
Server
Programming

B E A W e b L o g i c S e r v e r 6 . 1
D o c u m e n t D a t e : F e b r u a r y 2 6 , 2 0 0 3

BEA WebLogic

WebLogic Enterprise JavaBeans

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Programming WebLogic Enterprise JavaBeans

Part Number Document Date Software Version

N/A June 24, 2002 BEA WebLogic Server 6.1

Contents

About This Document
Audience.. xviii

e-docs Web Site... xviii

How to Print the Document... xviii

Related Information... xix

Contact Us! .. xix

Documentation Conventions ...xx

1. Introducing WebLogic Server Enterprise JavaBeans
Overview of Enterprise JavaBeans.. 1-2

EJB Components .. 1-2

Types of EJBs... 1-2

Implementation of Preliminary Specifications.. 1-3

Preliminary J2EE Specification ... 1-4

Preliminary EJB 2.0 Specification ... 1-4

WebLogic Server EJB 2.0 Support ... 1-4

EJB Roles .. 1-5

Application Roles... 1-6

Infrastructure Roles .. 1-6

Deployment and Management Roles ... 1-7

EJB Enhancements in WebLogic Server 6.1... 1-7

Changed EJB Deployment Elements ... 1-8

Read-Only Multicast Invalidation Support .. 1-8

Automatic Generated Primary Key Support .. 1-8

Automatic Table Creation .. 1-8

Oracle SELECT HINTS... 1-9

EJB Deployment Descriptor Editor.. 1-9
Programming WebLogic Enterprise JavaBeans iii

ejb-client.jar Support .. 1-9

BLOB and CLOB Support ... 1-9

Cascade Delete Support.. 1-10

Local Interface Support .. 1-10

Flushing the CMP Cache Support .. 1-10

Tuned CMP 1.1 Support... 1-10

EJB Developer Tools... 1-11

ANT Tasks to Create Skeleton Deployment Descriptors......................... 1-11

EJB Deployment Descriptor Editor.. 1-11

XML Editor .. 1-12

2. Designing EJBs
Designing Session Beans... 2-1

Designing Entity Beans ... 2-2

Entity Bean Home Interface ... 2-2

Make Entity EJBs Coarse-Grained... 2-3

Encapsulate Additional Business Logic in Entity EJBs 2-3

Optimize Entity EJB Data Access.. 2-3

Designing Message-Driven Beans... 2-4

Using WebLogic Server Generic Bean Templates.. 2-4

Using Inheritance with EJBs ... 2-5

Accessing Deployed EJBs ... 2-6

Differences Between Accessing EJBs from Local Clients and Remote Clients
2-6

Restrictions on Concurrency Access of EJB Instances 2-7

Storing EJB References in Home Handles... 2-7

Using Home Handles Across a Firewall .. 2-8

Preserving Transaction Resources... 2-8

Allowing the Datastore to Manage Transactions 2-9

Using Container-Managed Transactions Instead of Bean-Managed
Transactions for EJBs.. 2-9

Never Demarcate Transactions from Application............................. 2-10

Always Use A Transactional Datasource for Container-Managed EJBs.
2-10
iv Programming WebLogic Enterprise JavaBeans

3. Using Message-Driven Beans
What Are Message-Driven Beans? ... 3-1

Differences Between Message-Driven Beans and Standard JMS Consumers.
3-2

Differences Between Message-Driven Beans and Stateless Session EJBs 3-3

Concurrent Processing for Topics and Queues .. 3-3

Developing and Configuring Message-Driven Beans....................................... 3-4

Message-Driven Bean Class Requirements ... 3-6

Using the Message-Driven Bean Context .. 3-8

Implementing Business Logic with onMessage() 3-8

Specifying Principals and Setting Permissions for JMS Destinations 3-9

Specifying Message-Driven Beans as Durable Subscribers 3-10

Configuring Message-Driven Beans for Foreign JMS Providers 3-11

Reconnecting to a JMS Server or Foreign Service Provider.................... 3-11

Handling Exceptions .. 3-12

Invoking a Message-Driven Bean ... 3-12

Creating and Removing Bean Instances.. 3-13

Deploying Message-Driven Beans in WebLogic Server................................. 3-14

Using Transaction Services with Message-Driven Beans............................... 3-14

Message Receipts ... 3-15

Message Acknowledgment .. 3-15

4. The WebLogic Server EJB Container and Supported Services
EJB Container.. 4-2

EJB Life Cycle .. 4-2

Entity EJB Life Cycle .. 4-2

Initializing Entity EJB Instances (Free Pool)...................................... 4-3

READY and ACTIVE Entity EJB Instances (Cache) 4-3

Entity EJB Life Cycle Transitions .. 4-5

Stateless Session EJB Life Cycle ... 4-6

Initializing Stateless Session EJB Instances 4-6

Activating and Pooling Stateless Session EJBs 4-7

Stateful Session EJB Life Cycle... 4-7

Stateful Session EJB Creation... 4-8

Stateful Session EJB Passivation .. 4-9
Programming WebLogic Enterprise JavaBeans v

Concurrent Access to Stateful Session Beans 4-11

Comparing the Performance of Stateless Session Beans to BMP EJBs ..
4-11

ejbLoad() and ejbStore() Behavior for Entity EJBs .. 4-12

Using db-is-shared to Limit Calls to ejbLoad().. 4-12

Restrictions and Warnings for db-is-shared ... 4-13

Using is-modified-method-name to Limit Calls to ejbStore() (EJB 1.1 Only)
4-14

Warning for is-modified-method-name.. 4-15

Using delay-updates-until-end-of-tx to Change ejbStore() Behavior 4-15

Setting Entity EJBs to Read-Only .. 4-16

Read-Only Concurrency Strategy... 4-16

Restrictions for Read-Only Concurrency Strategy................................... 4-16

Read-Only Multicast Invalidation .. 4-17

Standard Read-Only Entity Beans.. 4-18

Read-Mostly Pattern... 4-18

Read-Write Cache Strategy .. 4-19

EJBs in WebLogic Server Clusters ... 4-20

Clustered EJBHome Objects .. 4-21

Clustered EJBObjects... 4-22

Session EJBs in a Cluster ... 4-23

Stateless Session EJBs .. 4-23

Stateful Session EJBs .. 4-24

In-Memory Replication for Stateful Session EJBs................................... 4-25

Requirements and Configuration for In-Memory Replication.......... 4-25

Limitations of In-Memory Replication ... 4-26

Entity EJBs in a Cluster.. 4-26

Read-Write Entity EJBs in a Cluster .. 4-27

Cluster Address .. 4-28

Transaction Management .. 4-28

Transaction Management Responsibilities... 4-29

Using javax.transaction.UserTransaction... 4-29

Restriction for Container-Managed EJBs ... 4-30

Transaction Isolation Levels... 4-30

Setting User Transaction Isolation Levels .. 4-30
vi Programming WebLogic Enterprise JavaBeans

Setting Container-Managed Transaction Isolation Levels................ 4-31

Limitations of TRANSACTION_SERIALIZABLE 4-31

Special Note for Oracle Databases.. 4-31

Distributing Transactions Across Multiple EJBs 4-32

Calling Multiple EJBs from a Single Transaction Context............... 4-32

Encapsulating a Multi-Operation Transaction 4-33

Distributing Transactions Across EJBs in a WebLogic Server Cluster....
4-33

Delay-Database-Insert-Until .. 4-34

Resource Factories... 4-35

Setting Up JDBC Datasource Factories ... 4-35

Setting Up URL Connection Factories... 4-36

Locking Services for Entity EJBs.. 4-37

Exclusive Locking Services ... 4-37

Database Locking Services .. 4-37

Setting Up Database Locking... 4-38

5. WebLogic Server Container-Managed Persistence Services
Overview of Container Managed Persistence Services..................................... 5-2

EJB Persistence Services.. 5-2

Using WebLogic Server RDBMS Persistence ... 5-3

Writing for RDBMS Persistence for EJB 1.1 CMP .. 5-4

Finder Signature ... 5-5

finder-list Stanza .. 5-5

finder-query Element.. 5-5

Using WebLogic Query Language (WLQL) for EJB 1.1 CMP........................ 5-6

Syntax... 5-6

Operators .. 5-7

Operands... 5-8

Examples of WLQL Expressions... 5-8

Using EJB QL for EJB 2.0 .. 5-10

EJB QL Requirement for EJB 2.0 Beans ... 5-10

Migrating from WLQL to EJB QL .. 5-10

Using EJB 2.0 WebLogic QL Extension for EJB QL.............................. 5-11

SELECT DISTINCT... 5-12
Programming WebLogic Enterprise JavaBeans vii

ORDERBY.. 5-12

Using Oracle SELECT HINTS.. 5-13

“get” and “set” Method Restrictions ... 5-13

BLOB and CLOB DBMS Column Support for the Oracle DBMS................. 5-14

Specifying a BLOB Using the Deployment Descriptor 5-14

Controlling Serialization of cmp-fields Mapped to OracleBlobs............. 5-15

Specifying a CLOB Using the Deployment Descriptors.......................... 5-15

Cascade Delete .. 5-15

Cascade Delete Method.. 5-16

Database Cascade Delete Method .. 5-17

Tuned EJB 1.1 CMP Updates in WebLogic Server .. 5-18

Flushing the CMP Cache ... 5-19

Primary Keys ... 5-20

Primary Key Mapped to a Single CMP Field... 5-20

Primary Keys Class That Wraps Single or Multiple CMP Fields 5-20

Hints for Using Primary Keys .. 5-21

Mapping to a Database Column.. 5-21

Automatic Primary Key Generation for EJB 2.0 CMP 5-22

Valid Key Field Values .. 5-23

Specifying Primary Key Support for Oracle .. 5-23

Specifying Primary Key Support for Microsoft SQL Server 5-24

Specifying Primary Key Named Sequence Table Support....................... 5-24

Automatic Table Creation ... 5-25

Container-Managed Relationships .. 5-27

Relationship Cardinality... 5-28

Relationship Direction.. 5-28

Local Interfaces and Container-Managed Relationships.......................... 5-29

Using the Local Client... 5-30

Changes to the Container for Local Interfaces.................................. 5-31

Defining Container-Managed Relationships .. 5-31

Specifying Relationship in ejb-jar.xml.. 5-31

Specifying Relationships in weblogic-cmp-jar.xml 5-34

Container-Managed Relationships and Caching 5-36

Groups ... 5-36

Specifying Field Groups... 5-37
viii Programming WebLogic Enterprise JavaBeans

Java Data Types for CMP Fields... 5-37

6. Packaging EJBs for the WebLogic Server Container
Required Steps for Packaging EJBs .. 6-2

Reviewing the EJB Source File Components.. 6-2

WebLogic Server EJB Deployment Files.. 6-3

ejb-jar.xml .. 6-3

weblogic-ejb-jar.xml .. 6-4

weblogic-cmp-rdbms.xml .. 6-4

Relationships Among the Deployment Files.. 6-4

Specifying and Editing the EJB Deployment Descriptors 6-5

Creating the Deployment Files.. 6-6

Manually Editing EJB Deployment Descriptors.. 6-6

Using the EJB Deployment Descriptor Editor ... 6-7

Setting WebLogic Server Deployment Mode ... 6-8

Using the Automatic Mode for Deployment.. 6-8

Automatically Deploying the EJB Examples...................................... 6-9

Using the Production Mode for Deployment ... 6-9

Packaging EJBs into a Deployment Directory .. 6-9

ejb.jar file ... 6-11

Compiling EJB Classes and Generating EJB Container Classes 6-11

Loading EJB Classes into WebLogic Server... 6-12

Specifying an ejb-client.jar.. 6-13

Manifest Class-Path... 6-14

7. Deploying EJBs to WebLogic Server
Roles and Responsibilities... 7-1

Deploying EJBs at WebLogic Server Startup ... 7-2

Deploying EJBs in Different Applications... 7-3

Deploying EJBs on a Running WebLogic Server ... 7-3

EJB Deployment Names .. 7-4

Deploying New EJBs into a Running Environment................................... 7-4

Deploying Pinned EJBs - Special Step Required....................................... 7-5

Viewing Deployed EJBs.. 7-5

Undeploying Deployed EJBs .. 7-6
Programming WebLogic Enterprise JavaBeans ix

Undeploying EJBs .. 7-6

Updating Deployed EJBs... 7-7

weblogic.deploy update and Targets .. 7-7

The Update Process .. 7-8

Updating the EJB.. 7-8

Deploying Compiled EJB Files ... 7-9

Deploying Uncompiled EJB Files ... 7-9

8. Configuring Security in EJBs
Configuring Security Constraints ... 11

9. WebLogic Server EJB Utilities
ejbc... 8-1

ejbc Syntax ... 8-2

ejbc Arguments... 8-2

ejbc Options.. 8-3

ejbc Examples... 8-4

DDConverter ... 8-4

Conversion Options Available with DDConverter..................................... 8-5

Using DDConverter to Convert EJBs... 8-6

DDConverter Syntax .. 8-7

DDConverter Arguments.. 8-7

DDConverter Options... 8-7

DDConverter Examples.. 8-8

deploy .. 8-8

deploy Syntax ... 8-8

deploy Arguments .. 8-9

deploy Options.. 8-10

10. weblogic-ejb-jar.xml Document Type Definitions
EJB Deployment Descriptors .. 9-2

DOCTYPE Header Information .. 9-2

Document Type Definitions (DTDs) for Validation 9-3

weblogic-ejb-jar.xml ... 9-4

ejb-jar.xml ... 9-4

Changed EJB Deployment Elements in WebLogic Server 6.1 9-5
x Programming WebLogic Enterprise JavaBeans

6.0 weblogic-ejb-jar.xml Deployment Descriptor File Structure...................... 9-5

6.0 weblogic-ejb-jar.xml Deployment Descriptor Elements............................. 9-6

allow-concurrent-calls ... 9-10

cache-type.. 9-11

connection-factory-jndi-name ... 9-12

concurrency-strategy ... 9-13

db-is-shared ... 9-15

delay-updates-until-end-of-tx .. 9-16

description ... 9-17

destination-jndi-name .. 9-18

ejb-name .. 9-19

ejb-reference-description... 9-20

ejb-ref-name .. 9-21

Example.. 9-21

ejb-local-reference-description.. 9-22

enable-call-by-reference .. 9-23

entity-cache.. 9-24

entity-clustering... 9-25

entity-descriptor... 9-26

finders-load-bean... 9-27

home-call-router-class-name ... 9-28

home-is-clusterable.. 9-30

home-load-algorithm ... 9-31

idle-timeout-seconds.. 9-33

initial-beans-in-free-pool ... 9-34

initial-context-factory .. 9-35

invalidation-target.. 9-36

is-modified-method-name ... 9-37

isolation-level .. 9-38

jms-client-id... 9-39

jms-polling-interval-seconds ... 9-40

jndi-name... 9-41

local-jndi-name.. 9-42

lifecycle ... 9-43

max-beans-in-cache... 9-44
Programming WebLogic Enterprise JavaBeans xi

max-beans-in-free-pool.. 9-45

message-driven-descriptor... 9-46

method ... 9-47

method-intf .. 9-48

method-name ... 9-49

method-param.. 9-50

method-params .. 9-51

passivation-strategy ... 9-52

persistence ... 9-53

persistence-type ... 9-54

persistence-use... 9-55

persistent-store-dir ... 9-56

pool .. 9-57

principal-name ... 9-58

provider-url .. 9-59

read-timeout-seconds... 9-60

reference-descriptor ... 9-61

relationship-description ... 9-62

replication-type .. 9-62

res-env-ref-name.. 9-63

res-ref-name... 9-64

resource-description... 9-65

resource-env-description.. 9-66

role-name ... 9-67

run-as-identity-principal .. 9-67

security-role-assignment.. 9-69

stateful-session-cache .. 9-70

stateful-session-clustering ... 9-71

stateful-session-descriptor ... 9-72

stateless-bean-call-router-class-name.. 9-73

stateless-bean-is-clusterable .. 9-74

stateless-bean-load-algorithm .. 9-75

stateless-bean-methods-are-idempotent... 9-76

stateless-clustering... 9-77

stateless-session-descriptor.. 9-78
xii Programming WebLogic Enterprise JavaBeans

transaction-descriptor .. 9-79

transaction-isolation .. 9-80

trans-timeout-seconds.. 9-81

type-identifier .. 9-82

type-storage ... 9-83

type-version ... 9-84

weblogic-ejb-jar... 9-85

weblogic-enterprise-bean .. 9-85

5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure.................... 9-86

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements........................... 9-86

caching-descriptor .. 9-87

max-beans-in-free-pool ... 9-87

initial-beans-in-free-pool .. 9-87

max-beans-in-cache .. 9-88

idle-timeout-seconds ... 9-88

cache-strategy.. 9-88

read-timeout-seconds .. 9-89

persistence-descriptor... 9-89

is-modified-method-name... 9-90

delay-updates-until-end-of-tx.. 9-90

persistence-type... 9-90

db-is-shared... 9-91

stateful-session-persistent-store-dir .. 9-92

persistence-use .. 9-92

clustering-descriptor... 9-92

home-is-clusterable ... 9-93

home-load-algorithm... 9-93

home-call-router-class-name... 9-93

stateless-bean-is-clusterable.. 9-94

stateless-bean-load-algorithm ... 9-94

stateless-bean-call-router-class-name ... 9-94

stateless-bean-methods-are-idempotent .. 9-94

transaction-descriptor ... 9-95

trans-timeout-seconds ... 9-95

reference-descriptor.. 9-95
Programming WebLogic Enterprise JavaBeans xiii

resource-description .. 9-96

ejb-reference-description... 9-96

enable-call-by-reference ... 9-96

jndi-name.. 9-97

transaction-isolation ... 9-97

isolation-level .. 9-97

method... 9-98

security-role-assignment... 9-99

... 9-99

11. weblogic-cmp-rdbms-
jar.xml Document Type Definitions

EJB Deployment Descriptors .. 10-2

DOCTYPE Header Information .. 10-2

Document Type Definitions (DTDs) for Validation 10-3

weblogic-cmp-rdbms-jar.xml.. 10-4

ejb-jar.xml ... 10-4

6.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure....... 10-5

6.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements.............. 10-6

automatic-key-generation .. 10-8

cmp-field.. 10-9

cmr-field .. 10-10

column-map ... 10-11

create-default-dbms-tables... 10-12

data-source-name... 10-13

db-cascade-delete... 10-14

dbms-column ... 10-15

dbms-column-type ... 10-16

delay-database-insert-until... 10-17

Example.. 10-17

ejb-name .. 10-18

enable-tuned-updates ... 10-18

field-group ... 10-20

field-map.. 10-21

foreign-key-column ... 10-22
xiv Programming WebLogic Enterprise JavaBeans

generator-name .. 10-23

generator-type.. 10-24

group-name.. 10-25

include-updates.. 10-26

Function.. 10-26

key-cache-size ... 10-27

Example.. 10-27

key-column .. 10-28

max-elements... 10-29

method-name ... 10-30

method-param.. 10-31

method-params .. 10-32

query-method... 10-33

relation-name... 10-34

relationship-role-name... 10-35

sql-select-distinct ... 10-36

table-name ... 10-37

weblogic-ql .. 10-38

weblogic-query .. 10-39

weblogic-rdbms-relation.. 10-40

weblogic-relationship-role... 10-41

5.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure..... 10-42

5.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements............ 10-43

RDBMS Definition Elements... 10-43

pool-name.. 10-43

schema-name... 10-43

table-name... 10-44

EJB Field-Mapping Elements .. 10-44

attribute-map ... 10-44

object-link ... 10-44

bean-field .. 10-44

dbms-column... 10-45

Finder Elements.. 10-45

finder-list ... 10-45

finder ... 10-45
Programming WebLogic Enterprise JavaBeans xv

method-name... 10-46

method-params .. 10-46

method-param.. 10-46

finder-query... 10-46

finder-expression... 10-46
xvi Programming WebLogic Enterprise JavaBeans

About This Document

This document describes how to develop and deploy Enterprise JavaBeans (EJBs) on
WebLogic Server. This document is organized as follows:

� Chapter 1, “Introducing WebLogic Server Enterprise JavaBeans,” is an overview
of EJB features supported in WebLogic Server.

� Chapter 2, “Designing EJBs,” is an overview of design techniques developers
can use to create EJBs.

� Chapter 3, “Using Message-Driven Beans,” explains how to develop and deploy
message-driven beans in the WebLogic Server container.

� Chapter 4, “The WebLogic Server EJB Container and Supported Services,”
describes the services available to the EJB with the WebLogic Services
container.

� Chapter 5, “WebLogic Server Container-Managed Persistence Services,”
describes the EJB container-managed persistence services available for entity
EJBs in the WebLogic Server container.

� Chapter 6, “Packaging EJBs for the WebLogic Server Container,” describes the
steps necessary to package EJBs for deployment to WebLogic Server.

� Chapter 7, “Deploying EJBs to WebLogic Server,” describes the process for
deploying EJBs in the EJB container.

� Chapter 9, “WebLogic Server EJB Utilities,” describes the utilities, shipped with
WebLogic Server, that are used with EJBs.

� Chapter 10, “weblogic-ejb-jar.xml Document Type Definitions,” describes the
WebLogic-specific deployment descriptors found in the
weblogic-ejb-jar.xml file shipped with WebLogic Server 6. 1.
Programming WebLogic Enterprise JavaBeans xvii

� Chapter 11, “weblogic-cmp-rdbms- jar.xml Document Type Definitions,”
describes the WebLogic-specific deployment descriptors found in
weblogic-cmp-rdbms-jar.xml file, shipped with WebLogic Server 6.1.

Audience

This document is intended mainly for application developers who are interested in
developing Enterprise JavaBeans (EJBs) for use in dynamic Web-based applications.
Readers are assumed to be familiar with EJB architecture, XML coding, and Java
programming.

e-docs Web Site

BEA WebLogic Server product documentation is available on the BEA corporate Web
site. From the BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one file at a time, by using
the File—>Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com/.
xviii Programming WebLogic Enterprise JavaBeans

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server.
However, the following information will provide you with related information that
may help you when using Enterprise JavaBeans with WebLogic Server.

� For more information about Sun Microsystem’s EJB Specification, see the
JavaSoft EJB Specification.

� For more information about the J2EE Specification, see the JavaSoft J2EE
Specification.

� For more information about SunMicrosystem’s EJB deployment descriptors and
descriptions, see the JavaSoft EJB Specification.

� For more information on the deployment descriptors in WebLogic Server’s
weblogic-ejb-jar.xml file, see Chapter 10, “weblogic-ejb-jar.xml Document Type
Definitions.”

� For more information on the deployment descriptors in WebLogic Server’s
weblogic-cmp-rdbms-jar.xml file, see Chapter 11, “weblogic-cmp-rdbms- jar.xml
Document Type Definitions.”

� For more information on transactions, see Programming WebLogic JTA.

� For more information about WebLogic’s implementation of the JavaSoft Remote
Method Invocation (RMI) specification, see the following:

� JavaSoft Remote Method Invocation Specification

� Programming WebLogic RMI

� Programming RMI over IIOP

Contact Us!

Your feedback on the BEA WebLogic Server documentation is important to us. Send
us e-mail at docsupport@bea.com if you have questions or comments. Your
Programming WebLogic Enterprise JavaBeans xix

comments will be reviewed directly by the BEA professionals who create and update
the WebLogic Server documentation.

In your e-mail message, please indicate the software name and version you are using
as well as the title and document date of your documentation.

If you have any questions about this version of BEA WebLogic Server, or if you have
problems installing and running BEA WebLogic Server, contact BEA Customer
Support through BEA WebSupport at http://www.bea.com. You can also contact
Customer Support by using the contact information provided on the Customer Support
Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Item

Ctrl+Tab Indicates that you must press two or more keys simultaneously.

italics Indicates emphasis or book titles.
xx Programming WebLogic Enterprise JavaBeans

http://www.bea.com

monospace
text

Indicates code samples, commands and their options, data structures
and their members, data types, directories, and file names and their
extensions. Monospace text also indicates text that you must enter
from the keyboard.

Examples:

#include <iostream.h> void main () the pointer psz

chmod u+w *

\tux\data\ap

.doc

tux.doc

BITMAP

float

monospace
italic
text

Identifies variables in code.

Example:

String expr

UPPERCAS
E TEXT

Indicates device names, environment variables, and logical
operators.

Examples:

LPT1

SIGNON

OR

{ } Indicates a set of choices in a syntax line. The braces themselves
should never be typed.

[] Indicates optional items in a syntax line. The brackets themselves
should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

| Separates mutually exclusive choices in a syntax line. The symbol
itself should never be typed.

Convention Item
Programming WebLogic Enterprise JavaBeans xxi

... Indicates one of the following in a command line:

� That an argument can be repeated several times in a command
line

� That the statement omits additional optional arguments

� That you can enter additional parameters, values, or other
information

The ellipsis itself should never be typed.

Example:

buildobjclient [-v] [-o name] [-f file-list]...
[-l file-list]...

.

.

.

Indicates the omission of items from a code example or from a
syntax line. The vertical ellipsis itself should never be typed.

Convention Item
xxii Programming WebLogic Enterprise JavaBeans

CHAPTER
1 Introducing WebLogic
Server Enterprise
JavaBeans

WebLogic Server 6.1 includes an implementation of Sun Microsystems Enterprise
JavaBeans (EJB) architecture as defined by Sun’s EJB specification.

Note: WebLogic Server 6.1 is compliant with the Sun J2EE specification and EJB
1.1 specification. It also includes an implementation of the preliminary EJB
2.0 specification. Except where descriptions of EJB features and behaviors
make specific mention of EJB 1.1 or EJB 2.0, all information in this guide
relates to both implementation. You can deploy existing EJB 1.1 beans in this
version of WebLogic Server. However, if you are developing new beans, we
recommend that you develop EJB 2.0 beans.

The following sections provide an overview of the EJB features and introduce the
changes in the WebLogic Server 6.1 Enterprise JavaBeans implementation:

� Overview of Enterprise JavaBeans

� Implementation of Preliminary Specifications

� WebLogic Server EJB 2.0 Support

� EJB Roles

� EJB Enhancements in WebLogic Server 6.1

� EJB Developer Tools
Programming WebLogic Enterprise JavaBeans 1-1

1 Introducing WebLogic Server Enterprise JavaBeans
Overview of Enterprise JavaBeans

Enterprise JavaBeans are reusable Java components that implement business logic and
enable you to develop component-based distributed business applications. EJBs reside
in an EJB container, which provides a standard set of services such as persistence,
security, transactions, and concurrency. Enterprise JavaBeans are the standard for
defining server-side components. WebLogic Server’s implementation of the
Enterprise JavaBeans component architecture is based on Sun Microsystems EJB
specification.

EJB Components

An EJB consists of three main components:

� Remote interface. This interface exposes business logic to the client.

� Home interface. The EJB factory. Clients use this interface to create, find, and
remove EJB instances.

� Bean class. This interface implements business logic.

To create an EJB, you code a distributed application’s business logic into the EJB’s
implementation class; specify the deployment parameters in deployment descriptor
files; and package the EJB into a JAR file. You can then deploy the EJB individually
from a JAR file, or package it along with other EJBs and a Web application into an
EAR file, which you then deploy on WebLogic Server. Client applications can locate
the EJB and create an instance of the bean using the bean’s home interface. The client
can then invoke the methods of the EJB using the EJB’s remote interface. WebLogic
Server manages the EJB container and provides access to system-level services such
as database management, security management, and transaction services.

Types of EJBs

The EJB specification defines the following four types of Enterprise JavaBeans:
1-2 Programming WebLogic Enterprise JavaBeans

Implementation of Preliminary Specifications
� Stateless session. An instance of these non-persistent EJBs provides a service
without storing an interaction or conversation state between methods. Any
instance can be used for any client. Stateless session beans can use either
container-managed or bean-managed transaction demarcation.

� Stateful session. An instance of these non-persistent EJBs maintains state across
methods and transactions. Each instance is associated with a particular client.
Stateful session beans can use either container-managed or bean-managed
transaction demarcation.

� Entity. An instance of these persistent EJBs represents an object view of the
data, usually rows in a database. An entity bean has a primary key as a unique
identifier. Entity. An instance of these persistent EJBs represents an object view
of the data, usually rows in a database. An entity bean has a primary key as a
unique identifier. Entity bean persistence can be container-managed or
bean-managed, but uses container-managed transaction demarcation only.

� Message-driven. An instance of these EJBs is integrated with the Java Message
Service (JMS) to enable message-driven beans to act as a standard JMS message
consumer and perform asynchronous processing between the server and the JMS
message producer. The WebLogic Server container directly interacts with a
message-driven bean by creating bean instances and passing JMS messages to
those instances as necessary. Message-driven beans can use either
container-managed or bean-managed transaction demarcation.

Note: Message driven beans are part of the Sun Microsystems EJB 2.0 specification.
They are not part of the EJB 1.1 specification.

Implementation of Preliminary
Specifications

The following sections describe the use of WebLogic Server with non-final
implementations of Java specifications.
Programming WebLogic Enterprise JavaBeans 1-3

1 Introducing WebLogic Server Enterprise JavaBeans
Preliminary J2EE Specification

WebLogic Server 6.1 is available in two different versions that do one of the following:

� Enables an implementation of advanced J2EE 1.3 features along with the J2EE
1.2 features

� Enables the J2EE 1.2 features only, which is a fully compliant implementation of
the J2EE 1.2 specification

These two options comply with the rules governing J2EE. Both versions offer the same
container and differ only in the APIs that are available.

Preliminary EJB 2.0 Specification

The Enterprise JavaBeans 2.0 implementation in WebLogic Server is fully supported
and can be used in production. However, be advised that the Sun Microsystems EJB
2.0 specification is not yet finalized, and the WebLogic Server implementation of the
EJB 2.0 architecture is based on the most current public draft of this specification.
Consequently once the specification is finalized, there could be changes to the
Enterprise JavaBeans 2.0 implementation in future versions of WebLogic Server.
These changes may cause application code developed for WebLogic Server 6.1 to be
incompatible with EJB 2.0 implementations supported in future releases.

WebLogic Server EJB 2.0 Support

WebLogic Server supports an implementation of Sun Microsystems’s EJB 2.0
specification and is compliant with the Sun Microsystem’s EJB 1.1 specification. In
most cases, you can use EJB 1.1 beans with this version of WebLogic Server.
However, in a few cases you may need to migrate existing EJB deployments from
earlier versions of WebLogic Server to this version of the EJB container. If necessary,
see the information on “DDConverter” on page 9-4 for instructions on converting the
beans.

Sun Microsystem’s EJB 2.0 specification supports the following new features:
1-4 Programming WebLogic Enterprise JavaBeans

EJB Roles
� New type of EJB called message-driven bean that is a Java Messaging Service
(JMS) consumer. See Chapter 3, “Using Message-Driven Beans,” for more
information.

� New entity EJB container-managed persistence model that provides a new way
of handling container-managed persistence. See Chapter 5, “WebLogic Server
Container-Managed Persistence Services,” for more information.

� Model for creating container-managed relationships between entity EJBs allows
you to define the relationship between the beans in the implementation classes
and the deployment descriptors. See Chapter 5, “WebLogic Server
Container-Managed Persistence Services,” for more information.

� New standard query language called EJB-QL which you use to query EJBs and
their properties. See Chapter 5, “WebLogic Server Container-Managed
Persistence Services,” for more information.

� New ejbSelect methods that allow an entity EJB to internally query for
properties using an EJB-QL query defined in a deployment descriptor. See
Chapter 5, “WebLogic Server Container-Managed Persistence Services,” for
more information.

� Local interfaces for session and entity beans. EJB relationships are now based on
the local interface. Any EJB that participates in a relationship must have a local
interface. See Chapter 5, “WebLogic Server Container-Managed Persistence
Services,” for more information.

� Home methods that allow you to execute a home business method that is not
specific to a particular instance of an entity bean. You use the home interface to
define one or more home methods for the entity bean See Chapter 2, “Designing
EJBs,” for more information.

EJB Roles

The process of developing EJBs is divided into the following distinct roles.
Programming WebLogic Enterprise JavaBeans 1-5

1 Introducing WebLogic Server Enterprise JavaBeans
Application Roles

� Enterprise Bean Providers—Enterprise Bean Providers produce the EJBs.
Their output is the ejb.jar file that contains one or more EJBs. The providers
use the design process documented in this guide to design the EJBs that are
deployed in the WebLogic Server environment.

For more information on the design process, see Chapter 2, “Designing EJBs.”

� Application Assemblers—Application Assemblers combine the EJBs into
deployable units such as JARs, EARs, or WARs. Their output is the JAR, EAR,
or WAR file that contains the EJB and the application assembly instructions;
these instructions are set by the EJB’s deployment descriptors. The assemblers
use the design process and the EJB deployment descriptor elements to assemble
the deployment unit.

For more information in the design process, see Chapter 2, “Designing EJBs.”
For more information in the assembly process, see Chapter 6, “Packaging EJBs
for the WebLogic Server Container.” For more information on the deployment
descriptors, see Chapter 10, “weblogic-ejb-jar.xml Document Type Definitions,”
and Chapter 11, “weblogic-cmp-rdbms- jar.xml Document Type Definitions.”

Infrastructure Roles

� Container Providers—Container Providers supply EJB deployment tools,
container monitoring and management tools, and runtime support for deployed
EJB instances. This support includes services such as transaction and security
management, network distribution of clients, and scalability. The container
providers use the container management process documented in this guide to
provide the container.

For more information on the container management process, see Chapter 4, “The
WebLogic Server EJB Container and Supported Services.”

� Persistence Manager Providers—Persistence Manager Providers are
responsible for persistence support for the Entity EJBs in the container, if the
EJB has container-managed persistence. This support is provided during
deployment to generate the code that moves data between the EJB and a
database. The persistence manager providers use the deploy process and
1-6 Programming WebLogic Enterprise JavaBeans

EJB Enhancements in WebLogic Server 6.1
container-managed persistence (CMP) information documented in this guide to
provide container-managed persistence.

For more information on container-managed persistence, see Chapter 5,
“WebLogic Server Container-Managed Persistence Services.” For more
information on the deploy process, see Chapter 6, “Packaging EJBs for the
WebLogic Server Container.”

Deployment and Management Roles

� Deployers—Deployers, following the application assembly instructions in the
deployment descriptors, deploy the EJBs contained in the JAR, EAR, or WAR
file to the target environment. The target environment includes the WebLogic
Server environment and the container. The deployer’s output is the EJB
customized for the target environment and deployed in a specific EJB container.
The deployers use the deploy process documented in this guide to deploy the
EJBs.

For more information on the deploy process, see Chapter 7, “Deploying EJBs to
WebLogic Server.”

� System Administrators—System Administrators configure and administer the
computing and networking infrastructure that includes WebLogic Server and the
container. System Administrators use the administration process documented in
the Administration Guide and the WebLogic Server online help to manage the
deployed applications at runtime.

For more information on system administrator’s tasks, see the Administration
Guide.

EJB Enhancements in WebLogic Server 6.1

The following EJB enhancements are new to this release of WebLogic Server.
Programming WebLogic Enterprise JavaBeans 1-7

1 Introducing WebLogic Server Enterprise JavaBeans
Changed EJB Deployment Elements

For information about new and changed deployment elements in WebLogic Server
6.1, see “Changed EJB Deployment Elements in WebLogic Server 6.1” on page 10-5;

Read-Only Multicast Invalidation Support

Non-transactional entity bean caching provides a better way to invalidate or update
cached data. You invalidate a read-only entity bean by using an invalidate method on
your home interface. For more information on non-transactional entity bean caching,
see “Read-Only Multicast Invalidation” on page 4-17.

Automatic Generated Primary Key Support

The WebLogic Server EJB container can provide automatically generated primary
keys. This feature uses the native automatic key generation facilities provided by
Oracle or SQLServer databases. If you are not using one of those databases, you can
enable key generation through a user-designated key table. For more information on
automatically generated primary keys, see “Automatic Primary Key Generation for
EJB 2.0 CMP” on page 5-22.

Automatic Table Creation

You can automatically create tables based on the deployment descriptions in the
deployment files and the bean class, if the table does not already exist. This feature is
for use during the development phase and does not provide production quality support.
However, it is very helpful for testing your designs prior to deployment in a production
environment. For more information on automatic table creation, see “Automatic Table
Creation” on page 5-25.
1-8 Programming WebLogic Enterprise JavaBeans

EJB Enhancements in WebLogic Server 6.1
Oracle SELECT HINTS

You can pass your INDEX usage hints to the Oracle Query optimizer in WebLogic QL
queries, which provide hints to the Oracle database engine. This feature is most helpful
if you know that the database you are searching would benefit from these hints. For
more information on Oracle SELECT HINTS, see “Using Oracle SELECT HINTS”
on page 5-13.

EJB Deployment Descriptor Editor

The EJB Deployment Descriptor Editor is a an extension of the WebLogic Server
Administration Console that enables you to edit the deployment descriptors for your
EJBs in a graphical environment. For more information on this editor, see “Specifying
and Editing the EJB Deployment Descriptors” on page 6-5 and the Administration
Console online help.

ejb-client.jar Support

Use the ejb-client.jar file to package required classes to compile the client into
one JAR file. The ejb-client.jar file contains the EJB interfaces necessary to call
an EJB. You specify that the WebLogic EJB compiler (weblogic.ejbc)
automatically create the ejb-client.jar file in the bean’s deployment descriptor
file. For more information on ejb-client .jar files, see “Specifying an
ejb-client.jar” on page 6-13.

BLOB and CLOB Support

Use BLOBs and CLOBs to translate large objects into byte arrays or strings, with
Oracle. For more information on BLOBs and CLOBs, see “BLOB and CLOB DBMS
Column Support for the Oracle DBMS” on page 5-14.
Programming WebLogic Enterprise JavaBeans 1-9

1 Introducing WebLogic Server Enterprise JavaBeans
Cascade Delete Support

The Cascade Delete feature enables you to remove entity objects. You can specify
Cascade Delete for one-to-one and one-to-many relationships; many-to-many
relationships are not supported. For more information on Cascade Delete, see
“Cascade Delete” on page 5-15.

Local Interface Support

WebLogic Server’s EJB container provides support for local interfaces. The EJB
container makes the local home interface accessible to local clients through JNDI.
Support for remote interfaces with container-managed persistence (CMP)
relationships is still available in this release, but not recommended for new
development. For more information on local interface support, see “Using the Local
Client” on page 5-30.

Flushing the CMP Cache Support

You can specify that the container-managed persistence (CMP) cache be flushed
before every query so that the changes show up in the results. For more information on
this feature, see “Flushing the CMP Cache” on page 5-19.

Tuned CMP 1.1 Support

This release enables the EJB container to support tuned updates for container-managed
persistence (CMP) 1.1 entity beans. The EJB container automatically determines and
writes back to the database only those container-managed fields that have been
modified in the transaction. If no fields are modified, there is no database update.This
feature is enabled by default and can be disabled; however, its use is recommended for
performance reasons. For more information on tuned CMP support, see “Tuned EJB
1.1 CMP Updates in WebLogic Server” on page 5-18.
1-10 Programming WebLogic Enterprise JavaBeans

EJB Developer Tools
EJB Developer Tools

BEA provides several tools you can use to help you create and configure EJBs.

ANT Tasks to Create Skeleton Deployment Descriptors

You can use the WebLogic ANT utilities to create skeleton deployment descriptors.
These utilities are Java classes shipped with your WebLogic Server distribution. The
ANT task looks at a directory containing an EJB and creates deployment descriptors
based on the files it finds in the ejb.jar file. Because the ANT utility does not have
information about all of the desired configurations and mappings for your EJB, the
skeleton deployment descriptors the utility creates are incomplete. After the utility
creates the skeleton deployment descriptors, you can use a text editor, an XML editor,
or the EJB Deployment Descriptor Editor in the Administration Console to edit the
deployment descriptors and complete the configuration of your EJB.

For more information on using ANT utilities to create deployment descriptors, see
Packaging Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/programming/packaging.html.

EJB Deployment Descriptor Editor

The WebLogic Server Administration Console has an integrated EJB deployment
descriptor editor. You must create at least a skeleton of the following deployment
descriptor files that you add to the ejb.jar file before using this integrated editor:

� ejb-jar.xml

� weblogic-ejb-jar.xml

� weblogic-cmp-rdbms-jar.xml

For more information, see Web Application Deployment Descriptor Editor Help at
http://e-docs.bea.com/wls/docs61/ConsoleHelp/webservices_ddehelp.
html.
Programming WebLogic Enterprise JavaBeans 1-11

http://e-docs.bea.com/wls/docs61/programming/packaging.html
http://e-docs.bea.com/wls/docs61/ConsoleHelp/webservices_ddehelp.html

1 Introducing WebLogic Server Enterprise JavaBeans
XML Editor

The XML editor is a simple, user-friendly tool from Ensemble for creating and editing
XML files. It can validate XML code according to a specified DTD or XML Schema.
You can use the XML editor on Windows or Solaris machines and download it from
the BEA dev2dev at http://dev2dev.bea.com/resourcelibrary/utilitiestools/index.jsp.
1-12 Programming WebLogic Enterprise JavaBeans

http://dev2dev.bea.com/resourcelibrary/utilitiestools/index.jsp

CHAPTER
2 Designing EJBs

The following sections provide guidelines for designing WebLogic Server Enterprise
JavaBeans (EJB)s. Some suggestions apply to remote object models and Remote
Method Invocation (RMI) as much as they do to EJB.

� Designing Session Beans

� Designing Entity Beans

� Designing Message-Driven Beans

� Using WebLogic Server Generic Bean Templates

� Using Inheritance with EJBs

� Accessing Deployed EJBs

� Preserving Transaction Resources

Designing Session Beans

One way to design session beans is to use the model-view design. The view is the
graph-user interface (GUI) form and the model is the piece of code that supplies data
to the GUI. In a typical client-server system, the model lives on the same server as the
view and talks to the server.

Have the model reside on the server, in the form of a session bean. (This is analogous
to having a servlet providing support for an HTML form, except that a model session
bean does not affect the final presentation.) There should be one model session bean
instance for each GUI form instance, which acts as the form’s representative on the
Programming WebLogic Enterprise JavaBeans 2-1

2 Designing EJBs
server. For example, if you have a list of 100 network nodes to display in a form, you
might have a method called getNetworkNodes() on the corresponding EJB that
returns an array of values relevant to that list.

This approach keeps the overall transaction time short, and requires minimal network
bandwidth. In contrast, consider an approach where the GUI form calls an entity EJB
finder method that retrieves references to 100 separate network nodes. For each
reference, the client must go back to the datastore to retrieve additional data, which
consumes considerable network bandwidth and may yield unacceptable performance.

Designing Entity Beans

Reading and writing RDBMS data via an entity bean can consume valuable network
resources. Network traffic may occur between a client and WebLogic Server, as well
as between WebLogic Server and the underlying datastore. Use the following
suggestions to model entity EJB data correctly and avoid unnecessary network traffic.

Entity Bean Home Interface

The container provides an implementation of the home interface for each entity bean
deployed in the container and it makes the home interface accessible to the clients
through JNDI. An object that implements an entity beans’s home interface is called an
EJBHome object. The entity bean’s home interface enables a client to do the
following:

� Use the create() methods to create new entity objects within the home.

� Use the finder() methods to find existing entity objects within the home.

� Use the remove() methods to remove an entity object from the home.

� Execute a home method that is not specific to a particular entity bean instance.
2-2 Programming WebLogic Enterprise JavaBeans

Designing Entity Beans
Make Entity EJBs Coarse-Grained

Do not attempt to model every object in your system as an entity EJB. In particular,
small subsets of data consisting of only a few bytes should never exist as entity EJBs,
because the trade-off in network resources is unacceptable.

For example, cells in a spreadsheet are too fine-grained and should not be accessed
frequently over a network. In contrast, logical groupings of an invoice’s entries, or a
subset of cells in a spreadsheet can be modeled as an entity EJB, if additional business
logic is required for the data.

Encapsulate Additional Business Logic in Entity EJBs

Even coarse-grained objects may be inappropriate for modeling as an entity EJB if the
data requires no additional business logic. For example, if the methods in your entity
EJB work only to set or retrieve data values, it is more appropriate to use JDBC calls
in an RDBMS client or to use a session EJB for modeling.

