

BEA WebLogic Mobility Server

User Guide

Version 3.3
December 2005

Copyright
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or
other use of this software is permitted unless you have entered into a license agreement with BEA
authorizing such use. This document is protected by copyright and may not be copied
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.
Information in this document is subject to change without notice and does not represent a
commitment on the part of BEA Systems. THE DOCUMENTATION IS PROVIDED “AS IS”
WITHOUT WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY
WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE.
FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE
DOCUMENT IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR
OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.BEA, BEA JRockit, BEA
WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt,
JoltBeans, SteelThread, Top End, Tuxedo, and WebLogic are registered trademarks of BEA
Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform, BEA AquaLogic
Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA
Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic,
BEA Manager, BEA MessageQ, BEA WebLogic Commerce Server, BEA WebLogic
Communications Platform, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform,
BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central,
BEA WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic
Personal Messaging API, BEA WebLogic Platform, BEA WebLogic Portlets for Groupware
Integration, BEA WebLogic Server Process Edition, BEA WebLogic SIP Server, BEA WebLogic
WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are trademarks of BEA
Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and
BEA SOA Self Assessment are service marks of BEA Systems, Inc.
All other names and marks are property of their respective owners.

Contents

Contents
Introduction ...1

About this Manual.. 1
Prerequisites ... 1
Terminology Used in this Manual.. 2
Content Examples ... 2
Further Reading .. 2

Part I Documentation Roadmap...3
Where Do I Start?.. 3
What Manuals Are Provided? ... 3
Is There a Demonstration Workshop Mobility Project?... 4
What Authoring Tools Do I Need? .. 4
What Format Do I Use for Marking Up Content? .. 4
How Do I Change the Appearance of Web Content for Mobile Devices? .. 5
Where Can I Find More Information on Delivering Images and Other Media to Mobile Devices? 5
How Do I Tailor Content for Different Devices? .. 5
How Can I Create Dynamic Content That Accommodates Device Characteristics?...................................... 5
How Do I Brand or Use Logos on my Device? ... 5
How Do I Troubleshoot the Output From WebLogic Mobility Server? .. 5
How Can I Modify the Basic Start-Up Parameters for WebLogic Mobility Server? .. 6
How Do I Take Advantage of Access Keys on WML Devices? .. 6
How Do I Find Out More About Working with Tables? ... 6

Part II The Mobility Extension for BEA Workshop ...7
Summary of the Mobility Extension Features ... 7
Mobility Menu .. 15

Part III Fundamentals of Mobile Content ..16
Overview of the Process ... 16
Introducing the Mobility Tags .. 18
The WebLogic Mobility Server JSP Tag Library ... 21
Optimize Performance with the JSP Tag Library .. 24
Work with XHTML ... 27
Organize Content .. 32
Create Conditional Content... 43

Part IV Presentation of Mobile Content...53
Organize Content for Handheld Devices .. 53
Navigational Menu Styling... 70
Work with Style Sheets ... 81

BEA WebLogic Mobility Server User Guide - iii

Contents

Manage Navigation ... 88
Work with Tables... 97
Work with Images.. 105
Work with Character Sets ... 108
Fine-Tune Mobile Content... 112
iMode Support ... 116

Part V The Delivery Context API ..120
Overview of the CC/PP Delivery Context API ... 120

Part VI Diagnostics ...126
Work with Diagnostics ... 126
Use the Diagnostic Console.. 127
Use the Diagnostic CLI.. 139
Diagnose Problems... 144
Monitor Diagnostic Output... 148
Exception Handling ... 153

Part VII Glossary ...157
Part VIII Appendixes ...162

Appendix A – Mobility Tag Reference... 162
Appendix B – Mobility Delivery Context API ... 191
Appendix C – Deprecated Items ... 198
Appendix D – Use the Generic Log Monitor Facility with Log4J... 200
Appendix E – FAQ... 203

iv - BEA WebLogic Mobility Server User Guide

Introduction

Introduction
About this Manual
This manual introduces you to the various features of BEA WebLogic Mobility Server™ and
explains how to create a web site that targets all devices.

The manual is divided into eight parts:

Part I – Documentation Roadmap

This section provides an overview of where to look for information as you develop your
mobilized web applications.

Part II – The Mobility Extension for BEA Workshop

This section introduces the WebLogic Mobility Server mobility tags and describes key
fundamentals behind working with mobile content, including organizing content and creating
conditional content.

Part III – Fundamentals of Mobile Content

This section provides an overview of the process used in creating web applications that target a
variety of devices.

Part IV – Presentation of Mobile Content

This section describes key aspects of content presentation, including layouts and structures,
server-side style sheets, navigation, tables and media.

Part V – The Delivery Context API

This section introduces the delivery context API and explains how to use its methods to obtain
device information from the WebLogic Mobility Server database.

Part VI – Diagnostics

This section describes the WebLogic Mobility Server diagnostic tools that enable developers and
administrators to monitor the HTTP request / response cycle within WebLogic Mobility Server
and to retrieve diagnostic information generated in the process.

Part VII – Glossary

This section provides an explanation of terms and acronyms used in this document.

Part VIII – Appendixes

This section provides a reference guide to the WebLogic Mobility Server mobility tags, a delivery
context API reference guide, a list of deprecated items, and answers to frequently asked
questions.

Prerequisites
This manual assumes that you are familiar with web page design using HTML and XHTML. It
also assumes that you are familiar with basic JSP (or related scripted web page technologies) and
the use of basic Java within such pages to generate dynamic content.

The manual does not teach specific web or site design skills, but will show you how to use
WebLogic Mobility Server to bring mobility into your existing web design workflow.

BEA WebLogic Mobility Server User Guide - 1

Introduction

Terminology Used in this Manual
There are a number of terms used throughout this manual that have a specific meaning within
WebLogic Mobility Server:

• The term content describes the elements that define your service: XHTML mark-up (such as
tables and formatting), JavaScript, JSP code, text, images and so forth.

• Static content refers to web pages that are sent to the requesting browser without changes
made by scripting or code. It is usually information that does not need to change on a regular
basis.

• Dynamic content describes web pages that are generated when accessed by an end-user,
possibly pulling in external content and/or pages customized for the requesting user.

• The term request page refers to the file containing the content that will be transformed.

• The term web application refers to a web-enabled application that consists of static and
dynamic resources, including multiple servlets and JSPs.

• The term device should be taken to refer either to a specific device, such as an iPAQ, or a
device category, such as menu-driven devices or PDAs.

Content Examples
This manual describes the two mobility mark-up tag sets. The code examples in this manual use
either the mmXHTML tags or their equivalent JSP taglib. In most cases the examples can be done
using either set.

Further Reading
In addition to the Getting Started Tutorials, the following documentation set is provided with
WebLogic Mobility Server:

• BEA WebLogic Mobility Server Installation Guide

• Device Repository Guide

• BEA WebLogic Mobility Server Administration Guide

• BEA Sample Workshop Mobility Project Guide

• BEA Sample Mobility Portal Guide

• BEA Mobilize Your Portal Guide

2 - BEA WebLogic Mobility Server User Guide

Part I Documentation Roadmap

Part I Documentation Roadmap
This section provides an overview of where to look for related information as you develop your
mobilized web application.

Where Do I Start?
After installation, we recommend you begin with the Getting Started Tutorials. The tutorial set is
a series of short lessons that introduce the WebLogic Mobility Server mobility tags and the
delivery context API. The lessons are made up of short, working examples that take you through
the process of marking up content in order to create web pages that can be viewed on many
different client devices. You also learn how to use the delivery context API, which lets
developers obtain device attribute information from the Device Repository. This is helpful when
creating dynamic content tailored to the specific requesting device.

What Manuals Are Provided?
All the WebLogic Mobility Server manuals are supplied in Adobe Acrobat format. The following
table describes the manuals available and their purpose:

WebLogic Mobility Server Documentation Set

Document Description

BEA WebLogic Mobility
Server Installation
Guide

Provides instructions for installing and configuring WebLogic Mobility
Server.

Device Repository
Guide

This guide explains how to install the Device Repository used by
WebLogic Mobility Server, describes how to update the
mis.properties file to reflect the Device Repository connection details
and outlines how to set up and manage the device profiles stored in
the Repository.

BEA WebLogic Mobility
Server Administration
Guide

Provides information on how to configure WebLogic Mobility Server
after installation.

BEA WebLogic Mobility
Server User Guide

(this guide)

Provides supporting and advanced information on WebLogic Mobility
Server, including:

• The general principles behind organization and transformation of
content.

• Information on using the WebLogic Mobility Server diagnostics
to monitor internal behavior during transactions in development
and production environments.

• An appendix section on the WebLogic Mobility Server mobility
tags and the delivery context API.

 BEA Sample Workshop
Mobility Project Guide

Provides a step-by-step exercise in mobilizing a sample workshop
application

BEA WebLogic Mobility Server User Guide - 3

Part I Documentation Roadmap

BEA Sample Mobility
Portal Guide

Explains the features of the Mobilized BEA Portal Framework using a
sample Mobility Portal

BEA Mobilize Your
Portal Guide

Explains how to mobilize a portal and then apply your own “Look &
Feel” to it as required.

Note: In addition, the Getting Started Tutorials provide a series of short lessons designed to teach
the basics of using the WebLogic Mobility Server mobility tags to create multi-channel content
and applications.

Is There a Demonstration Workshop Mobility Project?
Yes, if you have installed BEA WebLogic Mobility Server available from BEA Systems. The
“restaurantWeb” sample Workshop project demonstrates many of the WebLogic Mobility Server
features such as:

• Organizing and tailoring content for different devices

• Previewing content on different devices

• Ensuring the media format being delivered is appropriate to the device making the request

The “restaurantWeb” sample Workshop project has been installed in the <bea installation
directory>\weblogic81\mobility\samples\BEAWorkshop directory. Please see the BEA
WebLogic Mobility Server Installation Guide for instructions on importing the “restaurantWeb”
sample Workshop project into a Workshop application. The BEA Sample Workshop Mobility
Project Guide provides a step by step explanation of how to use the Mobility Extension for BEA
WebLogic Workshop to mobilize “restaurantWeb.” In the same directory as “restaurantWeb” is
an already mobilized version of the sample project called “restaurantWeb_after.”

What Authoring Tools Do I Need?
WebLogic Mobility Server includes the Mobility Extension for BEA WebLogic Workshop. With
the Mobility Extension, the BEA WebLogic Workshop Integrated Development Environment can
be used for creating multi-channel applications and extending existing applications to support
wireless devices. Please see the section “The Mobility Extension for BEA Workshop” for a
description of the functionality provided by the Mobility Extension. The BEA Sample Workshop
Mobility Project Guide provides a hands-on tutorial that uses the Mobility Extension features.

What Format Do I Use for Marking Up Content?
The mobility tags are a set of XML compliant tags that form the essential building blocks for the
development of mobilized web content.

mmXHTML (multi-mode XHTML) is a compact set of tags that begin with the characters mm-
(for example <mm-group>…</mm-group>). The WebLogic Mobility Server JSP tag library is an
equivalent set of tags for developers working with JSP pages. The taglib replicates the
functionality of the mmXHTML tag set. These tags begin with the characters mm: (for example
<mm:group>…</mm:group>). The Mobility Extension for BEA WebLogic Workshop integrates
the JSP tab library into WebLogic Workshop, providing a Mobility Palette and inserts wizards for
drag and drop inclusion of the mobility tags into content.

4 - BEA WebLogic Mobility Server User Guide

Part I Documentation Roadmap

How Do I Change the Appearance of Web Content for Mobile
Devices?
WebLogic Mobility Server uses the concepts of layouts and structures to control the organization
and transformation of content requested by mobile devices. The <mm-structure> and <mm-
layout> tags are responsible for restructuring a single source of web content for presentation on a
variety of handheld devices that require special consideration because of screen size and memory
limitations. The <mm-layout> tag allows the user to specify a file that contains alternate,
simplified templates for PDA and menu-driven devices. The <mm-structure> tag is used to
redisplay the content for smaller devices. It gives the author the power to control the navigation
flow between pages, which is often needed to present content clearly on these smaller devices.

Where Can I Find More Information on Delivering Images and
Other Media to Mobile Devices?
WebLogic Mobility Server provides the <mm-media-group> and <mm-img> tags to ensure the
appropriate image, in terms of size, quality and suitability, is delivered to a device. There is also
an <mm-logo> tag that is used to flash an image on WML devices for a short time before
presenting the rest of the content.

How Do I Tailor Content for Different Devices?
In addition to allowing the creation of specific layouts for targeted device groups, WebLogic
Mobility Server provides the <mm-include> and <mm-exclude> tags to conditionally include and
exclude parts of the content depending on either the type of device making the request or specific
device profile attributes.

How Can I Create Dynamic Content That Accommodates Device
Characteristics?
You can use JSP to output WebLogic Mobility Server mark-up that accommodates different
devices. For example, you might want to change the number of columns in a table depending on
the width of the device’s screen. To do this, you would need specific information from the Device
Repository. By using the delivery context API, you could retrieve the required device attributes,
which could then be placed in the JSP to dynamically change what is delivered to the device.

How Do I Brand or Use Logos on my Device?
For targeting WML devices, you can take advantage of a feature that displays a logo for a short
period of time before rendering the rest of the content. Use the <mm-logo> tag for this purpose.

How Do I Troubleshoot the Output From WebLogic Mobility
Server?
WebLogic Mobility Server provides diagnostic tools to monitor a range of system messages,
which allows you to troubleshoot different phases of the transformation process. The diagnostic
messages show the content before and after it is transformed, as well as the processing that occurs
in-between. You can select a variety of diagnostic “topics” in order to target specific areas to
monitor.

BEA WebLogic Mobility Server User Guide - 5

Part I Documentation Roadmap

How Can I Modify the Basic Start-Up Parameters for WebLogic
Mobility Server?
Configuration settings for WebLogic Mobility Server are stored in the /WEB-
INF/classes/mis.properties file. This file contains settings that enable WebLogic Mobility Server
to communicate with the Device Repository as well as updating log files and other transaction-
related activity. The BEA WebLogic Mobility Server Administration Guide describes the settings
in this file.

How Do I Take Advantage of Access Keys on WML Devices?
Access keys provide a shortcut for navigating content delivered to menu-driven devices that
support this feature.

How Do I Find Out More About Working with Tables?
Mobile devices differ in their ability to handle tables. WebLogic Mobility Server supplies the
mobility tag <mm-table-model> for managing the transformation of tables. See the section “Work
with Tables” for additional information.

6 - BEA WebLogic Mobility Server User Guide

Part II The Mobility Extension for BEA Workshop

Part II The Mobility Extension for BEA Workshop
Note: This section is only applicable if you have installed WebLogic Mobility Server available
from BEA Systems.

After installing WebLogic Mobility Server including the Mobility Extension for BEA WebLogic
Workshop (see the BEA WebLogic Mobility Server Installation Guide), the BEA WebLogic
Workshop Integrated Development Environment can be used for creating multi-channel
applications and extending existing applications to wireless.

Summary of the Mobility Extension Features
This section provides an overview of the Mobility Extension features, including:

• Enable Multi-Channel for new or existing projects

• Mobility Palette, for easy Access to Mobility Tags

• Mobility Toolbar, including:

• Design Preview icons for the different device classes

• Emulator Launch icons for the different device classes

• Launch Mobility Tools icon

• IDE Properties additions, including:

• Mobility Pane, for setup and configuration

• Emulators Pane, for configuring Device Emulators

• Mobility Menu under Tools, including:

• Launch Emulator options

• Launch Mobility tools

These features are described in more detail in the “Enable Multi-Channel” section.

Note: The large xml-format device repository file may cause problems when a project is opened
in WebLogic Workshop. Please use the compressed madr-format repository to avoid these
problems. The Enable Multi-Channel function automatically adds the ".madr" version of the file
to your project.

BEA WebLogic Mobility Server User Guide - 7

Part II The Mobility Extension for BEA Workshop

Enable Multi-Channel
Any application project can be configured for multi-channel delivery by selecting the “Enable
multi-channel” option for the highlighted project. Selecting this option configures the application
project to deploy and use WebLogic Mobility Server.

Enable multi-channel

8 - BEA WebLogic Mobility Server User Guide

Part II The Mobility Extension for BEA Workshop

Mobility Palette
Using a “drag & drop” technique, mobility meta-data can be applied to any NetUI-defined
interface to enable delivery to mobile devices. This includes support for wizard-based generation
of layouts for different device categories, click-to-dial for embedding telephony commands in
applications, multi-device image handling, and device-category styling.

The Mobility Palette

BEA WebLogic Mobility Server User Guide - 9

Part II The Mobility Extension for BEA Workshop

Mobility Toolbar
This is a toolbar extension that enables launching of device emulators for smart phones and PDAs
in addition to the Workshop test browser. The Mobility Toolbar also provides a diagnostics
application that enables the simulation of advanced mobile requirements for detailed testing of
applications.

The Mobility Toolbar features

The Mobility Toolbar additionally provides the capability to manage target devices from within
Workshop, enabling addition/removal of devices in the Device Repository and device profile
configuration for optimization of NetUI for different device types.

View Content with Emulators
The Mobility Extension installation adds a toolbar to Workshop that makes it easy to view and
troubleshoot mobilized content. Once your emulators have been configured as described in the
installation instructions, you will have an extra toolbar in Workshop, the Mobility Toolbar.

The Mobility Toolbar

The first icon simplifies the management of groups of content that have been created on the page
that is open in the Edit Pane.

Manage Groups

The next four icons allow you to see the mark-up for a particular device. Content groups that have
been excluded for a particular device will not appear in the window when that device’s button is
pressed. The groups that are to be delivered to the device will be expanded so that you can see
approximately how they would look.

10 - BEA WebLogic Mobility Server User Guide

Part II The Mobility Extension for BEA Workshop

These four icons are as follows:

Preview WAP Content

Preview PDA Content

Preview Full Browser (PC) Content

View All Contents and Mobility Mark-up

The next four icons let you launch the particular device emulator to see the results of the mobility
markup, as it would appear in the actual device.

They are, in order:

Launch Configured WAP 1.x Emulator

Launch Configured WAP 2.x Emulator

Launch Configured PDA Emulator

Launch Other Configured Emulators / Browsers

The sample project, when viewed in a menu-driven (for example smart phones) or a PDA device,
demonstrates the types of issues that can arise when sending PC web content to handheld devices.
As the code is mobilized, you will be able to see how WebLogic Mobility Server can manipulate
the content to make it look good on all types of devices.

Note: Openwave 6.2.2 will sometimes pause or freeze when launched from Workshop. In order
to stop this behavior, follow these instructions:

1. Edit the Openwave startup batch file (for example C:\Program Files\Openwave\SDK
6.2.2\program\OSDK62http.bat) or create a copy and edit as follows:

2. Change: cd http to cd /d %~dp0\http.

3. Change: start osdk62http.exe -pho OPWV-SDK-62.pho to
start osdk62http.exe "%*" -pho OPWV-SDK-62.pho.

4. In Workshop, choose Tools →IDE Properties →Emulators, configure to start the edited
.bat file instead of the .exe (the bat file is one directory above .exe in the tree).

BEA WebLogic Mobility Server User Guide - 11

Part II The Mobility Extension for BEA Workshop

The final icon on the toolbar gives access to additional WebLogic Mobility Server tools:

• Admin Console for managing devices and their attributes

• Diagnostics Console for diagnostic output and troubleshooting

• Device Repository Manager for managing the Device Repository

WebLogic Mobility Server Tools

Clicking on this icon will open the Mobility Tools Launcher dialog box for these tools (see the
following graphic). The tools can also be launched directly from the Mobility Menu.

Mobility Tools Launcher

12 - BEA WebLogic Mobility Server User Guide

Part II The Mobility Extension for BEA Workshop

IDE Properties Additions
Two additional panes have been added to the IDE Properties dialog:

• Mobility pane

• Emulators pane

Mobility Pane
The “Mobility” pane allows the user to set the WebLogic Mobility Server Install Location
property.

Additions to IDE Properties Dialog

The “Device Classes” section provides a drop down list of configured device classes when using
the Mobility Tags. Developers can specify frequently used “where” expressions for inclusion in
the drop down list.

To add a new item to the drop down list, insert the frequently used expression in the “Expression”
column and an easily identifiable “Display Name” to be associated with it. Subsequent usage of
the Mobility Tags will allow the user to select this “Display Name” resulting in the automatic
insertion of the defined “Expression”.

Emulators Pane
The “Emulators” pane enables configuration of different emulators for testing the application
appearance and flow on a range of devices.

BEA WebLogic Mobility Server User Guide - 13

Part II The Mobility Extension for BEA Workshop

Emulators Pane

For more information on configuring these emulators, see the section “Configuring the Device
Emulators” in the BEA WebLogic Mobility Server Installation Guide.

14 - BEA WebLogic Mobility Server User Guide

Part II The Mobility Extension for BEA Workshop

Mobility Menu
The Mobility Menu contains links to the following:

• Launch WAP 1.x emulator

• Launch WAP 2.x emulator

• Launch PDA emulator

• Launch other emulators/browsers

• Launch Mobility Tools

Mobility Menu

BEA WebLogic Mobility Server User Guide - 15

Part III Fundamentals of Mobile Content

Part III Fundamentals of Mobile Content
Overview of the Process
This section provides an overview of the process used in creating web applications that target a
variety of devices.

Three Steps to Creating and Delivering your Service
There are three basic steps in preparing content so that it can be displayed on multiple devices:

• Creating your content in XHTML format.

• Organizing the page content into logical divisions.

• Deciding how you want your content to be presented on different devices.

Create your content in XHTML format
All documents that are processed by WebLogic Mobility Server must follow XHTML 1.0
standards. XHTML has stricter mark-up standards than HTML. All tags, for example, must
terminate correctly, either with a closing tag, or, for empty tags, by putting a closing slash before
the final angle bracket.

All documents that are processed by WebLogic Mobility Server must follow XHTML 1.0
standards. XHTML has stricter mark-up standards than HTML. All tags, for example, must
terminate correctly, either with a closing tag, or, for empty tags, by putting a closing slash before
the final angle bracket.

If you are converting legacy content containing HTML mark-up, there are a number of tools
available to automate the process of converting HTML to XHTML. The Developer Toolkit on
CD2 includes HTML Tidy, a popular tool for converting HTML files to XHMTL. Dreamweaver
MX also provides built-in XHTML clean-up and conversion utilities.

You can use any authoring environment to develop your XHTML content. This content can be
either static, where the page does not change, or dynamic, where you use JSP to dynamically
generate content.

Organize the page content into logical divisions
Since the amount of content you can display depends on screen size, you will want to divide your
content into logical units called groups. This will give you more flexibility in deciding what gets
displayed on specific devices. You can take advantage of the natural divisions in your document
(such as tables and forms) or you can explicitly create your own groups. For example, you might
arrange a news page into national, regional and local news groups.

16 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

Decide how you want your content to be presented on different devices
You can control which groups get sent to the different device types. You can also control the way
the content is organized for each type of device. The different screen sizes and memory
capabilities of the handheld devices often require that the content be arranged differently to best
suit capabilities of the requesting device. This is achieved through the use of layout files that
instruct WebLogic Mobility Server how to present the content for these smaller devices. For
example, one layout for a PDA device might extract and display a company logo, an address
group, a phone group and a text group describing the company. Another layout, for a smaller
screen, might just extract and display the company logo group and a phone number

You can control which groups get sent to the different device types. You can also control the way
the content is organized for each type of device. The different screen sizes and memory
capabilities of the handheld devices often require that the content be arranged differently to best
suit capabilities of the requesting device. This is achieved through the use of layout files that
instruct WebLogic Mobility Server how to present the content for these smaller devices. For
example, one layout for a PDA device might extract and display a company logo, an address
group, a phone group and a text group describing the company. Another layout, for a smaller
screen, might just extract and display the company logo group and a phone number.

The following illustration shows how three different devices might organize the same content.

Content reorganized on a variety of devices

BEA WebLogic Mobility Server User Guide - 17

Part III Fundamentals of Mobile Content

Introducing the Mobility Tags
This section introduces the mobility tags; the WebLogic Mobility Server authoring extensions to
XHTML. It gives a brief background of XHTML and shows how the mobility tags extend and
conform to this schema.

The History of XHTML
HTML was originally designed for publishing hypertext on the World Wide Web. HTML is a non-
proprietary format based on SGML. Variations in HTML language definitions have emerged in
the form of browser-specific implementations. These variations, combined with the increasing
availability and diverse capabilities of non-desktop browsers, such as PDAs and mobile phones,
have made it difficult for designers to settle on a system for targeting a range of devices. Many
developers found themselves having to take a "lowest common denominator" approach when
trying to combine content, physical layout and interactive behavior of a web application designed
for a broad spectrum of client devices.

XHTML (Extensible Hypertext Mark-up Language), created by the World Wide Web Consortium
W3C, addresses this issue. XHTML takes advantage of the more powerful meta-language XML
and thus requires that documents be “well-formed”. Variations are not allowed. The strict mark-
up standards are what allow extensibility of the core tag set to extend functionality.

XHTML 1.0 has replaced HTML as the official Web mark-up standard according to the W3C.
XHTML is also the content authoring language specified by WAP 2.0 and XHTML Mobile
Profile, used by many handheld devices, is a subset of XHTML.

XHTML looks a lot like HTML but has more rigid mark-up standards. XHTML documents must
strictly conform to these standards, that is, be “well-formed”. For more on these standards and
how to convert existing HTML to XHTML, see working with XHTML in this manual.

Extend XHTML with the Mobility Tags
WebLogic Mobility Server has added a module to XHTML, called multi-mode XHTML, or
mmXHTML. This module is a set of XML elements that simplifies the task of structuring and
presenting web applications on a range of devices including PCs, PDAs and web-enabled phones.

By adding these tags to “well-formed” web content, authors can create documents that can be
displayed on a variety of devices. The WebLogic Mobility Server transformation engine
interprets the tags and translates the XHTML content into the language understood by the
requesting device. The mmXHTML tags also give content authors the power take a single source
of content and re-organize and style the layout in a ways that best suit various desktop and mobile
devices.

A JSP tag library version of the mmXHTML tags is also available for use with JSP files. These
tags are almost identical in syntax and function. They are explained further in The WebLogic
Mobility Server JSP Tag Library in this manual.

18 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

The Mobility Tags
The following table summarizes the mobility tags:

Mobility Tags

Element Usage

mm-body Used as a container for the content within an mm-group element.

<![CDATA[…]> Used to hide content from the WebLogic Mobility Server parser.

mm-exclude Used as a container to exclude content intended for certain devices
but not others.

mm-group Used to explicitly organize content into logical groups so that they
can be referenced from different layouts that cater to different
devices.

mm-group-ref Used to reference an existing mm-group element.

mm-head Used to specify a heading within an mm-group element to give
context to content delivered to smaller devices that may require it to
be broken into several pages.

mm-id-ref Used to reference a group of content. Usually used inside a layout
file.

mm-img Used to deliver the correct image based on the capabilities of the
target device. Can be placed inside a media-group.

mm-include Used as a container to include content intended for certain devices
but not others.

mm-layout Used to specify the file that contains alternate layouts for handheld
devices.

mm-li Used with <mm-nl> to create easily styled navigation menus for
handheld devices.

mm-logo Used to flash an image (on WML devices that support this feature)
for a few seconds before delivering the main content.

mm-media-group Used to contain mm-img tags that refer to images of different sizes
and formats. WebLogic Mobility Server will select the best image for
the requesting device.

mm-nl Used with <mm-li> to create easily styled navigation menus for
handheld devices.

mm-phone-number Used to include a dialable phone number link in content for WTAI
enabled devices.

BEA WebLogic Mobility Server User Guide - 19

Part III Fundamentals of Mobile Content

mm-structure Used to contain references to groups that are to be delivered to
menu-driven devices. This tag can also be used to create
navigational menus for content that is delivered to PDAs.

mm-table-model Used to instruct WebLogic Mobility Server to transform tables for
small devices.

The mmXHTML Document Type Definition (DTD)

DTD Function
The purpose of the mmXHTML Document Type Definition (DTD) is to allow authors to ensure
that documents are valid for use with WebLogic Mobility Server.

The DTD includes the language elements and attributes of WebLogic Mobility Server. It defines
how tags and attributes are used to describe content in an mmXHTML document, where each tag
is allowed, and which tags can appear within other tags.

For example, in the mmXHTML DTD <mm-structure> tags can contain <mm-group-ref> tags,
but <mm-group-ref> tags cannot contain <mm-structure> tags.

DTD Usage
A reference to the DTD must be included in any mmXHTML document processed by WebLogic
Mobility Server. When an author is creating an mmXHTML document, the document will require
an XML declaration:
<?xml version="1.0"?>

and a reference to the mmXHTML DTD within which the schema of the mobility tags are
defined:
<!DOCTYPE html PUBLIC "-//MOBILEAWARE//DTD MMXHTML 1.2//EN"
"http://www.mobileaware.com/DTD/mmxhtml_1.2.dtd">

Note: WebLogic Mobility Server DTD is versioned. All future DTDs will be versioned also.

Sample Document with DTD
Here is an example file using the WebLogic Mobility Server DTD.
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//MOBILEAWARE//DTD MMXHTML 1.2//EN"
"http://www.mobileaware.com/DTD/mmxhtml_1.2.dtd">
<html>
 <head>
 <title>Demonstrating use of the WebLogic Mobility Server DTD</title>
 </head>
 <body>
 <p>The DTD reference is placed below the XML file declaration</p>
 </body>
</html>

Note: JSP files using the WebLogic Mobility Server JSP tag library require the WebLogic
Mobility Server JSP document heading instead of the DTD declaration.

20 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

The WebLogic Mobility Server JSP Tag Library
The multi-mode JSP tag library (taglib) was introduced for the mobilization of JSP documents.
The functionality of the mmXHTML tags is replicated within a JSP tag library structure. The
taglib, however, provides a particular benefit over mmXHTML by adding some further
optimizations in the performance of WebLogic Mobility Server when delivering JSP content to
the PC channel.

This section covers the following aspects of the WebLogic Mobility Server JSP taglib:

• Enhanced Performance

• Syntax

• Mixing mm-tags and mm:tags

• Exception Handling and Diagnostics

Enhanced Performance
Marking up content with the JSP mobility taglib results in speed benefits when content is
delivered to PCs. The WebLogic Mobility Server JSP tags reduce the amount of run-time
processing that WebLogic Mobility Server is required to do. The tags run within the servlet
environment, unneeded tags are stripped off, and the streamlined file is sent on to WebLogic
Mobility Server where a minimum of processing is required before it is sent out to the browser.
The result is a faster overall content delivery time.

Syntax
The WebLogic Mobility Server JSP tags mimic their mmXHTML counterparts with the
exception that the tag name is prefixed by “mm:” instead of “mm-“.

In order for the tags to be processed, two things are needed at the outset:

• A taglib declaration at the beginning of the document.

• An <mm:page> element surrounding the rest of the file’s contents.
<%@ taglib uri="mmJSPtaglib" prefix="mm"%>
<mm:page>
<html>
 <head> Using JSP taglib</head>
 <body>
 <p>JSP page content here.</p>
 </body>
</html>
</mm:page>
mmXHTML headers and tags and the JSP tag library equivalents

mmXHTML JSP Tag Library

Document must start with XML declaration
and DOCTYPE:

<?xml version="1.0"?>

<!DOCTYPE html PUBLIC "-
//MOBILEAWARE//DTD MMXHTML
1.2//EN"

Document must start with taglib declaration and
the page must be wrapped in an <mm:page> tag:

<%@ taglib uri="mmJSPtaglib" prefix="mm"%>

<mm:page>

...

BEA WebLogic Mobility Server User Guide - 21

Part III Fundamentals of Mobile Content

"http://www.mobileaware.com/DTD/
mmxhtml_1.2.dtd">

</mm:page>

mm-body mm;body

mm-exclude mm:exclude

mm-group mm:group

mm-group-ref mm:group-ref

mm-head mm:head

mm-id-ref mm:id-ref

mm-img mm:img

mm-include mm:include

mm-layout mm:layout

mm-li mm:li

mm-logo mm:logo

mm-media-group mm:media-group

mm-nl mm:nl

mm-phone-number mm:phone-number

mm-structure mm:structure

mm-table-model mm:table-model

For data that should be ignored by the
WebLogic Mobility Server parser:

<meta name=“MIS-CDATA-Control“
content=“Unwrap“ />

<![CDATA[...]]>

<mm:meta name=“MIS-CDATA-Control“
content=“Unwrap“ />

<mm:cdata>...</mm:cdata>

For the creation of an Option menu:

<meta name=...“ content=“...“
scheme=“mmsection“ />

<mm:meta name=“...“ content=“...“
scheme=“mmsection“ />

22 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

Examples
Here are two versions of a short file that will be transformed by WebLogic Mobility Server. They
demonstrate the way in which the mobility tags are placed into a document. The meaning of the
tags used in these examples will be explained in later sections. The first file uses standard
mmXHTML and is saved as an .htm file. The second file uses the equivalent JSP tag libraries. It
is stored as a .jsp file.

