
Oracle® WebLogic Server
Use the WebLogic JMS Client for Microsoft .NET

10g Release 3 (10.3) 

July 2008



Oracle WebLogic Server Use the WebLogic JMS Client for Microsoft .NET, 10g Release 3 (10.3)

Copyright © 2007, 2008, Oracle and/or its affiliates. All rights reserved.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure 
and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you 
may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any 
part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law 
for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, 
please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. 
Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. 
Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal 
Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, 
and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the 
extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial 
Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended 
for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use 
this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and 
other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages 
caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective 
owners.

This software and documentation may provide access to or information on content, products and services from third parties. 
Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to 
third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or 
damages incurred due to your access to or use of third-party content, products, or services.



Use the WebLogic JMS Client for Microsoft .NET iii

Contents

Overview of the WebLogic JMS .NET Client
What is the WebLogic JMS .NET Client?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-1

Supported JMS Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Messaging Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-2

Message Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

How the WebLogic JMS .NET Client Works. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-3

Configuring WebLogic Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Configuring the Listen Port . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-5

Configuring JMS Resources for the JMS .NET Client . . . . . . . . . . . . . . . . . . . . . . 1-5

Interoperating with Previous WebLogic Server Releases. . . . . . . . . . . . . . . . . . . . . . . . 1-5

Understanding the WebLogic JMS .NET API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1-6

Installing and Copying the WebLogic JMS .NET Client 
Libraries

Installing the WebLogic JMS .NET Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Location of Installed Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-1

Copying the Library to the Client Machine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-2

Developing a Basic JMS Application Using the WebLogic JMS 
.NET API

Creating a JMS .NET Client Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-1

Example: Writing a Basic PTP JMS .NET Client Application. . . . . . . . . . . . . . . . . . . . 3-3

Prerequisites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3



iv Use the WebLogic JMS Client for Microsoft .NET

Basic Steps  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3-3

Using Advanced Concepts in JMS .NET Client Applications. . . . . . . . . . . . . . . . . . . . 3-6

Programming Considerations
Using WebLogic JMS Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-2

Message Compression. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-5

Unit-of-Order  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Message Delivery Time  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

One-Way Message Sends  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Include user-id as JMSXUserId  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-6

Message Delivery Attempts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Limitations of Using the WebLogic JMS .NET Client  . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Unsupported JMS 1.1 Standard Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Unsupported JMS 1.1 Optional Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-7

Unsupported WebLogic JMS Extensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-8

Exchanging Messages Between Different Language Environments . . . . . . . . . . . . . . . 4-9

Specifying the URL Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-9

Using DNS Alias Host Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10

Implementing Security With the JMS .NET Client . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-10

Configuring Logging and Debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-11

Server Side  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

Client Side. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-12

Understanding Socket and Threading Behavior. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-15

Data Conversion Between Java and .NET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16

Endian Conversions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-16

Signed and Unsigned Byte Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-17

Byte Array Transfers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18



Use the WebLogic JMS Client for Microsoft .NET v

Time Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-18

Best Practices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-19

JMS .NET Client Sample Application
MessagingSample.cs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .A-1



vi Use the WebLogic JMS Client for Microsoft .NET



Use the WebLogic JMS Client for Microsoft .NET 1-1

C H A P T E R 1

Overview of the WebLogic JMS .NET 
Client

These sections provide an overview of the WebLogic JMS .NET client, illustrate how a JMS 
.NET client application accesses WebLogic JMS resources, and provide a brief summary of the 
WebLogic JMS .NET API.

It is assumed that the reader is familiar with .NET programming and JMS 1.1 concepts and 
features.

“What is the WebLogic JMS .NET Client?” on page 1-1

“How the WebLogic JMS .NET Client Works” on page 1-3

“Configuring WebLogic Server” on page 1-5

“Interoperating with Previous WebLogic Server Releases” on page 1-5

“Understanding the WebLogic JMS .NET API” on page 1-6

What is the WebLogic JMS .NET Client?
The WebLogic JMS .NET client is a fully-managed .NET runtime library and application 
programming interface (API). It enables programmers to create .NET C# client applications that 
can access WebLogic Java Message Service (JMS) applications and resources. 

WebLogic JMS is an enterprise-level messaging system that fully supports the JMS 1.1 
Specification and also provides numerous WebLogic JMS Extensions to the standard JMS APIs. 
To familiarize yourself with the features of WebLogic JMS, see the Messaging for Oracle 
WebLogic Server web page on the edocs Web site. For a summary of the WebLogic Server 

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html
message URL http://e-docs.bea.com/wls/docs103/javadocs/weblogic/jms/extensions/package-summary.html
http://e-docs.bea.com/wls/docs103/messaging.html
http://e-docs.bea.com/wls/docs103/messaging.html


Overv iew o f  the  WebLog ic  JMS .NET  C l i ent

1-2 Use the WebLogic JMS Client for Microsoft .NET

value-added JMS features, see “WebLogic Server Value-Added JMS Features” in Configuring 
and Managing WebLogic JMS.

For complete details about all the classes and interfaces in the JMS .NET API, see the WebLogic 
Messaging API Reference for .NET Clients documentation.

The WebLogic JMS .NET client, which is bundled with WebLogic Server 10g Release 3 and 
higher, is supported on Microsoft .NET Framework versions 2.0 through 3.5. Installation details 
are provided in Chapter 2, “Installing and Copying the WebLogic JMS .NET Client Libraries.”

Supported JMS Features
For this release, the WebLogic JMS .NET client supports the major standard features of the JMS 
Version 1.1 Specification. For a list of the JMS 1.1 standard features that are not supported, see 
“Limitations of Using the WebLogic JMS .NET Client” on page 4-7.

In addition to the standard JMS 1.1 Specification support, the WebLogic JMS .NET client also 
supports several WebLogic JMS extensions. For more information about the features supported 
and how they can be used with the JMS .NET client, see “Using WebLogic JMS Extensions” on 
page 4-2.

Messaging Models
The WebLogic JMS .NET client supports the following messaging models:

The point-to-point (PTP) messaging model, which enables one application to send a 
message to exactly one recipient.

The publish/subscribe (pub/sub) messaging model, which enables an application to send a 
message to multiple recipients. 

Messages can be specified as persistent or non-persistent:

Persistent messages are guaranteed to be delivered once-and-only-once. The message will 
not be lost due to JMS server failure and it will not be redelivered once it is acknowledged 
by an application. It is not considered sent until it has been safely written to a file or 
database. 

Non-persistent messages are not stored. They are guaranteed to be delivered at-most-once. 
Messages may be lost when there is a JMS provider failure and will not be redelivered. 

For more information, see “Understanding the Messaging Models” in Programming WebLogic 
JMS.

http://e-docs.bea.com/wls/docs103/jms_admin/intro.html#jms_features
http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html
http://e-docs.bea.com/wls/docs103/jms/fund.html#fund001
message URL http://e-docs.bea.com/wls/docs103/javadocs/dotnetclient/weblogic-jms-dotnet-api-10.3-sp0-rp0/
message URL http://e-docs.bea.com/wls/docs103/javadocs/dotnetclient/weblogic-jms-dotnet-api-10.3-sp0-rp0/


How the  WebLogic  JMS .NET  C l i ent  Works

Use the WebLogic JMS Client for Microsoft .NET 1-3

Message Types
The WebLogic JMS .NET client supports the following message types, as defined in the JMS 1.1 
Specification:

Message

BytesMessage

MapMessage

ObjectMessage (between producers and consumers written in the same language only)

StreamMessage

TextMessage

The XMLMessage type extension provided by WebLogic JMS is not supported in this release. 
Such messages are automatically converted to a TextMessage type when received by a .NET 
client.

For more information about using the supported message types, see “Exchanging Messages 
Between Different Language Environments” on page 4-9.

How the WebLogic JMS .NET Client Works
The following figure illustrates how a JMS .NET client application running in a .NET Framework 
CLR can access JMS resources deployed on WebLogic Server. 

Figure 1-1  JMS .NET Client Architecture

http://java.sun.com/products/jms/docs.html
http://java.sun.com/products/jms/docs.html


Overv iew o f  the  WebLog ic  JMS .NET  C l i ent

1-4 Use the WebLogic JMS Client for Microsoft .NET

Note: All of the WebLogic components shown in Figure 1-1 are hosted on a single instance of 
WebLogic Server 10g Release 3 or later. In a multi-server or cluster configuration, each 
of the WebLogic Server components can run on a separate instance of WebLogic Server. 
However, the JMS .NET client host must run on WebLogic Server 10g Release 3 or later, 
and the connection host and the JMS server must run in the same WebLogic Server 8.1 
or later cluster.

The major components depicted in the illustration consist of the following:

A JMS .NET client written in C#, running in a .NET Framework CLR, that either produces 
messages to destinations or consumes messages from destinations.

A JMS .NET client host running on WebLogic Server 10g Release 3 or later that provides 
the interface between the JMS .NET client and WebLogic JMS.

A standard T3 protocol listen port configured on the .NET client host.

One or more connection hosts (i.e., connection factories).

One or more JMS servers that define a set of JMS destinations. 

Traffic to the JMS servers is always routed from the .NET client through the JMS .NET client 
host to the connection host to the JMS servers. Traffic to the JMS .NET client is always routed 
from the JMS servers to the connection host and through the JMS .NET client host to the .NET 
client.

A brief summary of the process used to exchange messages between the JMS .NET client and a 
JMS server, as illustrated in Figure 1-1, is summarized in the following steps:

1. The JMS .NET client establishes an initial T3 network connection with the JMS .NET client 
host running on WebLogic Server 10g Release 3 or later. 

2. The JMS .NET client obtains a connection factory from the JMS .NET client host.

3. The JMS .NET client host, in turn, obtains the connection factory from JNDI.

4. The JMS .NET client creates a connection using the connection factory, which will establish 
a connection from the JMS .NET client host to one of the connection hosts where the 
connection factory resides.

5. When the JMS .NET client sends (produces) a message, the JMS .NET client host sends it to 
the connection host, which in turn routes it to the JMS server hosting the destination. 
Alternatively, when the JMS .NET client receives (consumes) a message, the connection host 
routes it from the JMS server hosting the destination to the JMS .NET client host, which 
passes the message to the JMS .NET client.



Conf igur ing  WebLog ic  Se rve r

Use the WebLogic JMS Client for Microsoft .NET 1-5

Instructions and examples for creating a JMS .NET client application are provided in Chapter 3, 
“Developing a Basic JMS Application Using the WebLogic JMS .NET API.”