Entity EJBs should encapsulate additional business logic for the modeled data. For
example, a banking application that uses different business rules for “Platinum” and
“Gold” customers might model all customer accounts as entity EJBs; the EJB methods
can then apply the appropriate business logic when setting or retrieving data fields for
a particular customer type.

Optimize Entity EJB Data Access

Entity EJBs ultimately model fields that exist in a data store. Optimize entity EJBs
wherever possible to simplify and minimize database access. In particular:

� Limit the complexity of joins against EJB data.

� Avoid long-running operations that require disk access in the datastore.

� Ensure that EJB methods return as much data as possible, so as to minimize
round-trips between the client and the datastore. For example, if your EJB client
must retrieve data fields, use bulk get/setAttributes() methods to minimize
network traffic.
Programming WebLogic Enterprise JavaBeans 2-3

2 Designing EJBs
Designing Message-Driven Beans

A message-driven bean acts as a message consumer in the WebLogic JMS messaging
system. For more information on designing message-driven beans, see Chapter 3,
“Using Message-Driven Beans.”

Using WebLogic Server Generic Bean
Templates

For each EJB type, WebLogic Server provides a generic class that contains Java
callbacks, or listeners, that are required for most EJBs. The generic classes are in the
weblogic.ejb package:

� GenericEnterpriseBean

� GenericEntityBean

� GenericMessageDrivenBean

� GenericSessionBean

You can implement a generic bean template in a class of your own by importing the
generic class into the class you are writing. This example imports the
GenericSessionBean class into HelloWorldEJB:

import weblogic.ejb.GenericSessionBean;
...
public class HelloWorldEJB extends GenericSessionBean {
2-4 Programming WebLogic Enterprise JavaBeans

Using Inheritance with EJBs
Using Inheritance with EJBs

Using inheritance may be appropriate when building groups of related beans that share
common code. However, be aware of several inheritance restrictions apply to EJB
implementations.

For bean-managed entity EJBs, the ejbCreate() method must return a primary key.
Any class that inherits from the bean-managed EJB class cannot have an
ejbCreate() method that returns a different primary key class than does the
bean-managed EJB class. This restriction applies even if the new class is derived from
the base EJB’s primary key class. The restriction also applies to the bean’s ejbFind()
method.

Also, EJBs inheriting from other EJB implementations change the interfaces. For
example, the following figure shows a situation where a derived bean adds a new
method that is meant to be accessible remotely:

Figure 2-1 Derived bean (BBean) adding new method to be accessible remotely

An additional restriction is that because AHome.create() and BHome.create()
return different remote interfaces, you cannot have the BHome interface inherit from the
AHome interface. You can still use inheritance to have methods in the beans that are
unique to a particular class, that inherit from a superclass or that are overridden in the
subclass. See the EJB 1.1 subclass Child example in the and classes in the WebLogic
Server distribution for an examples of inheritance.

ABean

BBean
extends ABean

Bean Interface

ARemote

BRemote
extends ARemote

foo ()
foo2 ()

foo3 ()foo3 ()

foo ()
foo2 ()
Programming WebLogic Enterprise JavaBeans 2-5

2 Designing EJBs
Accessing Deployed EJBs

WebLogic Server automatically creates implementations of an EJB’s home and remote
interfaces that can function remotely. This means that all clients — whether they reside
on the same server as the EJB, or on a remote computer — can access deployed EJBs
in a similar fashion.

All EJBs must specify their environment properties using Java Naming and Directory
Interface (JNDI). You can configure the JNDI name spaces of EJB clients to include
the home EJBs that reside anywhere on the network — on multiple machines,
application servers, or containers.

However, in designing enterprise application systems, you must still consider the
effects of transmitting data across a network between EJBs and their clients. Because
of network overhead, it is still more efficient to access beans from a “local” client —
a servlet or another EJB — than to do so from a remote client where data must be
marshalled, transmitted over the network, and then unmarshalled.

Differences Between Accessing EJBs from Local Clients
and Remote Clients

One difference between accessing EJBs from local clients and remote clients is in
obtaining an InitialContext for the bean. Remote clients obtain an
InitialContext from the WebLogic Server InitialContext factory. WebLogic
Server local clients generally use a getInitialContext method to perform this
lookup, similar to the following excerpt:

Figure 2-2 Code sample of a local client performing a lookup

...
Context ctx = getInitialContext("t3://localhost:7001", "user1", "user1Password");
...
static Context getInitialContext(String url, String user, String password) {

Properties h = new Properties();
h.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
h.put(Context.PROVIDER_URL, url);
h.put(Context.SECURITY_PRINCIPAL, user);
2-6 Programming WebLogic Enterprise JavaBeans

Accessing Deployed EJBs
h.put(Context.SECURITY_CREDENTIALS, password);

}

Internal clients of an EJB, such as servlets, can simply create an InitialContext
using the default constructor, as shown here:

Context ctx = new InitialContext();

Restrictions on Concurrency Access of EJB Instances

Although database concurrency is the default and recommended concurrency access
option, multiple clients can use the exclusive concurrency option to access EJBs in a
serial fashion. Using this exclusive option means that if two clients simultaneously
attempt to access the same entity EJB instance (an instance having the same primary
key), the second client is blocked until the EJB is available. For more information on
the database concurrency option, see “Exclusive Locking Services” on page 4-37.

Simultaneous access to a stateful session EJB results in a RemoteException. This
access restriction on stateful session EJBs applies whether the EJB client is remote or
internal to WebLogic Server. However, you can set the allow-concurrent-calls
option to specify that a stateful session bean instance will allow concurrent method
calls.

If multiple servlet classes access a session EJB, each servlet thread (rather than each
instance of the servlet class) must have its own session EJB instance. To avoid
concurrent access, a JSP/servlet can use a stateful session bean in request scope.

Storing EJB References in Home Handles

Once a client obtains the EJBHome object for an EJB instance, you can create a handle
to the home object by calling getHomeHandle(). getHomeHandle() returns a
HomeHandle object, which can be used to obtain the home interface to the same EJB
at a later time.

A client can pass the HomeHandle object as arguments to another client, and the
receiving client can use the handle to obtain a reference to the same EJBHome object.
Clients can also serialize the HomeHandle and store it in a file for later use.
Programming WebLogic Enterprise JavaBeans 2-7

2 Designing EJBs
Using Home Handles Across a Firewall

By default, WebLogic Server stores its IP address in the HomeHandle object for EJBs.
This can cause problems with certain firewall systems. If you cannot locate EJBHome
objects when you use home handles passed across a firewall, use the following steps:

1. Start WebLogic Server.

2. Start the WebLogic Server Administration Console.

3. From the left pane, expand the Servers node and select a server.

4. In the right pane, view the configuration information.

5. Select the Tuning tab.

6. Check the Reverse DNS Allowed box to enable reverse DNS lookups.

When you enable reverse DNS lookups, WebLogic Server stores the DNS name of the
server, rather than the IP address, in EJB home handles.

Preserving Transaction Resources

Database transactions are typically one of the most valuable resources in an online
transaction-processing system. When you use EJBs with WebLogic Server,
transaction resources are even more valuable because of their relationship with
database connections.

WebLogic Server can use a single connection pool to service multiple, simultaneous
database requests. The efficiency of the connection pool is largely determined by the
number and length of database transactions that use the pool. For non-transactional
database requests, WebLogic Server can allocate and deallocate a connection very
quickly, so that the same connection can be used by another client. However, for
transactional requests, a connection becomes “reserved” by the client for the duration
of the transaction.
2-8 Programming WebLogic Enterprise JavaBeans

Preserving Transaction Resources
To optimize transaction use on your system, always follow an “inside-out” approach
to transaction demarcation. Transactions should begin and end at the “inside” of the
system (the database) where possible, and move “outside” (toward the client
application) only as necessary. The following sections describe this rule in more detail.

Allowing the Datastore to Manage Transactions

Many RDBMS systems provide high-performance locking systems for Online
Transaction Processing (OLTP) transactions. With the help of Transaction Processing
(TP) monitors such as Tuxedo, RDBMS systems can also manage complex decision
support queries across multiple datastores. If your underlying datastore has such
capabilities, use them where possible. Never prevent the RDBMS from automatically
delimiting transactions.

Using Container-Managed Transactions Instead of
Bean-Managed Transactions for EJBs

Your system should rarely rely on bean-managed transaction demarcation. Use
WebLogic Server container-managed transaction demarcation unless you have a
specific need for bean-managed transactions.

Possible scenarios where you must use bean-managed transactions are:

� You define multiple transactions from within a single method call. WebLogic
Server demarcates transactions on a per-method basis.

Note: However, instead of using multiple transactions in a single method call, it
is better to break the method into multiple methods, with each of the
multiple methods having its own container-managed transaction.

� You define a single transaction that “spans” multiple EJB method calls. For
example, you define a stateful session EJB that uses one method to begin a
transaction, and another method to commit or roll back a transaction.

Note: Avoid this practice if possible because it requires detailed information
about the workings of the EJB object. However, if this scenario is required,
you must use bean-managed transaction coordination, and you must
coordinate client calls to the respective methods.
Programming WebLogic Enterprise JavaBeans 2-9

2 Designing EJBs
Never Demarcate Transactions from Application

In general, client applications are not guaranteed to stay active over long periods of
time. If a client begins a transaction and then exits before committing, it wastes
valuable transaction and connection resources in WebLogic Server. Moreover, even if
the client does not exit during a transaction, the duration of the transaction may be
unacceptable if it relies on user activity to commit or roll back data. Always demarcate
transactions at the WebLogic Server or RDBMS level where possible.

For more information on demarcating transaction see “Transaction Management
Responsibilities” on page 4-29.

Always Use A Transactional Datasource for Container-Managed EJBs

If you configure a JDBC datasource factory for use with container-managed EJBs,
make sure you configure a transactional datasource (TXDataSource) rather than a
non-transactional datasource (DataSource). With a non-transactional datasource, the
JDBC connection operates in auto commit mode, committing each insert and update
operation to the database immediately, rather than as part of a container-managed
transaction.
2-10 Programming WebLogic Enterprise JavaBeans

CHAPTER
3 Using Message-Driven
Beans

The following sections describe how to develop message-driven beans and to deploy
then on WebLogic Server. Because message-driven beans use parts of the standard
JMS API, you should first become familiar with the WebLogic Java Messaging
Service (JMS) before attempting to implement message-driven beans. See the
Programming WebLogic JMS document for more information.

Note: Message-driven beans are an EJB 2.0 feature.

� What Are Message-Driven Beans?

� Developing and Configuring Message-Driven Beans

� Invoking a Message-Driven Bean

� Creating and Removing Bean Instances

� Deploying Message-Driven Beans in WebLogic Server

� Using Transaction Services with Message-Driven Beans

What Are Message-Driven Beans?

A message-driven bean is an EJB that acts as a message consumer in the WebLogic
JMS messaging system. As with standard JMS message consumers, message-driven
beans receive messages from a JMS Queue or Topic, and perform business logic based
on the message contents. WebLogic Server associates a message-driven bean with a
Programming WebLogic Enterprise JavaBeans 3-1

http://e-docs.bea.com/wls/docs61/jms/index.html

3 Using Message-Driven Beans
JMS destination, such as a topic or queue, at deployment time, and WebLogic Server
automatically creates and removes message-driven bean instances as needed to process
incoming messages.

Differences Between Message-Driven Beans and
Standard JMS Consumers

Because message-driven beans are implemented as EJBs, they benefit from several
key services that are not available to standard JMS consumers. Most importantly,
message-driven bean instances are wholly managed by the WebLogic Server EJB
container. Using a single message-driven bean class, WebLogic Server creates
multiple EJB instances as necessary to process large volumes of messages
concurrently. This stands in contrast to a standard JMS messaging system, where the
developer must create a MessageListener class that uses a server-wide session pool.

The WebLogic Server container provides other standard EJB services to message-
driven beans, such as security services and automatic transaction management. These
services are described in more detail in “Transaction Management” on page 4-28 and
in “Using Transaction Services with Message-Driven Beans” on page 3-14.

Finally, message-driven beans benefit from the write-once, deploy-anywhere quality
of EJBs. Whereas a JMS MessageListener is tied to specific session pools,
Queues, or Topics, message-driven beans can be developed independently of available
server resources. A message-driven bean’s Queues and Topics are assigned only at
deployment time, utilizing resources available on WebLogic Server.

Note: One limitation of message-driven beans compared to standard JMS listeners is
that you can associate a given message-driven bean deployment with only one
Queue or Topic, as described in “Invoking a Message-Driven Bean” on page
3-12. If your application requires a single JMS consumer to service messages
from multiple Queues or Topics, you must use a standard JMS consumer, or
deploy multiple message-driven bean classes.
3-2 Programming WebLogic Enterprise JavaBeans

What Are Message-Driven Beans?
Differences Between Message-Driven Beans and
Stateless Session EJBs

The dynamic creation and allocation of message-driven bean instances partially
mimics the behavior of stateless session EJB instances. However, message-driven
beans differ from stateless session EJBs (and other types of EJBs) in several significant
ways:

� Message-driven beans process multiple JMS messages asynchronously, rather
than processing a serialized sequence of method calls.

� Message-driven beans have no home or remote interface, and therefore cannot
be directly accessed by internal or external clients. Clients interact with
message-driven beans only indirectly, by sending a message to a JMS Queue or
Topic.

Note: Only the WebLogic Server container directly interacts with a message-driven
bean by creating bean instances and passing JMS messages to those instances
as necessary.

� WebLogic Server maintains the entire life cycle of a message-driven bean;
instances cannot be created or removed as a result of client requests or other API
calls.

Concurrent Processing for Topics and Queues

Message-driven beans (MDBs) support concurrent processing for both topics and
queues. Previously, only concurrent processing for queues was supported.

To ensure concurrency, the container uses threads from the execute queue. The default
setting for the max-beans-in-free-pool deployment descriptor found in the
weblogic-ejb-jar.xml file provides the most parallelism. The only reason to
change this setting would be to limit the number of parallel consumers.

Note: The maximum number of MDBs configured—via the
max-beans-in-free-pool deployment descriptor element— to receive
messages at one time cannot exceed the maximum number of execution
Programming WebLogic Enterprise JavaBeans 3-3

3 Using Message-Driven Beans
threads. For example, if max-beans-in-free-pool is set to 50 but 25 is the
maximum number of execution threads allowed, only 25 of the MDBs will
actually receive messages.

For more information on max-beans-in-free-pool, see, “max-beans-in-free-pool”
on page 10-45.

Developing and Configuring
Message-Driven Beans

When developing message-driven beans, follow the conventions described in the
JavaSoft EJB 2.0 specification, and observe the general practices that result in proper
bean behavior. Once you have created the message-driven bean class, configuring the
bean for WebLogic Server by specify the bean’s deployment descriptor elements in the
EJB XML deployment descriptor files.

To develop a message-driven bean:

1. Create a source file (message-driven bean class) that implements both the
javax.ejb.MessageDrivenBean and javax.jms.MessageListener
interfaces.

The message-driven bean class must define the following methods:

� One ejbCreate() method that the container uses to create an instance of the
message-driven bean on the free pool.

� One onMessage() method that is called by the bean’s container when a
message is received. This method contains the business logic that handles
processing of the message.

� One ejbRemove() method that removes the message-driven bean instance
from the free pool.

For an example of output for a message-driven bean class, see “Message-Driven
Bean Class Requirements” on page 3-6

2. Specify the following XML deployment descriptor files for the message-driven
bean.
3-4 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/docs.html

Developing and Configuring Message-Driven Beans
� ejb-jar.xml

� weblogic-ejb-jar.xml

� weblogic-cmp-rdbms-jar.xml

For instructions on specifying the XML files, see “Specifying and Editing the
EJB Deployment Descriptors” on page 6-5.

3. Set the message-driven element in the bean’s ejb-jar.xml file to declare the
bean.

4. Set the message-driven-destination element in the bean’s ejb-jar.xml file
to specify whether the bean is intended for a Topic or Queue.

5. Set the subscription-durability sub-element in the bean’s ejb-jar.xml
file when you want to specify whether an associated Topic should be durable.

6. If your bean will demarcate its own transaction boundaries, set the
acknowledge-mode sub-element to specify the JMS acknowledgment semantics
to use. This element has two possible values: AUTO_ACKNOWLEDGE (the default)
or DUPS_OK_ACKNOWLEDGE.

7. If the container will manage the transaction boundaries, set the
transaction-type element in the bean’s ejb-jar.xml file to specify how the
container must manage the transaction boundaries when delegating a method
invocation to an enterprise bean’s method.

The following sample shows how to specify a message-driven bean in the
ejb-jar.xml file.

Figure 3-1 Sample XML stanza from an ejb-jar.xml file:

<enterprise-beans>

<message-driven>

<ejb-name>exampleMessageDriven1</ejb-name>

<ejb-class>examples.ejb20.message.MessageTraderBean</ejb-class>

<transaction-type>Container</transaction-type>

<message-driven-destination>

<destination-type>

javax.jms.Topic
Programming WebLogic Enterprise JavaBeans 3-5

http://java.sun.com/products/jms/javadoc-102a/javax/jms/Session.html#AUTO_ACKNOWLEDGE
http://java.sun.com/products/jms/javadoc-102a/javax/jms/Session.html#DUPS_OK_ACKNOWLEDGE

3 Using Message-Driven Beans
</destination-type>

</message-driven-destination>

...

</message-driven>

...

</enterprise-beans>

8. Set the message-driven-descriptor element in the bean’s
weblogic-ejb-jar.xml file to associate the message-driven bean with a JMS
destination in WebLogic Server.

The following sample shows how to specify a message-driven bean in an
weblogic-ejb-jar.xml file.

Figure 3-2 Sample XML stanza from an weblogic-ejb-jar.xml file:

<message-driven-descriptor>

<destination-jndi-name>...</destination-jndi-name>

</message-driven-descriptor>

9. Compile and generate the message-driven bean class using instructions in
“Packaging EJBs into a Deployment Directory” on page 6-9.

10. Deploy the bean on WebLogic Server using the instructions in “Deploying
Compiled EJB Files” on page 7-9.

The container manages the message-driven bean instances at runtime.

Message-Driven Bean Class Requirements

The EJB 2.0 specification provides detailed guidelines for defining the methods in a
message-driven bean class. The following output shows the basic components of a
message-driven bean class. Classes, methods, and method declarations are highlighted
bold.
3-6 Programming WebLogic Enterprise JavaBeans

Developing and Configuring Message-Driven Beans
Figure 3-3 Sample output of basic components of message-driven beans class

public class MessageTraderBean implements MessageDrivenBean,
MessageListener{

public MessageTraderBean() {...};

// An EJB constructor is required, and it must not

// accept parameters. The constructor must not be
declared as

// final or abstract.

public void ejbCreate() (...)

//ejbCreate () is required and must not accept
parameters.

The throws clause (if used) must not include an
application

//exception. ejbCreate() must not be declared as
final or static.

public void onMessage(javax.jms.Message MessageName) {...}

// onMessage() is required, and must take a single
parameter of

// type javax.jms.Message. The throws clause (if
used) must not

// include an application exception. onMessage() must
not be

// declared as final or static.

public void ejbRemove() {...}

// ejbRemove() is required and must not accept
parameters.

// The throws clause (if used) must not include an
application

//exception. ejbRemove() must not be declared as
final or static.

// The EJB class cannot define a finalize() method

}

Programming WebLogic Enterprise JavaBeans 3-7

3 Using Message-Driven Beans
Using the Message-Driven Bean Context

WebLogic Server calls setMessageDrivenContext() to associate the
message-driven bean instance with a container context.This is not a client context; the
client context is not passed along with the JMS message. WebLogic Server provides
the EJB with a container context, whose properties can be accessed from within the
bean’s instance by using the following methods from the MessageDrivenContext
interface:

� getCallerPrincipal()) — This method is inherited from the EJBContext
interface and should not be called by message-driven bean instances.

� isCallerInRole()) — This method is inherited from the EJBContext
interface and should not be called by message-driven bean instances.

� setRollbackOnly() — The EJB can use this method only if it uses
container-managed transaction demarcation.

� getRollbackOnly() — The EJB can use this method only if it uses
container-managed transaction demarcation.

� getUserTransaction() — The EJB can use this method only if it uses
bean-managed transaction demarcation.

Note: Although getEJBHome() is also inherited as part of the
MessageDrivenContext interface, message-driven beans do not have a
home interface. Calling getEJBHome() from within a message-driven EJB
instance yields an IllegalStateException.

Implementing Business Logic with onMessage()

The message-driven bean’s onMessage() method implements the business logic for
the EJB. WebLogic Server calls onMessage() when the EJB’s associated JMS Queue
or Topic receives a message, passing the full JMS message object as an argument. It is
the message-driven bean’s responsibility to parse the message and perform the
necessary business logic in onMessage().
3-8 Programming WebLogic Enterprise JavaBeans

Developing and Configuring Message-Driven Beans
Make sure that the business logic accounts for asynchronous message processing. For
example, it cannot be assumed that the EJB receives messages in the order they were
sent by the client. Instance pooling within the container means that messages are not
received or processed in a sequential order, although individual onMessage() calls to
a given message-driven bean instance are serialized.

See javax.jms.MessageListener.onMessage() for more information.

Specifying Principals and Setting Permissions for JMS
Destinations

Message-driven beans connect to the JMS destination using the run-as principal. The
run-as principal maps to the run-as element that is set in the ejb-jar.xml file. This
setting specifies the run-as identity used for the execution of the message-driven
bean’s methods. A message-driven bean is associated with a JMS destination when
you deploy the bean in the WebLogic Server container. The JMS destination can either
be a queue or a topic. You specify the JMS destination by setting the
jms-destination-type element to either queue or topic in the message-driven
bean’s ejb-jar.xml file.

Set the permissions for the bean’s run-as principal to receive, as described below,
when connecting message-driven beans to the JMS destinations. This allows the
message-driven bean to connect to remote queues in the same domain or in another
domain as long as the same principal is defined in the other domain. WebLogic Server
uses the default guest user if you do not specify the run-as principal. However,
whether you use the run-as principal or guest, you must assign the receive
permission to the security principal.

To set the receive permission, you must first create a new access control list (ACL)
or modify an existing one. are lists of Users and Groups that have permission to access
the resources. Permissions are the privileges required to access resources, such as
permission to read, write, send, and receive files and load servlets, and link to libraries.

Note: Do not use the system user for message-driven beans that connect to JMS
destinations because system prevents the message-driven bean from
connecting to a destination in another domain.

For more information on security principal users, see Defining Users.
Programming WebLogic Enterprise JavaBeans 3-9

http://java.sun.com/j2ee/j2sdkee/techdocs/api/javax/jms/MessageListener.html

3 Using Message-Driven Beans
See the following instructions to create the ACL, specify principals, and set
permissions:

1. Start the WebLogic Server Administration Console.

2. Go to the Security→ACLs node in the left pane of the Administration Console.

3. In the right pane of the Administration Console, click the Create a New ACL
link.

The ACL Configuration window appears.

4. Specify the name of WebLogic Server resource that you want to protect with an
ACL in the New ACL Name field.

For example, create an ACL for a JMS destination named topic.

5. Click Create.

6. Click the Add a New Permission link.

7. Specify the receive permission for the topic JMS destination resource.

8. Specify the run-as-principal user as having the specified permission to the
resource.

9. Click Apply.

Specifying Message-Driven Beans as Durable
Subscribers

If you associate a message-driven bean with a topic, you can specify that the topic be
durable. A durable topic subscription ensures that messages are not missed even if the
server is not running. If the server is disconnected it would still receive the message
and store it so that when the server is restarted it would receive the message. If you
associate a message-driven bean with a topic, but do specify that topic as durable then
by default, the topic will be non-durable.

To set the message-driven bean as a durable subscriber, specify the following
deployment descriptor elements:
3-10 Programming WebLogic Enterprise JavaBeans

Developing and Configuring Message-Driven Beans
1. Set the message-driven-destination element in the bean’s ejb-jar.xml file
to specify whether the bean is intended for a Topic or Queue.

2. Set the subscription-durability sub-element in the bean’s ejb-jar.xml
file when you want to specify whether an associated Topic should be durable.

3. Set the jms-client-id element in the bean’s weblogic-ejb-jar.xml file.

For instructions on specifying the XML files, see “Specifying and Editing the
EJB Deployment Descriptors” on page 6-5.

Note: If you are using message-driven beans instead of the standard JMS listeners to
handle messages, be advised that a given message-driven bean is associated
with only one topic. If your application requires a single JMS consumer to
service messages from multiple topics or queues, you must use a standard JMS
consumer or deploy multiple message-driven bean classes.

Configuring Message-Driven Beans for Foreign JMS
Providers

You can configure message-driven beans to work with non-BEA JMS providers such
as IBM MQSeries. For a discussion of how to configure an MDB to use a foreign
provider, see “Using Foreign JMS Providers with WLS Message Driven Beans” at
http://dev2dev.bea.com/products/wlserver/whitepapers/jmsproviders.jsp.

Reconnecting to a JMS Server or Foreign Service
Provider

A message-driven bean listens to an associated JMS destination on either a JMS server
deployed on a non-clustered WebLogic Server instance or a foreign service provider.
If the connection to that destination is lost, because the server goes down, the
message-driven bean attempts to reconnect to that destination at periodic intervals.
You can specify the number of seconds between attempts to reconnect to the
destination by setting the jms-polling-interval-seconds element in the bean’s
weblogic-ejb-jar.xml file.
Programming WebLogic Enterprise JavaBeans 3-11

http://dev2dev.bea.com/products/wlserver/whitepapers/jmsproviders.jsp

3 Using Message-Driven Beans
For instructions on specifying the XML files, see “Specifying and Editing the EJB
Deployment Descriptors” on page 6-5.

Handling Exceptions

Message-driven bean methods should not throw an application exception or a
RemoteException, even in onMessage(). If any method throws such an exception,
WebLogic Server immediately removes the EJB instance without calling
ejbRemove(). However, from the client perspective the EJB still exists, because
future messages are forwarded to a new bean instance that WebLogic Server creates.

Invoking a Message-Driven Bean

When a JMS Queue or Topic receives a message, WebLogic Server calls an associated
message-driven bean as follows:

1. WebLogic Server obtains a new bean instance.

WebLogic Server uses the max-beans-in-free-pool attribute, set in the
weblogic-ejb-jar.xml file, to determine if a new bean instance is available in
the free pool.

2. If a bean instance is available in the free pool, WebLogic Server uses that
instance.

If no bean instance is available in the free pool and the limit specified by
max-beans-in-free-pool) has been reached, WebLogic Server waits until a
bean instance is free. See “max-beans-in-free-pool” on page 10-45 for more
information about this attribute.

If no bean instance is located in the free pool, and the limit specified by
max-beans-in-free-pool has not been reached, WebLogic Server creates a
new instance by calling the bean’s ejbCreate() method and then the bean’s
setMessageDrivenContext() to associate the instance with a container
context. The bean can use elements of this context as described in “Using the
Message-Driven Bean Context” on page 3-8.
3-12 Programming WebLogic Enterprise JavaBeans

Creating and Removing Bean Instances
3. WebLogic Server calls the bean’s onMessage() method to implement the
business logic when the bean’s associated JMS Queue or Topic receives a
message.

See “Implementing Business Logic with onMessage()” on page 3-8.

Note: These instances can be pooled.

Creating and Removing Bean Instances

The WebLogic Server container calls the message-driven bean’s ejbCreate() and
ejbRemove() methods, to create or remove an instance of the bean class. Each
message-driven bean must have at least one ejbCreate() and ejbRemove() method.
The WebLogic Server container uses these methods to handle the create and remove
functions when a bean instance is created, upon receipt of a message from a JMS
Queue or Topic or removed, once the transaction commits.

WebLogic Server receives a message from a JMS queue or Topic

As with other EJB types, the ejbCreate() method in the bean class should prepare
any resources that are required for the bean’s operation. The ejbRemove() method
should release those resources, so that they are freed before WebLogic Server removes
the instance.

Message-driven beans should also perform some form of regular clean-up routine
outside of the ejbRemove() method, because the beans cannot rely on ejbRemove()
being called under all circumstances (for example, if the EJB throws a runtime
exception).
Programming WebLogic Enterprise JavaBeans 3-13

3 Using Message-Driven Beans
Deploying Message-Driven Beans in
WebLogic Server

Deploy the message-driven bean on WebLogic Server either when the server is first
started or on a running server. For instructions on deploying the bean, see “Deploying
EJBs at WebLogic Server Startup” on page 7-2 or “Deploying EJBs on a Running
WebLogic Server” on page 7-3.

Using Transaction Services with
Message-Driven Beans

As with other types of EJB, message-driven beans can demarcate transaction
boundaries either on their own (using bean-managed transactions), or by having the
WebLogic Server container manage transactions (container-managed transactions). In
either case, a message-driven bean does not receive a transaction context from the
client that sends a message. WebLogic Server always calls a bean’s onMessage()
method by using the transaction context specified in the bean’s deployment descriptor
file.

Because no client provides a transaction context for calls to a message-driven bean,
beans that use container-managed transactions must be deployed with the Required
or NotSupported trans-attribute specified for the container-transaction
element in the ejb-jar.xml file.

The following sample code from the ejb-jar.xml file shows how to specify the
bean’s transaction context.

Figure 3-4 Sample XML stanza from an ejb-jar.xml file:

<assembly-descriptor>

<container-transaction>

<method>
3-14 Programming WebLogic Enterprise JavaBeans

Using Transaction Services with Message-Driven Beans
<ejb-name>MyMessageDrivenBeanQueueTx</ejb-name>

<method-name>*</method-name>

</method>

<trans-attribute>NotSupported</trans-attribute>

</container-transaction>

</assembly-descriptor>

Message Receipts

The receipt of a JMS message that triggers a call to an EJB’s onMessage() method is
not generally included in the scope of a transaction. However, it is handled differently
for bean-managed and container-managed transactions.

� For EJBs that use bean-managed transactions, the message receipt is always
outside the scope of the bean’s transaction.

� For EJBs that use container-managed transaction demarcation, WebLogic Server
includes the message receipt as part of the bean’s transaction only if the bean’s
transaction-type element in the ejb-jar.xml file is set to Required.

Message Acknowledgment

For message-driven beans that use container-managed transaction demarcation,
WebLogic Server automatically acknowledges a message when the EJB transaction
commits. If the EJB uses bean-managed transactions, both the receipt and the
acknowledgment of a message occur outside the EJB transaction context. WebLogic
Server automatically acknowledges messages for EJBs with bean-managed
transactions, but you can configure acknowledgment semantics using the
acknowledge-mode deployment descriptor element defined in the ejb-jar.xml file.
Programming WebLogic Enterprise JavaBeans 3-15

3 Using Message-Driven Beans
3-16 Programming WebLogic Enterprise JavaBeans

CHAPTER
4 The WebLogic Server
EJB Container and
Supported Services

The following sections describe the WebLogic Server EJB container, various aspects
of EJB behavior in terms of the features and services that the container provides. See
to Chapter 5, “WebLogic Server Container-Managed Persistence Services,” for more
information on container-managed persistence (CMP).

� EJB Container

� EJB Life Cycle

� Comparing the Performance of Stateless Session Beans to BMP EJBs

� ejbLoad() and ejbStore() Behavior for Entity EJBs

� Setting Entity EJBs to Read-Only

� EJBs in WebLogic Server Clusters

� Transaction Management

� Resource Factories

� Locking Services for Entity EJBs
Programming WebLogic Enterprise JavaBeans 4-1

4 The WebLogic Server EJB Container and Supported Services
EJB Container

The EJB container is a runtime container for the deployed EJBs that is automatically
created when WebLogic Server is started. During the entire life cycle of the entity
object, from its creations to removal, it lives in the container. The EJB container
provides a standard set of services, including caching, concurrency, persistence,
security, transaction management, locking, environment, memory replication,
environment, and clustering for the entity objects that live in the container.

You can deploy multiple entity beans in a single container. For each entity bean
deployed in a container, the container provides a home interface. The home interface
allows a client to create, find, and remove entity objects that belong to the entity bean
as well as execute home business methods which are not specific to a particular entity
bean object. A client can look up the entity bean’s home interface through JNDI. The
container is responsible for making the entity bean’s home interface available in the
JNDI name space. For instructions on looking up the home interface through JNDI, see
Programming WebLogic JNDI.

EJB Life Cycle

The following sections provide information about how the container supports caching
services. They describe the life cycle of EJB instances in WebLogic Server, from the
perspective of the server. These sections use the term EJB instance to refer to the actual
instance of the EJB class. EJB instance does not refer to the logical instance of the EJB
as seen from the point of view of a client.

Entity EJB Life Cycle

WebLogic Server provides these features to improve performance and throughput for
entity EJBs.

� Free pool—stores anonymous entity beans that are used for invoking finders,
home methods, and creating entity beans.
4-2 Programming WebLogic Enterprise JavaBeans

EJB Life Cycle
� Cache—contains instances that have an identity—a primary key, or are currently
enlisted in a transaction (READY and ACTIVE entity EJB instances).

The sections that follow describe the life cycle of an entity bean instance, and how the
container populates and manages the free pool and cache. For an illustration of life
cycle transitions, see Figure 4-1.

Initializing Entity EJB Instances (Free Pool)

If you specify a non-zero value for initial-beans-in-free-pool, WebLogic
Server populates the pool with the specified quantity of bean instances at startup.

The default value of initial-beans-in-free-pool is zero. Populating the free pool
at startup improves initial response time for the EJB, because initial requests for the
bean can be satisfied without generating a new instance.

An attempt to obtain an entity bean instance from the free pool will always succeed,
even if the pool is empty. If the pool is empty, a new bean instance is created and
returned.

POOLED beans are anonymous instances, and are used for finders and home
methods. The maximum number of instances the pool can contain is specified by the
value of the max-beans-in-free-pool element in weblogic-ejb-jar.xml.

READY and ACTIVE Entity EJB Instances (Cache)

When a business method is called on a bean, the container obtains an instance from the
pool, calls ejbActivate, and the instance services the method call.

A READY instance is in the cache, has an identity—an associated primary key—but
is not currently enlisted in a transaction. WebLogic maintains READY entity EJB
instances in least-recently-used (LRU) order.

An ACTIVE instance is currently enlisted in a transaction. After completing the
transaction, the instance becomes READY, and remains in cache until space is needed
for other beans.

The Current Beans in Cache field in the monitoring tab of the Administration Console
displays the count of READY and ACTIVE beans.
Programming WebLogic Enterprise JavaBeans 4-3

4 The WebLogic Server EJB Container and Supported Services
The effect of max-beans-in-cache, and the quantity of instances with the same
primary key allowed in the cache vary by concurrency strategy, as described in the
following section, “Cache Rules Vary by Concurrency Strategy”.

Cache Rules Vary by Concurrency Strategy

Table 4-1 lists, for each concurrency strategy:

� How the value of the max-beans-in-cache element in
weblogic-ejb-jar.xml limits the number of entity bean instances in the
cache.

� How many entity bean instances with the same primary key are allowed in the
cache.

Table 4-1 Entity EJB Caching Behavior by Concurrency Type

Removing Beans from Cache

READY entity EJB instances are removed from the cache when the space is needed
for other beans. When a READY instance is removed from cache, ejbPassivate is
called on the bean, and the container will try to put it back into the free pool.

Concurrency
Option

What is the effect of
max-beans-in-cache on the num-
ber of bean instances in the cache?

How many instances
with same primary
key can exist in cache
simultaneously?

Exclusive max-beans-in-cache = number of
ACTIVE bean + number of READY in-
stances.

one

Database The cache can contain up to
max-beans-in-cache ACTIVE bean
instances and up to max-beans-in-cache
READY bean instances.

multiple

ReadOnly max-beans-in-cache = number of
ACTIVE bean + number of READY in-
stances.

one
4-4 Programming WebLogic Enterprise JavaBeans

EJB Life Cycle
When the container tries to return an instance to the free pool and the pool already
contains max-beans-in-free-pool instances, the instance is discarded.

ACTIVE entity EJB instances will not be removed from cache until the transaction
they are participating in commits or rolls back, at which point they will become
READY, and hence eligible for removal from the cache.

Entity EJB Life Cycle Transitions

Figure 4-1 illustrates the Entity EJB free pool and cache, and the transitions that occur
throughout an instance’s life cycle.

Figure 4-1 Entity Bean Life Cycle
Programming WebLogic Enterprise JavaBeans 4-5

4 The WebLogic Server EJB Container and Supported Services
Stateless Session EJB Life Cycle

WebLogic Server uses a free pool to improve performance and throughput for stateless
session and message-driven EJBs. The free pool stores unbound stateless session
EJBs. Unbound EJBs are instances of a stateless session EJB class that are not
processing a method call.

The following figure illustrates the WebLogic Server free pool, and the processes by
which stateless EJBs enter and leave the pool. Dotted lines indicate the state of the EJB
from the perspective of WebLogic Server.

Figure 4-2 WebLogic Server free pool showing stateless session EJB life cycle

Initializing Stateless Session EJB Instances

By default, no stateless session EJB instances exist in WebLogic Server at startup time.
As clients access individual beans, WebLogic Server initializes new instances of the
EJB class.

To configure WebLogic Server to populate the free pool with inactive EJB instances
EJB at startup, specify the desired quantity in the initial-beans-in-free-pool
deployment element, in the stateful-session-descriptor stanza of
weblogic-ejb-jar.xml. This can improve initial response time when clients access

Method complete

Client request

C
lie

nt
R

eq
ue

st

<initial-beans-in-free-pool>

free pool

 EJB busy EJB inactive

EJB does not exist
4-6 Programming WebLogic Enterprise JavaBeans

EJB Life Cycle
EJBs, because initial client requests can be satisfied by activating the bean from the
free pool (rather than initializing the bean and then activating it). By default,
initial-beans-in-free-pool is set to 0.

Note: The maximum size of the free pool is limited by available memory, the number
of execute threads, or the value of the max-beans-in-free-pool
deployment element.

Activating and Pooling Stateless Session EJBs

When a client calls a method on a stateless EJB, WebLogic Server obtains an instance
from the free pool, or initializing and activating a new instance, if necessary. The EJB
remains active for the duration of the client’s method call. After the method completes,
the EJB instance is returned to the free pool. Because WebLogic Server unbinds
stateless session beans from clients after each method call, the actual bean class
instance that a client uses may be different from invocation to invocation.

If all instances of an EJB class are active and max-beans-in-free-pool has been
reached, new clients requesting the EJB class will be blocked until an active EJB
completes a method call. If the transaction times out (or, for non-transactional calls, if
five minutes elapse), WebLogic Server throws a RemoteException.

Stateful Session EJB Life Cycle

WebLogic Server uses a cache of bean instances to improve the performance of
stateful session EJBs. The cache stores active EJB instances in memory so that they
are immediately available for client requests. The cache contains EJBs that are
currently in use by a client and instances that were recently in use. Stateful session
beans in cache are bound to a particular client.

The following figure illustrates the WebLogic Server cache, and the processes by
which stateful EJBs enter and leave the cache.
Programming WebLogic Enterprise JavaBeans 4-7

4 The WebLogic Server EJB Container and Supported Services
Figure 4-3 Stateful Session EJB Life Cycle

Stateful Session EJB Creation

No stateful session EJB instances exist in WebLogic Server at startup. Before a client
begins accessing a stateful session bean, it creates a new bean instance to use during
its session with the bean. When the session is over the instance is destroyed. While the
session is in progress, the instance is cached in memory.
4-8 Programming WebLogic Enterprise JavaBeans

EJB Life Cycle
Stateful Session EJB Passivation

Passivation is the process by which WebLogic Server removes an EJB instance from
cache while preserving its state on disk. While passivated, EJBs are not in memory and
are not immediately available for client requests, as they are when in the cache.

The EJB developer must ensure that a call to the ejbPassivate() method leaves a
stateful session bean in a condition where WebLogic Server can serialize its data and
passivate the bean’s instance. During passivation, WebLogic Server attempts to
serialize any fields that are not declared transient. This means that you must ensure
that all non-transient fields represent serializable objects, such as the bean’s remote
or home interface. EJB 2.1 specifies the field types that are allowed.

The rules that govern the passivation of stateful session beans vary, based on the value
of the beans cache-type element, which can be:

� LRU—least recently used, referred to as eager passivation.

� NRU—not recently used, referred to as lazy passivation

The idle-timeout-seconds and max-beans-in-cache elements also affect
passivation and removal behaviors, based on the value of cache-type.

Eager Passivation (LRU)
When you configure eager passivation for a stateful session bean by setting cache-type
to LRU, the container:

� Passivates instances to disk:

– as soon as an instance has been inactive for idle-timeout-seconds,
regardless of the value of max-beans-in-cache.

– when max-beans-in-cache is reached, even though
idle-timeout-seconds has not expired.

� Removes a passivated instance from disk after it has been inactive for
idle-timeout-seconds after passivation. This is referred to as a lazy remove.

Lazy Passivation (NRU)
When lazy passivation is configured by setting cache-type to NRU, the container avoids
passivating beans, because of the associated systems overhead—pressure on the cache
is the only event that causes passivation or eager removal of beans. The container:
Programming WebLogic Enterprise JavaBeans 4-9

4 The WebLogic Server EJB Container and Supported Services
� Removes a bean instance from cache when idle-timeout-seconds expires,
and does not passivate it to disk. This is referred to as a eager remove. An eager
remove ensures that an inactive instance does not consume memory or disk
resources.

� Passivates instances to disk when max-beans-in-cache is reached, even
though idle-timeout-seconds has not expired.

Managing EJB Cache Size

For a discussion of managing cache size to optimize performance in a production
environment see “Setting EJB Cache Size” in WebLogic Server Performance and
Tuning.

Specifying the Persistent Store Directory for Passivated Beans

When a stateful session bean is passivated, its state is stored in a file system directory
known as the persistent store directory. The persistent store directory contains one
subdirectory for each passivated bean.

The persistent store directory is created by default in the root directory of your
WebLogic Server installation, for example:

D:\releases\610\pstore\

The path to the persistence store is:

WLHOME\persistent-store-dir

where:

� WLHOME—the directory where WebLogic Server is installed, for example:

D:\releases\610\

� persistent-store-dir—the value of the of the persistent-store-dir
element in the <stateful-session-descriptor> stanza of
weblogic-ejb-jar.xml. If no value is specified for persistent-store-dir,
the directory is named pstore by default.

The persistent store directory contains a subdirectory for each passivated bean. The
subdirectory name is comprised of the bean’s home and JNDI name. For example:

D:\releases\610\pstore\statefulSessionful.TraderHome
4-10 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs61/perform/WLSTuning.html#wlstuning-SetEJBCachingSize

EJB Life Cycle
Concurrent Access to Stateful Session Beans

In accordance with the EJB 2.0 specification, simultaneous access to a stateful session
EJB results in a RemoteException. This access restriction on stateful session EJBs
applies whether the EJB client is remote or internal to WebLogic Server. To override
this restriction and configure a stateful session bean to allow concurrent calls, set the
allow-concurrent-calls deployment element.

If multiple servlet classes access a stateful session EJB, each servlet thread (rather than
each instance of the servlet class) must have its own session EJB instance. To prevent
concurrent access, a JSP/servlet can use a stateful session bean in request scope.

Comparing the Performance of Stateless Session Beans to BMP EJBs

To improve performance, we recommend that you use stateless session beans or CMP
(container-managed persistent) entity beans instead of BMP (bean-managed
persistent) entity beans for retrieving data. Tests have shown that because BMP entity
beans can not cache data during a finder query, the performance of stateless session
beans may be as much as 90 percent greater than BMP entity beans. For example, a
BMP entity bean that returns 100 beans from a finder query does one JDBC call to
create bean references when the finder query is run and then one JDBC call per bean,
to load each bean as each is accesses by the client. This means that the finder query for
the BMP entity bean does a total of 101 calls to the database. By comparison, the
stateless session bean does just one JDBC call, so it’s performance is much faster.

The fact that BMP entity beans do not scale very well is a known performance
limitation.

