
BEAWebLogic
Portal™

Interportlet
Communication Guide

Version 8.1 Service Pack 3
June, 2004

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Interportlet Communication Guide v

Contents

Using the Interportlet Communication Samples
Samples Description . 1-1

Sample 1: Pageflow Portlet to Pageflow Portlet . 1-2

How It Works . 1-2

Sample 2: Pageflow Portlet to Non-Pageflow Portlet . 1-3

How It Works . 1-3

Sample 3: Non-Pageflow Portlet to Non-Pageflow Portlet . 1-3

How It Works . 1-3

Using Backing Files to Add Functionality. 1-3

Sample 4: Non-Pageflow Portlet to Pageflow Portlet . 1-4

How It Works . 1-4

Obtaining the Samples . 1-4

Dowload the Samples . 1-4

Install the Samples . 1-5

Location of Samples. 1-5

How to Run the Samples . 1-6

Open the Portal Application . 1-6

Run the Samples . 1-6

Using the Samples in Your Portal . 1-8

Understanding Backing Files
What are Backing Files? . 2-1

vi Interportlet Communication Guide

Which Controls Support Backing Files? . 2-2

How Backing Files are Executed. 2-2

Other Execution Notes . 2-3

Thread Safety with Backing Files . 2-3

Creating a Backing File . 2-4

Adding a Backing File to a Portlet . 2-7

Interportlet Communication Guide 1-1

C H A P T E R 1

Using the Interportlet Communication
Samples

Interportlet communications refers to how an event in one portlet controls some aspect of
behavior in another portlet. This section describes four interportlet communication samples
available from BEA WebLogic Portal’s dev2dev site that show you how interportlet
commmunications can be implemented. It includes information on the following subjects:

Samples Description

Sample 1: Pageflow Portlet to Pageflow Portlet

Sample 2: Pageflow Portlet to Non-Pageflow Portlet

Sample 3: Non-Pageflow Portlet to Non-Pageflow Portlet

Using Backing Files to Add Functionality

Sample 4: Non-Pageflow Portlet to Pageflow Portlet

Dowload the Samples

How to Run the Samples

Using the Samples in Your Portal

Samples Description
Each sample is comprised of two portlets: a menu portlet and a display portlet, plus a portlet
describing the logic behind the selected sample (seeFigure 1-1). The menu portlet appears
beneath the selection display portlet to emphasize the point that portlet display order does not

Using the In te rpor t l e t Communicat i on Samples

1-2 Interportlet Communication Guide

affect the behavior of the sample. The description portlet changes when you select a sample from
the menu at the bottom of the portlet header (see Figure 1-2).

Figure 1-1 Interportlet Communications Sample Portal

Sample 1: Pageflow Portlet to Pageflow Portlet
Sample 1 shows interportlet communications between two pageflow portlets. In this example,
both the menu portlet (menuController.portlet) and the menu selection display portlet
(selectionReaderController.portlet) are pageflow portlets.

How It Works
The selection reader portlet listens to the menu portlet. This is achieved by setting the Listen To
property of the selection reader portlet to the instance label of the menu portlet—in this case,
portlet_pfo_menu_instance.

Sample 2 : Pagef l ow Po r t l e t to Non-Pagef low Por t l e t

Interportlet Communication Guide 1-3

Warning: the Listen-To mechansim is only suitable for Single-file portals and not streaming
portals.

When the selectMenuItem action of the menu's page flow is executed, the same action, if it exists,
will subsequently be executed in the selection display page flow. In this simple example the
listening page flow sets a pageflow data member that is then bound to the JSP via an invocation
of the netui:label tag.

Sample 2: Pageflow Portlet to Non-Pageflow Portlet
In this example, the menu portlet (menuController.portlet) is a pageflow portlet, but the
menu selection display portlet (selectionReader.portlet) is not.

How It Works
The selectMenuItem action in the menu portlet pageflow places the value of the selected menu
item in the outer request, accessible by the selection display portlet. Remember, the
getRequest() method in a pageflow returns a request scoped to that pageflow. To share the
value of the selected item with the non-pageflow portlet, the selectMenuItem first accesses the
outer request using ScopedServletUtils.getOuterRequest(scopedRequest), and then sets an
attribute—selectedItem—on this request. The selection display portlet simply retrieves this
attribute from the request in its .jsp.

