
BEAWebLogic
Operations
Control

Use Case Example

Version 1.0
Document Revised: April 4, 2008

Use Case Example iii

Contents

Introduction
Main Steps. 1-2

Related Documents . 1-2

Configure the WLOC Resource Environment
Step 1: Install and Create the Plain Agent . 2-1

Install the Plain Agent . 2-2

Create the Plain Agent . 2-2

Agent Directory Structure . 2-9

Agent Configuration File . 2-10

Step 2: Install and Create the Controller . 2-13

Install the Controller . 2-13

Create the Controller . 2-14

Controller Directory Structure . 2-20

Controller Configuration File . 2-21

Establish the WLOC Runtime Environment
Step 1: Start the Plain Agent . 3-1

Step 2: Start the Controller . 3-2

Step 3: Start the WLOC Administration Console . 3-3

Define the Service Under Management
Step 1: Create the Service and Process Groups . 4-3

iv Use Case Example

Define the Administration Server Process Group. 4-5

Define the Managed Servers Process Group. 4-11

Define Resource Requirements for the Service . 4-17

View Deployment Policy . 4-19

Create Services Using Helper Methods . 4-20

CreditCheckService Service Metadata Configuration . 4-20

AdminServer Process Group Metadata Configuration . 4-23

Step 2: Define the Adaptive Runtime Policies. 4-25

Runtime Policy Metadata Configuration . 4-32

Deploy the Service Against Available Resources
Deployment Scenario . 5-2

Deploy the Service . 5-3

Monitor WLOC Services and Resources
Create a View . 6-2

Browse the Resources Pane . 6-2

Use Case Example 1-1

C H A P T E R 1

Introduction

BEA WebLogic Operations Control (WLOC) is a management environment that can increase the
efficiency of your operations center by hiding the complexity of the underlying operational
environment and presenting the resources and Java applications in a simple supply and demand
mode.

On the supply side of the equation, you use WLOC to organize the computing resources in your
operations center into collections (pools) of resources. A WLOC resource pool can represent a
single physical machine or a collection of virtualized resources that are made available through
hypervisor software.

On the demand side of the equation, you use WLOC to organize Java applications (processes)
into WLOC services. Typically, you organize a group of related processes into a single service
and manage the group as a unit, but you can create one service for each process.

This document provides a basic use-case example for WLOC. In this use case we will describe
the steps to:

Establish a resource environment by installing and creating a Plain Agent and Controller

Establish the runtime environment by starting the Agent, Controller, and the WLOC
Administration Console.

Use the Administration Console to define a service to be managed.

Deploy the service against the available resources.

Monitor the WLOC service and the resource environment with the WLOC Administration
Console.

In t roduct ion

1-2 Use Case Example

Main Steps
The following table summarizes the main steps demonstrated in this example.

Related Documents
The WLOC documentation set includes the following:

Installation Guide—Describes how to install and uninstall the WLOC components.

Configuration Guide—Describes how to configure and manage the WLOC Controller and
Agents, configure services and policies to manage services, and configure security. It also
describes how to use WLOC to monitor, log, and audit the operations of your services and
resources.

LiquidVM User Guide—Describes how to use LiquidVM to create and deploy virtualized
Java software appliances directly onto virtualized server resources.

WLOC Administration Console Help—The online help for WLOC’s graphical user
interface. You can access the WLOC Administration Console Help either by clicking the

Table 1-1 Use Case Example Main Steps

To complete this task . . . We demonstrate how to perform the following steps . . .

Establish the WLOC
resource environment

• “Step 1: Install and Create the Plain Agent” on page 2-1
• “Step 2: Install and Create the Controller” on page 2-13

Establish the WLOC runtime
environment

• “Step 1: Start the Plain Agent” on page 3-1
• “Step 2: Start the Controller” on page 3-2
• “Step 3: Start the WLOC Administration Console” on page 3-3

Define services under
management

• “Step 1: Create the Service and Process Groups” on page 4-3
• “Step 2: Define the Adaptive Runtime Policies” on page 4-25

Deploy services against
available resources

• “Deployment Scenario” on page 5-2
• “Deploy the Service” on page 5-3

Monitor WLOC services and
resource environment with
the WLOC Administration
Console

• “Create a View” on page 6-2
• “Browse the Resources Pane” on page 6-2

http://e-docs.bea.com/wloc/docs10/config/index.html
http://e-docs.bea.com/wloc/docs10/config/index.html
http://e-docs.bea.com/wloc/docs10/lvm/index.html
http://e-docs.bea.com/wloc/docs10/ConsoleHelp/core/index.html

Rela ted Documents

Use Case Example 1-3

Help link in the upper right corner of the Administration Console, or at
http://edocs.bea.com/wloc/docs10/ConsoleHelp.

Controller Configuration Schema Reference—A reference to the XML Schema used to
persist the configuration of the WLOC Controller component.

Agent Configuration Schema Reference—A reference to the XML Schema used to persist
the configuration of the WLOC Agent component.

Service Metadata Schema Reference—A reference to the XML Schema used to persist the
configuration of WLOC services.

Message Catalog—A reference to messages generated by WLOC.

http://e-docs.bea.com/wloc/docs10/ConsoleHelp/core/index.html
http://e-docs.bea.com/wloc/docs10/schemaref/controller/index.html
http://e-docs.bea.com/wloc/docs10/schemaref/agent/index.html
http://e-docs.bea.com/wloc/docs10/schemaref/metadata/index.html
http://e-docs.bea.com/wloc/docs10/msgref/index.html

In t roduct ion

1-4 Use Case Example

Use Case Example 2-1

C H A P T E R 2

Configure the WLOC Resource
Environment

In a WLOC environment, resource pools provide a virtual environment in which you can deploy
WLOC services. Each resource pool provides access to physical computing resources (such as
CPU cycles, memory, and disk space) and pre-installed software that a service needs to run.

To establish a WLOC resource environment, you need to configure a controller and one or more
agents. You can do so using the WLOC Configuration Wizard. When you configure an Agent,
you configure its resource pool. When you configure the Controller, you bind it to the Agents so
that it can get information about the resources and deploy services accordingly.

The Controller also hosts the WLOC Administration Console which provides a graphical
interface into the WLOC environment.

In this example, we will install and create a Plain Agent and a Controller.

The main steps in this topic include:

Step 1: Install and Create the Plain Agent

Step 2: Install and Create the Controller

Step 1: Install and Create the Plain Agent
A Plain Agent manages the computing resources for the physical machine on which the Agent is
installed. You can configure a Plain Agent to allocate all or a subset of the available machine
resources to WLOC services.

After you install the agent, you create it using the WLOC Configuration Wizard.

Conf igure the WLOC Resource Env i ronment

2-2 Use Case Example

Use the following steps to install and create the Plain Agent.

Install the Plain Agent
The Plain Agent is installed as part of a complete WLOC installation, or can be selected
individually using the Custom installation option. For details about installing WLOC, see the
WLOC Installation Guide.

Create the Plain Agent
To create the Plain Agent, use the WLOC Configuration Wizard and complete the following
steps:

1. From the Start Menu, select Start > WebLogic Operations Control 1.0 > WLOC
Configuration Wizard.

2. In the Welcome window, click Next.

3. In the Choose Controller or Agent window, select Create a new Agent for this host and
click Next.

http://e-docs.bea.com/wloc/docs10/install/index.html

Step 1 : Ins ta l l and Create the P la in Agent

Use Case Example 2-3

4. In the Enter Agent Directory Location window, specify the path and file name for the Agent
and click Next.

By default, this directory is created in BEA_HOME\user_projects\agent1, but you can
specify any name and directory location you choose.

Note that we used C:\BEAHOME as the BEA_HOME directory when we installed the WLOC
software, therefore that BEA_HOME value is displayed as the default.

For this example, we accept the default C:\BEAHOME\user_projects location, and
change the name of the directory to PlainAgent.

Conf igure the WLOC Resource Env i ronment

2-4 Use Case Example

5. In the Configure Agent Connection Details window, specify the following connection
information for the Agent:

Table 2-1 Agent Connection Information

In this field . . . Enter the following value . . .

Agent Name PlainAgent

Agent Host The URL for the host machine. In this example we use
myhost.bea.com.

Agent Port 8001 (the default)

Agent Secure Port 8002 (the default)

Transfer Encryption Passphrase Default

Step 1 : Ins ta l l and Create the P la in Agent

Use Case Example 2-5

6. Click Next in the following two windows to accept the defaults:

– Configure Agent Logging

– Configure Agent Keystore Passwords

7. In the Configure Agent Type window, select Plain Agent and click Next.

Confirm Transfer Encryption
Passphrase

Default

Security Mode Unsecure (default)

Table 2-1 Agent Connection Information

In this field . . . Enter the following value . . .

Conf igure the WLOC Resource Env i ronment

2-6 Use Case Example

8. In the Configure Plain Agent (1 of 2) window, provide a name for the resource pool
associated with this Agent and the CPU capacity available to the resource pool, as shown in
the following table:

Table 2-2 Plain Agent Resource Pool Configuration

In this field . . . Enter the following value . . .