In addition, CMP entity beans can cache data during a finder query. So as with the
stateless session bean, only one query is performed.
Programming WebLogic Enterprise JavaBeans 4-11

4 The WebLogic Server EJB Container and Supported Services
ejbLoad() and ejbStore() Behavior for Entity
EJBs

WebLogic Server reads and writes the persistent fields of entity EJBs using calls to
ejbLoad() and ejbStore(). By default, WebLogic Server calls ejbLoad() and
ejbStore() in the following manner:

1. A transaction is initiated for the entity EJB. The client may explicitly initiate a new
transaction and invoke the bean, or WebLogic Server may initiate a new transaction
in accordance with the bean’s method transaction attributes.

2. WebLogic Server calls ejbLoad() to read the most current version of the bean’s
persistent data from the underlying datastore.

3. When the transaction commits, WebLogic Server calls ejbStore() to write
persistent fields back to the underlying datastore.

This simple process of calling ejbLoad() and ejbStore() ensures that new
transactions always use the latest version of the EJB’s persistent data, and always write
the data back to the datastore upon committing. In certain circumstances, however, you
may want to limit calls to ejbLoad() and ejbStore() for performance reasons.
Alternately, you may want to call ejbStore() more frequently to view the
intermediate results of uncommitted transactions.

WebLogic Server provides several deployment descriptor elements in the
weblogic-ejb-jar.xml and weblogic cmp-rdbms-jar.xml files that enable you
to configure ejbLoad() and ejbStore() behavior.

Using db-is-shared to Limit Calls to ejbLoad()

WebLogic Server’s default behavior of calling ejbLoad() at the start of each
transaction works well for environments where multiple sources may update the
datastore. Because multiple clients (including WebLogic Server) may be modifying an
EJB’s underlying data, an initial call to ejbLoad() notifies the bean that it needs to
refresh its cached data and ensures that it works against the most current version of the
data.
4-12 Programming WebLogic Enterprise JavaBeans

ejbLoad() and ejbStore() Behavior for Entity EJBs
In the special circumstance where only a single WebLogic Server instance ever
accesses a particular EJB, calling ejbLoad() by default is unnecessary. Because no
other clients or systems update the EJB’s underlying data, WebLogic Server’s cached
version of the EJB data is always up-to-date. Calling ejbLoad() in this case simply
creates extra overhead for WebLogic Server clients that access the bean.

To avoid unnecessary calls to ejbLoad() in the case of a single WebLogic Server
instance accessing a particular EJB, WebLogic Server provides the db-is-shared
deployment parameter. By default, db-is-shared is set to “true” for each EJB in the
bean’s weblogic-ejb-jar.xml file, which ensures that ejbLoad() is called at the
start of each transaction. Where only a single WebLogic Server instance ever accesses
an EJB’s underlying data, you can set db-is-shared to “false” in the bean’s
weblogic-ejb-jar.xml file if the concurrency option is set to Exclusive. When you
deploy an EJB with db-is-shared set to “false,” the single instance of WebLogic
Server calls ejbLoad() for the bean if:

� The EJB does not exist in the cache

� The EJB’s transaction rolls back

Restrictions and Warnings for db-is-shared

Setting db-is-shared to “false” overrides WebLogic Server’s default ejbLoad()
container-managed-persistence behavior, regardless of whether the EJB’s underlying
data is updated by one WebLogic Server instance or multiple clients. If you incorrectly
set db-is-shared to “false” and multiple clients (database clients, other WebLogic
Server instances, and so forth) update the bean data, you run the risk of losing data
integrity.

Do not set db-is-shared to “false” if you set the entity bean’s concurrency
strategy to the “Database” option. If you do, WebLogic Server will ignore the
db-is-shared setting.

With database locking specified, the EJB container continues to cache instances of
entity bean classes. However, the container does not cache the intermediate state of the
EJB instance between transactions. Instead, WebLogic Server calls ejbLoad() for
each instance at the beginning of a transaction to obtain the latest EJB data. This means
that setting db-is-shared to “false” which prevents WebLogic Server from calling
ejbload() at the beginning of each transaction is invalid.
Programming WebLogic Enterprise JavaBeans 4-13

4 The WebLogic Server EJB Container and Supported Services
Also, due to caching limitations, you cannot set db-is-shared to “false” in a
WebLogic Server cluster.

Using is-modified-method-name to Limit Calls to
ejbStore() (EJB 1.1 Only)

This method is no longer required.

Note: The is-modified-method-name deployment descriptor element applies to
EJB 1.1 container-managed-persistence (CMP) beans only. This element is
found in the weblogic-ejb-jar.xml file. However, it is not longer required
for EJB 2.0. WebLogic Server CMP implementation automatically detects
modifications of CMP fields and writes only those changes to the underlying
datastore. We recommend that you do not use is-modified-method-name
with bean-managed-persistence (BMP) because you would need to create both
the is-modified-method-name element. and the ejbstore method.

By default, WebLogic Server calls the ejbStore() method at the successful
completion (commit) of each transaction. ejbStore() is called at commit time
regardless of whether the EJB’s persistent fields were actually updated. WebLogic
Server provides the is-modified-method-name element for cases where
unnecessary calls to ejbStore() may result in poor performance.

To use is-modified-method-name, EJB providers must first develop an EJB
method that “cues” WebLogic Server when persistent data has been updated. The
method must return “false” to indicate that no EJB fields were updated, or “true” to
indicate that some fields were modified.

The EJB provider or EJB deployment descriptors then identify the name of this method
by using the value of the is-modified-method-name element. WebLogic Server
calls the specified method name when a transaction commits, and calls ejbStore()
only if the method returns “true.” For more information on this element, see
“is-modified-method-name” on page 10-37.
4-14 Programming WebLogic Enterprise JavaBeans

ejbLoad() and ejbStore() Behavior for Entity EJBs
Warning for is-modified-method-name

Using the is-modified-method-name element can improve performance by
avoiding unnecessary calls to ejbStore(). However, it places a greater burden on the
EJB developer to identify correctly when updates have occurred. If the specified
is-modified-method-name returns an incorrect flag to WebLogic Server, data
integrity problems can occur, and they may be difficult to track down.

If entity EJB updates appear “lost” in your system, start by ensuring that the value for
all is-modified-method-name elements return “true” under every circumstance. In
this way, you can revert to WebLogic Server’s default ejbStore() behavior and
possibly correct the problem.

Using delay-updates-until-end-of-tx to Change ejbStore()
Behavior

By default, WebLogic Server updates the persistent store of all beans in a transaction
only at the completion (commit) of the transaction. This generally improves
performance by avoiding unnecessary updates and repeated calls to ejbStore().

If your datastore uses an isolation level of READ_UNCOMMITTED, you may want to allow
other database users to view the intermediate results of in-progress transactions. In this
case, the default WebLogic Server behavior of updating the datastore only at
transaction completion may be unacceptable. To do this, set
delay-updates-until-end-of-tx to “false.”

You can disable the default behavior by using the
delay-updates-until-end-of-tx deployment descriptor element. This element is
set in the weblogic-ejb-jar.xml file. When you set this element to “false,”
WebLogic Server calls ejbStore() after each method call, rather than at the
conclusion of the transaction.

Note: Setting delay-updates-until-end-of-tx to false does not cause database
updates to be “committed” to the database after each method invoke; they are
only sent to the database. Updates are committed or rolled back in the database
only at the conclusion of the transaction.
Programming WebLogic Enterprise JavaBeans 4-15

4 The WebLogic Server EJB Container and Supported Services
Setting Entity EJBs to Read-Only

Entity EJBs can also use the read-only concurrency strategy to modify basic
ejbLoad() and ejbStore() behavior. The following sections describe how the EJB
container supports the concurrency service.

You specify the read-only cache strategy by editing the concurrency-strategy
element in the weblogic-ejb-jar.xml deployment file. For instructions on how to
edit the deployment descriptors, see “Specifying and Editing the EJB Deployment
Descriptors” on page 6-5.

Read-Only Concurrency Strategy

You can use the read-only concurrency strategy for entity EJBs that are never
modified by an EJB client, but they can be updated periodically by an external source.
For example, a read-only entity EJB can represent a stock quote for a particular
company; the quote is updated externally to the WebLogic Server system.

WebLogic Server never calls ejbStore() for a read-only entity EJB. ejbLoad() is
called initially when the EJB is created; afterwards, WebLogic Server calls
ejbLoad() only at intervals defined by the read-timeout-seconds deployment
parameter.

Restrictions for Read-Only Concurrency Strategy

Entity EJBs using the read-only concurrency strategy must observe the following
restrictions:

� They cannot require updates to the EJB data, because WebLogic Server never
calls ejbStore() for read-only entity EJBs.

� Their transaction attributes must be set to NotSupported (the beans cannot rely
on a transaction).

� The EJB’s method calls must be idempotent. See “Session EJBs in a Cluster” on
page 4-23 for more information.
4-16 Programming WebLogic Enterprise JavaBeans

Setting Entity EJBs to Read-Only
� Because the bean’s underlying data may be updated by an external source, calls
to ejbLoad() are governed by the deployment parameter,
read-timeout-seconds.

Read-Only Multicast Invalidation

Read-only multicast invalidation is an efficient means of to invalidating cached data.

Invalidate a read-only entity bean by calling the following invalidate() method on
either the CachingHome or CachingLocalHome interface:

Figure 4-4 Sample code showing CachingHome and CachingLocalHome
interfaces

package weblogic.ejb;

public interface CachingHome {

public void invalidate(Object pk) throws RemoteException;
public void invalidate (Collection pks) throws RemoteException;
public void invalidateAll() throws RemoteException;

public interface CachingLocalHome {

public void invalidate(Object pk) throws RemoteException;
public void invalidate (Collection pks) throws RemoteException;
public void invalidateAll() throws RemoteException

}

The following example codes shows how to cast the home to CachingHome and then
call the method:

Figure 4-5 Sample code showing how to cast the home and call the method

import javax.naming.InitialContext;
import weblogic.ejb.CachingHome;

Context initial = new InitialContext();
Object o = initial.lookup("CustomerEJB_CustomerHome");
CustomerHome customerHome = (CustomerHome)o;

CachingHome customerCaching = (CachingHome)customerHome;
customerCaching.invalidateAll();
Programming WebLogic Enterprise JavaBeans 4-17

4 The WebLogic Server EJB Container and Supported Services
When the invalidate() method is called, the read-only entity beans are invalidated
in the local server, and a multicast message is sent to the other servers in the cluster to
invalidate their cached copies. The next call to an invalidated read-only entity bean
causes ejbLoad to be called. ejbLoad() reads the most current version of the
persistent data from the underlying datastore

WebLogic Server calls the invalidate() method after the transaction update has
completed. If the invalidation occurs during a transaction update, the previous version
may be read if the isolation level does not permit reading uncommitted data.

Standard Read-Only Entity Beans

WebLogic Server continues to support the standard read-only entity beans with the
read-timeout element set in the deployment descriptor. If the ReadOnly option is
selected in the concurrency strategy element and the read-timeout-seconds
element is set in the weblogic-ejb-jar.xml file, when a read-only bean is invoked,
WebLogic Server checks whether the cached data is older than the read-timeout
setting. If it is, the bean’s ejbLoad is called. Otherwise, the cached data is used. So,
previous versions of read-only entity beans will work in this version of WebLogic
Server.

Read-Mostly Pattern

WebLogic Server does not support a read-mostly cache strategy setting in
weblogic-ejb-jar.xml. However, if you have EJB data that is only occasionally
updated, you can create a “read-mostly pattern” by implementing a combination of
read-only and read-write EJBs.

For an example of the read-mostly pattern, see the Read Mostly example in your
WebLogic Server distribution:

wlserver6.1\samples\examples\ejb\extensions\readMostly

WebLogic Server provides an automatic invalidate() method for the Read-Mostly
pattern. With this pattern, Read-Only entity bean and a Read-Write entity bean are
mapped to the same data. To read the data, you use the Read-Only entity bean; to
update the data, you use the Read-Write entity bean.
4-18 Programming WebLogic Enterprise JavaBeans

Setting Entity EJBs to Read-Only
In a read-mostly pattern, a read-only entity EJB retrieves bean data at intervals
specified by the read-timeout-seconds deployment descriptor element specified in
the weblogic-ejb-jar.xml file. A separate read-write entity EJB models the
same data as the read-only EJB, and updates the data at required intervals.

When creating a read-mostly pattern, use the following suggestions to reduce data
consistency problems:

� For all read-only EJBs, set read-timeout-seconds to the same value for all
beans that may be updated in the same transaction.

� For all read-only EJBs, set read-timeout-seconds to the smallest timeframe
that yields acceptable performance levels.

� Ensure that all read-write EJBs in the system update only the smallest portion
of data necessary; avoid beans that write numerous, unchanged fields to the
datastore at each ejbStore().

� Ensure that all read-write EJBs update their data in a timely fashion; avoid
involving read-write beans in long-running transactions that may span the
read-timeout-seconds setting for their read-only counterparts.

Note: In a WebLogic Server cluster, clients of the read-only EJB benefit from
using cached EJB data. Clients of the read-write EJB benefit from true
transactional behavior, because the read-write EJB’s state always matches
the state of its data in the underlying datastore. See “Entity EJBs in a Cluster”
on page 4-26 for more information.

Read-Write Cache Strategy

The read-write strategy defines the default caching behavior for entity EJBs in
WebLogic Server.

For read-write EJBs, WebLogic Server loads EJB data into the cache at the
beginning of each transaction, or as described in “Using db-is-shared to Limit Calls to
ejbLoad()” on page 4-12. WebLogic Server calls ejbStore() at the successful
commit of a transaction, or as described under “Using is-modified-method-name to
Limit Calls to ejbStore() (EJB 1.1 Only)” on page 4-14.
Programming WebLogic Enterprise JavaBeans 4-19

4 The WebLogic Server EJB Container and Supported Services
EJBs in WebLogic Server Clusters

This section providers information on how the EJB container supports clustering
services. It describes the behavior of EJBs and their associated transactions in a
WebLogic Server cluster, and explains key deployment descriptors that affect EJB
behavior in a cluster.

EJBs in a WebLogic Server cluster use modified versions of two key structures: the
Home object and the EJB object. In a single server (unclustered) environment, a client
looks up an EJB through the EJB’s home interface, which is backed on the server by a
corresponding Home object. After referencing the bean, the client interacts with the
bean’s methods through the remote interface, which is backed on the server by an EJB
object.

The following figure shows EJB behavior in a single server environment.

Figure 4-6 Single server behavior

Note: Failover of EJBs work only between a remote client and the EJB.

Home EJBHome
Interface Object

Remote EJB
Interface Object

WebLogic Server (single-server)

Datastore

Client

comm
it

obtain bean

call method
4-20 Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters
Clustered EJBHome Objects

In a WebLogic Server cluster, the server-side representation of the Home object can
be replaced by a cluster-aware “stub.” The cluster-aware home stub has knowledge of
EJB Home objects on all WebLogic Servers in the cluster. The clustered home stub
provides load balancing by distributing EJB lookup requests to available servers. It can
also provide failover support for lookup requests, because it routes those requests to
available servers when other servers have failed.

All EJB types — stateless session, stateful session, and entity EJBs — can have
cluster-aware home stubs. Whether or not a cluster-aware home stub is created is
determined by the home-is-clusterable deployment element in
weblogic-ejb-jar.xml. If you set this element to “true” (the default), ejbc calls the
rmic compiler with the appropriate options to generate a cluster-aware home stub for
the EJB.

The following figure shows EJB behavior in a WebLogic Server clustered
environment. For an illustration of EJBs in a clustered server environment, see
Figure 4-7.
Programming WebLogic Enterprise JavaBeans 4-21

4 The WebLogic Server EJB Container and Supported Services
Figure 4-7 Clustered server environment

Clustered EJBObjects

In a WebLogic Server cluster, the server-side representation of the EJBObject can also
be replaced by a replica-aware EJBObject stub. This stub maintains knowledge about
all copies of the EJBObject that reside on servers in the cluster. The EJBObject stub
can provide load balancing and failover services for EJB method calls. For example, if
a client invokes an EJB method call on a particular WebLogic Server and the server
goes down, the EJBObject stub can failover the method call to another, running server.

Whether or not an EJB can use a replica-aware EJBObject stub depends on the type of
EJB deployed and, for entity EJBs, the cache strategy selected at deployment time.

Datastore

Home Home
Stub

Remote Object
Stub

Server 1

Server 2

Server 3

EJBHome

EJBObject

EJBHome

EJBObject

EJBHome

EJBObject

WebLogic Server Cluster

commit

obtain bean

call method

Client
4-22 Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters
Session EJBs in a Cluster

This section describes cluster capabilities and limitations for stateful and stateless
session EJBs.

Stateless Session EJBs

Stateless session EJBs can have both a cluster-aware home stub and a replica-aware
EJBObject stub. By default, WebLogic Server provides failover services for EJB
method calls, but only if a failure occurs between method calls. For example, failover
is automatically supported if a failure occurs after a method completes, or if the method
fails to connect to a server. When failures occur while an EJB method is in progress,
WebLogic Server does not automatically fail over from one server to another.

This default behavior ensures that database updates within an EJB method are not
“duplicated” due to a failover scenario. For example, if a client calls a method that
increments a value in a datastore and WebLogic Server fails over to another server
before the method completes, the datastore would be updated twice for the client’s
single method call.

If methods are written in such a way that repeated calls to the same method do not
cause duplicate updates, the method is said to be “idempotent.” For idempotent
methods, WebLogic Server provides the
stateless-bean-methods-are-idempotent deployment property. If you set this
property to “true” in weblogic-ejb-jar.xml, WebLogic Server assumes that the
method is idempotent and will provide failover services for the EJB method, even if a
failure occurs during a method call.

The following figure show a stateless session EJBs in a WebLogic Server clustered
environment.
Programming WebLogic Enterprise JavaBeans 4-23

4 The WebLogic Server EJB Container and Supported Services
Figure 4-8 Stateless session EJBs in a clustered server environment

Stateful Session EJBs

To enable stateful session EJBs to use cluster-aware home stubs, set
home-is-clusterable to “true.” This provides failover and load balancing for
stateful EJB lookups. Stateful session EJBs configured this way use replica-aware
EJBObject stubs. For more information on in-memory replication for stateful session
EJBs, see “In-Memory Replication for Stateful Session EJBs” on page 4-25.

Datastore
Home Home

Stub

Remote Object
Stub

Server 2

Server 3

failure
during
method

EJBHome

EJBObject

EJBHome

EJBObject

EJBHome

EJBObject

Server 1

commit
call method

obtain bean

Client

WebLogic Server Cluster
4-24 Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters
In-Memory Replication for Stateful Session EJBs

The following sections describe how the EJB Container supports replication services.
The WebLogic Server EJB container supports clustering for stateful session EJBs.
Whereas in WebLogic Server 5.1 only the EJBHome object is clustered for stateful
session EJBs, the EJB container can also replicate the state of the EJB across clustered
WebLogic Server instances.

Replication support for stateful session EJBs is transparent to clients of the EJB. When
a stateful session EJB is deployed, WebLogic Server creates a cluster-aware EJBHome
stub and a replica-aware EJBObject stub for the stateful session EJB. The EJBObject
stub maintains a list of the primary WebLogic Server instances on which the EJB
instance runs, as well as the name of a secondary WebLogic Server to use for
replicating the bean’s state.

Each time a client of the EJB commits a transaction that modifies the EJB’s state,
WebLogic Server replicates the bean’s state to the secondary server instance.
Replication of the bean’s state occurs directly in memory, for best performance in a
clustered environment.

Should the primary server instance fail, the client’s next method invocation is
automatically transferred to the EJB instance on the secondary server. The secondary
server becomes the primary WebLogic Server for the EJB instance, and a new
secondary server handles possible additional failovers. Should the EJB’s secondary
server fail, WebLogic Server enlists a new secondary server instance from the cluster.

Clients of a stateful session EJB are therefore guaranteed to have quick access to the
latest committed state of the EJB, except under the special circumstances described in
“Limitations of In-Memory Replication” on page 4-26.

Requirements and Configuration for In-Memory Replication

To replicate the state of a stateful session EJB in a WebLogic Server cluster, make sure
that the cluster is homogeneous for the EJB class. In other words, deploy the same EJB
class to every WebLogic Server instance in the cluster, using the same deployment
descriptor. In-memory replication is not supported for heterogeneous clusters.

By default, WebLogic Server does not replicate the state of stateful session EJB
instances in a cluster. This models the behavior released with WebLogic Server
Version 6.0. To enable replication, set the replication-type deployment parameter
in the weblogic-ejb-jar.xml deployment file to InMemory.
Programming WebLogic Enterprise JavaBeans 4-25

4 The WebLogic Server EJB Container and Supported Services
Figure 4-9 XML sample enabling replication

<stateful-session-clustering>

...

<replication-type>InMemory</replication-type>

</stateful-session-clustering>

Limitations of In-Memory Replication

By replicating the state of a stateful session EJB, clients are generally guaranteed to
have the last committed state of the EJB, even if the primary WebLogic Server instance
fails. However, in the following rare failover scenarios, the last committed state may
not be available:

� A client commits a transaction involving a stateful EJB, but the primary
WebLogic Server fails before the EJB’s state is replicated. In this case, the
client’s next method invocation works against the previous committed state.

� A client creates an instance of a stateful session EJB and commits an initial
transaction, but the primary WebLogic Server fails before the EJB’s initial state
can be replicated. The client’s next method invocation fails to locate the bean
instance, because the initial state could not be replicated. The client needs to
recreate the EJB instance, using the clustered EJBHome stub, and restart the
transaction.

� Both the primary and secondary servers fail. The client needs to recreate the EJB
instance and restart the transaction.

Entity EJBs in a Cluster

As with all EJB types, entity EJBs can utilize cluster-aware home stubs once you set
home-is-clusterable to “true.” The behavior of the EJBObject stub depends on the
cache-strategy deployment element in weblogic-ejb-jar.xml.
4-26 Programming WebLogic Enterprise JavaBeans

EJBs in WebLogic Server Clusters
Read-Write Entity EJBs in a Cluster

read-write entity EJBs in a cluster behave similarly to entity EJBs in a non-clustered
system, in that:

� Multiple clients can use the bean in transactions.

� ejbLoad() is always called at the beginning of each transaction (because the
db-is-shared deployment parameter cannot be set to “false” in a cluster).

� ejbStore() behavior is governed by the rules described in “ejbLoad() and
ejbStore() Behavior for Entity EJBs” on page 4-12.

Figure 4-10 shows read-write entity EJBs in a WebLogic Server clustered
environment. The three arrows on Home Stub point to all three servers and show
multiple client access.

Figure 4-10 Read-write entity EJBs in a clustered server environment

Datastore

Home Home
Stub

Remote Object
Stub

Server 1

Server 2

Server 3

EJBHome

EJBObject

EJBHome

EJBObject

EJBHome

EJBObject

WebLogic Server Cluster

Home Home
Stub

Remote Object
Stub

begin
...
commit

begin
...
commit

obtain bean

call methodcall methodcall method

obtain bean

call method

obtain bean

Client

Client
Programming WebLogic Enterprise JavaBeans 4-27

4 The WebLogic Server EJB Container and Supported Services
Note: In the preceding figure, the set of three arrows for both home stubs refers to
the EJBHome on each server.

read-write entity EJBs support automatic failover on a safe exception, if
home-is-clusterable is set to true. For example, failover is automatically
supported if there is a failure after a method completes, or if the method fails to connect
to a server.

Cluster Address

When you configure a cluster, you supply a cluster address that identifies the Managed
Servers in the cluster. The cluster address is used in entity and stateless beans to
construct the host name portion of URLs. If the cluster address is not set, EJB handles
may not work properly. For more information on cluster addresses, see Using
WebLogic Server Clusters.

Transaction Management

The following sections provide information on how the EJB container supports
transaction management services. They describe EJBs in several transaction scenarios.
EJBs that engage in distributed transactions (transactions that make updates in
multiple datastores) guarantee that all branches of the transaction commit or roll back
as a logical unit.

The current version of WebLogic Server supports Java Transaction API (JTA), which
you can use to implement distributed transactional applications.

Also, two-phase commit is supported for both 1.1 and 2.0 EJBs. The two-phase
commit protocol is a method of coordinating a single transaction across two or more
resource managers. It guarantees data integrity by ensuring that transactional updates
are committed in all participating databases, or are fully rolled back out of all the
databases, reverting to the state prior to the start of the transaction. For more
information on using transactions and the two-phase commit protocol, see Introducing
Transactions.
4-28 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs61/cluster/setup.html#cluster_address
http://e-docs.bea.com/wls/docs61/cluster/setup.html#cluster_address

Transaction Management
Transaction Management Responsibilities

Session EJBs can rely on their own code, their client’s code, or the WebLogic Server
container to define transaction boundaries. EJBs can use container- or
client-demarcated transaction boundaries, but they cannot define their own transaction
boundaries unless they observe certain restrictions.

� In bean-managed transactions, the EJB manages the transaction demarcation.
If bean- or client-managed transactions are required, you must provide the java
code and use the javax.transaction.UserTransaction interface. The EJB
or client can then access a UserTransaction object through JNDI and specify
transaction boundaries with explicit calls to tx.begin(), tx.commit(),
tx.rollback(). See “Using javax.transaction.UserTransaction” on page 4-29
for more information on defining transaction boundaries.

� In container-managed transactions, the WebLogic Server EJB container
manages the transaction demarcation. For EJBs that use container-managed
transactions (or EJBs that mix container and bean-managed transactions) you
can use several deployment elements to control the transactional requirements
for individual EJB methods. For more information about the deployment
descriptors, see Programming WebLogic EJB.

Note: If the EJB provider does not specify a transaction attribute for a method in the
ejb-jar.xml file, WebLogic Server uses the supports attribute by default.

The sequence of transaction events differs between container-managed and
bean-managed transactions.

Using javax.transaction.UserTransaction

To define transaction boundaries in EJB or client code, you must obtain a
UserTransaction object and begin a transaction before you obtain a Java
Transaction Service (JTS) or JDBC database connection. If you start a transaction after
obtaining a database connection, the connection has no relationship to the new
transaction, and there are no semantics to “enlist” the connection in a subsequent
transaction context. If a JTS connection is not associated with a transaction context, it
operates similarly to a standard JDBC connection that has autocommit equal to true,
and updates are automatically committed to the datastore.
Programming WebLogic Enterprise JavaBeans 4-29

4 The WebLogic Server EJB Container and Supported Services
Once you create a database connection within a transaction context, that connection
becomes “reserved” until the transaction either commits or rolls back. To maintain
performance and throughput for your applications, always ensure that your transaction
completes quickly, so that the database connection can be released and made available
to other client requests. See “Preserving Transaction Resources” on page 2-8 for more
information.

Note: You can associate only a single database connection with an active transaction
context.

Restriction for Container-Managed EJBs

You cannot use the javax.transaction.UserTransaction method within an EJB
that uses container-managed transactions.

Transaction Isolation Levels

The method for setting the transaction isolation level differs according to whether your
application uses bean-managed or container-managed transaction demarcation. The
following sections examine each of these scenarios.

Setting User Transaction Isolation Levels

You set the isolation level for user transactions in the beans java code. When the
application runs, the transaction is explicitly started. See Figure 4-11 for a code sample
of how to set the level.

Figure 4-11 Sample Java Code setting user transaction isolation levels

import javax.transaction.Transaction;
import java.sql.Connection
import weblogic.transaction.TxHelper:
import weblogic.transaction.Transaction;
import weblogic.transaction.TxConstants;

User Transaction tx = (UserTransaction)

ctx.lookup("javax.transaction.UserTransaction");

//Begin user transaction
4-30 Programming WebLogic Enterprise JavaBeans

Transaction Management
tx.begin();

//Set transaction isolation level to TRANSACTION_READ_COMMITED

Transaction tx = TxHelper.getTransaction();
tx.setProperty (TxConstants.ISOLATION_LEVEL, new Integer
 (Connection.TRANSACTION_READ_COMMITED));

//perform transaction work

tx.commit();

Setting Container-Managed Transaction Isolation Levels

You set the isolation level for container-managed transactions in the
transaction-isolation element of the weblogic-ejb-jar.xml deployment file.
WebLogic Server passes this value to the underlying database. The behavior of the
transaction depends both on the EJB’s isolation level setting and the concurrency
control of the underlying persistent store. For more information on setting
container-managed transaction isolation levels, see Programming WebLogic JTA.

Limitations of TRANSACTION_SERIALIZABLE

Many datastores provide limited support for detecting serialization problems, even for
a single user connection. Therefore, even if you set transaction-isolation to
TRANSACTION_SERIALIZABLE, you may experience serialization problems due to the
limitations of the datastore.

Refer to your RDBMS documentation for more details about isolation level support.

Special Note for Oracle Databases

Oracle uses optimistic concurrency. As a consequence, even with a setting of
TRANSACTION_SERIALIZABLE, Oracle does not detect serialization problems until
commit time. The message returned is:

java.sql.SQLException: ORA-08177: can't serialize access for this
transaction
Programming WebLogic Enterprise JavaBeans 4-31

4 The WebLogic Server EJB Container and Supported Services
Even if you use the TRANSACTION_SERIALIZABLE setting for an EJB, you may receive
exceptions or rollbacks in the EJB client if contention occurs between clients for the
same rows. To avoid these problems, make sure that the code in your client application
catches and examines the SQL exceptions, and take you take the appropriate action to
resolve the exceptions, such as restarting the transaction.

With WebLogic Server, you can set the isolation level for transactions to
TRANSACTION_READ_COMMITTED_FOR_UPDATE for methods on which this option is
defined. When set, every SELECT query from that point on will have FOR_UPDATE
added to require locks on the selected data. This condition remains in effect until the
transaction does a COMMIT or ROLLBACK.

Distributing Transactions Across Multiple EJBs

WebLogic Server does support transactions that are distributed over multiple
datasources; a single database transaction can span multiple EJBs on multiple servers.
You can explicitly enable support for these types of transactions by starting a
transaction and invoking several EJBs. Or, a single EJB can invoke other EJBs that
implicitly work within the same transaction context. The following sections describe
these scenarios.

Calling Multiple EJBs from a Single Transaction Context

In the following code fragment, a client application obtains a UserTransaction
object and uses it to begin and commit a transaction. The client invokes two EJBs
within the context of the transaction. The transaction attribute for each EJB is set to
Required:

Figure 4-12 Beginning and committing a transaction

import javax.transaction.*;

...

u = (UserTransaction)
jndiContext.lookup("javax.transaction.UserTransaction");

u.begin();

account1.withdraw(100);

account2.deposit(100);
4-32 Programming WebLogic Enterprise JavaBeans

Transaction Management
u.commit();

...

In the above code fragment, updates performed by the “account1” and “account2”
EJBs occur within the context of a single UserTransaction. The EJBs commit or roll
back as a logical unit. This is true regardless of whether “account1” and “account2”
reside on the same WebLogic Server, multiple WebLogic Servers, or a WebLogic
Server cluster.

The only requirement for wrapping EJB calls in this manner is that both “account1”
and “account2” must support the client transaction. The beans’ trans-attribute
element must be set to Required, Supports, or Mandatory.

Encapsulating a Multi-Operation Transaction

You can also use a “wrapper” EJB that encapsulates a transaction. The client calls the
wrapper EJB to perform an action such as a bank transfer. The wrapper EJB responds
by starting a new transaction and invoking one or more EJBs to do the work of the
transaction.

The “wrapper” EJB can explicitly obtain a transaction context before invoking other
EJBs, or WebLogic Server can automatically create a new transaction context, if the
EJB’s trans-attribute element is set to Required or RequiresNew. The
trans-attribute element is set in the ejb-jar.xml file. All EJBs invoked by the
wrapper EJB must be able to support the transaction context (their trans-attribute
elements must be set to Required, Supports, or Mandatory).

Distributing Transactions Across EJBs in a WebLogic Server Cluster

WebLogic Server provides additional transaction performance benefits for EJBs that
reside in a WebLogic Server cluster. When a single transaction utilizes multiple EJBs,
WebLogic Server attempts to use EJB instances from a single WebLogic Server
instance, rather than using EJBs from different servers. This approach minimizes
network traffic for the transaction.

In some cases, a transaction can use EJBs that reside on multiple WebLogic Server
instances in a cluster. This can occur in heterogeneous clusters, where all EJBs have
not been deployed to all WebLogic Server instances. In these cases, WebLogic Server
uses a multitier connection to access the datastore, rather than multiple direct
connections. This approach uses fewer resources, and yields better performance for the
transaction.
Programming WebLogic Enterprise JavaBeans 4-33

4 The WebLogic Server EJB Container and Supported Services
However, for best performance, the cluster should be homogeneous — all EJBs should
reside on all available WebLogic Server instances.

Delay-Database-Insert-Until

By default, the database insert occurs after the client calls the ejbPostCreate
method. To delay having WebLogic Server insert the new bean, use the
delay-database-insert-until element in the weblogic-cmp-rdbms-jar.xml
file to specify the precise time at which a new bean that uses RDBMS CMP is inserted
into the database.

Delaying the database insert until after ejbPostCreate is required when a
cmr-field is mapped to a foreign-key column that does not allow null values. In
this case, set the cmr-field to a non-null value in ejbPostCreate before the bean
is inserted into the database.

Note: The cmr-fields may not be set during a ejbCreate method call, before the
primary key of the bean is known.

BEA recommend that you specify the delay the database insert until after
ejbPostCreate if the ejbPostCreate method modifies the persistent fields of the
bean. Doing so yields better performance by avoiding an unnecessary store operation.

For maximum flexibility, avoid creating related beans in their ejbPostCreate
method. The creation of these additional instances may make delaying the database
insert impossible if database constraints prevent related beans from referring to a bean
that has not yet been created.

The allowed values for the delay-database-insert-until element are:

� ejbCreate - This method performs a database insert immediately after
ejbCreate.

� ejbPostCreate - This method performs an insert immediately after
ejbPostCreate (default).

Figure 4-13 Sample xml specifying the delay-database-insert until element

<delay-database-insert-until>ejbPostCreate</delay-database-insert
-until> -->
4-34 Programming WebLogic Enterprise JavaBeans

Resource Factories
Resource Factories

The following sections provide information on how the EJB container supports
resource services. In WebLogic Server, EJBs can access JDBC connection pools by
directly instantiating a JDBC pool driver. However, it is recommended that you instead
bind a JDBC datasource resource into the WebLogic Server JNDI tree as a resource
factory.

Using resource factories enables the EJB to map a resource factory reference in the
EJB deployment descriptor to an available resource factory in a running WebLogic
Server. Although the resource factory reference must define the type of resource
factory to use, the actual name of the resource is not specified until the bean is
deployed.

The following sections explain how to bind JDBC datasource and URL resources to
JNDI names in WebLogic Server.

Note: WebLogic Server also supports JMS connection factories.

Setting Up JDBC Datasource Factories

Follow these steps to bind a javax.sql.DataSource resource factory to a JNDI
name in WebLogic Server. Note that you can set up either a transactional or
non-transactional JDBC datasource as necessary:

1. Set up a JDBC connection pool in the Administration Console. See Managing
JDBC Connectivity in the Administration Guide for more information.

2. Start WebLogic Server.

3. Start WebLogic Server Administration Console.

4. In the Console, click the Services node and expand JDBC.

5. Select Data Sources and choose the Configure a new JDBC Data Source option.

6. Enter the Name, JNDI Name, and Pool Name. Check to enable Row Prefetch if
you if you want to prefetch rows between client and WebLogic Server for each
resultSet and then specify the Row Prefetch Size and Stream Chunk Size.
Programming WebLogic Enterprise JavaBeans 4-35

http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html
http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html

4 The WebLogic Server EJB Container and Supported Services
a. For non-transactional JDBC data sources, enter the full WebLogic Server
JNDI name to bind to the datasource and the name of the WebLogic Server
connection pool.

b. For transactional JDBC data sources, enter the full WebLogic Server JNDI
name to bind to the transactional datasource and the name of the WebLogic
Server connection pool.

For more information on configuring transactional and non-transactional data
sources, see Configure a JDBC Data Source.

7. Click Create to save the new JDBC Data Source.

8. Bind the JNDI name of the datasource to the EJB’s local JNDI environment by
doing one of the following:

Map an existing EJB resource factory reference to the JNDI name by directly
editing the resource-description element in the weblogic.ejb-jar.xml
deployment file. See “Specifying and Editing the EJB Deployment Descriptors”
on page 6-5 for instructions on editing deployment descriptors.

Setting Up URL Connection Factories

To set up a URL connection factory in WebLogic Server, bind a URL string to a JNDI
name using these instructions:

1. In a text editor, open the config.xml file for the instance of the WebLogic Server
you are using and set the URLResource attribute for the following config.xml
elements:

� WebServer

� VirtualHost:

2. Set the URLResource attribute for the WebServer element using the following
syntax:

<WebServer URLResource=”weblogic.httpd.url.testURL=http://
localhost:7701/testfile.txt” DefaultWebApp=”default-tests”/>

3. Set the URLResource attribute for the VirtualHost element, when virtual
hosting is required, using the following syntax:
4-36 Programming WebLogic Enterprise JavaBeans

http://e-docs.bea.com/wls/docs61/adminguide/jdbc.html

Locking Services for Entity EJBs
<VirtualHostName=guestserver” targets=”myserver,test_web_server
“URLResource=”weblogic.httpd.url.testURL=http://
localhost:7701/testfile.txt” VirtualHostNames=”guest.com”/>

4. Save the changes in the config.xml file and reboot WebLogic Server

Locking Services for Entity EJBs

The following sections describe how the EJB Container supports locking services. The
WebLogic Server container supports both the database locking and exclusive locking
mechanisms. The default and recommended mechanism for EJB 1.1 and EJB 2.0 beans
is database locking.

Exclusive Locking Services

Exclusive locking was the default in WebLogic Server 5.1 and 4.5.1. This method of
locking provides reliable access to EJB data, and avoids unnecessary calls to
ejbLoad() to refresh the EJB instance’s persistent fields. However, exclusive locking
does not provide the best model for concurrent access to the EJB’s data. Once a client
has locked an EJB instance, other clients are blocked from the EJB’s data even if they
intend only to read the persistent fields.

The EJB container in WebLogic Server can use exclusive locking mechanism for
entity EJB instances. As clients enlist an EJB or EJB method in a transaction,
WebLogic Server places an exclusive lock on the EJB instance for the duration of the
transaction. Other clients requesting the same EJB or method are blocked until the
current transaction completes.

Database Locking Services

Database locking is the default for WebLogic Server 6.1. It improves concurrent
access for entity EJBs. The WebLogic Server container defers locking services to the
underlying database. Unlike exclusive locking, the underlying data store can provide
finer granularity for locking EJB data, and deadlock detection.
Programming WebLogic Enterprise JavaBeans 4-37

4 The WebLogic Server EJB Container and Supported Services
With the database locking mechanism, the EJB container continues to cache instances
of entity EJB classes. However, the container does not cache the intermediate state of
the EJB instance between transactions. Instead, WebLogic Server calls ejbLoad() for
each instance at the beginning of a transaction to obtain the latest EJB data. The request
to commit data is subsequently passed along to the database. The database, therefore,
handles all lock management and deadlock detection for the EJB’s data.

Deferring locks to the underlying database improves throughput for concurrent access
to entity EJB data, while also providing deadlock detection. However, using database
locking requires more detailed knowledge of the underlying datastore’s lock policies,
which can reduce the EJB’s portability among different systems.

Setting Up Database Locking

You specify the locking mechanism used for an EJB by setting the
concurrency-strategy deployment parameter in weblogic-ejb-jar.xml. You
set concurrency-strategy at the individual EJB level, so that you can mix locking
mechanisms within the EJB container.

The following excerpt from weblogic-ejb-jar.xml shows an EJB that uses
database locking.

Figure 4-14 Database locking sample

<entity-descriptor>

<entity-cache>

...

<concurrency-strategy>Database</concurrency-strategy>

</entity-cache>

...

</entity-descriptor>

If you do not specify concurrency-strategy, WebLogic Server performs database
locking for entity EJB instances, as described in “Database Locking Services” on page
4-37.
4-38 Programming WebLogic Enterprise JavaBeans

CHAPTER
5 WebLogic Server
Container-Managed
Persistence Services

The following sections describe the new container-managed persistence (CMP)
services available with the WebLogic Server EJB container.

� Overview of Container Managed Persistence Services

� Writing for RDBMS Persistence for EJB 1.1 CMP

� Using WebLogic Query Language (WLQL) for EJB 1.1 CMP

� Using EJB QL for EJB 2.0

� Using Oracle SELECT HINTS

� “get” and “set” Method Restrictions

� BLOB and CLOB DBMS Column Support for the Oracle DBMS

� Cascade Delete

� Tuned EJB 1.1 CMP Updates in WebLogic Server

� Flushing the CMP Cache

� Primary Keys

� Automatic Primary Key Generation for EJB 2.0 CMP

� Automatic Table Creation
Programming WebLogic Enterprise JavaBeans 5-1

5 WebLogic Server Container-Managed Persistence Services
� Container-Managed Relationships

� Groups

� Java Data Types for CMP Fields

Overview of Container Managed Persistence
Services

WebLogic Server’s container is responsible for providing a uniform interface between
the EJB and the server. The container creates new instances of the EJBs, manages these
bean resources, and provides persistent services such as, transactions, security,
concurrency, and naming at runtime. In most cases, pre WebLogic Server 6.1 EJBs run
in the container. However, see the Migration Guide for information on when you
would need to migrate your bean code. See “DDConverter” on page 9-4 for
instructions on using the conversion tool.

WebLogic Server’s container-managed persistence (CMP) model handles persistence
of CMP entity beans automatically at runtime by synchronizing the EJB’s instance
fields with the data in the database.

EJB Persistence Services

WebLogic Server provides persistence services for entity beans. An entity EJB can
save its state in any transactional or non-transactional persistent storage
(“bean-managed persistence”), or the container can save the EJB’s non-transient
instance variables automatically (“container-managed persistence”). WebLogic Server
allows both choices and a mixture of the two.

If an EJB will use container-managed persistence, you specify the type of persistence
services that the EJB uses in the weblogic-ejb-jar.xml deployment file. High-level
definitions for automatic persistence services are stored in the persistence-type and
persistence-use elements. The persistence-type element defines one or more
automatic services that the EJB can use. The persistence-use element defines
which service the EJB uses at deployment time.
5-2 Programming WebLogic Enterprise JavaBeans

Overview of Container Managed Persistence Services
Automatic persistence services use additional deployment files to specify their
deployment descriptors, and to define entity EJB finder methods. For example,
WebLogic Server RDBMS-based persistence services obtain deployment descriptors
and finder definitions from a particular bean using the bean’s
weblogic-cmp-rdbms-jar.xml file, described in “Using WebLogic Server RDBMS
Persistence” on page 5-3.

Third-party persistence services cause other file formats to configure deployment
descriptors. However, regardless of the file type, you must reference the configuration
file in the persistence-type and persistence-use elements in
weblogic-ejb-jar.xml.

Note: Configure container-managed persistence beans with a connection pool with
maximum connections greater than 1. WebLogic Server’s container-managed
persistence service sometimes needs to get two connections simultaneously.

Using WebLogic Server RDBMS Persistence

To use WebLogic Server RDBMS-based persistence service with your EJBs, create a
dedicated XML deployment file and define the persistence elements for each EJB that
will use container-managed persistence. If you use WebLogic Server’s utility,
DDConverter to create this file, it is named weblogic-cmp-rdbms-jar.xml. If you
create the file from scratch, you can save it to a different filename. However, you must
ensure that the persistence-type and persistence-use elements in
weblogic-ejb-jar.xml refer to the correct file.

weblogic-cmp-rdbms-jar.xml defines the persistence deployment descriptors for
EJBs using WebLogic Server RDBMS-based persistence services.

In each weblogic-cmp-rdbms-jar.xml file you define the following persistence
options:

� EJB connection pools or data source for EJB 2.0 CMP

� EJB field to database element mappings

� Query Language

� WebLogic Query Language (WLQL) for EJB 1.1 CMP

� WebLogic EJB-QL with WebLogic QL extension for EJB 2.0 CMP
(optional)
Programming WebLogic Enterprise JavaBeans 5-3

5 WebLogic Server Container-Managed Persistence Services
� Finder method definitions (CMP 1.1)

� Foreign key mappings for relationships

� WebLogic Server-specific deployment descriptors for queries

Writing for RDBMS Persistence for EJB 1.1
CMP

Clients use finder methods to query and receive references to entity beans that fulfill
query conditions. This section describes how to write finders for WebLogic-specific
1.1 EJBs that use RDBMS persistence. EJB QL, a portable query language, is used to
define finder queries for 2.0 EJBs with container-managed persistence. For more
information about on EJB QL, see “Using EJB QL for EJB 2.0” on page 5-10.

