
BEAWebLogic
Portal™®

White Paper: Integrating
Content Into the BEA
Virtual Content
Repository

Version 1
Document Revised: May 2004
By: Rod McCauley and James Owen

Copyright
Copyright © 2004 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA
WebLogic Express, BEA WebLogic Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA
WebLogic Portal, BEA WebLogic Server, BEA WebLogic Workshop and How Business Becomes E-Business are
trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content 1

Contents

Integrating Content into the BEA Virtual Content Repository
Overview and Benefits. .1

Introduction .2

SPI Structure .2

Value Classes .2

ContentEntity. .3

ID .3

Node. .3

Property .3

Value .3

BinaryValue .3

ObjectClass .4

PropertyDefinition .4

PropertyChoice .4

Service Interfaces .5

NodeOps .5

ObjectClassOps .5

SearchOps .5

Repository Connection Interfaces. .5

Repository .6

Ticket .6

Credentials .6

2 BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content

Connection Sequence . 6

Value Model . 8

Configuring the Expression Model . 9

Configuring the Repository. 10

BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content 1

Integrating Content into the BEA
Virtual Content Repository

Overview and Benefits
Portals provide an extremely efficient mechanism for aggregating, delivering and presenting
enterprise applications and content. However, without an efficient aggregation mechanism the
cost and complexity can be onerous when connecting an enterprise portal to multiple,
heterogeneous repositories.

Many large companies have this problem; according to Forrester 78% of companies surveyed
have more than one content repository and 43% have six or more. The multitude of repositories
in any given enterprise may be comprised of Enterprise Content Management systems, business
applications or home-grown solutions.

WebLogic Portal provides a Virtual Content Repository (VCR) that enables customers to plug in
multiple, heterogeneous content repositories. Leading ECM vendors such as FileNet,
Documentum andFatWire and have built an integration, or Content Service Provider
implementation to allow them to plug into the VCR. By so doing, they allow the delivery of
personalized content through WebLogic Portal.

Portal users can also browse and manage the content in multiple repositories. This also lowers
cost by allowing Portal developer to learn and use a single API versus understanding the
complexities of the underlying repositories. However, in cases such as a home grown solution,
customers may need to provide their own Content SPI implementation. This document provides
the background necessary to accomplish this task.

In tegrat ing Conten t in to the BEA V i r tual Conten t Repos i to r y

2 BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content

Introduction
The BEA Virtual Content Repository (VCR) is designed to easily facilitate plugging in existing
content repositories into BEA WebLogic Portal. Adding your repository to the VCR gives you
the ability to utilize the Portal interaction management federated content search and the content
administration tools all on your existing content.

The goal of this document is to convey the necessary steps for a customer to implement the BEA
Content Management SPI and plug the implementation into the VCR. This SPI should not be tied
to any particular underlying architecture, data source or even protocol. This means it should be
applicable to a wide range of implementations including database-centric, file-system-based and
network protocol-based repositories.

The SPI implementation will run inside a WebLogic Portal Server enterprise application and may
be clustered and also may be deployed multiple times with different configuration parameters. It
is up to the SPI implementer to understand how their implementation will affect scalability and
performance for WebLogic Portal. This white paper will point out particular areas of concern
where different implementations strategies may adversely affect overall scalability.

SPI Structure
The SPI domain is modeled around a set of value objects. These value classes are created, read,
updated and deleted through a set of service interfaces. The service interfaces are accessed
through a set of repository connection interfaces that are the gateway to the SPI implementation.

The model tries to be as open as possible for the limited amount of functionality and relies on the
SPI implementation to throw appropriate Exceptions if the attempted operations are not allowed
in the repository. For example, the SPI allows for "content" to be added to "folders", if the
repository does not allow that behavior then it should throw a RepositoryException stating so.

If a method is not implemented at all, then a UnsupportedRepositoryOperationException should
be thrown. Implementing the BEA Content SPI involves implementing the repository connection
and service interfaces that reside in com.bea.content.spi.

Value Classes
The content value objects are composed of Nodes that contain Properties and ObjectClasses that
define the shape of the Nodes. Value objects are in-memory objects to the client of the SPI and
thus can only be updated through the service interfaces. A default implemenetation for the value
classes is provided in com.bea.content. They may be extended if necessary, but it is not advised.

Va lue Cl asses

BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content 3

ContentEntity
ConentEntity is the superclass for most of the value classes. It defines that any subclass will be
Serializable and will also contain a unique id.