Example 1: hello.htm
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//MOBILEAWARE//DTD MMXHTML 1.2//EN"
 "http://www.mobileaware.com/DTD/mmxhtml_1.2.dtd">

<html>
 <head>
 <title>Hello World!</title>
 </head>
 <mm-structure id="structure_1" where="IsMenuDriven">
 <mm-group-ref idref="mobileGreeting" type="normal" depth="0"
 display="all"/>
 </mm-structure>
 <body>
 <p>Hello World!</p>
 <mm-include where="IsMenuDriven">
 <mm-group id="mobileGreeting">Hello Mobile World!</mm-group>
 </mm-include>
 </body>
</html>

Example 2: hello.jsp
<%@ taglib uri=”mmJSPtaglib” prefix=”mm” %>
<mm:page>
<html>
 <head>
 <title>Hello World!</title>
 </head>
 <mm:structure id="structure_1" where="IsMenuDriven">
 <mm:group-ref idref="mobileGreeting" type="normal" depth="0"
 display="all"/>
 </mm:structure>
 <body>
 <p>Hello World!</p>
 <mm:include where="IsMenuDriven">
 <mm:group id="mobileGreeting">Hello Mobile World!</mm:group>
 </mm:include>
 </body>
</html>
</mm:page>

Mix mm-tags and mm:tags
Using both mmXHTML and the WebLogic Mobility Server JSP tags in a single file should be
avoided. For optimal processing of JSP files with WebLogic Mobility Server, you should use the
JSP tag library throughout. WebLogic Mobility Server is, by default, configured to generate an
error if mixed tag syntax occurs in a page that is requested from a device other than a PC browser.

In the mis.properties file (located in the WEB-INF/classes folder),
mis.transform.checkMixedTagContent is set to “true”. Changing the value of this property to

BEA WebLogic Mobility Server User Guide - 23

Part III Fundamentals of Mobile Content

“false”will discontinue syntax checking and will result in an increased performance overhead
when processing content for a full browser and is not recommended.

Exception Handling and Diagnostics
If an exception is generated while processing the JSP tags, a
javax.servlet.jsp.JSPTagException will be thrown. This might occur, for example, when
trying to process an incorrect tag attribute. A try-catch-finally block can be added to intercept the
exception; otherwise the error will be displayed in the Application Server console.

Other information can be gathered using output from the Diagnostic Console. Diagnostic
messages are produced during the processing of the JSP tags and can be helpful for
troubleshooting. For more information on diagnostics, see the section “Work with Diagnostics.”

Optimize Performance with the JSP Tag Library
As was mentioned in the previous section, many performance gains can be realized by using the
WebLogic Mobility Server JSP tag library to mobilize web content that is being requested by the
full browser device class. This section explains the ways to realize the most benefit from these
enhancements.

WebLogic Mobility Server Transformation Steps
There are several steps involved in the WebLogic Mobility Server transformation process. Some
of these steps can by bypassed to achieve optimal performance using the WebLogic Mobility
Server JSP tag library.

The typical set of steps is as follows:

• Device recognition

• Buffer set up

• Content execution (either by WebLogic Mobility Server or the tag library)

• Content check

• Content transformation

• Buffer flush (output)

The WebLogic Mobility Server JSP tag library is able to streamline the process of delivering
content to a full browser device by doing much of the pre-processing itself. The required mobility
tags for full browser are run and remaining tags stripped off. This allows some of the WebLogic
Mobility Server transformation processing (Step 5) to be bypassed.

There are several ways to make these optimizations:

• Changing properties in the mis.properties file.

(<webapp dir>\WEB-INF\classes\mis.properties)

• Setting attributes of the <mm:page> tag.

• Placing a device.xml file in the following folder to emulate a full browser device profile:

WEB-INF\classes\com\mobility\util

24 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

Optimize Full Browser Performance
Here are the configuration options that can be used to optimize performance when delivering to
full browser devices.

Skip Multi-Mode Tag Checking
For JSPs that are known to use only the WebLogic Mobility Server JSP tags (and not the
WebLogic Mobility Server mmXHTML tags) it is possible to disable multi-mode tag checking.
This allows WebLogic Mobility Server to assume JSP tag usage during processing.

Configuration
mis.jsptaglib.passthrough: true | false

Note: the default is true.

When content is being delivered to a full browser, setting this property in the mis.properties file
to true causes the multi-mode content check and the WebLogic Mobility Server transformation to
be skipped. This is advantageous for JSP files that are known to have only mm: tags marking up
the content (for example, they only use the WebLogic Mobility Server JSP tags). The JSP taglib
will perform the processing needed. For content being requested for devices other than a full
browser, the content check and transformation is still performed by WebLogic Mobility Server.

Skip Multi-Mode Tag Checking for Specific Files in an Application
It is also possible to skip multi-mode tag checking for individual files known to use only the
WebLogic Mobility Server JSP tags.

Configuration
mis.passthrough.patterns: /patterns/*

Setting this property results in significant performance benefits for the files that match the pattern
specified in this the WebLogic Mobility Server property. For example, setting the pattern to *.jsp
would result in all files with the .jsp extension bypassing the buffer setup, content check, and the
WebLogic Mobility Server transformation when the requesting device is a full browser. This is
advantageous if it is known, for example, that all .jsp pages in a web application exclusively use
the WebLogic Mobility Server JSP mark-up.

Flag a Page for Optimization
Content authors can also flag a given page as only using the WebLogic Mobility Server JSP tags.
WebLogic Mobility Server will process the page the first time it is accessed, and then add the
URL to an internal JSP-only list. Subsequent requests will result in the same performance
benefits of setting the mis.passthrough.patterns property above.

Configuration
<mm:page bypass=”true”>

Skip Device Recognition
It is possible to skip device recognition completely if a JSP will only ever be accessed from full
browser devices as in the scenario where multiple app servers are used with some dedicated to PC
access.

BEA WebLogic Mobility Server User Guide - 25

Part III Fundamentals of Mobile Content

Configuration
mis.bypass.patterns: /patterns/*.
mis.fullbrowser.device: [Mozilla/2 | Mozilla/3 | Mozilla/4 | Mozilla/5]

Note: the default is Mozilla/5.

If the requested file matches the pattern in the mis.bypass.patterns property WebLogic
Mobility Server will assume that it is delivering to the device specified in the
mis.fullbrowser.device property. This will improve the performance by having the file
processed by the JSP taglib, the device recognition step is skipped to further increase
performance. The device attributes of the full browser are stored in the device.xml file that is
included in the mcpfilter.jar file. However, if a file of the same name exists in the web
application’s classes directory (see the preceding section, “WebLogic Mobility Server
Transformation Steps”), then this file will be used instead. This allows the user the flexibility to
add device attributes.

Deliver a Web Application Without a WebLogic Mobility Server
License or Filter

Configuration
mis.fullbrowser.device: [Mozilla/2 | Mozilla/3 | Mozilla/4 | Mozilla/5]

WebLogic Mobility Server-ready JSPs can be deployed on application servers that do not have a
WebLogic Mobility Server filter configured. The same application can be deployed widely and,
where WebLogic Mobility Server is present, will be ready for multi-channel delivery. Where
WebLogic Mobility Server is not present, the web application will continue to function for full
browser delivery. The WebLogic Mobility Server JSP taglib pages that are being requested by
any browser will behave as if there are no WebLogic Mobility Server mark-up tags in the content
- the taglib will self-process the file and the output sent to the requesting browser without being
further processed by WebLogic Mobility Server. In this scenario, full browser transformed
content will be delivered to any accessing device. The preceding configuration (for example
Mozilla/2 | Mozilla/3) determines which full browser transformation setting is used.

26 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

Work with XHTML
Converting your existing HTML documents into XHMTL documents is one of the first steps in
preparing a current web application for multi-channel use. All XHTML documents must be
“well-formed”. This means that they must follow XML syntax and document rules.

This section introduces the key changes you need to make to existing mark-up and how these
changes can be automated.

Syntax Rules
The syntax rules require that you:

• Close all elements

• Terminate empty elements

• Quote all attribute values

• Give values to all attributes

• Define all element and attribute names in lower case (because XHTML is case-sensitive)

• Nest elements correctly

Close all Elements
Unlike HTML, all elements must have an opening and closing tag.

In HTML, this is allowed:
<p>This is a paragraph.

In XHTML, the <p> tag must be closed:
<p>This is a paragraph.</p>

Terminate Empty Elements
Some tags are termed “empty” because they have their functionality self-contained within the tag
(such as a line break
 or an image tag) and do not have separate closing tags.

They do, however, need to be closed. To make these tags well-formed, add a slash (/) before the
final angle bracket (>).

For example,

Quote all Attribute Values
Delimit all attributes with double quotation marks:
<table width=”100%”>

Supply Values for all Attributes
All attributes must have explicit values. Attribute minimization is forbidden. For example, the
following HTML code has a minimized attribute “checked”:
<input type=checkbox checked/>

BEA WebLogic Mobility Server User Guide - 27

Part III Fundamentals of Mobile Content

Correct syntax requires that a Boolean attribute whose value is implicit in HTML should, in
XHTML, be set equal to itself. Thus, the preceding example should be written:
<input type=”checkbox” checked=”checked”/>

Define all Element and Attribute Names in Lowercase
XML is case-sensitive and since XHTML DTDs define elements and attributes in lowercase,
content needs to obey this requirement.

This is illegal in XHTML:
<H1>My Big Title</H1>
<Table width=”90%”>

Correct XHTML form:
<h1>My Big Title</h1>
<table width=”90%”>

Nest Elements Correctly
The following code shows two elements incorrectly nested:
<p>This is bold text</p>

The correct nested format is:
<p>This is bold text</p>

Encode Non-US-ASCII Characters Using URL Encoding
Non-US-ASCII characters are not valid in hrefs or any other URL attribute values (RFC 1738).
This means the author must encode such characters using URL encoding. URL encoding of a
character consists of a "%" symbol, followed by the two-digit hexadecimal representation (case-
insensitive) of the ISO-Latin code point for the character.

Note: Different web servers use different encodings.

Document Rules
XHTML is HTML defined as an XML application. The XML document rules require that all
documents have one root element and conform to the XML specification. Any XHTML
documents that you work with must also follow this convention.

A Root Element is Required
The root element contains all the other elements on a page. In XHTML, the root element is the
<html> element.

XML Declaration Required
The XML declaration declares that the current document conforms to the XML specification. The
declaration has three attributes: version, encoding, and standalone.

The shortened syntax is as follows:
<?xml version="1.0"?>

28 - BEA WebLogic Mobility Server User Guide

http://www.rfc-editor.org/rfc/rfc1738.txt

Part III Fundamentals of Mobile Content

Note: There is no space separating the “?” from the angle brackets.

Automate HTML to XHTML Mark-up
HTML Tidy is a popular tool for converting HTML documents into clean XHMTL documents.
Developed by Dave Raggett, it is available on CD2 or as a free download from:

http://www.w3.org/People/Raggett/Tidy

Some of the features included in this tool are:

• detection and correction of mismatched tags

• addition of quotation marks to attribute values

• correction of incorrectly nested elements

• location of misplaced elements

• conversion of element and attribute names to lowercase

Enable Less Strict Document Checking
Enabling less strict XML parsing for portals/3rd party integration is often necessary. In order to
facilitate this, the customized XML parser can read documents that are to be mobilized by
WebLogic Mobility Server.

The customized XML parser has the following characteristics:

• High performance when dealing with XHTML, outperforming market leading standard
parsers, such as Xerces

• XML/XHTML processing capability

• Support for “relaxed” parsing of non-XML compliant documents; a feature that is vital for
integration with many portals and third party products

For consistency with XHTML standards, this parser is configured by default to perform strict
parsing (for example to reject stand-alone “&” symbols in XHTML attributes). For integration
with pre-existing content and frameworks, this strictness can be switched off by setting the
Boolean

Note: If the value of this property is changed, WebLogic Mobility Server must be restarted for
the change to take effect.
xsp.strictAttribute: true

When the xsp.strictAttribute property is set to true or if the property is not present, the
enforcement of strict XML encoding standards leads to parsing errors occurring when less strict
XML is encountered in attributes of URLs. For example, if the following URL was encountered,

then a parsing exception would be thrown due to the presence of the & in the URL. The XSP
parser expects an entity reference (that is, &) or a character code reference (that is, 
or Ł) and when it finds just the “&Street”, it assumes that it has found a malformed entity
xsp.strictAttribute: false

BEA WebLogic Mobility Server User Guide - 29

http://www.w3.org/People/Raggett/Tidy

Part III Fundamentals of Mobile Content

To accommodate situations such as the preceding one, the syntax checking / entity rewriting of
the XML parser needs to be liberal, that is, the “malformed entity” checking in the XML parser
would need to be disabled (set to false). Setting the xsp.strictAttribute to false disables this
exception handling and allows processing of “non-strict” XML content.

When the property is set to xsp.strictAttribute: false the WebLogic Mobility Server parser
provides more flexibility for dealing with the “&” character within attributes, by allowing for
non-strict XML to be parsed. This is to minimize the impact on portal / application integration
where the content of attributes may not be strictly legal XML.

30 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

Example
In the following sample code, the line <a href …> contains non-strict XML. When
xsp.strictAttribute is set to false, WebLogic Mobility Server, as shown in the following
graphic, processes the output from this code. When xsp.strictAttribute is set to true,
however, WebLogic Mobility Server generates an exception while attempting to process this
code.
<mm-body id="bd_company_details" idref="hd_company_details">
 <mm-img src="ma_logo.wbmp" where="ImgWBMPSupported" />
 <p>ABC Company Ltd.</p>
 <p>North Business Park, Circular Road, Dublin, Ireland</p>
 More Info
 <hr> <p>Phone: 888-000-111</p> <hr>
 <p>Fax: 000-888-111</p>
</mm-body>

WebLogic Mobility Server will overlook some less well-formed content if
xsp.strictAttribute is set to false.

Use of Non-Strict XML

BEA WebLogic Mobility Server User Guide - 31

Part III Fundamentals of Mobile Content

Organize Content
This section introduces a key concept that forms the foundation for organizing and managing
your content – groups.

The section introduces the following mmXHTML tags:

• <mm:group>

• <mm:head>

• <mm:body>

• <mm:id-ref>

Introducing Groups
Groups are a way of organizing your content for the purpose of having greater control over what
gets displayed on each device. Grouping involves dividing your content into logical sections and
assigning these sections an ID that can be referenced when deciding which groups of content
should be delivered to specific devices.

WebLogic Mobility Server introduces the notion of implicit and explicit groups. Implicit groups
are created by assigning an id to an existing XHTML tag like a form or a table.

Explicit groups are those you create with the WebLogic Mobility Server <mm:group> tag. This
element enables you to split content into a number of separate components that can be referenced
individually, for example, organizing a news page into national, regional and local news groups.
Alternatively, you can use <mm:group> to collect a number of resources (such as a table and a
form) and reference them as a single unit.

Create Explicit Groups
The <mm:group> tag has a number of attributes to identify and tailor the content group and allow
it to be referenced by other mark-up tags.

Define a Named Group
Use the following tag to define and assign an id to a group:
<mm:group id="..." title="...">

where id is a unique identifier for your group and title is the title of the group.

When assigning an id name you should select a consistent naming convention to make it easier to
manage your groups. Choosing a meaningful name will also remind you of the group’s purpose.

Note: The group id must not contain spaces.

After the <mm:group> tag, you can assign a heading and define the body. Complete the group
with the closing tag:
</mm:group>

For example,
 <mm:group id="gp_details" title="About Us">
 …
 </mm:group>

32 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

A group may contain a single head element (optionally) and zero or more body elements. The
body element is linked to the id of the head element. If no head is present the first body element
must link to the id of the group element.
<mm:group>
 <mm:head>…</mm:head>
 <mm:body> (Note: must be linked to id of mm:head)
 </mm:body>
</mm:group>

Assign a Heading to a Group
A heading can be used to facilitate navigation on menu-driven devices. Smaller screen devices
often split content into smaller pieces to accommodate the inherent memory and bandwidth
restrictions. A heading is sometimes needed to give context to the piece of content that is being
displayed. The <mm:head> tag is used for this purpose.

The heading can be used in another way to improve navigation on menu-driven devices. If the
mis.properties file is configured to enable “Back To Top” functionality, the heading inside the
<mm:head> tag will form a link at the end of split pages which will allow the user to return to the
top of the group based on the hierarchy of the current document.

For example, if you grouped an article about elephants and gave it a heading “Elephants”, each of
the subsequent split pages will have a link at the end that would read “Back to Elephants >>“.

Note: If no heading is included, the title attribute is used both in the navigation menu and as the
“Back To Top” text.

If a heading is assigned to a group, it may be part of the existing content, or may be explicitly
added for menu-driven navigation purposes.

Use the following tag to assign a heading to a group:
<mm:head id="name" useradded=”yes|no”>

where id is the unique identifier for your heading and useradded indicates whether this heading
is already part of the content (useradded=”no”) or has been explicitly added (useradded=”yes”).
The default is (useradded=”no”).

Place the content of the heading after this tag, including any formatting that you require and
complete it with the closing tag:
</mm:head>

For example,
<mm-:head id="hd_details” useradded=”no” > Details</mm:head >

Define the Body Content for a Group
The content for a group follows the group heading. The following tag can be used to define the
content for the group:
<mm:body id="..." idref="....">

where id is the unique identifier you give your body and idref is the identifier of the heading
associated this body content.

For example,
<mm:body id="bd_address" idref="hd_details">

BEA WebLogic Mobility Server User Guide - 33

Part III Fundamentals of Mobile Content

The first body in a group is linked to the group’s heading with the idref attribute. If a group has
more than one body, each subsequent body is linked to the previous one. If a group has no
heading, the first body should be linked to the group’s id.

Follow the opening tag with the content and complete it with the closing tag:
</mm:body>

You create the content for the group just like you would for any normal web page: XHTML
content (such as tables or general formatting), JavaScript, JSP code, text and images can be
placed within the group tags.

The code example on the next page illustrates how the contact details for an organization (name,
address, phone and fax numbers) could be defined as a group.

34 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

Place Content Outside a Group’s Body
Text inside a group, but outside both the group head and body will not appear on menu-driven
devices that are using a structure to reference the group. The following code snippet uses a
structure to reference a group called "group1". This group contains two sentences: one inside the
body; one outside. For menu-driven devices, only the text inside the body is delivered to the
device.
...
<mm:structure id="str1" where="IsMenuDriven">
 <mm:group-ref idref="group1" depth="flat" type="normal" display="all"/>
</mm:structure>
...
<mm:group id="group1" title="My Group1">
 <mm:head id="head1" useradded="yes">Heading Text
</mm:head>
 <p>This text will NOT appear on menu-driven devices, but will appear on full
browsers.</p>
 <mm:body id="body1" idref="head1">
 <p>This text will appear on menu-driven devices AND full browsers.</p>
 </mm:body>
</mm:group>
...

This feature allows content authors to specify only parts of a large section of content for delivery
to menu-driven devices by using multiple bodies within a single group.

Examples
mm-group

The following examples illustrate the different ways in which <mm-group> can be defined.

Example 1: mm-group with mm-head and mm-body
This example demonstrates the basic behavior of <mm-group> with <mm-head> and <mm-body>.
Notice that the heading “Company Details” is in bold on the menu-driven device. When
useradded is set to yes, “Company Details” does not appear on full browser devices.

 <mm-group id="gp_company_details" title=”Details”>
 <mm-head id="hd_company_details" useradded="yes">
 Company Details
 </mm-head>
 <mm-body id="bd_company_details" idref="hd_company_details">
 <p>ABC Company Ltd.</p>
 <p>North Business Park, Circular Road, Dublin, Ireland</p>
 <p>Phone: 888-000-111</p>
 <p>Fax: 000-888-111</p>
 </mm-body>
</mm-group>

BEA WebLogic Mobility Server User Guide - 35

Part III Fundamentals of Mobile Content

Using a group with a head and a body.

Image Courtesy of Openwave Systems Inc

Example 2: mm-group with no mm-head or mm-body
Here, neither <mm-head> nor <mm-body> are used inside the group. The output is essentially the
same as above, except that as no heading has been defined, all the text is displayed in the same
font.
<mm-group id="gp_company_details" title=”Details”>
 Company Details
 <p>ABC Company Ltd.</p>
 <p>North Business Park, Circular Road, Dublin, Ireland</p>
 <p>Phone: 888-000-111</p>
 <p>Fax: 000-888-111</p>
</mm-group>
Using mm-group with No Head or Body

Image Courtesy of Openwave Systems Inc

36 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

Example 3: mm-group with an mm-head but no mm-body
This example shows the behavior of an <mm-group> with an <mm-head> but no defined <mm-
body> tag. Because the heading has been defined, it is differentiated from the rest of the text
when seen on a menu-driven device.
<mm-group id="gp_company_details" title=”Details>
 <mm-head id="hd_company_details" useradded="no">
 Company Details
 </mm-head>
 <p>ABC Company Ltd.</p>
 <p>North Business Park, Circular Road, Dublin, Ireland</p>
 <p>Phone: 888-000-111</p>
 <p>Fax: 000-888-111</p>
 </mm-group>
mm-group with mm-head and no mm-body

Image Courtesy of Openwave Systems Inc

BEA WebLogic Mobility Server User Guide - 37

Part III Fundamentals of Mobile Content

Create Sub-Groups
As you organize your content, on certain occasions you may want to create sub-groups; in other
words, create groups within groups. Defining a group within the body of the parent group creates
sub-groups.

The following example demonstrates how the company details group is further divided into two
sub-groups: one for the name; the other for the contact information.
<mm-group id="gp_company_details title=”Details">
 <mm-head id="hd_company_details" useradded=”no”>
 Company Details
 </mm-head>
 <mm-body id="body_company_details" idref="hd_company_details">
 <mm-group id="company_name" title=”Name”>
 <mm-head id=”hd_company_name” useradded=”no”>
 Company Name
 </mm-head>
 <mm-body id="bd_company_name" idref="hd_company_name">
 <p>ABC Company Ltd.</p>
 </mm-body>
 <mm-group>
 <mm-group id="contact_info" title=”Contact”>
 <mm-head id="hd_contact_info” useradded=”no”>
 Contact Information
 </mm-head>
 <mm-body id="bd_ contact_info" idref="hd_contact_info">
 <p>North Business Park, Circular Road, Dublin, Ireland</p>
 <p>Phone: 888-000-111</p>
 <p>Fax: 000-888-111</p>
 </mm-body>
 </mm-group>
 </mm-body>
</mm-group>

It is important to note that when using nested groups (sub-groups), text that displays outside the
head and body of a sub-group will not appear when transformed for menu-driven devices even
though it may, in fact, be inside the body of an outer group. The reason for this is that the text is
interpreted by WebLogic Mobility Server as being logically part of the sub-group rather then as
text within the body of the surrounding group.

Work with Implicit Groups
Implicit groups are XHTML elements that can be assigned an id attribute, such as a table, a form
or a text area. Rather than re-marking these with the <mm-group> tag, you can reference them
directly within a layout through their existing id attribute. For other content that does not
normally have an explicit ID (such as a paragraph, or a sentence) you can assign one by wrapping
it in a <div> or tag as follows.
<div id=”ceo_1” align=”right”>John Doe</div>

Note: Implicit groups can only be referenced from within layout files. Using an <mm-id-ref>
does this. Implicit groups are not allowed for menu-driven devices (that is, groups that are
referenced inside an <mm-structure> tag).

38 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

Reference Implicit Groups
Use the following tag to reference an implicit group:
<mm-id-ref id="content_id">

where content_id is the ID assigned to the content.

Target Content for Specific Devices
Groups and layouts provide a lot of flexibility for customizing the content being delivered to
mobile devices

As you organize your content, you may decide that you want to only use part of the material
within a group. For example, you may have an introductory page with ten paragraphs but you
only want the first, third and final paragraph to be delivered to mobile devices. Alternatively, you
might have a table, from which you want to extract content from specific non-adjacent cells for
the smaller screen devices.

There are two methods for managing such content:

• Define content to be included or excluded when a particular device is being targeted.

• Link the content together through a series of <mm-body> elements.

Link Content Together
Since a group's content can be spread across a number of locations (such as in different cells in a
table) you need to wrap each element in its own body definition.

To maintain the order in which the content gets displayed, you effectively create a linked list with
the body tags: the first body tag references the heading tag, and each subsequent body tag
references the id attribute of the body tag preceding it.
<mm-group id="introduction" grouptitle=”Introduction”>
 <mm-head id="hd_introduction" useradded=”no”>Introduction</mm-head>
 <!-- Note the first body is linked to the heading -->
 <mm-body id="bd_1" idref="hd_introduction">
 <p>This is paragraph 1</p>
 </mm-body>
 <p>This is paragraph 2</p>
 <!–- Note the 3rd paragraph is linked to the 1st paragraph -->
 <mm-body id="bd_3" idref="bd_1">
 <p>This is paragraph 3</p>
 </mm-body>
 <p>This is paragraph 4</p>
 <p>This is paragraph 5</p>
 <!–- Note the 6th paragraph is linked to the 3rd paragraph -->
 <mm-body id="bd_6" idref="bd_3">
 <p>This is paragraph 6</p>
 </mm-body>
</mm-group>

This technique is also useful if you want to extract specific content from a table. Wrap the table in
a group and then, for each cell that you want to extract, wrap its contents within <mm-body>.
Again, the order in which you link definitions together will determine the order in which they are
displayed. You could, for example, have the content of the last cell appear before the contents of
the middle cell.

BEA WebLogic Mobility Server User Guide - 39

Part III Fundamentals of Mobile Content

Reference Groups
Grouping allows you to use arrange the same source content into different layouts that best suit
the dissimilar types of requesting devices.

The following graphic illustrates how the groups, once defined, can be represented for display on
a handheld device.

Using Groups to Create Content for Mobile Devices

40 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

Create Header and Footer Groups for Menu-driven Devices
This section explains how to display a header and footer on each page presented on a menu-
driven mobile device. It refers specifically to the following mmXHTML tags:
• <mm-group>

• <mm-structure>

• <mm-include>

And the following attributes (within the <mm-structure> tag)
• idheader

• idfooter

Create header and footer groups
Insert the pieces of content that you want to display as header and footer into the page. Then
define header and footer groups by inserting <mm-group> tags around each piece of content and
assigning it a group ID.

Note

• You must use <mm-include> tags to ensure that the content of these groups is only included
for menu-driven devices

• To ensure consistent spacing within header and footer groups, use the tags to enclose
the header and footer content

In the following extract, for example, a <mm-group> tag has been inserted around the footer
content “Copyright”, and the group has been assigned a group ID of “footer”.
<mm-group id="footer" title="Example Footer">
<mm-include where="IsMenuDriven">

 Copyright

</mm-include>
</mm-group>

BEA WebLogic Mobility Server User Guide - 41

Part III Fundamentals of Mobile Content

Set the idheader and idfooter Attributes in the <mm-structure> Tag
You will then need to modify the <mm-structure> tag to specify the mm-groups you want to use
as a header and footer. This involves setting the idheader and idfooter attributes to point to the
group IDs of the mm-groups to be used. The following example illustrates how to do this:
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//MOBILEAWARE//DTD MMXHTML 1.2//EN"
"http://www.mobileaware.com/DTD/mmxhtml_1.2.dtd">
<html>
 <head>
 <title>Header Footer Example</title>
 </head>
 <mm-structure id="mm-structure-1" where="IsMenuDriven"
idheader="header" idfooter="footer">
 <mm-group-ref idref="main-group" type="normal" depth="0"
display="all"/>
 </mm-structure>
 <body>
 <mm-group id="header" title="Example Header">
 <mm-include where="IsMenuDriven">

 Sports Page

 -

------ ----------

</mm-include>
 </mm-group>
 <mm-group id="main-group" title="Main">
 Uefa says Manchester United's Champions League
clash with Juventus will go ahead.
 </mm-group>
 <mm-group id="footer" title="Example Footer">
<mm-include where=”IsMenuDriven”>

 Copyright

</mm-include>
 </mm-group>
 </body>
</html>

Notes

• You can use the same mm-group as both a header and a footer, if required

• A page can have a header, a footer, both, or neither

• You can place the header and footer groups anywhere on the page

• If more than one mm-structure exists for the same class of device on a page, ensure that the
idheader and idfooter attributes exist on the first of these mm-structures

42 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

Create Conditional Content
This section describes the creation of conditional content through the use of the following syntax:

• The <mm-include> element

• The <mm-exclude> element

• The “where” attribute

Create Conditional Content
By default, everything defined within the body of a group is displayed when you reference the
group, but occasionally you will want finer control when specific devices are being targeted.

For example, you might want line breaks (
) inserted into an address group when it displays
on a mobile phone, so that the address wraps neatly. Alternatively, you might decide to exclude
the address altogether and just provide the phone number.

Another example might be changing the amount of introductory text you provide on a page. You
could display ten paragraphs of text on a desktop browser but exclude the last five paragraphs
when it is displayed on a PDA.

Include or Exclude Content
WebLogic Mobility Server provides two tags to include or exclude content: <mm-include> and
<mm-exclude>.

Wrap the content you want included or excluded in these tags. Both tags require the where
attribute. The where attribute allows conditional expressions to be built up to match specified
Device Repository attributes.

The following examples demonstrate the usage of these tags. The example Including Line Breaks
shows how to include line breaks within an address group when a specific device is targeted. The
example “Excluding an Address for a Class of Device” demonstrates excluding text.

Example: Including Line Breaks
<mm-group id="company_details">
 <mm-head id="hd_company_details" useradded="no">Company Details</mm-head>
 <mm-body id="bd_company_details" idref="hd_company_details">
 <p>ABC Company Ltd.</p>
 <p>North Business Park
 <mm-include where=”IsMenuDriven”>
</mm-include>
 Circular Road
 Dublin
 Ireland
 </p>
 <p>Phone: 888-000-111</p>
 <p>Fax: 000-888-111</p>
 </mm-body>
</mm-group>

BEA WebLogic Mobility Server User Guide - 43

Part III Fundamentals of Mobile Content

Example: Exclude an address for a class of device
<mm-group id="company_details">
 <mm-head id="hd_company_details" useradded="no">Company Details</mm-head>
 <p>ABC Company Ltd.</p>
 <mm-exclude where=”IsMenuDriven”>
 <p>North Business Park, Circular Road,Dublin,Ireland </p>
 </mm-exclude >
 <p>Phone: 888-000-111</p>
 <p>Fax: 000-888-111</p>
</mm-group>

The “where” Attribute
As can be seen from the preceding examples, the where attribute can be used to control the
output based on device type. It also can identify devices based on specific attributes.

The where attribute can be used with the following tags:
• <mm-include>

• <mm-exclude>

• <mm-img>

• <mm-structure>

• <mm-layout>

• <mm-table-model>

Usage of the “where” Attribute
The conditional expressions following the where attribute are evaluated based on values of the
referenced device profile attributes. If the condition evaluates to true, then the content enclosed
by the tag will be added/excluded/manipulated for that device (depending on the tag’s
functionality).

If the where attribute does not evaluate to true, it will be ignored (except when <mm-exclude> is
used). For example:
where="AttributeName==AttributeValue or AttributeName2==AttributeValue2"

Note: The “where” attribute quoted string must not contain line breaks.

The where attribute:

• Is compatible with the scripting language, Python.

• Provides support for conditional logic: and, or and not.

• Provides support for comparison operators: ==, <>, >, <, >= and <=.

• Provides support for comparison expressions with non-literal values. These non-literal values
must be attributes of the device defined in the Device Repository.

• Provides support for nested expressions using parentheses.

• Provides support for partial string matching (for example startswith, endswith, find).

• Provides user-friendly compilation warnings by throwing detailed exceptions.

44 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

• Provides support for select(<condition>,trueValue,falseValue), for example
select(UsableWidthPixels>200,"BIG","SMALL") will return “BIG” if the expression is true
and “SMALL” if the expression if false.

• Multiple “==” expressions can be combined with a logical AND or logical OR operator by
adding an “and” or “or” (lowercase) between expressions.

