its messages, you can also
retrieve this data by using the EventAttribute() function. (For more information,
see “Extracting Run-Time Event Data” on page 8-7.)

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-59

Defining the Send XML to Client Action

The following procedure is generalized for any non-Worklist application. For
complete information on sending an XML message to the Worklist, see “Sending an
XML Message to the Worklist Application” on page 6-61. For detailed information on
working with type-specified XML documents, see “Working with Type-Specified
Documents” on page 7-11.

Figure 6-33 Send XML to Client Dialog Box

To send an XML message to a client:

6 Defining Actions

6-60 Using the WebLogic Integration Studio

1. From the Integration Actions folder in the Add Action dialog box, select Send
XML to Client and click OK to display the Send XML to Client dialog box. A
default XML document structure with a root element and actionid element is
created.

Note: The system-generated actionid element and its value are used at run time
to identify the Send XML to Client action. The actionid element must be
the first child element of the root element. Do not move, delete or edit the
actionid element, and do not add any sub-elements to it.

2. To specify the XML Document Structure, do one of the following:

� To create a new free-form document, begin composing the document by
clicking the Add Child button to begin adding nodes.

� To specify an existing XML document, load the document by clicking the
Import button.

� To create a new type-specified XML document, load the appropriate Schema
document by clicking the Set Content Type button. The actionid value is
removed and is reset when you save the action in Step 9.

For detailed procedures for all these options, see “Composing and Editing XML
Documents” on page 7-2.

 The XML document you define is stored in the workflow template definition.

3. Select the Callback Variables tab to specify the variables that will receive the
response from the client, and click Add to display the Workflow Variable
Assignment dialog box.

Figure 6-34 Workflow Variable Assignment Dialog Box

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-61

4. In the Expression field, enter the expression that is evaluated at run time to
extract the data from the response XML document, by doing one of the
following:

� To capture incoming JMS header data, use an EventAttribute() function. For
information, see “EventAttribute()” on page 8-8.

� To capture incoming XML content, use an XPath() function (for information,
see “XPath()” on page 8-10), or the dot notation for XML elements that
return strings (for information, see “XML Element Dot Notation” on page

8-12). You can also use the Expression button to invoke the XPath
Wizard, from which you can generate XPath expressions automatically from
a sample incoming document. For information, see “Creating XPath
Expressions Using the XPath Wizard” on page 8-31.

5. Click OK. The variable initialization appears in the list on the Callback Variables
tab of the Send XML to Client dialog box.

6. Repeat steps 4 to 5 for all data items that need to be captured from the response
document.

7. Select the Callback Actions tab and click Add to display the Add Action dialog
box to specify any sub-actions to be performed when a reply is received from the
client. If you want the workflow to wait for the response from the client before
proceeding to other nodes in the workflow, be sure to add the Mark Task as Done
action to this tab, at the end of the action list. In the Mark Task as Done dialog
box, select the Task node in which you have specified the Send XML to Client
action.

8. If you are using a type-specified document, you are prompted to add the
actionid value. Click Yes to update the document.

9. Click OK again to save the action definition.

Sending an XML Message to the Worklist Application

The Worklist client application is designed to perform an action in response to an XML
document that conforms to four pairs of predefined Document Type Definition (DTD)
files, which allow you to do the following:

� Display a message box with prompts to the user.

� Display a form with entry fields to the user.

6 Defining Actions

6-62 Using the WebLogic Integration Studio

� Call a custom add-in component on the client.

� Call an executable program on the client.

The four pairs of predefined DTD files are located in the following directory of your
WebLogic Integration server installation:

/bea/wlintegration2.1/docs/apidocs/com/bea/wlpi/common/doc-files

Each pair has one DTD file for a request to the Worklist client, and another DTD file
for a response from the Worklist client. The following table lists the predefined DTD
files, and the actions performed by the Worklist application when it receives an XML
document that conforms to one of the request DTD files.

Table 6-2 Worklist DTD Files

DTD Pair Use To...

Request ClientMsgBoxReq.dtd Display a message dialog box in which the user responds
to a message or query.
Reply = ok/yes/no/cancel
For more information, see “Displaying a Message Prompt
to a User” on page 6-63.

Response ClientMsgBoxResp.dtd

Request ClientSetVarsReq.dtd Display a prompt dialog box with entry fields in which the
user enters some values.
Reply = field name/value pairs
For more information, see “Displaying a Form to a User”
on page 6-65

Response ClientSetVarsResp.dtd

Request ClientCallPgmReq.dtd Execute a program on the client machine.
Reply = program exit code
For more information, see “Calling an Executable
Program on the Client” on page 6-67.

Response ClientCallPgmResp.dtd

Request ClientCallAddInReq.dtd Invoke a custom extension to the Worklist client
application.
Reply = custom
For more information, see “Calling a Custom Worklist
Extension on the Client” on page 6-69.

Response ClientCallAddInResp.dtd

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-63

Note: If you will be accessing these DTDs often, you may want to import them into
the repository for convenient retrieval. For procedures, see “Managing Entities
in the Repository” on page 4-23.

For each response received from the client, you will need to create a variable in which
to place the value returned by the response. Most of these will be string-type variables.
For procedures for creating variables, see “Working with Variables” on page 5-28.

The following sections provide detailed descriptions of the required document
structure for each DTD pair.

Displaying a Message Prompt to a User

You can use the ClientMsgBox DTDs to display a message box to the Worklist user,
as in the following example.

Figure 6-35 Example Message Prompt

The request DTD requires a document with the following structure.

Listing 6-1 ClientMsgBoxReq XML Document Structure

<message-box title=“text”
style=“{plain|information|question|warning|error}”
options=“{ok|ok_cancel|yes_no|yes_no_cancel}”>
text

<actionid>provided by default</actionid>
</message-box>

All elements and attributes are required, and are described below.

6 Defining Actions

6-64 Using the WebLogic Integration Studio

The response document provides the response of the user to the message box,
according to the button selected. The response DTD requires the following structure.

Table 6-3 ClientMsgBoxReq Elements and Attributes

Element or
Attribute

Description Valid Values

message-box Text that appears in the message of the dialog box. Any string of text.

title Text that appears in the title bar of the dialog box. Any string of text.

style The Swing icon that appears in the top left corner of
the dialog box:

The default is plain.

No icon plain

information

question

warning

error

options The selection buttons at the bottom of the dialog box
and the text they contain:

The default is ok.

Three buttons: Yes, No, and Cancel. yes_no_cancel

Two buttons: OK and Cancel ok_cancel

One button: OK ok

Two buttons: Yes and No yes_no

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-65

Listing 6-2 ClientMsgBoxResp XML Document Structure

<message-box option=”{ok|yes|no|cancel}” />

The element and attribute are required, and are described below, along with the
expression required to return the value to a workflow variable.

Displaying a Form to a User

You can use the ClientSetVars DTDs to display a form to the Worklist user, as in the
following example.

Figure 6-36 Example Form

The request DTD requires a document with the following structure.

Table 6-4 ClientMsgBoxResp Elements and Attributes

Element
or
Attribute

Description Valid
Values

Expression Required to Extract Value

option The button selected by the
client user, expressed as a
string.

ok

yes

no

cancel

XPath(“/message-box/@option/text()”)

6 Defining Actions

6-66 Using the WebLogic Integration Studio

Listing 6-3 ClientSetVarsReq XML Document Structure

<set-variables title=“text”>
text

<actionid>provided by default</actionid>
<variable name=“variable name” prompt=“text” />
[<variable name=“variable name” prompt=“text” />]

</set-variables>

All elements and attributes are required. There must be at least one <variable>
element and as many additional <variable> elements as you like. Element and
attributes are described below.

The response document provides the responses of the user to each of the entry fields.
The response DTD requires the following structure.

Listing 6-4 ClientSetVarsResp XML Document Structure

<set-variables>
<variable name=“variable_name_1”>response_1</variable>
[<variable name=“variable name_2”>response_1</variable>]
.
.
.

</set-variables>

Table 6-5 ClientSetVarsReq Elements and Attributes

Element or
Attribute

Description Valid Values

set-variables Text that appears in the message of the dialog box. Any string of text.

title Text that appears in the title bar of the dialog box. Any string of text

name A name to identify the entry field. Any string of text.

prompt The text that appears as a prompt in front of the entry field. Any string of text.

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-67

All elements and attributes are required, and the number of <variable> elements
should correspond to the number used in the request document. Elements and attributes
are required, and the expression required to return the value to a workflow variable, are
described below.

Calling an Executable Program on the Client

You can use the ClientCallProgram DTDs to call a program on the Worklist client. The
request document requires the following structure.

Listing 6-5 ClientCallProgramReq XML Document Structure

<call-program name=“name” mode=”{sync|async}”>
<actionid>provided by default</actionid>
[<parm>parameter_1</parm>]
.
.
.
[<env-var name=”name”>environment variable
definition_1</env-var>]

.

.

.
</call-program>

Table 6-6 ClientSetVarsResp Elements and Attributes

Element
or
Attribute

Description Valid
Values

Expression Required to Extract Value

variable The response given by the
client.

Any text
string.

XPath("/set-variables/variable[@name=
"field_name"]/text()")

name The name used to identify the
entry field.

Should
correspond
to the name
used in the
request
document.

6 Defining Actions

6-68 Using the WebLogic Integration Studio

All elements and attributes are required, except the <parm> and <env-var> elements,
which are optional. You can specify zero or more <parm> or <env-var> elements.

The response DTD requires the following structure.

Listing 6-6 ClientCallProgramResp XML Document Structure

<call-program exit-value=“value” />

The element and attribute are required, and are described below.

Table 6-7 ClientCallProgramReq Elements and Attributes

Element or
Attribute

Description Valid Values

name The name of the program. Text string.

mode The mode in which the executable program is to run, in
relation to the Worklist:

The default is async.

The program executes synchronously. The Worklist is
blocked from continuing and its user interface is
inaccessible until the called program has terminated.

sync

The program executes asynchronously, running in parallel
with the Worklist, whose user interface remains
accessible while the called program is executing.

async

parm Parameter to be passed to the program. Any text string.

env-var The definition of an environment variable you want to
associate with the called program.

Text string.

name The symbolic name of the environment variable. Text string.

Setting Up Manual Tasks

Using the WebLogic Integration Studio 6-69

Calling a Custom Worklist Extension on the Client

You can use the ClientCallAddIn DTDs to call a custom extension to the Worklist
client. The request document requires the following structure.

Listing 6-7 ClientCallAddInReq XML Document Structure

<call-addin name=“name” mode=”{sync|async}”>
<actionid>provided by default</actionid>
[<parm>parameter_1</parm>]
.
.
.

</call-addin>

All elements and attributes are required, except the <parm> element, which is
optional. You can specify zero or more <parm> elements.

Table 6-8 ClientCallProgramResp Element

Element
or
Attribute

Description Valid Values Expression Required to Extract Value

exit-

value

The called program’s
numeric exit code, as
retrieved by the
operating system.

Consult the
appropriate
program
documentation
for more
information on
valid exit codes.

XPath("/call-program/@exit-value")

6 Defining Actions

6-70 Using the WebLogic Integration Studio

The response document is optional. Elements are optional and can consist of any
number of custom elements and attributes you define.

Listing 6-8 ClientCallAddInResp XML Document Structure

<call-addin>
[<tag_name_1 attribute_name_1=”attribute_value”

. . .>value</tag_name_1>]
.
.
.

</call-addin>

Elements are described below.

Table 6-9 ClientCallAddInReq Attributes and Elements

Element or
Attribute

Description Valid Values

name The name of a custom Java class that implements the
com.bea.wlpi.client.worklist.WorklistAddIn
interface

The fully qualified JNDI
name of the Java class.

mode The mode in which the program is to run, in relation to the
Worklist:

The default is async.

The program executes synchronously. The Worklist is
blocked from continuing, and its user interface is inaccessible,
until the called program has terminated.

sync

The program executes asynchronously, running in parallel
with the Worklist, whose user interface is accessible while the
program is executing.

async

parm A parameter to be passed to the extension. Any text string.

Sending E-Mail Messages

Using the WebLogic Integration Studio 6-71

Sending E-Mail Messages

You can use the Send E-Mail Message action to send an e-mail message to a user of
the WebLogic Integration system or even to an outside party. Internet standard SMTP
protocol is used to transmit the message.

You can compose an e-mail message in any character set that your operating system
supports at design time, and specify the character set to be used by the server at run
time to the send the message. In an English locale, the default character set used by the
server is cp1252, the default character set used by the Java Virtual Machine, but you
can specify any character set supported by the Java language. For a list of these, see
http://java.sun.com/j2se/1.3/docs/guide/intl/encoding.doc.html.

Note: This action requires that your e-mail server be properly configured during or
after the WebLogic Integration server installation process. For information on
configuring mail server properties after installation, see “Customizing Mail
Session Properties” in “Customizing WebLogic Integration” in Starting,
Stopping, and Customizing BEA WebLogic Integration.

Table 6-10 ClientCallAddInResp Elements and Attributes

Element
or
Attribute

Description Valid
Values

Expression Required to Extract Value

Any
element
name

Can consist of any number of
attributes.

Custom-
defined.

XPath("/call-addin/path/text()")

6 Defining Actions

6-72 Using the WebLogic Integration Studio

Figure 6-37 Send E-Mail Message Dialog Box

To send an e-mail message:

1. From the Miscellaneous Actions folder in the Add Action dialog box, select Send
E-Mail Message and click OK to display the Send E-Mail Message dialog box.

2. In the Subject field, enter a valid workflow expression that will be evaluated at
run time to produce the subject text of the e-mail. Your expression can consist of
literals, variables, operators and functions. For more information on constructing
expressions, see Chapter 8, “Using Workflow Expressions.”

3. On the Message tab, in the text box, enter a valid workflow expression that will
be evaluated at run time to produce the message text of the email.

4. Optionally, in the Mime Charset field, enter or select any MIME character set
supported by the Java language in which you would like the server to send the
message. For example, if you would like to send a message containing
double-byte language characters, you can select UTF-8 (one of the Unicode
standard formats). Note that the encoding you select must also be supported by
the email client program used by your recipient in order for the message to be
displayed correctly to him or her.

Sending E-Mail Messages

Using the WebLogic Integration Studio 6-73

Note: The encoding you use to input characters is independent of the setting in
the Mime Charset field, and is determined by your operating system and
locale.

5. Select the To tab, which displays the following information about recipients:

Figure 6-38 Send E-mail Message Dialog Box: To Tab

6. Click Add to add a recipient. The Mail Recipient dialog box is displayed.

Addressee The e-mail address, user or role name, or expression
defined to produce the e-mail address at run time.

Via Indicates whether the address is specified as a constant or
an expression.

Type Address, user, or role.

6 Defining Actions

6-74 Using the WebLogic Integration Studio

Figure 6-39 Mail Recipient Dialog Box

7. Specify an addressee by selecting one of the following options:

� Address — enter an e-mail address in the field, or enable the Expression
check box and enter a workflow expression that will produce the e-mail
address at run time.

� User — select this option to display a drop-down list, from which you select
the appropriate user from among all users associated with the current
organization. The e-mail address is obtained from the user’s properties, as
described in “Creating a User” on page 3-15. Alternatively, enable the
Expression check box and enter a workflow expression, such as a
CurrentUser(), WorkflowAttribute(“Initiator”) or
TaskAttribute(“Assignee”) function, that will produce a user’s email
address at run time, or a specific e-mail address surrounded by quotation
marks.

� Role — select this option to a display a drop-down list, from which you
select the appropriate role from among all roles defined in the current
organization. The message will be sent to all users belonging to that role.
Alternatively, enable the Expression check box and enter a workflow
expression that will produce the role name at run time, such as a
TaskAttribute() function that can return a role name at run time.

For more information on workflow functions and constructing expressions, see
Chapter 8, “Using Workflow Expressions.”

8. Click OK. The new recipient is added to the list.

Invoking Components

Using the WebLogic Integration Studio 6-75

9. Repeat steps 6 to 8 to add more recipients. To update a recipient, select it in the
list and click Update. To delete a recipient, select it in the list and click Delete.
Confirm the deletion when prompted.

10. Optionally, on the CC or BCC tabs, repeat steps 5 to 8 to specify recipients who
you want to carbon copy or blind carbon copy.

11. Click OK to add the Send E-mail Message action.

Invoking Components

You can call software components such as EJBs, Java classes, and executable
programs, and pass input and output parameters between the workflow and the
components directly, by using the following actions:

� Call Program—Calls an executable program on the server, which executes in
parallel with the workflow. Described in “Calling an Executable Program on the
Server” on page 6-75.

� Perform Business Operation—Calls a pre-configured business operation,
representing a method on an EJB or Java class. Described in “Calling a Business
Operation” on page 6-77.

Calling an Executable Program on the Server

You can use the Call Program action to call an executable program on the WebLogic
Integration server. This action is always executed asynchronously, meaning that any
actions following this action in the workflow are executed simultaneously, without
waiting for the called program to complete.

6 Defining Actions

6-76 Using the WebLogic Integration Studio

Figure 6-40 Call Program Dialog Box

To call an executable program on the server:

1. In the Add Action dialog box, expand the Integration Actions folder, select Call
Program and click OK to display the Call Program dialog box.

2. In the Program field, enter the name of the executable file, including the
extension.

If you are running a DOS script file, such as a.cmd or .bat file that does not
include any DOS shell-specific commands (e.g., echo), do one of the following:

� If the WebLogic Integration server path, as set in your environment variables,
includes the path for this file, enter the full name of the file including
extension, for example: testscript.bat

� If the WebLogic Integration server path, as set in your environment variables,
does not include the path for this file, enter the fully qualified path and file
name, for example: c:\mydirectory\myfiles\testscript.bat

If you are running a DOS script file, such as a.cmd or .bat file that includes
DOS shell-specific commands (e.g., echo), enter the following:
c:\winnt\system32\cmd

3. In the Arguments field, enter a valid workflow expression, such as a variable
name, that will be evaluated at run time to produce the argument to pass to the
program.

Invoking Components

Using the WebLogic Integration Studio 6-77

If you are running a DOS script file, such as a.cmd or .bat file that includes
DOS shell-specific commands (e.g., echo), enter the following:
"/c start c:\\path\\filename.extension expression"

4. Click OK to add the Call Program action.

Calling a Business Operation

You use the Perform Business Operation action to call a method on a Java component,
such as an EJB or Java class, that performs a business activity.

The business operation you want to invoke must already be defined. Additionally, Java
Object, Session EJB, and Entity EJB variables must already be defined to store
references to the Java class or EJB instances whose methods are being called by the
business operation. For details about defining business operations, see “Configuring
Business Operations” on page 4-7. For details about defining variables, see “Working
with Variables” on page 5-28.

Also note that before you can perform business operations that call methods on EJBs
or non-static methods on Java classes, you must first call the business operation that
serves to create an instance of the Java class or EJB on the WebLogic Integration
server, according to the following rules:

� To call a business operation representing a static method on a Java class, you do
not need to call a constructor method.

� To call a business operation representing a non-static method on a Java class,
you must first call the business operation representing a constructor method for
the class. This business operation only needs to be called a single time in the
workflow.

� To call a business operation representing a method call on an Entity EJB, you
must first call the business operation that creates the EJB instance. This business
operation only needs to be called a single time in the workflow.

� To call a business operation representing a method call on a Session EJB—
stateless or stateful—you must first call the business operation that creates the
EJB instance. This business operation must be called once per transaction in
which other methods are invoked on that EJB. For information on transactions
and boundaries in a workflow, see “Understanding the BPM Transaction Model”
in Programming BPM Client Applications.

6 Defining Actions

6-78 Using the WebLogic Integration Studio

When you perform the business operation that creates the instance, you assign a
reference to the instance to a variable, called an instance variable. You then identify
the instance variable that references the EJB or Java class instance when calling other
business operations representing methods contained in the same EJB or class. More
information is provided in the following sections.

Calling the Business Operation to Create an EJB or Java Class Instance

When you call a business operation that creates an EJB or Java class instance, you must
assign a reference to the instance to a variable of the same data type, as follows:

� for a Java class, the instance variable must be a Java object type

� for a Session EJB, the instance variable must be a Session EJB type

� for an Entity EJB, the instance variable must be an Entity EJB type

Figure 6-41 Perform Business Operation Dialog Box

Invoking Components

Using the WebLogic Integration Studio 6-79

To call a business operation to create an EJB or Java class instance:

1. From the Integration Actions folder in the Add Action dialog box, select Perform
Business Operation and click OK to display the Perform Business Operation dialog
box.

2. From the Operation drop-down list, select the business operation that creates the
Java class or EJB instance.

3. From the Assign Result drop-down list, select the instance variable for this
business operation, or click Add to invoke the Create Variable dialog box and
create the variable. The variable type must correspond to the type of component
being created.

4. Click OK to add the Perform Business Operation action.

Calling Other Business Operations

Once the Perform Business Operation for the create() or constructor method of an
EJB or Java class has been added to a node, you can add other business operations that
invoke methods on the same class or EJB.

For methods that take parameters and return results, such as, for example, a calculated
total price, you also need to create a variable that will store the value returned by the
business operation. Be sure that this variable is of the same type as that specified by
the method.

6 Defining Actions

6-80 Using the WebLogic Integration Studio

Figure 6-42 Perform Business Operation Dialog Box

To call other business operations:

1. From the Integration Actions folder in the Add Action dialog box, select Perform
Business Operation and click OK to display the Perform Business Operation dialog
box.

2. From the Operation drop-down list, select the business operation representing the
business logic you want to execute. For business operations invoking methods on
EJBs, or non-static Java class methods, the Instance Variable drop-down list is
populated with Java Object, Session EJB or Entity EJB variables.

3. From the Instance Variable drop-down list, select the variable that you have
designated to store the reference to the EJB or Java class, as specified in “Calling
the Business Operation to Create an EJB or Java Class Instance” on page 6-78.

Posting an XML Message to a JMS Topic or Queue

Using the WebLogic Integration Studio 6-81

4. If the business operation displays parameters in the Parameters list, select a
parameter from the list and click Update, and use the invoked Expression Builder
dialog box to define this value. Typically this value will be provided by a
workflow variable you have already defined.

5. If the business operation returns a result, from the Assign Result To drop-down
list, select the variable to which the result will be assigned, or click Add to
invoke the Create Variable dialog box and define the variable. The variable type
must match that specified by the method.

6. Click OK to add the Perform Business Operation action.

Posting an XML Message to a JMS Topic or
Queue

Use the Post XML Event action to send an XML message to a specified destination to
trigger an event. This action can either create a new XML document, or use the content
of an existing XML-type variable in the workflow; either way it embeds the XML
content inside a JMS message that can be posted to an external JMS queue or topic for
processing by an external application, or to an internal queue for processing by another
workflow.

