
BEA WebLogic
Portal™

Performance Tuning
Guide

Version 10.2
Document Revised: April 2008

Copyright
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2007 BEA Systems, Inc. All Rights Reserved. BEA, BEA JRockit, BEA WebLogic Portal,
BEA WebLogic Server, BEA WebLogic Workshop, BEA Workshop for WebLogic Platform, BEA WebLogic RFID
Mobile SDK, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and WebLogic are registered trademarks of
BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform, BEA AquaLogic Enterprise Security,
BEA AquaLogic Interaction, BEA AquaLogic Interaction Analytics, BEA AquaLogic Interaction Collaboration, BEA
AquaLogic Interaction Integration Services, BEA AquaLogic Interaction Process, BEA AquaLogic Interaction Publisher,
BEA AquaLogic Interaction Studio, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA AquaLogic
BPM Designer, BEA AquaLogic BPM Studio, BEA AquaLogic BPM Enterprise Server – Standalone, BEA AquaLogic
BPM Enterprise Server – BEA WebLogic, BEA AquaLogic BPM Enterprise Server – IBM WebSphere, BEA AquaLogic
BPM Enterprise Server – JBoss, BEA AquaLogic BPM Process Analyzer, BEA AquaLogic Interaction Development Kit,
BEA AquaLogic Interaction JSR-168 Consumer, BEA AquaLogic Interaction Identity Service – Active Directory, BEA
AquaLogic Interaction Identity Service – LDAP, BEA AquaLogic Interaction Content Service – Microsoft Exchange,
BEA AquaLogic Interaction Content Service – Lotus Notes, BEA AquaLogic Interaction Logging Utilities, BEA
AquaLogic Interaction WSRP Consumer, BEA AquaLogic Interaction Portlet Framework – Microsoft Excel, BEA
AquaLogic Interaction .NET Application Accelerator, AquaLogic Interaction Content Service – Documentum, BEA
AquaLogic Interaction Content Service – Windows Files, BEA AquaLogic Interaction Portlet Suite – IMAP, BEA
AquaLogic Interaction Portlet Suite – Lotus Notes, BEA AquaLogic Interaction Portlet Suite – Exchange, BEA
AquaLogic Interaction Portlet Suite – Documentum, BEA AquaLogic Interaction IDK Extension, BEA AquaLogic HiPer
Workspace for BPM, BEA AquaLogic HiPer Workspace for Retail, BEA AquaLogic Sharepoint Console, BEA
AquaLogic Commerce Services, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Kodo, BEA
Liquid Data for WebLogic, BEA Manager, BEA MessageQ, BEA SALT, BEA Service Architecture Leveraging Tuxedo,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Mobility Server, BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA
WebLogic Personal Messaging API, BEA WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA
WebLogic Real Time, BEA WebLogic RFID Compliance Express, BEA WebLogic RFID Edge Server, BEA WebLogic
RFID Enterprise Server, BEA WebLogic Server Process Edition, WebLogic Server Virtual Edition, WebLogic Liquid
Operations Control, BEA WebLogic SIP Server, BEA WebLogic WorkGroup Edition, BEA Workshop for WebLogic
Platform, BEA Workshop for JSF, BEA Workshop for JSP, BEA Workshop for Struts, BEA Workshop Studio, Dev2Dev,
Liquid Computing, and Think Liquid are trademarks of BEA Systems, Inc. Accelerated Knowledge Transfer, AKT,
BEA Mission Critical Support, BEA Mission Critical Support Continuum, CollabraSuite – BEA Edition, BEA Guardian
and BEA SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Contents
1. General Performance Tuning Guidelines
Understanding Performance Tuning and BEA WebLogic Portal 1-1

General Architecture. 1-2

WebLogic Portal . 1-3

Tuning Your WebLogic Server . 1-4

Tuning Your JVM . 1-5

Tuning Your Database . 1-5

Tuning Your Operating System . 1-5

Other Resources . 1-5

2. Tuning Your Portal Domain
Tuning Your Domain Configuration . 2-1

Removing Debugging Tools from Your Domain . 2-4

Tuning Log Levels . 2-4

3. Tuning Your Portal Application
Managing Caches . 3-1

Using the Portal Administration Console to Configure Cache Settings 3-2

Caching with JSP Tags . 3-2

Disabling Unused Services . 3-3

Tuning for Campaigns . 3-3

Referencing Events . 3-3

Avoiding Firing Extraneous Events . 3-3
BEA WebLogic Portal Performance Tuning Guide iii

Asynchronous Campaigns . 3-3

Using Goal Checking for Campaigns . 3-4

Using Ads During Campaigns . 3-4

Tuning for Entitlements . 3-5

Using Role Caching When Using Entitlements . 3-5

Tuning for Content Management . 3-6

Reading and Searching Content . 3-6

Cache Settings . 3-7

Tuning for PageFlow Portlets . 3-8

Tuning for WSRP . 3-8

Clustering for WSRP . 3-8

Enabling Caches for WSRP . 3-9

Parallel Processing and WSRP . 3-9

Tuning for Delegated Administration . 3-9

Overview . 3-9

Best Practice: Limit DA Policies on Resources. 3-10

Using Work Managers . 3-10

4. Tuning Your Portal Web Application
Optimizing Your Portal Control Tree . 4-1

Modifying Your Portal Web Application Parameters. 4-2

Modifying Portal Framework Settings. 4-2

Modifying Web Application Settings. 4-3

Modifying WebLogic Server Settings. 4-4

WebLogic Portal Cache Settings. 4-7

Caching Portlet Categories . 4-7
iv BEA WebLogic Portal Performance Tuning Guide

A. Performance Tuning Checklistst
Portal Framework Guidelines .A-1

Portal Administration Console Guidelines .A-2

Creating Desktops .A-3
BEA WebLogic Portal Performance Tuning Guide v

vi BEA WebLogic Portal Performance Tuning Guide

C H A P T E R 1
General Performance Tuning
Guidelines
WebLogic Portal application performance is affected by many factors. This chapter discusses a
few of the initial aspects that can affect performance and provides links to documentation
resources that can assist you.

Understanding Performance Tuning and BEA WebLogic Portal

Tuning Your WebLogic Server

Tuning Your JVM

Tuning Your Database

Tuning Your Operating System

Other Resources

Understanding Performance Tuning and BEA WebLogic
Portal

Performance tuning is a process which spans development, staging and deployment. During all
phases, performance should be monitored and appropriate adjustments made. If you are new to
performance testing, see Approaches to Performance Testing on BEA’s dev2dev website.

