
BEAWebLogic
Portal™

Using WSRP with
WebLogic Portal

Version 8.1 Service Pack 5
October, 2005

Copyright
Copyright © 2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
BEA, BEA JRockit, BEA Liquid Data for WebLogic, BEA WebLogic Server, Built on BEA, Jolt, JoltBeans, SteelThread,
Top End, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic
Data Services Platform, BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service
Registry, BEA Builder, BEA Campaign Manager for WebLogic, BEA eLink, BEA Manager, BEA MessageQ, BEA
WebLogic Commerce Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic
Enterprise Security, BEA WebLogic Express, BEA WebLogic Integration, BEA WebLogic Java Adapter for Mainframe,
BEA WebLogic JDriver, BEA WebLogic JRockit, BEA WebLogic Log Central, BEA WebLogic Personalization Server,
BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server Process Edition, BEA WebLogic WorkGroup
Edition, BEA WebLogic Workshop, and Liquid Computing are trademarks of BEA Systems, Inc. BEA Mission Critical
Support is a service mark of BEA Systems, Inc. All other company and product names may be the subject of intellectual
property rights reserved by third parties.

All other trademarks are the property of their respective companies.

Using WSRP with WebLogic Portal v

Contents

About This Document
How this Document is Organized . xiii

Product Documentation on the dev2dev Web Site. xiv

Contact Us . xiv

Documentation Conventions .xv

Introduction to WSRP
The WSRP Standard . 1-2

WSRP Portlet Type Support . 1-2

Why Use WSRP? . 1-2

WSRP Decouples the Deployment and Delivery of Applications 1-3

WSRP Delivers both Data and its Presentation Logic . 1-3

BEA’s Implementation of WSRP Requires Little or No Programming 1-3

Other Benefits of WSRP. 1-4

Producers and Consumers . 1-4

Producers . 1-4

Simple Producers . 1-5

Complex Producers . 1-5

Complex/Simple Producer Features Matrix . 1-5

Consumers . 1-6

WSRP and WebLogic Portal . 1-6

How WSRP Works . 1-7

vi Using WSRP with WebLogic Portal

WSRP-compliant Portlet Lifecycle . 1-9

Development Time . 1-9

Deployment Time . 1-9

Note on Localization of Remote Portlets. 1-10

Working with Remote Portlets
Building a Simple Remote Portlet . 2-1

Modifying, Customizing, and Disabling a Remote Portlet . 2-2

Setting Preferences on a Remote Portlet . 2-3

Applying a Theme to a Remote Portlet . 2-3

Other Look-and-Feel Topics. 2-4

Using Backing Files with Remote Portlets . 2-4

Setting a Timeout Value on Remote Portlets . 2-4

Setting the Default Timeout for Remote Portlets . 2-5

Setting the Timeout for Individual Remote Portlets. 2-6

Establishing Interportlet Communications with Remote
Portlets

The WebLogic Portal IPC Model . 3-1

Event Handlers . 3-2

Events . 3-2

Event Actions . 3-3

How IPC is Implemented. 3-3

Implementing IPC with WSRP: Example . 3-5

Step 1: Set Up Your Environment . 3-5

Create the Domain. 3-6

Create the Portal Application . 3-6

Create the Web Applications (Web Projects) . 3-7

Using WSRP with WebLogic Portal vii

Summary . 3-8

Step 2: Create the Producer Portlets . 3-8

Create the JSP Files and Portlets . 3-9

Create the Backing File . 3-13

Attach the Backing File . 3-16

Add the Event Handler to bPortlet. 3-17

Test the Application. 3-19

Summary . 3-21

Step 3: Create the Consumer Portlets . 3-21

Set Up the Exercise . 3-21

Create the JSP Portlet . 3-22

Create the Remote Portlet . 3-23

Summary . 3-26

Step 4: Test the Application . 3-26

Build the Portal . 3-26

Test the Portal . 3-27

Special Considerations for Remote Portlets. 3-28

Understanding Backing Files . 3-28

What are Backing Files? . 3-28

Which Controls Support Backing Files? . 3-29

How Backing Files are Executed . 3-29

Thread Safety with Backing Files. 3-30

Working with Producers
Using WSRP in a Basic WebLogic Server Domain . 4-1

Getting Started . 4-2

Configuring the WSRP Producer . 4-3

Modify the CLASSPATH for the WebLogic Server Domain 4-3

viii Using WSRP with WebLogic Portal

Modify the Struts Application. 4-5

Testing the Producer . 4-9

Consuming the Producer Portlet. 4-10

Using WSRP in a WebLogic Express Server Domain . 4-11

Enabling Portlets on the Producer . 4-11

Best Practices for Implementing WSRP
Portlet Programming Guidelines . 5-1

Performance Tuning Recommendations . 5-3

Avoid Moving Producers. 5-4

Upgrading Simple Producers from Service Pack 3 . 5-5

Other Guidelines . 5-5

Implementing Custom Data Transfer
Custom Data Transfer Interfaces . 6-1

Implementing the Interfaces . 6-2

Implementing Interfaces in a Complex Producer: Example. 6-2

Step 1: Set Up the Environment . 6-2

Step 2: Create the Producer JSP and Portlet . 6-3

Step 3: Federate zipTest.portlet to the Consumer . 6-8

Step 4: Create and Attach a Backing File to the Consumer 6-14

Step 5: Test the Application . 6-18

Using this Example in a Simple Producer . 6-19

Deploying Your Own Interface Implementations. 6-28

Implementation Rules. 6-28

Local Proxy Support
Why Use Local Proxy Mode? . 7-1

Deployment Configuration . 7-2

Using WSRP with WebLogic Portal ix

When to Use and Not Use . 7-3

Monitoring and Logging Remote Portlet Performance
Monitoring Producer/Consumer Message Logs . 8-1

Creating Custom Logs . 8-5

Establishing WSRP Security
Access Control . 9-1

Security Recommendations . 9-2

Setting Security Constraints on Resources . 9-2

Creating a Resource Connection Filter . 9-3

Secure WSRP Messages . 9-4

Manage User Identity. 9-4

What is Single Sign-on? . 9-4

How Single Sign-on Works with WSRP . 9-5

The Signed Certificate . 9-5

The Java keytool Utility. 9-5

Secure the /producer Path . 9-7

Establishing Single Sign-on with Remote Portlets: Example . 9-7

Step 1. Set Up the Environment . 9-7

Step 2. Create the Login Portlet and Establish SSO with a Remote Portlet 9-8

Create the Log-in Page Flow Portlet . 9-8

Create a Log-in Portal . 9-14

Create a Portlet on the Producer . 9-16

Federate the Producer Portlet to the Consumer . 9-20

Test the Log-in Portlet . 9-23

Summary . 9-25

Step 3: Break the Log-in Portal . 9-25

x Using WSRP with WebLogic Portal

Rename the .jks File . 9-25

Retest the Portal . 9-26

Step 4: Obtain and Implement a Signed Certificate . 9-27

Before You Begin . 9-27

Generate a New Keystore . 9-27

Create the Certificate Signing Request and Import the Signed Certificate. . . . 9-28

Import the Signed Certificate . 9-29

Step 5: Update the Consumer mBean. 9-30

Step 6: Update the WSRP Identity Asserter. 9-33

Step 7: Test the New Keystore . 9-35

Securing the WebLogic Administrator’s Logon Information . 9-36

Encrypting Passwords . 9-38

Note on Changing Passwords . 9-39

Using WSRP with WebLogic Portal xi

xii Using WSRP with WebLogic Portal

Using WSRP with WebLogic Portal xiii

About This Document

Using WSRP with WebLogic Portal explains how to implement Web Services for Remote
Portlets (WSRP) with BEA WebLogic Portal 8.1 with service pack 4. It covers the following
topics:

How this Document is Organized
This document is comprised of these chapters:

Chapter 1, “Introduction to WSRP,” provides a general overview to WSRP and its place
within WebLogic Portal. You should read this chapter before proceeding with the rest of
this guide.

Chapter 2, “Working with Remote Portlets,” provides basic instructions for working with
WSRP in a WebLogic Portal environment and links to more detailed information.

Chapter 3, “Establishing Interportlet Communications with Remote Portlets,” describes
how to establish communication between a federated, or remote, portlet and a local portlet
on the same portal. It includes a detailed tutorial that will take you through the process of
establishing interportlet communications between federated and local portlets.

Chapter 4, “Working with Producers,” describes how to apply some of the standard portlet
functionality to a WSRP-compliant Producer.

Chapter 5, “Best Practices for Implementing WSRP,” provides some proven practices you
should follow when implementing WSRP with WebLogic Portal.

About Th is Document

xiv Using WSRP with WebLogic Portal

Chapter 6, “Implementing Custom Data Transfer,” shows you how a Consumer application
can provide data to a Producer application.

Chapter 7, “Local Proxy Support,” describes how to implement local proxy support, which
allows co-located Producer and Consumer web applications to short-circuit network I/O
and “SOAP over HTTP” overhead.

Chapter 8, “Monitoring and Logging Remote Portlet Performance,” shows you how to
monitor activity between Producers and Consumers by using the message monitor servlet
and create custom logs to display specific information about WSRP sessions.

Chapter 9, “Establishing WSRP Security,” shows you how to set up a single sign-on
between a Consumer and a group of Producers.

Appendix A, “WSRP Error Messages,” lists some of the more common error message you
might encounter when trying to implement WSRP with WebLogic Portal.

Product Documentation on the dev2dev Web Site
BEA product documentation, along with other information about BEA software, is available
from the BEA dev2dev Web site:
http://dev2dev.bea.com

To view the documentation for a particular product, select that product from the list on the
dev2dev page; the home page for the specified product is displayed. From the menu on the left
side of the screen, select Documentation for the appropriate release. The home page for the
complete documentation set for the product and release you have selected is displayed.

Contact Us
Your feedback on the BEA BEA WebLogic Portal 8.1 documentation is important to us. Send us
e-mail at docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the BEA WebLogic Portal 8.1
documentation.

In your e-mail message, please indicate that you are using the documentation for BEA BEA
WebLogic Portal 8.1 ProductVersion.

If you have any questions about this version of BEA BEA WebLogic Portal 8.1, or if you have
problems installing and running BEA BEA WebLogic Portal 8.1, contact BEA Customer Support
at http://support.bea.com. You can also contact Customer Support by using the contact

http://dev2dev.bea.com
http://support.bea.com

Documentat i on Convent ions

Using WSRP with WebLogic Portal xv

information provided on the quick reference sheet titled “BEA Customer Support,” which is
included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.

monospace
text

Indicates user input, as shown in the following examples:
• Filenames: config.xml
• Pathnames: BEAHOME/config/examples
• Commands: java -Dbea.home=BEA_HOME
• Code: public TextMsg createTextMsg(

Indicates computer output, such as error messages, as shown in the following example:
Exception occurred during event
dispatching:java.lang.ArrayIndexOutOfBoundsException: No such
child: 0

monospace
boldface
text

Identifies significant words in code.

Example:
void commit ()

About Th is Document

xvi Using WSRP with WebLogic Portal

monospace
italic
text

Identifies variables in code.

Example:
String expr

{ } Indicates a set of choices in a syntax line. The braces themselves should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves should never be typed.

Example:
java utils.MulticastTest -n name [-p portnumber]

| Separates mutually exclusive choices in a syntax line. The symbol itself should never be typed.

Example:
java weblogic.deploy [list|deploy|update]

... Indicates one of the following in a command line:
• That an argument can be repeated several times in a command line
• That the statement omits additional optional arguments
• That you can enter additional parameters, values, or other information

The ellipsis itself should never be typed.

Example:
buildobjclient [-v] [-o name] [-f "file1.cpp file2.cpp
file3.cpp . . ."

.

.

.

Indicates the omission of items from a code example or from a syntax line. The vertical ellipsis
itself should never be typed.

Convention Item

Using WSRP with WebLogic Portal 1-1

C H A P T E R 1

Introduction to WSRP

Web Services for Remote Portlets (WSRP) is a web services standard that allows you to
“plug-n-play” visual, user-facing web services with portals or other intermediary web
applications. It allows you to create a repository of services that users can reference to surface
applications in their portlets or to consume applications from WSRP-compliant Producers, even
those far removed from your enterprise.

BEA WebLogic Portal 8.1 SP4 includes an implementation of WSRP that allows the framework
to use WSRP portlets.

This section includes information on the following subjects:

The WSRP Standard

Why Use WSRP?

Producers and Consumers

WSRP and WebLogic Portal

How WSRP Works

WSRP-compliant Portlet Lifecycle

Note on Localization of Remote Portlets

In t roduc t i on to WSRP

1-2 Using WSRP with WebLogic Portal

The WSRP Standard
BEA’s implementation of WSRP is based upon the WSRP 1.0 standard created by OASIS. BEA
Systems has been an active member of the OASIS technical group for WSRP 1.0 and continues
to work as part of this standard effort for future enhancements to the specification.

You can read the current version on the WSRP standard at:

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

WSRP Portlet Type Support
You can create WSRP-enabled portlets for these portlet types:

Pageflow

JSP

Struts

Java portlets (JSR168; supported only for complex producers)

WSRP also supports backing files on complex producers

This version of WebLogic Portal supports only homogeneous portlets, therefore, the portlet
modes must be compatible with the portlet; for example:

Pageflows in all modes.

Struts in all modes.

Java in all modes.

Why Use WSRP?
WSRP is an attractive option for web development for three main reasons:

It decouples the deployment and delivery of applications

It delivers both data and that data’s presentation logic.

Its implementation requires little or no programming.

http://www.oasis-open.org/committees/tc_home.php?wg_abbrev=wsrp

Why Use WSRP?

Using WSRP with WebLogic Portal 1-3

WSRP Decouples the Deployment and Delivery of Applications
You can surface new applications on your portal, independent of release schedule and where and
when the code is physically deployed.

For example, perhaps you have a portal on machine X and another on machine Y. To get a portlet
from machine X to machine Y, currently your only method of doing so is to copy the portlet’s
code, JSPs, and so on, from machine X to the destination machine (Y). By using WSRP, you can
access and display that portlet on machine Y simply by referencing it through the Producer’s Web
Service Description Language identifier (WSDL).

WSRP Delivers both Data and its Presentation Logic
As a “user-facing” web service, WSRP portlets provide both application and presentation logic.
This is different from standard web services, or data-oriented web services, which contain
business logic but lack presentation logic and thus require that every client implement that logic
on its own.

While the data-oriented approach works well in many implementations, it is not well suited for
dynamically integrating business applications. For example, to integrate an order status web
service into a commerce portal, you would need to write code to display the results of the status
services into the portal. Using WSRP, with the presentation logic included in the web service, you
can achieve the aggregation of applications and services dynamically. You no longer need to
develop the presentation logic in order to do the integration; you can simply request the order
status service to show up as a portlet inside the commerce portal at a predetermined location.

BEA’s Implementation of WSRP Requires Little or No
Programming
You don’t have to do a lot of programming to make a portlet remote. In a non-WSRP compliant
implementation, integrating remote content and application logic into an end-user presentation
usually requires a significant custom programming effort. Typically, vendors of aggregating
applications, such as a portal, write special adapters for applications and content providers to
accommodate the variety of different interfaces and protocols those providers use.

WebLogic Workshop 8.1 SP4 provides tools that allow you to pick from a rich choice of
compliant remote content and application providers, and integrate them with just a few mouse
clicks—without writing a line of code. Additionally, applications created with WebLogic
Workshop 8.1 SP4 are, by default, WSRP-compliant, which means they can be leveraged into
other user’s portlets with little or no additional programming required on your part.

In t roduc t i on to WSRP

1-4 Using WSRP with WebLogic Portal

Other Benefits of WSRP
In addition to those listed above, WSRP provides these additional benefits to developers:

Interoperability

Portability

Options for deployment

Support by large players in the industry

Producers and Consumers
WSRP introduces the concepts of Producers and Consumers. By using WSRP, you can aggregate
application functionality by integrating WSRP-compliant Producers into WebLogic Portal as a
Consumer. Your end users thus will be able to interface with Consumers to view the integrated
applications.

Figure 1-1 Web Services Between Producer and Consumer

Producers
Producers host portlets and provide such services as self-description, mark up, registration, and
portlet management. Producers can optionally manage the registration of Consumers and require
them to pre-register prior to interacting with portlets. A registration establishes a relationship
between Consumers and Producers.

Producers are further classified into either simple or complex Producers.

Produce rs and Consumers

Using WSRP with WebLogic Portal 1-5

Simple Producers
A simple Producer is a non-portal web application that contains portlets . It does not depend upon
any portal features (for example, customization), nor does it require registration, support URL
rewriting in the Consumer, or support a management interface.

With simple Producers:

You can WSRP-enable non-Portal projects, such as WebLogic Server projects.

You can offer portlets without actually installing WebLogic Portal

Portlets cannot use Portal APIs/features

“Using WSRP in a Basic WebLogic Server Domain” on page 4-1 describes how to configure a
(non-portal) WebLogic Server environment as a WSRP producer so that you can expose portlets
based on Struts or Java Page Flows. The exposed portlets can then be consumed as remote
portlets running in a regular WebLogic Portal Domain.

Complex Producers
A complex Producer requires registration, does support URL rewriting in the Consumer, and does
support a management interface. By default, all portal web projects created with WebLogic
Workshop 8.1 SP4 are created in complex Producers.

With complex Producers:

All Portal Projects are WSRP capable

Portlets can use Portal APIs/features

You can offer and consume portlets

Complex/Simple Producer Features Matrix
Table 1-1 lists the features available under complex Producers and simple Producers.

Table 1-1 Complex/Simple Producer Features Matrix

Feature Complex Producer Simple Producer

JSR168 X

Page Flow X X

In t roduc t i on to WSRP

1-6 Using WSRP with WebLogic Portal

Consumers
Consumers are web applications that aggregate information from Producers and surface it in
other portals. Consumers route requests from users to the appropriate Producer, which, in turn
processes the request and sends results back to the Consumer. The Consumer aggregates the
results coming from various Producers and send the final result back to the user. Consumers
provide separation of the traffic flowing between them and the Producers. They also ensure that
all interactions are kept private to that specific user during the sessions.

Note: Consumers are web applications. A given consumer can have multiple desktops
associated with it. Furthermore, there can be multiple consumers in an enterprise
application.

In WebLogic Portal Administration Console, you will notice that producer registrations
are scoped to individual consumer web applications. Because there can be multiple
consumer web applications in an enterprise application, it is possible that a given
producer will need to be registered multiple times within an enterprise application (that
is, registered for each consumer web application in which it is used.)