Note: If you are running WebLogic Integration in a clustered environment, posting
an XML event to initiate another workflow is preferred over calling the
workflow directly with a Start Workflow action, as this method provides better
load balancing control.

You can compose the XML document to be sent, or import an existing XML document
from the XML repository, a file on disk, or a URL. You can also specify the document
to be sent as a variable in which the XML content can be specified at run-time.

In addition to XML message content, the Post XML Event action also inserts JMS
headers and values into the message according to options that you specify in the
action’s properties. For information on standard JMS header fields in WebLogic
Server, see “WebLogic JMS Fundamentals” in Programming WebLogic JMS at the
following URL: http://edocs.bea.com/wls/docs61/jms/fund.html

6 Defining Actions

6-82 Using the WebLogic Integration Studio

JMS messaging options are described in the following sections.

Posting an Event Asynchronously or Synchronously

You can set up your XML event to function in an asynchronous or synchronous
manner in relation to workflows or other components that are configured to consume
outgoing messages. You do this using Event nodes in the workflow initiating the
communication to receive confirmation messages back from the recipient workflows.

By default, the Post XML Event action is asynchronous in that it simply posts a
message in a “fire and forget” fashion, while the workflow proceeds to the next action.
Thus, if you would like to trigger another workflow or application to be executed in
parallel, and the calling workflow does not need to receive any communication back
from the called workflow or application, simply use the action as is.

If you would like the calling workflow and the called workflow or application to
execute in parallel, but the calling workflow does expect to receive a message back
from the called workflow or application, you can set up an Event node in the calling
workflow that receives the message in a “just in time” fashion. That is, you can set up
an Event node only at the point in the workflow where the data returned by the called
workflow or application is required. These two scenarios are illustrated in the
following figure.

Posting an XML Message to a JMS Topic or Queue

Using the WebLogic Integration Studio 6-83

Figure 6-43 Posting an XML Event Asynchronously

If you want to post the XML event in a purely synchronous fashion, that is, to force the
calling workflow to wait until the called workflow or application has finished
executing before it proceeds, you must set up the called workflow or application to
send a message when it finishes executing, and place an Event node that listens for this
message immediately after the Post XML Event action in the calling workflow. This
design is illustrated in the following figure.

Post XML
Event

Post XML
Event

Calling
Workflow

Calling
Workflow

Called
Workflow

Called
Workflow

Post XML
Event

Parallel Execution of Workflows
with One-Way Communication

Parallel Execution of Workflows
with Two-Way Communication

Post XML
Event

6 Defining Actions

6-84 Using the WebLogic Integration Studio

Figure 6-44 Posting an Event Synchronously

Understanding JMS Messaging Options

The following sections discuss the various JMS messaging options that are available
from within the Post XML Event dialog box.

Destination

You can specify an internal JMS queue to trigger an Event node in the current
workflow or in another one, or to start another workflow defined with an
event-triggered Start. (For details about event triggers in Start and Event nodes, see
“Defining Event And Event-Triggered Start Properties” on page 5-38.) The JNDI
name of the internal JMS queue, to which messages are sent by default, is

Post XML
Event

Calling
Workflow

Post XML
Event

Called
Workflow

Blocking a Calling Workflow Until a
Called Workflow Executes

Posting an XML Message to a JMS Topic or Queue

Using the WebLogic Integration Studio 6-85

com.bea.wlpiEventQueue. If you have configured other queues in WebLogic
Server, you can also specify an alternate queue name. (For more information on setting
up alternate message queues for WebLogic Integration, see “Configuring a Custom
Java Message Service Queue” in “Customizing WebLogic Integration” in Starting,
Stopping, and Customizing BEA WebLogic Integration.)

You can also send the XML message to an external JMS topic or queue to
communicate with an external application that subscribes to the JMS topic you specify,
or with a specific application that is the JMS queue receiver.

Headers

JMS messages contain a standard set of header fields that are always transmitted with
the message. In addition to the JMSDeliveryMode, JMSDestination, JMSPriority,
and JMSExpiration (time to live) headers that are automatically inserted by the
options available in the Post XML Event dialog box, you can also add property fields
and values to your outgoing messages for application-specific information to specify
information in the message that is not appropriate for the body of the message. For
example, if you are using XML messaging to trigger another workflow, you may wish
to use a property field to specify the name of the organization in which the workflow
should start.

JMS message properties are name-value pairs. The name can be almost any string that
is a valid identifier in the Java language. The value can be any one of the following
types: Boolean, Byte, Short, Int, Long, Float, Double, or String.

For more information about JMS header and property fields, see “WebLogic JMS
Fundamentals” in Programming WebLogic JMS at the following URL:
http://edocs.bea.com/wls/docs61/jms/fund.html

If you use ordered or addressed messages, WebLogic Integration inserts property
fields for an order key you specify, for ordered messages, and workflow instance IDs
you specify, for addressed messages, based on the values you enter on the Addressing
tab of the Post XML Event dialog box options. However, you can also manually insert
two additional supported properties:

� WLPIInstanceIDs—a single variable, or a comma-separated list of variables
containing workflow instance IDs determined at run time. For example, either
of the following:

� $ParentID
� $Child1ID + “,” + $Child2ID + “,” + $Child3ID

6 Defining Actions

6-86 Using the WebLogic Integration Studio

� WLPITemplateNames—a single template name, or a comma-separated list of
template names, or variables containing template names determined at run time

This feature can be useful when you need to consolidate a list of workflow instances
or template names that have entered into a conversation with the current workflow and
which you want to pass via a single message to an external application.

If you intend the message to be received by another workflow, the receiving workflow
can use the EventAttribute() function in an event key expression or in a variable
initialization in a Start or Event node to retrieve the information you specified in the
property field. If multiple instance IDs or template names are specified, you must
assign the result of the function to a variable defined as a Java object data type.

For more information on event key expressions, see “Configuring Event Keys” on
page 4-18. For more information on initializing variables from event data, see
“Initializing Variables from Event Data” on page 5-45. For details about the
EventAttribute() function, see “Extracting Run-Time Event Data” on page 8-7.

Delivery Mode

You can specify whether a message is to be persistent or non-persistent. Persistent
messages are written to a database table and are not lost even if the JMS server fails.
The message is delivered again after the server recovers. Non-persistent messages can
be lost if the JMS server fails. The message is not delivered again after the server
recovers. The default delivery mode is persistent.

Time to live

Whether a message is persistent or non-persistent, you can specify an expiry time for
your message. If the message is not delivered before the expiry time, it is discarded.
This option is useful for messages that should not be delivered after a certain time, such
as a stock bid. The time to live is expressed in milliseconds. For example, if you want
the message to be available for 1 hour, you specify a value of 3600000 (1000
milliseconds x 60 seconds x 60 minutes). The default value of 0 (zero) indicates that
the message will not expire.

If you specify an expiry time for an addressed message, the message is persisted until
the message is successfully delivered to all specified recipients, or until it expires,
whichever comes first.

Posting an XML Message to a JMS Topic or Queue

Using the WebLogic Integration Studio 6-87

Priority

You can assign a priority level from 0 to 9. Levels 0-4 are normal priority. Levels 5-9
are expedited priority. Messages with an expedited priority are delivered ahead of
messages with a normal priority. You would typically use an expedited priority for an
alarm or shutdown message. The default priority level is 4.

Note that priority overrides ordered messaging, so that you must specify the same
priority level for all messages with the same order key. The recommended setting is to
keep the default of 4.

To use other priority levels, you must first configure a destination key in WebLogic
Server. For more information, see “Managing JMS” in the WebLogic Server
Administration Guide at the following URL:
http://edocs.bea.com/wls/docs61/adminguide/jms.html.

Transaction Mode

You can specify whether you want the message to be sent immediately, or when the
current transaction containing the Post XML Event action commits. Sending the
message immediately sends the message whether or not the transaction completes.
Sending the message on commit ensures that the message is sent only if the transaction
completes successfully and a commit is issued. If the transaction is unsuccessful and
is rolled back, the message is not sent. The default is when the transaction commits.
For more information on workflow transaction boundaries, see “Understanding the
BPM Transaction Model” in Programming BPM Client Applications.

Addressed Messaging

You can use addressed messaging to guarantee that a response message is delivered to
a particular workflow instance that has begun a conversation with the current
workflow (either by calling it via the Start Workflow action, or by triggering a Start or
Event node contained within it via a previously sent XML message) — even if the
receiving Event node in the instantiated workflow has not yet been activated in the
flow. (For information on node activation, see “Understanding the BPM Transaction
Model” in Programming BPM Client Applications.)

When you use addressed messaging, you typically provide a list of workflow instance
IDs to which the message should be delivered. These will have been sent from the
originating workflows via a WorkflowAttribute(“InstanceID”) expression
embedded in an XML message or as a parameter passed to the workflow via a Start

6 Defining Actions

6-88 Using the WebLogic Integration Studio

Workflow action, and then extracted and stored in a variable by a previous node in the
current workflow. The list of instance IDs, then, is typically a comma-separated list of
variables containing the appropriate IDs. The message will only be delivered to the
instances specified in this list.

Note: Workflow instance IDs are stored as strings, so if you want to create variables
to hold instance ID values, be sure that these variables are created as string
types. For more information on the workflow attribute functions, see
“Obtaining Run-time Workflow Data” on page 8-13.

Note that if you specify a time to live, the message will persist until the message has
been delivered to all specified recipients, or until the message expires, whichever
comes first.

Ordered Messaging

You can specify an order key that guarantees that messages are processed sequentially
by the same event listener in the order in which they are received. As an example, if an
order processing system receives requests to create an order and to update or cancel an
order, you may want to guarantee that create request messages are processed first.

An order key must be an integer value, and the value must be the same for each event
that you want processed in the order in which it is received. For example, if two events
are posted at the same time, and you want them processed in the order in which they
are received, you would enter the same order key value, such as the integer value of 8,
for each event. Ordered messages must also be sent to the same JMS queue.

Note that ordered messaging is incompatible with message priority, so that if you use
an order key, you must set the same priority level for all messages with the same order
key. The recommended setting is to keep the default of 4.

Defining the Post XML Event Action

To define the XML event:

1. From the Integration Actions folder in the Add Action dialog box, select Post XML
Event and click OK to display the Post XML Event dialog box.

Posting an XML Message to a JMS Topic or Queue

Using the WebLogic Integration Studio 6-89

Figure 6-45 Post XML Event Dialog Box: XML Message Tab

2. Select the XML Message tab to define the XML message you want this action to
send, by doing one of the following:

� If the XML document is stored in an XML type variable, select the variable
from the From XML Variable drop-down list. For details about XML type
variables, see “Working with Variables” on page 5-28.

� If you want to compose or load an existing XML document, select the By
Composing option. To create a new free-form document, click the Add Child
button to begin adding nodes. To specify an existing XML document, click
the Import button to load the document and edit as necessary. To create a
new type-specified XML document, click the Set Content Type button to

6 Defining Actions

6-90 Using the WebLogic Integration Studio

load a Schema document. For detailed procedures for all these options, see
“Composing and Editing XML Documents” on page 7-2.

 The XML document you define is stored in the workflow template definition.

3. Under the Destination tab, in the Destination options, select one of the following:

� Internal—sends the message to the default internal queue, wlpiEventQueue.

� JMS Topic—posts the message to an external topic. In the field, enter the
JNDI name of the topic surrounded in quotation marks, or enter an
expression that will determine the topic name at run time.

� JMS Queue—posts the message to an external queue, or an alternate internal
queue that you have configured in WebLogic Server. In the field, enter the
JNDI name of the queue surrounded in quotation marks, or enter an
expression that will determine the queue name at run time.

Note: For more information on constructing expressions, see Chapter 8, “Using
Workflow Expressions.”

Posting an XML Message to a JMS Topic or Queue

Using the WebLogic Integration Studio 6-91

Figure 6-46 Post XML Event Dialog Box: Destination Tab

4. Optionally, from the Transaction Mode options, select one of the following:

� When transaction commits — ensures that the message is sent only if the
transaction completes successfully and a commit is issued. If the transaction
is unsuccessful and is rolled back, the message is not sent.

� Immediately — sends the message immediately without waiting for the
transaction to complete.

5. Optionally, select the Message Header tab to specify any JMS message properties
you want to add to the message. (For information on workflow-specific
properties you can use, see “Headers” on page 6-85.) Click Add to display the Set
JMS Properties dialog box. In the dialog box, specify the following:

6 Defining Actions

6-92 Using the WebLogic Integration Studio

a. In the JMS Property field, specify the property name.

b. In the JMS Property Value field, enter the property value. Enter the value
directly, surrounded by quotation marks, or enter an expression that is evaluated
at run time to produce the value.

c. Click OK.

Figure 6-47 Set JMS Properties Dialog Box

6. Optionally, on the Message Header tab, specify a delivery mode, by selecting
from the following options:

� Persistent—writes the message to a database table and ensures that the
message will persist even in the event of a JMS server failure.

� Nonpersistent—does not persist the message. The message may be lost if the
JMS server fails.

Posting an XML Message to a JMS Topic or Queue

Using the WebLogic Integration Studio 6-93

Figure 6-48 Post XML Event Dialog Box: Message Header Tab

7. Optionally, on the Message Header tab, in the Time to live field, specify an
expiry time, in milliseconds, or select the Use expression check box and enter an
expression in the field that will be evaluated at run time to produce the value. A
value of 0 indicates that the message never expires.

8. Optionally, specify a message priority by selecting a value from 0 (lowest
priority) to 9 (highest priority) from the drop-down list, or select the Use
expression check box and enter an expression in the field that will be evaluated at
run time to produce the value.

Note: If you specify an order key for ordered messaging, leave the default value
of 4.

6 Defining Actions

6-94 Using the WebLogic Integration Studio

9. Optionally, to send an addressed message, select the Addressing tab to indicate
that you want to persist an XML message for one or more workflow instances.
Select the Addressed Message check box, and in the Instance ID field, enter a
single variable name, or a comma-separated list of variables, in which you have
stored workflow instance IDs previously in the current workflow. (For more
information, see “Addressed Messaging” on page 6-87.)

Figure 6-49 Post XML Event Dialog Box: Addressing Tab

Note: If you specify a Time to live in the Message Header area, the message
persists only for the time you specified.

Transforming XML Documents

Using the WebLogic Integration Studio 6-95

10. Optionally, to send an ordered message, on the Addressing tab, enter an order key
for the message that is the same as all other messages which you would like to
have processed sequentially. This value must be an integer, or an expression that
will determine the integer value at run time.

Note: If you specify an order key, leave the default value message priority value
of 4.

11. Click OK to add the Post XML Event action.

Transforming XML Documents

Extensible Stylesheet Language Transformations (XSLT) define rules for translating
an XML document into another XML or non-XML document. An XSL template
document specifies which elements in the input XML document are to be transformed,
and how they are to be transformed.

The XSL Transform action provides a way for you to specify an input XML document
that is to be transformed, an XSL template document that specifies the details of the
transformation, and an output variable that will contain the transformed document. The
actual transformation occurs at run time, and is performed by the XSL transformation
engine bundled with WebLogic Server.

The input document can contain workflow expressions. If it does, the process engine
resolves the expressions, and replaces the expression with the result before the
transformation occurs. Similarly, the XSL template document can contain references
to workflow variables. If it does, the process engine resolves the references, and
replaces the reference with the appropriate value before the transformation occurs.

Note that the input document is specified as an expression that identifies the location
of the document at run time. This expression could include the name of a workflow
variable in which you have stored an XML document. In this case, you will need to
have created an XML-type variable (for information, see “Working with Variables” on
page 5-28), and assigned an existing or incoming XML document to it previously in
the workflow—one way of doing this is by using the Set Workflow Variable action;
see “Setting a Variable Value” on page 6-21 for procedures.

6 Defining Actions

6-96 Using the WebLogic Integration Studio

The XSL template document, or transform document, can be an entity stored in the
repository (for more information, see “Managing Entities in the Repository” on page
4-23), or you can use an expression that locates the document at run time.If the XSL
entity in the repository or the XSL document to be located at run time takes parameters,
you can also specify expressions that will supply values for those parameters at run
time.

The output document must be stored in an XML or string variable which you can create
ahead of time. See “Creating a Variable” on page 5-30 for procedures.

Figure 6-50 XSL Transform Dialog Box

Transforming XML Documents

Using the WebLogic Integration Studio 6-97

To transform an XML document:

1. From the Integration Actions folder in the Add Action dialog box, select XSL
Transform and click OK to display the XSL Transform dialog box.

2. In the Input Document field, enter an expression that represents the XML
document you want to transform. The expression is evaluated at run time to
obtain the XML document. The expression could contain the name of a variable
in which you have previously stored the input document.

Note: For more information on constructing expressions, see Chapter 8, “Using
Workflow Expressions.”

3. In one of the Transform Document fields, specify the XSL template document
that is used to transform the input document. Select one of the following options:

� Expression — Enter an expression to be evaluated at run time to obtain the
XSL template document.

� Repository — Enter the name of an XSL template document stored in the
XML repository, or click the XML button to display the XML Finder dialog
box, to select the desired XSL file from the repository or a location specified
by a URL. For procedures on using the XML Finder to retrieve XML
entities, see “Retrieving XML Entities” on page 7-19.

4. If you selected to enter an expression for the XSL document, or specified an XSL
document that takes parameters, optionally, add parameters to be passed to the
transform document at run time by clicking Add to display the XSL Parameters
dialog box.

Figure 6-51 XSL Parameters Dialog box

5. In the Parameter field, enter the name of the parameter.

6 Defining Actions

6-98 Using the WebLogic Integration Studio

6. In the Expression field, enter an expression that is evaluated at run time to
produce the value of the parameter.

7. Click OK to add the parameter. The new parameter appears in the XSL
Parameters list.

8. Repeat steps 4 to 7 to add more parameters, or click Update or Delete to update
or delete existing parameters.

9. From the Output Variable drop-down list, select the variable that will contain the
transformed XML document. The variable must be an XML type variable. You
can also type the name of a variable. If it does not exist, you will be prompted to
create it. For details about defining variables, see “Working with Variables” on
page 5-28.

10. Click OK to add the action.

Handling Exceptions

All actions pertaining to exception handling are discussed in Chapter 9, “Handling
Workflow Exceptions.”

Using the WebLogic Integration Studio 7-1

CHAPTER

7 Working with XML
Entities

The following sections explain how to use the Studio to retrieve, compose and save
XML entities:

� Overview of XML Document Management Tasks

� Composing and Editing XML Documents

� Using the XML Finder to Retrieve and Export XML Entities

Overview of XML Document Management
Tasks

Several workflow actions contain a built-in XML editor that you can use to create, edit,
and export free-form and type-specified XML documents that are embedded in
workflows. The XML Finder helps you locate XML entities from various sources and
save them to different types of storage. Tasks related to managing the content and
storage of XML documents are described below.

� Optionally, import existing XML entities from the file system into the
repository. These include XML document templates or instances, and XML
Schema and DTD documents. Procedures are provided in “Managing Entities in
the Repository” on page 4-23.

7 Working with XML Entities

7-2 Using the WebLogic Integration Studio

Alternatively, import previously exported XML entities from existing workflow
packages. For details, see the procedures in “Importing Workflow Packages” on
page 11-5.

� Add the following actions to existing nodes or actions: Set Workflow Variable,
Post XML Event, Send XML to Client, XSL Transform, and Invoke Exception
Handler. For information on the first three actions, see Chapter 6, “Defining
Actions.” For information on the Invoke Exception Handler action, see
“Invoking an Exception Handler” on page 9-13.

� Compose, import, and edit XML documents from within action dialog boxes.
Procedures are given in “Composing and Editing XML Documents” on page
7-2.

� Optionally, use the XML Finder to retrieve XML entities from the file system or
the XML repository database for import into workflows. Procedures are given in
“Retrieving XML Entities” on page 7-19.

� Optionally, use the XML Finder to export XML documents embedded in
workflows to the file system or the XML repository database. Procedures are
given in “Exporting XML Entities” on page 7-25.

Note: You may also want to familiarize yourself with the workflow expression
language and the Studio’s Expression Builder tool before beginning to define
XML documents, since the dialog boxes in which you can create XML
documents require that you enter XML element values as expressions.
Complete information on workflow expressions is available in Chapter 8,
“Using Workflow Expressions.”

Composing and Editing XML Documents

The following action dialog boxes contain a built-in XML editor that you can use to
compose, import, and edit well-formed XML documents which are saved within the
workflow template definition:

� Set Workflow Variable

� Post XML Event

Composing and Editing XML Documents

Using the WebLogic Integration Studio 7-3

� Send XML to Client

� Invoke Exception Handler

Figure 7-1 XML Editor in Action Dialog Boxes

The XML editor presents XML documents in a tree structure consisting of nodes
comprising the following standard XML markup:

� Elements

� Attributes

� Comments

� CDATA sections

� Processing instructions

The left pane displays metadata, such as element and attribute tags, and the right pane
displays the actual data values for each tag.

The documents you create and edit in Studio dialog boxes are actually XML document
templates that are used to generate XML document instances at run time. This means
that you can use workflow expressions for elements and attributes to generate values
at run time, and you can invoke the Expression Builder from one of these nodes to help
you construct your expression. Element and attribute data must be formulated in
workflow expression syntax, so all strings must be enclosed in quotation marks. If the
value you enter is not a valid workflow expression, for example, a string not
surrounded by quotation marks, or a backslash not preceded by an escape character,

7 Working with XML Entities

7-4 Using the WebLogic Integration Studio

the icon appears in front of it. For information on the workflow expression
language, and on using the Expression Builder, see Chapter 8, “Using Workflow
Expressions.”

You can create new documents and edit existing ones in two modes: free-form mode
and content-type mode. In free-form mode, you simply compose and edit the document
with no validation against a content type. Use free-form mode when you want to
generate well-formed XML documents that do not need to conform to a specific
content type. More information about creating free-form XML documents is provided
in “Creating Free-Form Documents” on page 7-6.

In content-type mode, you specify the content type for a new or existing document by
loading an existing external Schema or DTD document against which the document is
validated. You can check the validity of the document as often as you like during the
composing or editing process. Complete information about working with
content-type-specified documents is provided in “Working with Type-Specified
Documents” on page 7-11.

You can also import existing free-form and type-specified documents from the
repository or a file on disk (see “Importing Existing Documents” on page 7-7), and add
a content type to an existing document (see “Setting a New Content Type for Existing
Documents” on page 7-15).

Finally, you can export document templates created or edited in the Studio to the
repository or a file on disk. For more information on exporting XML documents from
action dialog boxes, see “Exporting XML Entities” on page 7-25.