Resource Pool Name plain-resource-pool

Description plain resource pool

CPU capacity (MHz) 512

Stdout Directory Accept the default

Stderr Directory Accept the default

Step 1 : Ins ta l l and Create the P la in Agent

Use Case Example 2-7

9. In the Configure Plain Agent (2 of 2) window, you specify the available software you want
to include in the resource pool. For this example, do not specify any additional software and
click Next.

Conf igure the WLOC Resource Env i ronment

2-8 Use Case Example

10. In the Create Agent Configuration window, click Create.

Step 1 : Ins ta l l and Create the P la in Agent

Use Case Example 2-9

11. After the Agent has been created, click Done to exit the WLOC Configuration Wizard.

Agent Directory Structure
After completing the Plain Agent installation and creation, the following directory structure is
created in the C:\BEAHOME\user_projects\PlainAgent directory.

Conf igure the WLOC Resource Env i ronment

2-10 Use Case Example

Table 2-2 describes the contents of these directories.

Agent Configuration File
When you create an Agent using the WLOC Configuration Wizard, the configuration is persisted
in an XML file named loc-agent-config.xml. In this example, the file is created in the
following directory:
c:\BEAHOME\user_projects\PlainAgent\config\loc-agent-config.xml

where:

BEAHOME is the BEA Home directory containing the WLOC installation, and PlainAgent is the
name that we specified for the Agent Directory location in the Configuration Wizard.

Table 2-3 Agent Directory Description

Directory Description

bin Commands to start the Agent, and to install and remove the Agent as a
Windows service.

config Agent configuration files.

keys Encryption key used to encrypt clear text passwords.

logs Agent log files.

ssl Internal digital certificate and keystores for the Agent used for SSL
communication with the Controller.

Step 1 : Ins ta l l and Create the P la in Agent

Use Case Example 2-11

After you have created the Agent using the Configuration Wizard, it can be modified using the
Administration Console or by directly editing its configuration file.

The loc-agent-config.xml file created in this example is shown in Listing 2-1

Listing 2-1 Sample loc-agent-config.xml File

<?xml version="1.0" encoding="UTF-8"?><loc-agent xmlns="bea.com/loc/agent"

xmlns:loc="http://bea.com/loc">

 <name>PlainAgent</name>

 <description>PlainAgent</description>

 <network>

 <loc:host>myhost.bea.com</loc:host>

 <loc:components>

 <loc:component>

 <loc:name>ListenPorts</loc:name>

 <loc:description>ListenPorts</loc:description>

 <loc:port>8001</loc:port>

 <loc:secure-port>8002</loc:secure-port>

 </loc:component>

 </loc:components>

 </network>

 <use-secure-connections>false</use-secure-connections>

 <logging>

 <loc:file-severity>Info</loc:file-severity>

<loc:base-file-name>C:/BEAHOME/user_projects/PlainAgent/logs/Agent.log</lo

c:base-file-name>

 <loc:rotation-type>BySize</loc:rotation-type>

 <loc:rotation-size>5000</loc:rotation-size>

 <loc:rotation-time>00:00</loc:rotation-time>

 <loc:file-rotation-dir>./logs/logrotdir</loc:file-rotation-dir>

 <loc:number-of-files-limited>true</loc:number-of-files-limited>

 <loc:rotated-file-count>5</loc:rotated-file-count>

 <loc:rotation-time-span>24</loc:rotation-time-span>

 <loc:rotation-time-span-factor>3500000</loc:rotation-time-span-factor>

 <loc:rotation-on-startup-enabled>true</loc:rotation-on-startup-enabled>

 <loc:stdout-severity>Info</loc:stdout-severity>

Conf igure the WLOC Resource Env i ronment

2-12 Use Case Example

 </logging>

 <audit>

 <loc:base-file-name>./logs/audit.log</loc:base-file-name>

 <loc:rotation-type>BySize</loc:rotation-type>

 <loc:rotation-size>300</loc:rotation-size>

 <loc:rotation-time>00:00</loc:rotation-time>

 <loc:file-rotation-dir>./logs/logrotdir</loc:file-rotation-dir>

 <loc:number-of-files-limited>true</loc:number-of-files-limited>

 <loc:rotated-file-count>50</loc:rotated-file-count>

 <loc:rotation-time-span>24</loc:rotation-time-span>

 <loc:rotation-time-span-factor>50</loc:rotation-time-span-factor>

 <loc:rotation-on-startup-enabled>true</loc:rotation-on-startup-enabled>

 <loc:enabled>true</loc:enabled>

 <loc:scope>

 <loc:type>All</loc:type>

 </loc:scope>

 </audit>

 <work-managers>

 <loc:work-manager>

 <loc:name>WM</loc:name>

 <loc:description>WM</loc:description>

 <loc:max-threads-constraint>64</loc:max-threads-constraint>

 <loc:min-threads-constraint>3</loc:min-threads-constraint>

 </loc:work-manager>

 <loc:work-manager>

 <loc:name>ResourceBrokerAgent-WM</loc:name>

 <loc:description>ResourceBrokerAgent-WM</loc:description>

 <loc:max-threads-constraint>15</loc:max-threads-constraint>

 <loc:min-threads-constraint>3</loc:min-threads-constraint>

 </loc:work-manager>

 <loc:work-manager>

 <loc:name>AgentRuntime-WM</loc:name>

 <loc:description>AgentRuntime-WM</loc:description>

 <loc:max-threads-constraint>15</loc:max-threads-constraint>

 <loc:min-threads-constraint>3</loc:min-threads-constraint>

 </loc:work-manager>

 </work-managers>

 <encryption>

Step 2 : Ins ta l l and Create the Cont ro l l e r

Use Case Example 2-13

 <password>{Salted-3DES}zwrq/caNuFEi4S5AeAAl1A==</password>

 </encryption>

 <resource-pools>

 <plain-resource-pool>

 <name>plain-resource-pool</name>

 <description>plain resource pool</description>

 <cpu-capacity>512</cpu-capacity>

 <stdout-dir>C:\BEAHOME\user_projects\PlainAgent\stdout</stdout-dir>

 <stderr-dir>C:\BEAHOME\user_projects\PlainAgent\stderr</stderr-dir>

 </plain-resource-pool>

 </resource-pools>

</loc-agent>

For information about the elements of the loc-agent-config.xml Agent configuration file, see
the Agent Configuration Schema Reference.

Step 2: Install and Create the Controller
Every WLOC environment includes a single Controller and one or more Agents. The Controller
is the central component that gathers data about the operating environment from Agents. The
Controller uses the data that it gathers to intelligently deploy new services and to evaluate and
enforce policies for all services in the environment. The Controller also hosts the WLOC
Administration Console.

After you install the Controller, you configure it using the WLOC Configuration Wizard.

Although you can install the Agent and the Controller on different physical machines, in this
example, the Controller is installed on the same machine as the Plain Agent.

Use the following steps to install and configure the controller.

Install the Controller
The Controller is installed as part of a complete WLOC installation, or can be selected
individually using the Custom installation option. For details about installing WLOC, see the
WLOC Installation Guide.

http://e-docs.bea.com/wloc/docs10/schemaref/agent/index.html
http://e-docs.bea.com/wloc/docs10/install/index.html

Conf igure the WLOC Resource Env i ronment

2-14 Use Case Example

Create the Controller
To create the Controller, use the WLOC Configuration Wizard and complete the following steps:

1. From the Start Menu, select Start > WebLogic Operations Control 1.0 > WLOC
Configuration Wizard.

2. In the Welcome window, click Next.

3. In the Choose Controller or Agent window, select Create the Controller or extend the
existing Controller for this host and click Next.

4. In the Enter Controller Directory Location window, we accept the default path and
filename for the Controller and click Next.

Step 2 : Ins ta l l and Create the Cont ro l l e r

Use Case Example 2-15

5. In the Enter Controller Connection Data window, specify the following connection
information for the Controller.

Table 2-4 Controller Connection Information

In this field . . . Enter the following value . . .

Controller Host The URL for the host machine (myhost.bea.com)

Console Port 9001 (the default)

Console Secure Port 9002 (the default)

Console Mode Both

Internal Port 9003 (the default)

Conf igure the WLOC Resource Env i ronment

2-16 Use Case Example

6. Accept the default options in the following windows and click Next:

– Configure Controller Logging

– Configure Controller Notifications (1 of 3)

– Configure Controller Notifications (2 of 3)

– Configure Controller Notifications (3 of 3)

7. In the Configure Agents for this Controller window, click Add to bind the Plain Agent
created previously to this Controller.

Internal Secure Port 9004 (the default)

Security Mode Unsecure (default)

Table 2-4 Controller Connection Information

In this field . . . Enter the following value . . .

Step 2 : Ins ta l l and Create the Cont ro l l e r

Use Case Example 2-17

The fields are populated with the default data for your machine. Enter the name PlainAgent
name in the Name field, accept the defaults for the remaining fields and click Next.