WebLogic Server provides an easy way to write finders. The EJB provider writes the
method signature of a finder in the EJBHome interface, and defines the finder’s query
expressions in the ejb-jar.xml deployment file.

ejbc creates implementations of the finder methods at deployment time, using the
queries in ejb-jar.xml.

The key components of a finder for RDBMS persistence are:

� The finder method signature in EJBHome.

� A query stanza defined within ejb-jar.xml.

� An optional finder-query stanza within weblogic-cmp-rdbms-jar.xml.

The following sections explain how to write EJB finders using XML elements in
WebLogic Server deployment files.
5-4 Programming WebLogic Enterprise JavaBeans

Writing for RDBMS Persistence for EJB 1.1 CMP
Finder Signature

EJB providers specify finder method signatures using the form findMethodName().
Finder methods defined in weblogic-cmp-rdbms-jar.xml must return a Java
collection of EJB objects or a single object.

Note: EJB providers can also define a findByPrimaryKey(primkey) method that
returns a single object of the associated EJB class.

finder-list Stanza

The finder-list stanza associates one or more finder method signatures in EJBHome
with the queries used to retrieve EJB objects. The following is an example of a simple
finder-list stanza using WebLogic Server RDBMS-based persistence:

<finder-list>
<finder>

<method-name>findBigAccounts</method-name>
<method-params>

<method-param>double</method-param>
</method-params>
<finder-query><![CDATA[(> balance $0)]]>

</finder-query>
</finder>

</finder-list>

Note: If you use a non-primitive data type in a method-param element, you must
specify a fully qualified name. For example, use java.sql.Timestamp rather
than Timestamp. If you do not use a qualified name, ejbc generates an error
message when you compile the deployment unit.

finder-query Element

The finder-query element defines the WebLogic Query Language (WLQL)
expression used to query EJB objects from the RDBMS. WLQL uses a standard set of
operators against finder parameters, EJB attributes, and Java language expressions.
See “Using WebLogic Query Language (WLQL) for EJB 1.1 CMP” on page 5-6 for
more information on WLQL.
Programming WebLogic Enterprise JavaBeans 5-5

5 WebLogic Server Container-Managed Persistence Services
Note: Always define the text of the finder-query value using the XML CDATA
attribute. Using CDATA ensures that any special characters in the WLQL string
do not cause errors when the finder is compiled.

A CMP finder can load all beans using a single database query. So, 100 beans can be
loaded with a single database round trip. A bean-managed persistence (BMP) finder
must do one database round trip to get the primary key values of the beans selected by
the finder. As each bean is accessed, another database access is also typically required,
assuming the bean wasn’t already cached. So, to access 100 beans, a BMP might do
101 database accesses.

Using WebLogic Query Language (WLQL) for
EJB 1.1 CMP

WebLogic Query Language (WLQL) for EJB 1.1 CMP allows you to query 1.1 entity
EJBs with container-managed persistence. In the weblogic-cmp-rdbms-jar.xml
file, each finder-query stanza must include a WLQL string that defines the query
used to return EJBs. Use WLQL for EJBs and their corresponding deployment files
that are based on the EJB 1.1 specification.

Note: For queries to 2.0 EJBs, see “Using EJB QL for EJB 2.0” on page 5-10. Using
the weblogic-ql query completely overrides the ejb-ql query.

Syntax

WLQL strings use the prefix notation for comparison operators:

(operator operand1 operand2)

Additional WLQL operators accept a single operand, a text string, or a keyword.
5-6 Programming WebLogic Enterprise JavaBeans

Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
Operators

The following are valid WLQL operators.

Operator Description Sample Syntax

= Equals (= operand1 operand2)

< Less than (< operand1 operand2)

> Greater than (> operand1 operand2)

<= Less than or equal to (<= operand1 operand2)

>= Greater than or equal to (>= operand1 operand2)

! Boolean not (! operand)

& Boolean and (& operand)

| Boolean or (| operand)

like Wildcard search based on % symbol
in the supplied text_string

(like text_string%)

isNull Value of single operand is null (isNull operand)

isNotNull Value of single operand is not null (isNotNull operand)

orderBy Orders results using specified
database columns

Note: Always specify a database
column name in the
orderBy clause, rather
than a persistent field name.
WebLogic Server does not
translate field names
specified in orderBy.

(orderBy 'column_name')

desc Orders results in descending order.
Used only in combination with
orderBy.

(orderBy 'column_name
desc')
Programming WebLogic Enterprise JavaBeans 5-7

5 WebLogic Server Container-Managed Persistence Services
Operands

Valid WLQL operands include:

� Another WLQL expression

� A container-managed field defined elsewhere in the
weblogic-cmp-rdbms-jar.xml file

Note: You cannot use RDBMS column names as operands in WLQL. Instead,
use the EJB attribute (field) that maps to the RDBMS column, as defined
in the attribute-map in weblogic-cmp-rdbms-jar.xml.

� A finder parameter or Java expression identified by $n, where n is the number of
the parameter or expression. By default, $n maps to the nth parameter in the
signature of the finder method. To write more advanced WLQL expressions that
embed Java expressions, map $n to a Java expression.

Note: The $n notation is based on an array that begins with 0, not 1. For example,
the first three parameters of a finder correspond to $0, $1, and $2.
Expressions need not map to individual parameters. Advanced finders can
define more expressions than parameters.

Examples of WLQL Expressions

The following example code shows excerpts from the
weblogic-cmp-rdbms-jar.xml file that use basic WLQL expressions.

� This example returns all EJBs that have the balance attribute greater than the
balanceGreaterThan parameter specified in the finder. The finder method
signature in EJBHome is:

public Enumeration findBigAccounts(double balanceGreaterThan)

throws FinderException, RemoteException;

The sample <finder> stanza is:

<finder>

<method-name>findBigAccounts</method-name>

<method-params>
5-8 Programming WebLogic Enterprise JavaBeans

Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
<method-param>double</method-param>

</method-params>

<finder-query><![CDATA[(> balance $0)]]></finder-query>

</finder>

Note that you must define the balance field n the attribute map of the EJB’s
persistence deployment file.

Note: Always define the text of the finder-query value using the XML CDATA
attribute. Using CDATA ensures that any special characters in the WLQL string
do not cause errors when the finder is compiled.

� The following example shows how to use compound WLQL expressions. Also
note the use of single quotes (') to distinguish strings:

<finder-query><![CDATA[(& (> balance $0) (! (= accountType
'checking')))]]></finder-query>

� The following example finds all the EJBs in a table. It uses the sample finder
method signature:

public Enumeration findAllAccounts()

throws FinderException, RemoteException

The sample <finder> stanza uses an empty WLQL string:

<finder>

<method-name>findAllAccounts</method-name>

<finder-query></finder-query>

</finder>

� The following query finds all EJBs whose lastName field starts with “M”:

<finder-query><![CDATA[(like lastName M%)]]></finder-query>

� This query returns all EJBs that have a null firstName field:

<finder-query><![CDATA[(isNull firstName)]]></finder-query>

� This query returns all EJBs whose balance field is greater than 5000, and orders
the beans by the database column, id:

<finder-query><![CDATA[WHERE >5000 (orderBy 'id' (> balance
5000))]]></finder-query>
Programming WebLogic Enterprise JavaBeans 5-9

5 WebLogic Server Container-Managed Persistence Services
� This query is similar to the previous example, except that the EJBs are returned
in descending order:

<finder-query><![CDATA[(orderBy 'id desc' (>
))]]></finder-query>

Using EJB QL for EJB 2.0

EJB Query Language (QL) is a portable query language that defines finder methods
for 2.0 entity EJBs with container-managed persistence. Use this SQL-like language
to select one or more entity EJB objects or fields in your query. Because of the
declaration of CMP fields in a deployment descriptor, you can create queries in the
deployment descriptor for any finder method other than findByPrimaryKey().
findByPrimaryKey is automatically handled by the container. The search space for
an EJB QL query consists of the EJB’s schema as defined in ejb-jar.xml (the bean’s
collection of container-managed fields and their associated database columns).

EJB QL Requirement for EJB 2.0 Beans

The deployment descriptors must define each finder query for EJB 2.0 entity beans by
using an EJB QL query string. You cannot use WebLogic Query Language (WLQL)
with EJB 2.0 entity beans. WLQL is intended for use with EJB 1.1 CMP.

Migrating from WLQL to EJB QL

If you have used previous versions of WebLogic Server, your container-managed
entity EJBs may use WLQL for finder methods. This section provides a quick
reference to common WLQL operations. Use this table to map the WLQL syntax to
EJB QL syntax.

Sample WLQL Syntax Equivalent EJB QL Syntax

(= operand1 operand2) WHERE operand1 = operand2
5-10 Programming WebLogic Enterprise JavaBeans

Using EJB QL for EJB 2.0
Using EJB 2.0 WebLogic QL Extension for EJB QL

WebLogic Server has an SQL-like language, called WebLogic QL, that extends the
standard EJB QL. This language works with the finder expressions and is used to query
EJB objects from the RDBMS. You define the query in the
weblogic-cmp-rdbms-jar.xml deployment descriptor using the weblogic-ql
element.

There must be a query element in the ejb-jar.file that corresponds to the
weblogic-ql element in the weblogic-cmp-rdbms-jar.xml file. However, the
weblogic-cmp-rdbms-jar.xml query element overrides the ejb-jar.xml query
element.

(< operand1 operand2) WHERE operand1 < operand2

(> operand1 operand2) WHERE operand1 > operand2

(<= operand1 operand2) WHERE operand1 <=
operand2

(>= operand1 operand2) WHERE operand1 >=
operand2

(! operand) WHERE NOT operand

(& expression1
expression2)

WHERE expression1 AND
expression2

(| expression1
expression2)

WHERE expression1 OR
expression2

(like text_string%) WHERE operand LIKE
‘text_string%’

(isNull operand) WHERE operand IS NULL

(isNotNull operand) WHERE operand IS NOT NULL

Sample WLQL Syntax Equivalent EJB QL Syntax
Programming WebLogic Enterprise JavaBeans 5-11

5 WebLogic Server Container-Managed Persistence Services
SELECT DISTINCT

The EJB WebLogic QL extension SELECT DISTINCT tells your database to filter
duplicate queries. Using SELECT DISTINCT means that the EJB container’s
resources are not used to sort through duplicated results when SELECT DISTINCT is
specified in the EJB QL query.

If you specify a sql-select-distinct element with the value TRUE in a
weblogic-ql element’s XML stanza for an EJB 2.0 CMP bean, then the generated
SQL STATEMENT for the database query will contain a DISTINCT clause.

You specify the sql-select-distinct element in the
weblogic-cmp-rdbms-jar.xml file. However, you cannot specify
sql-select-distinct if you are running an isolation level of
READ_C0MMITED_FOR_UPDATE on an Oracle database. This is because a query on
Oracle cannot have both a sql-select-distinct and a
READ_C0MMITED_FOR_UPDATE. If there is a chance that this isolation level will be
used, for example in a session bean, do not use the sql-select-distinct element.

ORDERBY

The EJB WebLogic QL extension ORDERBY is a keyword that works with the Finder
method to specify the CMP field selection sequence for your selections.

Figure 5-1 WebLogic QL ORDERBY extension showing order by id.

ORDERBY
SELECT OBJECT(A) from A for Account.Bean

ORDERBY A.id

Note: ORDERBY defers all sorting to the DBMS. Thus, the order of the retrieved
result depends on the particular DBMS installation on top of which the bean is
running.
5-12 Programming WebLogic Enterprise JavaBeans

Using Oracle SELECT HINTS
Using Oracle SELECT HINTS

WebLogic Server supports an EJB QL extension that allows you to pass INDEX usage
hints to the Oracle Query optimizer. With this extension, you can provide a hint to the
database engine. For example, if you know that the database you are searching can
benefit from an ORACLE_SELECT_HINT, you can define an
ORACLE_SELECT_HINT clause that will take ANY string value and then insert that
String value after the SQL SELECT statement as a hint to the database.

To use this option, declare a query that uses this feature in the weblogic-ql element.
This element is found in the weblogic-cmp-rdbms-jar.xml file. The weblogic-ql
element specifies a query that contains a WebLogic specific extension to the EJB-QL
language.

The WebLogic QL keyword and usage is as follows:

SELECT OBJECT(a) FROM BeanA AS a WHERE a.field > 2 ORDERBY a.field
SELECT_HINT '/*+ INDEX_ASC(myindex) */'

This statement generates the following SQL with the optimizer hint for Oracle:

SELECT /*+ INDEX_ASC(myindex) */ column1 FROM (etc)

In the WebLogic QL ORACLE_SELECT_HINT clause, whatever is between the
single quotes (' ') is what gets inserted after the SQL SELECT. It is the query writer's
responsibility to make sure that the data within the quotes makes sense to the Oracle
database.

“get” and “set” Method Restrictions

WebLogic Server uses a series of accessor methods. The names of these methods begin
with set and get. WebLogic Server uses these methods to read and modify
container-managed fields. These container-generated classes must begin with “get” or
“set” and use the actual name of a persistent field defined in ejb-jar.xml. The
methods are also declared as public, protected, and abstract.
Programming WebLogic Enterprise JavaBeans 5-13

5 WebLogic Server Container-Managed Persistence Services
BLOB and CLOB DBMS Column Support for
the Oracle DBMS

WebLogic Server supports Oracle Binary Large Object (BLOB) and Character Large
Object (CLOB) DBMS columns with EJB CMP. BLOBs and CLOBs are data types
used for efficient storage and retrieval of large objects. CLOBs are string or char
objects; BLOBs are binary or serializable objects such as pictures that translate into
large byte arrays.

BLOBs and CLOBs map a string variable, a value of OracleBlob or OracleClob, to
a BLOB or CLOB column. WebLogic Server maps CLOBs only to the data type
java.lang.string. At this time, no support is available for mapping char arrays to
a CLOB column.

To enable BLOB/CLOB support:

1. In the bean class, declare the variable.

2. Edit the XML by declaring the dbms-column-type deployment descriptor in the
weblogic-cmp-rdbms jar.xml file.

3. Create the BLOB or CLOB in the Oracle database.

Using BLOB or CLOB may slow performance because of the size of the BLOB or
CLOB object.

Specifying a BLOB Using the Deployment Descriptor

The following XML code shows how to specify a BLOB object using the
dbms-column element in weblogic-cmp-rdbms-jar-xml file.

Figure 5-2 Specifying a BLOB object

<field-map>
<cmp-field>photo</cmp-field>
<dbms-column>PICTURE</dbms-column>
<dbms_column-type>OracleBlob</dbms-column-type>

</field-map>
5-14 Programming WebLogic Enterprise JavaBeans

Cascade Delete
Controlling Serialization of cmp-fields Mapped to
OracleBlobs

By default, when WebLogic Server writes and reads a cmp-field of type byte[] that
is mapped to an OracleBlob, it serializes and deserializes the field, respectively.

If WebLogic Server reads a BLOB that was written directly to the database by another
program, errors can result, because the container assumes that the data is serialized.

To specify that the data is not serialized, compile the EJB with this flag:

java -Dweblogic.byteArrayIsSerializedToOracleBlob=false
weblogic.ejbc std_ejb.jar ejb.jar

Specifying a CLOB Using the Deployment Descriptors

The following XML code shows how to specify a CLOB object using the
dbms-column element in the weblogic-cmp-rdbms-jar-xml file.

Figure 5-3 Specifying a CLOB object

<field-map>
<cmp-field>description</cmp-field>
<dbms-column>product_description</dbms-column>
<dbms_column-type>OracleClob</dbms-column-type>

</field-map>

Cascade Delete

Use the cascade delete mechanism to remove entity bean objects. When cascade delete
is specified for a particular relationship, the lifetime of one entity object depends on
another. You can specify cascade delete for one-to-one and one-to-many relationships;
many-to-many relationships are not supported. The cascade delete() method uses
the delete features in WebLogic Server, and the database cascade delete()
method instructs WebLogic Server to use the underlying database’s built-in support
for cascade delete.
Programming WebLogic Enterprise JavaBeans 5-15

5 WebLogic Server Container-Managed Persistence Services
To enable this feature, you must recompile the bean code for the changes to the
deployment descriptors to take effect.

Use one of the following two methods to enable cascade delete.

Cascade Delete Method

With the cascade delete() method you use WebLogic Server to remove objects. If
an entity is deleted and the cascade delete element is specified for a related entity
bean, then the removal is cascaded and any related entity bean objects are also
removed.

To specify cascade delete, use the cascade-delete element in the ejb-jar.xml
deployment descriptor elements. This is the default method. Make no changes to your
database settings, and WebLogic Server will cache the entity objects for removal when
the cascade delete is triggered.

Specify cascade delete using the cascade-delete element in the ejb-jar.xml file
as follows:

Figure 5-4 Specifying a cascade delete

<ejb-relation>
<ejb-relation-name>Customer-Account</ejb-relation-name>
<ejb-relationship-role>

<ejb-relationship-role-name>Account-Has-Customer
</ejb-relationship-role-name>
<multiplicity>one</multiplicity>
<cascade-delete/>

</ejb-relationship-role>
</ejb-relation>

Note: This cascade delete() method can only be specified for a
ejb-relationship-role element contained in an ejb-relation element if
the other ejb-relationship-role element in the same ejb-relation
element specifies a multiplicity attribute with a value of one.
5-16 Programming WebLogic Enterprise JavaBeans

Cascade Delete
Database Cascade Delete Method

The database cascade delete() method allows an application to take advantage
of a database's built-in cascade delete support, and possibly improve performance. If
the db-cascade-delete element is not already specified in the
weblogic-cmp-rdbms-jar.xml file, do not enable any of the database's cascade
delete functionality, because this will produce incorrect results in the database.

The db-cascade-delete element in the weblogic-cmp-rdbms-jar.xml file
specifies that a cascade delete operation will use the built-in cascade delete facilities
of the underlying DBMS. By default, this feature is turned off and the EJB container
removes the beans involved in a cascade delete by issuing an individual SQL DELETE
statement for each bean.

If db-cascade-delete element is specified in the weblogic-cmp-rdbms-jar.xml,
the cascade-delete element must be specified in the ejb-jar.xml.

When db-cascade-delete is enabled, additional database table setup is required.
For example, the following setup for the Oracle database table will cascade delete all
of the employees if the dept is deleted in the database.

Figure 5-5 Oracle table setup for cascade delete

CREATE TABLE dept
(deptno NUMBER(2) CONSTRAINT pk_dept PRIMARY KEY,
dname VARCHAR2(9));

CREATE TABLE emp
(empno NUMBER(4) PRIMARY KEY,
ename VARCHAR2(10),
deptno NUMBER(2) CONSTRAINT fk_deptno

REFERENCES dept(deptno)
ON DELETE CASCADE);
Programming WebLogic Enterprise JavaBeans 5-17

5 WebLogic Server Container-Managed Persistence Services
Tuned EJB 1.1 CMP Updates in WebLogic
Server

EJB container-managed persistence (CMP) automatically support tuned updates
because the container receives get and set callbacks when container-managed EJBs
are read or written. Tuning EJB 1.1 CMP beans helps improve their performance.

WebLogic Server now supports tuned updates for EJB 1.1 CMP. When ejbStore is
called, the EJB container automatically determines which container-managed fields
have been modified in the transaction. Only modified fields are written back to the
database. If no fields are modified, no database updates occur.

With previously versions of WebLogic Server, you could to write an isModified
method that notified the container whether the EJB 1.1 CMP bean had been modified.
isModified is still supported in WebLogic Server, but we recommend that you no
longer use isModified methods and instead allow the container to determine the
update fields.

This feature is enabled for EJB 2.0 CMP, by default. To enable tuned EJB 1.1 CMP
updates, make sure that you set the following deployment descriptor element in the
weblogic-cmp-rdbms-jar.xml file to true.

<enable-tuned-updates>true</enable-tuned-updates>

You can disable tuned CMP updates by setting this deployment descriptor element as
follows:

<enable-tuned-updates>false</enable-tuned-updates>

In this case, ejbStore always writes all fields to the database.
5-18 Programming WebLogic Enterprise JavaBeans

Flushing the CMP Cache
Flushing the CMP Cache

Updates made by a transaction must be reflected in the results of queries, finders, and
ejbSelects issued during the transactions. Because this requirement can slow
performance, a new option enables you to specify that the cache be flushed before the
query for the bean is executed.

If this option is turned off, which is the default behavior, the results of the current
transactions are not reflected in the query. If this option is turned on, the container
flushes all changes for cached transactions written to the database before executing the
new query. This way, the changes show up in the results.

To enable this option, in weblogic-cmp-rdbms-jar.xml file set the
include-updates element to true.

Figure 5-6 Specifying that results of transactions be reflected in the query

<weblogic-query>
<query-method>
<method-name>findBigAccounts</method_name>
<method-params>

<method-param>double</method-param>
</method-params>
</query-method>
<weblogic-ql>WHERE BALANCE>10000 ORDERBY NAME</weblogic-ql>
<include-updates>true</include-updates>

</weblogic-query>

The default is false, which provides the best performance. Updates made to the
cached transaction are reflected in the result of a query; no changes are written to the
database, and you do not see the changes in the query result.

Whether you use this feature depends on whether performance is more important than
current and consistent data.
Programming WebLogic Enterprise JavaBeans 5-19

5 WebLogic Server Container-Managed Persistence Services
Primary Keys

The primary key is an object that uniquely identifies an entity bean within its home.
The container must be able to manipulate the primary key of an entity bean. Each entity
bean class may define a different class for its primary key, but multiple entity beans
can use the same primary key class. The primary key is specified in the deployment
descriptor for the entity bean. You can specify a primary key class for an entity bean
with container-managed persistence by mapping the primary key to either a single field
or to multiple fields in the entity bean class.

Every entity object has a unique identity within its home. If two entity objects have the
same home and the same primary key, they are considered identical. A client can
invoke the getPrimaryKey() method on the reference to an entity object’s remote
interface to determine the entity object’s identity within its home. The object identify
associated with the a reference does not change during the lifetime of the reference.
Therefore, the getPrimaryKey() method always returns the same value when called
on the same entity object reference. A client that knows the primary key of an entity
object can obtain a reference to the entity object by invoking the
findByPrimaryKey(key) method on the bean’s home interface.

Primary Key Mapped to a Single CMP Field

In the entity bean class, you can have a primary key that maps to a single CMP field.
You use the primkey-field element, a deployment descriptor in the ejb-jar.xml
file, to specify the container-managed field that is the primary key. The
prim-key-class element must be the primary key field’s class.

Primary Keys Class That Wraps Single or Multiple CMP
Fields

You can have a primary key class that maps to single or multiple fields. The primary
key class must be public, and have a public constructor with no parameters. You
use the prim-key-class element, a deployment descriptor in the ejb-jar.xml file
to specify the name of the entity bean’s primary key class. You can only specify the
5-20 Programming WebLogic Enterprise JavaBeans

Primary Keys
the class name in this deployment descriptor element. All fields in the primary key
class must be declared public. The fields in the class must have the same name as the
primary key fields in the ejb-jar.xml file.

Hints for Using Primary Keys

Some hints for using primary keys with WebLogic Server include:

� Do not make the primary key class a container-managed field.

Although ejbCreate specifies the primary key class as a return type:

� Do not construct a new primary key class with an ejbCreate. Instead, allow the
container to create the primary key class internally.

� Set the values of the primary key cmp-fields using the setXXX methods within
the ejbCreate method.

� Do not use a cmp field of the type BigDecimal as a primary key field for CMP
beans. The boolean BigDecimal.equals (object x) method considers two
BigDecimal equal only if they are equal in value and scale. This is because
there are differences in precision between the Java language and different
databases. For example, the method does not consider 7.1 and 7.10 to be equal.
Consequently, this method will most likely return false or cause the CMP bean
to fail.

If you need to use BigDecimal as the primary key, you should:

a. Implement a primary key class.

b. In this primary key class, implement the boolean equal (Object x)
method.

c. In the equal method, use boolean BigDecimal.compareTo(BigDecimal
val).

Mapping to a Database Column

WebLogic Server supports mapping a database column to a cmp-field and a
cmr-field concurrently. The cmp-field is read-only in this case. If the cmp-field
is a primary key field, specify that the value for the field be set when the create()
method is invoked by using the setXXX method for the cmp-field.
Programming WebLogic Enterprise JavaBeans 5-21

5 WebLogic Server Container-Managed Persistence Services
Automatic Primary Key Generation for EJB
2.0 CMP

WebLogic Server supports an automatic primary key generation feature for
container-managed persistence (CMP).

Note: This feature is supported for the EJB 2.0 CMP container only, there is no
automatic primary key generation support for EJB 1.1 CMP. For 1.1 beans,
you must use bean-managed-persistence (BMP.)

Generated key support is provided in two ways:

� Using DBMS primary key generation. A set of deployment descriptors are
specified at compile time to generate container code that is used in conjunction
with a supported database to provide key generation support.

With this option, the container defers all key generation to the underlying
database. To enable this feature, you specify the name of the supported DBMS
and the generator name, if required by the database. The CMP code handles all
details of implementing this feature.

For more information on this feature, see “Specifying Primary Key Support for
Oracle” on page 5-23 and “Specifying Primary Key Support for Microsoft SQL
Server” on page 5-24.

� Using Bean Provider Designated Named Sequence table. A user-named and
user-created database table has a schema specified by WebLogic Server. The
container uses this table to generate the keys.

With this option, you name a table that holds the current primary key value. The
table consists of a single row with a single column as defined by the following
statement:

CREATE table_name (SEQUENCE int)
INSERT into table_name VALUES (0)

Note: For instructions on creating a table in Oracle, use the Oracle database
documentation.

In the weblogic-cmp-rdbms-jar.xml file, set the key_cache_size element
to specify how many primary key values a database SELECT and UPDATE will
5-22 Programming WebLogic Enterprise JavaBeans

Automatic Primary Key Generation for EJB 2.0 CMP
fetch at one time. The default value of key_cache_size is 1. BEA recommends
that you set this element to a value of >1, to minimize database accesses and to
improve performance. For more information in this feature, see “Specifying
Primary Key Named Sequence Table Support” on page 5-24.

At this time, WebLogic Server only provides DBMS primary key generation support
for Oracle and Microsoft SQL Server. However, you can use named/sequence tables
with other unsupported databases. Also, this feature is intended for use with simple
(non-compound) primary keys.

Note: The key field must be declared to be of type java.lang.Integer in the
abstract ‘get’ and ‘set’ methods of the bean.

Valid Key Field Values

In the abstract ‘get’ and ‘set’ methods of the bean, you can declare the field to be either
of the following two types:

� java.lang.Integer

� java.lang.Long (this capability is only available if you have installed Service
Pack 3 or higher for WebLogic Server 6.1)

Specifying Primary Key Support for Oracle

Generated primary key support for Oracle databases uses Oracle’s SEQUENCE feature.
This feature works with a Sequence entity in the Oracle database to generate unique
primary keys. The Oracle SEQUENCE is called when a new number is needed.

Once the SEQUENCE already exists in the database, you specify automatic key
generation in the XML deployment descriptors. In the
weblogic-cmp-rdbms-jar.xml file, you specify automatic key generation as
follows:

Figure 5-7 Specifying automatic key generation for Oracle

<automatic-key-generation>
<generator-type>ORACLE</generator-type>
<generator_name>test_sequence</generator-name>
Programming WebLogic Enterprise JavaBeans 5-23

5 WebLogic Server Container-Managed Persistence Services
<key-cache-size>10</key-cache-size>
</automatic-key-generation>

Specify the name of the ORACLE SEQUENCE to be used, using the generator-name
element. If the ORACLE SEQUENCE was created with a SEQUENCE INCREMENT value,
then you must specify a key-cache-size. This value must match the Oracle
SEQUENCE INCREMENT value. If these two values are different, then you will most
likely have duplicate key problems.

Specifying Primary Key Support for Microsoft SQL Server

Generated primary key support for Microsoft SQL Server databases uses SQL Server’s
IDENTITY column. When the bean is created and a new row is inserted in the database
table, SQL Server automatically inserts the next primary key value into the column that
was specified as an IDENTITY column.

Note: For instructions on creating a table in Microsoft SQL Server, see the Microsoft
SQL Server database documentation.

Once the IDENTITY column is created in the database table, you specify automatic key
generation in the XML deployment descriptors. In the
weblogic-cmp-rdbms-jar.xml file, you specify automatic key generation as
follows:

Figure 5-8 Specifying automatic key generation for Microsoft SQL

<automatic-key-generation>
<generator-type>SQL_SERVER</generator-type>

</automatic-key-generation>

The generator-type element lets you specify the primary key generation method
that you want to use.

Specifying Primary Key Named Sequence Table Support

Generated primary key support for unsupported databases uses a Named SEQUENCE
TABLE to hold key values. The table must contain a single row with a single column
that is an integer, SEQUENCE INT. This column will hold the current sequence value.
5-24 Programming WebLogic Enterprise JavaBeans

Automatic Table Creation
Note: For instructions on creating the table, see the documentation for the specific
database product.

Once the NAMED_SEQUENCE_TABLE exists in the database, you specify automatic key
generation by using the XML deployment descriptors in the
weblogic-cmp-rdbms-jar.xml file, as follows:

Figure 5-9 Specifying automatic key generation for named sequence table
support

<automatic-key-generation>
<generator-type>NAMED_SEQUENCE_TABLE</generator-type>
<generator_name>MY_SEQUENCE_TABLE_NAME</generator-name>
<key-cache-size>100</key-cache-size>

</automatic-key-generation>

Specify the name of the SEQUENCE TABLE to be used, with the generator-name
element. Using the key-cache-size element, specify the optional size of the key
cache that tells you how many keys the container will fetch in a single DBMS call.

For improved performance, BEA recommends that you set this value to >1, a number
greater than one. This setting reduces the number of calls to the database to fetch the
next key value.

Also, it is recommended that you define one NAMED SEQUENCE table per bean type.
Beans of different types should not share a common NAMED SEQUENCE table. This
reduces contention for the key table.

Automatic Table Creation

You can specify that WebLogic Server automatically create tables based on the
descriptions in the XML deployment descriptor files and the bean class, if the table
does not already exist. Tables are created for all beans and relationship join tables, if
the relationships in the JAR files have joins. You explicitly turn on this feature by
defining it in the deployment descriptors per each RDBMS deployment, for all beans
in the JAR file.
Programming WebLogic Enterprise JavaBeans 5-25

5 WebLogic Server Container-Managed Persistence Services
WebLogic Server makes a best attempt to create the new table. However, if based on
the descriptions in the deployment files, the field cannot be successfully mapped to an
appropriate column type in the database, the TABLE CREATION fails, an error is thrown,
and you must create the table yourself.

Automatic table creation is not recommended for use in a production environment. It
is better suited for the development phase of design and prototype work. A production
environment may require the use of more precise table schema definitions, for
example; the declaration of foreign key constraints.

To define automatic table creation:

1. In the weblogic-cmp-rdbms-jar.xml file, set the
create-default-dbms-tables element to True to explicitly turn on automatic
table creation for all beans in the JAR file.

2. Use the following syntax:

<create-default-dbms-tables>True</create-default-dbms-tables>

Because automatic table creation may not map every Java field type successfully to
your target database, the following list is provided to give you an idea of the type of
mapping you can expect to see.

Table 5-1 Java Field Types

Java Type DBMS Column Type

boolean INTEGER

byte INTEGER

char CHAR

double DOUBLE PRECISION

float FLOAT

int INTEGER

long INTEGER

short INTEGER

java.lang.string VARCHAR (150)
5-26 Programming WebLogic Enterprise JavaBeans

Container-Managed Relationships
Container-Managed Relationships

The entity bean relies on container-managed persistence to generate the methods that
perform persistent data access for the entity bean instances. The generated methods
transfer data between entity bean instances and the underlying resource manager.
Persistence is handled by the container at runtime. The advantage of using
container-managed persistence is that the entity bean can be logically independent of
the data source in which the entity is stored. The container manages the mapping
between the logical and physical relationships at runtime and manages their referential
integrity.

java.lang.BigDecimal DECIMAL (38, 19)

java.lang.Boolean INTEGER

java.lang.Byte INTEGER

java.lang.Character CHAR (1)

java.lang.Double DOUBLE PRECISION

java.lang.Float FLOAT

java.lang.Integer INTEGER

java.lang.Long INTEGER

java.lang.Short INTEGER

java.sql.Date DATE

java.sql.Time DATE

java.sql.Timestamp DATETIME

byte[] RAW (1000)

Any serializable Class that is not a valid
SQL type:

RAW (1000)

Java Type DBMS Column Type
Programming WebLogic Enterprise JavaBeans 5-27

5 WebLogic Server Container-Managed Persistence Services
Persistent fields and relationships make up the entity bean’s abstract persistence
schema. The deployment descriptors indicate that the entity bean uses
container-managed persistence, and these descriptors are used as input to the container
for data access.

Entity beans can have relationships with other beans. You specify relationships in the
ejb-jar.xml file and weblogic-cmp-rdbms-jar.xml. You specify
container-managed field mappings in the weblogic-cmp-rdbms-jar.xml file.

When a bean with a relationship to another bean is removed, the container
automatically removes the relationship.

Relationship Cardinality

WebLogic Server supports three types of relationship mappings that are managed by
WebLogic container-managed persistence (CMP):

� One-to-one—A WebLogic Server one-to-one relationship also involves the
physical mapping from a foreign key in one bean to the primary key in another
bean. See “Groups” on page 5-36 for more information on primary keys.

� One-to-many—A WebLogic Server one-to-many relationship also involves the
physical mapping from a foreign key in one bean to the primary key of another.
However, in a one-to-many relationship, the foreign key is always contained in
the role that occupies the “many” side of the relationship.

� Many-to-many—A WebLogic Server many-to-many relationship involves the
physical mapping of a join table. Each row in the join table contains two foreign
keys that map to the primary keys of the entities involved in the relationship.

Relationship Direction

Container-managed relationships can be either bidirectional or unidirectional.

� Unidirectional—can only navigate in one direction. These types of relationships
are used with remote beans, and only unidirectional relationships can be remote.
A remote bean is one whose abstract persistence schema is not defined in the
same EJB-jar file as the bean with which it has a relationship. For example, if
entity A and entity B are in a one-to-one, unidirectional relationship and the
5-28 Programming WebLogic Enterprise JavaBeans

Container-Managed Relationships
direction is from entity A to entity B, than entity A is aware of entity B, but
entity B is unaware of entity A. This type of relationship is implemented with a
CMR-field on the entity bean from which navigation can take place and no
related CMR-field on the target entity bean.

� Bidirectional Relationships—can be navigated in both directions. These types of
container-managed relationships can exist only between beans whose abstract
persistence schemas are defined in the same EJB-jar file and therefore managed
by the same container. For example, if entity A and entity B are in a one-to-one
bidirectional relationship, both are aware of each other.

Local Interfaces and Container-Managed Relationships

WebLogic Server provides support for local interfaces for session and entity beans.
Local interfaces allow enterprise javabeans to work together within the same EJB
container using different semantics and execution contexts. The EJBs are usually
co-located within the same EJB container and execute within the same Java Virtual
Machine (JVM). This way, they do not use the network to communicate and avoid the
overhead of a Java Remote Method Invocation-Internet Inter-ORB Protocol
(RMI-IIOP) connection.

EJB relationships with container-managed persistence are now based on the EJB’s
local interface. Any EJB that participates in a relationship must have a local interface.
Local interface objects are lightweight persistent objects. They allow you to do more
fine grade coding than do remote objects. Local interfaces also use pass-by-reference.
The getter is in the local interface.

In earlier versions of WebLogic Server, you can base relationships on remote
interfaces. However, CMP relationships that use remote interfaces should probably not
be used in new code.

The EJB container makes the local home interface accessible to local clients through
JNDI. To reference a local interface you need to have a local JNDI name. The objects
that implement the entity beans’ local home interface are called EJBLocalHome
objects.

In pre-6.1 versions of WebLogic Server, ejbSelect methods were used to return
remote interfaces. Now you can specify a result-type-mapping element in the
ejb-jar.xml file that indicates whether the result returned by the query will be
mapped to a local or remote object.
Programming WebLogic Enterprise JavaBeans 5-29

5 WebLogic Server Container-Managed Persistence Services
Using the Local Client

A local client of a session bean or entity bean can be another EJB, such as a session
bean, entity bean, or message-driven bean. A local client can be a servlet as long as it
is included as part of the same EAR file and as long as the EAR file is not remote.
Clients of a local bean must be part of an EAR or a standalone JAR.

A local client accesses a session or entity bean through the bean’s local interface and
local home interfaces. The container provides classes that implement the bean’s local
and local home interfaces. The objects that implement these interfaces are local Java
objects. The following diagram shows the container with a local client and local
interfaces.

Figure 5-10 Local client and local interfaces

WebLogic Server provides support for both local and uni-directional remote
relationships between EJBs. If the EJBs are on the same server and are part of the same
JAR file, they can have local relationships. If the EJBs are not on the same server, the
relationships must be remote. For a relationship between local beans, multiple column
mappings are specified if the key implementing the relation is a compound key. For a

 Client

Container

EJB 1

EJB 2

EJB LocalObjects

EJB LocalHome

EJB Home

EJB Objects
5-30 Programming WebLogic Enterprise JavaBeans

Container-Managed Relationships
remote bean, only a single column-map is specified, since the primary key of the
remote bean is opaque. No column-maps are specified if the role just specifies a
group-name. No group-name is specified if the relationship is remote.

Changes to the Container for Local Interfaces

Changes made to the structure of the container to accommodate local interfaces
include the following additions:

� EJB local home

� New model for handling exceptions that propagates the correct exception to the
client.

Defining Container-Managed Relationships

Defining a CMR involves specifying the relationship and its cardinality and direction
in ejb-jar.xml. You define database mapping details for the relationship and enable
relationship caching in weblogic-cmp-jar.xml. These sections provide instructions:

� “Specifying Relationship in ejb-jar.xml” on page 5-31

� “Specifying Relationships in weblogic-cmp-jar.xml” on page 5-34

Specifying Relationship in ejb-jar.xml

Container-managed relationships are defined in the ejb-relation stanza of
ejb-jar.xml. Figure 5-11 shows the ejb-relation stanza for a relationship
between two entity EJBs: TeacherEJB and StudentEJB.

The ejb-relation stanza contains a ejb-relationship-role for each side of the
relationship. The role stanzas specify each bean’s view of the relationship.

Figure 5-11 One-to-Many, Bidirectional CMR in ejb-jar.xml

<ejb-relation>
<ejb-relation-name>TeacherEJB-StudentEJB</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>teacher-has-student
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
Programming WebLogic Enterprise JavaBeans 5-31

5 WebLogic Server Container-Managed Persistence Services
<relationship-role-source>
<ejb-name>TeacherEJB</ejb-name>

</relationship-role-source>
<cmr-field>

<cmr-field-name>teacher</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
<ejb-relationship-role>

<ejb-relationship-role-name>student-has-teacher
</ejb-relationship-role-name>
<multiplicity>Many</multiplicity>
<relationship-role-source>

<ejb-name>StudentEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>student</cmr-field-name>
<cmr-field-type>java.util.Collection

<cmr-field>
</ejb-relationship-role>

Specifying Relationship Cardinality

The cardinality on each side of a relationship is indicated using the <multiplicity>
element in its ejb-relationship-role stanza.

In Figure 5-11 the cardinality of the TeacherEJB-StudentEJB relationship is
one-to-many—it is specified by setting multiplicity to one on the TeacherEJB
side and Many on the StudentEJB side.

The cardinality of the CMR in Figure 5-12, is one-to-one—the multiplicity is set
to one in both role stanza for the relationship

Figure 5-12 One-to-One, Unidirectional CMR in ejb-jar.xml

<ejb-relation>
<ejb-relation-name>MentorEJB-StudentEJB</ejb-relation-name>

<ejb-relationship-role>
<ejb-relationship-role-name>mentor-has-student
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>MentorEJB</ejb-name>
</relationship-role-source>
<cmr-field>

<cmr-field-name>mentorID</cmr-field-name>
</cmr-field>

</ejb-relationship-role>
5-32 Programming WebLogic Enterprise JavaBeans

Container-Managed Relationships
<ejb-relationship-role>
<ejb-relationship-role-name>student-has-mentor
</ejb-relationship-role-name>
<multiplicity>One</multiplicity>
<relationship-role-source>

<ejb-name>StudentEJB</ejb-name>
</relationship-role-source>

</ejb-relationship-role>

If a side of a relationship of a relationship has a <multiplicity> of Many, its
<cmr-field> is a collection, and you must specify its <cmr-field-type> as
java.util.Collection, as shown in the StudentEJB side of the relationship in
Figure 5-11. It is not necessary to specify the cmr-field-type when the cmr-field
is a single valued object.

Table 5-2 lists the contents of cmr-field for each bean in a relationship, based on the
cardinality of the relationship.

Table 5-2 Cardinality and cmr-field-type

Specifying Relationship Directionality

The directionality of a CMR by configured by the inclusion (or exclusion) of a
cmr-field in the ejb-relationship-role stanza for each side of the relationship.

A bidirectional CMR has a cmr-field element in the ejb-relationship-role
stanza for both sides of the relationship, as shown in Figure 5-11.

A unidirectional relationship has a cmr-field in only one of the role stanzas for the
relationship. The ejb-relationship-role for the starting EJB contains a
cmr-field, but the role stanza for the target bean does not. Figure 5-12 specifies a
unidirectional relationship from MentorEJB to StudentEJB— there is no cmr-field
element in the ejb-relationship-role stanza for StudentEJB.

If relationship between
EJB1 and EJB2 is...

EJB1’s cmr-field
contains ...

EJB2’s cmr-field
contains is a ...

one-to-one single valued object single valued object

one-to-many single valued object Collection

many-to-many Collection Collection
Programming WebLogic Enterprise JavaBeans 5-33

5 WebLogic Server Container-Managed Persistence Services
Specifying Relationships in weblogic-cmp-jar.xml

Each CMR defined in ejb-jar.xml must also be defined in a
weblogic-rdbms-relation stanza in weblogic-cmp-jar.xml.
weblogic-rdbms-relation identifies the relationship, and maps the database-level
relationship between the participants in the relationship, for one or both sides of the
relationship.

The relation-name in weblogic-rdbms-relation must be the same as the
ejb-relation-name for the CMR in ejb-jar.xml.

One-to-One and One-to-Many Relationships

For one-to-one and one-to-many relationships, column-map is defined for only one
side of the relationship.

For one-to-one relationships, the mapping is from a foreign key in one bean to the
primary key of the other.

Figure 5-13 is the weblogic-rdbms-relation stanza for a the one-to-one
relationship between MentorEJB and StudentEJB, whose <ejb-relation> is shown
in Figure 5-12.

Figure 5-13 One-to-One CMR weblogic-cmp-jar.xml

<weblogic-rdbms-relation>
<relation-name>MentorEJB-StudentEJB</relation-name>
<weblogic-relationship-role>

<relationship-role-name>
mentor-has-student
<column-map>

<foreign-key-column>student</foreign-key-column>
<key-column>StudentID/key-column>

</column-map>
</weblogic-relationship-role>

For one-to-many relationships, the mapping is also always from a foreign key in one
bean to the primary key of another. In a one-to-many relationship, the foreign key is
always associated with the bean that is on the many side of the relationship.