Configuring WebLogic Server
The following sections describe the configuration that must occur before a JMS .NET client 
application can access JMS resources.

Configuring the Listen Port
The JMS .NET client requires that a listen port configured for T3 protocol is enabled on the 
WebLogic Server instance hosting the JMS .NET client host. When you install WebLogic Server, 
a default port is configured for use with T3 protocol. Because the default port configuration can 
be changed or disabled, the system administrator needs to ensure that the T3 protocol is enabled 
on the server’s default port, or add a network channel that supports the T3 protocol. For 
configuration information, see the following topics:

“Configure default network connections” in the Administration Console Online Help

“Understanding Network Channels” in Configuring Server Environments 

Configuring JMS Resources for the JMS .NET Client
Before a JMS .NET client application can access JMS resources deployed on WebLogic Server, 
the WebLogic Server system administrator must configure the required JMS resources, including 
the connection factories, JMS servers, and destinations. For instructions for configuring JMS 
resources, see:

Configuring and Managing WebLogic JMS

“Configure Messaging” in the Administration Console Online Help

Interoperating with Previous WebLogic Server Releases
The JMS .NET client can communicate directly only with WebLogic Server 10g Release 3 and 
later. As shown in Figure 1-2, the JMS .NET client host must run on WebLogic Server 10g 
Release 3 or later, however, the connection host and the JMS server can run on WebLogic Server 
8.1 or later. Both the connection host and the JMS server must be in the same cluster.

http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/channels/ConfigureDefaultNetworkConnections.html
http://e-docs.bea.com/wls/docs103/jms_admin/index.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/taskhelp/jms_modules/ConfigureJMSService.html


Overv iew o f  the  WebLog ic  JMS .NET  C l i ent

1-6 Use the WebLogic JMS Client for Microsoft .NET

Figure 1-2  JMS .NET Client Interoperability

To access destinations on WebLogic Server 8.1 or later that are not in the same cluster as the 
.NET client host running on 10g Release 3 or later, you must configure the remote instance of 
WebLogic Server as a Foreign Server. For more information, see “Configuring Foreign Server 
Resources to Access Third-Party JMS Providers” in Configuring and Managing WebLogic JMS. 

Note: Although you can also use Foreign Servers to connect to third-party JMS providers using 
JMS Java clients, this feature is not supported in the WebLogic JMS .NET client.

Understanding the WebLogic JMS .NET API
The following table lists the primary JMS .NET API classes and interfaces used to create a JMS 
.NET client application. For complete details about all the classes and interfaces in the JMS .NET 
API, see the WebLogic Messaging API Reference for .NET Clients documentation.

Table 1-1  WebLogic JMS .NET Classes and Interfaces

Interface/Class Description

Constants The Constants family of classes is used to define commonly used 
constants/enumerations for the API.

ContextFactory A ContextFactory is used to create contexts, which are network connections 
from the .NET client to the client host.

IContext An IContext object represents a network connection from the .NET client to the 
client host. It is used to lookup destinations and connection factories, and to close 
the network connection when it is no longer needed.

http://e-docs.bea.com/wls/docs103/jms_admin/advance_config.html#accessing_foreign_providers
http://e-docs.bea.com/wls/docs103/jms_admin/advance_config.html#accessing_foreign_providers
message URL http://e-docs.bea.com/wls/docs103/javadocs/dotnetclient/weblogic-jms-dotnet-api-10.3-sp0-rp0/


Unders tanding  the  WebLog ic  JMS .NET  AP I

Use the WebLogic JMS Client for Microsoft .NET 1-7

IConnectionFactory An IConnectionFactory object encapsulates JMS connection configuration 
information. A JMS .NET client looks up a connection factory using an 
IContext object, and then uses it to create an IConnection with a JMS 
server. 

IConnection An IConnection object is the active connection between the JMS .NET client 
host and the JMS connection host. Authentication optionally takes place during 
the creation of the connection. A connection is used to create sessions.

ISession An ISession object is a single-threaded entity for producing and consuming 
messages. A session can create and service multiple message producers and 
consumers. 

IDestination An IDestination object identifies a queue or topic. Queue and topic 
destinations manage the messages delivered from the point-to-point and pub/sub 
messaging models, respectively.

ITopic An ITopic object is pub/sub IDestination that encapsulates a 
provider-specific topic name. It is the way a client specifies the identity of a topic 
to JMS API methods. For those methods that use an IDestination as a 
parameter, an ITopic object may be used as an argument. For example, an 
ITopic can be used to create an IMessageConsumer and an 
IMessageProducer by calling: 
ISession.CreateConsumer(IDestination destination)

ISession.CreateProducer(IDestination destination)

IQueue An IQueue object is a point-to-point IDestination that encapsulates a 
provider-specific queue name. It is the way a client specifies the identity of a 
queue to JMS API methods.

Since IQueue and ITopic both inherit from IDestination, for those 
methods that use an IDestination as a parameter, an IQueue object can be 
used as the argument. For example, an IQueue can be used to create an 
IMessageConsumer and an IMessageProducer by calling:
ISession.CreateConsumer(IQueue queue)

ISession.CreateProducer(IQueue queue)

IMessageConsumer A JMS .NET client uses an IMessageConsumer object to receive messages 
from a destination. An IMessageConsumer object is created by passing an 
IDestination object to a message-consumer creation method supplied by a 
session. 

Table 1-1  WebLogic JMS .NET Classes and Interfaces

Interface/Class Description



Overv iew o f  the  WebLog ic  JMS .NET  C l i ent

1-8 Use the WebLogic JMS Client for Microsoft .NET

IMessageProducer A JMS .NET client uses an IMessageProducer object to send messages to a 
destination. An IMessageProducer object is created by passing an 
IDestination object to a message-producer creation method supplied by a 
session. 

IMessage The IMessage interface is the root interface of all JMS messages. It defines the 
message header and the Acknowledge method used for all messages. 

JMS messages are composed of the following parts:

Header - All messages support the same set of header fields. Header fields contain 
values used by both clients and providers to identify and route messages.

Properties - Each message contains a built-in facility for supporting 
application-defined property values. Properties provide an efficient mechanism 
for supporting application-defined message filtering.

Body - The JMS API defines several types of message body, which cover the 
majority of messaging styles currently in use.

IMapMessage An IMapMessage object is used to send a set of name-value pairs. The names 
are String objects, and the values are primitive data types in the Java and C# 
programming languages. The names must have a value that is not null, and not an 
empty string. The entries can be accessed sequentially or randomly by name. The 
order of the entries is undefined. IMapMessage inherits from the IMessage 
interface and adds a message body that contains a map. 

IObjectMessage An IObjectMessage object is used to send a message that contains a 
serializable object in the Java and C# programming languages. It inherits from the 
IMessage interface and adds a body containing a single reference to an object. 
C# objects cannot be read by Java programs, and vice versa. For more 
information, see “Exchanging Messages Between Different Language 
Environments” on page 4-9.

IStreamMessage An IStreamMessage object is used to send a stream of primitive types in the 
Java programming language. It is filled and read sequentially. It inherits from the 
IMessage interface and adds a stream message body. Its methods are based 
largely on those found in java.io.DataInputStream and 
java.io.DataOutputStream. 

Table 1-1  WebLogic JMS .NET Classes and Interfaces

Interface/Class Description



Unders tanding  the  WebLog ic  JMS .NET  AP I

Use the WebLogic JMS Client for Microsoft .NET 1-9

ITextMessage An ITextMessage object is used to send a message containing a String. It 
inherits from the IMessage interface and adds a text message body. 

IBytesMessage An IBytesMessage object is used to send a message containing a stream of 
uninterpreted bytes. It inherits from the IMessage interface and adds a bytes 
message body. The receiver of the message supplies the interpretation of the 
bytes. 

Table 1-1  WebLogic JMS .NET Classes and Interfaces

Interface/Class Description



Overv iew o f  the  WebLog ic  JMS .NET  C l i ent

1-10 Use the WebLogic JMS Client for Microsoft .NET



Use the WebLogic JMS Client for Microsoft .NET 2-1

C H A P T E R 2

Installing and Copying the WebLogic 
JMS .NET Client Libraries

These sections describe the JMS .NET client components installed on a WebLogic Server 
platform, the location to which they are installed, and how to copy them to a .NET Framework 
machine. 

“Installing the WebLogic JMS .NET Client” on page 2-1

“Copying the Library to the Client Machine” on page 2-2

Installing the WebLogic JMS .NET Client
The WebLogic JMS .NET Client is bundled with WebLogic Server 10g Release 3 and later. 
When you perform a Complete installation of WebLogic Server on a supported platform, 
including non-Windows platforms, the WebLogic JMS .NET Client is installed by default. If you 
choose the Custom installation option, ensure that the WebLogic Server Clients component of 
WebLogic Server is selected. If you deselect this component, the WebLogic JMS .NET Client is 
not installed. 

For a list of supported platforms for WebLogic Server, see Supported Configurations.

For details about installing WebLogic Server, see the Installation Guide.

Location of Installed Components
The WebLogic JMS .NET client is installed in the following directory on the WebLogic Server 
platform:

BEA_HOME/modules/com.bea.weblogic.jms.dotnetclient_1.0.0.0

../../../common/docs103/install/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html


I ns ta l l ing  and  Copy ing  the  WebLog ic  JMS .NET  C l i ent  L ib rar ies

2-2 Use the WebLogic JMS Client for Microsoft .NET

where BEA_HOME is the top-level installation directory that you selected during the installation 
process.

The JMS .NET client installation consists of the following components: 

WebLogic.Messaging.dll—The fully-managed JMS .NET client library used by the 
client for the JMS client application.

WebLogic.Messaging.pdb—The debug version of the JMS .NET client library that can 
be used by the client, together with the WebLogic.Messaging.dll, to debug the JMS 
.NET client application.

jms.dotnet.api.zip—HTML and Windows help-style documentation for the WebLogic 
JMS .NET API

Copying the Library to the Client Machine
After installing WebLogic Server on a supported platform, you need to copy the 
WebLogic.Messaging.dll library from the installation directory specified in “Location of 
Installed Components” on page 2-1 to your development directory on a supported .NET client 
machine, and you need to ensure that your .NET application references the library. The JMS 
.NET client is a fully-managed runtime library that is supported on the following Windows 
platforms running version 2.0 through 3.5 of the .NET Framework:

Windows 2003

Windows XP

Windows Vista

If you are using Visual Studio®, you can add the WebLogic.Messaging.dll as a reference 
assembly in your project as follows:

1. Select Project→References

2. Select Add Reference and specify the WebLogic.Messaging.dll from the directory into 
which you copied it on the .NET machine

Optionally, you can also copy the debug version of the JMS .NET client library, 
WebLogic.Messaging.pdb, and the API documentation to your client machine, but it is not 
required.