• Within the “==” expressions, number and Boolean values can be entered as is, but strings
must be surrounded by single quotes.

Here is an example using Boolean, string and number comparisons:
<mm-include where="IsMenuDriven and
UAProf.SoftwarePlatform.OSName=='Microsoft Windows' and
UsableHeightPixels < 250">
 ...Some content...
</mm-include>

Note: When referring to User Agent Profile (UAProf) attributes in the database, the full prefix is
required (for example UAProf.SoftwarePlatform.OSName, UAProf.BrowserUA.BrowserName).

Proper “where” Usage
Valid expressions when evaluated will cause the where clause to evaluate to either true or false.
Examples of valid expressions are highlighted in the following sections.

Comparison Operators
Comparison operators that are supported include: ==,<>,<,>,>= and <=.

All of the following where expressions are valid:

• where=“UAProf.HardwarePlatform.NumberOfSoftKeys == 0”

• where=“UsableWidthPixels <> 200”

• where=“UsableWidthPixels < 200”

• where=“UsableWidthPixels > 200”

• where=“UsableWidthPixels >= 200”

• where=“UsableWidthPixels <= 200”

• where=“MLVersion == 'WML1.1'”

Note: When comparing against strings the literal string values must be surrounded by single
quotes.

Conditional Logic
The logic operators supported include “and”, “or”, and “not”.

All of the following where expressions are valid:

• where=“UsableWidthPixels < 200 and UsableHeightPixels < 300”

• where=“UsableWidthPixels < 200 or UsableHeightPixels < 200”

• where=“not IsPortraitPDA”

• where=“not MP3Supported”

BEA WebLogic Mobility Server User Guide - 45

Part III Fundamentals of Mobile Content

• where=“MP3Supported”

• where=“UsableWidthPixels < 200 and not IsPortraitPDA”

Non-literal Comparisons
Device attributes can be compared against other device attributes as follows:

• where=“ UsableWidthPixels == UsableHeightPixels”

Nested Expressions
Sub expressions within the where expression can be nested using parentheses.

The following are valid:

• where=“(UsableWidthPixels < 200 and UAProf.BrowserUA.TablesCapable) or
IsPortraitPDA”

• where=“((UsableWidthPixels < 200 or IsPortraitPDA) and UsableHeightPixels < 300)”

• where=“not (UsableWidthPixels < 200 and UsableHeightPixels < 300)”

Spacing
Spacing between comparison operators will NOT invalidate the expression.

These are both valid expressions.

• where=“UsableWidthPixels < 200”

• where=“UsableWidthPixels<200”

Partial Matching
The following are all valid.

• where=“DeviceName.endswith('PAQ')”

• where=“DeviceName.startswith('IP')”

• where=“ImgGIFSupported”
(often used with the <mm-img> tag)

Invalid Expressions
There are a number of reasons why a where expression may be invalid.

In Development Mode, if there is an invalid where expression then a warning is sent to the
WebLogic Mobility Server Application Server console. If there is more than one reason why an
expression is invalid, only the first reason will be reported.

In Production Mode, the expression evaluates to false but no warning is sent to the console.

Incorrect Syntax
In these instances, the expression is not constructed properly. The expression is not built
according to the correct syntax rules.

• where=“ UsableWidthPixels”
Missing comparison.

46 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

• where=“ UsableWidthPixels 200”
Missing comparison operator.

• where=“ UsableWidthPixels >= 200 and”
Missing clause.

• where=“(UsableWidthPixels < 200 or UAProf.HardwarePlatform.ColorCapable”
Missing parenthesis.

• where=“ UsableWidthPixels < 200and UsableHeightPixels < 300”
Unrecognizable keyword “200and”.

Use Device Attributes Containing Hyphens
Some attributes have a hyphen as part of their name (for example
UAProf.PushCharacteristics.Push-MsgSize). Because the where clause is evaluated as a Python
expression, the hyphen is interpreted as a minus symbol, so if you are using one of these
attributes in a where condition, you must replace the hyphen with an underscore.

for example where = UAProf.PushCharateristics.Push_MsgSize>0

Unrecognizable Identifier Names
The following are well-constructed expressions but the device attribute does not exist within the
WebLogic Mobility Server system.

Note: In the second example, because of the missing single quotes, WebLogic Mobility Server
assumes that DeviceName is being compared to another device attribute. This will result in an
error.

• where=“ UseableWidthPixels == 200”
UsableWidthPixels is misspelled

• where=“UAProf.HardwarePlatform.Vendor==Ericsson”
No single quotes around “Ericsson”

Type Mismatches
Type mismatches occur when the device attribute type does not match the type of the value or
device attribute against which it is being compared.

Mismatches follow the rules specified by the Python language for type errors. For example, the
following three examples will produce a type mismatch.

• where=“ UsableWidthPixels”
UsableWidthPixels is not Boolean.

• where=“UsableWidthPixels == ‘wide’”
UsableWidthPixels is not a string.

• where=”UsableWidthPixels == 100+’640’”
Cannot add an integer and a string value.

The following example will NOT produce a type mismatch

• where = “‘a’ > 7000”
The letter “a” evaluates to its ASCII value of 97 before being compared to 7000.

BEA WebLogic Mobility Server User Guide - 47

Part III Fundamentals of Mobile Content

Miscellaneous Issues
• Division by 0 will simply return false. No exception will be thrown

• If an attribute is valid but is not an attribute of the device in question, a naming exception is
thrown

• Java method calls will not be evaluated. A naming exception will be thrown

• Short circuit logic applies. This means that if a syntax error has not been encountered before
the outcome of the statement has been determined, there will be no error. WebLogic Mobility
Server does not continue to evaluate a statement once a result has been established

Use “where” with Request Headers
In addition to using “where” expressions with Device Repository attributes, it is possible to use
“where” expressions with information from Request Headers.

This is done using the getHeader(‘headerName’) function in a “where” expression. The
“headername” is case-insensitive and allows any string.

Example
To include text if the Accept Header contains “gif”, you could use the expression:
<mm-include where="find('gif',getHeader('accept'))'>Found Gif in accept
header</mm-include>

Note: getHeader returns "None" (the python version of null, not the string) if the requested header
is not present.

Alternatively, getHeaderWithDefault(‘headerName’,’valueIfNotPresent’) can be used.
This function will return the defined “valueIfNotPresent” if there is no header called
“headername” for this request.

Examples of “where” Usage

Example 1: Use of “where” with “and” Operator
Here’s an example using a compound where condition that uses the “and” operator.
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//MOBILEAWARE//DTD MMXHTML 1.2//EN"
"http://www.mobileaware.com/DTD/mmxhtml_1.2.dtd">
<html>
<head>
 <title>Use of “and”</title>
</head>
<mm-structure id="include-and1" where="IsMenuDriven">
 <mm-group-ref idref="message-include-and" type="normal" depth="flat"
 display="all" />
</mm-structure>
<body>
 <mm-group id="message-include-and" title="Message-include-and">
 <mm-head id="message-head-include-and" useradded="yes">
 MENU-DRIVEN DEVICE
 </mm-head>
 <mm-body idref="message-head-include-and" id="message-body-include-and">
 <h1>Example 1</h1>
 <mm-include where="DeviceName=='M3Gate0.6'and UsableWidthPixels ==120">

48 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

<p>This text will be included in devices named M3Gate 0.6 and
 with a viewable screen width equal to 120. </p>
 </mm-include>
 <hr />
 </mm-body>
 </mm-group>
</body></html>

If the where condition returns true, a line of text is included for devices that match a specific
device name AND have a UsableWidthPixels attribute of 120.

This body text will not appear on a PC browser.

BEA WebLogic Mobility Server User Guide - 49

Part III Fundamentals of Mobile Content

Example 2: Use of “and not”
If the <mm-include> in Example 1 is replaced with the following line:
<mm-include where="UsableWidthPixels < 200 and not IsFullBrowser">

The same result will be seen in the M3Gate and Mozilla/4 browsers as in Example 1 as the text is
included for UsableWidthPixels < 200 and is not included for “IsFullBrowser”.

Example 3: Use of “or”
If the <mm-include> section in Example 1 is replaced with the following:
<h1>Example 3</h1>
<mm-include where="DeviceName=='M3Gate0.6' or IsFullBrowser">

 Text included on an M3Gate0.6 or a full browser.

</mm-include>

And the title tag at the top of the file is changed to:
<title>Use of “or”</title>

The include text is output on both the M3Gate and full browsers as follows:

Example 3 on a full browser and (menu-driven) device

50 - BEA WebLogic Mobility Server User Guide

Part III Fundamentals of Mobile Content

Example 3 Result on a WML Menu-Driven Device

BEA WebLogic Mobility Server User Guide - 51

Part III Fundamentals of Mobile Content

Example 4: Use of “endswith”
If the <mm-include> section in Example 1 is replaced with the following:
<h1>Example 4</h1>
<mm-include where="DeviceName.endswith('4')>0">

 Text included for any device name ending with a 4.

</mm-include>

and the title tag is changed to:
<title>Use of “endswith”</title>

then the text inside the <mm-include> tags would be displayed on the Mozilla/4 browser because
it ends with 4.

Results of Example 4 in PC browser (Mozilla/4)

52 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Part IV Presentation of Mobile Content
Organize Content for Handheld Devices
The simple translation of the WebLogic Mobility Server mark-up into a device-specific mark-up
is not the only thing that is required to develop professional looking web pages for mobile
devices. It is important to remember that in order for a web page to look good on handheld
devices, the content also needs to be rearranged to suit the size, shape and memory capabilities of
each device. Furthermore, it is necessary to take into consideration whether the device supports
mouse, stylus or keypad navigation. And finally, the appearance of the web page may be
improved by the layering of styles, colors and borders onto the transformed content. WebLogic
Mobility Server gives you the tools to simplify these tasks.

This section covers in detail how to arrange and style web content for presentation on the smaller
handheld devices using groups. It explains how WebLogic Mobility Server transforms a
document marked up with the WebLogic Mobility Server mobility tags into the mark-up of the
requesting device and introduces the concept of developing a navigational structure for the
smaller screen devices. Lastly, it demonstrates how the main categories of devices are
differentiated and how the order of layout references in content is important in determining which
layout is selected for a device.

Web Site Arranged for PDA Devices

Arrange and Style Content
As has been described earlier, WebLogic Mobility Server transforms content marked up with the
mobility tags into a suitable language for the targeted device, whether it is WML, XHTML-MP, a
particular version of HTML, or another format.

BEA WebLogic Mobility Server User Guide - 53

Part IV Presentation of Mobile Content

However, to deliver content that has simply been translated into the appropriate mark-up for the
requesting device would not necessarily produce optimum results.

Web Site Arranged for WML Device

Image Courtesy of Openwave Systems Inc

Web Site Arranged for XHTML-MP Device

54 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

To address this, the transformation process is divided into two distinct phases:

• Transformation to target mark-up: (for example, transforming mmXHTML into WML 1.2) as
described in earlier sections. This process is completely rule-based and requires no input from
content developers.

• Application of layout and styling preferences: This process empowers content developers to
create stencils describing how the output will be arranged on each of the different classes of
devices. The following graphic presents the concept graphically.

The 2 Phases of Content Transformation

After the first "transformation" phase, the content has been distilled to suit the target device. Also
notice in this simple example that formatting directives such as bold and italic have been removed
from the WML output. After the second "layout and style" phase, the content has been
restructured to suit the size and shape of the device. Typically, PDA content is arranged
sequentially, WAP content is arranged as a set of menu items (or links) and PC content is
presented very similarly to the original mark-up. During this second phase, WebLogic Mobility
Server also performs the application of cascading style sheets for devices that cannot support
style sheets locally. Style sheets are discussed in greater detail in the section “Working with Style
Sheets.”

In normal circumstances, a content developer will only develop two distinct layouts for the web
application; one for targeting content for PDAs and one for menu-driven devices such as WAP
phones.

BEA WebLogic Mobility Server User Guide - 55

Part IV Presentation of Mobile Content

The next two sections will discuss in detail the considerations that have to be taken into account
when restyling web content for PDAs and phones.

Restyle for PDAs
WebLogic Mobility Server provides 2 methods for authors to restyle their web content for PDAs.
Which method you select depends on the type of content you are presenting.

Method 1 is used primarily for smaller documents, which can have the content groups rearranged
one above the other. Method 2 works well with larger documents that benefit from being broken
into several smaller pages that can be navigated through using menu links created by WebLogic
Mobility Server.

Method 1: Use layout files for PDA display
PDAs, because of their smaller screen size, often need a simpler, cleaner layout than would be
used for a desktop browser. For this reason, WebLogic Mobility Server introduced the concept of
layout files.

Layout files are basically skeleton template files which hold groups of content, but which are laid
out in a way that is better suited to the smaller device. They closely resemble the concept of the
HTML frameset that references the HTML pages that are to appear within each frame. The
sections of the content, which have been identified as “groups”, can be referenced from within the
specialized layout files to create a more appropriate display on the smaller device.

Content is often organized differently on PCs and PDAs as illustrated:

Content Organized for PCs

56 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Content Organized for PDAs

In this example, the two poems can appear side-by-side in a full browser, but in order to avoid
excessive wrapping, they are stacked one on top of the other when delivered to a PDA device.
The following code blocks contain an example of how this is done. The <mm:layout> tag
indicates that a layout file is to be used when the requesting device is a PDA.

Note: Layout files should contain mark-up organized for menu-driven devices and PDAs only.
Setting the attribute where=”IsFullBrowser” is not allowed in the <mm:layout> tag.

The particular layout file is identified by the src attribute. The content in the main file
(myFile.jsp) has been grouped. The content of the first table cell is grouped and labelled
“group1”. The content of the second table cell is grouped and labelled “group2”. These groups
are then referenced from the layout file using the <mm_id-ref> tag.

BEA WebLogic Mobility Server User Guide - 57

Part IV Presentation of Mobile Content

myFile.jsp
<%@ taglib uri="mmJSPtaglib" prefix="mm"%>
<mm:page content="false">
<html>
<head>
<title>Restyling for PDAs</title>
 <mm:layout where="IsPDA" src="pda_layout.jsp" />
</head>
<body>
 <table>
 <tr>
 <td><mm:group id="group1" title="Group1">
 <p>Content of group 1.</p>
 </mm:group>
 </td>
 <td><mm:group id="group2" title="Group2">
 <p>Content of group 2.</p>
 </mm:group>
 </td>
 </tr>
 </table>
</body>
</html>
</mm:page>

pda_layout.jsp
<%@ taglib uri="mmJSPtaglib" prefix="mm"%>
<mm:page>
<html>
<head>
 <title>PDA Layout</title>
</head>
<body>
 <p><mm:id-ref idref="group1" /></p>
 <p><mm:id-ref idref="group2" /></p>
</body>
</html>
</mm:page>

pda_layout.jsp takes the two blocks of content that, on a PC browser, would appear side by side
and places them one on top of the other. Group 1 displays above group 2. The tag <mm:id-ref>
uses its idref attribute to reference IDs of the pre-defined groups.

58 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Method 2: Use structures for PDA display
In the last example, the <mm:layout> tag was used to specify a file that contained groups of
content that have been reorganized into a simpler layout. Suppose, however, instead of two
groups in myFile.jsp, there were ten or more. Reorganizing the content using the preceding
method would result in a very long page that would require scrolling to see the entire contents. It
might also result in the page being split in an inappropriate place if the attempt at displaying the
single page exceeds the memory limitations of the device.

PDA pagination allows the content authors to split a single page into multiple pages so that it can
be viewed more easily on a PDA device. Along with the sub-pages, persistent navigational
components are automatically created to help the user navigate around the pieces of the
document.

The following example shows a typical layout design for content targeting a PC browser. A
document header and footer surround four logical content blocks – perhaps news stories, or
product features.

Typical Web Layout for Display on a PC Browser

The next illustration shows how this content might be organized using a layout file containing a
simplified template, as was seen in the previous example using myFile.jsp. For larger pages, parts
of the content will not be visible without scrolling.

BEA WebLogic Mobility Server User Guide - 59

Part IV Presentation of Mobile Content

Ogranizing Content Using a Layout File

For smaller amounts of content, this solution works well. For larger amounts of content,
pagination works better.

The following graphic illustrates how the four content blocks might appear if the content was
paginated using the <mm:structure> tag.

60 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Splitting Content into Pages with Navigation on a PDA

The following code blocks illustrate how to paginate content intended for PDA display using the
<mm:structure> tag. This example uses a layout file in which to place the <mm:structure>.
This is generally considered good practice as it keeps separate the content file and the
presentation file.

pagination.jsp
<%@ taglib uri="mmJSPtaglib" prefix="mm"%>
<mm:page content="false">
<html>
<head>
<title>Pagination</title>
<link rel="stylesheet" href="mystyle.css" type="text/css"/>
<h4>PDA Pagination Demo</h4>
<mm:layout src="pagination_layout.jsp" where="IsPDA" />
</head>
<body>
 <table>
 <tr><td>
 <mm:group id="groupA" title="Hamlet">
 <p>There are more things in heaven and earth, Horatio, than are dreamt of
in your philosophy.
</p>
 </mm:group>
 </td></tr>
 <tr><td>

BEA WebLogic Mobility Server User Guide - 61

Part IV Presentation of Mobile Content

 <mm:group id="groupB" title="As You Like It">
 <p>All the world's a stage,
And all the men and women merely players;
They have their exits and their entrances,
And one man in his time plays many parts,
His acts being seven ages.
</p>
 </mm:group>
 </td>
 </tr>
 <tr><td>
 <mm:group id="groupC" title="Macbeth">
 <p>Life is but a walking shadow,
a poor player that struts and frets
his hour upon the stage and then is heard no more.
It is a tale told by an idiot,
full of sound and fury signifying nothing.
</p>
 </mm:group>
 </td></tr>
 <tr><td>
 <mm:group id="groupD" title="Twelfth Night">
 <p>Be not afraid of greatness. Some are born great, some achieve
greatness, and some have greatness thrust upon 'em.
</p>
 </mm:group>
 </td></tr>
</table>
</body></html></mm:page>

62 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

pagination_layout.jsp
<%@ taglib uri="mmJSPtaglib" prefix="mm"%>
<mm:page content="false">
<html>
<head>
<title>Pagination</title>
</head>
<body>
 <mm:structure id="pagination_str" where="IsPDA">
 <mm:group-ref idref="groupA" depth="0" display="headings" type="normal" />
 <mm:group-ref idref="groupB" depth="0" display="headings" type="normal" />
 <mm:group-ref idref="groupC" depth="0" display="headings" type="normal" />
 <mm:group-ref idref="groupD" depth="0" display="headings" type="normal" />
 </mm:structure>

 <h5>Copyright © BEA Systems, Inc.</h5>
</body>
</html>
</mm:page>

A style sheet has also been added to this example to distinguish the different parts of the layout.

mystyle.css
p {
 font-family: Verdana, Arial, Helvetica, sans-serif;
 font-size: 10pt;
 color: blue;
}
h4 { color: black; font-size: 10pt; }
h5 { color: gray; font-size: 8pt; }
a:link {color: green; }

As can be seen on the next page, a navigation section replaces the <mm:structure> and only one
group is displayed at a time.

BEA WebLogic Mobility Server User Guide - 63

Part IV Presentation of Mobile Content

Displayed Navigation Section

Clicking on a link shows the contents of that group. Content outside the <mm:structure> is
persistent, meaning it will appear on all pages.

64 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Display Group Contents

The menu links are created from the text contained in the group’s head. If the group has no head,
the group title is used instead.

The groups used to form the navigation structure are referenced from within the <mm:structure>
tag using the <mm:group-ref> tag.

Persistent content, such as the header and footer in the preceding example, can be created by
placing <mm:id-ref> tags in the layout page, but outside the <mm:structure>.

The <mm:group-ref> attributes used for PDA pagination are described as follows:

• idref: The idref attribute refers to the ID of the group to be referenced

• depth: Because each group in this example has no sub-groups, the depth attribute is set to 0.
Each group referenced by an <mm:group-ref> is searched at the depth specified in the
<mm-group-ref> using the depth attribute. The navigation section displays a link to each
group down to the level that has been specified

• type=”normal” (This is the default if this attribute is missing.) For PDA pagination, “normal”
is the only acceptable value for this attribute

• display=”headings” For PDA pagination, this is the only acceptable value for this attribute

BEA WebLogic Mobility Server User Guide - 65

Part IV Presentation of Mobile Content

Notes:

• For PDA pagination, if either of these last two attributes is not set as per above, a fatal
exception will occur

• Multiple structures can be placed in a single file, however only the first structure found
containing a where attribute that matches the requesting device is used

• The structure can be placed either in the main file or a layout file but if you are using a layout
file for PDAs, the structure used for PDA pagination must be placed within that layout file

Restyle for Menu-Driven Devices
The screen size and memory capabilities are even more restricted on menu-driven devices such as
phones. As a result, it is usually always necessary to split web content into smaller units in order
to present it in an easy-to-read fashion. This restructuring is done with the <mm:structure> and
<mm:group-ref> tags, using the same technique that was introduced in the preceding section on
PDA pagination. The<mm:group-ref> tag contains attributes that allow a high level of control
over how content is presented on menu-driven devices.

WML Pagination Using <mm:structure>

Unlike content delivered to PDAs using the <mm:structure> tag, only content referred to within
the <mm:structure> itself is delivered to menu-driven devices. Content outside the structure will
be ignored. The preceding PDA pagination example sent a page header and footer to the device
although they were outside the <mm:structure>. If the same layout file were sent to a menu-
driven device, the header and footer would not appear.

Using the preceding example and changing the where attribute of the <mm:layout> and
<mm:structure> tags to target menu-driven devices:

66 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

…where="IsMenuDriven"

results in the navigation appearing on a page separate from the content on a menu-driven device.

Navigation Appears on Page Separate From Content

Image Courtesy of Openwave Systems Inc

Clicking on a link shows the content of the group on its own sub-page.

Displaying Content of the Group

Image Courtesy of Openwave Systems Inc

Notice that the header and footer material does not appear. Only the groups referenced from
within the structure appear on a menu-driven device.

BEA WebLogic Mobility Server User Guide - 67

Part IV Presentation of Mobile Content

Use <mm:group-ref> Attributes for Menu-Driven Display
The format of the <mm:group-ref> tag is:
<mm:group-ref idref="..." type="..." depth="..." startdepth=”…” display="…"
navstyle=”…” />

Note: This tag does not have a separate closing tag, so a slash must be placed before the final
angle bracket to make it “well-formed”.

The <mm:group-ref> attributes used for menu-driven display are described as follows:

• idref: The attribute idref is given the same value as the id of the group that is to be
referenced.

• type: The attribute type can have the values "normal" or "options". When content is being
delivered to a WML device, this attribute specifies whether the menu displays on the screen
or whether it displays behind the Options button on the device. Setting the value to “options”
has no effect on XHTML MP devices. (Remember that “options” is not used for PDA
pagination either.)

• depth: The attribute depth controls the number of levels you want in the hierarchy. This
applies when you have groups nested within groups (that is, subgroups). The possible values
are "flat", 0, 1, or 2:

• flat: displays the entire contents of the referenced group

• 0: displays a link to the parent group

• 1: displays a collection of links to the parent groups and the immediate child groups

• 2: displays a collection of links to the parent and all nested sub-groups

• startdepth: The attribute startdepth can have an integer value. It specifies the depth at
which the navigation list starts. For example, if you have a group hierarchy 3 deep, that is, a
group with a sub-group which in turn has another subgroup, specifying startdepth=”1” and
depth=”1” will return just the first level of subgroups. This is used primarily when you do not
want an outer group to appear as a link in the hierarchy

• display: The attribute display can have the values "all", "headings" or "links"

• all: displays everything within the group - headings, bodies, and so on.

• headings: displays the headings within a group down to the level (depth) specified

• links: displays headings and any links that occur within the group

Note: To display the entire contents of a group, set depth="flat" display="all". By putting
the header of the preceding example into the structure and setting these attributes, the text of the
group will appear in its entirety, rather than as a link.
<mm:structure id="pagination_str" where="IsMenuDriven">
 <mm:group-ref idref="header" depth="flat" display="all" type="normal" />
 <mm:group-ref idref="groupA" depth="0" display="headings" type="normal" />
 <mm:group-ref idref="groupB" depth="0" display="headings" type="normal" />
 <mm:group-ref idref="groupC" depth="0" display="headings" type="normal" />
 <mm:group-ref idref="groupD" depth="0" display="headings" type="normal" />
</mm:structure>

68 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Displaying the Content of the Group

Image Courtesy of Openwave Systems Inc

For a complete list of possible combinations using depth and display, see “Appendex A –
Mobility Tag Reference.”

Note: The attribute navstyle is used to style the navigation block in this example. This attribute
is covered in detail in the next section.

BEA WebLogic Mobility Server User Guide - 69

Part IV Presentation of Mobile Content

Navigational Menu Styling
The previous section showed how WebLogic Mobility Server creates navigational structures for
PDA and menu-driven devices. This section shows how to style these navigational structures.

Without any styling, the navigation created by WebLogic Mobility Server displays as a single
column table as can be seen in the following illustration.

Navigation menus created by WebLogic Mobility Server will default to a single column table
style if no other style directions are given.

Default Single Column Table Navigation Styling

70 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

WebLogic Mobility Server allows content authors to customize the navigation.

The following types of styling are possible:

• Multi-column table with the user able to set the number of columns and rows

• List with items separated by

• In-line styling showing either space-delimited or pipe-separated lists

• Images used as navigational links, with or without accompanying text

Style Navigational Menus Using Multi-Column Tables
The following illustration shows an example of a navigation menu restyled using a two-column
table.

 Two-column Styling of Navigation Table

To get the two-column navigational table to display on PDAs and menu-driven devices that
support tables, set the <mm:structure> attribute navstyle as follows.
<mm:structure id="s1" where="IsPDA" navstyle="nav-format:table;
nav-table-columns: 2">

BEA WebLogic Mobility Server User Guide - 71

Part IV Presentation of Mobile Content

You can also set the number of rows by using nav-table-rows: n in the navstyle attribute
where n is the number of rows.
<mm:structure id="s1" where="IsPDA" navstyle="nav-format:table;
nav-table-rows: 2">

Note: If there aren’t enough links to fill the columns or rows that have been indicated in the nav-
table-rows property, empty rows or columns will be added.

If the request is made from a device that does not support tables, the navigation menu is rendered
as a list. All list elements are displayed on the same level, even if sub-groups are involved.

Table styling on a device that does not support tables is ignored. The menu items are rendered as
a list.

Table Styling for Device Without Table Support

Style Navigational Menus Using Lists
An alternative to displaying menu items in a table is to display them in a list. For this, the
navstyle attribute value nav-format:list is used. This can be used to create a list of menu
items separated by a line-break, a space, or a pipe character.

Using lists can be helpful when delivering content to devices with vastly different screen widths.
WebLogic Mobility Server will retrieve the width of the requesting device from its Device
Repository and wrap the list in an appropriate place. Using tables can have undesirable
consequences if the screen width can’t accommodate the width of the table. Excessive wrapping
of text within cells can occur making the links less readable.

72 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Navigation Styling

To use a list, add the following values using the navstyle attribute of the <mm:structure> tag.

• For a
 separated list:
navstyle="nav-format: list"

• For a space-separated list:
navstyle="nav-format: list; nav-list-item-display: inline"

• For a pipe-delimited list:
navstyle="nav-format: list; nav-list-style-type: pipe"

BEA WebLogic Mobility Server User Guide - 73

Part IV Presentation of Mobile Content

Style Navigational Menus Using Images
Images can be used to style menus delivered to PDAs and menu-driven devices. Icons can be
inserted as bullets or be made into links themselves.

Using <mm:media-group> to display images

Images that are being delivered to different device types should be placed inside an
<mm:media-group> element in order to deliver the best image to each device. The media-group is
also used in navigational styling to suppress the immediate delivery of the image in the place
where the <mm:img> mark-up is located in the document. The images are used in the menu
creation only.

To do this, set navstyle="display:none" on the <mm:media-group>. The attribute id is used so
that the images can be referenced from other places in the mark-up.
<mm:media-group id="car" navstyle="display:none" alt="*">
 <mm:img where="ImgGIFSupported" src="img/car.gif" alt="*"/>
 <mm:img where="ImgWBMPSupported" src="img/car.wbmp" alt="*"/>
</mm:media-group>
Navigation Styling with Images

Adding images to navigation is done using the navstyle attribute in any of the following tags:

74 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

• <mm:group>

• <mm:group-ref>

• <mm:structure>

The three tags have a hierarchical relationship. Contradicting styles will be decided depending on
where the tags appear in the hierarchy. So, for example, a navstyle attribute on an <mm:group>
will override that of an <mm:group-ref> or <mm:structure>. The navstyle of an <mm:group-
ref> will override the navstyle of the <mm:structure>.

The navstyle attribute can also be inherited from a parent tag. This means, for example, that if
the author specifies a URL on an <mm:structure>, this will be applied to all groups that are
referenced from within the structure unless otherwise overridden.

The navstyle attribute is used to refer to the media-groups that contain the images to be used in
the navigation menus. In the following example, an image of a car has been placed inside a
media-group. The id attribute of this media-group has set to “car”. The group-ref then references
this image from within its navstyle attribute.
<mm:group-ref idref="groupA" depth="0" display="headings" type="normal"
navstyle="nav-image:url(#car)"/>

Style Navigation Text and Images
Styling the menus with images and text is done with the nav-text-display style. This can have
three values:
• inline

• none

• block

Examples
The following examples illustrate the use of these values.

BEA WebLogic Mobility Server User Guide - 75

Part IV Presentation of Mobile Content

Example 1: Images with Inline Text Styling. The text displays next to the image
(this is the default).
<mm:structure id="str1" where="IsPDA" navstyle=”nav-format:list; nav-list-item-
display: inline; nav-text-display: inline">
Navigation Styling with Images and Inline Text

76 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Example 2: Images with No Text Styling. Images appear as links by themselves.
<mm:structure id="str1" where="IsPDA" navstyle="nav-format:list; nav-list-item-
display: inline; nav-text-display: none">
Navigation Styling with Images and No Text

BEA WebLogic Mobility Server User Guide - 77

Part IV Presentation of Mobile Content

Example 3: Images with Block Text Styling. Text displays beneath the images in a
table.
<mm:structure id="str1" where="IsPDA" navstyle=" nav-format:table; nav-table-
rows: 1; nav-text-display: block">
Navigation Styling with Images and No Text

78 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Menu Design Tips
The first of the three preceding illustrations uses a two-column table to avoid awkward wrapping
that would result in three menu items on the first row and one on the second. This highlights an
issue that content developers should keep in mind. Deciding on whether to use tables or lists to
style navigation has to be thoroughly considered. Each has its advantage.

Tables can be styled with borders and backgrounds (if the device supports these things). The
drawback, however, is accommodating the varying screen widths of the smaller devices. What
may look good on a Nokia 3650 may wrap excessively on a Sharp GX10. On some browsers,
exceeding the width of the screen will result in the table being automatically reduced to a single
column.

Lists have a bit more flexibility. If the browser supports wrapping, the menu items will wrap
automatically when the maximum screen width of the requesting device is reached.

Using images as menu links with no additional text below or beside the image works well in a
list. The images, however, must be equal in size.

The <mm-structure> should have the following navstyle attribute properties:
navstyle="nav-format: list; nav-list-item-display: inline; nav-text-
display:none"

The result is that the browser will “wrap” the list of icons to fit the screen. The benefit of this is
that the content author doesn't have to “hard code” the number of columns or rows; they can rely
on the browser to decide.

This method generally gives the most visually appealing result across a range of devices.

Note: Try to keep text strings used in navigation to as short a length as possible.

More Navigation Lists for Handheld Devices
Up to this point, the navigation lists described have been created using pre-defined groups.
Selected groups on a single page have been referred to from within an <mm:structure>. The
group headings form the link text and clicking on the link takes the user to the content of that
group. Sometimes, however, you might want to create a navigation list whose items are not based
on any pre-defined group. WebLogic Mobility Server provides two tags to let you do this.
• <mm:nl>

• <mm:li>

These two tags are roughly the equivalent of the XHTML 2.0 tags <nl> and . Styling
attributes can be added to each of these tags in order to manipulate the navigation to best suit the
requesting device.