BEA recommends that you establish an environment where you can performance test the
installation for the following reasons:

Testing under realistic load may uncover bugs not seen during development or QA.
WebLogic Portal Performance Tuning Guide 1-1

http://dev2dev.bea.com/pub/a/2005/09/performance_testing.html

Gene ra l Pe r fo rmance Tun ing Gu ide l ines
Testing your prototype under load will help you validate design decisions early in the
development cycle that may significantly alter the performance of your application.

Any configuration change can dramatically affect application performance (hardware,
database, clustering environment, application tuning parameters, and so on). Load testing
your application whenever design changes are made provides a way to narrow down
performance problems to a particular area.

Testing early and often increases the likelihood that your site implementation and
deployment will perform well.

The recommended approach for performance testing is to start with the simplest aspect of the
installation and then move into areas of increased complexity. If you observe slow behavior in
any portion of this testing process, you should begin a more thorough investigation into its causes.

General Architecture
First, perform the following steps to identify performance issues with your network, database, or
other software that is independent of WebLogic Portal.

1. Test your database (independent of any web components) to determine how well your schema
and SQL work. Note any areas where the schema or SQL may not be optimized for
performance. See the WebLogic Portal Database Administration Guide for more information
about proper setup and performance tuning.

2. Test your network for sufficient bandwidth, and check that the TCP/IP parameters on the
server’s operating system can sufficiently handle the application load you expect. It is
possible that the network is the slowest aspect of your deployment. Ensure that your IP
Multicast for cluster deployment is configured correctly. See the WebLogic Server
Troubleshooting Multicast Configuration Guide for more information about multicast
configuration.

3. Test your web server, ensuring that it has sufficient capacity to serve static HTML pages when
many concurrent threads are running.

4. Ensure that you have enough resources available to meet application requirements. Most large
applications are clustered, but keep in mind that a clustered environment requires resources
to perform load-balancing tasks. For more information, see Understanding Cluster
Configuration and Application Deployment.

5. Test your servlet engine by running a load test against a trivial servlet such as a HelloWorld
servlet. If this simple servlet does not perform and scale horizontally (meaning that as you add
1-2 WebLogic Portal Performance Tuning Guide

../db/db_architecture.html
../../../wls/docs100/cluster/config.html
../../../wls/docs100/cluster/config.html
../../../wls/docs100/cluster/config.html
../../../wls/docs100/cluster/multicast_configuration.html

Unders tanding Per fo rmance Tun ing and BEA WebLogic Po r ta l
Java Virtual Machines, performance increases accordingly), the performance problems you
encounter may be related to an infrastructure or resource issue.

WebLogic Portal
After performing the steps in the previous section, General Architecture, perform the following
steps to identify performance issues with WebLogic Portal:

1. Verify that your BEA WebLogic Portal database configuration is optimal. WebLogic Portal
makes extensive use of the database. Check that your connection pool is large enough and
verify that your database handles connection failures in an efficient manner. For example, the
size of the JDBC connection pool should be set to handle the maximum number of concurrent
users as possible, and it should be set on server startup rather than growing as connections are
needed. This will increase the server startup time but will decrease the overhead creating
those connections under server load. See the section “Performance Considerations” in the
WebLogic Portal Database Administration Guide for more information.

2. Verify that each portlet is optimized for speed as follows:

– If a portlet uses forms that update the data within the portlet this will cause the entire
portal to refresh its data, which can be very time consuming. Therefore, portlets that
have this behavior should have asynchronous rendering enabled via AJAX or iFrames
so that the overall rendering of the portal is not affected. AJAX is supported at the
portal desktop and individual portlet levels.

Note: Individual portlets with asynchronous rendering methods have limitations such as not
supporting inter portlet communication.

– Place items that require heavy processing in an edit page or a maximized URL. If you
do not, the portal must wait for the portlet to process, and this considerably slows down
the eventual rendering of the portal. Process intensive portlets may benefit from parallel
portlet rendering (also known as pre-render and render forking.) For more information
about this see “Optimizing Portlet Performance” in the Portlet Development Guide.

– Enable caching on portlets that do not rely on dynamic data.

3. Test your application’s components, starting from the data access layer. Then proceed toward
the GUI one step at a time. Pay attention to performance and scalability differences at each
component and between each layer of your application. Finally, do end-to-end testing from a
browser-based load-testing tool.

4. Test the behavior and performance of your application under simulated, real-world
conditions. (Many tools are available to help you do this.) Be sure to use both anonymous and
logged-in users simultaneously.
WebLogic Portal Performance Tuning Guide 1-3

../db/db_architecture.html#wp1069661
../portlets/performance.html#wp1030744

Gene ra l Pe r fo rmance Tun ing Gu ide l ines
Tuning Your WebLogic Server
Because WebLogic Portal runs on WebLogic Server, factors impacting the performance of
WebLogic Server will also impact the performance of WebLogic Portal.

For more information about tuning WebLogic Server, see the WebLogic Server Performance and
Tuning Guide.

Table 1-1 lists the top ten tuning recommendations for WebLogic Server.

Table 1-1 Top Ten Tuning Recommendations

Tuning Question For Information, See:

How big should the JDBC connection
pool be?

Tune Pool Sizes

How to use JDBC caches? Use the Prepared Statement Cache

What optimizations are there for
transactional database applications?

Use Logging Last Resource Optimization

How many connections should WebLogic
Server accept?

Tune Connection Backlog Buffering

What is the optimal size of the WebLogic
Server network layer?

Tune the Chunk Size

What type of Entity Bean cache should be
used?

Use Optimistic or Read-only Concurrency

How to avoid serialization when one EJB
calls another?

Use Local Interfaces

How to load related beans using a single
SQL statement?

Use eager-relationship-caching

How to tune session persistence? Tune HTTP Sessions

What is the optimal JMS configuration? Tune Messaging Applications
1-4 WebLogic Portal Performance Tuning Guide

../../../wls/docs100/perform/
../../../wls/docs100/perform/
../../../wls/docs100/perform/topten.html#wp1132662
../../../wls/docs100/perform/topten.html#wp1132663
../../../wls/docs100/perform/topten.html#wp1133010
../../../wls/docs100/perform/topten.html#wp1133122
../../../wls/docs100/perform/topten.html#wp1132666
../../../wls/docs100/perform/topten.html#wp1132667
../../../wls/docs100/perform/topten.html#wp1132668
../../../wls/docs100/perform/topten.html#wp1132669
../../../wls/docs100/perform/topten.html#wp1132670
../../../wls/docs100/perform/topten.html#wp1133213

Tun ing Your JVM
Tuning Your JVM
Your Java Virtual Machine is key to running your Portal efficiently. For more information about
tuning WebLogic JRockit, see the Diagnostics Guide in the JRockit documentation.