Use the WebLogic JMS Client for Microsoft .NET 3-1

C H A P T E R 3

Developing a Basic JMS Application 
Using the WebLogic JMS .NET API

The process for developing a JMS application using the WebLogic JMS .NET client is very 
similar to the process used to develop a Java client. These sections provide information on the 
steps required to develop a basic JMS application in C# using the JMS .NET API.

“Creating a JMS .NET Client Application” on page 3-1

“Example: Writing a Basic PTP JMS .NET Client Application” on page 3-3

“Using Advanced Concepts in JMS .NET Client Applications” on page 3-6

Creating a JMS .NET Client Application 
The following flowchart illustrates the steps in a basic JMS .NET application.



Deve lop ing  a  Bas ic  JMS App l i cat ion  Us ing  the  WebLog ic  JMS .NET  AP I

3-2 Use the WebLogic JMS Client for Microsoft .NET

Figure 3-1  Basic Steps in a JMS .NET Client Application

Note: Creating and closing resources has relatively higher overhead in comparison to sending 
and receiving messages. Oracle recommends that contexts be shared between threads, 
and that other resources be cached for reuse. For more information, see “Best Practices” 
on page 4-19.



Example :  Wr i t ing  a  Bas ic  PTP  JMS .NET  C l ien t  App l i cat ion

Use the WebLogic JMS Client for Microsoft .NET 3-3

Example: Writing a Basic PTP JMS .NET Client Application
The following example shows how to create a basic PTP JMS .NET client application, written in 
C#. It uses synchronous receive on a queue configured using auto acknowledge mode. A 
complete copy of the example is provided in Appendix A, “JMS .NET Client Sample 
Application.”

For more information about the .NET API classes and methods used in this example, see 
“Understanding the WebLogic JMS .NET API” on page 1-6, or the WebLogic Messaging API 
Reference for .NET Clients documentation.

Prerequisites
Before proceeding, ensure that the system administrator responsible for configuring WebLogic 
Server has configured the following:

Listen port configured for T3 protocol on the server hosting the JMS .NET client host. For 
more information, see “Configuring the Listen Port” on page 1-5.

The required JMS resources, including the connection factories, JMS servers, and 
destinations. For more information, see “Configuring JMS Resources for the JMS .NET 
Client” on page 1-5.

Basic Steps
The following steps assume you have defined the required variables, including the WebLogic 
Server host, the connection factory, and the queue and topic names at the beginning of your 
program.

using System;

using System.Collections;

using System.Collections.Generic;

using System.Threading;

using WebLogic.Messaging;

public class MessagingSample

{

  private string host      = "localhost";

  private int    port      = 7001;

message URL http://e-docs.bea.com/wls/docs103/javadocs/dotnetclient/weblogic-jms-dotnet-api-10.3-sp0-rp0/
message URL http://e-docs.bea.com/wls/docs103/javadocs/dotnetclient/weblogic-jms-dotnet-api-10.3-sp0-rp0/


Deve lop ing  a  Bas ic  JMS App l i cat ion  Us ing  the  WebLog ic  JMS .NET  AP I

3-4 Use the WebLogic JMS Client for Microsoft .NET

private string cfName    = "weblogic.jms.ConnectionFactory";

  private string queueName = "jms.queue.TestQueue1";

Step 1
Create a context to establish a network connection to the WebLogic Server host and optionally 
login.

IDictionary<string, Object> paramMap = new Dictionary<string, Object>();

    

paramMap[Constants.Context.PROVIDER_URL] =

"t3://" + this.host + ":" + this.port;

IContext context = ContextFactory.CreateContext(paramMap);

Note: The Provider_URL may contain multiple addresses, separated by commas. For details 
about specifying multiple addresses, see “Specifying the URL Format” on page 4-9.

When multiple addresses are specified, the context tries each address in turn until one 
succeeds or they all fail, starting at a random location within the list of addresses, and 
rotating through all addresses. Starting at a random location facilitates load balancing of 
multiple clients, as different client contexts will randomly load balance their network 
connection to different .NET client host servers. 

Note: You also have the option of supplying a username and password with the initial context, 
as follows:
paramMap[Constants.Context.SECURITY_PRINCIPAL] = username;
paramMap[Constants.Context.SECURITY_CREDENTIALS] = password;

Step 2
Look up the JMS connection factory. 

IConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

Step 3
Look up JMS destination resources in the context using their configured JNDI names.

IQueue queue = (IQueue)context.LookupDestination(this.queueName);

Step 4 
Create a connection using the connection factory. This establishes a JMS connection from the 
.NET client host to the JMS connection host. The connection host will be one of the servers that 



Example :  Wr i t ing  a  Bas ic  PTP  JMS .NET  C l ien t  App l i cat ion

Use the WebLogic JMS Client for Microsoft .NET 3-5

is in the configured target list for the connection factory, and which can be the same as the .NET 
client host.

IConnection connection = cf.CreateConnection();

Step 5
Start the connection to allow consumers to get messages.

connection.Start();

Step 6
Create a session using the AUTO_ACKNOWLEDGE acknowledge mode.

Note: Sessions are not thread safe. Use multiple sessions if you need to run producers and/or 
consumers concurrently. For an example using multiple sessions, see the asynchronous 
example in Appendix A, “JMS .NET Client Sample Application.”

ISession session = connection.CreateSession(

Constants.SessionMode.AUTO_ACKNOWLEDGE);

Step 7
Create a message producer and send a persistent message.

IMessageProducer producer = session.CreateProducer(queue);

producer.DeliveryMode = Constants.DeliveryMode.PERSISTENT;

ITextMessage sendMessage = session.CreateTextMessage("My q message");

producer.Send(sendMessage);

Step 8
Create a message consumer and receive a message. Note that the message is automatically 
deleted from the server because the session was created in AUTO_ACKNOWLEDGE mode, as shown 
in Step 6.

IMessageConsumer consumer = session.CreateConsumer(queue);

IMessage recvMessage = consumer.Receive(500);



Deve lop ing  a  Bas ic  JMS App l i cat ion  Us ing  the  WebLog ic  JMS .NET  AP I

3-6 Use the WebLogic JMS Client for Microsoft .NET

Step 9
Close the connection. Note that closing a connection also closes its child sessions, consumers, 
and producers.

connection.Close();      

Step 10
Close the context.

context.CloseAll();

Note: context.Close() does not terminate the network connection until all the IConnections 
have been closed. 
context.CloseAll()closes the network connection and all open IConnections.

Using Advanced Concepts in JMS .NET Client Applications
Appendix A, “JMS .NET Client Sample Application,” provides a complete example of a JMS 
.NET client application, written in C#, that demonstrates some of the following advanced 
concepts:

The use of local transactions instead of acknowledge modes.

Message persistence. For more information, see “Persistent vs. Non-Persistent Messages” 
in Programming WebLogic JMS.

Acknowledge modes. For more information, see “Non-Transacted Session” in 
Programming WebLogic JMS.

Exception listeners. For more information, see “Best Practices” on page 4-19.

Durable Subscriptions. For more information, see “Setting Up Durable Subscriptions” in 
Programming WebLogic JMS.

For guidelines in the use of other advanced concepts in the JMS .NET client such as 
interoperability, security, and best practices, see Chapter 4, “Programming Considerations.”

http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#jms_durable_subscriber
http://e-docs.bea.com/wls/docs103/jms/fund.html#nontransacted
http://e-docs.bea.com/wls/docs103/jms/design_best_practices.html#persistent_vs_nonpersistent


Use the WebLogic JMS Client for Microsoft .NET 4-1

C H A P T E R 4

Programming Considerations

These sections provide programming considerations and best practices to use when creating a 
JMS .NET client application:

“Using WebLogic JMS Extensions” on page 4-2

“Limitations of Using the WebLogic JMS .NET Client” on page 4-7

“Exchanging Messages Between Different Language Environments” on page 4-9

“Specifying the URL Format” on page 4-9

“Implementing Security With the JMS .NET Client” on page 4-10

“Configuring Logging and Debugging” on page 4-11

“Understanding Socket and Threading Behavior” on page 4-15

“Data Conversion Between Java and .NET” on page 4-16

“Best Practices” on page 4-19



Programming  Cons iderat ions

4-2 Use the WebLogic JMS Client for Microsoft .NET

Using WebLogic JMS Extensions
Table 4-1 lists the WebLogic JMS extensions that are supported in this release of the JMS .NET 
client. There are several ways that messaging can be configured:

On the connection factory—This method often defines default configuration settings.

Programmatically in the application using the API—Certain programming constructs may 
override the connection factory configuration.

On the server—Certain settings may override both the connection factory and 
programmatic constructs.

In some cases, there are differences in the way that an extension is configured, or in the behavior, 
between a JMS .NET client and a Java client. For example, some extensions cannot be enabled 
programmatically using the JMS .NET API, and can only be enabled via configuration. The 
following table summarizes the differences. Additional details, if required, are provided in the 
subsequent sections.

Table 4-1  WebLogic JMS Extensions Supported in the JMS .NET Client

Feature Configurable 
on Connection 
Factory

Configurable 
on the 
Server

Java 
API

JMS 
.NET
API

Comments

Distributed Destinations (Uniform and 
Weighted)

For more information, see:
• “Using Distributed Destinations” 

in Programming WebLogic JMS
• “Configuring Distributed 

Destination Resources” in 
Configuring and Managing 
WebLogic JMS

Yes Yes No No

Flow Control Producers

For more information, see: 
“Controlling the Flow of Messages on 
JMS Servers and Destinations” in 
Performance and Tuning 

Yes Yes No No

http://e-docs.bea.com/wls/docs103/jms/dds.html
http://e-docs.bea.com/wls/docs103/jms_admin/advance_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs103/jms_admin/advance_config.html#jms_distributed_destination_config
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#message_flow_control
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#message_flow_control


Using  WebLog ic  JMS Ex tens ions

Use the WebLogic JMS Client for Microsoft .NET 4-3

Blocking producers during quota 
conditions

For more information, see “Defining a 
Send Timeout on Connection 
Factories” in Performance and Tuning 

Yes Yes No No

Foreign destinations for remote 
instances of WebLogic Server

For more information, see 
“Configuring Foreign Server 
Resources to Access Third-Party JMS 
Providers” in Configuring and 
Managing WebLogic JMS 

No Yes No No See “Interoperating 
with Previous 
WebLogic Server 
Releases” on 
page 1-5.

