
jCOM

B E A W e b L o g i c j C O M V e r s i o n 6 . 1
D o c u m e n t D a t e : N o v e m b e r 1 , 2 0 0 1

BEA WebLogic

Reference Guide

Copyright

Copyright © 2001 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Contents

1. The com2java Tool
Using com2java... 1-1

Selecting the type library ... 1-2

Specifying the Java package name... 1-2

Options ... 1-3

Clash Prefix... 1-3

Lower case method names .. 1-3

Only generate IDispatch ... 1-3

Generate retry code on '0x80010001 - Call was rejected by callee' ... 1-3

Generate Arrays as Objects... 1-4

Prompt for names for imported tlbs .. 1-4

Don't generate dispinterfaces .. 1-4

Generate depreciated constructors .. 1-4

Don't rename methods with same names.. 1-4

Ignore conflicting interfaces ... 1-5

Generate Java AWT classes.. 1-5

Generate the proxies... 1-5

Files generated by com2java ... 1-5

Enumerations ... 1-6

COM Interfaces.. 1-6

COM Classes.. 1-7

Special case -- source interfaces (Events) ... 1-7

Summary - Events... 1-8
BEA WebLogic jCOM Reference Guide iii

2. WebLogic jCOM and COM Event

3. Exceptions
Exceptions raised in COM components .. 3-1

Raising exceptions in a COM component.. 3-1

Catching them in Java .. 3-2

Use IOException rather than AutomationException?......................... 3-3

Exceptions raised in Java objects .. 3-3

The source ... 3-4

The description.. 3-4

The code .. 3-4

What if you want to specify the source/description/code yourself?........... 3-5

Using the Exception Interception Mechanism .. 3-6

4. Garbage Collection and Reference Counting
On COM objects referenced from Java clients.. 4-1

On Java objects referenced from COM clients.. 4-2

5. Native Mode
What is supported? .. 5-2

Both IDispatch and vtable .. 5-2

In-process and out-of-process .. 5-2

All JVMs .. 5-2

Microsoft Transaction Server / COM+ .. 5-2

How to run Java clients in native mode... 5-3

Threading Models .. 5-3

How to run COM clients in native mode (JVM out-of-process)....................... 5-4

How to run COM clients in native mode (JVM in-process) 5-5

Unsupported features and known issues.. 5-7

6. Security/Authentication
Authenticating using JNDI with WebLogic Server... 7-1

Authenticating Java clients accessing COM components 7-2

Running your Java code under Windows... 7-2

Running your Java code on non-Windows platforms 7-3
iv BEA WebLogic jCOM Reference Guide

Verifying that authenticated access is taking place 7-3

Identifying the identity of COM clients calling your Java code 7-4

Authenticating NT domain/user/passwords from pure Java software 7-4

Listening for new connections from COM clients .. 7-5

7. Supported COM data types, and their Java Equivalents
Accessing Java Objects as Visual Basic Collections .. 8-2

Example Visual BASIC code ... 8-2

How COM IDL types map to Java, VB, and VC++ ... 8-4

How COM Variants containing different types map to Java 8-8

Type conversions used during late-bound access from COM to Java 8-11

Java boolean, byte, short and int .. 8-11

Java long, char, float and double.. 8-12

Java String, Date and Object.. 8-13

Arrays... 8-14

Accessing COM VariantEnums from Java ... 8-15

8. Threading
From Java to COM.. 9-1

From COM to Java .. 9-1

9. Using COM Objects from Java
Java classes generated from COM classes by com2java................................. 10-1

The default constructor .. 10-2

The second constructor (String host) ... 10-2

The third constructor (AuthInfo authInfo) ... 10-2

The fourth constructor (String host, AuthInfo authInfo) 10-2

The final constructor (Object objRef) .. 10-3

Java interfaces & classes generated from COM interfaces by com2java 10-3

10. Java Properties in jCOM.jar

11. Troubleshooter
Improving WebLogic jCOM’s performance... 12-1

Use the reduced logging runtime ... 12-1

Run in native mode .. 12-2
BEA WebLogic jCOM Reference Guide v

DOS Errors .. 12-2

Java Errors ... 12-3

Visual BASIC Errors... 12-5

Visual C++ Errors ... 12-6

DCOM security problems when running under certain environments............ 12-7

The IID*.java Wrappers Generated by java2com do not compile 12-8

The error I am getting is not listed .. 12-9
vi BEA WebLogic jCOM Reference Guide

CHAPTER
1 The com2java Tool

WebLogic jCOM's com2java tool reads information from a type library, and generates
Java files that can be used to access the COM Classes and interfaces defined in that
type library.

Type Libraries contain information on COM Classes, Interfaces, and other constructs.
They are typically generated by development tools such as Visual C++ and Visual
BASIC.

Some type libraries are readily identifiable as such. Files that end with the extension
olb or tlb are definitely type libraries. What can be a little confusing is that type
libraries can also be stored inside other files, such as executables. Visual BASIC puts
a type library in the executable that it generates.

The following sections look at:

� Using com2java

� Files generated by com2java

Using com2java

The com2java tool is in the bin subdirectory under the WebLogic jCOM installation
directory. For example if you installed WebLogic jCOM in c:\bea\wlserver6.1\jcom,
then you will find com2java in c:\bea\wlserver6.1\jcom\bin\com2java.exe.

As well as providing the GUI interface described below, a command line interface is
provided via the com2javacmd tool. Type 'com2javacmd /?' for more information.

When you start com2java, this is the dialog that is displayed:
WebLogic jCOM Reference Guide 1-1

1 The com2java Tool
Selecting the type library

Click on the Select ... button to select the type library that the tool should
process.

Remember that type libraries can sometimes be hidden inside executable files, such as
the executable or DLL containing your COM component.

The com2java tool will remember a list of the last type libraries you successfully
opened and generated proxies for.

Specifying the Java package name

The com2java tool generates a set of Java source files corresponding to the COM
Classes and Interfaces in the type library. You will probably want to have the generated
files in a specific package. For example you may want to put all the files for the Excel
type library in a Java package called excel.

Fill in the Java package text box with the name of the package to which you would
like the generated files to belong.
1-2 WebLogic jCOM Reference Guide

Using com2java
The com2java tool will remember the last package name you specified for a particular
type library.

Options

By clicking on the options button a dialog box with options for com2java appears. Note
that these options are saved automatically between sessions of com2java. If you only
require an option for one particular generation, then you must remember to reset the
option after generating the proxies. The options are:

Clash Prefix

If methods in the COM Interfaces defined in the type library clash with methods that
are already used by Java (for example the getClass() method), com2java will prefix the
generated method name with a string, which is zz_ by default.

Lower case method names

The convention for Java method names is that they start with a lower-case letter. By
default the com2java tool enforces this convention, changing method names
accordingly. If you would prefer the tool not to do so, uncheck the Lowercase method
names checkbox in the Options dialog box.

Only generate IDispatch

WebLogic jCOM supports calling COM objects using IDispatch and vtable access.
Selecting this option ensures that all calls are made using the IDispatch interface.

Generate retry code on '0x80010001 - Call was rejected by callee'

If a COM server is busy, you may receive the above error. Selecting this option will
ensure that the generated code retries each time this error code is received.
WebLogic jCOM Reference Guide 1-3

1 The com2java Tool
Generate Arrays as Objects

Parameters which are SAFEARRAYS have a corresponding Java parameter of type
java.lang.Object generated. This is required if you are passing two dimensional arrays
outside of Variants to/from COM objects from Java.

This option doesn’t change what is actually passed over the wire -- it is still arrays --
it is just that in the generated Java interface, rather than having the generated method
prototype specify the type of the array, it specifies ‘Object’. This is useful in situations
where you want to pass a 2D array -- in the COM IDL the number of dimensions is not
specified for SAFEARRAYS, and if you don’t check the “generate arrays as objects”
option, WebLogic jCOM will assume you are passing a single element array and
generate a corresponding prototype. By setting the option, and having com2java
generate ‘Object’ instead of ‘String[]’ (for example), you are free to actually pass a 2D
string array.

Prompt for names for imported tlbs

Sometimes a type library will import another type library. If you are also generating
proxies for imported type libraries, using this option will prompt you for the package
name of the those proxies.

Don't generate dispinterfaces

Selecting this option disables the generation of proxies for interfaces defined as
dispinterfaces.

Generate depreciated constructors

Generated proxies contain some constructors which are now depreciated. If you do not
wish to generate these depreciated constructors at all select this option.

Don't rename methods with same names

If a name conflict is detected in a COM class, com2java automatically renames one of
the methods. Selecting this option overrides this automatic renaming.
1-4 WebLogic jCOM Reference Guide

Files generated by com2java
Ignore conflicting interfaces

If a COM class implements multiple interfaces which define methods with the same
names, then selecting this option will cause the corresponding generated Java classes
to not implement the additional interfaces. You can still access the interfaces using the
getAsXXX method that is generated. See the generated comments.

Generate Java AWT classes

Generates .Java Classes as GUI classes. To be used for embedding ActiveX controls
in Java Frames.

Generate the proxies

Click on the Generate Proxies ... button to select the directory in which the com2java
tool should generate the Java files.

Once you select the directory, com2java will analyse the type library and output the
corresponding files in the directory you specify. If the directory already contains Java
source files, WebLogic jCOM will issue a warning and allow you to cancel the
operation.

Files generated by com2java

The com2java tool processes three kinds of constructs in a type library:

� Enumerations

� COM Interfaces (including source interfaces - events)

� COM Classes

You will need to refer to documentation associated with the COM objects that you are
accessing in order to understand how to use generated Java files to manipulate the
COM objects.
WebLogic jCOM Reference Guide 1-5

1 The com2java Tool
For example when you run ‘com2java’ on the Excel type library the generated Java
files you are seeing correspond to the Microsoft Excel COM API, and you should refer
to the Microsoft Excel programming documentation for more information, such as the
Excel 2000 COM API:

http://msdn.microsoft.com/library/default.asp?URL=/library/officedev/off2000/xltoc
objectmodelapplication.htm

Sometimes it is not easy to relate the generated files to the original API. If this is the
case please do not hesitate to contact us. Ideally if you can give us a piece of code that
works from another COM client (early-bound VB, VC++, etc.) then we will try to help
you do the same from Java.