8. Click Next in the Use SSH for WLOC ESX Agents window. In this example, only a Plain
Agent is configured.

9. In the Enter User Data window, specify a username and password for the boot user. For this
example, accept the defaults. Note that the default username is WLOCBootUser and the
default password is changeit:

Conf igure the WLOC Resource Env i ronment

2-18 Use Case Example

10. In the Configure Controller KeyStore Passwords, accept the default passwords and click
Next.

Step 2 : Ins ta l l and Create the Cont ro l l e r

Use Case Example 2-19

11. In the Create Controller Configuration window, click Create.

Conf igure the WLOC Resource Env i ronment

2-20 Use Case Example

12. After the Controller has been created, click Done to exit the WLOC Configuration Wizard.

Controller Directory Structure
After completing the Controller installation and creation, the following directory structure is
created in the C:\BEAHOME\user_projects\controller directory.

Step 2 : Ins ta l l and Create the Cont ro l l e r

Use Case Example 2-21

Table 2-2 describes the contents of these directories.

Controller Configuration File
When you create a Controller using the WLOC Configuration Wizard, the configuration is
persisted in an XML file named loc-controller-config.xml. In this example, the file is
created in the following directory:
BEAHOME/user_projects/controller/config/loc-controller-config.xml

where:

BEAHOME is the BEA Home directory containing the WLOC installation, and controller is the
name that we specified for the Controller Directory location in the Configuration Wizard.

Table 2-5 Controller Directory Description

Directory Description

bin Commands to start the Controller, and to install and remove the Controller
as a Windows service.

config Controller configuration files.

keys Encryption keys used to encrypt clear text passwords and data.

logs Controller log files

ssl Internal digital certificate and keystores for the Controller used for SSL
communication with the Agents.

Conf igure the WLOC Resource Env i ronment

2-22 Use Case Example

After you have created the Controller using the Configuration Wizard, it can be modified using
the Administration Console or by directly editing its configuration file.

The loc-controller-config.xml file created in this example is shown in Listing 2-2

Listing 2-2 Sample loc-controller-config.xml File

<?xml version="1.0" encoding="UTF-8"?><loc-controller

xmlns="bea.com/loc/controller" xmlns:loc="http://bea.com/loc">

 <network>

 <loc:host>host.bea.com</loc:host>

 <loc:components>

 <loc:component>

 <loc:name>Console</loc:name>

 <loc:description>Console</loc:description>

 <loc:port>9001</loc:port>

 <loc:secure-port>9002</loc:secure-port>

 </loc:component>

 <loc:component>

 <loc:name>InternalCommunication</loc:name>

 <loc:description>InternalCommunication</loc:description>

 <loc:port>9003</loc:port>

 <loc:secure-port>9004</loc:secure-port>

 </loc:component>

 </loc:components>

 </network>

 <use-secure-connections>false</use-secure-connections>

 <console-mode>BOTH</console-mode>

 <logging>

 <loc:file-severity>Info</loc:file-severity>

<loc:base-file-name>C:/BEAHOME/user_projects/controller/logs/Controller.lo

g</loc:base-file-name>

 <loc:rotation-type>BySize</loc:rotation-type>

 <loc:rotation-size>500</loc:rotation-size>

 <loc:rotation-time>00:00</loc:rotation-time>

 <loc:file-rotation-dir>./logs/logrotdir</loc:file-rotation-dir>

 <loc:number-of-files-limited>true</loc:number-of-files-limited>

Step 2 : Ins ta l l and Create the Cont ro l l e r

Use Case Example 2-23

 <loc:rotated-file-count>5</loc:rotated-file-count>

 <loc:rotation-time-span>24</loc:rotation-time-span>

 <loc:rotation-time-span-factor>3500000</loc:rotation-time-span-factor>

 <loc:rotation-on-startup-enabled>true</loc:rotation-on-startup-enabled>

 <loc:stdout-severity>Info</loc:stdout-severity>

 </logging>

 <audit>

 <loc:base-file-name>./logs/audit.log</loc:base-file-name>

 <loc:rotation-type>BySize</loc:rotation-type>

 <loc:rotation-size>300</loc:rotation-size>

 <loc:rotation-time>00:00</loc:rotation-time>

 <loc:file-rotation-dir>./logs/logrotdir</loc:file-rotation-dir>

 <loc:number-of-files-limited>true</loc:number-of-files-limited>

 <loc:rotated-file-count>50</loc:rotated-file-count>

 <loc:rotation-time-span>24</loc:rotation-time-span>

 <loc:rotation-time-span-factor>50</loc:rotation-time-span-factor>

 <loc:rotation-on-startup-enabled>true</loc:rotation-on-startup-enabled>

 <loc:enabled>true</loc:enabled>

 <loc:scope>

 <loc:type>ControllerConfiguration</loc:type>

 <loc:type>ServiceConfiguration</loc:type>

 <loc:type>Rules</loc:type>

 <loc:type>ControllerAction</loc:type>

 <loc:type>Adjudication</loc:type>

 <loc:type>AgentConfiguration</loc:type>

 </loc:scope>

 </audit>

 <work-managers>

 <loc:work-manager>

 <loc:name>WM</loc:name>

 <loc:description>WM</loc:description>

 <loc:max-threads-constraint>64</loc:max-threads-constraint>

 <loc:min-threads-constraint>3</loc:min-threads-constraint>

 </loc:work-manager>

 <loc:work-manager>

 <loc:name>ResourceBroker-WM</loc:name>

 <loc:description>ResourceBroker-WM</loc:description>

 <loc:max-threads-constraint>15</loc:max-threads-constraint>

Conf igure the WLOC Resource Env i ronment

2-24 Use Case Example

 <loc:min-threads-constraint>3</loc:min-threads-constraint>

 </loc:work-manager>

 <loc:work-manager>

 <loc:name>Action-Purge-WM</loc:name>

 <loc:description>Action-Purge-WM</loc:description>

 <loc:max-threads-constraint>15</loc:max-threads-constraint>

 <loc:min-threads-constraint>3</loc:min-threads-constraint>

 </loc:work-manager>

 <loc:work-manager>

 <loc:name>ExecuteEngine-WM</loc:name>

 <loc:description>ExecuteEngine-WM</loc:description>

 <loc:max-threads-constraint>15</loc:max-threads-constraint>

 <loc:min-threads-constraint>3</loc:min-threads-constraint>

 </loc:work-manager>

 <loc:work-manager>

 <loc:name>ProcessRuntime-WM</loc:name>

 <loc:description>ProcessRuntime-WM</loc:description>

 <loc:max-threads-constraint>15</loc:max-threads-constraint>

 <loc:min-threads-constraint>3</loc:min-threads-constraint>

 </loc:work-manager>

 <loc:work-manager>

 <loc:name>Actions-WM</loc:name>

 <loc:description>Actions-WM</loc:description>

 <loc:max-threads-constraint>15</loc:max-threads-constraint>

 <loc:min-threads-constraint>3</loc:min-threads-constraint>

 </loc:work-manager>

 </work-managers>

 <heartbeat-interval>20</heartbeat-interval>

 <reconnect-attempts>3</reconnect-attempts>

 <agents>

 <agent>

 <name>PlainAgent</name>

 <host>host.bea.com</host>

 <port>8001</port>

 <secure-port>8002</secure-port>

 <state>Enabled</state>

 <password>{Salted-3DES}8kenEcTMhnFzQI/LXLZeMQ==</password>

 </agent>

Step 2 : Ins ta l l and Create the Cont ro l l e r

Use Case Example 2-25

 </agents>

 <lvm-ssh-config>

 <public-key-file/>

 </lvm-ssh-config>

 <notification>

 <smtp>

 <name>LOC EMail Notification Service</name>

 <description>LOC EMail Notification Service</description>

 <to-address>somebody@somecompany.com</to-address>

 <from-address>LOCController@somecompany.com</from-address>

 <smtp-server>smtpserver.somecompany.com</smtp-server>

 <enabled>false</enabled>

 </smtp>

 <jms>

 <name>LOC JMS Notification Service</name>

 <description>LOC JMS Notification Service</description>

<destination-jndi-name>com.bea.adaptive.loc.notification.JMSNotifier</dest

ination-jndi-name>

<connection-factory-jndi-name>QueueConnectionFactory</connection-factory-j

ndi-name>

 <jndi-properties>

 <initial-factory>org.mom4j.jndi.InitialCtxFactory</initial-factory>

 <provider-url>xcp://somehost:9911</provider-url>

 <security-principal>system</security-principal>

 <password>{Salted-3DES}+fzbeHi7Ydhh+A1csPgYPA==</password>

 </jndi-properties>

 <enabled>false</enabled>

 </jms>

 <jmx>

 <name>JMX Notification Service</name>

 <description>JMX Notification Service</description>

 <enabled>false</enabled>

 </jmx>

 <snmp>

 <name>LOC SNMP Notification Service</name>

 <description>LOC SNMP Notification Service</description>

Conf igure the WLOC Resource Env i ronment

2-26 Use Case Example

 <agent>

 <name>MySNMPAgent</name>

 <description>MySNMPAgent</description>

 <host>somehost</host>

 <port>2002</port>

 <trap-version>SNMPv2</trap-version>

 <enable-inform>false</enable-inform>

 </agent>

 <trap-destinations>

 <destination>

 <name>testTrapDest</name>

 <description>testTrapDest</description>

 <host>somehost</host>

 <port>1642</port>

 <community>public</community>

 <security-level>noAuthNoPriv</security-level>

 </destination>

 </trap-destinations>

 <enabled>false</enabled>

 </snmp>

 </notification>

</loc-controller>

For information about the elements of the loc-controller-config.xml Controller
configuration file, see the Controller Configuration Schema Reference.