Imported store-and-forward (SAF) 
destinations

For more information, see “Imported 
SAF Destinations” in Configuring and 
Managing WebLogic 
Store-and-Forward 

No Yes No No

Redelivery limit

For more information, see “Setting a 
Redelivery Limit for Messages” in 
Programming WebLogic JMS

No Yes Yes No

Redelivery delay

For more information, see “Setting a 
Redelivery Delay for Messages” in 
Programming WebLogic JMS

Yes No Yes No

Error destinations

For more information, see 
“Configuring an Error Destination for 
Undelivered Messages” in 
Programming WebLogic JMS

No Yes No No

Table 4-1  WebLogic JMS Extensions Supported in the JMS .NET Client (Continued)

Feature Configurable 
on Connection 
Factory

Configurable 
on the 
Server

Java 
API

JMS 
.NET
API

Comments

http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#setting_redelivery_delay
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#setting_redelivery_delay
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#implement038
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#implement038
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#error_destination
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#error_destination
http://e-docs.bea.com/wls/docs103/saf_admin/config_jms.html#imported_SAF
http://e-docs.bea.com/wls/docs103/saf_admin/config_jms.html#imported_SAF
http://e-docs.bea.com/wls/docs103/jms_admin/advance_config.html#accessing_foreign_providers
http://e-docs.bea.com/wls/docs103/jms_admin/advance_config.html#accessing_foreign_providers
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#send_timeout
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#send_timeout
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#send_timeout


Programming  Cons iderat ions

4-4 Use the WebLogic JMS Client for Microsoft .NET

WLDestination.getCreateDestination
Argument

No No Yes Yes

No Acknowledge Mode

For more information, see “Using 
NO_ACKNOWLEDGE” in 
Programming WebLogic JMS

No No Yes Yes

Unit-of-Order

For more information, see:
• “Using Message Unit-of-Order” in 

Programming WebLogic JMS
• “Tuning Applicatinos Using 

Unit-of-Order” in “Tuning 
WebLogic JMS” in Performance 
and Tuning 

Yes Yes Yes Yes See “Unit-of-Order” 
on page 4-6

Scheduled message delivery

For more information, see “Setting 
Message Delivery Times” in 
Programming WebLogic JMS

Yes Yes Yes Yes See “Message 
Delivery Time” on 
page 4-6.

Asynchronous consumer messages 
maximum pipeline
• For more information, see: 

“Asynchronous Message Pipeline” 
in Programming WebLogic JMS

• “Tuning MessageMaximum” in 
Performance and Tuning

Yes No Yes No

Message Compression

For more information, see “Message 
Compression” in Programming 
WebLogic JMS 

Yes No Yes No See “Message 
Compression” on 
page 4-5.

Table 4-1  WebLogic JMS Extensions Supported in the JMS .NET Client (Continued)

Feature Configurable 
on Connection 
Factory

Configurable 
on the 
Server

Java 
API

JMS 
.NET
API

Comments

http://e-docs.bea.com/wls/docs103/jms/design_best_practices.html#message_compression
http://e-docs.bea.com/wls/docs103/jms/design_best_practices.html#message_compression
http://e-docs.bea.com/wls/docs103/jms/uoo.html
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#SettingMessageDeliveryTimes
http://e-docs.bea.com/wls/docs103/jms/manage_apps.html#SettingMessageDeliveryTimes
http://e-docs.bea.com/wls/docs103/jms/design_best_practices.html#NO_ACKNOWLEDGE
http://e-docs.bea.com/wls/docs103/jms/design_best_practices.html#NO_ACKNOWLEDGE
http://e-docs.bea.com/wls/docs103/jms/implement.html#AsynchronousMessagePipeline
http://e-docs.bea.com/wls/docs103/javadocs/weblogic/jms/extensions/WLDestination.html
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#messagemaximum


Using  WebLog ic  JMS Ex tens ions

Use the WebLogic JMS Client for Microsoft .NET 4-5

Message Compression
In this release, automatic message compression is not supported for client sends between the JMS 
.NET client and the JMS .NET client host running on WebLogic Server. However, if the 
compression settings are set on the connection factory, message compression behavior between 
the .NET client host and the destination is the same as that of the Java client. The behavior is as 
follows:

If the client host and destination run on different instances of WebLogic Server, then a sent 
message is automatically compressed on the client host.

Quotas

For more information, see “Defining 
Quota” in Performance and Tuning

No Yes No No

One-way message sends

For more information, see “Using 
One-Way Message Sends For 
Improved Non-Persistent Messaging 
Performance” in Performance and 
Tuning

Yes No No No See “One-Way 
Message Sends” on 
page 4-6.

Acknowledge policy

For more information, see “JMS 
Connection Factory: Configuration: 
Client” in the Administration Console 
Online Help

Yes No No No

Automatically include user-id as 
message property JMSXUserID

Yes Yes No No See “Include user-id 
as JMSXUserId” on 
page 4-6.

Get number of delivery attempts as 
message property 
JMSXDeliveryCount

No No No No See “Message 
Delivery Attempts” 
on page 4-7.

Table 4-1  WebLogic JMS Extensions Supported in the JMS .NET Client (Continued)

Feature Configurable 
on Connection 
Factory

Configurable 
on the 
Server

Java 
API

JMS 
.NET
API

Comments

http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#message_quota_maintenance
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#message_quota_maintenance
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#oneway_sends
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#oneway_sends
http://e-docs.bea.com/wls/docs103/perform/jmstuning.html#oneway_sends
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfigclientparamstitle.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfigclientparamstitle.html
http://e-docs.bea.com/wls/docs103/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfigclientparamstitle.html


Programming  Cons iderat ions

4-6 Use the WebLogic JMS Client for Microsoft .NET

If the client host and destination run on the same instance of WebLogic Server, then no 
sent message compression will occur.

Compressed messages are decompressed by the JMS .NET client host on the server side when 
they are received by the .NET client.

For more information, see “Message Compression” in Programming WebLogic JMS 

Unit-of-Order
The method used to specify Unit-of-Order (UOO) in the JMS .NET API differs from the Java 
API. To set Unit-of-Order in the JMS .NET API, add a string property named 
Constants.MessagePropertyNames.UNIT_OF_ORDER_PROPERTY_NAME to the message with 
the desired UOO.

For more information, see “Using Message Unit-of-Order” in Programming WebLogic JMS

Message Delivery Time
The method used to specify message delivery times in the JMS .NET API differs from the Java 
API. To set message delivery times in the JMS .NET API, add a property of type long named 
Constants.MessagePropertyNames.DELIVERY_TIME_PROPERTY_NAME to the message, 
where the value is the number of milliseconds in the future in which the message will be 
delivered.

One-Way Message Sends
Although you can configure one-way message sends on the connection factory, this behavior is 
not fully supported in the JMS .NET client. Messages sent as one-way sends will actually be two- 
way sends between the .NET client and the .NET client host, and one-way sends between the 
.NET client host and the JMS connection host.

Include user-id as JMSXUserId
The optional JMSXUserId system-generated message property on received messages specifies 
the credential of the original sender. To enable this property, configure the “Attach Sender 
Credential” attribute on destinations, distributed destinations, or templates, and configure the 
“Attach JMSXUserId” attribute on connection factories. To retrieve, call 
msg.GetStringProperty(Constants.MessagePropertyNames.USER_ID_PROPERTY_NAME

).

http://e-docs.bea.com/wls/docs103/jms/design_best_practices.html#message_compression
http://e-docs.bea.com/wls/docs103/jms/uoo.html


L imi tat i ons  o f  Us ing  the  WebLogic  JMS .NET  C l i ent

Use the WebLogic JMS Client for Microsoft .NET 4-7

Message Delivery Attempts
The JMSXDeliveryCount system-generated message property on received messages specifies 
the number of message delivery attempts. The first attempt is 1. To retrieve the value, call 
msg.GetIntProperty(Constants.MessagePropertyNames.DELIVERY_COUNT_PROPERTY_

NAME.

Limitations of Using the WebLogic JMS .NET Client 
The following sections describe the JMS features that are not supported in the JMS .NET client.

Unsupported JMS 1.1 Standard Features
In this release, the following JMS 1.1 standard features are not supported:

Creating and closing temporary destinations (javax.jms.TemporaryQueue and 
javax.jms.TemporaryTopic). The JMS .NET client can still produce messages to 
temporary destinations created by a Java client if the destination objects are obtained from 
the JMSReplyTo header of received messages.

javax.jms.QueueRequester and javax.jms.TopicRequester. (These helper classes 
are related to temporary destinations.)

Queue browsers: javax.jms.QueueBrowser.

Queue and Topic interfaces (QueueConnectionFactory, TopicConnectionFactory, 
QueueConnection, TopicConnection, QueueSession, TopicSession). These queue 
and topic interfaces are legacy JMS 1.0.2 interfaces that have been superseded by the JMS 
1.1 common interfaces.

Unsupported JMS 1.1 Optional Features
In this release, the following JMS 1.1 optional features are not supported:

XA interfaces (XAConnectionFactory, XAConnection, and XASession).

Participation in global XA transactions (See “Transactions” on page 4-8).

Connection Consumer and Server session pools (javax.jms.ConnectionConsumer, 
ServerSessionPool, and ServerSession). These are optional capabilities that have 
been superseded by Java EE MDBs, and are not supported by the WebLogic Java JMS 
client.



Programming  Cons iderat ions

4-8 Use the WebLogic JMS Client for Microsoft .NET

MessageProducer.setDisableMessageTimestamp method. Note that the WebLogic 
JMS Java client ignores this method.