Sample 3: Non-Pageflow Portlet to Non-Pageflow Portlet
In this example, neither the menu portlet (menu.portlet) nor the menu selection display portlet
(selectionReader.portlet) are pageflow portlets.

How It Works
The menu portlet uses the portal framework's render taglib to create three anchors, each of which,
when clicked, will place a menu selection value into the request, and return to the same .jsp
(menu.jsp) within the portlet. The selection reader .jsp grabs the menu selection parameter
from the request, and displays it, using some scriptlet.

Using Backing Files to Add Functionality
You should be aware that the first three samples are very simple examples of interportlet
communication. You can use backing files in these portlets so that “real work” can be
accomplished within the init(), preRender(), handlePostback(), and other portal

Using the In te rpor t l e t Communicat i on Samples

1-4 Interportlet Communication Guide

framework lifecycle methods. Note that “Sample 4: Non-Pageflow Portlet to Pageflow Portlet,”
employs a backing file. For more information on backing files, please refer to Understanding
Backing Files.

Sample 4: Non-Pageflow Portlet to Pageflow Portlet
In this example, the menu portlet (menu.portlet) is not a pageflow portlet, but the menu
selection display portlet (selectionReaderController.portlet) is a pageflow portlet.

How It Works
The menu portlet exploits a backing file, MenuBacking.java, to explicitly run a particular action
in the selection display pageflow portlet. After this action is run, the backing file of the menu
portlet explicitly changes the URI of the selection display portlet—to one.jsp, two.jsp, or
three.jsp—based on the result of the executed action. The primary steps in accomplishing this
form of inter-portlet communication are:

Retrieve/create a scoped request and response based on the instance label of the pageflow
portlet that is to be manipulated based on menu selection.

Using PageFlowUtils and the scoped request, retrieve the appropriate ActionResolver for
the selection display portlet.

Set the <selectedItem> attribute on the scoped request, so that when the ActionResolver
runs the pageflow's action, this information will be available to the pageflow.

Execute the appropriate pageflow action and receive an ActionResult object.

Use the URI in the ActionResult object to set the current content URI for the pageflow portlet.

Refer to the comments in MenuBacking.java for more explicit details. You can find
MenuBacking.java and other information on backing files in Understanding Backing Files.

Obtaining the Samples
This section descibes how to download and install the interportlet communication code samples.

Dowload the Samples
The samples are available from the BEA WebLogic Portal 8.1 dev2dev site, at:
http://dev2dev.beasys.com/codelibrary/code/interportlet_v1.jsp

Locat ion of Samples

Interportlet Communication Guide 1-5

Simply click the Interportlet Communication Samples link and follow the dowload process to
obtain the file ipc_samples.zip. This zip file contains the directory interportlets_codes,
which is comprised of the subdirectory portletToPortlet and the file ipc.portal.

Install the Samples
You can install the samples directly from the download directory or by using BEA WebLogic
Workshop.

To install from the download directory:
Using a file extraction tool, such as WinZip, extract both portletToPortlet and ipc.portal
into a web project, such as sampleportal
(<WebLogic_Home>/samples/portalApp/sampleportal).

To install from BEA WebLogic Workshop:

1. Right-click the web project into whichyou want to install the samples and select Import...

2. Navigate to the download directory and select both portletToPortlet and ipc.portal
(under the interportlet_codes directory) and click Import.

Location of Samples
Table 1-1 lists the location of each sample within the directory you choose to store it (for
example, <WebLogic_Home>/portalApp/sampleportal)..

Table 1-1 Location of Interportlet Communication Samples

Sample Location

Pageflow Portlet to Pageflow Portlet portletToPortlet/pageFlowsOnly

Pageflow Portlet to Non-Pageflow
Portlet

portletToPortlet/pageFlowMenuOnly

Non-Pageflow Portlet to Non-Pageflow
Portlet

portletToPortlet/noPageFlows

Non-Pageflow Portlet to Pageflow
Portlet

portletToPortlet/pageFlowSelectionDisplayOnly

Using the In te rpor t l e t Communicat i on Samples

1-6 Interportlet Communication Guide

How to Run the Samples
Since all four samples appear in the same portal, you only need to open that portal to run them all.