What’s Next?
After installing and creating the Plain Agent and Controller, go to Chapter 3, “Establish the
WLOC Runtime Environment,” which describes how to start the Agent, the Controller, and the
WLOC Administration Console.

http://e-docs.bea.com/wloc/docs10/schemaref/controller/index.html

Use Case Example 3-1

C H A P T E R 3

Establish the WLOC Runtime
Environment

Now that we have installed and configured the Plain Agent and the Controller to establish the
resource environment for this example, we need to start each of them and the Administration
Console. This will establish the runtime environment needed to define the service to be managed.

The tasks in this topic include:

Step 1: Start the Plain Agent

Step 2: Start the Controller

Step 3: Start the WLOC Administration Console

Step 1: Start the Plain Agent
To start the Plain Agent:

1. Open a Command Prompt window.

2. Navigate to \bin of the directory in which we created the Plain Agent:

C:\BEAHOME\user_projects\PlainAgent\bin

3. Enter startAgent at the prompt.

As the Plain Agent starts, status messages are displayed in the Command Prompt window. After
the start sequence is complete, the following information message is displayed in the window:

<Mar 16, 2008 10:05:18 PM> <Info> <ServiceInspector> <All internal systems

are now RUNNING.>

Es tab l i sh the WLOC Runt ime Env i ronment

3-2 Use Case Example

Step 2: Start the Controller
To start the Controller:

1. Open a Command Prompt window.

2. Navigate to \bin of the directory in which we created the Controller:

C:\BEAHOME\user_projects\controller\bin

3. Enter startController at the prompt.

As the Controller starts, status messages are displayed in the Command Prompt window. After
the start sequence is complete and the Controller establishes the connection with the Plain Agent,
the following information messages are displayed in the window:

<Mar 16, 2008 10:08:25 PM> <Info> <ServiceInspector> <All internal systems are
now RUNNING.>
STREAM: found system propertyweblogic.xml.stax.XMLStreamOutputFactory
<Mar 16, 2008 10:08:27 PM EDT> <Info> <OSGiLogReaderAdapter> <BEA-000000>
<Bundle[141] com.bea.arc.u
i, Message (ServiceEvent.REGISTERED
{objectClass=[com.bea.arc.ui.UserInterfaceService] , service.id=
123}), Exception (null), Time (1205719707093)>
<Mar 16, 2008 10:08:27 PM EDT> <Info> <com.bea.core.tomcat.Activator>
<BEA-000000> <SimpleBundle: Se
rvice of type com.bea.arc.ui.UserInterfaceService registered.>
<Mar 16, 2008 10:08:28 PM EDT> <Info> <Configuration> <BEA-2013535>
<Successfully wrote file C:/BEAH
OME/user_projects/controller/agent-configuration-cache/PlainAgent-log-agent-co
nfig.xml.>
<Mar 16, 2008 10:08:28 PM EDT> <Info> <Configuration> <BEA-2013535>
<Successfully wrote file C:/BEAH
OME/user_projects/controller/agent-configuration-cache/PlainAgent-log-agent-co
nfig.xml.>
<Mar 16, 2008 10:08:28 PM EDT> <Info> <ResourceBrokerCommon> <BEA-2012151>
<Established connection w
ith WLOC Agent running at http://myhost.bea.com:8001.>
[AGENTS-HANDLING] : Getting the observer service for :
http://myhost.bea.com:8001/AgentLumpe
rObserver
[AGENTS-HANDLING] : ObserverService URL =
http://myhost.bea.com:8001/AgentLumperObserver
<Mar 16, 2008 10:08:28 PM EDT> <Info> <ResourceBrokerPool> <BEA-2012203>
<ResourceBroker agent with
id plain-resource-pool - Registered>

Step 3 : S tar t the WLOC Admin is t rat i on Conso le

Use Case Example 3-3

Step 3: Start the WLOC Administration Console
To start the WLOC Administration Console:

1. Open a Web Browser.

2. Enter the following URL:

http://localhost:9001/wloc-console

Note: Because we are running the Controller on the local machine, we can use localhost.
If the Controller was installed on a remote machine, you need to specify the host name
for the machine hosting the Controller.

3. In the Console Welcome window, enter the user name and password required to access the
Controller. Because we accepted the defaults when we created the Controller, we enter the
following values in this example:

In this field Enter the following

Username WLOCBootUser

Password changeit

Es tab l i sh the WLOC Runt ime Env i ronment

3-4 Use Case Example

After logging in successfully, the Home page of the WLOC Administration Console is
displayed.

Step 3 : S tar t the WLOC Admin is t rat i on Conso le

Use Case Example 3-5

Note that the Event Viewer at the bottom of the Console indicates that the resource pool,
named plain-resource-pool, that we defined when we created the Plain Agent was
discovered.

What’s Next?
After establishing the runtime environment, we need to define the service to be managed. For the
steps in this process, go to Chapter 4, “Define the Service Under Management.”

Es tab l i sh the WLOC Runt ime Env i ronment

3-6 Use Case Example

Use Case Example 4-1

C H A P T E R 4

Define the Service Under Management

The next task in the use case example is to define the service to be managed, and to create and
assign deployment and runtime policies that ensure the application deploys and performs as
required.

A service is a grouping of processes, and a process type is a sub-group of processes within a
service. (A process type is referred to as a process group in the console.) The purpose of a service
is to group a collection of processes that work together. The purpose of the process group is to
define instances within the service that perform the same function and can be treated as
equivalent when an action is taken.

For example, you might have a two tier application with a Web app in one tier and business logic
in the other. If the instances of each tier are homogeneous, then each tier could be organized as a
process group and the two process groups together could comprise a service.

The distinction between these two groupings becomes important when defining policies.
Generally speaking, policies related to deployment are applied across the whole service whereas
runtime policies are applied to a specific process group. Furthermore, process type actions, by
default, will generally pick one member of the group to act on. For example if an action is to stop
an instance, the instance that gets stopped is typically not be specified and the instance is chosen
by the controller.

You configure services using the WLOC Administration Console, on the Inventory > Services
page. A service’s configuration is persisted in an XML file named metadata-config.xml. By
default, this service metadata configuration file is located in the
BEA_HOME/user_projects/controller/config directory. It is possible to configure a
service by modifying this service metadata configuration file. Note, however, that if you

Def ine the Serv ice Under Management

4-2 Use Case Example

configure a service by modifying its metadata configuration file, you do not receive the benefits
of validation and error checking that you get if you configure a service using the Administration
Console.

Figure 4-1 illustrates an example of a SOA application that consists of multiple client
applications calling into a backend Web Service via a software load balancer. The back end Web
Service can be hosted on WLS Managed Servers.

Figure 4-1 Sample SOA Application Managed by WLOC

In this use case example, we will use the WLOC Administration Console to create a service
named CreditCheckService that will manage the backend Managed Servers, and an
Administration Server. The Managed Servers host the Credit Check Web Services as shown in
Figure 4-2. We will create two process groups: an Administration Server process group and a
Managed Server process group. We will specify a process requirement for each of the process
groups that requires a minimum of one Admin Server and one Managed Server be started before
the service is deployed. We will also define a runtime policy that executes only after the service
is deployed, and will start the second Managed Server if the rule definition (constraint) is
violated. Figure 4-2 illustrates the topology in this example. Note that we are using a Windows
environment in this example, but other platforms are supported also. For a list of supported
platforms, see BEA WebLogic Operations Control Supported Configurations.

../../../platform/suppconfigs/weblogic/wloc10.html

Step 1 : Create the Serv i ce and Process Groups

Use Case Example 4-3

Figure 4-2 Use Case Example Topology

The tasks in this topic include:

Step 1: Create the Service and Process Groups

Step 2: Define the Adaptive Runtime Policies

Step 1: Create the Service and Process Groups
The first step in defining the service metadata is to define the general properties for the service,
and then define the process groups that it will contain.

Our service will have two process groups, one that consists of a WebLogic Server Administration
Server instance and one that consists of two Managed Server instances. In the WebLogic Server
domain, these instances are named AdminServer, MS_1, and MS_2.

Note: Process groups are referred to as process types in the service metadata XML file.

