BEA WebLogic
Server

Developing WebLogic
Server Applications

BEA WebLogic Server Version 6.1
Document Date: June 24, 2002

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Collaborate, BEA WebL ogic Commerce
Server, BEA WebL ogic E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Developing WebL ogic Server Applications

Part Number Document Date Software Version

N/A June 24, 2002 BEA WebL ogic Server Version 6.1

Contents

About This Document

AUIENCE. ...t et b et b e st se et ne e viii
E-0OCS WED SIte....eiiiieceeete ettt et s viii
How t0 Print the DOCUMENE.........ccoeeriirieinenese sttt s viii
Related INfOrmMation.........cc.ooeeieeeee e e iX
1010 g1 7= o AL U L USSR iX
Documentation CONVENTIONSciueerieirieerieeseisee sttt es X
1. Understanding WebLogic Server J2EE Applications

What Are WebL ogic Server J2EE Applications and Components? 1-2
J2EE PLAfOrM ...t 1-3
WebL ogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functionality 1-3

Web Application COMPONENES........cccureerirerere st 1-4
SENVIELS. ..t 1-4
JAVASEIVELN PAgES......ccceiveeeeectiee ettt 1-5

Web Application Directory StrUCLUre..........cccvereererieiieneene e 1-5

For More Information on Web Application Components................... 1-5
Enterprise JavaBean COMPONENES.......ccceevvrerereseserreesieseessseeeeseeseesesenns 1-6

EIB OVEIVIBW ...ttt sae b 1-6

EJIB INtEITACES ...cviireiiriiieeee et e 1-6

EJBs and WeEDLOQIC SEIVENcoveveivere e 1-7

WebL ogic Server COMPONENESc.coerieierierierie e e ee e 1-8
CoNNECLOr COMPONENT......cceeeerieeierteererereeeeesreereesreeeeeeeseesseeseesnesseesneens 1-8
Enterprise APPlICaLIONS........coiv et ene 1-9
Client APPIICALIONS.ccieeereeerierere e sr et 1-9

Developing BEA WebL ogic Server Applications iii

iv

2. Developing WebLogic Server J2EE Applications

Creating Web Applications: Main StEPSc.ccvvvvrerierereeeseeeeeseseseesseneeseens 2-2
Creating Enterprise JavaBeans: Main SEEPS.......cccoverireerieeeieeeeesesesie s 2-3
Creating WebL ogic Server Enterprise Applications: Main Steps.........ccccvvnins 2-5
Creating Resource Adapters: Main SEEPS.....c.vvvvvveviveesieeereeeeeeeeeseseseeseens 2-9
Creating a New Resource Adapter (.Far)o.eoeeeeereereeieereseeie e 2-9
Modifying an Existing Resource Adapter (.rar)ccoeevevveererenereeseeneennns 2-11
Establishing a Development ENVIronmentcococeeverienenienesenie e 2-13
SOFtWEAIE TOOIS. ...ttt et 2-13
Source Code Editor or IDE ... 2-13

XML EQItOr .ttt 2-13

JAVA COMPIIEN ... e s 2-14
Development WebLOGIC SEIVErcvvvveeerereereeesese e e s 2-14
Database System and JIDBC DIVESccooeierereieeineniereee e 2-15

WWED BIOWSEYoviiiiirie ettt t e see st s e et 2-16
Third-Party SOftWar€........ccccvvvverireeeseeee s e 2-16
Preparing t0 COMPILE.c.coeieeeeierere e e e 2-17
Putting the Java Tools in Your Search Path..........c.ccocoiiiiiniiiiiiniis 2-17
Setting the Classpath for Compiling.......cccoceeveveeeeiere s 2-18
Setting Target Directories for Compiled Classes........ccooverereneereeiinennes 2-18
Editing Deployment DESCIIPLOISccouverirereriesieie e seeneas 2-20
Using the BEA XML EditOr.....ccccovoeeieeriie e 2-20
Using the Administration Console Deployment Descriptor Editor.......... 2-21
Editing EJB Deployment DesCriptorS......cceiveeeereeeeenereriereeesieseseens 2-21