Open the Portal Application
You can open the sample either from within an open browser or by using BEA WebLogic
Workshop.

To open from a browser:

With BEA WebLogic Server running, enter the URL for ipc.portal in the browser address bar; for
example, http://localhost:7001/myWebApp/ipc.portal (where myWebApp is the web
application into which you installed ipc.portal.

To open from BEA WebLogic Workshop:

1. In the Application tree, locate and double-click to open the file ipc.portal.

The portal opens in WebLogic Workshop.

2. If WebLogic Server is not running, open the Tools menu and select WebLogic Server>Start
WebLogic Server.

The server startup routine begins; after a few moments, the server will be started and a
green dot will appear at the bottom of the IDE, next to the words “Server Running.”

3. Open the Portal menu and select Open Current Portal.

A browser opens with the interportlet communication sample portal displayed.

Run the Samples
To run the samples, click the sample you want to see from the menu below the portal header, as
shown in Figure 1-2.

How t o Run the Samples

Interportlet Communication Guide 1-7

Figure 1-2 Interportlet Communication Sample; Portal Header with Menu

That sample appears in the body of the portal; for example, if you selected sample 1, Pageflow
on Menu and on Selection Display, the portal would appear as in Figure 1-3

Figure 1-3 Interportlet Communication Sample; Sample 1: Pageflows on Menu and Menu Selection Portlets

To observe interportlet communication with this sample, simply select one of the options in the
Menu portlet and view the result in the Menu Selection portlet; for example, if you select Two,
the Menu Selection portlet text changes to The selected item is: Two (Figure 1-4).

Using the In te rpor t l e t Communicat i on Samples

1-8 Interportlet Communication Guide

Figure 1-4 Menu and Menu Selection Portlets; Item Two Selected

Select additional samples and test them, observing the interplay between the Menu and the Menu
Selection portlets.

Using the Samples in Your Portal
You can easily use these samples in your own applications. You will need to do the following:

1. Copy the portlet(s) you want to use from the
portalApp/sampleportal/portletToPortlet into your project directory.

2. In each sample you want to use, change the instance and action name of the portlet to match
your application needs.

3. Update the necessary variable in the request parameters to match your application needs.

Interportlet Communication Guide 2-1

C H A P T E R 2

Understanding Backing Files

In Sample 4: Non-Pageflow Portlet to Pageflow Portlet sample shown in Chapter 1, “Using the
Interportlet Communication Samples”, a “backing file”—menuBacking.java—is used.
Backing files allow you to programatically add functionality to a portlet by implementing (or
extending) a Java class, which enables preprocessing (for example, authentication) prior to
rendering the portal controls. Backing files can be attached to portals either by using WebLogic
Workshop or coding them directly into a .portlet file.

This section is primer on backing files. It includes information on the following subjects:

What are Backing Files?

Which Controls Support Backing Files?

How Backing Files are Executed

Thread Safety with Backing Files

Creating a Backing File

Adding a Backing File to a Portlet

What are Backing Files?
Backing files are simple Java classes that implement the
com.bea.netuix.servlets.controls.content.backing.JspBacking interface or extend
the com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking
interface abstract class. The methods on the interface mimic the controls lifecycle methods

Unders tandi ng Back ing F i l es

2-2 Interportlet Communication Guide

(see “How Backing Files are Executed”) and are invoked at the same time the controls lifecycle
methods are invoked.

Which Controls Support Backing Files?
At this time, the following controls support backing files:

Desktops

Books

Pages

Portlets

How Backing Files are Executed
All backing files are executed before and after the JSP is called. In its lifecycle, each backing file
calls these methods:

init()

handlePostBackData()

– raiseChangeEvents()

preRender()

dispose()

Figure 2-1 illustrates the lifecycle of a backing file.

Figure 2-1 Backing File Lifecycle

Thread Safe ty w i th Back ing F i l es

Interportlet Communication Guide 2-3

On every request, the following occurs:

1. All init() methods are called on all backing files on an “in order” basis (that is, in the order
they appear in the tree). This method gets called whether or not the control (that is, portal,
page, book, or desktop) is on an active page.