Enumerations

If a type library contains an enumeration, WebLogic jCOM will generate a Java
interface containing constant definitions for each element in the enumeration.

COM Interfaces

There are two kinds of COM Interfaces that WebLogic jCOM handles. It handles
Dispatch interfaces, whose methods can only be accessed using the COM IDispatch
mechanism, and handes 'dual' interfaces, whose methods can also be invoked directly
(vtbl access).

For each interface defined in a type library, the com2java tool generates two Java files:
a Java interface, and a Java class.

The name of the generated Java interface is the same as the name of the COM interface,
for example if the COM interface is called IMyInterface, the com2java tool will
generate a Java interface called IMyInterface in the file IMyInterface.java

The second file that com2java generates is a Java class, which contains code used to
access COM objects that implement the interface, and also code to allow COM objects
to invoke methods in Java classes that implement the interface. The name of the
generated Java class is the name of the interface with 'Proxy' appended to it. Using the
example from the previous paragraph, WebLogic jCOM would generate a Java class
called IMyInterfaceProxy in the file IMyInterfaceProxy.java.
1-6 WebLogic jCOM Reference Guide

http://msdn.microsoft.com/library/default.asp?URL=/library/officedev/off2000/xltocobjectmodelapplication.htm

Special case -- source interfaces (Events)
For each method in the COM interface, WebLogic jCOM generates a corresponding
method in the Java interface. In addition it generates some constants in the interface
which, as the generated comments indicate, you can safely ignore -- you will never
need to know anything about them, or use them.

Once again, WebLogic jCOM picks up comments from the type library describing the
interface and its methods, and uses them in the generated javadoc comments.

COM Classes

A COM Class implements one or more COM Interfaces, in the same way that a Java
Class can implement one or more Java Interfaces.

For each COM Class in a type library, the com2java tool generates a corresponding
Java class, with the same name as the COM class. WebLogic jCOM also supports a
class implementing multiple interfaces.

The Java class which WebLogic jCOM generates can be used to access the
corresponding COM class.

Special case -- source interfaces (Events)

A COM class can specify that an interface is a source interface. This means that it
allows instances of COM classes that implement the interface to subscribe to the events
defined in the interface. It invokes the methods defined in the interface on the objects
that have subscribed.

Although COM events work using Connection Points, and source interfaces, Java has
a different event mechanism. The com2java tool totally hides the COM mechanism
from the Java programmer, and presents the events using the standard Java techniques.

What this means in real terms is that com2java adds two methods to the Java class that
it generates for accessing the COM Class.

When the com2java tool notices that a class uses an interface as a source interface, it
generates special code for that interface. It derives the interface from the
java.util.EventListener Java interface, as is the convention for Java events.
WebLogic jCOM Reference Guide 1-7

1 The com2java Tool
Another Java event convention is that each of the methods in the interface should have
a single parameter, which is an instance of a class derived from java.util.EventObject
Java class.

One final Java event related convention is the use of an Adapter class, which
implements the event interface, and provides empty default implementations for the
methods in the interface. That way, developers that wish to create a class which will
be subscribed to the event need not implement all of the methods in the interface,
which can be especially painful with large interfaces.

So for each event interface, WebLogic jCOM generates an adapter class.

Summary - Events

Please note that in order for the com2java tool to treat an interface in a type library as
an Event interface, there must be at least one COM Class in the type library that uses
the interface as a source interface.
1-8 WebLogic jCOM Reference Guide

CHAPTER
2 WebLogic jCOM and
COM Event

If a COM Class can generate events (has a source interface), then WebLogic jCOM's
com2java tool, will generate Java code which allows Java objects to subscribe to the
event using standard Java semantics. For information on the generated files, please
read the relevant section of the com2java documentation.

In summary, if a COM Class has a source interface that is defined in the same type
library as the class, then WebLogic jCOM's com2java tool will do the following:

� it will generate an addXYZListener method and a removeXYZListener method in
the corresponding Java class that it generates to access the COM Class

� it will derive the event interface from java.util.EventListener

� for each method in the event interface, it will create a class derived from
java.util.EventObject, which contains all of the original method parameters, an
instance of which is passed as the sole parameter to the method

� it will generate an adapter class which implements the event interface, and
provide default empty implementations of each method in the interface

From a Java programmer's perspective there is nothing really else to it. You use the
standard Java event techniques -- you implement the event listener interface, and then
subscribe to the event using the addXYZListener method.
WebLogic jCOM Reference Guide 2-1

2 WebLogic jCOM and COM Event
2-2 WebLogic jCOM Reference Guide

CHAPTER
3 Exceptions

WebLogic jCOM transparently maps between COM exceptions and Java exceptions.
The following sections look at:

� Exceptions raised in COM components

� Exceptions in Java objects

� Using the Exception Interception mechanism

Exceptions raised in COM components

When a Java client invokes a method in a COM component, that component may raise
an exception.

COM Exceptions have an associated error number, a source, and a description.

Raising exceptions in a COM component

In Visual BASIC, an exception can be raised like this:

Public Sub errorMethod()
Err.Raise vbObjectError + 1051, "My program", "This is the

description"
End Sub

In Visual C++, an exception can be raised like this:

AfxThrowOleDispatchException(0, "I am sorry Dave, I can't do
that...");
WebLogic jCOM Reference Guide 3-1

3 Exceptions
Catching them in Java

When a COM component throws an exception, an instance of
com.bea.jcom.AutomationException is thrown in the Java client. The javadoc
documentation associated with that class is here.

The AutomationException class exposes methods to obtain the error number, source
and description of the COM exception that was thrown.

import com.bea.jcom.AuthInfo;
import java.net.UnknownHostException;
import java.io.IOException;
public class Example {

public static void main(java.lang.String[] args) throws
IOException, UnknownHostException {

vbexcep.Class1 c1 = null;

try {
c1 = new vbexcep.Class1();
c1.errorMethod();
} catch(com.bea.jcom.AutomationException ae) {
System.out.println("Caught: " + ae);
System.out.println("Source: " + ae.getSource());
System.out.println("Description: " +

ae.getDescription());
System.out.println("Code: " + ae.getCode());
} finally {
com.bea.jcom.Cleaner.releaseAll();
}

}
}

The result of running the example:
3-2 WebLogic jCOM Reference Guide

Exceptions raised in Java objects
Use IOException rather than AutomationException?

If you don't like the idea of having to deal with the AutomationException class, then
you can catch java.io.IOException instead, since AutomationException derives from
IOException. In this way you can reduce the dependancy of your code on COM related
classes, at the expense of not being able to access the error code, description and
source.

Exceptions raised in Java objects

COM components can invoke methods in Java objects using WebLogic jCOM.

If such a method generates an exception, then WebLogic jCOM will catch the
exception, and translate it into an appropriate COM exception.

Take, for example, the following Java code. Note that the 'method1' method is not
particularly sound:

import java.io.*;
public class Simple {
public static void main(String[] args) throws Exception {

com.bea.jcom.Jvm.register("firstjvm");
Thread.sleep(6000000); // Sleep for an hour
}

public void method1() throws java.io.IOException {
throw new java.io.IOException("A deliberate exception");
}
}
}

This is the Visual Basic client code:

Public Sub method1(ByVal p1 As Object)
Set p1 = GetObject("firstjvm:Simple")
On Error GoTo ErrorHandler
p1.method1

ErrorHandler: ' Error-handling routine.
MsgBox Err.Source, vbInformation, "Source"
MsgBox Err.Description, vbInformation, "Description"
MsgBox Str(Err.Number), vbInformation, "Code"
WebLogic jCOM Reference Guide 3-3

3 Exceptions
End Sub

The Visual BASIC code simply establishes an error handler, and then makes a call into
the Java object. The Java object in our example deliberately generates an exception
which is caught by the Visual BASIC error handler.

The error handler displays a series of message boxes, which give information on the
error:

The source

WebLogic jCOM automatically fills in the source with the stack trace of method which
generated the error:

The description

WebLogic jCOM automatically fills in the description with the string returned from
Exception.getMessage():

We have erased the part of the stack trace showing WebLogic jCOM internal methods.

The code

WebLogic jCOM automatically sets the code to 0x80020009, which is COM for
'Exception occurred.':
3-4 WebLogic jCOM Reference Guide

Exceptions raised in Java objects
What if you want to specify the source/description/code
yourself?

If you wish to explicitly set the error information yourself, rather than accepting
WebLogic jCOM's default, then you can throw an instance of
com.bea.jcom.AutomationException.

If we change the Java code in the above example:

public void method1() throws com.bea.jcom.AutomationException {
long code = 0x80020009;
String source = "The source of the exception";
String description = "A demonstration description";
throw new com.bea.jcom.AutomationException(code, source,
description);
}

The following message boxes get displayed, with the information that was explicitly
set:
WebLogic jCOM Reference Guide 3-5

3 Exceptions
Using the Exception Interception
Mechanism

We also provide a hook which allows you to provide code which is called when an
exception is about to be returned to a COM client. This lets you change the exception
information, or store the exception object for later retrieval by a COM client.

To intercept exceptions generated when calling from COM-to-Java, register an
interceptor once, like this:

com.bea.jcom.ExceptionInterceptor interceptor = new
YourInterceptor();
com.bea.jcom.AutomationException.setExceptionInterceptor
(interceptor);

Create a class which implements the ExceptionInterceptor interface like this:

class YourInterceptor implements com.bea.jcom.ExceptionInterceptor
{

public com.bea.jcom.AutomationException
handleException(Throwable t) {

 ...

 }

}

If you want the default error to be returned to the COM client then simply return null
in the handler, otherwise you can generate a specific error, for example:

public com.bea.jcom.AutomationException handleException(Throwable
t) {

System.out.println("Intercepting: " + t);
long code = 0x80020009;
String source = "The source of the exception";
String description = "A demonstration description";
return new com.bea.jcom.AutomationException(code, source,

description);
}

3-6 WebLogic jCOM Reference Guide

CHAPTER
4 Garbage Collection and
Reference Counting

On COM objects referenced from Java clients

The Java Virtual Machine will perform garbage collection on Java references to a
COM object when such references can no longer be accessed.