WSRP and WebLogic Portal
In addition to complying with the OASIS WSRP standard, BEA’s WSRP implementation adds
some additional features to provide you with greater control over remote portlet usage. These
features are described in Table 1-2

Registration Required Not Required

Support for URL Rewriting X

Support for Management
Interface

X

Support for JSPs X

Support for Backing Files X
(producer-side, only)

Table 1-1 Complex/Simple Producer Features Matrix

Feature Complex Producer Simple Producer

How WSRP Works

Using WSRP with WebLogic Portal 1-7

:

How WSRP Works
Figure 1-2 illustrates the WSRP process, including handoffs from end user to Consumer to
Producer and back.

Table 1-2 Features in BEA’s WSRP Implementation

Feature Description

Portlet Wizard Remote portlets can be easily implemented by using the Portlet Wizard that
comes with WebLogic Workshop. You can create and install robust remote
portlets with a few simple mouse-clicks and a Producer’s WSDL.

Administration Portal The WebLogic Portal Administration Portal allows you to easily deploy
and manage Producer and Consumer portlets for your enterprise from a
central location.

Producer-by-Default Portal web applications created with WebLogic Workshop 8.1 SP4 and
later are, by default, created in Producers. You don’t need to do any special
coding or add additional content on these projects to make them available
as a Producer.

Note: For non-portal web applications, you need install a WSRP
Producer in WebLogic Workshop to make that application a
Producer.

Registration Consumers might be required to register with a Producer. Registration
allows Producers to identify each Consumer with a unique,
Consumer-provided handle. This helps identify what portlets are available
to that Consumer.

Service Description The service description shows what a Producer has to offer. It lets a
Consumer discover a Producer and it lists the capabilities and properties
that are available from the Producer. As a portlet repository, the service
description also lists the portlets available from that Producer.

Markup and User
Interaction

Request time operations to initiate or terminate a session. It gets markup
for a portlet, which is returned in the body of the message. It submits user
interaction request for a portlet.

Portlet Management The Producer may allow cloning, customization, and deleting of portlets.
Customization features allow portal administrators to manage portlet
preferences for remote portlets.

In t roduc t i on to WSRP

1-8 Using WSRP with WebLogic Portal

Figure 1-2 WSRP Process Flow

WSRP-compl i an t Po r t l e t L i f ecyc le

Using WSRP with WebLogic Portal 1-9

WSRP-compliant Portlet Lifecycle
The portlet lifecycle for a WSRP-compliant portlet includes both development time and
deployment time capabilities.

Development Time
Producer side (complex Producer) Developers will be able to leverage Java Page Flows, JSP,
JSR 168, and Struts applications to expose their functionality in remote portlets. They can
portletize the application and configure any related properties. Since all portal projects created
with this version of WebLogic Workshop 8.1 are, by default, Producers, developers don’t need
to be aware of WSRP.

Consumer side Developers declare the Producers that are available to be used in the
application. By using the Portlet Wizard in WebLogic Workshop, they can create a remote portlet
based on the service description file from the Producer. They will need to:

1. Select “Remote” from a list of portlet types.

2. Configure a few options.

3. Create a new portlet.

4. Drag and drop the WSRP-based portlet to the portal.

See Building a Remote Portlet in the WebLogic Workshop online help system for a detailed
description of this process.

Deployment Time
Producer side For applications not built with this version of WebLogic Portal, some changes
are required:

Customers using applications built with previous versions of WebLogic Portal 8.1 need to
upgrade to WebLogic 8.1 SP4.

Customers using applications built on an installation of WebLogic Server 8.1 SP4 need to
follow the instructions for converting a non-portal web application into a Producer, as
described in Using WSRP in a Basic WebLogic Server Domain.

New applications, after WSRP installation, are automatically configured.

Consumer side Deployment is similar to the current Administration Portal deployment, since
remote portlets look like local portlets.

../../../workshop/docs81/doc/en/portal/buildportlets/conWsrpConsumer.html

In t roduc t i on to WSRP

1-10 Using WSRP with WebLogic Portal

Note on Localization of Remote Portlets
In service pack 4 of WebLogic Portal 8.1, you cannot localize remote portlets. This feature will
be available in a subsequent release of the product.

Using WSRP with WebLogic Portal 2-1

C H A P T E R 2

Working with Remote Portlets

Within the context of a portal, WSRP-compliant portlets are designed to behave identically to
local portlets. Nearly anything you can do or control on a local portlet, you can do or control on
a remote portlet. Despite this similarity, WSRP does present some deviations from other
WebLogic Portal implementations. This section describes how to apply some of the standard
portlet functionality to a WSRP-compliant remote portlet. In some cases, it will simply provide
links to the appropriate documentation elsewhere in the WebLogic Portal documentation set,
including WebLogic Workshop’s online help system.

This section includes information on the following subjects:

Building a Simple Remote Portlet

Modifying, Customizing, and Disabling a Remote Portlet

Applying a Theme to a Remote Portlet

Using Backing Files with Remote Portlets

Setting a Timeout Value on Remote Portlets

The portlets discussed here are built on Consumers unless otherwise noted. For procedures
specific to Producers, please refer to Working with Producers.

Building a Simple Remote Portlet
To see how easily you can build a remote Consumer portlet, please see Building a Remote Portlet
in the WebLogic Workshop online help system, at:

../../../workshop/docs81/doc/en/portal/buildportlets/conWsrpConsumer.html

Work ing w i th Remote Po r t le t s

2-2 Using WSRP with WebLogic Portal

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportlets/conWsrpConsum
er.html

This exercise will show you how to use the Portlet Wizard to create a remote portlet and populate
it with an application from a Producer. It will also show you how to add the portlet to a portal and
view the portal and the new remote portlet in a browser.

Modifying, Customizing, and Disabling a Remote Portlet
In addition to Building a Remote Portlet, described above, the WebLogic Workshop online help
system contains other vital information for developing and using WSRP-compliant portlets.
These topics include:

Modifying a Remote Portlet, at:

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportlets/portletMo

dProxy.html

This topic describes how to add states and modes to a remote portlet. Note that with remote
portlets:

The Float mode is not passed from the producer to the consumer proxy portlet.

The Delete state is not passed from the producer to the consumer proxy portlet.

Modes and States that are passed from the producer to the consumer cannot be overwritten.
This includes minimize state, maximize state, edit mode, and help mode.

Customizing a Remote Portlet, at:

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportlets/portletCo

nsumerCust.html

This topic tells you where to find complete information about and procedures for changing the
appearance of a remote portlet.

Disabling A Producer, at:

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportlets/portletDi

sableProd.html

This topic describes how to modify the Producer configuration file so that Producer application
cannot be consumed by a remote portlet.

../../../workshop/docs81/doc/en/portal/buildportlets/conWsrpConsumer.html
../../../workshop/docs81/doc/en/portal/buildportlets/portletModProxy.html
../../../workshop/docs81/doc/en/portal/buildportlets/portletModProxy.html
../../../workshop/docs81/doc/en/portal/buildportlets/portletConsumerCust.html
../../../workshop/docs81/doc/en/portal/buildportlets/portletConsumerCust.html
../../../workshop/docs81/doc/en/portal/buildportlets/portletDisableProd.html
../../../workshop/docs81/doc/en/portal/buildportlets/portletDisableProd.html

Set t i ng P re fe rences on a Remote Por t l e t

Using WSRP with WebLogic Portal 2-3

Setting Preferences on a Remote Portlet
The producer stores and manages portlet preferences for remote portlets. When you view or
modify the preferences in a remote portlet (on a consumer), the consumer must fetch the
preferences from the producer, and modifications must be sent back to the producer where they
are stored.

Note: Portlet preferences are included in the WebLogic Portal implementation of WSRP
producers. Other WSRP producer implementations may not support portlet preferences.

You can view and modify the portlet preferences for a remote portlet using the WebLogic
Administration Portal. The Administration Portal uses the Portlet Management interface of
WSRP to retrieve preferences from the producer and modify them.

Note: It is not possible to create or modify portlet preferences in a remote portlet using
WebLogic Workshop.

You cannot add a portlet preference to remote portlets consumed from a simple producer or
producers that have portal management disabled in the wsrp-producer-config.xml file.

For more information on using portlet preferences with WSRP, please refer to Portlet Preferences
at:

http://dev2dev.bea.com/products/wlportal81/articles/portlet_preferences.jsp

Applying a Theme to a Remote Portlet
A theme determines the appearance of a portlet on the portal desktop. The theme of a remote
portlet is not linked to a Producer, giving you the option of modifying the portlet’s appearance to
best suit your needs; for example, to match the appearance of the portal in which the portlet
resides.

Themes are a component of a portal or desktop’s look-and-feel architecture and a subset of skins
and skeletons. These concepts are documented in other documents in the edocs system and in the
WebLogic Workshop online help system. Use the following links to locate this documentation:

Creating Look & Feels

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/ifLF.html

Look & Feel Architecture

– Portal User Interface Framework Guide, at

http://edocs.bea.com/wlp/docs81/lookandfeel/index.html

http://dev2dev.bea.com/products/wlportal81/articles/portlet_preferences.jsp
../../../workshop/docs81/doc/en/portal/buildportals/ifLF.html
../lookandfeel/index.html
../lookandfeel/index.html
http://dev2dev.bea.com/products/wlportal81/articles/portlet_preferences.jsp

Work ing w i th Remote Po r t le t s

2-4 Using WSRP with WebLogic Portal

The Portal User Interface Framework

– Portal User Interface Framework Guide, at

http://edocs.bea.com/wlp/docs81/lookandfeel/index.html

How Look & Feel Determines Rendering

– Portal User Interface Framework Guide, at

http://edocs.bea.com/wlp/docs81/lookandfeel/index.html

Other Look-and-Feel Topics
Creating Skins and Skin Themes

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/ifLFSkinsTheme
s.html

Creating Skeletons and Skeleton Themes

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportals/ifLFSkeletons.
html

Using Backing Files with Remote Portlets
This version of WebLogic Portal’s implementation of WSRP supports backing files. These files
allow you to programatically add functionality to a portlet by implementing (or extending) a Java
class, which enables preprocessing (for example, authentication) prior to rendering the portal
controls. Backing files are attached to portlets by using the Property Editor in WebLogic
Workshop.

For more information on backing files and how they are used with remote portlets, please refer
to Understanding Backing Files at

http://edocs.bea.com/wlp/docs81/wsrp/ipc.html#1000978

Setting a Timeout Value on Remote Portlets
Occasionally, a producer is slow to respond to a request from a remote portlet. In this case, the
portal application in which the reomote portlet is located remains unresponsive until the remote
portlet’s response is received.

To avoid these kinds of delays caused by remote portlets without affecting your portal application
(and the other portlets it contains) you can set a timeout value. You can set a default timeout limit

../lookandfeel/index.html
../../../workshop/docs81/doc/en/portal/buildportals/ifLFSkinsThemes.html
../lookandfeel/index.html
../../../workshop/docs81/doc/en/portal/buildportals/ifLFSkeletons.html
../wsrp/ipc.html#1000978
../wsrp/ipc.html#1000978
../lookandfeel/index.html
../lookandfeel/index.html

Se t t i ng a T imeout Va lue on Remote Po r t l e ts

Using WSRP with WebLogic Portal 2-5

for all remote portlets and a timeout limit for an individual remote portlet. The timeout set on an
individual portlet takes precedance over the default.

Note: The remote portlet connection timeout only works when a consumer is continually
connected to a producer. The timeout is effective only for cases where the producer is
slow to respond to a consumer, not for cases where the producer is physically unavailable
(the connection is broken), or where a new connection is made. In these cases, the
operating system’s TCP timeout takes effect.

Setting the Default Timeout for Remote Portlets
Set the default connection timeout for all remote portlets in a web application by setting the
<connection-timeout> element in WEB-INF/wsrp-producer-registry.xml, as shown in
Listing 2-1.

Listing 2-1 Setting the Connection Timeout

<?xml version="1.0" encoding="UTF-8"?>

<wsrp-producer-registry

xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-registry/8.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/weblogic/wsrp-producer-regi

stry/8.0

wsrp-producer

-registry.xsd">

 <!-- Upload limit (in bytes) -->

 <upload-read-limit>1048576</upload-read-limit>

 <!-- Timeout (in milli seconds) -->

 <connection-timeout-secs>120000</connection-timeout-secs>

Note: The value 120000—in milliseconds (not seconds, as the name of the descriptor
suggests)—is a suggested timeout period. Your needs might require a longer or shorted
timeout.

Work ing w i th Remote Po r t le t s

2-6 Using WSRP with WebLogic Portal

Setting the Timeout for Individual Remote Portlets
You can set the timeout value for individual remote portlets by setting the Connection Timeout
property in the Property Editor in WebLogic Workshop, as described in the following procedure.

1. Before you begin, ensure that WebLogic Workshop is running and that the remote portlet you
want to modify is displayed in the editor window, as shown in Figure 2-1.

2. Display the Proxy Portlet Properties editor by clicking in the center of the remote portlet in
the editor window. Figure 2-1 shows you where to click to display the Proxy Portlet
Properties editor.

Figure 2-1 Remote Portlet Displayed in the Editor

3. In the Proxy Portlet Properties editor, locate and highlight the Connection Timeout text
field, as shown in Figure 2-2.

Click here
to display
the Property
Editor.

Se t t i ng a T imeout Va lue on Remote Po r t l e ts

Using WSRP with WebLogic Portal 2-7

Figure 2-2 Proxy Portlet Property Editor—Connection Timeout Selected

4. In the Connection Timeout text field, enter a timeout value, in milliseconds, as shown in
Figure 2-3.

Figure 2-3 Timeout Value

Work ing w i th Remote Po r t le t s

2-8 Using WSRP with WebLogic Portal

Using WSRP with WebLogic Portal 3-1

C H A P T E R 3

Establishing Interportlet
Communications with Remote Portlets

WebLogic Portal 8.1 with service pack 4 supports interportlet communication (IPC) between
Producers and Consumers. In other words, local portlets on a Consumer can react to events on a
federated portlet from a Producer and vice versa; for example, minimizing a local portlet would
change the contents of a remote portlet that was listening for a minimize event.

This document describes the IPC model used by WebLogic Portal and shows how to apply it to
WSRP-compliant portlets. It includes information on the following subjects:

The WebLogic Portal IPC Model

How IPC is Implemented

Implementing IPC with WSRP: Example

Special Considerations for Remote Portlets

Understanding Backing Files

Note: For a list of supported portlets, please refer to WSRP Portlet Type Support in
Introduction to WSRP.

The WebLogic Portal IPC Model
Earlier versions of WebLogic Portal allowed you to establish interportlet communications by
using such techniques are adding listenTo() methods or backing files on page flow portlets.
WebLogic Portal 8.1 with service pack 4 introduces a new IPC model based upon event handlers,
Java objects that listen for predefined events on other portlets in the portal and fire actions when
that event occurs.

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-2 Using WSRP with WebLogic Portal

Event Handlers
Event handlers “listen” for events raised on subscribed portlets and fire an action when a specific
event is detected. Event handlers can listen and react to the following types of events:

Portal Event

Generic Event

Page Flow Event

Custom Event

Struts Event

Events
Event actions depend upon the type of event being raised. Except for portal events, all other
events can be identified in the Events field on the Event Handler tool. Events available with the
portal event handler are listed in Table 3-1.

Table 3-1 Events Available to a Portal Event Handler

This event... Fires an action when the portlet...

onActivation Becomes visible.

onDeactivation Ceases to be visible.

onMinimize Is minimized

onMaximize Is maximized

onNormal Returns to its normal state from either a maximized or minimized state

onDelete Is deleted from the portal.

onHelp Is in the help mode

onEdit Is in the edit mode

onView Is in the view mode

onRefresh Is refreshed

How I PC is Implemented

Using WSRP with WebLogic Portal 3-3

Event Actions
Event handlers fire an action on the host portlet when that handler detects an event from another
portlet in the application; for example, when the user minimizes the appropriate portlet a portal
event called onMinimize might cause the handler listening for it to fire an action that invokes a
backing file attached to it.

Table 3-2 lists the event actions available.

How IPC is Implemented
The IPC Tool included in WebLogic Workshop makes implementing event handlers relatively
easy. To launch the tool, do the following:

1. Open a portlet in WebLogic Workshop.

2. In the Property Editor for that portlet, click the ellipses button (...) next to Event Handlers
(if no event handlers have been added, the Event handler field will show that. If any event
handlers have been added, the field will indicate the number added).

The tool will appear, as shown in Figure 3-1

Table 3-2 Event Actions

This action... Does this...

Change Window Mode Changes the window’s mode from its current mode to a user-specified
mode; for example, from help mode to edit mode.

Change Window State Changes the window’s state from its current state to a user-specified state;
for example, from maximized to delete state.

Activate Page Opens a user-specified page.

Fire Generic Event Fires a user-specified generic event.

Fire Custom Event Fires a user-defined custom event. This event needs to be included in the
portlet file.

Invoke BackingFile
Method

Runs the backing file attached to the portlet. Backing files allow you to
programatically add functionality to a portlet to enable preprocessing (for
example, authentication) prior to rendering the portal controls. For more
information, please refer to Special Considerations for Remote Portlets.

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-4 Using WSRP with WebLogic Portal

Figure 3-1 Event Handler Tool

3. Click Add Handler to open the event handler drop-down menu and select a handler.

The dialog box will expand, opening up additional fields you can use to set up the handler
(Figure 3-2).

Figure 3-2 Expanded Event Handler Tool

Imp lement ing IPC wi th WSRP: Example

Using WSRP with WebLogic Portal 3-5

The entire process of setting up an event handler can all be handled by using this tool. What you
need to do is:

1. Select an event handler.

2. Determine the portlet(s) to which that handler will listen.

3. Select an event that the handler will listen for.

4. Select and configure an action to fire when the event occurs.

5. Save the event handler.

Implementing IPC with WSRP: Example
This section describes the process of setting up interportlet communications between a Consumer
and a Producer by using the Event handler tool in BEA WebLogic Workshop. This is a simple
example in which minimizing the local portlet on the Consumer will change the text string in the
portlet federated from the Producer.

Note: Currently when a change is made to a producer’s metadata, consumers are not notified of
the change. For example, if you add an event handler to a portlet on the producer after
you create a remote proxy to that portlet, the remote portlet is not made aware of the
change: it will not fire the event. The correct procedure is to add the event handler to the
portlet on the producer before you create the remote portlet on the consumer. This is a
basic limitation of Web Services in general.

This exercise is comprised of four main steps:

Step 1: Set Up Your Environment

Step 2: Create the Producer Portlets

Step 3: Create the Consumer Portlets

Step 4: Test the Application

Step 1: Set Up Your Environment
In this step, you will create a domain, an enterprise application, and two web applications (web
projects) under the enterprise application.

Note: In this exercise, the root directory for your domain should be
BEA_HOME\user_projects\domains; for the applications and all of their components,

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-6 Using WSRP with WebLogic Portal

it’s BEA_HOME\user_projects\applications. These are default directories that are
created when you install BEA WebLogic Platform.