ID
ID uniquely identifies a ContentEntity in the system. It consists of both a repositoryName (used
by management layer) and also a uid (used by repository layer). The management layer ensures
that both the ID is never null and that its uid is never null when referring to a ContentEntity that
exists in the system.

Node
This is a container for other Nodes and also Properties. A Node can be of type Hierarchy or
Content. Hierarchy Nodes can contain both Hierarchy and Content Nodes, while Content Nodes
can only contain other Content Nodes.

Nodes have a few system properties defined directly on the Node class including createDate,
createdBy, modifiedDate and ModifiedBy. Nodes also have user or application defined Property
objects. In order for a Node to contain Property Objects, it must have have an ObjectClass
(defined below) associated with it.

Property
Property is a name value pair that may contain zero or more Value objects. Its associated
PropertyDefinition defines the shape of a Property. The association is an implicit relationship
based on name.

Value
This is a generic wrapper for the real value, which may be a BinaryValue, Boolean, Calendar,
Float, Long or String.

BinaryValue
BestValue contains a byte array that is the actual binary and also has the binary name, mime type
and size. A BinaryValue may not always contain the actual byes for performance reasons. In
order for a consumer of the SPI to get the actual bytes, they should use the NodeOps service
interface.

In tegrat ing Conten t in to the BEA V i r tual Conten t Repos i to r y

4 BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content

ObjectClass
ObjectClass defines the schema for a Node and contains a name that uniquely identifies it within
a repository and also an array of PropertyDefinitions. ObjectClasses are stand-alone and do not
provide an inheritance or containment structure.

As such, if the repository implementing the SPI has an inheritance or containment model, it must
transform the requested ObjectClass into a single ObjectClass with all PropertyDefinitions found
in all super ObjectClasses. If Nodes are associated to an ObjectClass care should be given to
updating as there may be undesired outcomes.

Each ObjectClass may contain a primary PropertyDefintion. This allows the model to distinguish
between content and meta-content. The primary PropertyDefinition indicates which Property on
a Node represents the true content.

PropertyDefinition
PropertyDefinition defines the shape of a Property including its name, type, whether it is
single-valued or multi-valued, read only, and mandatory. It also may define a set of
PropertyChoices and whether the Property value is restricted to these choices. The validity of a
PropertyDefinition is left to the SPI implementation with a few exceptions. The management
layer requires the following rules be in place, even though they are not apparent in the class
structure. These rules are enforced during the creation of a PropertyDefintion by the
management layer, and the value model is not considered valid if the conditions are not true for
PropertyDefintions (and the corresponding Properties) that are retrieved from an SPI
implementation

If the PropertyDefinition contains a reference, it may not be multi-valued, or binary.

If the PropertyDefinition is Binary, it may not be multi-valued or restricted and may only
have one PropertyChoice.

If the PropertyDefinition is Boolean, it may not be multi-valued.

PropertyChoice
This defines a value choice for a Property and also whether it is a default for the Property. A
PropertyChoice may be of any type that is supported by a Property.

Serv ice In te r faces

BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content 5

Service Interfaces
Service Interfaces are used to perform CRUD on value interfaces such as creating a node or
updating a property to a node. Service interfaces, in general, operate on the entity's id, such as
Node id. This id can be a uuid, database id or the elements path as long as it uniquely identifies
it to the repository.

Service interfaces are expected to be transactional (where necessary), thread safe and scalable.
There may be one implementation for all interfaces, or a separate implementation for each service
interface. All service methods throw a general com.bea.content.RepositoryException. The SPI
also includes a few standard exceptions that inherit from RepositoryException.

NodeOps
NodeOps is the service interface for performing operations on Nodes and their Properties. This
includes creating, updating, deleting, copying, moving and renaming.

ObjectClassOps
ObjectClassOps is the service interface for performing operations on ObjectClasses and their
PropertyDefinitions and PropertyChoices. This includes creating, updating and retrieving.

SearchOps
SearchOpsis the service interface for performing searches for Nodes. The search is based on the
Search object defined in com.bea.content.expression along with the expression structure in the
com.bea.p13n.expression package.