Recommendations
When using JRockit, there are many different flags available. Depending on the application and
the SLA, different parameters and garbage collection flags should be used. It is strongly
recommended that before changing any parameters the application should be baselined so that the
performance differences between subsequent tests can be measured. When using Sun Hotspot,
adjust the -XX:MaxPermSize to be a minimum of 128MB.

Tuning Your Database
Keeping your database tuned is an important part of using WebLogic Portal. Portal uses the
database to store content, rules, portal framework objects (streaming desktops, books, pages, and
portlets), customizations, and user profile data.

Best practices for production deployment will vary between database vendors. See the database
vendor documentation for these best practices. For WebLogic Portal specific tuning
recommendations see, the WebLogic Portal Database Administration Guide.

Tuning Your Operating System
Tune your operating system according to your operating system documentation. BEA certifies
WebLogic Platform on multiple operating systems, see the WebLogic Platform 10.2 Supported
Configurations page for more details.

Following the WebLogic Server Performance and Tuning Guide is strongly recommended.

Other Resources
Remember that WebLogic Portal uses many components from WebLogic Server. See the
following documentation for more information:

WebLogic Server Performance and Tuning Guide

WebLogic Portal Capacity Planning Guide

dev2dev
WebLogic Portal Performance Tuning Guide 1-5

../../../jrockit/geninfo/diagnos/index.html
../db/index.html
../../../platform/suppconfigs/index.html
../../../platform/suppconfigs/index.html
../db/index.html
../../../wls/docs100/perform/OSTuning.html
../../../wls/docs100/perform/index.html
../../../wls/docs100/perform/index.html
http://dev2dev.bea.com
http://dev2dev.bea.com/index.jsp
../capacityplanning/index.html

Gene ra l Pe r fo rmance Tun ing Gu ide l ines
1-6 WebLogic Portal Performance Tuning Guide

C H A P T E R 2
Tuning Your Portal Domain
Key aspects of portal performance are managed at the domain level. These include:

Tuning Your Domain Configuration

Removing Debugging Tools from Your Domain

Tuning Log Levels

Tuning Your Domain Configuration
Optimally, when you deploy, you need to create a new domain that is configured for your
production environment. However, if you have deployed a development domain and want to use
it for production, you must change your domain environment settings to optimize performance.

Note: It is not recommended to use a development domain for production, see Creating
WebLogic Domains Using the Configuration Wizard for more information.

The domain settings are managed by the setDomainEnv.cmd (or setDomainEnv.sh) script
which is found in your domain directory. By default, the script is found in:
WebLogic_Home/user_projects/domain_name/bin/setDomainEnv.cmd/sh.

To edit this file, open it in a text editor.

Table 2-1 lists the start script settings and their appropriate values for a production domain.
Remember if you are using a domain that was created for production mode, you do not need to
modify the configuration.
BEA WebLogic Portal Performance Tuning Guide 2-1

../../../common/docs100/confgwiz/index.html
../../../common/docs100/confgwiz/index.html

Tuning Your Po r ta l Domain
Table 2-1 setDomainEnv Settings

Flag Name Production
Mode Setting

Notes

DOMAIN_PRODUCTION_MODE true • Indicates whether you are in a production mode
or a development mode. Default is false for
domains created in development mode and true
for domains created in production mode.

iterativeDevFlag false • Checks for updated files and if found, rebuilds
and redeploys the application. Disable this
option to prevent checking for changed
WebLogic Workshop files. Default is true for
domains created in development mode and
false for domains created in production mode.

debugFlag false • Used in start scripts to set debugging options
and indicate if the WebLogic Workshop
Debugger should be started. When switched to
false, you save the resource overhead used for
debugging.

• Default is debugFlag=true for domains
created in development mode and
debugFlag=false for domains created in
production mode.

testConsoleFlag false • Enables the JWS test view.
• Verify by checking the log for: wlw.

testConsole = false.

• Default is true for domains created in
development mode and false for domains
created in production mode.
2-2 BEA WebLogic Portal Performance Tuning Guide

Tuning Your Domain Conf igurat ion
logErrorsToConsoleFlag false • Controls logging functionality.
• Verify by checking the log for:

wlw.logErrorsToConsole = false

• Saves you additional logging. The trade-off is
that you may see exceptions more easily when
this is set to true (without checking the log).

• Default is true for domains created in
development mode and false for domains
created in production mode.

verboseLoggingFlag false • If true, override the default
LOG4J_CONFIG_FILE
(workshopLogCfg.xml) with
workshopLogCfgVerbose.xml.

• Priority value in the default file is warn; in the
verbose version it is debug.

• Verify by checking the log for:
log4j.configuration =
workshopLogCfg.xml instead of
workshopLogCfgVerbose.xml

• You can also start in verbose mode using
startWebLogic.cmd verbose.

• Saves you debugging overhead.
• Default is false for both domains created in

development mode and in production mode.

pointbaseFlag= false • Indicates whether Pointbase should be started.
• Verify by checking for a running Pointbase

process.
• Saves you the resource overhead of starting

Pointbase when it is not needed.
• Default is true for domains created with

Pointbase as the database.

Table 2-1 setDomainEnv Settings (Continued)
BEA WebLogic Portal Performance Tuning Guide 2-3

Tuning Your Po r ta l Domain
Removing Debugging Tools from Your Domain
When deploying a domain, you should remove the debug.properties file from the domain
directory. Although this file is helpful during development, debugging should not be done in
production environments.

Tuning Log Levels
WebLogic Server has several logging features available. When using the WebLogic logging
infrastructure, make sure that the server logs at an appropriate level and to the correct location.
For example, a production system logging at DEBUG or TRACE levels can produce gigabytes
of log data fairly quickly when writing to a log file. A production system should have logging set
to the INFO level or higher. This can be done from the command line, from MBeans, or from the
console. See the WebLogic Server document Configuring Log Files and Filtering Log Messages
for more detailed information on WebLogic Server logging.