When such a reference is garbage collected, WebLogic jCOM adds the DCOM object
details to an internal list of DCOM object references which should be released. Every
ten seconds a WebLogic jCOM daemon thread releases these batched DCOM object
references through garbage collection.

If you would prefer to explicitly release an object reference yourself, then call the
com.bea.jcom.Cleaner.release(...) method, passing the object reference as a
parameter.

When your JVM is about to shut down you should call
com.bea.jcom.Cleaner.releaseAll(). This will release any COM object references that
have not already been released through garbage collection. Once you have called this
method you will no longer be able to make use of any COM object accessed via
WebLogic jCOM.

When running in DCOM mode the WebLogic jCOM runtime sends DCOM ping
messages per the DCOM protocol to tell the COM server that the client is still alive.
WebLogic jCOM Reference Guide 4-1

4 Garbage Collection and Reference Counting
On Java objects referenced from COM clients

When COM clients hold references to a Java object the WebLogic jCOM runtime
maintains a reference inside the JVM to that Java object on behalf of the COM clients.
It also keeps count of the number of COM references exported to that Java object and
releases its reference when the COM reference count reaches zero. When running in
DCOM mode WebLogic jCOM receives DCOM ping messages informing it that a
COM client is still alive. If no such ping messages are received for six minutes (per the
DCOM specification) then the WebLogic jCOM runtime releases all unpinged Java
objects.

If you wish to be notified when Java objects are no longer referenced by COM clients,
you can call the following method passing in a reference to an instance of a Java class
you create that implements the com.bea.jcom.Unreferenced interface:

com.bea.jcom.Cleaner.addUnreferencedListener(com.bea.jcom.Unrefer
enced listener)

The Unreferenced interface looks like this:

public interface Unreferenced {
public void objectUnreferenced(Object o);
}

When you no longer wish to be notified, call:

public static void removeUnreferencedListener(Unreferenced
listener)

This is a small example:

public class MyJvm {

public static void main(String[] args) throws Exception {
com.bea.jcom.Jvm.register("firstjvm");

MyUnreferencedListener l = new MyUnreferencedListener();
com.bea.jcom.Cleaner.addUnreferencedListener(l);

Thread.sleep(6000000); // Sleep for an hour

com.bea.jcom.Cleaner.removeUnreferencedListener(l);
}
}

4-2 WebLogic jCOM Reference Guide

On Java objects referenced from COM clients
class MyUnreferencedListener implements com.bea.jcom.Unreferenced
{
public void objectUnreferenced(Object o) {
System.out.println("** Object no longer referenced: " + o);
}
}
WebLogic jCOM Reference Guide 4-3

4 Garbage Collection and Reference Counting
4-4 WebLogic jCOM Reference Guide

CHAPTER
5 Native Mode

The Java-COM bridge not only supports the use of network based DCOM to allow
Java objects to interact with COM objects, WebLogic jCOM also gives you an
alternative: native code (DLLs) can be used to perform the bridging.

Your Java code stays the same whether it is using native mode or DCOM mode.

Note: By default WebLogic jCOM uses DCOM; you have to explicitly enable native
mode.

The following sections look at:

� What Is Supported?

� How to run Java clients in native mode

� How to run COM clients in native mode (JVM out-of-process)

� How to run COM clients in native mode (JVM in-process)

� Unsupported features and known issues
WebLogic jCOM Reference Guide 5-1

5 Native Mode
What is supported?

Both IDispatch and vtable

The native mode allows both IDispatch and Custom (vtable) method invocations, in
both directions. The COM interfaces do not have to be dual (they can derive directly
from IUnknown).

In-process and out-of-process

WebLogic jCOM's native mode supports:

� Java clients talking to out-of-process (including remote) COM components

� Java clients talking to in-process COM components, where the COM
component's DLL is loaded in-process into the JVM's process

� COM clients talking to Java objects where the JVM is running in a separate
process (on the same machine)

� COM clients talking to Java objects where the JVM is loaded in-process, into the
address space of the COM client

All JVMs

WebLogic jCOM can be used with any JVM running on any platform.

Microsoft Transaction Server / COM+

We have successfully loaded a Java object into MTS (in-process) and invoked methods
on it from a VB base client.
5-2 WebLogic jCOM Reference Guide

How to run Java clients in native mode
We have made the Java object implement the standard IObjectControl COM interface
(which it saw as a normal Java interface, generated by 'com2java'), and MTS invoked
the usual methods (activate, canBePooled, etc.).

Finally using a special hook in the WebLogic jCOM runtime we have accessed the
IObjectContext MTS/COM+ interface from the Java object and tested some of the
attributes -- it correctly detected when it was operating in a transaction, for example.

How to run Java clients in native mode

In order to let a Java client access a COM object using native mode, run the 'com2java'
tool on the COM object's type library, and generate the Java proxies as you would
when using WebLogic jCOM in DCOM mode.

When running the JVM, define the JCOM_NATIVE_MODE property to enable native
mode:
java -DJCOM_NATIVE_MODE JCOMBridge

Pass a host name to the COM object's constructor to create a remote COM component.

The WebLogic jCOM runtime first attempts a CoCreateInstanceEx with flags set to
CLSCTX_ALL. If this fails, it retries with flags set to CLSCTX_SERVER.

Threading Models

By default the WebLogic jCOM runtime initializes COM using the
COINIT_MULTITHREADED flag. If you wish to have COM initialized using a
different flag, set the JCOM_COINIT_VALUE property. For example:

java -DJCOM_NATIVE_MODE -DJCOM_COINIT_VALUE=2 JCOMBridge

If you get a Class Not Registered Message when using native mode and trying to talk
to a COM component hosted in a DLL, try setting the JCOM_COINIT_VALUE to 2
as above.
WebLogic jCOM Reference Guide 5-3

5 Native Mode
The WebLogic jCOM runtime attempts to put all COM object references into a special
COM table called the Global Interface Table (GIT). Whenever a call is made from
Java-to-COM the object reference is retrieved from the GIT, which ensures that the
call can be made from the current thread.

Unfortunately some COM object references (such as the Frames collection in
MSHTML) cannot be placed in the GIT, and so WebLogic jCOM stores a direct
pointer reference. In this situation you may have to ensure that only the creating thread
makes calls onto that object. This situation is very rare, and a message is logged to the
WebLogic jCOM log (if logging is enabled) to let you know that it has happened.

How to run COM clients in native mode (JVM
out-of-process)

Prior to reading this section, please read through (and ideally run) the standard DCOM
Java examples (VB to Java early and late binding).

If you want your JVM to run out of process (but allow COM client access to the Java
objects contained therein using native code), you must use the 'regjvm' command to
register it as being native. The regjvm command sets up various registry entries to
facilitate WebLogic jCOM's COM-to-Java mechanism:

In your main you then tell the WebLogic jCOM runtime that the JVM is ready to
receive calls by calling com.bea.jcom.Jvm.register("MyJvm").
5-4 WebLogic jCOM Reference Guide

How to run COM clients in native mode (JVM in-process)
You would then start your JVM:
java -DJCOM_NATIVE_MODE YourMain

From VB you can now use late binding to instantiate instances of any Java class that
can be loaded in that JVM:
Set aHashtable = GetObject("MyJvm:java.util.Hashtable")

"MyJvm" is just a string to identify the JVM -- you can use anything.

This would only work if the JVM were already running. Additional parameters to the
regjvm command can specify a command to be used to launch the JVM if it is not
already running.

Having registered the JVM, use the standard WebLogic jCOM 'regtlb' command to
allow early bound access to Java objects (regtlb takes as parameters the name of a type
library, and a JVM name, and registers all the COM objects defined in that type library
as being located in that JVM).

You can also control the instantiation of Java objects on behalf of COM clients by
associating your own Instanciator with a JVM (additional parameter to
com.bea.jcom.Jvm.register(...)) -- a kind of object factory. This is used in most of the
standard COM->EJB examples in the WebLogic jCOM documentation.

How to run COM clients in native mode (JVM
in-process)

Use this technique to actually load the JVM into the COM client's address space.

Again, use the 'regjvm' command, but this time specify additional parameters.

The simplest example would be to use Visual Basic to perform late bound access to
Java objects. First register the JVM. If you are using Sun's JDK 1.3.1, which is
installed under d:\bea\jdk131, and WebLogic jCOM is installed in
d:\bea\wlserver6.1\jcom, and your Java classes are in c:\pure, you would use
WebLogic jCOM Reference Guide 5-5

5 Native Mode
As you can see, you specify the JVM name, the CLASSPATH, and the JVM bin
directory path.

From VB you should now be able to do:
MessageBox GetObject("MyJvm:java.util.Hashtable")

If you wish to specify properties to be set for the JVM, add them at the end of the
regjvm command line, in the form name=value, separated by spaces (don't use
-Dname=value). For example if you run into problems, enable logging by adding
JCOM_LOG_LEVEL=3 and JCOM_LOG_FILE=c:\temp\jcom.log to the end
of the 'regjvm' command. The mechanism described above (calling
com.bea.jcom.Log.logImmediately(...)) only works when your Java class has had a
chance to run -- there may be a problem before then.

If you get the E_NOMONIKER error, please enable logging in the WebLogic jCOM
moniker (jintmk.dll) and examine the classpath that is being used to ensure it has any
JVM classes that are required, as well as the WebLogic jCOM runtime (jcom.jar) and
any classes you may need.
5-6 WebLogic jCOM Reference Guide

Unsupported features and known issues
Unsupported features and known issues

The following features are not yet supported in native mode, or are bugs. Tell us if you
would like them added/resolved as a matter of priority.