The following is an example of how these tags can be used.
<div style="border: 1px solid">
<mm:nl navstyle="nav-format: table; nav-table-columns: 2” where=”IsPDA”>
 <mm:li navstyle=”nav-image: url(clubs.gif)” href="clubs.htm”>Clubs</mm:li>
 <mm:li navstyle=”nav-image: url(diam.gif)” href="diam.htm">Diamonds</mm:li>
 <mm:li navstyle=”nav-image: url(spades.gif)”
 href="spades.htm">Spades</mm:li>
 <mm:li navstyle=”nav-image: url(hearts.gif)”
 href="hearts.htm">Hearts</mm:li>

BEA WebLogic Mobility Server User Guide - 79

Part IV Presentation of Mobile Content

</mm:nl>
</div>

The navstyle attribute is used in the same way as the preceding examples that use structures.
The difference is that the <mm:li> element refers to a URL using the href attribute rather than a
specific group referenced by the <mm:group-ref> element. In this example, the URL points to a
particular file (for example navstyle=”nav-image: url(clubs.gif)”). As with the preceding
examples, a media-group can be referenced instead (for example navstyle=”navimage:
url(#clubs)” where “clubs” is the id of a media-group. For even more flexibility, the where
attribute can be used with the <mm:nl> element. This means that developers can refine the menu
for specific targeted devices. As is the case with the where attribute of <mm:structure>,
where=”IsFullBrowser” is not allowed. Additional styling can be added using external style
sheets as described in “Work with Style Sheets.”

80 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Work with Style Sheets
This section describes:

• What style sheets are and how they are used

• The advantage of server side cascading style sheets (SSCSS) for delivering pages to PDAs

• Examples of HTML style sheets

• How to use SSCSS

• Using the default style sheet

• An example of SSCSS with the WebLogic Mobility Server sample news file

Introduction to Style Sheets
A style sheet is a simple mechanism for adding style (for example fonts, colors, spacing) to Web
documents.

The World Wide Web Consortium (W3C) has actively promoted the use of style sheets on the
Web since the Consortium was founded in 1994. The W3C has made several recommendations
including CSS1, CSS2, XPath, XSLT and XSL. CSS (Cascading Style Sheets) especially are
widely implemented in browsers.

By attaching style sheets to structured documents on the Web (for example HTML), content
authors and web developers can influence the presentation of documents without sacrificing
device-independence or adding new HTML tags.

Style sheets can be used to define the appearance of an entire site in a consistent way. With the
introduction of CSS, it is now recommended that layout-specific features in HTML be phased out
and replaced by style sheets.

Understand Cascading Style Sheets
Cascading Style Sheets (CSS) provide a means for web authors to separate the appearance of web
pages from the content of web pages. This means that the content of the web site should go into
your HTML files (or XHTML files or JSP pages), but these files should not describe how that
information is displayed. Information about how the pages should appear goes into CSS files. The
styles from this file that is given a .css extension are then applied server-side.

BEA WebLogic Mobility Server User Guide - 81

Part IV Presentation of Mobile Content

Keeping Document Content and Style Separate

In addition to being in external.css files, style sheets can also be placed internally in the <head>
element of the content file.

A simple example is shown here:
body {
{font-family: arial, Helvetica, sans-serif;
font-size: 1em;
text-align: justify}

h1
{font-family: arial, sans-serif;
font-size: em}

p
{font-family: Courier New, sans-serif;
font-size: 1em}

.note
{background-color: #003333;
}

82 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Rules In CSS
A rule is a statement that tells a browser how to draw a particular element on a web page.

A rule has two parts: a selector and a declaration. A selector identifies the elements on a web
page that are affected by the rule. The declaration tells the browser how to display the element
that is selected by the selector.

The preceding example has four rules. There are four selectors: body, h1, p and note. The
declarations for each rule are inside curly braces. Each declaration can contain one or more
properties. A semi-colon separates properties.

Link Style Sheets
External style sheets can be applied to multiple documents. Each document must be linked to the
style sheet in order for the styles to be applied. Placing a link to the style sheet in the head of the
marked up content file does this. When the browser begins reading the page, it sees the style sheet
link, and downloads the style sheet, then uses it to display the page.

To link a web page to a style sheet, place a link to the .css file in the head of the document, using
the following syntax:
<link rel="stylesheet" type="text/css" href="mystyles.css" />

The style sheet should be accessible to all files that use it. Typically, it is placed in the root
directory of the web folder.

Server Side Application of CSS for PDAs
If a style sheet is unavailable, the requesting browser is responsible for applying any internal or
inline styles that are contained in the content file. In the absence of any styles, the browser will
use its own default settings. Some PDA browsers, however, cannot support CSS. In cases like
this, WebLogic Mobility Server will attempt to apply any external or internal styles by translating
them into the nearest equivalent in-line style. The server does this translation before the page is
delivered to the browser.

Use Multiple Device-Specific Style Sheets
When creating a style sheet you can create a single style sheet that applies to all devices, or you
can create multiple specialized style sheets that target particular device types.

Creating multiple style sheets can be easier to maintain and can allow authors to finely tune
content presentation to particular devices. You might decide, for example, to present web content
that is being requested by handheld devices in a smaller font than when it is being requested by a
desktop browser. Specifically, headings can be displayed in a very large font on a desktop
browser, but the smaller screen devices would likely cause this heading to wrap awkwardly.

Multiple style sheets linked to in the document head using the <mm:include> mobility tag.
<mm:include where=”UsableScreenWidth > 180”>
 <link rel="stylesheet" type="text/css" href="mytinystyles.css" />
</mm:include>
<mm:include where=”IsLandscapePDA”>
 <link rel="stylesheet" type="text/css" href="mywidestyles.css" />
</mm:include>

BEA WebLogic Mobility Server User Guide - 83

Part IV Presentation of Mobile Content

WebLogic Mobility Server CSS Support
Not all CSS styles can be supported across all devices. This means that WebLogic Mobility
Server will support the elements that are common between CSS1 and the mark-up language of the
requesting device.

Many PDAs support HTML 3.2. The following graphic represents how the common elements
within the CCS1 specification and the HTML 3.2 specification are included as part of WebLogic
Mobility Server SSCSS support.

WebLogic Mobility Server supports the common elements between CSS1 and the requesting
device.

WebLogic Mobility Server CSS Support

Styles Available in HTML 3.2
The following tables define the CSS properties supported by the WebLogic Mobility Server
targeting HTML 3.2 browsers.

CSS1 to HTML 3.2 Property Relationship

Property Supported Values Elements

font-family <family-name>

<generic-family>

Any

font-style normal | italic Any

font-weight normal | bold Any

font-variant normal | small-caps Any

font-size <absolute-size> | <relative-size> Any

background-color <color> <body>

background-image URL (for example
url(“../images/image.jpg”)

<body>

84 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

color <color> <body>,

font <font-family>

<font-style>

<font-weight>

<font-size>

<color>

Any

text-decoration underline

linethrough

Any

vertical-align [top | middle | bottom] | [top |
bottom]

<caption>, <tr>, >th>, <td>,
<input>,

text-align left | right | center <h1>, <h2>… >h6> <p>, <div>,
<center>

a.link (pseudo selector) <color> <body>

a.visited (pseudo
selector)

<color> <body>

a.active (pseudo
selector)

<color> <body>

list-style inside , , <dl>, <dt>, <dir>,
<menu>

list-style-type [disc | circle | square] | [decimal |
lower-roman | upper-roman |
lower-alpha | upper-alpha]

,

height <length> <hr>, <th>, <td>,

width <length> | <percentage> <hr>, <table>, <th>, <td>,

border <border-width> <table>,

padding <length> <table>

margin <length> | <percentage>

BEA WebLogic Mobility Server User Guide - 85

Part IV Presentation of Mobile Content

HTML 3.2 to CSS/SSCSS Property Relationship

Element Element Attribute CSS/SSCSS Property

<body> bgcolor background-color

 background background-image

 link a.link (pseudo selector)

 vlink a.visited (pseudo selector)

 alink a.active (pseudo selector)

<h1>, <h2> and so
on (headings)

align text-align

<p>, <div>, <center> align text-align

 type list-style-type [disc | circle |
square]

 type list-style-type [decimal | lower-
roman | upper-roman | lower-
alpha | upper-alpha]

<dl>, <dt>, <dir>,
<menu>

<pre>

<hr> align text-align

 size height

 width width

<table> align horizontal-align

 width width

 border border

<caption> align vertical-align

<tr> align horizontal-align

 valign vertical-align

<th>, <td> align horizontal-align

 valign vertical-align

86 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

 width width

 height height

<input> size chars

 align horizontal-align OR vertical-align

 align horizontal-align OR vertical-align

 width width

 height height

 border border

 size font-size

 color color

 face font-family

Define Colors in HTML 3.2
To specify colors, you can use the following keyword color names:

Keyword Color Names

Color Color Color Color

aqua gray navy silver

black green olive teal

blue lime purple white

fucshia maroon red yellow

These 16 colors are taken from the Windows VGA palette. You can use any color specification
you want, for example, hex, RGB, such as:
p{ color: rgb(255,255,255); } or p{ color: rgb(fff);} or p{ color: #ff0000;}

BEA WebLogic Mobility Server User Guide - 87

Part IV Presentation of Mobile Content

Manage Navigation
This section describes pagination and Back-to-Top functionality in WebLogic Mobility Server.

Pagination
Pagination refers to dividing a document into pages. WebLogic Mobility Server provides the
following two pagination options:

• Automatic pagination

Authors need not worry about manipulating pages, cards or decks (groups of cards) because
WebLogic Mobility Server automatically handles pagination for targeted devices.

• Author-controlled pagination

WebLogic Mobility Server provides the option of author-controlled pagination. Author-
controlled pagination overrides the automatic pagination function within WebLogic Mobility
Server.

Automatic Pagination
WebLogic Mobility Server automatically divides mmXHTML or the WebLogic Mobility Server
JSP taglib documents into pages of a size appropriate to the device receiving the content.

Automatic Pagination Rules
In WebLogic Mobility Server, content elements are given default pagination rules. The following
pagination rules apply:

• Page breaks are avoided inside words so that a word does not begin on one page and finish on
another

• Page breaks are avoided inside elements, such as tables, forms and paragraphs

• Page breaks are positioned so that small chunks of content do not occur on a new page or
card. For example, a page does not start with:
<p>a few words. The End.</p>

• If an HTML element or <mm-group> element is too big to fit on a page then that element is
split, for example, at the end of a sentence

Author-Controlled Pagination
This section describes how the author can override automatic pagination by specifying pagination
controls in the document.

Author controlled pagination is the splitting of content by the author onto separate pages or cards.
The main objectives of the author-controlled pagination are as follows:

• To provide authors with the ability to control where page breaks occur

• To provide authors with the ability to control which elements should not be separated

This functionality uses concepts and syntax defined in the CSS 2 paper on “Paged Media” as
defined by the World Wide Web Consortium (W3C):

http://www.w3.org/TR/REC-CSS2/page.html

88 - BEA WebLogic Mobility Server User Guide

http://www.w3.org/TR/REC-CSS2/page.html

Part IV Presentation of Mobile Content

Authors can set pagination style on all HTML elements and the mmXHTML element <mm-
group> in order to alter the default behavior of automatic pagination. The <mm-group> element
is used to chunk mmXHTML content into groups. WebLogic Mobility Server does not split
groups into separate pages

There is no need to set pagination style on the other mmXHTML tags as these do not behave as
HTML elements.

Use of Page Break Avoid
The use of the page-break-avoid controls overrides situations in which an automatic page break
would occur.

Example:
The author indicates that an element should be kept together:
<div style=”page-break-inside: avoid”>

This is a long paragraph
</div>
Placing Page Breaks in a Document

BEA WebLogic Mobility Server User Guide - 89

Part IV Presentation of Mobile Content

Use of Suggested Page Break
The author can “suggest” that a page break should occur before or after a HTML element or
mmXHTML or the WebLogic Mobility Server JSP taglib group. If an automatic page break is
going to occur in the vicinity of a suggested page break the suggested page break will be used
instead. Suggested page breaks make navigation easier.

Example
<p style=”page-break-after: suggested”>Paragraph One</p>
<p style=”page-break-after: suggested”>Paragraph Two</p>
<p>Paragraph Three</p>

In this example, two page breaks have been suggested. One before paragraph two and one after.
The result will be that the page will break after paragraph two. The reason is that WebLogic
Mobility Server, after reaching the maximum page size, will search backwards through the
content and break at the nearest suggested page break.

Suggested Page Breaks

90 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Controls Applied to Multiple Elements
WebLogic Mobility Server attempts to implement pagination controls that apply to multiple
elements before implementing controls on individual elements. The following example illustrates
this. A page break avoid has been applied to elements 1, 2, 3 and 4. WebLogic Mobility Server
attempts to keep these elements together. However, the four elements do not fit into the page
space of a particular device. In this case, WebLogic Mobility Server checks for controls applied
to individual elements and implements the suggested page break that is closest to the end of the
page.

Page Break Example
In the following example, a page break is suggested after the first paragraph. In accordance with
this, the output shows that a “Next” link is inserted after the first paragraph. The next page
displays the remaining content.
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//MOBILEAWARE//DTD MMXHTML 1.2//EN"
"http://www.mobileaware.com/DTD/mmxhtml_1.2.dtd">
<html>
<head>
 <title>Soccer News</title>
</head>
<mm-structure id="structure-1" where="IsMenuDriven" >
 <mm-group-ref idref="group1" type="normal" depth="0" display="all" />
</mm-structure>
<body>
 <mm-group title="group1" id="group1" >
 <mm-head useradded="yes" id="group1_head" >Group1 head text</mm-head>
 <mm-body id="group1_body" idref="group1_head" >
 <p style="page-break-after: suggested" >
 Uefa says Manchester United's Champions League clash with Juventus will
 go ahead.
 </p>
 Juve (probable): Chimenti; Thuram, Ferrara, Montero, Pessotto;
 Conte,…

 </mm-body>
 </mm-group>
</body>
</html>
Increasing Content Readability

BEA WebLogic Mobility Server User Guide - 91

Part IV Presentation of Mobile Content

Make Your Site Easy to Navigate
Presenting the user with a list of links to the content makes your site more navigable and easier to
use.

As you organize content into groups and sub-groups, each with its own head and body, you are
effectively creating a hierarchical arrangement of content.

WebLogic Mobility Server makes it possible to present this hierarchy as a set of navigation links.
It generates these links automatically by compiling a list based on the headings you assigned to
groups as you organized your content.

It works like a collapsible outline: You can set the number of heading levels to be shown and
specify whether any links contained in the body get shown as well.

For HTML devices, it means you can reference a group on a layout so that it only extracts and
displays the links within the group. On menu-driven devices, it means you can create a navigation
hierarchy to the groups on your request page.

Create a Navigation Hierarchy
When you use WebLogic Mobility Server to generate a navigation hierarchy, you can control
how many levels are shown. You can choose to just show links to the parent groups or provide
additional links to their sub-groups as well.

92 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Create a Navigation Hierarchy for Menu-Driven Devices
Earlier in “Organize Content for Handheld Devices”, we described the use of layouts and
structures in WebLogic Mobility Server that involves the use of <mm-group-ref> within an <mm-
structure> tag. The navigation that WebLogic Mobility Server generates for menu-driven
devices requires a more detailed discussion of this tag.

The format of the <mm-group-ref> tag is:
<mm-group-ref idref="..." depth=".." display=”…” type=”…”/>

to generate this list, where idref is the unique ID of the group you want to reference and depth is
number of levels you want in the hierarchy. The type attribute should be set to “normal” and
display set to “headings.” The depth attribute is set depending on the desired effect on the
generated Navigation Menu.

Depth Attribute Effect on Navigation Menu

Depth Effect on generated Navigation Menu

0 Displays a link to the parent group

1 Displays a collection of links to the parent group and the immediate child
groups

2 Displays a collection of links to the parent and all nested sub-groups.

Use Options Menus
Some phones have the capability to display links in an options menu that can be called up from
within any WML page. These links can be used to provide a handy way to bring users to various
parts of a site.

For example, a page may be split into five cards on a deck. Assume the user is browsing the last
card and wishes to navigate back to the first card (back to the top of the page). This task can be
made easier by the author providing a link to Home in the options menu rather than the user
having to click Back four times.

To create an option menu you use the XHTML <meta> tag. The mmXHTML syntax is as
follows:
<meta name="..." content="..." scheme="mmsection"/>

The WebLogic Mobility Server JSP taglib syntax:
<mm:meta name="..." content="..." scheme="mmsection"/>

Attributes
• name

Specifies text that will appear as the link in the options menu.

• Content

Relative URL that the link should go to.

BEA WebLogic Mobility Server User Guide - 93

Part IV Presentation of Mobile Content

• Scheme

An identifier for WebLogic Mobility Server, the value should always be "mmsection".

The normal XHTML rules applies, that is,, the <meta> or <mm:meta> tag must be located within
the <head> element.

Note: The Options menu will not be delivered to XHTML MP devices. This feature only works
on WML devices that support the Options menu.

Back to Top
WebLogic Mobility Server can be configured to automatically insert navigation shortcuts by
setting the following parameter in the mis.properties file:
backtotop.enabled: true

This configuration entry defines whether the “Back to Top” feature is enabled or disabled.

Note: Back to top functionality applies to menu-driven devices only. It is disabled by default.

When back to top is enabled a shortcut “Back To Top” link is provided on the device, which will
allow the user to return directly to the top of the group based on the hierarchy of the current
document.

The text used when inserting the “Back to Top” link can be configured in the
contentassembly.properties file as described in the BEA WebLogic Mobility Server
Administration Guide.

Back to Top examples
The following example analysis describes navigation of the user from the highest level in the
current document hierarchy, the navigation page, to the lowest level in the current document
hierarchy where content has been split across multiple screens.

Each example describes the functionality of the Back To Top link, which is dependent on the use
cases described here.

Example 1: Select “Back To Top” from a group immediately below the navigation
page
This example describes the situation where the user has navigated to a point in the current
document that is one level below the navigation page.

Here usage of the Back To Top link will bring the user directly to the navigation page. This is
shown in the following graphic.

Each star sign content page will have a link back to the navigation page if back to top is enabled.

94 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Content Page With Link Back To Navigation Page

Example 2: Select “Back To Top” from the top page in a subgroup
This example describes the situation where the user has navigated to a point in the current
document that is two or more levels of content below the navigation page. In this case, Virgo has
a three level page structure, including an intermediate page between the navigation page and the
daily horoscope.

Here usage of the Back To Top link will bring the user one level up the document hierarchy. In
the following example, the user is at the Virgo - Daily Horoscope page. Usage of the Back To
Top link will bring the user one level higher up the document hierarchy. In this example it brings
the user from the “Virgo - Daily Horoscope” content to the top of the “Virgo” page, which is one
level higher in the current document hierarchy.

Continuous usage of the Back to Top link will eventually bring the user to the navigation page for
this document, that is, “Welcome to Your Stars”.

Selecting “Back To Top” From Top Page In Subgroup

BEA WebLogic Mobility Server User Guide - 95

Part IV Presentation of Mobile Content

Example 3: Select “Back To Top” from a “Next” page on a split group
This example describes the situation where the user has navigated to the second or subsequent
pages of content for this group. This is shown in the following second and third graphics.

Selecting "Back To Top"|From “Next” Page

Here WebLogic Mobility Server will automatically inline a shortcut underneath the Next>> link.
Via this link, the user will be able to navigate directly to the top of the group without having to
repeatedly press the “Back” option.

96 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Work with Tables
This section introduces the <mm-table-model> tag that gives content authors control over how
tables are delivered to menu-driven devices and PDAs.

Note: The examples in this section use the JSP taglib mobility tags. They will work equally well
using mmXHTML.

The Problem with Tables
Tables are useful for presenting complex data in a readable format. They are also used as layout
tools for designers wanting to arrange text and graphical elements on a web page. Tables,
however, pose a problem for many mobile devices. For example:

• Tables are slow to download

• It is not uncommon for tables to render differently on different devices

• Because of smaller screens, tables will often be wider than the viewable width of the device

• Some WML devices do not support tables at all

Table Meaning Lost on Device Without Table Support

Table Support but Small Screen

 Image Courtesy of Openwave Systems Inc

BEA WebLogic Mobility Server User Guide - 97

Part IV Presentation of Mobile Content

The <mm:table-model> Tag
WebLogic Mobility Server addresses the problem with the <mm:table-model> element. This tag
allows authors to tailor table information to the requesting device so that the information is
displayed in a readable fashion regardless of the device’s capabilities. It can deliver all or part of
a table, flatten tables for devices that cannot render them, and give authors the power to create
multiple configurations for the different requesting device types.

The table-model tag is a self-closing tag, which means that instead of a corresponding
</mm:table-model>, it has a slash before the final angle bracket as can be seen here:
mm:table-model major=“row” headlocation=”1” bodylocation=”*” tabletype=”normal”
… />

This tag is usually placed directly after the XHTML <table> tag. Nested tables, if any, need
their own <mm:table-model> tag.

Note: This tag is specifically for controlling the display of tables on handheld devices. The
functionality of <mm:table-model> has no effect on PC browsers.

Understand the Table-Model attributes
This section will cover the various attributes of <mm:table-model> and describe the effect that
they have when delivering tables to handheld devices.

It is important to understand how WebLogic Mobility Server interprets the difference between a
row-major and a column-major table.

Attributes
The major and headlocation attributes work together to tell WebLogic Mobility Server about
the orientation of the table data.

• major=”row | column” (required attribute)

• headlocation=”…” (required attribute)

The following table shows a column-major table with headlocation="1". This means that the
headings that are located in column 1 should be used to orient the transformed table.

Headings in Column 1 (major=”column” headlocation=”1”)

Fruit Apple Orange Pear Banana

Vegetable Carrots Peas Broccoli Cabbage

Meat Beef Lamb Chicken Fish

Dairy Milk Yoghurt Butter Cheese

The following table shows a row-major table with headlocation="1". As a row-major table,
the headings are located in row 1.

98 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Headings in Row 1 (major=”row” headlocation=”1”)

Fruit Vegetable Meat Dairy

Apple Carrots Beef Milk

Orange Peas Lamb Yoghurt

Pear Broccoli Chicken Butter

Banana Cabbage Fish Cheese

This orientation is important if using the attribute bodylocation to display only a portion of
the table. WebLogic Mobility Server will understand which way to split the table so that
meaning is not lost.

• bodylocation=”…” (optional attribute)

This attribute specifies which rows or columns are to be displayed. To display the entire table
the value should be set to “*”. Without this attribute explicitly defined, WebLogic Mobility
Server will default to displaying the entire table although a warning will appear in the
WebLogic Mobility Server Application Server console. A portion of the table can be
displayed by setting this attribute to a space-separated list of numbers representing the rows
(or columns) to be sent to the device. Using the preceding table as an example, the author
might wish to see only vegetarian items in the table. To do this, set bodylocation="1 2 4".
For vegans, set bodylocation="1 2”.

Table with major=”row” bodylocation="1 2"

• sdtransform (optional attribute)

• sdtransform=“base-transform”

This is the attribute used to flatten tables. If a table is delivered to a non-table supporting
device, the content is presented sequentially and often, all meaning is lost). Even if a
mobile phone or PDA can process tables, often the screen dimensions will cause the table
information to wrap excessively or to revert to a linear display if the table is still too
wide. If an <mm:table-model> tag is placed within the table with the sdtransform

BEA WebLogic Mobility Server User Guide - 99

Part IV Presentation of Mobile Content

attribute set to “base-transform” the table data is extracted from the rows (or columns)
and paired with the data from the headlocation in a “table header: table data” pairing.

Table Flattened: sdtransform="base transform”

Image Courtesy of Openwave Systems Inc

• sdtransform=“on-same-card”

This is used to display new tables on the same card.

Note: This will not create a link to that nested table

• sdtransform=“on-new-card”

This is used to create a link to a nested table that is placed on a separate card

• tabletype=”normal | group” (required attribute)

If the attribute tabletype is set to “normal”, WebLogic Mobility Server will attempt to
display the entire table. If the table is bigger than what can fit onto a “card”, the page will be
broken into multiple cards.
Setting tabletype to “group” causes the table headers to be rendered as links. These links
can be navigated to view detailed table content presented in a flattened "table header: table
data" pairing.
Using tabletype="group" for a device that can render tables will have little effect unless the
table is first “flattened” using sdtransform.

The following graphics illustrate the use of tabletype=”group”, where the table has been
rendered with the headers as links to “flattened” tables

Table with tabletype=”group” - Entry Link

100 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Image Courtesy of Openwave Systems Inc

Table with tabletype=”group” – Header Links

 Image Courtesy of Openwave Systems Inc

Table with tabletype=”group” - Sub-table View

 Image Courtesy of Openwave Systems Inc

• where=”…” (optional attribute)

The table-model tag uses the where attribute to specify a particular table configuration for a
specific device or group of devices. Authors can use multiple table-model tags for each table
defined in their content. The where attribute in the table-model tag might be used to deliver a
table to devices that support tables, but to flatten the table information for devices that do not
support tables as can be seen in the following content segment.
<table border=”1”>
<mm:table-model major=”row” headlocation=”1” bodylocation=”1 4”
 tabletype=”normal” where=”UAProf.BrowserUA.TablesCapable” />
<mm:table-model major=”row” headlocation=”1” bodylocation=”1 4”
 tabletype=”normal” sdtransform=”base-transform” where=” not
 UAProf.BrowserUA.TablesCapable” />
<tr><td>Fruit</td>
 <td>Vegetables</td>
 <td>Meat</td><td>Dairy</td></tr>
<tr><td>Apple</td>
 <td>Carrots</td>
 <td>Beef</td>
 <td>Milk</td></tr>
…

BEA WebLogic Mobility Server User Guide - 101

Part IV Presentation of Mobile Content

</table>

Note: The use of where=”IsFullBrowser” is not allowed.

WebLogic Mobility Server identifies which devices do not support tables and “flattens” the
data being delivered to that device.

Delivery to Device Supporting Tables

102 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Flattened Table

Image Courtesy of Openwave Systems Inc

Note: When multiple table-model tags are present, WebLogic Mobility Server uses the first
one who’s where clause conditions match the requesting device.

An example of a more complex where condition can be seen in the following code block
where the table will be flattened even if the requesting device supports tables if the screen
width is less that 200 pixels wide. This would stop excessive wrapping of table data as the
device tries to render the table on the small screen.
<mm:table-model major=”column” headlocation=”1” bodylocation=”*”
tabletype=”normal” sdtransform=”base-transform”
where=”UAProf.BrowserUA.TablesCapable and UsableScreenWidth < 200”/>
title=”…” (optional attribute)

If present, the value of this attribute forms the table title when used with the
tabletype="group" as can be seen in the preceding example where the title in the first frame in
is "My Table". If title is not present when tabletype="group" and a link name is required, the
keyword “Data” will be used instead.

BEA WebLogic Mobility Server User Guide - 103

Part IV Presentation of Mobile Content

Tables and Style Sheets
External style sheets must be used to style tables for handheld devices. For example, the
following table attributes will be ignored:
<table border=”1” cellspacing=”0”>

Instead, place a table class in an external style sheet:

mystyles.css
table.myclass {
text-align:center;
border-style: solid;
border-width: thin;
border-collapse: collape;
}

Reference this style from within the <table> tag:
<table class="myclass">

And remember to link the style sheet to the document containing the table.
<html>
<head>
 <title>Tables</title>
 <link rel="stylesheet" href="mystyles.css" type="text/css"/>
</head>

104 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Work with Images
This section describes the techniques for delivering images to different devices. It explains how
to provide alternative objects so they match the display capabilities of the target device.

The section introduces the following tags:
• <mm-img>

• <mm-media-group>

• <mm-logo>

About Images
Devices differ in how they handle and present graphical elements. PC browsers can display image
formats such as GIF and JPEG, whereas some WML devices are restricted to the WBMP format.
WebLogic Mobility Server provides a set of tags that manage graphic delivery to a variety of
client devices. These tags allow you to specify the correct image format for the requesting device
type.

For example, you could specify a 200 x 100 pixel GIF for a PC-browser, a 50 X 25 pixel GIF for
a PDA and a WBMP image for a mobile phone that can only support the WBMP format. When
WebLogic Mobility Server is transforming the content, it will select the image that best suits the
requesting browser.

Use <mm-img>

Send the Correct Image Type
The <mm-img> tag can be used to place images in content that is intended for a variety of different
client devices. This tag supports all the attributes of the XHTML tag with the additional
functionality of the where attribute which allows you to target the device for which the image is
intended.

Note: This is an empty tag, so remember to place a slash (/) before the final angle bracket (>) to
keep your content “well-formed”.

To handle a GIF image, you could use the following syntax to ensure that the image would not be
sent to a WML browser that could not handle this particular image format.
<mm-img src=”dog.gif” alt=”Dog” height=”54” width=80” where=”ImgGIFSupported”
/>

Resize the Image to Fit the Device Screen
Because handheld devices have widely varying screen sizes, you sometimes need to be able to
dynamically manipulate the size of the image depending on the requesting device type. The <mm-
img> tag uses the fittoscreen attribute to give more control over how an image displays on a
small screen.

If set to true, the image width is resized to the UsableWidthPixels value of the device as defined
in the Device Repository. The image height is resized by the same factor so that the image will
maintain the same aspect ratio.

Note: This attribute only has an effect if the original image is wider than the targeted screen
width.

BEA WebLogic Mobility Server User Guide - 105

Part IV Presentation of Mobile Content

Often when developing multi-channel content, you will have several images of different formats
and sizes that would be appropriate for each device or device class targeted. You could put each
<mm-img> tag inside an <mm-include> tag or instead put them all inside an <mm-media-group>
tag so that the best image available will be selected for a particular device class.

Use <mm-media-group>
WebLogic Mobility Server provides the tag <mm-media-group> that can hold several different
image tags. An <mm-img> tag represents each image. When WebLogic Mobility Server is
transforming the content, it will select the image that best suits the requesting device.
<mm-media-group alt="No image available">
 <mm-img where="IsFullBrowser" src="greatDane.gif" height="120" width="80"
alt="Great Dane"/>
 <mm-img where="ImgGIFSupported" src="terrier.gif" height="30" width="30"
alt="Terrier" />
 <mm-img where="ImgWBMPSupported" src="sm_dog.wbmp" height="30" width="30"
alt="Chihuahua" />
</mm-media-group>

WebLogic Mobility Server will select the first image that satisfies the where clause. In the
preceding example, any full browser will match the first <mm-img> condition and will receive a
picture of a Great Dane. Menu-driven devices or PDAs that can accept GIF images will receive a
picture of a terrier. Finally, handheld devices that cannot accept GIFs, but do understand the
WBMP format will be sent a picture of a Chihuahua. A device that does not meet any of these
conditions will display the media group’s alt tag of “No image available”.

Display a Logo on a WML Device
A logo is a graphic symbol designed to reflect the corporate or product identity so it is instantly
recognizable by consumers. It is sometimes the first item to appear when a user visits a service.

On WML devices, logos are treated as a special case, appearing for a short interval (usually about
5 seconds) and then being replaced with the main page.

To take advantage of this feature, wrap an image within the <mm-logo> element so that it gets
treated differently on a WML device. WebLogic Mobility Server supports any image type with
<mm-logo>. If the device is WML, the image is delivered as a WAP logo, otherwise, <mm-logo>,
along with its contents, is removed.

106 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Define a Logo
Use the following tag to define a logo:
<mm-logo id="name" displaymode="once" period="2">

where “name” is unique identifier for your logo.

Within this tag, insert the code for the image:

where “image.location” is the location on the server of the image.

Complete the element with the closing tag:
</mm-logo>

Set the Displaymode and Period Attributes

Example 1: The author wants a logo displayed “once per session” and for a period
of two seconds.
The author indicates that this logo should be displayed once per session by adding the attribute
displaymode="once" to the <mm-logo> tag. The display period of the logo is indicated by adding
the attribute period="2", where the integer represents the number of seconds that the logo will be
displayed.
<mm-logo displaymode="once" period="2">

</mm-logo>

Example 2: The author wants a logo displayed always and for a period of three
seconds.
The author indicates that this logo should be displayed always (each time the page is requested)
by adding the attribute displaymode="always" to the <mm-logo> tag. The display period of the
logo is indicated by adding the attribute period=”3”, where the integer represents the number of
seconds that the logo will be displayed for.
<mm-logo displaymode="always" period="3">

</mm-logo>

Deliver Different Image Formats with <mm:logo>
Several WAP devices support the display of color images such as GIFs. Through use of the
<mm:media-group> and <mm:img> tags, you can enhance the functionality of <mm:logo> to
deliver color images to these devices whilst delivering monochrome images to others. For
instance:
<mm:logo displaymode="once" period="3">
 <mm:media-group alt="">
 <mm:img where="ImgGIFSupported" src="myimage.gif" alt="Logo" />
 <mm:img where="ImgWBMPSupported" src="myimage.wbmp" alt="Logo" />
 </mm:media-group>
 </mm:logo>

BEA WebLogic Mobility Server User Guide - 107

Part IV Presentation of Mobile Content

Note: You must include the alt attribute on each <mm:img> tag, and you must specify <mm:img
where="ImgWBMPSupported" ...> as the final image in the list.