Create the Domain
To create a domain, do the following:

1. Launch WebLogic Workshop.

2. Open the Tools menu and select WebLogic Server>Configuration Wizard.

The Configuration Wizard launches.

3. Follow the prompts using the value specified in Table 3-3. Click Next when you are
finished with each dialog box

4. Once the domain is created, click Done.

Create the Portal Application
To create a portal applications, do the following:

1. Open the File menu and select New>Application...

The New Application dialog box appears.

Table 3-3 Configuration Wizard Values

On... Select or Enter...

Create or Extend a Configuration Create a new WebLogic Configuration

Select a Configuration Template Basic WebLogic Portal Domain

Choose Express or Custom Configuration Express

Configure Administrative Username and
Password

Username: weblogic

Password: weblogic

Confirm Password: weblogic

Configure Server Start Mode and Java
SDK

Sun SDK 1.4.2_05

Create WebLogic Configuration Configuration Name:ipcWsrpDomain

Imp lement ing IPC wi th WSRP: Example

Using WSRP with WebLogic Portal 3-7

2. Select Portal Application and do the following:

– In Name, enter ipcWsrpTest.

– In Server, click Browse to display the Select WebLogic Server config.xml File dialog
box. Navigate to the ipcWsrpDomain directory and select config.xml.

3. Click Create.

When the application is successfully created, it will appear in the application panel, as
shown in Figure 3-3.

Figure 3-3 Producer Portal Application Created

Create the Web Applications (Web Projects)
Create Producer and Consumer portal web applications (Projects) under the ipcWsrpTest portal
application by doing the following:

1. In the file tree, right-click ipcWsrpTest and select New>Project...

The New Project dialog box appears.

2. Select Portal and Portal Web Project and in Name, enter producerWeb.

3. Click Create.

producerWeb will now appear under the ipcWsrpTest application in the application tree
(Figure 3-4).

Figure 3-4 Portal Web Application (Project) Added to the Producer

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-8 Using WSRP with WebLogic Portal

4. Repeat steps 1 through 3, this time entering consumerWeb in the Name field on the New
Project dialog box.

When the web applications are successfully created, they will appear under ipcWsrpTest in
the Application panel, as shown in Figure 3-5.

Figure 3-5 Portal Web Applications (Projects) Added to the Portal Application

5. Start WebLogic Server by opening the Tools menu and selecting WebLogic Server>Start
WebLogic Server.

Summary
With the completion of Step 1: Set Up Your Environment, you have created a domain, a portal
applications, and two portal web applications, producerWeb (the Producer) and consumerWeb
(the Consumer). You can verify that these components exist by looking in your file system at
BEA_HOME\user_projects\, as shown in Figure 3-6.

Figure 3-6 File System Showing New Domain and Applications

Step 2: Create the Producer Portlets
In this step, you will create two JSP files on the Producer-side, along with the JSP portlets that
will surface these files. You will also create a backing file that will contain the instructions
necessary to complete the communication between two portlets (for more information on backing

Web Applications

New Domain

New Application

Imp lement ing IPC wi th WSRP: Example

Using WSRP with WebLogic Portal 3-9

files, please refer to Understanding Backing Files) and add an event handler to one of the portlets.
Once you have created the portlets and attached the backing file, you will test the application in
your browser.

Note: Before continuing with this procedure, ensure that WebLogic Workshop is running and
the producerWeb Web application node is expanded.

Create the JSP Files and Portlets
To create the JSP files the Producer portlets will surface, do the following:

1. Under the producerWeb node, double-click index.jsp.

The JSP file opens in Design View (Figure 3-7).

Figure 3-7 index.jsp in Design View

2. Click the phrase New Web Application Page to highlight it

A box will appear around the text and an inner text field will appear in the Property Editor,
under General (Figure 3-8).

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-10 Using WSRP with WebLogic Portal

Figure 3-8 Properties Menu inner Text Field

3. In the inner text field, click the ellipses button (...) to open the inner text dialog box and
replace New Web Application Page with the phrase Minimize Me!!! Click OK.

The dialog box closes and Minimize Me!!! appears in the inner text field and in the Design
View, as shown in Figure 3-9.

Figure 3-9 New Text Added to the JSP File

4. Open the File menu and select Save As...

5. Save the file as aPortlet.jsp.

6. Right click aPortlet.jsp in the Application tree and select Generate Portlet... from the
context menu (Figure 3-10).

Figure 3-10 Generating a Portlet from index.jsp

The Portal Details dialog box appears (Figure 3-11). Note that /aPortlet.jsp appears in
the Content URI field.

Imp lement ing IPC wi th WSRP: Example

Using WSRP with WebLogic Portal 3-11

Figure 3-11 Portal Details Dialog Box for aPortlet

7. Select Minimizable, Maximizable, and Deletable and click Finish.

aPortlet.portlet will appear under producerWeb in the application tree.

8. When the Portlet Wizard closes, aPortlet.jsp should still be open. If it isn’t, double-click
it in the application tree to reopen it.

9. Open the File menu and select Save as.

10. In the Name field of the Save “aPortlet.jsp” as dialog box, enter bPortlet.jsp and click
Save.

11. On the JSP display, click Source View.

The JSP code appears (Figure 3-12).

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-12 Using WSRP with WebLogic Portal

Figure 3-12 JSP File Source View

12. Copy the code from Listing 3-1 into the JSP, replacing everything from <netui:html>
through </netui:html>. This code displays event handling from the backing file that you
will create and attach in a subsequent step.

Listing 3-1 New JSP Code for bPortlet.jsp

<netui:html>

 <% String event = (String)request.getAttribute("minimizeEvent");%>

 <head>

 <title>

 Web Application Page

 </title>

 </head>

 <body>

 <p>

 Listening for portlet A minimize event:<%=event%>

 </p>

Imp lement ing IPC wi th WSRP: Example

Using WSRP with WebLogic Portal 3-13

 </body>

</netui:html>

The source should look like example in Figure 3-13.

Figure 3-13 Updated JSP Source

13. Save the file either by clicking the save button or by opening the File menu and selecting
Save.

14. Repeat steps 6 and 7 to create a JSP portlet for bPortlet.

Create the Backing File
To create the backing file, do the following:

1. In producerWeb, expand the WEB-INF node and right-click src to open a context menu.

2. Select New>Folder.

The Create New Folder dialog box appears.

3. In Enter a new folder name, type backing and click OK.

The folder backing will appear under WEB-INF/src, as shown in Figure 3-14.

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-14 Using WSRP with WebLogic Portal

Figure 3-14 backing Folder Under WEB-INF/src
o.

4. Right-click backing and select New>Java Class.

The New File dialog box appears.

5. In Name, enter Listening.java and click Create.

The Source View of the new Java class appears (Figure 3-15).

Figure 3-15 Listening.java Source File

6. Copy the code from Listing 3-2 into Listening.java.

Listing 3-2 Backing File Code for listening.java

package backing;

Imp lement ing IPC wi th WSRP: Example

Using WSRP with WebLogic Portal 3-15

import com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;
import com.bea.netuix.events.Event;
import com.bea.netuix.events.GenericEvent;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;

public class Listening extends AbstractJspBacking

{
 private static boolean minimizeEventHandled = false;

 public void handlePortalEvent(HttpServletRequest request,
 HttpServletResponse response, Event event)

 {
 minimizeEventHandled = true;
 }

 public boolean preRender(HttpServletRequest request, HttpServletResponse
 response)
 {
 if (minimizeEventHandled){

 request.setAttribute("minimizeEvent","minimize event handled");
 }else{
 request.setAttribute("minimizeEvent",null);
 }

 // reset
 minimizeEventHandled = false;

 return true;
 }
}

The source should now look like that shown in Figure 3-16.

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-16 Using WSRP with WebLogic Portal

Figure 3-16 Listening.java with Updated Backing File Code

7. Save Listening.java either by opening the File menu and selecting Save or clicking the
save button.

Attach the Backing File
Now you will attach the backing file created in Create the Backing File to bPortlet. Do the
following:

1. In the Application tree, double-click bPortlet.portlet to open it.

2. In the Property Editor, under Portlet Properties, type backing.Listening into the Backing
File field, as shown in Figure 3-17 and press Tab.

Imp lement ing IPC wi th WSRP: Example

Using WSRP with WebLogic Portal 3-17

Figure 3-17 Attaching the Backing File in the Property Editor

3. Save the file.

Add the Event Handler to bPortlet
You now add the event handler to bPortlet. This handler will be set up so that it will listen for an
event on a specific portlet and fire an action in response to that event. To add the event handler,
do the following:

Note: bPortlet.portlet should be displayed in WebLogic Workshop. If it isn’t, locate it
under producerWeb in the application panel and double-click it.

1. In the Property Editor, click the ellipses button (...) next to Event Handlers.

The Event Handler dialog box appears (Figure 3-18).

Figure 3-18 Event Handler Dialog Box

2. Click Add Handler to open the Event Handler drop-down list.

3. Select Handle Portal Event.

The Event Handler dialog box expands to allow entry of more details (Figure 3-19).

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-18 Using WSRP with WebLogic Portal

Figure 3-19 Event Handler Dialog Box Expanded

4. Accept the defaults for all fields except Portlet.

5. In Portlet, click the ellipses button (...).

The Open dialog box for producerWeb appears.

6. Double-click aPortlet.portlet.

The Open dialog box closes and Portal_1 appears in the Listen to: list and the Portlet field
(Figure 3-20). Portal_1 is the definition label of the portlet to which the event handler will
listen.

Figure 3-20 Adding portlet_1

7. Click the Event drop-down control to open the list of portal events that the handler can
listen for and select onMinimize, as shown in Figure 3-21.

Imp lement ing IPC wi th WSRP: Example

Using WSRP with WebLogic Portal 3-19

Figure 3-21 Event Drop-down List

8. Click Add Action... to open the action drop-down list and select Invoke BackingFile
Method, as shown in Figure 3-22

Figure 3-22 Add Action Drop-down List

Invoke BackingFile Method appears on the Events list as a child to Handle Portal Event, as
shown in Figure 3-23.

Figure 3-23 Event List with Action Added

9. Open the Method drop-down control and select handlePortalEvent (Figure 3-24).

Figure 3-24 Adding the Backing File Method

10. Click OK.

The event handler is added. Note that the Event Handler field in the Property Editor now
reads “1 Event Handler.”

Test the Application
To test the application, do the following:

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-20 Using WSRP with WebLogic Portal

Note: Before you begin, ensure that all files are saved.

1. Create a portal called ipcLocal.portal by doing the following:

a. Right-click producerWeb and select New>Portal.

b. In the New File dialog box’s File Name field, enter ipcLocal.

c. Click Create.

When the portal is successfully created, its layout will appear in WebLogic Workshop.

2. Drag both aPortlet and bPortlet from the Data Palette onto the portal layout, as shown in
Figure 3-25.

Figure 3-25 Portal Layout with Portlets Added

3. Save the portal either by clicking the save button or opening the file menu and selecting
Save.

4. Open the Portal Menu and select Open Current Portal...

The portal will render in your browser (Figure 3-26).

Figure 3-26 ipcLocal Portal in Browser

Imp lement ing IPC wi th WSRP: Example

Using WSRP with WebLogic Portal 3-21

5. Minimize aPortlet.

Note the content change in bPortlet.

Figure 3-27 ipcLocal Portal with aPortlet Minimized

Summary
In this step, you added to the portal application components created in Step 1: Set Up Your
Environment two JSP portlets built on the Producer. One portlet, aPortlet, was fairly simple,
while the second portlet, bPortlet, surfaced a more complex JSP file, leveraged a backing file, and
contained a portal event handler. When you tested the Producer application, you observed how
the two portlets communicated when an event occurred on aPortlet. This is called local
interportlet communications.

Step 3: Create the Consumer Portlets
In this step, you will create two portlets on the Consumer, one a JSP portlet and the other a remote
portlet. As in Step 2: Create the Producer Portlets, the JSP portlet will surface the aPortlet.jsp
file while the remote portlet will consume bPortlet you created in Create the JSP Files and
Portlets.

Set Up the Exercise
Before you continue with this exercise, do the following:

Ensure that WebLogic Workshop is open and WebLogic Server is running.

Go to your file system and copy aPortlet.jsp from:

BEA_HOME \user_projects\applications\ipcWsrpTest\producerWeb

to

BEA_HOME\user_projects\applications\ipcWsrpTest\consumerWeb.

Note: This step is necessary to streamline this exercise and because WebLogic Workshop
does not allow you to copy files between folders. If you don’t want to copy

Portlet text has changed

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-22 Using WSRP with WebLogic Portal

aPortlet.jsp from producerWeb to consumer Web, you can create it from scratch,
as described in Create the JSP Files and Portlets.

Create the JSP Portlet
To create a the JSP portlet, do the following:

1. Right-click aPortlet.jsp and select Generate Portlet...

The Portlet Details dialog box appears, with /aPortlet.jsp already in the Content URI
field (Figure 3-28).

Figure 3-28 Portlet Details Dialog Box

2. Fill out the details as described here:

– Minimizable: select

– Maximizable: select

– Deletable: select.

3. Click Finish.

WebLogic Workshop refreshes and the new portlet layout appears, as shown in
Figure 3-29.

Imp lement ing IPC wi th WSRP: Example

Using WSRP with WebLogic Portal 3-23

Figure 3-29 New Portlet

Create the Remote Portlet
To create the remote portlet, do the following:

1. Right-click consumerWeb and select New>Portlet.

The New File dialog box appears.

2. In File Name, enter bPrime.portlet and click Create.

The Portlet Wizard is launched, showing the Select Portlet Type dialog box (Figure 3-28).

Figure 3-30 Select Portlet Type Dialog Box

3. Select Remote Portlet and click Next.

The Find Producer/Select Producer dialog box appears (Figure 3-31).

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-24 Using WSRP with WebLogic Portal

Figure 3-31 Find Producer/Select Producer Dialog Box

4. Select Find Producer and enter the producer’s service description (Web Services
Description Language, or WSDL) in the service description field. The WSDL communicates
interface information between web service Producers and Consumers, allowing you to
leverage a service’s capabilities without possessing the source code for the service. For this
exercise, enter:

http://localhost:7001/producerWeb/producer?WSDL

5. Click Retrieve.

After a few seconds, the dialog box refreshes, showing the Producer Details.

6. Click Register.

The Register dialog box appears (Figure 3-32).

Imp lement ing IPC wi th WSRP: Example

Using WSRP with WebLogic Portal 3-25

Figure 3-32 Register Dialog Box

7. In Producer Handle, enter myProducer and click Register.

The Find Producer dialog box reappears with myProducer in the Select Producer field.

8. Click Next.

The Select Portlet From List dialog box appears (Figure 3-33

Figure 3-33 Select Portlet From List Dialog Box

9. Select bPortlet and click Next.

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-26 Using WSRP with WebLogic Portal

The Proxy Portlet Details dialog box appears.

10. Click Finish.

The remote portlet will be created and will appear as bprime.portlet under
consumerWeb in the Application panel.

11. In the Property Editor for bPortlet, set Render Cachable to False (Figure 3-34) and press
Tab.

Figure 3-34 Setting Render Cachable Property to False

12. Save the portlet.

Summary
With the completion of the two Consumer portlets, you have now created all of the necessary
components to demonstrate interportlet communications between a remote and a local portlet. In
the next step, you will add the Consumer portlets to a Consumer portal and raise an event on one
portlet that will cause a reaction on the other.

Step 4: Test the Application
In this step, you will test the Consumer application to verify that minimizing aPortlet will change
the content of bPrime. You will create a portal and add the two portlets created in Step 3: Create
the Consumer Portlets. You will then build the application and view the portal in a browser.

Build the Portal
To create a portal for testing the application, do the following:

Note: Ensure all files are saved.

1. Right-click consumerWeb and select New>Portal.

2. In the New File dialog box’s File Name field, enter ipcConsumer.

3. Click Create.

Imp lement ing IPC wi th WSRP: Example

Using WSRP with WebLogic Portal 3-27

When the portal is successfully created, its layout will appear in WebLogic Workshop.

4. Drag both aPortlet and bPortlet (which identifies bPrime) from the Data Palette onto the
portal layout, as shown in Figure 3-35.

Figure 3-35 ipcConsumer Portal Layout

5. Save the portal.

Test the Portal
When the build completes, verify that an event on aPortlet can affect the content of bportlet by
doing the following:

1. Open the Portal menu and select Open Current Portal.

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-28 Using WSRP with WebLogic Portal

A browser opens displaying the ipcConsumer portal (Figure 3-36).

Figure 3-36 ipcConsumer Portal in a Browser

2. In aPortlet, click the minimize button.

aPortlet minimizes and the contents of bPortlet changes, as shown in Figure 3-37.

Figure 3-37 ipsConsumer Portal in Browser After Minimize Event

Special Considerations for Remote Portlets
If an event has one or more events that must be handled by the Producer (for example.,
netuix:invokePageFlowAction, netuix:invokeStrutsAction,
netuix:invokeJavaPortletMethod, and netuix:invokeBackingFileMethod), the
Producers adds a dispatchToRemotePortlet() method. This element indicates that the
Consumer must dispatch the event to the Producer.

Understanding Backing Files
The portal you created in Implementing IPC with WSRP: Example uses backing files to achieve
communication between two portlets. Backing files allow you to programatically add
functionality to a portlet by implementing (or extending) a Java class, which enables
preprocessing (for example, authentication) prior to rendering the portal controls.

What are Backing Files?
Backing files are simple Java classes that implement the
com.bea.netuix.servlets.controls.content.backing.JspBacking interface or extend
the com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking

Portlet text has changed

../../../workshop/docs81/doc/en/portal/java-class/com/bea/netuix/servlets/controls/content/backing/JspBacking.html
../../../workshop/docs81/doc/en/portal/java-class/com/bea/netuix/servlets/controls/content/backing/JspBacking.html

Unders tand ing Back ing F i l es

Using WSRP with WebLogic Portal 3-29

interface abstract class. The methods on the interface mimic the controls lifecycle methods
(see How Backing Files are Executed) and are invoked at the same time the controls lifecycle
methods are invoked.

Which Controls Support Backing Files?
At this time, the following controls support backing files:

Desktops

Books

Pages

Portlets

How Backing Files are Executed
All backing files are executed before and after the JSP is called. In its lifecycle, each backing file
calls these methods:

init()

handlePostBackData()

– raiseChangeEvents()

preRender()

dispose()

On every request, the following occurs:

1. All init() methods are called on all backing files on an “in order” basis (that is, in the order
they appear in the tree). This method gets called whether or not the control (that is, portal,
page, book, or desktop) is on an active page.

2. Next, if the operation is a postback and the control (a portlet, page, or book) is on a visible
page, all handlePostbackData() methods are called. In other words if a portlet is on a
page but its parent page is not active, then this method will not get called.