1. Structures as parameters
WebLogic jCOM Reference Guide 5-7

5 Native Mode
5-8 WebLogic jCOM Reference Guide

CHAPTER
6 Security/Authentication

The following section is split into four sections:

� the first section covers how you can authenticate clients invoking EJBs hosted
by WebLogic Server using JNDI authentication

� the second section covers how you can authenticate Java clients invoking
methods on COM components

� the third section tells you how you can identify the identity of COM clients
calling your Java code

� the fourth section describes a utility method which can be used to authenticate
arbitrary NT Domains/Users/Passwords from pure Java clients

� the final section shows you how you can ask to be notified when new
connections come in from COM clients

Authenticating using JNDI with WebLogic
Server

If your client application will be providing security credentials (e.g. username and
password) which are then used by WLS to authenticate access using JNDI
authentication, you need to do the following:

1. Enable JNDI authentication in the jCOM bridge.

The jCOM bridge is what allows COM clients (such as Excel) to access EJB's
hosted on WebLogic Server. To provide JNDI Authentication you need to add
the appropriate properties before calling InitialContext:
WebLogic jCOM Reference Guide 6-1

6 Security/Authentication
Context.SECURITY_AUTHENTICATION
Context.SECURITY_PRINCIPAL
Context.SECURITY_CREDENTIALS

Look at the jCOM bridge provided with the WebLogic jCOM examples (e.g.
c:\bea\wlserver6.1\jcom\samples\JCOMBridge.java). You will notice the above
three lines of code, uncomment them in the login method.

2. Use or obtain a username and password in the client application.

For example, for VBA:

'Access the jCOM bridge (without accessing any jCOM files)
Set objBridge = GetObject("objref:...:")

'Set the username and password for JNDI Authentication
Dim bridge As Object
Set bridge = objBridge.get("ejb:JCOMBridge")
bridge.login "newUsername", "newPassword"

'Bind the EJB AccountHome object via JNDI
Set mobjHome = objBridge.get("ejb:beanManaged.AccountHome")

For more information on JNDI Authentication with WebLogic Server, see:
http://e-docs.bea.com/wls/docs61/security/prog.html#1024165.

Authenticating Java clients accessing COM
components

WebLogic jCOM lets you access COM Components from Java using no
authentication, or with the equivalent of Connect level authentication.

Running your Java code under Windows

If running under Windows, and you wish WebLogic jCOM to pick up your current
identity automatically, simply place the WebLogic jCOM bin directory in your PATH
environment variable.
6-2 WebLogic jCOM Reference Guide

http://e-docs.bea.com/wls/docs61/security/prog.html#1024165

Authenticating Java clients accessing COM components
Running your Java code on non-Windows platforms

If not running under Windows, or if you don't want WebLogic jCOM to use native
code to pick up your current identity then call AuthInfo.setDefault(...) at the start of
your program to set the authentication to be used on a process-wide basis when
creating and using COM components.

You may override this process-wide default using AuthInfo.setThreadDefault(...),
which establishes the authentication to be used for the current thread. To clear the
authentication established for the current thread, call AuthInfo.setThreadDefault(null).

It is strongly recommended that you call AuthInfo.setDefault(...) to establish the
authentication to be used on a JVM-wide basis, so that WebLogic jCOM daemon
threads can perform authenticated communications (for example when releasing COM
object references that have been garbage collected).

WebLogic jCOM currently only supports Authentication, not Encryption. If you
would like encryption added, then please contact us.

Verifying that authenticated access is taking place

Under Windows NT, you may verify that authenticated access is taking place.

Start the User Manager for Domains tool using Start|Programs|Administrative
Tools|User Manager for Domains, and then display the Audit Policies dialog using
Policies|Audit.

From there you may enable the auditing of logins and logoffs:
WebLogic jCOM Reference Guide 6-3

6 Security/Authentication
Having enabled the auditing, start the Event Viewer using
Start|Programs|Administrative Tools|Event Viewer, and view the security log
using Log|Security.

WebLogic jCOM will send the name of the host under which it is running, with the
string "(jCOM)", to be logged as the workstation name.

Identifying the identity of COM clients
calling your Java code

When a COM client invokes methods in your Java object via WebLogic jCOM's
DCOM engine, you can call:

� com.bea.jcom.AuthInfo.getCallerDomain() to find the NT domain of the caller,
if it could be ascertained. This is a string.

� com.bea.jcom.AuthInfo.getCallerUser() to find the NT domain of the caller, if it
could be ascertained. This is a string.

� com.bea.jcom.isCallerAuthenticated() to find out if WebLogic jCOM was able to
verify the identity of the caller using the NT Challenge-Response protocol. In
order to be able to do this, you must set the JCOM_NTAUTH_HOST property
to the IP name of the NT machine that can authenticate the user.

Authenticating NT domain/user/passwords
from pure Java software

In order to validate a domain/user/password from a Java program running on a UNIX
box (or anywhere) use the static com.bea.jcom.NTLMAuthenticate.validate(...)
method.

This is the Javadoc associated with the method:
6-4 WebLogic jCOM Reference Guide

Listening for new connections from COM clients
public static void validate(String pdcTcpHost,
String domain,
String user,
String password) throws IOException

Attempt to authenticate an NT domain/user/password. Works from anywhere that
supports Java and requires no native code (just the jcom.jar runtime). No password is
transmitted over the network (WebLogic jCOM implements the NT
Challenge-Response mechanism). If the domain/user/password are valid then this
method simply returns, otherwise a security exception is thrown.

Parameters:
pdcTcpHost - the IP name of an NT machine against which WebLogic jCOM can
perform the authentication
domain - the NT Domain name of the user
user - the NT user name of the user
password - the user's password

Throws: SecurityException
if the domain/user/password are not correct

Throws: IOException
if there were problems talking to the NT box against which the authentication was to
take place

Note: This method does not have anything to do with our WebLogic jCOM pure
Java-COM bridge, and you never need to call it when using WebLogic jCOM to access
COM objects from Java, or the reverse.

Since we have implemented the NT Challenge-Response mechanism in pure Java as
part of our DCOM engine, it was trivial to expose this method, which may be useful.

Listening for new connections from COM
clients

This mechanism is not implemented when running in native mode.
WebLogic jCOM Reference Guide 6-5

6 Security/Authentication
Through WebLogic jCOM's ConnectionListener mechanism you can ask to be notified
when new DCOM connections are opened and closed from COM clients, and you can
reject incoming connections.

Create a class that implements the com.bea.jcom.ConnectionListener interface, and
register an instance of that class by calling
com.bea.jcom.Cleaner.addConnectionListener(...).
6-6 WebLogic jCOM Reference Guide

CHAPTER
7 Supported COM data
types, and their Java
Equivalents

WebLogic jCOM supports the full range of COM Automation types. Our philosophy
has been to avoid introducing new Java classes in order to access COM types. This
means that COM Variants map onto Objects (java.lang.Long, etc.), and Variants
containing arrays map onto Java arrays. You won't find a com.bea.jcom.Variant class
that you need to use, for example.

WebLogic jCOM also supports accessing some Java collection types as Visual Basic
Collections.

Below you will find

� Accessing Java Objects as Visual Basic Collections

� How COM IDL types map to Java, and VC++

� How COM Variants containing different types map to Java

� Type conversions used during late-bound access from COM to Java

� Accessing COM VariantEnums from Java
WebLogic jCOM Reference Guide 7-1

7 Supported COM data types, and their Java Equivalents
Accessing Java Objects as Visual Basic
Collections

Visual Basic has a built-in COM class called Collection. WebLogic jCOM provides
support for accessing instances of java.util.Vector and java.util.List as VB Collections.

Example Visual BASIC code

Private Sub Form_Load()
Dim c As Collection
Set c = GetObject("firstjvm:java.util.LinkedList")
c.Add "hello" ' List is now: "hello"
c.Add Now, , "hello" ' List is now: , "hello"
c.Add "Goodbye", , , "hello" ' List is now: now, "hello", "Goodbye"
c.Add "Before", , 3 ' List is now: now, "hello", "Before", "Goodbye"
c.Add "After", , , 4 ' List is now: now, "hello", "Before",
"Goodbye", "After"
For Each e In c
MsgBox e
Next
c.Remove 2 ' List is now: now, "Before", "Goodbye", "After"
c.Remove "Goodbye" ' List is now: now, "Before", "After"
MsgBox c.Item(1)
MsgBox c.Count
End Sub

VB Maps to java.util.Vector Notes

Collection.Add(item) aVector.addElement(item)

Collection.Add(item, , before) aVector.insertElementAt(before - 1,
item)

if before is a
number

Collection.Add(item, , before) aVector.insertElementAt(aVector.index
Of(before), item)

if before is not
a number

Collection.Add(item, , , after) aVector.insertElementAt(after, item) if after is not a
number
7-2 WebLogic jCOM Reference Guide

Accessing Java Objects as Visual Basic Collections
Collection.Add(item, , , after) aVector.insertElementAt(aVector.index
Of(after) + 1, item)

if after is a
number

Collection.Count aVector.size()

Collection.Item(index) aVector.elementAt(index - 1) index must be
a number

Collection.Remove(index) aVector.removeElementAt(index - 1) if index is a
number

Collection.Remove(index) aVector.removeElement(index) if index is not a
number

For Each x in aCollection x will take on the value of each object in
the aVector.elements() enumeration

VB Maps to java.util.List Notes

Collection.Add(item) aList.target.add(item)

Collection.Add(item, , before) aList.add(before - 1, item) if before is a
number

Collection.Add(item, , before) aList.add(aVector.indexOf(before),
item)

if before is not
a number

Collection.Add(item, , , after) aList.add(after, item) if after is not a
number

Collection.Add(item, , , after) aList.add(aVector.indexOf(after) + 1,
item)

if after is a
number

Collection.Count aList.size()

Collection.Item(index) aList.get(index - 1) index must be
a number

Collection.Remove(index) aList.remove(index - 1) if index is a
number
WebLogic jCOM Reference Guide 7-3

7 Supported COM data types, and their Java Equivalents
How COM IDL types map to Java, VB, and
VC++

In the following table we show each IDL type, describing its use from Java, from
Visual BASIC and from Visual C++.