Dialog boxes that allow you to work with XML documents include a toolbar described
in the following table. Specific procedures for creating, importing, editing, and setting
the content type for XML documents are provided in the following sections.

Table 7-1 XML Editor Toolbar Buttons and Keyboard Shortcuts

Button Keyboard
Shortcut

Purpose

Ctrl+q Retrieves an existing XML document for editing from the
repository, a file on disk, or a URL location. For details,
see “Retrieving XML Entities” on page 7-19.

Composing and Editing XML Documents

Using the WebLogic Integration Studio 7-5

Ctrl+w Saves the XML message from the workflow to the
repository or a file on disk. For details, see “Exporting
XML Entities” on page 7-25.

Ctrl+t Retrieves a DTD or Schema document to set as the content
type for an XML document. For more information, see
“Working with Type-Specified Documents” on page
7-11.

Ctrl+k Displays the contents of the DTD or Schema file currently
set as the content type. For more information, see
“Validating Type-Specified Documents” on page 7-16.

Ctrl+l Checks whether the document is valid XML and conforms
to the current content type. For more information, see
“Validating Type-Specified Documents” on page 7-16.

Delete Deletes the selected node, or removes a content type
definition from the current document if the document type
declaration is selected.

Ctrl+Insert Adds an element node at the same level as a selected
element.

Insert Adds a root element node for the document, or an element
below the level of a selected element.

Ctrl+a Adds an attribute node to a selected element.

Ctrl+p Adds a processing instruction node.

Ctrl+m Adds a comment node.

Ctrl+n Adds a CDATA section node.

Table 7-1 XML Editor Toolbar Buttons and Keyboard Shortcuts

Button Keyboard
Shortcut

Purpose

7 Working with XML Entities

7-6 Using the WebLogic Integration Studio

Creating Free-Form Documents

To create a free-form document:

1. In the action dialog box containing the XML editor, click the Add Element button

 to add a root element to the document. The default element name is selected,
ready to be edited.

2. To rename the element, type over the default text element to enter a name.

3. To add a value to the element, in the right pane, double-click the field next to the
element, and type in a value, using workflow expression syntax.

4. Continue to add nodes and values to the document by using the toolbar buttons
listed in Table 7-1 or by following the procedures listed in “Editing XML
Documents” on page 7-9.

5. When you have finished composing your document, do any of the following:

� Optionally, export the document to the repository or to a file. Follow the
procedures in “Exporting XML Entities” on page 7-25.

Ctrl+Up arrow Moves a selected node up within a level.

Ctrl+Down
arrow

Moves a selected node down within a level.

Ctrl+Left arrow Moves a selected node down a level.

Ctrl+Right arrow Moves a selected node up a level.

Table 7-1 XML Editor Toolbar Buttons and Keyboard Shortcuts

Button Keyboard
Shortcut

Purpose

Composing and Editing XML Documents

Using the WebLogic Integration Studio 7-7

� Save the document in the workflow by clicking OK in the action dialog box.
If any elements or attributes do not contain valid workflow expressions as
values, you are prompted to correct them before the document can be saved.

� To discard the document from the workflow, click Cancel in the action dialog
box.

Importing Existing Documents

You can import both free-form and content-type-specified XML documents that you
have created and exported from the Studio’s XML editor or created by any other
method. For information about importing type-specified documents, see “About
Importing Type-Specified Documents” on page 7-12.

When you import an existing XML document into a workflow, the XML editor
distinguishes between two kinds of XML documents:

� XML documents that were previously exported from the Studio’s XML editor—
that is, workflow XML document templates containing element and attribute
values formulated in workflow expression syntax

� XML documents that were created by another method—that is, XML document
instances containing standard XML values

Workflow XML document templates created and exported from the Studio contain
element and attribute string values enclosed in quotation marks, while other document
instances usually do not. Thus, for XML documents not created in a Studio action
dialog box, you will be prompted to convert the document to an XML template. The
conversion process inserts quotation marks around all element and attribute values
where necessary, so that you do not have to do so.

Note: The Studio does not recognize XML documents exported from previous
versions of WebLogic Process Integrator as document templates, so you will
still be prompted to convert the these XML documents. To prevent the XML
editor from inserting an additional set of quotation marks, do not convert the
imported document.

To import an existing free-form or type-specified XML document:

7 Working with XML Entities

7-8 Using the WebLogic Integration Studio

1. From an action dialog box, click the Import button to display the XML
Finder.

2. Follow the procedures in “Retrieving XML Entities” on page 7-19 to use the
XML Finder to select a document from various sources. If the document is not
detected as a document template, the Enclose Values in Double Quotes message
prompt is displayed.

Figure 7-2 Enclose Values in Double Quotes Dialog Box

3. Respond as follows:

� If the document was created and exported from an earlier version of
WebLogic Process Integrator, click No.

� If the document was created by any other method, click Yes.

The document is imported into the editor.

4. Add and edit nodes and values as necessary, by using the toolbar buttons listed in
Table 7-1 or by following the procedures listed in “Editing XML Documents” on
page 7-9.

5. Optionally, for a type-specified document, validate the document by following
the procedures in “Validating Type-Specified Documents” on page 7-16.

6. Optionally, to import another document, and replace the current one, click the
Import button. When prompted to overwrite the current document, click Yes to
continue the import, or No to cancel.

7. When you have finished editing your document, do any of the following:

� Optionally export it to the repository or a file on disk. Follow the procedures
in “Exporting XML Entities” on page 7-25.

Composing and Editing XML Documents

Using the WebLogic Integration Studio 7-9

� Save the document in the workflow, by clicking OK in the action dialog box.
If any elements or attributes do not contain valid workflow expressions as
values, you are prompted to correct them before the document can be saved.

� To discard the document from the workflow, click Cancel in the action
dialog box.

Editing XML Documents

The following procedures are generalized for new or imported free-form or
content-type-specified documents. For additional procedures on type-specified
documents, see “Working with Type-Specified Documents” on page 7-11.

Table 7-2 Editing XML Documents

To . . . Perform This Action

Navigate through a
document

In the left pane, expand all nodes. Use the scroll bar on the
right-hand side of the right pane, or press Tab or the up and
down arrow keys, to move up and down within the document.

Add the first element of a
free-form document

Click the Add Child button, or press Insert.

Add a sub-element to an
element

In the left pane, select the element, then click the Add Child
button or press Insert.

Add an element at the same
level as another element

In the left pane, select the element, then click the Add Sibling
button or press Ctrl+Insert.

Edit an element name In the left pane, double-click the element to display an entry
field. Change the element name as appropriate.

Add an attribute to an
element

In the left pane, select the element, then click the Add Attribute
button, or press Ctrl+a.

Edit an attribute name In the left pane, double-click the attribute to display an entry
field. Change the attribute name as appropriate.

7 Working with XML Entities

7-10 Using the WebLogic Integration Studio

Edit a value for an element
or attribute

In the right pane, double-click the line next to the element or
attribute for which you want to add or edit the value. An entry
field is displayed. Type the value, or click the Expression
button to invoke the Expression Builder to construct a valid
workflow expression. String literals must be enclosed in double
quotes. If the syntax is incorrect, a red X appears next to the
entry. For details about defining workflow expressions, see
Chapter 8, “Using Workflow Expressions.”

Add a comment node In the left pane, select the element after which the comment
will appear, then click the Add Comment button, or press
Ctrl+m.

Add a processing
instruction

In the left pane, select the element after which the processing
instruction will appear, then click the Add Processing
Instruction button, or press Ctrl+p.

Change a processing
instruction target

In the left pane, double-click the processing instruction to
display an entry field. Change the processing instruction target
as appropriate.

Add a CDATA section In the left pane, select the element after which the CDATA
section will appear, then click the Add CDATA button, or press
Ctrl+n.

Edit a value for a comment,
processing instruction, or
CDATA section

In the right pane, double-click the line next to the comment,
processing instruction, or CDATA icon for which you want to
edit the value. An entry field is displayed. Type the value.

Change the order of nodes Select the element, attribute, comment, processing instruction,
or CDATA section you want to move, and click the Move Node
Up or Move Node Down arrow, or press Ctrl+the up or down
arrow key.

Change the hierarchical
level of nodes

Select the element, comment, processing instruction, or
CDATA section whose level you want to change, and click the
Move Node Right or Move Node Left arrow, or press Ctrl+the
right or left arrow key.

Delete a node In the left or right pane, select the element or attribute you want
to delete, and click the Delete button, or press the Delete key.

Table 7-2 Editing XML Documents

To . . . Perform This Action

Composing and Editing XML Documents

Using the WebLogic Integration Studio 7-11

Working with Type-Specified Documents

You can create an XML document based on an existing external Schema or DTD.
Internal DTD declarations are not supported.

You can also import an existing document based on a Schema or DTD, and you can
set the content type for a document already loaded into the XML editor.

For detailed information on working with the DTDs to send XML messages to the
Worklist or custom client application, see “Sending an XML Message to the Worklist
Application” on page 6-61.

About Storing Referenced Schemas and DTDs

Because theWebLogic Integration server needs to be able to access a Schema or DTD
document associated with the XML document template at run time to create an XML
document instance, Schemas or DTDs to be referenced by Studio XML documents
must exist as XSD or DTD files in a location that can be accessed by a URL, or as
entities in the repository.

Warning: Keep in mind that if the URL points to a location not on the same machine
as the WebLogic Integration server, there is always a risk that the system
referenced by the URL may not be available at run time when the process
engine generates the XML document instance. In such an occurrence,
server exceptions will result. You should take care to store your XSD and
DTD files in locations that can be reliably accessed at run time, such as on
the file system of the WebLogic Integration server. Also ensure that the
URLs you use remain valid at run time and point to the correct location of
the required resources.

You may find that storing DTD and Schema resources in the repository is a convenient
way to retrieve commonly accessed documents. For procedures on importing
resources into the repository, see “Managing Entities in the Repository” on page 4-23.

On the other hand, you should also keep in mind that if you are planning to export
newly created documents, or re-export imported documents, references to Schemas or
DTDs held in the repository are only identified by the entity name in the content type
declaration, and will not be resolved by third-party XML parsers. Thus, you will want
to ensure that your XSDs and DTDs are placed in an appropriate location depending
on whether an exported XML document will be used outside of WebLogic Integration
or not. If they are to be used outside of WebLogic Integration, we recommend storing

7 Working with XML Entities

7-12 Using the WebLogic Integration Studio

resources on a disk file and accessing them via URLs. If they are not going to be used
outside WebLogic Integration, we recommend storing resources in the XML
repository.

About Importing Type-Specified Documents

You can import an existing document that contains a document type declaration to an
external Schema or DTD document, but not to an internal one. However, you must
ensure that the referenced Schema or DTD is available for the WebLogic Integration
server to access at design time, and that the document type declaration uses a valid
URL to specify the document location. If the declaration only includes the name of the
document, but not the full location, the WebLogic Integration server will not be able
to resolve the reference, and the document cannot be imported.

Another option is to store referenced DTD and Schema resources in the XML
repository. In this case, you may simply specify the name of the repository entity in the
document type declaration, and the WebLogic Integration server will resolve the
reference. For procedures on importing resources into the repository, see “Managing
Entities in the Repository” on page 4-23.

If you are planning to re-export the document you have imported, the run-time
considerations mentioned above also apply.

For procedures for importing type-specified documents, see “Importing Existing
Documents” on page 7-7.

Creating Type-Specified Documents

When you create a new XML document based on a Schema or DTD, the XML editor
creates a default document consisting of the following:

� For DTD-specified documents, a DOCTYPE node. The full text is not visible or
editable in the XML editor, but is generated in an exported document.

� For Schema-defined documents, an attribute within the root element, that
specifies the referenced Schema.

� All required elements and attributes, and one instance of optional elements and
attributes. You can add additional optional elements and attributes supported by
the content type definition.

Composing and Editing XML Documents

Using the WebLogic Integration Studio 7-13

� The default value for elements or attributes that specify a default value from a
predefined set of acceptable values. You can edit the value to specify another
value supported by the content type definition.

� A processing instruction whether the document is a workflow XML template.
The processing instruction is not visible, but is generated in an exported
document.

To create a new type-specified document:

1. In the action dialog box containing the XML editor, click the Set Content Type

button . The XML Finder is displayed.

2. Follow the procedures in “Retrieving XML Entities” on page 7-19 to use the
XML Finder to select a Schema or DTD document from the appropriate sources.
When the content-type document is retrieved, the Generate Default Document
message prompt is displayed.

Figure 7-3 Generate Default Document Dialog Box

3. Click Yes to generate a default document. The Select Root Element dialog box is
displayed, showing a list of all defined elements.

7 Working with XML Entities

7-14 Using the WebLogic Integration Studio

Figure 7-4 Select Root Element Dialog Box

4. Select the element that should be the root element of the document and click OK.
A default document is created. For a DTD-based document, a prolog with the
document type declaration is inserted above the root element. For a
Schema-based document, an attribute referencing the Schema is inserted in the
root element.

5. Add and edit nodes and values as necessary by using the toolbar buttons listed in
Table 7-1 or by following the procedures listed in “Editing XML Documents” on
page 7-9.

6. Validate your document by following the procedures in “Validating
Type-Specified Documents” on page 7-16.

7. When you have finished composing and validating your document, do any of the
following:

� Optionally export it to the repository or a file on disk. Follow the procedures
in “Exporting XML Entities” on page 7-25.

� Save the document in the workflow, by clicking OK in the action dialog box.
If any elements or attributes do not contain valid workflow expressions as
values, you are prompted to correct them before the document can be saved.

� To discard the document from the workflow, click Cancel in the action dialog
box.

Composing and Editing XML Documents

Using the WebLogic Integration Studio 7-15

Setting a New Content Type for Existing Documents

You can apply a content type definition to a document after you have created it or to
an existing document after import. You can also remove a content type from a
type-specified document, or change the content type for a new or existing
type-specified document.

To apply a content type definition to a free-form document:

1. Do one of the following:

� Create a new free-form document, as described in “Creating Free-Form
Documents” on page 7-6.

� Import an existing free-form document by following steps 1 to 3 in
“Importing Existing Documents” on page 7-7.

2. Click the Set Content Type button . The XML Finder is displayed.

3. Follow the procedures in “Retrieving XML Entities” on page 7-19 to use the
XML Finder to select a Schema or DTD document from the appropriate sources.
When the content-type document is retrieved, the Generate Default Document
message prompt is displayed.

Figure 7-5 Generate Default Document Dialog Box

4. Click No to preserve the existing document.

5. Continue to define your document, as described in “Editing XML Documents” on
page 7-9.

6. Validate your document, as described in “Validating Type-Specified Documents”
on page 7-16.

To remove a content type definition from a type-specified document:

7 Working with XML Entities

7-16 Using the WebLogic Integration Studio

1. For a Schema-specified document, select the root element attribute node
referencing the Schema. For a DTD-specified document, select the node containing
the content type definition, above the root element.

2. Click the Delete button . The content type definition is removed, and the
document becomes a free-form document.

To change the content type for a type-specified document:

1. For a Schema-specified document, select the root element attribute node
referencing the Schema. For a DTD-specified document, select the node containing
the content type definition, above the root element.

2. Select the node containing the content type definition, above the root element.

3. Click the Delete button . The content type definition is removed.

4. Click the Set Content Type button . The XML Finder is displayed.

5. Follow the procedures in “Retrieving XML Entities” on page 7-19 to use the
XML Finder to select a Schema or DTD document from the appropriate sources.
When the content-type document is retrieved, the Generate Default Document
message prompt is displayed.

6. Click No to preserve the existing document.

7. Continue to define your document, as described in “Editing XML Documents” on
page 7-9.

8. Validate your document, as described in “Validating Type-Specified Documents”
on page 7-16.

Validating Type-Specified Documents

While composing or editing a new or imported type-specified documents, you can
view the content of an Schema or DTD document set as the current content type, and
you can take advantage of the Studio validation feature that allows you to view the
source of errors and edit them simultaneously.

To view the content of the associated Schema or DTD:

Composing and Editing XML Documents

Using the WebLogic Integration Studio 7-17

1. Click the View Content Type Definition button . The Content Type Definition
window is displayed, showing the content of the current content type definition
document.

Figure 7-6 Content Type Definition Window

2. Click Close to close the window.

To validate a new or imported type-specified document against the content type
definition:

1. Click the Validate Document Structure button . A message is displayed,

informing you whether the document is valid. If there are errors in your document,
the Validation Errors dialog box appears, listing the nature and location of the error.

7 Working with XML Entities

7-18 Using the WebLogic Integration Studio

Figure 7-7 Validation Errors Dialog Box

2. Click Next or Prev to scroll through the list of errors, and edit the erroneous
node.

3. When done, click Close to close the dialog box.

4. Click the Validate Document Structure button again to re-validate the document,
and repeat steps 1 to 3 until you receive the Valid Document message.

5. Click OK to close the Valid Document message box.

Using the XML Finder to Retrieve and Export
XML Entities

The XML Finder dialog box allows you to retrieve from and save XML entities to the
repository, the local file system, or a URL. The dialog box also maintains a list of the
XML entities you used most recently, so you do not have to search for them if you want
to use them again.

XML entities can be XML documents, Document Type Definitions (DTD), Schema
documents (XSD), Message Language Format (MFL) files, and Extensible Stylesheet
Language (XSL) template documents.

You can access the XML Finder several ways. Different operations are available
depending on the way you access the XML Finder, and whether you are retrieving or
saving a document. These topics are described in the following sections.

Using the XML Finder to Retrieve and Export XML Entities

Using the WebLogic Integration Studio 7-19

Retrieving XML Entities

You can retrieve and load XML entities into the following dialog boxes:

� From the Set Workflow Variable, Send XML to Client, Post XML Event and
Invoke Exception Handler action dialog boxes, you can retrieve existing XML
documents from the repository, the local file system, or a URL, for editing
within the dialog box. You can retrieve existing DTD or Schema documents
from the repository or a URL, to set the content type for a document you
compose or edit.

� From the XSL Transform dialog box, you can retrieve the name of an XSL
document to use as a transform document from the repository or a URL.

� From the XPath Wizard you can open any XML entity from the repository, the
local file system, or a URL, to generate and test XPath expressions.

� By choosing Tools→Show XML Finder, you can import XML entities from the
local file system or a URL into the repository. For details, see “Managing
Entities in the Repository” on page 4-23.

Retrieving the Most Recently Used XML Entities

The XML Finder maintains a list of the XML entities you used most recently on your
workstation. You can re-use the entities in the list without having to search for them
again.

To retrieve an entity from the most recently used list:

1. Open the XML Finder by doing one of the following:

� From the Set Workflow Variable, Send XML to Client, Post XML Event and

Invoke Exception Handler action dialog boxes, click the Import button
to retrieve an XML document.

� From the XPath Wizard, click the Open button.

Note: The Recent tab is unavailable from the XSL Transform dialog box, and
from dialog boxes where you can open a Schema or DTD document,
because these actions create an XML document instance at run time.

7 Working with XML Entities

7-20 Using the WebLogic Integration Studio

Specifying a recent entity is not appropriate in these cases because the
process engine cannot access the file at run time.

2. In the XML Finder dialog box, select the Recent tab. Disk files are identified by
filename and location. repository entities are identified by entity name.

Figure 7-8 XML Finder: Recent Tab

3. Select the entity you want to use.

4. Optionally, to see the contents of the entity, click Preview to display the Preview
Document window. Click OK to close the window.

5. To return the entity to the original dialog box, click OK.

Retrieving from the Repository

To retrieve an entity from the repository:

1. Open the XML Finder by doing one of the following:

Using the XML Finder to Retrieve and Export XML Entities

Using the WebLogic Integration Studio 7-21

� From the Set Workflow Variable, Send XML to Client, Post XML Event and

Invoke Exception Handler action dialog boxes, click the Import button

to retrieve an XML document, or click the Set Content Type button to
retrieve a DTD or Schema document.

� From the XSL Transform dialog box, click the XML button.

� From the XPath Wizard, click the Open button.

2. In the XML Finder dialog box, select the Repository tab.

3. Select the folder from which you want to retrieve an XML entity.

Figure 7-9 XML Finder: Repository Tab

4. In the top-most panel on the right, select the entity you want to retrieve.

5. Optionally, to see the contents of the entity, click Preview to display the Preview
Document window. Click OK to close the window.

7 Working with XML Entities

7-22 Using the WebLogic Integration Studio

6. To return the entity to the original dialog box, click OK.

Retrieving from the File System

You can retrieve content from a file on a local disk drive or any network drive mapped
to the local machine.

To retrieve an entity from the local file system:

1. Open the XML Finder by doing one of the following:

� From the Set Workflow Variable, Send XML to Client, Post XML Event and

Invoke Exception Handler action dialog boxes, click the Import button
to retrieve an XML document.

� From the XPath Wizard, click the Open button.

Note: The File tab is unavailable from the XSL Transform dialog box, and from
dialog boxes where you can open a Schema or DTD document, because
these actions create an XML document instance at run time. Specifying a
file on the local file system is not appropriate in these cases because the
process engine cannot access the local file system at run time.

2. In the XML Finder dialog box, select the File tab.

Using the XML Finder to Retrieve and Export XML Entities

Using the WebLogic Integration Studio 7-23

Figure 7-10 XML Finder: File Tab

3. In the Look in field, specify the drive and folder from which you want to obtain
the XML entity. If necessary, use the buttons to the right of the Look in field.

4. From the file list, select the entity you want to retrieve.

5. Optionally, to see the contents of the entity, click Preview to display the Preview
Document window. Click OK to close the window.

6. To return the entity to the original dialog box, click OK.

Retrieving from a URL

You can use a URL to specify a location on a local machine, remote machine on a
network, or other external systems. Remote locations must be mapped to a drive on the
local machine.

To retrieve an entity from a URL:

1. Open the XML Finder by doing one of the following:

7 Working with XML Entities

7-24 Using the WebLogic Integration Studio

� From the Set Workflow Variable, Send XML to Client, Post XML Event and

Invoke Exception Handler action dialog boxes, click the Import button

to retrieve an XML document, or click the Set Content Type button to
retrieve a DTD or Schema document.

� From the XSL Transform dialog box, click the XML button.

� From the XPath Wizard, click the Open button.

2. In the XML Finder dialog box, select the URL tab.

Figure 7-11 XML Finder: URL Tab

3. In the URL field, enter the complete URL, including the protocol, server, path
and filename, of the XML entity you want to retrieve.

4. Optionally, to see the contents of the entity, click Preview to display the Preview
Document window. Click OK to close the window.