To define the service and process groups:

1. Click the Inventory tab in the WLOC navigation bar and click Services.

Because we have not defined any services yet, there are no services listed in the table.

Def ine the Serv ice Under Management

4-4 Use Case Example

2. Click New to display the Service Properties page.

3. Enter the values shown in the following table for the general service properties.

Table 4-1 General Service Properties

In this field . . . Specify the following information . . .

Name CreditCheckService

Description: Credit Check Service

Retry Count: 10 (the default)

Priority: 0 (the default)

Placement Algorithm: Prefer resource pools with the most resources

Step 1 : Create the Serv i ce and Process Groups

Use Case Example 4-5

4. Click Next.

The Process Requirements page is displayed. We use this page as the starting point to add
the process groups in the service.

Define the Administration Server Process Group
The following steps describe how to specify the properties and define a ready metric for the
Administration Server process group.

1. In the Process Requirements page, click Add Process Group to add the first process group
for this service.

Def ine the Serv ice Under Management

4-6 Use Case Example

2. Select Start from Scratch from the Process Requirements drop down menu and click Next.

By selecting the Start from Scratch option, we are prompted on subsequent pages to
supply properties for the process group, JVM parameters that are used when adding
instances to the process group, and ready metrics that specify when an instance is available
as a resource.

3. In the Start from Scratch page, we will first define the AdminServer process group. Enter
the following values for the Process Group Properties:

– Process Group: AdminServer

– Number of processes: 1

Step 1 : Create the Serv i ce and Process Groups

Use Case Example 4-7

4. In the Process Group Template Properties portion of the window, enter the values shown
in Table 4-2 for the AdminServer process group instance.

Table 4-2 AdminServer Process Group Template Properties

In this field . . . Specify the following information . . .

Name AdminServer

Description AdminServer JVM

Main Class Leave this option selected. Because our service is deployed on
WLS, we need to invoke the weblogic.Server main class.

Main JAR Leave this option unselected.

Host: The name of the host machine.

In this example, we specify localhost.

The host and port number are used to determine the address the
Agent uses to collect JMX metric information from the endpoint.

Starting Port# 7001

Classpath The CLASSPATH for the domain.

Def ine the Serv ice Under Management

4-8 Use Case Example

JVM Arguments The JVM arguments to be used when the process starts. In this
example, we enter the arguments that are appended to the
weblogic.Server start command to specify minimum and
maximum heap sizes, and to set the WebLogic Server instance
name, security credentials, security policy, home and domain
directories:
-Xmx128m -Xms64m -da
-Dwls.home=D:\wls_92\weblogic92\server
-Dweblogic.management.discover=true
-Dweblogic.Name=AdminServer
-Dweblogic.management.username=weblogic
-Dweblogic.management.password=weblogic
-Djava.security.policy=D:\wls_92\weblogic92\se
rver\lib\weblogic.policy
-Dweblogic.RootDirectory=D:\wls_92\user_projec
ts\domains\LOC_base_domain

Java Arguments In this example, no Java arguments are required.

UserName The username required for authenticating JMX connections.

In this example, we specify weblogic as both the user name and
the password because those are the values required to authenticate
to the Administration Server.

Password The password required for authenticating JMX connections.

Enter weblogic.

Instance Directory Leave this field blank.

Native Lib Directory Leave this field blank.

Use Native JMX Leave this unchecked.

SSH Enabled Leave this unchecked.

Protocol Leave iiop selected.

Table 4-2 AdminServer Process Group Template Properties

In this field . . . Specify the following information . . .

Step 1 : Create the Serv i ce and Process Groups

Use Case Example 4-9

Def ine the Serv ice Under Management

4-10 Use Case Example

5. Specify a ready metric for the AdminServer instance by entering the values shown in
Table 4-3.

A ready metric indicates when a process has been started and is ready for work. For a
WebLogic Server instance, the ServerRuntime MBean has a State attribute. When
ServerRuntimeMbean.State=RUNNING, the WebLogic Server instance is ready.

Table 4-3 AdminServer Ready Metrics

In this field . . . Specify the following information . . .

Instance Name com.bea:Name=AdminServer,Type=ServerRuntime

Attribute State

Value RUNNING

Operator Value Equals (the default)

Value Type String

Wait 300000 (This value ensures the WLS Admin Server instance
has time to complete its startup.)

Step 1 : Create the Serv i ce and Process Groups

Use Case Example 4-11

6. Click Next.

Note that the AdminServer process group is listed in the Process Group table.

In the next steps we will define the Managed Server process group.

Define the Managed Servers Process Group
The following steps describe how to specify the properties and ready metrics for both Managed
Server instances.

Def ine the Serv ice Under Management

4-12 Use Case Example

1. In the Process Requirements page, click Add Process Group to add the Managed Server
process group.

2. Select Start from Scratch from the Process Requirements drop down menu and click Next.

3. In the Start from Scratch page, we will first define the Managed Servers process group.

a. Name the process group ManagedServers

b. Because we have two Managed Servers in this group, enter 2 in the Number of Processes
field.

4. Define the Managed Server processes by entering the values shown in Table 4-4 for the
Process Group Template properties.

Note that the values that are populated in the template are obtained from the values we
provided for the AdminServer process group. We modify them as appropriate for the
ManagedServers group.

The values that we specify on this page are duplicated for all the instances in the group.
Therefore, in this example, both of the Managed Server instances will initially contain the
same values.

Table 4-4 ManagedServers Process Group Template Properties

In this field . . . Specify the following information . . .

Name MS_1. WLOC automatically appends 0 to the first process instance name.
For each additional process instance that is configured, a numeric suffix
is added to the name starting with 1 and incrementing by 1 for each
additional process instance.

Because we are defining two ManagedServers, the first instance is
automatically named MS_10 and the second instance is named MS_11.

Description MS_1

Main Class Leave this option selected. Because our service is managing WLS Admin
and Managed Servers, we need to invoke the weblogic.Server main
class.

Main JAR Leave this option unselected.

Host: localhost

The host and port number are used to determine the address the Agent uses
to collect JMX metric information from the endpoint.

Step 1 : Create the Serv i ce and Process Groups

Use Case Example 4-13

5. Define the ready metric for the MS_1 process instance as follows.

Starting Port# 7002

Classpath The CLASSPATH for the domain. This field is prepopulated with the
CLASSPATH that we entered for the AdminServer process group.

JVM Arguments The JVM arguments to be used when the process starts. This field is
prepopulated with the arguments that we entered for the AdminServer
process group. We need to modify them as follows for the MS_1 Managed
Server:
1. Add the following argument required to start Managed Servers:

-Dweblogic.management.server=http://localhost:7
001

2. Change the name of the server:
-Dweblogic.Name=MS_1

The remaining values apply to both the AdminServer and the Managed
Servers.

Java Arguments In this example, we do not need to specify any Java arguments.

UserName The username required for authenticating JMX connections.

We use weblogic in this example.

Password The password required for authenticating JMX connections.

We use weblogic in this example.

Instance Directory Leave this field blank.

Native Lib Directory Leave this field blank.

Use Native JMX Leave this unchecked.

SSH Enabled Leave this unchecked.

Protocol Leave iiop selected.

Table 4-4 ManagedServers Process Group Template Properties

In this field . . . Specify the following information . . .

Def ine the Serv ice Under Management

4-14 Use Case Example

6. Click Next.

The Process Requirements page is displayed listing both the AdminServer and
ManagedServers process groups in the table.

We now need to modify the properties for the second Managed Server instance, MS_2.

7. Select the ManagedServers name in the Process Group table. The list of defined processes
in the process group is displayed. Note that the second ManagedServer instance created is
named MS_11 and the port is automatically incremented to 7003.

Table 4-5 ManagedServers Ready Metrics

In this field . . . Specify the following information . . .

Instance Name com.bea:Name=MS_1,Type=ServerRuntime

Attribute State

Value RUNNING

Operator Value Equals (the default)

Value Type String

Wait 300000

Step 1 : Create the Serv i ce and Process Groups

Use Case Example 4-15

8. Select MS_11 in the Name column. The properties for the process are displayed.

Def ine the Serv ice Under Management

4-16 Use Case Example

9. In the Name field, change MS_11 to MS_2.

10. In the Description field, change MS_1 to MS_2.

11. In the JVM Args field, change the argument -Dweblogic.Name=MS_1 to
-Dweblogic.Name=MS_2.

12. In the Ready Metric section, change the Instance Name field from
com.bea:Name=MS_1,Type=ServerRuntime to
com.bea:Name=MS_2,Type=ServerRuntime.

13. Click Save. The updated process is shown in the table.

To avoid confusion, we will also change the name of the first Managed Server from
MS_10 to MS_1 to match the name of the Managed Server in the WLS domain.

14. Select MS_10 in the Name column. The process properties are displayed.

15. In the Name field, change MS_10 to MS_1 and click Save. We now have two processes in
the MangedServers process group named MS_1 and MS_2.

