
Guide to Managing Presentation and

V e r s i o n 4 . 0
D o c u m e n t D a t e : A p r i l 2 0 0 2

Business Logic: Using Webflow

BEA WebLogic Portal™

and Pipeline

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, Operating System for the Internet, Liquid Data, BEA WebLogic E-Business Platform, BEA Builder,
BEA Manager, BEA eLink, BEA WebLogic Commerce Server, BEA WebLogic Personalization Server, BEA
WebLogic Process Integrator, BEA WebLogic Collaborate, BEA WebLogic Enterprise, BEA WebLogic Server,
BEA WebLogic Integration, E-Business Control Center, BEA Campaign Manager for WebLogic, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Document Edition Date Software Version

4.0.2 April 2002 BEA WebLogic Portal 4.0

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline iii

Contents

About This Document
What You Need to Know ... xii

e-docs Web Site ... xiii

How to Print the Document... xiii

Related Information... xiii

Contact Us! .. xiv

Documentation Conventions ...xv

1. Overview of Webflow
Introduction to Webflow ... 1-2

High-Level Architecture .. 1-2

Webflow Architecture... 1-3

The Internals of the Webflow Mechanism.. 1-4

Understanding Webflow as a State Machine 1-6

Webflow and the MVC Design Pattern .. 1-7

The Relationship Between Webflows and Applications............................ 1-7

Benefits of the Webflow Mechanism... 1-8

The Webflow Configuration Files... 1-9

What Files Will I Be Working With?... 1-9

How Are These Files Different from the Webflow and Pipeline Properties
Files? ... 1-10

Location of Webflow Configuration Files in the Directory Structure 1-10

Creating and Modifying Webflow Files... 1-12

Who Should Create and Modify the Webflow Files? 1-12

How Do I Create and Modify Webflow Files? 1-12

Getting Started with Webflow... 1-13

Understanding How Webflow Is Invoked from a URL 1-13

iv Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Setting Up Your Web Application’s web.xml File 1-15

Specifying Webflow Context Parameters ... 1-15

Registering the WebflowServlet Servlet ... 1-17

Defining Your Web Application’s Welcome File............................. 1-18

Configuring Your Web Application to Use Webflow.............................. 1-19

Next Steps.. 1-20

2. Webflow Components and Concepts
Introduction to Webflow Components .. 2-3

Presentation and Processor Nodes ... 2-4

Input Processors and Pipelines .. 2-5

The Pipeline Session.. 2-6

Events .. 2-7

Namespaces ... 2-8

Special Webflow Components .. 2-9

The Begin Node.. 2-9

The Root Component Node.. 2-10

The Wildcard Nodes... 2-10

The Configuration Error Page .. 2-11

Chaining and Branching with Processor Nodes .. 2-12

Using Webflow Components in Your Web Pages .. 2-12

Using Webflow Components with Portals .. 2-13

Webflow Execution Order ... 2-13

Presentation Nodes ... 2-14

Processor Nodes ... 2-15

3. Using the Webflow and Pipeline Editors
Introduction ... 3-3

Starting the Webflow and Pipeline Editors .. 3-3

Important Notes About Using the Webflow and Pipeline Editors 3-6

Next Steps... 3-7

Learning to Use the Webflow and Pipeline Editors .. 3-8

Webflow and Pipeline Editor Essentials .. 3-9

Webflow Namespaces ... 3-9

Pipelines Versus Pipeline Namespaces ... 3-10

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline v

Information Displayed in the Editors’ Title Bars.............................. 3-11

Webflow and Pipeline Files in Your Content Management System 3-12

Webflow Component Representations... 3-13

Understanding the Webflow and Pipeline Editor Palettes 3-17

Tools in the Webflow Editor Palette... 3-18

Tools in the Pipeline Editor Palette... 3-19

Understanding the Webflow and Pipeline Editor Toolbars 3-20

Display and Behavior Buttons .. 3-20

Command Buttons... 3-21

Organizing Webflow Components in an Editor Canvas 3-23

How to Select Webflow Components .. 3-23

How to Add Webflow Components ... 3-24

How to Edit a Webflow Component’s Name (Label).............................. 3-24

How to Designate or Remove a Begin (Root) Node 3-25

How to Move a Webflow Component ... 3-25

How to Connect Nodes with Event or Exception Transitions 3-26

How to Reposition Connection Ports on a Node...................................... 3-27

How to Work with Elbows in Transitions.. 3-27

How to Move an Existing Elbow.. 3-28

How to Create a New Elbow... 3-28

How to Delete a Elbow ... 3-28

Using the Webflow and Pipeline Editor Toolbars... 3-29

How to Print a Webflow Namespace or Pipeline..................................... 3-29

How to Delete Webflow Components ... 3-30

How to Use the Zoomed Overview.. 3-31

How to Show/Hide the Grid... 3-31

How to Snap Objects to the Grid ... 3-31

How to Enable and Disable Link Optimization 3-32

How to Show and Hide Exception Transitions .. 3-32

How to Validate the Selected Node ... 3-32

How to Validate All Nodes .. 3-33

How to Set the Configuration Error Page Name...................................... 3-33

How to Use the Pipeline Component Editor .. 3-34

How To View Pipeline Component Details...................................... 3-34

How to Add Pipeline Components.. 3-35

vi Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

How to Edit Pipeline Components .. 3-36

How to Delete Pipeline Components .. 3-36

How to Make the Pipeline Transactional ... 3-37

How to Include the Pipeline Session in a Transaction 3-37

Using the Properties Editors .. 3-38

Viewing Component Properties ... 3-39

Description of Webflow Component Properties 3-39

Modifying Component Property Values .. 3-42

Migrating An Existing Webflow ... 3-43

Creating or Modifying a Webflow: Breadth-First Versus Depth-First 3-43

About the Webflow and Pipeline Editors’ Validation Features 3-45

Validation Error Messages in a Properties Editor 3-46

What Do the Editors Validate?... 3-47

Saving Invalid Webflows ... 3-47

Synchronizing Webflow Data for Your Application....................................... 3-48

4. Customizing and Extending Webflow
Pipeline Session Internals .. 4-3

Managing the Pipeline Session... 4-3

Accessing the PipelineSession Interface ... 4-3

Setting and Getting Pipeline Session Properties 4-4

Using the Support Classes to Capture Exception Messages 4-6

Property Scoping .. 4-7

Request-Scoped Pipeline Session Properties 4-7

Pipeline Session-Scoped Pipeline Session Properties 4-8

Serializing Pipeline Session Properties .. 4-8

Error Handling ... 4-9

Non-Runtime and Runtime Processor Exceptions 4-9

Input Processor and Pipeline Component Exception Handling 4-11

Input Processor Exceptions ... 4-11

Pipeline Component Exceptions ... 4-11

JavaServer Page (JSP) Exception Handling ... 4-13

Accessing Exceptions and Exception Messages 4-13

Creating New Input Processor or Pipeline Component Exceptions 4-13

Configuring Pipeline Component Exception Fatality 4-14

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline vii

Creating a New Input Processor .. 4-15

How to Create a New Input Processor ... 4-15

Input Processor Naming Conventions.. 4-16

Input Processors and Statelessness... 4-17

Other Development Guidelines for Input Processors............................... 4-17

Webflow Validators and Input Processors .. 4-17

The ValidatedValues Interface... 4-18

Validation Example... 4-20

Special Validation Exceptions ... 4-24

Creating a Custom Validator.. 4-25

Example of a Custom Validator.. 4-25

Creating a New Pipeline Component .. 4-28

How to Create a New Pipeline Component ... 4-28

Pipeline Component Naming Conventions .. 4-29

Implementation of Pipeline Components as Stateless Session EJBs or Java
Objects .. 4-30

Stateful Versus Stateless Pipeline Components 4-31

Transactional Versus Nontransactional Pipelines 4-31

Including Pipeline Sessions in Transactions .. 4-32

Other Development Guidelines for Pipeline Components 4-32

Extending Webflow by Creating Extension Presentation and Processor Nodes.....
4-33

How to Create an Extension Presentation Node 4-33

How to Create an Extension Processor Node... 4-34

Making Your Extension Presentation and Processor Nodes Available in the
Webflow and Pipeline Editors .. 4-35

How To Register an Extension Presentation Node 4-35

How To Register an Extension Processor Node 4-36

Webflow Internationalization .. 4-38

5. Webflow JSP Tag Library Reference
Importing the Webflow Tag Library ... 5-2

URL Creation Tags.. 5-2

<webflow:createWebflowURL>.. 5-3

Example .. 5-5

<webflow:createResourceURL>.. 5-6

viii Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Example... 5-6

Form Tags.. 5-6

<webflow:form>... 5-7

Example... 5-9

Validated Form Tags ... 5-10

<webflow:validatedForm> ... 5-10

<webflow:text> .. 5-13

<webflow:password> ... 5-14

<webflow:radio> .. 5-15

<webflow:checkbox> ... 5-15

<webflow:textarea>.. 5-16

<webflow:select> ... 5-17

<webflow:option> .. 5-17

Example.. 5-18

Pipeline Session Tags .. 5-19

<webflow:setProperty> .. 5-19

Example... 5-20

<webflow:getProperty>.. 5-20

Example 1.. 5-21

Example 2.. 5-21

<webflow:setValidatedValue>... 5-22

Example... 5-22

<webflow:getValidatedValue> .. 5-23

Example 1.. 5-24

Example 2.. 5-24

<webflow:getException> ... 5-25

Example... 5-25

6. An Example of Webflow: The Pet Flow Application
About the Pet Flow Sample Application ... 6-2

What Webflow Features Does the Pet Flow Sample Application Illustrate?.... 6-2

Accessing the Pet Flow Sample Application... 6-3

Location of Pet Flow Files ... 6-3

Running Pet Flow in a Web Browser ... 6-4

Opening a Pet Flow Namespace in the Webflow Editor 6-4

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline ix

Index

x Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline xi

About This Document

This document provides information about the Webflow mechanism included in the
BEA WebLogic PortalTM product. The Webflow mechanism externalizes a site’s page
flow and separates back-end processing activities from presentation. Both the flow of
pages and the underlying business processing are configured in centralized XML files,
making it easier than ever to maintain or modify the behavior of your Web site.
Out-of-the-box, the Webflow mechanism comes with a number of components to get
you started, but the Webflow can also be customized or extended to meet your specific
objectives.

This document includes the following topics:

� Chapter 1, “Overview of Webflow,” which provides an introduction to the
Webflow mechanism and describes its architecture. This topic also introduces
you to the Webflow configuration files and describes the set up activities you
will need to perform to leverage Webflow in your applications. For those who
have used prior implementations of Webflow, this topic also briefly describes the
differences in the current release and references documentation that will be
helpful for migration.

� Chapter 2, “Webflow Components and Concepts,” contains the basic
information you need to know to use Webflow in your Web applications. It
describes each of the components that may be used within a Webflow, and
indicates how you should go about creating JavaServer Pages (JSPs) that utilize
Webflow. This topic also briefly addresses some important Webflow differences
for those building portals, and includes helpful information about the Webflow
execution order.

� Chapter 3, “Using the Webflow and Pipeline Editors,” provides you with
information that will assist you in creating Webflows using the E-Business
Control Center (EBCC) graphical Webflow and Pipeline Editors. These Editors
are designed specifically to help you create, modify, and validate Webflow and
Pipeline XML configuration files.

xii Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

� Chapter 4, “Customizing and Extending Webflow,” explains ways you may want
to customize or extend the Webflow mechanism that comes with WebLogic
Portal. It includes detailed information about the Pipeline Session, guidelines
for creating new exceptions, Input Processors, and Pipeline Components, as well
as instructions for creating new presentation and processor nodes for use in your
Webflows. This topic also contains information about the Webflow validators as
they relate to Input Processors, as well as information about Webflow
internationalization messages.

� Chapter 5, “Webflow JSP Tag Library Reference,” describes a set of JSP tags
designed to facilitate the development of JSPs using Webflow. This topic
explains how to import the appropriate tag libraries into your Web pages, and
describes the purpose of each tag.

� Chapter 6, “An Example of Webflow: The Pet Flow Application,” provides you
with information about the sample Pet Flow application that illustrates some
capabilities of the Webflow mechanism.

What You Need to Know

This document is intended for Java/EJB developers who are responsible for modifying
the XML files and extending the Webflow mechanism, and HTML/JSP developers,
who use JSP tags to create interactive pages that meet business requirements. This
document is not directed to business analysts, but naturally a Web site’s flow depends
upon various business processes and rules, which need to be taken into account while
developers are working with Webflow.

For more information about these roles, see the “Development Roles” section in the
“Roadmap for Developing an E-Business Web Site” topic of the Strategies for
Developing E-Business Web Sites documentation.

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline xiii

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the “e-docs”
Product Documentation page at http://e-docs.bea.com.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Portal 4.0
documentation Home page on the e-docs Web site. A PDF version of this document
is also available in the documentation kit on the product CD. Or you can download the
documentation kit from the WebLogic Portal portion of the BEA Download site. You
can open the PDF in Adobe Acrobat Reader and print the entire document (or a portion
of it) in book format. To access the PDFs, open the WebLogic Portal 4.0
documentation Home page, click the PDF files button and select the document you
want to print.

If you do not have the Adobe Acrobat Reader, you can get it for free from the Adobe
Web site at http://www.adobe.com/.

Related Information

If you have used prior implementations of Webflow, be sure to see the Migration
Guide for some important information.

Additionally, the following WebLogic Portal documents describe product applications
that are built upon the Webflow infrastructure:

� Guide to Building a Product Catalog

xiv Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

� Guide to Managing Purchases and Processing Orders

� Guide to Registering Customers and Managing Customer Services

Contact Us!

Your feedback on the BEA WebLogic Portal 4.0 documentation is important to us.
Send us e-mail at docsupport@beasys.com if you have questions or comments. Your
comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Portal 4.0 documentation.

In your e-mail message, please indicate that you are using the documentation for the
WebLogic Portal 4.0 release.

If you have any questions about this version of BEA WebLogic Portal 4.0, or if you
have problems installing and running BEA WebLogic Portal 4.0, contact BEA
Customer Support through BEA WebSUPPORT at www.beasys.com. You can also
contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline xv

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

boldface text Indicates terms defined in the glossary.

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates code samples, commands and their options, data structures and
their members, data types, directories, and filenames and their extensions.
Monospace text also indicates text that you must enter from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
boldface
text

Identifies significant words in code.

Example:

void commit ()

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCASE
TEXT

Indicates device names, environment variables, and logical operators.

Examples:

LPT1

SIGNON

OR

xvi Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

{ } Indicates a set of choices in a syntax line. The braces themselves should
never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should
never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol itself
should never be typed.

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a syntax line.
The vertical ellipsis itself should never be typed.

Convention Item

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-1

CHAPTER

1 Overview of Webflow

Webflow is a mechanism designed to help you build Web applications that maintain
the much-desired separation between presentation logic and underlying business
processes. Because the Webflow’s centralized XML configuration files specify the
order in which pages are displayed to your Web site’s visitors, use of the Webflow
mechanism may reduce the amount of work necessary to create and modify the flow
of your Web site. At appropriate times during a visitor’s interaction, the Webflow may
also invoke predefined, specialized components to validate data or to execute back-end
business processes. Therefore, using the modular architecture Webflow provides may
also make it faster and easier for your development team to complete modifications
that require back-end programming.

This topic provides you with preliminary information about the architecture of the
Webflow mechanism and describes some benefits of using Webflow in your
applications. The relevant Webflow configuration files and their locations are
introduced, along with a description of how you might go about modifying these files
to meet your organizational requirements. For developers who may have worked with
Webflow before, this topic includes a brief explanation of what has changed for this
release and indicates where to look for migration information. In addition, this topic
includes some instructions to get you started using Webflow.

This topic includes the following sections:

� Introduction to Webflow

� High-Level Architecture

� The Relationship Between Webflows and Applications

� Benefits of the Webflow Mechanism

� The Webflow Configuration Files

� What Files Will I Be Working With?

1 Overview of Webflow

1-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

� How Are These Files Different from the Webflow and Pipeline Properties
Files?

� Location of Webflow Configuration Files in the Directory Structure

� Creating and Modifying Webflow Files

� Getting Started with Webflow

� Understanding How Webflow Is Invoked from a URL

� Setting Up Your Web Application’s web.xml File

� Configuring Your Web Application to Use Webflow

� Next Steps

Introduction to Webflow

This section describes the Webflow architecture from a number of different
viewpoints, then highlights some important benefits of using Webflow in your
applications.

High-Level Architecture

This section provides a high-level description of the Webflow architecture as well as
a simplified explanation of how the Webflow mechanism works. It also explains how
you might understand Webflow as a state machine and as an enabler of the
Model-View-Controller (MVC) design pattern.

Introduction to Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-3

Webflow Architecture

Figure 1-1 illustrates the basic architecture of the Webflow mechanism.

Figure 1-1 Webflow High-Level Architecture

The WebflowServlet is a servlet that receives all requests from a client and delegates
to the Webflow Executor. You will register the WebflowServlet by defining it in
your application’s WEB-INF/web.xml deployment descriptor prior to using Webflow,
as described in “Getting Started with Webflow” on page 1-13.

The Webflow Executor determines the Webflow execution order, executes all nodes
that handle back-end processing, and then returns the final presentation node to the
WebflowServlet. The WebflowServlet will then forward the client to that
presentation node.

Note: More information about the Webflow execution order is included in
“Webflow Execution Order” on page 2-13.

The Session Manager provides session and lifecycle management for the Pipeline
Session. For more information about the Pipeline Session, see “The Pipeline Session”
on page 2-6 and “Pipeline Session Internals” on page 4-3.

1 Overview of Webflow

1-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

The Input Processor processor is a type of processor that delegates to user-defined
classes that implement the InputProcessor interface. These Input Processor classes
perform specific tasks, such as validating form data. Similarly, the Pipeline Processor
is a type of processor that delegates to the Pipeline Executor.

The Pipeline Executor is a stateless session Enterprise JavaBean (EJB) that executes
Pipeline Components, which execute the business logic associated with the
application. The Pipeline Executor also handles transaction management and
exception branch management within the Pipeline.

The Extension (Custom) Processor processors shown in Figure 1-1 represent those
processors your development team may code to extend the out-of-the-box Webflow
mechanism. For more information about creating a custom processor, see “Extending
Webflow by Creating Extension Presentation and Processor Nodes” on page 4-33.

Note: The Webflow architecture used by portals is slightly different from that shown
in Figure 1-1. It also includes a PortalServlet and Application Processor
Executor, which are described in “Customizing Portals” in the Getting Started
with Portals and Portlets documentation.

The Internals of the Webflow Mechanism

Figure 1-2 provides an example of how control typically flows from presentation and
processor nodes (such as JSPs and Pipelines) when applications utilize the Webflow
mechanism. Notice that the Pipeline Components containing pieces of business logic
have no knowledge of HTML or any other presentation technology. Instead, the
Pipeline Session maintains conversational state in the system. Similarly, the Webflow
governs the flow of control.

Note: For more information about the Pipeline Session, see “The Pipeline Session”
on page 2-6 and “Pipeline Session Internals” on page 4-3.

Introduction to Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-5

Figure 1-2 Flow of Control Using Webflow

1 Overview of Webflow

1-6 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Understanding Webflow as a State Machine

As shown in Figure 1-3, Webflow can be thought of as a state machine. A Webflow
begins at a node that handles presentation, such as a JavaServer Page (JSP). When a
visitor interacts with a Web site that uses Webflow, their interaction causes
information about the origin of the interaction and the event to be sent to the Webflow.
Based on this information, the Webflow mechanism makes a decision about the next
node it should transition to. If the Webflow decides to invoke a type of processor node
(that is, an Input Processor or Pipeline) as a destination, the Webflow may temporarily
store state information. This state information is stored only until the Webflow returns
to another presentation node.

Using Figure 1-3 as an example, a visitor may be viewing a page called some.jsp that
exists in your Web application. The visitor then clicks a link called somelink, which
is available to them on some.jsp. In this case, the origin of the interaction is the
current page (some.jsp) and the event is clicking on the link named somelink. Based
on this information, the Webflow may decide to transition to an Input Processor.
When invoked by the Webflow, this Input Processor may access and temporarily store
information in a centralized location called a Pipeline Session. If the Input Processor
throws an exception and transitions to the error.html page, that state information is
no longer available.

Figure 1-3 Webflow as a State Machine

Introduction to Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-7

Notes: For more information about the different kinds of Webflow components
(presentation and processor nodes, events, and so on), see Chapter 2,
“Webflow Components and Concepts.” For more information about the
Pipeline Session, see “The Pipeline Session” on page 2-6 and “Pipeline
Session Internals” on page 4-3.

Webflow and the MVC Design Pattern

Webflow also enables the Model-View-Controller (MVC) design pattern, a useful
methodology for developers looking to reuse Java code and decrease the amount of
time required to develop Web applications. Processor nodes (such as Input Processors
and Pipelines) represent the Model, or classes dealing with the underlying data
structures necessary for a fully functional application. Presentation nodes (such as
JavaServer Pages) represent the View, or classes that are concerned with the
application’s interface. The Controller, represented as the WebflowServlet servlet,
facilitates communication between the Model and the View.

Notes: For more information about presentation and processor nodes, see
“Presentation and Processor Nodes” on page 2-4. For more information about
the WebflowServlet servlet, see “Setting Up Your Web Application’s
web.xml File” on page 1-15.

The Relationship Between Webflows and Applications

As in the previous release, Webflow is scoped to a Web application, and you can only
have one Webflow per Web application. The Webflow for a Web application is
configured in the application’s WEB-INF/web.xml deployment descriptor, as
described in “Setting Up Your Web Application’s web.xml File” on page 1-15.

However, this release of Webflow does provide you with more flexibility. Much like
you can have multiple enterprise applications per instance of the WebLogic Server,
you can now have multiple Webflows per enterprise application. Pipelines are scoped
to an enterprise application, meaning that multiple Webflows (or Web applications)
may all invoke the same Pipeline. In addition, you can now divide an individual Web
application’s Webflow into more manageable subflows, called namespaces. For more
information about namespaces, see “Namespaces” on page 2-8.

1 Overview of Webflow

1-8 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Benefits of the Webflow Mechanism

Based on the information you have about Webflow, you may already see that using
Webflow in your Web applications will be advantageous to your development
processes. The following are just some of the benefits you will realize while using the
Webflow mechanism:

� Decoupled code: The code structures required for most Web applications, such
as those for presentation, form validation, and business logic, are all located in
separate components and coordinated via centralized XML files.

� Reusable code: Because Web pages are not muddled with code that serves a
number of different purposes and touches a variety of external systems, the
components that handle presentation, form validation, and business logic can be
reused in a variety of application contexts. These atomic components can be
“plugged into” new contexts with little modification.

� Maintainable code: For the same reason why the components are reusable, the
code for the entire Web application is also more easily maintained. It is easier to
determine what is happening in each focused component, instead of following
the logical (or perhaps illogical) structure that results from placing all the
necessary code within a single page. Additionally, since components are
configured in a centralized document, you can make modifications without
having to touch a large number of files.

� Increased developer productivity: The decoupling of code structures may also
result in increased developer productivity. Although each component has a
specific function within the larger application, each component also exists as a
separate entity. Developers can work independently on portions of the
application without being overly concerned about how their modifications will
affect other areas.

The Webflow Configuration Files

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-9

The Webflow Configuration Files

This section introduces the Webflow configuration files you will be working with for
your applications, and includes a brief description of the information they contain. For
those who have utilized previous releases of Webflow, this section also describes some
important changes. The locations of the Webflow configuration files are provided, and
methods for modifying these files are discussed.

What Files Will I Be Working With?

Recall that there is a one-to-one association between a Webflow and a Web
application. However, because a Webflow contains configuration information for an
entire Web application and because the main goal of Webflow is to preserve the
separation between presentation and business logic, there are typically several
configuration files per Webflow. All Webflow configuration files contain XML
elements, which must conform to a XML Schema Definition (XSD) included in the
product.

The primary files used for Webflow are <namespace>.wf and <namespace>.pln

files. As suggested by the <namespace> portion of the filename, a Webflow is
typically modularized into several namespaces. The <namespace>.wf and
<namespace>.pln files are scoped to a Web application and enterprise application,
respectively. The minimum number of Webflow files you can have for a Web
application is one, but there is no limit to the maximum number of Webflow
configuration files.

Notes: For more information the association between Webflows and applications, see
“The Relationship Between Webflows and Applications” on page 1-7. For
more information about using namespaces within a Webflow, see
“Namespaces” on page 2-8.

As indicated by their extensions, a <namespace>.wf configuration file contains the
primary information for a Webflow namespace, including the transitions between
presentation and processor nodes. A <namespace>.pln file contains definitions for
the Pipeline Components that may be invoked within a Pipeline in the namespace.
Although some Webflow components are defined within different files (according to
<namespace>), the flow of control passes seamlessly between them.

1 Overview of Webflow

1-10 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

How Are These Files Different from the Webflow and
Pipeline Properties Files?

If you have used previous releases of Webflow, the first change you will notice is that
the webflow.properties and pipeline.properties files have been replaced with
one or more <namespace>.wf and <namespace>.pln files. This new
implementation uses the data synchronization model to make new or modified
Webflows available to one or more applications, and to work with your organization’s
existing Content Management Systems. Instead of containing name-value pairs, the
configuration files now contain XML elements, which must conform to a XML
Schema Definition (XSD) included in the product.

You need to migrate your files to the new format in order to use the Webflow and
Pipeline Editors included in the E-Business Control Center (EBCC). For more
information about migrating your existing Webflows, see “Migrating An Existing
Webflow” on page 3-43, or view the same topic from within the EBCC’s online help.
You should also refer to the Migration Guide.

Lastly, it is important that you continue reading this documentation to learn about other
significant changes and improvements in the Webflow implementation.

Location of Webflow Configuration Files in the Directory
Structure

Figure 1-4 illustrates where in the directory structure the Webflow and Pipeline
configuration files reside. Note that there may be multiple <namespace>.pln files per
enterprise application, but that <namespace>.wf files (and the
webflow-extensions.wfx file used to register extension (custom) Webflow
components for your Web application) exist in each individual Web application’s
directory.

Note: For more information about managing the <namespace>.wf,
<namespace>.pln, and webflow-extensions.wfx files, see “Webflow and
Pipeline Files in Your Content Management System” on page 3-12.

The Webflow Configuration Files

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-11

Figure 1-4 Webflow Configuration Files in a Sample Directory Structure

When you create a new Webflow or Pipeline for your application using the Webflow
or Pipeline Editors, one or more <namespace>.wf and <namespace>.pln Webflow
configuration files are automatically generated and appropriately placed in the
directory structure. (For information on using the Webflow and Pipeline Editors, see
Chapter 3, “Using the Webflow and Pipeline Editors.”)

The webflow-extensions.wfx file initially exists in the sample_app enterprise
application’s default/webflow directory. When you create a new Web application
using the E-Business Control Center (EBCC), this webflow-extensions.wfx file is
copied over to your Web application’s directory. You can hand-edit any
webflow-extensions.wfx file to include new Webflow components, but
modifications made to the webflow-extensions.wfx file in the sample_app
enterprise application’s default/webflow directory will affect all subsequent Web
applications you create.

1 Overview of Webflow

1-12 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Notes: For more information about how the webflow-extensions.wfx file is
copied when you create a new Web application, see “Creating an Application
Structure for E-Business Control Center Data” and “Creating a Web
Application Folder” in the Guide to Using the E-Business Control Center
documentation.

Instructions for modifying the webflow-extensions.wfx file to register
extension (custom) Webflow nodes are located in “Making Your Extension
Presentation and Processor Nodes Available in the Webflow and Pipeline
Editors” on page 4-35.

Creating and Modifying Webflow Files

This section includes important information about who should create and modify
Webflow files for your organization’s applications, and explains the method for
performing these tasks.

Who Should Create and Modify the Webflow Files?

It is expected that HTML/JSP developers or Java/EJB developers will be responsible
for modifying the Webflow configuration files, and that only Java/EJB developers will
customize or extend the Webflow mechanism. For more information about these roles,
see the “Development Roles” section in the “Documentation Roadmap for WebLogic
Portal” topic of the Strategies for Developing E-Business Web Sites documentation.

How Do I Create and Modify Webflow Files?

BEA strongly recommends that you utilize the Webflow and Pipeline Editors,
accessible from the E-Business Control Center (EBCC), to edit your Webflow and
Pipeline files. These graphical tools provide you with the ability to visualize your
Webflows in smaller modules, and the Webflow Editor contains a built-in validation
feature that works behind the scenes to ensure that your Webflows are valid. For
information about using the Webflow and Pipeline Editors, see Chapter 3, “Using the
Webflow and Pipeline Editors.” Or, select the “Using the Webflow and Pipeline
Editors” topic from the EBCC online help.

Getting Started with Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-13

Note: If you have used Webflow and Pipeline Editors from a previous release, you
first need to migrate your Webflow and Pipeline files. For more information
see “How Are These Files Different from the Webflow and Pipeline Properties
Files?” on page 1-10 and the Migration Guide.

Getting Started with Webflow

In order to take advantage of Webflow in your applications, there are a few activities
you must perform. This section provides you with the step-by-step instructions that
will help you get started with Webflow. Namely:

� Setting Up Your Web Application’s web.xml File

� Configuring Your Web Application to Use Webflow

Note: Some of these instructions involve working with your Web application’s
web.xml deployment descriptor. More information about this file can be
found in the Deployment Guide.