– If _nfpb="true" is set in the request parameter of any handlePostbackData()
methods called, raiseChangeEvents() is called. This method causes events to fire.

3. Next, all preRender() methods are called for all controls on an active (visible) page.

Estab l i sh ing I nt erpo r t l e t Communicat ions wi th Remote Po r t l e ts

3-30 Using WSRP with WebLogic Portal

4. Next, the JSPs get called and are rendered on the active page by the
<render:beginRender> JSP tag. Rendering is stopped with the <render:endRender>
tag.

5. Finally, the dispose() method gets called on the backing file.

Thread Safety with Backing Files
A new instance of a backing file is created per request, so you don't have to worry about thread
safety issues. New Java VMs are specially tuned for short-lived objects, so this is not the
performance issues it once was in the past. Also, JspContent controls support a special type of
backing file that allows you to specify whether or not the backing file is thread safe. If this value
is set to true, only one instance of the backing file is created and shared across all requests.

Using WSRP with WebLogic Portal 4-1

C H A P T E R 4

Working with Producers

The main focus of this chapter is to explain how to use WSRP with applications running in a
WebLogic Server or WebLogic Express domain. In addition, this chapter explains how to install
a producer into a WebLogic Server domain using WebLogic Workshop and how to specify which
portlets deployed in a producer application are available to consumers.

This chapter includes the following topics:

Using WSRP in a Basic WebLogic Server Domain

Using WSRP in a WebLogic Express Server Domain

Enabling Portlets on the Producer

Using WSRP in a Basic WebLogic Server Domain
This section explains how to configure a basic WebLogic Server domain as a WSRP producer.
The example in this section assumes that you have a functioning Struts module deployed in a
WebLogic Server domain.

Note: To complete the steps outlined in this section, you must have access to certain JAR files
that are part of a WebLogic Portal installation. If you do not have WebLogic Portal
installed, we recommend that you obtain a freely available installer from the BEA
Systems website and install WebLogic Portal in a separate, temporary area. You can then
copy the required JAR files to your producer web application and delete the temporary
installation area.

The goal of this procedure is to create a portlet in a producer that can be consumed remotely. To
achieve this, you need to modify the configuration of your Struts application, copy appropriate

Work ing w i th P roducers

4-2 Using WSRP with WebLogic Portal

JAR and TLD files to the application, and create a portlet that references the Struts module in
which your application resides.

By following this procedure, you can expose a Struts application as a remote portlet that a
WebLogic Portal application can consume, as illustrated in Figure 4-1.

Figure 4-1 WebLogic Portal consumer consumes Struts portlets from a WebLogic Server producer

This section contains the following sections:

Getting Started — Describes the example environment configuration.

Configuring the WSRP Producer — Explains how to configure the WebLogic Server
domain as a WSRP producer. This manual procedure explains which library and
configuration files are required and how to modify the configuration files to install the
producer.

Testing the Producer — Explains how to test the producer configuration.

Getting Started
Before you configure the producer, we assume you have taken the following steps:

You have created a WebLogic Server Domain. You can create this domain using the BEA
WebLogic Configuration Wizard. This domain does not contain any WebLogic Portal
components. If you are using WLX, create a WLX Basic Domain.

You have a working Struts application that is configured as a Struts module.

Note: We recommend that only experienced Struts and WebLogic Portal developers attempt
this procedure. It is easy to make simple mistakes that can be difficult to troubleshoot.
Whenever possible, we suggest ways to test your progress.

WebLogic
Server
Domain

WebLogic
Portal
Domain

Producer Consumer

Struts
Portlet

Remote
Portlet

WSRP

Us ing WSRP in a Basic WebLog ic Ser ve r Domain

Using WSRP with WebLogic Portal 4-3

As noted previously, it is crucial that you have a Struts module that you can deploy and run
successfully in the WebLogic Server environment before you configure the producer. Note that
the Struts application must be configured as a Struts module. For detailed information on
configuring Struts modules, refer to the Struts documentation. Basically, a module resides in a
subdirectory of the web application and has its own struts-config.xml file, whose path is
specified typically in the web.xml file.

Tip: Before trying to use your Struts application in a WSRP environment, try converting
the application to a local portlet running in a WebLogic Portal domain. If you can convert
the Struts application to a local, standalone portlet in a test environment, then your chances
of running it successfully with WSRP are improved. To do this, you need WebLogic
Workshop. You can download a free developer’s version of WebLogic Workshop from the
BEA website. For information on converting a Struts application to a portlet using
WebLogic Workshop, see: Integrating Struts Applications into a Portal.

Configuring the WSRP Producer
This section explains how to configure a basic WebLogic Server domain as a WSRP producer.
The goal of this procedure is to surface a Struts application as a remote portlet that can be
consumed by a WebLogic Portal application.

Modify the CLASSPATH for the WebLogic Server Domain
Note: Before attempting to expose a Struts portlet with WSRP, be sure the underlying

application is configured as a module and works properly before you attempt to configure
the WSRP producer. We also recommend that you try to create a functioning local portlet
using WebLogic Workshop. See “Getting Started” on page 4-2 for more information on
this recommendation.

1. Modify the CLASSPATH for the WebLogic Server domain. Open the following script file:

On Windows: DOMAIN_HOME\startWebLogic.cmd

On Linux: DOMAIN_HOME/startWebLogic.sh

Find the CLASSPATH definition, and add the following elements:

Note: Be sure there are no newlines within the CLASSPATH elements. Do not delete any of the
elements that are already assigned to the CLASSPATH.

On Windows:

%JAVA_HOME%\jre\lib\rt.jar;

%WL_HOME%\server\lib\webservices.jar;

../../../workshop/docs81/doc/en/portal/buildportals/appIntegratingStruts.html

Work ing w i th P roducers

4-4 Using WSRP with WebLogic Portal

%WL_HOME%\portal\lib\wsrp\wsrp-common.jar;

%WL_HOME%\server\lib\xbean.jar;

%WL_HOME%\server\lib\wlxbean.jar;

%WL_HOME%\portal\lib\netuix\system\netuix_schemas.jar;

%WL_HOME%\portal\lib\netuix\system\netuix_system.jar;

%WL_HOME%\server\lib\knex.jar;

%WL_HOME%\javelin\lib\javelin.jar

%WL_HOME%\common\lib\log4j.jar

On Linux:

$JAVA_HOME/jre/lib/rt.jar;

$WL_HOME/server/lib/webservices.jar;

$WL_HOME/portal/lib/wsrp/wsrp-common.jar;

$WL_HOME/server/lib/xbean.jar;

$WL_HOME/server/lib/wlxbean.jar;

$WL_HOME/portal/lib/netuix/system/netuix_schemas.jar;

$WL_HOME/portal/lib/netuix/system/netuix_system.jar;

$WL_HOME/server/lib/knex.jar;

$WL_HOME/javelin/lib/javelin.jar

$WL_HOME/common/lib/log4j.jar

Listing 4-1 shows an example of the completed CLASSPATH for a Windows system.

Listing 4-1 CLASSPATH Example for Windows

CLASSPATH=%WEBLOGIC_CLASSPATH%;%POINTBASE_CLASSPATH%;%JAVA_HOME%\jre\lib\

rt.jar;%WL_HOME%\server\lib\webservices.jar;%WL_HOME%\portal\lib\wsrp\

wsrp-common.jar;%WL_HOME%\server\lib\xbean.jar;%WL_HOME%\server\lib\

wlxbean.jar;%WL_HOME%\portal\lib\netuix\system\netuix_schemas.jar;

%WL_HOME%\portal\lib\netuix\system\netuix_system.jar;%WL_HOME%\server\

lib\knex.jar;%WL_HOME%\javelin\lib\javelin.jar;%WL_HOME%\common\lib\

log4j.jar;%CLASSPATH%

2. Create the portal-specific directories that you added to the CLASSPATH and copy the
appropriate JAR files into them. If you do not have a WebLogic Portal installation, you
need to install WebLogic Portal in a temporary area and copy the JAR files from there. See

Us ing WSRP in a Basic WebLog ic Ser ve r Domain

Using WSRP with WebLogic Portal 4-5

the note at the beginning of this section for more information on obtaining an installer. For
example, the JAR files wsrp-common.jar, netuix_schemas.jar, netuix_system.jar
must be on your system in the location referenced by the CLASSPATH.

3. Checkpoint: Restart your server to ensure that the startup script functions properly. Be sure
that your Struts application is deployed and works as well.

Modify the Struts Application
In this section, you will modify the Struts application. This process includes modifying
configuration files and adding/replacing files within the application. The configuration files need
to be updated to reference BEA-specific classes and tag library files. These components are
required for the application to function within a WSRP environment. For instance, the BEA tag
libraries ensure that URL rewriting for the portlet is handled properly.

1. It is recommended that you copy the root folder of your Struts application to a new folder. You
can then make changes to the new copy and preserve the original.

2. Modify the Struts application’s web.xml file as follows:

Be sure that the following elements are in your Web application’s web.xml file. If any of these
elements are missing, you must add them:

<!-- WSRP Servlet configuration -->

<servlet>
 <servlet-name>com.bea.wsrp.producer.WsrpServer</servlet-name>
 <servlet-class>com.bea.wsrp.producer.WsrpServer</servlet-class>
 <load-on-startup>2</load-on-startup>
</servlet>

<servlet>
 <servlet-name>com.bea.wsrp.logging.MessageMonitor</servlet-name>
 <servlet-class>com.bea.wsrp.logging.MessageMonitor</servlet-class>
 <init-param>
 <param-name>enableSoapMessageLogging</param-name>
 <param-value>true</param-value>
 </init-param>
 <load-on-startup>1</load-on-startup>
</servlet>

<!-- WSRP Servlet mapping -->

<servlet-mapping>
 <servlet-name>com.bea.wsrp.producer.WsrpServer</servlet-name>

Work ing w i th P roducers

4-6 Using WSRP with WebLogic Portal

 <url-pattern>/producer/*</url-pattern>
</servlet-mapping>

<servlet-mapping>
 <servlet-name>com.bea.wsrp.logging.MessageMonitor</servlet-name>
 <url-pattern>/monitor</url-pattern>
</servlet-mapping>

<!-- Standard Action Servlet Configuration (with debugging) -->

<servlet>

...

 <init-param>
 <param-name>moduleConfigLocators</param-name>
 <param-value>com.bea.struts.adapter.util.ModuleConfigLocator</param-value>
 </init-param>

...

</servlet>

<!-- WSRP Struts Adapter Tag Library Descriptors -->

<taglib>
 <taglib-uri>/WEB-INF/struts-html.tld</taglib-uri>
 <taglib-location>/WEB-INF/lib/struts-adapter-html.tld</taglib-location>
</taglib>

<taglib>
 <taglib-uri>/WEB-INF/struts-nested.tld</taglib-uri>
 <taglib-location>/WEB-INF/lib/struts-adapter-nested.tld</taglib-location>
</taglib>

<!-- Struts Tag Library Descriptors -->

<taglib>
 <taglib-uri>/tags/struts-bean</taglib-uri>
 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>

<taglib>
 <taglib-uri>/tags/struts-logic</taglib-uri>
 <taglib-location>/WEB-INF/struts-logic.tld</taglib-location>
</taglib>

<!-- COMMENTED in favor of WSRP adapter Tag Libraries -->

Us ing WSRP in a Basic WebLog ic Ser ve r Domain

Using WSRP with WebLogic Portal 4-7

<!--
<taglib>
 <taglib-uri>/tags/struts-html</taglib-uri>
 <taglib-location>/WEB-INF/struts-html.tld</taglib-location>
</taglib>

<taglib>
 <taglib-uri>/tags/struts-nested</taglib-uri>
 <taglib-location>/WEB-INF/struts-nested.tld</taglib-location>
</taglib>
-->

3. Copy the following TLD files to the WEB-INF\lib directory of the Struts application:

struts-adapter.jar

struts-adapter-html.tld

struts-adapter-nested.tld

You can find these files in:

%WL_HOME%\portal\lib\netuix\system\ext\web

4. Copy the following JAR files to the WEB-INF\lib directory of the Struts application:

netui-adapter.jar

netui-util.jar

netui.pageflow.jar

netui.scoping.jar

You can find these files in:

WL_HOME\samples\portal\portalApp\sampleportal\WEB-INF\lib

5. Copy the following JAR files to the WEB-INF\lib directory of the Struts application:

wsrp-producer.jar

wsrp-struts-adapter.jar

You can find these files in:

%WL_HOME\portal\lib\wsrp and
%WL_HOME\portal\lib\wsrp\adapters

6. Checkpoint: Start your server and redeploy the Struts application now to test that it still
works. If the application does not work properly, you need to recheck the preceding steps.

Work ing w i th P roducers

4-8 Using WSRP with WebLogic Portal

7. Copy the contents of Listing 4-2 and paste it into a file named
wsrp-producer-config.xml in the Struts applications’s WEB-INF directory.

Listing 4-2 wsrp-producer-config.xml

<?xml version="1.0" encoding="UTF-8"?>
<wsrp-producer-config
 xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-config/8.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/weblogic/wsrp-producer-config/8
.0 wsrp-producer-config.xsd">
 <description>
 This is a WSRP Producer
 </description>
 <!-- This element describes the capabilities of this producer. Set
 the secure attribute to "true" if you require this producer offer
 any port over SSL. If this webapp is portal-enabled, you may
 enable registration and portlet management services by setting the
 required attribute to "true". -->
 <service-config>
 <registration required="false" secure="false"/>
 <service-description secure="false"/>
 <!-- Set accepts-mime to true to more efficiently process uploaded files

when the consumer is a WebLogic Portal. -->
 <markup secure="false" rewrite-urls="true"

transport="string" accepts-mime="false"/>
 <portlet-management required="false" secure="false"/>
 </service-config>
 <supported-locales>
 <locale>en</locale>
 <locale>en-US</locale>
 </supported-locales>
</wsrp-producer-config>

Note: Be sure the registration required and portlet-management required
parameters are set to false.

8. Add the following line to the struts-config.xml file of your Struts module.
<controller processorClass=

"com.bea.struts.adapter.action.AdapterRequestProcessor"/>

Us ing WSRP in a Basic WebLog ic Ser ve r Domain

Using WSRP with WebLogic Portal 4-9

9. Create a portlet to surface the Struts actions that you want to expose as a remote portlet to
consumers. Place the portlet in a .portlet file in the directory containing the module you
want to surface.

For example, if you have a welcome.do action in a module called echo in the /echo
subdirectory, the portlet file looks like the following:

Listing 4-3 Example Portlet

<?xml version="1.0" encoding="UTF-8"?>

 <portal:root

xmlns:html="http://www.w3.org/1999/xhtml-netuix-modified/1.0.0"

xmlns:netuix="http://www.bea.com/servers/netuix/xsd/controls/netuix/1.0.0"

xmlns:portal="http://www.bea.com/servers/netuix/xsd/portal/support/1.0.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/netuix/xsd/portal/support/1

.0.0 portal-support-1_0_0.xsd">

 <netuix:portlet definitionLabel="portlet_sayHello" title="WSRP Echo

Example">

 <netuix:titlebar>

 <netuix:minimize/>

 <netuix:maximize/>

 </netuix:titlebar>

 <netuix:content>

 <netuix:strutsContent action="welcome" module="/echo"/>

 </netuix:content>

 </netuix:portlet>

 </portal:root>

10. Checkpoint: Start the server (if it isn’t running), redeploy the Struts application, and make
sure it functions properly.

Testing the Producer
This section describes a procedure for testing your producer configuration.

1. Start WebLogic Server with the new CLASSPATH setting.

Work ing w i th P roducers

4-10 Using WSRP with WebLogic Portal

2. Use WebLogic Server Console to deploy (or redeploy) the Struts web application.

3. Open a web browser and test the Struts web module that you want to surface. The module
should work normally.

4. Test the WSRP producer by entering its WSDL URL in a browser. For example, if your
Struts application is called myStrutsApp, the WSDL URL is:

http://host:port/myStrutsApp/producer?wsdl

where host is the IP address of the server machine, port is the server’s listening port
number, and myStrutsApp is the root name of the Struts web application.

If this test is successful, an XML Webservice WSDL file is returned that looks similar to
the file shown in Figure 4-2.

Figure 4-2 XML Webservice WSDL File

Consuming the Producer Portlet
1. On another machine, create a WebLogic Portal Domain. You can use the WebLogic

Configuration Wizard to do this. If you cannot use another machine, be sure the server’s listen
port does not conflict with the port used by the producer server. If necessary, you can obtain
a free developer’s version of WebLogic Portal by visiting the BEA website.

Usi ng WSRP in a WebLog ic Express Ser ve r Domain

Using WSRP with WebLogic Portal 4-11

2. Use WebLogic Workshop to create a Portal Application and associate the application with
the new WebLogic Portal Domain. If necessary, you can obtain a free developer’s version of
WebLogic Workshop by visiting the BEA website.

3. Create a new Portal Web Project to the application. This application is the consumer
application.

4. Create a portal in the consumer application.

5. Start the server that hosts the consumer.

6. Create a remote portlet in the Portal Web Project you just created. Point the WSDL to the
Struts application on the producer. For example:

http://producerHost:producerPort/StrutsApp/producer?WSDL

Where producerHost:producerPort is the IP address and port number of the machine
hosting the producer, and StrutsApp is the name of the context directory for the Struts
application that contains the producer portlet(s) that you wish to surface.

7. On the consumer, add the remote portlet to the portal and open the portal. The Struts portlet
you created on the producer appears in the portal.

Using WSRP in a WebLogic Express Server Domain
You can configure a WebLogic Express (WLX) server domain as a WSRP producer. To do this,
follow the same steps outlined in the previous section, “Using WSRP in a Basic WebLogic Server
Domain” on page 4-1. The procedures for configuring a WLX domain and a WebLogic Server
domain as a producer are the same.

Enabling Portlets on the Producer
A Producer can have any number of portlets built on it, sometimes into the thousands. By default,
all of these portlets are available to consumers as remote portlets. You can, however, specify
which portlets are actually available to consumers by setting the offerPortlets property in the
Portlet Property Editor.

Work ing w i th P roducers

4-12 Using WSRP with WebLogic Portal

Figure 4-3 Proxy Portlet Property Editor—Offer as Remote Property Selected

For instructions on how to set this property, please refer to Enabling/Disabling a Portlet for
Remote Consumption in the WebLogic Workshop online help system at:

http://edocs.bea.com/workshop/docs81/doc/en/portal/buildportlets/portletEnable
.html

../../../workshop/docs81/doc/en/portal/buildportlets/portletEnable.html
../../../workshop/docs81/doc/en/portal/buildportlets/portletEnable.html
../../../workshop/docs81/doc/en/portal/buildportlets/portletEnable.html

Using WSRP with WebLogic Portal 5-1

C H A P T E R 5

Best Practices for Implementing WSRP

This section describes programming and tuning practices that you should follow to ensure the
best performance of your WSRP-compliant portlets, Producers, and Consumers. It contains the
following guidelines:

Portlet Programming Guidelines

Performance Tuning Recommendations

Portlet Programming Guidelines
Please follow these guidelines when programming WSRP-compliant portlets:

Requests and Sessions

– Don’t rely on request attributes across portlets.