Step 1 : Create the Serv i ce and Process Groups

Use Case Example 4-17

16. Click Finish.

17. Define the resource requirements for the process groups as described in the following section.

Define Resource Requirements for the Service
Before we finish creating the service, we need to define the resource requirements for each
process group. When you define a resource requirement, you are creating a resource agreement.
Resource agreements define requirements that are evaluated before starting a service or instance,
which can occur both at deployment and runtime.

To define the resource requirements for the process groups in the CreditCheckService, we
complete the following steps.

1. Select the AdminServer process group check box and click Add Resource Requirements.

2. In the Minimum # of Processes field, enter 1 and click Save.

This value specifies the number of instances that will be started when the service is
deployed. It will also generate a policy that ensures that the minimum number specified is
maintained while the service is running.

We do not need to specify any other requirements for the AdminServer process group for
this example.

Def ine the Serv ice Under Management

4-18 Use Case Example

3. Repeat steps 1 and 2 for the ManagedServers process group.

4. Click Finish to create the service.

The CreditCheckService is now shown in the Services table and the Task and Events
Viewer at the bottom of the Console indicates that the CreditCheckService was added.

Step 1 : Create the Serv i ce and Process Groups

Use Case Example 4-19

View Deployment Policy
When you specify the resource requirements for the service, the deployment policy for the service
is created automatically. A policy consists of a constraint and an action to take when the
constraint is violated. In this example, we set the minimum number of processes to 1 which
indicates that there must be one running instance in both the AdminServer and ManagedServers
process groups. This constraint is automatically bound to the StartJavaInstanceAction

To view the deployment policy, select the Policies tab.

Def ine the Serv ice Under Management

4-20 Use Case Example

Create Services Using Helper Methods
In this example, we created the service using the Start from Scratch option to demonstrate the
complete method for defining process requirements. However, the WLOC Administration
Console provides efficient helper methods that simplify this process by importing the information
from the WLS domain. These helper methods include:

Import from another Service

Import from a Running WebLogic Domain

Import from a WebLogic Domain Configuration

If you had selected one of these options in step 5 above, much of the information that we provided
manually could have been captured from the config.xml file for the domain.

CreditCheckService Service Metadata Configuration
When you create the service, the associated constraints, actions, and bindings are created
automatically. Listing 4-1 shows how the CreditCheckService service configuration is
represented in the metadata-config.xml file.

Listing 4-1 CreditCheckService Metadata Configuration

<ns2:services>
 <ns2:service>
 <ns2:name>CreditCheckService</ns2:name>

Step 1 : Create the Serv i ce and Process Groups

Use Case Example 4-21

 <ns2:description>Credit Check Service</ns2:description>
 <ns2:state>undeployed</ns2:state>
 <ns2:priority>0</ns2:priority>
 <ns2:constraint-bindings>
 <ns2:constraint-binding>

<ns2:constraint-key>CreditCheckServicedeploy-key</ns2:constraint-key>

<ns2:action-key>CreditCheckServicestartserviceaction</ns2:action-key>
 </ns2:constraint-binding>
 <ns2:constraint-binding>

<ns2:constraint-key>CreditCheckServiceundeploy-key</ns2:constraint-key>

<ns2:action-key>CreditCheckServicestopserviceaction</ns2:action-key>
 </ns2:constraint-binding>
 </ns2:constraint-bindings>
 <ns2:process-types>
 <ns2:process-type>
 <ns2:constraint-bindings>
 <ns2:constraint-binding>

<ns2:constraint-key>CreditCheckService-ManagedServers-minprocess</ns2:constrai
nt-key>

<ns2:action-key>CreditCheckServicestartaction</ns2:action-key>
 </ns2:constraint-binding>
 </ns2:constraint-bindings>
 <ns2:name>ManagedServers</ns2:name>
 <ns2:description>ManagedServers-description</ns2:description>

<ns2:metadata-key>CreditCheckService-ManagedServersmetakey</ns2:metadata-key>
 </ns2:process-type>
 <ns2:process-type>
 <ns2:constraint-bindings>
 <ns2:constraint-binding>

<ns2:constraint-key>CreditCheckService-AdminServer-minprocess</ns2:constraint-
key>

<ns2:action-key>CreditCheckServicestartaction</ns2:action-key>
 </ns2:constraint-binding>
 </ns2:constraint-bindings>
 <ns2:name>AdminServer</ns2:name>
 <ns2:description>AdminServer-description</ns2:description>

<ns2:metadata-key>CreditCheckService-AdminServermetakey</ns2:metadata-key>
 </ns2:process-type>
 </ns2:process-types>

Def ine the Serv ice Under Management

4-22 Use Case Example

<ns2:max-failed-event-retry-count>10</ns2:max-failed-event-retry-count>
 </ns2:service>
 </ns2:services>
<ns2:connection-factories/>
 <ns2:connection-infos/>
 <ns2:constraints>
 <ns2:deployment-state-constraint>
 <ns2:name>CreditCheckService-service-deploy</ns2:name>
 <ns2:key>CreditCheckServicedeploy-key</ns2:key>
 <ns2:priority>0</ns2:priority>
 <ns2:state>starting</ns2:state>
 <ns2:evaluation-period>0</ns2:evaluation-period>
 </ns2:deployment-state-constraint>
 <ns2:deployment-state-constraint>
 <ns2:name>CreditCheckService-service-undeploy</ns2:name>
 <ns2:key>CreditCheckServiceundeploy-key</ns2:key>
 <ns2:priority>0</ns2:priority>
 <ns2:state>stopping</ns2:state>
 <ns2:evaluation-period>0</ns2:evaluation-period>
 </ns2:deployment-state-constraint>
 <ns2:min-process-constraint>
 <ns2:name>CreditCheckService-AdminServer-minprocess</ns2:name>
 <ns2:key>CreditCheckService-AdminServer-minprocess</ns2:key>
 <ns2:priority>0</ns2:priority>
 <ns2:state>deployed</ns2:state>
 <ns2:evaluation-period>0</ns2:evaluation-period>
 <ns2:value>1</ns2:value>
 </ns2:min-process-constraint>
 <ns2:min-process-constraint>
 <ns2:name>CreditCheckService-ManagedServers-minprocess</ns2:name>
 <ns2:key>CreditCheckService-ManagedServers-minprocess</ns2:key>
 <ns2:priority>0</ns2:priority>
 <ns2:state>deployed</ns2:state>
 <ns2:evaluation-period>0</ns2:evaluation-period>
 <ns2:value>1</ns2:value>
 </ns2:min-process-constraint>
</ns2:constraints>
 <ns2:notifications/>
 <ns2:pipelines/>
 <ns2:actions>
 <ns2:action>
 <ns2:name>CreditCheckServicestartserviceaction</ns2:name>
 <ns2:key>CreditCheckServicestartserviceaction</ns2:key>

<ns2:impl-class>com.bea.adaptive.actions.internal.StartServiceAction</ns2:impl
-class>
 <ns2:adjudicate>false</ns2:adjudicate>
 <ns2:properties/>

Step 1 : Create the Serv i ce and Process Groups

Use Case Example 4-23

 </ns2:action>
 <ns2:action>
 <ns2:name>CreditCheckServicestopserviceaction</ns2:name>
 <ns2:key>CreditCheckServicestopserviceaction</ns2:key>

<ns2:impl-class>com.bea.adaptive.actions.internal.StopServiceAction</ns2:impl-
class>
 <ns2:adjudicate>false</ns2:adjudicate>
 <ns2:properties/>
 </ns2:action>
 <ns2:action>
 <ns2:name>CreditCheckServicestartaction</ns2:name>
 <ns2:key>CreditCheckServicestartaction</ns2:key>

<ns2:impl-class>com.bea.adaptive.actions.internal.StartJavaInstanceAction</ns2
:impl-class>
 <ns2:adjudicate>false</ns2:adjudicate>
 <ns2:properties/>
 </ns2:action>
 <ns2:action>
 <ns2:name>CreditCheckService-ManagedServers-defaultaction</ns2:name>
 <ns2:key>CreditCheckService-ManagedServers-defaultaction</ns2:key>

<ns2:impl-class>com.bea.arc.ui.actions.ConsoleNotificationAction</ns2:impl-cla
ss>
 <ns2:adjudicate>false</ns2:adjudicate>
 <ns2:properties/>
 </ns2:action>
 <ns2:action>
 <ns2:name>CreditCheckService-AdminServer-defaultaction</ns2:name>
 <ns2:key>CreditCheckService-AdminServer-defaultaction</ns2:key>

<ns2:impl-class>com.bea.arc.ui.actions.ConsoleNotificationAction</ns2:impl-cla
ss>
 <ns2:adjudicate>false</ns2:adjudicate>
 <ns2:properties/>
 </ns2:action>
</ns2:actions>

AdminServer Process Group Metadata Configuration
Listing 4-2 shows how the AdminServer process group configuration is represented in the
metadata-config.xml file. The ready metric configuration is shown in bold type.