Before you begin, however, you should have a high-level understanding of how the
URL a visitor to your Web site enters in a browser eventually invokes the Webflow
mechanism.

Understanding How Webflow Is Invoked from a URL

This section explains what typically happens when a visitor to your
Webflow-enhanced Web site enters the URL http://localhost:7001/mywebapp

in their Web browser.

In the preceding URL, localhost is a reference to the domain name of the server. The
listen port of 7001 is defined in the <domain_name>/config.xml file. This can be
any available port, and may be omitted if the application is running on port 80. If you
are using a proxy to front-end your Webflow, you may also need to set the HTTP_PORT
and HTTPS_PORT context parameters in the web.xml file to the ports on the proxy.
Lastly, mywebapp is the URI for the Web application, defined in the

1 Overview of Webflow

1-14 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

META-INF/application.xml file. This can be omitted if the Web application is
designated as the default Web application. More information about these settings can
be found in the Deployment Guide.

Given this information, the Webflow sequence is as follows:

1. The browser forwards the request to the WebLogic Server running on localhost

and port 7001.

2. Since the URI for the Web application is specified, the WebLogic Server directs
the request to the specific Web application that corresponds to the mywebapp
URI.

3. Since no additional path information is supplied on the URL, the Web application
forwards the visitor to the first welcome file, as defined in the
<welcome-file-list> element of the WEB-INF/web.xml file. Typically, the
welcome file is something like index.jsp.

4. The only code contained within the index.jsp welcome file is <jsp:forward
page=”/application”/>. This forwards the request to the WebflowServlet,
as defined in the web.xml file, with the URL pattern of application.

Since a namespace is not supplied via a query string, the WebflowServlet
looks for the context parameter P13N_DEFAULT_NAMESPACE in the
WEB-INF/web.xml file. This is the namespace the WebflowServlet will use.
Typically, the default namespace is defined as main.

Note: Specifying a namespace with a query string would look like:
<jsp:forward page=”/application?namespace=order”/>. If a
namespace is specified, it will be used instead of the default namespace.

5. Since there is a one-to-one relationship between a namespace and a Webflow
configuration file, the WebflowServlet looks for a main.wf file located in the
<data-sync-directory>/webapps/mywebapp/ directory.

6. Since no origin and event are supplied as parameters, the Webflow engine will
default to the begin origin. The begin origin is defined in the default namespace
file (main.wf) as follows:

<begin-origin>

<destination namespace="main" node-name="welcome"
node-type="jsp"/>

</begin-origin>

Getting Started with Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-15

7. The begin origin’s destination is a node named welcome, and is a JavaServer
Page (JSP). Therefore, Webflow looks in the main.wf file for a node with the
name of welcome and a type of jsp, which would be represented as:

<presentation-origin node-name="welcome" node-type="jsp">

<node-processor-info page-relative-path="/browse"
page-name="welcome.jsp"/>

</presentation-origin>

The welcome node has a page relative path of /browse and a page name of
welcome.jsp. Therefore, Webflow forwards the visitor’s request to
/browse/welcome.jsp. This file needs to be located in the Web application’s
document root.

Setting Up Your Web Application’s web.xml File

In order to set up the Webflow mechanism for use in your Web applications, you will
first need to specify certain context parameters, register the WebflowServlet servlet,
and define your welcome file in your application’s WEB-INF/web.xml deployment
descriptor file. This section describes the set up activities you will need to complete
in the web.xml file.

Specifying Webflow Context Parameters

To make use of Webflow, you may need to specify values for five context parameters
in the application’s web.xml deployment descriptor file. These context parameters
are:

� P13N_DEFAULT_NAMESPACE

The default namespace for the application, which Webflow will use when a
namespace is not specified in the URL. This context parameter is required.

Note: Portals must have the P13N_DEFAULT_NAMESPACE context parameter set
in a specific manner. Please see “Customizing Portals” in the Getting
Started with Portals and Portlets documentation for more information.

� P13N_APPLICATION_URL

The application URL for the Webflow. This context parameter is required, and
if not specified, will default to /application.

1 Overview of Webflow

1-16 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

� P13N_URL_PREFIX

The prefix inserted into the URL by the createWebflowURL() method or JSP
tags. (For more information about the createWebflowURL() method, see
“Using Webflow Components in Your Web Pages” on page 2-12, or the
Javadoc.) If not specified, a prefix is not added to the URL. You may want to
specify a prefix when Apache or some other proxy is fronting Webflow. This
context parameter is optional.

� P13N_STATIC_ROOT

The URL root used by the createStaticResourceURL() method to build
URLs to static resources that exist on a proxy server. The
createStaticResourceURL() method is an alternative to using the
<webflow:createResourceURL> JSP tag, and is described in the Javadoc.

This context parameter is optional. If the P13N_STATIC_ROOT context
parameter is commented out or left null, then the
<webflow:createResourceURL> tag and the createWebflowURL() method
will use the current domain name and port. If at a later time you want to house
your GIF images to another server, just edit the P13N_STATIC_ROOT context
parameter.

� P13N_URL_DOMAIN

If this context parameter is set, the <webflow:createWebflowURL>,
<webflow:form>, and <webflow:validatedForm> JSP tags will use this
domain (IP address) as opposed to the current domain name. You may want to
do this when Webflow is being fronted by a proxy and that proxy exists on
another machine. You can also specify a "domainName" property in the above
named JSP tags to override the value of the P13N_URL_DOMAIN context
parameter on a link-by-link basis. This context parameter is optional.

All of these context parameters are defined within <context-param> elements in
your application’s WEB-INF/web.xml file, as shown in Listing 1-1.

Listing 1-1 Sample Context Parameters for Webflow in web.xml

<context-param>
<param-name>P13N_DEFAULT_NAMESPACE</param-name>
<param-value>main</param-value>

</context-param>

Getting Started with Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-17

<context-param>
<param-name>P13N_APPLICATION_URL</param-name>
<param-value>/application</param-value>

</context-param>

<context-param>
<param-name>P13N_URL_PREFIX</param-name>
<param-value>/weblogic</param-value>

</context-param>

<context-param>
<param-name>P13N_STATIC_ROOT</param-name>
<param-value>http://localhost:7003/petflow</param-value>

</context-param>

<context-param>
<param-name>P13N_URL_DOMAIN</param-name>
<param-value>192.168.32.19</param-value>

</context-param>

Registering the WebflowServlet Servlet

Listing 1-2 illustrates the elements you will need to add to your application’s
WEB-INF/web.xml file to register the WebflowServlet servlet. The <servlet>
element defines the servlet’s name and indicates its class name. The
<servlet-mapping> element associates the WebflowServlet servlet with a URL
pattern of /application/*.

Note: The P13N_APPLICATION_URL context parameter must also be set to the value
shown in the <url-pattern> element to enable automatic URL generation in
JavaServer Pages (JSPs). For more information, see “Specifying Webflow
Context Parameters” on page 1-15.

Listing 1-2 Registering the Webflow Servlet in web.xml

<!-- Defines the Webflow servlet -->

<servlet>
<servlet-name>webflow</servlet-name>
<servlet-class>com.bea.p13n.appflow.webflow.servlets.internal.
WebflowServlet</servlet-class>

</servlet>

1 Overview of Webflow

1-18 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

<servlet-mapping>
<servlet-name>webflow</servlet-name>
<url-pattern>/application/*</url-pattern>

</servlet-mapping>

Note: Portal applications must also register the PortalServlet in the
WEB-INF/web.xml file. Please see “Customizing Portals” in the Getting
Started with Portals and Portlets documentation for more information.

Defining Your Web Application’s Welcome File

After you have registered the WebflowServlet servlet, you need to verify that you
have defined a welcome file. Per the Java Servlet 2.2 specification, the welcome file
is the first file displayed when a Web application is invoked. Listing 1-3 illustrates
how to define a welcome file in your web.xml file.

Listing 1-3 Defining the Welcome File in web.xml

<welcome-file-list>
<welcome-file>index.jsp</welcome-file>

</welcome-file-list>

The welcome file you list in the web.xml deployment descriptor must reside in the root
directory of your Web application. This welcome file is the entry point from the Web
application into the Webflow mechanism, and should contain the following code:

<jsp:forward page=”/application?namespace=namespace_name”>

where application is the name of your application (which matches that specified in
the P13N_APPLICATION_URL context parameter) and namespace_name is the name of
the initial namespace for your Web application. Specifying a namespace name is
optional. If the namespace name is omitted, the namespace used will be that specified
in the P13N_DEFAULT_NAMESPACE context parameter.

Note: For more information about the P13N_APPLICATION_URL and
P13N_DEFAULT_NAMESPACE context parameters, see “Specifying Webflow
Context Parameters” on page 1-15.

Getting Started with Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 1-19

Configuring Your Web Application to Use Webflow

The welcome file specified in your WEB-INF/web.xml file (in this case, index.jsp)
forwards Web site visitors to another page. Therefore, you need to specify the page
visitors get forwarded to by creating a <namespace>.wf file (for this example,
main.wf) in the E-Business Control Center (EBCC) Webflow Editor.

Note: For more information about creating a new <namespace>.wf file via the
Webflow Editor, see “Creating Webflow/Pipeline Files” in the Guide to Using
the E-Business Control Center documentation.

The main.wf file should contain a begin origin Webflow component, followed by a
presentation node corresponding to the page specified by the begin origin. For this
example, assume that the page has a name of helloworld and a node type of jsp. The
XML code generated by the Webflow Editor when you save the main.wf file will be
similar to that shown in Listing 1-4.

Listing 1-4 Example main.wf File

<?xml version="1.0" encoding="UTF-8"?>

<webflow-configuration
xmlns="http://www.bea.com/servers/p13n/xsd/webflow/2.0"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/servers/p13n/xsd/webflow/
2.0 webflow.xsd">

<namespace>main</namespace>

<begin-origin>
<destination namespace="main" node-name="helloworld"
node-type="jsp"/>

</begin-origin>

<presentation-origin node-name="helloworld" node-type="jsp">
<node-processor-info page-name="helloworld.jsp"/>

</presentation-origin>

...

</webflow-configuration>

1 Overview of Webflow

1-20 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Note: For instructions on creating Webflow components, see Chapter 3, “Using the
Webflow and Pipeline Editors.”

Next Steps

Subsequent topics in this Guide to Managing Presentation and Business Logic: Using
Webflow and Pipeline documentation provide detailed information about Webflow.
Depending on your goals, you may want to review the following:

� If you are entirely new to Webflow, continue to Chapter 2, “Webflow
Components and Concepts.” This topic provides you with the basic information
you need to know to use Webflow.

� If you would like to learn how to create and modify Webflow configuration files
using the Webflow Editor, see Chapter 3, “Using the Webflow and Pipeline
Editors,” or select this topic in the E-Business Control Center (EBCC) online
help.

� If you are a Java/EJB developer and would like to learn about how to create new
exceptions, Input Processors, Pipeline Components, and Extension (Custom)
Presentation and Processor Nodes, see Chapter 4, “Customizing and Extending
Webflow.”

� If you are an HTML/JSP developer and are interested in using Webflow JSP tags
in your Web pages, see Chapter 5, “Webflow JSP Tag Library Reference.”

� If you would like to view a sample application that illustrates some capabilities
of the Webflow mechanism, see Chapter 6, “An Example of Webflow: The Pet
Flow Application.”

There are also several documents that address topics related to Webflow that may be
of interest, including:

� Strategies for Developing E-Business Web Sites

� Migration Guide

� Deployment Guide

� Performance Tuning Guide

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-1

CHAPTER

2 Webflow Components
and Concepts

As described in “Overview of Webflow,” the Webflow mechanism controls the
presentation of Web pages as visitors interact with your Web applications. To
accomplish this, Webflow makes use of various components, some of which are
designed to handle complex tasks like form validation or execution of back-end
business processes. This topic first introduces you to all the components that may
comprise a Webflow, and includes:

� Introduction to Webflow Components

� Presentation and Processor Nodes

� Input Processors and Pipelines

� The Pipeline Session

� Events

� Namespaces

� Special Webflow Components

� The Begin Node

� The Root Component Node

� The Wildcard Nodes

� The Configuration Error Page

Next, this topic discusses some additional concepts with respect to using the Webflow
mechanism, including:

� Chaining and Branching with Processor Nodes

2 Webflow Components and Concepts

2-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

� Using Webflow Components in Your Web Pages

� Using Webflow Components with Portals

� Webflow Execution Order

� Presentation Nodes

� Processor Nodes

Notes: For information about using the Webflow and Pipeline Editors to work with
the components described in this topic, see “Using the Webflow and Pipeline
Editors.” For information about customizing and extending the Webflow
mechanism, see “Customizing and Extending Webflow.”

Introduction to Webflow Components

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-3

Introduction to Webflow Components

Figure 2-1 illustrates the typical relationships among Webflow components. You can
refer back to this illustration as you read more about each component.

Figure 2-1 Typical Relationship Among Webflow Components

Note: Webflow used in portal applications may respond to more events than are
shown in Figure 2-1. For more information about portal applications and use
of the Webflow mechanism, see “Customizing Portlets and Portals” in the
Getting Started with Portals and Portlets documentation.

A Webflow can first be subdivided into nodes and events. A node represents a state
in the Webflow. Depending on the node type, there are a number of predefined events
that may occur (such as a visitor clicking a link on a Web page). When a particular
event happens, the Webflow decides which subsequent node to invoke to continue the
flow. This process is referred to as a transition, and is illustrated in Figure 2-2.

2 Webflow Components and Concepts

2-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 2-2 Generic Webflow Transition

As is also shown in Figure 2-2, nodes may be referred to as origin or destination nodes,
depending on their location in a transition.

For more information about node types, see the next section, “Presentation and
Processor Nodes.” For more information about the events associated with each node,
see “Events” on page 2-7.

Presentation and Processor Nodes

There are two main types of nodes: presentation nodes and processor nodes. Each of
the presentation and processor nodes can be used as origin or destination nodes within
the Webflow.

As their name implies, presentation nodes represent states in which the Webflow
presents or displays something to a person interacting with the Web application. A
Webflow must always start and end with a presentation node. The form of the
presentation can be:

� HTML

� JavaServer Page (JSP)

� Java servlets

You can also create extension (custom) presentation nodes for use in the Webflow. For
more information about extension presentation nodes, see “How to Create an
Extension Presentation Node.”

In contrast to presentation nodes, processor nodes represent states in which the
Webflow invokes more specialized components to handle activities like form
validation, or back-end business logic that drives the site’s presentation. The processor
nodes available for use are:

� Input Processors

Input Processors and Pipelines

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-5

� Pipelines

“Input Processors and Pipelines” on page 2-5 discusses these processor nodes in more
detail.

You can also create extension (custom) processor nodes for use in the Webflow. For
more information about extension processor nodes, see “How to Create an Extension
Processor Node.”

Note: For more information about creating a presentation or processor node in the
Webflow Editor, see “How to Add Webflow Components.”

Input Processors and Pipelines

Input Processors and Pipelines are the two different types of processor nodes that come
packaged with the Webflow implementation.

Input Processors are predefined, specialized Java classes that carry out more complex
tasks when invoked by the Webflow mechanism. Input Processors are typically used
to validate HTML form data, or to provide conditional branching within a Web page.
For example, an Input Processor may contain code that verifies whether a date has been
entered in the correct format, as opposed to embedding that code within the same JSP
that displays the form fields. Input Processors contain logic that is specific to the Web
application, and are therefore loaded by the Web application’s container.

Input Processors are embedded in Web pages using specialized JSP tags, which are
discussed in “Webflow JSP Tag Library Reference.” Java/EJB developers report the
status of processed form fields back to HTML/JSP developers via the
ValidatedValues class, which is discussed in “Webflow Validators and Input
Processors.”

A Pipeline is also a type of processor node that may be invoked by the Webflow.
Pipelines initiate the execution of specific tasks related to your business process, and
can be transactional or nontransactional. For example, if a visitor attempts to move to
another page on your Web site but you want to persist the visitor’s information to a
database first, you could use a Pipeline. Pipelines contain business logic that may
apply to multiple Web applications within a larger enterprise application, and are
therefore loaded by the Enterprise JavaBean (EJB) container.

2 Webflow Components and Concepts

2-6 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Note: For more information about transactional versus nontransactional Pipelines,
see “Transactional Versus Nontransactional Pipelines.”

All Pipelines are collections of individual Pipeline Components, which can be
implemented as Java objects or stateless session Enterprise JavaBeans (EJBs).
Pipeline Components are the parts of a Pipeline that actually perform the tasks
associated with the underlying business logic. When these tasks are complex, Pipeline
Components may also make calls to external services (other business objects).

Notes: For an explanation of the different Pipeline Component implementations, see
“Implementation of Pipeline Components as Stateless Session EJBs or Java
Objects.”

For more information about creating an Input Processor or Pipeline in the
Webflow Editor, see “How to Add Webflow Components.”

The Pipeline Session

It is often necessary to keep track of information gathered from your Web site visitors,
or to share the data modified by Pipeline Components and Input Processors as a visitor
moves through the site. You may also want to access data that is part of a larger
enterprise application, or make a process transactional. To accomplish these tasks, the
Webflow mechanism makes use of a Pipeline Session.

A Pipeline Session is an object that is created and stored within the HTTPRequest
object. The Pipeline Session provides a single point of communication for all Pipeline
Components in a given Pipeline. Input Processors also read data from the
HTTPRequest and then use that data to create or update Java objects in the Pipeline
Session. The Pipeline Session also provides central access and storage for external
classes and also has transactional capabilities. For more information about including
the Pipeline Session in transactions, see “Including Pipeline Sessions in Transactions.”

Note: If you have used a prior implementation of Webflow, you may recall that the
Pipeline Session used to be stored in the HTTPSession rather than in the
HTTPRequest. This has been changed to enhance performance and facilitate
clustering.

Events

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-7

The Pipeline Session is comprised of many name/value pairs called attributes or
properties. Pipeline Components, Input Processors, and external classes act on
particular properties that exist within the Pipeline Session, and may also add new
properties as necessary. All objects set in and retrieved from the Pipeline Session
should be serializable. For more information about serializing objects in the Pipeline
Session, see “Serializing Pipeline Session Properties.”

To get or set a Pipeline Session property within a Web page, you will use the Pipeline
Session JSP tags, described in “Webflow JSP Tag Library Reference.” To work with
the Pipeline Session from within Input Processor or Pipeline classes, you will use the
provided support methods to access the Pipeline Session directly. For more detailed
information about accessing the Pipeline Session using the support methods, see
“Pipeline Session Internals.”

Events

Each node in a Webflow responds to events, which cause transitions (that is,
movement from an origin node to a destination node). However, the types of events a
node responds to depends on whether the node is a presentation node or a processor
node.

As shown in Figure 2-1, presentation nodes respond to the following events:

� Links

� Buttons

In other words, when a visitor to the Web site clicks a link or a button, the Webflow
responds to that event. A response might be to transition to another presentation node
(such as a JSP) or to a processor node (such as an Input Processor to validate
visitor-provided form data).

In contrast, processor nodes respond to the following events:

� Exceptions

� Return objects

2 Webflow Components and Concepts

2-8 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Exceptions occur when an Input Processor or Pipeline does not execute properly, and
indicates an error state. (More information about working with exceptions can be
found in “Error Handling.”) Otherwise, these processor nodes return an object that the
Webflow can use to continue.

Notes: Webflow used in portal applications may respond to more events than those
described above. For more information about portal applications and use of
the Webflow mechanism, see “Customizing Portlets and Portals” in the
Getting Started with Portals and Portlets documentation.

For more information about connecting presentation and processor nodes with
event and/or exception transitions in the Webflow Editor, see “How to
Connect Nodes with Event or Exception Transitions.”

Namespaces

Although you will generally have only one Webflow per Web application,
namespaces allow you to divide your Webflow into a number of smaller, more
manageable modules. This modularity may make your development team more
productive by allowing individual developers to simultaneously work with various
portions of a Web application, without having to worry about naming collisions. For
example, a Pipeline Component defined in one namespace can access a variable
defined in another namespace, then redirect to a JSP defined in yet a third namespace.

You can have any number of namespaces within a Webflow, but namespaces can only
be one level deep. In other words, you can not nest namespaces.

Note: Namespaces are best defined along functional lines, such as order
management, user management, browsing, and so on. This arrangement
enables developers to more easily collaborate, once separate portions of the
site require integration. You would not typically define namespaces along
horizontal lines (that is, Input Processors, JSPs, Pipeline Components, and so
on) because this would make development roles/processes too restrictive.

When a Web application’s Webflow is divided into namespaces, the Pipeline Session
is also subdivided accordingly. Therefore, a Pipeline Session property set in one
namespace can be obtained from another namespace, and vice versa. For more
detailed information about the Pipeline Session, see “Pipeline Session Internals.”

Special Webflow Components

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-9

Note: You must specify namespaces in a specific way when using Webflow in portal
application. For more information about portal applications and use of the
Webflow mechanism, see “Customizing Portlets and Portals” in the Getting
Started with Portals and Portlets documentation.

Special Webflow Components

In addition to the Webflow components previously described, there are four Webflow
components that perform special functions in a Webflow. These components are
described in detail in this section.

The Begin Node

Typically, a begin node is a node designated as the initial entry point or state of the
Webflow, which automatically transitions to a presentation or processor node. The
begin node is generally a presentation node in the form of a JavaServer Page (JSP).

If a URL does not specify an origin, namespace, or event, the Webflow mechanism
looks for a begin node in the default namespace. If one is located, the begin node is
used as the starting point for the visitor’s interaction with the application. Therefore,
although the begin node is optional, we recommend that you have at least one defined
in your default namespace.

Note: You specify a default namespace in the P13N_DEFAULT_NAMESPACE context
parameter of your Web application’s WEB-INF/web.xml file. For more
information about this context parameter, see “Setting Up Your Web
Application’s web.xml File.” For more information about how an
application’s Webflow gets invoked from a URL, see “Understanding How
Webflow Is Invoked from a URL.”

You can have more than one begin node in a Webflow (one for each namespace). If a
namespace specified in the URL has its own begin node, the Webflow will use that
begin node before looking for a begin node in the default namespace. You can also
use a begin node as a destination node in a Webflow transition.

2 Webflow Components and Concepts

2-10 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Note: For more information about designating an existing node as a begin node in
the Webflow Editor, see “How to Designate or Remove a Begin (Root)
Node.”

The Root Component Node

A root component node is analogous to the begin node for a Webflow, only it is the
entry point into or initial state of a Pipeline. You must have one (and only one) root
component node per Pipeline.

Note: For more information about designating an existing node as a root component
node in the Webflow Editor, see “How to Designate or Remove a Begin
(Root) Node.”

The Wildcard Nodes

If the Webflow cannot locate a specific presentation or processor node to complete a
transition, the Webflow will search for a wildcard presentation or processor node to
use as the origin node. Therefore, wildcard presentation nodes and wildcard processor
nodes implement default behavior for your Web application. Put another way,
wildcard nodes allow you to abstract common functionality and to locate that
functionality in a single place in your Webflow. Wildcard nodes are used only when
destination nodes are not explicitly defined in the Webflow. You may have one
wildcard presentation node and one wildcard processor node per namespace.

Note: If the Webflow must search for a wildcard node, there may be a slight impact
on performance, as more processing is involved.

As an example, perhaps you want a link called Help (that is present on every page) to
always direct to a JSP containing help information. To do so, you might use a wildcard
presentation origin. Further, you might always want exceptions returned from
processor nodes to transition to JSP containing detailed information about the error.
This could be handled with a wildcard processor node.

Note: For more information about creating a wildcard node in the Webflow Editor
(which is done the same way you create regular presentation and processor
nodes), see “How to Add Webflow Components.”

Special Webflow Components

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-11

The Configuration Error Page

The configuration error page is essentially a presentation node whose primary purpose
is to display debugging information when there is a configuration error in the
Webflow. If the Webflow mechanism cannot locate the destination for a transition
after exhausting a list of possible choices, the Webflow will instead display the
configuration error page you defined. The configuration error page is useful during
development, but should never be displayed to visitors of your Web site. That is,
testing should ensure that the Webflow configuration is working before your Web
application is put into production.

Note: For more information about how the Webflow searches for possible
destination nodes, see “Webflow Execution Order” on page 2-13.

You can have more than one configuration error page in a Webflow (one per each
namespace), but are not required to have any configuration error pages if you do not
want to. If a namespace specified in the URL has its own configuration error page, the
Webflow will use that configuration error page before looking for a configuration error
page in the default namespace. Therefore, although the configuration error page is
optional, we recommend that you have at least one defined in your default namespace.

Notes: You specify a default namespace in the P13N_DEFAULT_NAMESPACE context
parameter of your Web application’s WEB-INF/web.xml file. For more
information about this context parameter, see “Setting Up Your Web
Application’s web.xml File.”

For more information about specifying a configuration error page name for
your Webflow in the Webflow Editor, see “How to Set the Configuration Error
Page Name.”

2 Webflow Components and Concepts

2-12 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Chaining and Branching with Processor
Nodes

Much like you can move from one presentation node (such as a JSP) to another, you
can also move from one processor node (such as an Input Processor) to another
processor node. In other words, you do not necessarily need to use processor nodes in
between presentation nodes. For processor nodes, this movement is called chaining.
In a chaining arrangement, the result state of one successfully executed processor node
is another processor node.

Another useful technique regarding processor nodes is branching. You can branch on
Input Processor nodes based on the value of the object the Input Processor returns. For
example, you can code an Input Processor such that one response from a Web site
visitor returns one value, and a different response returns a different value. Based on
the value of the object returned from successful execution of the Input Processor, you
can cause the Webflow to direct to different destination nodes. Similarly, you can
branch on Pipelines based on the exceptions it returns. Based on the type of exception
thrown, you can cause the Webflow to direct to different destination nodes. (You
cannot branch on return values of objects in Pipelines because the Pipeline
Components within them return Pipeline Session properties instead.)

Using Webflow Components in Your Web
Pages

When you use the Webflow mechanism in your Web application, each of the URLs
within that application should be dynamically generated. This is accomplished by
using the Webflow JSP tags, described in “Webflow JSP Tag Library Reference.”

Note: If you used the prior implementation of Webflow, you may recall that dynamic
URL generation was formerly accomplished using the createWebflowURL()
method of the WebflowJSPHelper class. This method is still available, but it

Using Webflow Components with Portals

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-13

is strongly suggested that you use the JSP tags instead. The only reason you
may want to use the WebflowJSPHelper class instead of a JSP tag is in a
servlet or wrapper class.

Using Webflow Components with Portals

With a few exceptions, Webflow works the same way in portal Web applications as it
does within the rest of the platform. That is, you can use Webflow to coordinate
different parts of your portal Web application, enabling code reuse and
maintainability.

The Webflow associated with portals are generally not to be edited because it is
fundamental to the application logic that makes up the portal platform. Individual
portlets, however, can have individual Webflow files assigned to them, allowing
practically all Webflow functionality to be applied to a portlet.

For more information, see “Customizing Portlets and Portals” in the Getting Started
with Portals and Portlets documentation.

Webflow Execution Order

As described in “Understanding Webflow as a State Machine,” Webflow can be
thought of as a state machine and as such, can only be in one state at a time. Webflow
transitions from one state to another by interpreting URLs, return values, and
exceptions. Therefore, to effectively work with Webflow, you need to understand the
order in which Webflow searches for a transition. When searching for a transition,
Webflow always attempts to resolve transitions with the exact criteria supplied, but if
no matches are found, Webflow broadens its search using wildcards and inheritance
hierarchies. The way Webflow searches for a valid transition differs slightly for
Presentation Nodes and Processor Nodes.

Note: An important, related concept is that Webflow knows nothing of Pipelines;
Pipelines are just Extension (Custom) Processors that BEA has created for
you. Consequently, Webflow only governs the flow in and out of Pipelines but

2 Webflow Components and Concepts

2-14 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

not within the Pipeline itself. (The transitions that take place inside a Pipeline
are governed by the Pipeline engine.) Therefore, the explanation provided in
this section only applies to transitions to and from Presentation Nodes (JSP,
HTML, servlets, Extension (Custom) Nodes) and Processor Nodes (Input
Processors, Pipelines, Extension (Custom) Nodes) in a given Webflow.

Presentation Nodes

For Presentation Nodes, Webflow’s search for valid transitions is done in the following
manner:

1. Webflow searches to find the exact Presentation Node as supplied in the URL.
Given the URL:

http://localhost:7501/myapp?namespace=order&origin=shoppingcart
.jsp&event=link.help

Webflow tries to resolve to the shoppingcart.jsp Presentation Node, defined
in the underlying order.wf Webflow namespace configuration file as:

<presentation-origin node-name=”shoppingcart” node-type=”jsp”>

2. If the shoppingcart.jsp Presentation Node is not present, Webflow searches
for the Wildcard Node of the same node type. (As previously shown in the URL,
origins are in the form <node-name>.<node-type>.) Given the same URL,
Webflow tries to resolve to a Wildcard Presentation Node, defined in the
underlying order.wf Webflow namespace configuration file as:

<wildcard-presentation-origin node-type="jsp">

Note: For more information about the Wildcard Presentation and Wildcard
Processor Nodes, see “The Wildcard Nodes” on page 2-10.