Using the XML Finder to Retrieve and Export XML Entities

Using the WebLogic Integration Studio 7-25

5. To return the entity to the original dialog box, click OK.

Exporting XML Entities

You can save XML documents created within the Studio from the following dialog
boxes:

� From the Set Workflow Variable, Send XML to Client, Post XML Event and
Invoke Exception Handler action dialog boxes, you can save XML documents
you compose within the action to the repository or the local file system for reuse
in other workflow actions, nodes, or even template definitions.

� By choosing Tools→Show XML Finder, you can export XML entities stored in
the XML repository to the file system. For details, see “Managing Entities in the
Repository” on page 4-23.

Documents exported from action dialog boxes are formatted with the standard XML
escape sequences (") representing quotation marks around element and attribute
values. For content-type-specified documents, a prolog including the DOCTYPE and
an epilog indicating the validity are also inserted.

Exporting to the Repository

When you export an XML document template from an action dialog box to the
repository, the entry is created in two steps. First, an empty entity is created. Then, the
entity is populated with the content of the document template. For this reason, it is not
possible to preview the document until after it has actually been populated with
content, which occurs when you exit the XML Finder.

To save an entity from an Action dialog box to the repository:

1. From the Set Workflow Variable, Send XML to Client, Post XML Event and

Invoke Exception Handler action dialog boxes, click the Export button . The
XML Finder appears.

2. Select the Repository tab.

3. In the left pane, right-click the folder in which you want to save the entity, and
from the pop-up menu, select Add Entity. The Add Entity dialog box appears.

7 Working with XML Entities

7-26 Using the WebLogic Integration Studio

4. In the Name field, enter a unique name for the entity you are adding.

Figure 7-12 Add Entity Dialog Box

5. Using the Type drop-down list, select the type of entity you are adding.

6. Optionally, enter a description and notes about the entity in the Description and
Notes fields, respectively.

7. Click OK. The entity appears in the top right window of the XML Finder.

8. Click OK to exit the XML Finder. The entity has now been created in the
repository.

Exporting to the File System

From action dialog boxes, you can save the XML documents you create or edit as .xml
files on a local disk drive or any remote drive mapped on the local machine.

To save an entity to a file on disk:

Using the XML Finder to Retrieve and Export XML Entities

Using the WebLogic Integration Studio 7-27

1. From the Set Workflow Variable, Send XML to Client, Post XML Event and

Invoke Exception Handler action dialog boxes, click the Export button . The
XML Finder appears.

2. In the XML Finder, select the File tab.

Figure 7-13 XML Finder: File Tab

3. In the Look in field, specify the drive and folder in which you want to save the
XML entity. If necessary, use the buttons to the right of the Look in field.

4. In the File name field, enter the name of the file you want to create, and add the
.xml extension. If the file already exists, you are prompted with a warning
message. Click Yes to overwrite the file, No to enter a new filename, or Cancel to
cancel the export.

5. Click OK to save the file and exit the XML Finder.

7 Working with XML Entities

7-28 Using the WebLogic Integration Studio

Exporting to a Recently Accessed File

You can only use the Recent tab to export to and overwrite an already existing file.

To save an entity to a recently accessed file:

1. From the Set Workflow Variable, Send XML to Client, Post XML Event and

Invoke Exception Handler action dialog boxes, click the Export button . The
XML Finder appears.

2. In the XML Finder, select the Recent tab.

3. In the list of entities, select the XML file or repository entity you want to
overwrite.

4. Click OK to save the file and exit the XML Finder.

Exporting to a File Located by a URL

You can only use the URL tab to export to and overwrite an already existing file that
can be located by a URL.

To save an entity to an existing file located by a URL:

1. From the Set Workflow Variable, Send XML to Client, Post XML Event and

Invoke Exception Handler action dialog boxes, click the Export button . The
XML Finder appears.

2. In the XML Finder, select the URL tab.

3. In the URL field, enter the complete URL, including the protocol, server, path
and filename, of the XML file you want to overwrite.

4. Click OK to save the file and exit the XML Finder.

Using the WebLogic Integration Studio 8-1

CHAPTER

8 Using Workflow
Expressions

The following sections explain the workflow expression language, and how to use the
Expression Builder and XPath Wizard to generate workflow expressions:

� About Workflow Expressions

� Using Literals

� Using Variables

� Using Operators

� Using Functions

� Data Type Conversions for Variable Assignment

� Using the Expression Builder

� Creating XPath Expressions Using the XPath Wizard

8 Using Workflow Expressions

8-2 Using the WebLogic Integration Studio

About Workflow Expressions

Wherever you see the Expression button next to a field in a Studio dialog box,
this indicates that the field requires an entry formulated in the workflow expression
language. Expressions are used throughout the Studio to create template definition
labels, define conditions in decision nodes and events, configure event keys, and to
specify information that will be provided at run time.

A workflow expression is an algebraic expression that defines a calculation that the
system performs at run time, and is made up of literals, such as strings, integers and
other constants, workflow variables, operators, and workflow functions. Workflow
expression syntax allows you to manipulate strings, test for relationships and
conditions, perform arithmetic calculations, use functions that obtain run-time
information from workflows or XML messages, and so on.

The result of an expression may be a string, integer, double, date/time value, or
Boolean values. Expressions that yield a Boolean result are referred to as conditional
expressions or conditions.

The Studio also provides two tools to help you construct expressions: the Expression
Builder, which provides syntax checking and error information (described in “Using
the Expression Builder” on page 8-28), and the XPath Wizard, which you use to
generate XPath expressions from sample XML documents (described in “Creating
XPath Expressions Using the XPath Wizard” on page 8-31).

The following sections provide the syntax for literals, operators, and workflow
variables, and introduce the use and syntax of built-in functions.

Using Literals

Expressions can contain literal values or constants. The following table describes the
available literals.

Using Literals

Using the WebLogic Integration Studio 8-3

Note: Date literals can only be used to set date-type variables. They cannot be used
in functions or expressions used in any other contexts.

Table 8-1 Literal Usage

Literal
Type

Format Description Example

String “string” or ‘string’ A character string enclosed in
single or double quotes. Use the
following escape sequences to
embed special characters in the
string:

\r carriage return character
\n line feed character
\’ single quote character
\” double quote character
\f form-feed character
\t tab character
\\ back slash character
\0 ASCII null character

“cancelled”

Integer [+|-] digits A 32-bit signed integer in the range
-2,147,483,647 to +2,147,483,648
(approximately 9 digits or
precision)

5000

Double [+|-]digits[.[digits]] A 64-bit IEEE double in the range
–253 x 10104 to + 253 x 10104
(approximately 15 digits of
precision)

5000.00

Date “MM/dd/yyyy hh:mm:ss
AM|PM
GMT[+|-]hh:mm:ss”

"10/01/2001
12:11:11 AM
GMT-04:00"

8 Using Workflow Expressions

8-4 Using the WebLogic Integration Studio

Using Variables

An expression can contain references to any workflow variable defined in a current
workflow.

A workflow variable reference can use any one of the following syntaxes:

� :variable

� :’variable’

� :"variable"

� $variable

� $'variable'

� $"variable"

Using Operators

The following table describes the available operator values.

Table 8-2 Operator Usage

Operator Symbol Syntax Operand(s) Result

AND AND expr1 AND expr2 Logical True if expr1 and expr2 are both
True; otherwise False

OR OR expr1 OR expr2 Logical True if either expr1 or both
expr1 and expr2 are True;
otherwise False

XOR XOR expr1 XOR expr2 Logical True if either but not both expr1
or expr2 are True; otherwise
False

NOT NOT NOT expr Logical True if expr is False; otherwise
False

Using Operators

Using the WebLogic Integration Studio 8-5

(parentheses) () (expr) Any expression Evaluates expr first

Multiply * expr1 * expr2 Numeric Numeric product

Divide / expr1 / expr2 Numeric Numeric quotient

Modulo % expr1 % expr2 Numeric Numeric modulus (remainder
when expr1 divided by expr2)

Plus + + expr

expr1 + expr2

Numeric
String or numeric

Unary plus
String concatenation or numeric
addition

Minus - - expr

expr1 – expr2

Numeric
Numeric

Unary minus (negates expr)
Subtraction

Less than < expr1 < expr2 String or numeric Logical True if expr1 is less than
expr2; otherwise False

Less than or
equal to

<= expr1 <= expr2 String or numeric Logical True if expr1 is less than
or equal to expr2; otherwise
False

Equal to = expr1 = expr2 String or numeric Logical True if expr1 is equal to
expr2; otherwise False

Not equal to <> expr1 <> expr2 String or numeric Logical True if expr1 is not
equal to expr2; otherwise False

Greater than > expr1 > expr2 String or numeric Logical True if expr1 is greater
than expr2; otherwise False

Greater than or
equal to

>= expr1 >= expr2 String or numeric Logical True if expr1 is greater
than or equal to expr2; otherwise
False

Table 8-2 Operator Usage

Operator Symbol Syntax Operand(s) Result

8 Using Workflow Expressions

8-6 Using the WebLogic Integration Studio

Using Functions

Functions are built-in expressions you can use to get run-time data. You can use
functions for various purposes, such as typecasting variables, identifying workflow
information, and performing operations on data. Many functions also allow you to
specify built-in attributes that return specific workflow and system data at run time.

The following sections group workflow functions by category. In the listings, typical
function attributes are given in parentheses. Note, however, that functions can contain
other functions and expressions, and attributes can also be expressed as embedded
expressions.

Note: In addition to the default functions listed in this section, there may also be
plug-in functions that you can use.

If you want to assign the results of functions to variables or compare the results of two
functions, you will need to ensure that the data types match. Thus, return types are also
listed in the following function descriptions.

Obtaining Run-time System Data

Use the functions listed in this section to obtain system information at run-time:

� Date()

Using Functions

Using the WebLogic Integration Studio 8-7

Date()

Extracting Run-Time Event Data

You can use the following functions for obtaining properties and extracting content
from the header or XML body of JMS messages destined for workflows:

� EventAttribute()

� EventData()

� XPath()

Description Returns the current system date and time at the moment
the expression is evaluated, such as the activation of a
node, or the execution of an action.

Format Date()

Return type Java Date object
To format the return value as a string, wrap the Date()
function in a DateToString() function and specify the
format. For information, see “DateToString()” on page 8-18.

8 Using Workflow Expressions

8-8 Using the WebLogic Integration Studio

 EventAttribute()

Description Obtains event properties from an incoming JMS message
or plug-in-defined event.

Format EventAttribute(expression)

expression is an expression that returns the name of the JMS
header or property field. For information on these, see
“WebLogic JMS Fundamentals” in Programming WebLogic
JMS at the following URL:
http://edocs.bea.com/wls/docs61/jms/fund.html

Note: EventAttribute() should only be used in the
following contexts, where an incoming JMS
message is consumed:

� Event nodes

� Event-triggered Start nodes

� Event Key Expression configurations

Example EventAttribute(“JMSDestination”)

Return type Java Object

Using Functions

Using the WebLogic Integration Studio 8-9

EventData()

Description Retrieve the actual message content of an incoming JMS
message, or plug-in-defined event. The content could be
an XML document.

Note: EventData() should only be used in the
following contexts, where an incoming JMS
message is consumed:

� Event nodes

� Event-triggered Start nodes

� Event Key Expression configurations

Format EventData()

Return type Java Object

8 Using Workflow Expressions

8-10 Using the WebLogic Integration Studio

XPath()

Description Extracts content from XML documents.

Format XPath(“xpathstring”, [,xmldocument])

xpathstring is the XPath language expression
xmldocument is an expression that yields the XML document
against which the XPath expression is evaluated. This may be a
string containing the source text of a valid XML document, or
more typically, a reference to an XML or string variable
containing the XML text. This parameter is optional. If it is not
specified, the XML document is assumed to be the incoming
XML event.

Note: If you do not specify a variable containing an
XML document, the XPath() function should
only be used in the following contexts, where the
identity of the incoming XML document is
known:

� Event nodes

� Event-triggered Start nodes

� Event Key Expression configurations

� Send XML to Client action

� Exception Handler receiving an XML
document from the Invoke Exception
Handler action

Example see below

Return type DOM object
Typically you will use the XPath language’s text() function
inside a workflow XPath function expression (see below for
more information), which returns a Node List. Other XPath
functions, however, can return Double, Boolean, String, and
Integer types.

Using Functions

Using the WebLogic Integration Studio 8-11

XPath is a language for addressing parts of an XML document. It provides basic
facilities for the manipulation of strings, numbers, and Booleans. XPath gets its name
from its use of a path notation as in URLs for navigating through the hierarchical
structure of an XML document. To obtain the official specifications of the XPath
language, refer to the following Internet site: http://www.w3.org/TR/xpath.html

To obtain a quick reference guide to XPath notations and functions, refer to the
following Internet site: http://www.mulberrytech.com/quickref/XSLTquickref.pdf

The following are examples of the most common uses of XPath for retrieving text
values from nodes, attribute values, selecting sub-trees, selecting nodes by attribute
value and so on from an XML document. Consider the XML document in the
following listing:

Listing 8-1 Sample XML Document

<?xml version="1.0"?>
<a>
<b name="bill">This is the first value
<c>

<d id="d1">This is the second value</d>
<d id="d2">This is the third value</d>
<d id="d3">This is the fourth value</d>
<d id="d4">This is the fifth value</d>

</c>

To select the textual value of the element (i.e., "This is the first value"):

XPath("/a/b/text()")

To select the textual value of the <d> element whose ID attribute has the
value "d3" (i.e., "This is the fourth value"):

XPath("/a/c/d[@id=\"d3\"]/text()")

To select the textual value of the second <d> element (i.e., "This is the third value"):

XPath("/a/c/d[2]/text()")

To select the value of the name attribute of the element (i.e., "bill"):

XPath("/a/b/@name")

8 Using Workflow Expressions

8-12 Using the WebLogic Integration Studio

To select the entire <c> subtree:

<c>
<d id="d1">This is the second value</d>
<d id="d2">This is the third value</d>
<d id="d3">This is the fourth value</d>
<d id="d4">This is the fifth value</d>

</c>)
XPath("/a/c")

Note: To create XPath expressions, you can either type them yourself, or you can use
the XPath Wizard. For details about using the wizard, see “Creating XPath
Expressions Using the XPath Wizard” on page 8-31.

XML Element Dot Notation

For variable initialization purposes, in Start or Event Properties, Exception Handler
Properties, and Send XML to Client, you can also use a simpler dot notation to obtain
element data from an XML document, with the following syntax:

root_element.subelement1.subelement2.subelement3 . . .

Consider the following sample XML document:

Listing 8-2 Sample XML Document

<account>
<number>847365</number>
<customer>John Doe</customer>
<balance>

<status>past due</status>
<date_due>7-11-2001</date_due>
<amount_due>5670.85</amount_due>

</balance>
<credit_limit>7500.00</credit_limit>

</account>

In this example, to retrieve the value past due, you would use the following expression:

account.balance.status

Using Functions

Using the WebLogic Integration Studio 8-13

Note that you cannot use this notation to obtain attribute values, and that the root
element must begin the expression. You cannot begin the expression with a
sub-element.

Note also that this notation always returns a string, and not be used with typecasting
functions to return any other data type.

Obtaining Run-time Workflow Data

Use the functions listed in this section to obtain run-time data from workflows:

� CurrentUser()

� TaskAttribute()

� WorkflowAttribute()

� WorkflowVariable()

CurrentUser()

Description Returns the ID (user name) of the user currently executing
a task.

Format CurrentUser()

Return type String

8 Using Workflow Expressions

8-14 Using the WebLogic Integration Studio

TaskAttribute()

Note: If you try to use an atrribute other than the ones listed in the above table, the
server will throw an exception.

Description Provides information about a workflow task.

Format TaskAttribute(“attribute”
[,”taskname”])
attribute is the task attribute. The following
attributes may be used.

Function Attribute Information Return Type

TaskId System-defined task instance
ID

String

Assignee User or role ID of assignee String

Priority Priority set by the user Integer

Due Task overdue date Date

Name Name of task String

Started Task start date/time Date

Completed Completed date/time Date

Comment Task comment set by the user String

taskname may be used to specify a task other than
the current one in which the expression is defined.

Note: Only tasks in the same workflow may be
specified.

Using Functions

Using the WebLogic Integration Studio 8-15

WorkflowAttribute()

Description Provides information about the current workflow only.

Format WorkflowAttribute(“attribute”)

attribute is the workflow attribute. The following attributes may be used.

Function Attribute Information Return
Type

InstanceId System-defined workflow instance ID String

TemplateId System-define workflow template ID String

TemplateDefinitionI
d

System-defined workflow template definition ID String

Initiator Workflow initiator String

ParentId System-defined workflow instance ID of a parent workflow instance
for a called workflow instance

String

Name Template name set by the user String

Started Start date/time Date

Completed Completed date/time Date

Label

Id

Template definition label set by the user String

Comment Workflow comment set by the user String

ExceptionType

ErrorType

Name of Java exception class that raised the error String

ExceptionNumber

ErrorNumber

Message number of the error being handled by the exception
handler.
For a list of workflow error messages by number and text, see
“System Error Messages” on page 9-15.

Integer

8 Using Workflow Expressions

8-16 Using the WebLogic Integration Studio

Note: If you try to use an atrribute other than the ones listed in the above table, the
server will throw an exception.

WorkflowVariable()

ExceptionSeverity

ErrorSeverity

Five integer values:
� 0: Unknown error type, internal use only
� 1: A fatal exception occurred while processing a user request
� 2: A fatal, illegal condition such as inconsistent workflow state
� 3: A non-fatal workflow condition that the user can rectify

manually
� 4: A custom error raised either by an application calling

WorkflowProcessor.invokeWorkfowErrorHandler,
or by a workflow executing the Invoke Error handler action

Note: Value is set to 4 when a workflow invokes an exception
handler via the Invoke Error Handler action or via the API.

Integer

ExceptionText

ErrorText

Message text of the error being handled by the exception handler
For a list of workflow error messages by number and text, see
“System Error Messages” on page 9-15.

String

ExceptionObject

ErrorObject

The exception object being handled by the exception handler. Exception
Object

Description Returns the value of a workflow variable for a particular
workflow instance.

Using Functions

Using the WebLogic Integration Studio 8-17

Converting Data Types

You can use several functions to convert the return type of one expression to another.
For information on workflow type conversion rules, see “Data Type Conversions for
Variable Assignment” on page 8-25.

� DateToString()

� StringToDate()

� ToInteger()

� ToString()

Format workflowVariable(instanceid, variable)

instanceid is the workflow instance ID, which would
normally be represented by a string-type variable which has
been populated with a value provided by the
WorkflowAttribute(“InstanceID”) function sent from
another workflow.
variable is the workflow variable. For formatting
information, see “Using Variables” on page 8-4.

Example workflowVariable($InstanceID),
$ItemQuantity)

Return type Object

8 Using Workflow Expressions

8-18 Using the WebLogic Integration Studio

DateToString()

Description Converts a date to a string.

Format dateToString(“date”, “format”)

date is the date to be converted to the string value. The date must be expressed as a Java
date object, so you must embed the following functions to specify the date:
� To specify the current run-time date and time at the moment the expression is

evaluated, use Date(); see “Date()” on page 8-7.
� To specify the run-time date and time when the current workflow is started or

completed, use WorkflowAttribute(“Started”) or
WorkflowAttribute(“Completed”).

� To specify the run-time date and time the current task is started or completed, use
TaskAttribute(“Started”) or TaskAttribute(“Completed”).

format is a string specifying the format of the string. Possible values are listed below.

Note: Format is case sensitive.

Format Description Example

yyyy Year 2000

MM Numeric month of the year January = 01,
February = 02,

dd Numeric day of the month 02 or 28

DD 3- digit day of the year based on the
total number of days (365) in a year

 October 18, 2000
= 292 (the 292nd
day of the year)

hh Hours in non-military time 1 pm = 01, 2 pm =
02

HH Hours in military time 1 pm = 13, 2 pm =
14

mm Minutes 02

ss Seconds 35

SSS Milliseconds 370

The following separator characters are valid:- (dash); / (slash); : (colon); .(period);
spaces

Using Functions

Using the WebLogic Integration Studio 8-19

StringToDate()

ToInteger()

Example DateToString(Date(), “yyyy-MM-dd HH:mm:ss.SSS”) resulting in
2000-10-18 14:30:35.370

Return type String

Description Converts a string to a date.

Format StringToDate(“string”, “format”)

string is the string to be converted to the date value. The
string must be formatted according to the format you specify in
the second argument.
format is a string specifying the format of the date. For
available formats, see “Date Function Formats” on page 8-23.

Example StringToDate(“2001.09.10”, “yyyy.MM.dd”)

Return type Date

Description Converts a string value to an integer.

Note: The string must represent a valid integer value.

Format ToInteger(expression)

expression is the expression (or string enclosed in double
quotes) to be converted to integer.

Example ToInteger(ToString(XPath(“/item/quantity/tex
t()”)))

Return type Integer

8 Using Workflow Expressions

8-20 Using the WebLogic Integration Studio

ToString()

Manipulating Data

You can use functions listed in this section to perform various operations on data:

� Abs()

� DateAdd()

� StringLen()

� SubString()

Abs()

Description Converts any data type value to a string.

Format ToString(expression)

expression is the expression to be converted to string.

Example ToString($TotalPrice)

Return type String

Description Returns the absolute value of an expression.

Format Abs(expression)

expression is a workflow expression for which the absolute
value is to be calculated.

Example Abs($ItemPrice * $ItemQuantity)

Return type Integer, Double, or String, depending on input

Using Functions

Using the WebLogic Integration Studio 8-21

DateAdd()

Description Performs date arithmetic.

Format DateAdd(date, “interval”, number [,business calendar name])

date is the base date. The date must return a Java date object, so you must embed the
following functions to specify the date:
� To specify the current run-time date and time at the moment the expression is

evaluated, use Date(); see “Date()” on page 8-7.
� To specify the run-time date and time when the current workflow is started or

completed, use WorkflowAttribute(“Started”) or
WorkflowAttribute(“Completed”).

� To specify the run-time date and time the current task is started or completed, use
TaskAttribute(“Started”) or TaskAttribute(“Completed”).

� To specify a constant base date, use StringToDate() function in the appropriate
format; see “StringToDate()” on page 8-19. For formatting information, see “Date
Function Formats” on page 8-23.

interval is the unit of time to use. Possible values are listed below.

Note: The interval is not case sensitive except for m and M.

Interval Description

S Seconds

m Minutes

H Hours

D Days

W Weeks

M Months

BH Business hours

BD Business days

number is an integer (optionally signed) indicating the number of units to add or
subtract.
business calendar name is the name of the business calendar to be used for
the business hours and business days calculation. If no calendar is specified, the
default calendar is used.

