
BEAWebLogic
Portal™

Using WSRP with
WebLogic Portal

Version 8.1 Service Pack 3
June, 2004

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Using the Visitor Tools v

Contents

Introduction to WSRP
The WSRP Standard . 1-2

WSRP Portlet Type Support . 1-2

Why Use WSRP? . 1-2

WSRP Decouples the Deployment and Delivery of Applications 1-2

WSRP Delivers both Data and its Presentation Logic . 1-3

BEA’s Implementation of WSRP Requires Little or No Programming 1-3

Other Benefits of WSRP. 1-3

Producers and Consumers . 1-4

Producers . 1-4

Simple Producers . 1-4

Complex Producers . 1-5

Consumers . 1-5

WSRP and WebLogic Portal . 1-6

How WSRP Works . 1-7

WSRP-compliant Portlet Lifecycle . 1-9

Development Time . 1-9

Deployment Time . 1-9

Building a Simple Remote Portlet . 1-10

Working with a Remote Portlet. 1-10

vi Using the Visitor Tools

Establishing WSRP Security
Access Control. 2-1

Security Recommendations . 2-2

Secure WSRP Messages. 2-2

Manage User Identity . 2-2

Secure the /producer Path . 2-3

Obtaining a Signed Certificate. 2-3

The Java keytool Utility . 2-3

keytool Concepts and Terminology. 2-3

keytool Reference . 2-4

Obtaining the Consumer Certificate . 2-4

Configuring the Producer Keystore . 2-8

Update the WSRP Identity Asserter . 2-9

Set Up the Producer Keystore . 2-10

Best Practices for Implementing WSRP
Portlet Programming Guidelines . 3-1

Performance Tuning Recommendations . 3-2

Other Guidelines . 3-4

Applying a Look-and-Feel to a Remote Portlet
The Portlet Look-and-Feel Components . 4-1

The Look-and-Feel File . 4-2

Skins and Skeletons . 4-2

The .css File (Skins) . 4-2

Image Files (Skins). 4-3

JavaScripts (Skins) . 4-4

JavaServer Pages (Skeletons) . 4-4

Using the Visitor Tools vii

Skin and Skeleton Reference . 4-4

Themes . 4-4

Themes Reference. 4-5

Where to Find Look-and-Feel Components. 4-5

Look-and-Feel Reference. 4-6

General Information on Look-and-Feel . 4-6

Cascading Style Sheets (.css Files) . 4-6

Skins . 4-7

Skeletons . 4-7

Themes . 4-7

Monitoring and Logging Remote Portlet Performance
Monitoring Producer/Consumer Message Logs . 5-1

Creating Custom Logs . 5-5

Working with Producers
Creating a Producer from a Non-Portal Web Application . 6-1

Making the Conversion in a Portal Enterprise Application . 6-1

Making the Conversion . 6-2

Testing the Configuration . 6-5

Making the Conversion in a Non-Portal Enterprise Application 6-7

Testing the Configuration . 6-10

Creating a Simple Producer from a Complex Producer. 6-10

viii Using the Visitor Tools

Using WSRP with WebLogic Portal 1-1

C H A P T E R 1

Introduction to WSRP

Web Services for Remote Portlets (WSRP) is a web services standard that allows you to
“plug-n-play” visual, user-facing web services with portals or other intermediary web
applications. It allows you to create a repository of services that users can reference to surface
applications in their portlets or to consume applications from WSRP-compliant Producers, even
those far removed from your enterprise.

BEA WebLogic Portal 8.1 SP3 includes an implementation of WSRP that allows the framework
to use WSRP portlets.

This section includes information on the following subjects:

The WSRP Standard

Why Use WSRP?

Producers and Consumers

WSRP and WebLogic Portal

How WSRP Works

WSRP-compliant Portlet Lifecycle

Building a Simple Remote Portlet

In t roduc t i on to WSRP

1-2 Using WSRP with WebLogic Portal

The WSRP Standard
BEA’s implementation of WSRP is based upon the WSRP 1.0 standard created by OASIS. BEA
Systems has been an active member of the OASIS technical group for WSRP 1.0 and continues
to work as part of this standard effort for future enhancements to the specification.

You can read the current version on the WSRP standard at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

WSRP Portlet Type Support
You can create WSRP-enabled portlets for these portlet types:

Pageflow

Struts

Java portlets (JSR168)

You can also use JSP portlets provided you start by creating a Java Page Flow (JPF) and pointing
the Begin action to a JSP.

This version of WebLogic Portal supports only homogeneous portlets, therefore, the portlet
modes must be compatible with the portlet; for example:

Pageflows in all modes.

Struts in all modes.

Java in all modes.

Why Use WSRP?
WSRP is an attractive option for web development for three main reasons:

It decouples the deployment and delivery of applications

It delivers both data and that data’s presentation logic.

Its implementation requires little or no programming.

Why Use WSRP?

Using WSRP with WebLogic Portal 1-3

WSRP Decouples the Deployment and Delivery of Applications
You can surface new applications on your portal, independent of release schedule and where and
when the code is physically deployed.

For example, perhaps you have a portal on machine X and another on machine Y. To get a portlet
from machine X to machine Y, currently your only method of doing so is to copy the portlet’s
code, JSPs, and so on, from machine X to the destination machine (Y). By using WSRP, you can
access and display that portlet on machine Y simply by referencing it through the Producer’s Web
Service Description Language identifier (WSDL).

WSRP Delivers both Data and its Presentation Logic
As a “user-facing” web service, WSRP portlets provide both application and presentation logic.
This is different from standard web services, or data-oriented web services, which contain
business logic but lack presentation logic and thus require that every client implement that logic
on its own.

While the data-oriented approach works well in many implementations, it is not well suited for
dynamically integrating business applications. For example, to integrate an order status web
service into a commerce portal, you would need to write code to display the results of the status
services into the portal. Using WSRP, with the presentation logic included in the web service, you
can achieve the aggregation of applications and services dynamically. You no longer need to
develop the presentation logic in order to do the integration; you can simply request the order
status service to show up as a portlet inside the commerce portal at a predetermined location.

BEA’s Implementation of WSRP Requires Little or No
Programming
You don’t have to do a lot of programming to make a portlet remote. In a non-WSRP compliant
implementation, integrating remote content and application logic into an end-user presentation
usually requires a significant custom programming effort. Typically, vendors of aggregating
applications, such as a portal, write special adapters for applications and content providers to
accommodate the variety of different interfaces and protocols those providers use.

WebLogic Workshop 8.1 SP3 provides tools that allow you to pick from a rich choice of
compliant remote content and application providers, and integrate them with just a few mouse
clicks—without writing a line of code. Additionally, applications created with WebLogic
Workshop 8.1 SP3 are, by default, WSRP-compliant, which means they can be leveraged into
other user’s portlets with little or no additional programming required on your part.

In t roduc t i on to WSRP

1-4 Using WSRP with WebLogic Portal

Other Benefits of WSRP
In addition to those listed above, WSRP provides these additional benefits to developers:

Interoperability

Portability

Options for deployment

Support by large players in the industry

Producers and Consumers
WSRP introduces the concepts of Producers and Consumers. By using WSRP, you can aggregate
application functionality by integrating WSRP-compliant Producers into WebLogic Portal as a
Consumer. Your end users thus will be able to interface with Consumers to view the integrated
applications.