– If your portlets share a session, host them on the same Producer.

Security

– To secure messages, implement SSL on any port through which the Producer will be
offered.

– Specify true for all secure attributes in the <service-config> element of the
Producer project’s WEB-INF/wsrp-producer-config.xml file (for more information,
please refer to Establishing WSRP Security).

Note: If you make any changes to wsrp-producer-config.xml, you will need to
redeploy or bounce the server before the changes become active.

Best P rac t ices f or Imp lement ing WSRP

5-2 Using WSRP with WebLogic Portal

– To manage user identity, rely on single-sign-on (SSO), which is set up by default in
WebLogic Portal and then have users login to the Consumer portal. WebLogic Portal
will manage SSO automatically. Information sharing between the Consumer and the
Producer is facilitated by using an external Profile service that can run with the user
identity as the key.

– To secure resources on the producer, see “Setting Security Constraints on Resources”
on page 9-2.

URLs

– When creating URLs in a portlet, do not use direct links; instead use WebLogic Portal
tags and APIs to create URLs.

Look and Feel

– Let portlets use standard style attributes and specify those attributes on the Portal skins.

Backing Files

– You can use backing files on the Consumer side (remote-portlet) to take some action
based on session / request objects or property sets.

Caching WSRP Portlets

– Producer - Use <wl:cache> or p13nCache wherever possible.

– Consumer (remote-portlet) - Use 'RenderCacheable' attribute if you want to cache the
remote portlet's rendered HTML. However, this is a session scoped cache and is not
configurable.

Exception Handling

– Producer; to prevent stack traces from appearing, errors should be handled on the
Producer side and a suitable business message provided.

– Consumer (remote-portlet); in WebLogic Workshop, with your remote portlet open, do
the following (in this order):

Click the Document Structure tab of the remote portlet.

Click remote Content.

Click Property Editor.

Type in the Error URI

Page Flow

Pe r f ormance Tun ing Recommendat ions

Using WSRP with WebLogic Portal 5-3

– If using a Portal Web application as your Producer, all the portal artifacts are available
in the web application; however, for any WSRP Producer that is not a portal web
application, you cannot use portal features such as property sets. If you need to access
portal features in your Producer, use a Portal Web application.

Development on a WebLogic Server Domain

– For detailed information on using WSRP with a WebLogic Server domain, see Using
WSRP in a Basic WebLogic Server Domain.

Performance Tuning Recommendations
To ensure optimal performance of your Producers and Consumers, we recommend the following
performance tuning guidelines:

On the Producer side:

– Enable attachment support by adding <markup transport="attachment"/> to
WEB-INF/wsrp-producer-config.xml, as shown in Listing 5-1.

Listing 5-1 Enabling Attachment Support

<?xml version="1.0" encoding="UTF-8"?>

wsrp-producer-config

 xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-config/8.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.bea.com/servers/weblogic/wsrp-producer-conf

ig/8.0

wsrp-producer-cnfig.xsd">

 <service-config>

 <registration required="false" secure="true"/>

 <service-description secure="true"/>

 <markup secure="true" rewrite-urls="true" transport="attachment"/>

 <portlet-management required="false" secure="true"/>

 </service-config>

Best P rac t ices f or Imp lement ing WSRP

5-4 Using WSRP with WebLogic Portal

– Let the Producer create correct URLs by using Consumer-supplied URL templates.
This is the default practice.

On the Consumer side

– Accept the default behavior to enable caching for remote portlets.

– Enable forked rendering for remote portlets.

– Set connection timeout. See “Setting a Timeout Value on Remote Portlets” on page 2-4
for detailed information on setting timeouts.

– Disable logging

– Undeploy MessageMonitor servlet from WEB-INF/web.xml.

Avoid Moving Producers
When you add producers and create remote portlets, the producer registry
(WEB-INF/wsrp-producer-registry.xml) and the portal framework database tables contain
specific information about the producer, such as its WSDL address and the addresses of ports
described in the WSDL. If you propagate or move the producer from one environment to another,
this data becomes invalid. In this case, consumers whose proxy portlets reference the producer’s
portlets will no longer be able to find them.

Note: Currently, WebLogic Portal only supports a shared registration model, where staging and
production environments share the same producer registration handle. For more
information on shared registration and propagating WSRP producers, see the Production
Operation User’s Guide.

Tip: You can update the database entries for a producer programmatically. The following class
provides methods to get and update producer information:

com.bea.wsrp.consumer.management.producer.ProducerManager

../prodOps/index.html

Upgrad ing S imple P roducers f rom Se rv ice Pack 3

Using WSRP with WebLogic Portal 5-5

Upgrading Simple Producers from Service Pack 3
When upgrading a simple producer from WebLogic Portal Service Pack 3 to a later service pack
version, WSRP producer web application libraries are not automatically updated. If you upgrade
from SP3 to a later service pack version, you must perform the following steps to ensure that your
simple producer continues to function properly as a WSRP producer.

Note: A simple producer is a non-portal web application. For more information on simple
producers, see “Producers” on page 1-4.

1. Perform the normal procedures for upgrading a WebLogic Portal application from SP3 to a
later service pack version.

2. Copy the the following files into the WEB-INF/lib directory of your web application:

BEAHOME/weblogic81/portal/lib/netuix/web/netui-adapter.jar
BEAHOME/weblogic81/portal/lib/netuix/system/ext/web/struts-adapter.jar
BEAHOME/weblogic81/portal/lib/netuix/system/ext/web/struts-adapter-html.tld
BEAHOME/weblogic81/portal/lib/netuix/system/ext/web/struts-adapter-naming.tld
BEAHOME/weblogic81/portal/lib/netuix/system/ext/web/struts-adapter-nested.tld
BEAHOME/weblogic81/portal/lib/netuix/system/ext/web/struts-adapter-tiles.tld
BEAHOME/weblogic81/portal/lib/wsrp/wsrp-producer.jar
BEAHOME/weblogic81/portal/lib/wsrp/adapters/wsrp-jpf-adapter.jar
BEAHOME/weblogic81/portal/lib/wsrp/adapters/wsrp-struts-adapter.jar

3. Redeploy the WSRP producer web application.

Other Guidelines
User sessions on Consumer web applications might be lost if session cookies between Producers
and Consumers overlap. To prevent this, open weblogic.xml, configure your web applications
to include the domain name and web application path for session cookies. Please refer to
“session-descriptor” in “weblogic.xml Deployment Descriptor Elements” at:

http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html#1038173

for details on how to set the domain name and path.

../../../wls/docs81/webapp/weblogic_xml.html#1038173
../../../wls/docs81/webapp/weblogic_xml.html
../../../wls/docs81/webapp/weblogic_xml.html#1038173

Best P rac t ices f or Imp lement ing WSRP

5-6 Using WSRP with WebLogic Portal

Using WSRP with WebLogic Portal 6-1

C H A P T E R 6

Implementing Custom Data Transfer

Custom data transfer allows portlet developers to exchange arbitrary data between Producers and
Consumers; for example,

You are a portal developer building a portal with a set of location-sensitive portlets
deployed on one/more producers. You would like to supply a zip code to each of these
portlets at request time so that each portlet can use this zip code to generate location-aware
markup.

You want to send arbitrary data such as theme or style information or user profile data to
portlets.

Custom data transfer allows you to easily resolve these situations and many others like them.
Both Simple Producers and Complex Producers can take advantage of this feature.

This section describes how to implement custom data transfer. It includes information on these
subjects:

Custom Data Transfer Interfaces

Implementing the Interfaces

Custom Data Transfer Interfaces
Custom data transfer introduces the following “marker” interfaces:

com.bea.wsrp.ext.holders.InteractionRequestState

Allows the Consumer to send some arbitrary data to the Producer when an interaction
(such as a form submission) is taking place.

Imp lement ing Cus tom Data Trans fe r

6-2 Using WSRP with WebLogic Portal

com.bea.wsrp.ext.holders.InteractionResponseState

Allows the Producer to return some arbitrary data to the Consumer after an interaction
took place.

com.bea.wsrp.ext.holders.MarkupRequestState

Allows the Consumer to send some arbitrary data to the Producer when a portlet is being
refreshed.

com.bea.wsrp.ext.holders.MarkupResponseState

Allows the Producer to return some arbitrary data to the Producer after portlet is rendered.

Implementing the Interfaces
The following example illustrates custom data transfer using
com.bea.wsrp.ext.holders.SimpleStateHolder. This class provides a default
implementation of the above interfaces. You can use this class to exchange simple name-value
pairs of data.

Implementing Interfaces in a Complex Producer: Example
To send data, you need to create an instance of this instance and place it in the request as a request
attribute. The Producer/Consumer then transmits that object across the wire and make it available
as a request attribute on the other end.

In the following example, we are sending a zip code to a remote portlet.

Step 1: Set Up the Environment
Set up your environment by doing the following:

Note: For instructions on how to create the components required by the following steps, “Step
1: Set Up Your Environment” on page 3-5 in chapter “Establishing Interportlet
Communications with Remote Portlets”.

1. Either create a domain and a portal application or use an existing domain and portal
application. If you are creating a new domain and portal application, name the domain
custXferDomain and the application custXfer. Be sure to point the application at
custXferDomain.

2. Create two portal web applications under the portal application custXfer and name them
Producer and Consumer, respectively.

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-3

Step 2: Create the Producer JSP and Portlet
With the environment in place, you will next create a JSP file on the Producer and a portlet to
surface that file. This JSP file will get the state from the request. To do so, do the following:

Note: The following procedure assumes that WebLogic Workshop is running. If it isn’t, launch
it now.

1. Right-click Producer in the application tree to open the context menu and select New>JSP
File (Figure 6-1).

Figure 6-1 Creating a New JSP File

The New File dialog box appears (Figure 6-2).

Imp lement ing Cus tom Data Trans fe r

6-4 Using WSRP with WebLogic Portal

Figure 6-2 New File Dialog Box for New JSP

2. In File name, enter zipTest.jsp and click Create.

The default JSP file appears, in Design View, in the middle pane of WebLogic Workshop
(Figure 6-3)

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-5

Figure 6-3 Default JSP in Design View

3. Click Source View to display the JSP source (Figure 6-4).

Imp lement ing Cus tom Data Trans fe r

6-6 Using WSRP with WebLogic Portal

Figure 6-4 Default JSP in Source View

4. Copy the code in Table 6-1 and replace the contents of the JSP source with it.

Listing 6-1 Code to Get State from the Request

<%@ page import ="com.bea.wsrp.ext.holders.SimpleStateHolder,

 com.bea.wsrp.ext.holders.MarkupRequestState"%>

<%

 SimpleStateHolder state = (SimpleStateHolder)

 request.getAttribute(MarkupRequestState.KEY);

 String zip = (String) state.getParameter("zipCode");

%>

<%=zip%>

When complete, the Source View should look like that shown in Figure 6-5.

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-7

Figure 6-5 New JSP Source for zipTest.jsp

5. Save the file.

6. Right-click zipTest.jsp in the application tree and select Generate Portlet...

The Portlet Details dialog box appears. Note that zipTest.jsp already appears in the
Content URI field (Figure 6-6).

Imp lement ing Cus tom Data Trans fe r

6-8 Using WSRP with WebLogic Portal

Figure 6-6 Portlet Details with zipTest.jsp Included

7. In State, select Minimizable and Maximizable and click Finish.

The portlet zipTest.portlet will be created and appear in the application tree
(Figure 6-7).

Figure 6-7 New JSP Portlet, zipTest.portlet, Added

Step 3: Federate zipTest.portlet to the Consumer
Next, you need to set up a remote portlet on the Consumer to surface in zipTest.portlet from
the Producer. Use the following steps.

Note: Before you begin, start WebLogic Server by opening the tools file and selecting
WebLogic Server>Start WebLogic Server.

1. Right-click Consumer in the application tree and select New>Portlet.

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-9

The New File dialog box appears.

2. In File name, enter zipPrime.portlet and click Create.

The Select Portlet Type dialog box appears (Figure 6-8).

Figure 6-8 Select Portlet Type Dialog Box

3. Select Remote Portlet and click Next.

The Find/Select Producer dialog box appears (Figure 6-9).

Imp lement ing Cus tom Data Trans fe r

6-10 Using WSRP with WebLogic Portal

Figure 6-9 Find/Select Producer Dialog Box

4. Select Find Producer and, in the field provided, enter:

http://localhost:7001/Producer/producer?WSDL

and click Retrieve.

After a few moments, the Find/Select Producer dialog box refreshes, displaying the
Producer details, as shown in

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-11

Figure 6-10 Producer Retrieved

5. Click Register.

The Register dialog box appears (Figure 6-11).

Figure 6-11 Register Dialog Box

6. In Producer Handle, enter BEA and leave the other fields blank.

7. Click Register.

Imp lement ing Cus tom Data Trans fe r

6-12 Using WSRP with WebLogic Portal

The Find/Select Producer dialog box reappears with BEA in the Select Producer field.

8. Click Next.

The Select Portlet from List dialog box appears (Figure 6-12).

Figure 6-12 Select Portlet from List Dialog Box

9. Select zipTest and click Next.

The Proxy Portlet Details dialog box appears (Figure 6-13).

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-13

Figure 6-13 Proxy Portlet Details Dialog Box

10. Click Finish.

The Proxy Portlet Details dialog box closes and WebLogic Workshop reappears, showing
the design view of the new portlet (Figure 6-14).

Figure 6-14 New Remote Portlet zipPrime.portlet in Design View

11. If necessary, save the file.

Imp lement ing Cus tom Data Trans fe r

6-14 Using WSRP with WebLogic Portal

Step 4: Create and Attach a Backing File to the Consumer
In this step, you will create a backing file called CustomDataBacking.java on the Consumer
side and attach that backing file you created in Step 3: Federate zipTest.portlet to the Consumer.
Use the following procedure:

1. Expand the Consumer node to show WEB-INF/src and right-click it to open the context
menu, and select New>Folder, as shown in Figure 6-15.

Figure 6-15 Creating a New Folder in WEB-INF/src

The Create New Folder dialog box appears (Figure 6-16).

Figure 6-16 Create New Folder Dialog Box

2. In Enter new folder name, type backing and click OK.

The backing folder will appear in the application tree under WEB-INF/src, as shown in
Figure 6-17.

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-15

Figure 6-17 backing Folder Under WEB-INF/src

3. Right-click backing to open the context menu and select New>Java Class (Figure 6-18).

Figure 6-18 Creating a New Java Class

The New File dialog box appears.

4. In File name, enter CustomDataBacking.java and click Create.

A backing file template opens in WebLogic Workshop (Figure 6-19).

Imp lement ing Cus tom Data Trans fe r

6-16 Using WSRP with WebLogic Portal

Figure 6-19 Backing File Template

5. Copy the code in Table 6-2 into the template and save the file.

Listing 6-2 Adding an Instance of SimpleStateHolder

package backing;

import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import com.bea.netuix.servlets.controls.content.backing.AbstractJspBacking;
import com.bea.wsrp.ext.holders.MarkupRequestState;
import com.bea.wsrp.ext.holders.SimpleStateHolder;

public class CustomDataBacking extends AbstractJspBacking
{

 public boolean preRender(HttpServletRequest request,
 HttpServletResponse response)
 {
 SimpleStateHolder state = new SimpleStateHolder();
 state.addParameter("zipCode", "80501");
 request.setAttribute(MarkupRequestState.KEY, state);

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-17

 return true;
 }
}

The template should now look like the example in Figure 6-20.

Figure 6-20 CustomDataBacking.java in WebLogic Workshop

6. Double-click zipPrime.portlet to display it in WebLogic Workshop.

7. Add the backing file to zipPrime.portlet by typing backing.CustomDataBacking in
the Backing File field in the Property Editor, as illustrated in Figure 6-21 and press Tab.

Figure 6-21 Adding a Backing File

Imp lement ing Cus tom Data Trans fe r

6-18 Using WSRP with WebLogic Portal

Step 5: Test the Application
With the application components in place, you can now test the application. If the test is
successful, the zip code 80501, provided by the backing file created on the Consumer, will appear
in the portlet when it is rendered.

To test the application, do the following:

1. Right-click Consumer in the application tree to open the context menu and select New>Portal.

The New File dialog box appears.

2. In File name, enter zipTest.portal and click Create.

The portal is created and appears in the WebLogic Workshop design view (Figure 6-22).

Figure 6-22 zipTest.portal in WebLogic Workshop Design View

3. Drag zipTest from the data palette into the portal (you can place it in either placeholder; in
Figure 6-23, it is in the right-hand placeholder).

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-19

Figure 6-23 zipTest.portlet Added to zipTest.portal

4. Save the portal.

5. Open the Portal menu and select Open Current Portal.

A browser opens, displaying the portal (this might take a few moments). Note the zip code
80501 appearing in the portlet (Figure 6-24).

Figure 6-24 zipTest.portal Successfully Rendered

Using this Example in a Simple Producer
The procedure described in Implementing Interfaces in a Complex Producer: Example applies
only to complex producers. If you want to use the preceding example in a simple producer, you

Zip Code Appears

Imp lement ing Cus tom Data Trans fe r

6-20 Using WSRP with WebLogic Portal

must make a few modifications. To implement the interfaces in a simple Producer, use this
procedure:

1. In the application custXfer, create a new project; however, instead of a Portal Web Project,
make this project a simple Web Project and call it simpleProducer. See Step 1: Set Up the
Environment for instructions.

2. Right-click simpleProducer in the application tree to open the context menu and select
Install>WSRP Producer (Figure 6-25.

Figure 6-25 Installing a WSRP Producer

The application tree will update and show wsrp-producer-config.xml under the
simpleProducer/WEB-INF directory.

3. In simpleProducer create a Java Page Flow by doing the following:

a. Right-click simpleProducer to open the context menu and select New>Page Flow.

The Page Flow Wizard - Page Flow Name dialog box appears (Figure 6-26).

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-21

Figure 6-26 Page Flow Wizard - Page Flow Name Dialog Box

b. In Page Flow Name, enter ZipTestPF. Note that Controller Name becomes
zipTestController.jpf.

c. Click Next.

The Page Flow Wizard - Select Page Flow Type dialog box appears (Figure 6-27).

Imp lement ing Cus tom Data Trans fe r

6-22 Using WSRP with WebLogic Portal

Figure 6-27 Page Flow Wizard - Select Page Flow Type Dialog Box

d. Select Basic page flow and click Create.