Additionally, WebLogic server internally processes all log messages before writing these
messages to the logging infrastructure. In a production system where the logging level has been
set to INFO or NOTICE, having the server process all DEBUG messages, for example, can add
significant overhead. It is a good idea to match the internal WebLogic Server log processing level
to the logging framework level. Do this by specifying the -Dweblogic.log.LoggerSeverity
flag to the server at startup.
2-4 BEA WebLogic Portal Performance Tuning Guide

../../../wls/docs100/logging/index.html

C H A P T E R 3
Tuning Your Portal Application
Key aspects of portal performance are managed at the portal application level. These include:

Managing Caches

Disabling Unused Services

Tuning for Campaigns

Tuning for Entitlements

Tuning for Content Management

Tuning for PageFlow Portlets

Tuning for WSRP

Tuning for Delegated Administration

Using Work Managers

Managing Caches
WebLogic Portal provides a single framework for configuring, accessing, monitoring, and
maintaining caches. If configured properly, the caches can vastly reduce the time needed to
retrieve frequently used data. Keep in mind that caches are read-only and cluster-aware.

Many WebLogic Portal services use preconfigured caches that you can tune to meet your
performance needs. Some services use internally configured caches that you cannot configure or
BEA WebLogic Portal Performance Tuning Guide 3-1

Tuning Your Po r ta l App l ica t i on
access. If you extend or create additional services you can use the cache framework to define and
use your own set of caches.

The Cache Reference lists caches that might be used by your portal application. Use the list to
assist you in your tuning and keep in mind the memory that is available to your system. When
modifying the maximum cache sizes also monitor the system memory to determine the effects.

Using the Portal Administration Console to Configure Cache
Settings
You can use the Service Administration tools within the WebLogic Portal Administration
Console to configure statically-defined caches. For a list of configurable caches, see the Cache
Reference.

When you configure a cache you modify its parameters to change its behavior or capability. Each
cache has a Max Size setting and a Time To Live setting. For example, you can set up a cache to
hold only the last 10,000 entries and set the time they can remain in the cache. You can also flush
the cache so that all new requests for information come directly from the database.

For instructions on how to configure cache settings, see Adding a Cache from the Cache
Reference.

Caching with JSP Tags
Some WebLogic Portal JSP tags support caching results at various scopes such as session or page.
This allows for more control over the caching of individual content queries. Although this can be
seen as an advantage, remember that when you control caches with coding, any cache change will
require more maintenance, depending on the size (amount of code) of your application.

For example, the following content management-related JSP tags include cache-related
attributes:

<cm:search>

<cm:getNode>

<cm:getProperty>

For more information about these JSP tags and their attributes, see WebLogic Portal Javadoc.
3-2 BEA WebLogic Portal Performance Tuning Guide

../javadoc/index.html
../caches/index.html
../caches/index.html
../caches/index.html
../caches/caches.html#wp1021766
../caches/index.html
../caches/index.html

Disabl ing Unused Se rv ices
Disabling Unused Services
When you create a new portal application WebLogic Portal enables most services, such as
commerce services, event listening, and campaigns. If your portal application does not require
these services, you can improve performance by turning them off.

You can disable behavior tracking or individual events. For more information on how to do this,
see the Interaction Management Guide.

Tuning for Campaigns
Campaigns are powerful tools for personalization which allow the application to target users with
specific web content, e-mails, and discounts based on fine-grained rules. The following tips allow
you to tune your campaign settings to ensure better performance.

Referencing Events
Always make scenario rules dependent on a particular event. This allows optimizations based on
the event types referenced in the scenario rules.

Avoiding Firing Extraneous Events
Whenever possible, avoid firing any extraneous events. The campaign services must listen to all
events. Use events to signify important occurrences on the site.

Asynchronous Campaigns
Setting campaigns to asynchronous can result in better response times for the end user viewing
those campaigns. This is done through the AsynchronousEventListener mechanism.

This optimizations is beneficial if the campaign results are not required within the same requests.
If the campaign is executed prior to the next request which comes into the server (not necessarily
from the user who made the original request) then setting the campaign to asynchronous will help
improve the performance of campaigns. For example, if a user were to log in they wouldn’t
always see the campaign content placeholder on the screen immediately after the login form but
the user would see it prior to their next page change or refresh. Due to the nature of multi-threaded
applications the user might see the results on the next immediate screen, but that is not
guaranteed.
BEA WebLogic Portal Performance Tuning Guide 3-3

../interaction/eventstracking.html#wp1062098

Tuning Your Po r ta l App l ica t i on
Setting campaigns to asynchronous does not lower the overall load on the server, but it will lower
the response time for the individual requests since the user won’t be waiting for the campaigns to
execute in the same thread.

There is a limitation to this however. If the campaign is required within the same request then
setting the campaign to asynchronous is not recommended.

Using Goal Checking for Campaigns
If you are using campaigns that take advantage of goal checking set the goal checking
appropriately. Goal checking is used to determine if a campaign’s goals are met. When
developers create campaigns they can set them to end on a specific date or use a set of goals (for
example, number of views or clicks). You should set it according to the duration of your
campaign. If a campaign’s goal check mechanism is set too low it will affect portal performance.
The default is 300000 milliseconds (five minutes).

You can adjust the goal check time for campaigns using the Administration Console.

For more information about how to adjust this setting, see Adjusting Goal Definitions in the
Interaction Management Guide.

Using Ads During Campaigns
The Campaign service uses display counts to determine whether a campaign has met its end
goals. Each time an ad placeholder finds an ad to display as a result of a scenario action the
Campaign service updates the display count.

By default, the Campaign service does not update the display count in the database until an ad
placeholder has found 10 ads to display as a result of one or more scenario actions. For
performance tuning you can change this default to decrease the database traffic needed to support
a campaign.

For sites with high traffic, increase this number to a range of 50 to 100.

To configure the Ad Service cache, use the Administration Console to perform the following
steps:

1. From the Administration Console, choose Service Administration.

2. In the Application Configuration Settings Resource tree, select Ad Service Group under
Interaction Management.
3-4 BEA WebLogic Portal Performance Tuning Guide

../interaction/index.html
../interaction/campaigns.html
../interaction/campaigns.html#wp1025326

Tuning fo r Ent i t l ements
3. Edit the Ad Service and adjust the Display Flush Size to a number appropriate for your portal
needs. The default is 10.

4. Click Update.

Tuning for Entitlements
If you want to cache entitlement information, you need to configure your application to recognize
the cache settings. You can do this by editing the netuix-config.xml file.