Unsupported WebLogic JMS Extensions
In this release, the following WebLogic JMS extensions are not supported:

SSL

HTTP tunneling

SAF Client—See “Reliably Sending Messages Using the JMS SAF Client” in 
Programming Stand-alone Clients

Multicast Subscribers—See “Using Multicasting with WebLogic JMS” in Programming 
WebLogic JMS

Automatic Reconnect—See “Automatic JMS Client Failover” in Programming WebLogic 
JMS

Unit-of-Work—If a .NET client attempts to set a UOW property on a message, a 
Weblogic.Messaging.MessageException is generated. In addition, a .NET consumer 
cannot receive UOW messages with deserializable content that are sent by a Java client. In 
this case, the consumer gets a MessageFormatException if it calls the 
ObjectMessage.getObject() method on the ObjectMessage. Note that while 
Unit-of-Work is not supported, the more commonly used Unit-of-Order extension is fully 
supported. For more information about Unit-of-Order, see “Unit-of-Order” on page 4-6.

Note: The JMS .NET API does not provide extensions for programmatically configuring JMS 
resources (for example, topics and queues). In Java, programmatic configuration is 
accomplished using JMX MBeans or the 
weblogic.jms.extensions.JMSModuleHelper helper class. Alternative ways to 
configure JMS include WLST scripting and the WebLogic Administration Console.

Transactions
In this release, the JMS .NET client supports transacted sessions as defined in the JMS 
Specification only. Transacted sessions provide a standard local transaction capability. As with 
the Java client, one or more WebLogic JMS destinations from within the same cluster may 
participate in a transacted session local transaction, but no other resources may participate (such 
as JMS servers in other clusters, databases, or foreign JMS providers). 

http://e-docs.bea.com/wls/docs103/client/saf_client.html
http://e-docs.bea.com/wls/docs103/jms/multicast.html
http://e-docs.bea.com/wls/docs103//jms/recover.html#AutomaticFailoverforJMSClients


Exchanging  Messages  Between  D i f fe rent  Language  Env i ronments

Use the WebLogic JMS Client for Microsoft .NET 4-9

Global XA transactions are not supported, therefore JMS cannot participate in a .NET 
transaction. The XA setting of the connection factory is ignored by the .NET client. The JMS 
NET client operations cannot participant in any .NET transactions. 

Exchanging Messages Between Different Language 
Environments

The following Java JMS message types can be exchanged between a .NET producer and a Java 
or C consumer, and vice versa:

Message

BytesMessage

StreamMessage

MapMessage

TextMessage

An ObjectMessage type, however, can be sent from one language and received by another, but 
the message cannot be interpreted unless it is written in the same language. The producer and 
consumer of an OBJECTMESSAGE type must be written in the same language, either C# or Java. If 
a mismatch occurs; that is, if a .NET ObjectMessage is received by a Java consumer, or a Java 
ObjectMessage is received by a .NET consumer, then message.getObject() throws a 
MessageFormatException. 

Specifying the URL Format
The Provider_URL may contain multiple addresses, separated by commas, using the following 
format:

t3://address [,address]...

where a particular address may specify multiple port ranges. 

The syntax for specifying multiple addresses is as follows:

address = hostlist : portlist

where

hostlist = hostname [, hostname]...

portlist = portrange [+ portrange]...



Programming  Cons iderat ions

4-10 Use the WebLogic JMS Client for Microsoft .NET

portrange = port [- port]

Use port-port to indicate a port range, and + (plus sign) to separate multiple port ranges.

Table 4-2 provides sample URL formats.

Using DNS Alias Host Names
You can also specify DNS alias host names, which are expanded into multiple hosts. For 
example, if a DNS alias mycluster resolves to host1,host2, then the URL 
t3://mycluster:7001 expands into the address list: t3://host1:7001,host2:7001. 
Contexts that are created with the URL will always retry with host2 if host1 is unreachable. 
DNS aliases are typically configured by network administrators.

Implementing Security With the JMS .NET Client
You need to be aware of the following security considerations when creating a JMS .NET client:

To access secure JNDI and JMS resources on the server, the JMS .NET client application 
can supply a username and password as follows:

– When establishing the initial context to the server using 
ContextFactory.CreateContext(). The credentials supplied when creating the 
initial context are used for authentication to gain access to secure JNDI and JMS 
resources on the server.

– When creating a connection using the IConnectionFactory.createConnection() 
method. In this case, the credentials supplied when creating a connection override the 
credentials supplied during the initial context. That is, if user Fred is supplied during 

Table 4-2  URL Format Examples

This format . . . Can also be specified as . . .

t3://hostA:7001

t3://hostA,hostB:7001,hostC:7002

t3://hostA:7001,hostB:7001,hostC:7002

t3://hostA:7001+7005+7007,hostB:7001 t3://hostA:7001,hostA:7005,hostA:7007,
hostB:7001

t3://hostA:7001-7003+7005+7007,hostB
:8001

t3://hostA:7001,hostA:7002,hostA:7003,
hostA:7005,hostA:7007,hostB:8001



Conf igu r ing  Logging  and Debugg ing

Use the WebLogic JMS Client for Microsoft .NET 4-11

initial context, and user Tony is supplied when the connection is created, the user Tony 
credential is used for authentication to gain access to secure JMS resources.

Note: In both instances, the password is encrypted. If the resources are not secured, a 
username and password is optional.

WARNING: Although usernames and passwords are protected, and passwords are encrypted, 
a sophisticated user or intruder might be able to defeat the protection mechanisms. 
Be sure to secure any network connections when usernames and passwords are 
provided.

Authentication for the .NET client is associated with the JMS object that invokes the 
secured resource. That is, the credential for a JMS object is inherited from the parent JMS 
context, or from the connection override if credentials are supplied when creating the 
connection. This differs from Java client security where credentials are associated with the 
current thread.

SSL is not supported for the JMS .NET client in this release. Therefore, it is important that 
you secure the networking services that the operating system provides, as well as any 
networking connections. For more information, see “Securing Network Connections” in 
“Ensuring the Security of Your Production Environment” in Securing a Production 
Environment. 

Similar to the Java client, the JMS.NET client does not support message level encryption.

Due to the use of non-encrypted communication, sniffing of application traffic (see 
http://www.owasp.org/index.php/Sniffing_application_traffic_attack) is possible. You need 
to either accept these risks, or take remediation such as using a firewall to protect against 
these attacks.

The administration port, if configured, accepts only SSL traffic, and all connections via the 
port require administrator privileges. In addition, once an administration port is configured, 
all other ports will refuse connections that have administrator privileges. Because SSL is 
not supported for the JMS .NET client in this release, it cannot support users with 
administrative privileges if an administration port is configured.

Configuring Logging and Debugging
Basic logging and debugging is available for the server-side transport and .NET client host 
running on WebLogic Server. 

http://e-docs.bea.com/wls/docs103/lockdown/practices.html#SecuringNetworkConnections
http://www.owasp.org/index.php/Sniffing_application_traffic_attack


Programming  Cons iderat ions

4-12 Use the WebLogic JMS Client for Microsoft .NET

Server Side 
To enable debugging on the server side, use the following commands:

-Dweblogic.debug.DebugJMSDotNetT3Server=true

-Dweblogic.debug.Debug.JMSDotNetProxy=true 

Client Side
Client-side logging and debugging are enabled and controlled by various configuration settings 
in the application configuration file. For generated build files, the application configuration file 
is named yourapplicationname.exe.config, where yourapplicationname is the name of 
the application that runs the messaging client.

Listing 4-1 provides the XML content that needs to be added to your application configuration 
file to configure logging and debugging. The subsequent sections provide additional details about 
each of the different settings. If you have an existing yourapplicationname.exe.config file, 
add the XML content shown in the following listing to the file. Otherwise, you can create one and 
locate it in the same directory that contains the yourapplicationname.exe file.

Note: If you are using Visual Studio, the logging and debugging settings shown in Listing 4-1 
need to be added to the App.config file. Follow the instructions on the Microsoft Web 
site http://msdn.microsoft.com/en-us/library/ms184658.aspx to add an App.config file 
to your C# project inside a Visual Studio environment. 

Listing 4-1   XML File Content for yourapplicationname.exe.config File

<?xml version="1.0" encoding="utf-8" ?>

<configuration>

  <appSettings>

    <!-- To forward log output to a file, please uncomment the following 

line, and replace the file name with the desired one -->

    <!--- <add key="weblogic.JMSDotNet.debugConfig.LogFileName" 

value="c:\test\MyLogFile.log" /> -->

    

    <!-- To prevent log messages from displaying to the console, use the 

value 'false' -->

    <!-- <add key="weblogic.debug.JMSDotNet.config.IsLogToConsole" 

value="false" /> -->    

http://msdn.microsoft.com/en-us/library/ms184658.aspx


Conf igu r ing  Logging  and Debugg ing

Use the WebLogic JMS Client for Microsoft .NET 4-13

  </appSettings>

  <system.diagnostics>

    <switches>

      <!-- Please set the switch value as desired for logging to each Category 

-->

      <!-- value for Off=0, Error=1, Warning=2, Info=3, Verbose=4    -->

 

      <!-- if "AllLogger" is enabled (no zero for the value), every individual 

category is set to the same level as the AllLogger,

            no matter how individual category's value is set -->

      <add name="weblogic.debug.JMSDotNet.All" value="0" />

      <add name="weblogic.debug.JMSDotNet.Socket" value="0" />

      <add name="weblogic.debug.JMSDotNet.T3" value="0" />

      <add name="weblogic.debug.JMSDotNet.Transport" value="0" />

      <add name="weblogic.debug.JMSDotNet.PhysicalMsg" value="0" />

      <add name="weblogic.debug.JMSDotNet.LogicalMsg" value="0" />

    </switches>

  </system.diagnostics>

</configuration>

Message Output
Use the <appSettings> element to specify whether log messages are output to the console or 
saved to a file as shown in Table 4-3.



Programming  Cons iderat ions

4-14 Use the WebLogic JMS Client for Microsoft .NET

Log Categories and Levels
Client-side logging is grouped into the following categories:

Socket

T3

Transport

PhysicalMsg

LogicalMsg

All (represents all individual categories listed above)

For each of the categories, you can specify any of these logging levels:

Off(0), Error(1), Warning(2), Info(3), Verbose(4)

Note that the severity level on the All category overrides the setting on each individual category.

Table 4-3  appSettings Values

Key Value Setting

weblogic.JMSDotNet.debugCon
fig.LogFileName

String Full path and file name for the log file, for example 
c:\test\MyLogFile.log.