Work with Character Sets
Character encoding is an algorithmic process that specifies how human-readable characters are
converted into bytes for storage or transmission. Characters in a language (or set of languages)
are mapped to numbers represented by bytes (or octets). Character decoding is the process of
converting bytes into characters.

To avoid encoding errors during the process of storing, transmitting and displaying a document
on the web, a single consistent method of encoding / decoding should be used throughout.

This document explains how to avoid and resolve encoding problems.

About Character Encoding/Decoding
Character encoding is a method of converting characters into bytes and decoding is a method of
converting bytes into characters.

The standard character set for computers has traditionally been ASCII (American Standard Code
for Information Interchange). No provision is made in ASCII for foreign characters or specialized
symbols. Hence, various so-called "extended ASCII" sets have been developed to provide these
symbols. However, the Web has adopted an extended character set, ISO 8859-1 (otherwise
known as ISO Latin-1), as its standard.

In addition, to avoid a preference for one language over another, HTML 4.0 has adopted Unicode
as its official document character set. Unicode is attempting to create a single character set under
which every character, from every language in every region can be represented.

Encode Mechanisms
An application must select a character encoding / decoding method when it is opening, validating
or displaying a HTML document. For documents in English and most other Western European
languages, the character encoding ISO-8859-1 is typically used.

There are a number of mechanisms within the HTTP, XML and HTML protocols for specifying
the character encoding:

• Unicode encoded-documents commonly use Byte Order Marks (BOM) to inform the
decoding software which algorithm needs to be used to decode the byte stream correctly. This
is simply a set of defined lead bytes that mark the stream as being of a particular type.

• The HTTP protocol defines a response header called “Content-Type” which can include the
character set name as part of its value (when the mime-type is text/*). The HTTP server needs
to be configured to set this header. For example, to specify that an HTML document uses
ISO-8859-1, a server would send the following header:
Content-Type: text/html; charset=ISO-8859-1

In XML, the XML declaration can contain the document encoding:
<?xml version=”1.0” encoding=”ISO-8859-1”?>

• In HTML, a <meta> tag can be used to define the document encoding
<meta http-equiv=”Content-Type” content=”text/ html;
charset=ISO-8859-1” />

108 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

How Content Gets Encoded
Content is encoded/decoded by the content editor (such as a text editor or database), server, JSP
file and display device.

Errors will occur if the same encoding / decoding algorithm is not consistently used along the
supply chain from creating content to delivering it to the end device.

Text Editors and Databases
Character encoding begins when a file is created and stored. Text editors such as Microsoft
Notepad, Macromedia Dreamweaver, Adobe GoLive, CoffeeCup store the content with a default
encoding. When writing data to a database, a servlet must use the same encoding as the data
stored in the database.

Usually, you can specify the default encoding to be used when saving and opening files. For
example, in Macromedia Dreamweaver, select the Preferences | Fonts | Encoding option and
specify the Default encoding to be used. For example, Western (Latin 1) or Japanese (Shift JIS).

Each component in the content supply chain is responsible for encoding / decoding the content
and for passing on the Content-Type header (if present) to the next component in the chain.

Content Supply Chain

Servers
The preferred method of indicating the encoding is by using the charset parameter of the Content-
Type HTTP header. For example, to specify that an HTML document uses ISO-8859-1, a server
would send the following header:
Content-Type: text/html; charset=ISO-8859-1

Configuring an application server to use a particular encoding depends on the individual server.
For example, if you are using the Apache server, you can add a file named .htaccess to any
directory to set the Content-Type of files in that directory and any sub-directories.

BEA WebLogic Mobility Server User Guide - 109

Part IV Presentation of Mobile Content

JSP Files and Servlets
To ensure the output of your JSP page matches the encoding of the rest of the system, insert the
following encoding statement in your JSP file:
<%@ page contentType=”encoding” %>

where encoding is the encoding of your choice.

For servlets, you can specify content type and character encoding in your HTTPServletRequest
and HTTPServletResponse objects using:

• setCharacterEncoding() in request objects and

• setContentType() in response objects.

For example:
HttpServletResponse.setContentType(“text/ html;charset=iso-8859-1");

How WebLogic Mobility Server Determines Character Encoding
While a web server may pass on the byte stream without decoding, WebLogic Mobility Server
needs to decode / encode the mark-up so it can perform the appropriate transformations and then
recode the result for transmission.

WebLogic Mobility Server uses the following sequence to determine the character encoding for a
document:

1. It determines whether Unicode is used. WebLogic Mobility Server only checks for UTF-16
Byte Order Marks so if the document is UTF-8 encoded the HTTP server must be configured
to set the Content-Type header.

5. Next, WebLogic Mobility Server checks the HTTP protocol to see if the Content-type
response header has been defined.

6. If not, WebLogic Mobility Server checks the XML declaration and if this doesn’t exist, the
HTML meta tag is checked.
<META HTTP-EQUIV="Content-Type" CONTENT="text/html;
charset=ISO-8859-1">

110 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Character encoding flow

BEA WebLogic Mobility Server User Guide - 111

Part IV Presentation of Mobile Content

Influence the Character Encoding Delivered to the Device
WebLogic Mobility Server selects the best encoding in which to deliver transformed content to a
device based, in part, on the list of preferred encodings supplied by the device.

In some circumstances, it may be desirable not to deliver content in certain of these preferred
encodings – if the device is known to supply inaccurate information about its capabilities, or if no
useful translation exists between the encoding of the content and an encoding preferred by the
device.

An example of this is the translation of Chinese content; this cannot be represented in the ISO-
8859-1 character encoding, but can be represented in the UTF-8 encoding. In these
circumstances, it is preferable to ignore requests for delivery in ISO-8859-1 and to deliver in
UTF-8 where understood.

Specifying a comma-separated list of encodings for the disallowedOutputEncodings property in
the mis.properties file instructs WebLogic Mobility Server never to deliver content in any of
these encodings.

Example
disallowedOutputEncodings: iso-8859-1, iso-8859-5

This example instructs WebLogic Mobility Server never to deliver content in the iso-8859-1 or
iso-8859-5 encodings.

Fine-Tune Mobile Content
This section describes the following features that can be used to fine-tune the presentation of
mobile content:

• Horizontal rule

• Textarea

• URL compression

Horizontal Rule
For devices that do not support the horizontal rule tag, WebLogic Mobility Server always
translates any <hr /> tags it encounters into a series of hyphen characters followed by a

element.

The number of hyphen characters used is determined from the TextColumns device attribute
stored in the Device Repository. TextColumns indicates the number of columns (characters) that
the device screen can accommodate using the system font.

Notice how the horizontal rule fits the width of each screen.

112 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Substituting <hr /> with Dashes

Textarea
For devices that do not support <textarea>, WebLogic Mobility Server translates any
<textarea> tags it encounters into an input element of type “text”. For more information on
textarea see the following URL:

http://www.w3.org/TR/html401/interact/forms.html#edef-TEXTAREA
<mm-group id="company_details">
 <mm-head id="hd_company_details" useradded="no">Company Details</mm-head>
 <mm-body id="bd_company_details" idref="hd_company_details">
 <p>ABC Company Ltd.</p>
 <p>North Business Park, Circular Road, Dublin, Ireland</p>
 <p>Phone: 888-000-111</p>
 <p>Fax: 000-888-111</p>
 <form action="gotothis.htm" method="get">
 <textarea name="thetext">
 First line of initial text.
 Second line of initial text.
 </textarea>
 </form>
 </mm-body>
</mm-group>

BEA WebLogic Mobility Server User Guide - 113

http://www.w3.org/TR/html401/interact/forms.html#edef-TEXTAREA

Part IV Presentation of Mobile Content

Use of <textarea> Tag

114 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

Configure URL Compression
The URLs generated by portal frameworks and other content servers are often very long. If URL
rewriting is used instead of cookies for session management, the length of these URLs is
extended further. Because the length of these URLs takes up valuable space within the limited
memory of a small device, the output visible to the user is often very limited. In extreme cases,
pages are limited to just 2 or 3 links.

To mitigate this, WebLogic Mobility Server supports URL compression, which reduces the
length of these URLs to a minimum, thereby allowing much more content to be delivered to the
device. This is especially relevant where the device has limited memory but could also be
important where limited bandwidth is an issue.

URL compression works by breaking the URL into fragments (query parameters) and replacing
the fragments in the URL with shortened tokens. These shortened tokens are used by WebLogic
Mobility Server to map a request generated from the replacement URL back to the original URL.

Examples
The following is an example of a URL of 359 characters produced by BEA WebLogic Portal:
/avitekfinancial/application?namespace=tracking&origin=searchResults.jsp&
event=link.clickContent&com.bea.event.type=com.bea.content.click.event&
com.bea.event.userid=null&com.bea.event.documentid=Avitek/DemoDocuments/Demo
Features
List.xls&com.bea.event.documenttype=AvitekDocs&contentId=Avitek/DemoDocuments/D
emo Features List.xls

With URL compression turned on in WebLogic Mobility Server, this URL would be reduced to
99 characters, which is a saving of 260 characters.
/avitekfinancial/application?2=!!3&!!4=!!5&!!6=!!7&!!8=!!9&!!10=!!11&!!12=!!13&
!!14=!!15&!!16=!!13

URL compression can be configured in the mis.properties file. The following is a sample
configuration for WebLogic Mobility Server running against a BEA WebLogic Portal server.

BEA WebLogic Mobility Server User Guide - 115

Part IV Presentation of Mobile Content

URL Compression Configuration for BEA WebLogic Portal

Property Description

url.compression.store.type

Defines the store type to be used. The only valid type in
WebLogic Mobility Server is session.
Example: session

url.compression.token.prefix

The string used to prefix the compression tokens. Prefixing
helps avoid clashes with uncompressed tokens that may have
the same value as a compressed token.
Default is "!!".
(Note: The Nokia Mobile Internet Toolkit 3.1 does not support
“!!”)

url.compression.params

Comma separated list of query parameter names to be
compressed.
Example: namespace, event, com.bea.event.type,
com.bea.event.userid, com.bea.event.documentid,
com.bea.event.documenttype, contentId, origin, pageid,
portletid

url.compression.vals

Comma separated list of query parameter names for which
values can be compressed. Elements in this list must be
members of the url.compression.params list.
Example: namespace, event, com.bea.event.type,
com.bea.event.userid, com.bea.event.documentid,
com.bea.event.documenttype, contentId, origin, pageid,
portletid

url.compression.fail.redirect

Webapp-relative redirect URL for failed decompression. When
WebLogic Mobility Server receives one or more expired
compression tokens in a request it redirects to this URL. This
typically occurs after the session has timed out.
for example /avitekfinancial/application

Important note: When using the redirect URL for failed decompression it is recommended that
content developers design JSP or XHTML pages that do not make use of, or depend on, the
values of parameters passed in the URL.

iMode Support
iMode is NTT DoCoMo's popular mobile internet access system which started in February 1999
in Japan. iMode has adopted cHTML (compact HTML) as its mark-up language. Compact
HTML is a subset of HTML dealing primarily with text and simple graphics.

WebLogic Mobility Server supports this emerging technology. Content for iMode devices should
be structured according to the general authoring guidelines for small devices as described in this
manual. There are, however, a few iMode-specific methods of mobilizing your content. This
section describes these practices.

Conditional Content
In order to include or exclude specific content for an iMode device, you can use the database
attribute DeliveringIHTML. For example:

116 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

<mm:include where=”DeliveringIHTML”>
 
</mm:include>

In most cases, it is not necessary to be this granular. Using IsMenuDriven should suffice.

Access Key Support
WebLogic Mobility Server supports the use of access keys on iMode phones. They work in
virtually the same way as other devices that support access keys EXCEPT the attributes
assignall and assignempty are not supported. WebLogic Mobility Server inserts the
appropriate emoji characters representing the access key number next to the link.

Emoji Characters
Emoji characters are the 12 x 12 pixel picture characters used on iMode phones. They are like
emoticons but are smaller and therefore easier to transmit. WebLogic Mobility Server fully
supports these characters. To add an emoji icon, simply place an iMode conditional expression
with the emoji character (as represented by its Unicode or SJIS equivalent) into your content. For
example:
<mm:include where=”DeliveringIHTML”>
 
</mm:include>

iMode-Specific Styles
Generally, styling that is created for menu-driven devices will also work well on iMode devices.
As an author, however, you may wish to take advantage of specific capabilities of an iMode
device. To do this, it is recommended that you use an external CSS style sheet that contains styles
exclusively for iMode devices. You would create a style sheet with iMode-specific styles using
the <link> and <mm:include> elements, making it accessible only to iModes. For example:
<mm:include where=”DeliveringIHTML”>
 <link href="iModeStyles.css" rel="stylesheet" type="text/css">
</mm:include>

Marquee
Marquee is supported using CSS syntax.

To create text that scrolls across the screen, you might have the following in your content.
<div class=”marquee-styleA>
 This is my scrolling text!
</div>

Your style sheet would define the marquee style.
div.marquee-styleA {
 marquee-style: slide;
 marquee-direction: left;
 marquee-repetition: 1
}

Blink
Similar to marquee, blink is supported through the use of a style sheet.
<div class=”blink-style”>

BEA WebLogic Mobility Server User Guide - 117

Part IV Presentation of Mobile Content

 Phone me!!
</div>

Your style sheet would define the style as follows:
div.blink-style {
 text-decoration: blink;}

istyle Support
The istyle attribute is also supported using CSS. Currently iMode uses this attribute with the
input type=”text” and “textarea” elements. This attribute indicates the input mode for the phone.

The possible values that are supported are as follows:

Supported istyle values

3 Alphanumeric: Pressing the 2 repeatedly yields: a b c 2 …

4 Numeric: Pressing the 2 repeatedly yields: 2222

For example, your code might have the line:
<input type=”text” id=”idA” name-“inputA” />

Your iMode style sheet would then have the following style defined:
input#idA {
 istyle: 3;
}

This would apply the alphanumeric input mode to your textbox.

Phone Number Dialing and CTI
WebLogic Mobility Server supports the phone number dialing capabilities of iMode devices. The
mobility tag <mm:phone-number> has a new cti attribute which mimics the cHTML attribute cti
which was added in cHTML 2.0. This attribute allows you to create a link that will be dialed
when the user selects the link. Unlike the num attribute of <mm:phone-number>, cti gives the
user the option of including pauses, characters and extension numbers after the main phone
number. The hash mark (#) and the asterisk (*) are also supported.

Supported Digits and Characters in CTI Attribute

Digit /
Character

Description

0 - 9 These digits will be transmitted.

* # These tones will be transmitted.

, Wait for 1 second.

/ Pause. Placing this in the cti string will cause a pause to wait for user input.

<mm:phone-number num=”+ 35312410500" cti="+35312410500/,,538#">

118 - BEA WebLogic Mobility Server User Guide

Part IV Presentation of Mobile Content

 Call Julia.
</mm:phone-number>

The previous example snippet will result in the following:

• The phone will dial +35312410500.

• It will wait for user key input once the receiving end picks up.

• After key input, it will wait 2 seconds before dialing the extension "538#”.

Phones that do not support the cti attribute will use the value of the num attribute and dial
+35312410500.

BEA WebLogic Mobility Server User Guide - 119

Part V The Delivery Context API

Part V The Delivery Context API
Overview of the CC/PP Delivery Context API
The WebLogic Mobility Server transformation engine regularly checks information about the
requesting device in order to translate content into an appropriate language and format that the
device can understand. There may be times, however, that a content developer requires specific
information about a device for the purpose of fine tuning the layout or styling of their web
content. This section demonstrates how to access this device information from the Device
Repository using the JSR188 API.

About the Device Repository
Networked, mobile and wireless devices vary widely in their ability to support different aspects
of web content. Such characteristics as screen size, image and color capabilities, script support
and deck size can all affect the type of content that can be delivered to them.

WebLogic Mobility Server accommodates these differences by maintaining a Device Repository;
a datastore that contains profiles describing the properties and capabilities of a range of devices
on the market. The data, stored in attribute-value pairs, enables WebLogic Mobility Server to
identify the requesting device so that the content can be transformed appropriately before being
delivered. In this way, WebLogic Mobility Server can tailor the presentation and delivery to each
client device. Each device profile, or set of attributes defining the presentation and delivery
capabilities of a device, is known as the delivery context.

When WebLogic Mobility Server receives an end-user device request, it identifies the device
using a combination of incoming request header information (which indicates the mark-up
language of the device and often provides device model information) and stored device attributes.

Device Profiles
To facilitate the development of device independent applications, the W3C has recently defined a
standard known as Composite Capabilities/Preferences Profile (CC/PP), which is used to describe
device capabilities and user preferences (that is, the delivery context). Based on this standard, the
Open Mobile Alliance, the group that establishes open global standards for the mobile community
has defined their own standard known as User Agent Profile (UAProf). This new standard has
been adopted for the Device Repository. Currently, the database is CC/PP compliant, containing
both the UAProf attribute set and a more comprehensive set of WebLogic Mobility Server
proprietary device properties.

In the Device Repository, the CC/PP compliant attribute names begin with one of seven prefixes:

• UAProf.BrowserUA

• UAProf.HardwarePlatform

• UAProg.MmsCharacteristics

• UAProf.NetworkCharacteristics

• UAProf.PushCharacteristics

• UAProf.SoftwarePlatform

• UAProf.WapCharacteristics

The proprietary device attributes have no prefix. Some examples of these attributes are:

120 - BEA WebLogic Mobility Server User Guide

Part V The Delivery Context API

• J2MESupported

• IsMenuDriven

• ImgWBMPSupported

For further information on the full set of attributes, see the BEA WebLogic Mobility Server
Administration Guide.

Access CC/PP Device Profile Information

CC/PP and UAProf Attributes
JSR188 is a standard set of APIs developed by the Java Community to access delivery context
information. It is these methods that developers can use to query the WebLogic Mobility Server
database to gain access to the CC/PP delivery context information.

The following example demonstrates how to use the API to find out the screen size of a device,
the image formats it supports and whether it supports tables.

Each of these attributes is a UAProf attribute. In the Device Repository, they are listed with their
full prefix:

• UAProf.HardwarePlatform.ScreenSize

• UAProf.SoftwarePlatform.CcppAccept

• UAProf.BrowserUA.TablesCapable

These attributes do not require the prefix here. By importing the javax.ccpp.* package, the prefix
is understood.

Note: If using the CC/PP attributes to specify a device or set of devices in a tag that uses the
where attribute, you must use the full prefix. For example:
 <mm:include where=”UAProf.HardwarePlatform.ScreenSize > 180”>

BEA WebLogic Mobility Server User Guide - 121

Part V The Delivery Context API

Delivery Context Example

Example: Obtain device information using the JSR188 API
<%@ page contentType="text/html; charset=iso-8859-1" import="javax.ccpp.*" %>
<%@ taglib uri="mmJSPtaglib" prefix="mm"%>
<mm:page>
<%
Attribute screenSize = null;
Attribute imgFormats = null;
Attribute tables = null;
String screenSizeStr = "";
String imgFormatsStr = "";
String tablesStr = "";

ProfileFactory pf = ProfileFactory.getInstance();
Profile myProf = null;
if (pf == null) {
 System.out.println("Cannot create ProfileFactory instance.");
}
else {
myProf = pf.newProfile(request);
screenSize = myProf.getAttribute("ScreenSize");
imgFormats = myProf.getAttribute("CcppAccept");
tables = myProf.getAttribute("TablesCapable");
screenSizeStr = screenSize.getValue().toString();
imgFormatsStr = imgFormats.getValue().toString();
tablesStr = tables.getValue().toString();
}
%>
<html>
<head> <title>DC API</title></head>
<mm:structure id="str1" where="IsMenuDriven"
accesskeycontrol="assignempty">
 <mm:group-ref idref="gp1" depth="flat" type="normal" display="all"/>
</mm:structure>
<body>
 <mm:group id="gp1" title="API">
 <mm:head id="hd1"useradded="no">DC API</mm:head>
 <mm:body id="bd1" idref="hd1">
 <p>Optimal screen size:
 <%= screenSizeStr %> pixels.</p>
 <p>Supported image types:
 <%= imgFormatsStr%></p>
 <p>Table Support: <%= tablesStr%></p>
 </mm:body>
 </mm:group>
</body></html>
</mm:page>

122 - BEA WebLogic Mobility Server User Guide

Part V The Delivery Context API

Results
Device Information on Desktop Browser

BEA WebLogic Mobility Server User Guide - 123

Part V The Delivery Context API

Device Information on Desktop Browser

Device Information on WML Device

Image Courtesy of Openwave Systems Inc

124 - BEA WebLogic Mobility Server User Guide

Part V The Delivery Context API

Example Breakdown
In order to use the JSR188 API, you must first import the package that allows access to the
methods.
<%@ page contentType="text/html; charset=iso-8859-1" import="javax.ccpp.*" %>

Initialize the variables needed for this example.
Attribute screenSize = null;
Attribute imgFormats = null;
Attribute tables = null;
String screenSizeStr = "";
String imgFormatsStr = "";
String tablesStr = "";

Create the Profile object that contains the information about the requesting device. This is done in
two steps.

First, obtain an instance of a ProfileFactory object.
ProfileFactory pf = ProfileFactory.getInstance();

Then, from this ProfileFactory object, create the device Profile object.
myProf = pf.newProfile(request);

The next step is to get the required attribute from the Profile. To display the attribute value, use
the method getAttribute and turn it into a string.
screenSize = myProf.getAttribute("ScreenSize");
imgFormats = myProf.getAttribute("CcppAccept");
tables = myProf.getAttribute("TablesCapable");
screenSizeStr = screenSize.getValue().toString();
imgFormatsStr = imgFormats.getValue().toString();
tablesStr = tables.getValue().toString();

The final step displays the attribute values in the HTML display that is sent to the screen of the
requesting device.
<p>Optimal screen size:
<%= screenSizeStr %> pixels.</p>
<p>Supported image types:
<%= imgFormatsStr%></p>
<p>Table Support: <%= tablesStr%></p>

Note: This simple example contains an <mm:structure> tag for menu-driven devices. For more
complex pages, this structure would be placed in a layout file, as it is considered good practice to
keep the main content separate from the device-specific layout instructions.

Additional Information
JSR188 replaces the Mobility Delivery Context API. These methods are, however, still supported
and must be used to access Mobility proprietary attributes. For additional details on using the
Mobility Delivery Context API, see “Appendix B – Mobility Delivery Context API”.

BEA WebLogic Mobility Server User Guide - 125

Part VI Diagnostics

Part VI Diagnostics
Work with Diagnostics
As you develop your multi-channel content, you will want to see how it is processed for various
devices. While device emulators can show how the final output is rendered, they cannot show
what is happening to the content as it is being transformed, making it difficult to diagnose and
troubleshoot problems. You will need to use the WebLogic Mobility Server Diagnostic tools for
this purpose.

The WebLogic Mobility Server Diagnostic tools enable developers and administrators to monitor
the HTTP request / response cycle within WebLogic Mobility Server and to retrieve diagnostic
information generated in the process.

Using Diagnostics you can:

• Monitor the general flow of control as the WebLogic Mobility Server processes requests and
responses.

• Troubleshoot a page of content that is not being transformed correctly.

• Monitor URL rewriting - see how URLs get rewritten.

• View requested content in its pre-transformed state.

• Analyze how WebLogic Mobility Server is performing page-splitting and dealing with
author-preferences.

• Diagnose interaction between the application and the DeliveryContext API.

• Analyze the headers and cookies that the application is sending back to the browser.

• Inspect the WebLogic Mobility Server process for inserting next-page links into transformed
content

Diagnostic Tools
There are two diagnostic tools available:

• The Diagnostic Console

This provides a series of dialogs for entering the information required to generate the
diagnostic messages. You can use it to simulate device requests by manually creating HTTP
requests or you can use it as a proxy between the device (or device emulator) and WebLogic
Mobility Server to monitor the request / response cycle.

• The Diagnostic Command-Line Interface (CLI)

This tool requires you to pass the diagnostic parameters via the command line, or from a file.

The CLI differs from the Console in that it allows you to track the WebLogic Mobility Server
activity across multiple users and requests. The Console deals with single requests only.

This section describes the steps required to run both the Diagnostic Console and the Diagnostic
Command-Line Interface tools.

126 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

Ensure Diagnostics is Installed in Your Web Application
To ensure diagnostics is installed in your web application check that the diagnostics entry in the
web.xml file is uncommented. See the section “Example web.xml: Enable Diagnostics”.

Example web.xml: Diagnostics Servlet
<servlet>
 <servlet-name>DiagnosticsServlet</servlet-name>
 <servletclass>com.mobileaware.diagnostics.http.server.DiagnosticsServlet
 </servlet-class>
</servlet>
<servlet-mapping>
 <servlet-name>DiagnosticsServlet</servlet-name>
 <url-pattern>/Diagnostics/*</url-pattern>
</servlet-mapping>

About the Diagnostics Server
When connecting to BEA WebLogic Server, the CLI uses t3 (jndi protocol) to transport
diagnostic messages. This is enabled when the web.xml file is configured for diagnostics.

Start the Diagnostic Console
The startup file for the Diagnostic Console (DiagnosticsConsole.exe) is located in the <bea
installation directory>\weblogic81\mobility\applications directory.

• On Windows – run DiagnosticsConsole.exe
Alternatively, if WebLogic Mobility Server is accessible from the Windows Start Menu (as
chosen on installation), the Diagnostic Console is in the Applications sub-folder.

• On UNIX – run DiagnosticsConsole.

Start the Diagnostic Command Line
The startup script for the Diagnostic Command-Line Interface (CLI) is located in the <bea
installation directory>\weblogic81\mobility\applications directory. (This script is enabled by
default when WebLogic Mobility Server is installed.)

Windows —DiagnosticsTextUI.exe

UNIX —DiagnosticsTextUI.

Use the Diagnostic Console
The Diagnostic Console is used to monitor WebLogic Mobility Server as it processes single
HTTP request / responses. The console provides an easy-to-use interface for entering the various
settings required to create the HTTP request and to view the response it generates. It can also be
used to modify requests from devices and browsers.

Configure the Diagnostics Console
Before you start, you need to configure the Diagnostic Console so that it can communicate with
WebLogic Mobility Server.

To Configure the Console
Launch the Diagnostic Console and choose Settings → Settings. When the dialog displays, make
the changes to the appropriate fields.

BEA WebLogic Mobility Server User Guide - 127

Part VI Diagnostics

Diagnostics Settings – Systems Tab

Setting Description

Server The address of the server that the Diagnostic Console is to connect
with. For example, developer.myserver.com

Port The port number of WebLogic Mobility Server. For example, 7001 or
8080.

Listen Port The port number where the Diagnostic console should listen for new
device/browser-based requests when it is configured in interception
mode. The default is 4444.

Protocol The Diagnostic Console protocol is currently limited to HTTP.

Username/Password The username and password that the Diagnostic Console will use
when connecting to diagnostics. This is required if the Diagnostic
Console is configured as protected in the web application descriptor -
web.xml. Normally they are both clear.

Deployed Path The path to the web application that is configured for Diagnostics. The
default deployed path is created by adding /Diagnostics to the
webapp path.

128 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

Diagnostics Settings – Setting Preferences Tab

Setting Description

Bypass Patterns Request Patterns to be ignored by the Diagnostic Console. Typically,
these patterns will be media files, such as JPG and GIF files.

These patterns will not register as a request and therefore the
associated response will not be displayed in the Request and Response
Panels of the IDE respectively.

Use a semi-colon to separate patterns. Example: .gif;.jpeg;.wbmp

Logging To enable logging, select the Logging check box. Specify the name
and location of the log files that you want to use for logging requests
and responses.

Default Text Editor The text editor to use when editing the response content.

for example notepad.exe

These settings are saved when closing the Diagnostic Console and restored when the Console is
restarted.

Note: When the settings on the Settings Preference tab are altered, the log files are cleared.

BEA WebLogic Mobility Server User Guide - 129

Part VI Diagnostics

Simulate HTTP Requests
The Diagnostic Console enables you to test the effect of a HTTP request, and examine its
response, without having to use a device or a device emulator.

Choose File → Request. This displays the Request Panel where you can create your HTTP
Request.

From here you can create a HTTP request that includes:

• The protocol and version to be used: HTTP Version 1.0 and Version 1.1.

• The type of request to be constructed: GET or POST

• The destination URL.

• The device being emulated.

• Cookies, query strings and any parameters that you want to include.

Specify a URL Request
When specifying a destination URL, ensure it is relative to the web application you are accessing.

For example, if the complete URL is:
http://server:port/news/index.jsp

then type in the following into the URL Request field:
/news/index.jsp

WebLogic Mobility Server concatenates the Server and Port values provided earlier with the
request field to generate the target URL:
http://server:port/news/index.jsp

The other parts of the full URL will be taken directly from the other input boxes in the panel or
derived from their contents.

130 - BEA WebLogic Mobility Server User Guide

http://server:port/news/index.jsp
http://server:port/news/index.jsp

Part VI Diagnostics

The Diagnostics Console

Insert a Query String
Use the Query String field to insert queries of the form: ?name=tonks. Do not use the “?” as this
is inserted automatically.

BEA WebLogic Mobility Server User Guide - 131

Part VI Diagnostics

Insert HTTP Parameters
If HTTP parameters are required, enter them as name-value pairs. For example
jsessionid=1234

In a HTTP Request, HTTP parameters are usually appended to the URL request and separated by
a semicolon “;”. For example,
http://server:port/news/index.jsp;jsessionid=1234?name=fred

Any number of parameters can be included, each separated by a semicolon.

Insert Cookies
Although you can add cookie headers directly in the Request Headers field, it’s recommended
you use the Cookie String field to insert cookies in the HTTP request header. The “Cookie:”
header name is not required. It is added automatically to the request if cookies are used.

For example if you want to add the following to a request:
Cookie: Customer=”Person_1”
type:
 Customer=”Person_1”
in the Cookie field.
If your cookie consists of multiple parts, use a semi-colon as a delimiter.
For example to add
 Cookie:Ver="1"; Customer="Person_1"; $Path="/acme"
type the following in the cookie field:
 Ver="1"; Customer="Person_1"; $Path="/acme"

Insert Other Headers
Use the Request Headers field for additional HTTP request headers that take the form of a name-
value pair. For example the header "Pragma: no-cache" can be represented by adding Pragma to
the Name area, and no-cache to the Value area.

The maximum number of name-value pairs that can be added is 20.

Note: There is no need to enter a "Host:" header, as the WebLogic Mobility Server Application
Server console generates this automatically.

132 - BEA WebLogic Mobility Server User Guide

http://server:port/news/index.jsp;jsessionid=1234?name=fred

Part VI Diagnostics

Specify POST Requests
Use the POST field to enter text for POST requests. The contents of this text field will be
appended to the end of a POST request. Currently, only text content is supported. This field is
used when the Request Method is POST; otherwise it is ignored.

Specify the Target Device
Use the Device Header field to specify the device being targeted. This ensures WebLogic
Mobility Server generates the appropriate response to any HTTP requests coming from the
Device Console. You can select from a set of device types or type the header(s) in manually

Choose a Pre-Defined Device
Select the Device option to use a pre-defined device type. The Device dropdown list becomes
available.

Select the device you want to target from the Device list.

Specify a Custom Device
If the device you want to target is not in the pre-defined list, you can type in the header(s)
manually. Typically, you will use this option when working with experimental devices that have
not yet been added to the Device Repository.

Select the Manual option and type in the header(s) manually.

Preview the HTTP Request
Click Show Request on the Request Panel to preview the full HTTP request that will be sent to
WebLogic Mobility Server.

If you are dissatisfied with what you see, modify the settings in the Request Panel and click Show
Request again.

Save the Request Pattern
You can save the request pattern as a text file.

Click Save and provide the filename and location when requested.

Clear the Request Pattern
Click Clear All to clear the fields on the panel.

BEA WebLogic Mobility Server User Guide - 133

Part VI Diagnostics

Issue an HTTP Request
Press the Issue Request button to send the HTTP request to WebLogic Mobility Server. The
response will appear in the Response Panel.

The Issue Request button is disabled when a request is sent. When the request/response cycle is
completed, the button is enabled again. Click Next> or click on the Response tab to go to the
response view.