3. If the Webflow fails to locate the exact Presentation Node or a Wildcard
Presentation Node, then a configuration error has occurred, and Webflow
searches for the configuration error page.

Note: For more information about the configuration error page, see “The
Configuration Error Page” on page 2-11.

Alternatively, if the Webflow does locate the exact Presentation Node or a
Wildcard Presentation Node, then Webflow searches for the supplied event under
the respective node. Therefore, given the same URL, Webflow searches for the

Webflow Execution Order

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 2-15

link.help event in the event list, defined in the underlying order.wf Webflow
namespace configuration file as:

<event event-name="link.help">
<destination namespace="main" node-name="help"

node-type="jsp"/>
</event>

4. If Webflow finds the Presentation Node but not the event, then Webflow searches
under the Wildcard Presentation Node for that event. If no event is found, then a
configuration error has occurred, and Webflow searches for the configuration
error page.

Note: For more information about the configuration error page, see “The
Configuration Error Page” on page 2-11.

Using the Webflow and Pipeline Editors to create Webflows can help identify potential
problems with your Webflow and greatly reduce the likelihood of errors. This is
because of the Webflow and Pipeline Editors’ built-in validation features. For more
information, see “About the Webflow and Pipeline Editors’ Validation Features.”

Processor Nodes

Processor Nodes can transition in one of two ways: they can return a Java object or
throw a Java exception.

� If the Processor Node returns a Java object, Webflow calls toString() on that
object and searches for an event with a matching name in the event list. The
same search patterns described in “Presentation Nodes” on page 2-14 apply here.
Webflow first tries to look for the event under the exact Processor Node that
returned the object, but if that Processor Node is not found, Webflow searches
for the event under a Wildcard Processor Node.

Note: For more information about the Wildcard Presentation and Wildcard
Processor Nodes, see “The Wildcard Nodes” on page 2-10.

� If the Processor Node throws an exception, Webflow searches the exception list
associated with the current Processor Node. Webflow first searches for the exact
exception thrown. If this exception is not found, Webflow walks up the
exception’s inheritance hierarchy in an attempt to find a match. Webflow will
walk all the way up the inheritance tree until it encounters the class Exception.

2 Webflow Components and Concepts

2-16 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

If still no match is found, Webflow searches the Wildcard Processor Node and
performs the same exception walking activity.

� If all previous attempts fail, the Webflow will simply load the configuration
error page defined for the current namespace. If the current namespace does not
define a configuration error page, the Webflow will display the configuration
error page defined for the default namespace.

Note: For more information about the configuration error page, see “The
Configuration Error Page” on page 2-11.

� If for some reason the file for the configuration error page is missing, a standard
500 internal server error, which is outside the scope of the Webflow mechanism,
would be displayed.

Using the Webflow and Pipeline Editors to create Webflows can help identify potential
problems with your Webflow and greatly reduce the likelihood of errors. This is
because of the Webflow and Pipeline Editors’ built-in validation features. For more
information, see “About the Webflow and Pipeline Editors’ Validation Features.”

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-1

CHAPTER

3 Using the Webflow and
Pipeline Editors

The E-Business Control Center (EBCC) includes a Webflow Editor and a Pipeline
Editor designed to help you create, modify, and validate Webflow and Pipeline XML
configuration files. This topic provides an introduction to the Webflow and Pipeline
Editors, describes their graphical interfaces, and provides some step-by-step
instructions for their use. This topic also includes some best practices for creating,
modifying, and migrating Webflow and Pipeline XML configuration files, and
describes the Webflow Editor’s validation feature. Lastly, this topic provides some
information about synchronizing Webflow and Pipeline data for your applications.

This topic includes the following sections:

� Introduction

� Starting the Webflow and Pipeline Editors

� Important Notes About Using the Webflow and Pipeline Editors

� Next Steps

� Learning to Use the Webflow and Pipeline Editors

� Webflow and Pipeline Editor Essentials

� Webflow Component Representations

� Understanding the Webflow and Pipeline Editor Palettes

� Understanding the Webflow and Pipeline Editor Toolbars

� Organizing Webflow Components in an Editor Canvas

� How to Select Webflow Components

3 Using the Webflow and Pipeline Editors

3-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

� How to Add Webflow Components

� How to Edit a Webflow Component’s Name (Label)

� How to Designate or Remove a Begin (Root) Node

� How to Move a Webflow Component

� How to Connect Nodes with Event or Exception Transitions

� How to Reposition Connection Ports on a Node

� How to Work with Elbows in Transitions

� Using the Webflow and Pipeline Editor Toolbars

� How to Print a Webflow Namespace or Pipeline

� How to Delete Webflow Components

� How to Use the Zoomed Overview

� How to Show/Hide the Grid

� How to Snap Objects to the Grid

� How to Enable and Disable Link Optimization

� How to Show and Hide Exception Transitions

� How to Validate the Selected Node

� How to Validate All Nodes

� How to Set the Configuration Error Page Name

� How to Use the Pipeline Component Editor

� How to Make the Pipeline Transactional

� How to Include the Pipeline Session in a Transaction

� Using the Properties Editors

� Viewing Component Properties

� Description of Webflow Component Properties

� Modifying Component Property Values

� Migrating An Existing Webflow

� Creating or Modifying a Webflow: Breadth-First Versus Depth-First

Introduction

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-3

� About the Webflow and Pipeline Editors’ Validation Features

� Validation Error Messages in a Properties Editor

� What Do the Editors Validate?

� Saving Invalid Webflows

� Synchronizing Webflow Data for Your Application

Note: This topic assumes that you are already familiar with basic Webflow concepts.
If you are not, refer to “Webflow Components and Concepts.”

Introduction

This introductory section provides instructions on how to start the Webflow and
Pipeline Editors, and lists some important notes about the Editors that you should take
into account before using them to create or modify your Webflow and Pipeline XML
configuration files.

Starting the Webflow and Pipeline Editors

To begin using the Editors, follow these steps:

1. Start the E-Business Control Center (EBCC). For detailed instructions on starting
the EBCC, see “Starting the E-Business Control Center” in the Guide to Using the
E-Business Control Center documentation.

2. Create a new Web application or open an existing Web application for which you
will be working on a Webflow or Pipeline. For detailed instructions on
performing these tasks, see “Creating an Application Structure for E-Business
Control Center Data” or “Opening Application Data” in the Guide to Using the
E-Business Control Center documentation.

3. Select the Site Infrastructure tab in the EBCC’s Explorer window, then click the
Webflows/Pipelines icon.

Note: You may have to use the scroll bar to locate the Webflows/Pipelines icon.

3 Using the Webflow and Pipeline Editors

3-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

4. If the Webflows/Pipelines structure shown in the Explorer window is not
expanded, click Webapps and then the Web application name to view the
Webflow namespaces for that application, or click Pipeline Namespaces and then
the namespace to view the Pipelines available within that namespace.

Figure 3-1 shows the Webflow namespaces and Pipelines in expanded form for
the sample petflow Web application.

Figure 3-1 EBCC Explorer Window With Expanded Webflows/Pipelines List

5. If you want to modify an existing Webflow, double click any of the Web
application’s namespace files shown below the Web application name in the
Webflows/Pipelines list. (Figure 3-1 shows the main namespace for the petflow
Web application being selected.) This opens the Webflow Editor.

Introduction

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-5

Note: Listing 3-1 also indicates that the main Webflow namespace is currently
invalid, by the red and white square icon located to its left. For more
information about Webflow validity, see “About the Webflow and
Pipeline Editors’ Validation Features.” For more information about the
status icons in the E-Business Control Center (EBCC), see “About the
E-Business Control Center Interface” in the Guide to Using the E-Business
Control Center documentation.

6. If you want to modify an existing Pipeline, double-click any of the Pipeline
names (such as viewShoppingCart in Figure 3-1) shown in the
Webflows/Pipelines list. This opens the Pipeline Editor.

Note: You can also open the Pipeline Editor by double clicking on the icon
portion of a Pipeline Node that is currently displayed in the Webflow
Editor canvas, as shown in Figure 3-2. For more information about
Pipeline Nodes, see “Input Processors and Pipelines.”

Figure 3-2 Results of Double-Clicking Portions of Pipeline Node

7. If you would rather create a new Webflow or Pipeline for the Web application,
see “Creating Webflow/Pipeline Files” in the Guide to Using the E-Business
Control Center documentation.

Note: For general information about managing EBCC files, see “About the
E-Business Control Center Interface” in the Guide to Using the E-Business
Control Center documentation.

3 Using the Webflow and Pipeline Editors

3-6 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Important Notes About Using the Webflow and Pipeline
Editors

The following list includes useful information for developers who are about to use the
Webflow and Pipeline Editors:

� An application’s Webflow is comprised of one or more Webflow namespace
(<namespace>.wf) files, as well as zero or more Pipeline (<namespace>.pln)
files that exist within a namespace. Webflow files specify the flow of control
between presentation nodes (JSPs, HTML, and so on) and processor nodes
(Input Processors and Pipelines) that exist in a Webflow namespace. Pipeline
files contain information about the Pipeline Components that comprise a given
Pipeline. Therefore, when you use the Webflow Editor, you are creating or
editing a Webflow namespace; when you use the Pipeline Editor, you are
creating or editing the Pipeline Component nodes for a Pipeline that exists
within a given namespace. For more information, see “Webflow and Pipeline
Editor Essentials” on page 3-9.

� The Webflow and Pipeline Editors are designed to help you create, modify, and
validate <namespace>.wf and <namespace>.pln XML configuration files that
are associated with a particular Web or enterprise application, respectively. The
Editors do not support the editing of arbitrary files or other files in the WebLogic
Portal product suite.

� The recommended editing method for the Webflow and Pipeline XML
configuration files is via the Webflow and Pipeline Editors. If while
hand-editing the XML configuration files in a text editor you create invalid
entries, or if you fail to provide a namespace called main when using a begin
node as the destination of an event in a new Webflow (as in <destination

node-name=”begin”/>), the behavior of the Editors may be unpredictable.

� It is expected that if Webflow and Pipeline XML configuration files for an
application are stored in a Content Management System, they will be checked
out by developers prior to modification in the Webflow and Pipeline Editors. If
the appropriate files are not checked out, the Editors will open the files in
read-only mode and the Editor palettes and toolbars that typically allow you to
make modifications will not be shown. For more information, see “Webflow
and Pipeline Files in Your Content Management System” on page 3-12.

Introduction

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-7

� The Webflow and Pipeline Editors’ use of namespace files allows different
developers to work on portions of a single application’s Webflow at the same
time. Keep in mind, however, that references to nodes in other namespaces
(called proxy nodes) are simply a snapshot of information that was available in
your Content Management System at the time your files were checked out.
Other developers with write permission for the application may be
simultaneously modifying namespace modules within the application, causing
the Webflow to enter an invalid state. It is important that developers on the team
work together to ensure that changes are propagated to all affected namespaces
and result in a valid Webflow for the entire application. The Webflow and
Pipeline Editors do allow you to save a Webflow or Pipeline that is invalid, but
you must ensure that an application’s Webflow (as a whole) is valid prior to data
synchronization. See “Synchronizing Application Data” in the Deployment
Guide for more information.

� The E-Business Control Center (EBCC) does not support role-based security.
Any user with access to the EBCC can also access the Webflow and Pipeline
Editors.

� By default, changes made to Webflow and Pipeline XML configuration files do
not require you to restart the server or perform any special deployment activities.
Instead, the Webflow and Pipeline data for a particular application is
synchronized along with other application data. See “Synchronizing Application
Data” in the Deployment Guide for more information. If errors in a Webflow (or
other data) are detected during the data synchronization process, an appropriate
error message will be sent to the client. While such errors will not prevent
application deployment, they may result in failures during execution.

� If you are using a cluster, the data synchronization service will update your
application’s Webflow and Pipeline information to all servers in the domain.

Next Steps

If you are new to this release of the Webflow and Pipeline Editors, it is strongly
suggested that you proceed to the next section, “Learning to Use the Webflow and
Pipeline Editors” on page 3-8. For step-by-step instructions on using the Webflow and
Pipeline Editors to create Webflows, proceed to any of the following:

� Organizing Webflow Components in an Editor Canvas

3 Using the Webflow and Pipeline Editors

3-8 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

� Using the Webflow and Pipeline Editor Toolbars

� Using the Properties Editors

Once you understand the behaviors and capabilities of the Webflow and Pipeline
Editors, you may want to read some of the following sections, depending on your
current goals:

� Migrating An Existing Webflow

� Creating or Modifying a Webflow: Breadth-First Versus Depth-First

� About the Webflow and Pipeline Editors’ Validation Features

If you have already finished work on your application’s Webflow, you may want to
read “Synchronizing Webflow Data for Your Application” on page 3-48.

Learning to Use the Webflow and Pipeline
Editors

This section provides you with general information about the Webflow and Pipeline
Editor user interfaces, and includes a mapping of Webflow components to their
graphical representations. This section also includes descriptions of tools in the
Webflow and Pipeline Editor palettes and buttons in the Editors’ toolbars. As such,
this section includes the following:

� Webflow and Pipeline Editor Essentials

� Webflow Component Representations

� Understanding the Webflow and Pipeline Editor Palettes

� Understanding the Webflow and Pipeline Editor Toolbars

Learning to Use the Webflow and Pipeline Editors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-9

Webflow and Pipeline Editor Essentials

This section provides you with some basic information about the Webflow and
Pipeline Editors. It includes an explanation of what the Webflow Editor displays and
allows you to work with, introduces the Pipeline Editor, and describes some status
indicators you should notice as you use the Webflow and Pipeline Editors. It also
includes a brief discussion about using a Content Management System with your
Webflow and Pipeline XML configuration files.

Webflow Namespaces

Although there is only one Webflow per Web application, BEA recognizes that
different developers may be assigned to work in different functional areas of the same
application. Therefore, a Webflow for a single Web application is comprised of
numerous modules called namespaces. (See “Namespaces” for more information.)

The Webflow Editor displays and requires that you work with Webflow components
within individual namespaces. In addition to allowing different developers to work in
different areas of the same Webflow, displaying a Webflow by namespace in the
Webflow Editor provides a much cleaner visualization, and thus may reduce the
likelihood of error.

As such, the activities you perform in the Webflow Editor are really just operations on
one or more editable namespace files. You can create, open, save, save as, or delete
Webflow namespace files the same way you perform these tasks with other types of
EBCC files. For detailed instructions on these general EBCC functions, see “Working
with Files” in the Guide to Using the E-Business Control Center documentation.

The Webflow Editor does allow you to open more than one namespace file at a time.
When you open more than one namespace, the tabs at the bottom of the Editor window
will allow you to move between the namespace files that are currently available.

Note: For more information about the behavior of multiple files in an EBCC editor,
see “About the E-Business Control Center Interface” in the Guide to Using the
E-Business Control Center documentation.

3 Using the Webflow and Pipeline Editors

3-10 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Pipelines Versus Pipeline Namespaces

The Pipeline Editor displays and requires that you work with Webflow components
within individual Pipelines, rather than within entire Pipeline namespaces. In other
words, since you can define multiple Pipelines within one Pipeline namespace, the
editable unit in the Pipeline Editor is a Pipeline. You can create, open, save, save as,
or delete Pipelines the same way you perform these tasks with other types of EBCC
files. For detailed instructions on these general EBCC functions, see “Working with
Files” in the Guide to Using the E-Business Control Center documentation.

Because Pipelines are scoped to an enterprise application (instead of a Web application
like Webflows), Pipelines to not appear within the Webapp folder in the E-Business
Control Center Explorer window’s Webflows/Pipelines list. Rather, Pipelines appear
under the Pipeline Namespaces folder. Thus, while a Pipeline is the editable unit
within the Pipeline Editor, it is a Pipeline namespace (rather than the Pipeline itself)
that corresponds to a generated <namespace>.pln file. You will need to check out
the appropriate Pipeline namespace file from your Content Management System in
order to work with a Pipeline in the Pipeline Editor. This is the only case where an
object shown in the E-Business Control Center Explorer window does not have a
one-to-one correspondence with a file.

The Pipeline Editor opens when you double click a Pipeline shown in the E-Business
Control Center (EBCC) Explorer window, or when you double click on the icon
portion of a Pipeline node that is currently displayed in the Webflow Editor canvas, as
shown in Figure 3-3. The Pipeline Editor behaves exactly like the Webflow Editor, but
operates with a different palette and toolbar, and on different node types (namely,
Pipeline Components).

Figure 3-3 Results of Double-Clicking Portions of Pipeline Node

Learning to Use the Webflow and Pipeline Editors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-11

Notes: For more information about the differences between the Webflow and Pipeline
Editors, see “Understanding the Webflow and Pipeline Editor Palettes” on
page 3-17 and “Understanding the Webflow and Pipeline Editor Toolbars” on
page 3-20. For more information about Pipelines and Pipeline Components,
see “Input Processors and Pipelines.”

The Pipeline Editor allows you to open more than one Pipeline at a time. When you
open more than one Pipeline, the tabs at the bottom of the Editor window will allow
you to move between the Pipelines that are currently available. When you open
multiple Pipelines, remember that these Pipelines may or may not be part of the same
Pipeline namespace.

Note: For more information about the behavior of multiple files in an EBCC editor,
see “About the E-Business Control Center Interface” in the Guide to Using the
E-Business Control Center documentation.

Information Displayed in the Editors’ Title Bars

In the Webflow Editor, the title bar displays the name of the Editor and the namespace
for the Webflow you are currently creating or modifying, in brackets []. For example,
the Webflow Editor’s title bar may read: Editor [Webflow: main], which means
you are currently using the Webflow Editor to work with Webflow components in the
namespace called main.

In the Pipeline Editor, the title bar displays the name of the Editor and the Pipeline you
are currently creating or modifying, in brackets []. For example, the Pipeline Editor’s
title bar may read: Editor [Pipeline: viewShoppingCart], which means you are
currently using the Pipeline Editor to define Pipeline Components in the Pipeline
called viewShoppingCart.

In both Editors, the title bar may also show the text “Read Only” in parentheses. If
present, this text indicates that the opened file(s) are in read-only mode and must be
checked out of your Content Management System prior to editing or saving. See
“Webflow and Pipeline Files in Your Content Management System” on page 3-12 for
more information.

3 Using the Webflow and Pipeline Editors

3-12 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Webflow and Pipeline Files in Your Content Management System

When you want to edit or save Webflow components within a Webflow namespace or
a Pipeline using the Webflow and Pipeline Editors, you should verify that you have
checked out all the necessary files from your Content Management System.
Depending on the Webflow components you want to edit, you may or may not need all
of the following files:

� <namespace>.wf

The Webflow configuration files contain XML elements that represent the
Webflow components used in the Webflow namespace, as well as the
relationships among them. The <namespace>.wf files are scoped to the Web
application.

� <namespace>.pln

The Pipeline configuration files contain XML elements that represent the
Pipeline Components within a Pipeline being used in the namespace, as well as
the relationships among them. The <namespace>.pln files are scoped to the
enterprise application.

� <namespace>.wf.ui and <namespace>.pln.<pipeline_name>.ui

These XML files contain information that is used by the Webflow and Pipeline
Editors to display the Webflow components in the way you last organized them.
They are generated when you save a Webflow or Pipeline, and are located in the
appropriate directories under the BEA_HOME\EBCC_HOME\applications\
<enterprise_app>\project-info\webapps\<web_app> directory.

� webflow-extensions.wfx

This XML file describes the Webflow components currently available for use in
the Webflow Editor. Any extension (custom) presentation or processor nodes
your development team creates must be registered in this file if you want them
to appear in the Webflow Editor. The webflow-extensions.wfx file is scoped
to a Web application, and should remain in read-only mode unless extensions
need to be added. More information about the webflow-extensions.wfx file
is located in “Making Your Extension Presentation and Processor Nodes
Available in the Webflow Editor.”

Note: If you just want to view a Webflow namespace or Pipeline using the Editors,
you do not need to check out files. The Webflow and Pipeline Editors will
display the Webflow components in read-only mode. In read-only mode, the

Learning to Use the Webflow and Pipeline Editors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-13

Webflow and Pipeline Editors’ palettes and toolbars are not displayed. For
more information about the Webflow and Pipeline Editors’ palettes and
toolbars, see “Understanding the Webflow and Pipeline Editor Palettes” on
page 3-17 and “Understanding the Webflow and Pipeline Editor Toolbars” on
page 3-20, respectively.

Webflow Component Representations

Since the Webflow and Pipeline Editors are graphical tools for creating and modifying
Webflows and Pipelines, each Webflow component has a graphical representation for
display in an Editor. This section provides you with information that will help you
associate each Webflow component with its graphical representation.

Note: In addition to associating Webflow components with their graphical
representations, Table 3-1 and Table 3-2 also provide brief descriptions of
each component. If you do not remember the details of a particular Webflow
component, refer to “Webflow Components and Concepts” for more
information.

Table 3-1 provides information about Webflow component representations in the
Webflow Editor.

Table 3-1 Webflow Components in the Webflow Editor

Representation Webflow Component Description

Presentation Node A page displayed to visitors interacting with your Web
application. The type of these pages can be HTML,
JSP, Java servlet, or an Extension (Custom)
Presentation Node.

(This representation also
shows an automatically
created connection port.)

Wildcard
Presentation Node

A single, global event contained on one or more
Presentation Nodes, typically used to implement
general functions. There may be several Wildcard
Presentation Nodes within a Webflow namespace. The
type property reflects the context in which the event
occurs.

3 Using the Webflow and Pipeline Editors

3-14 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

(Same as a Presentation
Node.)

Extension (Custom)
Presentation Node

A node created by an experienced Java/EJB developer
for use in a Webflow. To appear in the Webflow
Editor, this node must have an equivalent server-side
Java class representation and be registered in the
webflow-extensions.wfx file.

Input Processor Node A processor Webflow component that handles data
input, whether from Web site visitors or other processor
nodes. Validation of data input is the typical use of an
Input Processor.

(This representation also
shows an automatically
created connection port.)

Pipeline Node A processor Webflow component that encapsulates
business logic for a Web application. Pipelines Nodes
contain a series of Pipeline Component Nodes, the
latter of which are editable in the Pipeline Editor.

(This representation also
shows an automatically
created connection port.)

Wildcard
Processor Node

A single, global event contained on one or more
Processor Nodes, typically used to implement general
functions. There may be several Wildcard Processor
Nodes within a Webflow namespace. The type
property reflects the context in which the event occurs.

Extension (Custom)
Processor Node

A node created by an experienced Java/EJB developer
for use in a Webflow. To appear in the Webflow
Editor, this node must have an equivalent server-side
Java class representation and be registered in the
webflow-extensions.wfx file.

(This image represents a
Presentation Begin
Node.)

Begin Node A node designated as the initial state of or entry point
into the Webflow. There can be one Begin Node for
each namespace in a Webflow. The Begin Node can
also be used as a destination.

Table 3-1 Webflow Components in the Webflow Editor (Continued)

Representation Webflow Component Description

Learning to Use the Webflow and Pipeline Editors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-15

Table 3-2 provides information about Webflow component representations in the
Pipeline Editor.

(This image represents a
Pipeline Proxy Node.)

Proxy Node A special node that represents a node whose definition
resides in a different namespace file. Nodes in the
namespace being edited can refer to the Proxy Node as
a destination, but the Proxy Node itself cannot be
edited. Proxy Nodes can be Presentation Nodes,
Processor Nodes, or Extension (Custom) Nodes.

(The second
representation is of a
self-referring event.)

Event

(may be a link, button, or
return object)

An occurrence triggered by the interaction of a Web site
visitor that results in some change in the state of the
Webflow. In other words, events cause Webflow
transitions (movement from an origin node to a
destination node). There are different events for
different node types: link and button are events for
Presentation Nodes; return object is an event for a
Processor Node that has executed successfully.

(The second
representation is of a
self-referring exception.)

Exception Representation of an exception, which occurs when
Processor Nodes do not execute successfully.

Table 3-1 Webflow Components in the Webflow Editor (Continued)

Representation Webflow Component Description

Table 3-2 Webflow Components in the Pipeline Editor

Representation Webflow Component Description

(This representation also
shows an automatically
created connection port.)

Pipeline Component Node A specialized Webflow component that performs tasks
related to the application’s underlying business logic.
Pipeline Components exist within Pipelines, and may
be implemented as Java objects or stateless session
EJBs.

3 Using the Webflow and Pipeline Editors

3-16 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Root Node A Pipeline Component that represents the initial entry
point into the Pipeline. There can be one Root Node for
each Pipeline. The Root Node can also be used as a
destination.

Abort Exception Node A special node that represents the place where a
Pipeline’s exceptions connect to, because their
destinations actually exist outside the Pipeline Editor
(in the Webflow Editor).

Note: For more information, see “Configuring
Pipeline Component Exception Fatality.”

(Self-referring event
transitions are not
allowed in the Pipeline
Editor.)

Event
(return object)

An occurrence triggered by the successful execution of
a Pipeline Component that results in some change in the
state of the Webflow. In other words, events cause
Webflow transitions (movement from an origin node to
a destination node). There are different events for
different node types: return object is an event for a
Pipeline Component Node that has executed
successfully.

(The second
representation is of a
self-referring exception.)

Exception Special event type triggered by a Pipeline Component
Node when it does not execute successfully.

Table 3-2 Webflow Components in the Pipeline Editor (Continued)

Representation Webflow Component Description

Learning to Use the Webflow and Pipeline Editors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-17

Understanding the Webflow and Pipeline Editor Palettes

When you first open a Webflow namespace in the Webflow Editor or a Pipeline in the
Pipeline Editor, you will notice a palette on the left-hand side of the Editor window.
This section describes each of the tools provided in the Webflow and Pipeline Editor
palettes.

Notes: If you do not see a palette on the left-hand side of either the Webflow or
Pipeline Editors when you open a Webflow namespace or a Pipeline, this
means that the files you are opening are in read-only mode. To view the
palettes, you will need to make sure the appropriate .wf and .pln files are
writable. For more information about these files, see “Webflow and Pipeline
Files in Your Content Management System” on page 3-12.

The Pipeline Editor opens when you double click a Pipeline shown in the
E-Business Control Center (EBCC) Explorer window, or when you double
click on the icon portion of a Pipeline node that is currently displayed in the
Webflow Editor canvas, as shown in Figure 3-4. For more information about
Pipelines, see “Input Processors and Pipelines.”

Figure 3-4 Results of Double-Clicking Portions of Pipeline Node

3 Using the Webflow and Pipeline Editors

3-18 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Tools in the Webflow Editor Palette

Table 3-3 describes each of the tools in the Webflow Editor palette.

Table 3-3 Description of the Webflow Editor Palette Tools

Tool Function Description

Selection Tool Allows you to select and move nodes, event transitions,
and exception transitions. Also allows you to add
elbows to transitions. This is the default tool for the
Webflow Editor.

Event Tool Allows you to add an event transition between two
nodes, or a self-referring event transition.

Exception Tool Allows you to add an exception transition between two
nodes, or a self-referring exception transition.

Begin Node Allows you to designate one of the Presentation or
Processor Nodes already on the Editor canvas as the
Begin Node for the current Webflow namespace.

Presentation Node Allows you to add a new Presentation Node to the
Editor canvas.

Wildcard Presentation
Node

Allows you to add a new Wildcard Presentation Node
to the Editor canvas.

Input Processor Node Allows you to add a new Input Processor Node to the
Editor canvas.

Pipeline Node Allows you to add a new Pipeline Node to the Editor
canvas.

Wildcard Processor
Node

Allows you to add a new Wildcard Processor Node to
the Editor canvas.

Learning to Use the Webflow and Pipeline Editors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-19

Tools in the Pipeline Editor Palette

Table 3-4 describes each of the tools in the Pipeline Editor palette.

Extension (Custom)
Processor Node

Allows you to add a new Extension (Custom) Processor
Node to the Editor canvas.

Note: The Extension (Custom) Processor Node tool
is disabled until the Webflow Editor detects a
new node in the
webflow-extensions.wfx file.

Proxy Node Allows you to add a Proxy Node to the Editor canvas.
You should create a Proxy Node any time you want to
refer to a node that is defined in another namespace.

Table 3-3 Description of the Webflow Editor Palette Tools (Continued)

Tool Function Description

Table 3-4 Description of the Pipeline Editor Palette Tools

Tool Function Description

Selection Tool Allows you to select and move Pipeline Components, event
transitions and exception transitions. This is the default tool
for the Pipeline Editor.

Event Tool Allows you to add an event transition between two nodes.

Exception Tool Allows you to add an exception transition between two
nodes, or a self-referring exception transition.

Root Node Allows you to designate one of the Pipeline Components
already on the Editor canvas as the Root Node for the current
Pipeline.

Pipeline
Component

Allows you to add new Pipeline Components to the Editor
canvas.

3 Using the Webflow and Pipeline Editors

3-20 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Understanding the Webflow and Pipeline Editor
Toolbars

You will find the Webflow and Pipeline Editor toolbars at the top of both the Webflow
and the Pipeline Editors, respectively, but the buttons available from each Editor’s
toolbar may differ. This section describes which buttons are available from which
Editor’s toolbar, and describes their functions.

Display and Behavior Buttons

The toolbar buttons described in this section modify the display or behavior of
Webflow components, and may not be available from both the Webflow and Pipeline
Editors. These buttons act as toggles, meaning that you click the button once to select
the tool, then again to deselect the tool.