Figure 1-1 Web Services Between Producer and Consumer

Producers
Producers host portlets and provide such services as self-description, mark up, registration, and
portlet management. Producers can optionally manage the registration of Consumers and require
them to pre-register prior to interacting with portlets. A registration establishes a relationship
between Consumers and Producers.

Producers are further classified into either simple or complex Producers.

Produce rs and Consumers

Using WSRP with WebLogic Portal 1-5

Simple Producers
A simple Producer is a non-portal web application that contains pageflows and Struts
applications. It does not depend upon any portal features (for example, customization), nor does
it require registration, support URL rewriting in the Consumer, or support a management
interface.

With simple Producers:

You can WSRP-enable non-Portal projects, such as WebLogic Server projects.

You can offer portlets without actually installing WebLogic Portal

Portlets cannot use Portal APIs/features

Light-weight, simpler to manage

You can create a simple Producer from a complex Producer so that pageflows and Struts
applications available as “portlets” to remote portals. This procedure is described in Creating a
Simple Producer from a Complex Producer.

Complex Producers
A complex Producer requires registration, does support URL rewriting in the Consumer, and does
support a management interface. By default, all portlets created with WebLogic Workshop 8.1
SP3 are complex Producers.

With complex Producers:

All Portal Projects are WSRP capable

Portlets can use Portal APIs/features

You can offer and consume portals

Consumers
Consumers aggregate information from Producers and surface it in other portals. Consumers
route requests from users to the appropriate Producer, which, in turn processes the request and
sends results back to the Consumer. The Consumer aggregates the results coming from various
Producers and send the final result back to the user. Consumers provide separation of the traffic
flowing between them and the Producers. They also ensure that all interactions are kept private
to that specific user during the sessions.

In t roduc t i on to WSRP

1-6 Using WSRP with WebLogic Portal

WSRP and WebLogic Portal
In addition to complying with the OASIS WSRP standard, BEA’s WSRP implementation adds
some additional features to provide you with greater control over remote portlet usage. These
features are described in Table 1-1:

Table 1-1 Features in BEA’s WSRP Implementation

Feature Description

Portlet Wizard Remote portlets can be easily implemented by using the Portlet Wizard that
comes with WebLogic Workshop. You can create and install robust remote
portlets with a few simple mouse-clicks and a Producer’s Web Service
Description Language identifier (WSDL).

Administration Portal The WebLogic Portal Administration Portal allows you to easily deploy
and manage Producer and Consumer portlets for your enterprise from a
central location.

Producer-by-Default All web projects created with WebLogic Workshop are, by default,
Producers. You don’t need to do any special coding or add additional
content to a project to make it available as a Producer.

Registration Consumers might be required to register with a Producers. Registration
allows Producers to identify each Consumer with a unique,
Consumer-provided handle. This helps identify what portlets are available
to that Consumer.

Service Description The service description shows what a Producer has to offer. It lets a
Consumer discover a Producer and it lists the capabilities and properties
that are available from the Producer. As a portlet repository, the service
description also lists the portlets available from that Producer.

Markup and User
Interaction

Request time operations to initiate or terminate a session. It gets markup
for a portlet, which is returned in the body of the message. It submits user
interaction request for a portlet.

Portlet Management The Producer may allow cloning, customization, and deleting of portlets.
Customization features allow portal administrators to manage portlet
preferences for remote portlets.

How WSRP Works

Using WSRP with WebLogic Portal 1-7

How WSRP Works
Figure 1-2 illustrates the WSRP process, including handoffs from end user to Consumer to
Producer and back.

In t roduc t i on to WSRP

1-8 Using WSRP with WebLogic Portal

Figure 1-2 WSRP Process Flow

WSRP-compl i an t Po r t l e t L i f ecyc le

Using WSRP with WebLogic Portal 1-9

WSRP-compliant Portlet Lifecycle
The portlet lifecycle for a WSRP-compliant portlet includes both development time and
deployment time capabilities.

Development Time
Producer side (complex Producer) Developers will be able to leverage Java Page Flows, JSR
168, and Struts applications to expose their functionality in remote portlets. They can portletize
the application and configure any related properties. Since all projects created with this version
WebLogic Workshop 8.1 SP3 are, by default, Producers, developers don’t need to be aware of
WSRP.

Consumer side Developers declare the Producers that are available to be used in the
application. By using the Portlet Wizard in WebLogic Workshop, they can create a remote portlet
based on the service description file from the Producer. They will need to:

1. Select “Remote” from a list of portlet types.

2. Configure a few options.

3. Create a new portlet.

4. Drag and drop the WSRP-based portlet to the portal.

See Building a Remote Portlet in the WebLogic Workshop online help system for a detailed
description of this process.

Deployment Time
Producer side For applications not built with this version of WebLogic Portal, some changes
are required:

Customers using applications built with previous versions of WebLogic Portal 8.1 need to
upgrade to WebLogic 8.1 SP3.

Customers using applications built on a WebLogic Server 8.1SP3-only installation need to
follow the instructions for converting a non-portal web application into a Producer, as
described in Creating a Producer from a Non-Portal Web Application.

New applications, after WSRP installation, are automatically configured.

Consumer side The experience would be similar to the current Administration Portal today
since remote portlets look like local portlets.

In t roduc t i on to WSRP

1-10 Using WSRP with WebLogic Portal

Building a Simple Remote Portlet
To see how easily you can build a remote Consumer portlet, please see Building a Remote Portlet
in the WebLogic Workshop online help system, at:

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportlets/conWsrpCo

nsumer.html

This exercise will show you how to use the Portlet Wizard to create a remote portlet and populate
it with an application from a Producer. It will also show you how to add the portlet to a portal and
view the portal and the new remote portlet in a browser.

Working with a Remote Portlet
In addition to Building a Remote Portlet, described above, the WebLogic Workshop online help
system contains other vital information for developing and using WSRP-compliant portlets.
These topics include:

Modifying a Remote Portlet, at:

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportlets/portletMo

dProxy.html

This topic describes how to add states and modes to a remote portlet,

Customizing a Remote Portlet, at:

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportlets/portletCo

nsumerCust.html

This topic tells you where to find complete information about and procedures for changing the
appearance of a remote portlet.

Disabling A Producer, at:

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportlets/portletDi

sableProd.html

This topic describes how to modify the Producer configuration file so that Producer application
cannot be consumed by a remote portlet.

Note on Localization of Remote Portlets
In service pack 3 of WebLogic Portal 8.1, you cannot localize remote portlets. This feature will
be available in a subsequent release of the product.

Note on Loca l i zat ion o f Remote Po r t l e ts

Using WSRP with WebLogic Portal 1-11

In t roduc t i on to WSRP

1-12 Using WSRP with WebLogic Portal

Using WSRP with WebLogic Portal 2-1

C H A P T E R 2

Establishing WSRP Security

The WSRP standard does not enforce any specific security standard at this time; however, it does
recommend that you follow security standards such as WS-Security and SAML when
implementing WSRP-compliant portlets. The WSRP standard does emphasize using
transport-level security standards, such as SSL/TLS, to address the security issues involved in
Consumers invoking Producers on behalf of end-users. These security standards only require that
a Producer's WSDL declare ports for an HTTPS service entry point. Consumers can only
determine that secure transport is supported by parsing the URL for the service entry point access
control.