Use the Response View
The Response Panel displays the HTTP response from WebLogic Mobility Server to the last
successful request issued. This response contains the content transformed by WebLogic Mobility
Server and displays a number of attributes associated with the response.

Response View

Field Description

Content Type Displays the contents of the “Content-Type” header derived from the
response for example text/html.

Note: If this header is missing in the response the text field will be clear.

Content Length Displays the contents of the “Content-Length” header derived from the
response for example 1024.

Servers do not always return a “Content-Length” header so this field will
be empty if the header is missing in the response.

Status Code Displays the status code returned. The typical return code for successful
content retrieval is 200. The return code 404 flags content that could not
be found.

Text Displays the text of the response line. This is also known as the Reason
Phrase. It will contain text to describe the outcome of the request. For
example, OK or Not Found

Version Displays the HTTP protocol version used in the response returned by the
server.

Cookie Displays any cookies contained in the response header.

Raw Headers Displays a list of all the headers returned by WebLogic Mobility Server.

Response from
WebLogic Mobility
Server to Client

Displays the full HTTP Response (including the body) from the server.

134 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

Response content

Save the Response Content
You can save the response content as a text file.

Click Save and provide the filename and location when requested.

BEA WebLogic Mobility Server User Guide - 135

Part VI Diagnostics

Edit the Response Content
To edit the response content:

Click Open in Editor button.

View the Response Content
Click Wrap/Unwrap to wrap the text in the window so that it is easier to view. The button acts
as a toggle: select it again to reverse the wrapping action.

Failed Requests
Requests issued to WebLogic Mobility Server may fail for a number of reasons for example
invalid request format, invalid URL. However if the request should fail because no response has
been received from WebLogic Mobility Server, or the Diagnostic Console cannot communicate
with the server, the Console detects these failures as timeouts. On timeout, if the request is
unsuccessful the content returned will be appropriate to the device (or simulated device) making
the request (such as WML or HTML).

Note: If the requested server returns any HTTP response, even a HTTP 404 Response, the
Diagnostic Console treats this as a valid response from the server.

Pre-Transformed Content View
Use the Pre-transformed Panel to view the marked up content before WebLogic Mobility Server
transforms it. This will be useful for the user in that the content can be observed before (pre-
transformed) and after (response) transformation.

Note that when a large browser device requests a WebLogic Mobility Server JSP taglib page, the
content delivered to the pre-transformed content panel is the response from the application server
rather than the source of the taglib page. In this scenario, most of the processing will have already
been done by the taglib.

Content Transformation

136 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

Save Pre-Transformed Content
You can save the pre-transformed content as a text file.

Click Save and provide the filename and location when requested.

Work with Diagnostics
You can control the type and amount of diagnostic information generated from WebLogic
Mobility Server. These settings are saved when you exit the application and are restored when
you restart it.

1. Choose Settings → Diagnostic Settings

2. Select the Diagnostics On check box

3. Select the topic and level of output — Normal or Verbose — you want from the Diagnostic
Output list.

Note: A standard set of diagnostic messages will be output even if no diagnostic information
settings are selected.

Diagnostic Settings

BEA WebLogic Mobility Server User Guide - 137

Part VI Diagnostics

View Diagnostic Information
Diagnostic messages, and any error messages produced if the request fails, are displayed in the
Diagnostics panel.

Standard Attributes Provided with Diagnostic Output

Attribute Description

Incoming URL This is the URL of the incoming request to WebLogic Mobility Server. For example,
199.168.5.30:7001/login.jsp

Device Pattern This is the matched device pattern. For example root^WML^ericssonr380

Device This is the identified device.
For example, EricssonR380

Session ID This is the session id.

Interception: Use the Diagnostics Console as a Proxy
The Diagnostic Console can be used as a proxy, so that requests can be sent from a device or
emulator, passed through the Diagnostic Console and on to WebLogic Mobility Server. The
response is then returned through the console to the device.

Using the Diagnostics Console as a Proxy

If bypass patterns have been specified in the Diagnostic Console settings panel, these will still
pass back and forth through the proxy, but the output will not be displayed. In other words,
requests for images will not generate diagnostic messages. For example, a page might contain two
images and text, so you could specify that the image request / responses are not trapped. If the
page had a style sheet (CSS) associated with it, you could also specify this as a bypass so that it
gets passed through.

138 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

Start Interception

1. Choose Settings → Interception to configure and start the interception.

2. Select the device type you want to target.

Note: For predictable results ensure you are using the appropriate browser. For example, if
you specify a WAP device but are using Internet Explorer as the browser, it will not display
the WAP content correctly.

3. Use your device to enter the address for the selected page. The request takes the form:
http://dc_host:dc_port/URL_request

where “dc_host” is the IP address of the machine where the Diagnostic Console is running,
“dc_port” is the port on which the Diagnostic Console is listening for requests (specified in
the Settings panel) for example, 4444. The “URL_request” is the name of file you are
investigating relative to the web application directory.

For example,

http://199.168.5.37:4444/requested_page.jsp

When the request reaches the Diagnostic Console, the response is displayed in the Response
View of the window. If the Diagnostics option is chosen, then the diagnostics messages will be
displayed in Diagnostics/Pre-transformed views.

Use the Diagnostic CLI
The Diagnostic Command-Line Interface (CLI) monitors WebLogic Mobility Server as it
processes multiple requests to applications. Use the CLI when you want to monitor requests being
made by several users — the Diagnostic Console monitors single requests only.

The Diagnostic Command-Line Interface provides a number of parameters that enable you to
track down performance or transformation issues. By default, the CLI reports all activity. You
can, however, specify a filter so that only activity that matches the specified filter is reported.

As you monitor WebLogic Mobility Server, it is likely that you will create a suite of diagnostic
tests, each with its own set of parameters. The CLI supports the use of parameter files — text files
containing a list of parameters — so you do not have to keep retyping the parameters from the
command line. You simply pass the parameter file when starting the CLI

See the end of the section for examples on how to use the CLI and to see some sample output.

Important note: The JVM on the client running the CLI must be the same version as on the
server running WebLogic Mobility Server.

Use the Diagnostic CLI with WebLogic
In a WebLogic deployment the Diagnostic CLI should be installed in, and invoked from, the
server environment. This tool uses Java Remote Method Invocation (RMI), which may have
implications for WebLogic users wanting to run this tool outside the production environment. If a
firewall infrastructure is in place, certain ports may need to be opened between the client running
the tool and the server. See the Java RMI documentation at http://java.sun.com/products/jdk/rmi/
for more information.

The Diagnostic CLI requires access to weblogic.jar via the CLASSPATH to support command
line diagnostics on WebLogic. This CLASSPATH is configured via the lax.class.path
property in DiagnosticsTextUI.lax.

BEA WebLogic Mobility Server User Guide - 139

http://199.168.5.37:4444/requested_page.jsp

Part VI Diagnostics

The installed and configured CLI can be invoked either locally at the server's console or from a
remote telnet client.

Note: For the initialization of WebLogic, at least one HTTP request must have been issued to
WebLogic Mobility Server before invoking the Diagnostic CLI, otherwise WebLogic will
generate errors relating to the absence of a JNDI tree.

Start the Diagnostics CLI
The Diagnostic CLI is located in the folder <install_directory>/applications

• On WINDOWS — run DiagnosticsTextUI.exe

• On UNIX — run DiagnosticsTextUI.

Usage
The command line takes the form:
DiagnosticsTextUI -appserver AppServer [options]
(to listen to diagnostics)

OR
DiagnosticsTextUI -usage [option]
(to view usage)
Diagnostics Usage

To: Specify this parameter:

Establish a connection to the
diagnostic engine

- username

- password

- jndiprotocol

- host

- port

- appserver

- url

- deploypath/contextpath

Use parameter files to pass
parameters to the command
line

- paraminfile

- paramoutfile

Choose which diagnostics to
monitor

- topicname

Get help on using the CLI
options

- usage

140 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

Get Help
To display the startup options available, start the CLI as follows:
DiagnosticsTextUI –usage

To get help on a specific option, type:
DiagnosticsTextUI -usage [option]

Example:
DiagnosticsTextUI -usage paraminfile

Specify the Connection
You need to specify a number of connection parameters in order to connect WebLogic Mobility
Server with the diagnostic messaging:

Connection Parameters

Option Description

- username The username to connect to WebLogic Mobility Server

- password The Password to connect to WebLogic Mobility Server

- host Host name or IP address of the application server

- jndiprotocol For WebLogic, specify

“-jndiprotocol t3”

- port Port of the application server

- url For WebLogic only, a URL can optionally be supplied instead of the
host/port/ jndiprotocol combination of parameters. An example of this is:
“-url t3://server:port”

- appserver Type of application server being connected to: WebLogic.

- deploypath This field is not required for BEA WebLogic.

- contextpath Path to where the web application is deployed with /Diagnostics
appended. For example, /news/Diagnostics where /news is the path to
the deployed web application

(only required for WebLogic connections)

BEA WebLogic Mobility Server User Guide - 141

Part VI Diagnostics

Use Parameter Files
Rather than typing in a long list of parameters, you can save time and effort by storing your
parameters in a file and passing this file to the Diagnostic CLI. For an example, see “Example 2:
Use a Parameter File” later in this section.

Parameter files are plain text files, with each parameter on a separate line. The file can contain all
parameters except the username and password.

There are two ways to use parameter files:

• –paraminfile file: Specify a file containing the parameters to be read in

• –paramoutfile file: Specify a file to capture the parameters you enter on the command line.
This file can be subsequently used to read in the parameters.

Filter Content
By default, CLI monitors and reports on all activity. However, you can use the -filter parameter to
listen for and report on specific activity, thereby screening everything else out. For example, you
can choose to listen for activity relating to a specific URL

Filtering Content

To display messages: Specify this FILTER option:

For a specific request header requestHeader:<headerName>

For a specific unique request
header that matches selected
value

uniqueRequestHeader:<headerName>

Containing a specific request
parameter

requestParameter:<paramName>=<value>

For a specific unique request
parameter that matches the
selected value

uniqueRequestParameter:<paramName>

For a particular URL url:<value>

Specify Diagnostic Messages
Specify, at the end of the command line, the diagnostic messages (topics) you want to listen to.
Additionally, you can specify whether you want normal or verbose output. A full list of topics is
described in the section.

Example: MIS.Client verbose

142 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

Example Usage
The following examples show how the CLI can be used.

Example 1: Generic Usage

WebLogic Example
DiagnosticsTextUI –appserver weblogic –username AdminUser
–password AdminPass –host
Server1 –port 7001 –jndiprotocol t3 -contextpath /news/Diagnostics
MIS.General.FlowOfControl

Example 2: Use a Parameter File
The following example illustrates how a parameter file is used to specify the connection settings
and instruct the diagnostics to monitor the flow of control with verbose messaging turned on.
DiagnosticsTextUI –appserver weblogic –password AdminPass
–paraminfile param.txt –contextpath /news/Diagnostics
where param.txt contains:
-username adminName
-host Server1
-port 7001
-jndiprotocol t3
MIS.General.FlowOfControl verbose

Example 3: Get Help on the Filter Parameter
The following example displays the options available for the filter parameter:
DiagnosticsTextUI –usage filter

BEA WebLogic Mobility Server User Guide - 143

Part VI Diagnostics

Diagnose Problems
This section describes some of the scenarios you may encounter when working with WebLogic
Mobility Server and how to approach them.

Identify the Source of a Problem
When you encounter a problem with a request first confirm that WebLogic Mobility Server is
running. If it is, see the next section in this section “Identify Connection Problems”.

If WebLogic Mobility Server is running, but you are getting transformation or content errors, see
“Resolve WebLogic Mobility Server Error Pages”.

If the error is common across all devices, see “Resolve WebLogic Mobility Server Error Pages”.

Identify Connection Problems
If you receive a message stating that “a connection could not be established” then:

• Verify that you are using correct values for the host name and port in the request.

• Check that your web application server is running.

• Check that associated components, such as the BEA WebLogic Portal, are online.

• Check that WebLogic Mobility Server is running.

If you are satisfied that all applications and components are running correctly, but there are still
problems, check the database connection settings in the mis.properties file located in your
webapps WEB-INF/classes folder.

Resolve WebLogic Mobility Server Error Pages
WebLogic Mobility Server generates an error page when it is unable to retrieve content or
encounters problems when it is transforming content.

Problems Retrieving Content
WebLogic Mobility Server generates an error page if it is unable to retrieve the content. This
occurs in the following circumstances:

• The requested page does not exist.

• The URL has been misspelled.

144 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

Resolve Badly Formed Content / Faulty JSP Code
WebLogic Mobility Server generates an error page when it receives a page that contains poorly
formed content. Typically, the error message will indicate missing elements or attributes, such as
a missing “/” to close a tag properly. There are two scenarios where this is likely to occur:

2. When you first mark up an otherwise functional JSP file for mobilization. This is likely
because of the more rigorous validity checking done for XHTML. Running an external
validator will usually catch mark-up errors like these.

2. When you have used JSP scripting elements to dynamically generate XHTML output. The
validation tool will not catch errors in these elements as they only get output at runtime.

If validating the JSP source does not resolve the problem:

3. Switch on Interception in the Diagnostic Console and set the listen port on the Settings
window in the Diagnostic Console. Ensure that the value set for the listen port is used in your
HTTP request. For example, if the listen port is set to 4444, enter the request as
“http://test:4444/news/index.jsp”.

2. Make a request for the page and save the pre-transformed content.

3. Open the file you just saved, remove the header text and run an external validator on it. This
may highlight XHTML errors being dynamically generated.

BEA WebLogic Mobility Server User Guide - 145

Part VI Diagnostics

The Diagnostic Console Properties Window

146 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

Resolve Database Errors
WebLogic Mobility Server generates an error page when it has problems connecting to the
Device Repository. It requires this database in order to recognize the requesting device and
decide how to transform the content to match the device’s hardware and software capabilities.

Connection-Related Messages
• Confirm the database is actually running.

• Check the database settings (url, driver, user and password) in the mis.properties file.

SQL-Related Messages
SQL-related error and exception messages are more likely to denote queries that contain incorrect
table, column or row names.

Device-Specific Errors
Confirm whether the problem manifests itself on all devices or only on a particular device. If the
problem occurs on all devices, it is probably a content mark-up problem. If the problem occurs
with a specific device, then your content may be stretching the limitations of the device or
encountering conflicts with the mark-up that the device supports.

BEA WebLogic Mobility Server User Guide - 147

Part VI Diagnostics

Monitor Diagnostic Output
This section describes:

• diagnostic output available and how it is organized into categories known as topics

• information generated for each topic

• appropriate action to take in response to the diagnostic output

About Diagnostic Topics
The diagnostic output can be broken down into a series of “topics”, where each topic relates to a
different area within WebLogic Mobility Server, such as session management, cookie handling,
device management or the transformation engine.

Each topic has an associated set of messages that indicate the actions being taken and the
conditions encountered as the requests and responses progress through WebLogic Mobility
Server. Some messages may be associated with more than one topic.

With approximately 400 individual diagnostic messages available, the diagnostic output can be
quite substantial. To restrict the amount of messages generated, you can choose to generate
“normal” or “verbose” output for each topic. Messages that are associated with more than one
topic may be treated as part of “normal” output by one topic and “verbose” output by another.

Example: Normal vs. Verbose Output

 Message 1 Message 2 Message n

 Normal Verbose Normal Verbose Normal Verbose

Topic 1 X X

Topic 2 X

Topic 3 X

Diagnostic Topic Categories
Diagnostic information is organized into the following broad categories; each of which has a
number of topics that can be individually selected:

• Client Transactions — Monitors transactions relating to cookies, headers, parameters and
sessions

• Database Transactions — Monitors database transactions with devices, and with the system,
including connections

• Devices — Monitors device transactions, such as recognition

• Web Applications — Monitors interaction with the web application (for example JSP page),
such as headers, cookies and pre-transformed content

• Transformation — Monitors processing associated with content transformation, such as the
application of Mobility Controls, Pagination, URL rewriting, Table Transformation and
Layout selection

148 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

• DeliveryContext API — Monitors processing related to the use of DeliveryContext API
methods

• Flow Of Control — Monitors the general progress of WebLogic Mobility Server as it
progresses through the request / response cycle

Monitor Client Transactions
Selecting Client Transaction topics will generate messages relating to headers, parameters,
sessions, and cookies.

Select these topics to monitor client transactions:

• MIS.Client

• MIS.Headers

• MIS.Browser.SessionLifeCycle

Interpret URL Rewriting
There are two common ways of passing session keys to the client and back:

• Cookies

• URL rewriting.

Cookies are used by default; URL rewriting occurs if the browser does not support cookies.
During URL rewriting, all WebLogic Mobility Server-generated URLs that are included in the
server response are encoded to contain the session key.

The diagnostic message for URL rewriting indicates the URL before and after the rewriting. It
takes the form:
URL Before: url_before. URL After: url_after

Interpret Cookie-Related Messages
Cookie-related messages will indicate whether the request contains cookies or not. If the request
contains cookies, the messages will indicate the incoming cookies. Each message will indicate the
cookie and its corresponding value in the form: cookie: value.

BEA WebLogic Mobility Server User Guide - 149

Part VI Diagnostics

Interpret Session-Related Messages
Session related messages will indicate when the session was created and the ID it was assigned.

Monitor Database Transactions
When you monitor database transactions you can track the interaction with:

• information relating to devices and web applications

• the connection pool

• SQL Queries

Select these topics to monitor database transactions:

• MIS.Database.Query

• MIS.Database.Cache

• MIS.Database.Device

• MIS.Database.ConnectionPool

Interpret Connection Pool Messages
Diagnostic messages allow the state of the connection pool to be viewed at any time, with every
connection having a description that identifies its use. Diagnostic messages will provide
information about:

• creating, extending and removing connections from a pool

• waiting on, getting, and returning connections

• problems encountered making connections

Monitor Devices
To monitor device-related activity, select the following topic:

• MIS.Device

Interpret Device Repository-related Messages
Device messages relating to the database will indicate that a device is being looked up in the
database, whether it exists (“found”) or not, and any attributes that are being retrieved.

150 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

Monitor Web Application Transactions
When monitoring web application transactions, you can select a topic to track transaction activity.

Additionally, you can track the interaction with cookies and headers: for a description of
messages associated with these topics, see “Monitor Client Transactions” on page 149.

Select this topic to monitor web applications:

• MIS.Service

Monitor Transformation
Transformation messages will indicate which Device Transformation Map is being used, whether
a document is paginated or not (“sub-pages”) and any difficulties encountered when resolving
internal links to any sub-pages created.

Select these topics to monitor transformation:

• MIS.Transformation

• MIS.Transformation.DTM

• MIS.Transformation.Pagination

• MIS.Transformation.URLRewriting

• MIS.Transformation.WML.Tables

• MIS.Navigation

• MIS.FormPagination

Interpret Pagination-Related Messages
Since WML devices have a limited capacity to store and display content, WebLogic Mobility
Server breaks the content into sub-pages, creates the appropriate links between the pages to
ensure a seamless delivery, and caches the sub-pages so that they are ready for delivery when the
WML device makes a subsequent request.

Diagnostic messages will indicate the number of sub-pages created, and report on the success or
failure in locating a sub-page for delivery.

Interpret Table-Related Messages
If your content contains tables, WebLogic Mobility Server will generate messages to indicate
whether a table is contained within the <mm-table-model> tag, if the table content is poorly
formed, if there is a lack of uniformity in the row / column arrangement (for example, a different
number of <td> elements in each row). It will also indicate if there is too much content for it to
handle in a table row.

Monitor Browser Activity
Monitors activity with the browser.

Select these topics to monitor Browser Activity:

• MIS.Base.Diagnostics

• MIS.Browser.DeviceMatching

BEA WebLogic Mobility Server User Guide - 151

Part VI Diagnostics

• MIS.Browser.Request

• MIS.Browser.SessionLifeCycle

Monitor Flow of Control
Monitoring general activity turns on messages that indicate the flow of control, including the
start-up sequence, as WebLogic Mobility Server processes requests and responses, requests
received and finished events. It also provides cookies and header related information.

Select these topics to monitor general activity:

• MIS.General.Cookies

• MIS.General.FlowOfControl

• MIS.General.Headers

• MIS.General.Startup

Monitor the Mobility Filter
The mobility filter topic describes aspects of the processed request. It provides details of the
following: entry and exit of the request, device recognition, database type being used, request
parameters and query string, and the headers that are being passed, modified or passed through.

Select this topic to monitor the mobility filter:

• MIS.MobilityFilter

Monitor Response Received
The following two topics detail aspects of the response received from a request:

• MIS.Response.Received.Content

This topic details the content received back from a request. This is the content, as it exists,
before WebLogic Mobility Server begins the transformation process.

152 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

• MIS.Response.Received.ErrorResponse

This topic details the received error response in the event of there being a problem processing
a request from WebLogic Mobility Server, that is, if the HTTP Request Status code indicates
a problem.

Monitor the JSP Tag Library
Monitoring the JSP Tag Library turns on messages that indicate when a tag library tag is
encountered, what output it generates, and when it is being released from memory. In verbose
mode, it is possible to see the results of individual where attribute and CDATA process as well.

Select this topic to monitor the JSP Tag Library:

• MIS.JSPTagLibrary

Configure WebLogic Mobility Server to send logging messages to
Log4J
WebLogic Mobility Server also supports monitoring of diagnostic output via an external logging
mechanism such as Log4J. A GenericLogMonitor facility has been provided to enable output of
diagnostic messages to a tool such as Log4J. For or details on using Log4J to monitor WebLogic
Mobility Server Diagnostic output, see “Appendix D - Use the Generic Log Monitor Facility with
Log4J”.

Exception Handling
There are two separate operational modes in WebLogic Mobility Server. These are as follows:

• “Development” mode

• “Production” mode

To indicate which mode WebLogic Mobility Server is to operate in, configure the
operation.mode setting in the mis.properties file. Setting the mode to “development” provides
detailed informative warning messages to enable content developers to tune and troubleshoot
content during the development phase.

Example
operation.mode: development

By default, the WebLogic Mobility Server operation mode is set to “production”. In production
mode, WebLogic Mobility Server provides error messages only. Warnings are not provided.

Note: To change from one mode of operation to the other, edit the mis.properties file accordingly
and then re-start WebLogic Mobility Server.

Development Mode
In development mode, WebLogic Mobility Server provides warnings and error messages to the
web application developer. These warnings and error messages indicate instances of incorrect
content or incorrect development practice.

Hello World Example
The following “Hello World” example illustrates that when WebLogic Mobility Server processes
this code in development mode, a warning is displayed.

BEA WebLogic Mobility Server User Guide - 153

Part VI Diagnostics

Note: The console screen message states that WebLogic Mobility Server does not support the
useragents attribute.
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//MOBILEAWARE//DTD MMXHTML 1.2//EN"
"http://www.mobileaware.com/DTD/mmxhtml_1.2.dtd">
<html>
<head>
<title>Project 2.1 - Hello World</title></head>
<mm-structure useragents="smallbrowser/wml" id="structure_1"
where="IsMenuDriven">
 <mm-group-ref idref="gp_101" type="normal" depth="0" display="all" />
</mm-structure>
<body bgcolor="#FFFFFF" text="#000000">
 <i>This file is best viewed with a WML browser</i>

 <mm-group id="gp_101" title="Hello World">
 <mm-head id="hd_101" useradded="no">Welcome</mm-head>
 <mm-body id="bd_101" idref="hd_101">
 <p>Hello World! </p>
 <mm-exclude where="IsFullBrowser">
 <p>Welcome to your first mobile demo.</p>
 </mm-exclude>
 </mm-body>
 </mm-group>
</body>
</html>
Console output in Development Mode

154 - BEA WebLogic Mobility Server User Guide

Part VI Diagnostics

Production Mode
In production mode WebLogic Mobility Server provides error messages only. Warnings are not
provided.

Hello World Example
The “Hello World” example illustrates that in production mode, no errors are produced in the
console. The output is shown here:

Hello World result on WML emulator

Image Courtesy of Openwave Systems Inc

Example
The “Hello World” example includes an invalid where condition which specifies PDAs only.
Because it doesn’t include a where condition for menu-driven devices, an error will occur when a
WAP browser requests the page.
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//MOBILEAWARE//DTD MMXHTML 1.2//EN"
"http://www.mobileaware.com/DTD/mmxhtml_1.2.dtd">
<html>
<head>
<title>Project 2.1 - Hello World</title>
</head>
<mm-structure where="IsPDA" id="structure_1">
 <mm-group-ref idref="gp_101" type="normal" depth="0" display="all" />
</mm-structure>
<body bgcolor="#FFFFFF" text="#000000">
 <i>This file is best viewed with a WML browser</i>

 <mm-group id="gp_101" title="Hello World">
 <mm-head id="hd_101" useradded="no">Welcome</mm-head>
 <mm-body id="bd_101" idref="hd_101">
 <p>Hello World! </p>
 <mm-exclude where="IsFullBrowser">
 <p>Welcome to your first mobile demo.</p>
 </mm-exclude>
 </mm-body>
</mm-group>
</body>
</html>

BEA WebLogic Mobility Server User Guide - 155

Part VI Diagnostics

Console Output in Development Mode

Emulator Output in Development Mode

156 - BEA WebLogic Mobility Server User Guide

Part VII Glossary

Part VII Glossary
Glossary

Term Description

Administrator The Administrator is a general term for someone who logs into
the Administration Console and uses it to create, modify, and
remove devices.

CSS
(Cascading Style Sheet)

CSS is a feature of HTML that gives both Web site developers
and users more control over how pages are displayed. With CSS,
designers and users can create style sheets that define how
different elements, such as headers and links, appear. These
style sheets can then be applied to any Web page.

The term cascading derives from the fact that multiple style
sheets can be applied to the same Web page. CSS was
developed by the Worldwide Web Consortium (W3C). The
specification is still evolving and is not fully supported by any
current Web browsers.

Delivery Context API The delivery context API is a set of methods used for accessing
device information from the Device Repository. There are two
methods used to access this information. For CC/PP attributes
(which have a name beginning with UAProf), the JSR188 API can
be used. For accessing both the Mobility proprietary attributes
and the CC/PP attributes, the WebLogic Mobility Server Delivery
Context API can be used. This is a development package that
provides a list of public access JSP methods to the Device
Repository. This database maintains the profiles on the devices
that are recognized by WebLogic Mobility Server.

Device A device is the end-component that receives transformed web
application content from WebLogic Mobility Server. Devices
include WAP phones (for example Nokia 7110), PDAs (iPAQ, HP
Jornada), and PCs.

A device can be either a specific device or a class of devices. If a
device can contain other members, it is a class, otherwise it is a
specific device.

Device Repository The Device Repository is used to store device browser
characteristics. A comprehensive set of device attributes is
created when the product is installed. These characteristics are
entered in the Administration Console so that the WebLogic
Mobility Server content handling system can deal with the device
interaction in a manner suited to the end-user's device. In this
way, WebLogic Mobility Server uses device characteristics to
maximize the content presentation to the end-user’s device.

The Device Repository is compliant with CC/PP standards. It
consists of both UAProf attributes and Mobility proprietary
attributes.

BEA WebLogic Mobility Server User Guide - 157

Part VII Glossary

Diagnostics Console The Diagnostics Console provides an intuitive graphical
mechanism for content developers to obtain information about
what WebLogic Mobility Server is doing during the processing of
a request and the transformation of content. This includes the
ability to detect pre-transformed content, post-transformed
content and URL header/body information.

DNS The Domain Name System (DNS) is a distributed Internet
directory service. DNS is used mostly to translate between
domain names and IP addresses, and to control Internet e-mail
delivery. Most Internet services rely on DNS to work, and if DNS
fails, web sites cannot be located and e-mail delivery stalls.

DTD Document Type Definition. A file that contains the rules for valid
syntax, format, and structure for defining the mark-up elements in
an XML document. Standard vocabularies are summarized in
DTDs, formal grammars that declare tags and their structural
relations. DTDs are available for many domains, including
electronic commerce (for example, OTP, XML-EDI), science (for
example, MathML, Chemical ML), synchronized multimedia (for
example, SMIL), software documentation (for example,
DocBook), or agent technology (for example, WIDL). See also
mmXHTML DTD.

End-User A person accessing web information. For example, a field
engineer traveling to various customer sites accessing site-based
information and applications via PDA (Personal Digital Assistant).

mis.properties This is a plain text file located in the WEB-INF/classes folder of
the webapps running WebLogic Mobility Server. It contains the
various properties that are used to manage the behavior of
WebLogic Mobility Server. The file can be edited in any text
editor. Some of these properties will have been set during the
install process, while others can be configured later to further
tailor the behavior of WebLogic Mobility Server.

HTML HyperText Mark-up Language. The authoring language used to
create documents on the World Wide Web. HTML is similar to
SGML, although it is not a strict subset.

HTML defines the structure and layout of a Web document by
using a variety of tags and attributes. The correct structure for an
HTML document starts with <html><head>(enter here what
document is about)</head><body> and ends with
</body></html>. All the information you'd like to include in your
Web page fits in between the <body> and </body> tags.

There are hundreds of other tags used to format and layout the
information in a Web page. For instance, <p> is used to make
paragraphs and <I> … </I>is used to italicize fonts. Tags are also
used to specify hypertext links. These allow Web developers to
direct users to other Web pages with only a click of the mouse on
either an image or word(s).

ISDN ISDN (Integrated Services Digital Network) is an integrated digital
network capable of complete digitalizing and handling of

158 - BEA WebLogic Mobility Server User Guide

Part VII Glossary

information from differing services including telephone, faxes,
data, images, and so on

JSP
(Java Server Pages)

Technology from Sun Microsystems allows Web developers and
designers to rapidly develop and easily maintain, information-rich,
dynamic web pages that leverage existing business systems. As
part of the JavaTM family, JSP technology enables rapid
development of web-based applications that are platform
independent. JavaServer Pages technology separates the user
interface from content generation enabling designers to change
the overall page layout without altering the underlying dynamic
content.

MIME
(Multi-purpose Internet Mail
Extensions

MIME is a specification for formatting non-ASCII content so that it
can be sent over the Internet. Many e-mail clients now support
MIME, which enables them to send and receive graphics, audio,
and video files via the Internet mail system. In addition, MIME
supports messages in character sets other than ASCII. There are
many predefined MIME types, such as GIF graphics files and
PostScript files. It is also possible to define your own MIME types.
In addition to e-mail applications, Web browsers also support
various MIME types. This enables the browser to display or
output files that are not in HTML format. The Internet Engineering
Task Force (IETF) created the MIME standard in 1992. A new
version, called S/MIME, supports encrypted messages.

mmXHTML Multi-Mode XHTML ships with WebLogic Mobility Server. It allows
content pages to be easily marked up for delivery to multiple
devices. mmXHTML is a superset of XHTML. It adds a number of
tags to XHTML to mark-up the structure of XHTML documents
enabling a non-device-specific description of content.

mmXHTML DTD The mmXHTML DTD (Document Type Definition) is a file that
defines the mmXHTML extensions to XHTML. The mmXHTML
DTD is used by WebLogic Mobility Server to validate mmXHTML
documents.

WebLogic Mobility Server WebLogic Mobility Server is a modular, extensible, carrier-grade
platform for creating and delivering multi-channel data, content
and applications. The platform architecture is based on
Java/XML open standards and offers J2EE integration.

WebLogic Mobility Server
Multi-Mode JSP Tag Library

Used for the mobilization of JSP documents. The functionality of
the mmXHTML tags is replicated within a JSP tag library
structure optimizing the performance of WebLogic Mobility Server
when delivering JSP content to the PC channel. The WebLogic
Mobility Server JSP tags mimic their mmXHTML counterparts
with the exception that they use mm: instead of mm- to begin the
tag name. In order for the tags to be processed, the JSP
document must start with a taglib declaration and the page must
be wrapped in <mm:page> tags.

BEA WebLogic Mobility Server User Guide - 159

Part VII Glossary

SOAP SOAP (Simple Object Access Protocol) is a lightweight protocol
for exchange of information in a decentralized, distributed
environment. It is an XML based protocol that consists of three
parts: an envelope that defines a framework for describing what
is in a message and how to process it, a set of encoding rules for
expressing instances of application-defined datatypes, and a
convention for representing remote procedure calls and
responses. SOAP can potentially be used in combination with a
variety of other protocols.

Third Generation 3G is an ITU (International Telecommunication Union)
specification for the third generation (analogue cellular was the
first generation, digital PCS the second) of mobile
communications technology. 3G promises increased bandwidth,
up to 384 Kbps when a device is stationary or moving at
pedestrian speed, 128 Kbps in a car, and 2 Mbps in fixed
applications. 3G will work over wireless air interfaces such as
GSM, TDMA, and CDMA. The new EDGE (Enhanced Data rates
for Global Evolution) air interface has been developed specifically
to meet the bandwidth needs of 3G.