Editing Web Application Deployment DesCriptorsccoveeevveeennns 2-23

Editing Resource Adapter Deployment DesCriptors.........ccccveeeeeene 2-25

Editing Enterprise Application Deployment Descriptors.................. 2-27

Packaging WebLogic Server J2EE Applications

PaCKaging OVEIVIEWccveieeeieeeeire et e e st e e se e e e sresresne e nre s 32
BN 1= O 32
XML Deployment DESCIIPLOIS.covuveivreereresesteseeseeeseeeeaesesessesessessens 33
Automatically Generating Deployment DesCriptors........ccceveeeeeereeeesenen. 34
Development Mode vs. Production Mode..........cocoerenineninenenene e 3-6

Packaging Web AppliCationS.........cocveireeinisie e 3-6

Developing BEA WebL ogic Server Applications

Packaging Enterprise JAVABEANS..........cocveeeeeresesesesiesieseeseeeeesse s e sressessesnens 3-8

Packaging ReSOUrce AdapterS.......cocoiireie e e 3-10
Packaging Enterprise AppliCations........cccvvvveverereerieeneee e seee e 311
Packaging Client APpliCatioNS........cccvevveeisiese e 313
Executing a Client Applicationin an EAR File........ccccooioiiiiniicicnnne 3-13
Special Considerations for Deploying J2EE Client Applications............ 3-15
Packaging J2EE Applications Using Apache Ant.........cccceoevereieneneneeninennes 3-16
Compiling Java SOUrCE FIlES........c.ooiireeirerereee e 317
Running WebL ogic Server COMpPIlers........cccoovvvievevesieveseeneeseeeeeeens 317
Packaging J2EE Deployment UNItS........ccoceverereneenicieeneseeesesese s 3-18
RUNNING ANE ..ttt et e e eb s 321
Resolving Class References Between Components.........ccvevveeeeeneriereeseenennns 321
Clas080Er OVEINVIBWc.cceeuieieeieieririe ettt se e e e e enea 321
About Application Classloaders...........coererirereieninereee s 3-22
About Resource Adapter ClasseS......cceereeerreeiesesieseeseeseeseesesseesesnens 3-23
Using PreferWeblnfClassesin J2EE Applications..........coccoevereieenennenn 3-23
Packaging Common Utilities and Third-Party Classes.........c.ccoccverennne 3-24
Handling Interactions Between Startup Classes and Applications.......... 3-24

Programming Topics

L OQGING MESSAGES ... cueeuieterieiteeeesie et se e et se st se s be bt sbesbebesaessesbeneeseeneanean 4-1
Using Threads in WEbLOGIC SEIVEScouvieeeeeeeeresesteseseesseseeseesaeseeseseeneas 4-4
Using JavaMail with WebL ogic Server AppliCations.........cccvevveevvnereerenieennns 4-6
About JavaMail Configuration Fil€S..........cocovriiiiinini e 4-6
Configuring JavaMail for WebLogiC SErVEr........ccocveverereeneeierereene e 4-7
Sending Messages With JavaMallccccveecvvniennscesc s 4-9
Reading Messages with JavaMail ... 4-10
Programming Applications for WebL ogic Server Clusters.........ccoovvevvrnnnne 4-12

. application.xml Deployment Descriptor Elements

2 o] o] 1Yoz (o] AR A-2
[[olo o TSROSO P TSP PP PTPRUTPRRRPIN A-3
SMA-TCON ..ot s A-3
[AIQE-ICON .. s A-3
iSPIAY-NAME ...t bbb A-3

Developing BEA WebL ogic Server Applications %

Vi

[01STox 1] o) (o) o S A-3

70T L1 O RRS A-3
G0 ———————————— A-4

[=Y F PR TPPPPPR A-4

1TL=. o J SR A-4

ESS o0] 2 (0] = T A-5
ESCIIPLION ...t e e ebe e eaea A-5

(0] =T 0 L= SRRSO A-5
.. A-5

B. Client Application Deployment Descriptor Elements

application-client.xml Deployment Descriptor Elementsccccooveeveeenne. B-1
F=To] o T o= 0] oot 1= | T B-4
1o o SRS B-4
AISPIAY-NAME ... B-4

[01STor 11 o) (o] o ST B-4

(= 0 VL= 011 PSSO P VPRSPPI B-5

G 0-TEf e B-5
FESOUMCE-TES ...ttt et B-6

WebL ogic Run-time Client Application Deployment Descriptor B-7
APPlICALTION-CHIENT ...t e B-8

1< 12T YA B-8

GTERT B-9
FESOUNCE-TEf ™ ...ttt B-9

Developing BEA WebL ogic Server Applications

About This Document

This document introduces the BEA WebL ogic Server™ application devel opment
environment. It describes how to establish a development environment and how to
package applications for deployment on the WebL ogic Server platform.