Table 3-5 briefly describes the Display and Behavior buttons, and where appropriate,
indicates which Editor they belong to.

Table 3-5 Description of the Display and Behavior Buttons

Tool Function Description

Show/Hide Grid button Allows you to show or hide a grid background
in the Editor canvas.

Snap to Grid button Allows you to control whether or not Webflow
components are automatically placed to the
nearest grid point on the Editor canvas when
you release the mouse button.

Link Optimization button Allows you to control whether or not the
connectors on each node will be automatically
moved around the perimeter of the node as the
node is moved on the Editor canvas.

Show/Hide Exceptions button Allows you to show or hide exception
transitions in the Editor canvas.

Learning to Use the Webflow and Pipeline Editors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-21

Command Buttons

The toolbar buttons described in this section execute commands related to Webflow
components, and may not be available from both the Webflow and Pipeline Editors.
Many of these buttons also have keyboard shortcuts you may find helpful.

Table 3-6 briefly describes the Command buttons and where appropriate, indicates
which Editor they belong to.

Make This Pipeline
Transactional button

Allows you to specify whether the Pipeline
should be transactional.

Note: Only available in the Pipeline Editor.

Include Pipeline Session in
Transaction button

Allows you to specify whether the Pipeline
Session should be included in the transaction.
Enabled only if the Pipeline Transaction button
is on.

Note: Only available in the Pipeline Editor.

Table 3-5 Description of the Display and Behavior Buttons (Continued)

Tool Function Description

Table 3-6 Description of the Command Buttons

Tool Function Description Keyboard
Shortcut

Print button Allows you to print the entire Webflow
namespace or Pipeline to a printer.

Ctrl+P

Delete button Deletes the selected Webflow
component. The Delete button is
disabled until a Webflow component is
selected.

Delete

Zoomed Overview
button

Allows you to view the entire Webflow
namespace or Pipeline at a glance.

Ctrl+Z

3 Using the Webflow and Pipeline Editors

3-22 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Validate the Selected
Node button

Allows you to run the Webflow
validation feature on the selected node.
The Validate the Selected Node button
is disabled until a Webflow component
is selected.

Ctrl + V

Validate All button Allows you to run the Webflow Editor’s
validation feature on the entire Webflow
namespace, or the Pipeline Editor’s
validation feature on the entire Pipeline.

Alt + V

Set Up Configuration
Error Page Name button

Allows you to specify the name and path
to the configuration error page.

Note: Only available in the Webflow
Editor.

--

Pipeline Component
Editor button

Opens the Pipeline Component Editor,
which allows you to manage Pipeline
Components.

Note: Only available in the Pipeline
Editor.

--

Table 3-6 Description of the Command Buttons (Continued)

Tool Function Description Keyboard
Shortcut

Organizing Webflow Components in an Editor Canvas

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-23

Organizing Webflow Components in an
Editor Canvas

This section provides you with detailed instructions about how to perform common
tasks using the Webflow and Pipeline Editors. This section includes information
about:

� How to Select Webflow Components

� How to Add Webflow Components

� How to Edit a Webflow Component’s Name (Label)

� How to Designate or Remove a Begin (Root) Node

� How to Move a Webflow Component

� How to Connect Nodes with Event or Exception Transitions

� How to Reposition Connection Ports on a Node

� How to Work with Elbows in Transitions

How to Select Webflow Components

To select a Webflow component in either the Webflow or Pipeline Editor, click the
Webflow component. For events and exceptions, this means clicking the transition
itself or an associated connection port.

Note: When you select a Webflow component, detailed information about the
component is displayed in the Properties Editor. For more information about
the Properties Editor, see “Using the Properties Editors” on page 3-38.

3 Using the Webflow and Pipeline Editors

3-24 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

How to Add Webflow Components

To add a new Webflow component (that is, a new Presentation Node, Wildcard
Presentation Node, Input Processor Node, Pipeline Node, Wildcard Processor Node,
Extension (Custom) Processor Node, Proxy Node, or Pipeline Component Node) in
either the Webflow or Pipeline Editor, follow these steps:

1. Click the appropriate tool from the Editor’s palette (see Table 3-3 or Table 3-4).

2. Position the cross-hairs on the Editor canvas.

3. Click the mouse to add the Webflow component to the Editor canvas in that
location.

Notes: A default name (label) is provided for the added component. For information
about editing component names, see “How to Edit a Webflow Component’s
Name (Label)” on page 3-24. In addition to the component’s name, there are
several other properties for a new component that you must provide. For more
information, see “Using the Properties Editors” on page 3-38.

If you add a Proxy Node to the canvas, be sure to connect it to another node
with an event or exception transition before saving your Webflow namespace.
If you do not, the Proxy Node will not appear on the canvas following a reload.
This is because the purpose of the Proxy Node is solely as a destination for
transitions. If there are no transitions, there is no use for the Proxy Node. For
more information about Proxy Nodes, see Table 3-1 and Table 3-3.

How to Edit a Webflow Component’s Name (Label)

The Webflow and Pipeline Editors will typically give each component you add to the
canvas a name (label). To edit the component’s name, follow these steps:

1. Double-click the Webflow component’s name to select it.

2. Type a new name for the component, and press Enter.

Organizing Webflow Components in an Editor Canvas

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-25

Note: You can also edit a Webflow component’s name (label) using the Properties
Editor. For Pipeline Component Nodes displayed in the Pipeline Editor, you
can only edit the Pipeline Component’s name by selecting a new one from the
Properties Editor. For more information, see “Using the Properties Editors”
on page 3-38.

How to Designate or Remove a Begin (Root) Node

To designate a Presentation or Processor Node as the Begin Node for the current
Webflow namespace in the Webflow Editor, or a Pipeline Component Node as the
Root Node for the current Pipeline in the Pipeline Editor, follow these steps:

1. Click the Begin Node or Root Node Tool (see Table 3-3 and Table 3-4).

2. Click a Presentation, Processor, or Pipeline Component Node that is already on
the Editor canvas to designate it as the Begin (Root) Node. The node is marked
by a green stripe to the right of the node name

Since the Begin and Root Node Tools work as toggles, you can also remove the Begin
or Root designation from a node by following the same procedure. When you remove
the begin (root) designation from a node, the green stripe is also removed.

Notes: Wildcard, Proxy, and Abort Exception nodes cannot be designated as begin or
root nodes. For more information about the Begin Node, see “The Begin
Node.” For more information about the Root Node, see “The Root Component
Node.”

How to Move a Webflow Component

To move a Webflow component (that is, a Presentation Node, Wildcard Presentation
Node, Input Processor Node, Pipeline Node, Wildcard Processor Node, Extension
(Custom) Processor Node, Proxy Node, or Pipeline Component Node) to another
location on the Webflow or Pipeline Editors’ canvas, follow these steps:

1. Click and hold the mouse button down on the component while dragging it to the
desired location.

Note: The node’s corresponding event and exception components (that is, the
associated transitions) will move with the node.

3 Using the Webflow and Pipeline Editors

3-26 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

2. Release the mouse button to place the component in the new position.

Caution: It is possible to drag a node far to the right or bottom of an Editor canvas,
so that you cannot see the entire flow of the Webflow namespace or
Pipeline at one glance. Verify that you have edited all the nodes you
wanted to by using the scroll bars to the right and at the bottom of the
Editor’s canvas. The Zoomed Overview tool, described in “How to Use
the Zoomed Overview” on page 3-31, may be helpful here.

How to Connect Nodes with Event or Exception
Transitions

Transitions from an origin node to a destination node result from events or exceptions
thrown by the origin node. Therefore, you connect two different nodes with event and
exception transitions, or you can create a self-referring transition (a transition that has
the same origin and destination node).

Note: For more information about origin and destination nodes, see “Introduction to
Webflow Components.”

To connect nodes with event or exception transitions, follow these steps:

1. Click the Event Tool or the Exception Tool (see Table 3-3 or Table 3-4).

2. Position the transition by moving the mouse to an edge of the origin node. A
solid orange square indicates an acceptable connection location, and the cursor
changes to indicate a transition addition.

Note: If the origin node already has a connection port (as shown in Figure 3-5),
position the transition by moving the mouse over the existing connection
port.

Figure 3-5 Pipeline Node with Automatically Created Connection Port

3. If you want to connect two different nodes with the transition, click, hold, and
drag the mouse to the destination node. Release the mouse to connect the
transition to the destination node.

Organizing Webflow Components in an Editor Canvas

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-27

Note: An outlined red square with an X in it indicates that you cannot place the
transition at the current location.

If you want to create a self-referring transition, just single-click the mouse on the
node to connect the transition to that same node.

How to Reposition Connection Ports on a Node

A connection port is a small graphical device on a node edge that represents where an
event or exception is connected to that node. Connection ports accepting transitions
are called input connection ports; connection ports where transitions originate are
called output connection ports. In some cases, it may be helpful to move the node’s
connection port. To reposition the connection port on a node, follow these steps:

1. Click and hold the mouse button on the connection port, then drag the connection
port to the desired location on the node.

Note: A solid orange square indicates an acceptable connection location; an
outlined red square with an X in it indicates that you cannot place the
transition at the current location.

2. Release the mouse button to place the connection port in the new location.

Notes: The connection port associated with a self-referring transition can only be
moved along the same node edge.

When repositioning connection ports, you may find the Link Optimization
feature helpful. For more information see “How to Enable and Disable Link
Optimization” on page 3-32.

How to Work with Elbows in Transitions

In addition to the repositioning connection ports, you can also reposition transition
lines on an Editor’s canvas by moving, creating or deleting elbows. Elbows allow you
to bend portions of the transition line.

3 Using the Webflow and Pipeline Editors

3-28 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

How to Move an Existing Elbow

To move an existing elbow, follow these steps:

1. Single-click a transition to view the existing elbows, which appear as black
squares.

2. Click and hold the mouse button on the elbow as you drag it to the desired
position. The selected elbow appears as an orange square.

3. Release the mouse button to place the elbow in the new location.

How to Create a New Elbow

To create a new elbow, follow these steps:

1. Single-click a transition to view the existing elbows, which appear as black
squares.

2. Click and hold the mouse button anywhere on the transition line (except on an
existing elbow) and drag the mouse to add the new elbow. The selected elbow
appears as an orange square.

3. Release the mouse button to create the elbow in that location.

How to Delete a Elbow

To delete an existing elbow, follow these steps:

1. Single-click a transition to view the existing elbows, which appear as black
squares.

2. Click the elbow you want to delete to select it. The selected elbow appears as an
orange square.

3. Click the Delete button on the Editor’s toolbar, or press the Delete key.

Using the Webflow and Pipeline Editor Toolbars

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-29

Using the Webflow and Pipeline Editor
Toolbars

This section provides you with detailed instructions about how to perform common
tasks using the buttons in the Webflow and Pipeline Editor toolbars. This section
includes information about:

� How to Print a Webflow Namespace or Pipeline

� How to Delete Webflow Components

� How to Use the Zoomed Overview

� How to Show/Hide the Grid

� How to Snap Objects to the Grid

� How to Enable and Disable Link Optimization

� How to Show and Hide Exception Transitions

� How to Validate the Selected Node

� How to Validate All Nodes

� How to Set the Configuration Error Page Name

� How to Use the Pipeline Component Editor

� How to Make the Pipeline Transactional

� How to Include the Pipeline Session in a Transaction

How to Print a Webflow Namespace or Pipeline

To print the contents of the Webflow Editor canvas or the Pipeline Editor canvas, click
the Print button (see Table 3-6), or press Ctrl+P. A platform-specific Print dialog
opens, which allows you to print as you would from any other application.

3 Using the Webflow and Pipeline Editors

3-30 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

How to Delete Webflow Components

Caution: No confirmation dialog is presented before a Webflow component is
deleted, and no undo feature is provided. If you delete a Webflow
component by mistake, the only remedy is to close the Editor without
saving. Be sure you want to delete a Webflow component before
proceeding.

You may delete a Webflow component because you do not require it for
your namespace, but keep in mind that other namespaces within the
application’s Webflow may still use the component. If this is the case, the
other namespaces will become invalid. Be sure to communicate your
changes to others on the development team who may be affected by the
deletion.

To delete a Webflow component from an Editor’s canvas, follow these steps:

1. Click the Webflow component you want to delete to select it.

2. Click the Delete button on the Editor’s toolbar (see Table 3-6), or press the
Delete key.

Notes: Deleting a transition or an input connection port associated with a node deletes
the entire transition (that is, the input/output connection ports on the node, as
well as the line between them). However, deleting an input connection port
deletes only the input connection port and the line (that is, the output
connection port is retained).

Deleting a transition line or a connection port on a Wildcard Node and saving
the Webflow namespace or Pipeline file causes that Wildcard Node to
disappear on reload, and no validation alert is produced. This is because the
Wildcard Node has no meaning without an event or exception transition.

Using the Webflow and Pipeline Editor Toolbars

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-31

How to Use the Zoomed Overview

To use the zoomed overview feature, follow these steps:

1. Click the Zoomed Overview Tool (see Table 3-6) to see all the Webflow
components in a Webflow namespace or a Pipeline at one glance.

2. Click and hold the mouse button on the green rectangle that appears at the top,
left-hand corner of the Editor canvas.

3. Drag the mouse to the desired location. To return to the normal view, release the
mouse button.

How to Show/Hide the Grid

When the Show/Hide Grid toggle button in an Editor’s toolbar is selected, a
rectangular grid appears in the background, behind your Webflow components. This
grid may make manipulating components easier on your eyes and help you align
components. When the Show/Hide Grid toggle button is deselected, the background
is just a plain canvas. By default, the Editors open with the Show/Hide Grid toggle
button in the deselected position (that is, no grid is shown).

How to Snap Objects to the Grid

When selected, the Snap To Grid toggle button an Editor’s toolbar can help you align
Webflow components by placing them to the grid point closest to where you release
the mouse button. When the Snap To Grid toggle button is deselected, you have
complete control over placement of the other Webflow components. The Snap To
Grid feature does not require the grid to be visible. By default, the Editors open with
the Snap To Grid toggle button in the selected position (that is, Webflow components
are snapped to the grid).

3 Using the Webflow and Pipeline Editors

3-32 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

How to Enable and Disable Link Optimization

When the Link Optimization toggle button in an Editor’s toolbar is selected, link
optimization is turned on. In other words, the connectors on each node will be
automatically relocated as the node is moved on the Editor canvas, minimizing link
length and enabling the best possible display. By default, the Editors open with the
Link Optimization toggle button deselected (that is, connectors are not optimized).

How to Show and Hide Exception Transitions

When the Show/Hide Exceptions toggle button in an Editor’s toolbar is selected,
exception transitions are not shown on the Editor canvas. This provides you with a
cleaner picture of the other Webflow components. Alternatively, when the Show/Hide
Exceptions toggle button is deselected, the exception transitions are shown in the
Editor canvas. By default, the Editors open with the Show/Hide Exceptions toggle
button in the deselected position (that is, exceptions are shown).

How to Validate the Selected Node

To validate a single node in the Webflow or Pipeline Editor, follow these steps:

1. Click the node you want to validate to select it.

2. Click the Validate the Selected Node button (see Table 3-6).

Note: The Validate the Selected Node button is disabled until you select a node
as described in steps 1 and 2.

3. Click the Alerts tab of the Properties Editor to view any alerts for the selected
node. If an alert exists, the severity of that alert is indicated by the traffic light
icon.

Note: For more information about the validation feature, see “About the Webflow
and Pipeline Editors’ Validation Features” on page 3-45.

Using the Webflow and Pipeline Editor Toolbars

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-33

How to Validate All Nodes

To validate all the nodes in the namespace using the Webflow Editor or all the nodes
in the Pipeline using the Pipeline Editor, follow these steps:

1. Click the Validate All button (see Table 3-6).

2. Click the Alerts tab of the Properties Editor to view any alerts for the namespace
or Pipeline. If an alert exists, the severity of that alert is indicated by the traffic
light icon.

Note: As described in “About the Webflow and Pipeline Editors’ Validation
Features” on page 3-45, the Alerts tab contains a running log of error messages
as you work in the namespace or Pipeline. Therefore, using the Validate All
button is useful when you have already cleared the Alerts and want a new,
complete validation of your work.

How to Set the Configuration Error Page Name

You can set a configuration error page name using the Webflow Editor. To set the
configuration error page name, follow these steps:

1. Click the Set Up Configuration Error Page Name button (see Table 3-6). The
Configuration Error Page Dialog, shown in Figure 3-6, appears.

Note: The default configuration error page name that is used in the WebLogic
Portal’s sample applications is error/configurationerror.jsp.

Figure 3-6 Configuration Error Page Dialog

2. Either type in the path and the file name for the configuration error page in the
Page Name input field, or click the Browse button at the left of the input field to
locate the Page Name with the Open window.

3 Using the Webflow and Pipeline Editors

3-34 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

3. Click OK.

Note: For more information about the configuration error page, see “The
Configuration Error Page.”

How to Use the Pipeline Component Editor

The Pipeline Component Editor is available from the Pipeline Editor. It allows you to
view, add, edit, or delete the Pipeline Components that are available for selection in
the Properties Editor (specifically, in the Component attribute). Figure 3-7 is a sample
illustration of the Pipeline Component Editor.

Figure 3-7 Pipeline Component Editor

How To View Pipeline Component Details

To view the details of a Pipeline Component that is shown in the list, click the Pipeline
Component’s name to select it. The details for that Pipeline Component are shown in
the Details region of the Pipeline Component Editor.

Using the Webflow and Pipeline Editor Toolbars

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-35

How to Add Pipeline Components

To add a new Pipeline Component to the list, follow these steps:

1. Click New... The Pipeline Component Creator dialog opens, an example of which
is shown in Figure 3-8.

Note: When you add a new Pipeline Component, a default name for the Pipeline
Component is automatically shown in the Name input field.

Figure 3-8 Pipeline Component Creator Dialog

2. Type the name of the Pipeline Component in the Name input field.

3. Select the Type for the Pipeline Component (JNDI or Class) using the radio
buttons. The default value for the Type is Class.

Note: If you change the Type to JNDI, the Class Name label will change to JNDI
Name.

4. Type the class name or JNDI name for the Pipeline Component in the Class
Name or JNDI Name input field.

5. Click OK. The Pipeline Component Creator Dialog closes, and the Pipeline
Component you added appears in the Pipeline Components list.

6. Click Close. The Pipeline Component Editor closes, and the new Pipeline
Component will now be available for selection as a Component attribute in the
Properties Editor.

3 Using the Webflow and Pipeline Editors

3-36 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

How to Edit Pipeline Components

To edit a Pipeline Component that is shown in the list, follow these steps:

1. Click the Pipeline Component’s name shown in the list to select it.

2. Click Edit... The Pipeline Component Creator dialog opens, an example of which
is shown in Figure 3-8.

Note: The existing values for the Pipeline Component are shown in the Pipeline
Component Creator dialog.

3. If desired, type a new name for the Pipeline Component in the Name input field.

4. If desired, modify the Type for the Pipeline Component (JNDI or Class) using the
radio buttons. The default value for the Type is Class.

Note: If you change the Type to JNDI, the Class Name label will change to JNDI
Name.

5. If desired, type the new class name or JNDI name for the Pipeline Component in
the Class Name or JNDI Name input field.

6. Click OK. The Pipeline Component Creator Dialog closes, and the new details
for the Pipeline Component you edited appear in the Details region.

7. Click Close. The Pipeline Component Editor closes, and the modified Pipeline
Component will now be available for selection as a Component attribute in the
Properties Editor.

How to Delete Pipeline Components

Caution: No confirmation dialog is presented before a Pipeline Component is
deleted, and no undo feature is provided. If you delete a Pipeline
Component by mistake, the only remedy is to close the Editor without
saving. Be sure you want to delete a Pipeline Component before
proceeding.

To delete a Pipeline Component that is shown in the list, follow these steps:

1. Click the Pipeline Component’s name shown in the list to select it.

2. Click Delete. The Pipeline Component is no longer shown in the Pipeline
Components list.

Using the Webflow and Pipeline Editor Toolbars

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-37

3. Click Close. The Pipeline Component Editor closes, and the deleted Pipeline
Component will no longer be available for selection as a Component attribute in
the Properties Editor.

How to Make the Pipeline Transactional

When the Make This Pipeline Transactional toggle button in the Pipeline Editor’s
toolbar is selected, the Pipeline will be made transactional. Alternatively, when the
Make This Pipeline Transactional toggle button is deselected, the Pipeline will not be
transactional. By default, the Pipeline Editor opens with the Make This Pipeline
Transactional toggle button in the deselected position (that is, the Pipeline will not be
transactional).

Note: For more information about transactional Pipelines, see “Transactional Versus
Nontransactional Pipelines.”

How to Include the Pipeline Session in a Transaction

When the Include Pipeline Session in Transaction toggle button in the Pipeline
Editor’s toolbar is selected, the Pipeline Session will be included in the transaction.
Alternatively, when the Include Pipeline Session in Transaction toggle button is
deselected, the Pipeline Session will not be included in the transaction. The Include
Pipeline Session in Transaction toggle button is not enabled unless the Make Pipeline
Transactional toggle button is in the selected position.

Note: For more information about including Pipeline Sessions in transactions, see
“Including Pipeline Sessions in Transactions.”

3 Using the Webflow and Pipeline Editors

3-38 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Using the Properties Editors

As shown in Figure 3-9, a Properties Editor is the portion of the Webflow or Pipeline
Editor that is located directly below the canvas.

Figure 3-9 Example of a Properties Editor

The Properties tab in a Properties Editor contains information about the Webflow
component currently selected. Properties for a component are displayed in two
columns: one for the name and one for the value. To create a valid Webflow, you must
fill in the required properties for each node in each namespace that comprises the
Webflow. (Required properties are marked with an asterisk.) To help you accomplish
this, this section includes information on the following:

� Viewing Component Properties

� Description of Webflow Component Properties

� Modifying Component Property Values

The third column in the Properties tab displays messages about the selected Webflow
component if it is invalid, which should help you troubleshoot problems as you work.
However, this column displays messages for the listed properties only. That is, the
node may be invalid not because a property value is defined incorrectly, but because
the node is missing a necessary transition. Adding that transition would cause another
property to be displayed in the Properties Editor for the node. Therefore, to find a
complete list of validation messages for the node, use the Validate the Selected Node
button. For more information, see “How to Validate the Selected Node” on page 3-32.

Note: For more information about the Webflow and Pipeline Editors’ validation
features, see “About the Webflow and Pipeline Editors’ Validation Features”
on page 3-45.

Using the Properties Editors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-39

Viewing Component Properties

To view the properties for a particular Webflow component, click the Selection Tool
(see Table 3-3 and Table 3-4), then click the component. The properties for the
selected Webflow component are displayed in the Properties Editor.

Description of Webflow Component Properties

The properties displayed in the Properties Editor depend on which Webflow
component is selected. Table 3-7 lists the properties that should typically be specified
for each Webflow component, and provides examples of property values.

Note: Required properties are marked with an asterisk (*).

Table 3-7 Webflow Component Properties

Component Description of Properties Example

Presentation
Node

and

Extension
(Custom)
Presentation
Node

Name*: The name (label) of the Presentation Node that
is displayed in the Editor canvas. Initially defaults to
the Page-name value.

Type*: The type of page, which can be HTML, JSP,
Java servlet, or an Extension (Custom) Presentation
Node.

Page-relative-path: The path to the Page-name,
relative to the top of the Web application. The
Page-relative-path property is only available when the
type is JSP or HTML. For a servlet, this property is
called Request-uri-path.

Page-name*: The filename for the Presentation Node.
Page-name is only a required property when the Type is
JSP or HTML.

Note: There will be an Event property for each
transition originating from the node.
Depending on how the Extension (Custom)
Presentation Node is defined, there may be
different properties.

Name: item

Type: jsp

Page-relative-path: /browse

Page-name: item.jsp

3 Using the Webflow and Pipeline Editors

3-40 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Wildcard
Presentation
Node

Name*: The name (label) of the Wildcard Presentation
Node that is displayed in the Editor canvas. Initially
defaults to the Event value.

Type*: The type of event, which can be HTML, JSP, a
Java servlet, or an Extension (Custom) Presentation
Node.

Event*: The global event for the Wildcard
Presentation Node. Initially defaults to the Name
value.

Name: HelpWildcardLink

Type: jsp

Event: link.help

Input
Processor
Node

Name*: The name (label) of the Input Processor to be
invoked by the Webflow.

Class-name*: The package name for the Input
Processor class, relative to the Web application’s
directory.

Note: There will be Event or Exception properties
from each transition originating from the
node.

Name: itemIP

Class-name: examples.
petflow.ip.ItemIP

Exception: com.bea.
p13n.appflow.exception.
ProcessingException

Event: success

Pipeline Node Name*: The name (label) of the Pipeline to be invoked
by the Webflow.

Pipeline-name*: The name of the Pipeline within the
specified namespace.

Pipeline-namespace: The name of the Pipeline
namespace in which the Pipeline with Pipeline-name
resides.

Note: If dictated by the selected Pipeline-name, the
Editor will automatically add connection ports
to the node for events and exceptions. You
must specify a Pipeline-namespace first, then
the Pipeline-name.

Name: updateCart

Pipeline-name: updateCart

Pipeline-namespace: main

Event: success

Exception: com.bea.p13n.
appflow.exception.
PipelineException

Table 3-7 Webflow Component Properties (Continued)

Component Description of Properties Example

Using the Properties Editors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-41

Wildcard
Processor Node

Name*: The name (label) of the Wildcard Processor
Node that is displayed in the Editor canvas. Initially
defaults to the Exception value.

Type*: The type of processor, which can be an Input
Processor Node, a Pipeline Node, or an Extension
(Custom) Processor Node.

Exception*: The global exception for the Wildcard
Processor Node. Initially defaults to the Name value.

Name: MyWildException

Type: inputprocessor

Exception: com.bea.p13n.
appflow.exception.
ProcessingException

Extension
(Custom)
Processor Node

Name*: The name (label) of the Extension (Custom)
Processor Node that is displayed in the Editor canvas.

Type*: The type associated with the Extension
(Custom) Processor Node.

Note: There will be additional properties for the
Extension (Custom) Processor Node,
depending on how it is defined.

Name: customLayout

Type: layoutmanager

Proxy Node Referent-namespace*: The name of the namespace in
which the node actually exists.

Entity Name*: The name (label) of the node entity to
which the Proxy Node refers.

Referent-namespace: order

Entity Name:
checkoutShoppingCart

Event Name*: The name of an event transition on a node. For
Presentation Nodes, this can be link or button, and
the name of the link or button, separated by dot
notation. For Processor Nodes, the name is simply the
return object.

Note: The number of event properties you must
specify depends on how many event
transitions you add to a node.

Name: link.logout
(Presentation Node); success
(Processor Node)

Exception Name*: The package name to the exception class,
relative to the Web application’s directory.

Name: com.bea.p13n.
appflow.exception.
ProcessingException

Pipeline
Component

Component*: The name of the Pipeline Component.

Event*: The event transition on the node. For Pipeline
Component Nodes, the event is simply the return object

Component: GetProductPC

Event: success

Table 3-7 Webflow Component Properties (Continued)

Component Description of Properties Example

3 Using the Webflow and Pipeline Editors

3-42 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Modifying Component Property Values

To modify the value of a Webflow component’s property in the Properties Editor, you
must first be able to view the properties. To view a component’s properties, follow
these steps:

1. Click the Selection Tool (see Table 3-3 and Table 3-4).

2. Click the component.

3. Click the Properties tab. The properties for the selected Webflow component will
be displayed in the Properties Editor.

The way you modify the value of a Webflow component’s property depends on the
property itself. A single-click of the mouse button in an property value field may:

� Allow you to type in a new value. If this is the case, type the new value and
then press Enter.

� Allow you to select a predefined value from a drop-down list. If this is the case,
just click the new value to select it.

Note: Be sure to save the changes to your Webflow or Pipeline using the E-Business
Control Center (EBCC). For more information about saving files in the
EBCC, see “Saving Files” under “Working with Files” in the Guide to Using
the E-Business Control Center documentation.

Abort Exception
Node

Exception behavior: The behavior that is to be
executed when there is a fatal exception in the Pipeline.

Note: The value for this property cannot be modified
if the Abort Exception Node is the destination
of transitions. If no transitions are specified,
the Pipeline’s default behavior can be
specified by setting this property to Abort or
Continue. Pipeline processing will either stop
or continue if an exception is thrown by a
Pipeline Component.

Exception behavior: abort

Table 3-7 Webflow Component Properties (Continued)

Component Description of Properties Example

Migrating An Existing Webflow

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-43

Migrating An Existing Webflow

If you used a previous release of Webflow, you will notice that the format of the
Webflow and Pipeline configuration files has changed. That is, the
webflow.properties and pipeline.properties files have been converted to
XML files. The new Webflow and Pipeline XML configuration files can be created
and modified using the E-Business Control Center (EBCC)’s graphical Webflow and
Pipeline Editors.

To use the Webflow and Pipeline Editors, you will first need to migrate your existing
Webflow and Pipeline properties files to the new XML format. To do this, use the Data
Migrator Tool as described in the Migration Guide.