This section describes some of the security measures we suggest you follow. It contains
information on the following subjects:

Access Control

Security Recommendations

Obtaining a Signed Certificate

Configuring the Producer Keystore

Access Control
Both Producers and Consumers can control access by using the implemented security measures.

Consumers can restrict end-users access to portlets and to specific operations on those
portlets.

Estab l i sh ing WSRP Secur i t y

2-2 Using WSRP with WebLogic Portal

Producers can implement access control programmatically through the use of facilities such
as an authenticated user identity.

Security Recommendations
While the WSRP standard does not specify security requirements, the following
recommendations serve as guidelines that will ensure secure implementation of your
WSRP-compliant portlets:

Secure WSRP Messages

Manage User Identity

Secure the /producer Path

Secure WSRP Messages
To secure WSRP messages:

Use SSL on any port through which the Producer will be offered.

Configure the Producer to offer secure portlets by specifying “true” for all secure
attributes in the <service-config> element of the Producer project’s
WEB-INF/wsrp-producer-config.xml file, as shown in Listing 2-1.

Listing 2-1 <service-config> Element Configured for Security

<service-config>
 <registration required="true" secure="true"/>
 <service-description secure="true"/>
 <markup secure="true" rewrite-urls="true" transport="string"/>
 <portlet-management required="true" secure="true"/>
</service-config>

Note: If you make any changes to wsrp-producer-config.xml, you will need to redeploy or
bounce the server before the changes become active.

Manage User Identity
To manage user identity:

Obtain ing a S igned Cer t i f i ca te

Using WSRP with WebLogic Portal 2-3

Rely on single-sign-on (SSO), which is set up by default in WebLogic Portal.

Let users login to the Consumer portal. WebLogic Portal will manage SSO automatically.

Secure the /producer Path
By default, the Producer servlet is not protected. In order to restrict access to a Producer, protect
the path <webAppPath>/producer at the network or firewall level (where webAppPath is the
URL of the web application).

Obtaining a Signed Certificate
Producers authenticate Consumers through the use of client certificates in conjunction with
SSL/TLS. Therefore, if you are relying on SSO and allow users to log-in to the Consumer portal,
as recommended, the Producer must trust that Consumer. To establish this trust, the Consumer
needs a certificate of authentication signed by an approved certificate authority (CA), such as
VeriSign, Inc. This section describes how to use the Java keytool utility to generate a self-signed
certificate and then obtain a signed certificate from a CA. It contains information on the following
subjects:

The Java keytool Utility

Obtaining the Consumer Certificate

The Java keytool Utility
When you install WebLogic Platform, part of the installation process installs a Java runtime
environment (JRE). Within the JRE you will find a utility call keytool.exe. keytool is a key and
certificate management utility with which you can administer your own public/private key pairs
and associated certificates to use in self-authentication (where the user authenticates
himself/herself to other users/services) or data integrity and authentication services by using
digital signatures.

keytool Concepts and Terminology
You should be familiar with the following terms when implementing security for
WSRP-compliant portlets:

Estab l i sh ing WSRP Secur i t y

2-4 Using WSRP with WebLogic Portal

certificate
Also known as a public-key certificate—a digitally signed statement from one entity (the
issuer), saying that the public key (and some other information) of another entity (the
subject) has some specific value.

Certificate Authority (CA)
An organization, such as VeriSign, Inc. that will accept a CSR and return to the requestor
a certificate or certificate chain.

Certificate chain
A set of certificates used to establish trust back to a common certificate authority. The first
certificate in the chain contains the public key corresponding to the private key.

Certificate Signing Request (CSR)
A file that is sent to a certificate authority, who will authenticate the certificate requestor
(usually offline) and return to the requestor a certificate or certificate chain, used to
replace the existing certificate chain (which initially consists of a self-signed certificate)
in the keystore.

key pair
The combination of a public key and private key on the same certificate

keystore
A database of private keys and their associated X.509 certificate chains that are used to
authenticate the corresponding public keys. A keystore file has the .jks extension.

Self-signed certificate
A certificate for which the issuer is the same as the subject (the entity whose public key is
being authenticated by the certificate). When -genkey generate a new public/private key
pair, it wraps the public key into a self-signed certificate.

keytool Reference
keytool was created by Sun Microsystems. For complete information on this utility, please refer
to keytool - Key and Certificate Management Tool at:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

Obtaining the Consumer Certificate
To obtain a signed certificate, use this procedure.

Note: Before you can actually create a keystore and generate a certificate, ensure the following
has been completed:

Obtain ing a S igned Cer t i f i ca te

Using WSRP with WebLogic Portal 2-5

A domain has been created

A portal web application has been created

A project has been created

1. At the command line, create the keystore by entering the -genkey command; for example:

keytool -genkey -keypass password1 -file filename.pem -keystore
C:\working\myWsrpKeystore.jks -storepass password2 -alias myAlias

Where:

– password1 is the password used to protect the private key of the generate key pair.

– /working/ is the directory into which you copied the renamed .jks file.

– myWsrpKeystore is the new .jks file.

– password2 is the password used to protect the integrity of the keystore.

– myAlias is a name you specified as an alias, which is used to access an entity in the
keystore.

Note: The options listed above are just a sample of the options you can use when generating
a keystore. For a complete list of options, please refer to keytool - Key and Certificate
Management Tool at:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

The keytool options are not required. If you choose not to specify them, defaults are used
for those that have default values and you will be prompted for any required values.

2. At this point, you’ve generated a self-signed certificate. Because a certificate is more likely
to be trusted by others if it is signed by a Certification Authority (CA), you now need to
generate a Certificate Signing Request (CSR) to gain that signature by doing the following:

a. Go to a command prompt and enter the -certreq command, specifying the appropriate
options; for example:

-certreq -keystore myWsrpKeystore.jks

where myWsrpKeystore is the renamed .jks file.

The system responds:

Enter keystore password:

b. Type the password you assigned to the -storepass option.

The system responds:

Estab l i sh ing WSRP Secur i t y

2-6 Using WSRP with WebLogic Portal

Enter key password for <mykey>:

c. Type the password you assigned to the -keypass option.