2. Next, if the operation is a postback and the control (a portlet, page, or book) is on a visible
page, all handlePostbackData() methods are called. In other words if portlet is on a page
but its parent page is not active, then this method will not get called.

– If _nfpb="true" is set in the request parameter of any handlePostbackData()
methods called, raiseChangeEvents() is called. This method causes events to fire.

3. Next, all preRender() methods are called for all controls on an active (visible) page.

4. Next, the JSPs get called and are rendered on the active page by the
<render:beginRender> JSP tag. Rendering is stopped with the <render:endRender>
tag.

5. Finally, the dispose() method gets called on the backing file.

Note: roadstead() and savviest(), shown in Figure 2-1 are part of the control lifecyle, not
the backing file lifecycle.

Other Execution Notes
If the backing file is part of a floated portlet, when that portlet is floated, only its contents are
executed.

If a book is embedded within a portlet, then the book would get called; however, if the book is
the parent of the portlet then it would not get called as it is not contained within the portlet.

Thread Safety with Backing Files
A new instance of a backing file is created per request, so you don't have to worry about thread
safety issues. New Java VMs are specially tuned for short-lived objects, so this is not the
performance issues it once was in the past. Also, JspContent controls support a special type of
backing file that allows you to specify whether or not the backing file is thread safe. If this value
is set to true, only one instance of the backing file is created and shared across all requests.

Unders tandi ng Back ing F i l es

2-4 Interportlet Communication Guide

Creating a Backing File
As previously discussed, a backing file must be an implementation of
com.bea.netuix.servlets.controls.content.backing.JspBacking interface or an
extension of the
com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking abstract
class. You only need to modify these files as necessary to implement the backing functionality
you desire.

Listing 2-1 is the backing file used in the “Sample 4: Non-Pageflow Portlet to Pageflow Portlet”
example in Chapter 1, “Using the Interportlet Communication Samples”. In this example, the
AbstractJspBacking class is extended to provide the backing functionality required by the
portlet.

Listing 2-1 Backing File Example

package portletToPortlet.pageFlowSelectionDisplayOnly.menu.backing;

import com.bea.netuix.nf.UIControl;
import com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;
import com.bea.netuix.servlets.controls.page.PageBackingContext;
import com.bea.netuix.servlets.controls.portlet.backing.PortletBackingContext;
import com.bea.netuix.servlets.controls.window.WindowMode;
import com.bea.p13n.management.ApplicationHelper;
import com.bea.wlw.netui.pageflow.ActionResolver;
import com.bea.wlw.netui.pageflow.ActionResult;
import com.bea.wlw.netui.pageflow.PageFlowUtils;
import com.bea.wlw.netui.pageflow.scoping.ScopedRequest;
import com.bea.wlw.netui.pageflow.scoping.ScopedResponse;
import com.bea.wlw.netui.pageflow.scoping.ScopedServletUtils;
import javax.servlet.ServletContext;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.util.List;
import java.util.ListIterator;

public class MenuBacking extends AbstractJspBacking
{

 public boolean preRender(HttpServletRequest request, HttpServletResponse
 response)
 {
 talkToPageFlowPortlet(request, response);

Creat ing a Back ing F i l e

Interportlet Communication Guide 2-5

 return true;
 }

 private void talkToPageFlowPortlet(HttpServletRequest request,
 HttpServletResponse response)
 {
 //First, check to see if we should even do anything.
 if (request.getParameter("selectedItem") == null)
 return;

 //The servlet context is necessary for getting the scoped request.
 ServletContext context = ApplicationHelper.getServletContext(request);

 //Get the scoped request associated with the pageflow portlet we want to
 //talk to.
 ScopedRequest sRequest =
 ScopedServletUtils.getScopedRequest(request,
 "",
 context,
 "portlet_pfdo_display_
 instance");

 //Likewise, get the scoped response.
 ScopedResponse sResponse =
 ScopedServletUtils.getScopedResponse(response,
 sRequest);