The migration of your webflow.properties and pipeline.properties files will
result in two XML files: main.wf and main.pln, where main is the default
namespace name assigned by the Migrator Tool. You will find these files in the root
of the destination directory, which is defined by the data_dst_dir variable in the
migration_install.properties file. (See the Migration Guide for details.)

Once you copy these files to the appropriate place (as explained in the Migration
Guide), you can use the Webflow and Pipeline Editors to divide your Webflow or
Pipelines into multiple namespaces. (See “Opening Files” in the Guide to Using the
E-Business Control Center documentation for detailed instructions.)

Note: Because there is no prior graphical layout for the Webflow components, the
Webflow and Pipeline Editors automatically display the components in a way
that preserves their relationships. You may also want to clean up the layout.

Creating or Modifying a Webflow:
Breadth-First Versus Depth-First

There are two different approaches you can take to create or modify a Webflow. These
approaches may depend on how you prefer to work, or the amount of information you
currently have about your Web application. These approaches are:

3 Using the Webflow and Pipeline Editors

3-44 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

� Breadth-first: Create and lay out all Presentation and Processor Nodes on the
Webflow Editor canvas, using the default names (labels). Once all Presentation
and Processor Nodes are on the canvas, go back and fill in the properties for
each node (except for Pipeline Nodes), using the Properties Editor. Then
connect the nodes with event and/or exception transitions.

Create and lay out Pipeline Component Nodes on the Pipeline Editor canvas,
using the default names (labels). Once all Pipeline Components are on the
canvas, go back and fill in the properties for each node, using the Properties
Editor. (You may want to launch the Pipeline Component Editor to create or
modify individual Pipeline Components.) Then connect the nodes with event
and/or exception transitions.

Return to the Webflow Editor to specify which Pipeline your Pipeline Nodes
reference, using the Properties Editor.

� Depth-first: Create a Presentation or Processor Node and fill in all the
properties for that node, using the appropriate combination of Editors (that is,
Properties Editor, Pipeline Editor, and/or Pipeline Component Editor). Then, do
the same for another node. Once you have two complete nodes, connect them
with event and/or exception transitions. Continue to create complete nodes (that
is, nodes for which all properties are filled in), and connect the completed nodes
to the existing Webflow with transitions.

A breadth-first approach will temporarily cause individual Webflow components in
your namespace be marked as invalid. Invalid nodes are marked with a red and white
square status icon, which serves as a reminder that you must fill in the properties of
each node in the namespace or Pipeline for your Webflow to be valid, regardless of
when you decide to do it. All nodes placed on an Editor canvas are initially invalid.

About the Webflow and Pipeline Editors’ Validation Features

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-45

Notes: Although your Webflow namespaces and Pipelines may be invalid, you may
still save them and continue working on them later. For more information, see
“Saving Invalid Webflows” on page 3-47. For more information about
troubleshooting invalid Webflows, see “About the Webflow and Pipeline
Editors’ Validation Features” on page 3-45.

About the Webflow and Pipeline Editors’
Validation Features

In addition to making an application’s Webflow easier to visualize, the Webflow and
Pipeline Editors are also beneficial because of their built-in validation features. When
you first start the Webflow and Pipeline Editors, the Webflow namespace or Pipeline
is automatically validated and any messages are shown in the Properties Editor.
Additionally, the validators continually work behind the scenes as you create or
modify Webflow namespaces and Pipelines. This section explains more about the
Editors’ validation features, and includes:

� Validation Error Messages in a Properties Editor

� What Do the Editors Validate?

� Saving Invalid Webflows

Caution: If the underlying XML in your Webflow or Pipeline configuration files has
been corrupted (perhaps as the result of hand-editing), the Webflow and
Pipeline Editors may not be able to complete the validation process.

3 Using the Webflow and Pipeline Editors

3-46 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Validation Error Messages in a Properties Editor

The Alerts section of a Properties Editor (shown in Figure 3-10) is the primary location
of validation error messages for your Webflow namespace or Pipeline. Since
validation is automatically run on a Webflow namespace or Pipeline when you open
an Editor, you can get a sense of any problems before you start working. If there are
validation error messages, the traffic light icon on the Alerts tab will appear red. If
there are validation warnings, the traffic light icon will appear yellow. (Warnings
typically occur when you redefine an event or exception on a wildcard node.) Click
the Alerts tab to see the detailed messages.

Figure 3-10 Alerts in a Properties Editor

As you are working, the validation feature will continue to run, causing the Alerts
section to collect a running log of validation error messages. To clear the alerts that
have collected, click Clear.

After you clear alerts, you may choose to validate a particular node or the entire
Webflow namespace or Pipeline again. For instructions on how to accomplish these
tasks, see “How to Validate the Selected Node” on page 3-32 or “How to Validate All
Nodes” on page 3-33.

Notes: In addition to the validation error messages shown in the Alerts section,
messages for individual Webflow component properties may also appear in
the third column of a Properties Editor’s Properties section, as explained in
“Using the Properties Editors” on page 3-38.

When there is a validation error, the Webflow namespace or Pipeline will also
be marked as invalid in the E-Business Control Center (EBCC) Explorer
window. Validation warnings, however, will not be marked as invalid. For
more information about the EBCC Explorer’s status icons, see “About the
E-Business Control Center Interface” in the Guide to Using the E-Business
Control Center documentation

About the Webflow and Pipeline Editors’ Validation Features

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 3-47

What Do the Editors Validate?

The Webflow and Pipeline Editor’s validation features check:

� The properties of components within the Webflow. All required properties must
be filled in using the Properties Editor and must contain valid values. In other
words, the validation feature verifies that the grammar in the Editor-generated
XML files is in accordance with the provided XML Schema Definition (XSD).

� That the entities (for example, JSPs or Java classes) represented by the
Presentation and Processor Nodes in a Webflow actually exist within the Web or
enterprise application and are deployed on the server.

� That all event and exception transitions have valid destination nodes.

� That a Pipeline used in a Web application’s Webflow exists in the associated
enterprise application (that is, outside of the Web application).

The Webflow and Pipeline Editor’s validation features do not verify:

� That the entities (for example, JSPs or Java classes) represented by the
Presentation and Processor Nodes can actually handle the particular events or
can throw the exceptions specified in the Webflow.

� That all the events or exceptions that can be generated by the entities (for
example, JSPs or Java classes) are specified in the Webflow.

Saving Invalid Webflows

You can save the files associated with a Webflow namespace or a Pipeline using the
E-Business Control Center (EBCC), even if they are not yet in a valid state. (See
“Working with Files” in the Guide to Using the E-Business Control Center
documentation for more information.) However, in order for your application’s
Webflow data to be synchronized, the entire Webflow (that is, all the Webflow
namespaces and Pipelines that comprise the Webflow) should be valid.

3 Using the Webflow and Pipeline Editors

3-48 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Notes: The EBCC’s Explorer window indicates when a Webflow namespace or
Pipeline is complete by removing the red and white square icon associated
with the object. For more information about the EBCC Explorer’s status
icons, see “About the E-Business Control Center Interface” in the Guide to
Using the E-Business Control Center documentation.

For more information about Webflow data and synchronization, see
“Synchronizing Webflow Data for Your Application” on page 3-48 or the
Deployment Guide.

Synchronizing Webflow Data for Your
Application

The Webflow and Pipeline XML configuration files you create using the Webflow and
Pipeline Editors represent just one piece of application data that must eventually be
synchronized. You synchronize all application data at once, using the E-Business
Control Center (EBCC). Thus, new or modified Webflow and Pipeline XML
configuration files will be synchronized along with other application data. For
instructions on how to synchronize application data using the EBCC, see
“Synchronizing Application Data” in the Deployment Guide.

Warning: If you and other developers concurrently synchronize data to a single
enterprise application, it is possible to overwrite each others work or to
create sets of changes that are incompatible and difficult to debug. To
prevent this possibility, synchronize to separate instances of your
application. For more information on how to set up your development
environment, see “Milestone 4: Set Up a Development Site” in the
“Workflow for Developing an E-Business Web Site” topic of the
Strategies for Developing E-Business Web Sites documentation.

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-1

CHAPTER

4 Customizing and
Extending Webflow

Although the applications in the WebLogic Portal product suite build upon a solid
Webflow implementation that you can use when building your own applications, the
Webflow mechanism has also been designed for easy customization and extensibility.
For example, if your organization dictates the use of a new business process, the
Java/EJB developers on your project team can utilize the existing Webflow
infrastructure to create and incorporate these components into the system. Once
created, the new Webflow components can be reused like any of the prebuilt
components BEA provides. This topic describes some concepts that will allow you to
customize and extend Webflow to meet your specific requirements.

Note: The diagrams in this topic are used primarily to illustrate dependencies in the
classes. Please be sure to visit the Javadoc for the most up-to-date
information.

This topic includes the following sections:

� Pipeline Session Internals

� Managing the Pipeline Session

� Property Scoping

� Serializing Pipeline Session Properties

� Error Handling

� Non-Runtime and Runtime Processor Exceptions

� Input Processor and Pipeline Component Exception Handling

� JavaServer Page (JSP) Exception Handling

4 Customizing and Extending Webflow

4-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

� Accessing Exceptions and Exception Messages

� Creating New Input Processor or Pipeline Component Exceptions

� Configuring Pipeline Component Exception Fatality

� Creating a New Input Processor

� How to Create a New Input Processor

� Input Processor Naming Conventions

� Input Processors and Statelessness

� Other Development Guidelines for Input Processors

� Webflow Validators and Input Processors

� The ValidatedValues Interface

� Special Validation Exceptions

� Creating a Custom Validator

� Creating a New Pipeline Component

� How to Create a New Pipeline Component

� Pipeline Component Naming Conventions

� Implementation of Pipeline Components as Stateless Session EJBs or Java
Objects

� Stateful Versus Stateless Pipeline Components

� Transactional Versus Nontransactional Pipelines

� Including Pipeline Sessions in Transactions

� Other Development Guidelines for Pipeline Components

� Extending Webflow by Creating Extension Presentation and Processor Nodes

� How to Create an Extension Presentation Node

� How to Create an Extension Processor Node

� Making Your Extension Presentation and Processor Nodes Available in the
Webflow and Pipeline Editors

� Webflow Internationalization

Pipeline Session Internals

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-3

Pipeline Session Internals

Although Pipelines and Pipeline Components are reusable, they must relate to a
particular visitor’s experience on your Web site to make their execution relevant. For
this reason, Pipeline Components always operate on a Pipeline Session. This section
provides you with more detailed information about the Pipeline Session, and provides
instructions for configuring the Pipeline Session to meet your specific requirements.
Specifically, this section includes information about:

� Managing the Pipeline Session

� Property Scoping

� Serializing Pipeline Session Properties

Note: It is assumed that you have already read “The Pipeline Session” on page 2-6.
If you have not, it is strongly recommended that you do so before continuing
with this section.

Managing the Pipeline Session

The Pipeline Session is an interface containing a number of helpful methods. For
detailed information about the Pipeline Session interface, see the Javadoc.

Accessing the PipelineSession Interface

To access the PipelineSession interface from within a JavaServer Page (JSP), use
the Pipeline Session JSP tags described in “Pipeline Session Tags” on page 5-19.

If you need to access the PipelineSession interface from within an Input Processor
class (and your Input Processor class extends the InputProcessorSupport class),
you can use the static helper methods on the InputProcessorSupport class to access
the Pipeline Session. Similarly, if you need to access the PipelineSession interface
from within a Pipeline Component class (and your Pipeline Component class extends
the PipelineComponentSupport class), you can use the static helper methods on the

4 Customizing and Extending Webflow

4-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

PipelineComponentSupport class to access the Pipeline Session. See “Overview of
the InputProcessorSupport Helper Methods” on page 4-5 or “Overview of the
PipelineComponentSupport Helper Methods” on page 4-6 for more information.

Notes: For more information about the static helper methods on the
InputProcessorSupport class, see “Creating a New Input Processor” on
page 4-15 or the Javadoc. For more information about the static helper
methods on the PipelineComponentSupport class, see “Creating a New
Pipeline Component” on page 4-28 or the Javadoc.

If your Input Processor class does not extend the InputProcessorSupport class,
you can also use the SessionManagerFactory class to access the PipelineSession
interface, as shown in the following code fragment:

public Object process(HttpServletRequest req, Object
requestContext) throws ProcessingException

{

PipelineSession pSession = null;

pSession = SessionManagerFactory.getSessionManager(),
getPipelineSession(req);

...

Note: For more information about the SessionManagerFactory class, see the
Javadoc.

Setting and Getting Pipeline Session Properties

To set or get properties in the Pipeline Session from within a JavaServer Page (JSP),
use the Pipeline Session JSP tags described in “Pipeline Session Tags” on page 5-19.

If you need to set or get properties in the Pipeline Session from within an Input
Processor or Pipeline Component class (and your class extends the
InputProcessorSupport or PipelineComponentSupport class, respectively), you
can use the static helper methods provided by these support classes. An alternative is
to call the Pipeline Session directly using the getter/setter methods, but if you do so,
you will need to handle the InvalidArgumentException exceptions that the Pipeline
Session throws. The following sections briefly describe the methods that are made
available by the support classes.

Pipeline Session Internals

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-5

Overview of the InputProcessorSupport Helper Methods

� The method signature for setting Request-scoped properties (attributes) in the
Pipeline Session is:

public static void setRequestAttribute(String key, Object obj,
String namespace, Object reqContext, PipelineSession pSession)
throws ProcessingException

� The method signature for setting Pipeline Session-scoped properties (attributes)
in the Pipeline Session is:

public static void setSessionAttribute(String key, Object obj,
String namespace, PipelineSession pSession) throws
ProcessingException

� The method signature for getting Request-scoped properties (attributes) from the
Pipeline Session is:

public static Object getRequestAttribute(String key, String
namespace, Object reqContext, PipelineSession pSession) throws
ProcessingException

� The method signature for getting Pipeline Session-scoped properties (attributes)
from the Pipeline Session is:

public static Object getSessionAttribute(String key, String
namespace, PipelineSession pSession) throws ProcessingException

Notes: More information about these methods can be located in the Javadoc.

The scope of Pipeline Session properties is described in detail in “Property
Scoping” on page 4-7.

4 Customizing and Extending Webflow

4-6 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Overview of the PipelineComponentSupport Helper Methods

� The method signature for setting Request-scoped properties (attributes) in the
Pipeline Session is:

public static void setRequestAttribute(String key, Object obj,
String namespace, Object reqContext, PipelineSession pSession)
throws PipelineException

� The method signature for setting Pipeline Session-scoped properties (attributes)
in the Pipeline Session is:

public static void setSessionAttribute(String key, Object obj,
String namespace, PipelineSession pSession) throws
PipelineException

� The method signature for getting Request-scoped properties (attributes) from the
Pipeline Session is:

public static Object getRequestAttribute(String key, String
namespace, Object reqContext, PipelineSession pSession) throws
PipelineException

� The method signature for getting Pipeline Session-scoped properties (attributes)
from the Pipeline Session is:

public static Object getSessionAttribute(String key, String
namespace, PipelineSession pSession) throws PipelineException

Notes: More information about these methods can be located in the Javadoc.

The scope of Pipeline Session properties is described in detail in “Property
Scoping” on page 4-7.

Using the Support Classes to Capture Exception Messages

If your Input Processor or Pipeline Component class extends its associated support
class, you may also want to use the static helper methods on the
InputProcessorSupport and PipelineComponentSupport classes to capture
exception messages from the Pipeline Session and throw an exception from your Input
Processor or Pipeline Component with the message set accordingly. An example of
how to do this is shown in the following code fragment (taken from an Input Processor
class):

Pipeline Session Internals

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-7

public Object process(HttpServletRequest req, Object
requestContext) throws ProcessingException

{

...

// Put the category ID in the Pipeline Session

setRequestAttribute(CATEGORY_ID, category, namespace,
requestContext, pSession);

...

Property Scoping

All properties in the Pipeline Session can have one of two scopes: Pipeline Session
scope or Request scope. Pipeline Session and Request scoping differ by how long the
property is retained.

Request-Scoped Pipeline Session Properties

When properties are Request-scoped, they are made available in the
HTTPServletRequest and exist only for the life of an HTTP request. In other words,
Request-scoped properties are available from the time they are set, up to and including
the display of the next JSP. The property is automatically deleted when a new request
starts. Therefore, Request scope is useful for temporary objects that will only be
needed for one page, and is less expensive than Pipeline Session scope. For example,
search results from the Product Catalog are stored as Request-scoped properties.
Request-scoped properties should be accessed via the <webflow:getProperty> JSP
tag or via the appropriate helper method from one of the support classes discussed in
“Setting and Getting Pipeline Session Properties” on page 4-4.

Note: More information about the <webflow:getProperty> JSP tag can be found
in “Pipeline Session Tags” on page 5-19.

In the current release, the Pipeline Session also supports contexting for
Request-scoped properties. This is particularly helpful if your Web site uses frames
and a visitor navigates quickly. Contexting ensures that the correct Request-scoped
property is set during such an interaction.

4 Customizing and Extending Webflow

4-8 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Pipeline Session-Scoped Pipeline Session Properties

Properties that must live longer than the HTTP request should be specified as Pipeline
Session scope, which will cause them to be retained throughout the Web site visitor’s
HTTP session, but will be a more expensive operation. If you know that a Pipeline
Session property is only required for the current request, use the Request scope.
Pipeline Session-scoped properties should be accessed via the
<webflow:getProperty> JSP tag or via the appropriate helper method from one of
the support classes discussed in “Setting and Getting Pipeline Session Properties” on
page 4-4.

Note: More information about the <webflow:getProperty> JSP tag can be found
in “Pipeline Session Tags” on page 5-19.

Pipeline Session scope is the default scope for Pipeline Session properties, and will be
used if the optional scope attribute to the Pipeline Session JSP tags is not specified.
Unlike Request-scoped properties, there is no support for contexting of Pipeline
Session-scoped properties.

Note: For more information about the support classes’ static helper methods for
setting and getting Pipeline Session properties, see “Setting and Getting
Pipeline Session Properties” on page 4-4.

Serializing Pipeline Session Properties

All properties added to the Pipeline Session should be serializable. If they are not, the
server will generate an error when trying to serialize the Pipeline Session, and thus no
Pipelines will be executed. This is especially relevant in clustered and distributed
environments. To assist in debugging, uncomment the
com.bea.p13n.appflow.pipeline.internal.PipelineExecutorImpl: on

line in the debug.properties file by removing the # sign. Then, when one of the
static helper methods for setting a Pipeline Session property (attribute) is called, the
server console will indicate whether that property is serializable or not.

Note: For more information about the support classes’ static helper methods for
setting and getting Pipeline Session properties, see “Setting and Getting
Pipeline Session Properties” on page 4-4.

Error Handling

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-9

Error Handling

You can configure Webflow to handle any type of exception (as well as superclasses
of that exception) by creating one or more <namespace>.wf files using the Webflow
Editor. To assist you in error handling, this section includes information about:

� Non-Runtime and Runtime Processor Exceptions

� Input Processor and Pipeline Component Exception Handling

� JavaServer Page (JSP) Exception Handling

� Accessing Exceptions and Exception Messages

� Creating New Input Processor or Pipeline Component Exceptions

� Configuring Pipeline Component Exception Fatality

Non-Runtime and Runtime Processor Exceptions

It is important to understand that runtime exceptions are treated slightly different from
non-runtime exceptions. Throughout this explanation, it may be helpful to refer to
Figure 4-1, which was first introduced in “High-Level Architecture” on page 1-2.

4 Customizing and Extending Webflow

4-10 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 4-1 Webflow High-Level Architecture

When a processor (Input Processor processor, Pipeline Processor, or Extension
(Custom) Processor) throws an exception, then the Webflow mechanism performs the
following steps (in order):

1. If the exception is a non-runtime exception, Webflow logs the exception at the
INFO level, with no stack trace. If the exception is a runtime exception, then
Webflow logs the exception at the ERROR level with a stack trace.

2. Searches for the specific exception in the exception list of the Processor Node. If
found, the Webflow invokes that destination.

3. Searches for a superclass of the exception in the exception list of the Processor
Node. If not found, Webflow walks all the way up to the Exception exception
in an attempt to find and invoke a destination.

4. Searches for the specific exception in the exception list of the Wildcard Processor
Node for that node type. If found, the Webflow invokes that destination.

5. Searches for a superclass of the exception in the exception list of the Wildcard
Processor Node for that node type. Again, if no destination is found, Webflow
walks all the way up to the Exception exception.

Error Handling

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-11

6. Searches for a configuration error page defined in the current namespace. If no
configuration error page is defined in the current namespace, Webflow searches
for one in the default namespace (as defined in the WEB-INF/web.xml file). If
no configuration error page is defined, then Webflow has no choice but to 500 the
user.

Input Processor and Pipeline Component Exception
Handling

The Webflow mechanism knows nothing about Input Processors or Pipelines, as these
are just Extension (Custom) Processors. This section contains information about how
the Input Processor processor and the Pipeline Processor handle specific exceptions for
Input Processors and Pipeline Components.

Input Processor Exceptions

When an Input Processor throws an exception, the Input Processor processor performs
the following checks for the exception (in this order):

� If the exception is of type InstantiationException,
ClassNotFoundException, or ClassCastException, log the exception at the
ERROR level with a stack trace, and throw the exception back to the Webflow.

� If the exception is of type RuntimeException, throw the exception back to the
Webflow because this exception can be handled by the normal Webflow
configuration. RuntimeException exceptions will be logged with a stack trace.

� If the exception is of type Exception, throw the exception back to the Webflow
because this exception can be handled by the normal Webflow configuration.
Exception exceptions will be logged at the INFO level, without a stack trace.

Pipeline Component Exceptions

When a Pipeline Component throws an exception, the Pipeline Executor performs the
following checks for the exception (in this order):

� If the exception is of type PipelineException, or a subclass of
PipelineException:

4 Customizing and Extending Webflow

4-12 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

� If this exact exception (not superclass) is defined in the abort exception list
for this component, or the default exception behavior is to abort, roll back
the transaction (if transactional) and throw the same exception back to the
Webflow to be handled by the normal configuration.

� If the exception is defined as a branch component, log the exception at the
INFO level without a stack trace, and branch to that component.

� If the exception is of type RemoteException, log the exception at the ERROR
level with a stack trace, roll back the transaction (if transactional), and throw the
exception back to the Webflow.

Note: For Pipeline Components that are implemented as EJBs, any
RuntimeException exceptions thrown by the Pipeline Component will
also cause the container to throw a RemoteException.

� If the exception is of type ConfigurationException (thrown internally if there
is a bad Pipeline configuration), log the exception at the ERROR level without a
stack trace, roll back the transaction (if transactional), and throw the exception
back to the Webflow.

� If the exception is of type PipelineSystemException (a runtime exception
thrown internally or by a Pipeline Component not implemented as an EJB), log
the exception at the ERROR level with a stack trace, roll back the transaction (if
transactional), and throw the exception back to the Webflow.

� If the exception is of type IllegalAccessException (caused by a security
violation on a Pipeline Component implemented as an EJB), throw a
PipelineSystemException exception back to the Webflow with an embedded
IllegalAccessException exception, and roll back the transaction (if
transactional).

� If the exception is of type IllegalArgumentException, log the exception at
the ERROR level with a stack trace, roll back the transaction (if transactional), and
throw the exception back to the Webflow.

� If the exception is of type InstantiationException, throw a
PipelineSystemException exception back to the Webflow with an embedded
IllegaAccessException exception and roll back the transaction (if
transactional).

� If the exception is of type ClassNotFoundException, throw a
PipelineSystemException back to the Webflow with an embedded

Error Handling

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-13

IllegalAccessException exception and roll back the transaction (if
transactional).

� If the exception is of type ClassCastException, log the exception at the
ERROR level with a stack trace, roll back the transaction (if transactional), and
throw the exception back to the Webflow.

JavaServer Page (JSP) Exception Handling

If the destination JavaServer Page (JSP) throws an exception while being rendered,
there is nothing Webflow can do. This must be handled through normal JSP exception
processing, with a JSP error page, or caught within the JSP itself.

Accessing Exceptions and Exception Messages

You can retrieve the original exception and/or the exception’s message using the
<webflow:getException> JSP tag. This tag can be inlined or the id attribute can be
supplied to return the actual exception.

Note: For more information about the <webflow:getException> JSP tag, see
“<webflow:getException>” on page 5-25.

Creating New Input Processor or Pipeline Component
Exceptions

All Input Processors must throw the ProcessingException exception, one of its
subclasses, or any other exception that Webflow is configured to handle.

Pipeline Components may throw a PipelineException exception, one of its
subclasses, or any other exception that Webflow is configured to handle to signify that
execution of the component has failed. Depending on whether or not the exception is
configured as fatal or nonfatal, it is possible that no further Pipeline Components may
be executed. If the Pipeline is transactional, the transaction will be rolled back.

4 Customizing and Extending Webflow

4-14 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Notes: See the related sections “Configuring Pipeline Component Exception Fatality”
on page 4-14 and “Transactional Versus Nontransactional Pipelines” on page
4-31. For more information about the ProcessingException or
PipelineException exception, see the Javadoc.

Configuring Pipeline Component Exception Fatality

For those who used prior implementations of Webflow, you may recall that Pipeline
Components could throw PipelineFatalException and
PipelineNonFatalException exceptions. In this release, there is a general
PipelineException exception that you can use or extend. Fatality of Pipeline
exceptions depends upon how they are handled. Fatal Pipeline exceptions (also called
abort exceptions) are those that are part of the abort exception list and therefore must
be handled in the Webflow. Nonfatal Pipeline exceptions (called branch exceptions)
are those that are handled inside the Pipeline by rerouting through another Pipeline
Component.

In the Pipeline Editor, branch exceptions are shown as transitions between Pipeline
Component Nodes, while abort exceptions are shown as transitions between a Pipeline
Component Node and the Abort Exception Node.

If there are no exception transitions from any Pipeline Component Nodes to the Abort
Exception Node, a default exception will be used when any Pipeline Component in that
Pipeline throws an exception that is not handled as a branch exception. In this case,
you can set the default exception behavior for the Abort Exception Node to either
continue or abort the Pipeline using the Properties Editor.

A default abort exception of Continue is handled by ignoring the exception, continuing
on to the next Pipeline Component, and passing a success event to the Pipeline Node
in the Webflow namespace. A default abort exception of Abort is handled by throwing
the unhandled exception to the Pipeline Node in the Webflow namespace. If the
Pipeline is transactional, the transaction is rolled back to what it was before the
Pipeline was started and then the exception is thrown.

Note: For more information about the Pipeline Editor, see Chapter 3, “Using the
Webflow and Pipeline Editors.”

Creating a New Input Processor

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-15

Creating a New Input Processor

As you may recall from “Input Processors and Pipelines” on page 2-5, an Input
Processor is one type of processor node that is typically used in a Webflow for form
validation. BEA has developed a number of Input Processors that are packaged with
the WebLogic Portal product suite, which you may want to reuse in your own
applications. However, you may also want to create your own Input Processors for use
in your applications’ Webflows.

How to Create a New Input Processor

To create a new Input Processor, you must implement the
com.bea.p13n.appflow.webflow.InputProcessor interface by providing the
details of the process() method, which has the following method signature:

public Object process(HttpServletRequest req, Object
requestContext) throws ProcessingException

Note: All classes located in PORTAL_HOME\applications\petflowApp\

petFlow\WEB-INF\src\examples\petflow\ip implement the
InputProcessor interface, and can be viewed as examples.

Alternately, your new Input Processor can extend the
com.bea.p13n.appflow.webflow.InputProcessorSupport class, as shown in
Figure 4-2. As its name implies, this abstract class allows you to use static helper
methods that provide additional support for an Input Processor. If your new Input
Processor class must extend some other class, however, you will not be able to take
advantage of the InputProcessorSupport class.

4 Customizing and Extending Webflow

4-16 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Figure 4-2 Relationship of the InputProcessorSupport Class

Note: For more information about the InputProcessor interface, the
InputProcessorSupport class, or the ValidatedFormConstants

interface, see the Javadoc.

When you are using the Webflow Editor to specify the properties for an Input
Processor node you placed on the canvas, simply include the class name of your newly
created Input Processor in the appropriate field. There are no additional activities you
need to perform to make your Input Processor work with the existing Webflow
mechanism.

Note: For more information about using the Webflow Editor, see Chapter 3, “Using
the Webflow and Pipeline Editors.”

Input Processor Naming Conventions

The name of an Input Processor should end with the suffix IP. For example, an Input
Processor that is responsible for deleting a shipping address might be called
DeleteShippingAddressIP. This naming convention should help you keep track of
Input Processors more easily.

Webflow Validators and Input Processors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-17

Input Processors and Statelessness

Like Pipeline Components, Input Processors are multi-threaded. To ensure that your
Input Processors are thread safe, Input Processors should always be stateless, and it is
recommended that you do not define any instance variables in an Input Processor.

Other Development Guidelines for Input Processors

Execution of business (application) logic should typically not be done within Input
Processors. Specifically, Input Processors should not call Enterprise JavaBeans
(EJBs) or attempt to access a database. All such logic should be implemented in
Pipeline Components. Although it is possible to execute this logic within an Input
Processor, such logic could not be transactional, and would defeat a primary purpose
of the Webflow architecture. By separating business logic from the presentation logic,
your Web site is inherently flexible in nature. Modifying or adding functionality can
be as simple as creating and plugging in new Pipelines and/or Input Processors.