WebLogic Workshop reappears, showing the basic page flow in the Flow View
(Figure 6-28).

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-23

Figure 6-28 Basic Page Flow in Flow View

Note that the page flow now includes the file index.jsp.

4. Double-click the index.jsp icon.

index.jsp opens in the Design View.

5. Click Source View to display the index.jsp source (Figure 6-29).

Imp lement ing Cus tom Data Trans fe r

6-24 Using WSRP with WebLogic Portal

Figure 6-29 index.jsp Source View

6. Copy the code in Listing 6-3 into index.jsp, overwriting its entire default content.

Listing 6-3 Using a Page Flow Portlet for a Simple Producer

<%@ page import="com.bea.wlw.netui.pageflow.scoping.ScopedRequest"%>

<%@ page import ="com.bea.wsrp.ext.holders.SimpleStateHolder,

 com.bea.wsrp.ext.holders.MarkupRequestState"%>

<%

 SimpleStateHolder state = (SimpleStateHolder)

 ((ScopedRequest) request).getOuterRequest().

 getAttribute(MarkupRequestState.KEY);

 String zip = (String) state.getParameter("zipCode");

%>

<%=zip%>

The Source View for index.jsp should now look like Figure 6-30.

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-25

Figure 6-30 Updated index.jsp in WebLogic Workshop

7. Save the file.

8. Right-click ZipTestPFController.jpf in the application tree to open the context menu
and select Generate Portlet...

The Portlet Details dialog box appears (Figure 6-31).

Imp lement ing Cus tom Data Trans fe r

6-26 Using WSRP with WebLogic Portal

Figure 6-31 Portlet Details for a JPF Portlet

Note that /zipTestPF/ZipTestPFController.jpf has already been entered in the
Content URI field.

9. Select Minimizable and Maximizable and click Finish.

The portlet is created; note that ZipTestPFController.portlet now appears under
simpleProducerWeb/WEB-INF(Figure 6-32).

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-27

Figure 6-32 ZipTestPFController Added to Application Tree

10. Federate ZipTestPFController.portlet to the Consumer portal web application
following the steps specified above in Step 3: Federate zipTest.portlet to the Consumer.
Make the following changes within the procedure:

Note: Ensure that WebLogic Server is running.

– File name: simpleProducer

– Find Producer: http://localhost:7001/simpleProducer/producer?WSDL

Note: Registration is not required (Requires Registration=false) since you are federating
a portlet from a simple producer; therefore, you don’t need to open the
Registration dialog box as you would for a complex producer.

– Select Portlet from List: ZipTestPFController

– Producer Handle: USPS

11. Attach the backing file CustomDataBacking.java by typing
backing.CustomDataBacking in the Backing File field in the Property Editor. Press Tab.

12. Save the portlet file.

13. Test the application by doing the following:

a. Under the Consumer web application, open zipTest.portal.

b. Drag ZipTestPFController.portlet from the Data Palette to zipTest.portal.

Imp lement ing Cus tom Data Trans fe r

6-28 Using WSRP with WebLogic Portal

c. Save the portal file.

d. Open the Portal menu and select Open Current Portal.

A browser will open and, after a few moments, the portal will appear, showing the zip
code 80501, as shown in (Figure 6-33).

Figure 6-33 zipTest.portal in a Browser

Deploying Your Own Interface Implementations
If you want to deploy your own implementations of these interfaces, consider the following
practices:

The implementation must be serializable.

The same class version of the implementation must be deployed on both the Producer and
Consumer. If the versions are different, the implementations must make sure to have the
same serialVersionUID for all versions.

Sending large amounts of data may have performance implications.

Implementation Rules
Whether a Consumer or Producer can send custom data depends on the type of request. These
rules apply:

Consumers can always send InteractionRequestState. There are no exceptions.

Producers can always return InteractionResponseState. There are no exceptions.

Consumers can send MarkupRequestState only when there is a need to refresh the
portlet. For example, if caching is enabled on the remote portlet, Consumer may not
always send a request to the Producer to generate markup.

Consumers cannot return MarkupResponseState if any the following options are enabled:

Zip Code Appears

Imp lement ing the In te r faces

Using WSRP with WebLogic Portal 6-29

– Returning markup as an attachment

– Local proxy

In both the cases, the Producer invokes the portlet (typically JSPs) after creating the SOAP
response, which is too late to update the SOAP response.

Imp lement ing Cus tom Data Trans fe r

6-30 Using WSRP with WebLogic Portal

Using WSRP with WebLogic Portal 7-1

C H A P T E R 7

Local Proxy Support

Local proxy support allows co-located Producer and Consumer web applications to short-circuit
network I/O and “SOAP over HTTP” overhead. When you enable this feature, the Consumer tries
to determine if the Producer is deployed on the same server and, if it discovers that the Producer
is so deployed, it uses a local proxy to send requests to the Producer. If the producer is not
deployed on the same server, the Consumer uses the default remote proxy. Remote Producers can
still be invoked as usual even when the local proxy support is enabled.

This section describes how to implement local proxy support. It includes information on the
following subjects:

Why Use Local Proxy Mode?

Deployment Configuration

When to Use and Not Use

Why Use Local Proxy Mode?
Local proxy mode provides a number of advantages over the default remote proxy when you are
working with co-located web applications. Among the most significant are that it:

Avoids local network I/O.

Avoids serialization and deserialization of SOAP.

Invokes remote portlets using the same execute thread.

Writes portlet markup directly to the response without intermediate buffers.

Local Pr ox y Suppo r t

7-2 Using WSRP with WebLogic Portal

Enables large file uploads without causing OutOfMemoryErrors.

Additionally, by enabling local proxies, customers can take advantage of the decoupling benefits
of WSRP without incurring its performance overhead.

Deployment Configuration
To take advantage of local proxy support, do the following:

1. Deploy the Producer and Consumer web applications on the same server. These applications
could be in the same enterprise application or across different enterprise applications.

2. Enable local proxy support by setting <enable-local-proxy> to “true” in
WEB-INF/wsrp-producer-registry.xml in the Consumer web application, as shown in
Listing 7-1:

Listing 7-1 Setting <enable-local-proxy> to “true”

<wsrp-producer-registry

 xmlns="http://www.bea.com/servers/weblogic/wsrp-producer-registry/8.0"

 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://www.bea.com/servers/weblogic/wsrp-producer-

 registry/8.0 wsrp-producer-registry.xsd">

 <!-- Upload limit (in bytes) -->

 <upload-read-limit>1048576</upload-read-limit>

 <!-- Timeout (in milli seconds) -->

 <connection-timeout-secs>120000</connection-timeout-secs>

 <!-- Enable local proxy -->

 <enable-local-proxy>true</enable-local-proxy>

...

</wsrp-producer-registry>

You can also enable local proxy support by setting a system property
com.bea.wsrp.proxy.LocalProxy.enabled = true. If this system property is set to true, it
will override the <enable-local-proxy> setting in
WEB-INF/wsrp-producer-registry.xml.

When to Use and Not Use

Using WSRP with WebLogic Portal 7-3

Local proxy support is disabled by default in web application templates.

When to Use and Not Use
As powerful a tool as local proxy support is, you should only use it when it will benefit your
application. The most common reasons for using local proxy support are:

When portlets are deployed in self-contained web applications on the same server. The
local proxy support provides isolated portlet deployment. In this mode, each portlet web
application can be deployed as a WSRP producer. Portlets can therefore be loaded by
separate class loaders and have their own servlet context and session. Portlet web
applications can de deployed/undeployed without affecting the portal web application.

When you don’t need advanced monitoring software between the Producer and Consumer

On the other hand, you shouldn’t use local proxy support when interoperating with non-BEA
Producers and Consumers.

Local Pr ox y Suppo r t

7-4 Using WSRP with WebLogic Portal

Using WSRP with WebLogic Portal 8-1

C H A P T E R 8

Monitoring and Logging Remote Portlet
Performance

You can monitor activity between Producers and Consumers by using the message monitor
servlet installed with WebLogic Workshop. You can also create custom logs to display specific
information about WSRP sessions.

This section contains information on these subjects:

Monitoring Producer/Consumer Message Logs

Creating Custom Logs

Monitoring Producer/Consumer Message Logs
By default, the message monitor is enabled in the web.xml file, as shown in Listing 8-1

.

Listing 8-1 Enabling Message Monitor in web.xml

<!-- WSRP Message Monitor Servlet -->

<servlet>

 <servlet-name>com.bea.wsrp.logging.MessageMonitor</servlet-name>

 <servlet-class>com.bea.wsrp.logging.MessageMonitor</servlet-class>

 <init-param>

 <param-name>enableSoapMessageLogging</param-name>

 <param-value>true</param-value>

 </init-param>

Moni tor ing and Logg ing Remote Po r t l e t Pe r f ormance

8-2 Using WSRP with WebLogic Portal

 <load-on-startup>1</load-on-startup>

</servlet>

You easily monitor the messages regarding Producer/Consumer interaction by viewing output of
this servlet. To do, use this procedure:

1. Ensure that a WSRP session running (that is, a Consumer portlet is surfacing data from a
Producer).

2. Open a new browser.

3. In the new browser’s address bar, type the following:

<host_name>:<port_number>/<webProject_name>/monitor

Where:

– <host_name>:<port_number> is the host and port you want to monitor.

– <webProject_name> is the web project you want to monitor.

For example:

localhost:7001/wsrpMonitorTest/monitor

The Monitor appears in the browser, as shown in Figure 8-1.

Mon i tor ing P roduce r /Consumer Message Logs

Using WSRP with WebLogic Portal 8-3

Figure 8-1 Monitor Appearing in a Browser

Each time the remote portlet communicates with the Producer, a request-response message
header appears on the monitor screen (Figure 8-2).

Moni tor ing and Logg ing Remote Po r t l e t Pe r f ormance

8-4 Using WSRP with WebLogic Portal

Figure 8-2 Monitor Message

– By clicking Show, you can display the content of the request or the response
(Figure 8-3).

Figure 8-3 Message Content

Creat ing Cus tom Logs

Using WSRP with WebLogic Portal 8-5

– Click Hide to close the message content.

Creating Custom Logs
You can create custom logs that display particular information about a WSRP session by using
the WebLogic Server loggers and handlers. These objects allow you to create your own
message handlers and subscribe them to the WebLogic Server Logger objects; for example, if
you want the remote portlet to listen for the messages that the Producer generates, you can create
a handler and subscribe it to the Logger object in the Producer.

loggers and handlers are WebLogic Server objects. For instructions on using them to create
custom logs for your WSPR Consumers and Producers, please refer to the WebLogic Server
documentation site.

../../../wls/docs81/index.html
../../../wls/docs81/index.html
../javadoc/com/beasys/commerce/util/Logger.html
http://java.sun.com/j2ee/1.4/docs/api/javax/xml/rpc/handler/Handler.html

Moni tor ing and Logg ing Remote Po r t l e t Pe r f ormance

8-6 Using WSRP with WebLogic Portal

Using WSRP with WebLogic Portal 9-1

C H A P T E R 9

Establishing WSRP Security

The WSRP standard does not enforce any specific security standard at this time; however, it does
recommend that you follow security standards such as WS-Security and SAML when
implementing WSRP-compliant portlets. The WSRP standard does emphasize using
transport-level security standards, such as SSL/TLS, to address the security issues involved in
Consumers invoking Producers on behalf of end-users. These security standards only require that
a Producer’s WSDL declare ports for an HTTPS service entry point. Consumers can only
determine that secure transport is supported by parsing the URL for the service entry point access
control.

This section describes some of the security measures we suggest you follow. It contains
information on the following subjects:

Access Control

Security Recommendations

Secure WSRP Messages

Manage User Identity

Establishing Single Sign-on with Remote Portlets: Example

Securing the WebLogic Administrator’s Logon Information

Access Control
Both Producers and Consumers can control access by using the implemented security measures.

http://www.oasis-open.org/committees/download.php/3343/oasis-200304-wsrp-specification-1.0.pdf

Estab l i sh ing WSRP Secur i t y

9-2 Using WSRP with WebLogic Portal

Consumers can restrict end-users access to portlets and to specific operations on those
portlets.

Producers can implement access control programmatically through the use of facilities such
as an authenticated user identity.

Security Recommendations
While the WSRP standard does not specify security requirements, the following
recommendations serve as guidelines that will ensure secure implementation of your
WSRP-compliant portlets:

Setting Security Constraints on Resources

Secure WSRP Messages

Manage User Identity

Securing the WebLogic Administrator’s Logon Information

Setting Security Constraints on Resources
As a basic rule and best practice, administrators should secure all web applications and their
resources running in a production environment. Security is especially important when resource
URLs (links to files and images on a producer) are used with WSRP. Per the WSRP 1.0
specification, resource URLs are absolute and become part of the final URL, which is visible in
the wsrp-url parameter.

When you view portal page’s source in a browser, these resource URLs are visible. Because they
provide the URL back to the hosting web application on the producer machine, it is important that
all resources on the producer are secure. For example, using this information, a user could guess
URLs on the producer, such as the WebLogic Server Console, and attempt to access them
directly.

Warning: It is the responsibility of the producer's administrator to secure web applications and
resources appropriately.

For information on adding security constraints to a WebLogic Server, see “URL (Web) and EJB
(Enterprise JavaBean) Resources” and “security-constraint” at:

http://e-docs.bea.com/wls/docs81/secwlres/types.html#1208206

http://e-docs.bea.com/wls/docs81/webapp/web_xml.html#1017885

../../../wls/docs81/secwlres/types.html#1208206
../../../wls/docs81/webapp/web_xml.html#1017885
../../../wls/docs81/secwlres/types.html#1208206
../../../wls/docs81/secwlres/types.html#1208206
../../../wls/docs81/webapp/web_xml.html#1017885

Creat i ng a Resource Connec t i on F i l te r

Using WSRP with WebLogic Portal 9-3

Creating a Resource Connection Filter
As discussed in the previous section, the wsrp-url parameter exposes resource URLs on the
producer machine.

By default, a consumer allows access to URLs hosted on the machines that host WSRP producers
that are currently known to the consumer. Such producers are ones added to the consumer with
WebLogic Workshop, the Portal Administration Portal, or WebLogic Portal APIs. If you want to
override this default behavior, do the following:

1. On the consumer, create a class that implements the interface
com.bea.wsrp.consumer.resource.ResourceConnectionFilter. This interface
includes one method:
public boolean allowedURL(String url);

Implement this method to return true only for URLs that you want to allow access to
through the wsrp-url parameter.

Place the implementation class file in WEB-INF/lib/classes. For example,
WEB-INF/lib/classes/MyResourceProxyServletImpl.class.

2. Register the class with the ResourceProxyServlet on the consumer. To do this, add an
<init-param> element to the ResourceProxyServlet definition in the WEB-INF/web.xml
file of the consumer web application. You must set the <param-name> to
resourceConnectionFilter, and the <param-value> to the fully qualified classname of
your ResourceConnectionFilter implementation class.

Listing 9-1 shows a sample ResourceProxyServlet servlet definition.

Listing 9-1 Configuring ResourceProxyServlet (in WEB-INF/web.xml)

<servlet>
<servlet-name>ResourceProxyServlet</servlet-name>
<servlet-class>com.bea.wsrp.consumer.resource.ResourceProxyServlet</servlet-class>
<init-param>

<param-name>resourceConnectionFilter</param-name>
<param-value>myClasses.MyResourceProxyServletImpl</param-value>

</init-param>
</servlet>

Estab l i sh ing WSRP Secur i t y

9-4 Using WSRP with WebLogic Portal

Secure WSRP Messages
Securing WSRP messages ensures their confidentiality between just the interested parties. When
a portlet’s messaging is secure, only parties authorized to handle the contents of that portlet’s
messages can see those messages. To secure WSRP messages:

Use SSL on any port through which the Producer will be offered.

Configure the Producer to offer secure portlets by specifying “true” for all secure
attributes in the <service-config> element of the Producer project’s
WEB-INF/wsrp-producer-config.xml file, as shown in Listing 9-2.

Listing 9-2 <service-config> Element Configured for Security

<service-config>
 <registration required="true" secure="true"/>
 <service-description secure="true"/>
 <markup secure="true" rewrite-urls="true" transport="string"/>
 <portlet-management required="true" secure="true"/>
</service-config>

Note: If you make any changes to wsrp-producer-config.xml, you will need to redeploy or
bounce the server before the changes become active.

Manage User Identity
To manage user identity:

Rely on single-sign-on (SSO), which is set up by default in WebLogic Portal.

Let users login to the Consumer portal. WebLogic Portal will manage SSO automatically.

What is Single Sign-on?
Single sign-on (SSO) is mechanism whereby a single action of user authentication and
authorization can permit that user to access all computers and systems to which access permission
has been granted, without having to enter multiple passwords. Single sign-on reduces human
error, a major component of systems failure and is therefore a feature.

Manage Use r I den t i t y

Using WSRP with WebLogic Portal 9-5

How Single Sign-on Works with WSRP
SSO support is meant to propagate user identity from the consumer to the producer. That is, the
consumer provides authentication, and the WSRP stack makes sure that the same user identity is
established on each producer with which the user is interacting. The best way to see this in action
is to monitor the SOAP message log on the producer or consumer side. After login (on the
consumer side), you will see an extra SOAP header in each request.

Each web application has a monitor which logs soap messages. The monitor can be viewed by
going to http://<machine>:<port>/<webapp>/monitor. For more information on
monitoring SOAP messages, please refer to Monitoring Producer/Consumer Message Logs at:

http://edocs.bea.com/wlp/docs81/wsrp/monlog.html#998933

The Signed Certificate
Producers authenticate Consumers through the use of client certificates in conjunction with
SSL/TLS. Therefore, if you are relying on SSO and allow users to log-in to the Consumer portal,
as recommended, the Producer must trust that Consumer. To establish this trust, the Consumer
needs a certificate of authentication signed by an approved certificate authority (CA), such as
VeriSign, Inc. This section introduces the Java keytool utility that is used to generate a self-signed
certificate. Later in this chapter, we use the keytool in a detailed example that includes obtaining
and using a signed certificate from a CA.

The Java keytool Utility
When you install WebLogic Platform, part of the installation process installs a Java runtime
environment (JRE). Within the JRE you will find a utility call keytool.exe. keytool is a key and
certificate management utility with which you can administer your own public/private key pairs
and associated certificates to use in self-authentication (where the user authenticates
himself/herself to other users/services) or data integrity and authentication services by using
digital signatures.

keytool Concepts and Terminology
You should be familiar with the following terms when implementing security for
WSRP-compliant portlets:

../wsrp/monlog.html#998933
../wsrp/monlog.html#998933

Estab l i sh ing WSRP Secur i t y

9-6 Using WSRP with WebLogic Portal

certificate
Also known as a public-key certificate—a digitally signed statement from one entity (the
issuer), saying that the public key (and some other information) of another entity (the
subject) has some specific value.