Collection.Remove(index) aList.remove(index) if index is not a
number

For Each x in aCollection x will take on the value of each object in
the aList.listIterator() iterator

Table 7-1

IDL Java Visual BASIC Visual C++

[in]
VARIANT_BOOL

boolean ByVal boolean VARIANT_BOOL

[in, out] or [out]
VARIANT_BOOL
*

boolean[] single element
array

boolean VARIANT_BOOL*

[in] unsigned char byte ByVal byte unsigned char

[in, out] or [out]
unsigned char*

byte[] single element array byte unsigned char*

[in] double double ByVal Double double

[in, out] or [out]
double*

double[] single element
array

double double*

[in] float float ByVal Single float

[in, out] or [out]
float*

float[] single element array Single float*
7-4 WebLogic jCOM Reference Guide

How COM IDL types map to Java, VB, and VC++
[in] long int IDL long is 32 bits ByVal Long> long>

[in, out] or [out]
long*

int[] single element array Long> long*

[in] short short ByVal Integer> short>

[in, out] or [out]
short*

short[] single element
array

Integer short*

[in] BSTR java.lang.String ByVal String BSTR

[in, out] or [out]
BSTR*

java.lang.String[] single
element array

String BSTR*

[in] CY long CY is fixed point, 64
bit

ByVal Currency CURRENCY

[in, out] or [out]
CY*

long[] single element array Currency CURRENCY*

[in] DATE java.util.Date ByVal Date DATE

[in, out] or [out]
DATE*

java.util.Date[] Date DATE*

[in] IDispatch* java.lang.Object ByVal Object IDispatch*

[in, out] or [out]
IDispatch**

java.lang.Object[] single
element array

Object IDispatch**

[in]
ISomeInterface*

ISomeInterface
Generated Java Interface

ByVal ISomeInterface ISomeInterface*

[in, out] or [out]
ISomeInterface**

ISomeInterface[] single
element array

ISomeInterface ISomeInterface**

[in] SomeClass* SomeClass Generated
Java Class

ByVal SomeClass SomeClass*

[in, out] or [out]
SomeClass**

SomeClass[] single
element array

SomeClass SomeClass**

[in] IUnknown* java.lang.Object Specific class/interface IUnknown*

Table 7-1

IDL Java Visual BASIC Visual C++
WebLogic jCOM Reference Guide 7-5

7 Supported COM data types, and their Java Equivalents
[in] Variant java.lang.Object ByVal Variant VARIANT

[in, out] or [out]
Variant*

java.lang.Object[] single
element array

Variant VARIANT*

[in]
SAFEARRAY(unsi
gned char)

byte[] not supported by VB SAFEARRAY*

[in, out] or [out]
SAFEARRAY(unsi
gned char)*

byte[][] not supported by VB SAFEARRAY**

[in]
SAFEARRAY(VA
RIANT_BOOL)

boolean[] not supported by VB SAFEARRAY*

[in, out] or [out]
SAFEARRAY(VA
RIANT_BOOL)*

boolean[][] not supported by VB SAFEARRAY**

[in]
SAFEARRAY(sho
rt)

short[] not supported by VB SAFEARRAY*

[in, out] or [out]
SAFEARRAY(sho
rt)*

short[][] not supported by VB SAFEARRAY**

[in]
SAFEARRAY(lon
g)

int[] not supported by VB SAFEARRAY*

[in, out] or [out]
SAFEARRAY(lon
g)*

int[][] not supported by VB SAFEARRAY**

[in]
SAFEARRAY(floa
t)

float[] not supported by VB SAFEARRAY*

Table 7-1

IDL Java Visual BASIC Visual C++
7-6 WebLogic jCOM Reference Guide

How COM IDL types map to Java, VB, and VC++
[in, out] or [out]
SAFEARRAY(floa
t)*

float[][] not supported by VB SAFEARRAY**

[in]
SAFEARRAY(dou
ble)

double[] not supported by VB SAFEARRAY*

[in, out] or [out]
SAFEARRAY(dou
ble)*

double[][] not supported by VB SAFEARRAY**

[in]
SAFEARRAY(CU
RRENCY)

long[] not supported by VB SAFEARRAY*

[in, out] or [out]
SAFEARRAY(CU
RRENCY)*

long[][] not supported by VB SAFEARRAY**

[in]
SAFEARRAY(DA
TE)

java.util.Date[] not supported by VB SAFEARRAY*

[in, out] or [out]
SAFEARRAY(DA
TE)*

java.util.Date[][] not supported by VB SAFEARRAY**

[in]
SAFEARRAY(BS
TR)

String[] not supported by VB SAFEARRAY*

[in, out] or [out]
SAFEARRAY(BS
TR)*

String[][] not supported by VB SAFEARRAY**

[in]
SAFEARRAY(LP
DISPATCH)

Object[] not supported by VB SAFEARRAY*

Table 7-1

IDL Java Visual BASIC Visual C++
WebLogic jCOM Reference Guide 7-7

7 Supported COM data types, and their Java Equivalents
How COM Variants containing different
types map to Java

The following table shows how Variants are mapped to Java types.

[in, out] or [out]
SAFEARRAY(LP
DISPATCH)*

Object[][] not supported by VB SAFEARRAY**

[in]
SAFEARRAY(VA
RIANT)

Object not supported by VB SAFEARRAY*

[in, out] or [out]
SAFEARRAY(VA
RIANT)*

Object[][] not supported by VB SAFEARRAY**

[in]
SAFEARRAY(LP
UNKNOWN)

Object not supported by VB SAFEARRAY*

[in, out] or [out]
SAFEARRAY(LP
UNKNOWN)*

Object[][] not supported by VB SAFEARRAY**

Table 7-1

IDL Java Visual BASIC Visual C++

Variant Containing a Maps to Java type

VARIANT_BOOL java.lang.Boolean

VARIANT_BOOL* java.lang.Boolean[] single element array
7-8 WebLogic jCOM Reference Guide

How COM Variants containing different types map to Java
unsigned char java.lang.Byte

unsigned char* java.lang.Byte[] single elment array

double java.lang.Double

double* java.lang.Double[] single element array

float java.lang.Float

float* java.lang.Float[] single element array

long java.lang.Integer IDL long is 32 bits

long* java.lang.Integer[] single element array

short java.lang.Short

short* java.lang.Short[] single element array

BSTR java.lang.String

BSTR* java.lang.String[]single element array

CY java.lang.Long

CY* java.lang.Long[]single element array

Decimal java.math.BigDecimal

Decimal* java.math.BigDecimal[]single element array

DATE java.util.Date

DATE* java.util.Date[]

SCODE java.lang.Long

SCODE* java.lang.Long[] single element array

IDispatch* java.lang.Object

IUnknown* java.lang.Object

Single dimensional array of
VARIANT_BOOLs

boolean[]

Variant Containing a Maps to Java type
WebLogic jCOM Reference Guide 7-9

7 Supported COM data types, and their Java Equivalents
You can also pass a Variant of type VT_EMPTY or VT_NULL by passing
com.bea.jcom.EmptyVariant.TYPE and com.bea.jcom.NullVariant.TYPE.

Single dimensional array of
unsigned chars

byte[]

Single dimensional array of
doubles

double[]

Single dimensional array of
floats

float[]

Single dimensional array of
longs

int[] IDL long is 32 bits</TD

Single dimensional array of
shorts

short[]

Single dimensional array of
BSTRs

java.lang.String[]

Single dimensional array of
CYs

long[]

Single dimensional array of
DATEs

java.util.Date[]

Single dimensional array of
SCODEs

long[]

Single dimensional array of
IDispatch*s

java.lang.Object[]

Single dimensional array of
IUnknown*s

java.lang.Object[]

Single dimensional array of
Variants

java.lang.Object[]

Two dimensional array of
Variants

java.lang.Object[][]

Variant Containing a Maps to Java type
7-10 WebLogic jCOM Reference Guide

Type conversions used during late-bound access from COM to Java
Type conversions used during late-bound
access from COM to Java

These tables show the Java expression used to convert a VB value 'vb' of the VB type
on the left to the Java type at the top. Note that conversions marked with a * can also
raise Type Mismatch Error.

Java boolean, byte, short and int

Java(across)
VB (down)

boolean byte short int

Boolean natural vb ? 1 : 0 vb ? 1 : 0 vb ? 1 : 0

Byte(0..255) vb != 0 new
Integer(vb).byteV
alue()

new
Integer(vb).short
Value()

new
Integer(vb).intVa
lue()

Integer(16 bit) vb != 0 new
Short(vb).byteVa
lue()

natural new
Short(vb).intValu
e()

Long(32 bit) vb != 0 new
Integer(vb).byteV
alue()

new
Integer(vb).short
Value()

natural

Single vb != 0.0F new
Float(vb).byteVal
ue()

new
Float(vb).shortVa
lue()

new
Float(vb).intValu
e()

Double vb != 0.0 new
Double(vb).byte
Value()

new
Double(vb).short
Value()

new
Double(vb).intVa
lue()

Currency(64 bit) vb != 0 new
Long(vb).byteVal
ue()

new
Long(vb).shortVa
lue()

new
Long(vb).intValu
e()

String new
Boolean(vb).bool
eanValue()

new
Long(vb).byteVal
ue()*

new
Long(vb).shortVa
lue()*

new
Long(vb).intValu
e()*
WebLogic jCOM Reference Guide 7-11

7 Supported COM data types, and their Java Equivalents
Java long, char, float and double

Date Type Mismatch
Error

Type Mismatch
Error

Type Mismatch
Error

Type Mismatch
Error

Object Type Mismatch
Error

Type Mismatch
Error

Type Mismatch
Error

Type Mismatch
Error

Variants As above
depending on
content

Java(across)
VB (down)

boolean byte short int

VB/Java long char float double
Boolean vb ? 1 : 0 vb ? (char)1 :

(char)0
vb ? 1.0F : 0.0F vb ? 1.0 : 0.0

Byte(0..255) new
Integer(vb).long
Value()

(char)(new
Integer(vb).intVa
lue())

new
Integer(vb).float
Value()

new
Integer(vb).doubl
eValue()

Integer(16 bit) new
Short(vb).longVa
lue()

(char)(new
Short(vb).intValu
e())

new
Short(vb).floatVa
lue()

new
Short(vb).double
Value()

Long(32 bit) new
Integer(vb).long
Value()

(char)(new
Integer(vb).byteV
alue())

new
Integer(vb).float
Value()

new
Integer(vb).doubl
eValue()