8 Using Workflow Expressions

8-22 Using the WebLogic Integration Studio

StringLen()

SubString()

Example DateAdd(Date(), D, 7, mycalendar)

Return type Date

Description Returns the length of a string

Format stringlen(expression)

string is the string or expression for which a length will be
provided.

Example stringlen(TaskAttribute(“Comment”))

Return type Integer

Description Extracts a substring from a string.

Format SubString(expression, start [,length])
string is the string from which the substring is to be
extracted.
start is the starting position in the string. (The first position
is 0.)
length is the length of the substring. This is an optional
parameter. If it is not included, the substring extracted will be
the rest of the string.

Example SubString(TaskAttribute(“Comment”), 0, 50)

Return type String

Using Functions

Using the WebLogic Integration Studio 8-23

Date Function Formats

To specify a date format for any of the date functions, use a time pattern string to
describe dates and times. For example, the following time pattern string used in a
DateToString() function:

"yyyy.MM.dd G 'at' hh:mm:ss z"

results in the following formatting:

2000.07.31 AD at 13:10:35 PDT

Similarly, if you use the StringToDate() function, you must format a date literal
according to the format you specify.

This section describes pattern letters, provides formatting guidelines, and shows
examples.

Table 8-3 Pattern Letter Definitions

Symbol Description Format Example

G era designator text AD

y year number 1996

M month in year month name & 01 - 12 July & 07

d day in month 01 - 31 10

h hour in am/pm 1 - 12 12

H hour in day 0 - 23 0

m minute in hour number 30

s second in minute number 55

S millisecond number 978

E day in week day name Tuesday

D day in year number 189

F day of week in month number 2 (2nd Wed
in July)

8 Using Workflow Expressions

8-24 Using the WebLogic Integration Studio

Format Guidelines

The count of pattern letters determine the format.

� for text: for 4 or more pattern letters, use the full form. For less than 4, use the
short or abbreviated form, if one exists.

� for number: the minimum number of digits. Shorter numbers are zero-padded to
this amount. Year is handled specially; that is, if the count of ‘y’ is 2, the year
will be truncated to 2 digits.

� for text or number: for 3 or more pattern letters, use text; otherwise, use a
number.

Any characters in the pattern that are not in the ranges of ['a'..'z'] and
['A'..'Z'] will be treated as quoted text. For instance, characters like ':', '.',

' ', '#' and '@' will appear in the resulting time text even though they are not within
single quotes.

A pattern containing any invalid pattern letter will result in a thrown exception during
formatting or parsing.

w week in year number 27

W week in month number 2

a am/pm marker AM or PM PM

k hour in day 1 - 24 24

K hour in am/pm 0 - 11 0

z time zone abbreviated text PST

' escape for text ‘at’

'' single quote ' ‘Wednesday’
’s’

Table 8-3 Pattern Letter Definitions

Symbol Description Format Example

Data Type Conversions for Variable Assignment

Using the WebLogic Integration Studio 8-25

Examples of Time Patterns

Data Type Conversions for Variable
Assignment

Often you will want to assign the resulting value of an expression to a workflow
variable. For example, you may want use the data returned by an XPath expression
from an XML document to initialize variables when a workflow starts. Or you may
wish to assign the value of one variable type to another.

Where the return type of an expression is different from the type of variable to which
you want to assign the expression’s resulting value, the server automatically performs
a type conversion. In some cases, however, a conversion cannot be performed, and an
exception will occur. The following table shows how conversions are handled.
Numbers in the table correspond to notes following the table.

Note: The conversion rules presented in the following table apply to the default
settings for data types. For conversion rules used for null value support, see
“Configuring BPM to Support Null Variables” in “Customizing WebLogic
Integration” in Starting, Stopping, and Customizing BEA WebLogic
Integration.

Table 8-4 Examples Using the U.S. Locale

Format Pattern Result

"yyyy.MM.dd G 'at' hh:mm:ss z" 1996.07.10 AD at 15:08:56 PDT

"EEE, MMM d, ''yy" Wed, July 10, '96

"h:mm a" 12:08 PM

"hh 'o''''clock' a, zzzz" 12 o'clock PM, Pacific Daylight Time

"K:mm a, z" 0:00 PM, PST

"yyyyy.MMMMM.dd GGG hh:mm aaa" 1996.July.10 AD 12:08 PM

8 Using Workflow Expressions

8-26 Using the WebLogic Integration Studio

NS = Not supported. If the conversion is attempted, an error message is displayed
indicating that the conversion is illegal.

Node List = the object returned by an XPath text() function.

* If the source value is not a valid input for the target data type, an error message is
displayed indicating that the conversion is illegal.

Table 8-5 Data Type Conversion Rules

Source
Expression
Evaluates
to:

Target Variable Type:

String Integer Double Date Boolean XML

String String Integer* Double* Date* Boolean** See Note
*****.

Integer String Integer Integer’s Double
value

NS False if
Integer value
is 0, true if
any other
value

NS

Double String Double’s Integer
value

Double NS False if
Double value
is 0.0, true if
any other
value

NS

Date String NS NS Date NS NS

Boolean “True”
or
“False”

1 if true, 0 if false 1.0 if true, 0.0 if
false

NS Boolean true
or false

NS

XML DOM
serialized
to String

Integer*** Double*** Date*** Boolean**** XML

Node List DOM
serialized
to String

Integer*** Double*** Date*** Boolean**** XML
node***

Data Type Conversions for Variable Assignment

Using the WebLogic Integration Studio 8-27

** True if string value is “true”, “t”, or “1”; false if string value is “false”, “f”, “0”. Any
other string value will cause an error message to be displayed indicating that the
conversion is illegal.

*** DOM object serialized to string, and then converted to the target data type. If the
source value is not a valid input for the target data type, an error message is displayed
indicating that the conversion is illegal.

**** DOM object serialized to string. True if string value is “true”, “t”, or “1”; false if
string value is “false”, “f”, “0”. Any other string value will cause an error message to
be displayed indicating that the conversion is illegal.

***** DOM parsing to an XML document element, not simply a node. This means that
if it is reconverted to a String, the string will contain an XML header similar to the
following: <?xml version=”1.0” encoding=”UTF-8”?>. If the source value is not
valid for DOM parsing, an error message is displayed indicating that the conversion is
illegal.

Note that these conversion rules are not fully supported for calculations in expressions.
For example, assume you have the following expression:

XPath(“your_expression”) + 2

The result of this statement cannot be calculated because the data type of
your_expression is not known. To make this statement valid, you need to use a
typecasting function to convert the result to the data type you want.

For example, assuming your_expression evaluates to a value of 3, and you want the
result to be an string data type. You need to use the following statement:

ToString(XPath(“your_expression”) + 2

In this case, the expression will evaluate to a string value of 52.

Now let us assume that your_expression evaluates to a value of 3, and you want the
result to be an integer. You need to use the following statement:

ToInteger(ToString(XPath(“your_expression”)) + 2

In this case, the expression will evaluate to an integer value of 7.

8 Using Workflow Expressions

8-28 Using the WebLogic Integration Studio

Using the Expression Builder

The Expression Builder helps you to build expressions, that consist of functions,
operators, literals, and variables. Throughout the Studio, dialog box fields have an
Expression Builder button, shown in the following figure.

Figure 8-1 Expression Builder Button

You click the button to display the Expression Builder dialog box.

Using the Expression Builder

Using the WebLogic Integration Studio 8-29

Figure 8-2 Expression Builder Dialog Box

Note: If a plug-in is defined for functions that are part of expressions, this dialog box
contains the new function.

To build an expression:

1. Do any of the following:

� Type the expression or an expression component directly in the Expression
field.

� Select from the Functions, Operators, Literals, and Variables options, and
double-click a component from the scrollable list to the right to place the
selected expression text in the Expression field. In some cases, the inserted
item contains placeholders. You can either replace the placeholders by typing
the correct information or by inserting additional components from the
component lists.

� For the XPath function, optionally click XPath Wizard to open the XPath
Wizard to automatically generate XPath function expressions from sample
XML documents. For details about using the wizard, see “Creating XPath
Expressions Using the XPath Wizard” on page 8-31.

2. When the expression in the Expression field is complete, click OK to return the
expression to the source dialog box field.

8 Using Workflow Expressions

8-30 Using the WebLogic Integration Studio

If you enter an invalid expression, the system displays a message that attempts to
explain why the expression is invalid. The following table lists the messages that may
be encountered, together with possible causes.

Table 8-6 Invalid Expression Messages

Message Possible Cause(s)

Invalid operator operand One or both of the operand(s) to an AND, OR, XOR,
NOT,*,/,%,+,-,<,<=,=,<>,>=,> operator was not valid. For
example, attempted arithmetic on a non-numeric string:
"Name: " * 25.4

Mismatched operand types
in operator comparison

Attempting to compare values of different types. For example,
comparing a string to a number: “mystring” <= 56.9.

NumberFormatException A string representation of a number did not have the required
format for the type of number. For example: 1.23ZX

Invalid function name The expression calls an undefined function. For example:
"Name: " + somefunc() is not a valid function name.

Incomplete escape
sequence

The last character in a quoted string was a backslash character
that was not followed with one of the following characters: r, n,
f, t, \, ', ",0.

Invalid escape sequence A quoted string contained a backslash character that was not
followed with one of the following characters: r, n, f, t, \, ', ",0.

Fatal error An internal error occurred in the expression evaluator. The
expression probably contains a syntax error.

Unclosed string A string literal did not have a matching quote at the end. In the
following example, a double quote is not matched by a single
quote: “This is an unclosed string'

Illegal character The expression contains a character that violates the syntax of
the expression language. In the following example, ! is the
invalid character: 7 * $wks + " days" !

Error: unmatched input The evaluator could not interpret the expression. The
expression probably contains a syntax error.

Creating XPath Expressions Using the XPath Wizard

Using the WebLogic Integration Studio 8-31

The Expression Builder does not check the validity of the following:

� The data type of a workflow variable referenced by the expression.

� The correct number of parameters being passed to a function.

� Type matching. If there is a type mismatch in the expression (for example,
performing arithmetic on a non-numeric string), a run-time error results when
the expression is evaluated.

� Function attributes. If you use an attribute that is not valid for a function, a
run-time exception results.

Creating XPath Expressions Using the XPath
Wizard

The XPath wizard provides a graphical interface that you can use to generate XPath
expressions automatically from actual XML entities, or define and test XPath
expressions that define and validate against XML entities. Once you have generated
and tested an XPath expression, you can return it to the Expression Builder which
appends any additional arguments required to conform to workflow syntax.

The XPath Wizard can sample XML documents, or Document Type Definition
(DTD), XML Schema document (XSD), Extensible Stylesheet Language (XSL) or
Message Format Language (MFL) files. If you load a DTD, Schema, XSL, or MFL file
into the wizard, it automatically generates a sample XML document based on the
specifications in the file you selected. You use the generated XML document to create
the XPath expression.

Unrecoverable syntax error The expression contains an invalid token. In this example,
name is invalid because the + operator was omitted: "Name:
" $name

The Expression should have been: "Name: " + $name

Table 8-6 Invalid Expression Messages

Message Possible Cause(s)

8 Using Workflow Expressions

8-32 Using the WebLogic Integration Studio

To open the XPath Wizard, from the Expression Builder, click XPath Wizard.

Figure 8-3 XPath Wizard

The XPath Wizard contains three tabs: Workspace, Sample, and Test, which you use
to do the following:

� Workspace tab—View all the XPath location expressions and functions you
create during a Studio session and select them one by one to test on the Test tab,
or to return them to the Expression Builder. See “Viewing XPath Expressions”
on page 8-36.

� Sample tab—Generate XPath expressions for sample XML, DTD, MFL, and
Schema documents. Procedures are given in “Generating XPath Location
Expressions from XML Entities” on page 8-33.

� Test tab—Test XPath expressions by applying them to XML documents. See
“Testing XPath Expressions” on page 8-38.

All three tabs display a toolbar and two common read-only fields:

Creating XPath Expressions Using the XPath Wizard

Using the WebLogic Integration Studio 8-33

� Document Type—indicates whether the currently loaded document is associated
with a type definition or not. If the loaded file is a DTD or XSD, the path and
filename are given. For other documents, no type or identification is given.

� Document Location—indicates whether the currently loaded document is a
system-generated sample document or not. If the loaded document is an XML,
MFL or XSL document, the path and filename are given.

Toolbar buttons are described in the following table.

Generating XPath Location Expressions from XML
Entities

Using the XPath wizard, you can generate XPath location expressions that target:

� Element content

� Attribute content

� Nodes

Table 8-7 XPath Wizard Toolbar Buttons

Button Description

Load an XML entity into the XPath Wizard. For more
information, see “Generating XPath Location Expressions
from XML Entities” on page 8-33.

Pin an XML expression to the Workspace. For more
information, see “Generating XPath Location Expressions
from XML Entities” on page 8-33.

Test a selected XML expression against an XML entity.
For more information, see “Testing XPath Expressions”
on page 8-38.

Display information about the XPath wizard.

8 Using Workflow Expressions

8-34 Using the WebLogic Integration Studio

You can load XML, MFL, XSL, DTD or XSD documents for sampling, If you open a
DTD or XSD document, the wizard generates a sample XML document from the DTD
or Schema you selected. You use the generated XML document to create the XPath
expression.

To generate an XPath location expression:

1. From the Expression Builder dialog box, click XPath Wizard to display the XPath
Wizard.

2. In the XPath Wizard, select the Sample tab to open the Sample area where you
can create XPath expressions.

3. Click the button to open the XML Finder dialog box. Use the XML Finder
dialog box to retrieve an XML, DTD, XSD, MFL, or XSL document that you can
use the create the XPath expression. For details, see “Retrieving XML Entities”
on page 7-19.

After you retrieve the document using the XML Finder, the content of the
document appears in the XPath wizard. If you open a DTD or XSD document,
the wizard generates a sample XML document from the DTD or Schema you
selected.

Creating XPath Expressions Using the XPath Wizard

Using the WebLogic Integration Studio 8-35

Figure 8-4 XPath Wizard: Sample Tab with Sample XML Document

4. Select the markup or content for an element, attribute, or node that you want to
be the target of the XPath expression. The wizard generates an XPath expression
based on your selection, and displays it in the XPath Expression field.

5. Put the XPath expression you created in the Workspace by clicking the
button.

6. To view the expressions you create, select the Workspace tab. For details, see
“Viewing XPath Expressions” on page 8-36.

8 Using Workflow Expressions

8-36 Using the WebLogic Integration Studio

7. To test the expressions you create, select the Test tab. For details, see “Testing
XPath Expressions” on page 8-38.

8. Click OK to return the expression to the Expression Builder.

Viewing XPath Expressions

The Workspace is the area in the XPath Wizard where you can hold all the XPath
expressions you create during a session of the Studio. Every time you create an XPath
expression, you can pin it to the Workspace. This way, you can create multiple
expressions for a single XML document, and then test them later to ensure they return
the correct result.

Creating XPath Expressions Using the XPath Wizard

Using the WebLogic Integration Studio 8-37

Figure 8-5 XPath Wizard: Workspace Tab

The Workspace shows you the following information for each XPath Expression:

XPath
Expression

The XPath location expression generated on the Sample
tab or entered on the Test tab.

Target The element or attribute in the XML document that is the
target of the XPath expression.

Document The source document from which the XPath expression
was generated.

8 Using Workflow Expressions

8-38 Using the WebLogic Integration Studio

To test an expression, select the expression in the list, click the Test tab, and follow the
procedures in “Testing XPath Expressions” on page 8-38.

To return an expression to the Expression Builder, select the expression in the list, and
click OK. This closes the XPath Wizard window and places the selected expression in
the Expression Builder.

Testing XPath Expressions

You can use the testing feature of the XPath Wizard for several purposes:

� To test a location expression you have built in the Expression Builder or that
you have generated from a sample document. After you have generated XPath
location expressions from one document, you may want to test them against
other sample documents to be sure that they still return the content you expect.

� To validate other types of XPath expressions, including XPath language
functions, that you create yourself, against a sample document. You can pass
expressions that you have built in the Expression Builder directly to the Wizard,
you can append an XPath function to a location previously generated by the
Sample feature, or you can create the expression from scratch in the Wizard. All
of the functions of the XPath language are supported by the testing feature of the
XPath Wizard, including:

� String functions that perform operations on the string contents of nodes and
attributes, such as accessing, extracting, and combining

� Boolean functions that perform Boolean tests or operations on their
arguments, and that return a value based on the test or operation

� Number functions that return numeric results, such as a count of nodes in an
document, or the sum of numeric content

� Node set functions that return information about individual nodes or node
sets

For a full list of functions specified by the XPath language, see
http://www.w3.org/TR/xpath.html.

After you have built your expression, the XPath Wizard returns the value that is
calculated.

Creating XPath Expressions Using the XPath Wizard

Using the WebLogic Integration Studio 8-39

Testing Location Expressions

To test an XPath location expression:

1. Optionally, from the Expression Builder, enter the XPath expression you want to
test, and click XPath Wizard. The XPath expression appears as the first item in the
XPath Expression list in the Workspace.

2. Select the Sample tab, and click the Open button to open the XML Finder dialog
box. Use the XML Finder dialog box to retrieve an XML, DTD, XSL, XSD, or
MFL document that you will use to test the XPath expression. For details, see
“Retrieving XML Entities” on page 7-19.

After you retrieve the document using the XML Finder, the content of the
document appears in the XPath wizard. If you open a DTD or XSD document,
the wizard generates a sample XML document from the DTD or Schema you
selected.

3. If you did not pass an expression from the Expression Builder as in step 1,
generate an XPath location expression from the sample document, as described in
“Generating XPath Location Expressions from XML Entities” on page 8-33.

4. In the Workspace, select the expression you want to test.

5. Select the Test tab. The Test area shows you the XML document with the target
of the XPath expression highlighted.

8 Using Workflow Expressions

8-40 Using the WebLogic Integration Studio

Figure 8-6 XPath Wizard: Test Tab

6. If desired, modify the XPath expression by editing it in the XPath Expression
field.

7. To test the expression again, so that the value is highlighted in the document,

click the button. The new result of the expression is highlighted in the XML
document.

8. To return the expression to the Expression Builder, click OK.

Creating XPath Expressions Using the XPath Wizard

Using the WebLogic Integration Studio 8-41

Testing Expressions That Contain Functions

To test an XPath expression containing a function:

1. Optionally, from the Expression Builder, enter the XPath expression you want to
test, and click XPath Wizard. The XPath expression appears as the first item in the
XPath Expression list in the Workspace.

2. Select the Sample tab, and click the Open button to open the XML Finder dialog
box. Use the XML Finder dialog box to retrieve an XML, DTD, or Schema
(XSD) document that you will use to test the XPath expression. For details, see
“Retrieving XML Entities” on page 7-19.

If you open a DTD or XSD document, the wizard generates a sample XML
document from the DTD or Schema you selected. You use the generated XML
document to test your XPath expression against.

3. Optionally, generate an XPath location expression from the sample document, as
described in “Generating XPath Location Expressions from XML Entities” on
page 8-33.

4. Select the Test tab.

5. In the XPath Expression field, enter your expression, or edit or append a function
to an expression you have placed there from the workspace.

6. Click the button. The return value of the function is displayed in the Test
area.

8 Using Workflow Expressions

8-42 Using the WebLogic Integration Studio

Figure 8-7 Result of an XPath Function

7. If necessary, modify the XPath function by editing it in the XPath Expression
field.

8. To test the function again, click the button. The return value of the function
is displayed in the Test area.

9. To return the function to the Expression Builder, click OK.

Using the WebLogic Integration Studio 9-1

CHAPTER

9 Handling Workflow
Exceptions

The following sections explain how to handle internally and externally generated
workflow exception conditions:

� About Workflow Exception Handling

� Overview of Exception Handler Definition Tasks

� Defining Exception Handlers

� Invoking an Exception Handler from a Workflow

� System Error Messages

About Workflow Exception Handling

The workflow exception handling facility enables you to define, trap, and respond to
internally and externally generated exception conditions at run time. Exceptions may
be specific abnormal conditions that you can target within the workflow, or they may
be typical run-time server exceptions that you trap and respond to accordingly.

Exception handling within WebLogic Integration is performed at the workflow level,
rather than at the task level. All workflow template definitions have at least one
exception handler, the system exception handler. The system exception handler, is by
default, the initial exception handler and is invoked whenever an exception occurs. The
concept of the initial exception handler is required, since exceptions can occur prior to
a specific exception handler being invoked from within the workflow. For example,

9 Handling Workflow Exceptions

9-2 Using the WebLogic Integration Studio

exceptions can occur during the initialization of variables in a Start node. The system
exception handler responds to exceptions by marking the active transaction for
rollback only and rethrowing the exception to the client.

The workflow exception handling facility allows you to define customized exception
handlers that specify actions to be executed in response to exceptions. Exception
handlers have commit and rollback processing paths. You specify certain actions
within a workflow to be executed in each of these paths. When an exception occurs, if
the currently active transaction is marked for rollback only, the exception handler
executes the rollback processing path for the transaction. If the transaction is not
marked for rollback only, the exception handler executes its commit path. For
information on the workflow transaction model, see “Understanding the BPM
Transaction Model” in Programming BPM Client Applications.

You can also use workflow functions in conditional expressions to identify particular
exceptions that you want to catch, by type, severity, text, and other criteria. For more
information, see “Obtaining Run-time Workflow Data” on page 8-13.

Once you have defined the custom exception handler and its actions, you can invoke
it in three ways:

� By setting it to act as the initial exception handler. This causes the specified
custom exception handler to catch exceptions as soon as the workflow is
instantiated.

� By using the Set Workflow Exception Handler action in any workflow node.
This causes the custom exception handler to be the active one from that point
until the next Set Workflow Exception Handler action is reached within that
workflow or until the workflow completes, whichever occurs first.

� By using the Invoke Exception Handler action in any workflow node.This causes
the actions defined within the specified exception handler to be executed at that
point, regardless of whether an exception has occurred. It also, optionally, sends
an XML document to the exception processor, allowing workflow variables to
be populated by values from this XML document. This action is only typically
used in a conditional situation to catch an exception specifically thrown by the
workflow definition.

Overview of Exception Handler Definition Tasks

Using the WebLogic Integration Studio 9-3

Overview of Exception Handler Definition
Tasks

Exception Handlers are like sub-workflows within a workflow in which you can
specify various actions on commit and/or rollback paths of the transaction in which an
exception has occurred. The exception handler can respond to general exception
occurrences, or the handler can use a condition to specify a specific exception to trap.
To use a custom exception handler in your workflows, you need to do the following:

Note: You may also want to familiarize yourself with the workflow expression
language and the Studio’s Expression Builder and XPath Wizard tools before
beginning to define exception handlers and actions that reference them. Many
of the tasks described in this section, such composing an XML document in
the Invoke Exception Handler action, or initializing variables in an exception
handlers, require entering expressions into dialog box fields. For complete
information on workflow expressions, see Chapter 8, “Using Workflow
Expressions.”