Certificate Authority (CA)
An organization, such as VeriSign, Inc. that will accept a CSR and return to the requestor
a certificate or certificate chain.

Certificate chain
A set of certificates used to establish trust back to a common certificate authority. The first
certificate in the chain contains the public key corresponding to the private key.

Certificate Signing Request (CSR)
A file that is sent to a certificate authority, who will authenticate the certificate requestor
(usually offline) and return to the requestor a certificate or certificate chain, used to
replace the existing certificate chain (which initially consists of a self-signed certificate)
in the keystore.

key pair
The combination of a public key and private key on the same certificate

keystore
A database of private keys and their associated X.509 certificate chains that are used to
authenticate the corresponding public keys. A keystore file has the .jks extension. The
keystore is scoped to the domain, so you will find it in the
<BEA_HOME>/user_projects/domains/specificDomain folder (where
specificDomain is the domain to which the application you want to secure points).
WebLogic Platform ships with a default keystore called wsrpKeystore.jks. We
strongly recommend that you rename this file for each domain in which you plan to run
it. Otherwise, application security will be compromised.

Self-signed certificate
A certificate for which the issuer is the same as the subject (the entity whose public key is
being authenticated by the certificate). When -genkey generate a new public/private key
pair, it wraps the public key into a self-signed certificate.

keytool Reference
keytool was created by Sun Microsystems. For complete information on this utility, please refer
to keytool - Key and Certificate Management Tool at:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-7

Secure the /producer Path
By default, the Producer servlet is not protected. In order to restrict access to a Producer, protect
the path <webAppPath>/producer at the network or firewall level (where webAppPath is the
URL of the web application).

Establishing Single Sign-on with Remote Portlets: Example
The following example will show you how to establish SSO from a Consumer to a Producer. In
this simple example, you will be able to log in to a remote portlet from a local portlet on a
Consumer.

In this example, you will do the following:

1. Set up an environment (domain, portal application, and portal web applications) in which to
run the example.

2. Create a login portlet and establish SSO with a remote portlet by using the signed certificate
supplied with BEA WebLogic Portal 8.1

3. Modify this out-of-the-box keystore file to prevent successful login to the same remote
portlet.

4. Use the Java keytool utility to create a new keystore (this utility is described in The Java
keytool Utility).

5. Use the keytool utility to request and obtain a signed certificate for that keystore from a
certification authority (CA).

6. Add that signed certificate to both the Consumer (you) and the Producer.

7. Reestablish SSO with the remote portlet by using the new signed certificate.

Before you attempt this exercise, please read the preceding section, Manage User Identity.

Step 1. Set Up the Environment
To set up the necessary environment for this example, please refer to Step 1: Set Up Your
Environment in Establishing Interportlet Communications with Remote Portlets. Follow the
instructions in that section explicitly. If you already completed the environment setup described
in Step 1: Set Up Your Environment, you do not need to complete this step.

Note: We recommend that you use the same environment from Establishing Interportlet
Communications with Remote Portlets to avoid cluttering your

Estab l i sh ing WSRP Secur i t y

9-8 Using WSRP with WebLogic Portal

<BEA_HOME>/user_projects folder. If you want to complete this exercise in a new
domain and/or portal application, be sure to substitute the names you select for those
components in the following procedures.

Step 2. Create the Login Portlet and Establish SSO with a
Remote Portlet
In this step, you will create a log-in portlet on the Consumer using the BEA-supplied log-in
controller page flow and a simple JSP portlet on the Producer. You will then federate the JSP
portlet to the Consumer. Next, you will attempt to log in to the remote portlet by using the log-in
portlet.

Create the Log-in Page Flow Portlet
1. Launch WebLogic Workshop and open the application ipcWsrpTest.

2. Right-click consumerWeb to open the context menu and select New>Page Flow.

The Page Flow Wizard - Page Flow Name dialog box appears (Figure 9-1).

Figure 9-1 Page Flow Wizard - Page Flow Name Dialog Box

3. In Page Flow Name, enter login.

Note that Controller Name changes to LoginController.jpf.

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-9

4. Click Next

The Page Flow Wizard Page - Flow Type dialog box appears (Figure 9-2)

Figure 9-2 Page Flow Wizard - Page Flow Type Dialog Box

5. Select Page Flow from a java control and, in the java Control list, select User Login.

6. Click Next.

The Page Flow Wizard - Select Action dialog box appears (Figure 9-3)

Estab l i sh ing WSRP Secur i t y

9-10 Using WSRP with WebLogic Portal

Figure 9-3 Page Flow Wizard - Select Action Dialog Box

7. Click Select All and then click Create.

The page flow file is created. LoginController.jpf will appear under consumerWeb on the
application tree and the page flow schematic will appear in the IDE workspace
(Figure 9-4).

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-11

Figure 9-4 LoginController.jpf Page Flow in IDE Workspace

8. Click Source View to display the page flow code (Figure 9-5)

Estab l i sh ing WSRP Secur i t y

9-12 Using WSRP with WebLogic Portal

Figure 9-5 LoginController.jpf Source

9. In the public Forward login(LoginForm aForm) call, locate the string:
com.bea.p13n.usermgmt.profile.ProfileWrapper var = myControl.login

 (aForm.username, aForm.password, aForm.request);

and replace it with:
com.bea.p13n.usermgmt.profile.ProfileWrapper var = myControl.login

 (aForm.username, aForm.password, super.getRequest());

The call should now look like the example in Listing 9-3

Listing 9-3 Updated Forward login(LoginForm aForm) Call

 public Forward login(LoginForm aForm)

 throws Exception

 {

 com.bea.p13n.usermgmt.profile.ProfileWrapper var =

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-13

 myControl.login(aForm.username, aForm.password,

 super.getRequest());

 getRequest().setAttribute("results", var);

 return new Forward("success");

 }

10. Save the file.

LoginController.jpf will appear under consumerWeb/login in the application tree
(/login is created when you save LoginController.jpf; Figure 9-6).

Figure 9-6 LoginController.jpf Under consumerWeb/login

11. Right-click LoginController.jpf in the application tree to open the context menu and
select Generate Portlet...

The Portlet Wizard - Portlet Details dialog box appears (Figure 9-7).

Estab l i sh ing WSRP Secur i t y

9-14 Using WSRP with WebLogic Portal

Figure 9-7 Portlet Wizard - Portlet Details Dialog Box for LoginController.jpf

Note that LoginController.jpf already appears in the Content URI field.

12. Click Finish.

The portlet is generated; LoginController.portlet appears under
consumerWeb/login in the application tree.

13. Save all files.

Create a Log-in Portal
In this step, you will create a portal to contain the login portlet you built in Create the Log-in Page
Flow Portlet.

1. Right-click the consumerWeb node of the application tree to open the context menu and select
New>Portal.

The New File dialog box appears.

2. Ensure the Portal is selected in both panes and, in File Name, enter login and then click
Create.

login.portal appears under consumerWeb/login in the application tree and the portal
layout appears in the WebLogic Workshop workspace (Figure 9-8).

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-15

Figure 9-8 login.portal in WebLogic Workshop Workspace

3. Drag LoginController.portlet from the Data Palette onto the left-hand column of the
portal layout, as shown in Figure 9-9.

Estab l i sh ing WSRP Secur i t y

9-16 Using WSRP with WebLogic Portal

Figure 9-9 LoginController.portlet in Portal Layout

4. Save the portal.

Create a Portlet on the Producer
Next, create a JSP file and portlet on the Producer. This is the portlet you will federate to the
Consumer portal you created in Create a Log-in Portal and will be the portlet you will attempt to
log in to when you test the login portal.

1. To create the portlet on the Producer, do the following:

2. Right-click producerWeb and select New>JSP File

The New File dialog box appears.

3. Ensure that Web User Interface and JSP File are selected in the left and right-hand panes,
respectively; in File name, enter cPortlet.jsp and click Create.

cPportlet.jsp appears in the WebLogic Workshop workspace (Figure 9-10).

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-17

Figure 9-10 cPortlet.jsp in Design View

4. Click Source View to display the JSP code for cPortlet.jsp (Figure 9-11).

Estab l i sh ing WSRP Secur i t y

9-18 Using WSRP with WebLogic Portal

Figure 9-11 cPortlet in Source View

5. Copy the code from Listing 9-4 and replace the existing cPortlet.jsp source code with it.

Listing 9-4 cPortlet.jsp Source

<%

 String username=null;

 if(request.getUserPrincipal() !=null){

 username=request.getUserPrincipal().getName();

 }

%>

Username = <%=username%>

The WebLogic Workshop workspace will look like the example in Figure 9-12.

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-19

Figure 9-12 New cPortlet.jsp Source

6. Save the file.

cPortlet.jsp appears in the application tree under producerWeb.

7. Right-click cPortlet.jsp in the application tree to display the context menu and select
Generate Portlet...

The Portlet Details dialog box for cPortlet.jsp appears (Figure 9-13).

Figure 9-13 Portlet Details Dialog Box for cPortlet.jsp

Estab l i sh ing WSRP Secur i t y

9-20 Using WSRP with WebLogic Portal

Note that cPortlet.jsp appears in the Content URI dialog box.

8. Click Finish.

cPortlet.portlet appears under producerWeb in the application tree.

Federate the Producer Portlet to the Consumer
Next, you will surface the JSP portlet you created in Create a Portlet on the Producer to the
Consumer. To do so, use this procedure.

Note: Ensure that WebLogic Workshop is running.

1. If it is not already running, open the Tools menu and select WebLogic Server>Start WebLogic
Server.

2. Right-click consumerWeb and select New>Portlet.

The New File dialog box appears.

3. Ensure that Portal and Portlet are selected; in File name, enter cPrime and click Create.

The Select Portlet Type dialog box appears.

Figure 9-14 Select Portlet Type Dialog Box

4. Select Remote Portlet and click Next.

The Find/Select a Producer dialog box appears (Figure 9-15), with Find Producer selected.

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-21

Figure 9-15 Find/Select a Producer Dialog Box

5. In the Find Producer field, enter:

http://localhost:7001/producerWeb/producer?WSDL

and click Retrieve.

The dialog box refreshes, showing Producer Details.

6. Click Register.

The Register dialog box appears.

7. In Producer Handle, enter ssoTest and click Register.

The Find/Select Producer dialog box reappears.

8. Click Next.

The Select Portlet from List dialog box appears (Figure 9-16).

Estab l i sh ing WSRP Secur i t y

9-22 Using WSRP with WebLogic Portal

Figure 9-16 Select Portlet from List Dialog Box

9. From the list, select cPortlet and click Next.

The Proxy Portlet Details dialog box appears.

10. Click Finish.

cPrime.portlet will appear under consumerWeb on the application tree and the portlet
layout will appear in the WebLogic Workshop workspace (Figure 9-17).

Figure 9-17 cPrime Portlet Layout

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-23

11. Save the file.

Test the Log-in Portlet
Finally, you need to test the log-in portlet you created in Create the Log-in Page Flow Portlet to
ensure that you can log in to a remote portlet. Once that test is successful, you will “break” the
application, which will prevent you from logging in to the remote portlet.

Note: Ensure that WebLogic Server is running.

To run this test, do the following:

1. Double-click login.portal in consumerWeb.

The portal layout appears in the WebLogic Workshop workspace.

2. Drag cPortlet from the Data Palette into the right-hand placeholder of the portal
(Figure 9-18). cPortlet is the name that cPrime.portlet is identified by in the Data
Palette. If the Data Palette is not visible, select View>Windows>Data Palette.

Figure 9-18 login.portal with cPortlet Added

3. Save the portal.

Estab l i sh ing WSRP Secur i t y

9-24 Using WSRP with WebLogic Portal

4. Open the Portal menu and select Open Current Portal.

After a few moments, the portal will appear in a browser (Figure 9-19).

Figure 9-19 login.portal Rendered in the Browser

Note that cPortlet displays the text Username = null.

5. In LoginController, click Login.

LoginController refreshes to show log-in fields (Figure 9-20).

Figure 9-20 Log-in Fields on LoginController.portlet

In both Password and Username, enter weblogic and click Submit.

The portal refreshes; cPortlet will now display Username = weblogic.

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-25

Figure 9-21 login.portal After Login is Successful

6. Close the portal.

7. Stop WebLogic Server.

Summary
In this step, you created all components required to build a portal that will allow you to log in to
a portlet that has been federated to that portal from a producer. You then assembled a log-in portal
using out-of-the-box resources, rendered that portal in a browser, and logged in to the remote
portlet. In the next step, you will “break” this portal.

Step 3: Break the Log-in Portal
In this step, you will rename the keystore file, which will prevent login to the remote portlet on
login.portal. Next, you will verify that you cannot log in to the portal by attempting and
failing to successfully log in.

Rename the .jks File
To rename the .jks file, do the following:

Note: Ensure that WebLogic Workshop is running.

1. Open your file system (for example, Windows Explorer) and navigate to and display the
contents of:

<BEA_HOME>/user_projects/domains/ipcWsrpTest

2. In the list of files, locate wsrpKeystore.jks.

Username has the value weblogic.

Estab l i sh ing WSRP Secur i t y

9-26 Using WSRP with WebLogic Portal

3. Rename wsrpkeystore.jks to wsrpkeystore_old.jks.

Retest the Portal
Now, you will launch the log-in portal and attempt to log in to the remote portlet again. To do so,
do the following:

1. Return to WebLogic Workshop and restart Weblogic Server.

Note: The application ipcWsrpTest should be open.

2. Under consumerWeb, double-click login.portal to open that portal in WebLogic Workshop
(if login.portal is already open when you launched WebLogic Workshop, you can ignore
this step).

3. Open the Portal menu and select Open Current Portal...

The log-in portal appears in a browser.

4. Click Login.

The Password and Username fields appear.

5. For both values, enter weblogic and click Submit.

6. The portal refreshes and cPortlet will read Username = null (that is, it won’t change;
Figure 9-22). This indicates that the login has failed.

Figure 9-22 login.portal After Failed Login Attempt

7. Close the portal and stop WebLogic Server.

cPortlet doesn’t change; login has
failed.

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-27

Step 4: Obtain and Implement a Signed Certificate
In this step, you will use the The Java keytool Utility to create a Self-signed certificate, creating
a new keystore in the process. You will then generate a Certificate Signing Request (CSR) and
send that CSR to a Certificate Authority (CA) who will return to you a signed certificate that you
will use to establish log-in to the remote portlet.

Before You Begin
Before attempting this procedure, please read about The Java keytool Utility. You might also
want to review the information included in keytool - Key and Certificate Management Tool at:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

Generate a New Keystore
To generate a new keystore, use this procedure.

Note: <BEA_HOME> is the directory where you installed WebLogic Platform.

1. Open a command prompt on your computer and navigate to the
<BEA_HOME>\jdk142_05\bin

Note: The keytool utility is scoped to the JVM you are using. If you select another JVM
when you configured your implementation of WebLogic Server, for example BEA
WebLogic JRockit, you must navigate to and run the following commands from that
JVM’s directory.

2. At the command line, create the keystore by entering the -genkey command as shown here:

<BEA_HOME>\jdk142_05\bin>keytool -genkey -keypass testkeypass -keystore
<BEA_HOME>\user_projects\domains\ipcWsrpDomain\wsrpKeystore.jks
-storepass teststorepass -alias testalias

In this example,:

– testkeypass is the password used to protect the private key of the generate key pair.

– <BEA_HOME>\user_projects\domains\ipcWsrpDomain\ is the domain directory.

– wsrpKeystore is the new .jks file.

– teststorepass is the password used to protect the integrity of the keystore.

– testalias is a name you specified as an alias, which is used to access an entity in the
keystore.

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

Estab l i sh ing WSRP Secur i t y

9-28 Using WSRP with WebLogic Portal

Note: For a complete list of options, please refer to keytool - Key and Certificate
Management Tool at:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

The keytool options are not required. If you choose not to specify them, defaults are used
for those that have default values and you will be prompted for any required values.

3. Follow the prompts required to identify yourself.

If all the information has been entered correctly, the system will respond with a command
prompt, such as <BEA_HOME>\jdk142_05\bin>. To verify that the keystore was properly
generated, go to your file system and in
<BEA_HOME>\user_projects\domains\ipcWsrpDomain\, locate wsrpKeystore.jks

Create the Certificate Signing Request and Import the Signed Certificate
You’ve now generated a self-signed certificate. Because any certificate is more likely to be
trusted by others if it is signed by a Certification Authority (CA), you now need to generate a
Certificate Signing Request (CSR) to gain that signature. To create the CSR, do the following:

1. Go to a command prompt and navigate to <BEA_HOME>\jd142_05\bin (if you are already at
this directory, you can ignore this step).

2. Enter the keytool -certreq command, using the options listed here:

keytool -certreq -keystore
<BEA_HOME>\user_projects\domains\ipcWsrpDomain\wsrpKeystore.jks -alias
testalias

The system responds:

Enter keystore password:

3. Enter teststorepass.

The system responds:

Enter key password for <mykey>:

4. Enter testkeypass.

The system will then generate the CSR and respond with a series of characters representing
the CSR; for example:

-----BEGIN NEW CERTIFICATE REQUEST-----
MIICYzCCAiACAQAwXjELMAkGA1UEBhMCVVMxCzAJBgNVBAgTAkNPMRAwDgYDVQQHEwdCb3VsZGVy
MRQwEgYDVQQKEwtCRUEgU3lzdGVtczENMAsGA1UECxMERG9jczELMAkGA1UEAxMCRWQwggG3MIIB
LAYHKoZIzjgEATCCAR8CgYEA/X9TgR11EilS30qcLuzk5/YRt1I870QAwx4/gLZRJmlFXUAiUftZ

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html
http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-29

PY1Y+r/F9bow9subVWzXgTuAHTRv8mZgt2uZUKWkn5/oBHsQIsJPu6nX/rfGG/g7V+fGqKYVDwT7
g/bTxR7DAjVUE1oWkTL2dfOuK2HXKu/yIgMZndFIAccCFQCXYFCPFSMLzLKSuYKi64QL8Fgc9QKB
gQD34aCF1ps93su8q1w2uFe5eZSvu/o66oL5V0wLPQeCZ1FZV4661FlP5nEHEIGAtEkWcSPoTCgW
E7fPCTKMyKbhPBZ6i1R8jSjgo64eK7OmdZFuo38L+iE1YvH7YnoBJDvMpPG+qFGQiaiD3+Fa5Z8G
kotmXoB7VSVkAUw7/s9JKgOBhAACgYBkQ10+BRJVVzMgZTQJiUDYdK+5WOI1EkvXbyZPmvYzAfch
vtR7WKJZMPcbAyq9mtrOXFY7TTEkupXlY4R8c5DdLW0db3YB1eV4gUGQOXn4Y+zE8Z4LxKNhkKLk
yEUQhv0JkyzIReV7sioJahf7AiOwqs2cW1r4dNt4y42duwrdsKAAMAsGByqGSM44BAMFAAMwADAt
AhRARh4iBbioO+Jn3qc/bXOpjr+cqgIVAI78/s8hMqhFkTJxt/qtE3L3F1aP
-----END NEW CERTIFICATE REQUEST-----

5. Submit the CSR to a certification authority (CA), such as VeriSign, Inc. They will
authenticate you, sign a certificate, and then return it to you. This certificate authenticates
your public key.