Webflow Validators and Input Processors

An Input Processor is essentially a Webflow component that works to validate data
entered by a Web site visitor in an HTML form. Although you are not required to use
Input Processors in your Webflows, use of Input Processors may increase developer
productivity and will automatically preserve information the visitor originally entered
while clearly identifying fields that require attention. Behind-the-scenes, Input
Processors make use of a ValidatedValues interface to accomplish these tasks.

This section includes information about the following:

� The ValidatedValues Interface

� Special Validation Exceptions

� Creating a Custom Validator

4 Customizing and Extending Webflow

4-18 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

The ValidatedValues Interface

The ValidatedValues interface (shown in Figure 4-3) allows a Java/EJB developer
who writes an Input Processor to report the status of processed form fields back to a
HTML/JSP developer. The HTML/JSP developer receives the status of each form
field in their Web pages via the <webflow:validatedForm> JSP tag. For more
information about the <webflow:validatedForm> JSP tags, see Chapter 5,
“Webflow JSP Tag Library Reference.”

Figure 4-3 Validation Class Diagram

The ValidatedValues interface uses the imported
javax.servlet.http.HTTPServletRequest. The public methods used to convey
the status of the validation through the <webflow:getValidatedValue> and
<webflow:setValidatedValue> JSP tags are shown in Table 4-1.

Webflow Validators and Input Processors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-19

Note: For more information about the <webflow:getValidatedValue> and
<webflow:setValidatedValue> JSP tags, see Chapter 5, “Webflow JSP
Tag Library Reference.” Please also be sure to visit the Javadoc for the most
up-to-date information about the ValidatedValues class.

Table 4-1 ValidatedValues Public Methods

Method Signature Description

public String getStatus (String name) Retrieves the status for the specified
field, which may be unspecified,
invalid, or valid.

public void setStatus (String name, String value) Sets the status for the specified field.

public Object getValue (String name) Retrieves the current value for the
specified field.

public String getValueAsString (String name) Retrieves the current value of the
field as a string. This method will
return an empty string as opposed to
null.

public void setValue (String name, String value) Sets the value for the specified field.

public String getMessage (String name) Retrieves the message for the field.

public void setMessage (String name, String value) Sets the message for the field.

public int getInvalidFieldCount () Return the number of HTML form
fields that did not validate.

public void setInvalidFieldCount(int count) Set the number of HTML form fields
that did not validate.

public void incInvalidFieldCount() Increment the number of HTML form
fields that did not validate.

public HttpServletRequest getHttpServletRequest() Obtain a reference to the
HttpServletRequest.

4 Customizing and Extending Webflow

4-20 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Validation Example

Listing 4-1 uses each of the validated form tags in an HTML form page that gathers
some information about a Web site’s visitors, which we will later validate using an
Input Processor class and the ValidateValues interface.

Listing 4-1 The JSP Form Fields Requiring Validation

<%@ page import="com.bea.p13n.appflow.webflow.WebflowJSPHelper" %>
<%@ page import="java.util.Map" %>

<%@ taglib uri="webflow.tld" prefix="webflow" %>

<html>
<head>
<title>Webflow Demo</title>

</head>

<% String validStyle="background: white; color: black; font-family: Arial"; %>
<% String invalidStyle="background: white; color: red; font-style: italic"; %>

<%-- If there was an InvalidFormDataException thrown display the message --%>

<webflow:getException/>

<webflow:validatedForm event="button.go" applyStyle="message"
messageAlign="right" validStyle="<%=validStyle%>"
invalidStyle="<%=invalidStyle%>" unspecifiedStyle="<%=validStyle%>" >

<p>Username:
<webflow:text name="username" value="start" size="15" maxlength="30"
htmlAttributes="onMouseOver=\\"self.status='User ID';return true\\"" />

Password:
<webflow:password name="password" size="15" retainValue="true" maxlength="30"
htmlAttributes="onMouseOver=\\"self.status='Secret Password';return true\\""
/>

Number:
<webflow:text name="number" size="15" maxlength="30"/>

Phone:
<webflow:text name="phone" size="15" maxlength="15"/>

E-mail Phone:
<webflow:text name="email" size="15" maxlength="30"/>

Webflow Validators and Input Processors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-21

Gender:
<webflow:radio name="gender" checked="true" value="M"/>Male
<webflow:radio name="gender" value="F" />Female

Animals(s) You Like:
<webflow:checkbox name="cat" value="cat" />Cat

<webflow:checkbox name="dog" checked="true" value="dog" />Dog

<webflow:checkbox name="bird" value="bird" />Bird

<p>Comment:
<webflow:textarea name="comment" cols="20" rows="3" value="hello" />

Hobbies:
<webflow:select name="hobbies" size="3" multiple="true">

<webflow:option value="Running"/>Running
<webflow:option value="Skiing"/>Skiing
<webflow:option value="Motocross"/>MotoX
<webflow:option value="Rugby"/>Rugby

</webflow:select>

Pet You Own:
<webflow:select name="pets" size="1" >
<webflow:option value="dog" selected="true"/>Dog
<webflow:option value="cat" selected="false"/>Cat
<webflow:option value="bird" selected="false"/>Bird

</webflow:select>

<input type="submit" name="Submit"/>

</webflow:validatedForm>

</html>

Note: For more information about the <webflow:validatedForm> JSP tags, see
Chapter 5, “Webflow JSP Tag Library Reference.”

The Input Processor shown in Listing 4-2 can be used to validate the form shown in
Listing 4-1.

4 Customizing and Extending Webflow

4-22 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Listing 4-2 Example of an Input Processor process() Method

package com.bea.test.DemoIP;

import com.bea.p13n.appflow.common.PipelineSession;
import com.bea.p13n.appflow.exception.ProcessingException;
import com.bea.p13n.appflow.webflow.forms.ValidatedValues;
import com.bea.p13n.appflow.webflow.forms.ValidatedValuesFactory;
import com.bea.p13n.appflow.webflow.forms.ValidatedForm;
import com.bea.p13n.appflow.webflow.forms.ValidatedFormFactory;
import com.bea.p13n.appflow.webflow.forms.MissingFormFieldException;
import com.bea.p13n.appflow.webflow.forms.InvalidFormDataException;
import com.bea.p13n.appflow.webflow.forms.MinMaxExpression;
import examples.petflow.common.PetflowConstants;
import java.util.ArrayList;
import javax.servlet.http.HttpServletRequest;

public class DemoIP extends inputProcessorSupport
{

public Object process(HttpServletRequest req, Object requestContext) throws
ProcessingException, InvalidFormDataException

{

PipelineSession pSession = null;
String namespace = null;
pSession = getPipelineSession(req);
namespace = getCurrentNamespace(pSession);
ValidatedValues vValues = ValidatedValuesFactory.getValidatedValues(request);
ValidatedForm vForm = ValidatedFormFactory.getValidatedForm();

// Validate the html form, let any missing fields bubble as a
// MissingFormFieldException

MinMaxExpression minMax = new MinMaxExpression();

String username = vForm.validate(vValues, STRING_VALIDATOR, "username",
minMax.set(4, 20), "User IDs must be greater then 4");

String password = vForm.validate(vValues, STRING_VALIDATOR, "password",
minMax.set(4, 20));

String number = vForm.validate(vValues, NUMBER_VALIDATOR, "number",
minMax.set(1, 20));

String phone = vForm.validate(vValues, PHONE_VALIDATOR, "phone", null);

String email = vForm.validate(vValues, EMAIL_VALIDATOR, "email", null);

Webflow Validators and Input Processors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-23

String gender = vForm.validate(vValues, "gender");

String cat = vForm.validate(vValues, "cat");
String dog = vForm.validate(vValues, "dog");
String bird = vForm.validate(vValues, "bird");

String comment = vForm.validate(vValues, STRING_VALIDATOR, "comment",
minMax(0,255));

Collection hobbies = vForm.validateMultiple(vValues, "hobbies", 2, "Must
select at least 2");

String pets = vForm.validate(vValues, "pets");

// Did all fields pass the validation test

if (vValues.getInvalidFieldCount() > 0)

{

// No, throw the InvalidFormFieldException and let Webflow
// redirect the user back to the origin JSP, preserving all our input

throw new InvalidFormDataException("Please fix the fields in red and
resubmit");

}

// If you got here all form fields were entered correctly you probably want to
// populate the Pipeline Session. Use the base class setRequestAttribute method
// to help you out

return success;

}

}

4 Customizing and Extending Webflow

4-24 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Special Validation Exceptions

There are three prewritten validation exceptions you may want to use with your Input
Processors:

� MissingFormFieldException

The MissingFormFieldException exception can be thrown by the
ValidatedForm class when validating a field, if the field is not in the
HttpRequestServlet. This exception is usually caused by a typo, and
therefore a solution could be to have the Webflow redirect to the
missingformfield.jsp to display the missing field. This response could be
configured in a wildcard processor node.

Note: For an example, see PORTAL_HOME\applications\petflowApp\
petflow\error\missingformfield.jsp, which you will need to
modify for a production site.

� InvalidFormDataException

The InvalidFormDataException exception can be thrown when a form has
invalid fields (determined by the getInvalidFieldCount() method of the
ValidatedValues interface). In this case, you may want to have the Webflow
redirect to the origin JSP, to have the Web site visitor resubmit their form.

Note: For more information about the methods in the ValidatedValues
interface, see “The ValidatedValues Interface” on page 4-18.

� InvalidValidatorException

The InvalidValidatorException exception can be thrown by the
ValidatedForm interface when validating a field, if the validator specified is
not a valid validator. Invalid validators are classes that do not implement the
Validator interface, classes that do not exist, classes that are abstract, or
classes that are interfaces.

Webflow Validators and Input Processors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-25

Creating a Custom Validator

In addition to the validators previously described, you may choose to create validators
of your own.

To create a custom validator, you should create a class that implements the Validator
interface (see Figure 4-3). Other guidelines for creating a custom validator include:

� You can support an expression object. An expression object is an arbitrary
object that the validator uses to obtain additional information, which is then used
to validate the parameter. For example, if a StringValidator needs to know
the minimum and maximum length of a string, the expression object may
contain two attributes: min and max.

� You are responsible for updating the value, status, and message in the
ValidatedValues object. For more information, see the Javadoc.

� Because it it multithreaded, your validator cannot have state.

� There is no need to register your validator; it is automatically registered the first
time you use it.

Example of a Custom Validator

Listing 4-3 shows an example of a custom validator that validates credit cards.

Listing 4-3 CreditCardValidator.java

package examples.petflow.ip.validator;

import com.bea.p13n.appflow.webflow.forms.Validator;
import com.bea.p13n.appflow.webflow.forms.ValidatedValues;

import java.util.StringTokenizer;

public class CreditCardValidator implements Validator

{
/**
* Validate a credit card number from an HTML Form.
* The card number is valid for 16 digits
* All separators "()- ." are first removed
* @param validatedValues object containing value, status,

4 Customizing and Extending Webflow

4-26 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

messages
* @param key html form parameter name
* @return expression
*/

public String validate(ValidatedValues validatedValues, String
key, Object expression, String message)

{

// The value entered in the HTML form is supplied in the
// ValidatedValues

String value = validatedValues.getValueAsString(key);
value = value.trim();

// Can optionally use the expression object to further refine
// validation criteria
// if (expression != null && expression instanceof
// CreditCardExpression) ...

StringBuffer buffer = new StringBuffer();

// This stuff could come from the expression object

StringTokenizer st = new StringTokenizer(value, "()- .");
char separator = ' ';

// Strip any parentheses, spaces, dots and dashes

while (st.hasMoreTokens()) {
buffer.append(st.nextToken());

}

// Correct length?

if (buffer.length() != 16) {
validatedValues.setValue(key, value);
validatedValues.setStatus(key, STATUS_INVALID);

// If the user did not supply a message use the default.
// This can be retrieved from the internationalization message
// catalog.

String msg = (message == null) ? "Credit cards must
have 16 digits" : message;

validatedValues.setMessage(key, msg);

return value;

}

Webflow Validators and Input Processors

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-27

// Make sure we have nothing but digits...

try
{

Long.parseLong(buffer.toString());
}
catch (NumberFormatException e)
{

validatedValues.setValue(key, value);
validatedValues.setStatus(key, STATUS_INVALID);

// If the user did not supply a message use the default.
// This can be retrieved from the internationalization message
// catalog.

String msg = (message == null) ? "Credit card cannot
contain letters, only digits" : message;

validatedValues.setMessage(key, msg);

return value;

}

// It is the validators responsibility to do any reformating
// if necessary.

StringBuffer creditCard = new StringBuffer(19);

creditCard.append(buffer.substring(0,4));
creditCard.append(separator);
creditCard.append(buffer.substring(4,8));
creditCard.append(separator);
creditCard.append(buffer.substring(8,12));
creditCard.append(separator);
creditCard.append(buffer.substring(12,16));

// Must set the value and the status in the validatedValues
// object.

value = creditCard.toString();

validatedValues.setValue(key, value);
validatedValues.setStatus(key, STATUS_VALID);

return value;

}
}

4 Customizing and Extending Webflow

4-28 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Creating a New Pipeline Component

As you may recall from “Input Processors and Pipelines” on page 2-5, a Pipeline is one
type of processor node that is typically used in a Webflow to execute back-end
business logic. Each Pipeline may contain a number Pipeline Components that
perform specific tasks. BEA has developed a number of Pipeline Components that are
packaged with the WebLogic Portal product suite that you may want to reuse in your
own Pipelines. However, you may also want to create your own Pipeline Components
to execute your organization’s specific business processes.

How to Create a New Pipeline Component

New Pipeline Components must implement the com.bea.p13n.appflow.
pipeline.PipelineComponent interface and must supply an implementation for the
process() method. The process() method accepts a PipelineSession object as
a parameter, and returns an updated PipelineSession object if the execution is
successful, as shown in the following method signature:

public PipelineSession process(PipelineSession pipelineSession,
Object requestContext)throws PipelineException,RemoteException;

Note: All of the classes located in the PORTAL_HOME\applications\petflowApp\
petFlow\WEB-INF\src\examples\petflow\ip directory implement the
InputProcessor interface, and can be viewed as examples.

Alternately, your new Pipeline Component can extend the
com.bea.p13n.appflow.pipeline.PipelineComponentSupport class, shown in
Figure 4-4. As its name implies, this abstract class allows you to use methods that
provide additional support for a Pipeline Component. If your new Pipeline
Component class must extend some other class, however, you will not be able to take
advantage of the PipelineComponentSupport class.

Creating a New Pipeline Component

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-29

Figure 4-4 Relationship of the PipelineComponentSupport Class

Notes: For more information about the PipelineComponent interface or the
PipelineComponentSupport class, see the Javadoc.

When you are using the Pipeline Editor to specify the properties for a Pipeline
Component node you placed on the canvas, simply include the class name of your
newly created Pipeline Component in the appropriate field. There are no additional
activities you need to perform to make your Pipeline Component work with the
existing Webflow mechanism.

Note: For more information about using the Pipeline Editor, see Chapter 3, “Using
the Webflow and Pipeline Editors.”

Pipeline Component Naming Conventions

The name of a Pipeline Component should end with the suffix PC. For example, a
Pipeline Component that is responsible for saving a shopping cart might be called
SaveCartPC. This naming convention should help you keep track of Pipeline
Components more easily.

4 Customizing and Extending Webflow

4-30 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Implementation of Pipeline Components as Stateless
Session EJBs or Java Objects

Pipeline Components can be implemented as either stateless session Enterprise
JavaBeans (EJBs) or as Java objects. Table 4-2 describes the differences between the
two implementations.

An implementing class that is a stateless session EJB must meet the following
requirements:

� It must declare and implement a create() method in the bean’s Home interface
that takes no arguments and returns the appropriate Remote interface.

� It must declare and implement the process() method as part of its Remote
interface.

Table 4-2 Comparison of Pipeline Component Implementations

Stateless Session EJBs Java Objects

Heavier in weight and more complex to
implement due to EJB overhead.

Lightweight, low overhead.

Server-provided instance caching. No instance caching, possibly degrading
performance.

Server-provided load balancing. No load balancing, always executes on the
node in the cluster where the Pipeline started
execution.

Can use ACL-based security according to
EJB specification.

Must manage security.

Creating a New Pipeline Component

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-31

Stateful Versus Stateless Pipeline Components

Whether Pipeline Components are implemented as stateless session EJBs or as Java
objects, Pipeline Components themselves should be stateless. The business logic
implemented in Pipeline Components should only depend upon the
PipelineSession object, the database, and other external resources. Should you
define any instance variables, static variables, or static initializers within a Pipeline
Component, the results may be unpredictable.

Transactional Versus Nontransactional Pipelines

If all Pipeline Components within the Pipeline will be invoked under one transaction,
you should select the Make This Pipeline Transactional button in the Pipeline Editor.
Transactional Pipelines provide support for rolling back the database transaction and
for making changes to the Pipeline Session. If a transactional Pipeline fails, any
database operations made by each of its Pipeline Components are rolled back.

If a Pipeline Component in a transactional Pipeline is implemented as a stateless
session EJB, then its transactional property should be set to Required. If the
Pipeline’s is-transactional property is true and the participating Pipeline
Components (EJBs) have their transaction flag set to never, the Pipeline will fail to
execute. Similarly, if the Pipeline’s is-transactional property is false and the
Pipeline Components have the transaction flag set to mandatory, the Pipeline will also
fail to execute.

If a Pipeline Component in a transactional Pipeline is implemented as a simple Java
object, then for all database operations, the Pipeline Component must use the
Transactional DataSource associated with the connection pool, as defined in the
WebLogic Server Administration Console. A transactional Pipeline containing
Pipeline Components implemented as simple Java objects commits the transaction
upon success, and rolls back the transaction upon failure. Avoid demarcating
transactions within the Pipeline Components themselves.

4 Customizing and Extending Webflow

4-32 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Including Pipeline Sessions in Transactions

If you include the Pipeline Session in a transaction, any failure in the transaction will
cause the Pipeline Session’s Pipeline Session-scoped properties to revert back to the
state they were in prior to the transaction.

Note: Only Pipeline Session-scoped properties may be included as part of the
transaction.

However, it is an expensive operation to serialize (even to memory) the Pipeline
Session for each invocation. You will have much better performance if your Pipeline
Session is not included in the transaction, so be sure you have a legitimate reason for
including it.

Other Development Guidelines for Pipeline Components

All server-side coding guidelines apply for development of new Pipeline Components.
Specifically:

� Avoid using threads.

� Avoid accessing the filesystem, since these operations are not thread-safe.

� Program all Pipeline Components that are implemented as Java objects to be
thread-safe.

Extending Webflow by Creating Extension Presentation and Processor Nodes

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-33

Extending Webflow by Creating Extension
Presentation and Processor Nodes

If creating new Input Processors and Pipeline Components to add to those BEA
provides out-of-the-box does not meet your needs, you may also choose to extend the
Webflow mechanism by creating classes that can be used as Extension (Custom)
Presentation or Processor Nodes. Once you create the classes associated with these
nodes, you will need to register the new nodes in the webflow-extensions.wfx file.
This section includes information on how to perform these tasks.

How to Create an Extension Presentation Node

To create an Extension (Custom) Presentation Node, you must first create a class that
implements the com.bea.p13n.appflow.webflow.PresentationNodeHandler
interface. Be sure your class returns a URL that the WebflowServlet servlet can
forward to. Then, you must register your extension node in the
webflow-extensions.wfx file so it can be used in the Webflow and Pipeline Editors

Notes: For more information about the WebflowServlet servlet, see “High-Level
Architecture” on page 1-2. For instructions on how to register your extension
node in the webflow-extensions.wfx file, see “Making Your Extension
Presentation and Processor Nodes Available in the Webflow and Pipeline
Editors” on page 4-35.

The portal application makes use of an Extension (Custom) Presentation Node named
portal, which you can view as an example. The portal application uses this extension
node to indicate to the portal Webflow that the contents of the portlet are to remain
unchanged (that is, it indicates that the last URL should be displayed). The portal
node’s implementation class is LastContentUrlNodeHandler.java.

4 Customizing and Extending Webflow

4-34 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

How to Create an Extension Processor Node

Figure 4-5 illustrates the basic architecture of the Webflow mechanism. As the figure
shows, you may want to create an Extension (Custom) Processor that functions at the
same level as an Input Processor processor or Pipeline Processor. In fact, the Input
Processor processor and Pipeline Processor can be thought of as examples of
Extension Processors.

Figure 4-5 Webflow High-Level Architecture

Extension (Custom) Processors are processors that your organization (as opposed to
BEA) develops for use in your applications’ Webflows. Extension Processors may be
used to perform activities not currently supported by the Webflow. However, the flow
in and out of an Extension Processor is still governed by the Webflow mechanism.
Extension Processors are represented as nodes in the Webflow Editor, much like the
Input Processor and Pipeline Nodes are, but with a slightly different representation for
easy identification.

Note: For more information about using the Webflow Editor, see Chapter 3, “Using
the Webflow and Pipeline Editors.”

For example, you may want to create an Extension (Custom) Processor that works with
the BEA Rules Engine to support different Webflows based on some condition, such
as membership in a customer segment. Another, more simple example might be a

Extending Webflow by Creating Extension Presentation and Processor Nodes

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-35

layout manager processor that automatically includes a header and footer in your
JavaServer Pages (JSPs) when given the page’s body content. In fact, we have already
created such a processor.

To create an Extension (Custom) Processor Node, you must first create a class that
implements the com.bea.p13n.appflow.webflow.Processor interface to define
the Extension Processor. Then, you must register your processor in the
webflow-extensions.wfx file so it can be used in the Webflow and Pipeline Editors.

Note: For instructions on how to register your extension node in the
webflow-extensions.wfx file, see “Making Your Extension Presentation
and Processor Nodes Available in the Webflow and Pipeline Editors” on page
4-35.

Making Your Extension Presentation and Processor
Nodes Available in the Webflow and Pipeline Editors

After you have created an Extension (Custom) Presentation or Processor Node, you
must make that node available to other developers on your team by registering the node
in the webflow-extensions.wfx file.

Notes: The webflow-extensions.wfx file resides within your Web application’s
home directory and is therefore scoped to a Web application.

Registering an Extension (Custom) Processor Node will cause its
corresponding tool on the Webflow Editor palette to become enabled once you
restart the E-Business Control Center (EBCC).

How To Register an Extension Presentation Node

To register an Extension Presentation Node in the webflow-extensions.wfx file,
follow these steps:

1. Add an <end-node> element to the <end-node-registration> list.

2. Assign your presentation node a name with the Name attribute, and specify the
class of the underlying node implementation with the Node-handler attribute.

4 Customizing and Extending Webflow

4-36 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

3. Define the input parameters that the class expects upon invocation, using
<node-processor-input> elements. Give each parameter a Name, and if the
parameter is optional, assign the Required attribute a value of false.

Note: This information will be used in the Webflow and Pipeline Editors’
Property Editors.

4. Save the webflow-extensions.wfx file, and restart the E-Business Control
Center.

Listing 4-4 provides an example of registering an Extension Presentation Node in the
webflow-extensions.wfx file.

How To Register an Extension Processor Node

To register an Extension Processor Node in the webflow-extensions.wfx file,
follow these steps:

1. Add a <process> element to the <process-registration> list.

2. Assign your processor a name with the Name attribute, and specify the class of
the underlying processor implementation with the Executor attribute.

3. Define the input parameters that the class expects upon invocation, using
<node-processor-input> elements. Give each parameter a Name, and if the
parameter is optional, assign the Required attribute a value of false.

Note: This information will be used in the Webflow and Pipeline Editors’
Property Editors.

4. Save the webflow-extensions.wfx file, and restart the E-Business Control
Center.

Listing 4-4 provides an example of registering an Extension Processor Node in the
webflow-extensions.wfx file.

Listing 4-4 Sample webflow-extensions.wfx File

<?xml version="1.0" encoding="UTF-8" ?>

<webflow-extensions
xmlns="http://www.bea.com/servers/p13n/xsd/webflow-extension/1.0"
xmlns:xsi="http://www.w3.org/2000/10/XMLSchema-instance"

Extending Webflow by Creating Extension Presentation and Processor Nodes

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 4-37

xsi:schemaLocation="http://www.bea.com/servers/p13n/xsd/webflow-extension/1.0
webflow-extensions.xsd">

<process-registration>

<process name="inputprocessor"
executor="com.bea.p13n.appflow.webflow.internal.IPProcessor">

<node-processor-input name="class-name" required="true" />
</process>

<process name="pipeline"
executor="com.bea.p13n.appflow.webflow.internal.PipelineProcessor">

<node-processor-input name="pipeline-namespace" required="false" />
<node-processor-input name="pipeline-name" required="true" />

</process>

<process name="layoutmanager"
executor="examples.petflow.layout.LayoutProcessor">

<node-processor-input name="header" required="true" />
<node-processor-input name="content" required="true" />
<node-processor-input name="footer" required="true" />

</process>

</process-registration>

<end-node-registration>

<end-node name="jsp"
node-handler="com.bea.p13n.appflow.webflow.internal.GenericNodeHandler">

<node-processor-input name="page-relative-path" required="false" />
<node-processor-input name="page-name" required="true" />

</end-node>

<end-node name="html"
node-handler="com.bea.p13n.appflow.webflow.internal.GenericNodeHandler">

<node-processor-input name="page-relative-path" required="false" />
<node-processor-input name="page-name" required="true" />

</end-node>

<end-node name="htm"
node-handler="com.bea.p13n.appflow.webflow.internal.GenericNodeHandler">

<node-processor-input name="page-relative-path" required="false" />
<node-processor-input name="page-name" required="true" />

</end-node>

<end-node name="servlet"
node-handler="com.bea.p13n.appflow.webflow.internal.ServletNodeHandler">

<node-processor-input name="request-uri-path" required="true" />
</end-node>

4 Customizing and Extending Webflow

4-38 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

<end-node name="portal"
node-handler="com.bea.portal.appflow.internal.LastContentUrlNodeHandler">

<node-processor-input name="page-name" required="true"/>
</end-node>

</end-node-registration>

</webflow-extensions>

Webflow Internationalization

The WebLogic Portal product suite uses message catalogs that are in XML format for
purposes of internationalization. For more information about the message catalog and
internationalization, see “Overview of Internationalization for WebLogic Server” in
the BEA WebLogic Server Internationalization Guide.

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-1

CHAPTER

5 Webflow JSP Tag
Library Reference

The WebLogic Portal product suite includes a set of JSP tags designed to facilitate the
development of JSPs using Webflow. Use of these predefined tags will eliminate the
need for your JSPs to contain any Java code related to Webflow. This topic explains
how to import this set of tags into your Web pages, and describes the purpose of each
tag.

This topic includes the following sections:

� Importing the Webflow Tag Library

� URL Creation Tags

� <webflow:createWebflowURL>

� <webflow:createResourceURL>

� Form Tags

� <webflow:form>

� Validated Form Tags

� <webflow:validatedForm>

� <webflow:text>

� <webflow:password>

� <webflow:radio>

� <webflow:checkbox>

� <webflow:textarea>

5 Webflow JSP Tag Library Reference

5-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

� <webflow:select>

� <webflow:option>

� Pipeline Session Tags

� <webflow:setProperty>

� <webflow:getProperty>

� <webflow:setValidatedValue>

� <webflow:getValidatedValue>

� <webflow:getException>

Note: If you are using Webflow in a portal application, you will need to use
specialized versions of the Webflow JSP tags. For more information, see
“Portal Management JSP Tag Library Reference” in the Getting Started with
Portals and Portlets documentation.

Importing the Webflow Tag Library

The Webflow JSP tags are utility tags used to simplify the implementation of JSPs that
utilize the Webflow mechanism. To import all of Webflow JSP tags described in this
topic, use the following code:

<%@ taglib uri=”webflow.tld” prefix=”webflow” %>

URL Creation Tags

The Webflow’s URL tags described in this section are used to create dynamic or static
URLs for links and other resources within a JSP.

URL Creation Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-3

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

<webflow:createWebflowURL>

The <webflow:createWebflowURL> tag (Table 5-1) is used in a JSP to dynamically
create a Webflow URL in a JSP. The Webflow URL may include the protocol, domain
name, port, Web application URI, WebflowServlet URI, and query string.

Table 5-1 <webflow:createWebflowURL>

Tag Attribute Required Type Description R/C

domainName No String Used to change the domain name or IP
address of the URL. This may be used if
Webflow is fronted by a proxy server and
that server resides on another machine.

R

doRedirect No String Causes the WebflowServlet to perform a
redirect instead of a forward to a presentation
node. Valid values are true and false.
The default is false (not to redirect).

R

encode No String Informs Webflow to encode the URL. URLs
need to be encoded if you wish to maintain
session state and the browser does not accept
cookies. Valid values are true and false.
The default value is true, as URLs will only
need to be encoded if the browser does not
accept cookies.

R

event Yes String Webflow will use this in combination with
the origin to resolve a destination in the
supplied namespace XML file.

R

extraParams No String Used to supply additional request parameters
as name/value pairs.

R

5 Webflow JSP Tag Library Reference

5-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

httpsInd No String Informs Webflow to calculate the protocol or
use HTTPS or HTTP. Therefore, valid
values are calculate, http, and https.
The default value is http.