The system will then generate the CSR and respond with a series of characters
representing the CSR; for example:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIICYzCCAiACAQAwXjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAkNPMRAwDgYDVQQHEwdCb3VsZGVy
MRQwEgYDVQQKEwtCRUEgU3lzdGVtczENMAsGA1UECxMERG9jczELMAkGA1UEAxMCRWQwggG3MIIB
LAYHKoZIzjgEATCCAR8CgYEA/X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZ
PY1Y+r/F9bow9subVWzXgTuAHTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7
g/bTxR7DAjVUE1oWkTL2dfOuK2HXKu/yIgMZndFIAccCFQCXYFCPFSMLzLKSuYKi64QL8Fgc9QKB
gQD34aCF1ps93su8q1w2uFe5eZSvu/o66oL5V0wLPQeCZ1FZV4661FlP5nEHEIGAtEkWcSPoTCgW
E7fPCTKMyKbhPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE1YvH7YnoBJDvMpPG+qFGQiaiD3+Fa5Z8G
kotmXoB7VSVkAUw7/s9JKgOBhAACgYBkQ10+BRJVVzMgZTQJiUDYdK+5WOI1EkvXbyZPmvYzAfch
vtR7WKJZMPcbAyq9mtrOXFY7TTEkupXlY4R8c5DdLW0db3YB1eV4gUGQOXn4Y+zE8Z4LxKNhkKLk
yEUQhv0JkyzIReV7sioJahf7AiOwqs2cW1r4dNt4y42duwrdsKAAMAsGByqGSM44BAMFAAMwADAt
AhRARh4iBbioO+Jn3qc/bXOpjr+cqgIVAI78/s8hMqhFkTJxt/qtE3L3F1aP
-----END NEW CERTIFICATE REQUEST-----

This creates a CSR and puts the request in the file named myAlias.pem (where
myAlias is the alias you specified when you created the keystore).

d. Submit the .pem file to a certification authority (CA), such as VeriSign, Inc. They will
authenticate you, sign a certificate, and then return it to you. This certificate authenticates
your public key.

3. Import the signed certificate by using the -import command, specifying the appropriate
options; for example:

keytool -import

With the certificate returned, you will need to store it in the keystore entry identified by
myAlias. This will replace the self-signed certificate you created with the -genkey
command.

For more information on using the -import command, please refer to:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html#importCmd

4. Import the signed certificate, go to a command prompt and enter the -import command,

5. Update the Consumer mBean with the new certificate information by doing the following

a. In WebLogic Workshop, open the application to which the certificate applies.

b. Start WebLogic Server by selecting Tools>WebLogic Server>Start WebLogic Server.

Obtain ing a S igned Cer t i f i ca te

Using WSRP with WebLogic Portal 2-7

c. Launch the Administration Portal by selecting Portal>Portal Administration

The Administration Portal login page appears

d. Login to the Administration Portal.

The Administration Portal appears.

e. Under Configure Settings, click Service Administration.

The Configuration Setting page appears (Figure 2-1).

Figure 2-1 Configuration Settings Page

f. In the left pane, click WSRP Consumer Security Service.

The Configuration Settings for: dialog box appears in the right pane (Figure 2-2)

Estab l i sh ing WSRP Secur i t y

2-8 Using WSRP with WebLogic Portal

Figure 2-2 Configuration Settings for: WSRP Consumer Security Service Dialog Box

g. Update the necessary fields on this dialog box with information from the keystore; for
example, Consumer name, keystore name, and passwords.

h. Click Update.

i. Restart the server.

Configuring the Producer Keystore
For a Producer to trust a Consumer, it needs to recognize the Consumer’s signed certificate. To
ensure this, you need to provide the Producer with the Consumer’s public key, which the
Producer will add to its keystore.

To configure a keystore on the keystore side, you need to do the following:

Update the WSRP Identity Asserter (on the WebLogic Server console).

Set Up the Producer Keystore by importing the signed certificate that was returned to the
Consumer.

Conf igur ing the Pr oduce r Keys to re

Using WSRP with WebLogic Portal 2-9

Update the WSRP Identity Asserter
To update the WSRP identity asserter, use this procedure:

1. Launch WebLogic Server and open the WebLogic Server console.

2. In the left pane, drill down to the WSRP Identity Asserter node
(Security>Realms>myRealm>Producers>Authentication>WSRPIndentityAsserter), as
shown in Figure 2-3.

Figure 2-3 WSRP Identity Asserter Drill-down

The WSRP Identity Asserter appears in the right pane.

3. Select the Detail tab to display WSRP identity detail information, as shown in Figure 2-4.

Estab l i sh ing WSRP Secur i t y

2-10 Using WSRP with WebLogic Portal

Figure 2-4 WSRP Identity Asserter Detail

4. Update the following fields with the appropriate information:

– Keystore Path: The name of the .jks file of the Consumer to be trusted.

– Keystore Password: The password created for the .jks file of the Consumer to be
trusted.

5. Click Apply.

Note: If any of the yellow icons next to the field labels are blinking, you will need to reboot the
server.

Set Up the Producer Keystore
To set up the Producer keystore, use the -import command on the Producer to import the signed
certificate that was returned to the Consumer; for example:

keytool -import -file cert_file

where cert_file is the name of the .pem file that contains the signed certificate.

Using WSRP with WebLogic Portal 3-1

C H A P T E R 3

Best Practices for Implementing WSRP

This section describes programming and tuning practices that you should follow to ensure the
best performance of your WSRP-compliant portlets, Producers, and Consumers. It contains the
following guidelines:

Portlet Programming Guidelines

Performance Tuning Recommendations

Portlet Programming Guidelines
Please follow these guidelines when programming WSRP-compliant portlets:

Requests and Sessions

– Don’t rely on request attributes across portlets

– If your portlets share a session, host them on the same Producer

Security

– To secure messages, implement SSL on any port through which the Producer will be
offered.

– Specify “true” for all secure attributes in the <service-config> element of the Producer
project’s WEB-INF/wsrp-producer-config.xml file (for more information, please
refer to Establishing WSRP Security).

Note: If you make any changes to wsrp-producer-config.xml, you will need to
redeploy or bounce the server before the changes become active.

Best P rac t ices f or Imp lement ing WSRP

3-2 Using WSRP with WebLogic Portal

– To manage user identity, rely on single-sign-on (SSO), which is set up by default in
WebLogic Portal and then have users login to the Consumer portal. WebLogic Portal
will manage SSO automatically.

URLs

– When creating URLs in a portlet, do not create use direct links; instead use WebLogic
Portal tags and APIs to create URLs

Look and Feel

– Let portlets use standard style attributes and specify those attributes on the Portal skins

Performance Tuning Recommendations
To ensure optimal performance of your Producers and Consumers, we recommend the following
performance tuning guidelines:

On the Producer side

– Enable attachment support by adding <markup transport="attachment"/> to
WEB-INF/wsrp-producer-config.xml, as shown in Listing 3-1.

Listing 3-1 Enabling Attachment Support

<?xml version="1.0" encoding="UTF-8"?>

wsrp-producer-config

 xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-config/8.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/weblogic/wsrp-producer-conf

ig/8.0

wsrp-producer-cnfig.xsd">

 <service-config>

 <registration required="false" secure="true"/>

 <service-description secure="true"/>

 <markup secure="true" rewrite-urls="true" transport="attachment"/>

 <portlet-management required="false" secure="true"/>

 </service-config>

Pe r f ormance Tun ing Recommendat ions

Using WSRP with WebLogic Portal 3-3

– Let the Producer create correct URLs by using Consumer-supplied URL templates.
This is the default practice.

On the Consumer side

– Accept the default behavior to enable caching for proxy portlets.

– Enable forked rendering for proxy portlets.

– Set connection timeout by adding
<connection-timeout>120000</connection-timeout> to
WEB-INF/wsrp-producer-registry.xml, as shown in Listing 3-2.