Single new
Float(vb).longVal
ue()

(char)(new
Float(vb).intValu
e())

natural new
Float(vb).double
Value()

Double new
Double(vb).long
Value()

(char)(new
Double(vb).intVa
lue())

new
Double(vb).float
Value()

natural

Currency(64 bit) natural (char)(new
Long(vb).intValu
e())

new
Long(vb).floatVa
lue()

new
Long(vb).double
Value()

String new
Long(vb).longVa
lue()

(char)(new
Long(vb).intValu
e())

new
Long(vb).floatVa
lue()

new
Long(vb).double
Value()
7-12 WebLogic jCOM Reference Guide

Type conversions used during late-bound access from COM to Java
Java String, Date and Object

Date Type Mismatch
Error

Type Mismatch
Error

Type Mismatch
Error

Type Mismatch
Error

Object Error Error Error Error

Variants As above
depending on
content

VB/Java long char float double

VB/Jav
a

String Date Object

Boolean vb + "" Error new
Boolean(vb)

Byte(0..
255)

vb + "" Error new Byte(vb)

Integer(
16 bit)

vb + "" Error new Short(vb)

Long(32
bit)

vb + "" Error new Integer(vb)

Single vb + "" Error new Float(vb)

Double vb + "" Error new Double(vb)

Currenc
y

vb + "" Error new Long(vb)

String natural new Date(vb) vb (as String_

Date vb.toString() Natural vb (as Date)

Object vb.toString Error vb

Variant As above depending on
content
WebLogic jCOM Reference Guide 7-13

7 Supported COM data types, and their Java Equivalents
Arrays

If a Java method has a parameter which is an array, then if you pass a VB parameter
by value to that method you will get an error. If you pass a value by reference, and if
the type matches precisely (see below), the Java method will receive a single element
array whose single element can be modified to change the corresponding VB
parameter. If you pass an array, and if the array content type matches precisely, the
Java method will receive an array whose elements can be modified to change the
corresponding VB parameter.

Arrays:

Java type VB pass by reference match

boolean[] Boolean passed by reference

byte[] Byte passed by reference

short[] Short passed by reference

int[] Long passed by reference

long[] Currency passed by reference

float[] Single passed by reference

double[] Double passed by reference

String[] String passed by reference

java.util.Date[] Date passed by reference

Java type Parameter of this VB type will match

boolean[] Dim anArray(n) as Boolean

byte[] Dim anArray(n) as Byte
7-14 WebLogic jCOM Reference Guide

Accessing COM VariantEnums from Java
Accessing COM VariantEnums from Java

Some COM methods return a COM VariantEnumeration type. WebLogic jCOM's
java2com tool automatically converts the returned type into a standard Java
java.lang.Enumeration. There isn't a perfect match though, since COM Enumerations
have no equivalent to the 'hasMoreElements()' call, meaning that you have to keep on
doing 'nextElement' until you get a 'NoSuchElementException'.

We do provide a workaround -- if you set the JCOM_PREFETCH_ENUMS Java
property, WebLogic jCOM will pre-fetch the next element behind the scenes, and thus
allow the 'hasMoreElements()' method to work properly.

short[] Dim anArray(n) as Short

int[] Dim anArray(n) as Long

long[] Dim anArray(n) as Currency

float[] Dim anArray(n) as Single

double[] Dim anArray(n) as Double

String[] Dim anArray(n) as String

java.util.Date[] Dim anArray(n) as Date

Object[] Dim anArray(n) as String

Object[] Dim anArray(n) as Date

Object[] Dim anArray(n) as Object

Object[] Dim anArray(n) as Variant

Java type Parameter of this VB type will match
WebLogic jCOM Reference Guide 7-15

7 Supported COM data types, and their Java Equivalents
7-16 WebLogic jCOM Reference Guide

CHAPTER
8 Threading

From Java to COM

WebLogic jCOM has been designed to handle multiple simultaneous requests to COM
objects from Java.

The WebLogic jCOM runtime DCOM engine will allow multiple simultaneous
requests to the same COM object, as well as to different COM objects, and since
WebLogic jCOM talks DCOM, and DCOM is layered over DCE RPC, WebLogic
jCOM will split large method invocations into multiple RPC PDUs, and reassemble
responses that have been split up.

Whether the remote COM object correctly handles multiple simultaneous requests is
entirely dependant on its threading model and implementation.

From COM to Java

WebLogic jCOM maintains a pool of threads for handling requests from COM objects.
By default, WebLogic jCOM allows a maximum of twenty threads for handling such
requests, however you may change the maximum by setting the
JCOM_MAX_REQUEST_HANDLERS property to the number you want, as in:

java -DJCOM_MAX_REQUEST_HANDLERS=50 YourMainProgram
WebLogic jCOM Reference Guide 8-1

8 Threading
WebLogic jCOM creates such threads as and when they are required. That is to say, it
does not immediately create twenty threads on start up. It creates the first thread when
the first remote request comes in. If a second request comes in, and the first thread is
busy servicing a request, then WebLogic jCOM will create a second thread to handle
the second request, and so on, up to the maximum of twenty (by default).

If you are interested in seeing WebLogic jCOM's thread allocation mechanism in
action, you can run WebLogic jCOM with internal logging enabled (set the
JCOM_LOG_LEVEL property to 3, the maximum). The following Visual BASIC
code makes a callback to a Java object (p1 is a Java object):

Public Sub method1(ByVal p1 As Object)
p1.aMethod
End Sub

This is an excerpt from the log, showing what happens. The
IDispatch::GetIDsOfNames is handled internally by WebLogic jCOM, using
reflection.

13:05:20+: ObjectExporter0 received an unfragmented request with
call ID 1
13:05:20+: Maximum number of request handler threads is set to 20
13:05:20+: There are 0 request handler threads, of which 0 are
currently busy.
13:05:20+: Creating a new request handler thread.
13:05:20 : IDispatch::GetIDsOfNames request on ExcepDemo@1f230b for
AMETHOD. Returning memid 9
13:05:20+: ObjectExporter0 sending 44 bytes
13:05:20+: ObjectExporter0 read 192 bytes
13:05:20+: ObjectExporter0 received an unfragmented request with
call ID 2
13:05:20+: There are 1 request handler threads, of which 0 are
currently busy.
13:05:20 : IDispatch::Invoke request received for public void
ExcepDemo.aMethod() on ExcepDemo@1f230b

If you wish to prevent the same method in your Java object from being invoked more
than once at the same time by COM objects, then simply use the standard Java
synchronized keyword, which will cause methods invocations to block if another
object is already invoking the method.
8-2 WebLogic jCOM Reference Guide

CHAPTER
9 Using COM Objects
from Java

In this section we describe how you can create an instance of a COM object, and use
it from Java using WebLogic jCOM. We also explain how to deal with new references
to COM objects that are returned from method calls to COM objects:

� Java classes generated from COM classes by com2java

� Java interfaces & classes generated from COM interfaces by com2java

You may wish to read through the documentation on the com2java tool prior to reading
this section of the documentation.

Java classes generated from COM classes by
com2java

For each COM Class that the com2java tool finds in a type library, it generates a Java
class which can be used to access the COM Class. These generated Java classes have
several constructors:

� The default constructor, which creates an instance of the COM Class on the local
host, with no authentication

� A second constructor, which creates an instance of the COM Class on a specific
host, with no authentication
WebLogic jCOM Reference Guide 9-1

9 Using COM Objects from Java
� A third constructor, which creates an instance of the COM Class on the local
host, with specific authentication

� A fourth constructor, which creates an instance of the COM Class on a specified
host, with specific authentication

� A final constructor, which can be used to wrap a returned object reference which
is known to reference an instance of the COM Class

The default constructor

The default constructor can be used to create an instance of a COM object on the local
machine using the default authentication if it has been set, or using no authentication
if no default has been defined.

The second constructor (String host)

The second constructor can be used to create an instance of a COM object on a specific
host using the default authentication if it has been set, or using no authentication if no
default has been defined.

The third constructor (AuthInfo authInfo)

The third constructor can be used to create an instance of a COM object on the local
host using the specified authentication.

The fourth constructor (String host, AuthInfo authInfo)

The fourth constructor can be used to create an instance of a COM object on the
specified host using the specified authentication.
9-2 WebLogic jCOM Reference Guide

Java interfaces & classes generated from COM interfaces by com2java
The final constructor (Object objRef)

This final constructor does not actually create a new instance of the COM Class.
Instead, it can be used to access a reference to the COM class that was returned from
another COM Class (from a method call, or via a property or event).

If a method or property returns a reference to a COM Class, then the com2java tool
will automatically generate a method signature which returns the appropriate Java
Class, if the returned COM Class is defined in the same type library.

Java interfaces & classes generated from
COM interfaces by com2java

A method in a COM interface may return a reference to an object through a specific
interface.

For example the Excel type library (Excel8.olb) defines the _Application COM
Interface, with the method Add which is defined like this in COM IDL:

[id(0x0000023c), propget, helpcontext(0x0001023c)]
HRESULT Workbooks([out, retval] Workbooks** RHS);

The method returns a reference to an object that implements the Workbooks COM
interface. Because the Workbooks interface is defined in the same type library as the
_Application interface, the com2java tool generates the following method in the
_Application Java interface it creates:

/**
* getWorkbooks.
*
* @return return value. An reference to a Workbooks
* @exception java.io.IOException If there are communications
problems.
* @exception com.bea.jcom.AutomationException If the remote server
throws an exception.
*/
public Workbooks getWorkbooks () throws java.io.IOException,
com.bea.jcom.AutomationException;
WebLogic jCOM Reference Guide 9-3

9 Using COM Objects from Java
It is revealing to look at the implementation of the method in the generated
_ApplicationProxy Java class:

/**
* getWorkbooks.
*
* @return return value. An reference to a Workbooks
* @exception java.io.IOException If there are communications
problems.
* @exception com.bea.jcom.AutomationException If the remote
server throws an exception.
*/
public Workbooks getWorkbooks () throws java.io.IOException,
com.bea.jcom.AutomationException{ com.bea.jcom.MarshalStream
marshalStream = newMarshalStream("getWorkbooks");
marshalStream = invoke("getWorkbooks", 52, marshalStream);
Object res = marshalStream.readDISPATCH("return value");
Workbooks returnValue = res == null ? null : new
WorkbooksProxy(res);
checkException(marshalStream,
marshalStream.readERROR("HRESULT"));
return returnValue;
}

As you can see, the method internally makes use of the generated WorkbooksProxy
Java class. As mentioned above, the com2java tool generates the method with the
Workbooks return type because the Workbooks interface is defined in the same type
library as _Application.