1. Create an exception handler and, optionally, set it to be the initial exception
handler. Procedures are given in “Creating a Custom Exception Handler” on page
9-5.

2. Add actions to the exception handler. For complete information on actions, see
Chapter 6, “Defining Actions.”

3. Add an exit method to the exception handler. Procedures are given in “Exiting an
Exception Handler” on page 9-7.

4. Add an action to a workflow node that invokes the exception handler. Procedures
are given in “Invoking an Exception Handler from a Workflow” on page 9-11.

9 Handling Workflow Exceptions

9-4 Using the WebLogic Integration Studio

Defining Exception Handlers

You use the exception handler definition facility to define custom exception handlers.
If you do not define any exception handlers, the system exception handler is, by
default, used.

You can set the custom exception handler to be the initial exception handler, that is,
the one that is active as soon as a workflow is instantiated. The template definition can
change its active exception handler throughout the course of the workflow by using the
Set Exception Handler action. (See “Setting the Workflow Exception Handler” on
page 9-12 for information.)

Custom exception handlers defined for the current template definition are displayed in
the folder tree under the Exception Handlers folder, and in the properties dialog box
for a Template Definition.

Figure 9-1 Template Definition Properties Dialog Box: Exception Handlers Tab

Defining Exception Handlers

Using the WebLogic Integration Studio 9-5

When you define a custom exception handler, you can specify actions to be performed
for both commit and rollback exception situations. For a commit paths, all workflow
actions are available to be performed. For a rollback path, only the following actions
are available: Post XML Event, Call Program, Perform Business Operation, Exit
Exception Handler, No Operation, and Make Audit Entry. For more information about
actions, see Chapter 6, “Defining Actions.”

Note: Certain Enterprise Java Beans (EJBs) can either mark a transaction for
rollback only by calling a UserTransaction method, or they can throw an
unchecked exception across a container boundary. In either of these two cases,
WebLogic Server rolls back the transaction.

You can also define workflow variables to be populated by values from the XML
message defined within the Invoke Exception Handler action. For more information,
see “Invoking an Exception Handler” on page 9-13.

Creating a Custom Exception Handler

To create an exception handler for a workflow template definition:

1. Do one of the following:

� In the folder tree, expand the folder for the template definition, right-click
the Exception Handlers folder and select Create Exception Handler.

� From the Exception Handlers tab of the template definition’s properties
dialog box, click Add.

The Exception Handler Properties dialog box is displayed.

9 Handling Workflow Exceptions

9-6 Using the WebLogic Integration Studio

Figure 9-2 Exception Handler Properties Dialog Box

2. In the Name field, enter a meaningful and easily identifiable name for the new
exception handler.

3. Optionally, select the Initial Exception Handler check box to mark the exception
handler as the default initial exception handler in the workflow. When a
workflow encounters an exception, this is the first exception handler that is
called.

4. Optionally, on the Variables tab, click Add to display the Workflow Variable
Assignment dialog box, which you can use to initialize any variables you have
created in the workflow, by specifying an expression that is evaluated at run time
to become the value of the variable.

5. From the Variable drop-down list, select a variable to store incoming data.

6. In the Expression field, enter the expression that is evaluated at run time to
produce the value for the variable, by doing one of the following:

� To specify a constant, use the syntax provided in “Using Literals” on page
8-2.

� If you will be using the Invoke Exception Handler action (see “Invoking an
Exception Handler” on page 9-13) to send an XML message containing
values to populate variables, use an XPath() function (for information, see

Defining Exception Handlers

Using the WebLogic Integration Studio 9-7

“XPath()” on page 8-10), or the dot notation for XML elements (for
information, see “XML Element Dot Notation” on page 8-12). You can also

use the Expression button to invoke the XPath Wizard, from which
you can generate XPath expressions automatically from a sample incoming
document. For information, see “Creating XPath Expressions Using the
XPath Wizard” on page 8-31.

7. Click OK. The variable initialization appears in the list on the Variables tab of the
Exception Handler Properties dialog box.

8. Repeat steps 4 to 7 for all variables you want to initialize.

9. In the Actions on Commit tab, use the Add, Update or Delete buttons to specify
actions to be performed if the current active transaction is not marked for
rollback only. For information on working with actions, see Chapter 6, “Defining
Actions.”

10. In the Actions on Rollback tab, you specify the add, update, or delete actions to
be performed if the currently active transaction is programmatically marked for
rollback only. The workflow is rolled back to the beginning of the currently
active transaction.

11. On the Actions on Commit or Actions on Rollback tab, add the Exit Exception
handler action, to return program control to the main workflow. For more
information, see “Exiting an Exception Handler” on page 9-7.

12. Click OK to add the custom exception handler. The new exception handler
appears on the Exception Handlers tab of the template definition’s properties
dialog box, and under the Exception Handlers folder in the folder tree.

Exiting an Exception Handler

You use the Exit Exception Handler action, which is only available from within the
Exception Handler Properties dialog box, to exit an exception handler. (For
information, see “Defining Exception Handlers” on page 9-4.) Be sure to add this
action to the Actions on Commit or Actions on Rollback tab of the Exception Handler
to return control to the main flow.

In a Rollback path, the only exit option available is Rollback. In a Commit path, you
can choose from four options:

9 Handling Workflow Exceptions

9-8 Using the WebLogic Integration Studio

� Rollback — Marks the user transaction for rollback only, returning the workflow
to the state in which it existed prior to the start of the transaction. The exception
is propagated to the client (if any) as a WorkflowException.

� Stop — Exits the exception handler and does not execute any follow-on actions.

� Retry — Exits the exception handler and attempts to retry the failed operation.
(The failed operation is an action or the setting of a variable.)

� Continue — Stops the execution of the exception handler and attempts to
continue the execution of the workflow at the next operation. (The next
operation is the next action or the next variable to be set.)

Note: Certain Enterprise Java Beans (EJBs) can either mark a transaction for
rollback only by calling a UserTransaction method, or they can throw an
unchecked exception across a container boundary. In either of these two cases,
WebLogic Server rolls back the transaction.

Figure 9-3 Exit Exception Handler

To exit an exception handler:

1. From within the Exception Handler Properties dialog box, invoke the Add Action
dialog box, expand the Exception Handling actions folder, select Exit Exception
Handler, and click OK to display the Exit Exception Handler dialog box.

Defining Exception Handlers

Using the WebLogic Integration Studio 9-9

If you are adding the action to the Actions on Rollback tab, the only available
option is Rollback. If you are adding the action to the Actions on Commit tab,
select one of the Exit Method options.

2. Click OK to add the action.

Updating a Custom Exception Handler

1. Do one of the following to display the Exception Handler Properties dialog box:

� In the folder tree, expand the Exception Handlers folder, right-click the
desired exception handler folder, and select Properties from the pop-up
menu.

� From the Exception Handlers tab of the template definition’s properties
dialog box, select the desired exception handler and click Update.

2. Make any necessary changes to the exception handler.

3. Click OK to save your changes.

Viewing Exception Handler Usage

To see where an exception handler is referenced within the workflow:

1. In the folder tree, right-click the exception handler folder and select Usage from the
pop-up menu to display the Exception Handler Usage dialog box, which lists the
places within the workflow where the selected exception handler is referenced.

9 Handling Workflow Exceptions

9-10 Using the WebLogic Integration Studio

Figure 9-4 Exception Handler Usage Dialog Box

2. Optionally, use the following buttons in the dialog box to do the following:

� Update — select to open the dialog box for the selected object.

� Delete — select to delete the selected object.

3. Click OK to close the Exception Handler Usage dialog box.

Deleting a Custom Exception Handler

Once defined, an exception handler can only be deleted if it is not referenced by either
the Invoke Exception Handler action or the Set Workflow Exception Handler action
(for more information, see “Invoking an Exception Handler” on page 9-13). To see a
list of places where an exception handler is referenced, follow the procedure in
“Viewing Exception Handler Usage” on page 9-9.

To delete an exception handler:

1. Do one of the following:

Invoking an Exception Handler from a Workflow

Using the WebLogic Integration Studio 9-11

� In the folder tree, expand the Exception Handlers folder, right-click the
desired exception handler folder, and select Delete from the pop-up menu.

� From the Exception Handlers tab of the template definition’s properties
dialog box, select the desired exception handler and click Delete.

2. When prompted, confirm the deletion.

Invoking an Exception Handler from a
Workflow

To invoke an exception handler from a workflow, you use the following exception
handling actions:

� Set Workflow Exception Handler—this action sets the exception handler for the
workflow to the one you specify. All exceptions from this point, until this action
is specified again, will be caught by the exception handler you specify. For more
information, see “Setting the Workflow Exception Handler” on page 9-12.

� Invoke Exception Handler—this action invokes the actions defined in a custom
exception handler, and optionally sends an XML message to the exception
processor, at a certain point in the workflow. It is typically used in a conditional
situation to perform alternate actions for an exception defined specifically in the
workflow. For more information, see “Invoking an Exception Handler” on page
9-13.

� Exit Exception Handler—this action is used from within an exception handler to
return control to the main workflow. For more information, see “Exiting an
Exception Handler” on page 9-7.

9 Handling Workflow Exceptions

9-12 Using the WebLogic Integration Studio

Setting the Workflow Exception Handler

You use the Set Workflow Exception Handler action to make a specified exception
handler the active exception handler for a workflow template definition. If this action
is not used in the workflow template definition and no other exception handler is
defined and marked as the initial exception handler, the system exception handler, by
default, is used and invoked whenever an exception occurs.

The exception handler you set for the workflow persists throughout the instance of the
workflow until you use a subsequent Set Workflow Exception Handler action to reset
the exception handler to the system handler or to another custom-defined one.

Figure 9-5 Set Workflow Exception Handler

To set the workflow exception handler to a custom handler:

1. From the Add Action dialog box, expand the Exception Handling actions folder,
select Set Workflow Exception Handler, and click OK to display the Set Workflow
Exception Handler dialog box.

2. From the Exception Handler drop-down list, do one of the following:

� To set the workflow exception handler to a custom one you have defined,
select the exception handler from the Exception Handler drop-down list.

� To reset the workflow exception handler to the default system exception
handler, select (system exception handler) from the Exception Handler
drop-down list.

3. Click OK to add the action.

Invoking an Exception Handler from a Workflow

Using the WebLogic Integration Studio 9-13

Invoking an Exception Handler

You use the Invoke Exception Handler action to invoke a specific exception handler
within the workflow and, optionally, send an XML document that you define to the
exception handler. You can use the XML document to send values that will be used to
populate variables when the exception handler is invoked. (For information, see
“Defining Exception Handlers” on page 9-4.)

Note that this action does not override the exception handler that is set as the active
one. Any exceptions that occur are still handled by that exception handler.
Furthermore, upon execution of the Invoke Exception Handler action, actions defined
in the exception handler are executed, regardless of whether an exception occurs. Thus,
you typically use this action in a conditional situation where you want to invoke the
actions defined in the exception handler as a result of an exception being thrown from
within the workflow itself. This action will not handle exceptions thrown by business
operations.

You can also use this action to simply send an XML document to any exception
handler you select.

9 Handling Workflow Exceptions

9-14 Using the WebLogic Integration Studio

Figure 9-6 Invoke Exception Handler Dialog Box

To invoke a custom exception handler:

1. From the Add Action dialog box, expand the Exception Handling actions folder,
select Invoke Exception Handler, and click OK to display the Invoke Exception
Handler dialog box.

2. From the Exception Handler drop-down list, do one of the following:

� Leave the Exception Handler field set to the default system exception
handler to simply send an XML document to the event processor at this point
in the workflow.

� Select a custom exception handler you have defined. The actions in the
custom-defined exception handler specified here will be invoked when this
action is executed, regardless of whether an exception has actually occurred.

System Error Messages

Using the WebLogic Integration Studio 9-15

Note that any exceptions that occur at this point are still handled by the
exception handler set as the workflow exception handler.

3. Optionally, define an XML document to send to the event processor when the
exception handler is invoked. To specify the XML Document Structure, do one of
the following:

� To create a new free-form document, begin composing the document by
clicking the Add Child button to begin adding nodes.

� To specify an existing XML document, load the document by clicking the
Import button.

� To create a new type-specified XML document, load the appropriateSchema
document by clicking the Set Content Type button.

For detailed procedures for all these options, see “Composing and Editing XML
Documents” on page 7-2.

The XML document you define is stored in the workflow template definition.

4. Click OK to add the action.

System Error Messages

As described in “Obtaining Run-time Workflow Data” on page 8-13, the
WorkflowAttribute() function may be used with four attributes that allow the
exception handler to interrogate the following information:

� The Java exception class name

� The error number

� The error message text

� The error severity code (which also tells you if the exception handler was
called—via action or API—or was raised as a result of a caught exception):

� 0: Unknown error type, internal use only

� 1: A fatal exception occurred while processing a user request

� 2: A fatal, illegal condition such as inconsistent workflow state

9 Handling Workflow Exceptions

9-16 Using the WebLogic Integration Studio

� 3: A non-fatal workflow condition that the user can rectify manually

� 4: A custom error raised either by an application calling
WorkflowProcessor.invokeWorkfowErrorHandler, or by a workflow
executing the Invoke Error handler action

The following table lists workflow error messages by number and text.

Table 9-1 Workflow Error Messages

ErrorNumber ErrorText

0 Unknown error

1 System error

2 Workflow error

3 Workflow warning

4 Nested exception is:

5 The server was unable to complete your request.

6 The server was unable to complete your request.

7 This workflow cannot be modified, because it is complete.

8 This task's properties do not allow it to be marked done.

9 This task's properties do not allow it to be unmarked done.

10 This task's properties do not allow it to be reassigned.

11 This task's properties do not allow it to be modified.

12 Cannot take this task, because it is already done.

13 Cannot assign this task, because it is already done.

14 Cannot execute this task, because it is already done.

15 Cannot execute this task, because it is inactive.

16 Cannot execute this task, because the workflow is complete.

17 Cannot execute this task, because it is not assigned to you.

System Error Messages

Using the WebLogic Integration Studio 9-17

18 Source and destination of reroute must be different.

19 The effective date must be on or before the expiry date.

20 Source user is already rerouted during the period specified.

21 Specified reroute would create a circular reference.

22 Task names must be unique within a workflow.

23 "{0}" is already in use as an organization name.

24 Role names must be unique within an organization.

25 The specified user "{0}" is already defined.

26 Report names must be unique.

27 Variable names must be unique.

28 Workflow template names must be unique.

29 Workload graph names must be unique.

30 "{0}" is already used as business calendar name.

31 User "{0}" is currently logged on and cannot be deleted.

32 Cannot delete user "{0}", because there are tasks assigned to the user. Please reassign all tasks
first.

33 You do not have permission to maintain users.

34 You do not have permission to maintain roles.

35 You do not have permission to maintain organizations.

36 You do not have permission to define workflows.

37 You do not have permission for workflow monitoring.

38 You do not have permission to do task rerouting.

39 You do not have permission to modify the server configuration.

Table 9-1 Workflow Error Messages

ErrorNumber ErrorText

9 Handling Workflow Exceptions

9-18 Using the WebLogic Integration Studio

40 The variable "{0}" cannot be deleted, because it is referenced by the ID expression or the
trigger definition.

41 The variable "{0}" cannot be deleted, because it is referenced by one or more actions.

42 The variable "{0}" cannot be deleted, because it is referenced by one or more decisions.

43 Variable names cannot be blank.

44 Cannot delete role "{0}", because there are tasks assigned to the role. Please reassign all tasks
first.

45 The workflow "{0}" cannot be deleted, because it is referenced by one or more actions.

46 The task "{0}" cannot be deleted, because it is referenced by one or more actions.

47 The role "{0}" cannot be deleted, because it is referenced by one or more actions.

48 The user "{0}" cannot be deleted, because it is referenced by one or more actions.

49 This workflow cannot be modified, because it is suspended.

50 Cannot delete a business calendar's template rules.

51 No business calendar ID specified in expression.

52 No XML defined for calendar.

53 The system could not find the specified business calendar "{0}".

54 Business calendar "{0}" has no rules defined for the year {1}.

55 The system could not find the processor for business calendar "{0}".

56 {0}, {1}: unexpected token "{2}" in business calendar rule.

57 {0}, {1}: unexpected character "{2}" in business calendar rule.

58 The timezone identifier "{0}" is not recognized.

59 EJB home environment not set.

61 Unable to get initial context: environment may be invalid; {0}.

62 Unable to load class object for home interface of type "{0}"; {1}.

Table 9-1 Workflow Error Messages

ErrorNumber ErrorText

System Error Messages

Using the WebLogic Integration Studio 9-19

63 Unable to load class object for remote interface of type "{0}"; {1}.

64 No object is bound to "{0}" in specified context; {1}.

65 The object bound to "{0}" does not implement home interface "{1}".

66 No home method was found on "{0}" matching "{1}"; {2}.

67 No remote method was found on "{0}" matching "{1}"; {2}.

68 Unable to load class for method return value of type "{0}"; {1}.

69 No remote object(s) were found.

70 EJB "{0}" method invocation failed; {1}.

71 "{0}" object returned from method invocation not of expected type "{1}".

72 Wrong number of parameters for method: expected {1}, found {2}.

73 Unable to load class (wrapped if primitive) for parameter {0} of type "{1}"; {2}.

74 Unable to load class (unwrapped if primitive) for parameter {0} of type "{1}"; {2}.

75 Value for parameter {0} cannot be cast to required type "{1}".

76 The home method did not return a session bean.

77 Workflow template (ID={0}) not found.

78 Workflow template definition (ID={0}) not found.

79 The system could not find an active, effective template definition to start.

80 XML syntax error at line {0}, column {1}.

81 Unable to load class object for "{0}"; {1}.

82 No matching constructor was found on "{0}"; {1}.

83 Creation of new "{0}" failed; {1}.

84 No method was found on "{0}" matching "{1}"; {2}.

85 "{0}" method invocation failed; {1}.

Table 9-1 Workflow Error Messages

ErrorNumber ErrorText

9 Handling Workflow Exceptions

9-20 Using the WebLogic Integration Studio

86 The workflow template is currently locked by {0}.

87 The interval “from” date is invalid.

88 The interval “to” date is invalid.

89 The date "{0}" is invalid.

90 Invalid month name: "{0}".

91 Invalid day name: "{0}".

92 The system could not find the specified task instance: "{0}".

93 Mandatory input variable "{0}" not set.

94 The system could not find the specified join instance: "{0}".

95 The system could not find the specified variable instance: "{0}".

96 The system could not find the specified organization: "{0}".

97 The system could not find the specified role: "{0}".

98 The system could not find the specified user: "{0}".

99 User "{0}" does not belong to organization "{1}".

100 The system could not add user "{0}" to organization "{1}".

101 The system could not add user "{0}" to role "{1}".

102 The system could not remove user "{0}" from organization "{1}".

103 The system could not remove user "{0}" from role "{1}".

104 The specified user "{0}" does not belong to the organization within which the role "{1}" is
defined.

105 No security realm has been installed.

106 The installed security realm "{0}" is not listable.

107 The security realm "{0}" is not manageable.

Table 9-1 Workflow Error Messages

ErrorNumber ErrorText

System Error Messages

Using the WebLogic Integration Studio 9-21

108 Unable to connect to database.

109 The role "{0}" is empty.

110 Fixup error: missing reference "{0}".

111 Invalid interval unit: "{0}".

112 Illegal type conversion: from "{0}" to "{1}".

113 Cannot instantiate a workflow, because the template definition is inactive.

114 The system could not find the target task "{0}".

115 The system could not find the target event "{0}".

116 The system could not find the target action "{0}".

117 The system could not find the specified business operation "{0}".

118 Error calling program: "{0}" with arguments "{1}".

119 User "{0}" does not have an e-mail address.

120 User "{0}" in role "{1}" does not have an e-mail address.

121 The routing table failed to identify a suitable assignee.

122 No workflow organization defined for user "{0}".

123 Wrong start date expression: "{0}".\n"(1)".

124 The system could not find the error handler "{0}".

125 An exception occurred during error handler processing.

126 An error handler exceeded the maximum number of retries allowed.

127 The application or workflow instance invoked an error handler.

128 The system could not find the specified workflow instance: {0}.

129 An error occurred when parsing an XML document.

Table 9-1 Workflow Error Messages

ErrorNumber ErrorText

9 Handling Workflow Exceptions

9-22 Using the WebLogic Integration Studio

130 The definition was created with a later of version of the product. Upgrade your WebLogic
Process Integrator Studio to version {0} or later.

Table 9-1 Workflow Error Messages

ErrorNumber ErrorText

Using the WebLogic Integration Studio 10-1

CHAPTER

10 Monitoring Workflows

The following sections discuss workflow monitoring:

� Overview of Workflow Monitoring Tasks

� Working with Workflow Instances

� Viewing User and Role Worklists

� Changing Task Permissions and Priority

� Changing Task Status and Assignment

� Using Workload Reports

� Using Statistics Reports

Overview of Workflow Monitoring Tasks

The Studio workflow monitoring features allow workflow designers to perform
run-time monitoring to help debug and troubleshoot workflow designs in a design
environment, and system administrators to monitor and intervene in the real-time
execution of workflows in a production environment.

Additionally, in a production environment, administrators can monitor user and role
workloads for manually-assigned tasks.

Finally, business analysts can perform post-run-time data collection on manually
assigned tasks to gather and compile historical raw and statistical workload and
performance data to determine bottlenecks and inefficiencies in business processes.
This section describes the following tasks you can perform:

10 Monitoring Workflows

10-2 Using the WebLogic Integration Studio

� Display the status of running or completed workflow instances. Procedures are
given in “Viewing Workflow Instance Status” on page 10-5.

� Display and modify the current value of variables in running instances.
Procedures are given in “Viewing and Updating Workflow Instance Variables”
on page 10-8.

� Modify the tasks associated with a workflow instance, for example, reassigning
tasks or forcing work to be redone. Procedures are given in “Changing Task
Status and Assignment” on page 10-16.

� Modify the permissions defined for tasks to allow Worklist users or other
administrators to modify tasks. Procedures are given in “Changing Task
Permissions and Priority” on page 10-14.

� View the task lists for users or roles and modify task assignment, status or
permissions. Procedures are given in “Viewing User and Role Worklists” on
page 10-12.

� Display the workload status of the system, showing the number of tasks
categorized by status (pending, inactive, done, overdue) and user or role.
Procedures are given in “Using Workload Reports” on page 10-18.