The netuix-config.xml file resides in the portal web application in the WEB-INF directory.

After making any changes, you must redeploy your web application for the changes to take effect.
For more information about modifying web descriptor files, see “Portal Web Application
Deployment Descriptors” in the Production Operations Guide.

1. Edit the netuix-config.xml file to include the following text:

<entitlements control-resource-cache-size="200">

 <enable>true</enable>

</entitlements>

2. If your portal uses a large number of entitlements (more than 5000), review the WebLogic
Server documentation, Best Practices: Configure Entitlements Caching When Using
WebLogic Providers.

3. After completing the changes you will need to redeploy your portal application.

Using Role Caching When Using Entitlements
Role values are cached automatically. However, if you define roles using expressions that utilize
dynamic attributes (such as session or request attributes), caching may have little or no value
because these expressions are evaluated at runtime. In this case, turning off role caching may
improve performance.

To disable role caching, you need to edit the web.xml file for the respective application.

Note: After making any changes, you must redeploy your web application for the changes to
take effect. For more information about modifying web descriptor files, see “Portal Web
Application Deployment Descriptors” in the Production Operations Guide.

1. Navigate to the respective web.xml file. It is located in the WEB-INF subdirectory of your
portal application directory.
BEA WebLogic Portal Performance Tuning Guide 3-5

../prodOps/index.html
../prodOps/deployment.html#wp1045108
../prodOps/deployment.html#wp1045108
../prodOps/index.html
../../../wls/docs100/secwlres/understdg.html#wp1213398
../../../wls/docs100/secwlres/understdg.html#wp1213398
../prodOps/deployment.html#wp1045108
../prodOps/deployment.html#wp1045108

Tuning Your Po r ta l App l ica t i on
2. Open the web.xml file in a text editor.

3. Add the following lines

<env-entry>

 <env-entry-name>p13n.entitlements.disableRoleCache</env-entry-name>

 <env-entry-value>Y</env-entry-value>

 <env-entry-type>java.lang.String</env-entry-type>

</env-entry>

4. Save the new web.xml file.

5. Redeploy your web application.

Tuning for Content Management

Reading and Searching Content
When using search capabilities with content management, it is possible to specify the search
criteria used to find a node. Make sure to focus search queries to reduce the total number of nodes
returned. This can be done by adding additional query criteria to the search request.

If you are not using the content search capabilities, then turn off this functionality by disabling
both Autonomy and searching in the BEA repository configuration. To disable Autonomy, set the
environment variable WLP_SEARCH_OPTION=none on server startup. To turn off search in the
Content Repository see the Integrating Search Guide.

Pagination has been one focus of performance tuning efforts in the product. If doing pagination
over result sets, use one of the objects provided by the Content API. Various options for paging
can be found in the Content Management API Javadoc.

The larger the batch size (number of nodes) in a result set, the faster the overall performance will
be. Where possible, increase the batch size for a returned result set. See the Capacity Planning
Guide for more details on how batch size affects performance.

There are a couple of ways to get access to nodes in the database. The fastest way to retrieve a
node is via the node ID. Whenever possible, use this method to retrieve the node. See the Capacity
Planning Guide for more details on how different node access types affect performance.
3-6 BEA WebLogic Portal Performance Tuning Guide

../javadoc/com/bea/content/paging/package-summary.html
../capacityplanning/index.html
../capacityplanning/index.html
../capacityplanning/index.html
../capacityplanning/index.html
../search/searchdev.html

Tun ing fo r Conten t Management
Cache Settings
When you use a BEA repository for your content management system, you can tune the cache
settings according to the needs of your portal application. Additional performance
recommendations and benchmark data can be found on BEA’s dev2dev website in the WebLogic
Portal 9.2: Content Management Performance Optimization White Paper and in the Capacity
Planning Guide.

You can adjust repository caches by editing Advanced Repository Properties in the Content
Management Guide.

You can adjust cache settings for nodes or binaries according to how often your content is
accessed and how much content you want to remain in the cache. Keep in mind that your server
must have enough memory to handle the cache settings you assign. These settings are configured
in the content-config.xml under the application’s META-INF directory.

Table 3-1 Node Cache

Cache Setting Usage Notes

Maximum Entries Determines the maximum number of entries (folders) that
can be cached.

Time To Live Determines how long the entries will be cached.

Enable Enables the cache. Mark this checkbox to enable this
cache. To disable this cache, unmark the checkbox.

Table 3-2 Binary Cache

Cache Setting Usage Notes

Maximum Entries Determines the maximum number of entries (content items)
that can be cached.

Time To Live Determines how long the entries will be cached.
BEA WebLogic Portal Performance Tuning Guide 3-7

../cm/filesystemArchCM.html#wp1078303
http://dev2dev.bea.com/pub/a/2006/09/portal-content-management.html
http://dev2dev.bea.com/pub/a/2006/09/portal-content-management.html
http://dev2dev.bea.com/
../cm/index.html
../cm/index.html
../capacityplanning/index.html
../capacityplanning/index.html

Tuning Your Po r ta l App l ica t i on
Tuning for PageFlow Portlets
PageFlow portlets have the potential to significantly increase the memory usage on the server.
This is caused by each portlet storing memory both locally and replicating it in the session. Each
visible portlet consumes between 500 and 1000 bytes of data either in the local memory or in the
session. This is true for each active session accessing the application. This can add up quickly if
there are a high number of visible page flow portlets and a high number of active sessions on the
server.

Setting the requestAttrPersistence setting on the portlet to transient-session can
decrease the amount of data in the session. However, since this data is serialized it will still
consume local memory resources. More information about this can be found in the Optimize Page
Flow Session Footprint chapter under Designing Portals for Optimal Performance in the Portal
Development Guide.

To work around this potential system limitation it is recommended that the number of page flow
portlets visible in any given Portal be less than 100 and the memory on the system be increased
to deal with the additional overhead.

Tuning for WSRP
For more information about performance guidelines for Web Services Remote Portlets, see
Designing for Performance section in the WebLogic Portal Federated Portals Guide.

Clustering for WSRP
When tuning for WSRP, it is important to strike a balance between the number of producer
machines and the number of consumer machines. In general WebLogic Portal is CPU bound,
meaning that additional CPU resources (usually via clustering) can be used to eliminate

Cache Size/Item Sets the maximum size of a single entry (content item) stored
in the cache. The default is 1024 bytes (1K). If your content
items average a larger size than this, you should consider
changing this cache.