Figure 5-14 is the weblogic-rdbms-relation stanza for a the one-to-many
relationship between TeacherEJB and StudentEJB, whose <ejb-relation> is
shown in Figure 5-11.
5-34 Programming WebLogic Enterprise JavaBeans

Container-Managed Relationships
Figure 5-14 weblogic-rdbms-relation for a One-to-Many CMR

<weblogic-rdbms-relation>
<relation-name>TeacherEJB-StudentEJB</relation-name>
<weblogic-relationship-role>

<relationship-role-name>
teacher-has-student
</relationship-role-name>
<column-map>

<foreign-key-column>student</foreign-key-column>
<key-column>StudentID/key-column>

</column-map>
</weblogic-relationship-role>

Many-to-Many Relationships

For many-to-many relationships, specify a weblogic-relationship-role stanza
for each side of the relationship. The mapping involves a join table. Each row in the
join table contains two foreign keys that map to the primary keys of the entities
involved in the relationship. The direction of a relationship does not affect how you
specify the database mapping for the relationship.

Figure 5-15 shows the weblogic-rdbms-relation stanza for the friends
relationship between two employees.

The FRIENDS join table has two columns, first-friend-id and
second-friend-id. Each column contains a foreign key that designates a particular
employee who is a friend of another employee. The primary key column of the
employee table is id.

Figure 5-15 weblogic-rdbms-relation for a Many-to-Many CMR

<weblogic-rdbms-relation>
<relation-name>friends</relation-name>
<table-name>FRIENDS</table-name>
<weblogic-relationship-role>

<relationship-role-name>first-friend
</relationship-role-name>
<column-map>
<foreign-key-column>first-friend-id</foreign-key-column>
<key-column>id</key-column>

</column-map
<weblogic-relationship-role>

<weblogic-relationship-role>
<relationship-role-name>second-friend</relationship-role-
name>
Programming WebLogic Enterprise JavaBeans 5-35

5 WebLogic Server Container-Managed Persistence Services
<column-map>
<foreign-key-column>second-friend-id</foreign-key-column>
<key-column>id</key-column>

</column-map>
</weblogic-relationship-role>

</weblogic-rdbms-relation>

Container-Managed Relationships and Caching

In versions of WebLogic Server up to and including WebLogic Server 6.1, loading a
bean that participates in a container-managed relationship into the cache does not
cause related instances to be loaded into cache.

Consider the following EJB code for accountBean and addressBean, which have a
1-to-1 relationship:

Account acct = acctHome.findByPrimaryKey("103243");
Address addr = acct.getAddress();

Execution of this code results in two database queries. The first line results in an SQL
query to load accountBean. The second line results in another query to load
addressBean.

Groups

In container-managed persistence, you use groups to specify certain persistent
attributes of an entity bean. A field-group represents a subset of the cmp and
CMR-fields of a bean. You can put related fields in a bean into groups that are faulted
into memory together as a unit. You can associate a group with a query or relationship,
so that when a bean is loaded as the result of executing a query or following a
relationship, only the fields mentioned in the group are loaded.

A special group named “default” is used for queries and relationships that have no
group specified. By default, the default group contains all of a bean's CMP-fields and
any CMR-fields that add a foreign key to the persistent state of the bean.

A field can belong to multiple groups. In this case, the getXXX() method for the field
will fault in the first group that contains the field.
5-36 Programming WebLogic Enterprise JavaBeans

Java Data Types for CMP Fields
Specifying Field Groups

Field groups are specified in the weblogic-rdbms-cmp-jar.xml file as follows:

<weblogic-rdbms-bean>
<ejb-name>XXXBean</ejb-name>
<field-group>

<group-name>medical-data</group-name>
<cmp-field>insurance</cmp-field>
<cmr-field>doctors</cmr-fields>

</field-group>
</weblogic-rdbms-bean>

You use field groups when you want to access a subset of fields.

Java Data Types for CMP Fields

The following table provides a list of the Java data types for CMP fields used in
WebLogic Server and shows how they map to the Oracle extensions for the standard
SQL data types.

Table 5-3 Java data types for CMP fields

Java Types for CMP Fields Oracle Data Types

boolean SMALLINT

byte SMALLINT

char SMALLINT

double NUMBER

float NUMBER

int INTEGER

long NUMBER

short SMALLINT
Programming WebLogic Enterprise JavaBeans 5-37

5 WebLogic Server Container-Managed Persistence Services
Do not use the SQL CHAR data type for database columns that are mapped to CMP
fields. This is especially important for fields that are part of the primary key, because
padding blanks that are returned by the JDBC driver can cause equality comparisons
to fail when they should not. Use the SQL VARCHAR data type instead of SQL
CHAR.

A CMP field of type byte[] cannot be used as a primary key unless it is wrapped in a
user-defined primary key class that provides meaningful equals() and hashCode()
methods. This is because the byte[] class does not provide useful equals and
hashCode.

java.lang.String VARCHAR/VARCHAR2

java.lang.Boolean SMALLINT

java.lang.Byte SMALLINT

java.lang.Character SMALLINT

java.lang.Double NUMBER

java.lang.Float NUMBER

java.lang.Integer INTEGER

java.lang.Long NUMBER

java.lang.Short SMALLINT

java.sql.Date DATE

java.sql.Time DATE

java.sql.Timestamp DATE

java.math.BigDecimal NUMBER

byte[] RAW, LONG RAW

serializable RAW, LONG RAW

Java Types for CMP Fields Oracle Data Types
5-38 Programming WebLogic Enterprise JavaBeans

CHAPTER
6 Packaging EJBs for the
WebLogic Server
Container

The following sections describe how to package EJBs into a WebLogic Server
container for deployment. They includes a description of the contents of a deployment
package, including the source files, deployment descriptors, and the deployment mode.

� Required Steps for Packaging EJBs

� Reviewing the EJB Source File Components

� WebLogic Server EJB Deployment Files

� Specifying and Editing the EJB Deployment Descriptors

� Creating the Deployment Files

� Setting WebLogic Server Deployment Mode

� Packaging EJBs into a Deployment Directory

� Compiling EJB Classes and Generating EJB Container Classes

� Loading EJB Classes into WebLogic Server

� Specifying an ejb-client.jar

� Manifest Class-Path
Programming WebLogic Enterprise JavaBeans 6-1

6 Packaging EJBs for the WebLogic Server Container
Required Steps for Packaging EJBs

Packaging EJBs for deployment to WebLogic Server in an EJB container involves the
following steps:

1. Review the EJB source file components.

2. Create the EJB deployment files.

3. Edit the EJB deployment descriptors.

4. Set the deployment mode.

5. Generate the EJB container classes.

6. Package the EJBs into a JAR or EAR file.

7. Load EJB classes into WebLogic Server.

Reviewing the EJB Source File Components

To implement entity and session beans, use the following components:

Component Description

Bean Class The bean class implements the bean’s business and life cycle
methods.

Remote Interface The remote interface defines the beans’s business logic that can
be access from applications outside of the bean’s EJB container.

Remote Home Interface The remote home interface defines the bean’s file cycle methods
that can be accessed from applications outside of the bean’s EJB
container.

Local Interface The local interface defines the bean’s business methods that can
be used by other beans that are co-located in the same EJB
container.
6-2 Programming WebLogic Enterprise JavaBeans

WebLogic Server EJB Deployment Files
WebLogic Server EJB Deployment Files

Use the following WebLogic Server deployment files to specify the deployment
descriptor elements for the EJB.

� ejb-jar.xml

� weblogic-ejb-jar.xml

� weblogic-cmp-rdbms-jar.xml (optional, for CMP only)

The deployment files become part of the EJB deployment when the bean is compiled.
The XML deployment descriptor files should contain the minimum deployment
descriptor settings for the EJB. Once the file exists, it can later be edited using the
instructions in “Specifying and Editing the EJB Deployment Descriptors” on page 6-5.
The deployment descriptor files must conform to the correct version of the Document
Type Definition (DTD) for each file you use. All element and sub element (attribute)
names for each of the EJB XML deployment descriptor files are described in the file’s
Document Type Definition (DTD) file. For a description of each file, see the following
sections.

ejb-jar.xml

The ejb-jar.xml file contains the Sun Microsystem-specific EJB DTD. The
deployment descriptors in this file describe the enterprise bean’s structure and declares
its internal dependences and the application assembly information, which describes

Local Home Interface The local home interface defines the bean’s life cycle methods
that can be used by other beans that are co-located in the same
EJB container.

Primary Key The primary key class provides a pointer into the database. Only
entity beans need a primary key.

Component Description
Programming WebLogic Enterprise JavaBeans 6-3

6 Packaging EJBs for the WebLogic Server Container
how the enterprise bean in the ejb-jar file is assembled into an application
deployment unit. For a description of the elements in this file, see the JavaSoft
specification.

weblogic-ejb-jar.xml

The weblogic-ejb-jar.xml file contains the WebLogic Server-specific EJB DTD
that defines the caching, clustering, and performance behavior of EJBs. It also contains
descriptors that map available WebLogic Server resources to EJBs. WebLogic Server
resources include security role names and data sources such as JDBC pools, JMS
connection factories, and other deployed EJBs. For a description of the elements in this
file, see Chapter 10, “weblogic-ejb-jar.xml Document Type Definitions.”

weblogic-cmp-rdbms.xml

The weblogic-cmp-rdbms.xml file contains the WebLogic Server-specific EJB
DTD that defines container-managed persistence services. Use this file to specify how
the container handles synchronizing the entity beans’s instance fields with the data in
the database. For a description of the elements in this file, see Chapter 11,
“weblogic-cmp-rdbms- jar.xml Document Type Definitions.”

Relationships Among the Deployment Files

Descriptors in weblogic-ejb-jar.xml are linked to EJB names in ejb-jar.xml, to
resource names in a running WebLogic Server, and to persistence type data defined in
weblogic-cmp-rdbms-jar.xml (for entity EJBs using container-managed
persistence). The following diagram shows the relationship among the deployment
files and WebLogic Server.
6-4 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

Specifying and Editing the EJB Deployment Descriptors
Figure 6-1 The relationship among the components of the deployment files.

Specifying and Editing the EJB Deployment
Descriptors

You specify or edit EJB deployment descriptors by any of the following methods:

� Using a text editor to manually editing the bean’s deployment files. For
instructions on manually editing the deployment files, see “Manually Editing
EJB Deployment Descriptors” on page 6-6.

<security-role-assignment>. . .
<weblogic-enterprise-bean>

<ejb-name>. . .
<caching-descriptor>. . .
<clustering-descriptor>. . .
<resource-descriptor>. . .
<reference-descriptor>. . .
<persistence-descriptor>. . .

</ejb-name>
</weblogic-enterprise-bean>

weblogic-ejb-jar.xml

Principal

JDBC Pool

JMS

<weblogic-rdbms-bean>
. . .

</weblogic-rdbms-bean>

weblogic-cmp-rdbms-jar.xml

<assembly-descriptor>
<security-role>. . .

</assembly-descriptor>
<entity>

<ejb-name>. . .
<ejb-ref>. . .

</entity>

ejb-jar.xml
WebLogic Server

EJB
Programming WebLogic Enterprise JavaBeans 6-5

6 Packaging EJBs for the WebLogic Server Container
� Using the EJB Deployment Descriptor Editor in the WebLogic Server
Administration Console to edit the bean’s deployment files. For instructions on
using the EJB Deployment Descriptor Editor, see “Using the EJB Deployment
Descriptor Editor” on page 6-7.

� Using a WebLogic Server command line utility tool called DDConverter to
convert EJB 1.1 deployment descriptors to EJB 2.0 XML. For instructions on
using the DDConverter tool, see “DDConverter” on page 9-4.

Creating the Deployment Files

You create the basic XML deployment files for the EJB that conforms to the correct
version of the Document Type Definition (DTD) for each file. You can use an existing
EJB deployment file as a template or copy one from the EJB examples in your
WebLogic Server distribution:

wlserver\samples\examples\ejb20

Manually Editing EJB Deployment Descriptors

To edit XML deployment descriptor elements manually:

1. Use an ASCII text editor that does not reformat the XML or insert additional
characters that could invalidate the file.

2. Open the XML deployment descriptor file that you want to edit.

3. Type in your changes. Use the correct case for file and directory names, even if
your operating system ignores the case.

4. To use the default value for an optional element, either omit the entire element
definition or specify a blank value, as in:

<max-beans-in-cache></max-beans-in-cache>
6-6 Programming WebLogic Enterprise JavaBeans

Creating the Deployment Files
Using the EJB Deployment Descriptor Editor

To edit the EJB deployment descriptors in the WebLogic Server Administration
Console:

1. Start WebLogic Server.

2. Start the Administration Console and select EJB from the right pane.

3. In the left pane, choose the Deployments node under your server domain.

4. Expand the Deployments node and choose EJB.

5. From the expanded list of deployed EJBs, right-click on the bean to be edited.

6. Click Edit EJB Descriptor...

7. When the EJB Deployment Descriptor Editor is displayed, click the chosen EJB
to expand the node.

You should see the following items that represent the EJB deployment descriptor
files:

� EJB Jar: represents the ejb-jar.xml file deployment descriptors for this
EJB.

� WebLogic EJB Jar: represents the weblogic-ejb-jar.xml file
deployment descriptors for this EJB.

� CMP: represents the weblogic-cmp-rdbms-jar.xml file deployment
descriptors for this EJB.

8. Expand the node for the deployment descriptors that you want to edit.

The current settings for the deployment descriptor file that you selected appear
in the left pane. When you right-click on an item in the list, a dialog window for
that item appears in the right pane.

9. Clicking on the circles displays a dialog window in the right pane with various
settings.

You can change the settings in the dialog window to edit those deployment
descriptors.

10. Clicking on the folders displays tables in the right pane where you can view your
settings.
Programming WebLogic Enterprise JavaBeans 6-7

6 Packaging EJBs for the WebLogic Server Container
Here you can usually configure a new descriptor or customize your view of the
existing settings. If an item in the table is underlined, you can click on it to
display a dialog where you can change the settings.

11. By right-clicking on deployment descriptor items in the right pane, you can also
delete descriptors.

Note: For more information on the EJB deployment descriptors, see either the online
help in the Administration Console or Chapter 10, “weblogic-ejb-jar.xml
Document Type Definitions,” and Chapter 11, “weblogic-cmp-rdbms- jar.xml
Document Type Definitions.”

Setting WebLogic Server Deployment Mode

You deploy the enterprise archive file (EAR) or EJB to WebLogic Server by one of the
following methods:

� Automatic mode, which automatically deploys the EJB or EAR to the
applications directory on your server

� Production mode, which deploys the EJB or EAR as specified in the
config.xml file.

Using the Automatic Mode for Deployment

The automatic mode deployment option is the default. This feature automatically polls
the application directory of the active server during startup and while the server is
running, to determine whether an EJB deployment has changed. If a deployment has
changed, it is automatically deployed when the server is polled. Use the
applications directory for EJBs or EARs that you want to deploy in development
mode. Once deployed, these EJBs/EARs are automatically persisted to the
config.xml file.

WebLogic Server also checks the contents of applications every ten seconds to
determine whether an EJB deployment has changed. If a deployment has changed, it
is automatically redeployed using the dynamic deployment feature.
6-8 Programming WebLogic Enterprise JavaBeans

Packaging EJBs into a Deployment Directory
Automatically Deploying the EJB Examples

The EJB examples shipped with WebLogic Server are automatically deployed in the
wlserver/config/applications directory.

� The examples in the wlserver/samples/examples/ejb directory are shipped
built and automatically deploy when the examples server is started.

� The examples in the wlserver/samples/examples/ejb20 directory are
shipped pre-built and need to be built before they can be deployed to the server.

Using the Production Mode for Deployment

The production mode deployment option turns off automatic deployment. When
production deployment mode is enabled, applications specified in the config.xml file
are deployed when the server is started.

To enable this mode, at the command line set the following to true:

-d production mode enabled true

For more information on this production mode, see “Starting the WebLogic
Administration Server from the Command Line” in startstop.html of the
Administration Guide.

Packaging EJBs into a Deployment Directory

The deployment process begins with a JAR file or a deployment directory that contains
the compiled EJB interfaces and implementation classes created by the EJB provider.
Regardless of whether the compiled classes are stored in a JAR file or a deployment
directory, they must reside in subdirectories that match their Java package structures.

The EJB provider should also supply an EJB compliant ejb-jar.xml file that
describes the bundled EJB(s). The ejb-jar.xml file and any other required XML
deployment file must reside in a top-level META-INF subdirectory of the JAR or
deployment directory. The following diagram shows the first stage of packaging the
the EJB and the deployment descriptor files into a deployment directory or JAR file.
Programming WebLogic Enterprise JavaBeans 6-9

http://e-docs.bea.com/wls/docs61/adminguide/startstop.html#StartingAdministrationServerFromCommandLine
http://e-docs.bea.com/wls/docs61/adminguide/startstop.html#StartingAdministrationServerFromCommandLine

6 Packaging EJBs for the WebLogic Server Container
Figure 6-2 Packaging the EJB classes and deployment descriptors into a
deployment directory

As is, the basic JAR or deployment directory cannot be deployed to WebLogic Server.
You must first create and configure the WebLogic-specific deployment descriptor
elements in the weblogic-ejb-jar.xml file, and add that file to the deployment
directory or ejb.jar file. For more information on creating the deployment descriptor
files, see “WebLogic Server EJB Deployment Files” on page 6-3.

If you are deploying an entity EJB that uses container-managed persistence, you must
also add the WebLogic -specific deployment descriptor elements for the bean’s
persistence type. For WebLogic Server container-managed persistence (CMP)
services, the file is generally named weblogic-cmp-rdbms-jar.xml. You require
a separate file for each bean that uses CMP. If you use a third-party persistence vendor,
the file type as well as its contents may be different from
weblogic-cmp-rdbms-jar.xml; refer to your persistence vendor’s documentation
for details.

If you do not have any of the deployment descriptor files needed for your EJB, you
must manually create one. The best method is to copy an existing file and edit the
settings to conform to the needs of your EJB. Use the instructions in “Specifying and
Editing the EJB Deployment Descriptors” on page 6-5 to create the files.

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

ejb-jar.xml

Step 1:
Set deployment
properties

 JAR file or deployment directory JAR file or deployment directory

EJB home,
EJB local
home, local,
remote, bean

EJB home, EJB localhome
local, remote, bean
6-10 Programming WebLogic Enterprise JavaBeans

Compiling EJB Classes and Generating EJB Container Classes
ejb.jar file

You create the ejb.jar file with the Java Jar utility (javac). This utility bundles the
EJB classes and deployment descriptors into a single Java ARchive (JAR) file that
maintains the directory structure. The ejb-jar file is the unit that you deploy to
WebLogic Server.

Compiling EJB Classes and Generating EJB
Container Classes

For part of the process of building your deployment unit, you need to compile your
EJB classes, add your deployment descriptors to the deployment unit, and generate the
container classes used to access the deployment unit.

1. Compile the EJB classes using javac compiler from the command line.

2. Add the appropriate XML deployment descriptor files to the compiled unit using
the guidelines in “WebLogic Server EJB Deployment Files” on page 6-3.

3. Generate the container classes that are used to access the bean using ejbc.

Container classes include both the internal representation of the EJB that
WebLogic Server uses, as well as implementation of the external interfaces
(home, local, and/or remote) that clients use.

The ejbc compiler generates container classes according to the deployment
descriptors you have specified in WebLogic-specific XML deployment descriptor
files. For example, if you indicate that your EJBs will be used in a cluster, ejbc creates
special cluster-aware classes that will be used for deployment.

You can also use ejbc directly from the command line by supplying the required
options and arguments. See “ejbc” on page 9-1 for more information.

The following figure shows the container classes added to the deployment unit when
the JAR file is generated
Programming WebLogic Enterprise JavaBeans 6-11

6 Packaging EJBs for the WebLogic Server Container
Figure 6-3 Generating the EJB container classes

Once you have generated the deployment unit, you can designate the file extension as
either a JAR, EAR, or WAR archive.

Loading EJB Classes into WebLogic Server

Classloaders in Weblogic Server are hierarchical. When you start WebLogic Server,
the Java system classloader is active and is the parent of all subsequent classloaders
that WebLogic Server creates. When WebLogic Server deploys an application, it

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

Step 2:
Generate
container
classes

 JAR file or deployment directory

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

 JAR file or deployment directory

ejbHomeImpl.class

ejbHomeImplWLProxy.class

ejbPSWeblogic_CMP_RDBMS.class

ejbEOImpl.class

EJB home, EJB localhome,
local, remote, bean

EJB home, EJB localhome
local, remote, bean
6-12 Programming WebLogic Enterprise JavaBeans

Specifying an ejb-client.jar
automatically creates two new classloaders: one for EJBs and one for Web
applications. The EJB classloader is a child of the Java system classloader and the Web
application classloader is a child of the EJB classloader.

For more information on classloading, see “Classloader Overview” and “About
Application Classloaders” in Developing WebLogic Server Applications.

Specifying an ejb-client.jar

WebLogic Server supports the use of ejb-client.jar files.

The ejb-client.jar contains the home and remote interfaces, the primary key class
(as applicable), and the files they reference. WebLogic Server does not add files
referenced in your classpath to ejb-client.jar. This enables WebLogic Server to
add necessary custom classes to the ejb-client.jar without adding generic classes
such as java.lang.String.

For example, the ShoppingCart remote interface might have a method that returns an
Item class. Because this remote interface references this class, and it is located in the
ejb-jar file, it will be included in the client jar.

You configure the creation of an ejb-client.jar file in the bean’s ejb-jar.xml
deployment descriptor file.When you compile the bean with ejbc, WebLogic Server
creates the ejb-client.jar.

To specify an ejb-client.jar:

1. Compile the bean’s Java classes into a directory, using the javac compiler from
the command line.

2. Add the EJB XML deployment descriptor files to the compiled unit using the
guidelines in “WebLogic Server EJB Deployment Files” on page 6-3.

3. Edit the ejb-client-jar deployment descriptor in the bean’s ejb-jar.xml
file, as follows, to specify support for ejb-client.jar:

<ejb-client-jar>ShoppingCartClient.jar</ejb-client-jar>

4. Generate the container classes that are used to access the bean using
weblogic.ejbc and create the ejb-client.jar using the following
command:
Programming WebLogic Enterprise JavaBeans 6-13

http://e-docs.bea.com/wls/docs61/programming/packaging.html

6 Packaging EJBs for the WebLogic Server Container
$ java weblogic.ejbc <ShoppingCart.jar>

Container classes include both the internal representation of the EJB that
WebLogic Server uses, as well as implementation of the external interfaces
(home, local, and/or remote) that clients use.

External clients can include the ejb-client.jar in their classpath. Web applications
would include the ejb-client.jar in their /lib directory.

Note: WebLogic Server classloading behavior varies, depending on whether or not
the client is stand-alone. Stand-alone clients with access to the
ejb-client.jar can load the necessary classes over the network. However,
for security reasons, programmatic clients running in a server instance cannot
load classes over the network.

Manifest Class-Path

Use the manifest file to specify that a JAR file can reference another JAR file.
Standalone EJBs cannot use the Manifest Class-Path. It is only supported for
components that are deployed within an EAR file. The clients should reference the
client.jar in the classpath entry of the manifest file.

To use the manifest file to reference another JAR file:

1. Specify the name of the referenced JAR file in a Class-Path header in the
referencing JAR file’s Manifest file.

The referenced JAR file is named using a URL relative to the URL of the
referencing JAR file.

2. Name the manifest file META-INF/MANIFEST.MF in the JAR file

3. The Class-Path entry in the Manifest file is as follows:

Class-Path: AAyy.jar BByy.jar CCyy.jar.

Note: The entry is a list of JAR files separated by spaces.

To place the home/remote interfaces for the EJB in the classpath of the calling
component:
6-14 Programming WebLogic Enterprise JavaBeans

Manifest Class-Path
1. Use ejbc to compile the EJB into a JAR file.

2. Create a client.jar file. For instructions on using the client.jar, see
“Specifying an ejb-client.jar” on page 6-13.

3. Place the client.jar, along with all the clients of the bean in an EAR.

4. Reference the EAR in the manifest file.

.

Programming WebLogic Enterprise JavaBeans 6-15

6 Packaging EJBs for the WebLogic Server Container
6-16 Programming WebLogic Enterprise JavaBeans

CHAPTER
7 Deploying EJBs to
WebLogic Server

The following sections provides instructions for deploying EJBs to WebLogic Server
at WebLogic Server startup or on a running WebLogic Server.

� Roles and Responsibilities

� Deploying EJBs at WebLogic Server Startup

� Deploying EJBs on a Running WebLogic Server

� Deploying New EJBs into a Running Environment

� Undeploying Deployed EJBs

� Updating Deployed EJBs

� Deploying Compiled EJB Files

� Deploying Uncompiled EJB Files

Roles and Responsibilities

The following sections are written primarily for:

� Deployers who configure EJBs to run in the WebLogic Server container

� Application assemblers who link multiple EJBs and EJB resources to create
larger Web application systems
Programming WebLogic Enterprise JavaBeans 7-1

7 Deploying EJBs to WebLogic Server
� EJB developers who create and configure new EJB JAR files

You can create, modify, and deploy EJBs in one or more instance of WebLogic Server.
You can set up your EJB deployment, and map EJB references to actual resource
factories, roles, and other EJBs available on a server by editing the XML deployment
descriptor files.

Deploying EJBs at WebLogic Server Startup

To deploy EJBs automatically when WebLogic Server starts:

1. Follow the instructions in to ensure that your deployable EJB JAR file or
deployment directory contains the required WebLogic Server XML deployment
files.

2. Use a text editor or the EJB Deployment Descriptor Editor in the Administration
Console to edit the XML deployment descriptor elements, as necessary.

3. Follow the instructions in “Compiling EJB Classes and Generating EJB
Container Classes” on page 6-11 to compile implementation classes required for
WebLogic Server.

Compiling the container places the JAR file in the deployment directory
specified in the deployment descriptors. If you want the EJB to automatically
deploy when WebLogic Server starts, place the EJB be deployed to the
following directory:

wlserver/config/mydomain/applications

If your EJB JAR file is located in a different directory, make sure that you copy
it to this directory if you want to deploy it at startup.

4. Start WebLogic Server.

When you boot WebLogic Server, it automatically attempts to deploy the
specified EJB JAR file or deployment directory.

5. Launch the Administration Console.

6. In the right pane, click EJB Deployments.

A list of the EJB deployments for the server displays in the right-hand pane.
7-2 Programming WebLogic Enterprise JavaBeans

Deploying EJBs on a Running WebLogic Server
Deploying EJBs in Different Applications

When you deploy EJBs with remote calls to each other different applications,
you cannot use call-by-reference to invoke the EJBs. Instead, you use
pass-by-value. Components that commonly interact with each other should be
located in the same application where call-by-reference can be used. By
default, EJB methods called from within the same server pass arguments by
reference. This increases the performance of method invocation because
parameters are not copied. Pass-by-value is always necessary when EJBs are
called remotely (not from within the server).

Deploying EJBs on a Running WebLogic
Server

Although placing the EJB JAR file or deployment directory in the
wlserver/config/mydomain/applications directory allows the EJB to be
immediately deployed, if you make a change to the deployed EJB, you must redeploy
the EJB for the changes to take effect.

Automatic deployment is provided for situations where rebooting WebLogic Server is
not feasible and is for development purposes only. Using automatic deployment only
deploys the updated EJB to the Administration Server and does not deploy the EJB to
any Managed Server on the domain. Using automatic deployment features, you can:

� Deploy a newly developed EJB to a running development system

� Remove a deployed EJB to restrict access to data

� Update a deployed EJB implementation class to fix a bug or test a new feature

Whether you deploy or update the EJB from the command line or the Administration
Console, you use the automatic deployment features. The following sections describe
automatic deployment concepts and procedures.
Programming WebLogic Enterprise JavaBeans 7-3

7 Deploying EJBs to WebLogic Server
EJB Deployment Names

When you deploy an EJB JAR file or deployment directory, you specify a name for the
deployment unit. This name is a shorthand reference to the EJB deployment that you
can later use to undeploy or update the EJB.

When you deploy an EJB, WebLogic Server implicitly assigns a deployment name that
matches the path and filename of the JAR file or deployment directory. You can use
this assigned name to undeploy or update the bean after the server has started.

Note: The EJB deployment name remains active in WebLogic Server until the server
is rebooted. Undeploying an EJB does not remove the associated deployment
name, because you may later re-use that name to deploy the bean.

Deploying New EJBs into a Running Environment

To deploy an EJB JAR file or deployment directory that has not been deployed to
WebLogic Server:

Use the command:

% java weblogic.deploy -port port_number -host host_name
deploy password name source

where:

� name is the string you want to assign to this EJB deployment unit

� source is the full path and filename of the EJB JAR file you want to deploy, or
the full path of the EJB deployment directory

For example:

% java weblogic.deploy -port 7001 -host localhost deploy
weblogicpwd CMP_example
c:\weblogic\myserver\unjarred\containerManaged\
7-4 Programming WebLogic Enterprise JavaBeans

Viewing Deployed EJBs
Deploying Pinned EJBs - Special Step Required

There is a known issue with deploying or redeploying EJBs to a single server instance
in a cluster—referred to as pinned deployment—if the .jar file contains contain
uncompiled classes and interfaces.

During deployment, the uncompiled EJB is copied to each server instance in the
cluster, but it is compiled only on the server instance to which it has been deployed. As
a result, the server instances in the cluster to which the EJB was not targeted lack the
classes generated during compilation that are necessary to invoke the EJB. When a
client on another server instance tries to invoke the pinned EJB, it fails, and an
Assertion error is thrown in the RMI layer.

If you are deploying or redeploying an EJB to a single server instance in a cluster,
compile the EJB with appc or ejbc before deploying it, , to ensure that the generated
classes copied to all server instances available to all nodes in the cluster.

Viewing Deployed EJBs

To view deployed EJBs:

� From the command line:

1. To list the EJBs that are deployed on a local WebLogic Server, enter the following:

% java weblogic.deploy list password

where password is the password for the WebLogic Server System account.

2. To list deployed EJBs on a remote server, specify the port and host options as
follows:

% java weblogic.deploy -port port_number -host host_name
list password

� From the WebLogic Server Administration Console:

1. Choose EJB from the Deployments node in the left pane of the Console.

2. View a list of deployed EJBs deployed on the server.
Programming WebLogic Enterprise JavaBeans 7-5

7 Deploying EJBs to WebLogic Server
Undeploying Deployed EJBs

Undeploying an EJB effectively prohibits all clients from using the EJB. When you
undeploy the EJB, the specified EJB’s implementation class is immediately marked as
unavailable in the server. WebLogic Server automatically removes the implementation
class and propagates an UndeploymentException to all clients that were using the
bean.

Undeployment does not automatically remove the specified EJB’s public interface
classes. Implementations of the home interface, remote interface, and any support
classes referenced in the public interfaces, remain in the server until all references to
those classes are released. At that point, the public classes may be removed due to
normal Java garbage collection routines.

Similarly, undeploying an EJB does not remove the deployment name associated with
the ejb.jar file or deployment directory. The deployment name remains in the server
to allow for later updates of the EJB.

Undeploying EJBs

To undeploy a deployed EJB, use the following steps:

From the command line:

Reference the assigned deployment unit name, as in:

% java weblogic.deploy -port 7001 -host localhost undeploy
weblogicpwd CMP_example

From the WebLogic Server Administration Console:

1. Choose EJB from the Deployments node in the left pane of the Console.

2. Click the EJB you want to undeploy from the list.

3. Choose the Configuration tab from the dialog in the right pane and uncheck the
undeploy box.
7-6 Programming WebLogic Enterprise JavaBeans

Updating Deployed EJBs
Undeploying an EJB does not remove the EJB deployment name from WebLogic
Server. The EJB remains undeployed for the duration of the server session, as long as
you do not change it once it had been undeployed. You cannot re-use the deployment
name with the deploy argument until you reboot the server. You can re-use the
deployment name to update the deployment, as described in the following section.

Updating Deployed EJBs

When you update the contents of an ejb.jar file or deployment directory that has been
deployed to WebLogic Server, those updates are not reflected in WebLogic Server
until:

� You reboot the server (if the JAR or directory is to be automatically deployed),
or

� You update the EJB deployment using the WebLogic ServerAdministration
Console.

Updating an EJB deployment enables an EJB provider to make changes to a deployed
EJB’s implementation classes, recompile, and then “refresh” the implementation
classes in a running server.

weblogic.deploy update and Targets

In WebLogic Server 6.1, updating an application on any single server instance to
which it is targeted causes it to be updated on all servers to which is targeted. For
instance, if an application is targeted to a cluster, and you update it on one of the
clustered servers instances, the application will be updated on all members of cluster.
Similarly, if the application is targeted to a cluster and to a standalone server instance,
updating it on the standalone server instance will result in its update on the cluster, and
vice versa.

If you want to be able to update an application or component selectively on a subset of
the server instances to which it is targeted, deploy unique instances to of the
application to different targets.
Programming WebLogic Enterprise JavaBeans 7-7

7 Deploying EJBs to WebLogic Server
The Update Process

When you update the currently-loaded implementation, classes for the EJB are
immediately marked as unavailable in the server, and the EJB’s classloader and
associated classes are removed. At the same time, a new EJB classloader is created,
which loads and maintains the revised EJB implementation classes.

The entire EJB will be reloaded; you cannot redeploy part of the EJB JAR..

When clients next acquire a reference to the EJB, their EJB method calls use the
updated EJB implementation classes.

Note: You can update only the EJB implementation classes, as described in
“Loading EJB Classes into WebLogic Server” on page 6-12. You cannot
update the EJB’s public interfaces, or any support classes that are used by the
public interfaces. If you make any changes to the EJB’s public classes and
attempt to update the EJB, WebLogic Server displays an incompatible class
change error when a client next uses the EJB instance.

Updating the EJB

To update or redeploy the EJB implementation class, use the following steps:

From the command line:

Use the update argument and specify the active EJB deployment name:

% java weblogic.deploy -port 7001 -host localhost update
weblogicpwd CMP_example

From the WebLogic Server Administration Console:

1. Choose EJB from the Deployments node in the left pane of the Console.

2. Click the EJB you want to update from the list.

3. Choose the Configuration tab from the dialog in the right pane and update the
EJB by checking the deployed box.

You can update only the EJB implementation class, not the public interfaces or public
support classes
7-8 Programming WebLogic Enterprise JavaBeans

Deploying Compiled EJB Files
Deploying Compiled EJB Files

To create compiled EJB 2.0 JAR or EAR files:

1. Compile your EJB classes and interfaces using javac.

2. Package the EJB classes and interfaces into a valid JAR or EAR file.

3. Use the weblogic.ejbc compiler on the JAR file to generate WebLogic Server
container classes. For instructions on using ejbc, see “ejbc” on page 9-1.

To create compile EJBs from previous versions of WebLogic Server:

1. Run weblogic.ejbc against the ejb.jar file to generate EJB 2.0
container-classes.

2. Copy the compiled ejb.jar files into
wlserver/config/mydomain/applications.

If you change the contents of a compiled ejb.jar file in applications (by
repackaging, recompiling, or copying over the existing ejb.jar), WebLogic Server
automatically attempts to redeploy the ejb.jar file using the automatic deployment
feature.

Note: Because the automatic redeployment feature uses dynamic deployment,
WebLogic Server can only redeploy an EJB’s implementation classes. You
cannot redeploy an EJB’s public interfaces.

Deploying Uncompiled EJB Files

The WebLogic Server container also enables you to automatically deploy JAR files
that contain uncompiled EJB classes and interfaces. An uncompiled EJB file has the
same structure as a compiled file, with the following exceptions:

� You do not have to compile individual class files and interfaces.

� You do not have to use weblogic.ejbc on the packaged JAR file to generate
WebLogic Server container classes.
Programming WebLogic Enterprise JavaBeans 7-9

7 Deploying EJBs to WebLogic Server
The .java or .class files in the JAR file must still be packaged in subdirectories that
match their Java package hierarchy. Also, as with all ejb.jar files, you must include
the appropriate XML deployment files in a top-level META-INF directory.

After you package the uncompiled classes, simply copy the JAR into the
wlserver\config\mydomain\applications directory. If necessary, WebLogic
Server automatically runs javac (or a compiler you specify) to compile the .java
files, and runs weblogic.ejbc to generate container classes. The compiled classes are
copied into a new JAR file in wlserver/config/mydomain/applications, and
deployed to the EJB container.

Should you ever modify an uncompiled ejbc .jar in the applications directory
(either by repackaging or copying over the JAR file), WebLogic Server automatically
recompiles and redeploys the JAR using the same steps.

Note: Because the automatic redeployment feature uses dynamic deployment,
WebLogic Server can only redeploy an EJB’s implementation classes. You
cannot redeploy an EJB’s public interfaces.
7-10 Programming WebLogic Enterprise JavaBeans

CHAPTER
8 Configuring Security in
EJBs

You can secure EJBs by restricting access to them. To restrict access to specified EJBs,
apply security constraints to them.

Configuring Security Constraints

To figure security constraints, follow these steps:

1. Follow the directions in
weblogic\examples\ejb\basic\containerManaged\index.html to set
your environment.

2. Add the following to the bottom of the session stanza for the bean, after
<transaction-type>:

<security-role-ref>
<role-name>admin</role-name>
<role-link<admin</role-link>

</security-role-ref>

3. Add the following to your ejb-jar.xml at the top of the
<assembly-descriptor> stanza to specify which roles have access to your EJB
methods:

<security-role>
<description></description>

<role-name>admin</role-name>
</security-role>
Programming WebLogic Enterprise JavaBeans 8-11

8 Configuring Security in EJBs
<method-permission>
<role-name>admin</role-name>
<method>

<ejb-name>containerManaged</ejb-name>
<method-name>*</method-name>

</method>
</method-permission>

4. Add the following to your weblogic-ejb-jar.xml at the end of the
weblogic-ejb-jar stanza to map the role name to specific users and groups in
your security realm:

<security-role-assignment>
<role-name>admin</role-name>

<principal-name>Accounting Managers</principal-name>
<principal-name>HR Managers</principal-name>
<principal-name>system</principal-name>

</security-role-assignment>

Note: Note that principals can be either users or groups in your security realm.

5. Use the build script to rebuild the bean.

Note: If something concerning EJBs was fixed in a service pack, you will need to add
the service pack jar file to the front of the classpath in the build script in order
to take advantage of the fix.

6. Modify the Client.java to use user and credential when programming the
InitialContext.

7. Run the client by invoking this command:

java examples.ejb.basic.containerManaged.Client
"t3://WebLogicURL:Port" user password

Parameters are optional, but if any are supplied, they are interpreted in this
order:

a. url - URL such as "t3://localhost:7001" of Server user

b. user - User name, default null

c. password - User password, default null accountID - String Account ID to test,
default "10020"
8-12 Programming WebLogic Enterprise JavaBeans

CHAPTER
9 WebLogic Server EJB
Utilities

The following sections provide a complete reference to the utilities and support files
supplied with WebLogic Server EJBs:

� ejbc (weblogic.ejbc)

� DDConverter (weblogic.ejb.utils.DDConverter)

� deploy (weblogic.deploy)

ejbc

Use the weblogic.ejbc command-line utility for generate and compiling EJB 2.0 and
1.1 container classes. If you compile JAR files for deployment into the EJB container,
you must use weblogic.ejbc to generate the container classes.

The WebLogic Server command line utility, weblogic.ejbc does the following:

� Places the EJB classes, interfaces, and XML deployment descriptor files in a
specified JAR file.

� Checks all EJB classes and interfaces for compliance with the EJB specification.

� Generates WebLogic Server container classes for the EJBs.

� Runs each EJB container class through the RMI compiler to create client-side
dynamic proxies and server-side byte code.
Programming WebLogic Enterprise JavaBeans 9-1

9 WebLogic Server EJB Utilities
If you specify an output JAR file, ejbc places all generated files into the JAR file.

By default, ejbc uses javac as a compiler. For faster performance, specify a different
compiler (such as Symantec’s sj) using the -compiler flag.

Note: You may encounter problems deploying EJBs if there is a mismatched version
problem with weblogic.ejbc. When you start WebLogic Server it checks
which version of weblogic.ejbc was used to compile the container classes.
If the version of weblogic.ejbc used to compile the classes is different from
the version you are currently running the EJB will not deploy. To avoid this
problem, make sure that you do not put unnecessary classes in your class path.

ejbc Syntax

 $ java weblogic.ejbc [options] <source jar file>

<target directory or jar file>

Note: If you output to a JAR file, the output JAR name must be different from the
input JAR name.

ejbc Arguments

The following table lists the weblogic.ejbc arguments:

Argument Description

<source jar
file>

Specifies the JAR file containing the compiled EJB classes,
interfaces, and XML deployment files.

<target
directory or jar
file>

Specifies the destination JAR file or deployment directory in which
ejbc places the output JAR. If you specify an output JAR file,
ejbc places the original EJB classes, interfaces, and XML
deployment files in the JAR, as well as the new container classes
that ejbc generates.
9-2 Programming WebLogic Enterprise JavaBeans

ejbc
ejbc Options

The following table lists the weblogic.ejbc command-line options:

Option Description

-help Prints a list of all options available for the compiler.

-version Prints ejbc version information.

-dispatchPolicy
<queueName>

Specifies a configured execute queue that the EJB should use
for obtaining execute threads in WebLogic Server. See Using
Execute Queues to Control Thread Usage for more
information.

-idl Generates CORBA Interface Definition Language for remote
interfaces.

-J Specifies the heap size for weblogic.ejbc. Use as follows:
java weblogic.ejbc -J-mx256m input.jar
output.jar

-idlOverwrite Overwrites existing IDL files.

-idlVerbose Displays verbose information while generating IDL.

-idlDirectory <dir> Specifies the directory where ejbc creates IDL files. By
default, ejbc uses the current directory.

-keepgenerated Saves the intermediate Java files generated during compilation.

-compiler <compiler
name>

Sets the compiler for ejbc to use.

-normi Passed through to Symantec's java compiler, sj, to stop
generation of RMI stubs. Otherwise sj creates its own RMI
stubs, which are unnecessary for the EJB.

-classpath <path> Sets a CLASSPATH used during compilation. This overrides
the system or shell CLASSPATH.
Programming WebLogic Enterprise JavaBeans 9-3

9 WebLogic Server EJB Utilities
ejbc Examples

The following example uses the javac compiler against an input JAR file in
c:\wlserver\samples\examples\ejb\basic\containerManaged\build. The
output JAR file is placed in c:\wlserver\config\examples\applications.

$ java weblogic.ejbc -compiler javac
c:\wlserver\samples\examples\ejb\basic\containerManaged\build\std
_ejb_basic_containerManaged.jar
c:\wlserver\config\examples\ejb_basic_containerManaged.jar

The following example checks a JAR file for compliance with the EJB 1.1
specification and generates WebLogic Server container classes, but does not generate
RMI stubs:

$ java weblogic.ejbc -normi
c:\wlserver\samples\examples\ejb\basic\containerManaged\build\std
_ejb_basic_containerManaged.jar

DDConverter

The DDConverter is a command line utility that converts earlier versions EJB
deployment descriptors into EJB deployment descriptors that conform to the
WebLogic Server 6.x version. The WebLogic Server EJB container supports both the
EJB 1.1 and EJB 2.0 specifications including the EJB 1.1 and EJB 2.0 document type
definitions (DTD). Each WebLogic Server EJB deployment includes standard
deployment descriptors in the following files:

� ejb-jar.xml

This XML file contains the Sun Microsoft-specific EJB deployment descriptors.

� weblogic-ejb-jar-.xml

This XML file contains the WebLogic-specific EJB deployment descriptors.

� weblogic-cmp-rdbms-jar.xml

This XML file contains the WebLogic-specific container-managed persistence
(CMP) deployment descriptors.
9-4 Programming WebLogic Enterprise JavaBeans

DDConverter
Conversion Options Available with DDConverter

The DDConverter command line utility includes the following conversion options:

� Converting beans from earlier versions of WebLogic Server (WLS).

� Converting CMP and non-CMP beans from earlier version of the EJB
specification.

The following table lists the various conversion options for the DDconverter:

Note 1: Converting non-CMP EJB 1.0 beans to non-CMP EJB 1.1 beans is not
necessary because the EJB 1.1 non-CMP deployment descriptors are the same
as the EJB 2.0 non-CMP deployment descriptors.

Note 2: Use the DDConverter command line option -EJBVer for converting EJB CMP
1.0 to EJB CMP 1.1. See “DDConverter Options” on page 9-7 for a description
of this option.