Note: The default log file size limit is 500KB. Each 
time the log file reaches this size, the server 
renames the log file and creates a new 
MyLogFile.log to store new messages. By 
default, the rotated log files are numbered in 
order of creation, for example 
MyLogFile.log.0, MyLogFile.log.1, 
MyLogFile.log.2, ..., with 
MyLogFile.log.0 containing the latest log 
messages.

weblogic.JMSDotNet.debugCon
fig.IsLogToConsole

Boolean • True — Displays log messages to the console
• False — Does not display log messages to the 

console



Unders tanding  Socke t  and  Th read ing  Behav io r

Use the WebLogic JMS Client for Microsoft .NET 4-15

Understanding Socket and Threading Behavior
WebLogic JMS .NET clients share the same WebLogic Server T3 port as other types of 
WebLogic clients. When an IContext initial context is created by a .NET client using the 
ContextFactory class, the client specifies a URL that references a T3 capable port on the server, 
and a socket pair is implicitly created to service the requested network connection. The socket 
pair consists of one socket on the client and another socket on the WebLogic Server JMS .NET 
client host. All JMS operations on JMS objects obtained from the .NET context route through the 
implicit network connection of the context.

If two concurrent IContext initial context instances on the same .NET CLR connect to the same 
WebLogic Server JMS .NET client host, then two network connections are created. Each network 
connection has its own pair of sockets: a server-side socket and a client-side socket. Therefore, 
when two network connections are created, two sockets are created on the CLR client and two 
sockets are created on the WebLogic Server acting as the JMS .NET client host. This contrasts 
with WebLogic Java clients, which automatically detect and close duplicate network connections 
to a remote JVM and, instead, implicitly multiplex all traffic to and from a particular remote JVM 
over a single network connection.

A server-side socket for a JMS .NET client is serviced by the same WebLogic Server 
socket-reader muxer thread pool as other types of WebLogic clients. When working on behalf of 
JMS .NET client requests, the socket-reader muxer thread pool reads the incoming requests from 
the socket and dispatches work into the WebLogic Server default thread pool which, in turn, 
processes the requests and sends the responses back to the client.

On a JMS .NET client, a new internal thread is automatically created for each network connection 
(that is, per IContext initial context instance). This dedicated thread reads all incoming data on 
the client socket and dispatches the related work into the CLR thread pool. This means that 
asynchronous message event handlers in the .NET client application run in the CLR thread pool. 

Note: The CLR thread pool is supplied by the .NET Framework 
System.Threading.ThreadPool class. There is one thread pool per process. The 
thread pool has a default size of 25 threads per available processor, however, you can 
change the number of threads in the thread pool using the ThreadPool.SetMaxThreads 
method. Each thread in the thread pool uses the default stack size and runs at the default 
priority. For more information, refer to the Microsoft .NET Framework documentation 
for the System.Threading.ThreadPool class.

For JMS .NET applications that create many concurrent initial contexts that all connect to the 
same WebLogic Server .NET client host, you may obtain performance improvements by 



Programming  Cons iderat ions

4-16 Use the WebLogic JMS Client for Microsoft .NET

modifying the application so that it uses a single, shared initial context. A shared context ensures 
that the client only creates a single network connection. 

Data Conversion Between Java and .NET
“Endian Conversions” on page 4-16

“Signed and Unsigned Byte Conversions” on page 4-17

“Byte Array Transfers” on page 4-18

“Time Conversions” on page 4-18

Endian Conversions
Java and .NET use different byte order formats for storing primitive types: 

Microsoft Windows .NET uses the Little-Endian (low-order) format

Java uses the Big-Endian (high-order) format

To support interoperability between Java and .NET, data is transferred over the network using the 
Big-Endian format. When a .NET application uses the JMS .NET API to read and write 
primitives, data is automatically converted between Big-Endian and Little-Endian, as needed. For 
example, if you use BytesMessage.WriteInt in the JMS .NET API, the data is always stored 
as Big Endian and can be read using both the Java API and the JMS .NET API bytes message 
read integer methods.

For specialized applications that do not use the JMS .NET API to pass primitives, but instead 
transfer primitive data using raw byte arrays, you need to manually convert the byte format to Big 
Endian when communicating with Java. If you need to perform a manual Endian conversion in 
your application, you can use the following helper methods from the utility class 
WebLogic.Messaging.Transport.Util.EndianConvertor provided in the JMS .NET client 
library:

public static char SwitchEndian(char x)

public static short SwitchEndian(short x)

public static int SwitchEndian(int x)

public static long SwitchEndian(long x)

public static ushort SwitchEndian(ushort x)

public static uint SwitchEndian(uint x)

public static ulong SwitchEndian(ulong x)



Data  Conve rs i on  Between  Java  and  .NET

Use the WebLogic JMS Client for Microsoft .NET 4-17

public static double SwitchEndian(double x)

public static float SwitchEndian(float x)

public static byte[] SwitchEndian(byte[] x) 

For example, the standard .NET classes System.IO.BinaryReader and 
System.IO.BinaryWriter for reading and writing primitives to raw byte arrays use Little 
Endian. The following code snippet illustrates how to store and retrieve an integer to/from a .NET 
byte array:

binaryWriter.WriteInt(EndianConverter.SwitchEndian(i))

i=EndianConverter.SwitchEndian(binaryReader.ReadInt())

Signed and Unsigned Byte Conversions
With the exception of the byte data type, there is an equivalent C# data type, with the same name 
and definition, for every Java primitive data type. The following table lists the different names 
used for signed and unsigned bytes in C# and Java. 

As shown in Table 4-4, Microsoft .NET supports both byte (unsigned byte) and sbyte (signed 
byte) as primitive data types, but Java supports only byte (signed byte) as a direct primitive type. 
The standard convention in both languages is to use the byte data type; however, in .NET this 
represents an unsigned byte and in Java this represents a signed byte. 

For interoperability between .NET and Java, the JMS .NET client allows only the use of the 
signed byte for reading and writing bytes. There is no difference between signed bytes and 
unsigned bytes when the byte value is 127 or less. An unsigned byte with a value of 127 or less 
is stored as an sbyte. However, if a .NET client needs to store an unsigned byte with a value 
greater than 127 in a signed byte, it needs to be converted from a signed byte to an unsigned byte. 
The following samples illustrate conversion methods that you can use to read and write an 
unsigned byte as a signed byte:

Byte Conversion in C#

An unsigned byte value of 255 can be passed as a signed byte as follows:

Table 4-4  Byte Primitive Data Type in C# and Java

C# Java Description

byte N/A Unsigned byte

sbyte byte Signed byte



Programming  Cons iderat ions

4-18 Use the WebLogic JMS Client for Microsoft .NET

– byte unsignedByteValue = 255; 
sbyte signedByteValue = unchecked ( (sbyte)unsignedByteValue ); // 
converted signed value=-1 

Similarly, you can use the following method to convert a signed byte value to an unsigned 
byte value:

– sbyte signedByteValue = -1; 
byte unsignedByteValue = unchecked ( (byte)signedByteValue ); // 
converted unsigned value=255 

Byte Conversion in Java

The unsigned value can be read as a signed byte and converted to an unsigned byte value 
as follows:
– byte signedByteValue = -1;
int unsignedByteValue = 0xFF &  signedByteValue; //converted signed 
value = 255

An unsigned value can be written as follows:
– Int unsignedByteValue = 255;
byte signedByteValue = 0xFF & unsignedByteValue; // converted 
signed value=-1

The JMS .NET API only allows for storing single bytes as signed bytes. When the JMS .NET API 
is used to retrieve sbyte values as short, int, long, or string, the value is treated as an sbyte, 
not an unsigned byte. For example, if the unsigned byte value 255 is stored using 
message.SetByteProperty("myvalue", unchecked( (sbyte)((byte)255) )), a call to 
message.GetByteProperty("myvalue")or message.GetShortProperty("myvalue") 
returns "-1".

Byte Array Transfers
When transferring byte arrays from the JMS .NET client to WebLogic JMS, all byte arrays 
(byte[]) are passed as is (that is, there is no conversion from unsigned to signed.) Therefore, 
no data is lost in the translation.

Time Conversions
The WebLogic JMS .NET API represents dates and times using Java rather than .NET 
conventions. The JMSTimestamp and JMSExpiration attributes of the 
WebLogic.Messaging.IMessage message interface are type long and contain a millisecond 
absolute time value as specified in the Java programming language. The Java millisecond 



Best  P ract ices

Use the WebLogic JMS Client for Microsoft .NET 4-19

absolute time value is the difference, measured in milliseconds, between a given time and 
midnight, January 1, 1970 UTC. 

The following examples demonstrate how to convert between .NET times and Java millisecond 
absolute time values.

Listing 4-2   Example C# Code for Converting the Current .NET Time to Java Millisecond Time

// Example:  C# code for converting the current .NET time to Java millisecond 

time

DateTime baseTime = new DateTime(1970, 1, 1, 0, 0, 0);

DateTime utcNow = DateTime.UtcNow;

long timeInMillis = (utcNow.Ticks - baseTime.Ticks)/10000;

Console.WriteLine(timeInMillis);

Listing 4-3   Example C# Code for Converting Java Millisecond Time to .NET Time

// Example:  C# code for converting Java millisecond time to .NET time

DateTime baseTime = new DateTime(1970, 1, 1, 0, 0, 0);

long utcTimeTicks = (timeInMillis * 10000) + baseTime.Ticks;

DateTime utcTime = new DateTime(utcTimeTicks, DateTimeKind.Utc);

Console.WriteLine(utcTime);

Console.WriteLine(utcTime.ToLocalTime());

Best Practices
The following list identifies best practices to use when creating a JMS .NET client application:

Always register a connection exception listener using an IConnection if the application 
needs to take action when an idle connection fails. The connection exception listener is 
asynchronously notified when there is a communications failure between the .NET client 
and the .NET client WebLogic host, or between the WebLogic host and the JMS 
connection host. Applications may choose to implement the connection exceptions listener 
callback to close all open resources and then periodically attempt a reconnect.

To obtain performance improvements, have multiple .NET client threads share a single 
context to ensure that they use a single socket. For more information, see “Understanding 



Programming  Cons iderat ions

4-20 Use the WebLogic JMS Client for Microsoft .NET

Socket and Threading Behavior” on page 4-15. It is important to note that a context creates 
a socket and that closing the context closes the socket.

Cache and reuse frequently accessed JMS resources, such as contexts, connections, 
sessions, producers, destinations, and connection factories. Creating and closing these 
resources consumes significant CPU and network bandwidth.