Enable Enables the cache. Mark this checkbox to enable this cache.
To disable this cache, unmark the checkbox.

Table 3-2 Binary Cache

Cache Setting Usage Notes
3-8 BEA WebLogic Portal Performance Tuning Guide

../portals/optimize.html
../portals/index.html
../portals/index.html
../portals/optimize.html#wp1001901
../portals/optimize.html#wp1001901
../federation/Chap-Best_Practices.html#wp998975
../federation/Chap-Best_Practices.html#wp998975
../federation/index.html

Tun ing fo r De legated Admin is t rat ion
bottlenecks. Through performance testing the WSRP infrastructure it is possible to determine
whether the producers or the consumer machines are the bottleneck, and then add additional
resources as necessary. Depending on the configuration and application it might be necessary to
cluster either the consumer or the producer. For more information regarding WSRP architecture
refer to the WebLogic Portal Federated Portals Guide. For more information about clustering see
the WebLogic Server document Using Weblogic Server Clusters.

Enabling Caches for WSRP
Cache can have an impact on performance, but the size of the portal (determined by the total
number of portlets) has the most impact. If you are using WSRP portlets, adjust your caches
accordingly. For specific information about WSRP caches, see the WSRP Caches section in the
Cache Reference Guide.

Parallel Processing and WSRP
WebLogic Portal has the capability to render portlets in parallel. This is true for WSRP remote
portlets as well. If a remote portlet is taking a long time to render, the overall portal may render
faster by turning on parallel portlet processing. To enable parallel processing use the
forkPreRender attribute of the portlet. See Understanding Portlet Development in the Portlet
Development Guide.

Tuning for Delegated Administration
This section explains how to avoid performance problems with the Oracle WebLogic Portal
Administration Console when you configure delegated administration roles.

Tip: For information on delegated administration, see the Oracle WebLogic Portal Security
Guide.

Overview
For each delegated administration role that is configured on a portal resource, several security
policies are created (CAN_VIEW, CAN_EDIT, and so on). It is important to note that for each
policy that is created, information must be retrieved to perform the required evaluation. As the
number of policies increases, the WebLogic Portal Administration Console will perform more
and more poorly.
BEA WebLogic Portal Performance Tuning Guide 3-9

../caches/caches.html#wp1021927
../caches/index.html
../federation/Chap-Details.html
../../../wls/docs100/cluster/index.html
../portlets/intro_to_dev.html#wp1014570
../portlets/intro_to_dev.html
../portlets/intro_to_dev.html
../security/index.html
../security/index.html

Tuning Your Po r ta l App l ica t i on
To avoid this poor performance, create as few delegated administration policies as possible.

Best Practice: Limit DA Policies on Resources
When a delegated administration (DA) role is added to a portal resource, such as a content
management node or a book node, several security policies are created for each capability, such
as CAN_VIEW, CAN_EDIT, and so on). The time taken to retrieve these policies from LDAP
and the policy reference information from the database increases as the number of policies
increases. Although caching of policy data might improve performance, it is not a secure solution.
For instance, if an administrator changed the permissions for a user, the change would not take
effect for the user’s session. Other solutions such as flushing the cache and using the session to
store information are either technically impractical or not secure.

To achieve the best possible performance, organize your portal resources so that as few as
possible DA policies will be created. For example, consider the use case where there are 100
content nodes and you want a particular DA user to only see 10 of those nodes. The best practice
is to create a parent node that contains these 10 content nodes and place the DA policies on the
parent node only.

Using Work Managers
WebLogic Portal uses WebLogic Server’s CommonJ WorkManager infrastructure for forked
portlet pre-render and render. WorkManagers have similar but not identical configuration
parameters, behavior, and deployment options. When you upgrade an 8.1.4+ application, any
existing customizations to the portalRenderQueue thread pool will not be automatically applied
to the default WorkManager used for forking.

To tune this WorkManager, configure a WorkManager and associate it with the name
wm/portalRenderQueueWorkManager. For more information about WorkManagers and thread
usage in WebLogic Server 10.2, refer to Using Work Managers to Optimize Scheduled Work in
the WebLogic Server documentation.
3-10 BEA WebLogic Portal Performance Tuning Guide

../../../wls/docs102/config_wls/self_tuned.html

C H A P T E R 4
Tuning Your Portal Web Application
One of the key things you can do to ensure good performance for your web application is to
design appropriately, see Designing Portals for Optimal Performance for more information about
designing portals.

This chapter covers a few configuration settings and key areas that can be optimized according
to your needs and includes the following sections:

Optimizing Your Portal Control Tree

Modifying Your Portal Web Application Parameters

Optimizing Your Portal Control Tree
Portal web applications use a control tree to cache and access different functionality. For
example, portals use controls to access desktops, books, pages, portlets, and menus. When you
create complex portals that require a large number of controls, tree optimization is the easiest way
to ensure optimal portal performance. Controls that are not active in the current portal instance
are not built, saving considerable time and overhead. However, the use of multilevel menus
negates much of the performance benefit that control tree optimizations provide. This is due to
the menu traversing the control tree in order to build up the multilevel menu.

For more information about when to optimize your control tree, see the Designing Portals for
Optimal Performance chapter of the WebLogic Portal Development Guide.
BEA WebLogic Portal Performance Tuning Guide 4-1

../portals/index.html
../portals/index.html
../portals/optimize.html
../portals/optimize.html
../portals/optimize.html

Tuning Your Po r ta l Web App l icat ion
Modifying Your Portal Web Application Parameters
Your portal application uses configuration files to store application settings. Some default
settings may not be applicable to your particular portal application.

Each portal application uses unique configuration files to customize parameters that can affect
performance. Four configuration files that are key to portal performance include:

netuix.config.xml (portal framework)

web.xml (web application settings)

weblogic.xml (server settings)

p13n-cache-config.xml (portal cache settings)

For most settings you can adjust them using either the WebLogic Server Console or the
WebLogic Portal Administration Console. However, many of the settings discussed in this
section must be manually entered in the configuration file.

Modifying Portal Framework Settings
The netuix-config.xml file resides in the portal web application directory under WEB-INF.

After making any changes, you must redeploy your web application for the changes to take effect.
For more information about modifying web descriptor files, see Configuration Files in the
Production Operations Guide.

Table 4-1 lists key performance tuning elements within the netuix-config.xml file.