� Compile raw data and perform statistical reports on workloads and execution
times, according to users and roles. Procedures are given in “Using Statistics
Reports” on page 10-22.

Note: In order to perform any of the monitoring tasks described in this section, with
the exception of viewing user and role worklists, you must have Monitor
Instance permission. For more information on permissions, see “Assigning
Permissions to Users and Roles” on page 3-25.

Working with Workflow Instances

A workflow instance is a session of a workflow template definition that has been
placed into run time. You can view the status of workflow instances and the current
value of variables. In a design environment, you can view instances to help you debug

Working with Workflow Instances

Using the WebLogic Integration Studio 10-3

and troubleshoot problems with a workflow design. In a production environment, you
can view the status of a running workflow and intervene to update variables or modify
tasks.

To view a list of workflow instances:

1. In the folder tree, right-click the workflow template or template definition for
which you would like to view instances, and from the pop-up menu, select
Instances to display the Workflow Instances dialog box.

2. Select one of the following options:

� Started—select to display all workflows (still in-progress or completed) that
were started in a time period you specify.

� Completed—select to display all workflows that were completed in a time
period you specify.

3. From the From and To drop-down boxes, select a start and end date for the period
of time for which you would like to view instances for the selected workflow
template definition.

Figure 10-1 Workflow Instances Dialog Box

For each workflow instance, the following information is displayed:

10 Monitoring Workflows

10-4 Using the WebLogic Integration Studio

For performance reasons, the process engine only returns 100 items at a time. If there
are additional items, a button (+) appears which, when clicked, will retrieve the next
100 items. When no additional items remain, the button is no longer shown.

To update the instances list, click Refresh.

From the Workflow Instances dialog box, you can do the following:

� View the status of the workflow instance in a graphical or list representation. For
details, see “Viewing Workflow Instance Status” on page 10-5.

� View and update the current value of workflow instance variables. For details,
see “Viewing and Updating Workflow Instance Variables” on page 10-8.

� Modify task assignment and properties. For details, see “Changing Task
Permissions and Priority” on page 10-14.

� Delete workflow instances. For details, see “Deleting Workflow Instances” on
page 10-11.

Workflow
Label

The label generated from the expression specified in the
Workflow Label field of the template definition’s
properties dialog box. For more information, see
“Updating, Labeling, and Activating a Template
Definition” on page 5-12.

Started The date the workflow was instantiated.

Completed The date the workflow was completed. If it is not
completed, this column will be blank.

Comment The comment generated from an expression specified in
the Set Workflow Comment action in the workflow. For
information, see “Setting Up a Workflow Comment” on
page 6-43. If this action was not defined, this column will
be blank.

Working with Workflow Instances

Using the WebLogic Integration Studio 10-5

Viewing Workflow Instance Status

To view the status of a particular workflow instance, double-click the instance in the
list in the Workflow Instances dialog box, or right-click the instance and select
Workflow Status from the pop-up menu.

A window is displayed showing either a flowchart or task list representation of the
current state of the running workflow. You can use the buttons at the top of the window
to do the following:

To display a flowchart view of the workflow instance, click the button.

Table 10-1 Workflow Status Window Buttons

Button Use to...

Display a graphical flowchart view of the
workflow instance.

Display a list of all tasks in the workflow
instance.

Refresh the workflow view.

10 Monitoring Workflows

10-6 Using the WebLogic Integration Studio

Figure 10-2 Workflow Status Window: Flowchart View

In the graphical representation, active tasks are green, executed tasks are gray, and the
inactive tasks or other nodes are white. (For information on task states, see
“Understanding Task States” on page 5-54.)

Working with Workflow Instances

Using the WebLogic Integration Studio 10-7

For debugging purposes, you can use this information to identify where a stoppage has
occurred in the workflow. If a task that should have completed is still showing as
green, that is, as activated but not executed, this is usually an indication that there is an
error in the definition of that node.

To display a list of all tasks in the workflow and their status, click the button.

Figure 10-3 Workflow Status Window: List View

The list view displays the following information for each task:

Task The name of the task.

Assignee The user or role to which the task has been assigned. For
more information on task assignment, see “Setting Up
Manual Tasks” on page 6-44.

Started The date and time the task was started.

Due The due date for the task, as specified by Set Task Due
Date action in the workflow. For more information, see
“Setting a Task Due Date” on page 6-51.

Completed The date and time the task was completed.

Priority The priority level assigned to the task. For more
information, see “About Task Priority” on page 5-56.

Comment The comment generated from an expression specified in
the Set Task Comment action in the workflow. For
information, see “Setting a Task Comment” on page 6-54.
If this action was not defined, this column will be blank.

10 Monitoring Workflows

10-8 Using the WebLogic Integration Studio

In addition, the following indications appear:

� Tasks shown without a box are non-manual tasks or tasks that have not yet been
activated (no started or completed date appears).

� An empty box indicates that the task has been activated but is pending, that is, or
waiting to be executed (it shows a started date, but not a completed date).

� A checked box indicates a task that has already been completed (it shows a
completed date).

� A red box indicates that the task is now overdue, that is, its due date is before
the current date.

From the Workflow Instances dialog box, you can also do the following:

� Change a task’s status and assignment. For details, see “Changing Task
Permissions and Priority” on page 10-14.

� Change a task’s permissions and priority. For details, see “Changing Task
Permissions and Priority” on page 10-14.

Viewing and Updating Workflow Instance Variables

You can view and update the current value of all variables defined for the workflow at
any point during its execution.

When debugging workflows at design time, it is a good idea to view variable values to
help troubleshoot possible design errors. Even if a workflow appears to have executed
correctly, you may find incorrect settings of variable values, which may indicate a
design bug.

To view workflow instance variables:

1. Do one of the following:

� From the Workflow Instances dialog box, right-click the desired workflow
instance, and from the pop-up menu, select Variables.

� From the Workflow Status window for an instance, click the Vars button.

Working with Workflow Instances

Using the WebLogic Integration Studio 10-9

The Workflow Variables dialog box displays each variable in a list, showing its
name, type, and its current value. (For information on variable types, see
“Working with Variables” on page 5-28.)

Figure 10-4 Workflow Variables Dialog Box

2. To view the content of an XML-type variable only, select an XML variable in the
list and click View XML. The View XML window appears with the XML
content of the variable displayed.

10 Monitoring Workflows

10-10 Using the WebLogic Integration Studio

Figure 10-5 View XML Window

3. Click Close to close the View XML window.

To update a variable’s value:

1. From the Workflow Variables dialog box, select the desired variable, and click
Update to display the Set Variable dialog box.

Figure 10-6 Set Variable Dialog Box

2. In the Value field, enter a constant that will become the new value from the
variable.

Note: Because workflow logic often depends on the value of variables, use caution
when manually changing the value of a variable. Also be sure that the value
you enter is valid for the date type of the variable.

3. Click OK to save the change and reset the variable.

Working with Workflow Instances

Using the WebLogic Integration Studio 10-11

Deleting Workflow Instances

You can delete a single workflow instance or multiple workflow instances according
to date.

To delete a single workflow instance:

1. Right-click the workflow instance in the list in the Workflow Instances dialog box,
and select Delete from the menu.

2. When prompted by the Delete Workflow Instance warning message, click Yes to
delete the instance, or No to cancel the delete.

To delete multiple workflow instances for a template:

1. In the folder tree, right-click the template or template definition folder for the
workflow instances you want to delete, and from the pop-up menu, select Delete
Instances. The Delete Workflow Instances dialog box is displayed.

Figure 10-7 Delete Workflow Instances Dialog Box

2. Select one of the following options:

� Started — if selected, this option finds all workflow instances—started and
completed—with a start date in the specified date range.

10 Monitoring Workflows

10-12 Using the WebLogic Integration Studio

� Completed — if selected, this option finds completed workflow instances
with a completed date in the specified date range.

3. In the From and To boxes, select a month and date to specify the period of time
for which you would like to delete all the instances for the selected workflow.

4. Click OK to delete the selected workflow instances, or Cancel to cancel the
delete.

Viewing User and Role Worklists

To view a user worklist, in the folder tree for the desired organization, right-click a user
from the list and select Open User Worklist from the pop-up menu. A list of tasks
assigned to the user is displayed in the User Worklist dialog box.

Figure 10-8 User Worklist Dialog Box

To view a role worklist, in the folder tree for the desired organization, right-click a role
from the list and select Open Role Worklist from the pop-up menu. A list of tasks
assigned to the role is displayed in the Role Worklist dialog box.

Viewing User and Role Worklists

Using the WebLogic Integration Studio 10-13

Figure 10-9 Role Worklist Dialog Box

The task list displays the following information for each task:

In addition, the following indications appear:

� Tasks shown without a box have not yet been activated (no started or completed
date appears).

� An empty box indicates that the task has been activated but is pending, that is,
has not yet been executed by the user (it shows a started date, but not a
completed date).

Task The name of the task.

Workflow The name of the workflow in which the task is defined.

Started The date and time the task was started.

Due The due date for the task, as specified by Set Task Due Date action in the
workflow. For more information, see “Setting a Task Due Date” on page 6-51.

Completed The date and time the task was completed.

Priority The priority level assigned to the task. For more information, see “About Task
Priority” on page 5-56.

Comment The comment generated from an expression specified in the Set Task
Comment action in the workflow. For information, see “Setting a Task
Comment” on page 6-54. If this action was not defined, this column will be
blank.

10 Monitoring Workflows

10-14 Using the WebLogic Integration Studio

� A checked box indicates a task that has already been completed (it shows a
completed date).

� A red box indicates that the task is now overdue, that is, its due date is before
the current date.

To refresh the task list for a user or role, click the button.

From the Role Worklist and User Worklist dialog boxes, you can also do the following:

� Change a task’s status and assignment. For details, see “Changing Task
Permissions and Priority” on page 10-14.

� Change a task’s permissions and priority. For details, see “Changing Task
Permissions and Priority” on page 10-14.

Changing Task Permissions and Priority

If a task has been defined with Modify at Execution permission, you can change the
priority and permissions for a task. (For information, see “Defining Task Properties”
on page 5-53.) This also enables you or a Worklist user to change the task’s status and
assignment. For more information, see “Changing Task Status and Assignment” on
page 10-16.

To change task permissions and priority:

1. From the Workflow Status, User Worklist or Role Worklist dialog boxes,
right-click the task you wish to reassign, and from the pop-up menu, select
Properties to display the Task Properties dialog box.

Changing Task Permissions and Priority

Using the WebLogic Integration Studio 10-15

Figure 10-10 Task Properties Dialog Box

2. Optionally, from the Priority field, select a new priority level for the task—Low,
Medium, or High.

3. Enable any of the following Task Permissions check boxes:

Permission Explanation

Mark done
without
executing

Allows a Worklist user or Studio administrator to mark the task done
without it having been executed, and manually set the task's
completed date.

Re-execute if
marked done

Allows a Worklist user to re-execute a task even if it has already
been completed.

Unmark if
marked done

Allows a Worklist user or Studio administrator to change the status
of the task back to not done when the task is marked as done. (If a
user marks a completed task as not done, the task status is set to
Active; it does not, however, reverse the effects of any actions that
have been executed.)

Modify at
execution

Allows a Worklist user or Studio administrator to change the
permissions for a task before it has been executed.

10 Monitoring Workflows

10-16 Using the WebLogic Integration Studio

4. Click OK to save your changes to the task.

Changing Task Status and Assignment

If a task’s permissions allow it, you can intervene in a currently running workflow to
reassign tasks to different users or roles, and mark and unmark them done.

Note: Although you can reassign tasks, mark or unmark them done, or change their
properties, you cannot execute tasks on worklists invoked from within the
Studio. To execute a task, you must do so from the Worklist or custom client
application. For more information, see Using the WebLogic Integration
Worklist.

Reassigning a Task

If the task has been defined with Reassign at Execution permission, and the task has
not already been marked done, you can reassign a task to a different Worklist or
custom client user, role, or user in role. (For an explanation of these distinctions and
of task assignment, see “Setting Up Manual Tasks” on page 6-44.)

To reassign a task:

1. From the Workflow Status, User Worklist or Role Worklist dialog boxes,
right-click the task you wish to reassign, and from the pop-up menu, select
Reassign Task to display the Reassign Task dialog box.

Reassign at
execution

Allows a Worklist user to take or reassign the task, or a Studio
administrator to reassign the task to another user or role before it has
been executed.

Permission Explanation

Changing Task Status and Assignment

Using the WebLogic Integration Studio 10-17

Figure 10-11 Reassign Task Dialog Box

2. Select one of the following options:

� User—select to reassign the task to a specific user.

� Role—select to reassign the task to any user in the specified role.

� User in Role—select to reassign the task to the user in the specified role with
the fewest tasks assigned to him or her.

3. In the Assign To drop-down list, select the name of the user or role to which you
are reassigning the task.

4. Click OK to reassign the task.

Marking a Task Done

If the task has been defined with Mark Done Without Executing permission, you can
mark a task done before it is actually executed by a user.

To mark a task done, from the Workflow Status, User Worklist or Role Worklist dialog
boxes, right-click the task you wish to mark done, and from the pop-up menu, select
Mark Task as Done. The task’s completed date is set to the current date, and the
workflow proceeds.

10 Monitoring Workflows

10-18 Using the WebLogic Integration Studio

Unmarking a Task Done

If the task has been defined with Unmark If Marked Done permission, you can unmark
a task done that has already been completed.

To unmark a task done, from the Workflow Status, User Worklist or Role Worklist
dialog boxes, right-click the task you wish to unmark done, and from the pop-up menu,
select Unmark Task as Done. The task’s status is reset to pending and the completed
date is cleared.

Using Workload Reports

The Studio allows you to view workload reports, showing the number of tasks, by
workflow, task, user or role, and task status. In the Studio folder tree, right-click
Workload Report, and choose Open from the pop-up menu to display the Workload
Report Properties dialog box.

Using Workload Reports

Using the WebLogic Integration Studio 10-19

Figure 10-12 Workload Report Properties Dialog Box

Compiling Workload Report Information

The workload report will display information according to the selections you make in
the Workload Report Properties dialog box:

� Workflow Templates folders — select a workflow template to include
information pertaining to all workflow template definitions within that workflow
template, or expand a workflow template and select only one workflow template
definition. Only information within the selected workflow template or workflow
template definition will be included in the workload report.

� Pending — displays pending tasks. Pending tasks have been started and not yet
completed.

10 Monitoring Workflows

10-20 Using the WebLogic Integration Studio

� Inactive — displays inactive tasks. Inactive tasks are those which have not yet
been started.

� Done — displays completed tasks.

� Overdue — displays those tasks which are now overdue. Overdue tasks are
pending tasks with a due date on or before the current date.

� Total Tasks — displays all tasks, regardless of task state (that is, inactive,
pending, and completed tasks are all counted).

� All users — displays workload information for each user.

� All roles — displays workload information for each role.

� Specified users — displays workload information for each of the selected users
in the displayed users list.

� Specified roles — displays workload information for each of the selected roles
in the displayed roles list.

� Users of specified roles — displays workload information for each user who is a
member of one of the selected roles in the displayed roles list.

� Group together and display totals only — displays total counts of tasks only for
the group identified by the above selected option. If not selected, each individual
user or role is shown in the workload report.

Viewing Workload Reports

After you make your workload report selections, click OK to display a graphical
representation of the current workload.

Using Workload Reports

Using the WebLogic Integration Studio 10-21

Figure 10-13 Workload Report Dialog Box

The contents of the report are broken down by user, role, or totals, depending on the
options selected. This display may scroll left and right if there is a lot of information.
A bar chart indicates the total number of tasks of various state counted. The legend at
the top of the window shows what each color represents, depending on the options
selected at design time. For more precise indicators, the actual number of tasks is
shown above each bar.

10 Monitoring Workflows

10-22 Using the WebLogic Integration Studio

Using Statistics Reports

You can view statistics reports that are based on tasks, users, roles, and so on. A
statistics report provides statistical information based on historical data kept for
completed workflows. It shows number of tasks completed, total time, average time,
and minimum and maximum times spent for each task. Standard deviation from the
average time is also shown.

Compiling Statistics Report Information

In the Studio folder tree, right-click Statistics Reports and choose Open from the
pop-up menu to display the Statistics Report Properties dialog box. The report includes
information according to the selections you make in the Statistics Report Properties
dialog box.

Using Statistics Reports

Using the WebLogic Integration Studio 10-23

Figure 10-14 Statistics Report Properties Dialog Box

� List of workflow templates — list of available workflow templates. Expand a
template to select the workflow template definition to include in the statistics
report.

� For all dates — statistical calculations are gathered regardless of date.

� From — all tasks, in completed workflows, completed on or after this date are
included in the statistical calculations.

� To — all tasks, in completed workflows, completed on or before this date are
included in the statistical calculations.

10 Monitoring Workflows

10-24 Using the WebLogic Integration Studio

� All users — displays statistical information for each user.

� All roles — displays statistical information for each role.

� Specified users — displays statistical information for each selected user.

� Specified roles — displays statistical information for each selected role.

� Users of specified roles — displays statistical information for each user who is a
member of one of the selected roles in the displayed roles list.

� Group together — the report displays total counts of tasks only for the group
identified by the above selected option. If not selected, each individual user or
role is shown in the workload report.

Viewing Statistics Reports

When you make your statistics report selections, click OK to display the statistics
report.

Figure 10-15 Statistics Report

The top of the dialog box has several options:

� Build/Rebuild — rebuild the report if you change the units of time or the
precision level.

� Seconds, Minutes, Hours, Days — units of time used in the report.

Using Statistics Reports

Using the WebLogic Integration Studio 10-25

� Precision — drop-down list from which you can select how many decimal
places you want in the statistical information.

Several columns are displayed in the report, depending on the options selected at report
design time:

� Task — name of the task being measured.

� User — user or role assigned to the task. If the Group together option was
selected at report design time, this column is not shown, because the results are
totaled for all users or roles.

� Number — total number of tasks completed.

� Total — total amount of time spent on doing the task. This is the time interval
between the task start date and completed date.

� Average — average amount of time spent performing this task.

� StdDev — standard deviation from the average amount of time spent performing
this task.

� Min — minimum amount of time spent performing this task.

� Max — maximum amount of time spent performing this task.

Because the report definition is stored separately from the results, the statistics report
can be run at any time.

10 Monitoring Workflows

10-26 Using the WebLogic Integration Studio

About Import/Export

Using the WebLogic Integration Studio 11-1

11 Importing and
Exporting Workflow
Packages

The following sections show you how to import and export workflow packages from
and to Java archive files and how to import and export template definitions from and
to XML files:

� About Import/Export

� Exporting Workflow Packages

� Importing Workflow Packages

� Importing and Exporting Workflow Template Definitions from and to XML
Files

About Import/Export

WebLogic Integration provides the capability of exporting and importing workflow
objects to and from Java Archive (JAR) files. This capability allows you to export and
import templates, template definitions, business operations, business calendars, event
key tables, and XML repository items. Organizations, users, and roles cannot be
exported or imported.

11 Importing and Exporting Workflow Packages

11-2 Using the WebLogic Integration Studio

You can mark exported packages as published packages, which marks their contents
as read-only when they are imported. In published templates, new template definitions
cannot be created. However, published templates and template definitions may be
deleted.

You can also assign password protection to exported packages to prevent them from
unauthorized import.

Exporting Workflow Packages

To export a workflow package:

1. Choose Tools→Export Package to display the Export: Select File dialog box.

Exporting Workflow Packages

Using the WebLogic Integration Studio 11-3

Figure 11-1 Export: Select File Dialog Box

2. Specify the full pathname of the JAR file to which you want to export the
package, by doing one of the following:

� Type the path and filename directly in the File field.

� Click Browse to display the Save dialog box, select a folder from the Look
In field, enter a name for the file in the File name field, and click Save to
supply the path and filename.

3. Click Next.

If you specified an existing JAR file that is not password protected, the Export:
Select Components to Export dialog box is displayed.

If you specified an existing JAR file that is password protected, the Export:
Enter Password dialog box is displayed. Enter the necessary password and click

11 Importing and Exporting Workflow Packages

11-4 Using the WebLogic Integration Studio

Next to display to display the Export: Select Components to Export dialog box,
or click Back to specify an alternate file.

Figure 11-2 Export: Select Components to Export Dialog Box

Note: If, in the Export: Select File dialog box, you selected an existing JAR file
on your system in which to export the package, the items in the tree are
prechecked, based on the contents of the selected JAR file.

4. Specify the components to be exported by selecting or deselecting the appropriate
check boxes. The export feature does not enforce template definition integrity so
you can deselect any object to exclude it from the exported package.

Note: If you select a template definition to be exported, any sub-workflows or
business operations referenced by the template definition are automatically
selected. However, business calendars and XML entities are not

Importing Workflow Packages

Using the WebLogic Integration Studio 11-5

automatically selected. Therefore, you must manually select these items if
you want them to be included in the exported package.

If you export a template definition that specifies a due date for a task, and the
due date is set using a business calendar, be sure to export the calendar along
with the template definition.

Similarly, if you export a template definition that uses the XSL Transform
action, be sure to export the XML entities in the repository required by the
XSL Transform action. The XML entities could be the XSLT template
document or the XML input document.

5. Optionally, select the Published Package check box to make the objects of a
published package read-only after they are imported to the target system.

6. Optionally, select the Password Protect check box to assign a password to the
package, and enter the password in the Password and Confirm fields. The user on
the target system must specify this password before they can import the package.

7. Click Export to begin the export. After the export operation is complete, a
Review Export Summary report is displayed indicating if the export operation
was successful.

8. Click Close to close the Review Export Summary dialog box.

Importing Workflow Packages

If you are importing a template definition from a published package (that is, a package
that was previously exported and marked as published), and a template does not exist
on the target system, a published template is automatically created. If, however, you
are importing a published template definition into an existing template, the existing
template must also be published. You cannot import a published template definition
into an unpublished template.

Similarly, if you are importing a template definition from an unpublished package and
a template does not exist on the target system, an unpublished template is
automatically created. To import an unpublished template definition into an existing
template, the existing template must also be unpublished. You cannot import an
unpublished template definition into an published template.

11 Importing and Exporting Workflow Packages

11-6 Using the WebLogic Integration Studio

During the import process, a warning is displayed if you are attempting to import an
object with the same name as an object that already exists on your system. You can
overwrite templates, business operations, and business calendars. You are not
permitted to overwrite template definitions, so multiple copies will be created instead.

After import, you can associate templates with additional organizations by using the
Template Properties dialog box and checking additional organizations (see “Updating
Template Properties” on page 5-6 for procedures). Do not re-import the same template
into additional organizations, as this will simply create multiple template definitions.