Def ine the Serv ice Under Management

4-24 Use Case Example

Listing 4-2 AdminServer Process Group Metadata Configuration

<ns2:metadata-group>
 <ns2:name>CreditCheckService-AdminServermeta1</ns2:name>
 <ns2:key>CreditCheckService-AdminServermetakey</ns2:key>
 <ns2:instances>
 <ns2:jvm-instance>
 <ns2:name>AdminServer</ns2:name>
 <ns2:description>AdminServerJVM</ns2:description>
 <ns2:main-class>weblogic.Server</ns2:main-class>
 <ns2:ready-information>
 <ns2:check-type>ValueEquals</ns2:check-type>
 <ns2:max-wait-period>300000</ns2:max-wait-period>

<ns2:instance>com.bea:Name=AdminServer,Type=ServerRuntime</ns2:instance>
 <ns2:attribute>State</ns2:attribute>
 <ns2:value>RUNNING</ns2:value>
 <ns2:value-type>java.lang.String</ns2:value-type>
 </ns2:ready-information>
 <ns2:jvm-args>
 <ns2:arg>-Xmx128m</ns2:arg>
 <ns2:arg>-Xms64m</ns2:arg>
 <ns2:arg>-da</ns2:arg>
 <ns2:arg>-Dwls.home=D:\wls_92\weblogic92\server</ns2:arg>
 <ns2:arg>-Dweblogic.management.discover=true</ns2:arg>
 <ns2:arg>-Dweblogic.Name=AdminServer</ns2:arg>
 <ns2:arg>-Dweblogic.management.username=weblogic</ns2:arg>
 <ns2:arg>-Dweblogic.management.password=weblogic</ns2:arg>

<ns2:arg>-Djava.security.policy=D:\wls_92\weblogic92\server\lib\weblogic.polic
y</ns2:arg>

<ns2:arg>-Dweblogic.RootDirectory=D:\wls_92\user_projects\domains\LOC_base_dom
ain</ns2:arg>
 <ns2:arg>-cp</ns2:arg>

<ns2:arg>D:\wls_92\patch_weblogic921\profiles\default\sys_manifest_classpath\w
eblogic_patch.jar;
D:\wls_92\JDK150~1\lib\tools.jar;D:\wls_92\WEBLOG~1\server\lib\weblogic_sp.jar
;
D:\wls_92\WEBLOG~1\server\lib\weblogic.jar;D:\wls_92\WEBLOG~1\server\lib\webse
rvices.jar;
D:\wls_92\WEBLOG~1\common\eval\pointbase\lib\pbclient51.jar;D:\wls_92\WEBLOG~1
\server\lib\xqrl.jar;</ns2:arg>
 </ns2:jvm-args>
 <ns2:java-args/>
 <ns2:native-lib-dir></ns2:native-lib-dir>
 <ns2:instance-dir></ns2:instance-dir>

Step 2 : Def ine the Adapt i ve Runt ime Po l i c i es

Use Case Example 4-25

 <ns2:native-jmx>false</ns2:native-jmx>
 <ns2:protocol>iiop</ns2:protocol>
 <ns2:host>localhost</ns2:host>
 <ns2:port>7001</ns2:port>
 <ns2:username>weblogic</ns2:username>

<ns2:password>{Salted-3DES}W0v+mTzrr9u/PRD30V1XGw==</ns2:password>
 <ns2:ssh-enabled>false</ns2:ssh-enabled>
 <ns2:wait-for-ssh>false</ns2:wait-for-ssh>
 <ns2:priority>0</ns2:priority>
 <ns2:copies-at-create/>
 <ns2:copies-at-shutdown/>
 </ns2:jvm-instance>
 </ns2:instances>
 </ns2:metadata-group>

Step 2: Define the Adaptive Runtime Policies
Now that we have defined the service and the initial deployment policies, we need to define the
runtime policies.

WLOC policies specify runtime requirements (constraints or rules) for a service and actions to
take when the service operates outside of the constraints. These policies define service level
agreements (SLAs) for your services. For example, you can define a policy that increases the
amount of memory available if the memory requirements for a specific JVM grow beyond a
specified number of MBs.

WLOC contains a set of predefined constraints, called SmartPacks, that you can use to place
requirements on some common measurements of service health and performance. In this
example, we will define a runtime policy for the ManagedServers process group using the
MaxAverageJVMProcessorLoad constraint that is provided as part of the Smart Pack constraints.

For the runtime policy, we will define a rule (constraint) in which we specify a value of 0.8 for
the MaxAverageJVMProcessorLoad constraint. This value indicates that when the average JVM
processor load exceeds 80%, an action must occur. In this example, a second Managed Server
instance will be started.

To create the runtime policy and assign it to the ManagedServers process group:

1. Select the Policies tab in the WLOC navigation bar, select the Definitions tab, and then select
the Rules tab.

The list of the process constraint deployment polices are shown in the table.

Def ine the Serv ice Under Management

4-26 Use Case Example

2. Click Add Policy Definition.

3. In the Policy Properties page, enter MaxAverageJVMProcessorLoad in the Name field.

4. Select Based on a named attribute from the Type drop-down menu and click Next.

Step 2 : Def ine the Adapt i ve Runt ime Po l i c i es

Use Case Example 4-27

5. In the Rule Properties page, accept the default for the Name and Priority fields.

6. In the Attribute field, select MaxAverageJVMProcessorLoad from the drop-down menu.

Def ine the Serv ice Under Management

4-28 Use Case Example

7. Specify the remaining values as shown in the following table and click Finish.

Step 2 : Def ine the Adapt i ve Runt ime Po l i c i es

Use Case Example 4-29

The new policy rule is added to the Definitions table.

In this field . . . Do the following . . .

Value Enter 0.8.

Evaluation Period Enter 10000. This is the amount of time, in milliseconds, to wait
before reevaluating the constraint.

Service State Select deployed from the drop-down menu. This indicates that the
service must be deployed before the constraint will be evaluated.

Def ine the Serv ice Under Management

4-30 Use Case Example

8. Select the Policies subtab to return to the Active Policies page.

9. Click Assign Policy to assign the policy (the rule and the action to take) to the
ManagedServers process group.

10. In the Policy Properties page, specify the properties of the policy as follows:

a. In the Service drop-down menu, select CreditCheckService to assign the policy to the
service.

b. In the Process drop-down menu, select ManagedServers to assign the policy to the
ManagedServers process group.

c. In the Instance drop-down menu, select All Instances for ManagedServers to assign the
policy to all the Managed Server instances in the process group.

Step 2 : Def ine the Adapt i ve Runt ime Po l i c i es

Use Case Example 4-31

d. In the Definitions drop-down menu, select MaxAverageJVMProcessorLoad to assign
the rule definition to the policy.

e. In the Run Action drop-down menu, select CreditCheckServicestartaction to specify
the action to take when the constraint (rule) is violated.

f. Because we did not define an action pipeline in this example, leave None selected in the
Run Pipeline drop-down menu.

11. Click Finish to finish assigning the policy to the process group.

The policy assignment is created and the Binding created successfully confirmation
message is displayed.

Note that the MaxAverageJVMProcessorLoad policy is now assigned to the
ManagedServers process group in the Active Policies table.

Def ine the Serv ice Under Management

4-32 Use Case Example

Runtime Policy Metadata Configuration
Listing 4-3 shows how the MaxAverageJVMProcessorLoad configuration for the constraint
binding, custom constraint, and associated action is represented in the metadata-config.xml
file.

Listing 4-3 Runtime Policy Metadata Configuration

.

.

.
<ns2:process-types>
 <ns2:process-type>
 <ns2:constraint-bindings>
 <ns2:constraint-binding>

<ns2:constraint-key>CreditCheckService-ManagedServers-minprocess</ns2:constrai
nt-key>

<ns2:action-key>CreditCheckServicestartaction</ns2:action-key>
 </ns2:constraint-binding>
 <ns2:constraint-binding>

<ns2:constraint-key>MaxAverageJVMProcessorLoad</ns2:constraint-key>

<ns2:action-key>CreditCheckServicestartaction</ns2:action-key>
 </ns2:constraint-binding>
 </ns2:constraint-bindings>
 <ns2:name>ManagedServers</ns2:name>

Step 2 : Def ine the Adapt i ve Runt ime Po l i c i es

Use Case Example 4-33

 <ns2:description>ManagedServers-description</ns2:description>

<ns2:metadata-key>CreditCheckService-ManagedServersmetakey</ns2:metadata-key>
 </ns2:process-type>
.
.
.
<ns2:custom-constraint>
 <ns2:name>MaxAverageJVMProcessorLoad</ns2:name>
 <ns2:key>MaxAverageJVMProcessorLoad</ns2:key>
 <ns2:priority>0</ns2:priority>
 <ns2:state>deployed</ns2:state>
 <ns2:evaluation-period>10000</ns2:evaluation-period>
 <ns2:constraint>MaxAverageJvmProcessorLoad</ns2:constraint>
 <ns2:value>0.8</ns2:value>
 </ns2:custom-constraint>
.
.
.
<ns2:action>
 <ns2:name>CreditCheckServicestartaction</ns2:name>
 <ns2:key>CreditCheckServicestartaction</ns2:key>

<ns2:impl-class>com.bea.adaptive.actions.internal.StartJavaInstanceAction</ns2
:impl-class>
 <ns2:adjudicate>false</ns2:adjudicate>
 <ns2:properties/>
 </ns2:action>

What’s Next?
Now that we have defined the service to be managed and assigned deployment and runtime
policies, we need to deploy the service as described in Chapter 5, “Deploy the Service Against
Available Resources.”