Table 4-1 netuix-config.xml

Element Usage Notes

<customization> A switch to indicate if a portal is customizable or not. If a portal is served
from a .portal file (rather than from a database) and users are not
allowed to customize it then customization can be disabled by setting
enable element's value to false. If a portal supports customizations
then customization should be enabled but keep in mind that there will be
an impact on the performance of the system with the use of this feature.

<pageflow> A switch to enable or disable page flows usage in a portal. Disable it if a
portal is not using any page flows.
4-2 BEA WebLogic Portal Performance Tuning Guide

../prodOps/deployment.html#wp1043219
../prodOps/index.html

Modi f y ing Your Por ta l Web App l i ca t i on Paramete rs
Modifying Web Application Settings
The web.xml file configures your web application. After making any changes you must redeploy
your web application for the changes to take effect. For more information about modifying web
descriptor files, see Portal Web Application Deployment Descriptors in the Production
Operations Guide.

The web.xml file is located in the WEB-INF subdirectory of your portal web application directory.

Table 4-2 lists key elements of the web.xml file.

<validation> A switch for validating portal related files such as .pinc, .portlet, and
.portal files. Disable validation when running portal server in
production.

<entitlements> A switch to indicate that a portal is setup to use entitlement policies (users
able to view portal resources such as desktop, books, pages, portlets, and
so on). Disable entitlements if a portal is not using any security policies. If
a portal is using security policies, enable it and set the value for
<control-resource-cache-size> attribute using number of
desktops + number of books + number of pages + number of portlets +
number of buttons (max, min, help, edit) used in a portal. The default value
could be used if memory is a concern.

For more information, see “Tuning for Entitlements” on page 3-5. Using
entitlements will result in additional overhead for WebLogic Portal.

<localization> A switch to indicate that a portal supports multiple locales. This should be
disabled if a portal supports only one locale.

Table 4-2 web.xml

Parameter Usage Notes

<createAnonymousProfile> Set this to false if your portal does not store or use user
profile information.

Table 4-1 netuix-config.xml

Element Usage Notes
BEA WebLogic Portal Performance Tuning Guide 4-3

../prodOps/deployment.html#wp1045108
../prodOps/index.html
../prodOps/index.html

Tuning Your Po r ta l Web App l icat ion
Modifying WebLogic Server Settings
You can modify the weblogic.xml file via the WebLogic Server Console. For more information
on how to modify the descriptor elements see the “weblogic.xml Deployment Descriptor
Elements” chapter in the Developing Web Applications, Servlets, and JSP’s for WebLogic
Server Guide.

The following parameters can be adjusted for performance. Table 4-3 lists key performance
tuning elements in the weblogic.xml file.

<enableTrackedAnonymous> Set this to false unless you are tracking anonymous users.
When this is set to false, only users who login to the
portal are tracked.

<fireSessionLoginEvent> Set this to false unless using campaigns or behavior
tracking. If this is set to true, session login events are
generated.

<trackedAnonymousVisitDuration> This setting allows you to determine when to start
tracking anonymous users and is ignored unless you are
tracking anonymous users. The longer you wait during a
session to start tracking anonymous users, the less
performance overhead there will be on the server.

<skipRequestPattern> Set to determine which request patterns to skip. Each
page displayed in a web application may have many
separate requests, several of which are irrelevant. For
example, the tutorial portal sends requests for images,
JavaScript, and CSS files. Ignoring these requests for
PortalServletFilter processing increases performance and
guarantees that tracking anonymous users will behave as
expected.

Table 4-2 web.xml (Continued)
4-4 BEA WebLogic Portal Performance Tuning Guide

../../../wls/docs100/webapp/index.html
../../../wls/docs100/webapp/index.html
../../../wls/docs100/webapp/weblogic_xml.html
../../../wls/docs100/webapp/weblogic_xml.html

Modi f y ing WebLog ic Serve r Set t ings
Table 4-3 weblogic.xml

Parameter Usage Notes

<jspPageCheckSeconds> Sets the interval, in seconds, at which WebLogic Server checks to see
if JSP files have changed and need recompiling. Dependencies are
also checked and recursively reloaded if changed.

If set to 0, pages are checked on every request. This default is preset
for a development environment. If set to –1, page checking and
recompiling is disabled.

In a production environment where changes to a JSP are rare, change
the value of pageCheckSeconds to –1 to disable page checking
and recompiling.

<servletReloadCheckSecs> Sets the interval, in seconds, at which WebLogic Server checks to see
if servlet files have changed and need recompiling. Dependencies are
also checked and recursively reloaded if changed.

If set to 0, servlets are checked on every request. This default is preset
for a development environment. If set to –1, servlet checking and
recompiling is disabled.

In a production environment where changes to a servlet are rare,
change the value of servletReloadCheckSecs to –1 to disable
servlet checking and recompiling.
BEA WebLogic Portal Performance Tuning Guide 4-5

Tuning Your Po r ta l Web App l icat ion
<PersistentStoreType> Must be edited manually.

Sets the persistent store method to one of the following options:
• memory – Disables persistent session storage.
• file – Uses file-based persistence.
• jdbc – Uses a database to store persistent sessions.
• replicated – Same as memory, but session data is replicated

across the clustered servers.
• cookie – All session data is stored in a cookie in the user’s

browser.
• replicated_if_clustered – If the web application is

deployed on a clustered server, the in-effect PersistentStoreType
will be replicated. Otherwise, memory is the default.

Note: In a clustered production environment, it is important that
you configure the PersistentStoreType property in
weblogic.xml to enable session replication to take place
across the cluster. To do this, set the element to the
replicated_if_clustered value. Without this
setting, you will not have failover of a user’s state
information if a server in the cluster is stopped. By default
if persistent-store-type is not set, it defaults to
disabling persistent session storage. Also note that there will
be increased memory utilization and additional overhead on
the system with this feature enabled.

<Timeout Secs> Sets the time, in seconds, that WebLogic Server waits before timing
out a session, where x is the number of seconds between a session's
activity.

Minimum value is 1, default is 3600, and maximum value is integer
MAX_VALUE.

On busy sites, you can tune your application by adjusting the timeout
of sessions. While you want to give a browser client every
opportunity to finish a session, you do not want to tie up the server
needlessly if the user has left the site or otherwise abandoned the
session.

This attribute can be overridden by the session-timeout element
(defined in minutes) in web.xml.

<debug> Turn off debugging by setting debug property to false.