With the exception of close() methods, JMS sessions and their child resources are not 
thread safe. For example, do not call a producer send() in one thread, and a consumer 
receive() in parallel in another thread, if the producer and consumer were created using 
the same session. As another example, do not call any method other than close() in an 
arbitrary thread for sessions that have asynchronous consumers because a message may 
arrive and invoke the callback at the same time.

Use DNS aliases or comma separated addresses for load balancing JMS .NET clients 
across multiple JMS .NET client host servers in a cluster. In this release, the JMS .NET 
client does not support automatic cluster load balancing as is implicitly supplied with the 
Java client.



Use the WebLogic JMS Client for Microsoft .NET A-1

A P P E N D I X A

JMS .NET Client Sample Application

MessagingSample.cs
The following .NET client sample program, written in C#, provides an overview of the basic 
features of the WebLogic JMS .NET API. For details about the API, see the WebLogic 
Messaging API Reference for .NET Clients documentation.

To make a copy of this sample and maintain the formatting, display the MessagingSample.cs file 
in a supported browser, and copy and paste the text into the editor of your choice.

Listing A-1   MessagingSample.cs

using System;

using System.Collections;

using System.Collections.Generic;

using System.Threading;

using WebLogic.Messaging;

/// <summary> Demonstrate the WebLogic JMS .NET API.

/// <para>

/// This command line program connects to WebLogic JMS and performs

/// queue and topic messaging operations.  It is supported with

/// versions 10g Release 3 and later.  To compile the program,

message URL http://e-docs.bea.com/wls/docs103/javadocs/dotnetclient/weblogic-jms-dotnet-api-10.3-sp0-rp0/
message URL http://e-docs.bea.com/wls/docs103/javadocs/dotnetclient/weblogic-jms-dotnet-api-10.3-sp0-rp0/
../jms_dotnet/samples/MessagingSample.cs


JMS .NET  C l ient  Sample  App l icat ion

A-2 Use the WebLogic JMS Client for Microsoft .NET

/// link it with "WebLogic.Messaging.dll".   For usage information,

/// run the program with "-help" as a parameter.

/// </para>

/// <para>

/// Copyright 1996,2008, Oracle and/or its affiliates. All rights reserved. 

/// </para>

/// </summary>

public class MessagingSample

{

  private static string NL = Environment.NewLine;

  private string host      = "localhost";

  private int    port      = 7001;

  private string cfName    = "weblogic.jms.ConnectionFactory";

  private string queueName = "jms.queue.TestQueue1";

  private string topicName = "jms.topic.TestTopic1";

  private static string USAGE =

    "Usage: " + Environment.GetCommandLineArgs()[0] + NL +

    "          [-host <hostname>] [-port <portnum>] " + NL +

    "          [-cf <connection factory JNDI name>] " + NL +

    "          [-queue <queue JNDI name>] [-topic <topic JNDI name>]";

  public static void Main(string[] args) 

  {

    try {

      MessagingSample ms = new MessagingSample();

      // override defaults with command line arguments

      if (!ms.ParseCommandLine(args)) return;

      ms.DemoSyncQueueReceiveWithAutoAcknowledge();

      ms.DemoAsyncNondurableTopicConsumerAutoAcknowledge();



MessagingSample . cs

Use the WebLogic JMS Client for Microsoft .NET A-3

      ms.DemoSyncTopicDurableSubscriberClientAcknowledge();

    } catch (Exception e) {

      Console.WriteLine(e);

    }

  }

  private void DemoSyncQueueReceiveWithAutoAcknowledge()

  { 

    Console.WriteLine(

      NL + "-- DemoSyncQueueReceiveWithAutoAcknowledge -- " + NL);

    // ------------------------------------------------

    // Make a network connection to WebLogic and login:

    // ------------------------------------------------

    IDictionary<string, Object> paramMap = new Dictionary<string, Object>();

    

    paramMap[Constants.Context.PROVIDER_URL] = 

      "t3://" + this.host + ":" + this.port;

    IContext context = ContextFactory.CreateContext(paramMap);

    try {

      // -------------------------------------

      // Look up our resources in the context: 

      // -------------------------------------

      IConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

  

      IQueue queue = (IQueue)context.LookupDestination(this.queueName);

  

      // -------------------------------------------------

      // Create a connection using the connection factory:

      // -------------------------------------------------

  

      IConnection connection = cf.CreateConnection();



JMS .NET  C l ient  Sample  App l icat ion

A-4 Use the WebLogic JMS Client for Microsoft .NET

      // -----------------------------------------------------------------

      // Start the connection in order to allow receivers to get messages:

      // -----------------------------------------------------------------

      connection.Start();

      // -----------------

      // Create a session:

      // -----------------

      // IMPORTANT:  Sessions are not thread-safe.   Use multiple sessions 

      // if you need to run producers and/or consumers concurrently. For 

      // more information, see the asynchronous consumer example below.

      //

  

      ISession session = connection.CreateSession(

         Constants.SessionMode.AUTO_ACKNOWLEDGE);

      // ------------------------------------------------

      // Create a producer and send a persistent message:

      // ------------------------------------------------

      IMessageProducer producer = session.CreateProducer(queue);

      producer.DeliveryMode = Constants.DeliveryMode.PERSISTENT;

  

      ITextMessage sendMessage = session.CreateTextMessage("My q message");

  

      producer.Send(sendMessage);

  

      PrintMessage("Sent Message:", sendMessage);

      // ----------------------------------------

      // Create a consumer and receive a message:

      // ----------------------------------------

      // The message will automatically be deleted from the server as the 

      // consumer's session was created in AUTO_ACKNOWLEDGE mode.

      //



MessagingSample . cs

Use the WebLogic JMS Client for Microsoft .NET A-5

      IMessageConsumer consumer = session.CreateConsumer(queue);

      IMessage recvMessage = consumer.Receive(500);

      PrintMessage("Received Message:", recvMessage);

  

      // ------------------------------------------------------------------

      // Close the connection.   Note that closing a connection also closes

      // its child sessions, consumers, and producers.

      // ------------------------------------------------------------------

      connection.Close();      

    } finally {

      // ------------------------------------------------------------------

      // Close the context.  The CloseAll method closes the network

      // connection and all related open connections, sessions, producers,

      // and consumers.

      // ------------------------------------------------------------------

      context.CloseAll();

    }

  }

  // Implement a MessageEventHandler delegate.  It will receive 

  // asynchronously delivered messages.

  public void OnMessage(IMessageConsumer consumer, MessageEventArgs args) {

    PrintMessage("Received Message Asynchronously:", args.Message);

    // -----------------------------------------------------------------

    // If the consumer's session is CLIENT_ACKNOWLEDGE, remember to

    // call args.Message.Acknowledge() to prevent the message from

    // getting redelivered, or consumer.Session.Recover() to force 

redelivery.

    // Similarly, if the consumer's session is TRANSACTED, remember to



JMS .NET  C l ient  Sample  App l icat ion

A-6 Use the WebLogic JMS Client for Microsoft .NET

    // call consumer.Session.Commit() to prevent the message from

    // getting redeliverd, or consumer.Session.Rollback() to force 

redeivery.

  }

  private void DemoAsyncNondurableTopicConsumerAutoAcknowledge()

  { 

    Console.WriteLine(

      NL + "-- DemoAsyncNondurableTopicConsumerAutoAcknowledge -- " + NL);

    // ------------------------------------------------

    // Make a network connection to WebLogic and login:

    // ------------------------------------------------

    IDictionary<string, Object> paramMap = new Dictionary<string, Object>();

    

    paramMap[Constants.Context.PROVIDER_URL] = 

      "t3://" + this.host + ":" + this.port;

    IContext context = ContextFactory.CreateContext(paramMap);

    try {

      // -------------------------------------

      // Look up our resources in the context:

      // -------------------------------------

      IConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

  

      ITopic topic = (ITopic)context.LookupDestination(this.topicName);

  

      // --------------------------------------------------------------

      // Create a connection using the connection factory and start it:

      // --------------------------------------------------------------

  

      IConnection connection = cf.CreateConnection();

      // -----------------------------------------------------------------

      // Start the connection in order to allow receivers to get messages:



MessagingSample . cs

Use the WebLogic JMS Client for Microsoft .NET A-7

      // -----------------------------------------------------------------

      connection.Start();

      // ------------------------------------------

      // Create the asynchronous consumer delegate.   

      // ------------------------------------------

      // Create a session and a consumer; also designate a delegate 

      // that listens for messages that arrive asynchronously.  

      //

      // Unlike queue consumers, topic consumers must be created

      // *before* a message is sent in order to receive the message!

      //

      // IMPORTANT:  Sessions are not thread-safe.   We use multiple sessions 

      // in order to run the producer and async consumer concurrently.  The

      // consumer session and any of its producers and consumers 

      // can no longer be used outside of the OnMessage

      // callback once OnMessage is designated as its event handler, as

      // messages for the event handler may arrive in another thread.

      //

  

      ISession consumerSession = connection.CreateSession(

         Constants.SessionMode.AUTO_ACKNOWLEDGE);

      IMessageConsumer consumer = consumerSession.CreateConsumer(topic);

      consumer.Message += new MessageEventHandler(this.OnMessage);

      // -------------

      // Send Message:

      // -------------

      // Create a producer and send a non-persistent message.  Note

      // that even if the message were sent as persistent, it would be

      // automatically downgraded to non-persistent, as there are only

      // non-durable consumers subscribing to the topic.

      //

      ISession producerSession = connection.CreateSession(



JMS .NET  C l ient  Sample  App l icat ion

A-8 Use the WebLogic JMS Client for Microsoft .NET

         Constants.SessionMode.AUTO_ACKNOWLEDGE);

      IMessageProducer producer = producerSession.CreateProducer(topic);

      producer.DeliveryMode = Constants.DeliveryMode.NON_PERSISTENT;

  

      ITextMessage sendMessage = producerSession.CreateTextMessage(

                                   "My topic message");

  

      producer.Send(sendMessage);

  

      PrintMessage("Sent Message:", sendMessage);

      // -----------------

      // Wait for Message:

      // -----------------

      // Sleep for one second to allow the delegate time to receive and

      // automatically acknowledge the message.  The delegate will print

      // to the console when it receives the message.

      //

      Thread.Sleep(1000);

      // ---------

      // Clean Up:

      // ---------

      // We could just call connection.Close(), which would close

      // the connection's sessions, etc, or we could even just

      // call context.CloseAll(), but we want to demonstrate closing each

      // individual resource.