Def ine the Serv ice Under Management

4-34 Use Case Example

Use Case Example 5-1

C H A P T E R 5

Deploy the Service Against Available
Resources

The next task in the use case example is to deploy the service to the resource pools on which it
will run. To start a WLOC service, you deploy it using the WLOC Administration Console, or
configure it for auto-deployment. WLOC chooses one or more resource pools for the initial
deployment.

To choose resources pools for an initial deployment, WLOC follows this procedure:

1. The Controller examines the process requirements that you configured for the service.

2. The Controller examines all resource pools that are currently active—including those that are
hosting other services—and uses the following process of elimination to determine which
resource pools are candidates for hosting the service:

– If the service specifies software requirements, resource pools that do not offer access to
all of the required software are eliminated as candidates.

– If the service consists of a single process, resource pools that offer fewer computing
resources than the service's minimum resource requirements are eliminated.

– If the service consists of multiple processes, WLOC may use multiple resource pools to
run the service.

3. After this process of elimination, WLOC determines which resource pool or combination of
resource pools can be used to host the service. Then, it uses one of the following placement
algorithms that you configure when you create the service to choose a resource pool or
collection of resource pools:

– Prefer resource pools with the most resources: WLOC selects the resource pool
combination that provides the greatest amount of computing resources.

Deploy the Se rv i ce Against Ava i lab le Resources

5-2 Use Case Example

– Prefer resource pools with fewer resources: WLOC selects the resource pool that
most closely matches the minimum resource requirements of the service. This
algorithm ensures the most efficient use of resources in your data center.

Deployment Scenario
In this example, we will deploy the CreditCheckService from the Administration Console. Note
that before we start the service, the state of the service is undeployed, which indicates that there
are no instances running. When we start the service, the following occurs:

1. The Controller evaluates the process requirements for each process group in the service.
When we specified the resource requirements in “Define Resource Requirements for the
Service” on page 4-17, we specified that there should be a minimum of 1 process for each
process group.

2. The Controller compares the resource pools available for each process group in the service
against the resource agreements and eliminates any resource pools that cannot host the
service. Because the only requirement that we specified is minimum number of processes, it
will randomly choose one of the two Managed Servers for the ManagedServers process
group.

3. Use the placement algorithm that we specified when we defined the service properties, Prefer
resource pools with the most resources, to determine the resource pool on which to place
the service.

4. The Controller stages each of the instances individually.

5. The Controller starts each of the instances individually. When the minimum number of
processes from each group is started, the service is deployed.

6. The Controller evaluates the runtime policy. When the average load across all the instances
in the ManagedServers process group exceeds the defined value, another JVM instance is
started.

In a real world client application, a typical setting for the MaxAverageJVMProcessorLoad
might be .8, indicating that when the average load across all the instances in the
ManagedServers process group exceeds 80%, an additional JVM instance is started. For
the purposes of this example, we set the value of MaxAverageJVMProcessorLoad to 0 to
trigger the required action.

7. The runtime policy is continually evaluated. When the constraint is violated again and there
are no other available processes to start, the action fails.

Deplo y the Serv i ce

Use Case Example 5-3

Deploy the Service
To deploy the CreditCheckService:

1. Click the Inventory tab in the WLOC navigation bar and click Services.

The CreditCheckService is displayed in the Services table.

2. Select the CreditCheckService check box and click Start.

The message Request to start service was successfully sent is displayed, and
the Status column in the table reflects the transition states of the service.

3. As the service is proceeding through the various transition states of the deployment process,
view the following in the console:

– The runtime status changes in the Status column to reflect the current or transitional
state as follows:

• undeployed—No JVM instances are running.

• staging—The service is transitioning from undeployed to staged state.

• staged—No JVM instances are running (same as undeployed for a Plain Agent.)

• starting—The service is transitioning from staged to deployed state.

• deployed—The minimum number (at least) of JVMs associated with the service are
running.

Deploy the Se rv i ce Against Ava i lab le Resources

5-4 Use Case Example

– The Task and Event Viewer displays each event as it occurs.

When the minimum number of instances are started, the service state is changed to
deployed and the runtime policy is evaluated. The Task and Event Viewer indicates a
Quality of Service (QOS) violation and the second ManagedServers JVM instance is
started.

Deplo y the Serv i ce

Use Case Example 5-5

The runtime policy is continually evaluated. Another QOS violation occurs. Because there
are no other available processes to start, the action fails.

What’s Next?
After the service has deployed successfully, we can monitor the available resources as described
in Chapter 6, “Monitor WLOC Services and Resources.”

Deploy the Se rv i ce Against Ava i lab le Resources

5-6 Use Case Example

Use Case Example 6-1

C H A P T E R 6

Monitor WLOC Services and Resources

Now that the service is deployed, we can use the WLOC Administration Console to monitor how
well the service is meeting its service level agreement, and to see which resource pools are
hosting services.

To gather monitoring data, the WLOC Controller either actively polls the monitored object or
passively listens for changes to a monitored object, depending on the type of data that it is
gathering.

The Monitoring tab of the WLOC Administration Console contains a dashboard that enables you
to construct graphs to chart metrics of services. Specifically, you can:

Create views to organize charts according to your needs. For example, you can define one
view that contains a set of charts to monitor your environment at a high-level. You can
then define additional views to access more specific details, such as CPU usage on a
specific set of JVMs.

Develop custom metrics that are defined as functions of monitorable resource attributes.

Set preferences to customize charts and graphs as desired.

The tasks described in this topic include:

Create a View

Browse the Resources Pane

Moni to r WLOC Se rv ices and Resources

6-2 Use Case Example

Create a View
To create a view:

1. Click the Monitoring tab in the WLOC navigation bar.

The Views tab is selected by default. Because we have not created any views yet, only the
Default view is listed.

2. In the text box, enter the name of the view that you want to create and click Add.

In this example, we will create a view named HeapFree which will show the current free
heap metrics for the MS_1 JVM. The view name is added to the list.

3. Click the HeapFree view name to make it the active view.

4. Add monitoring charts to a view by selecting resources to monitor using standard metrics
available from the Resources pane. For instructions on browsing the Resources pane and
adding charts to a view, see “Browse the Resources Pane” on page 6-2.

Browse the Resources Pane
When you select the Resources tab, it displays a list of the resources that you can monitor. Using
this pane, you can monitor the CPU and memory usage for the services, resource pools, and
JVMs. You can also monitor the values of one or more MBean attributes, over time, for each of
the MBean Servers.

To browse the Resources pane and add a chart to the HeapFree view:

Browse the Resources Pane

Use Case Example 6-3

1. Select the Resources tab.

2. Expand the list of resources in the Resources pane to view the monitorable types for each
resource.

3. Scroll down to view the available MBean Servers and select MBean Server MS_1 from the
list.

A list of the available MBeans types is displayed.

4. Select the JRockitRuntimeMBean type from the list.

The MBean instance MS_1 is displayed at the bottom of the Resources pane.

5. Click MS_1.

A list of the monitorable MBean attributes for MS_1 is displayed.

6. Scroll down the list of MBean attributes and select the HeapFreeCurrent attribute. The
metric chart illustrating the current free heap utilization, over time, is added to the HeapFree
view.

Moni to r WLOC Se rv ices and Resources

6-4 Use Case Example

The HeapFree view is saved automatically.

	Introduction
	Main Steps
	Related Documents

	Configure the WLOC Resource Environment
	Step 1: Install and Create the Plain Agent
	Install the Plain Agent
	Create the Plain Agent
	Agent Directory Structure
	Agent Configuration File

	Step 2: Install and Create the Controller
	Install the Controller
	Create the Controller
	Controller Directory Structure
	Controller Configuration File

	Establish the WLOC Runtime Environment
	Step 1: Start the Plain Agent
	Step 2: Start the Controller
	Step 3: Start the WLOC Administration Console

	Define the Service Under Management
	Step 1: Create the Service and Process Groups
	Define the Administration Server Process Group
	Define the Managed Servers Process Group
	Define Resource Requirements for the Service
	View Deployment Policy
	Create Services Using Helper Methods
	CreditCheckService Service Metadata Configuration
	AdminServer Process Group Metadata Configuration

	Step 2: Define the Adaptive Runtime Policies
	Runtime Policy Metadata Configuration

	Deploy the Service Against Available Resources
	Deployment Scenario
	Deploy the Service

	Monitor WLOC Services and Resources
	Create a View
	Browse the Resources Pane