Listing 3-2 Setting the Connection Timeout

<?xml version="1.0" encoding="UTF-8"?>

<wsrp-producer-registry

xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-registry/8.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/weblogic/wsrp-producer-regi

stry/8.0

wsrp-producer

-registry.xsd">

 <!-- Upload limit (in bytes) -->

 <upload-read-limit>1048576</upload-read-limit>

 <!-- Timeout (in milli seconds) -->

 <connection-timeout-secs>120000</connection-timeout-secs>

Note: 120000—in milliseconds—is a suggested timeout period. Your needs might
require a longer or shorted timeout.

Disable logging

– Undeploy MessageMonitor servlet from WEB-INF/web.xml.

Best P rac t ices f or Imp lement ing WSRP

3-4 Using WSRP with WebLogic Portal

Other Guidelines
User sessions on Consumer web applications might be lost if session cookies between Producers
and Consumers overlap. To prevent this, open weblogic.xml and configure your web
applications to include the domain name and web application path for session cookies. Please
refer to “session-descriptor” in “weblogic.xml Deployment Descriptor Elements” at:

http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html#1038173

for details on how to set the domain name and path.

Using WSRP with WebLogic Portal 4-1

C H A P T E R 4

Applying a Look-and-Feel to a Remote
Portlet

The look and feel of a remote portlet is what determines such aspects as the portlet’s physical
boundaries, color, font type and size, images. The look-and-feel of a remote portlet is not linked
to a Producer. Therefore, you have the option of modifying the portlet to best suit your needs; for
example, to match the appearance of the portal in which the portlet resides.

This section briefly describes the basics of remote portlet look-and-feel and directs you to more
detailed information in the WebLogic Workshop online help system. This section contains
information on the following subjects:

The Portlet Look-and-Feel Components

The Look-and-Feel File

Skins and Skeletons

Themes

Where to Find Look-and-Feel Components

Look-and-Feel Reference

The Portlet Look-and-Feel Components
Portlet look-and-feel architecture primarily involves the following resources:

The look-and-feel file

Skins and Skeletons, which contain:

App l y ing a Look-and-Fee l to a Remote Por t l e t

4-2 Using WSRP with WebLogic Portal

– .css Files

– Image files

– JavaScripts

– JSPs

Themes, which are subsets of skins and skeletons

In addition to these portlet-level components, at the portal level, additional components include
layouts, navigation menus, and shells. All of these components are described in greater detail in
Look & Feel Architecture in the WebLogic Workshop online help system, at:

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/ifLFArch.html

This section will be concerned only with the look-and-feel file, skins, skeletons, and themes.

The Look-and-Feel File
A portal look-and-feel stems from a single XML file (that has a .laf extension). This file
determines the name of the look-and-feel and points to the skeleton and skin that the
look-and-feel will use. This simple, extensible framework makes it easy for portal administrators
and end users to completely change the appearance of a portal by selecting a different
look-and-feel.

Skins and Skeletons
The look and feel of a portlet is determined by that portlet’s skins and skeletons, which contain
the information needed to render the desired appearance.

Skins determine the “look” portion of look-and-feel. They are comprised of the cascading
style sheet (.css) files, images (.gif and .jpg files), and JavaScripts.

Skeletons represent the “feel” of a portlet. They are comprised of JSP files that determine
the physical boundaries of portal components such as header, footer, book, page, portlet,
and portlet title bar.

Skins and skeletons used by a portlet are determined by the .laf selected for a portal desktop.

The .css File (Skins)
.css files are part of a portlet’s skin. These files contain formatting instructions for such visual
portlet components as background colors, font size, style, and type, border style, and so on.
WebLogic Workshop comes with a number of .css files already available. You can use these as

Sk ins and Ske le tons

Using WSRP with WebLogic Portal 4-3

is or modify them as you deem necessary. You can also or create your own .css files. If you
create your own .css file, you will need to store it in the appropriate location, which is in the
/css directory under the framework/ directory for a specific project; for example:

wsrpMonitortest/framework/skins/mySkin/css

Where mySkin is the individual skin name.

To make a .css available to a skin, simply include the .css file in the /css directory under that
skin’s folder; for example, if you want to make the file portlet.css available to the skin
“classic”, you would ensure that it is stored in the directory skins/classic/css, as shown in
Figure 4-1.

Figure 4-1 .css File in the File Tree

Once you’ve added the file to the /css directory, you need to register it in the skins.properties
file, which you can find in root directory of the specific skin; for example,
myProject/framework/skins/classic/skin.properties (where myProject represents
the project name).

Image Files (Skins)
Image files contain the graphic elements that will appear on your portlet. These images are for
the portlet interface and include buttons, arrows, logos, and so on. These are not images used in
the portlet content. Image files are usually .gif or .jpg/.jpeg format as the compressed size of
these files makes rendering them a relatively painless process. To make an image file available
to a skin, simply include the image file in the /images directory under that skin’s folder; for
example, if you want to make the file arrow.gif available to the skin “classic”, you would
ensure that it is stored in the directory skins/classic/images.

App l y ing a Look-and-Fee l to a Remote Por t l e t

4-4 Using WSRP with WebLogic Portal

JavaScripts (Skins)
The JavaScript (.js) files regulate such portlet activity as mouse rollovers, button actions, and
menu behavior. You can use the JavaScripts included with WebLogic Workshop or you can
create your own. If you create your own, you will need to store it in the appropriate directory (see
Where to Find Look-and-Feel Components) and register it in the skins.properties file, which
you can find in root directory of the specific skin; for example,
myProject/framework/skins/classic/skin.properties (where myProject represents
the project name).

JavaServer Pages (Skeletons)
In portlets, JSPs determine the portlet’s physical boundaries and those of their title bar. At the
portal level, when a portal desktop is rendered, the skeleton JSPs for each portal component (in
conjunction with any related classes) perform their logic and insert the resulting HTML into the
correct hierarchical locations of the HTML file.

You can use the JSPs included with WebLogic Workshop or you can create your own. If you
create your own, you will need to store it in the appropriate directory (see Where to Find
Look-and-Feel Components) and register it in the skeleton.properties file, which you can
find in root directory of the specific skin; for example,
myProject/framework/skeletons/classic/skeleton.properties (where myProject
represents the project name).

Skin and Skeleton Reference
For more information on creating and using skins and skeletons, please refer to Look-and-Feel
Reference. This section contains a complete reference to the documents in the WebLogic
Workshop online help system that will guide you through the process of creating and
implementing skins and skeletons.

Themes
Skins and skeletons can be applied to portlets in subsets called themes. Themes let you give your
portlets (as well as books and pages) a different look-and-feel than the rest of the portal desktop.
Themes are identified by a .theme file. This XML file identifies the theme and populates a
drop-down menu from which portlet developers can select a theme to use (Figure 4-2).

Where to F ind Look-and-Fee l Components

Using WSRP with WebLogic Portal 4-5

Figure 4-2 Theme Menu in WebLogic Workshop

At its most granular, a theme is a collection of files that contain look-and-feel instructions for a
portal component, such as a portlet. You must store these files in a subdirectory, which resides
under the skin to which you want to make the theme available. You must give the subdirectory
the same name XML attribute as the .theme file that will be used to identify the theme to a portlet
user.