Note 3: Even thought WLS 5.x CMP 1.1 beans and WLS 6.x CMP 1.1 beans are
different, WLS 5.1 CMP 1.1 beans can run in WebLogic Server 6.x without
any changes to the source code.

You should always recompile the beans after you use the DDConverter. We
recommend that you use weblogic.ejbc and then deploy the new generated JAR file.
Recompiling the bean makes sure that the code is compliant with the EJB
Specifications and saves you time because you can skip the recompile process during
server startup.

Conversion Options for the DDConverter Utility

WLS EJB non-CMP EJB CMP

 From To From To From To

 WLS 4.5 - WLS 6.x See Note 1 EJB CMP 1.0 - EJB CMP 1.1

 See Note 2

 WLS 4.5 - WLS 6.x EJB 1.1 - EJB 2.0 EJB CMP 1.0 - EJB CMP 2.0

 WLS 5.x - WLS 6.x EJB 1.1 - EJB 2.0 See Note 3
Programming WebLogic Enterprise JavaBeans 9-5

9 WebLogic Server EJB Utilities
� When converting WLS 4.5 EJB 1.0 beans to WLS 6.x EJB 1.1 beans, the input
to DDConverter is the WebLogic 4.5 deployment descriptor text. The output is a
JAR file that only includes the WebLogic 6.x deployment descriptors. Run
weblogic-ejbc to see if you need to make any additional changes to the source
code following the steps in “Using DDConverter to Convert EJBs” on page 9-6.
See the first row in the Conversion Options for the DDConverter Utility table.

� When converting WLS 4.5 EJB 1.1 beans to WLS 6.x EJB 2.0 beans, the input
to DDConverter is the WebLogic Server 4.5 deployment descriptor text. The
output is a JAR file that only includes the WebLogic 6.x deployment descriptors.
Run weblogic-ejbc to see if you need to make any additional changes to the
source code, follow the steps in “Using DDConverter to Convert EJBs” on page
9-6. See the second row in the Conversion Options for the DDConverter Utility
table.

� You can deploy WLS 5.x EJB 1.1 beans to WLS 6.x without any making
changes to the source code because WLS 6.x is backward compatible. WLS 6.x
detects, recompiles, and then deploys beans from previous versions of WLS.
However, we recommend that you use the DDConverter to upgrade the WLS 5.x
EJB 1.1 beans to WLS 6.x EJB 2.0 beans.

When converting WLS 5.x EJB 1.1 beans to WLS 6.x EJB 2.0 beans, the input
to DDConverter is the WebLogic 5.1 JAR file. This file contains the
deployment descriptor files and class files. The output goes to a JAR file that
includes the WebLogic 6.0 deployment descriptor files and all necessary class
files. See the third row in the Conversion Options for the DDConverter Utility
table.

You can convert non-CMP beans to EJB 2.0 beans with little or no changes to
the source code. To do this, run weblogic.ejbc on the output.jar file and then
deploy the generated JAR file. With CMP beans, you must make changes to the
source code using the steps in “Using DDConverter to Convert EJBs” on page
9-6.

Using DDConverter to Convert EJBs

To convert earlier versions of EJBs for use in WebLogic Server:

1. Input the EJB’s deployment descriptor file into the DDConverter using the
command line format shown in “DDConverter Syntax” on page 9-7.
9-6 Programming WebLogic Enterprise JavaBeans

DDConverter
The output is a JAR file.

2. Extract the XML deployment descriptors from the JAR file.

3. Modify the source code according to the JavaSoft EJB Specification.

4. Compile the modified java file with the extracted XML deployment descriptors,
using weblogic.ejbc to create a JAR file.

5. Deploy the JAR file.

DDConverter Syntax

$ java weblogic.ejb20.utils.DDConverter [options] file1 [file2...]

DDConverter Arguments

DDConverter takes the argument file1 [file2...], where file is one of the
following:

� A text file containing EJB 1.0-compliant deployment descriptors.

� A JAR file containing EJB 1.1 compliant deployment descriptors.

DDConverter uses the beanHomeName property of EJBs in the text deployment
descriptor to define new ejb-name elements in the resultant ejb-jar.xml file.

DDConverter Options

The following table lists the DDConverter command-line options:

Option Description

-d destDir Specifies the destination directory for the output of
the JAR files.

This is a required option.
Programming WebLogic Enterprise JavaBeans 9-7

9 WebLogic Server EJB Utilities
DDConverter Examples

The following example converts a WLS 5.x EJB 1.1 bean into a WLS 6.x EJB 2.0
bean.

The JAR file is created in the destDir subdirectory:

$ java weblogic.ejb20.utils.DDConverter -d destDir Employee.jar

Where the Employee bean is a WLS 5.x EJB 1.1 JAR file.

deploy

The weblogic.deploy command-line utility is used to deploy an EJB-compliant JAR
file, the JAR’s EJBs to a running instance of WebLogic Server.

deploy Syntax

$ java weblogic.deploy [options] [list|deploy|undeploy|update]
password {name} {source}

-c jar name Specifies a JAR file in which you combine all beans
in the source files.

-EJBVer output EJB
version

Specifies the output EJB version number, such as 2.0
or 1.1. The default is 2.0.

-log log file Specifies a file into which the log information can be
placed instead of the ddconverter.log.

-verboseLog Specifies that extra information on the conversion be
placed in the ddconverter.log.

-help Prints a list of all options available for the
DDConverter utility.
9-8 Programming WebLogic Enterprise JavaBeans

deploy
deploy Arguments

The following table lists the weblogic.deploy command line arguments:

Argument Description

list Lists all EJB deployment units in the specified
WebLogic Server.

deploy Deploys an EJB JAR to the specified server.

delete Deletes an EJB deployment unit.

undeploy Removes an existing EJB deployment unit from the
specified server.

update Redeploys an EJB deployment unit.

Note: Updating an application or component on
any single server instance to which it is
targeted causes it to be updated on all
servers to which is targeted. For instance, if
an application is targeted to a cluster, and
you update it on one of the clustered servers
instances, the application will be updated on
all members of cluster. Similarly, if the
application is targeted to a cluster and to a
standalone server instance, updating it on
the standalone server instance will result in
its update on the cluster, and vice versa.

password Specifies the system password for the WebLogic
Server.

{name} Identifies the name of the EJB deployment unit. This
name can be specified at deployment time, either
with the deploy or console utilities.

{source} Specifies the exact location of the EJB JAR file, or
the path to the top level of an EJB deployment
directory.
Programming WebLogic Enterprise JavaBeans 9-9

9 WebLogic Server EJB Utilities
deploy Options

The following table lists the weblogic.deploy command line options:

Option Description

-help Prints a list of all options available for the deploy
utility.

-version Prints the version of the utility.

-port <port> Specifies the port number of the WebLogic Server to
use for deploying the JAR file. If you do not specify
this option, the deploy utility attempts to connect
using port number 7001.

-host <host> Specifies the host name of the WebLogic Server to
use for deploying the JAR file. If you do not specify
this option, the deploy utility attempts to connect
using host name localhost.

-user Specifies the system username of the WebLogic
Server to be used to deploy the JAR file. If you do not
specify this option, deploy attempts to make a
connection using the system username system. You
use the weblogic.system.user property to
define the system username.

-debug Prints detailed debugging information during the
deployment process.
9-10 Programming WebLogic Enterprise JavaBeans

CHAPTER
10 weblogic-ejb-jar.xml
Document Type
Definitions

The following sections describe the EJB 5.1 and EJB 6.0 deployment descriptor
elements found in the weblogic-ejb-jar.xml file, the weblogic-specific XML
document type definitions (DTD) file. Use these definitions to create the
WebLogic-specific weblogic-ejb-jar.xml file that is part of your EJB deployment.

Note: Use the 6.0 deployment descriptors with the 6.x version of WebLogic Server.

� EJB Deployment Descriptors

� DOCTYPE Header Information

� Changed EJB Deployment Elements in WebLogic Server 6.1

� 6.0 weblogic-ejb-jar.xml Deployment Descriptor File Structure

� 6.0 weblogic-ejb-jar.xml Deployment Descriptor Elements

� 5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure

� 5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure
Programming WebLogic Enterprise JavaBeans 10-1

10 weblogic-ejb-jar.xml Document Type Definitions
EJB Deployment Descriptors

The EJB deployment descriptors contain structural and application assembly
information for an enterprise bean. You specify this information by specifying values
for the deployment descriptors in three EJB XML DTD files. These files are:

� ejb-jar.xml

� weblogic-ejb-jar.xml

� weblogic-cmp-rdbms-jar.xml

You package these three XML files with the EJB and other classes into a deployable
EJB component, usually a JAR file, called ejb.jar.

The ejb-jar.xml file is based on the deployment descriptors found in Sun
Microsystems’s ejb.jar.xml file. The other two XML files are weblogic-specific
files that are based on the deployment descriptors found in weblogic-ejb-jar.xml
and weblogic-cmp-rdbms-jar.xml.

DOCTYPE Header Information

When you edit or create XML deployment files, it is critical to include the correct
DOCTYPE header for the deployment file. In particular, using an incorrect PUBLIC
element within the DOCTYPE header can result in parser errors that may be difficult to
diagnose.

The correct text for the PUBLIC elements for the WebLogic Server-specific
weblogic-ejb-jar.xml file are as follows.

XML File PUBLIC Element String

weblogic-ejb-jar.xml ‘-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN‘
‘http://www.bea.com/servers/wls600/dtd/weblogic-ejb-j
ar.dtd‘
10-2 Programming WebLogic Enterprise JavaBeans

DOCTYPE Header Information
The correct text for the PUBLIC elements for the Sun Microsystem-specific
ejb-jar.xml file are as follows.

For example, the entire DOCTYPE header for a weblogic-ejb-jar.xml file is as
follows:

<!DOCTYPE weblogic-ejb-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB//EN'
'http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd'>

XML files with incorrect header information may yield error messages similar to the
following, when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier ‘identifier_name’

identifier_name generally includes the invalid text from the PUBLIC element.

Document Type Definitions (DTDs) for Validation

The contents and arrangement of elements in your XML files must conform to the
Document Type Definition (DTD) for each file you use. WebLogic Server ignores the
DTDs embedded within the DOCTYPE header of XML deployment files, and instead

weblogic-ejb-jar.xml ‘-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB//EN’

‘http://www.bea.com/servers/wls510/dtd/weblogic-ejb-j
ar.dtd’

XML File PUBLIC Element String

XML File PUBLIC Element String

ejb-jar.xml ‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN’ ‘

ejb-jar.xml ‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN’

‘http://www.java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd’
Programming WebLogic Enterprise JavaBeans 10-3

10 weblogic-ejb-jar.xml Document Type Definitions
uses the DTD locations that were installed along with the server. However, the
DOCTYPE header information must include a valid URL syntax in order to avoid parser
errors.

Note: Most browsers do not display the contents of files having the .dtd extension.
To view the DTD file contents in your browser, save the links as text files and
view them with a text editor.

weblogic-ejb-jar.xml

The following links provide the new public DTD locations for the
weblogic-ejb-jar.xml deployment files used with the WebLogic Server:

� For weblogic-ejb-jar.xml 6.0 DTD:

http://www.bea.com/servers/wls600/dtd/weblogic-ejb-jar.dtd
contains the DTD used for creating weblogic-ejb-jar.xml, which defines
EJB properties used for deployment to WebLogic Server.

� For weblogic-ejb-jar.xml 5.1 DTD:

weblogic-ejb-jar.dtd contains the DTD used for creating
weblogic-ejb-jar.xml, which defines EJB properties used for deployment to
WebLogic Server. This file is located at
http://www.bea.com/servers/wls510/dtd/weblogic-ejb-jar.dtd

ejb-jar.xml

The following links provide the public DTD locations for the ejb-jar.xml
deployment files used with WebLogic Server:

� For ejb-jar.xml 2.0 DTD:

http://www.java.sun.com/dtd/ejb-jar_2_0.dtd contains the DTD for
the standard ejb-jar.xml deployment file, required for all EJBs. This DTD is
maintained as part of the JavaSoft EJB 2.0 specification; refer to the JavaSoft
specification for information about the elements used in ejb-jar.dtd.

� For ejb-jar.xml 1.1 DTD:

ejb-jar.dtd contains the DTD for the standard ejb-jar.xml deployment
file, required for all EJBs. This DTD is maintained as part of the JavaSoft EJB
1.1 specification; refer to the JavaSoft specification for information about the
elements used in ejb-jar.dtd.
10-4 Programming WebLogic Enterprise JavaBeans

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

Changed EJB Deployment Elements in WebLogic Server 6.1
Note: Refer to the appropriate JavaSoft EJB specification for a description of the
ejb-jar.xml deployment descriptors.

Changed EJB Deployment Elements in
WebLogic Server 6.1

These changes were made to weblogic-ejb-jar.xml in WebLogic Server 6.1:

� “cache-type” on page 10-11 was added.

� “ejb-local-reference-description” on page 10-22 was added.

� “invalidation-target” on page 10-36 was added.

� “jms-client-id” on page 10-39 was added.

� “jms-polling-interval-seconds” on page 10-40 was added.

6.0 weblogic-ejb-jar.xml Deployment
Descriptor File Structure

The WebLogic Server 6.0 weblogic-ejb-jar.xml deployment descriptor file
describes the elements that are unique to WebLogic Server. Although you can use both
versions of the deployment descriptors in the EJB container, the WebLogic Server 6.0
version of weblogic-ejb-jar.xml is different from the version shipped with
WebLogic Server Version 5.1.

The WebLogic Serve 6.0 weblogic-ejb-jar.xml includes elements for enabling
stateful session EJB replication, configuring entity EJB locking behavior, and
assigning JMS Queue and Topic names for message-driven beans.

The top level elements in the WebLogic Server 6.0 weblogic-ejb-jar.xml are as
follows:
Programming WebLogic Enterprise JavaBeans 10-5

10 weblogic-ejb-jar.xml Document Type Definitions
� description

� weblogic-version

� weblogic-enterprise-bean

� ejb-name

� entity-descriptor | stateless-session-descriptor |
stateful-session-descriptor | message-driven-descriptor

� transaction-descriptor

� reference-descriptor

� enable-call-by-reference

� jndi-name

� security-role-assignment

� transaction-isolation

6.0 weblogic-ejb-jar.xml Deployment
Descriptor Elements

� “allow-concurrent-calls” on page 10-10

� “cache-type” on page 10-11

� “concurrency-strategy” on page 10-13

� “connection-factory-jndi-name” on page 10-12

� “db-is-shared” on page 10-15

� “delay-updates-until-end-of-tx” on page 10-16

� “description” on page 10-17

� “destination-jndi-name” on page 10-18

� “ejb-local-reference-description” on page 10-22

� “ejb-name” on page 10-19
10-6 Programming WebLogic Enterprise JavaBeans

6.0 weblogic-ejb-jar.xml Deployment Descriptor Elements
� “ejb-reference-description” on page 10-20

� “ejb-ref-name” on page 10-21

� “enable-call-by-reference” on page 10-23

� “entity-cache” on page 10-24

� “entity-clustering” on page 10-25

� “entity-descriptor” on page 10-26

� “finders-load-bean” on page 10-27

� “home-call-router-class-name” on page 10-28

� “home-is-clusterable” on page 10-30

� “home-load-algorithm” on page 10-31

� “idle-timeout-seconds” on page 10-33

� “initial-beans-in-free-pool” on page 10-34

� “initial-context-factory” on page 10-35

� “invalidation-target” on page 10-36

� “is-modified-method-name” on page 10-37

� “isolation-level” on page 10-38

� “jms-client-id” on page 10-39

� “jms-polling-interval-seconds” on page 10-40

� “jndi-name” on page 10-41

� “lifecycle” on page 10-43

� “max-beans-in-cache” on page 10-44

� “max-beans-in-free-pool” on page 10-45

� “message-driven-descriptor” on page 10-46

� “method” on page 10-47

� “method-intf” on page 10-48
Programming WebLogic Enterprise JavaBeans 10-7

10 weblogic-ejb-jar.xml Document Type Definitions
� “method-name” on page 10-49

� “method-param” on page 10-50

� “method-params” on page 10-51

� “passivation-strategy” on page 10-52

� “persistence” on page 10-53

� “persistence-type” on page 10-54

� “persistence-use” on page 10-55

� “persistent-store-dir” on page 10-56

� “pool” on page 10-57

� “provider-url” on page 10-59

� “read-timeout-seconds” on page 10-60

� “reference-descriptor” on page 10-61

� “replication-type” on page 10-62

� “res-env-ref-name” on page 10-63

� “res-ref-name” on page 10-64

� “resource-description” on page 10-65

� “resource-env-description” on page 10-66

� “role-name” on page 10-67

� “run-as-identity-principal” on page 10-67

� “security-role-assignment” on page 10-69

� “stateful-session-cache” on page 10-70

� “stateful-session-clustering” on page 10-71

� “stateful-session-descriptor” on page 10-72

� “stateless-bean-call-router-class-name” on page 10-73

� “stateless-bean-is-clusterable” on page 10-74
10-8 Programming WebLogic Enterprise JavaBeans

6.0 weblogic-ejb-jar.xml Deployment Descriptor Elements
� “stateless-bean-load-algorithm” on page 10-75

� “stateless-bean-methods-are-idempotent” on page 10-76

� “stateless-clustering” on page 10-77

� “stateless-session-descriptor” on page 10-78

� “transaction-descriptor” on page 10-79

� “transaction-isolation” on page 10-80

� “trans-timeout-seconds” on page 10-81

� “type-identifier” on page 10-82

� “type-storage” on page 10-83

� “type-version” on page 10-84

� “weblogic-ejb-jar” on page 10-85

� “weblogic-enterprise-bean” on page 10-85
Programming WebLogic Enterprise JavaBeans 10-9

10 weblogic-ejb-jar.xml Document Type Definitions
allow-concurrent-calls

Function

The allow-concurrent-calls element specifies whether a stateful session bean
instance allows concurrent method calls. By default, allows-concurrent-calls is
false. However, when this value is set to true, the EJB container blocks the
concurrent method call and allows it to proceed when the previous call has completed.

Example

See “stateful-session-descriptor” on page 10-72.

Range of values: true | false

Default value: false

Requirements: Requires the server to throw a RemoteException when a stateful session bean
instance is currently handling a method call and another (concurrent) method call arrives
on the server.

Parent elements: weblogic-enterprise-bean

stateful-session-descriptor
10-10 Programming WebLogic Enterprise JavaBeans

cache-type
cache-type

Function

The cache-type element specifies the order in which EJBs are removed from the
cache. The values are:

� Least recently used (LRU)

� Not recently used (NRU)

Example

The following example shows the structure of the cache-type element.

<stateful-session-cache>

<cache-type>NRU</cache-type>

</stateful-session-cache>

Range of values: NRU | LRU

Default value: NRU

Requirements:

Parent elements: weblogic-enterprise-bean

stateful-session-cache
Programming WebLogic Enterprise JavaBeans 10-11

10 weblogic-ejb-jar.xml Document Type Definitions
connection-factory-jndi-name

Function

The connection-factory-jndi-name element specifies the JNDI name of the JMS
Connection Factory that the message-driven bean should look up to create its queues
and topics. If this element is not specified, the default is the
weblogic.jms.MessageDrivenBeanConnectionFactory in config.xml.

Example

<message-driven-descriptor>
<connection-factory-jndi-name>weblogic.jms.MessageDrivenBean
ConnectionFactory</connection-factory-jndi-name>

</message-driven-descriptor>

Range of values: valid name

Default value: weblogic.jms.MessageDrivenBeanConnectionFactory in config.xml

Requirements: Requires the server to throw a RemoteException when a stateful session bean
instance is currently handling a method call and another (concurrent) method call arrives
on the server.

Parent elements: weblogic-enterprise-bean
message-driven-descriptor
10-12 Programming WebLogic Enterprise JavaBeans

concurrency-strategy
concurrency-strategy

Function

The concurrency-strategy element specifies how the container should manage
concurrent access to an entity bean. Set this element to one of three values:

� Exclusive causes WebLogic Server to place an exclusive lock on cached entity
EJB instances when the bean is associated with a transaction. Other requests for
the EJB instance block until the transaction completes. This option was the
default locking behavior for WebLogic Server versions 3.1 through 5.1.

� Database causes WebLogic Server to defer locking requests for an entity EJB to
the underlying datastore. With the Database concurrency strategy, WebLogic
Server does not cache the intermediate results of entity EJBs involved in a
transaction. This is the current default option.

� ReadOnly designates an entity EJB that is never modified. WebLogic Server
calls ejbLoad() for ReadOnly beans based on the read-timeout-seconds
parameter.

See“Locking Services for Entity EJBs” on page 4-37 for more information on the
Exclusive and Database locking behaviors. See“Read-Only Multicast Invalidation”
on page 4-17 for more information about read-only entity EJBs.

Range of values: Exclusive | Database | ReadOnly

Default value: Database

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache
Programming WebLogic Enterprise JavaBeans 10-13

10 weblogic-ejb-jar.xml Document Type Definitions
Example

The following entry identifies the AccountBean class as a read-only entity EJB:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

<entity-descriptor>

<entity-cache>

<concurrency-strategy>ReadOnly</concurrency-strategy>

</entity-cache>

</entity-descriptor>

</weblogic-enterprise-bean>
10-14 Programming WebLogic Enterprise JavaBeans

db-is-shared
db-is-shared

Function

The db-is-shared element applies only to entity beans. When it is set to true,
WebLogic Server assumes that EJB data can be modified between transactions and
reloads the data at the beginning of each transaction. When set to false, WebLogic
Server assumes that it has exclusive access to the EJB data in the persistent store. See
“Using db-is-shared to Limit Calls to ejbLoad()” on page 4-12 for more information.

Example

See “persistence” on page 10-53.

Range of values: true | false

Default value: true

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
Programming WebLogic Enterprise JavaBeans 10-15

10 weblogic-ejb-jar.xml Document Type Definitions
delay-updates-until-end-of-tx

Function

Set the delay-updates-until-end-of-tx element to true (the default) to update
the persistent store of all beans in a transaction at the completion of the transaction.
This setting generally improves performance by avoiding unnecessary updates.
However, it does not preserve the ordering of database updates within a database
transaction.

If your datastore uses an isolation level of TRANSACTION_READ_UNCOMMITTED, you
may want to allow other database users to view the intermediate results of in-progress
transactions. In this case, set delay-updates-until-end-of-tx to false to update
the bean's persistent store at the conclusion of each method invoke. See “ejbLoad() and
ejbStore() Behavior for Entity EJBs” on page 4-12 for more information.

Note: Setting delay-updates-until-end-of-tx to false does not cause database
updates to be “committed” to the database after each method invoke; they are
only sent to the database. Updates are committed or rolled back in the database
only at the conclusion of the transaction.

Example

The following example shows a delay-updates-until-end-of-tx stanza.

<entity-descriptor>

Range of values: true | false

Default value: true

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
10-16 Programming WebLogic Enterprise JavaBeans

description
<persistence>

<delay-updates-until-end-of-tx>false</delay-updates-until-end-of-
tx>

</persistence>

</entity-descriptor>

description

Function

The description element is used to provide text that describes the parent element.

Example

The following examples specifies the description element.

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-ejb-jar
transaction-isolation

method
Programming WebLogic Enterprise JavaBeans 10-17

10 weblogic-ejb-jar.xml Document Type Definitions
destination-jndi-name

Function

The destination-jndi-name element specifies the JNDI name used to associate a
message-driven bean with an actual JMS Queue or Topic deployed in the in WebLogic
Server JNDI tree.

Example

See “message-driven-descriptor” on page 10-46.

Range of values: Valid JNDI name

Default value: n/a

Requirements: Required in message-driven-descriptor.

Parent elements: weblogic-enterprise-bean
message-driven-descriptor
10-18 Programming WebLogic Enterprise JavaBeans

ejb-name
ejb-name

Function

ejb-name specifies the name of an EJB to which WebLogic Server applies isolation
level properties. This name is assigned by the ejb-jar file’s deployment descriptor.
The name must be unique among the names of the enterprise beans in the same
ejb.jar file. The enterprise bean code does not depend on the name; therefore the
name can be changed during the application-assembly process without breaking the
enterprise bean’s function. There is no built-in relationship between the ejb-name in
the deployment descriptor and the JNDI name that the deployer will assign to the
enterprise bean’s home.

Example

See “method” on page 10-47.

Range of values: Name of an EJB defined in ejb-jar.xml

Default value: n/a

Requirements: Required element in method stanza. The name must conform to the lexical rules for an
NMTOKEN.

Parent elements: weblogic-enterprise-bean
method
Programming WebLogic Enterprise JavaBeans 10-19

10 weblogic-ejb-jar.xml Document Type Definitions
ejb-reference-description

Function

The ejb-reference-description element maps the JNDI name in the WebLogic
Server of an EJB that is referenced by the bean in the ejb-reference element.

� ejb-ref-name specifies a resource reference name. This is the reference that
the EJB provider places within the ejb-jar.xml deployment file.

� jndi-name specifies the JNDI name of an actual resource factory available in
WebLogic Server.

Example

The ejb-reference-description stanza is shown here:

<ejb-reference-description>

<ejb-ref-name>AdminBean</ejb-ref-name>

<jndi-name>payroll.AdminBean</jndi-name>

</ejb-reference-description>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor
10-20 Programming WebLogic Enterprise JavaBeans

ejb-ref-name
ejb-ref-name

Function

The ejb-ref-name element specifies a resource reference name. This element is the
reference that the EJB provider places within the ejb-jar.xml deployment file.

Example

The ejb-ref-name stanza is shown here:

<reference-descriptor>

<ejb-reference-description>

<ejb-ref-name>AdminBean</ejb-ref-name>

<jndi-name>payroll.AdminBean</jndi-name>

</ejb-reference-description>

</reference-descriptor>

Range of values: n/a

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-description

ejb-reference-description
Programming WebLogic Enterprise JavaBeans 10-21

10 weblogic-ejb-jar.xml Document Type Definitions
ejb-local-reference-description

Function

The ejb-local-reference-description element maps the JNDI name of an EJB
in the WebLogic Server that is referenced by the bean in the ejb-local ref element.

Example

The following example shows the ejb-local-reference-description element.

<ejb-local-reference-description>

<ejb-ref-name>AdminBean</ejb-ref-name>

<jndi-name>payroll.AdminBean</jndi-name>

</ejb-local-reference-description>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor
10-22 Programming WebLogic Enterprise JavaBeans

enable-call-by-reference
enable-call-by-reference

Function

By default, EJB methods called from within the same EAR pass arguments by
reference. This increases the performance of method invocation because parameters
are not copied.

If you set enable-call-by-reference to False, parameters to the EJB methods
are copied (pass-by-value) in accordance with the EJB 1.1 specification. Pass by value
is always necessary when the EJB is called remotely (not from within the same
application).

Example

The following example enables pass-by-value for EJB methods:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

...

<enable-call-by-reference>false</enable-call-by-reference>

</weblogic-enterprise-bean>

Range of values: true | false

Default value: true

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor

ejb-reference-description
Programming WebLogic Enterprise JavaBeans 10-23

10 weblogic-ejb-jar.xml Document Type Definitions
entity-cache

Function

The entity-cache element defines the following options used to cache entity EJB
instances within WebLogic Server:

� max-beans-in-cache

� idle-timeout-seconds

� read-timeout-seconds

� concurrency-strategy

See “EJB Life Cycle” on page 4-2 for a general discussion of the caching services
available in WebLogic Server.

Example

<entity-descriptor>

<entity-cache>

<max-beans-in-cache>...</max-beans-in-cache>

<idle-timeout-seconds>...</idle-timeout-seconds>

<read-timeout-seconds>...<read-timeout-seconds>

<concurrency-strategy>...</concurrency-strategy>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The entity-cache stanza is optional, and is valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor
10-24 Programming WebLogic Enterprise JavaBeans

entity-clustering
</entity-cache>

<lifecycle>...</lifecycle>

<persistence>...</persistence>

<entity-clustering>...</entity-clustering>

</entity-descriptor>

entity-clustering

Function

The entity-clustering element uses the following options to specify how an entity
bean will be replicated in a WebLogic cluster:

� home-is-clusterable

� home-load-algorithm

� home call-router-class-name

Example

The following excerpt shows the structure of a entity-clustering stanza:

<entity-clustering>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. Valid only for entity EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor
Programming WebLogic Enterprise JavaBeans 10-25

10 weblogic-ejb-jar.xml Document Type Definitions
<home-is-clusterable>true</home-is-clusterable>

<home-load-algorithm>random</home-load-algorithm>

<home-call-router-class-name>beanRouter</home-call-router-class-n
ame>

</entity-clustering>

entity-descriptor

Function

The entity-descriptor element specifies the following deployment parameters
that are applicable to an entity bean:

� pool

� entity-cache

� lifecycle

� persistence

� entity-clustering

Example

The following example shows the structure of the entity-descriptor stanza:

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: One entity-descriptor stanza is required for each entity EJB in the .jar.

Parent elements: weblogic-enterprise-bean
10-26 Programming WebLogic Enterprise JavaBeans

finders-load-bean
<entity-descriptor>

<entity-cache>...</entity-cache>

<lifecycle>...</lifecycle>

<persistence>...</persistence>

<entity-clustering>...</entity-clustering>

</entity-descriptor>

finders-load-bean

Function

The finders-load-bean element determines whether WebLogic Server loads the
EJB into the cache after a call to a finder method returns a reference to the bean. If you
set this element to true, WebLogic Server immediately loads the bean into the cache
if a reference to a bean is returned by the finder. If you set this element to false,
WebLogic Server does not load automatically load the bean into the cache until the
first method invocation; this behavior is consistent with the EJB 1.1 specification.

Range of values: true | false

Default value: true

Requirements: Optional element. Valid only for CMP entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
Programming WebLogic Enterprise JavaBeans 10-27

10 weblogic-ejb-jar.xml Document Type Definitions
Example

The following entry specifies that EJBs are loaded into the WebLogic Server cache
automatically when a finder method returns a reference to the bean:

<entity-descriptor>

<persistence>

<finders-load-bean>true</finders-load-bean>

</persistence>

</entity-descriptor>

home-call-router-class-name

Function

home-call-router-class-name specifies the name of a custom class to use for
routing bean method calls. This class must implement
weblogic.rmi.cluster.CallRouter(). If specified, an instance of this class is

Range of values: Valid router class name

Default value: null

Requirements: Optional element. Valid only for entity EJBs, stateful session EJBs, and stateless session
EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-clustering

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering
10-28 Programming WebLogic Enterprise JavaBeans

home-call-router-class-name
called before each method call. The router class has the opportunity to choose a server
to route to based on the method parameters. The class returns either a server name or
null, which indicates that the current load algorithm should select the server.

Example

See “entity-clustering” on page 10-25 and “stateful-session-clustering” on page 10-71.
Programming WebLogic Enterprise JavaBeans 10-29

10 weblogic-ejb-jar.xml Document Type Definitions
home-is-clusterable

Function

Use home-is-clusterable to specify whether the home interface of an entity,
stateless session, or stateful session bean is clustered.

When home-is-clusterable is true for an EJB deployed to a cluster, each server
instance binds the bean’s home interface to its cluster JNDI tree under the same name.
When a client requests the bean’s home from the cluster, the server instance that does
the look-up returns a EJBHome stub that has a reference to the home on each server.

Range of values: true | false

Default value: true

Requirements: Optional element. Valid for entity EJBs, stateless session EJBs, and stateful session EJBs
in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-clustering

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering

and

weblogic-enterprise-bean
stateless-session-descriptor

stateless-clustering

Note: This element is valid for stateless session EJBs as of WebLogic Server 6.1
SP03.
10-30 Programming WebLogic Enterprise JavaBeans

home-load-algorithm
When the client issues a create() or find() call, the stub routes selects a server from
the replica list in accordance with the load balancing algorithm, and routes the call to
the home interface on that server. The selected home interface receives the call, and
creates a bean instance on that server instance and executes the call, creating an
instance of the bean.

Example

See “entity-clustering” on page 10-25.

home-load-algorithm

Function

home-load-algorithm specifies the algorithm to use for load balancing between
replicas of the EJB home. If this property is not defined, WebLogic Server uses the
algorithm specified by the server property,
weblogic.cluster.defaultLoadAlgorithm.

You can define home-load-algorithm as one of the following values:

Range of values: round-robin | random | weight-based

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Requirements: Optional element. Valid only for entity EJBs and stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-clustering

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering
Programming WebLogic Enterprise JavaBeans 10-31

10 weblogic-ejb-jar.xml Document Type Definitions
� round-robin: Load balancing is performed in a sequential fashion among the
servers hosting the bean.

� random: Replicas of the EJB home are deployed randomly among the servers
hosting the bean.

� weight-based: Replicas of the EJB home are deployed on host servers
according to the servers’ current workload.

Example

See “entity-clustering” on page 10-25 and “stateful-session-clustering” on page 10-71.
10-32 Programming WebLogic Enterprise JavaBeans

idle-timeout-seconds
idle-timeout-seconds

Function

idle-timeout-seconds defines the maximum length of time a stateful session EJB
should remain in cache. After this time has elapsed, WebLogic Server removes the
bean instance if the number of beans in cache approaches the limit of
max-beans-in-cache. The removed bean instances are passivated. See “EJB Life
Cycle” on page 4-2 for more information.

Note: Although idle-timeout-seconds appears in the entity-cache stanza,
WebLogic Server 6. 1 does not uses its value in managing the lifecycle of
entity EJBs— idle-timeout-seconds has no effect on when entity beans
are removed from cache.

Example

The following entry indicates that the stateful session EJB, AccountBean, should
become eligible for removal if max-beans-in-cache is reached and the bean has
been in cache for 20 minutes:

<weblogic-enterprise-bean>

Range of values: 1 to maxSeconds, where maxSeconds is the maximum value of an int.

Default value: 600

Requirements: Optional element

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache

and

weblogic-enterprise-bean,
stateful-session-descriptor,

stateful-session-cache
Programming WebLogic Enterprise JavaBeans 10-33

10 weblogic-ejb-jar.xml Document Type Definitions
<ejb-name>AccountBean</ejb-name>

<stateful-session-descriptor>

<stateful_session-cache>

<max-beans-in-cache>200</max-beans-in-cache>

<idle-timeout-seconds>1200</idle-timeout-seconds>

</stateful-session-cache>

</stateful-session-descriptor>

</weblogic-enterprise-bean>

initial-beans-in-free-pool

Function

If you specify a value for initial-beans-in-free-pool, you set the initial size of
the pool. WebLogic Server populates the free pool with the specified number of bean
instances for every bean class at startup. Populating the free pool in this way improves
initial response time for the EJB, because initial requests for the bean can be satisfied
without generating a new instance.

Range of values: 0 to maxBeans

Default value: 0

Requirements: Optional element. Valid for stateless session, entity, and message-driven EJBs.

Parent elements: weblogic-enterprise-bean,

stateless-session-descriptor, message-bean-descriptor,
entity-descriptor

pool
10-34 Programming WebLogic Enterprise JavaBeans

initial-context-factory
Example

See “pool” on page 10-57.

initial-context-factory

Function

The initial-context-factory element specifies the initial contextFactory that the
container will use to create its connection factories. If initial-context-factory is not
specified, the default will be weblogic.jndi.WLInitialContextFactory.

Example

The following example specifies the initial-context-factory element.

<message-driven-descriptor>

<initial-context-factory>weblogic.jndi.WLInitialContextFactory
</initial-context-factory>

</message-driven-descriptor>

Range of values: true | false

Default value: weblogic.jndi.WLInitialContextFactory

Requirements: Requires the server to throw a RemoteException when a stateful session bean
instance is currently handling a method call and another (concurrent) method call arrives
on the server.

Parent elements: weblogic-enterprise-bean

message-driven-descriptor
Programming WebLogic Enterprise JavaBeans 10-35

10 weblogic-ejb-jar.xml Document Type Definitions
invalidation-target

Function

The invalidation-target element specifies a Read-Only entity EJB that should be
invalidated when this container-managed persistence entity EJB has been modified.

Example

The following entry specifies that the EJB named StockReaderEJB should be
invalidated when the EJB has been modified.

<invalidation-target>

<ejb-name>StockReaderEJB</ejb-name>

</invalidation-target>

Range of values:

Default value:

Requirements: The target ejb-name must be a Read-Only entity EJB and this element can only be
specified for an EJB 2.0 container-managed persistence entity EJB.

Parent elements: weblogic-enterprise-bean

entity-descriptor
10-36 Programming WebLogic Enterprise JavaBeans

is-modified-method-name
is-modified-method-name

Function

is-modified-method-name specifies a method that WebLogic Server calls when the
EJB is stored. The specified method must return a boolean value. If no method is
specified, WebLogic Server always assumes that the EJB has been modified and
always saves it.

Providing a method and setting it as appropriate can improve performance for EJB
1.1-compliant beans, and for beans that use bean-managed persistence. However, any
errors in the method’s return value can cause data inconsistency problems. See“Using
is-modified-method-name to Limit Calls to ejbStore() (EJB 1.1 Only)” on page 4-14
for more information.

Note: isModified() is no longer required for 2.0 CMP entity EJBs based on the
EJB 2.0 specification However, it still applies to BMP and 1.1 CMP EJBs.
When you deploy EJB 2.0 entity beans with container-managed persistence,
WebLogic Server automatically detects which EJB fields have been modified,
and writes only those fields to the underlying datastore.

Example

The following entry specifies that the EJB method named semidivine will notify
WebLogic Server when the EJB has been modified:

Range of values: Valid entity EJB method name

Default value: None

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
Programming WebLogic Enterprise JavaBeans 10-37

10 weblogic-ejb-jar.xml Document Type Definitions
<entity-descriptor>

<persistence>

<is-modified-method-name>semidivine</is-modified-method-name>

</persistence>

</entity-descriptor>

isolation-level

Function

isolation-level specifies the isolation level for all of the EJB’s database
operations. The following are possible values for isolation-level:

� TRANSACTION_READ_UNCOMMITTED: The transaction can view uncommitted
updates from other transactions.

� TRANSACTION_READ_COMMITTED: The transaction can view only committed
updates from other transactions.

� TRANSACTION_REPEATABLE_READ: Once the transaction reads a subset of data,
repeated reads of the same data return the same values, even if other transactions
have subsequently modified the data.

Range of values: Serializable | ReadCommitted | ReadUncommitted |
RepeatableRead

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-ejb-jar
transaction-isolation
10-38 Programming WebLogic Enterprise JavaBeans

jms-client-id
� TRANSACTION_SERIALIZABLE: Simultaneously executing this transaction
multiple times has the same effect as executing the transaction multiple times in
a serial fashion.

Refer to your database documentation for more information on the implications and
support for different isolation levels.

Example

See “transaction-isolation” on page 10-80.

jms-client-id

Function

The jms-client-id element specifies the client ID associated with the
message-driven bean. This ID is necessary for durable subscriptions to JMS topics.

The JMS specification allows JMS consumers to specify an associated ID. A
message-driven bean with a durable subscription needs an associated client ID. If you
use a separate connection factory, you can set the client ID on the connection factory.
In this case, the message-driven bean uses this client ID.

If the associated client ID does not have a client ID or if you are using the default
connection factory, the message-driven bean uses the jms-client-id value as its
client ID.

Range of values: N/A

Default value: ejb name for the ejb

Requirements: Necessary for durable subscriptions to JMS topics.

Parent elements: weblogic-enterprise-bean
Programming WebLogic Enterprise JavaBeans 10-39

10 weblogic-ejb-jar.xml Document Type Definitions
Example

The following example specifies the use of the jms-client-id element.

<jms-client-id>MyClientID</jms-client-id>

jms-polling-interval-seconds

Function

The jms-polling-interval-seconds element determines the number of seconds
between each attempt by WebLogic Server to reconnect to the JMS destination.

Each message-driven bean listens on an associated JMS destination. If the JMS
destination is located on another WebLogic Server instance or a foreign JMS provider,
the JMS destination may become unreachable. In this case, the EJB container
automatically attempts to reconnect to the JMS server. Once the JMS server is running
again the message-driven bean can again receive JMS messages.

Refer to your database documentation for more information on the implications and
support for different isolation levels.

Range of values: none

Default value: 10 seconds

Requirements: .none

Parent elements: weblogic-enterprise-bean
10-40 Programming WebLogic Enterprise JavaBeans

jndi-name
Example

The following example specifies the use of the jms-polling-interval-seconds
element.

<jms-polling-interval-seconds>5</jms-polling-interval-seconds>

jndi-name

Function

jndi-name specifies the JNDI name of an actual EJB, resource, or reference available
in WebLogic Server.

Range of values: Valid JNDI name

Default value: n/a

Requirements: Required in resource-description and ejb-reference-description.

Parent elements: weblogic-enterprise-bean

and

weblogic-enterprise-bean
reference-descriptor

resource-description

and

weblogic-enterprise-bean
reference-descriptor

ejb-reference-description
Programming WebLogic Enterprise JavaBeans 10-41

10 weblogic-ejb-jar.xml Document Type Definitions
Example

See “resource-description” on page 10-65 and “ejb-reference-description” on page
10-20.

local-jndi-name

Function

The local-jndi-name element specifies a jndi-name for a bean’s local home. If a
bean has both a remote and a local home, then it must have two JNDI names; one for
each home.

Example

The following example shows the specifies the local-jndi-name element.

<local-jndi-name>weblogic.jndi.WLInitialContext
</local-jndi-name>

Range of values: Valid JNDI name

Default value: n/a

Requirements: Required if the bean has a local home.

Parent elements: weblogic-enterprise-bean
10-42 Programming WebLogic Enterprise JavaBeans

lifecycle
lifecycle

Function

The lifecycle element defines options that affect the lifecycle of stateful and entity
EJB instances within WebLogic Server. Currently, the lifecycle element includes
only one element: passivation-strategy.

Example

The following example shows the specifies the lifecycle element.

<entity-descriptor>

<lifecycle>

<passivation-strategy>...</passivation-strategy>

</lifecycle>

</entity-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The lifecycle stanza is optional.

Parent elements: weblogic-enterprise-bean,
entity-descriptor

and

weblogic-enterprise-bean

stateful-session-descriptor
Programming WebLogic Enterprise JavaBeans 10-43

10 weblogic-ejb-jar.xml Document Type Definitions
max-beans-in-cache

Function

The max-beans-in-cache element specifies the maximum number of objects of this
class that are allowed in memory. When max-bean-in-cache is reached, WebLogic
Server passivates some EJBs that have not been recently used by a client.
max-beans-in-cache also affects when EJBs are removed from the WebLogic
Server cache, as described in“Locking Services for Entity EJBs” on page 4-37.

Example

The following entry enables WebLogic Server to cache a maximum of 200 instances
of the AccountBean class:

<weblogic-enterprise-bean>

<ejb-name>AccountBean</ejb-name>

<entity-descriptor>

<entity-cache>

Range of values: 1 to maxBeans

Default value: 1000

Requirements: Optional element

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache

and

weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-cache
10-44 Programming WebLogic Enterprise JavaBeans

max-beans-in-free-pool
<max-beans-in-cache>200</max-beans-in-cache>

</entity-cache>

</entity-descriptor>

</weblogic-enterprise-bean>

max-beans-in-free-pool

Function

WebLogic Server maintains a free pool of EJBs for every stateless session,
message-driven, and entity bean class max-beans-in-free-pool limits the size of
the free pool. For more information, see “EJB Life Cycle” on page 4-2.

Example

See “pool” on page 10-57.

Range of values: 0 to maxBeans

Default value: 1000

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor,

 pool

weblogic-enterprise-bean,
message-driven-descriptor,

 pool

weblogic-enterprise-bean,
entity-descriptor,

 pool
Programming WebLogic Enterprise JavaBeans 10-45

10 weblogic-ejb-jar.xml Document Type Definitions
message-driven-descriptor

Function

The message-driven-descriptor element associates a message-driven bean with a
JMS destination in WebLogic Server. This element specifies the following
deployment parameters:

� pool

� destination-jndi-name

� initial-context-factory

� provider-url

� connection-factory-jndi-name

Example

The following example shows the structure of the message-driven-descriptor
stanza:

<message-driven-descriptor>

<destination-jndi-name>...</destination-jndi-name>

</message-driven-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements:

Parent elements: weblogic-enterprise-bean
10-46 Programming WebLogic Enterprise JavaBeans

method
method

Function

The method element defines a method or set of methods for an enterprise bean’s home
or remote interface.