      //

      producer.Close();

      consumer.Close();

      producerSession.Close();

      consumerSession.Close();

      connection.Close();      



MessagingSample . cs

Use the WebLogic JMS Client for Microsoft .NET A-9

    } finally {

      // -------------------------------------------------------------

      // Close the context.  The CloseAll method closes the network

      // connection and any open JMS connections, sessions, producers,

      // or consumers.

      // -------------------------------------------------------------

      context.CloseAll();

    }

  }

  private void DemoSyncTopicDurableSubscriberClientAcknowledge() {

    Console.WriteLine(

      NL + "-- DemoSyncTopicDurableSubscriberClientAcknowledge -- " + NL);

    // ------------------------------------------------

    // Make a network connection to WebLogic and login:

    // ------------------------------------------------

    IDictionary<string, Object> paramMap = new Dictionary<string, Object>();

    

    paramMap[Constants.Context.PROVIDER_URL] = 

      "t3://" + this.host + ":" + this.port;

    IContext context = ContextFactory.CreateContext(paramMap);

    try {

      // -------------------------------------

      // Look up our resources in the context: 

      // -------------------------------------

      IConnectionFactory cf = context.LookupConnectionFactory(this.cfName);

  

      ITopic topic = (ITopic)context.LookupDestination(this.topicName);

  



JMS .NET  C l ient  Sample  App l icat ion

A-10 Use the WebLogic JMS Client for Microsoft .NET

      // -------------------------------------------------

      // Create a connection using the connection factory:

      // -------------------------------------------------

  

      IConnection connection = cf.CreateConnection();

      // --------------------------------------------

      // Assign a unique client-id to the connection:

      // --------------------------------------------

      // Durable subscribers must use a connection with an assigned

      // client-id.   Only one connection with a given client-id

      // can exist in a cluster at the same time.  An alternative

      // to using the API is to configure a client-id via connection

      // factory configuration.

      connection.ClientID = "MyConnectionID";

  

      // -----------------------------------------------------------------

      // Start the connection in order to allow consumers to get messages:

      // -----------------------------------------------------------------

      connection.Start();

      // -----------------

      // Create a session:

      // -----------------

      // IMPORTANT:  Sessions are not thread-safe.   Use multiple sessions 

      // if you need to run producers and/or consumers concurrently. For 

      // more information, see the asynchronous consumer example above.

      //

  

      ISession session = connection.CreateSession(

         Constants.SessionMode.CLIENT_ACKNOWLEDGE);

      // -----------------------------------------------

      // Create a durable subscription and its consumer.

      // -----------------------------------------------

      // Only one consumer at a time can attach to the durable



MessagingSample . cs

Use the WebLogic JMS Client for Microsoft .NET A-11

      // subscription for connection ID "MyConnectionID" and

      // subscription ID "MySubscriberID.

      //

      // Unlike queue consumers, topic consumers must be created

      // *before* a message is sent in order to receive the message!

      //

      IMessageConsumer consumer = session.CreateDurableSubscriber(

        topic, "MySubscriberID");

      // ------------------------------------------------

      // Create a producer and send a persistent message:

      // ------------------------------------------------

      IMessageProducer producer = session.CreateProducer(topic);

      producer.DeliveryMode = Constants.DeliveryMode.PERSISTENT;

  

      ITextMessage sendMessage = session.CreateTextMessage("My durable 

message");

  

      producer.Send(sendMessage);

  

      PrintMessage("Sent Message To Durable Subscriber:", sendMessage);

      // ----------------------------------------------------

      // Demonstrate closing and re-creating the consumer.

      //

      // The new consumer will implicitly connect to the durable

      // subscription created above, as we specify the same

      // connection id and subscription id.

      //

      // A durable subscription continues to exist and accumulate

      // new messages when it has no consumer, and even keeps

      // its persistent messages in the event of a client or server

      // crash and restart.

      //

      // Non-durable subscriptions and their messages cease to



JMS .NET  C l ient  Sample  App l icat ion

A-12 Use the WebLogic JMS Client for Microsoft .NET

      // exist when they are closed, or when their host server

      // shuts down or crashes.

      // ----------------------------------------------------

      consumer.Close();

      consumer = session.CreateDurableSubscriber(

        topic, "MySubscriberID");

      // 

-------------------------------------------------------------------

      // Demonstrate client acknowledge.  Get the message, force

      // it to redeliver, get it again, and then finally delete the message.

      // 

-------------------------------------------------------------------

      // In client ack mode "recover()" forces message redelivery, while

      // "acknowledge()" deletes the message.  If the client application

      // crashes or closes without acknowledging a message, it will be 

      // redelivered.

      ITextMessage recvMessage = (ITextMessage)consumer.Receive(500);

      PrintMessage("Durable Subscriber Received Message:", recvMessage);

      session.Recover(); 

      recvMessage = (ITextMessage)consumer.Receive(500);

      PrintMessage("Durable Subscriber Received Message Again:", 

recvMessage);

      recvMessage.Acknowledge();

      // ------------------------------------------------------------

      // Delete the durable subscription, otherwise it would continue

      // to exist after the demo exits.

      // ------------------------------------------------------------

      //



MessagingSample . cs

Use the WebLogic JMS Client for Microsoft .NET A-13

      consumer.Close();  // closes consumer, but doesn't delete subscription

      session.Unsubscribe("MySubscriberID"); // deletes subscription

  

      // ------------------------------------------------------------------

      // Close the connection.   Note that closing a connection also closes

      // its child sessions, consumers, and producers.

      // ------------------------------------------------------------------

      connection.Close();      

    } finally {

      // ------------------------------------------------------------------

      // Close the context.  The CloseAll method closes the network

      // connection and all related open connections, sessions, producers,

      // and consumers.

      // ------------------------------------------------------------------

      context.CloseAll();

    }

  }

  private void PrintMessage(String header, IMessage msg) {

    string msgtext;

    if (msg is ITextMessage) 

      msgtext = " Text=" + ((ITextMessage)msg).Text + NL;

    else

      msgtext = " The message is not an ITextMessage";

    string dcProp =

       Constants.MessagePropertyNames.DELIVERY_COUNT_PROPERTY_NAME;

    System.Console.WriteLine(

      header + NL +

      " JMSMessageID=" + msg.JMSMessageID + NL +



JMS .NET  C l ient  Sample  App l icat ion

A-14 Use the WebLogic JMS Client for Microsoft .NET

      " JMSRedelivered=" + msg.JMSRedelivered + NL +

      " " + dcProp + "=" + msg.GetObjectProperty(dcProp) + NL +

      msgtext); 

  }

  private bool ParseCommandLine(string[] args)

  {

    int i = 0;

    try {

      for(i = 0; i < args.Length; i++) {

        if (args[i].Equals("-host")) {

          host = args[++i];

          continue;

        }

        if (args[i].Equals("-port")) {

          port = Convert.ToInt32(args[++i]);

          continue;

        }

        if (args[i].Equals("-cf")) {

          cfName = args[++i];

          continue;

        }

        if (args[i].Equals("-queue")) {

          queueName = args[++i];

          continue;

        }

        if (args[i].Equals("-topic")) {

          topicName = args[++i];

          continue;

        }

        if (args[i].Equals("-help") || args[i].Equals("-?")) {

          Console.WriteLine(USAGE);

          return false;

        }

        Console.WriteLine("Unrecognized parameter '" + args[i] + "'.");

        Console.WriteLine(USAGE);

        return false;

      }



MessagingSample . cs

Use the WebLogic JMS Client for Microsoft .NET A-15

    } catch (System.IndexOutOfRangeException) {

      Console.WriteLine(

        "Missing argument for " + args[i - 1] + "."

      ); 

      Console.WriteLine(USAGE);

      return false;

    } catch (FormatException) {

      Console.WriteLine(

        "Invalid argument '" + args[i] + "' for " + args[i - 1] + "."

      ); 

      Console.WriteLine(USAGE);

      return false;

    }  

    Console.WriteLine(

      "WebLogic JMS .NET Client Demo " + NL +

      NL +

      "Settings: " + NL +

      "  host     = " + host + NL +

      "  port     = " + port + NL +

      "  cf       = " + cfName + NL +

      "  queue    = " + queueName + NL +

      "  topic    = " + topicName + NL

    );

    return true;

  }

}



JMS .NET  C l ient  Sample  App l icat ion

A-16 Use the WebLogic JMS Client for Microsoft .NET


	Oracle® WebLogic Server
	10g Release 3 (10.3)

	Oracle WebLogic Server Use the WebLogic JMS Client for Microsoft .NET, 10g Release 3 (10.3)
	Overview of the WebLogic JMS .NET Client
	What is the WebLogic JMS .NET Client?
	Supported JMS Features
	Messaging Models
	Message Types


	How the WebLogic JMS .NET Client Works
	Configuring WebLogic Server
	Configuring the Listen Port
	Configuring JMS Resources for the JMS .NET Client

	Interoperating with Previous WebLogic Server Releases
	Understanding the WebLogic JMS .NET API

	Installing and Copying the WebLogic JMS .NET Client Libraries
	Installing the WebLogic JMS .NET Client
	Location of Installed Components

	Copying the Library to the Client Machine

	Developing a Basic JMS Application Using the WebLogic JMS .NET API
	Creating a JMS .NET Client Application
	Example: Writing a Basic PTP JMS .NET Client Application
	Prerequisites
	Basic Steps

	Using Advanced Concepts in JMS .NET Client Applications

	Programming Considerations
	Using WebLogic JMS Extensions
	Message Compression
	Unit-of-Order
	Message Delivery Time
	One-Way Message Sends
	Include user-id as JMSXUserId
	Message Delivery Attempts

	Limitations of Using the WebLogic JMS .NET Client
	Unsupported JMS 1.1 Standard Features
	Unsupported JMS 1.1 Optional Features
	Unsupported WebLogic JMS Extensions
	Transactions

	Exchanging Messages Between Different Language Environments
	Specifying the URL Format
	Using DNS Alias Host Names

	Implementing Security With the JMS .NET Client
	Configuring Logging and Debugging
	Server Side
	Client Side

	Understanding Socket and Threading Behavior
	Data Conversion Between Java and .NET
	Endian Conversions
	Signed and Unsigned Byte Conversions
	Byte Array Transfers
	Time Conversions

	Best Practices

	JMS .NET Client Sample Application
	MessagingSample.cs