Calculate will yield HTTPS if any node
in the origin/event branch chain list is
matched under the
HTTPS_URL_PATTERNS context parameter
in the application’s WEB-INF/web.xml
file. Calculate is more dynamic and
expensive, but if the protocol needs to be
forced you can specify it here.

R

namespace No String Indicates which Webflow configuration file
the origin and event are defined in. If
omitted, then the current (last successful)
namespace is used.

R

origin No String The node where the event will be coming
from. Origins follow the
node-name.node-type format. This
may or may not be equal to the page name.
If omitted, then the JSP page name is used.

R

pathPrefix No String Used to prefix the path information. This
string will be placed in front of the Web
application URI. This can be used when the
proxy server is located on the same machine.

Note: The proxy must strip the path prefix
before forwarding the request to
Webflow.

R

pathSuffix No String Used to suffix the path information. The
additional path information will be placed
after the WebflowServlet URI. This
information can then be retrieved via the
request.getPathInfo() method.

R

Table 5-1 <webflow:createWebflowURL> (Continued)

Tag Attribute Required Type Description R/C

URL Creation Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-5

Example

The following code fragments illustrate how to use the
<webflow:createWebflowURL> JSP tag and its many attributes:

<a href="<webflow:createWebflowURL event="link.yo" pathSuffix="/morepath"
/>">A Path Suffix

<a href="<webflow:createWebflowURL event="link.yo" pathPrefix="/pathprefix"
/>">A Path Prefix

<a href="<webflow:createWebflowURL event="link.yo" pathPrefix="/pathprefix"
pathSuffix="/suffix" />">A Path Prefix and Path Suffix

<a href="<webflow:createWebflowURL event="link.yo" domainName="123.123.123.123"
/>">A Domain Name

<a href="<webflow:createWebflowURL event="link.yo" pathSuffix="/morepath"
extraParams="sex=male" />">A Path Suffix and One Extra Parameter

<a href="<webflow:createWebflowURL event="link.yo" pathSuffix="/morepath"
extraParams="sex=male&animal=dog" />">A Path Suffix and Two Extra Parameters

<a href="<webflow:createWebflowURL event="link.yo" httpsInd="https" />">Always
Use HTTPS

<a href="<webflow:createWebflowURL event="link.yo" httpsInd="http" />">Always Use
HTTP

<a href="<webflow:createWebflowURL event="link.yo" httpsInd="calculate"
/>">Calculate HTTPS

<a href="<webflow:createWebflowURL event="link.yo" encode="false" />">Do Not
Encode the URL

<a href="<webflow:createWebflowURL event="link.yo" doRedirect="true"
/>">Redirect, Instead of Forward

5 Webflow JSP Tag Library Reference

5-6 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

<webflow:createResourceURL>

The <webflow:createResourceURL> tag (Table 5-2) is used in a JSP to create a
static URL for a resource, using the value of the P13N_STATIC_ROOT context
parameter in the application’s WEB-INF/web.xml file. This tag may be used to load
GIF images from a separate server.

Example

The following code fragment illustrates how you might use the
<webflow:createResourceURL> JSP tag:

<img src="<webflow:createResourceURL
resource="/images/button_checkout.gif"/>" border="0" alt="Proceed
To Checkout" border="0">

Form Tags

The Webflow JSP form tags described in this section are used to create simple dynamic
links for form actions.

Note: In the following tables, the Required column specifies if the attribute is
required (yes) or optional (no). In the R/C column, C means that the attribute
is a Compile time expression, and R means that the attribute can be either a
Request time expression or a Compile time expression.

Table 5-2 <webflow:createResourceURL>

Tag Attribute Required Type Description R/C

encode No Boolean Indicates whether or not the URL should be
encoded. Valid values are true and false.
The default value is true.

R

resource No String Relative path to the file or image. R

Form Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-7

<webflow:form>

The <webflow:form> tag (Table 5-3) is used in a JSP to dynamically generate an
HTML form tag. This tag is not as sophisticated as the <webflow:validatedForm>
tag, but is simpler. For more information about the <webflow:validatedForm> tag,
refer to the next section.

Note: This tag does not support the embedded Webflow form tags like the
<webflow:validatedForm> does.

Table 5-3 <webflow:form>

Tag Attribute Required Type Description R/C

domainName No String Used to change the domain name or IP
address of the URL. This may be used if
Webflow is fronted by a proxy server and
that server resides on another machine.

R

doRedirect No String Causes the WebflowServlet to perform a
redirect instead of a forward to a presentation
node. Valid values are true and false.
The default is false (not to redirect).

R

encode No String Informs Webflow to encode the URL. URLs
need to be encoded if you wish to maintain
session state and the browser does not except
cookies. Valid values are true and false.
The default value is true, as URLs will only
need to be encoded if the browser does not
except cookies.

R

event Yes String Webflow will use this in combination with
the origin to resolve a destination in the
supplied namespace XML file.

R

extraParams No String Used to supply additional request parameters
as name/value pairs.

R

5 Webflow JSP Tag Library Reference

5-8 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

hide No String If set to false, the namespace, origin, and
event will be displayed on the command line
instead of as hidden form fields.
Valid values are true and false. The
default value is true.

R

httpsInd No String Informs Webflow to calculate the protocol or
use HTTPS or HTTP. Therefore, valid
values are calculate, http, and https.
The default value is http.

Calculate will yield HTTPS if any node
in the origin/event branch chain list is
matched under the
HTTPS_URL_PATTERNS context parameter
in the application’s WEB-INF/web.xml
file. Calculate is more dynamic and
expensive, but if the protocol needs to be
forced you can specify it here.

R

method No String The method to be used for the form. Valid
values are get and post. The default value
is post.

R

name No String The name of the form. R

namespace No String Indicates which Webflow configuration file
the origin and event are defined in. If
omitted, then the current (last successful)
namespace is used.

R

origin No String The node where the event will be coming
from. Origins follow the
node-name.node-type format. This
may or may not be equal to the page name.
If omitted, then the JSP page name is used.

R

Table 5-3 <webflow:form> (Continued)

Tag Attribute Required Type Description R/C

Form Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-9

Example

The following code fragment illustrates how you might use the <webflow:form> JSP
tag:

<webflow:form event="button.go" >
<input type="text" name="username" >

</webflow:form>

pathPrefix No String Used to prefix the path information. This
string will be placed in front of the Web
application URI. This can be used when the
proxy server is located on the same machine.

Note: The proxy must strip the path prefix
before forwarding the request to
Webflow.

R

pathSuffix No String Used to suffix the path information. The
additional path information will be placed
after the WebflowServlet URI. This
information can then be retrieved via the
request.getPathInfo() method.

R

Table 5-3 <webflow:form> (Continued)

Tag Attribute Required Type Description R/C

5 Webflow JSP Tag Library Reference

5-10 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Validated Form Tags

The Webflow’s validated form JSP tags are used to dynamically generate HTML
forms that can be validated. These tags work in conjunction with an Input Processor
and the ValidatedValues class, described in “Webflow Validators and Input
Processors” on page 4-17. When a Web site visitor enters invalid information, the the
visitor’s input is preserved and redisplayed with an appropriate error message.

<webflow:validatedForm>

The <webflow:validatedForm> tag (Table 5-4) is used in a JSP to dynamically
create the URL that defines the action in an HTML form. This tag should be used in
conjunction with the com.bea.p13n.appflow.webflow.forms.* package and the
other nested form tags defined in the webflow.tld file (which are described later in
this section).

Table 5-4 <webflow:validatedForm>

Tag Attribute Required Type Description R/C

applyStyle No String Applies the associated style as indicated by
the field status to the message, the field, or to
none. Therefore, valid values are message,
field, and none. The default value is
message.

R

domainName No String Used to change the domain name or IP
address of the URL. This may be used if
Webflow is fronted by a proxy server and
that server resides on another machine.

R

doRedirect No String Causes the WebflowServlet to perform a
redirect instead of a forward to a presentation
node. Valid values are true and false.
The default is false (not to redirect).

R

Validated Form Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-11

encode No String Informs Webflow to encode the URL. URLs
need to be encoded if you wish to maintain
session state and the browser does not accept
cookies. Valid values are true and false.
The default value is true, as URLs will only
need to be encoded if the browser does not
accept cookies.

R

event Yes String Webflow will use this in combination with
the origin to resolve a destination in the
supplied namespace XML file.

R

extraParams No String Used to supply additional request parameters
as name/value pairs.

R

hide No String If set to false, the namespace, origin, and
event will be displayed on the command line
instead of as hidden form fields.
Valid values are true and false. The
default value is true.

R

httpsInd No String Informs Webflow to calculate the protocol or
use HTTPS or HTTP. Therefore, valid
values are calculate, http, and https.
The default value is http.

Calculate will yield HTTPS if any node
in the origin/event branch chain list is
matched under the
HTTPS_URL_PATTERNS context parameter
in the application’s WEB-INF/web.xml
file. Calculate is more dynamic and
expensive, but if the protocol needs to be
forced you can specify it here.

R

invalidStyle No String The style used to format the HTML field or
the message when the field is invalid.

R

Table 5-4 <webflow:validatedForm> (Continued)

Tag Attribute Required Type Description R/C

5 Webflow JSP Tag Library Reference

5-12 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

messageAlign No String Indicates whether to align the error message
above the field, to the right of the field, or
below the field. Therefore, value values are
top, right, and bottom. The default
value is right.

R

method No String The method to be used for the form. Valid
values are get and post. The default value
is post.

R

name No String The name of the form. R

namespace No String Indicates which Webflow configuration file
the origin and event are defined in. If
omitted, then the current (last successful)
namespace is used.

R

origin No String The node where the event will be coming
from. Origins follow the
node-name.node-type format. This
may or may not be equal to the page name.
If omitted, then the JSP page name is used.

R

pathPrefix No String Used to prefix the path information. This
string will be placed in front of the Web
application URI. This can be used when the
proxy server is located on the same machine.

Note: The proxy must strip the path prefix
before forwarding the request to
Webflow.

R

pathSuffix No String Used to suffix the path information. The
additional path information will be placed
after the WebflowServlet URI. This
information can then be retrieved via the
request.getPathInfo() method.

R

Table 5-4 <webflow:validatedForm> (Continued)

Tag Attribute Required Type Description R/C

Validated Form Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-13

<webflow:text>

The <webflow:text> tag (Table 5-5) is used in a JSP to validate an HTML text field.
This tag must be nested in the <webflow:validatedForm> tag.

styleId No String Scripting variable that will be set to one of
invalidStyle, unSpecifiedStyle, or
validStyle, depending on the field’s status:
valid, invalid, unspecified. Can be
used for finer control of formatting the
HTML form.

R

unspecifiedStyle No String Used to specify the intial style of the HTML
field before validation occurs.

R

validStyle No String The style used to format the HTML field
when it is valid.

R

Table 5-4 <webflow:validatedForm> (Continued)

Tag Attribute Required Type Description R/C

Table 5-5 <webflow:text>

Tag Attribute Required Type Description R/C

htmlAttributes No String Additional HTML attributes. Any attribute
not supported directly can be supplied here.

R

maxlength No String The maximum length of the text field. R

name Yes String The name of the text field. R

retainValue No String Determines whether or not the text field
should retain its input upon redisplay. Valid
values are true and false.

R

size No String The size of the text field. R

style No String The HTML style associated with the text
field.

R

value No String The initial value of the text field. R

5 Webflow JSP Tag Library Reference

5-14 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

<webflow:password>

The <webflow:password> tag (Table 5-6) is similar to the <webflow:text> tag
except that field input is masked with asterisks (****). This tag must be nested in the
<webflow:validatedForm> tag.

Table 5-6 <webflow:password>

Tag Attribute Required Type Description R/C

htmlAttributes No String Additional HTML attributes. Any attribute
not supported directly can be supplied here.

R

maxlength No String The maximum length of the password field. R

name Yes String The name of the password field. R

retainValue No String Determines whether or not the password
field should retain its input upon redisplay.
Valid values are true and false. The
default value is false.

R

size No String The size of the password field. R

style No String The HTML style associated with the
password field.

R

value No String The initial value of the password field. R

Validated Form Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-15

<webflow:radio>

The <webflow:radio> tag (Table 5-7) is used in a JSP to represent an HTML radio
button, but preserves the input. This tag must be nested in the
<webflow:validatedForm> tag.

<webflow:checkbox>

The <webflow:checkbox> tag (Table 5-8) is used in a JSP to generate the required
HTML for a check box. This tag will preserve input upon the InputProcessor
throwing an InvalidFormFieldException. This tag must be nested in the
<webflow:validatedForm> tag.

Table 5-7 <webflow:radio>

Tag Attribute Required Type Description R/C

checked No String Determines whether or not the radio button is
initially selected. Valid values are true and
false. The default value is false.

R

htmlAttributes No String Additional HTML attributes. Any attribute
not supported directly can be supplied here.

R

name Yes String The name of the radio button field. R

value Yes String The initial value of the radio button field. R

Table 5-8 <webflow:checkbox>

Tag Attribute Required Type Description R/C

checked No String Determines whether or not the check box
field is initially selected. Valid values are
true and false. The default value is
false.

R

htmlAttributes No String Additional HTML attributes. Any attribute
not supported directly can be supplied here.

R

name Yes String The name of the check box field. R

5 Webflow JSP Tag Library Reference

5-16 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

<webflow:textarea>

The <webflow:textarea> tag (Table 5-9) is used in a JSP to represent an HTML text
area, but preserves the input. This tag must be nested in the
<webflow:validatedForm> tag.

value Yes String The initial value of the check box field. R

Table 5-8 <webflow:checkbox> (Continued)

Tag Attribute Required Type Description R/C

Table 5-9 <webflow:textarea>

Tag Attribute Required Type Description R/C

cols No String The number of columns for the text area. R

name Yes String The name of the text area. R

retainValue No String Determines whether or not the text area
should retain its input upon redisplay. Valid
values are true and false.

R

rows No String The number of rows for the text area. R

style No String The HTML style associated with the text
area.

R

value No String The initial value of the text area. R

wrap No String Determines whether or not the text area
should wrap input. Valid values are true
and false. The default value is true.

R

Validated Form Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-17

<webflow:select>

The <webflow:select> tag (Table 5-10) is used in a JSP to represent a list box, but
preserves its input. This tag must be nested in the <webflow:validatedForm> tag.

<webflow:option>

The <webflow:option> tag (Table 5-11) is used in a JSP to represent an HTML
option, but preserves the input. An option is one value in a list box. This tag must be
nested in the <webflow:select> tag.

Table 5-10 <webflow:select>

Tag Attribute Required Type Description R/C

htmlAttributes No String Additional HTML attributes. Any attribute
not supported directly can be supplied here.

R

multiple No String Determines whether or not the list box
allows multiple selections. Valid values are
true and false. The default value is
false.

R

name Yes String The name of the list box. R

size No String The size of the list box. R

style No String The HTML style attribute. R

Table 5-11 <webflow:option>

Tag Attribute Required Type Description R/C

selected No String Determines whether or not the option is
initially selected. Valid values are true and
false. The default value is false.

R

style No String The HTML style attribute. R

value Yes String The value the option represents. R

5 Webflow JSP Tag Library Reference

5-18 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Example

The following code uses each of the validated form tags in an HTML form page that
gathers some information about a Web site’s visitors.

<%@ taglib uri=”webflow.tld” prefix=”webflow” %>

<% String validStyle="background: white; color: black; font-family: Arial"; %>
<% String invalidStyle="background: white; color: red; font-style: italic"; %>

<%-- If there was an InvalidFormDataException thrown, display the message --%>

<webflow:getException/>

<webflow:validatedForm event="button.go" applyStyle="message"
messageAlign="right" validStyle="<%=validStyle%>"
invalidStyle="<%=invalidStyle%>" unspecifiedStyle="<%=validStyle%>" >

<p>

Username:
<webflow:text name="username" value="start" size="15" maxlength="30"
htmlAttributes="onMouseOver=\\"self.status='User ID';return true\\"" />

Password:
<webflow:password name="password" size="15" retainValue="true" maxlength="30"
htmlAttributes="onMouseOver=\\"self.status='Secret Password';return true\\"" />

Sex:
<webflow:radio name="sex" checked="true" value="M"/>Male
<webflow:radio name="sex" value="F" />Female

Favorite Pet(s):
<webflow:checkbox name="cat" value="cat" />Cat

<webflow:checkbox name="dog" checked="true" value="dog" />Dog

<webflow:checkbox name="bird" value="bird" />Bird
<p>

Comment:
<webflow:textarea name="comment" cols="20" rows="3" value="hello" />

Hobbies:
<webflow:select name="hobbies" size="3" multiple="true">

<webflow:option value="Running"/>Running
<webflow:option value="Skiing"/>Skiing

Pipeline Session Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-19

<webflow:option value="Motocross"/>MotoX
<webflow:option value="Rugby"/>Rugby

</webflow:select>

<input type="submit" name="Submit"/>

</webflow:validatedForm>

Pipeline Session Tags

A Pipeline Session is used to share information between Input Processors, Pipeline
Components, and presentation nodes. The Pipeline Session JSP tags are used to
retrieve and set properties in the Pipeline Session. Presentation nodes (such as JSPs)
are typically used to retrieve information from the Pipeline Session, while Input
Processors and Pipeline Components place properties into the Pipeline Session. There
are, however, JSP tags for setting properties in the Pipeline Session.

Note: For more information about the Pipeline Session, see “The Pipeline Session”
on page 2-6 and “Pipeline Session Internals” on page 4-3.

<webflow:setProperty>

The <webflow:setProperty> tag (Table 5-12) sets a property in the Pipeline
Session.

Table 5-12 <webflow:setProperty>

Tag Attribute Required Type Description R/C

namespace No String Use the namespace attribute to force
webflow to use a particular webflow
configuration file defining a specific origin
and event. If omitted then the current
namespace (last successful namespace) is
used.

R

5 Webflow JSP Tag Library Reference

5-20 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Example

The following code fragment illustrates how you might use the
<webflow:setProperty> JSP tag to set some arbitrary object in the Pipeline Session
(Request-scoped):

<% SomeObject so = new SomeObject("TWO"); %>
<webflow:setProperty property="myobject" value="<%= so %>"
scope="request" />

<webflow:getProperty>

The <webflow:getProperty> tag (Table 5-13) retrieves a named property from the
Pipeline Session. This tag can be inlined or return a scripting variable.

property Yes String Name or key with which the given property
is to be associated.

R

scope No String The scope of the property. Valid values are
session and request. The default value
is session.

R

value Yes Object The value to associate with the property,
specified as an object name or JavaScript
expression.

R

Table 5-12 <webflow:setProperty> (Continued)

Tag Attribute Required Type Description R/C

Table 5-13 <webflow:getProperty>

Tag Attribute Required Type Description R/C

namespace No String Use the namespace attribute to force
webflow to use a particular webflow
configuration file defining a specific origin
and event. If omitted then the current
namespace (last successful namespace) is
used.

R

Pipeline Session Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-21

Example 1

The following code fragment is an example of how you might use the
<webflow:getProperty> JSP tag inline. The toString() method is called on the
instance of SomeObject:

result = <webflow:getProperty property="myobject" scope="request"
/>

Example 2

The following code fragment is an example of how you might use the
<webflow:getProperty> JSP tag to return a scripting variable of type SomeObject:

<webflow:getProperty id="myObj" property="myobject"
type="com.bea.test.SomeObject" scope="request" />
result = <%= myObj.getValue() %>

id No Object Java scripting variable to receive the instance
of the returned object. If omitted, the
toString() method will be called on the
object and the results will be displayed in the
browser.

R

property Yes String The name or key of the property to obtain
from the Pipeline Session.

R

scope No String The scope of the property, which can be
request or session. Request-scoped
properties can improve performance,
especially in a cluster because they do not
need to be replicated. Valid values are
session and request. The default value
is session.

R

type No String A Java class name, which can be used to cast
your exception.

R

Table 5-13 <webflow:getProperty> (Continued)

Tag Attribute Required Type Description R/C

5 Webflow JSP Tag Library Reference

5-22 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

<webflow:setValidatedValue>

The <webflow:setValidatedValue> tag (Table 5-14) is used in a JSP to configure
the display of fields in a form that a Web site visitor must correct. Usually this is done
within an Input Processor, but it can also be done from a JSP by using this tag. The
<webflow:setValidatedValue> tag is used in tandem with the
<webflow:getValidatedValue> tag.

Note: You may want to consider using the <webflow:validatedForm> tags
instead. This tag supports the validatedValues class from previous
releases. However, if there is some low-level functionality that needs to be
accessed, then these tags are still valid.

Example

When used in a JSP, this sample code will obtain the current value and processing
status of the <field_name> form field.

<webflow:setValidatedValue fieldName=”<field_name>”
fieldValue=”<field_value>” fieldStatus=”status” />

Table 5-14 <webflow:setValidatedValue>

Tag Attribute Required Type Description R/C

fieldName No String The name of the field for which the status is
desired. This should match the HTML form field
name.

R

fieldStatus No String The processing status of the field. Valid values are:
unspecified—Field was left blank; Web site
visitor must enter some data.
invalid—Data is entered incorrectly.
valid—Data is entered correctly.

R

fieldValue No String The new value of the field. R

Pipeline Session Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-23

<webflow:getValidatedValue>

The <webflow:getValidatedValue> tag (Table 5-15) is used in a JSP to display the
fields in a form that a Web site visitor must correct. The
<webflow:getValidatedValue> tag is used in tandem with
the<webflow:setValidatedValue> tag.

Note: You may want to consider using the <webflow:validatedForm> tags
instead. This tag supports the ValidatedValues class from previous
releases. However, if there is some low-level functionality that needs to be
accessed, then these tags are still valid.

Table 5-15 <webflow:getValidatedValue>

Tag Attribute Required Type Description R/C

fieldColor No String Scripting variable set to one of
invalidColor, validColor, or
unspecifiedColor (depending on the
status). This can be used to change the color
of the field or message.

R

fieldDefault
Value

No String The default value to use if the fieldValue
is missing.

R

fieldMessage No String A scripting variable used to provide a
specific message for the current field.

R

fieldName Yes String The name of the field for which the status is
desired. This should match the HTML form
field name.

R

fieldStatus Yes String The status of the field. Valid values are:
unspecified—Field was left blank; Web
site visitor must enter some data.
invalid—Data is entered incorrectly.
valid—Data is entered correctly.

R

fieldValue Yes String Scripting variable representing the value of
the form field.

R

5 Webflow JSP Tag Library Reference

5-24 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

These fields are determined and marked by an Input Processor after performing its
validation activities. All InputProcessors use a ValidatedValues object to
communicate which fields were successfully processed as well as those that were
determined to be invalid. For more information, see “Webflow Validators and Input
Processors” on page 4-17.

Example 1

When used in a JSP, this sample code will obtain the current value and processing
status of the <field_name> form field.

<webflow:getValidatedValue fieldName=”<field_name>”
fieldValue=”<field_value>” fieldStatus=”status” />

Example 2

The <webflow:getValidatedValue> tag refers to the webflow.tld tag library to
retrieve available elements/attributes. In this example, a request is being made to
obtain the following values from the HTTP session:

fieldName

fieldValue

fieldStatus

validColor

invalidColor

unspecifiedColor

invalidColor No String The color with which the label for an invalid
field is to be marked. Defaults to red.

R

unspecified
Color

No String If the Web site visitor leaves a required field
blank, this will be the color of the label for
that field. Defaults to red.

R

validColor No String The color with which the label for a valid
field is to be marked. Defaults to black.

R

Table 5-15 <webflow:getValidatedValue> (Continued)

Tag Attribute Required Type Description R/C

Pipeline Session Tags

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 5-25

fieldColor

These attributes are used for display purposes. (In this case, indicate that this field is
required and mark it in red.) The overall goal is to display values back to the Web site
visitor, indicating which pieces are valid/invalid as returned from the Input Processor.

<webflow:getValidatedValue
fieldName="<%=HttpRequestConstants.CUSTOMER_FIRST_NAME%>"
fieldValue="customerFirstName" fieldStatus="status"
validColor="black"
invalidColor="red" unspecifiedColor="black" fieldColor="fontColor"
/>

<webflow:getException>

The <webflow:getException> tag (Table 5-16) is used to retrieve the exception or
message thrown by a Webflow processor. This can be the message associated with an
InvalidFormFieldException exception or a ProcessingException exception.
This tag can be inlined (in which it calls the getMessage() method on the exception)
or return a scripting variable representing the exception.

Example

The following code fragment illustrates how you might use the
<webflow:getException> JSP tag:

<%-- If there was an InvalidFormDataException thrown, display the
message --%>

<webflow:getException/>

Table 5-16 <webflow:getException>

Tag Attribute Required Type Description R/C

id Yes Exception Java scripting variable, which can be used to
retrieve an instance of the exception.

R

type No String Java class name, which can be used to cast
the exception.

R

5 Webflow JSP Tag Library Reference

5-26 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 6-1

6 An Example of
Webflow: The Pet Flow
Application

Pet Flow is a sample Web application that comes packaged with the WebLogic Portal
product suite. The Pet Flow application has been designed to illustrate some of the
features of the Webflow mechanism, which may clarify the concepts described in other
topics of this Guide to Managing Presentation and Business Logic: Using Webflow
and Pipeline documentation.

This topic includes the following sections:

� About the Pet Flow Sample Application

� What Webflow Features Does the Pet Flow Sample Application Illustrate?

� Accessing the Pet Flow Sample Application

� Location of Pet Flow Files

� Running Pet Flow in a Web Browser

� Opening a Pet Flow Namespace in the Webflow Editor

6 An Example of Webflow: The Pet Flow Application

6-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

About the Pet Flow Sample Application

As a developer, you are probably familiar with the Sun Microsystems Pet Store Demo,
a comprehensive e-commerce application based on the Java 2 Enterprise Edition
(J2EE) specification. The Pet Store Demo showcases the main features of J2EE and
can be used as a reference implementation. Because BEA recognizes this sample
application as a great way to help you understand how to build Web applications using
J2EE, we have modified it to use some features of our Webflow mechanism. The
resulting sample application is called Pet Flow.

Note: For more information on the original Pet Store Demo, see the “Architecture
Overview” at http://java.sun.com/j2ee/blueprints/jps11/archoverview.html.

What Webflow Features Does the Pet Flow
Sample Application Illustrate?

Because it is only a sample application, the Pet Flow Web application does not show
every feature available in the Webflow mechanism. However, it does illustrate the
following:

� Link and button event transitions within the same namespace, when the
following information is provided in the URL:

� namespace, no origin, no event

� namespace, origin, event

Additionally, the Pet Flow application shows link and button event transitions
across different namespaces when the URL provides the namespace, origin, and
event to the Webflow mechanism.

� Exception transitions within the same namespace and across different
namespaces.

� Wildcard presentation nodes (JavaServer Pages only) that work within the same
namespace and across different namespaces.

Accessing the Pet Flow Sample Application

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline 6-3

� Handling of wildcard processor node exceptions (Input Processors and
Pipelines).

� Input Processors used for conditional branching, and general handling of Input
Processor exceptions.

� Form validation using Input Processors, as well as use of a custom validator.

� Pipelines that may produce fatal exceptions, and general handling of Pipeline
exceptions.

� Pipelines that are transactional and Pipelines that are not transactional.
Additionally, Pipeline Sessions that transactional, and Pipeline Sessions that are
not transactional.

� Getting Pipeline Session properties via JavaServer Pages (JSPs), Input
Processors, and Pipeline Components. Additionally, setting Pipeline Session
properties via Input Processors and Pipeline Components.

� Use of an extension (custom) processor node.

� Frame-based and all-in-one configurations.

Use the Pet Flow examples to increase your understanding of Webflow’s capabilities,
but be sure to use your organization’s established processes and your own best
judgement in your implementations.

Accessing the Pet Flow Sample Application

If you have successfully installed the WebLogic Portal product suite, you can access
the Pet Flow sample application. If you have not yet installed the product and would
like instructions for performing the installation, see the Installation Guide.

Location of Pet Flow Files

The files comprising the Pet Flow sample Web application are located in the
PORTAL_HOME\applications\petflowApp\petflow directory, where
PORTAL_HOME is the directory in which you installed WebLogic Portal.

6 An Example of Webflow: The Pet Flow Application

6-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

Running Pet Flow in a Web Browser

To run the Pet Flow application in a Web browser, follow the instructions for the
petflowDomain in the “Review the Reference Domains” section in the Deployment
Guide.

Opening a Pet Flow Namespace in the Webflow Editor

To open a Pet Flow namespace file in the Webflow Editor, follow these steps:

1. Start the E-Business Control Center (EBCC). For detailed instructions on starting
the EBCC, see “Starting the E-Business Control Center” in the Guide to Using the
E-Business Control Center documentation.

2. Open the Pet Flow application so you can view its Webflow. For instructions on
opening an application, see “Opening an Application” in the Guide to Using the
E-Business Control Center documentation.

3. Select the Site Infrastructure tab in the EBCC’s Explorer window, then click the
Webflows/Pipelines icon.

4. Click the Webapps and petflow objects in the Webflows/Pipelines list box to
view the list of namespace files that comprise the Pet Flow application’s
Webflow.

5. Double click any of the Pet Flow application’s <namespace>.wf files that are
shown in the EBCC’s Explorer list to view them in the Webflow Editor canvas.