Example

The method stanza can contain the elements shown here:

<method>

<description>...</description>

<ejb-name>...</ejb-name>

<method-intf>...</method-intf>

<method-name>...</method-name>

<method-params>...</method-params>

</method>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. You can specify more than one method stanza to configure multiple
EJB methods.

Parent elements: weblogic-ejb-jar
transaction-isolation
Programming WebLogic Enterprise JavaBeans 10-47

10 weblogic-ejb-jar.xml Document Type Definitions
method-intf

Function

method-intf specifies the EJB interface to which WebLogic Server applies isolation
level properties. Use this element to differentiate between methods having the same
signature in the EJB’s home, remote, and local interfaces.

Example

See “method” on page 10-47.

Range of values: Home | Remote | Local | Localhome

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-ejb-jar
transaction-isolation

method
10-48 Programming WebLogic Enterprise JavaBeans

method-name
method-name

Function

method-name specifies the name of an individual EJB method to which WebLogic
Server applies isolation level properties. Use the asterisk (*) to specify all methods in
the EJB’s home and remote interfaces.

If you specify a method-name, the method must be available in the specified
ejb-name.

Example

See “method” on page 10-47.

Range of values: Name of an EJB defined in ejb-jar.xml | *

Default value: n/a

Requirements: Required element in method stanza.

Parent elements: weblogic-ejb-jar
transaction-isolation

method
Programming WebLogic Enterprise JavaBeans 10-49

10 weblogic-ejb-jar.xml Document Type Definitions
method-param

Function

The method-param element specifies the fully qualified Java type name of a method
parameter.

Example

See “method-params” on page 10-51.

Range of values: Fully qualified Java type of a method parameter

Default value: n/a

Requirements: Required element in method-params.

Parent elements: weblogic-ejb-jar
transaction-isolation

method
method-params
10-50 Programming WebLogic Enterprise JavaBeans

method-params
method-params

Function

The method-params stanza contains one or more elements that define the Java type
name of each of the method’s parameters.

Example

The method-params stanza contains one or more method-param elements, as shown
here:

<method-params>

<method-param>java.lang.String</method-param>

...

</method-params>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional stanza.

Parent elements: weblogic-ejb-jar
transaction-isolation

method
Programming WebLogic Enterprise JavaBeans 10-51

10 weblogic-ejb-jar.xml Document Type Definitions
passivation-strategy

Function

The passivation-strategy element determines whether or not WebLogic Server
maintains the intermediate state of entity EJBs in its cache. See “Locking Services for
Entity EJBs” on page 4-37 for more information.

Example

The following entry reverts to WebLogic Server locking and caching behavior:

<entity-descriptor>

<lifecycle>

<passivation-strategy>default</passivation-strategy>

</lifecycle>

</entity-descriptor>

Range of values: default | transaction

Default value: default

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

lifecycle
10-52 Programming WebLogic Enterprise JavaBeans

persistence
persistence

Function

The persistence element defines the following options that determine the
persistence type, transaction commit behavior, and ejbLoad() and ejbStore()
behavior for entity EJBs in WebLogic Server:

� is-modified-method-name

� delay-updates-until-end-of-tx

� finders-load-bean

� persistence-type

� db-is-shared

� persistence-use

Example

The following example specifies the persistence element.

<entity-descriptor>
<persistence>

<is-modified-method-name>...
</is-modified-method-name>
<delay-updates-until-end-of-tx>...
</delay-updates-until-end-of-tx>
<finders-load-bean>...</finders-load-bean>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor
Programming WebLogic Enterprise JavaBeans 10-53

10 weblogic-ejb-jar.xml Document Type Definitions
<persistence-type>...</persistence-type>
<db-is-shared>...</db-is-shared>
<persistence-use>...</persistence-use>

</persistence>
</entity-descriptor>

persistence-type

Function

Defines a persistence service that the entity EJB can use. You can define multiple
persistence-type stanzas in weblogic-ejb-jar.xml for testing your EJB with
multiple persistence services. At deployment, the bean uses the persistence service
defined in persistence-use.

persistence-type includes these elements:

� type-identifier

� type-version

� type-storage

Example

<persistence-type>
<type-identifier>WebLogic_CMP_RDBMS

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
10-54 Programming WebLogic Enterprise JavaBeans

persistence-use
</type-identifier>
<type-version>5.1.0</type-version>
<type-storage>META-INF\weblogic-cmp-rdbms-jar.xml
</type-storage>

</persistence-type>

persistence-use

Function

Defines the persistence service used for the entity bean.

Example

<persistence-use>
<type-identifier>WebLogic_CMP_RDBMS</type-identifier>
<type-version>5.1.0</type-version>

</persistence-use>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean
entity-descriptor

persistence
Programming WebLogic Enterprise JavaBeans 10-55

10 weblogic-ejb-jar.xml Document Type Definitions
persistent-store-dir

Function

The persistent-store-dir element specifies a file system directory where
WebLogic Server stores the state of passivated stateful session bean instances.

Example

See “stateful-session-descriptor” on page 10-72.

Range of values: Fully qualified filesystem path

Default value: n/a

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
stateful-session-descriptor
10-56 Programming WebLogic Enterprise JavaBeans

pool
pool

Function

The pool element configures the behavior of the WebLogic Server free pool for EJBs.
You can configure:

� max-beans-in-free-pool

� initial-beans-in-free-pool

Example

<stateless-session-descriptor>
pool>
<max-beans-in-free-pool>500</max-beans-in-free-pool>
<initial-beans-in-free-pool>250</initial-beans-in-free-pool>

</pool>
</stateless-session-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
stateless-session-descriptor, message-bean-descriptor,

entity-descriptor
Programming WebLogic Enterprise JavaBeans 10-57

10 weblogic-ejb-jar.xml Document Type Definitions
principal-name

Function

principal-name specifies the name of an actual WebLogic Server principal to apply
to the specified role-name.

Example

See “security-role-assignment” on page 10-69.

Range of values: valid WebLogic Server principal name

Default value: n/a

Requirements: At least one principal-name is required in the security-role-assignment stanza.
You may define more than one principal-name for each role-name.

Parent elements: weblogic-enterprise-bean
security-role-assignment
10-58 Programming WebLogic Enterprise JavaBeans

provider-url
provider-url

Function

The provider-url element specifies the URL provider to be used by the
InitialContext. Typically, this is the host:port and used in conjunction with
initial-context-factory and connection-factory-jndi-name.

Example

The following example specifies the provider-url element.

<message-driven-descriptor>
<provider-url>WeblogicURL:Port</provider-url>
</message-driven-descriptor>

Range of values: valid name

Default value: n/a

Requirements: Used in conjunction with initial-context-factory and
connection-factory-jndi-name.

Parent elements: weblogic-enterprise-bean
message-driven-descriptor
Programming WebLogic Enterprise JavaBeans 10-59

10 weblogic-ejb-jar.xml Document Type Definitions
read-timeout-seconds

Function

The read-timeout-seconds element specifies the number of seconds between
ejbLoad() calls on a Read-Only entity bean. A setting of 0 causes WebLogic Server
to call ejbLoad() only when the bean is brought into the cache.

Example

The following entry causes WebLogic Server to call ejbLoad() for instances of the
AccountBean class only when the instance is first brought into the cache:

<weblogic-enterprise-bean>
<ejb-name>AccountBean</ejb-name>
<entity-descriptor>

<entity-cache>
<read-timeout-seconds>0</read-timeout-
seconds>

</entity-cache>
</entity-descriptor>

</weblogic-enterprise-bean>

Range of values: 0 to maxSeconds, where maxSeconds is the maximum value of an int.

Default value: 600

Requirements: Optional element. Valid only for entity EJBs.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

entity-cache
10-60 Programming WebLogic Enterprise JavaBeans

reference-descriptor
reference-descriptor

Function

The reference-descriptor element maps references in the ejb-jar.xml file to
the JNDI names of actual resource factories and EJBs available in WebLogic Server.

Example

The reference-descriptor stanza contains one or more additional stanzas to define
resource factory references and EJB references. The following shows the organization
of these elements:

<reference-descriptor>

<resource-description>

...

</resource-description>

<ejb-reference-description>

...

</ejb-reference-description>

</reference-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
Programming WebLogic Enterprise JavaBeans 10-61

10 weblogic-ejb-jar.xml Document Type Definitions
relationship-description

This element is no longer supported in WebLogic Server.

replication-type

Function

The replication-type element determines whether WebLogic Server replicates the
state of stateful session EJBs across WebLogic Server instances in a cluster. If you
select InMemory, the state of the EJB is replicated. If you select None, the state is not
replicated.

See “In-Memory Replication for Stateful Session EJBs” on page 4-25 for more
information.

Example

See “stateful-session-clustering” on page 10-71.

Range of values: InMemory | None

Default value: None

Requirements: Optional element. Valid only for stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean
stateful-session-descriptor

stateful-session-clustering
10-62 Programming WebLogic Enterprise JavaBeans

res-env-ref-name
res-env-ref-name

Function

The res-env-ref-name element specifies the name of a resource environment
reference.

Example

See “resource-description” on page 10-65.

Range of values: A valid resource environment reference name from the ejb-jar.xml file

Default value: n/a

Requirements: n/a

Parent elements: weblogic-enterprise-bean
reference-descriptor

resource-env-description
Programming WebLogic Enterprise JavaBeans 10-63

10 weblogic-ejb-jar.xml Document Type Definitions
res-ref-name

Function

The res-ref-name element specifies the name of a resourcefactory reference.
This is the reference that the EJB provider places within the ejb-jar.xml deployment
file.

Example

See “resource-description” on page 10-65.

Range of values: A valid resource reference name from the ejb-jar.xml file

Default value: n/a

Requirements: Required element if the EJB specifies resource references in ejb-jar.xml

Parent elements: weblogic-enterprise-bean
reference-descriptor

resource-description
10-64 Programming WebLogic Enterprise JavaBeans

resource-description
resource-description

Function

The resource-description element maps a resource reference defined in
ejb-jar.xml to the JNDI name of an actual resource available in WebLogic Server.

Example

The resource-description stanza can contain additional elements as shown here:

<reference-descriptor>

<resource-description>

<res-ref-name>. . .</res-ref-name>

<jndi-name>...</jndi-name>

</resource-description>

<ejb-reference-description>

<ejb-ref-name>. . .</ejb-ref-name>

<jndi-name>. . .</jndi-name>

</ejb-reference-description>

</reference-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor
Programming WebLogic Enterprise JavaBeans 10-65

10 weblogic-ejb-jar.xml Document Type Definitions
resource-env-description

Function

The resource-env-description element maps a resource environment reference
defined in ejb-jar.xml to the JNDI name of an actual resource available in
WebLogic Server.

Example

The resource-env-description stanza can contain additional elements as shown
here:

<reference-descriptor>

<resource-env-description>

<res-env-ref-name>. . .</res-env-ref-name>

<jndi-name>...</jndi-name>

<reference-env-description>

</reference-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
reference-descriptor
10-66 Programming WebLogic Enterprise JavaBeans

role-name
role-name

Function

The role-name element identifies an application role name that the EJB provider
placed in the ejb-jar.xml deployment file. Subsequent principal-name elements
in the stanza map WebLogic Server principals to the specified role-name.

Example

See “security-role-assignment” on page 10-69.

run-as-identity-principal

Note: This element has been deprecated. It is here for backward compatibility only.

Range of values: An EJB role name defined in ejb-jar.xml

Default value: n/a

Requirements: Required element in security-role-assignment.

Parent elements: weblogic-enterprise-bean
security-role-assignment

Range of values: Principal that will be used as the identity as defined in ejb-jar.xml

Default value: n/a

Requirements: Required element in security-role-assignment.
Programming WebLogic Enterprise JavaBeans 10-67

10 weblogic-ejb-jar.xml Document Type Definitions
Function

The run-as-identity-principal element specifies the principal to be used as the
identity for beans that have a security-identity.run-as-specified-identity
set in the ejb-jar.xml.

The principal named in this element must be one of the principals mapped to the
run-as-specified--identity role.

Example

<weblogic-ejb-jar>
<weblogic-enterprise-bean>

 <run-as-identity-principal>..</run-as-identity-principal>
</weblogic-enterprise-bean>

</weblogic-ejb-jar>

Parent elements: weblogic-enterprise-bean
10-68 Programming WebLogic Enterprise JavaBeans

security-role-assignment
security-role-assignment

Function

The security-role-assignment stanza maps application roles in the ejb-jar.xml
file to the names of security principals available in WebLogic Server.

Example

The security-role-assignment stanza can contain one or more of the following
elements:

<security-role-assignment>

<role-name>PayrollAdmin</role-name>

<principal-name>Tanya</principal-name>

<principal-name>system</principal-name>

...

</security-role-assignment>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Required element if ejb-jar.xml defines application roles.

Parent elements: N/A
Programming WebLogic Enterprise JavaBeans 10-69

10 weblogic-ejb-jar.xml Document Type Definitions
stateful-session-cache

Function

The stateful-session-cache element defines the following options used to cache
stateful session EJB instances within WebLogic Server.

� max-beans-in-cache

� idle-timeout-seconds

� cache-type

See“EJB Life Cycle” on page 4-2 for a general discussion of the caching services
available in WebLogic Server.

Example

The following example shows how to specify the stateful-session-cache element

<stateful-session-cache>

<max-beans-in-cache>...</max-beans-in-cache>

<idle-timeout-seconds>...</idle-timeout-seconds>

<cache-type>...<cache-type>

</stateful-session-cache>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: The stateful-session-cache stanza is optional, and is valid only for stateful
session EJBs.

Parent elements: weblogic-enterprise-bean,
stateful-session-descriptor
10-70 Programming WebLogic Enterprise JavaBeans

stateful-session-clustering
stateful-session-clustering

Function

The stateful-session-clustering stanza element specifies the following options
that determine how WebLogic Server replicates stateful session EJB instances in a
cluster:

� home-is-clusterable

� home-load-algorithm

� home-call-router-class-name

� replication-type

Example

The following excerpt shows the structure of a entity-clustering stanza:

<stateful-session-clustering>

<home-is-clusterable>true</home-is-clusterable>

<home-load-algorithm>random</home-load-algorithm>

<home-call-router-class-name>beanRouter</home-call-router-class-n
ame>

<replication-type>InMemory</replication-type>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. Valid only for stateful session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateful-session-descriptor
Programming WebLogic Enterprise JavaBeans 10-71

10 weblogic-ejb-jar.xml Document Type Definitions
</stateful-session-clustering>

stateful-session-descriptor

Function

The stateful-session-descriptor element specifies the following deployment
parameters that are applicable for stateful session EJBs in WebLogic Server:

� stateful-session-cache

� lifecycle

� persistent-store-dir

� stateful-session-clustering

� allow-concurrent-calls

Example

The following example shows the structure of the stateful-session-descriptor
stanza:

<stateful-session-descriptor>

<stateful-session-cache>...</stateful-session-cache>

<lifecycle>...</lifecycle>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: One stateful-session-descriptor stanza is required for each stateful session
EJB in the .jar.

Parent elements: weblogic-enterprise-bean
10-72 Programming WebLogic Enterprise JavaBeans

stateless-bean-call-router-class-name
<persistence>...</persistence>

<allow-concurrent-calls>...</allow-concurrent-calls>

<persistent-store-dir>/weblogic/myserver</persistent-store-dir>

<stateful-session-clustering>...</stateful-session-clustering>

</stateful-session-descriptor>

stateless-bean-call-router-class-name

Function

The stateless-bean-call-router-class-name element specifies the name of a
custom class to use for routing bean method calls. This class must implement
weblogic.rmi.cluster.CallRouter(). If specified, an instance of this class is
called before each method call. The router class has the opportunity to choose a server
to route to based on the method parameters. The class returns either a server name or
null, which indicates that the current load algorithm should select the server.

Example

See “stateless-clustering” on page 10-77.

Range of values: Valid router class name

Default value: n/a

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering
Programming WebLogic Enterprise JavaBeans 10-73

10 weblogic-ejb-jar.xml Document Type Definitions
stateless-bean-is-clusterable

Function

Use stateless-bean-is-clusterable to specify whether a stateless session
bean’s EJBObject interface is clustered. Clustered EJBObjects support load
balancing and failover.

If stateless-bean-is-clusterable is true, when a home interface of a clustered
stateless session bean creates a bean instance, it returns a EJBObject stub to the client
that lists all of the servers in the cluster. Given the stateless nature of the bean, any
instance can service any client request

Example

See “stateless-clustering” on page 10-77.

Range of values: true | false

Default value: true

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering
10-74 Programming WebLogic Enterprise JavaBeans

stateless-bean-load-algorithm
stateless-bean-load-algorithm

Function

stateless-bean-load-algorithm specifies the algorithm to use for load balancing
between replicas of the EJB home. If this property is not defined, WebLogic Server
uses the algorithm specified by the server property,
weblogic.cluster.defaultLoadAlgorithm.

You can define stateless-bean-load-algorithm as one of the following values:

� round-robin: Load balancing is performed in a sequential fashion among the
servers hosting the bean.

� random: Replicas of the EJB home are deployed randomly among the servers
hosting the bean.

� weight-based: Replicas of the EJB home are deployed on host servers
according to the servers’ current workload.

Example

See “stateless-clustering” on page 10-77.

Range of values: round-robin | random | weight-based

Default value: Value of weblogic.cluster.defaultLoadAlgorithm

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering
Programming WebLogic Enterprise JavaBeans 10-75

10 weblogic-ejb-jar.xml Document Type Definitions
stateless-bean-methods-are-idempotent

Function

You can set this element to either true or false. Set
stateless-bean-methods-are-idempotent to “true” only if the bean is written
such that repeated calls to the same method with the same arguments has exactly the
same effect as a single call. This allows the failover handler to retry a failed call
without knowing whether the call actually completed on the failed server. Setting this
property to true makes it possible for the bean stub to recover automatically from any
failure as long as another server hosting the bean can be reached.

Example

See “stateless-clustering” on page 10-77.

Range of values: true | false

Default value: false

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor

stateless-clustering
10-76 Programming WebLogic Enterprise JavaBeans

stateless-clustering
stateless-clustering

Function

The stateless-clustering element specifies the following options that determine
how WebLogic Server replicates stateless session EJB instances in a cluster:

� home-is-clusterable

� stateless-bean-is-clusterable

� stateless-bean-load-algorithm

� stateless-bean-call-router-class-name

� stateless-bean-methods-are-idempotent

Example

The following excerpt shows the structure of a stateless-clustering stanza:

<stateless-clustering>

<stateless-bean-is-clusterable>true</stateless-bean-is-clusterabl
e>

<stateless-bean-load-algorithm>random</stateless-bean-load-algori
thm>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element. Valid only for stateless session EJBs in a cluster.

Parent elements: weblogic-enterprise-bean,
stateless-session-descriptor
Programming WebLogic Enterprise JavaBeans 10-77

10 weblogic-ejb-jar.xml Document Type Definitions
<stateless-bean-call-router-class-name>beanRouter</stateless-bean
-call-router-class-name>

<stateless-bean-methods-are-idempotent>true</stateless-bean-metho
ds-are-idempotent>

</stateless-clustering>

stateless-session-descriptor

Function

The stateless-session-descriptor element defines deployment parameters,
such as caching, clustering, and persistence for stateless session EJBs in WebLogic
Server.

Example

The following example shows the structure of the stateless-session-descriptor
stanza:

<stateless-session-descriptor>

<pool>...</pool>

<stateless-clustering>...</stateless-clustering>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: One stateless-session-descriptor element is required for each stateless
session EJB in the .jar.

Parent elements: weblogic-enterprise-bean
10-78 Programming WebLogic Enterprise JavaBeans

transaction-descriptor
</stateless-session-descriptor>

transaction-descriptor

Function

The transaction-descriptor element specifies options that define transaction
behavior in WebLogic Server. Currently, this stanza includes only one element:
trans-timeout-seconds.

Example

The following example shows the structure of the transaction-descriptor stanza:

<transaction-descriptor>

<trans-timeout-seconds>20</trans-timeout-seconds>

<transaction-descriptor>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-enterprise-bean
Programming WebLogic Enterprise JavaBeans 10-79

10 weblogic-ejb-jar.xml Document Type Definitions
transaction-isolation

Function

The transaction-isolation element defines method-level transaction isolation
settings for an EJB.

Example

The transaction-isolation stanza can contain the elements shown here:

<transaction-isolation>

<isolation-level>Serializable</isolation-level>

<method>

<description>...</description>

<ejb-name>...</ejb-name>

<method-intf>...</method-intf>

<method-name>...</method-name>

<method-params>...</method-params>

</method>

</transaction-isolation>

Range of values: n/a (XML stanza)

Default value: n/a (XML stanza)

Requirements: Optional element.

Parent elements: weblogic-ejb-jar
10-80 Programming WebLogic Enterprise JavaBeans

trans-timeout-seconds
trans-timeout-seconds

Function

The trans-timeout-seconds element specifies the maximum duration for an EJB’s
container-initiated transactions. If a transaction lasts longer than
trans-timeout-seconds, WebLogic Server rolls back the transaction.

Example

See “transaction-descriptor” on page 10-79.

Range of values: 0 to max

Default value: 30

Requirements: Optional element. Valid for any type of EJB.

Parent elements: weblogic-enterprise-bean,
transaction-descriptor
Programming WebLogic Enterprise JavaBeans 10-81

10 weblogic-ejb-jar.xml Document Type Definitions
type-identifier

Function

The type-identifier element contains text that identifies an entity EJB persistence
type. WebLogic Server RDBMS-based persistence uses the identifier,
WebLogic_CMP_RDBMS. If you use a different persistence vendor, consult the vendor’s
documentation for information on the correct type-identifier.

Example

See “persistence-type” on page 10-54 for an example that shows the complete
persistence-type definition for WebLogic Server RDBMS-based persistence.

Range of values: Valid string.

WebLogic_CMP_RDBMS specifies WebLogic Server RDBMS-based persistence.

Default value: n/a

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
persistence-type

and

weblogic-enterprise-bean,
entity-descriptor,

persistence
persistence-use
10-82 Programming WebLogic Enterprise JavaBeans

type-storage
type-storage

Function

The type-storage element defines the full path of the file that stores data for this
persistence type. The path must specify the file’s location relative to the top level of
the EJB’s .jar deployment file or deployment directory.

WebLogic Server RDBMS-based persistence generally uses an XML file named
weblogic-cmp-rdbms-jar.xml to store persistence data for a bean. This file is
stored in the META-INF subdirectory of the .jar file.

Example

See “persistence-type” on page 10-54 for an example that shows the complete
persistence-type definition for WebLogic Server RDBMS-based persistence.

Range of values: Valid string

Default value: n/a

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence

persistence-type
Programming WebLogic Enterprise JavaBeans 10-83

10 weblogic-ejb-jar.xml Document Type Definitions
type-version

Function

The type-version element identifies the version of the specified persistence type.

Note: If you use WebLogic Server RDBMS-based persistence, the specified version
must exactly match the RDBMS persistence version for the WebLogic Server
release. Specifying an incorrect version results in the error:

weblogic.ejb.persistence.PersistenceSetupException: Error
initializing the CMP Persistence Type for your bean: No installed
Persistence Type matches the signature of (identifier
‘Weblogic_CMP_RDBMS’, version ‘version_number’).

Example

See persistence-type for an example that shows the complete persistence-type
definition for WebLogic Server RDBMS-based persistence.

Allowable values: 5.1.0 for WebLogic persistence, EJB 1.1

6.0 for WebLogic persistence, EJB 2.0.

Default value: n/a

Requirements: Required only for entity EJBs that use container-managed persistence services.

Parent elements: weblogic-enterprise-bean,
entity-descriptor,

persistence
persistence-type

and

weblogic-enterprise-bean,
entity-descriptor,

persistence
persistence-use
10-84 Programming WebLogic Enterprise JavaBeans

weblogic-ejb-jar
weblogic-ejb-jar

Function

weblogic-ejb-jar is the root element of the weblogic component of the EJB
deployment descriptor.

weblogic-enterprise-bean

Function

The weblogic-enterprise-bean element contains the deployment information for
a bean that is available in WebLogic Server.

Range of values: N/A

Default value: N/A

Requirements: N/A

Parent elements: N/A

Range of values:

Default value:

Requirements:

Parent elements: weblogic-ejb-jar
Programming WebLogic Enterprise JavaBeans 10-85

10 weblogic-ejb-jar.xml Document Type Definitions
5.1 weblogic-ejb-jar.xml Deployment
Descriptor File Structure

The WebLogic Server 5.1 weblogic-ejb-jar.xml file defines the EJB document
type definitions (DTD)s you use with EJB 1.1 beans. These deployment descriptor
elements are WebLogic-specific. The top level elements in the WebLogic Server 5.1
weblogic-ejb-jar.xml are as follows:

� description

� weblogic-version

� weblogic-enterprise-bean

� ejb-name

� caching-descriptor

� persistence-descriptor

� clustering-descriptor

� transaction-descriptor

� reference-descriptor

� jndi-name

� transaction-isolation

� security-role-assignment

5.1 weblogic-ejb-jar.xml Deployment
Descriptor Elements

The following sections describe WebLogic-Server 5.1 weblogic-ejb-jar.xml
deployment descriptor elements.
10-86 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
caching-descriptor

The caching-descriptor stanza affects the number of EJBs in the WebLogic Server
cache as well as the length of time before EJBs are passivated or pooled. The entire
stanza, as well as each of its elements, is optional. WebLogic Server uses default
values where no elements are defined.

The following is a sample caching-descriptor stanza that shows the caching
elements described in this section:

<caching-descriptor>

<max-beans-in-free-pool>500</max-beans-in-free-pool>

<initial-beans-in-free-pool>50</initial-beans-in-free-pool>

<max-beans-in-cache>1000</max-beans-in-cache>

<idle-timeout-seconds>20</idle-timeout-seconds>

<cache-strategy>Read-Write</cache-strategy>

<read-timeout-seconds>0</read-timeout-seconds>

</caching-descriptor>

max-beans-in-free-pool

Note: This element is valid only for stateless session EJBs.

WebLogic Server maintains a free pool of EJBs for every bean class. This optional
element defines the size of the pool. By default, max-beans-in-free-pool has no
limit; the maximum number of beans in the free pool is limited only by the available
memory. See “Stateful Session EJB Creation” on page 4-8 in “The WebLogic Server
EJB Container and Supported Services” on page 4-1 for more information.

initial-beans-in-free-pool

Note: This element is valid only for stateless session EJBs.
Programming WebLogic Enterprise JavaBeans 10-87

10 weblogic-ejb-jar.xml Document Type Definitions
If you specify a value for initial-bean-in-free-pool, WebLogic Server
populates the free pool with the specified number of bean instances at startup.
Populating the free pool in this way improves initial response time for the EJB, since
initial requests for the bean can be satisfied without generating a new instance.

initial-bean-in-free-pool defaults to 0 if the element is not defined.

max-beans-in-cache

Note: This element is valid only for stateful session EJBs and entity EJBs.

This element specifies the maximum number of objects of this class that are allowed
in memory. When max-bean-in-cache is reached, WebLogic Server passivates
some EJBs that have not been recently used by a client. max-beans-in-cache also
affects when EJBs are removed from the WebLogic Server cache, as described in
“Stateful Session EJB Life Cycle” on page 4-7.

The default value of max-beans-in-cache is 100.

idle-timeout-seconds

idle-timeout-seconds defines the maximum length of time a stateful EJB should
remain in the cache. After this time has elapsed, WebLogic Server may remove the
bean instance if the number of beans in cache approaches the limit of
max-beans-in-cache. See “EJB Life Cycle” on page 4-2 for more information.

idle-timeout-seconds defaults to 600 if you do not define the element.

cache-strategy

The cache-strategy element can be one of the following:

� Read-Write

� Read-Only

The default value is Read-Write. See “Setting Entity EJBs to Read-Only” on page
4-16 for more information.
10-88 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
read-timeout-seconds

The read-timeout-seconds element specifies the number of seconds between
ejbLoad() calls on a Read-Only entity bean. By default, read-timeout-seconds
is set to 600 seconds. If you set this value to 0, WebLogic Server calls ejbLoad only
when the bean is brought into the cache.

persistence-descriptor

The persistence-descriptor stanza specifies persistence options for entity EJBs.
The following shows all elements contained in the persistence-descriptor
stanza:

<persistence-descriptor>

<is-modified-method-name>. . .</is-modified-method-name>

<delay-updates-until-end-of-tx>. .
.</delay-updates-until-end-of-tx>

<persistence-type>

<type-identifier>. . .</type-identifier>

<type-version>. . .</type-version>

<type-storage>. . .</type-storage>

</persistence-type>

<db-is-shared>. . .</db-is-shared>

<stateful-session-persistent-store-dir>

. . .

</stateful-session-persistent-store-dir>

<persistence-use>. . .</persistence-use>

</persistence-descriptor>
Programming WebLogic Enterprise JavaBeans 10-89

10 weblogic-ejb-jar.xml Document Type Definitions
is-modified-method-name

is-modified-method-name specifies a method that WebLogic Server calls when the
EJB is stored. The specified method must return a boolean value. If no method is
specified, WebLogic Server always assumes that the EJB has been modified and
always saves it.

Providing a method and setting it as appropriate can improve performance. However,
any errors in the method’s return value can cause data inconsistency problems. See
“Using is-modified-method-name to Limit Calls to ejbStore() (EJB 1.1 Only)” on page
4-14 for more information.

delay-updates-until-end-of-tx

Set this property to true (the default), to update the persistent store of all beans in a
transaction at the completion of the transaction. This generally improves performance
by avoiding unnecessary updates. However, it does not preserve the ordering of
database updates within a database transaction.

If your datastore uses an isolation level of TRANSACTION_READ_UNCOMMITTED, you
may want to allow other database users to view the intermediate results of in-progress
transactions. In this case, set delay-updates-until-end-of-tx to false to update
the bean's persistent store at the conclusion of each method invoke. See “ejbLoad() and
ejbStore() Behavior for Entity EJBs” on page 4-12 for more information.

Note: Setting delay-updates-until-end-of-tx to false does not cause database
updates to be “committed” to the database after each method invoke; they are
only sent to the database. Updates are committed or rolled back in the database
only at the conclusion of the transaction.

persistence-type

A persistence-type defines a persistence service that can be used by an EJB. You
can define multiple persistence-type entries in weblogic-ejb-jar.xml for
testing with multiple persistence services. Only the persistence type defined in
“persistence-use” on page 10-92 is used during deployment.

persistence-type includes several elements that define the properties of a service:
10-90 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
� type-identifier contains text that identifies the specified persistence type.
For example, WebLogic Server RDBMS persistence uses the identifier,
WebLogic_CMP_RDBMS.

� type-version identifies the version of the specified persistence type.

Note: The specified version must exactly match the RDBMS persistence version for
the WebLogic Server release. Specifying an incorrect version results in the
error:

weblogic.ejb.persistence.PersistenceSetupException: Error
initializing the CMP Persistence Type for your bean: No installed
Persistence Type matches the signature of (identifier
‘Weblogic_CMP_RDBMS’, version ‘version_number’).

� type-storage defines the full path of the file that stores data for this
persistence type. The path must specify the file’s location relative to the top level
of the EJB’s .jar deployment file or deployment directory.

WebLogic Server RDBMS-based persistence generally uses an XML file named
weblogic-cmp-rdbms-jar.xml to store persistence data for a bean. This file is
stored in the META-INF subdirectory of the .jar file.

The following shows an example persistence-type stanza with values appropriate
for WebLogic Server RDBMS persistence:

<persistence-type>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>5.1.0</type-version>

<type-storage>META-INF\weblogic-cmp-rdbms-jar.xml</type-stora
ge>

</persistence-type>

db-is-shared

The db-is-shared element applies only to entity beans. When set to true (the
default value), WebLogic Server assumes that EJB data could be modified between
transactions and reloads data at the beginning of each transaction. When set to false,
WebLogic Server assumes that it has exclusive access to the EJB data in the persistent
store. See “Using db-is-shared to Limit Calls to ejbLoad()” on page 4-12 for more
information.
Programming WebLogic Enterprise JavaBeans 10-91

10 weblogic-ejb-jar.xml Document Type Definitions
stateful-session-persistent-store-dir

stateful-session-persistent-store-dir specifies the file system directory
where WebLogic Server stores the state of passivated stateful session bean instances.

persistence-use

The persistence-use property is similar to persistence-type, but it defines the
persistence service actually used during deployment. persistence-use uses the
type-identifier and type-version elements defined in a persistence-type to
identify the service.

For example, to actually deploy an EJB using the WebLogic Server RDBMS-based
persistence service defined in persistence-type, the persistence-use stanza
would resemble:

<persistence-use>

<type-identifier>WebLogic_CMP_RDBMS</type-identifier>

<type-version>5.1.0</type-version>

</persistence-use>

clustering-descriptor

The clustering-descriptor stanza defines the replication properties and behavior
for EJBs deployed in a WebLogic Server cluster. The clustering-descriptor
stanza and each of its elements are optional, and are not applicable to single-server
systems.

The following shows all elements contained in the clustering-descriptor stanza:

<clustering-descriptor>
<home-is-clusterable>...</home-is-clusterable>
<home-load-algorithm>...</home-load-algorithm>
<home-call-router-class-name>.. .</home-call-router-class-name>
<stateless-bean-is-clusterable>...</stateless-bean-is-
clusterable>
<stateless-bean-load-algorithm>...
</stateless-bean-load-algorithm>
10-92 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
<stateless-bean-call-router-class-name>. .
.</stateless-bean-call-router-class-name>

<stateless-bean-methods-are-idempotent>. .
.</stateless-bean-methods-are-idempotent>

</clustering-descriptor>

home-is-clusterable

You can set this element to either true or false. When home-is-clusterable is
true, the EJB can be deployed from multiple WebLogic Servers in a cluster. Calls to
the home stub are load-balanced between the servers on which this bean is deployed,
and if a server hosting the bean is unreachable, the call automatically fails over to
another server hosting the bean.

home-load-algorithm

home-load-algorithm specifies the algorithm to use for load balancing between
replicas of the EJB home. If this property is not defined, WebLogic Server uses the
algorithm specified by the server property,
weblogic.cluster.defaultLoadAlgorithm.

You can define home-load-algorithm as one of the following values:

� round-robin: Load balancing is performed in a sequential fashion among the
servers hosting the bean.

� random: Replicas of the EJB home are deployed randomly among the servers
hosting the bean.

� weight-based: Replicas of the EJB home are deployed on host servers
according to the servers’ current workload.

home-call-router-class-name

home-call-router-class-name specifies the custom class to use for routing bean
method calls. This class must implement weblogic.rmi.cluster.CallRouter. If
specified, an instance of this class is called before each method call. The router class
has the opportunity to choose a server to route to based on the method parameters. The
class returns either a server name or null, which indicates that the current load
algorithm should select the server.
Programming WebLogic Enterprise JavaBeans 10-93

10 weblogic-ejb-jar.xml Document Type Definitions
stateless-bean-is-clusterable

Use stateless-bean-is-clusterable to specify whether a stateless session
bean’s EJBObject interface is clustered. Clustered EJBObjects support load
balancing and failover.

If stateless-bean-is-clusterable is true, when a home interface of a clustered
stateless session bean creates a bean instance, it returns a EJBObject stub to the client
that lists all of the servers in the cluster. Given the stateless nature of the bean, any
instance can service any client request.

stateless-bean-load-algorithm

Use stateless-bean-is-clusterable to specify whether a stateless session
bean’s EJBObject interface is clustered. Clustered EJBObjects support load
balancing and failover.

If stateless-bean-is-clusterable is true, when a home interface of a clustered
stateless session bean creates a bean instance, it returns a EJBObject stub to the client
that lists all of the servers in the cluster. Given the stateless nature of the bean, any
instance can service any client request.

stateless-bean-call-router-class-name

This property is similar to home-call-router-class-name, but it is applicable only
to stateless session EJBs.

stateless-bean-methods-are-idempotent

You can set this element to either true or false. Set
stateless-bean-methods-are-idempotent to true only if the bean is written
such that repeated calls to the same method with the same arguments has exactly the
same effect as a single call. This allows the failover handler to retry a failed call
without knowing whether the call actually completed on the failed server. Setting this
property to true makes it possible for the bean stub to automatically recover from any
failure as long as another server hosting the bean can be reached.

Note: This property is applicable only to stateless session EJBs.
10-94 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
transaction-descriptor

The transaction-descriptor stanza contains elements that define transaction
behavior in WebLogic Server. Currently, this stanza includes only one element:

<transaction-descriptor>

<trans-timeout-seconds>20</trans-timeout-seconds>

<transaction-descriptor>

trans-timeout-seconds

The trans-timeout-seconds element specifies the maximum duration for the EJB’s
container-initiated transactions. If a transaction lasts longer than
trans-timeout-seconds, WebLogic Server rolls back the transaction.

If you specify no value for trans-timeout-seconds, container-initiated transactions
timeout after five minutes, by default.

reference-descriptor

The reference-descriptor stanza maps references in the ejb-jar.xml file to the
JNDI names of actual resource factories and EJBs available in WebLogic Server.

The reference-descriptor stanza contains one or more additional stanzas to define
resource factory references and EJB references. The following shows the organization
of these elements:

<reference-descriptor>

<resource-description>

<res-ref-name>. . .</res-ref-name>

<jndi-name>. . .</jndi-name>

</resource-description>

<ejb-reference-description>

<ejb-ref-name>. . .</ejb-ref-name>
Programming WebLogic Enterprise JavaBeans 10-95

10 weblogic-ejb-jar.xml Document Type Definitions
<jndi-name>. . .</jndi-name>

</ejb-reference-description>

</reference-descriptor>

resource-description

The following elements define an individual resource-description:

� res-ref-name specifies a resource reference name. This is the reference that
the EJB provider places within the ejb-jar.xml deployment file.

� jndi-name specifies the JNDI name of an actual resource factory available in
WebLogic Server.

ejb-reference-description

The following elements define an individual ejb-reference-description:

� ejb-ref-name specifies an EJB reference name. This is the reference that the
EJB provider places within the ejb-jar.xml deployment file.

� jndi-name specifies the JNDI name of an actual EJB available in WebLogic
Server.

enable-call-by-reference

By default, EJB methods called from within the same EAR pass arguments by
reference. This increases the performance of method invocation since parameters are
not copied.

If you set enable-call-by-reference to false, parameters to EJB methods are
copied (pass by value) in accordance with the EJB 1.1 specification. Pass by value is
always necessary when the EJB is called remotely (not from within the same
application).
10-96 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
jndi-name

The jndi-name element specifies a jndi-name for a bean, resource, or reference.

transaction-isolation

The transaction-isolation stanza specifies the transaction isolation level for EJB
methods. The stanza consists of one or more isolation-level elements that apply
to a range of EJB methods. For example:

<transaction-isolation>

<isolation-level>Serializable</isolation-level>

<method>

<description>...</description>

<ejb-name>...</ejb-name>

<method-intf>...</method-intf>

<method-name>...</method-name>

<method-params>...</method-params>

</method>

</transaction-isolation>

The following sections describe each element in transaction-isolation.

isolation-level

isolation-level defines a valid transaction isolation level to apply to specific EJB
methods. The following are possible values for isolation-level:

� TRANSACTION_READ_UNCOMMITTED: The transaction can view uncommitted
updates from other transactions.

� TRANSACTION_READ_COMMITTED: The transaction can view only committed
updates from other transactions.
Programming WebLogic Enterprise JavaBeans 10-97

10 weblogic-ejb-jar.xml Document Type Definitions
� TRANSACTION_REPEATABLE_READ: Once the transaction reads a subset of data,
repeated reads of the same data return the same values, even if other transactions
have subsequently modified the data.

� TRANSACTION_SERIALIZABLE: Simultaneously executing this transaction
multiple times has the same effect as executing the transaction multiple times in
a serial fashion.

Refer to your database documentation for more information on the implications and
support for different isolation levels.

method

The method stanza defines the EJB methods to which an isolation level applies.
method defines a range of methods using the following elements:

� description is an optional element that describes the method.

� ejb-name identifies the EJB to which WebLogic Server applies isolation level
properties.

� method-intf is an optional element that specifies the EJB interface to which
WebLogic Server applies isolation level properties, if the method has the same
signature in multiple interfaces. The value of this element must be “Home”,
“Remote”, “Local”, or “Localhome”. If you do not specify method-intf, you
can apply an isolation to methods in both interfaces.

� method-name specifies either the name of an EJB method or an asterisk (*) to
designate all EJB methods.

� method-params is an optional stanza that lists the Java types of each of the
method’s parameters. The type of each parameter must be listed in order, using
individual method-param elements within the method-params stanza.

For example, the following method stanza designates all methods in the
“AccountBean” EJB:

<method>

<ejb-name>AccountBean</ejb-name>

<method-name>*</method-name>

</method>
10-98 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
The following stanza designates all methods in the remote interface of
“AccountBean:”

<method>

<ejb-name>AccountBean</ejb-name>

<method-intf>Remote</method-intf>

<method-name>*</method-name>

</method>

security-role-assignment

The security-role-assignment stanza maps application roles in the ejb-jar.xml
file to the names of security principals available in WebLogic Server.

security-role-assignment can contain one or more pairs of the following
elements:

� role-name is the application role name that the EJB provider placed in the
ejb-jar.xml deployment file.

� principal-name specifies the name of an actual WebLogic Server principal.
Programming WebLogic Enterprise JavaBeans 10-99

10 weblogic-ejb-jar.xml Document Type Definitions
10-100 Programming WebLogic Enterprise JavaBeans

CHAPTER
11 weblogic-cmp-rdbms-
jar.xml Document Type
Definitions

The chapter describes both the EJB 5.1 and EJB 6.0 deployment descriptor elements
found in the weblogic-cmp-rdbms-jar.xml file, the weblogic-specific XML
document type definitions (DTD) file. Use these definitions to create the
WebLogic-specific weblogic-cmp-rdbms-jar.xml file that is part of your EJB
deployment.

The following sections provide a complete reference of both versions of the
WebLogic-specific XML including the DOCTYPE header information. Use these
deployment descriptor elements to specify container-managed-persistence (CMP).

� EJB Deployment Descriptors

� DOCTYPE Header Information

� 6.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure

� 6.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements

� 5.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure

� 5.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
Programming WebLogic Enterprise JavaBeans 11-1

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
EJB Deployment Descriptors

The EJB deployment descriptors provide structural and application assembly
information for an enterprise bean. You specify this information by specifying values
for the deployment descriptors in three EJB XML DTD files. These files are:

� ejb-jar.xml

� weblogic-ejb-jar.xml

� weblogic-cmp-rdbms-jar.xml

You package these three XML files with the EJB and other classes into a deployable
EJB component, usually a JAR file, called ejb.jar.

The ejb-jar.xml file is based on the deployment descriptors found in Sun
Microsystems’s ejb.jar.xml file. The other two XML files are weblogic-specific
files that are based on the deployment descriptors found in weblogic-ejb-jar.xml
and weblogic-cmp-rdbms-jar.xml.

DOCTYPE Header Information

When editing or creating XML deployment files, it is critical to include the correct
DOCTYPE header for each deployment file. In particular, using an incorrect PUBLIC
element within the DOCTYPE header can result in parser errors that may be difficult to
diagnose. The correct text for the PUBLIC element for each XML deployment file is as
follows.

The correct text for the PUBLIC element for the WebLogic Server-specific
weblogic-cmp-rdbms-jar.xml files are as follows.

XML File PUBLIC Element String

weblogic-cmp-rdbms
-jar.xml

‘-// BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB RDBMS20
Persistence//EN‘
‘http://www.bea.com/servers/wls600/dtd/weblogic-rdbms
20-persistence-600.dtd‘
11-2 Programming WebLogic Enterprise JavaBeans

DOCTYPE Header Information
The correct text for the PUBLIC elements for the Sun Microsystem-specific ejb-jar
files are as follows.