If the Workbooks interface were defined in a different type library, WebLogic jCOM
would have generated the following code:

/**
* getWorkbooks.
*
* @return return value. An reference to a Workbooks
* @exception java.io.IOException If there are communications
problems.
* @exception com.bea.jcom.AutomationException If the remote server
throws an exception.
*/
public Object getWorkbooks () throws java.io.IOException,
com.bea.jcom.AutomationException;

In this case, you would have to explicitly use the generated proxy class to access the
returned Workbooks:
9-4 WebLogic jCOM Reference Guide

Java interfaces & classes generated from COM interfaces by com2java
Object wbksObj = app.getWorkbooks();
Workbooks workbooks = new WorkbooksProxy(wbObj);
WebLogic jCOM Reference Guide 9-5

9 Using COM Objects from Java
9-6 WebLogic jCOM Reference Guide

CHAPTER
10 Java Properties in
jCOM.jar

The following table documents the properties which can be set for the jcom.jar:

jCOM Property Description

ENABLE_TCP_NODELAY TCP/IP Connections have
TCP_NODELAY set when
running in DCOM mode. See
the standard Java API
documentation for an
explanation of what this
actually does.

JCOM_DCOM_PORT Specifies the TCP/IP port
jCOM uses to receive
incoming DCOM requests
(actually uses two ports).

JCOM_COINIT_VALUE Sets the COM mode to be used
when WebLogic jCOM
initialises COM for new
threads using CoInitializeEx.

JCOM_INCOMING_CONNECTION_TIMEOUT This causes any incoming
connections which have not
been used for specified number
of milliseconds to disconnect.
WebLogic jCOM Reference Guide 10-1

10 Java Properties in jCOM.jar
JCOM_OUTGOING_CONNECTION_TIMEOUT This causes any outgoing
connections (connections
initiated by the WebLogic
jCOM runtime) which have
not been used for specified
number of milliseconds to
disconnect.

com.bea.jcom.server Normally when running in
DCOM mode theWebLogic
jCOM runtime includes all the
IP addresses for the local
machine in DCOM object
references to Java objects that
it passes over to COM. Setting
this property limits the IP
address to that specified (also
uses RMI_LOCAL_HOST but
com.bea.jcom.server overrides
it).

JCOM_MAX_REQUEST_HANDLERS See the Multi-Threading
section of the WebLogic
jCOM documentation.

JCOM_NATIVE_MODE Tells theWebLogic jCOM
runtime to run in Native mode
(the value associated with the
property is ignored).

jCOM Property Description
10-2 WebLogic jCOM Reference Guide

JCOM_NOGIT Tells the WebLogic jCOM
runtime to not use the COM
Global Interface Table
construct when running in in
native mode. Setting this
property means that
WebLogic jCOM stores
object reference pointers
directly, instead of GIT
cookies, which in turn means
that you may have problems
passing object references
between threads.

JCOM_NTAUTH_HOST Set this property to the name of
a NT server machine that
WebLogic jCOM can talk to
to authenticate incoming
DCOM calls. See the Security
section of the WebLogic
jCOM reference guide.

JCOM_LOCAL_PORT_START Tells the WebLogic jCOM
runtime what local port to try
to use when opening DCOM
connections to COM servers --
if the specified port is already
in use, it tries the next one up,
until it reaches
JCOM_LOCAL_PORT_END
.

JCOM_LOCAL_PORT_END Tells the WebLogic jCOM
runtime the upper limit to use
for local ports to use when
opening DCOM connections to
COM servers (see
JCOM_LOCAL_PORT_STA
RT).

jCOM Property Description
WebLogic jCOM Reference Guide 10-3

10 Java Properties in jCOM.jar
JCOM_PROXY_PACKAGE Used when the proxies
generated by java2com have
been put into a specific
package (using an
undocumented mechanism).

JCOM_SKIP_CLOSE WebLogic jCOM will let peer
close sockets when running in
DCOM mode.

JCOM_WS_NAME Sets the name that an NT
machine will see as the client's
workstation name when the
client is running in DCOM
mode, using
AuthInfo.setDefault(...), or
AuthInfo.setThreadDefault(...)

jCOM Property Description
10-4 WebLogic jCOM Reference Guide

CHAPTER
11 Troubleshooter

The following sections outline some common problems with WebLogic jCOM and
useful tips to workaround them:

� Improving WebLogic jCOM’s Performance

� DOS Errors

� Java Errors

� Visual BASIC Errors

� Visual C++ Errors

� DCOM Security problems when running under certain environments

� The IID*.java wrappers generated by java2com do not compile

� The Error I am getting is not listed

Improving WebLogic jCOM’s performance

Use the reduced logging runtime

The easiest way to improve performance is to use the reduced logging WebLogic
jCOM runtime: instead of putting jcom.jar in your CLASSPATH, use
jcom_reduced_logging.jar, which is in the same directory.
WebLogic jCOM Reference Guide 11-1

11 Troubleshooter
Using this runtime inhibits the ability to generate WebLogic jCOM log files to help
resolve issues, but it can in some circumstances result in an extremely substantial
performance gain.

Run in native mode

If you are running in WebLogic jCOM’s DCOM mode (the default) and your JVM is
running under MS Windows, you might want to think about switching to Native Mode,
which makes the WebLogic jCOM runtime use native code instead of DCOM to
interact between Java and COM. You will not have to change your code at all - this
switch to native mode is made simply by defining a runtime property.

See the section on Native Mode in the WebLogic jCOM reference guide, for more
information.

DOS Errors

If the error is

� DOS: The java command is not recognised

Then your PATH environment variable does not include the JDK bin directory.

If the error is

� DOS (while compiling using the java command):
java.lang.OutOfMemoryError

Tell the compiler to use more memory. Compile using:
java -Jmx64m -J-ms64m YourProgram.java

If the error is

� DOS: The name specified is not recognized as an internal or external
command, operable program or batch file.

when trying to use regtlb or regjvm
11-2 WebLogic jCOM Reference Guide

Java Errors
Then your PATH environment variable does not include the WebLogic jCOM’s bin
directory.

Java Errors

If the error is

� Java: Can't find class com/bea/java2com/Main

� Java: Package com.bea.jcom not found in import.

� Java: java.lang.NoClassDefFoundError: com/bea/jintact/Helper

Then your CLASSPATH environment variable does not include the WebLogic jCOM
runtime (jcom.jar).

If the error is

� Java: AutomationException: 0x80080005 - Server execution failed. Note
that Windows 95 does not support automatic launch of a server, it must be
running already

If running under Windows NT then check the NT event log
(Start|Programs|Adminstrative Tools|Event Viewer->Log|System), which will
often give you the reason for the launch failure.

A typical cause of this error is that the PATH in the registry for the server is incorrect.

There are also a couple of NT bugs which can also cause this error:
http://support.microsoft.com/support/kb/articles/q185/1/26.asp and
http://support.microsoft.com/support/kb/articles/q158/5/08.asp

If the error is

� Java: AutomationException: 0x80010001 - Call was rejected by callee. in
'Invoke'

You may well get this when running Excel. We are assuming that this is an Excel
restriction. From one of the Microsoft support answers: This error usually occurs when
the server application is too busy to respond to the client.
WebLogic jCOM Reference Guide 11-3

http://support.microsoft.com/support/kb/articles/q185/1/26.asp
http://support.microsoft.com/support/kb/articles/q158/5/08.asp

11 Troubleshooter
The 'com2java' tool has an option in the Options dialog box which causes the
WebLogic jCOM code to retry if this error occurs -- check that option and regenerate
the proxies.

If the error is

� Java: AutomationException: 0x80020003 - Member not found in
'IDispatch::invoke'

If you are using 'ocxhost' and attempting to load an ActiveX Control, then it is likely
that the prog ID you are specifying is incorrect, or the control has not been properly
registered on your machine.

You can find the correct progid by using the 'checkconfig' command:

checkconfig /typelib config.log

If you look at the generated config.log file you will see the progid to use.

If the error is

� java.lang.ClassNotFoundException

Doublecheck that your CLASSPATH is defined correctly. If you are using a Servlet
environment or other environment which loads classes in different class loaders, you
should ensure that your generated proxies and the jcom.jar file are loaded by the same
class loader.

If the error is

� java.lang.UnsatisfiedLinkError: getNegociateMessage

Check that your jcom.jar file is being loaded by the system class loader. This means
that you are trying to use native authentication but the JNI is not working correctly
because only classes loaded by the system class loader can use JNI. To ensure that the
you use the system class loader, place the jcom.jar in your CLASSPATH environment
variable at system level. See also the previous troubleshooting entry.

If the error is

� Java: AutomationException: some other error code -
11-4 WebLogic jCOM Reference Guide

Visual BASIC Errors
If there is no error message related to the error code, in the case an
AutomationException, you can look up the error code in the Microsoft Developer
Network documentation or if you have Visual C++ installed the file winerr.h or the
utility error lookup may help.

Visual BASIC Errors

If the error is

� VB: Run-time error '-2147221020 (800401e3)': Automation Error Invalid
Syntax

You will get this error if you are attempting to instanciate a Java object using:

Set o = GetObject("SomeJvmId:SomeJavaClass")

where SomeJvmId has not been registered on this machine using the regjvm command.