Note: Submitting the .pem file to a CA is beyond the scope of this document. There are
many CAs you can use and your company might already have agreements with a
specific CA that defines how to submit the CSR. You can also access the website for
any CA to review their submission process.

Import the Signed Certificate
A CA will return two certificates: a consumer certificate and the CA certificate. The CA
certificate is used to validate the CA’s signature on the consumer certificate. Use the keytool
-import command to store both the CA-signed certificate and the consumer certificate in the
keystore.

Note: Depending upon the CA you use, the CA might return a single file with both certificates
imbedded therein. You will have to separate the two using some sort of certificate
translation tool, such as the certificate import/export wizards in Internet Explorer. This
process is beyond the scope of this document; we recommend you consult your
company’s security administrator or the CA you used.

Now, you will import both the consumer certificate and the CA certificate into the keystore. Note
that when you run the import command, you must use a different alias for each of the certificates,
as explained in the following steps.

1. When you obtain the the signed consumer certificate from the CA, save it in
<BEA_HOME>\user_projects\domains\ipcWsrpDomain\ as a .pem file called
wsrpKeystore.pem (if the CA returns the certificates as a .pem file, you can skip this step).

2. Use the keytool -import command to store the consumer certificate in the keystore entry
identified by testalias. This will replace the self-signed certificate you created with the
-genkey command. Enter the following command:

Estab l i sh ing WSRP Secur i t y

9-30 Using WSRP with WebLogic Portal

keytool -import -alias testalias -file
<BEA_HOME>\user_projects\domains\ipcWsrpDomain\wsrpKeystore.pem -keypass
testkeypass -keystore
<BEA_HOME>\user_projects\domains\ipcWsrpDomain\wsrpKeystore.jks -storepass
teststorepass

Note: For more information on using the -import command, please refer to:

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html#importCmd

The system responds:

Owner: CN=Your Name, OU=WLP Docs, O=WLP, L=Boulder, ST=Colorado, C=US
Issuer: CN=Thawte Test CA Root, OU=TEST TEST TEST, O=CA Name Certification, ST=FO
R TESTING PURPOSES ONLY, C=ZA
Serial number: 121e
Valid from: Mon Dec 13 11:18:17 MST 2004 until: Mon Jan 03 11:18:17 MST 2005
Certificate fingerprints:
 MD5: 87:29:4B:7F:02:7D:2B:90:EF:FA:7D:02:50:82:7D:FF
 SHA1: 25:08:1E:98:7D:76:31:48:B3:6B:4B:5F:81:24:59:1D:41:CA:A2:DB

And asks:

Trust this certificate? [no]:

3. Enter yes.

The system responds:

Certificate was added to keystore

4. Repeat steps 1 through 3 to import the CA certificate. Save the CA certificate obtained from
the CA in a file called
<BEA_HOME>\user_projects\domains\ipcTestDomain\CAcert.pem, and use the
following values for the .pem filename (-file) and alias (-alias) when you run the
keytool -import command.

-file <BEA_HOME>\user_projects\domains\ipcTestDomain\CAcert.pem

-alias CAtestalias

Step 5: Update the Consumer mBean
Update the Consumer mBean with the new certificate information by doing the following

1. In WebLogic Workshop, open the application to which the certificate applies.

2. Start WebLogic Server by selecting Tools>WebLogic Server>Start WebLogic Server.

3. Launch the Administration Portal by selecting Portal>Portal Administration

http://java.sun.com/j2se/1.4.2/docs/tooldocs/windows/keytool.html#importCmd

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-31

The Administration Portal login page appears

4. Login to the Administration Portal using weblogic for both the Username and the Password.

The Administration Portal appears.

5. Under Configure Settings, click Service Administration.

The Configuration Setting page appears (Figure 9-23).

Figure 9-23 Configuration Settings Page

6. In the left pane, click WSRP Consumer Security Service.

The Configuration Settings for: dialog box appears in the right pane (Figure 9-24)

Estab l i sh ing WSRP Secur i t y

9-32 Using WSRP with WebLogic Portal

Figure 9-24 Configuration Settings for: WSRP Consumer Security Service Dialog Box

7. Update the necessary fields on this dialog box with information from the keystore. At the
minimum, you must update the fields listed in Table 9-1.

8. Click Update.

9. Restart the server.

Table 9-1 Updating WSRP Consumer Security Service Configuration Information

In... Enter...

Consumer Name testalias

Keystore Password teststorepass

Certificate Alias testalias

Certificate Private Key
Password

testkeypass

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-33

Step 6: Update the WSRP Identity Asserter
For a Producer to trust a Consumer, it needs to recognize the Consumer’s signed certificate. To
ensure this, you need to provide the Producer with the Consumer’s public key, which the
Producer will add to its keystore by updating the WSRP identity asserter.

To update the WSRP identity asserter, use this procedure:

1. Launch an instance of WebLogic Server and open the WebLogic Server console by entering
in the address field of a browser the URL:

http://localhost:7001/console

The WebLogic Server Administration Console login page appears.

2. Log in to the administration console with the user name weblogic and the password
weblogic.

WebLogic Server Administration Console appears.

3. In the left pane, drill down to the WSRP Identity Asserter node
(Security>Realms>myRealm>Providers>Authentication>WSRPIndentityAsserter), as
shown in Figure 9-25.

Estab l i sh ing WSRP Secur i t y

9-34 Using WSRP with WebLogic Portal

Figure 9-25 WSRP Identity Asserter Drill-down

The WSRP Identity Asserter appears in the right pane.

4. Select the Detail tab to display WSRP identity detail information, as shown in Figure 9-26.

Estab l i shing S ing le S ign-on wi th Remote Por t l e ts : Example

Using WSRP with WebLogic Portal 9-35

Figure 9-26 WSRP Identity Asserter Detail

5. Update the information in the WSRP Identity Asserter as described in Table 9-2.

6. Click Apply.

Note: If any of the yellow icons next to the field labels are blinking, this means that the server
must be restarted for the changes to take effect.

Step 7: Test the New Keystore
To test the new keystore, you simply need to try to log in to the remote portlet, as you did in Test
the Log-in Portlet. Do the following:

1. Launch WebLogic Workshop, if it isn’t already running.

Table 9-2 Updating the WSRP Identity Asserter

In... Enter...

Key Store Path wsrpKeystore.jks

Key Store Password teststorepass

Confirm Key Store
Password

teststorepass

Estab l i sh ing WSRP Secur i t y

9-36 Using WSRP with WebLogic Portal

2. Stop (if necessary) and restart the server. Select Tools>WebLogic Server>Stop WebLogic
Server (if the server is running). Select Tools>WebLogic Server>Start WebLogic Server to
start the server.

3. Once the server starts, go to the consumerWeb node and double-click login.portal (if
login.portal is already open, you can ignore this step).

4. Open the Portal menu and select Open Current Portal.

login.portal renders in the browser.

5. In the LoginController portlet, click Login.

The portlet refreshes to show the login form.

6. In both Username and Password, enter weblogic and click submit.

The portal refreshes; cPortlet will now display Username = weblogic.

Figure 9-27 login.portal After Login is Successful

Securing the WebLogic Administrator’s Logon Information
A portal domain's portal application's META-INF directory contains the
application-config.xml file. In newly created portal domains where the portal application is
deployed, this file will contain unencrypted passwords. These passwords actually remain clear
text until the portal administration tool’s Service Administration page is used to edit and save
attributes contained in this config file, or the application using the password accesses it. (And if
the portal application is deployed as an ear file, this file cannot be edited and saved.)

Username has the value weblogic.

Secur ing the WebLog ic Admin is t ra to r ’s Logon In fo rmat i on

Using WSRP with WebLogic Portal 9-37

Typically, in development, the administrator will use some sort of generic logon information
(logon ID and password), such as weblogic/weblogic. For example, Listing 9-5 shows the WSRP
element from application-config.xml on initial deployment:

Listing 9-5 Development Phase Clear Text Passwords in application-config.xml

<ConsumerSecurity AdminPassword="weblogic" AdminUserName="weblogic"
 CertAlias="wsrpConsumer" CertPrivateKeyPassword="wsrppassword"
 ConsumerName="wsrpConsumer"
 IdentityAssertionProviderClass="com.bea.wsrp.security.
 DefaultIdentityAssertionProvider"
 Keystore="wsrpKeystore.jks" KeystorePassword="password"
 Name="ConsumerSecurity"/>

After the Service Administration tool is used to edit attributes, the file is saved and automatically
passwords are encrypted, as shown in Listing 9-6:

Listing 9-6 .Encrypted Passwords in application-config.xml

<ConsumerSecurity AdminPassword="{3DES}3QrrUeIwN/DxlDI++1ixPw=="
 AdminUserName="weblogicc" CertAlias="wsrpConsumer"
 CertPrivateKeyPassword="{3DES}g7h+VOSAsO9pSlvYSSB2iw=="
 ConsumerName="wsrpConsumer"
 IdentityAssertionProviderClass="com.bea.wsrp.security.
 DefaultIdentityAssertionProvider"
 Keystore="wsrpKeystore.jks" KeystorePassword=
 "{3DES}1OLYVirMWOo+3sEU80cMqw=="

 Name="ConsumerSecurity" />

To ensure the security of passwords throughout the applications lifecycle, you need to use the
EncryptDomainString command-line utility to generate an encrypted password and then place
that encrypted password into the application-config.xml file while it is still in the
development environment. Then you can build the EAR file for the application and deploy it as
necessary.

Estab l i sh ing WSRP Secur i t y

9-38 Using WSRP with WebLogic Portal

Encrypting Passwords
To encrypt passwords, use this procedure:

1. Open a command box (DOS shell) and navigate to domain/portal/ (where domain is the
domain directory for the application) and run setDomainEnv.cmd.

2. At the prompt, enter

java com.bea.p13n.util.EncryptDomainString -targetDomainDir d
-inputString s

where:

– d is the domain directory to which the portal application is being deployed; for
example,

– s is the input password to encrypt

For example:

java com.bea.p13n.util.EncryptDomainString -targetDomainDir

\bea\weblogic81b\samples\domain\portal -inputString weblogic

In this example, the input string weblogic represents administrator’s password
(adminpassword=weblogic; see Listing 9-7). The command line utility prints a domain
specific encrypted string.

3. Open WebLogic Workshop and the specific portal application.

4. Select File>Open>File (Figure 9-28).

Figure 9-28 Opening a File in WebLogic Workshop

An Open dialog box appears.

5. Navigate to the application’s META-INF folder and open application-config.xml.

Secur ing the WebLog ic Admin is t ra to r ’s Logon In fo rmat i on

Using WSRP with WebLogic Portal 9-39

Listing 9-7 Clear text Passwords in application-config.xml

<ConsumerSecurity AdminPassword="weblogic" AdminUserName="weblogic"
 CertAlias="wsrpConsumer" CertPrivateKeyPassword="wsrppassword"
 ConsumerName="wsrpConsumer"
 IdentityAssertionProviderClass="com.bea.wsrp.security.
 DefaultIdentityAssertionProvider"
 Keystore="wsrpKeystore.jks" KeystorePassword="password"
 Name="ConsumerSecurity"/>

6. Replace the clear text passwords with those generated by the EncryptDomainString
utility, as shown in Figure 9-8. You will need to run EncryptDomainString for each
password in the <ConsumerSecurity>(Listing 9-7) element; for example:
– AdminPassword="weblogic"

– CertPrivateKeyPassword="wsrppassword"

– KeystorePassword="password"

Listing 9-8 Encrypted Passwords Generated by EncryptDomainString Utility

<ConsumerSecurity AdminPassword="{3DES}3QrrUeIwN/DxlDI++1ixPw=="
 AdminUserName="weblogicc" CertAlias="wsrpConsumer"
 CertPrivateKeyPassword="{3DES}g7h+VOSAsO9pSlvYSSB2iw=="
 ConsumerName="wsrpConsumer"
 IdentityAssertionProviderClass="com.bea.wsrp.security.
 DefaultIdentityAssertionProvider"
 Keystore="wsrpKeystore.jks" KeystorePassword=
 "{3DES}1OLYVirMWOo+3sEU80cMqw=="

 Name="ConsumerSecurity" />

Now you can build the EAR file and deploy the application.

Note on Changing Passwords
If you need to change an administrator’s password for any reason, simply changing the password
will result in having to rebuild and redeploy the EAR. This is time-consuming and
counterproductive. Instead, you can work around this problem by doing the following:

Estab l i sh ing WSRP Secur i t y

9-40 Using WSRP with WebLogic Portal

1. Create a special user in the target system for a WSRP administrator. See Create a New User
for more information on creating a user.

2. Make that user a member of the administrator group. See Add a User to a Group for more
information on adding a member to a group.

3. Insert the new logon information (username and password) into the application’s
application-config.xml file as described in Encrypting Passwords.

../adminportal/help/UG_User_CreateNew.html
../adminportal/help/UG_User_Add2Group.html

Using WSRP with WebLogic Portal A-1

A P P E N D I X A

WSRP Error Messages

You might encounter one of the error conditions described in Table A-1 while attempting to
create and use WSRP-compliant portals.

Table A-1 WSRP Error Messages

Message Description

Error: Unable to get the Service Description
for the provided WSDL URL

Producer is not available:

Fault: {urn:oasis:names:tc:wsrp:v1:types}
InvalidRegistration

Producer is not registered and registration is
required Missing registrationHandle?.

Fault: {urn:oasis:names:tc:wsrp:v1:types}
InvalidHandle
The given portletHandle [portlet_1] is
invalid or none of the supported portlet
containers can handle this portlet

The remote portlet has been changed or it
has been deleted

WSRP Er ro r Messages

A-2 Using WSRP with WebLogic Portal

	Contents
	Introduction to WSRP
	The WSRP Standard
	WSRP Portlet Type Support
	Why Use WSRP?
	WSRP Decouples the Deployment and Delivery of Applications
	WSRP Delivers both Data and its Presentation Logic
	BEA’s Implementation of WSRP Requires Little or No Programming
	Other Benefits of WSRP

	Producers and Consumers
	Producers
	Simple Producers
	Complex Producers
	Complex/Simple Producer Features Matrix

	Consumers

	WSRP and WebLogic Portal
	How WSRP Works
	WSRP-compliant Portlet Lifecycle
	Development Time
	Deployment Time

	Note on Localization of Remote Portlets

	Working with Remote Portlets
	Building a Simple Remote Portlet
	Modifying, Customizing, and Disabling a Remote Portlet
	Setting Preferences on a Remote Portlet
	Applying a Theme to a Remote Portlet
	Other Look-and-Feel Topics

	Using Backing Files with Remote Portlets
	Setting a Timeout Value on Remote Portlets
	Setting the Default Timeout for Remote Portlets
	Setting the Timeout for Individual Remote Portlets

	Establishing Interportlet Communications with Remote Portlets
	The WebLogic Portal IPC Model
	Event Handlers
	Events
	Event Actions

	How IPC is Implemented
	Implementing IPC with WSRP: Example
	Step 1: Set Up Your Environment
	Create the Domain
	Create the Portal Application
	Create the Web Applications (Web Projects)
	Summary

	Step 2: Create the Producer Portlets
	Create the JSP Files and Portlets
	Create the Backing File
	Attach the Backing File
	Add the Event Handler to bPortlet
	Test the Application
	Summary

	Step 3: Create the Consumer Portlets
	Set Up the Exercise
	Create the JSP Portlet
	Create the Remote Portlet
	Summary

	Step 4: Test the Application
	Build the Portal
	Test the Portal

	Special Considerations for Remote Portlets
	Understanding Backing Files
	What are Backing Files?
	Which Controls Support Backing Files?
	How Backing Files are Executed
	Thread Safety with Backing Files

	Working with Producers
	Using WSRP in a Basic WebLogic Server Domain
	Getting Started
	Configuring the WSRP Producer
	Modify the CLASSPATH for the WebLogic Server Domain
	Modify the Struts Application

	Testing the Producer
	Consuming the Producer Portlet

	Using WSRP in a WebLogic Express Server Domain
	Enabling Portlets on the Producer

	Best Practices for Implementing WSRP
	Portlet Programming Guidelines
	Performance Tuning Recommendations
	Avoid Moving Producers
	Upgrading Simple Producers from Service Pack 3
	Other Guidelines

	Implementing Custom Data Transfer
	Custom Data Transfer Interfaces
	Implementing the Interfaces
	Implementing Interfaces in a Complex Producer: Example
	Step 1: Set Up the Environment
	Step 2: Create the Producer JSP and Portlet
	Step 3: Federate zipTest.portlet to the Consumer
	Step 4: Create and Attach a Backing File to the Consumer
	Step 5: Test the Application

	Using this Example in a Simple Producer
	Deploying Your Own Interface Implementations
	Implementation Rules

	Local Proxy Support
	Why Use Local Proxy Mode?
	Deployment Configuration
	When to Use and Not Use

	Monitoring and Logging Remote Portlet Performance
	Monitoring Producer/Consumer Message Logs
	Creating Custom Logs

	Establishing WSRP Security
	Access Control
	Security Recommendations
	Setting Security Constraints on Resources
	Creating a Resource Connection Filter
	Secure WSRP Messages
	Manage User Identity
	What is Single Sign-on?
	How Single Sign-on Works with WSRP
	The Signed Certificate
	The Java keytool Utility

	Secure the /producer Path

	Establishing Single Sign-on with Remote Portlets: Example
	Step 1. Set Up the Environment
	Step 2. Create the Login Portlet and Establish SSO with a Remote Portlet
	Create the Log-in Page Flow Portlet
	Create a Log-in Portal
	Create a Portlet on the Producer
	Federate the Producer Portlet to the Consumer
	Test the Log-in Portlet
	Summary

	Step 3: Break the Log-in Portal
	Rename the .jks File
	Retest the Portal

	Step 4: Obtain and Implement a Signed Certificate
	Before You Begin
	Generate a New Keystore
	Create the Certificate Signing Request and Import the Signed Certificate
	Import the Signed Certificate

	Step 5: Update the Consumer mBean
	Step 6: Update the WSRP Identity Asserter
	Step 7: Test the New Keystore

	Securing the WebLogic Administrator’s Logon Information
	Encrypting Passwords
	Note on Changing Passwords

	WSRP Error Messages