UMTS
(Universal Mobile
Telecommunication
Service)

UMTS is a Third Generation (3G) mobile technology that will
deliver broadband information at speeds up to 2Mbits/sec.

Besides voice and data, UMTS will deliver audio and video to
wireless devices anywhere in the world through fixed, wireless
and satellite systems.

URL (Uniform Resource
Locator).

The content of the browser address field is a Uniform Resource
Locator (URL).

URL Compression WebLogic Mobility Server supports URL compression, which
reduces the length of URLs to a minimum, thereby allowing much
more WML content to be delivered to a device. This is especially
relevant where the device has limited memory but could also be
important where limited bandwidth is an issue. URL compression
works by breaking the URL into fragments (query parameters)
and replacing the fragments in the URL with shortened tokens.
These shortened tokens are used by WebLogic Mobility Server to
map a request generated from the replacement URL back to the
original URL.

VoiceXML
(Voice Extensible Mark-up
Language)

VoiceXML is a standard language for building interfaces between
voice-recognition software and Web content. Just as Hypertext
Mark-up Language (HTML) defines the display and delivery of
text and images on the Internet, VoiceXML can translate any
XML-tagged Web content into a format that speech-recognition
software can deliver by phone.

VoxML
(Voice Mark-up Language)

The Motorola mark-up language that enables voice interaction
with applications.

WAP
(Wireless Application

The de-facto world standard for wireless information and
telephony services on digital mobile phones and other wireless

160 - BEA WebLogic Mobility Server User Guide

Part VII Glossary

Protocol) terminals. WAP empowers mobile users of wireless devices to
easily access live interactive information services and
applications from the screens of mobile phones.

Web Deployment Descriptor
(web.xml)

Before deploying a web application, you need to place a
deployment descriptor (web.xml) into the WEB-INF’s directory.
This file pulls together all the components of the web application
to be deployed.

WBMP
(Wireless Bitmap)

The WBMP format enables graphical information to be sent to a
variety of handsets. It is terminal independent and describes only
graphical information.

WML WML is a mark-up language based on XML and developed
specifically for wireless applications.

XHTML
(Extensible Hypertext Mark-
up Language)

XHTML is the first step toward a modular and extensible web
based on XML (Extensible Mark-up Language). It is the
reformulation of HTML 4 as an application of XML. XHTML mark-
up must conform to the strict mark-up standards defined in a
DTD.

XHTML MP
(XHTML Mobile Profile)

XHTML MP 1.0 is the official mark-up language of WAP 2.0. It is
a subset of XHTML extending XHTML Basic giving added
functionality for authors developing content for a range of mobile
device types supporting WAP2.0.

XML
(Extensible Mark-up
Language)

A web standard, similar to HTML in structure, which provides a
strict set of rules for describing the meaning of data.

XML is a data format for structured information interchange.
Standardized by the World Wide Web Consortium (W3C), XML is
the industry consensus of opinion for next generation web
architecture. XML uses the concept of generic mark-up: tags that
are inserted into a document, structuring it into nested elements.
HTML is the most popular format using this technique. While
HTML has a fixed set of tags, XML allows authors to freely
choose vocabulary from their field of application to name tags.

XSL
(Extensible Stylesheet
Language)

XSL defines a formatting model for XML documents. It consists of
two parts: a language for transforming XML documents, and an
XML vocabulary for specifying formatting semantics. An XSL
style sheet specifies the presentation of a class of XML
documents by describing how an instance of the class is
transformed into an XML document that uses the formatting
vocabulary. It is left to the specific output device, to decide how
the formatted result is best translated into pixels, speech, or
vectors.

BEA WebLogic Mobility Server User Guide - 161

Part VIII Appendixes

Part VIII Appendixes
Appendix A – Mobility Tag Reference

meta, mm:meta

Description
This tag is placed inside the document's <head> element. It has two WebLogic Mobility Server-
specific uses:

It can be used to create a shortcut link on the Options menu of WML devices that support such a
menu. This can provide a handy way for users to navigate around pages of a site.

It can be used with <mm:cdata> (or <![CDATA[...]> in mmXHTML) to set page-wide
“wrap” or “unwrap” directives.

This is an empty tag, so it requires a slash (/) before the final angle bracket (>).

Usage A
To create a link on an Options menu

Attributes
• name="..."

Assigns a name to the meta information. This will be used as the text on the menu item.

• content="..."

The value that should be used for generating the link.

• scheme= "mmsection"

The value of this attribute is an indicator to WebLogic Mobility Server. For WebLogic
Mobility Server meta tags the value should always be "mmsection"

Example
<!—This will create a link with the title "Go Home" on the Options menu of some
phones.. -->
<meta name="Go Home" content="/some/url.htm" scheme="mmsection"/>

162 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

Usage B: To give page-wide settings to CDATA elements

Attributes
• name="MIS-CDATA-Control”

This attribute must always have this value when using the meta element with <mm:cdata>
or <![CDATA[...]]>. (Required)

• content="Unwrap | NoUnwrap"

If set to “Unwrap”, WebLogic Mobility Server will not parse the content that is wrapped by
any CDATA section on the page (unless the CDATA tag itself has contradicting
instructions), but will remove the CDATA tags when delivering the page so that the wrapped
content will be interpreted by the client browser. If set to “NoUnwrap”, which is the default
behavior, neither WebLogic Mobility Server nor the browser will process or interpret the
contents of the CDATA block.

Example using the JSP TAGLIB
<%-- The meta tag settings cause the first CDATA block to be unwrapped, but the
second one will not be unwrapped because the unwrap="false" in the CDATA
element overrides the meta tag instruction.--%>

<head>
<mm:meta name="MIS-CDATA-Control" content="Unwrap"/>
</head>
<body>

<mm:cdata>This content will not be parsed by the WebLogic Mobility Server
parser, but will be unwrapped and delivered to the requesting browser for
processing. Because the CDATA element has no unwrap attribute set, it looks for
the value of the content attribute of the meta element if there is
one.</mm:cdata>
 <mm:cdata unwrap="false">This content will not be parsed by the WebLogic
Mobility Server parser, and will not be processed by the requesting browser
either. The CDATA's unwrap attribute overrides the content attribute of the
meta tag.</mm:cdata>
</body>

Example using mmXHTML
<%-- This demonstrates the mmXHTML equivalent of the example above.--%>

<head>
 <meta name="MIS-CDATA-Control" content="Unwrap"/>
</head>
<body>
...
<![CDATA[This content will not be parsed by the WebLogic Mobility Server
parser, but will be unwrapped and delivered to the requesting browser for
processing. Because the CDATA element has no unwrap attribute set, it looks for
the value of the content attribute of the meta element.]]>

<![CDATA[#NOUNWRAP# This content will not be parsed by the WebLogic Mobility
Server parser, and will not be processed by the requesting browser either. The
CDATA's unwrap attribute overrides the content attribute of the meta tag.]]>

</body>

BEA WebLogic Mobility Server User Guide - 163

Part VIII Appendixes

See Also
mm:cdata

164 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

mm-body, mm:body

Description
Acts as a container for the content within an <mm-group> element.

Attributes
• id="…"

Assigns a unique ID to an instance of this element.

• idref="…"

A reference pointing to the unique ID of the parent element. An mm-group element can have
multiple mm-body elements. Each must be linked to another body element, the <mm-head>,
or the <mm-group> so that they form a chain, the order of which will be the order they are
displayed on a menu-driven device.

Comments
The <mm-group> element is used to organize your content into logical sections.

Example
<!— This example illustrates multiple (2) mm-body elements -->
<mm-group id="introduction" title="Introduction">
 <mm-head id="hd_introduction">Introduction </mm-head>
 <!-- Note the body is linked to the heading -->
 <mm-body id="bd_1" idref="hd_introduction">
 <p>This is paragraph 1</p>
 </mm-body>
 <!-- Note the next paragraph will only be included on full browser devices -
->
 <p>This is paragraph 2</p>
 <!–- Note the body is linked to the previous body -->
 <mm-body id="bd_2" idref="bd_1">
 <p>This is paragraph 3</p>
 </mm-body>
</mm-group>

See also
mm-group, mm-head

BEA WebLogic Mobility Server User Guide - 165

Part VIII Appendixes

<![CDATA[...]]> / mm:cdata

Description
To prevent WebLogic Mobility Server from analyzing/transforming particular content, wrap this
content in <![CDATA[…]]> elements. By placing the meta tag <meta…/> in the head section
of the content, the enclosing CDATA tags will be removed when the content is delivered to the
device. For JSP, use <mm:meta…/> and <mm:cdata> as illustrated in “<mm:cdata>
USAGE.”

Comments
This functionality works in conjunction with PDAs and Full Browser devices—content wrapped
in <![CDATA[…]]> elements will not be delivered to MenuDriven devices.

<![CDATA[…]]> Usage
There may be circumstances when you might wish to deliver a portion of web page content that
has not been subject to the WebLogic Mobility Server transformation. In mmXHTML files, the
<![CDATA[…]]> tag can be used in conjunction with the <meta…/> tag to protect such
content from being analyzed or transformed by WebLogic Mobility Server, and yet still have this
content delivered to the device.

By extending the capabilities of the <![CDATA[…]]> tag to include unwrapping functionality,
WebLogic Mobility Server will ignore the content during processing, but remove the enclosing
<![CDATA[…]]> tag when delivering it to the device.

To cause your <![CDATA[…]]> tag to be unwrapped, specify it as follows:
<![CDATA[#UNWRAP#…]]>

If you have many <![CDATA[…]]> tags in a page which you wish to have unwrapped, then you
can specify a <meta…/> tag as follows:
<meta name=”MIS-CDATA-Control” content=”Unwrap” />

which will cause each <![CDATA[…]]> tag on the page to be treated as if #UNWRAP# were
present. You may override this behavior for individual <![CDATA[…]]> tags by specifying that
they are not unwrapped, as follows:

<![CDATA[#NOUNWRAP#…]]>

<mm:cdata> Usage
<mm:cdata> and <mm:meta> work together in the same way as <![CDATA[...]]>
works with <meta>. In this case however, #UNWRAP# and #NOUNWRAP# are replaced by
the unwrap attribute on the <mm:cdata> tag.

• unwrap="true | false”

If not present, this attribute will default to false

166 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

Examples

EXAMPLE USING JSP TAGLIB EXAMPLE USING MMXHTML

<!-- WebLogic Mobility Server will not
attempt to parse this Javascript inside
the <mm:cdata> tags, but this code will
be processed by the browser. -->

<mm:meta name="MIS-CDATA-
Control" content="Unwrap" />

<script>

 <mm:cdata unwrap=”true”>

 function compareIt(var1,var2) {

 if (var1 <= var2) then {

 return 0

 }
 else {

 return 1

 }
 }

 </mm:cdata>

</script>

<!-- The tag syntax for the same code example using
mmXHTML looks like this: -->

<meta name="MIS-CDATA-Control"
content="Unwrap"/>

<script>

 <![CDATA[#UNWRAP#

 function compareIt(var1,var2) {

 if (var1 <= var2) then {

 return 0

 }
 else {

 return 1

 }
 }

]]>

</script>

See also
meta

BEA WebLogic Mobility Server User Guide - 167

Part VIII Appendixes

mm-exclude, mm:exclude

Description
Acts as a container for elements to be excluded when specific devices are targeted.

Attributes
• where="…"

The where attribute enables the author to specify content selection conditions for devices.

Conditions are constructed by specifying device attribute names and allowable values, using
comparison operators from the Python programming language. Multiple conditions can be
combined to make complex expressions by using the logical “and”, “or” and “not” operators
from Python.

Note: The “where” clause quoted string must not contain line breaks.

WebLogic Mobility Server also supports use of the Python .endswith(), .startswith() and
.find() methods for partial matching.

Restrictions:

• At least one condition must be specified

• Attribute names must be valid as taken from the Device Repository

• All String attribute values must be wrapped in single quotes

Example
<!-- The following example illustrates how an address line is excluded for a
group of devices. -->
<mm-group id="company_details">
 <mm-head id="hd_company_details">Company Details</mm-head>
 <mm-body id="bd_company_details" idref="hd_company_details">
 <p>ABC Company Ltd.</p>
 <mm-exclude where="DeviceName.find('Ericsson')> 0">
 <p>North Business Park, Circular Road,Dublin,Ireland </p>
 </mm-exclude >
 <p>Phone: 888-000-111</p>
 <p>Fax: 000-888-111</p>
 </mm-body>
</mm-group>

See Also
mm-include

168 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

mm-group, mm:group

Description
Used to explicitly organize content into logical sections. An <mm-group> may optionally contain
one <mm-head> element and zero or more <mm-body> elements.

Attributes
• id="…"

Assigns a unique ID to an instance of this element.

• title="…"

Specifies a title to be assigned to the element.

• accesskey="assign | 0-9"

This is an optional attribute that gives the author some control over access keys on phones
that support this functionality. The value "assign" will defer control of access keys to the
phone itself. Alternatively, a number from 0-9 can be assigned by setting the attribute to the
desired value. Both of these settings can be overridden if an <mm-structure> which
contains a reference to this group has its accesskeycontrol attribute set to
"removeall" in which case no access keys will be assigned. If the <mm-structure> has
its accesskeycontrol attribute set to "assignall", access keys that have been
assigned numbers will be overridden and the default settings of the phone will be used.

• navstyle=”…”

This attribute is used for styling navigational menus for PDAs and menu-driven devices.

Example
<!-- This example illustrates the use of the mm-group, mm-head and mm-body
elements. -->
<mm-group id="gp_company_details" title="Company Details">
 <mm-head id="hd_company_details">Company Details</mm-head>
 <mm-body id="bd_company_details" idref="hd_company_details">
 <p>ABC Company Ltd.</p>
</mm-body>
</mm-group>

See Also
mm-head, mm-body, mm-group-ref, mm-id-ref, mm-structure

BEA WebLogic Mobility Server User Guide - 169

Part VIII Appendixes

mm-group-ref, mm:group-ref

Description
Used to reference an existing mm-group element. The content of the group can be displayed in
full or as a hierarchical set of headings that the user can use to navigate to the appropriate section.
The navigation hierarchy is typically used for menu-driven devices and PDAs. This is an empty
tag, so it requires a slash (/) before the final angle bracket (>).

Attributes
• idref="…"

The unique identifier associated with the <mm-group> element being referenced.

• type="options | normal"

When content is being delivered to WML devices that support the Options menu, this
attribute specifies whether the menu displays on the screen or whether it displays behind the
Options button. This will have no effect on XHTML MP devices. Default is normal.

Note: When type=”options” the attribute display MUST be set to “headings”

• depth="flat | 0..9"

Specifies the level of recursion to use when building the navigation hierarchy.

• startdepth="0-9"

Specifies the level at which the navigation hierarchy starts. This attribute can only be used
when display=”headings”

• display="all | headings | links"

Setting the value to “headings” displays the headings within a group down to the level (depth)
specified. Setting the value to “all” displays everything within the group – headings, bodies
and so on Setting the value to “links” displays headings and any links that occur within the
group.

• navstyle=”…”

This attribute is used for styling navigational menus for PDAs and menu-driven devices.

Example

Depth Display Result

Flat all Displays the whole page as a flat structure.

0 headings Displays a link to that group.

1 headings Displays a collection of links to the group and its subgroups.

2 headings Displays a collection of links to the group, its subgroups and its
subgroup's subgroups.

0 all Displays that group, both heading and body and a collection of
links to its subgroups if any.

170 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

1 all Displays that group, heading and body, its subgroups, heading,
body and a collection of links to their subgroups if any.

0 links Displays the heading of the group and any links that occur in the
body of that group

See Also
mm-group, mm-structure

BEA WebLogic Mobility Server User Guide - 171

Part VIII Appendixes

mm-head, mm:head

Description
The text inside the <mm:head> element can be used as a menu link or a page title on menu-
driven devices and PDAs. Smaller screen devices often split content into multiple pages to
accommodate memory and bandwidth restrictions. The heading is sometimes needed to give
context to the piece of content that is being displayed. A maximum of one <mm:head> per
group is permitted.

Attributes
• id="…"

Assigns a unique ID to an instance of this element. If an <mm:body> element follows the
head, its idref attribute must match the head's id attribute.

• useradded="yes | no"

Indicates whether the text wrapped by the tag is already part of the content (="no") or has
been specifically added (="yes"). Typically, you will add a head when the group is targeting
menu-driven devices, so that the head becomes a link or a “card” title. Text that has been
specifically added for this purpose will not appear on other devices.

Example
<!-- This example illustrates the use of the mm-group, mm-head and mm-body
elements -->
<mm-group id="gp_company_details">
 <mm-head id="hd_company_details">
 Company Details
 </mm-head>
 <mm-body id="bd_company_details" idref="hd_company_details">
 <p>ABC Company Ltd.</p>
 </mm-body>
</mm-group>

See Also
mm-group, mm-body, mm-group-ref

172 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

mm-id-ref, mm:id-ref

Description
This element causes WebLogic Mobility Server to place an instance of the referenced content at
the point of insertion. This element is used in layout files. This is an empty tag, so it requires a
slash (/) before the final angle bracket (>).

Attributes
• idref="…"

The unique ID of the group being referenced. This can be an implicit group, such as a table or
form, which has been assigned an id attribute, or an explicit group created with
<mm-group>.

Example
<%-- This is a part of a layout file that is using PDA pagination to create a
navigation menu for PDAs. The mm:id-refs are being used to create a persistent
header and footer content which appears on all pages. They refer to predefined
groups of content whose id attribute values are 'header' and 'footer'.--%>
<mm:id-ref idref="header" />
<mm:structure id="str2" where="IsPDA">
 <mm:group-ref idref="groupA" depth="0" display="headings" type="normal" />
 <mm:group-ref idref="groupB" depth="0" display="headings" type="normal" />
 <mm:group-ref idref="groupC" depth="0" display="headings" type="normal" />
 <mm:group-ref idref="groupD" depth="0" display="headings" type="normal" />
</mm:structure>
<mm:id-ref idref="footer" />

See Also
mm-group, mm-group-ref, mm-layout

BEA WebLogic Mobility Server User Guide - 173

Part VIII Appendixes

mm-img, mm:img

Description
Used to deliver the correct image based on the capabilities of the target device. Typically,
multiple images will be placed inside a media-group element so that different image formats are
available to be delivered depending on the requesting device type. The first image matching the
criteria of this tag's where attribute is delivered; all others are ignored. Attribute of the XHTML
 tag can also be used with this tag. This is an empty tag, so it requires a slash (/) before the
final angle bracket (>).

Attributes
• where="…"

The where attribute enables the author to specify content selection conditions for devices.

Conditions are constructed by specifying device attribute names and allowable values, using
comparison operators from the Python programming language. Multiple conditions can be
combined to make complex expressions by using the logical “and”, “or” and “not” operators
from Python.

Note: The “where” clause quoted string must not contain line breaks.

WebLogic Mobility Server also supports use of the Python .endswith(), .startswith() and
.find() methods for partial matching.

Restrictions:

• At least one condition must be specified

• Attribute names must be valid as taken from the Device Repository

• All String attribute values must be wrapped in single quotes

• fittoscreen=”true | false”

If this attribute is set to "true", the image width is resized to the UsableWidthPixels value of
the device, as defined in the Device Repository. The image height is resized by the same
factor so that the image maintains the same aspect ratio. This has an effect only if the original
image is wider than the targeted screen width.

Example
<!—The WebLogic Mobility Server will select an image depending on the graphic
support of the requesting device. If the device matches more than one where
clause, it will receive the image from the first one that it matches. If no
match occurs, the text from the media-group's alt attribute will be sent to the
device.-->
<mm-media-group alt="No image provided">
 <mm-img where="ImgJpgProgressiveSupported" height="80" width="60" alt="Gold"
 src="img/gold.jpg" />
 <mm-img where="ImgGIFSupported" height="40" width="30" alt="Gold"
 src="img/gold.jpg" />
 <mm-img where="ImgWBMPSupported" height="16" width="12" alt="Gold" src="
 img/gold.wbmp" />
</mm-media-group>

174 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

See Also
mm-media-group, mm-logo

BEA WebLogic Mobility Server User Guide - 175

Part VIII Appendixes

mm-include, mm:include

Description
Acts as a container for elements that are to be included when a specific device class is targeted.

Attributes
• where="…"

The where attribute enables the author to specify content selection conditions for devices.

Conditions are constructed by specifying device attribute names and allowable values, using
comparison operators from the Python programming language. Multiple conditions can be
combined to make complex expressions by using the logical “and”, “or” and “not” operators
from Python.

Note: The “where” clause quoted string must not contain line breaks.

WebLogic Mobility Server also supports use of the Python .endswith(), .startswith() and
.find() methods for partial matching.

Restrictions:

• At least one condition must be specified

• Attribute names must be valid as taken from the Device Repository

• All String attribute values must be wrapped in single quotes

Example
<!-- This example illustrates how to insert a line break into an address when
certain devices are targeted. -->
<mm-body id="bd_company_details" idref="hd_company_details">
 <p>ABC Company Ltd.</p>
 <p>North Business Park,
 <mm-include where="DeviceName.startswith('Nokia')">
</mm-include>
 Circular Road,
 <mm-include where="DeviceName.startswith('Nokia')">
</mm-include>
 Dublin,
 <mm-include where="DeviceName.startswith('Nokia')">
</mm-include>
 Ireland
 </p>
 <p>Phone: 888-000-111</p>
 <p>Fax: 000-888-111</p>
</mm-body>

176 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

See Also
mm-exclude

BEA WebLogic Mobility Server User Guide - 177

Part VIII Appendixes

mm-layout, mm:layout

Description
Used to specify which layout files should be applied to a request page. Layout files are essentially
XHTML or JSP files that contain a description of how output content is best arranged for a
specific device or for certain classes of devices. This tag is placed inside the <head> element. It
is an empty tag, so it requires a slash (/) before the final angle bracket (>).

Attributes
• where="…"

The where attribute enables the author to specify content selection conditions for devices.

Notes

• where=”IsFullBrowser” is not allowed with this tag

• The “where” clause quoted string must not contain line breaks

• Conditions are constructed by specifying device attribute names and allowable values,
using comparison operators from the Python programming language. Multiple conditions can
be combined to make complex expressions by using the logical “and”, “or” and “not”
operators from Python.

• WebLogic Mobility Server also supports use of the Python .endswith(), .startswith()
and .find() methods for partial matching.

Restrictions

• At least one condition must be specified

• Attribute names must be valid as taken from the Device Repository

• All String attribute values must be wrapped in single quotes

• src="url"

A URL that points WebLogic Mobility Server to the layout file.

Example
<!-- The following example targets a distinct type of device with a specific
layout. -->
<?xml version='1.0'?>
<!DOCTYPE html PUBLIC "-//MOBILEAWARE//DTD MMXHTML 1.2//EN"
"http://www.mobileaware.com/DTD/mmxhtml_1.2.dtd">
<html>
<head>
 <title>Example Heading</title>
 <mm-layout where="IsPortraitPDA" src="layout_1.htm" />
</head>
<body>
 <mm-group id=”text1”>
 <p> When this page is delivered to a portrait PDA, it will be formatted
 according to the style set out in the file layout_1.htm.</p>
 </mm-group>
</body>
</html>

178 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

See Also
mm-id-ref, mm-group-ref

BEA WebLogic Mobility Server User Guide - 179

Part VIII Appendixes

mm-li, mm:li

Description
This tag defines a list item in a navigation list. It must be contained by <mm:nl> tags. It allows
authors to create and style navigation lists that can specifically target mobile devices.

Attributes
• navstyle="…"

This attribute is used for styling navigational menus. It is used here primarily with the
nav-image property to reference an image to be used as part of the navigation, as can be seen
in the following example. Additional styling for list items can be achieved using external
style sheets.

• href="url"

Contains the URL of the link created

Example
<!-- This example creates a styled navigation list with 4 elements.-->

<div style="border: 1px solid">
 <mm:nl navstyle="nav-format: list; nav-list-item-display: block”>
 <mm:li navstyle=”nav-image: url(dog.gif)” href="dogs.htm>Dogs</mm:li>
 <mm:li navstyle=”nav-image: url(fish.gif)” href="fish.htm">Fish</mm:li>
 <mm:li navstyle=”nav-image: url(cat.gif)” href="cat.htm">Cats</mm:li>
 <mm:li navstyle=”nav-image: url(fish.gif)” href="fish.htm">Fish</mm:li>
 </mm:nl>
</div>

See Also
mm:nl

180 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

mm-logo, mm:logo

Description
Used to specify a logo image for WML devices. Logos typically appear for a user-specified
interval before disappearing and being replaced by the main content.

Attributes
• id="…"

Assigns a unique ID to an instance of the mm-logo element.

• displaymode="once | always"

Allowed values are "once" or "always" indicating whether a logo should be displayed once
per session or for every request.

• period="..."

The value of this attribute is an integer, where the integer represents the number of seconds
that the logo will be displayed.

Example 1
<!-- The following code snippet causes a company logo to appear for 2 seconds
before being replaced by the main content when the page is delivered to a WML
device. For each user session, this logo will appear only the first time the
user visits the page. -->
<mm-logo id="logo" displaymode="once" period="2">

</mm-logo>

Example 2
<!-- Images can be placed inside a media-group using the <mm-img> tag, so that
the best image is delivered to the requesting device.-->
<mm-logo id="logo" displaymode="once" period="2">
 <mm-media-group alt="Logo Image">
 <mm-img where="ImgGIFSupported" src="/companylogo.gif" alt="ABC Company
Ltd." />
 <mm-img where="ImgWBMPSupported" src="/companylogo.wbmp" alt="ABC Company
Ltd." />
 </mm-media-group>
</mm-logo>

See Also
mm-img

BEA WebLogic Mobility Server User Guide - 181

Part VIII Appendixes

mm-media-group, mm:media-group

Description
Contains the <mm:img> elements that specify alternative media to deliver when a specific
device is targeted. WebLogic Mobility Server will select an image from a media-group depending
on the graphic support of the requesting device. If the device matches more than one where
clause, it will receive the image from the first one that it matches. If no match occurs, the text
from the media-group's alt attribute will be sent to the device.

Attributes
• id="…"

Assigns a unique ID to an instance of this element. Used for navigation styling. This ID is
referenced by a group-ref or structure tag to identify the image needed for the navigation.

• alt="…"

Alternative text to be displayed in the event that no mm-img is provided for the requesting
device. Do not supply an alt attribute if you do not want any text to appear if the requesting
device is not on the list of devices in the <mm-img> tags.

• style=”display:none”

Optional attribute used for styling navigational menus for PDA and menu-driven devices. The
value “display:none” renders the media-group invisible at the location that it displays in the
content mark-up. WebLogic Mobility Server uses the media-group during the creation of
navigation menu styles that use images.

Example
<!-- This example shows a partial layout file which contains two media-groups
used for styling navigation menus with images. The group-ref tags in the
structure identify the desired image to appear with the menu link by referring
to the media-group's id. To ensure that the image does not appear anywhere in
the delivered content except in the navigation, the media-group's style
attribute is set to "display:none".-->
<body>
 <mm:media-group id="car" style="display:none" alt="*">
 <mm:img where="ImgGIFSupported" src="img/car.gif" alt="*"/>
 <mm:img where="ImgWBMPSupported" src="img/car.wbmp" alt="*"/>
 </mm:media-group>
 <mm:media-group id="boat" style="display:none" alt="*">
 <mm:img where="ImgGIFSupported" src="img/boat.gif" alt="*"/>
 <mm:img where="ImgWBMPSupported" src="img/boat.wbmp" alt="*"/>
 </mm:media-group>
 <mm:structure id="pagination_str" where="IsPDA">
 <mm:group-ref idref="groupA" depth="0" display="headings" type="normal"
navstyle="nav-image:url(#car)"/>
 <mm:group-ref idref="groupB" depth="0" display="headings" type="normal"
 navstyle="nav-image:url(#boat)"/>
 </mm:structure>
< /body>

See Also
mm-img, mm:group-ref

182 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

mm-nl, mm:nl

Description
This tag name comes from the words “navigation list”. It allows authors to create and style
navigation lists that can specifically target mobile devices.

Attributes
• navstyle="…"

This attribute is used for styling navigational menus. The following values can be used:
nav-format: [list | table], nav-list-item-display: [none | inline | block], nav-list-style-type:
pipe, nav-image:[url(#id | url), none], nav-text-display: [none | inline | block], nav-table-
columns:[int], nav-table-rows[int]. Additional styling can be achieved using external style
sheets.

• where="…"

The where attribute enables the author to specify content selection conditions for devices.

Notes

• where=”IsFullBrowser” is not allowed with this tag

• The “where” clause quoted string must not contain line breaks

• Conditions are constructed by specifying device attribute names and allowable values,
using comparison operators from the Python programming language. Multiple conditions can
be combined to make complex expressions by using the logical “and”, “or” and “not”
operators from Python

• WebLogic Mobility Server also supports use of the Python .endswith(), .startswith()
and .find() methods for partial matching

Restrictions

• At least one condition must be specified

• Attribute names must be valid as taken from the Device Repository

• All String attribute values must be wrapped in single quotes

Example
<!-- This example creates a styled navigation list with 4 elements.-->
<div style="border: 1px solid">
 <mm:nl navstyle="nav-format: list; nav-list-item-display: block”>
 <mm:li navstyle=”nav-image: url(dog.gif)” href="dogs.htm”>Dogs</mm:li>
 <mm:li navstyle=”nav-image: url(fish.gif)” href="fish.htm">Fish</mm:li>
 <mm:li navstyle=”nav-image: url(cat.gif)” href="cat.htm">Cats</mm:li>
 <mm:li navstyle=”nav-image: url(fish.gif)” href="fish.htm">Fish</mm:li>
 </mm:nl>
</div>

See Also
mm:li

BEA WebLogic Mobility Server User Guide - 183

Part VIII Appendixes

mm:page

Description
This is a required tag for content that uses the WebLogic Mobility Server JSP taglib. The
<mm:page> tag wraps the page content. Setting attributes in this tag can enhance the performance
of JSP page processing by allowing the author the choice of bypassing the WebLogic Mobility
Server transformation engine and/or of turning off the mixed-mode tag checking feature.

Attributes
• content="true | false"

Allows the author to turn on or off the mixed-mode tag checking. If the author knows that the
page only contains the WebLogic Mobility Server JSP taglib tags (mm:) and no mmXHTML
tags (mm-), this attribute can be turned off to improve performance. The default is true.

• bypass="true | false"

Allows the author to bypass the WebLogic Mobility Server transformation engine. This might
be done to improve performance for pages that are to be delivered exclusively to a PC. The
default is false.

Example
 <!— The WebLogic Mobility Server will not check this file for mixed tags. -->
<%@ taglib uri="mmJSPtaglib" prefix="mm" %>
<mm:page content="false">
<html>
<head>
 <title>Skip Tag Check</title>
</head>
<body>
 <p>This page has WebLogic Mobility Server JSP tags exclusively. Tag
 checking can be turned off.</p>
</body>
</html>
</mm:page>

184 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

mm-phone-number, mm:phone-number

Description
Used to include a dialable phone number link in content delivered to WTAI enabled devices.

Attributes
• num="…"

Specifies a valid dialable phone number.

• cti="…"

Used when the requesting device is an iMode device. This attribute lets you create a link that
will be dialed when the user selects the link. Unlike the num attribute, cti gives the user the
option of including pauses, characters and extension numbers after the main phone number.
The hash mark (#) and the asterisk (*) are also supported.

Example
<!--This example will create a link that, when clicked, will dial +35312410500.
If the phone is an iMode device, it will use the value of the cti attribute.
After dialing the number, once the receiving end has picked up, it will pause
for 2 seconds before dialing the extension 538#. -->
<mm:phone-number num=”+ 35312410500" cti="+35312410500/,,538#">
 Call Julia.
</mm:phone-number>

BEA WebLogic Mobility Server User Guide - 185

Part VIII Appendixes

mm-structure, mm:structure

Description
Used to determine which groups are to be delivered to menu-driven devices or to create
navigation menus for PDAs. The <mm:structure> element contains <mm:group-ref> elements
which refer to the groups of content that you want delivered. Typically, this element is placed in a
layout file.

Attributes
• id="…"

Assigns a unique ID to an instance of this element.

• where="…"

The where attribute enables the author to specify content selection conditions for devices.