 //Using the pageflow utilities, get an ActionResolver. This object can have
 //the pageflow execute certain actions.
 ActionResolver resolver = PageFlowUtils.getCurrentActionResolver(sRequest);

 try
 {
 //Set an attribute in the scoped request that the page flow can use.
 sRequest.setAttribute("selectedItem",
 request.getParameter("selectedItem"));

 //Execute the "readSelection" action in the pageflow. The ActionResult
 //object that is returned contains a URI that can be used to update the
 //pageflow portlet's content. Although this method is called "lookup,"
 //the action is actually executed.
 ActionResult ar = resolver.lookup("readSelection",
 context,
 sRequest,
 sResponse,
 "portletToPortlet.pageFlowSelectionDisplayOnly.
 selectionReader.
 selectionReaderController");

Unders tandi ng Back ing F i l es

2-6 Interportlet Communication Guide

 //Now, the final step: Find the control for the page portlet, using
 //its label, and update the current content uri for the pageflow
 //portlet. To do this, we need to search threw all the window contexts
 //until we find the portlet we're looking for.
 PageBackingContext pbc =
 PageBackingContext.getPageBackingContext(request);
 ListIterator backingContexts =
 pbc.getWindowBackingContexts().listIterator();

 while (backingContexts.hasNext())
 {
 Object nextContext = backingContexts.next();
 if (nextContext instanceof PortletBackingContext)
 {
 PortletBackingContext portletBC =
 PortletBackingContext)nextContext;
 if ("portlet_pfdo_display_instance".
 equals(portletBC.getLabel()))
 {

 //Found it! Update the portlet with the uri from the
 //Action Result.
 WindowMode wm = portletBC.getWindowMode();
 wm.setCurrentContentUri(ar.getURI());
 break;

 }
 }
 }
 }

 catch (Exception e)
 {
 e.printStackTrace();
 }

 }

}

You should follow these guidelines when creating a backing file:

Ensure netuix_servlet.jar is included in the in the project classpath, otherwise
compilation errors will occur.

When implementing the init() method, avoid any heavy processing.

Add ing a Backi ng F i l e to a Por t l e t

Interportlet Communication Guide 2-7

Adding a Backing File to a Portlet
You can add a backing file to a portlet either from within WebLogic Workshop or by coding it
directly into the file to which you are attaching it. You cannot use the IDE to attach a backing file
to a Java Page Flow portlet or to a Struts portlet. Instead, you will need to physically code it into
the .portlet file, as described in Listing 2-2.

For all other portlet types, simply specify the backing file in the Backing File field under the
General Properties section of the Property Editor, as shown in Figure 2-2.

Figure 2-2 Adding a Backing File by Using the IDE

To add the backing file by coding it into a .portlet file, as required for Java Page Flow portlets
and Struts portlets, use the backingFile parameter within the <netuix:jspContent> element,
as shown in Listing 2-2.

Listing 2-2 Adding a Backing File to a .portlet File

<netuix:content>
 <netuix:jspContent
 backingFile="portletToPortlet.pageFlowSelectionDisplayOnly.menu.
 backing.MenuBacking"
 contentUri="/portletToPortlet/pageFlowSelectionDisplayOnly/menu/
 menu.jsp"/>
</netuix:content>

Unders tandi ng Back ing F i l es

2-8 Interportlet Communication Guide

	Copyright
	Using the Interportlet Communication Samples
	Samples Description
	Sample 1: Pageflow Portlet to Pageflow Portlet
	How It Works

	Sample 2: Pageflow Portlet to Non-Pageflow Portlet
	How It Works

	Sample 3: Non-Pageflow Portlet to Non-Pageflow Portlet
	How It Works

	Using Backing Files to Add Functionality
	Sample 4: Non-Pageflow Portlet to Pageflow Portlet
	How It Works

	Obtaining the Samples
	Dowload the Samples
	Install the Samples

	Location of Samples
	How to Run the Samples
	Open the Portal Application
	Run the Samples

	Using the Samples in Your Portal

	Understanding Backing Files
	What are Backing Files?
	Which Controls Support Backing Files?
	How Backing Files are Executed
	Other Execution Notes

	Thread Safety with Backing Files
	Creating a Backing File
	Adding a Backing File to a Portlet