When you select a theme for a portlet, the portal framework looks for theme subdirectories under
the main skin and skeleton directories used by the selected look-and-feel. If it finds the theme
subdirectory specified, it will render the portlet based upon the instructions within that
subdirectory. If it cannot find the specific subdirectory, values for the parent skin and skeleton
will be used.

Themes Reference
For more information on creating and using themes, please refer to Look-and-Feel Reference.
This section contains a complete reference to the documents in the WebLogic Workshop online
help system that will guide you through the process of creating and implementing themes.

Where to Find Look-and-Feel Components
The files used to set the look-and-feel of a remote portlet reside under the project directory under
which that portlet resides; for example:

<Application_Home>/myProject/

Where myProject/ is the specific project directory

Table 4-1 lists the actual folder names.

Table 4-1 Look-and-Feel Component File Locations

Component Located in

Look-and-feel file framework/markup/lookandfeel

App l y ing a Look-and-Fee l to a Remote Por t l e t

4-6 Using WSRP with WebLogic Portal

Look-and-Feel Reference
All aspects of portal and portlet look-and-feel are documented in the WebLogic Workshop online
help system. Use the following links to locate this documentation.

General Information on Look-and-Feel
Creating Look & Feels

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/ifLF.html

Look & Feel Architecture

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/ifLFArch.html

The Portal User Interface Framework

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/fwPortal1.html

How Look & Feel Determines Rendering

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/fwPortal2.html

Cascading Style Sheets (.css Files)
Style Sheet Class Reference

Skins framework/skins

Skeletons framework/skeletons

Themes framework/themes

(XML definition file)

.css Files framework/skins/mySkins/css

Where mySkin is the specific skin that will use the .css file.

Image files framework/skins/mySkins/images

Where mySkin is the specific skin that will use the image.

JavaScripts framework/skins/mySkins/js

Where mySkin is the specific skin that will use the JavaScript.

Table 4-1 Look-and-Feel Component File Locations

Look-and-Fee l Re fe rence

Using WSRP with WebLogic Portal 4-7

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/fwPortalStyleR
ef.html

Skins
Creating Skins and Skin Themes

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/ifLFSkinsTheme
s.html

Skeletons
Skeleton Reference

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/
fwPortalStyleRef.html

Creating Skeletons and Skeleton Themes

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/ifLFSkeletons.
html

Themes
Creating Skins and Skin Themes

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/ifLFSkinsTheme
s.html

Creating Skeletons and Skeleton Themes

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/ifLFSkeletons.
html

App l y ing a Look-and-Fee l to a Remote Por t l e t

4-8 Using WSRP with WebLogic Portal

Using WSRP with WebLogic Portal 5-1

C H A P T E R 5

Monitoring and Logging Remote Portlet
Performance

You can monitor activity between Producers and Consumers by using the message monitor
servlet installed with WebLogic Workshop. You can also create custom logs to display specific
information about WSRP sessions.

This section contains information on these subjects:

Monitoring Producer/Consumer Message Logs

Creating Custom Logs

Monitoring Producer/Consumer Message Logs
By default, the message monitor is enabled in the web.xml file, as shown in Listing 5-1.

Listing 5-1 Enabling Message Monitor in web.xml

<!-- WSRP Message Monitor Servlet -->

<servlet>

 <servlet-name>com.bea.wsrp.logging.MessageMonitor</servlet-name>

 <servlet-class>com.bea.wsrp.logging.MessageMonitor</servlet-class>

 <init-param>

 <param-name>enableSoapMessageLogging</param-name>

 <param-value>true</param-value>

 </init-param>

Moni tor ing and Logg ing Remote Po r t l e t Pe r f ormance

5-2 Using WSRP with WebLogic Portal

 <load-on-startup>1</load-on-startup>

</servlet>

You easily monitor the messages regarding Producer/Consumer interaction by viewing output of
this servlet. To do, use this procedure:

1. Ensure that a WSRP session running (that is, a Consumer portlet is surfacing data from a
Producer).

2. Open a new browser.

3. In the new browser’s address bar, type the following:

<host_name>:<port_number>/<webProject_name>/monitor

Where:

– <host_name>:<port_number> is the host and port you want to monitor.

– <webProject_name> is the web project you want to monitor.

For example:

localhost:7001/wsrpMonitorTest/monitor

The Monitor appears in the browser, as shown in Figure 5-1.

Mon i tor ing P roduce r /Consumer Message Logs

Using WSRP with WebLogic Portal 5-3

Figure 5-1 Monitor Appearing in a Browser

Each time the remote portlet communicates with the Producer, a request-response message
header appears on the monitor screen (Figure 5-2).

Moni tor ing and Logg ing Remote Po r t l e t Pe r f ormance

5-4 Using WSRP with WebLogic Portal

Figure 5-2 Monitor Message

– By clicking Show, you can display the content of the request or the response
(Figure 5-3).

Figure 5-3 Message Content

Creat ing Cus tom Logs

Using WSRP with WebLogic Portal 5-5

– Click Hide to close the message content.

Creating Custom Logs
You can create custom logs that display particular information about a WSRP session by using
the WebLogic Server loggers and handlers. These objects allow you to create your own
message handlers and subscribe them to the WebLogic Server Logger objects; for example, if
you want the remote portlet to listen for the messages that the Producer generates, you can create
a handler and subscribe it to the Logger object in the Producer.

loggers and handlers are WebLogic Server objects. For instructions on using them to create
custom logs for your WSPR Consumers and Producers, please refer to Subscribing to Messages
at:

http://e-docs.bea.com/wls/docs81/logging/listening.html#1176551

Moni tor ing and Logg ing Remote Po r t l e t Pe r f ormance

5-6 Using WSRP with WebLogic Portal

Using WSRP with WebLogic Portal 6-1

C H A P T E R 6

Working with Producers

This section describes how you can modify existing applications to create either complex or
simple Producers. It includes information in the following subjects:

Creating a Producer from a Non-Portal Web Application

Creating a Simple Producer from a Complex Producer

Creating a Producer from a Non-Portal Web Application
You can turn a non-portal web application into a Producer. This is helpful when you want to make
Java Page Flow or Struts portlets available as remote portlets. It is also helpful for converting
applications created outside of WebLogic Workshop into Producers. You can make this
conversion in either a portal application or in a non-portal application.

This section includes information on the following subjects:

Making the Conversion in a Portal Enterprise Application

Making the Conversion in a Non-Portal Enterprise Application

Making the Conversion in a Portal Enterprise Application
This section describes how to create a Producer from a non-portal web application.

Work ing w i th P roducers

6-2 Using WSRP with WebLogic Portal

Making the Conversion
To convert a non-portal web application in a portal enterprise application into a Producer, use this
procedure:

Note: WebLogic Workshop must be running.

1. If the enterprise application is currently not open in WebLogic Workshop, open the enterprise
application by selecting File>Open>Application (if it is already open, proceed to step 3).

The Open Workshop Application window appears.

Figure 6-1 Open Workshop Application Window

2. Navigate to and select the appropriate enterprise application (a *.work file) and click Open.

Creat ing a P roducer f rom a Non-Po r ta l Web Appl ica t i on

Using WSRP with WebLogic Portal 6-3

Figure 6-2 *.work File Selected

The application appears in the Workshop application tree, as shown in Figure 6-3. Note the
non-portal web application listed under the enterprise application.