A search is for any Node that matches the Property and/or ObjectClass definitions in the
Expression. There are system properties that may be part of the search and are defined in the
Search class. http://e-docs.bea.com/wlp/docs70/dev/exppkg.htm#1003588

Repository Connection Interfaces
Repository Connection Interfaces include Repository, Ticket and PasswordCredential. In order
for a client of the SPI to connect to the services, the repository connection interfaces must be
implemented. These interfaces allow an SPI implementation to be plugged into the BEA content
management framework.

The repository connection interfaces are responsible for accepting a PasswordCredential object,
which includes a username and granting the client access to the various service interfaces.

In tegrat ing Conten t in to the BEA V i r tual Conten t Repos i to r y

6 BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content

Repository
Repository defines the configuration for a content repository and also provides access to the
content repository services through the Ticket. It must be implemented as a J2SE class such that
"new" may be called on it.

The setProperties method on the Repository will be called on initialization so the Repository
instance will always have its configuration properties before it is asked for a ticket. The
Repository implementation may be configurable to allow for multiple instances to be deployed
against different repositories.

Ticket
Ticket is the interface given back to the client after calling connect on a Repository with
Credentials that are authenticated. It is the gateway to the content repository services.

Credentials
Credentials defines the credentials for a user attempting access to the content repository. Both
authentication and authorization may be based on the Credentials. It is necessary for the SPI
implementation to authenticate and authorize based on username, because password is not
present in the PasswordCredential. If the username is null then the authentication should be based
on an anonymous user.

Connection Sequence
It is important to note that the ContentManager will call the SPI on a need to know basis. The SPI
implementation can either take advantage of this by lazy loading, or it may load up front if that
is more advantageous to the SPI or the application using it.

Connect ion Sequence

BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content 7

Figure 1 Connection sequence

For example, both the getNodes and getNode call may either return “light” versions of the Node
that don’t include the Properties, or they may return “full” versions of the Node that do include
the Properties. If the Properties aren’t part of the Node, when the ContentManager needs the
Properties it will go back to the SPI to retrieve them. The InputStream for Binary Properties
should only be returned on the getBytes() call, otherwise it won’t get closed properly.

An example of a Repository implementation is that is called by the Virtual ContentManager is:

public class RepositoryImpl implements Repository

{

 Properties properties;

 String name;

 public Ticket connect(Credentials credentials)

 {

 return new TicketImpl(credentials, properties);

 }

 public Ticket connect(String userName, String password)

 {

In tegrat ing Conten t in to the BEA V i r tual Conten t Repos i to r y

8 BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content

 Subject subject = com.bea.p13n.security.Authentication.

 getCurrentSubject();

 Credentials credentials = new Credentials(subject);

 return new TicketImpl(credentials, properties);

 }

 public Properties getProperties()

 {

 return properties;

 }

 public void setProperties(Properties properties)

 {

 this.properties = properties;

 }

 public String getName()

 {

 return name;

 }

 public void setName(String name)

 {

 this.name = name;

 }

}

Value Model
Figure 2 shows the value model.

Conf igur ing the Exp ress ion Mode l

BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content 9

Figure 2 Value model

Configuring the Expression Model
Figure 3 shows the expression model.

In tegrat ing Conten t in to the BEA V i r tual Conten t Repos i to r y

10 BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content

Figure 3 Expression Model

Configuring the Repository
Once you have implemented the SPI you'll need to configure the Repository through the Content
Administration Tools. Generally, your existing repository will require special configuration
parameters in order for the VCR to connect to it. These properties may be added as key/value
pairs through the Administration Tools, much like the BEA Repository utilizes. The properties
that are added through the content administration tools are passed to your SPI implementation
when the VCR connects to your repository as described above in the Connection Sequence. After

Conf igur ing the Repos i t ory

BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content 11

configuring the repository, you can start utilizing it in BEA WebLogic Portal. For more
information regarding the SPI, please review the Content SPI JavaDoc.

In tegrat ing Conten t in to the BEA V i r tual Conten t Repos i to r y

12 BEA WebLogic Portal 8.1 White Paper: Integrating Content Into the BEA Virtual Content

	Copyright
	Overview and Benefits
	Introduction
	SPI Structure
	Value Classes
	ContentEntity
	ID
	Node
	Property
	Value
	BinaryValue
	ObjectClass
	PropertyDefinition
	PropertyChoice

	Service Interfaces
	NodeOps
	ObjectClassOps
	SearchOps

	Repository Connection Interfaces
	Repository
	Ticket
	Credentials

	Connection Sequence
	Value Model
	Configuring the Expression Model
	Configuring the Repository