If the error is

� VB: Run-time error '429': ActiveX component can't create object

You will get this error if the JVM is not running, or not registered correctly, or if the
Java class could not be instanciated. Start your JVM with logging enabled using:

java -DJCOM_DCOM_PORT=??? -DJCOM_LOG_LEVEL=3 YourMainClassName

When you run your VB client, look and see if the WebLogic jCOM runtime receives
a connection from the VB client. If no connection is received, then either:

The jvmId used when you are calling com.bea.jcom.Jvm.register("jvmId") is
wrong

The port you specified when starting the JVM is wrong, or is already in use.
You can see which port the WebLogic jCOM runtime uses when you have
logging enabled:

929376053810 : OXID Resolver started. Listening on port 1111

You made a mistake when registering the JVM, either you specified the
wrong JvmID, wrong host, or wrong port when invoking regjvm jvmId
host[port] on the VB client machine.
WebLogic jCOM Reference Guide 11-5

http://msdn.microsoft.com/default.asp
http://msdn.microsoft.com/default.asp

11 Troubleshooter
The VB environment is very old, and does not support the
"MyJvm:MyClass" parameter format to GetObject. A workaround is to use
WebLogic jCOM’s 'regprogid' command to map a progid to the JVM/class:

regprogid My.ProgId "MyJvm:MyClass"

Then in your code use GetObject("My.ProgId")

If the error is

� VB: Run-time error '-2147483644 (8000004)': Automation Error No Such
interface supported

You will get this error when using early-bound access to a COM object, and you
attempt to invoke a method on that object. You have either not compiled the Java
wrapper files generated by the 'java2com' tool, or they can not be loaded by the
WebLogic jCOM runtime (jcom.jar) because they are not in your CLASSPATH.

If you are using JDK1.2, you should not put the WebLogic jCOM runtime in the "ext"
directory, since if it is in that directory it will unable to load classes in your
CLASSPATH (such as the wrapper classes). Instead put the runtime in your
CLASSPATH.

You can see this if you start the JVM with WebLogic jCOM logging set to '3' (full).:
java -DJCOM_LOG_LEVEL=3 Main

Visual C++ Errors

If the error is

� VC++: 0x80040154 (Class not registered)

Follow the same steps as for the VB Error 429.

If the error is

� VC++: 0x80000004

Follow the same steps as for the VB Error 8000004.
11-6 WebLogic jCOM Reference Guide

DCOM security problems when running under certain environments
DCOM security problems when running
under certain environments

Java applications running under certain environments (servlets/IDEs) may result in
DCOM security errors despite the fact that they run successfully from the command
line.

The behaviour you are seeing may be caused by one of the following:

1. The Java code is running as a different user. Native authentication picks up the user
running the Java code and this user may not have sufficient DCOM access.

2. The jcom\bin directory is not in your PATH at system level or the Servlet/IDE
environment has not been restarted to pick up any changes in the PATH.

3. The WebLogic jCOM runtime is not being loaded by the system class loader.
Native authentication uses JNI and JNI calls must be made from classes loaded
by the system class loader. Some environments allow you to specify a classpath
which is loaded by a different class loader. Java files in such a classpath will not
be able to use JNI. A safe way to ensure that the system class loader is used is to
specify the inclusion of jcom.jar in the classpath environment variable or using
the -cp/-classpath/-Djava.class.path options when running java.exe. An additional
thing to take into account is that WebLogic jCOM proxies files, and the jcom.jar
runtime should be loaded by the same class loader.

If you enable WebLogic jCOM logging as specified in the trouble shooter, issues 2 and
3 will show that the native authentication DLL failed to load or run correctly.
WebLogic jCOM logging also shows you which class loader the jcom.jar is run under
- bootstrap is the system class loader.

Another solution to the problem may be to use com.bea.jcom.AuthInfo.setDefault(...)
which uses pure java authentication (no JNI) and hence will also run on non-Windows
platforms.

Also read entries in the trouble shooter and in the Security section of the
documentation for further information on security issues.
WebLogic jCOM Reference Guide 11-7

11 Troubleshooter
The IID*.java Wrappers Generated by
java2com do not compile

You may get errors like this:
tlb\remote\IID6cce3097_00e5_1000_500a_bf09cf1e0000Wrapper.java:2:

IID6cce3097_00e5_1000_500a_bf09cf1e0000Wrapper should

be declared abstract; it does not define getHomeInterfaceClass() in

IID6cce3097_00e5_1000_500a_bf09cf1e0000Wrapper

public class IID6cce3097_00e5_1000_500a_bf09cf1e0000Wrapper extends

com.bea.jcom.Dispatch implements javax.ejb.EJB

MetaData {

or
D:\pure\JCOM\TLB\Bean>javac

IID828d8ad4_00e5_1000_502a_bf09cf1e0000Wrapper.java

IID828d8ad4_00e5_1000_502a_bf09cf1e0000Wrapper.java:2:

IID828d8ad4_00e5_1000_502a_bf09cf1e0000Wrapper should be declared

abstract; it does not define toString(boolean) in

IID828d8ad4_00e5_1000_502a_bf09cf1e0000Wrapper

public class IID828d8ad4_00e5_1000_502a_bf09cf1e0000Wrapper extends

com.bea.jcom.Dispatch implements java.security

.Certificate {

By default the java2com tool ignores certain classes and methods, in order to attempt
to reduce the number of generated wrappers. It may be that it is ignoring classes such
as java.lang.Class (in the first case above), or methods such as toString() (in the sec-
ond case). You will need to look at the error you are getting in order to determine
which class or method is being ignored when it is actually required.

Unregister the type library (if you have already registered it), delete the generated
wrappers, re-run java2com, and click on the "Names..." button, and remove the
mapping of the required class or method to "".
11-8 WebLogic jCOM Reference Guide

The error I am getting is not listed
The error I am getting is not listed

Email support@bea.com and include the following information:

� The WebLogic jCOM version you are using

� The JDK version you are using

� The platforms you are using, including any service releases/option packs
installed

� If running your Java software in an Applet/Servlet/Application server, full
version details

� The config.log generated by doing checkconfig config.log

� The jcom.log generated by enabling logging as described below

Certain configuration problems may be recognized by running the checkconfig tool in
the jcom\bin directory. Run "checkconfig /?" for further details on usage.

Depending on the nature of the error you are getting, it may be useful to include the
extensive logging information which WebLogic jCOM can generate.

To cause the WebLogic jCOM Java runtime to generate logging information to the file
jcom.log add the call com.bea.jcom.Log.logImmediately. You must call this only once
in your Java code -- the easiest way of including this is to put the call in a static block
in the first Java class you use (when calling from Java to COM or from Java to COM):

public class YourClass {

 static {

 com.bea.jcom.Log.logImmediately(3, "c:\\jcom.log");

 }

 ...

}

If using an Applet then you can cause logging to go to the Java
console like this:
WebLogic jCOM Reference Guide 11-9

mailto:support@bea.com

11 Troubleshooter
static {

 com.bea.jcom.Log.logImmediately(3, System.err);

}

3 is the log level -- it means verbose. You can specify any file name as the second
parameter.

To enable logging inside the WebLogic jCOM Moniker (jintmk.dll -- the 'glue'), use
the registry editor to create a value under the following key
HKEY_LOCAL_MACHINE\SOFTWARE\Linar\JintMkr. The value should be called logFile
and should be set to a file name, such as c:\temp\jcommk.log.

Please send us both of the above logs if you run into problems.
11-10 WebLogic jCOM Reference Guide

	Contents
	1 The com2java Tool
	Using com2java
	Selecting the type library
	Specifying the Java package name
	Options
	Clash Prefix
	Lower case method names
	Only generate IDispatch
	Generate retry code on '0x80010001 - Call was rejected by callee'
	Generate Arrays as Objects
	Prompt for names for imported tlbs
	Don't generate dispinterfaces
	Generate depreciated constructors
	Don't rename methods with same names
	Ignore conflicting interfaces
	Generate Java AWT classes

	Generate the proxies

	Files generated by com2java
	Enumerations
	COM Interfaces
	COM Classes

	Special case -- source interfaces (Events)
	Summary - Events

	2 WebLogic jCOM and COM Event
	3 Exceptions
	Exceptions raised in COM components
	Raising exceptions in a COM component
	Catching them in Java
	Use IOException rather than AutomationException?

	Exceptions raised in Java objects
	The source
	The description
	The code
	What if you want to specify the source/description/code yourself?

	Using the Exception Interception Mechanism

	4 Garbage Collection and Reference Counting
	On COM objects referenced from Java clients
	On Java objects referenced from COM clients

	5 Native Mode
	What is supported?
	Both IDispatch and vtable
	In-process and out-of-process
	All JVMs
	Microsoft Transaction Server / COM+

	How to run Java clients in native mode
	Threading Models

	How to run COM clients in native mode (JVM out-of-process)
	How to run COM clients in native mode (JVM in-process)
	Unsupported features and known issues

	6 Security/Authentication
	Authenticating using JNDI with WebLogic Server
	Authenticating Java clients accessing COM components
	Running your Java code under Windows
	Running your Java code on non-Windows platforms
	Verifying that authenticated access is taking place

	Identifying the identity of COM clients calling your Java code
	Authenticating NT domain/user/passwords from pure Java software
	Listening for new connections from COM clients

	7 Supported COM data types, and their Java Equivalents
	Accessing Java Objects as Visual Basic Collections
	Example Visual BASIC code

	How COM IDL types map to Java, VB, and VC++
	How COM Variants containing different types map to Java
	Type conversions used during late-bound access from COM to Java
	Java boolean, byte, short and int
	Java long, char, float and double
	Java String, Date and Object
	Arrays

	Accessing COM VariantEnums from Java

	8 Threading
	From Java to COM
	From COM to Java

	9 Using COM Objects from Java
	Java classes generated from COM classes by com2java
	The default constructor
	The second constructor (String host)
	The third constructor (AuthInfo authInfo)
	The fourth constructor (String host, AuthInfo authInfo)
	The final constructor (Object objRef)

	Java interfaces & classes generated from COM interfaces by com2java

	10 Java Properties in jCOM.jar
	11 Troubleshooter
	Improving WebLogic jCOM’s performance
	Use the reduced logging runtime
	Run in native mode

	DOS Errors
	Java Errors
	Visual BASIC Errors
	Visual C++ Errors
	DCOM security problems when running under certain environments
	The IID*.java Wrappers Generated by java2com do not compile
	The error I am getting is not listed