Figure 6-3 Workshop Application Tree Showing Selected Application

3. Copy the following files from the WEB-INF/lib folder under the portal web application to
the WEB-INF/lib folder under the non-portal web application:

Enterprise
Application

Web
Application

Work ing w i th P roducers

6-4 Using WSRP with WebLogic Portal

– wsrp-struts-adapter.jar
– wsrp-producer-portal-adapter.jar

– netuix_servlet.jar

4. Right-click the web project you want to convert to a Producer and, from the submenu, select
Install > WSRP Producer.

Figure 6-4 Install>WSRP Producer Menus

The project will be installed as a Producer.

5. Verify that the installation was successful by locating the file
wsrp-producer-config.xml in the WEB-INF folder. If it is present, the project was
successfully installed as a Producer.

Creat ing a P roducer f rom a Non-Po r ta l Web Appl ica t i on

Using WSRP with WebLogic Portal 6-5

Figure 6-5 Application Tree with wsrp-producer-config.xml Added

Testing the Configuration
To test the configuration, you need to make the Struts or Pageflow application available as a
portlet and then view it in a proxy portlet in another web application. To do so, use the following
procedure:

1. Enable a Struts or Pageflow portlet by doing one of the following:

– Copy a Struts or Pageflow .portlet file from
<WebLogic813_Home>/portal/portalApp/sampleportal into the non-portal web
application.

– Create a .portlet file inside a portal web application and copy the code sample in
Listing 6-1 into that file:

Work ing w i th P roducers

6-6 Using WSRP with WebLogic Portal

Listing 6-1 Code Sample for Creating a .portlet File

<?xml version="1.0" encoding="UTF-8"?>
<portal:root
 xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"
 xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/portal/
 support/1.0.0 portal-support-1_0_0.xsd">
 <netuix:portlet
 definitionLabel="portlet_81b"
 title="BEA: Non Portal">
 <netuix:titlebar>
 </netuix:titlebar>
 <netuix:content>
 <netuix:pageflowContent contentUri="/Controller.jpf"/>
 </netuix:content>
 </netuix:portlet>
</portal:root>

2. If necessary, in the .portlet file, update the URI to point to the Struts or Pageflow you
want to enable; for example, refer to Listing 6-2

Listing 6-2 Redirecting the URI

<netuix:portlet|

 definitionLabel="portlet_81b"

 title="BEA: Non Portal">

 <netuix:titlebar>

 </netuix:titlebar>

 <netuix:content>

 <netuix:pageflowContent contentUri="/Controller.jpf"/>

 </netuix:content>

</netuix:portlet>

You can also update this URI in the WebLogic Workshop property editor, as shown in Figure 6-6

Creat ing a P roducer f rom a Non-Po r ta l Web Appl ica t i on

Using WSRP with WebLogic Portal 6-7

Figure 6-6 Updating the URI by Using the Property Editor

Note: For instructions on steps 3 and 4, please refer to Building a Remote Portlet in the BEA
WebLogic Portal IDE online help system.

3. In a different web application, create a proxy portlet in a WebLogic Portal portal and set the
WSDL to reference the Struts or Pageflow portlet you just created; for example:

http://localhost:7001/webAppName/producer?wsdl

Where webAppName is the web application in which you’ve stored the .portlet file you
created in step 1, above.

4. Add the proxy portlet to a portal and view the portal in a browser.

The Struts or Pageflow portlet you created will appear in the browser.

Making the Conversion in a Non-Portal Enterprise Application
You can also convert a non-portal web application into a Producer from a non-portal enterprise
application. This process require adding files that are part of the WebLogic Portal, but you do not
need to use WebLogic Workshop.

To convert a non-portal web application into a Producer in a non-portal application, do the
following:

1. If your domain is not a portal or a framework domain, you will need to update the domain by
doing the following (otherwise, proceed to step 2):

a. Using a text editor such as Notepad, open the setEnv.cmd or setDomainEnv.cmd
(setEnv.sh/setDomainEnv.sh for Linux) file and append
%WL_HOME/portal/lib/wsrp/wsrp-common.jar to the system classpath (set
CLASSPATH=); for example (Windows):

set CLASSPATH=%WEBLOGIC_CLASSPATH%;%POINTBASE_CLASSPATH%;

 %JAVA_HOME%\jre\lib\rt.jar;%WL_HOME%\server\lib\

 webservices.jar;%WL_HOME\portal\lib\wsrp\wsrp-common.jar;

or (Linux):

Work ing w i th P roducers

6-8 Using WSRP with WebLogic Portal

CLASSPATH=$WEBLOGIC_CLASSPATH%;%POINTBASE_CLASSPATH%;

 %JAVA_HOME%\jre\lib\rt.jar;%WL_HOME%\server\lib\webservices.jar

 ${WEBLOGIC_CLASSPATH}${CLASSPATHSEP}${POINTBASE_CLASSPATH}

 ${CLASSPATHSEP}${JAVA_HOME}\jre\lib\rt.jar${CLASSPATHSEP}${WL_HOME}

 /server/lib/webservices.jar"export CLASSPATH;$WL_HOME/portal

 /lib/wsrp/wsrp-common.jar;

b. Optionally, if you want to enable SSO, deploy the WSRP IdentityAsserter and keystore.

2. In the Producer project‘s web.xml file, do the following:

a. Add the filter com.bea.wsrp.producer.adapter.pageflow.WsrpPageflowFilter
(Listing 6-3) and map it to the URL pattern /producer/* (Listing 6-4).

Listing 6-3 Adding com.bea.wsrp.producer.adapter.pageflow.WsrpPageflowFilter

<filter>
 <filter-name>WsrpPageflowFilter</filter-name>
 <filter-class>com.bea.wsrp.producer.adapter.pageflow.WsrpPageflowFilter
 </filter-class>
</filter>

Listing 6-4 Mapping com.bea.wsrp.producer.adapter.pageflow.WsrpPageflowFilter

<filter-mapping>
 <filter-name>WsrpPageflowFilter</filter-name>
 <url-pattern>/producer/*</url-pattern>
</filter-mapping>

b. Add the servlet com.bea.wsrp.producer.WsrpServer (Listing 6-5) and map it to the
URL pattern /producer/* (Listing 6-6) Make sure to set the <load-on-startup>
parameter in <servlet> (Listing 6-5) to ensure that
com.bea.wsrp.producer.WsrpServer is loaded when the server starts up.

Creat ing a P roducer f rom a Non-Po r ta l Web Appl ica t i on

Using WSRP with WebLogic Portal 6-9

Listing 6-5 Adding com.bea.wsrp.producer.WsrpServer

<servlet>
 <servlet-name>com.bea.wsrp.producer.WsrpServer</servlet-name>
 <servlet-class>com.bea.wsrp.producer.WsrpServer</servlet-class>
 <load-on-startup>2</load-on-startup>
</servlet>

Listing 6-6 Mapping com.bea.wsrp.producer.WsrpServer

<servlet-mapping>
 <servlet-name>com.bea.wsrp.producer.WsrpServer</servlet-name>
 <url-pattern>/producer/*</url-pattern>
</servlet-mapping>

c. Optionally, if you want to monitor SOAP logs, add the servlet
com.bea.wsrp.logging.MessageMonitor and map it to /monitor.