Notes

• where=”IsFullBrowser” is not allowed with this tag

• The “where” clause quoted string must not contain line breaks

• Conditions are constructed by specifying device attribute names and allowable values,
using comparison operators from the Python programming language. Multiple conditions can
be combined to make complex expressions by using the logical “and”, “or” and “not”
operators from Python

• WebLogic Mobility Server also supports use of the Python .endswith(), .startswith()
and .find() methods for partial matching.

Restrictions

• At least one condition must be specified

• Attribute names must be valid as taken from the Device Repository

• All String attribute values must be wrapped in single quotes

• accesskeycontrol="assignall | assignempty | removeall"

This is an optional attribute that gives the author some control over access keys on phones
that support this functionality. The value "assignall" will defer control of access keys to the
phone itself. This applies to all the groups that are being referenced by the mm-structure
regardless of whether or not the groups themselves have been explicitly assigned a number.
The value "assignempty" will defer control of access keys to the phone only in the case where
a group within the mm-structure has not explicitly been assigned a number. Setting
accesskeycontrol="removeall" will disallow any accesskeys being set thereby overriding any
accesskey settings within the individual groups contained in the <mm-structure>. The value
"removeall" will not remove accesskey settings in other XHTML tags such as <input
accesskey="..."> or .

Note: The attribute values “assignall” and “assignempty” are not supported on iMode phones.

• navstyle=”…”

This attribute is used for styling navigational menus for PDAs and menu-driven devices.

186 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

• idheader=”…”

This attribute is used to specify the mm-group that you want to use as a header on each page
presented on a menu-driven mobile device.

• idfooter=”…”

This attribute is used to specify the mm-group that you want to use as a footer on each page
presented on a menu-driven mobile device.

Example
<!-- Groups referenced from within this mm-structure element will be displayed
on menu-driven browsers. -->
<mm-structure id="structure_1" where="IsMenuDriven">
 <mm-group-ref idref="group_1" type="normal" depth="flat" display="all" />
 <mm-group-ref idref="group_2" type="normal" depth="0" display="headings" />
</mm-structure>

See Also
mm-group-ref, mm-group

BEA WebLogic Mobility Server User Guide - 187

Part VIII Appendixes

mm-table-model, mm:table-model

Description
Use the <mm:table-model> element to enable WebLogic Mobility Server to transform tables
for small devices. Table information can be presented differently depending on the capabilities of
the requesting device. Data can be “flattened” for devices that do not support tables, or for
devices that have screen widths that would cause the data to wrap excessively. Multiple table-
models can be used to tailor the data presentation to the capabilities of the requesting device. If
the device matches more than one table-model where clause, the first one that matches will be
used to structure the table. The table-model tag should be placed directly below the XHTML
<table> tag. If there are nested tables, a separate table-model tag is required for each nested
table. This is an empty tag, so it requires a slash (/) before the final angle bracket (>).

Attributes
• title="..."

This is an optional attribute. If present, it forms the table title when used with the
tabletype="group". If title is not present when tabletype="group" and a link name is required,
the keyword “Data” will be used instead.

• major="row | column"

Determines whether the data is presented row first, or column first. The default is row first.

• headlocation="…"

Identifies which row (or column) number should be used to identify the heading for each
section.

• bodylocation="…"

This optional attribute specifies which rows or columns are to be displayed. Without this
attribute explicitly defined, WebLogic Mobility Server will default to displaying the entire
table although a warning will appear in the application server console. To explicitly direct
WebLogic Mobility Server to display the entire table, set bodylocation="*". Part of the table
can be displayed by setting this attribute to a space-separated list of numbers representing the
rows (or columns) to be sent to the device.

• tabletype="normal | group"

If the required attribute tabletype is set to normal, WebLogic Mobility Server will attempt to
display the entire table. If the table is too big for WebLogic Mobility Server to fit onto a
“card”, the page will be broken into multiple cards when necessary.

Setting tabletype to group causes the table headers to be rendered as links. These links can be
navigated to view detailed table content presented in a "table header: table data" pairing.
Using tabletype="group" for a device that can render tables will have little effect unless the
table is first “flattened” using sdtransform.

188 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

• sdtransform="base-transform | on-same-card |on-new-card"

• “base-transform” is an optional attribute used to "flatten" tables that are sent to menu-
driven devices or PDAs that support tables. This may be necessary to avoid excessive
wrapping that could occur if the device were to render the data as a table on a small screen.
Table content is presented as a series of "table header: table data" pairings. If the attribute is
not present, the result will depend on the table support provided by the device. Using this
attribute will have no impact on non-table-supporting devices.

• “on-same-card” is an optional attribute used to display new tables on the same card.

Note: This will not create a link to that nested table

• “on-new-card” is an optional attribute used to create a link to a nested table that is placed
on a separate card

• where="…"

The where attribute enables the author to specify content selection conditions for devices.

Notes

• where=”IsFullBrowser” is not allowed with this tag

• The “where” clause quoted string must not contain line breaks

• Conditions are constructed by specifying device attribute names and allowable values,
using comparison operators from the Python programming language. Multiple conditions can
be combined to make complex expressions by using the logical “and”, “or” and “not”
operators from Python

• WebLogic Mobility Server also supports use of the Python .endswith(), .startswith()
and .find() methods for partial matching.

Restrictions

• At least one condition must be specified

• Attribute names must be valid as taken from the Device Repository

• All String attribute values must be wrapped in single quotes

Example
<!-- Two table-model tags have been placed inside the XHTML table in the
example. The first one is responsible for transforming tables being delivered
to devices that are both capable of rendering tables and have a screen width
greater than or equal to 196 pixels. The second one is responsible for
transforming tables being delivered to devices that either cannot render tables
or have a screen width less than 196 pixels. -->
<table border="1">
 <mm:table-model headlocation="1" bodylocation="*" major="row"
 tabletype="normal" where="UAProf.BrowserUA.TablesCapable and
 UsableWidthPixels >= 196" />
 <mm:table-model headlocation="1" bodylocation="*" major="row"
 sdtransform="base-transform" tabletype="normal" where="(not
 UAProf.BrowserUA.TablesCapable) or (UAProf.BrowserUA.TablesCapable and
 (UsableWidthPixels < 196))" />
 <tr><td>June</td>
 <td>July</td>
 <td>August</td>
 </tr>

BEA WebLogic Mobility Server User Guide - 189

Part VIII Appendixes

 <tr><td>Swimming</td>
 <td>Kayaking</td>
 <td>Rock Climbing</td>
 </tr>
</table>

190 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

Appendix B – Mobility Delivery Context API

Introduction
The Mobility Delivery Context API provides a mechanism for developers to add “device-aware”
logic into their applications. The Mobility Delivery Context API provides methods to request a
delivery context and subsequently access device attributes in the retrieved delivery context.

Applications can use the Mobility Delivery Context API to:

• Retrieve a delivery context for the device currently interacting with the application by passing
in the associated http request object. These are referred to In-session Queries because
WebLogic Mobility Server automatically maintains a delivery context for the current device
in the session.

• Retrieve delivery contexts for one or more devices that match conditions passed by the
application as parameters in the delivery context query. These are referred to Out-of-session
Queries.

Note: The Mobility Delivery Context API provides access to the UAProf device attributes
available using the JSR 188 Delivery Context API and also provides access to the Mobility
proprietary device profile attributes that are not available using the JSR 188 Delivery Context
API.

Note: The JSR 188 Delivery Context API has not yet been extended to support Out-of-session
Queries.

Requesting the Delivery Context for an Active HTTP Session
The method call used to retrieve the Delivery Context for the device associated with the active
HTTP Session is
DeliveryContextFactory.getDeliveryContext (request)

where request is the request object.

The following code block illustrates how this method is used to request a Delivery Context for a
device associated with an active HTTP Session.
<%@ taglib uri="mmJSPtaglib" prefix="mm" %>
<mm:page content="false">
<%@ page import="com.mobileaware.deliverycontext.*" %>
<html>

<head>
 <title>MA Delivery Context API</title>
 <mm:structure id="st_101" where="IsMenuDriven">
 <mm:group-ref idref="gp_101" depth="flat" type="normal" display="all"/>
 </mm:structure>
</head>
<body>
<mm:group id="gp_101" title="Details">
<%
DeliveryContext dc = DeliveryContextFactory.getDeliveryContext(request);
try {
String deviceName= dc.getAttribute("DeviceName");
String imgList= dc.getAttribute("ImgTypePref");
%>
 <p>I am a <%=deviceName%>.</p>
 <p>I accept images that are: <%=imgList%></p>

BEA WebLogic Mobility Server User Guide - 191

Part VIII Appendixes

%>
} catch(Throwable e) {
 out.println("<p>Problem creating delivery context.</p>");
}
%>
</mm:group>
</body>
</html>
</mm:page>

The results when accessing Mobility attributes of a WML emulator are shown here.

Results

 Image Courtesy of Openwave Systems Inc

192 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

Request Out-of-Session Delivery Contexts

Establish the Delivery Context Store
A Delivery Context Store must be established before attempting to retrieve Delivery Contexts.
This Delivery Context Store indicates the Device Repository instance against which the
subsequent Delivery Context queries should be issue. There are two methods for establishing the
Delivery Context Store depending on whether the Device Repository is deployed in a relational
database or as an XML file.

• To establish a Delivery Context Store where the Device Repository is deployed in a database,
the following method is used:
DeliveryContextStoreFactory.getDeliveryContextDBStore(“deviceDB.url”,
“deviceDB.driver”)

where deviceDB.url is the location of the Device Repository (including user and password if
required) and deviceDB.driver is the driver to be used to access the database. These database
connection parameters should be provided by the database administrator.

• To establish a Delivery Context Store where the Device Repository is deployed as an XML
file, the following method is used:
DeliveryContextStoreFactory.getDeliveryContextXMLStore(“deviceDB.url”)

where deviceDB.url is the path to the deployed Device Repository XML file.

Methods for Retrieving Delivery Contexts
There are four method calls that can be used to retrieve Delivery Contexts for devices in the
Device Repository. The methods are described as follows:

• To retrieve a single device where a specified attribute matches a specified value:
DeliveryContextFactory.getDeliveryContext(deliveryContextStore,
“attributeName”, “attributeValue”)

where deliveryContextStore indicates the established delivery context store to query,
attributeName indicates the device store attribute to match on, and attributeValue indicates
the value of the indicated Device Repository attribute to match on. For example, to retrieve a
delivery context for the Sony Ericsson P900 you could use the following: DeliveryContext
deliveryContext =
DeliveryContextFactory.getDeliveryContext(deliveryContextStore,
“DeviceUniqueName”,“root^xhtmlmp^ericsson(xhtml)^sonyericssonp900”)

Note: If more than one device matches the indicated criteria, the first device that matched
will be returned.

• To retrieve a single device matching a specified “where” expression:
DeliveryContextFactory.getDeliveryContext(deliveryContextStore,
“whereExpression”)

where deliveryContextStore indicates the established delivery context store to query and
whereExpression indicates the where expression to evaluate and return the first matching
device for. For example, an alternative way to retrieve a delivery context for the Sony
Ericsson P900 would be:
DeliveryContext deliveryContext =
DeliveryContextFactory.getDeliveryContext(deliveryContextStore,
“DeviceUniqueName==’root^xhtmlmp^ericsson(xhtml)^sonyericssonp900’”)

Note: If more than one device matches the indicated criteria, the first device that matched
will be returned.

BEA WebLogic Mobility Server User Guide - 193

Part VIII Appendixes

• To retrieve a delivery context for ALL devices where a specified attribute matches a specified
value:
DeliveryContextFactory.getDeliveryContexts(deliveryContextStor
e, “attributeName”,“attributeValue”)

where deliveryContextStore indicates the established delivery context store to query,
attributeName indicates the device store attribute to match on, and attributeValue indicates
the value of the indicated Device Repository attribute to match on. For example, to retrieve a
delivery context for all devices profiled as PDAs you could use the following:
DeliveryContext[] deliveryContexts =
DeliveryContextFactory.getDeliveryContext(deliveryContextStore,
“isPDA”,“true”)

• To retrieve a delivery context for ALL devices matching a specified “where” expression:
DeliveryContextFactory.getDeliveryContexts(deliveryContextStor
e, “whereExpression”)

where deliveryContextStore indicates the established delivery context store to query and
whereExpression indicates the where expression to evaluate and return all matching devices
for. For example, an alternative way to retrieve a delivery context for all PDA devices would
be:
DeliveryContext[] deliveryContexts =
DeliveryContextFactory.getDeliveryContext(deliveryContextStore
,“IsPDA”)

• Once the DeliveryContextStore is no longer needed it should be destroyed to free up any
resources it may be holding onto (for example, Database connections):
deliveryContextStore.destroy();

The following code block illustrates the use of these methods to establish a Delivery Context
Store and subsequently request a Delivery Context for the SonyEricsson P900.
import java.sql.*;
import com.mobileaware.deliverycontext.*;

public final class DeliveryContextExternalQuery{
 public static void main(String args[]){
DeliveryContextStore deliveryContextStore =
DeliveryContextStoreFactory.getDeliveryContextDBStore(
 "jdbc:mysql://test7/madb?user=root&password=",
 "org.gjt.mm.mysql.Driver");

 try{
 //Gets the matching device whose Unique Name is root^wml
DeliveryContext deliveryContext1 = DeliveryContextFactory.getDeliveryContext(
 deliveryContextStore,
 "DeviceUniqueName",
 "root^xhtmlmp^ericsson(xhtml)^sonyericssonp900");

System.out.println("DeviceUniqueName: " +
deliveryContext1.getAttribute("DeviceUniqueName"));
System.out.println("ImgGIFSupported: " +
deliveryContext1.getAttribute("ImgGIFSupported"));
System.out.println("IsPDA: " + deliveryContext1.getAttribute("IsPDA"));
System.out.println("CharsetSupported: " +
deliveryContext1.getAttribute("UAProf.SoftwarePlatform.CcppAccept-Charset"));

194 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

 //Gets the first matching device that is a PDA
DeliveryContext deliveryContext2 = DeliveryContextFactory.getDeliveryContext(
 deliveryContextStore,
 "IsPDA");

System.out.println("DeviceUniqueName: " +
deliveryContext2.getAttribute("DeviceUniqueName"));
System.out.println("ImgGIFSupported: " +
deliveryContext2.getAttribute("ImgGIFSupported"));
System.out.println("IsPDA: " + deliveryContext2.getAttribute("IsPDA"));
System.out.println("CharsetSupported: " +
deliveryContext2.getAttribute("UAProf.SoftwarePlatform.CcppAccept-Charset"));

 //Gets all devices that are PDAs
DeliveryContext deliveryContexts[] =
DeliveryContextFactory.getDeliveryContexts(
 deliveryContextStore,
 "IsPDA");

System.out.println("DeviceUniqueName: " +
deliveryContexts[2].getAttribute("DeviceUniqueName"));
System.out.println("ImgGIFSupported: " +
deliveryContexts[2].getAttribute("ImgGIFSupported"));
System.out.println("IsPDA: " + deliveryContexts[2].getAttribute("IsPDA"));
System.out.println("CharsetSupported: " +
deliveryContexts[2].getAttribute("UAProf.SoftwarePlatform.CcppAccept-
Charset"));

 }catch(AttributeValueUndefinedException e){
 System.out.println(e.getMessage());
 }finally{
 deliveryContextStore.destroy();
 }

 }
}

Note: The DeliveryContextStore is responsible for caching and connection pooling and therefore
is expensive to create. It is recommended that this Object be stored and reused for connection to
the database for as long as possible. It is also necessary to call destroy() on this object when you
are finished as it needs to free up database connections. The following JSP example demonstrates
the recommended practice of storing this within the scope of the servlet application.
DeliveryContextStore deliveryContextStore = (DeliveryContextStore)
 application.getAttribute("DeliveryContextStore");

if(deliveryContextStore==null) {
deliveryContextStore =
DeliveryContextStoreFactory.getDeliveryContextDBStore(
"jdbc:mysql://cleantest-dev/dbHEAD-G?user=root&password=",
"org.gjt.mm.mysql.Driver");

 application.setAttribute("DeliveryContextStore",deliveryContextStore);
}

BEA WebLogic Mobility Server User Guide - 195

Part VIII Appendixes

Available Public Methods
There are a number of public methods that can be used to access attributes in the retrieved
Delivery Context:

Public Methods

API Call Attribute DataType Java Type Returned

getIntAttribute() Integer int

getLiteralAttribute() Literal String

getbooleanAttribute() Boolean Boolean

getURIAttribute() URI String

getRationalAttribute() Rational double

getDimensionAttribute() Dimension Dimension

getSequenceAttribute() Sequence List

GetBagAttribute() Bag Set

getAttribute() Integer String

getAttribute() Literal String

getAttribute() Boolean String

getAttribute() URI String

getAttribute() Rational String

getAttribute() Dimension String

getAttribute() Sequence String

getAttribute() Bag String

The methods listed here have either one or two parameters: an attribute name or an attribute name
and a default to return in the event that no value is available.

Example
GetIntAttributes(“MaxWapDeckSize”);
GetIntAttribute(“MaxWapDeckSize”, 1400);

Handle Exceptions
There are four exceptions that can be thrown when using the methods listed in the preceding
table. It is considered good practice to place try – catch blocks around these method calls.

196 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

DeliveryContextRuntimeException
Thrown when an unexpected condition causes DeliveryContext creation or method to fail. The
exception message describes the problem, such as "invalid ServletRequest Object".

InvalidAttributeTypeException
Thrown when a type-specific method is called on an attribute of the wrong type. For example,
using getBooleanAttribute() to obtain a String value.

NoSuchAttributeException
Thrown when an attribute name is requested and that attribute does not exist. This is different
from the attribute existing and not having a value defined for the requesting device.

AttributeValueUndefinedException
Thrown when an attribute name is requested but the attribute value does not exist.

BEA WebLogic Mobility Server User Guide - 197

Part VIII Appendixes

Appendix C – Deprecated Items
This section describes the deprecated items in this version of WebLogic Mobility Server and the
features that replace those items.

The Device Repository has adopted the Composite Capabilities / Preferences Profile (CC/PP)
standard. New attributes have been added to the Device Repository to conform to the standard. A
number of the Mobility proprietary attributes have been replaced in the process.

The deprecated attributes are still supported although a warning will appear in the console
window if they are used.

The following table lists the deprecated attributes and the attributes that have replaced them.

Deprecated Device Repository Attributes

Deprecated Attributes CC/PP Replacement

ColorDepth UAProf.HardwarePlatform.BitsPerPixel

Brand UAProf.HardwarePlatform.Vendor

OSType UAProf.SoftwarePlatform.OSName

OSVersion UAProf.SoftwarePlatform.OSVersion

JavaScriptSupported UAProf.BrowserUA.JavaScriptEnabled

TableSupported UAProf.BrowserUA.TablesCapable

ScreenAspectRatioPixels UAProf.HardwarePlatform.PixelAspectRatio

CharsetSupported UAProf.SoftwarePlatform.CcppAccept-Charset

EmailClient UAProf.SoftwarePlatform.Email-URI-Schemes

AcceptHeader UAProf.SoftwarePlatform.CcppAccept

ColorType UAProf.HardwarePlatform.ColorCapable

AudioFormatSupported UAProf.SoftwarePlatform.CcppAccept

ImageFormatSupported UAProf.SoftwarePlatform.CcppAccept

MultipartSupported UAProf.SoftwarePlatform.CcppAccept

VideoSupported UAProf.SoftwarePlatform.CcppAccept

SoundHandling UAProf.SoftwarePlatform.CcppAccept

USSDSupported UAProf.NetworkCharacteristics.SupportedBearers

WTLSSupported UAProf.NetworkCharacteristics.SecuritySupport

198 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

FoundationProfile1xSupported UAProf.SoftwarePlatform.JavaPlatform

CLDC1xSupported UAProf.SoftwarePlatform.JavaPlatform

CDC1xSupported UAProf.SoftwarePlatform.JavaPlatform

JavaPhone1xSupported UAProf.SoftwarePlatform.JavaPlatform

MIDP1xSupported UAProf.SoftwarePlatform.JavaPlatform

PersonalJava1xSupported UAProf.SoftwarePlatform.JavaPlatform

WAPVersion UAProf.WapCharacteristics.WapVersion

MIDP2xSupported UAProf.SoftwarePlatform.JavaPlatform

WTAIMakePhoneCallSupported UAProf.WapCharacteristics.WtaiLibraries

WTAIAddPhoneBookEntrySupported UAProf.WapCharacteristics.WtaiLibraries

WAPPushSISupported UAProf.PushCharacteristics.Push-Accept

WAPPushSLSupported UAProf.PushCharacteristics.Push-Accept

WAPPushSupported UAProf.PushCharacteristics.Push-Accept

ViewableHeight UAProf.HardwarePlatform.Screensize

ViewableWidth UAProf.HardwarePlatform.Screensize

BEA WebLogic Mobility Server User Guide - 199

Part VIII Appendixes

Appendix D – Use the Generic Log Monitor Facility with Log4J
WebLogic Mobility Server provides a Generic Log Monitor facility allowing WebLogic Mobility
Server Exceptions, Warnings, and Diagnostics to be delivered to an alternative Logging system in
addition to the standard WebLogic Mobility Server logging mechanisms.

Note: This section describes how to use the GenericLogMonitor facility with Log4J. However, it
is possible to use an alternative logging tool if required.

In order to use the GenericLogMonitor facility with Log4J it is necessary to:

• Create a class that implements this interface - this is the class that will intercept WebLogic
Mobility Server Exceptions, Warnings and Diagnostics.

• Place this class in the com.mobility.diagnostics package under the
<install_directory>\WEB-INF\classes directory of the web application.

• Specify this class in the mis.properties file found in the <install_directory>\WEB-
INF\classes directory of the web application.

• Ensure the log4j jar file is in your class path (or lib directory of the webapp).

• Create a valid Log4J properties file that will be accessed from within the implementation
class - this will detail where messages should be sent along with the format of how they
should be displayed. For example messages could be sent to the console, a log file, a remote
server or a combination thereof.

• If the class specified in the mis.properties file then messages will be outputted in default
mode (to the console).

A summary of the required changes is captured in this table.

File to change Required Changes

mis.properties When subscribing to Diagnostics, you need to specify the class that will
intercept Diagnostics messages and WebLogic Mobility Server
Exceptions/Warnings in the mis.properties file (located in the
<install_directory>\WEB-INF\classes directory of the web application).
For example:

diagnostics.startup.subscriptions.misLog.topic:
MIS.Browser.Request

diagnostics.startup.subscriptions.misLog.level: normal

diagnostics.startup.subscriptions.misLog.classname:
com.mobileaware.diagnostics.GenericLogMonitorImpl

200 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

log4j.properties You must configure log4j with appropriate settings based on the desired
format of the captured logs.

An example log4j.properties file that will log WebLogic Mobility Server
messages as Log4J messages to both the console and a file in a specified
format is shown below:
log4j.rootLogger=DEBUG, A1

log4j.appender.A1=org.apache.log4j.ConsoleAppender
log4j.appender.A1.layout=org.apache.log4j.PatternLayout

log4j.appender.A1=org.apache.log4j.RollingFileAppender
log4j.appender.A1.File=d:\\test.log

log4j.appender.A1.layout.ConversionPattern=%d [%t] %-5p %c -
%m%n

log4j.logger.com.mobileaware.diagnostics.GenericLogMonitor
=INFO

GenericLogMonitor Implementation Class
It is necessary to include a class that implements the GenericLogMonitor interface – see the
following interface description.

This class is responsible for intercepting the specified disgnostics in the mis.properties file.

This class must also be specified in the
diagnostics.startup.subscriptions.misLog.classname property in the mis.properties file.

This class must be placed in the com.mobility.diagnostics package under the
<install_directory>\WEB-INF\classes directory of the web application.

BEA WebLogic Mobility Server User Guide - 201

Part VIII Appendixes

GenericLogMonitor Interface
The publish() method in the GenericLogMonitor interface is responsible for publishing
Exceptions, Warnings and Diagnostics to an external class:
void publish(String messageName, String message, boolean warnings, boolean
errors, long time, String requestURL, String webAppName, String sessionID,
String deviceName, String username, String localServerIP, String serverPort,
String localServerHostname, String requestRemoteHost, String
requestRemoteAddr);

A description of the information accessible via the parameters is provided in the following table.

Information Provided by the publish() Method

Parameter Description

messageName The message name or type - typically MIS.Warning,
MIS.FatalException or Diagnostic topic

message The message associated with the Exception, Warning or Diagnostics
including the error/warning code if appropriate

warnings True if the message is a warning, False otherwise

errors True if the message is an Error, False otherwise

time Date & Time Stamp indicating when the message was generated

requestURL The URL being requested

webAppName The name of the Web App

sessionID The Session ID of the user's current session if applicable

deviceName The device making the request (null until the device is recognized)

username N/A

localServerIP Server IP

serverPort Server Port

localServerHostname Server Hostname

requestRemoteHost Remote Hostname

requestRemoteAddr Remote IP Address

202 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

Appendix E – FAQ

Question 1
On the first request, I am presented with the following error message in the Application Server
Console:

"There is a problem with the database connection. This may be due to a network fault or an
incorrect database setting in the WebLogic Mobility Server configuration file".

What is causing this problem?

Solution
Ensure that the Application Server on which WebLogic Mobility Server is running and the
Database Server is both running and connected to the network.

The most likely cause for a database problem is incorrect database settings in the WebLogic
Mobility Server configuration file. This file is called mis.properties and is found in the /WEB-
INF/classes/ folder in the webapps directory containing the file you are requesting.

Ensure that:

• the deviceDB.url is set to a valid URL for that database server

• the deviceDB.driver has a correct driver (and correctly spelled) specific to the database server
you are using

• the devceDB.username and deviceDB.password are correct

If this does not solve the problem, then please contact your Database Administrator to ascertain if
the problem is with the Database Server.

Question 2
Why do my error pages not appear on WAP?

Solution
WAP Gateways/Phones often catch the HTTP status and turn it into a generic message. This can
happen also in IE/Opera if you enable "friendly HTTP error pages" - a setting enabled by default
in both of these browsers.

Question 3
Why are there are incorrect or missing characters in the delivered content?

Solution
You may not have specified the correct content encoding in the source file. Sometimes
WebLogic Mobility Server will translate the page during transformation, for example windows-
1252 -> utf-8 in the case of WML transformation. If you haven't specified the correct encoding
in the file, there is the possibility that WebLogic Mobility Server may fail to correctly detect the
encoding of the file. As a result, certain characters will be translated into the incorrect byte
representation for the target encoding. Specify the encoding in either: (a) the HTTP header (b) the
XML declaration in the marked up file or (c) the <meta> tag in the marked up file. See also
“Work with Character Sets” on page 108 in this manual.

BEA WebLogic Mobility Server User Guide - 203

Part VIII Appendixes

Question 4
When I request a page from WebLogic Mobility Server, I receive a short message on my web
browser indicating that the following error occurred:
Internal error [40010u]

In addition, the following error message displays on the Server Console window:
*[MIS.FatalException] content processing exception building idocument
[40010]:com.mobileaware.mobilitycontrol.MMParseException: SAXException
processing: null [60040](Time:1037190843650,
SessionID:1BB7FCD73D36AF9BFA74436AEBD3C8B3, Username:null,
ServerIP:199.199.199.199, ServerPort:8080, ServerHostname:199.199.199.199,
RequestRemoteHost:MYHOST, Errors:true, RequestRemoteAddr:199.199.199.199,
RequestURL:/myapp/index.jsp, deviceName:root^html^mozilla/4, webAppName:/myapp)

Solution
This problem is most commonly caused by mistakes in the content that is being processed by
WebLogic Mobility Server. Check for the following common errors:

Presence of special characters: certain characters such as (&, <, >) have special meaning in
XHTML/XML. If these characters are used incorrectly, it can cause WebLogic Mobility Server to
fail in the transformation of the content.

The following table will help guide you in replacing the characters with their correct entity
reference.

Entity References

Character Entity

& &

< <

> >

Note: WebLogic Mobility Server does not normally tolerate single ampersand characters (aside
from the entity reference) within the page, however to help integration with content management
systems and portals, you can configure WebLogic Mobility Server to allow for ampersands inside
attributes. To configure this feature, see the section “Enable Less Strict Document Checking.”

This query string could cause errors:
This might not work.</
a>

This is the same query string using entities:
Notice the
entities replacing the ‘&’s

Another potential source of the problem is improperly quoted attributes in the code such as:

204 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

Badly nested tags can also raise these types of issues. WebLogic Mobility Server normally
handles them and, in most cases, a recover should be possible, however the end result may not be
as the author intended.

Question 5
I have created a HTML page and have inserted some mmXHTML (<mm-exclude>) tags to
exclude content from a "full browser". When I request the page, it seems that WebLogic Mobility
Server has not processed the page at all. In addition, there is no output on the WebLogic Mobility
Server Application Server console window.

Solution
The most probable cause of this problem is that WebLogic Mobility Server has failed to
recognize your page as an mmXHTML page. WebLogic Mobility Server tries to identify the page
by using a document header, such as shown here.
<?xml version="1.0"?>
<!DOCTYPE html PUBLIC "-//MOBILEAWARE// DTD MMXHTML 1.2//EN"
"http://www.mobileaware.com/DTD/mmxhtml_1.2.dtd">

Insert the preceding header into your page and try again.

Question 6
How do I set the session timeout time in my mobilized web application, now that there is no
longer an entry in the mis.properties file to do this?

Solution
In the <web-app></web-app> section of your web.xml file, place (or modify) the following tag
after any <servlet></ servlet> tags:
<session-config><session-timeout>30</ session-timeout></session-config>

This example sets the session timeout at 30 minutes.

The location of this tag in the web.xml file is important. A parsing exception will occur if the tag
is located too early in the file.

In a typical WebLogic Mobility Server servlet filter deployment, the best place to put this tag is
just before the </web-app> closing tag.

Question 7
WebLogic Mobility Server is not rewriting my URLs to include session ID information. My
application is therefore not tracking sessions from browsers that do not support cookies. How can
I include the session ID in my URL’s?

Solution
WebLogic Mobility Server does not rewrite session IDs into URLs in content by default. For
author-added links, this can be achieved by calling the container’s encodeURL() method on any
URLs that should be rewritten to contain session information. To ensure that WebLogic Mobility
Server internally uses this mechanism to encode URLs that it generates (such as "next" links in
multi-page WAP content) you will need to set:

BEA WebLogic Mobility Server User Guide - 205

Part VIII Appendixes

"generatedLinks.encodeSessionId" to "true" in the application's mis.properties file. Refer to any
JSP/servlet authoring guide for more details of encodeURL().

Question 8
All of my WAP clients use cookies, but WebLogic Mobility Server still puts a session ID into
“next” links, and so on, on the first page accessed in a session, resulting in some very long links.
Can this behavior be disabled?

Solution
Yes. Set the property “generatedLinks.encodeSessionId” to "false" in your application’s
WebLogic Mobility Server properties. This will stop WebLogic Mobility Server from inserting
session IDs in any content it generates.

Question 9
Where has mis.properties gone?

Solution
The WebLogic Mobility Server properties are now stored in an application-specific properties
file, configured in the web.xml deployment descriptor for your web application. The following
example tells WebLogic Mobility Server to use a file called mis.properties in the web
application’s CLASSPATH (for example WEB-INF/classes).

This is the default setting.
 <init-param>
 <param-name>propertiesname</param-name>
 <param-value>/mis.properties</param-value>
 </init-param>

Question 10
I have created a WebLogic Mobility Server deployment on my content server. I am making
modifications to my mis.properties file, but the modifications are not being reflected in the
deployed application.

Solution
Ensure that it is the properties file that is referenced in the deployed application web.xml that is
being modified. See Question 10.

Question 11
When I start the Diagnostics Console, the message “Unable to connect to server. Please verify the
deployment path in the Settings Dialog” displays.

Solution
The console is not pointing to a web application that is configured to support diagnostics. Open
the settings dialog and ensure the “Deploy Path” is set to /<webappname>/Diagnostics. If, for
example, the application is in /news under the web application directory, the deploy path should
be set to “/news/Diagnostics”.

206 - BEA WebLogic Mobility Server User Guide

Part VIII Appendixes

Question 12
When I start the Diagnostics Console, the message “Unable to connect to server. Please verify the
host/port in the Settings Dialog” displays.

Solution
This can result from either the host/port configuration in the Settings Dialog being configured
incorrectly or the web server / application server being unavailable. Correct this by changing the
host/port combination, by starting up the server or by deploying the web application.

BEA WebLogic Mobility Server User Guide - 207