Table 4-3 weblogic.xml
4-6 BEA WebLogic Portal Performance Tuning Guide

WebLog ic Po r ta l Cache Set t ings
WebLogic Portal Cache Settings
You can modify the p13n-cache-config.xml file via the WebLogic Portal Administration
Console. For more information on how to modify the cache and a comprehensive list of
WebLogic Portal Caches see the Weblogic Portal Cache Reference chapter in the Cache
Reference Guide.

Caching Portlet Categories
Portlet category information is automatically cached, which enhances performance. If for any
reason you do not want to cache portlet categories, you can turn off this cache by setting the
following system property: -enable.portlet.category.caches=false

<precompile> Precompile the JSPs in the web application to reduce the time needed
to display pages on their first invocation by setting precompile to
true.

<precompile-continue> Also set <precompile-continue> to true, because if any JSPs
do not compile, deployment of the web application stops.

Note: Alternatively, you can use weblogic.appc to precompile
JSPs. See the WebLogic Server documentation for more
information.

Table 4-3 weblogic.xml
BEA WebLogic Portal Performance Tuning Guide 4-7

../caches/caches.html
../caches/index.html
../caches/index.html

Tuning Your Po r ta l Web App l icat ion
4-8 BEA WebLogic Portal Performance Tuning Guide

A P P E N D I X A
Performance Tuning Checklistst
This appendix provides checklists and tips for the following components of WebLogic Portal:

Portal Framework Guidelines

Portal Administration Console Guidelines

Portal Framework Guidelines
Table A-1 Portal Framework Guidelines

Guideline Question How to Verify

Is the WebLogic Server well tuned? See “Tuning Your WebLogic Server” on page 1-4

Is the JVM properly tuned? See “Tuning Your JVM” on page 1-5

Is the WebLogic Portal database tuned? See “Tuning Your Database” on page 1-5

Is the Domain running in Production
mode?

See“Tuning Your Domain Configuration” on
page 2-1

If you do not need to support multiple
locales, is localization disabled?

See “Disabling Unused Services” on page 3-3.
BEA WebLogic Portal Performance Tuning Guide A-1

Pe r fo rmance Tun ing Check l i s ts t
Portal Administration Console Guidelines
You can improve the performance of the Portal Administration Console. Specifically, you can
decrease the time it takes to work with desktops and to browse portal resources.

Are Campaigns tuned properly? See “Tuning for Campaigns” on page 3-3

Are Entitlements enabled?

If yes, is control-resource-cache
size is set correctly?

See “Tuning for Entitlements” on page 3-5

Is the Content Management System
optimal?

See “Tuning for Content Management” on page 3-6

How many visible PageFlow portlets are
in the portal?

See “Tuning for PageFlow Portlets” on page 3-8

Is the portalControlTreeCache
MaxSize set to the correct size for your
portal?

See “Optimizing Your Portal Control Tree” on
page 4-1

Is validation turned off? See “Modifying Portal Framework Settings” on
page 4-2.

Is jspPageCheckSecs in
weblogic.xml is set to -1?

See “Modifying WebLogic Server Settings” on
page 4-4.

Is servletReloadCheckSecs in
weblogic.xml is set to -1?

See “Modifying WebLogic Server Settings” on
page 4-4.

Are sessions replicated? If so what
persistent-store-type is used?

See “Modifying WebLogic Server Settings” on
page 4-4

Has the application been performance
tested?

See Approaches to Performance Testing on
dev2dev

Table A-1 Portal Framework Guidelines

Guideline Question How to Verify
A-2 BEA WebLogic Portal Performance Tuning Guide

http://dev2dev.bea.com/pub/a/2005/09/performance_testing.html
http://dev2dev.bea.com/

Por ta l Admin is t ra t ion Conso le Gu ide l ines
This section includes the following topics:

Creating Desktops

Creating Desktops
When you create a new desktop in the Administration Console, a list of .portal files is used to
populate the templates drop-down list. If all .portal files reside under the same directory under
the web application directory, this drop-down list can be created quickly.

To take advantage of higher performance in building the drop-down list, you must define the
portalFileDirectory in the web application’s web.xml file.

Note: After making any changes, you must redeploy your web application for the changes to
take effect. For more information about modifying web descriptor files, see “Portal Web
Application Deployment Descriptors” in the Production Operations Guide.

1. Navigate to the respective web.xml file. It is located in the WEB-INF subdirectory of your
portal application directory.

2. Open the web.xml file in a text editor.

3. Add the following lines

<context-param>

<param-name>portalFileDirectory</param-name>

<param-value>/</param-value>

</context-param>

4. Save the new web.xml file.

5. Redeploy your web application.
BEA WebLogic Portal Performance Tuning Guide A-3

../prodOps/deployment.html#wp1045108
../prodOps/deployment.html#wp1045108
../prodOps/index.html

Pe r fo rmance Tun ing Check l i s ts t
A-4 BEA WebLogic Portal Performance Tuning Guide

	General Performance Tuning Guidelines
	Understanding Performance Tuning and BEA WebLogic Portal
	General Architecture
	WebLogic Portal

	Tuning Your WebLogic Server
	Tuning Your JVM
	Recommendations

	Tuning Your Database
	Tuning Your Operating System
	Other Resources

	Tuning Your Portal Domain
	Tuning Your Domain Configuration
	Removing Debugging Tools from Your Domain
	Tuning Log Levels

	Tuning Your Portal Application
	Managing Caches
	Using the Portal Administration Console to Configure Cache Settings
	Caching with JSP Tags

	Disabling Unused Services
	Tuning for Campaigns
	Referencing Events
	Avoiding Firing Extraneous Events
	Asynchronous Campaigns
	Using Goal Checking for Campaigns
	Using Ads During Campaigns

	Tuning for Entitlements
	Using Role Caching When Using Entitlements

	Tuning for Content Management
	Reading and Searching Content
	Cache Settings

	Tuning for PageFlow Portlets
	Tuning for WSRP
	Clustering for WSRP
	Enabling Caches for WSRP
	Parallel Processing and WSRP

	Tuning for Delegated Administration
	Overview
	Best Practice: Limit DA Policies on Resources

	Using Work Managers

	Tuning Your Portal Web Application
	Optimizing Your Portal Control Tree
	Modifying Your Portal Web Application Parameters
	Modifying Portal Framework Settings
	Modifying Web Application Settings

	Modifying WebLogic Server Settings
	WebLogic Portal Cache Settings
	Caching Portlet Categories

	Performance Tuning Checklistst
	Portal Framework Guidelines
	Portal Administration Console Guidelines
	Creating Desktops