3. Add the following files to the project’s WEB-INF/lib folder:
– $WL_DIR/portal/lib/wsrp/wsrp-producer.jar

– $WL_DIR/portal/lib/wsrp/adapter/wsrp-jpf-adapter.jar

– $WL_DIR/portal/lib/wsrp/adapter/wsrp-struts-adapter.jar

4. Add wsrp-producer-config.xml to the Producer's WEB-INF directory.

Listing 6-7 Contents of wsrp-producer-config.xml

<?xml version="1.0" encoding="UTF-8"?>

<wsrp-producer-config

 xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-config/8.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/weblogic/wsrp-producer-config/8
.0
wsrp-producer-config.xsd">
<description></description>

Work ing w i th P roducers

6-10 Using WSRP with WebLogic Portal

 <service-config>
 <registration required="false" secure="false"/>
 <service-description secure="false"/>
 <markup secure="false" rewrite-urls="true" transport="string"/>
 <portlet-management required="false" secure="false"/>
 </service-config>

 <supported-locales>
 <locale>en</locale>
 <locale>en-US</locale>
 </supported-locales>

</wsrp-producer-config>

Note: If you make any changes to wsrp-producer-config.xml, you will need to redeploy or
bounce the server before the changes become active.

Testing the Configuration
To test the configuration, follow the same steps outlined above in Testing the Configuration. To
test this configuration, you will need to create the consumer remote portlet (step 2, below) on a
separate machine; otherwise the expense of running two domains on a single machine will
severely impact performance.

Note: WebLogic Server must be running.

1. In the non-portal web application created under the non-portal enterprise application, create
a Struts or pageflow portlet, updating the URI, if necessary.

2. In a portal web application on a separate machine, create a remote portlet and point the
WSDL to the non-portal web application under the non-portal enterprise application; for
example:

http://separate.machine/nonPortalWedApplication/producer?wsdl

(Where separate.machine is the name or IP address of the machine hosting the
non-portal web application and nonPortalWedApplication is the non-portal web
application.)

3. Add the remote portlet to a portal and open the portal. If you correctly configured the
non-portal web application under the non-portal enterprise application, the Struts or
Pageflow portlet you created in step 1 should surface in the portal.

Creat ing a S impl e P roduce r f rom a Complex P roduce r

Using WSRP with WebLogic Portal 6-11

Creating a Simple Producer from a Complex Producer
Unlike a complex Producer, a simple Producer is a non-portal web application that contains
Pageflows and Struts applications. It does not depend upon any portal features (for example,
customization). It doesn't allow registration, doesn't support URL rewriting in the Consumer, and
does not support portlet customization.

A simple Producer is often advantageous because it easier to manage and you don't need to have
the complete portal installed to run it. Simple Producers are commonly used in smaller,
departmental settings, where more the more advanced features of complex Producers are not
necessary.

By default, all portal projects created with WebLogic Workshop 8.1 SP3 are complex Producers.
However, you can create a simple Producer from a complex Producer by following the
procedures below.

To create a simple Producer from a complex one, use this procedure.

1. From the complex portlet's WEB-INF/ directory, open the wsrp-producer-config.xml
file and locate the <service-config> element. It should look like the example in
Listing 6-8:

Listing 6-8 <service-config> Element of wsrp-producer-config.xml for a Complex Producer

<service-config>

 <registration required="true" secure="false"/>

 <service-description secure="false"/>

 <markup secure="false" rewrite-urls="true" transport="string"/>

 <portlet-management required="true" secure="false"/>

</service-config>

2. Change the <registration required=> and <portlet-management required=>
attributes from "true" to "false", It should look like the example in Listing 6-9:

Listing 6-9 Updated <service-config> Element for a Simple Producer

<service-config>

 <registration required="false" secure="false"/>

Work ing w i th P roducers

6-12 Using WSRP with WebLogic Portal

 <service-description secure="false"/>

 <markup secure="false" rewrite-urls="true" transport="string"/>

 <portlet-management required="false" secure="false"/>

</service-config>

Since the markup <markup secure=> and service-description <service-description
secure=> interfaces are mandatory, you don’t need to specify any attributes.

3. Redeploy the project.

Using WSRP with WebLogic Portal A-1

A P P E N D I X A

WSRP Error Messages

You might encounter one of the error conditions described in Table A-1 while attempting to
create and use WSRP-compliant portals.

Table A-1 WSRP Error Messages

Message Description

Error: Unable to get the Service Description
for the provided WSDL URL

Producer is not available:

Fault: {urn:oasis:names:tc:wsrp:v1:types}
InvalidRegistration

Producer is not registered and registration is
required Missing registrationHandle?.

Fault: {urn:oasis:names:tc:wsrp:v1:types}
InvalidHandle
The given portletHandle [portlet_1] is
invalid or none of the supported portlet
containers can handle this portlet

The remote portlet has been changed or it
has been deleted

WSRP Er ro r Messages

A-2 Using WSRP with WebLogic Portal

	Copyright
	Introduction to WSRP
	The WSRP Standard
	WSRP Portlet Type Support
	Why Use WSRP?
	WSRP Decouples the Deployment and Delivery of Applications
	WSRP Delivers both Data and its Presentation Logic
	BEA’s Implementation of WSRP Requires Little or No Programming
	Other Benefits of WSRP

	Producers and Consumers
	Producers
	Simple Producers
	Complex Producers

	Consumers

	WSRP and WebLogic Portal
	How WSRP Works
	WSRP-compliant Portlet Lifecycle
	Development Time
	Deployment Time

	Building a Simple Remote Portlet
	Working with a Remote Portlet

	Note on Localization of Remote Portlets

	Establishing WSRP Security
	Access Control
	Security Recommendations
	Secure WSRP Messages
	Manage User Identity
	Secure the /producer Path

	Obtaining a Signed Certificate
	The Java keytool Utility
	keytool Concepts and Terminology
	keytool Reference

	Obtaining the Consumer Certificate

	Configuring the Producer Keystore
	Update the WSRP Identity Asserter
	Set Up the Producer Keystore

	Best Practices for Implementing WSRP
	Portlet Programming Guidelines
	Performance Tuning Recommendations
	Other Guidelines

	Applying a Look-and-Feel to a Remote Portlet
	The Portlet Look-and-Feel Components
	The Look-and-Feel File
	Skins and Skeletons
	The .css File (Skins)
	Image Files (Skins)
	JavaScripts (Skins)
	JavaServer Pages (Skeletons)
	Skin and Skeleton Reference

	Themes
	Themes Reference

	Where to Find Look-and-Feel Components
	Look-and-Feel Reference
	General Information on Look-and-Feel
	Cascading Style Sheets (.css Files)
	Skins
	Skeletons
	Themes

	Monitoring and Logging Remote Portlet Performance
	Monitoring Producer/Consumer Message Logs
	Creating Custom Logs

	Working with Producers
	Creating a Producer from a Non-Portal Web Application
	Making the Conversion in a Portal Enterprise Application
	Making the Conversion
	Testing the Configuration

	Making the Conversion in a Non-Portal Enterprise Application
	Testing the Configuration

	Creating a Simple Producer from a Complex Producer

	WSRP Error Messages