For example, the entire DOCTYPE header for a weblogic-cmp-rdbms-jar.xml file is
as follows:

<!DOCTYPE weblogic-cmp-rdbms-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 6.0.0 EJB RDBMS20
Persistence//EN'
'http://www.bea.com/servers/wls600/dtd/weblogic-rdbms20-persisten

ce-600.dtd '>

XML files with incorrect header information may yield error messages similar to the
following, when used with a utility that parses the XML (such as ejbc):

SAXException: This document may not have the identifier ‘identifier_name’

identifier_name generally includes the invalid text from the PUBLIC element.

Document Type Definitions (DTDs) for Validation

The contents and arrangement of elements in your XML files must conform to the
Document Type Definition (DTD) for each file you use. WebLogic Server utilities
ignore the DTDs embedded within the DOCTYPE header of XML deployment files, and

weblogicmp-rdbms
-jar.xml

‘-//BEA Systems, Inc.//DTD WebLogic 5.1.0 EJB RDBMS
Persistence//EN’

http://www.bea.com/servers/wls510/dtd/weblogic-rdbms-
persistence.dtd

XML File PUBLIC Element String

XML File PUBLIC Element String

ejb-jar.xml ‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
2.0//EN’ ‘

ejb-jar.xml ‘-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans
1.1//EN’

‘http://www.java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd’
Programming WebLogic Enterprise JavaBeans 11-3

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
instead use the DTD locations that were installed along with the server. However, the
DOCTYPE header information must include a valid URL syntax in order to avoid
parser errors.

Note: Most browsers do not display the contents of files having the .dtd extension.
To view the DTD file contents in your browser, save the links as text files and
view them with a text editor.

weblogic-cmp-rdbms-jar.xml

The following links provide the public DTD locations for the
weblogic-cmp-rdbms-jar.xml deployment files used with WebLogic Server:

� For weblogic-cmp-rdbms-jar.xml 6.0 DTD:

http://www.bea.com/servers/wls600/dtd/weblogic-rdbms20-

persistence-600.dtd contains the DTD that defines container-managed
persistence properties for entity EJBs. This DTD is changed from WebLogic
Server Version 5.1, and you must still include a
weblogic-cmp-rdbms-jar.xml file for entity EJBs using WebLogic Server
RDBMS-based persistence.

Use the existing DTD file located at:

http://www.bea.com/servers/wls600/dtd/weblogic-rdbms-
persistence-600.dtd

� For weblogic-cmp-rdbms-jar.xml 5.1 DTD:

weblogic-rdbms-persistence.dtd contains the DTD that defines
container-managed persistence properties for entity EJBs. This DTD is used to
create the weblogic-rdbms-persistence.xml file for using WebLogic Server
persistence services. Third-party persistence vendors may also create XML
deployment files that conform to this DTD. This file is located at
http://www.bea.com/servers/wls510/dtd/weblogic-rdbms-persistence.dtd

ejb-jar.xml

The following links provide the public DTD locations for the ejb-jar.xml
deployment files used with WebLogic Server:

� For ejb-jar.xml 2.0 DTD:
11-4 Programming WebLogic Enterprise JavaBeans

6.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure
http://www.java.sun.com/dtd/ejb-jar_2_0.dtd contains the DTD for
the standard ejb-jar.xml deployment file, required for all EJBs. This DTD is
maintained as part of the JavaSoft EJB 2.0 specification; refer to the JavaSoft
specification for information about the elements used in ejb-jar.dtd.

� For ejb-jar.xml 1.1 DTD:

ejb-jar.dtd contains the DTD for the standard ejb-jar.xml deployment
file, required for all EJBs. This DTD is maintained as part of the JavaSoft EJB
1.1 specification; refer to the JavaSoft specification for information about the
elements used in ejb-jar.dtd.

Note: Refer to the appropriate JavaSoft EJB specification for a description of the
ejb-jar.xml deployment descriptors.

6.0 weblogic-cmp-rdbms-jar.xml
Deployment Descriptor File Structure

weblogic-cmp-rdbms-jar.xml defines deployment descriptors for a entity EJBs
that uses WebLogic Server RDBMS-based persistence services. The EJB 2.0 container
uses a version of weblogic-cmp-rdbms-jar.xml that is different from the one
shipped with WebLogic Server Version 5.1. See Locking Services for Entity EJBs for
more information.

You can continue to use the earlier weblogic-cmp-rdbms-jar.xml DTD for EJB 1.1
beans that you will deploy on the WebLogic Server Version 6.0. However, if you want
to use any of the new CMP 2.0 features, you must use the new DTD described below.

The top-level element of the WebLogic Server 6.0 weblogic-cmp-rdbms-jar.xml
consists of a weblogic-rdbms-jar stanza:

description

weblogic-version

weblogic-rdbms-jar

weblogic-rdbms-bean
ejb-name
Programming WebLogic Enterprise JavaBeans 11-5

http://java.sun.com/products/ejb/docs.html
http://java.sun.com/products/ejb/docs.html

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
data-source-name
table-name
field-name
field-map
field-group
weblogic-query
delay-database-insert-until
automatic-key-generation

weblogic-rdbms-relation
relation-name

table-name
weblogic-relationship-role

6.0 weblogic-cmp-rdbms-jar.xml
Deployment Descriptor Elements

� “automatic-key-generation” on page 11-8

� “cmp-field” on page 11-9

� “cmr-field” on page 11-10

� “column-map” on page 11-11

� “create-default-dbms-tables” on page 11-12

� “data-source-name” on page 11-13

� “db-cascade-delete” on page 11-14

� “dbms-column” on page 11-15

� “dbms-column-type” on page 11-16

� “delay-database-insert-until” on page 11-17

� “ejb-name” on page 11-18

� “field-group” on page 11-20

� “field-map” on page 11-21
11-6 Programming WebLogic Enterprise JavaBeans

6.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
� “foreign-key-column” on page 11-22

� “generator-name” on page 11-23

� “generator-type” on page 11-24

� “group-name” on page 11-25

� “include-updates” on page 11-26

� “key-cache-size” on page 11-27

� “key-column” on page 11-28

� “max-elements” on page 11-29

� “method-name” on page 11-30

� “method-param” on page 11-31

� “method-params” on page 11-32

� “query-method” on page 11-33

� “relation-name” on page 11-34

� “relationship-role-name” on page 11-35

� “sql-select-distinct” on page 11-36

� “table-name” on page 11-37

� “weblogic-ql” on page 11-38

� “weblogic-query” on page 11-39

� “weblogic-rdbms-relation” on page 11-40

� “weblogic-relationship-role” on page 11-41
Programming WebLogic Enterprise JavaBeans 11-7

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
automatic-key-generation

Function

The automatic-key-generation element specifies the use of the Sequence/Key
Generation feature.

Example

The XML stanza can contain the elements shown here:

<automatic-key-generation>
<generator-type>ORACLE</generator-type>
<generator-name>test_sequence</generator-name>
<key-cache-size>10</key-cache-size>

</automatic-key-generation>

<automatic-key-generation>
<generator-type>SQL-SERVER</generator-type>

</automatic-key-generation>

<automatic-key-generation>
<generator-type>NAMED_SEQUENCE_TABLE</generator-type>
<generator-name>MY_SEQUENCE_TABLE_NAME</generator-name>

Range of values: n/a

Default value: n/a

Requirements: Optional.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
11-8 Programming WebLogic Enterprise JavaBeans

cmp-field
<key-cache-size>100</key-cache-size>
</automatic-key-generation>

cmp-field

Function

This name specifies the mapped field in the bean instance which should be populated
with information from the database.

Example

See “field-map” on page 11-21.

Range of values: Valid name

Default value: n/a

Requirements: Field is case sensitive and must match the name of the field in the bean and must also
have a cmp-field entry in the ejb-jar.xml.

Parent elements: weblogic-rdbms-bean
field-map

weblogic-rdbms-relation
field-group

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-9

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
cmr-field

Function

The cmr-field element specifies the name of a cmr-field.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<field-group>employee</field-group>

<cmp-field>employee stock purchases</cmp-field>

<cmr-field>stock options</cmr-field>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: The field referenced in cmr-field must have a matching cmr-field entry in the
ejb-jar.xml.

Parent elements: weblogic-rdbms-relation

field-group

Deployment file: weblogic-cmp-rdbms-jar.xml
11-10 Programming WebLogic Enterprise JavaBeans

column-map
column-map

Function

This element represents the mapping of a foreign key column in one table in the
database to a corresponding primary key. The two columns may or may not be in the
same table. The tables to which the column belong are implicit from the context in
which the column-map element appears in the deployment descriptor.

Example

<column-map
<foreign-key-column>account-id</foreign-key-column>
<key-column>id</key-column>

</column-map>

Range of values: n/a.

Default value: n/a

Requirements: The key-column element is not specified, if the foreign-key-column refers to a
remote bean.

Parent elements: weblogic-rdbms-bean
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-11

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
create-default-dbms-tables

Function

The create-default-dbms-table element turns on or off a feature that
automatically creates a default table based on the descriptions in the deployment files
and the bean class. When set to False, this feature is turned off and table will not
automatically be generated. When set to True, this feature is turned on and the table is
automatically created. If TABLE CREATION fails, a Table Not Found error is thrown
and the table must be created by hand.

Example

The following example specifies the create-default-dbms-tables element.

<create-default-dbms-tables>True</create-default-dbms-tables>

Range of values: True | False.

Default value: False

Requirements: Use this element only for convenience during the development and prototyping phases.
This is because the Table Schema in the DBMS CREATE statement used will be the
container’s best approximation of the definition. A production environment most likely,
will require a more precise schema definition.

Parent elements: weblogic-rdbms-jar

Deployment file: weblogic-cmp-rdbms-jar.xml
11-12 Programming WebLogic Enterprise JavaBeans

data-source-name
data-source-name

Function

The data-source-name that specifies the JDBC data source name to be used for all
database connectivity for this bean.

Example

See “table-name” on page 11-37.

Range of values: Valid name of the data source used for all data base connectivity for this bean.

Default value: n/a

Requirements: Must be defined as a standard WebLogic Server JDBC data source for database
connectivity. See Programming WebLogic JDBC for more information.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-13

http://e-docs.bea.com/wls/docs61/jdbc/index.html

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
db-cascade-delete

Function

The db-cascade-delete element specifies whether the database cascade feature is
turned on. If this element is not specified, WebLogic Server assumes that database
cascade delete is not specified.

Example

See “Cascade Delete Method” on page 5-16.

Range of values:

Default value: n/a

Requirements: Only supported for Oracle database. Can only be specified for one-to-one or
one-to-many relationships.

Parent elements: weblogic-rdbms-bean
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
11-14 Programming WebLogic Enterprise JavaBeans

dbms-column
dbms-column

Function

The name of the database column to which the field should be mapped.

Example

See “field-map” on page 11-21.

Range of values: Valid name

Default value: n/a

Requirements: dbms-column is case maintaining, although not all database are case sensitive.

Parent elements: weblogic-rdbms-bean
field-map

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-15

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
dbms-column-type

Function

The dbms-column-type element maps the current field to a Blob or Clob in an Oracle
database or a LongString in a Sybase database. This element can be one of the
following:

� OracleBlob

� OracleCLob

� LongString

Example

<field-map>
<cmp-field>photo</cmp-field>
<dbms-column>PICTURE</dbms-column>
<dbms_column-type>OracleBlob</dbms-column-type>

</field-map>

Range of values: Valid name

Default value: n/a

Requirements: Available for use with Oracle database only.

Parent elements: weblogic-rdbms-bean
field-map

Deployment file: weblogic-cmp-rdbms-jar.xml
11-16 Programming WebLogic Enterprise JavaBeans

delay-database-insert-until
delay-database-insert-until

Function

The delay-database-insert-until element specifies the precise time when a new
bean that uses RDBMS CMP is inserted into the database.

It is advisable to delay the database insert until after the ejbPostCreate method
modifies the persistent fields of the bean. This can yield better performance by
avoiding an unnecessary store operation.

For maximum flexibility, you should avoid creating related beans in your
ejbPostCreate method. This may make delaying the database insert impossible if
database constraints prevent related beans from referring to a bean that has not yet been
created.

Example

The following example specifies the delay-database-insert-until element.

Range of values:

Default value: ejbPostCreate

Requirements: Database insert is delayed until after ejbPostCreate when a cmr-field is mapped
to a foreign-key column that does not allow null values. In this case, the
cmr-field must be set to a non-null value in ejbPostCreate before the bean is
inserted into the database.

The cmr-fields may not be set during ejbCreate, before the primary key of the
bean is known.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-17

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
<delay-database-insert-until>ejbPostCreate</delay-database-insert
-until>

ejb-name

Function

The name that specifies an EJB as defined in the ejb-cmp-rdbms.xml. This name must
match the ejb-name of a cmp entity bean contained in the ejb-jar.xml.

Example

See “table-name” on page 11-37.

enable-tuned-updates

Note: This deployment descriptor applies to EJB 1.1 only.

Range of values: Valid name of an EJB.

Default value: n/a

Requirements: Must match the ejb-name of the cmp entity bean defined in the ejb-jar.xml.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml

Range of values: True/False
11-18 Programming WebLogic Enterprise JavaBeans

enable-tuned-updates
Function

The enable-tuned-updates element specifies that when ejbStore is called that the
EJB container automatically determine which container-managed fields have been
modified and then writes only those fields back to the database.

Example

The following examples shows how to specify the enable-tuned-updates element.

<enable-tuned-updates>True</enable-tuned-updates>

Default value: True

Requirements:

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-19

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
field-group

Function

The field-group element represents a subset of the cmp and cmr-fields of a bean.
Related fields in a bean can be put into groups that are faulted into memory together
as a unit. A group can be associated with a finder or relationship, so that when a bean
is loaded as the result of executing a finder or following a relationship, only the fields
specified in the group are loaded.

A field may belong to multiple groups. In this case, the getXXX method for the field
faults in the first group that contains the field.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-bean>
<ejb-name>XXXBean</ejb-name>
<field-group>

<group-name>medical-data</group-name>
<cmp-field>insurance</cmp-field>
<cmr-field>doctors</cmr-fields>

</field-group>
</weblogic-rdbms-bean>

Range of values: Valid name

Default value: A special group named default is used for finders and relationships that have no group
specified.

Requirements: The default group contains all of a bean’s cmp-fields, but none of its cmr-fields.

Parent elements: weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
11-20 Programming WebLogic Enterprise JavaBeans

field-map
field-map

Function

The name of the mapped field for a particular column in a database that corresponds
to a cmp field in the bean instance.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>
<weblogic-rdbms-bean>

<field-map>
<cmp-field>accountId</cmp-field>

<dbms-column>id</dbms-column>
</field-map>

<field-map>
<cmp-field>balance</cmp-field>

<dbms-column>bal</dbms-column>
</field-map>

 <field-map>
<cmp-field>accountType</cmp-field>

<dbms-column>type</dbms-column>
</field-map>

Range of values: Valid name

Default value: n/a

Requirements: Field mapped to the column in the database must correspond to a cmp field in the bean.

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-21

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
 </weblogic-rdbms-bean>
</weblogic-rdbms-jar>

foreign-key-column

Function

The foreign-key-column element represents a column of a foreign key in the
database.

Example

See “column-map” on page 11-11.

Range of values: Valid name

Default value: n/a

Requirements: Must correspond to a column of a foreign key.

Parent elements: weblogic-rdbms-bean
column-map

Deployment file: weblogic-cmp-rdbms-jar.xml
11-22 Programming WebLogic Enterprise JavaBeans

generator-name
generator-name

Function

The generator-name element is used to specify the name of the generator.

For example;

� If the generator-type element is ORACLE, then the generator-name element
would be the name of the ORACLE_SEQUENCE to be used.

� If the generator-type element is NAMED_SEQUENCE_TABLE, then the
generator-name element would be the name of the SEQUENCE_TABLE to be
used.

Example

See “automatic-key-generation” on page 11-8.

Range of values: n/a

Default value: n/a

Requirements: Optional.

Parent elements: weblogic-rdbms-bean
automatic-key-generation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-23

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
generator-type

Function

The generator-type element specifies the key generation method to use. The options
include:

� ORACLE

� SQL_SERVER

� NAMED_SEQUENCE_TABLE

Example

See “automatic-key-generation” on page 11-8.

Range of values: n/a

Default value: n/a

Requirements: Optional

Parent elements: weblogic-rdbms-bean
automatic-key-generation

Deployment file: weblogic-cmp-rdbms-jar.xml
11-24 Programming WebLogic Enterprise JavaBeans

group-name
group-name

Function

The group-name element specifies the name of a field group.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<field-group>employee</field-group>

<cmp-field>employee stock purchases</cmp-field>

<cmr-field>stock options</cmr-field>

<group-name>financial data</group-name>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-relation

field-group

weblogic-rdbms-bean

finder

finder-query

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-25

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
include-updates

Function

The include-updates element specifies that updates made during the current transaction
must be reflected in the result of a query. If this element is set to True, the container
will flush all changes made by the current transaction to disk before executing the
query.

Example

The XML stanza can contain the elements shown here:

<include-updates>False</include_updates>

Range of values: True | False

Default value: False

Requirements: The default value, which is False, provides the best performance.

Parent elements: weblogic-rdbms-bean

weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
11-26 Programming WebLogic Enterprise JavaBeans

key-cache-size
key-cache-size

Function

The key-cache-size element specifies the optional size of the primary key cache
available in the automatic primary key generation feature.

Example

See “automatic-key-generation” on page 11-8.

Range of values: n/a

Default value: 1

Requirements: Optional

Parent elements: weblogic-rdbms-bean
automatic-key-generation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-27

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
key-column

Function

The key-column element represents a column of a primary key in the database.

Example

See “column-map” on page 11-11.

Range of values: Valid name

Default value: n/a

Requirements: Must correspond to a column of a primary key.

Parent elements: weblogic-rdbms-bean
column-map

Deployment file: weblogic-cmp-rdbms-jar.xml
11-28 Programming WebLogic Enterprise JavaBeans

max-elements
max-elements

Function

max-elements specifies the maximum number of elements that should be returned by
a multi-valued query. This element is similar to the maxRows feature in JDBC.

Example

The XML stanza can contain the elements shown here:

 <max-elements>100</max-elements>

 <!ELEMENT max-element (PCDATA)>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-29

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
method-name

Function

The method-name element specifies the name of a finder or ejbSelect method.

Example

See “weblogic-query” on page 11-39.

Range of values: n/a

Default value: n/a

Requirements: The ‘*’ character may not be used as a wildcard.

Parent elements: weblogic-rdbms-bean

query-method

Deployment file: weblogic-cmp-rdbms-jar.xml
11-30 Programming WebLogic Enterprise JavaBeans

method-param
method-param

Function

The method-param element contains the fully qualified Java type name of a method
parameter.

Example

The XML stanza can contain the elements shown here:

<method-param>java.lang.String</method-param>

Range of values: Valid name

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

method-params

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-31

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
method-params

Function

The method-params element contains an ordered list of the fully-qualified Java type
names of the method parameters.

Example

See “weblogic-query” on page 11-39.

Range of values: list of valid names

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

query-method

Deployment file: weblogic-cmp-rdbms-jar.xml
11-32 Programming WebLogic Enterprise JavaBeans

query-method
query-method

Function

The query-method element specifies the method that is associated with a
weblogic-query. It also uses the same format as the ejb-jar.xml descriptor.

Example

See “weblogic-query” on page 11-39.

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-33

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
relation-name

Function

The relation-name element specifies the name of a relation.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<relation-name>stocks-holders</relation-name>

<table-name>stocks</table-name>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: Must match the ejb-relation-name of an ejb-relation in the associated
ejb-jar.xml descriptor file.

Parent elements: weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
11-34 Programming WebLogic Enterprise JavaBeans

relationship-role-name
relationship-role-name

Function

The relationship-role-name element specifies the name of a relationship role.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>

<weblogic-rdbms-relation>

<weblogic-relationship-role>stockholder</weblogic-
relationship-role>

<relationship-role-name>stockholders</relationship-
role-name>

</weblogic-rdbms-relation>

</weblogic-rdbms-jar>

Range of values: Valid name

Default value: n/a

Requirements: The name must match the ejb-relationship-role-name of an
ejb-relationship-role in the associated ejb-jar.xml descriptor file.

Parent elements: weblogic-rdbms-relation
weblogic-relationship-role

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-35

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
sql-select-distinct

Function

The sql-select-distinct element controls whether the generated SQL SELECT
statement will contain a a DISTINCT qualifer. Using the DISTINCT qualifer caused
the database to return unique rows.

Example

The XML example contains the element shown here:

<sql-select-distinct>True</sql-select-distinct>

Range of values: True | False

Default value: False

Requirements: The Oracle database does not allow you to use a SELECT DISTINCT in conjunction
with a FOR UPDATE clause. Therefore, you cannot use the sql-select-distinct
element if any bean in the calling chain has a method with a
transaction-isolation element set to the isolation-level sub element with
a value of TRANSACTION_READ_COMMITED_FOR_UPDATE You specify the
transaction-isolation element in the weblogic-ejb-jar.xml file.

Parent elements: weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
11-36 Programming WebLogic Enterprise JavaBeans

table-name
table-name

Function

The fully qualified SQL name of the table. The user defined for the data-source for
this bean must have read and write privileges for this table, but does not necessarily
need schema modification privileges.

Example

<table-name>Accounts</table-name>

Range of values: Valid, fully qualified SQL name of the source table in the database.

Default value: n/a

Requirements: table-name must be set in all cases.

Parent elements: weblogic-rdbms-bean

weblogic-rdbms-bean
weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-37

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
weblogic-ql

Function

The weblogic-ql element specifies a query that contains a WebLogic specific
extension to the ejb-ql language. You should specify queries that only use standard
EJB-QL language features in the ejb-jar.xml deployment descriptor.

Example

See “weblogic-query” on page 11-39.

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

weblogic-query

Deployment file: weblogic-cmp-rdbms-jar.xml
11-38 Programming WebLogic Enterprise JavaBeans

weblogic-query
weblogic-query

Function

The weblogic-query element allows you to associate WebLogic specific attributes
with a query, as necessary. For example, weblogic-query can be used to specify a
query that contains a WebLogic specific extension to EJB-QL. Queries that do not take
advantage of WebLogic extensions to EJB-QL should be specified in the
ejb-jar.xml deployment descriptor.

Also, the weblogic-query element is used to associate a field-group with the
query if the query retrieves an entity bean that should be pre-loaded into the cache by
the query.

Example

The XML stanza can contain the elements shown here:

<weblogic-query>

 <query-method>

 <method-name>findBigAccounts</method-name>

 <method-params>

 <method-param>double</method-param>

Range of values: n/a

Default value: n/a

Requirements: n/a

Parent elements: weblogic-rdbms-bean

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-39

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
 </method-params>

 <query-method>

<weblogic-ql>WHERE BALANCE>10000
ORDERBY NAME</weblogic-ql>

</weblogic-query>

weblogic-rdbms-relation

Function
The weblogic-rdbms-relation element represents a single relationship that is
managed by the WebLogic CMP persistence type. deployment descriptor. WebLogic
Server supports the following three relationship mappings:

� For one-to-one relationships, the mapping is from a foreign key in one bean to
the primary key of the other bean.

� For one-to-many relationships, the mapping is also from a foreign key in one
bean to the primary key of another bean.

� For many-to-many relationships, the mapping involves a join table. Each row in
the join table contains two foreign keys that map to he primary keys of the
entities involved in the relationship.

For more information on container managed relationships, see “Container-Managed
Relationships” on page 5-27.

Example

weblogic-rdbms-relation
relationship-role-name
group-name

Parent elements: weblogic-rdbms-jar
11-40 Programming WebLogic Enterprise JavaBeans

weblogic-relationship-role
column-map
db-cascade-delete

weblogic-relationship-role

Function

The weblogic-relationship-role element is used to express a mapping from a
foreign key to a primary key. Only one mapping is specified for one-to-one
relationships when the relationship is local. However, with a many-to-many
relationship, you must specify two mappings

Multiple column mappings are specified for a single role, it the key is complex. No
column-map is specified if the role is just specifying a group-name.

Example

The XML stanza can contain the elements shown here:

<weblogic-rdbms-jar>
<weblogic-rdbms-relation>

<relation-name>stocks-holders</relation-name>
<table-name>stocks</table-name>
<weblogic-relationship-role>stockholder
</weblogic-relationship-role>

Range of values: Valid name

Default value: n/a

Requirements: The mapping of a role to a table is specified in the associated weblogic-rdbms-bean
and ejb-relation elements.

Parent elements: weblogic-rdbms-relation

Deployment file: weblogic-cmp-rdbms-jar.xml
Programming WebLogic Enterprise JavaBeans 11-41

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
</weblogic-rdbms-relation>
</weblogic-rdbms-jar>

5.1 weblogic-cmp-rdbms-jar.xml
Deployment Descriptor File Structure

weblogic-cmp-rdbms-jar.xml defines deployment elements for a single entity EJB
that uses WebLogic Server RDBMS-based persistence services. See “Locking
Services for Entity EJBs” on page 4-37 for more information.

The top-level element of the WebLogic Server 5.1 weblogic-cmp-rdbms-jar.xml
consists of a weblogic-enterprise-bean stanza:

description

weblogic-version

<weblogic-enterprise-bean>

<pool-name>finance_pool</pool-name>

<schema-name>FINANCE_APP</schema-name>

<table-name>ACCOUNT</table-name>

<attribute-map>

<object-link>

<bean-field>accountID</bean-field>

<dbms-column>ACCOUNT_NUMBER</dbms-column>

</object-link>

<object-link>

<bean-field>balance</bean-field>

<dbms-column>BALANCE</dbms-column>

</object-link>

</attribute-map>
11-42 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
<finder-list>

<finder>

<method-name>findBigAccounts</method-name>

<method-params>

<<method-param>double</method-param>

</method-params>

<finder-query><![CDATA[(> balance $0)]]></finder-query>

<finder-expression>. . .</finder-expression>

</finder>

</finder-list>

</weblogic-enterprise-bean>

5.1 weblogic-cmp-rdbms-jar.xml
Deployment Descriptor Elements

RDBMS Definition Elements

This section describes the RDBMS definition elements.

pool-name

pool-name specifies name of the WebLogic Server connection pool to use for this
EJB’s database connectivity. See Using connection pools for more information.

schema-name

schema-name specifies the schema where the source table is located in the database.
This element is required only if you want to use a schema that is not the default schema
for the user defined in the EJB’s connection pool.
Programming WebLogic Enterprise JavaBeans 11-43

http://e-docs.bea.com/wls/docs61/jdbc/index.html

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
Note: This field is case sensitive, although many SQL implementations ignore case.

table-name

table-name specifies the source table in the database. This element is required in all
cases.

Note: The user defined in the EJB’s connection pool must have read and write
privileges to the specified table, though not necessarily schema modification
privileges. This field is case sensitive, although many SQL implementations
ignore case.

EJB Field-Mapping Elements

This section describes the EJB field-mapping elements.

attribute-map

The attribute-map stanza links a single field in the EJB instance to a particular
column in the database table. The attribute-map must have exactly one entry for
each field of an EJB that uses WebLogic Server RDBMS-based persistence.

object-link

Each attribute-map entry consists of an object-link stanza, which represents a
link between a column in the database and a field in the EJB instance.

bean-field

bean-field specifies the field in the EJB instance that should be populated from the
database. This element is case sensitive and must precisely match the name of the field
in the bean instance.

The field referenced in this tag must also have a cmp-field element defined in the
ejb-jar.xml file for the bean.
11-44 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
dbms-column

dbms-column specifies the database column to which the EJB field is mapped. This
tag is case sensitive, although many databases ignore the case.

Note: WebLogic Server does not support quoted RDBMS keywords as entries to
dbms-column. For example, you cannot create an attribute map for column
names such as “create” or “select” if those names are reserved in the
underlying datastore.

Finder Elements

This section describes the finder elements.

finder-list

The finder-list stanza defines the set of all finders that are generated to locate sets
of beans. See “Writing for RDBMS Persistence for EJB 1.1 CMP” on page 5-4 for
more information.

finder-list must contain exactly one entry for each finder method defined in the
home interface, except for findByPrimarykey. If an entry is not provided for
findByPrimaryKey, one is generated at compilation time.

Note: If you do provide an entry for findByPrimaryKey, WebLogic Server uses
that entry without validating it for correctness. In most cases, you should omit
an entry for findByPrimaryKey and accept the default, generated method.

finder

The finder stanza describes a finder method defined in the home interface. The
elements contained in the finder stanza enable WebLogic Server to identify which
method in the home interface is being described, and to perform required database
operations.
Programming WebLogic Enterprise JavaBeans 11-45

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
method-name

method-name defines the name of the finder method in the home interface. This tag
must contain the exact name of the method.

method-params

The method-params stanza defines the list of parameters to the finder method being
specified in method-name.

Note: WebLogic Server compares this list against the parameter types for the finder
method in the EJB’s home interface; the order and type for the parameter list
must exactly match the order and type defined in the home interface.

method-param

method-param defines the fully-qualified name for the parameter’s type. The type
name is evaluated into a java.lang.Class object, and the resultant object must
precisely match the respective parameter in the EJB’s finder method.

You can specify primitive parameters using their primitive names (such as “double” or
“int”). If you use a non-primitive data type in a method-param element, you must
specify a fully qualified name. For example, use java.sql.Timestamp rather than
Timestamp. If you do not use a qualified name, ejbc generates an error message when
you compile the deployment unit.

finder-query

finder-query specifies the WebLogic Query Language (WLQL) string that is used
to retrieve values from the database for this finder. See “Using WebLogic Query
Language (WLQL) for EJB 1.1 CMP” on page 5-6 for more information.

Note: Always define the text of the finder-query value using the XML CDATA
attribute. Using CDATA ensures that any special characters in the WLQL string
do not cause errors when the finder is compiled.

finder-expression

finder-expression specifies a Java language expression to use as a variable in the
database query for this finder.
11-46 Programming WebLogic Enterprise JavaBeans

5.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
Note: Future versions of the WebLogic Server EJB container will use the EJB QL
query language (as required by the EJB 2.0 specification). EJB QL does not
provide support for embedded Java expressions. Therefore, to ensure easier
upgrades to future EJB containers, create entity EJB finders without
embedding Java expressions in WLQL.
Programming WebLogic Enterprise JavaBeans 11-47

http://java.sun.com/products/ejb/docs.html

11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
11-48 Programming WebLogic Enterprise JavaBeans

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Introducing WebLogic Server Enterprise JavaBeans
	Overview of Enterprise JavaBeans
	EJB Components
	Types of EJBs

	Implementation of Preliminary Specifications
	Preliminary J2EE Specification
	Preliminary EJB 2.0 Specification

	WebLogic Server EJB 2.0 Support
	EJB Roles
	Application Roles
	Infrastructure Roles
	Deployment and Management Roles

	EJB Enhancements in WebLogic Server 6.1
	Changed EJB Deployment Elements
	Read-Only Multicast Invalidation Support
	Automatic Generated Primary Key Support
	Automatic Table Creation
	Oracle SELECT HINTS
	EJB Deployment Descriptor Editor
	ejb-client.jar Support
	BLOB and CLOB Support
	Cascade Delete Support
	Local Interface Support
	Flushing the CMP Cache Support
	Tuned CMP 1.1 Support

	EJB Developer Tools
	ANT Tasks to Create Skeleton Deployment Descriptors
	EJB Deployment Descriptor Editor
	XML Editor

	2 Designing EJBs
	Designing Session Beans
	Designing Entity Beans
	Entity Bean Home Interface
	Make Entity EJBs Coarse-Grained
	Encapsulate Additional Business Logic in Entity EJBs
	Optimize Entity EJB Data Access

	Designing Message-Driven Beans
	Using WebLogic Server Generic Bean Templates
	Using Inheritance with EJBs
	Accessing Deployed EJBs
	Differences Between Accessing EJBs from Local Clients and Remote Clients
	Restrictions on Concurrency Access of EJB Instances
	Storing EJB References in Home Handles
	Using Home Handles Across a Firewall

	Preserving Transaction Resources
	Allowing the Datastore to Manage Transactions
	Using Container-Managed Transactions Instead of Bean-Managed Transactions for EJBs
	Never Demarcate Transactions from Application
	Always Use A Transactional Datasource for Container-Managed EJBs

	3 Using Message-Driven Beans
	What Are Message-Driven Beans?
	Differences Between Message-Driven Beans and Standard JMS Consumers
	Differences Between Message-Driven Beans and Stateless Session EJBs
	Concurrent Processing for Topics and Queues

	Developing and Configuring Message-Driven Beans
	Message-Driven Bean Class Requirements
	Using the Message-Driven Bean Context
	Implementing Business Logic with onMessage()
	Specifying Principals and Setting Permissions for JMS Destinations
	Specifying Message-Driven Beans as Durable Subscribers
	Configuring Message-Driven Beans for Foreign JMS Providers
	Reconnecting to a JMS Server or Foreign Service Provider
	Handling Exceptions

	Invoking a Message-Driven Bean
	Creating and Removing Bean Instances
	Deploying Message-Driven Beans in WebLogic Server
	Using Transaction Services with Message-Driven Beans
	Message Receipts
	Message Acknowledgment

	4 The WebLogic Server EJB Container and Supported Services
	EJB Container
	EJB Life Cycle
	Entity EJB Life Cycle
	Initializing Entity EJB Instances (Free Pool)
	READY and ACTIVE Entity EJB Instances (Cache)
	Entity EJB Life Cycle Transitions

	Stateless Session EJB Life Cycle
	Initializing Stateless Session EJB Instances
	Activating and Pooling Stateless Session EJBs

	Stateful Session EJB Life Cycle
	Stateful Session EJB Creation
	Stateful Session EJB Passivation
	Concurrent Access to Stateful Session Beans
	Comparing the Performance of Stateless Session Beans to BMP EJBs

	ejbLoad() and ejbStore() Behavior for Entity EJBs
	Using db-is-shared to Limit Calls to ejbLoad()
	Restrictions and Warnings for db-is-shared
	Using is-modified-method-name to Limit Calls to ejbStore() (EJB 1.1 Only)
	Warning for is-modified-method-name
	Using delay-updates-until-end-of-tx to Change ejbStore() Behavior

	Setting Entity EJBs to Read-Only
	Read-Only Concurrency Strategy
	Restrictions for Read-Only Concurrency Strategy
	Read-Only Multicast Invalidation
	Standard Read-Only Entity Beans
	Read-Mostly Pattern
	Read-Write Cache Strategy

	EJBs in WebLogic Server Clusters
	Clustered EJBHome Objects
	Clustered EJBObjects
	Session EJBs in a Cluster
	Stateless Session EJBs
	Stateful Session EJBs

	In-Memory Replication for Stateful Session EJBs
	Requirements and Configuration for In-Memory Replication
	Limitations of In-Memory Replication

	Entity EJBs in a Cluster
	Read-Write Entity EJBs in a Cluster
	Cluster Address

	Transaction Management
	Transaction Management Responsibilities
	Using javax.transaction.UserTransaction
	Restriction for Container-Managed EJBs

	Transaction Isolation Levels
	Setting User Transaction Isolation Levels
	Setting Container-Managed Transaction Isolation Levels
	Limitations of TRANSACTION_SERIALIZABLE
	Special Note for Oracle Databases

	Distributing Transactions Across Multiple EJBs
	Calling Multiple EJBs from a Single Transaction Context
	Encapsulating a Multi-Operation Transaction
	Distributing Transactions Across EJBs in a WebLogic Server Cluster

	Delay-Database-Insert-Until

	Resource Factories
	Setting Up JDBC Datasource Factories
	Setting Up URL Connection Factories

	Locking Services for Entity EJBs
	Exclusive Locking Services
	Database Locking Services
	Setting Up Database Locking

	5 WebLogic Server Container-Managed Persistence Services
	Overview of Container Managed Persistence Services
	EJB Persistence Services
	Using WebLogic Server RDBMS Persistence

	Writing for RDBMS Persistence for EJB 1.1 CMP
	Finder Signature
	finder-list Stanza
	finder-query Element

	Using WebLogic Query Language (WLQL) for EJB 1.1 CMP
	Syntax
	Operators
	Operands
	Examples of WLQL Expressions

	Using EJB QL for EJB 2.0
	EJB QL Requirement for EJB 2.0 Beans
	Migrating from WLQL to EJB QL
	Using EJB 2.0 WebLogic QL Extension for EJB QL
	SELECT DISTINCT
	ORDERBY

	Using Oracle SELECT HINTS
	“get” and “set” Method Restrictions
	BLOB and CLOB DBMS Column Support for the Oracle DBMS
	Specifying a BLOB Using the Deployment Descriptor
	Controlling Serialization of cmp-fields Mapped to OracleBlobs
	Specifying a CLOB Using the Deployment Descriptors

	Cascade Delete
	Cascade Delete Method
	Database Cascade Delete Method

	Tuned EJB 1.1 CMP Updates in WebLogic Server
	Flushing the CMP Cache
	Primary Keys
	Primary Key Mapped to a Single CMP Field
	Primary Keys Class That Wraps Single or Multiple CMP Fields
	Hints for Using Primary Keys
	Mapping to a Database Column

	Automatic Primary Key Generation for EJB 2.0 CMP
	Valid Key Field Values
	Specifying Primary Key Support for Oracle
	Specifying Primary Key Support for Microsoft SQL Server
	Specifying Primary Key Named Sequence Table Support

	Automatic Table Creation
	Container-Managed Relationships
	Relationship Cardinality
	Relationship Direction
	Local Interfaces and Container-Managed Relationships
	Using the Local Client
	Changes to the Container for Local Interfaces

	Defining Container-Managed Relationships
	Specifying Relationship in ejb-jar.xml
	Specifying Relationships in weblogic-cmp-jar.xml

	Container-Managed Relationships and Caching

	Groups
	Specifying Field Groups

	Java Data Types for CMP Fields

	6 Packaging EJBs for the WebLogic Server Container
	Required Steps for Packaging EJBs
	Reviewing the EJB Source File Components
	WebLogic Server EJB Deployment Files
	ejb-jar.xml
	weblogic-ejb-jar.xml
	weblogic-cmp-rdbms.xml
	Relationships Among the Deployment Files

	Specifying and Editing the EJB Deployment Descriptors
	Creating the Deployment Files
	Manually Editing EJB Deployment Descriptors
	Using the EJB Deployment Descriptor Editor

	Setting WebLogic Server Deployment Mode
	Using the Automatic Mode for Deployment
	Automatically Deploying the EJB Examples

	Using the Production Mode for Deployment

	Packaging EJBs into a Deployment Directory
	ejb.jar file

	Compiling EJB Classes and Generating EJB Container Classes
	Loading EJB Classes into WebLogic Server
	Specifying an ejb-client.jar
	Manifest Class-Path

	7 Deploying EJBs to WebLogic Server
	Roles and Responsibilities
	Deploying EJBs at WebLogic Server Startup
	Deploying EJBs in Different Applications

	Deploying EJBs on a Running WebLogic Server
	EJB Deployment Names
	Deploying New EJBs into a Running Environment
	Deploying Pinned EJBs - Special Step Required

	Viewing Deployed EJBs
	Undeploying Deployed EJBs
	Undeploying EJBs

	Updating Deployed EJBs
	weblogic.deploy update and Targets
	The Update Process
	Updating the EJB

	Deploying Compiled EJB Files
	Deploying Uncompiled EJB Files

	8 Configuring Security in EJBs
	Configuring Security Constraints

	9 WebLogic Server EJB Utilities
	ejbc
	ejbc Syntax
	ejbc Arguments
	ejbc Options
	ejbc Examples

	DDConverter
	Conversion Options Available with DDConverter
	Using DDConverter to Convert EJBs
	DDConverter Syntax
	DDConverter Arguments
	DDConverter Options
	DDConverter Examples

	deploy
	deploy Syntax
	deploy Arguments
	deploy Options

	10 weblogic-ejb-jar.xml Document Type Definitions
	EJB Deployment Descriptors
	DOCTYPE Header Information
	Document Type Definitions (DTDs) for Validation
	weblogic-ejb-jar.xml
	ejb-jar.xml

	Changed EJB Deployment Elements in WebLogic Server 6.1
	6.0 weblogic-ejb-jar.xml Deployment Descriptor File Structure
	6.0 weblogic-ejb-jar.xml Deployment Descriptor Elements
	allow-concurrent-calls
	cache-type
	connection-factory-jndi-name
	concurrency-strategy
	db-is-shared
	delay-updates-until-end-of-tx
	description
	destination-jndi-name
	ejb-name
	ejb-reference-description
	ejb-ref-name
	Example

	ejb-local-reference-description
	enable-call-by-reference
	entity-cache
	entity-clustering
	entity-descriptor
	finders-load-bean
	home-call-router-class-name
	home-is-clusterable
	home-load-algorithm
	idle-timeout-seconds
	initial-beans-in-free-pool
	initial-context-factory
	invalidation-target
	is-modified-method-name
	isolation-level
	jms-client-id
	jms-polling-interval-seconds
	jndi-name
	local-jndi-name
	lifecycle
	max-beans-in-cache
	max-beans-in-free-pool
	message-driven-descriptor
	method
	method-intf
	method-name
	method-param
	method-params
	passivation-strategy
	persistence
	persistence-type
	persistence-use
	persistent-store-dir
	pool
	principal-name
	provider-url
	read-timeout-seconds
	reference-descriptor
	relationship-description
	replication-type
	res-env-ref-name
	res-ref-name
	resource-description
	resource-env-description
	role-name
	run-as-identity-principal
	security-role-assignment
	stateful-session-cache
	stateful-session-clustering
	stateful-session-descriptor
	stateless-bean-call-router-class-name
	stateless-bean-is-clusterable
	stateless-bean-load-algorithm
	stateless-bean-methods-are-idempotent
	stateless-clustering
	stateless-session-descriptor
	transaction-descriptor
	transaction-isolation
	trans-timeout-seconds
	type-identifier
	type-storage
	type-version
	weblogic-ejb-jar
	weblogic-enterprise-bean
	5.1 weblogic-ejb-jar.xml Deployment Descriptor File Structure
	5.1 weblogic-ejb-jar.xml Deployment Descriptor Elements
	caching-descriptor
	max-beans-in-free-pool
	initial-beans-in-free-pool
	max-beans-in-cache
	idle-timeout-seconds
	cache-strategy
	read-timeout-seconds

	persistence-descriptor
	is-modified-method-name
	delay-updates-until-end-of-tx
	persistence-type
	db-is-shared
	stateful-session-persistent-store-dir
	persistence-use

	clustering-descriptor
	home-is-clusterable
	home-load-algorithm
	home-call-router-class-name
	stateless-bean-is-clusterable
	stateless-bean-load-algorithm
	stateless-bean-call-router-class-name
	stateless-bean-methods-are-idempotent

	transaction-descriptor
	trans-timeout-seconds

	reference-descriptor
	resource-description
	ejb-reference-description

	enable-call-by-reference
	jndi-name
	transaction-isolation
	isolation-level
	method

	security-role-assignment

	11 weblogic-cmp-rdbms- jar.xml Document Type Definitions
	EJB Deployment Descriptors
	DOCTYPE Header Information
	Document Type Definitions (DTDs) for Validation
	weblogic-cmp-rdbms-jar.xml
	ejb-jar.xml

	6.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure
	6.0 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
	automatic-key-generation
	cmp-field
	cmr-field
	column-map
	create-default-dbms-tables
	data-source-name
	db-cascade-delete
	dbms-column
	dbms-column-type
	delay-database-insert-until
	Example

	ejb-name
	enable-tuned-updates
	field-group
	field-map
	foreign-key-column
	generator-name
	generator-type
	group-name
	include-updates
	Function

	key-cache-size
	Example

	key-column
	max-elements
	method-name
	method-param
	method-params
	query-method
	relation-name
	relationship-role-name
	sql-select-distinct
	table-name
	weblogic-ql
	weblogic-query
	weblogic-rdbms-relation
	weblogic-relationship-role
	5.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor File Structure
	5.1 weblogic-cmp-rdbms-jar.xml Deployment Descriptor Elements
	RDBMS Definition Elements
	pool-name
	schema-name
	table-name

	EJB Field-Mapping Elements
	attribute-map
	object-link
	bean-field
	dbms-column

	Finder Elements
	finder-list
	finder
	method-name
	method-params
	method-param
	finder-query
	finder-expression