To import a workflow package:

1. Choose Tools→Import Package to display the Import: Select File dialog box.

Figure 11-3 Import: Select File Dialog Box

Importing Workflow Packages

Using the WebLogic Integration Studio 11-7

2. Specify the full pathname of the JAR file from which you want to import the
package, by doing one of the following:

� Type the path and filename directly in the File field.

� Click Browse to display the Open dialog box, select a folder from the Look
In field, enter a name for the file in the File name field, and click Open to
supply the path and filename.

3. Click Next.

If the package you want to import is not password-protected, the Import: Select
Components to Import dialog box is displayed.

If the package you want to import is password-protected, the Import: Enter
Password dialog box is displayed. Enter the necessary password and click Next
to display the Import: Select Components to Import dialog box.

11 Importing and Exporting Workflow Packages

11-8 Using the WebLogic Integration Studio

Figure 11-4 Import: Select Components to Import Dialog Box
x

4. Clear the check box for any object that you do not want to import.

Note: If you import a template definition that specifies a due date for a task, and
the due date is set using a business calendar, be sure to import the calendar
along with the template definition. Similarly, if you import a template
definition that uses the XSL Transform action, be sure to import the XML
entities in the repository required by the XSL Transform action. The XML
entities could be the XSLT template document or the XML input
document.

5. From the Target Organization drop-down menu, select the organization to which
the imported template definition should be initially assigned.

Importing Workflow Packages

Using the WebLogic Integration Studio 11-9

6. Optionally, select the Activate after import check box if you want the imported
template definitions to be activated automatically after they are imported. For
information on activation, see “Updating, Labeling, and Activating a Template
Definition” on page 5-12.

Note: If a template definition has unresolved references to objects, it cannot be
activated.

7. Click Import to begin the import operation, or Cancel to cancel the operation.

After the import operation is complete, a Review Import Summary report is
displayed. The report lists all the objects that were imported and any problems
that were encountered during the import operation.

Figure 11-5 Review Import Summary Window

11 Importing and Exporting Workflow Packages

11-10 Using the WebLogic Integration Studio

8. Click Close to close the Review Import Summary dialog box, or Back to return to
the previous screen.

Importing and Exporting Workflow
Template Definitions from and to XML Files

For compatibility with earlier versions of WebLogic Process Integrator, you can export
a workflow template definition to an XML file on any drive mapped on your computer,
and import a workflow template definition (that was previously exported), in XML
format, into the Studio to create a new workflow template definition.

Note: If you do not need to maintain compatibility with older versions of WebLogic
Process Integrator, we recommend that you take advantage of the
Import/Export Package facility described earlier in this section.

Exporting Workflow Template Definitions to XML

To export a workflow template definition:

1. In the folder tree, right-click the template definition to be exported.

2. Choose Export from the pop-up menu.The Save dialog box is displayed.

3. Select the drive and the directory in which you want to save the exported
workflow template definition.

4. Optionally, select or enter a name for the file in the File name field. The default
name is the template name.

5. Click Save to export the template definition, or Cancel to cancel the operation.

Importing and Exporting Workflow Template Definitions from and to XML Files

Using the WebLogic Integration Studio 11-11

Importing Workflow Template Definitions from XML

Workflow template definitions imported from an XML file are always marked as
inactive. Before an imported workflow template definition can be instantiated, you
must change the definition to active in the Template Definition dialog box. For details,
see “Updating, Labeling, and Activating a Template Definition” on page 5-12.

If a template does not exist, you must create one before you can import a template
definition. For details about creating a template, see “Creating a Workflow Template”
on page 5-4.

Note: In some cases, importing workflows may display warning messages. You
must define any business operations or event keys that are referenced by
imported workflows, and redefine Perform Business Operation or Start
Workflow actions contained in imported workflows.

To import a workflow template definition, proceed as follows:

1. In the Studio folder tree, right-click the workflow template into which you will
import the workflow template definition.

Note: If the template into which you are importing the workflow is named
differently from the name of the XML file you are importing, a warning
message is displayed.

2. From the pop-up menu, select Import Template Definition to display the Open
dialog box.

3. In the Open dialog box, select the current location of the XML file on your hard
drive, and click Open.

Note: You cannot import a workflow template definition using a name that is
different from the one that it was assigned when it was exported. If you
attempt to do so, you will receive a warning message.

4. After the file is imported, an import confirmation dialog box is displayed that
asks you to confirm the import. Click Yes to import the workflow template
definition. The template definition is created with the dates and times that were
originally specified

11 Importing and Exporting Workflow Packages

11-12 Using the WebLogic Integration Studio

Using the WebLogic Integration Studio I-1

Index

A
action

Abort Workflow action 6-28
adding 6-17
Assign Task to User action 6-46
Assign Task Using Routing Table action

6-49
Call Program action 6-75
Cancel Workflow Event action 6-27
changing the sequence of 6-20
deleting 6-19
Evaluate Condition action 6-41
Exit Exception Handler 9-7
Invoke Exception Handler 9-13
Make Audit Entry action 6-42
No Operation action 6-30
Post XML Event action 6-81
Send E-mail Message action 6-71
Send XML to Client action 6-58
Set Task Comment action 6-54
Set Task Due Date action 6-51
Set Workflow Comment action 6-43
Set Workflow Exception Handler 9-12
Start Workflow action 6-36
Unassign Task action 6-57
Unmark Task Done action 6-26
updating 6-17
XSL Transform 6-95

activated task state 5-54
adding

organizations 3-13

roles 3-21
addressed messaging 6-94
administration

role 3-20
task routing 3-28
user 3-14

Assign Task to User action 6-46
Assign Task Using Routing Table action 6-

49

B
business calendar

creating 3-5
deleting 3-11
properties 3-6
rules 3-6
updating 3-10

business operation data, viewing 2-15

C
calendar

creating 3-5
deleting 3-11
properties 3-6
rules 3-6
updating 3-10

Call Program action 6-75
called start 5-34
Cancel Workflow Event action 6-27
closing

I-2 Using the WebLogic Integration Studio

workflows 5-12
closing workflows 5-12
condition 5-43, 5-48, 5-51, 8-1
connector 5-20
Copying 5-14
copying workflows 5-14
created task state 5-54
Creating 3-5, 8-31
creating

business calendar 3-5
roles 3-21
workflow templates 5-4

customer support contact information xvi

D
decision 5-19, 5-52
deleting

actions 6-19
business calendar 3-11
organizations 3-14
plug-in configuration 4-7
roles 3-24
users 3-19
workflows 10-11

DOCTYPE
event-driven processing 4-18, 5-39

documentation, where to find it xv
done 5-20, 5-58

properties 5-59
drawing area 2-8
DTD files in the repository 4-28
DTDs

predefined 6-61

E
effective date 5-9
enable audit to JMS (Java Message Service)

5-9
error messages 9-15

Evaluate Condition action 6-41
event 5-19, 5-49

condition 5-43
event key 5-39
event key table 4-22
exception handler 9-1

defining 9-4
error messages 9-15

executed task state 5-55
Exit Exception Handler action 9-7
Exiting 2-16
expiry date 5-9
exporting

template definitions 11-10
workflow packages 11-1
XML entity from the repository 4-34

Expression Builder 8-28
expression components

functions 8-6
invalid expression messages 8-30
literals 8-2
operators 8-4
variables 8-4

F
functions

Abs 8-20
Date 8-7
DateAdd 8-21
DateToString 8-18
EventAttribute 8-8
EventData 8-9
StringLen 8-22
StringToDate 8-19
SubString 8-22
TaskAttribute 8-14
WorkflowAttribute 8-15
WorkflowVariable 8-16
XPath 8-10

Using the WebLogic Integration Studio I-3

I
importing

template definitions 11-11
workflow packages 11-1

inbound XML document, viewing 2-13
instance ID 6-39
integrating

data 1-16
external components and applications 1-

12
users and client applications 1-10
workflows 1-14

integration actions
Call Program action 6-75
Post XML Event action 6-81
Send XML to Client action 6-58
XSL Transform 6-95

interface view
viewing business data 2-15
viewing inbound XML document 2-13
viewing outbound XML document 2-14
viewing plug-in data 2-15
viewing subworkflow data 2-14

Invoke Exception Handler action 9-13

J
JMS (Java Message Service)

standard header fields 6-85
join 5-19, 5-57

K
key value

event-type start 5-47, 5-50

L
literals 8-2

M
maintaining

organizations 3-11
roles 3-20

Make Audit Entry action 6-42
manual start 5-33
mapping roles 3-24
marked done task state 5-55
MFL files in the repository 4-29
miscellaneous actions

Cancel Workflow Event action 6-27
Evaluate Condition action 6-41
Make Audit Entry action 6-42
No Operation action 6-30
Send E-mail Message action 6-71

monitoring
deleting workflows 10-11
graphical representation of workflow 10-

6
list view of workflow 10-7
reassignment of tasks 10-17
statistics reports 10-22
workflow status 10-2
workflow variables 10-8
workload reports 10-18

N
No Operation action 6-30

O
operator values 8-4
order key 6-88
organization

adding 3-13
deleting 3-14
properties 3-13
updating 3-13

outbound XML document, viewing 2-14

I-4 Using the WebLogic Integration Studio

P
packages, workflow 11-1
permission

setting for roles 3-26
setting for users 3-27

plug-in data, viewing 2-15
plug-ins

deleting a configuration 4-7
loading 4-5, 4-9

Post XML Event action 6-81
printing 5-15
printing product documentation xvi

R
reassignment of tasks 10-17
refreshing the task list 3-33
related information xv
role 3-20

changing the mapping 3-24
creating 3-21
deleting 3-24
mapping to groups 3-24
setting permissions 3-26
updating 3-23

root element
event-driven processing 4-18, 5-39

routing of tasks 3-28
adding a specification 3-29
deleting a specification 3-32
refreshing the task list 3-33
updating a specification 3-32

rules, business calendar 3-6

S
Saving 5-12
schema files in the repository 4-29
security

security realms 3-2
Send E-mail Message action 6-71

Send XML to Client action 6-58
Set Task Comment action 6-54
Set Task Due Date action 6-51
Set Workflow Comment action 6-43
Set Workflow Exception Handler action 9-12
start 5-19, 5-33

called option 5-34
event option 5-46
manual option 5-33
properties 5-35
timed option 5-37

Start Workflow action 6-36
statistics reports 10-22
Studio client application 1-3
subworkflow data, viewing 2-14
support, technical xvi

T
task 5-19

defining 5-53
properties 5-52, 5-54, 10-15
reassignment 10-17
states 5-54

task actions
Assign Task to Role action 6-47
Assign Task to User action 6-46
Assign Task Using Routing Table action

6-49
Set Task Comment action 6-54
Set Task Due Date action 6-51
Unassign Task action 6-57
Unmark Task Done action 6-26

task routing
adding a specification 3-29
administration 3-28
deleting a specification 3-32
refreshing the task list 3-33
updating a specification 3-32

timed start 5-37
toolbar, using 2-11

Using the WebLogic Integration Studio I-5

triggering
called option 5-34
manual option 5-33
timed option 5-37

U
Unassign Task action 6-57
Unmark Task Done action 6-26
updating

business calendar 3-10
organizations 3-13
roles 3-23
variables 5-31

user 3-14
deleting 3-19
viewing worklists 10-18

V
variable 8-4

assignment in a workflow 5-45
properties 5-30
updating 5-31
workflow 10-8

W
workflow

changing the sequence of actions 6-20
closing 5-12
components 1-6
configuring resources 4-1
connector 5-20
copying 5-14
decision 5-19, 5-52
deleting 10-11
deleting an action 6-19
design approaches 1-17
done 5-20, 5-58
done properties 5-59

drawing area 2-8
effective date 5-9
enable audit to JMS 5-9
event 5-19, 5-49
event key table 4-22
exception handlers 9-1
expiry date 5-9
exporting packages 11-1
exporting template definitions 11-10
expressions and conditions 8-1
importing packages 11-1
instance ID 6-39
join 5-19, 5-57
properties 5-12
reassignment of tasks 10-17
saving 5-12
saving a template definition 5-12
start 5-19, 5-33
statistics reports 10-22
status 10-2
task 5-19, 5-53
template definitions 5-7
updating variables 5-31
variable assignment 5-45
variables 10-8

workflow actions
Abort Workflow action 6-28
Set Workflow Comment action 6-43
Start Workflow action 6-36

workflow definition
printing 5-15

workflow template
creating 5-4
definition 5-12
drawing area 2-8

Worklist client, using the Send XML to
Client action with 6-61

workload reports 10-18

I-6 Using the WebLogic Integration Studio

X
XML

composing and editing documents 7-2
creating free-form documents 7-6
documents in the repository 4-29
editing XML documents 7-9
entities 7-18
importing existing documents 7-7
repository 7-18, 7-19
storing referenced schemas 7-11
working with type-specified documents

7-11
XML Finder

local file system 7-22
recently used XML entities 7-18
URLs 7-23
XML repository 7-20

XPath, creating expressions 8-10
XSL Transform action 6-95
XSLT template documents in the repository

4-29

	About This Document
	What You Need to Know
	Related Information
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Introduction to the WebLogic Integration Studio
	About Business Process Management in WebLogic Integration
	About the Studio
	Modeling Business Data
	Modeling Business Processes
	Nodes
	Actions
	Variables
	Exception Handlers

	Integrating Users, Applications, and Data
	Integrating Users and Client Applications
	Integrating External Components and Applications
	Integrating Workflows
	Integrating Data

	Workflow Design Approaches and Tasks
	Top-Down Approach
	Bottom-Up Approach

	Studio Tools

	2 Using the Studio Interface
	Starting and Logging On to the Studio
	Overview of the Studio Interface
	Menu Options
	File Menu
	View Menu
	Configuration Menu
	Tools Menu
	Help Menu

	Folder Tree Display
	Workflow Design Area and Toolbar
	Using the Toolbar

	Using Interface View
	Exiting the Studio

	3 Administering Data
	Overview of Data Configuration Tasks
	About Security Realms
	Administering Business Calendars
	Creating a Calendar
	Updating a Calendar
	Deleting a Calendar

	Maintaining Organizations
	Adding an Organization
	Updating an Organization
	Deleting an Organization

	Maintaining Users
	Creating a User
	Adding a User to an Organization
	Updating a User
	Removing a User from an Organization
	Deleting a User

	Maintaining Roles
	Creating a Role
	Updating a Role
	Deleting a Role
	Changing the Mapping for Roles

	Assigning Permissions to Users and Roles
	Setting Permissions for Roles
	Setting Permissions for Users

	Administering Task Routings
	Viewing Task Routing Specifications
	Adding a Routing Specification
	Updating a Task Routing Specification
	Deleting a Task Routing Specification
	Refreshing the Rerouting Task List

	4 Configuring Workflow Resources
	Overview of Resource Configuration Tasks
	Configuring Plug-Ins
	Viewing Plug-ins
	Loading Plug-Ins
	Updating a Plug-In Configuration
	Deleting a Plug-In Configuration

	Configuring Business Operations
	Viewing Business Operations
	Adding a Business Operation
	Adding a Business Operation for a Java Class
	Adding a Business Operation for a Session EJB
	Adding a Business Operation for an Entity EJB

	Updating a Business Operation
	Deleting a Business Operation

	Configuring Event Keys
	Viewing Event Key Configurations
	Adding an Event Key Configuration
	Updating an Event Key Configuration
	Deleting an Event Key Configuration

	Managing Entities in the Repository
	Viewing the XML Entities in the Repository
	Working with Folders
	Adding a Folder
	Updating Folder Information
	Deleting a Folder

	Working with XML Entities
	Importing an XML Entity into the Repository
	Updating an Entity
	Moving an Entity
	Exporting an Entity to the File System
	Deleting an Entity

	5 Defining Workflow Templates
	Overview of Template Definition Tasks
	Working with Templates
	Creating a Workflow Template
	Updating Template Properties
	Deleting a Template

	Working with Template Definitions
	Creating a Workflow Template Definition
	Opening an Existing Template Definition
	Saving and Closing a Template Definition
	Updating, Labeling, and Activating a Template Definition
	Copying a Workflow Template Definition
	Printing a Template Definition
	Deleting a Template Definition

	Working with Nodes
	Adding, Arranging, and Connecting Nodes
	Deleting a Node or Connection
	Workflow Design Guidelines and Tips
	Working with Node Properties
	Renaming Nodes
	Specifying or Updating Successor Nodes
	Adding Notes to a Node
	Adding, Updating, Reordering, and Deleting Workflow Actions

	Copying Nodes
	Viewing Task and Event Usage

	Working with Variables
	Creating a Variable
	Updating a Variable
	Viewing Variable Usage
	Deleting a Variable

	Defining Node Properties
	Defining Start Properties
	Defining a Timed Start Node

	Defining Event And Event-Triggered Start Properties
	Understanding Event Keys
	Using XML Content as an Event Key
	Using JMS Header or Property Data as an Event Key
	Understanding Event Conditions
	Initializing Variables from Event Data
	Defining Event-Triggered Start Properties
	Defining Event Properties

	Defining Decision Properties
	Defining Task Properties
	Understanding Task States
	About Task Permissions
	About Task Priority
	Defining the Task Node

	Defining Join Properties
	Defining Done Properties

	Working with Exception Handlers

	6 Defining Actions
	Understanding Actions
	Action Categories
	Understanding Action Types and Placement
	Terminal Actions and Non-Terminal Actions
	Synchronous and Asynchronous Execution of Actions

	Placing Actions in Task Nodes
	Using the Activated and Executed Tabs
	Marking Tasks Done
	Guidelines for Action Placement in Task Nodes

	Overview of Action Definition Tasks
	Working with Actions
	Adding an Action
	Updating an Action
	Deleting an Action
	Copying an Action
	Reordering Actions
	Adding Notes to an Action

	Setting a Variable Value
	Controlling Program Flow
	Marking a Task Done
	Unmarking a Task Done
	Canceling a Workflow Event
	Marking a Workflow Done
	Aborting a Workflow
	Executing a Task Automatically
	Adding a Placeholder Action

	Using Timed Operations
	Embedding a Timed Sequence
	About Execution Schedules
	Executing Triggered Actions Asynchronously and Synchronously
	Defining a Timed Event

	Using Sub-Workflows
	Calling a Sub-Workflow
	Passing Parameters
	Executing the Sub-Workflow Asynchronously or Synchronously
	Tracking the Sub-Workflow

	Embedding a Conditional Sequence

	Monitoring Run-Time Status
	Making an Audit Entry
	Setting Up a Workflow Comment

	Setting Up Manual Tasks
	Guidelines for Placement of Task Actions
	Assigning a Task to a User
	Assigning a Task to a Role
	Assigning a Task Using a Routing Table
	Setting a Task Due Date
	Executing Overdue Actions Asynchronously and Synchronously

	Setting a Task Comment
	Setting a Task Priority
	Unassigning a Task
	Sending an XML Message to a Client Application
	Sending a Message Asynchronously or Synchronously
	Extracting Data
	Defining the Send XML to Client Action
	Sending an XML Message to the Worklist Application

	Sending E-Mail Messages
	Invoking Components
	Calling an Executable Program on the Server
	Calling a Business Operation
	Calling the Business Operation to Create an EJB or Java Class Instance
	Calling Other Business Operations

	Posting an XML Message to a JMS Topic or Queue
	Posting an Event Asynchronously or Synchronously
	Understanding JMS Messaging Options
	Destination
	Headers
	Delivery Mode
	Time to live
	Priority
	Transaction Mode
	Addressed Messaging
	Ordered Messaging

	Defining the Post XML Event Action

	Transforming XML Documents
	Handling Exceptions

	7 Working with XML Entities
	Overview of XML Document Management Tasks
	Composing and Editing XML Documents
	Creating Free-Form Documents
	Importing Existing Documents
	Editing XML Documents
	Working with Type-Specified Documents
	About Storing Referenced Schemas and DTDs
	About Importing Type-Specified Documents
	Creating Type-Specified Documents
	Setting a New Content Type for Existing Documents
	Validating Type-Specified Documents

	Using the XML Finder to Retrieve and Export XML Entities
	Retrieving XML Entities
	Retrieving the Most Recently Used XML Entities
	Retrieving from the Repository
	Retrieving from the File System
	Retrieving from a URL

	Exporting XML Entities
	Exporting to the Repository
	Exporting to the File System
	Exporting to a Recently Accessed File
	Exporting to a File Located by a URL

	8 Using Workflow Expressions
	About Workflow Expressions
	Using Literals
	Using Variables
	Using Operators
	Using Functions
	Obtaining Run-time System Data
	Date()

	Extracting Run-Time Event Data
	EventAttribute()
	EventData()
	XPath()
	XML Element Dot Notation

	Obtaining Run-time Workflow Data
	CurrentUser()
	TaskAttribute()
	WorkflowAttribute()
	WorkflowVariable()

	Converting Data Types
	DateToString()
	StringToDate()
	ToInteger()
	ToString()

	Manipulating Data
	Abs()
	DateAdd()
	StringLen()
	SubString()

	Date Function Formats

	Data Type Conversions for Variable Assignment
	Using the Expression Builder
	Creating XPath Expressions Using the XPath Wizard
	Generating XPath Location Expressions from XML Entities
	Viewing XPath Expressions
	Testing XPath Expressions
	Testing Location Expressions
	Testing Expressions That Contain Functions

	9 Handling Workflow Exceptions
	About Workflow Exception Handling
	Overview of Exception Handler Definition Tasks
	Defining Exception Handlers
	Creating a Custom Exception Handler
	Exiting an Exception Handler
	Updating a Custom Exception Handler
	Viewing Exception Handler Usage
	Deleting a Custom Exception Handler

	Invoking an Exception Handler from a Workflow
	Setting the Workflow Exception Handler
	Invoking an Exception Handler

	System Error Messages

	10 Monitoring Workflows
	Overview of Workflow Monitoring Tasks
	Working with Workflow Instances
	Viewing Workflow Instance Status
	Viewing and Updating Workflow Instance Variables
	Deleting Workflow Instances

	Viewing User and Role Worklists
	Changing Task Permissions and Priority
	Changing Task Status and Assignment
	Reassigning a Task
	Marking a Task Done
	Unmarking a Task Done

	Using Workload Reports
	Compiling Workload Report Information
	Viewing Workload Reports

	Using Statistics Reports
	Compiling Statistics Report Information
	Viewing Statistics Reports

	11 Importing and Exporting Workflow Packages
	About Import/Export
	Exporting Workflow Packages
	Importing Workflow Packages
	Importing and Exporting Workflow Template Definitions from and to XML Files
	Exporting Workflow Template Definitions to XML
	Importing Workflow Template Definitions from XML

	Index