6. From the Webflow Editor canvas, click on any Pipeline Node to view its Pipeline
Components the Pipeline Editor. Or, you can expand the Pipelines shown under
the Pipeline Namespaces object in the Webflows/Pipelines list box, then double
click on the Pipeline name to open the Pipeline Editor.

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline I-1

Index

Symbols
<namespace>.pln files 1-9, 3-6, 3-12
<namespace>.pln.<pipeline_name>.ui files

3-12
<namespace>.wf files 1-9, 3-6, 3-12
<namespace>.wf.ui files 3-12

A
abort exception node 3-16, 4-14

default 4-14
accessing

exceptions 4-13
the Pet Flow application 6-3

adding Webflow components in Editors 3-
24

application.xml file 1-14
applications

enterprise
relationship to Webflow 1-7

portal
events 2-3, 2-8
specifying namespaces 2-9

Web
configuring to use Webflow 1-19
creating in the EBCC 3-3
default behavior 2-10
Pet Flow 6-1, 6-2
relationship to Webflow 1-7
URI 1-13
welcome files 1-18

architecture, Webflow 1-1, 1-2, 1-3
portal 1-4

attributes, Pipeline Session 2-7
automatic URL generation in JavaServer

Pages (JSPs) 1-17, 2-12

B
begin node

definition 2-9
designating in Webflow Editor 3-25

begin origin 1-14, 1-19
benefits

namespaces 3-9
Webflow 1-1, 1-8

branch exceptions 4-14
branching Input Processors and Pipelines 2-

12
business logic in Pipelines 2-6
button events 2-7

C
chaining Input Processors and Pipelines 2-

12
class

InputProcessorSupport 4-3, 4-15
helper methods 4-5

PipelineComponentSupport 4-3, 4-28
helper methods 4-6

SessionManagerFactory 4-4
ValidatedValues 2-5, 4-17, 5-10, 5-

I-2 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

23
WebflowJSPHelper 2-12

ClassCastException 4-11, 4-13
ClassNotFoundException 4-11, 4-12
clusters

data syncronization in 3-7
Pipeline Session 2-6

communication among Pipeline Components
2-6

Components, Pipeline
association with Pipeline Session 4-3
communication 2-6
creating 4-28
development guidelines 4-32
exception handling 4-11
exceptions

creating 4-13
implementation 2-6

as Java objects 4-30
as stateless session EJBs 4-30

naming conventions 4-29
relationship to Pipelines 2-6
state 4-31

components, Webflow 1-7, 2-1
adding in Editors 3-24
creating 1-20
editing names in Editors 3-24
graphical representations 3-13
in Editors 3-9
organizing in Editor canvas 3-23
relationships 2-3
selecting in Editors 3-23
using in portals 2-13
using in Web pages 2-12

configuration error page 2-16, 4-11
definition 2-11

configuration files
<namespace>.pln 1-9, 3-6, 3-12
<namespace>.wf 1-9, 3-6, 3-12
application.xml 1-14
creating and modifying with Webflow

and Pipeline Editors 1-12
web.xml

registering the PortalServlet 1-18
registering the WebflowServlet 1-

17, 1-18
Webflow 1-1, 1-9

Content Management System 3-6,
3-11, 3-12

contents 1-9
creating 1-12, 1-19
location 1-10
modifying 1-12
pipeline.properties 1-10
webflow.properties 1-10

ConfigurationException 4-12
configuring

Pipeline Session 4-3
Web applications to use Webflow 1-19

container
Enterprise JavaBean (EJB) 2-5
Web application 2-5

Content Management System
Webflow and Pipeline configuration

files in 3-6, 3-11, 3-12
context parameters

HTTP_PORT and HTTPS_PORT 1-13
P13N_APPLICATION_URL 1-15

relationship to URL pattern 1-17,
1-18

P13N_DEFAULT_NAMESPACE 1-
14, 1-15, 2-9, 2-11

P13N_STATIC_ROOT 1-16, 5-6
P13N_URL_DOMAIN 1-16
P13N_URL_PREFIX 1-16
specifying 1-15

conversational state 1-4
createStaticResourceURL() method 1-16
createWebflowURL() method 1-16, 2-12
creating

custom validators 4-25
extension (custom) nodes 2-4, 2-5, 4-

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline I-3

33
Input Processor exceptions 4-13
Input Processors 4-15
Pipeline Component exceptions 4-13
Pipeline Components 4-28
Pipelines in the Pipeline Editor 3-5
Webflow components 1-20
Webflow configuration files 1-12, 1-

19
methods for 1-12

Webflow namespaces in the Webflow
Editor 3-5

customizing Webflow 4-1

D
data, syncronizing 3-1, 3-7

clusters 3-7
errors 3-7

default abort exceptions 4-14
deployment descriptors, XML 1-3, 1-7, 1-

13, 1-16, 1-18, 1-19, 2-9, 2-11
setting up 1-15

destination and origin nodes 2-4
developer roles 1-12
development guidelines

Input Processors 4-17
Pipeline Components 4-32

domain name, server 1-13, 1-16
dynamic and static URLs 5-2

E
Editors, Webflow and Pipeline

creating Webflow namepsaces and
Pipelines 3-5

definition 3-1
important information about 3-6
opening multiple namespace files 3-9
opening multiple Pipelines 3-11
organizing Webflow components 3-23

palettes 3-17
read-only mode 3-6, 3-11, 3-12, 3-17
role-based security 3-7
title bar information 3-11
toolbars 3-20
using to create and modify Webflow

configuration files 1-12
validation features 1-12, 2-15, 2-16,

3-5
Webflow components 3-9

ensuring validity of Webflows 1-12
enterprise applications

and Webflow 1-7
Enterprise JavaBean (EJB) container 2-5
error handling, Webflow 4-10
error page

500 internal server 2-16, 4-11
configuration 2-16, 4-11

definition 2-11
events

definition 2-7
portal applications 2-3, 2-8
presentation node 2-7
processor node 2-7
role in transitions 2-3
Webflow use of 1-6

exceptions 2-7
abort 3-16, 4-14

default 4-14
accessing 4-13
branch 4-14
ClassCastException 4-11, 4-13
ClassNotFoundException 4-11, 4-12
ConfigurationException 4-12
Exception 4-11
handling

Input Processor 4-11
JavaServer Page (JSPs) 4-13
JavaServer Pages (JSPs) 4-13
Pipeline Component 4-11

IllegalAccessException 4-12, 4-13

I-4 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

IllegalArgumentException 4-12
Input Processor

creating 4-13
InstantiationException 4-11, 4-12
InvalidArgumentException 4-4
messages 4-6, 4-13
non-runtime 4-9
Pipeline

fatal 4-14
nonfatal 4-14

Pipeline Component
creating 4-13

PipelineException 4-11
PipelineSystemException 4-12
RemoteException 4-12
runtime 4-9
RuntimeException 4-11, 4-12
validation 4-24

InvalidFormDataException 4-24
InvalidValidatorException 4-24
MissingFormFieldException 4-24

execution order, Webflow 1-3, 2-13
Presentation Nodes 2-14
Processor Nodes 2-15

Executor, Pipeline 1-4
Executor, Webflow 1-3
extending Webflow 1-4, 4-1, 4-33
extension (custom) nodes

creating 4-33
presentation 2-4
processor 2-5
registering 1-10, 1-12, 3-12

F
fatal Pipeline exceptions 4-14
file

<namespace>.pln.<pipeline_name>.ui
3-12

<namespace>.wf.ui 3-12
namespace

opening multiple 3-9
Pet Flow

location 6-3
webflow.tld 5-10
webflow-extensions.wfx 3-12, 4-33,

4-35
location 4-35
modifying 4-35

welcome 1-18
files, configuration

<namespace>.pln 1-9, 3-6, 3-12
<namespace>.wf 1-9, 3-6, 3-12
web.xml 1-3, 1-7, 1-13, 1-18, 1-19

setting up 1-15, 1-16, 2-9, 2-11
Webflow 1-1, 1-9

Content Management System 3-6,
3-11, 3-12

contents 1-9
creating 1-12, 1-19
location 1-10
modifying 1-12
pipeline.properties 1-10
webflow.properties 1-10

flow of control 1-4, 1-5

G
getInvalidFieldCount() method 4-24
getMessage() method 5-25
getting and setting Pipeline Session

properties 4-4
GIF images, loading 5-6
graphical representations of Webflow

components 3-13
guidelines, development

Input Processors 4-17
Pipeline Components 4-32

H
HTTP_PORT and HTTPS_PORT context

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline I-5

parameters 1-13
HTTPRequest

Pipeline Session use of 2-6, 4-7
HTTPSession

Pipeline Session use of 2-6

I
IllegalAccessException 4-12, 4-13
IllegalArgumentException 4-12
images, GIF

loading 5-6
implementation of JSPs 5-2
initial state

Pipelines 2-10
Webflow 2-9

Input Processor
as Model 1-7
branching 2-12
chaining 2-12
creating 4-15
definition 1-4, 2-5
development guidelines 4-17
exception handling 4-11
exceptions

creating 4-13
InvalidFormFieldException 5-15, 5-25
naming conventions 4-16
ProcessingException 5-25
statelessness 4-17
typical use 2-5
ValidatedValues class 4-17, 5-10, 5-

24
InputProcessor interface 4-15
InputProcessorSupport class 4-3, 4-15

helper methods 4-5
InstantiationException 4-11, 4-12
interface

InputProcessor 4-15
Pipeline Session 4-3
PipelineComponent 4-28

PresentationNodeHandler 4-33
Processor 4-35
ValidatedValues 4-17

purpose 4-18
Validator 4-25

internal server error page 2-16, 4-11
internals of Webflow 1-4
internationalization, Webflow 4-38
InvalidArgumentException 4-4
InvalidFormDataException 4-24
InvalidFormFieldException 5-15, 5-25
InvalidValidatorException 4-24
invocation of Webflow from a URL 1-13

J
Java object Pipeline Components 2-6, 4-30
JavaServer Pages (JSPs)

automatic URL generation 1-17, 2-12
exception handling 4-13
implementation of 5-2

JSP tags
Pipeline Session 2-7, 5-19
Webflow 1-16, 2-5, 2-12, 5-1

importing 5-1

L
library, tag

Webflow 5-2, 5-10
link events 2-7
listen port 1-13
loading GIF images 5-6
location

Webflow configuration files 1-10
webflow-extensions.wfx file 1-11

M
Manager, Session 1-3
messages, exception 4-6, 4-13

I-6 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

methods
createStaticResourceURL() 1-16
createWebflowURL() 1-16, 2-12
getInvalidFieldCount() 4-24
getMessage() 5-25
helper

InputProcessorSupport 4-5
PipelineComponentSupport 4-6

support 2-7
Webflow configuration files

creating 1-12
modifying 1-12

migration
Webflow 1-1, 1-10, 1-13

MissingFormFieldException 4-24
modifying

namespaces in the Webflow Editor 3-4
Pipelines in the Pipeline Editor 3-5
Webflow configuration files 1-12

methods for 1-12
webflow-extensions.wfx file 1-12

MVC and Webflow 1-2, 1-7

N
namespaces

benefits 3-9
default 1-14

begin node 2-9
configuration error page 2-11

definition 1-7, 2-8, 3-9
division of Pipeline Session 2-8
files 1-9
Pipeline 3-4
specifying for portal applications 2-9
Webflow

in EBCC 3-4
wildcard nodes 2-10

naming conventions
Input Processors 4-16
Pipeline Components 4-29

nodes
abort exception 3-16, 4-14
begin

definition 2-9
designating in Webflow Editor 3-

25
definition 2-3
extension (custom)

creating 4-33
presentation 2-4
processor 2-5
registering 1-10, 1-12, 3-12

presentation
as View 1-7
definition 2-4

processor
as Model 1-7
definition 2-4
Input Processor 2-5
Pipelines 2-5

proxy 3-15
root component

definition 2-10
designating in Pipeline Editor 3-25

wildcard
definition 2-10

nonfatal Pipeline exceptions 4-14
non-runtime exception 4-9

O
objects

Java
Pipeline Components implemented

as 2-6, 4-30
return 2-7
serializable 2-7

opening
multiple namespace files 3-9, 3-11
Pet Flow application in the Webflow

Editor 6-4

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline I-7

Pipeline Editor 3-5, 3-10
origin or destination nodes 2-4
origin, begin 1-14, 1-19

P
palettes in the Webflow and Pipeline Editors

3-17
parameters, context

HTTP_PORT and HTTPS_PORT 1-13
P13N_APPLICATION_URL 1-15

relationship to URL pattern 1-17,
1-18

P13N_DEFAULT_NAMESPACE 1-
14, 1-15, 2-9, 2-11

P13N_STATIC_ROOT 1-16, 5-6
P13N_URL_DOMAIN 1-16
P13N_URL_PREFIX 1-16
specifying 1-15

pattern, URL 1-17
performance, Pipeline Session 2-6
Pet Flow sample Web application 6-1

about 6-2
accessing 6-3
features 6-2
opening in Webflow Editor 6-4
running 6-4

Pipeline Components
association with Pipeline Session 4-3
communication 2-6
creating 4-28
development guidelines 4-32
exception handling 4-11
exceptions

creating 4-13
implementation

as Java objects 4-30
as stateless session EJBs 4-30

implementations 2-6
naming conventions 4-29
relationship to Pipelines 2-6

state 4-31
Pipeline Editor

opening 3-5, 3-10
Pipeline Executor 1-4
Pipeline Processor

definition 1-4
Pipeline Session

as storage 1-6
association with Pipeline Components

4-3
clustering 2-6
configuring 4-3
conversational state 1-4
definition 2-6
division into namespaces 2-8
HTTPSession 2-6
including in transactions 4-32
interface 4-3
JSP tags 2-7, 5-19
lifecycle 1-3
performance 2-6
properties 2-7

getting and setting 4-4
scope 4-7
serializing 4-8

serializable objects 2-7
storing information in 2-6
transactions 2-6
use of HTTPRequest 2-6

Pipeline Session scope for Pipeline Session
properties 4-8

PipelineComponent interface 4-28
PipelineComponentSupport class 4-3, 4-28

helper methods 4-6
PipelineException 4-11
Pipelines

as Model 1-7
branching 2-12
chaining 2-12
creating in Pipeline Editor 3-5
definition 2-5

I-8 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

exceptions
fatal 4-14
nonfatal 4-14

initial state 2-10
modifying in Pipeline Editor 3-5
nontransactional 4-31
opening multiple 3-11
relationship to Pipeline Components 2-6
scope 1-7, 1-9
syncronizing data 3-1, 3-7

clusters 3-7
errors 3-7

transactional 1-4, 2-5, 4-31
within namespaces 3-4

PipelineSystemException 4-12
port, listen 1-13
portal applications

events 2-3, 2-8
specifying namespaces 2-9
using Webflow 2-13

PortalServlet
1-4

registering 1-18
presentation nodes

as View 1-7
definition 2-4
events 2-7

PresentationNodeHandler interface 4-33
ProcessingException 5-25
processor

Input Processor 1-4
branching 2-12
chaining 2-12
creating 4-15
definition 2-5
development guidelines 4-17
InvalidFormFieldException 5-15,

5-25
naming conventions 4-16
ProcessingException 5-25
statelessness 4-17

typical use 2-5
ValidatedValues class 5-10, 5-24

nodes
as Model 1-7
definition 2-4
events 2-7
Input Processors 2-5
Pipelines 2-5

Pipeline 1-4
Processor interface 4-35
properties

Pipeline Session 2-7
getting and setting 4-4
Pipeline Session scope 4-8
Request scope 4-7
serializing 4-8

proxy node 3-15

R
read-only mode, Webflow and Pipeline

Editors 3-6, 3-11, 3-12, 3-17
registering extension (custom) nodes 1-10,

1-12, 3-12, 4-35
relationships among Webflow components

2-3
RemoteException 4-12
Request scope for Pipeline Session properties

4-7
request, HTTP 4-7
return objects, processor node 2-7
role-based security in Webflow and Pipeline

Editors 3-7
roles, developer 1-12
root component node

definition 2-10
designating in Pipeline Editor 3-25

running the Pet Flow application 6-4
runtime exception 4-9
RuntimeException 4-11, 4-12

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline I-9

S
scope

Pipeline Session properties 4-7
Pipeline Session 4-8
Request 4-7

Pipelines 1-7, 1-9
Webflow 1-7, 1-9

selecting Webflow components in Editors 3-
23

serializable objects in the Pipeline Session 2-
7

serializing Pipeline Session properties 4-8
server domain name 1-13, 1-16
servlets

PortalServlet 1-4
registering 1-18

WebflowServlet 1-3, 1-14
as Controller 1-7
registering 1-17, 1-18

Session Manager 1-3
Session, Pipeline

clustering 2-6
configuring 4-3
definition 2-6
HTTPSession 2-6
including in transactions 4-32
interface 4-3
JSP tags 2-7
lifecycle 1-3
performance 2-6
properties 2-7

getting and setting 4-4
scope 4-7
serializing 4-8

serializable objects 2-7
storing information in 1-6, 2-6
transactions 2-6
use of HTTPRequest 2-6

SessionManagerFactory class 4-4
setting up the web.xml file 1-15, 1-16, 2-9,

2-11
specifying context parameters 1-15
state machine, Webflow as 1-2, 1-6
stateless session EJB Pipeline Components

2-6, 4-30
statelessness and Input Processors 4-17
static and dynamic URLs 5-2
support methods 2-7
syncronizing Webflow and Pipeline data 3-

1, 3-7
clusters 3-7
errors 3-7

T
tags, JSP

Pipeline Session 2-7, 5-19
Webflow 1-16, 2-5, 2-12, 5-1

importing 5-1
title bar information in Webflow and Pipeline

Editors 3-11
toolbars in the Webflow and Pipeline Editors

3-20
transactions

including Pipeline Session in 2-6, 4-32
Pipelines 1-4, 2-5, 4-31

transitions, Webflow 1-6
definition 2-3
event 2-3, 2-7
exception 2-8

U
URI for the Web application 1-13
URL

automatic generation of 1-17, 2-12
pattern 1-17
static and dynamic 5-2
use of begin node 2-9
Webflow invocation from 1-13

using Webflow 1-1, 1-13

I-10 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

with a proxy front-end 1-13, 1-16
with portals 2-13

V
ValidatedValues class 2-5, 4-17, 5-10, 5-

23
purpose 4-18

validation exceptions 4-24
InvalidFormDataException 4-24
InvalidValidatorException 4-24
MissingFormFieldException 4-24

validation features of Webflow and Pipeline
Editors 1-12, 2-15, 2-16, 3-5

Validator interface 4-25
validators

creating custom 4-25

W
Web application container 2-5
Web applications

and Webflow 1-7
configuring to use Webflow 1-19
creating in the EBCC 3-3
default behavior 2-10
Pet Flow 6-1

about 6-2
accessing 6-3
features 6-2
opening in Webflow Editor 6-4
running 6-4

URI 1-13
welcome files 1-18

Web pages
using Webflow 2-12

web.xml file 1-3, 1-7, 1-13, 1-18, 1-19
Webflow

architecture 1-1, 1-2, 1-3
portal 1-4

as state machine 1-2, 1-6

benefits 1-1, 1-8
components 1-7, 2-1

adding in Editors 3-24
begin node 2-9
configuration error page 2-11
creating 1-20
editing names in Editors 3-24
graphical representations 3-13
organizing in Editor canvas 3-23
relationships 2-3
root component node 2-10
selecting in Editors 3-23
using in portals 2-13
using in Web pages 2-12
wildcard node 2-10

configuration files 1-1, 1-9
Content Management System 3-6,

3-11, 3-12
contents 1-9
creating 1-12, 1-19
location 1-10
modifying 1-12
pipeline.properties 1-10
webflow.properties 1-10

customizing 4-1
definition 1-1
error handling 4-10
execution order 1-3, 2-13

Presentation Nodes 2-14
Processor Nodes 2-15

extending 1-4, 4-1, 4-33
flow of control 1-4, 1-5
initial state 2-9
internals 1-4
internationalization 4-38
invocation from a URL 1-13
JSP tags 1-16, 2-5, 2-12, 5-1

importing 5-1
migration 1-1, 1-10, 1-13
modifying namespaces in Webflow

Editor 3-4

Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline I-11

MVC 1-2, 1-7
namespaces

default 1-14
definition 1-7
files 1-9
in EBCC 3-4

overview 1-1
relationship

to enterprise applications 1-7
to Web applications 1-7

scope 1-7, 1-9
syncronizing data 3-1, 3-7

clusters 3-7
errors 3-7

tag library 5-2, 5-10
transitions 1-6

definition 2-3
event 2-3, 2-7
exception 2-8

use of events 1-6
using 1-1, 1-13

example 6-1
in Web pages 2-12
with a proxy front-end 1-13, 1-16
with portals 2-13

validity
ensuring 1-12

Webflow and Pipeline Editors
creating Webflow namespaces and

Pipelines 3-5
definition 3-1
important information about 3-6
opening multiple namespace files 3-9
opening multiple Pipelines 3-11
organizing Webflow components 3-23
palettes 3-17
read-only mode 3-6, 3-11, 3-12, 3-17
role-based security 3-7
title bar information 3-11
toolbars 3-20
using to create and modify Webflow

configuration files 1-12
validation features 1-12, 2-15, 2-16,

3-5
Webflow components 3-9

Webflow Executor 1-3
Webflow namespaces

creating in the Webflow Editor 3-5
webflow.tld file 5-10
webflow-extensions.wfx file

definition 1-10, 3-12
location 1-11, 4-35
modifying 1-12, 4-33, 4-35

WebflowJSPHelper class 2-12
WebflowServlet 1-3, 1-14, 4-33

as Controller 1-7
registering 1-17, 1-18

welcome files for Web applications 1-18
wildcard node

definition 2-10

X
XML configuration files

Webflow 1-1, 1-9
Content Management System 3-6,

3-11, 3-12
contents 1-9
creating 1-12, 1-19
location 1-10
modifying 1-12
pipeline.properties 1-10
webflow.properties 1-10

XML deployment descriptors 1-3, 1-7, 1-
13, 1-16, 1-18, 1-19, 2-9, 2-11

setting up 1-15
XML Schema Definition (XSD) 1-9, 1-10

I-12 Guide to Managing Presentation and Business Logic: Using Webflow and Pipeline

	Contents
	About This Document
	1. Overview of Webflow
	2. Webflow Components and Concepts
	3. Using the Webflow and Pipeline Editors
	4. Customizing and Extending Webflow
	5. Webflow JSP Tag Library Reference
	6. An Example of Webflow: The Pet Flow Application
	Index

	About This Document
	What You Need to Know
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Overview of Webflow
	Introduction to Webflow
	High-Level Architecture
	Webflow Architecture
	The Internals of the Webflow Mechanism
	Understanding Webflow as a State Machine
	Webflow and the MVC Design Pattern

	The Relationship Between Webflows and Applications
	Benefits of the Webflow Mechanism

	The Webflow Configuration Files
	What Files Will I Be Working With?
	How Are These Files Different from the Webflow and Pipeline Properties Files?
	Location of Webflow Configuration Files in the Directory Structure
	Creating and Modifying Webflow Files
	Who Should Create and Modify the Webflow Files?
	How Do I Create and Modify Webflow Files?

	Getting Started with Webflow
	Understanding How Webflow Is Invoked from a URL
	Setting Up Your Web Application’s web.xml File
	Specifying Webflow Context Parameters
	Registering the WebflowServlet Servlet
	Defining Your Web Application’s Welcome File

	Configuring Your Web Application to Use Webflow

	Next Steps

	2 Webflow Components and Concepts
	Introduction to Webflow Components
	Presentation and Processor Nodes
	Input Processors and Pipelines
	The Pipeline Session
	Events
	Namespaces
	Special Webflow Components
	The Begin Node
	The Root Component Node
	The Wildcard Nodes
	The Configuration Error Page

	Chaining and Branching with Processor Nodes
	Using Webflow Components in Your Web Pages
	Using Webflow Components with Portals
	Webflow Execution Order
	Presentation Nodes
	Processor Nodes

	3 Using the Webflow and Pipeline Editors
	Introduction
	Starting the Webflow and Pipeline Editors
	Important Notes About Using the Webflow and Pipeline Editors
	Next Steps

	Learning to Use the Webflow and Pipeline Editors
	Webflow and Pipeline Editor Essentials
	Webflow Namespaces
	Pipelines Versus Pipeline Namespaces
	Information Displayed in the Editors’ Title Bars
	Webflow and Pipeline Files in Your Content Management System

	Webflow Component Representations
	Understanding the Webflow and Pipeline Editor Palettes
	Tools in the Webflow Editor Palette
	Tools in the Pipeline Editor Palette

	Understanding the Webflow and Pipeline Editor Toolbars
	Display and Behavior Buttons
	Command Buttons

	Organizing Webflow Components in an Editor Canvas
	How to Select Webflow Components
	How to Add Webflow Components
	How to Edit a Webflow Component’s Name (Label)
	How to Designate or Remove a Begin (Root) Node
	How to Move a Webflow Component
	How to Connect Nodes with Event or Exception Transitions
	How to Reposition Connection Ports on a Node
	How to Work with Elbows in Transitions
	How to Move an Existing Elbow
	How to Create a New Elbow
	How to Delete a Elbow

	Using the Webflow and Pipeline Editor Toolbars
	How to Print a Webflow Namespace or Pipeline
	How to Delete Webflow Components
	How to Use the Zoomed Overview
	How to Show/Hide the Grid
	How to Snap Objects to the Grid
	How to Enable and Disable Link Optimization
	How to Show and Hide Exception Transitions
	How to Validate the Selected Node
	How to Validate All Nodes
	How to Set the Configuration Error Page Name
	How to Use the Pipeline Component Editor
	How To View Pipeline Component Details
	How to Add Pipeline Components
	How to Edit Pipeline Components
	How to Delete Pipeline Components

	How to Make the Pipeline Transactional
	How to Include the Pipeline Session in a Transaction

	Using the Properties Editors
	Viewing Component Properties
	Description of Webflow Component Properties
	Modifying Component Property Values

	Migrating An Existing Webflow
	Creating or Modifying a Webflow: Breadth-First Versus Depth-First
	About the Webflow and Pipeline Editors’ Validation Features
	Validation Error Messages in a Properties Editor
	What Do the Editors Validate?
	Saving Invalid Webflows

	Synchronizing Webflow Data for Your Application

	4 Customizing and Extending Webflow
	Pipeline Session Internals
	Managing the Pipeline Session
	Accessing the PipelineSession Interface
	Setting and Getting Pipeline Session Properties
	Using the Support Classes to Capture Exception Messages

	Property Scoping
	Request-Scoped Pipeline Session Properties
	Pipeline Session-Scoped Pipeline Session Properties

	Serializing Pipeline Session Properties

	Error Handling
	Non-Runtime and Runtime Processor Exceptions
	Input Processor and Pipeline Component Exception Handling
	Input Processor Exceptions
	Pipeline Component Exceptions

	JavaServer Page (JSP) Exception Handling
	Accessing Exceptions and Exception Messages
	Creating New Input Processor or Pipeline Component Exceptions
	Configuring Pipeline Component Exception Fatality

	Creating a New Input Processor
	How to Create a New Input Processor
	Input Processor Naming Conventions
	Input Processors and Statelessness
	Other Development Guidelines for Input Processors

	Webflow Validators and Input Processors
	The ValidatedValues Interface
	Validation Example

	Special Validation Exceptions
	Creating a Custom Validator
	Example of a Custom Validator

	Creating a New Pipeline Component
	How to Create a New Pipeline Component
	Pipeline Component Naming Conventions
	Implementation of Pipeline Components as Stateless Session EJBs or Java Objects
	Stateful Versus Stateless Pipeline Components
	Transactional Versus Nontransactional Pipelines
	Including Pipeline Sessions in Transactions
	Other Development Guidelines for Pipeline Components

	Extending Webflow by Creating Extension Presentation and Processor Nodes
	How to Create an Extension Presentation Node
	How to Create an Extension Processor Node
	Making Your Extension Presentation and Processor Nodes Available in the Webflow and Pipeline Editors
	How To Register an Extension Presentation Node
	How To Register an Extension Processor Node

	Webflow Internationalization

	5 Webflow JSP Tag Library Reference
	Importing the Webflow Tag Library
	URL Creation Tags
	<webflow:createWebflowURL>
	Example

	<webflow:createResourceURL>
	Example

	Form Tags
	<webflow:form>
	Example

	Validated Form Tags
	<webflow:validatedForm>
	<webflow:text>
	<webflow:password>
	<webflow:radio>
	<webflow:checkbox>
	<webflow:textarea>
	<webflow:select>
	<webflow:option>
	Example

	Pipeline Session Tags
	<webflow:setProperty>
	Example

	<webflow:getProperty>
	Example 1
	Example 2

	<webflow:setValidatedValue>
	Example

	<webflow:getValidatedValue>
	Example 1
	Example 2

	<webflow:getException>
	Example

	6 An Example of Webflow: The Pet Flow Application
	About the Pet Flow Sample Application
	What Webflow Features Does the Pet Flow Sample Application Illustrate?
	Accessing the Pet Flow Sample Application
	Location of Pet Flow Files
	Running Pet Flow in a Web Browser
	Opening a Pet Flow Namespace in the Webflow Editor

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	L
	M
	N
	O
	P
	R
	S
	T
	U
	V
	W
	X