The document is organized as follows:

m Chapter 1, “Understanding WebL ogic Server J2EE Applications,” describes
components of WebL ogic Server applications.

m Chapter 2, “Developing WebL ogic Server J2EE Applications,” outlines
high-level procedures for creating WebL ogic Server applications and helps Java
programmers establish their programming environment.

m Chapter 3, “Packaging WebL ogic Server J2EE Applications,” describes how to
bundle WebL ogic Server components and applicationsin standard JAR filesfor
distribution and deployment.

m Chapter 4, “Programming Topics,” covers general WebL ogic Server application
programming issues, such as logging messages and using threads.

m Appendix A, “application.xml Deployment Descriptor Elements,” is areference
for the standard J2EE Enterprise application deployment descriptor,
application. xm .

m Appendix B, “Client Application Deployment Descriptor Elements,” isa
reference for the standard J2EE Client application deployment descriptor,
appl i cation-client.xnl,and the WebL ogic-specific client application
deployment descriptor.

Developing WebL ogic Server Applications vii

Audience

This document is written for application devel opers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

Y ou can print acopy of this document from aWeb browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

viii Developing WebL ogic Server Applications

http://www.adobe.com

Related Information

The BEA corporate Web site provides al documentation for WebL ogic Server. The
following WebL ogic Server documents contain information that isrelevant to creating
WebL ogic Server application components:

Programming WebL ogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html

Programming WebLogic HTTP Serviets at
http://e-docs.bea.com/wls/docs61/servlet/index.html

Programming WebLogic JSP at http://e-docs.bea.com/wls/docs61/jsp/index.html

Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html

Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs61/jdbc/index.html

Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs61/webServices/index.html

Programming WebL ogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html

For more information in general about Java application development, refer to the Sun
Microsystems, Inc. Java 2, Enterprise Edition Web Site at
http://java.sun.com/products/j2ee/.

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Y our comments will be
reviewed directly by the BEA professional s who create and update the documentation.

Developing WebL ogic Server Applications iX

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/jdbc/index.html
http://e-docs.bea.com/wls/docs61/webServices/index.html
http://e-docs.bea.com/wls/docs61/jconnector/index.html
http://java.sun.com/products/j2ee/
mailto:docsupport@bea.com

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and
running BEA WebL ogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:
m Your name, e-mail address, phone number, and fax number

m Your company name and company address

m Your machine type and authorization codes

m The name and version of the product you are using

m A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keysyou press simultaneously.

italics Emphasis and book titles.

X Developing WebL ogic Server Applications

http://www.bea.com

Convention

Usage

nonospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

i mport java.util.Enuneration;
chmod u+w *

confi g/ exanpl es/ appl i cati ons
.java

config. xm

f1 oat

nonospace
italic
t ext

Variablesin code.
Example:
String Custoner Nane;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:

LPT1

BEA_HOME

OR

{1

A set of choicesin asyntax line.

[]

Optional itemsin a syntax line. Example:

java utils.MilticastTest -n name -a address
[-p portnunber] [-t tineout] [-s send]

Separates mutually exclusive choicesin asyntax line. Example:

java webl ogi c. depl oy [list| depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in a command line:

m Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

m You can enter additional parameters, values, or other information

Developing WebL ogic Server Applications Xi

Convention Usage

Indicates the omission of items from a code example or from asyntax line.

Xii Developing WebL ogic Server Applications

CHAPTER

1 Understanding

WebL ogic Server
J2EE Applications

The following sections provide an overview of WebL ogic Server J2EE applications
and application components:

What Are WebL ogic Server J2EE Applications and Components?
Web Application Components

Enterprise JavaBean Components

WebL ogic Server Components

Connector Component

Enterprise Applications

Client Applications

Developing WebL ogic Server Applications

1 Understanding WebLogic Server J2EE Applications

What Are WebL ogic Server J2EE
Applications and Components?

1-2

A BEA WebL ogic Server™ application is an application composed of one or many
J2EE components that runs on WebL ogic Server. They can include the following
components:

m Web components—HTML pages, servlets, JavaServer Pages, and related files
m EJB components—entity beans, session beans, and message-driven beans

m WebLogic Server components—startup and shutdown classes

m Connector component—resource adapters

Web designers, application devel opers, and application assemblers create applications
and their components by using J2EE technologies such as JavaServer Pages, servlets,
Enterprise JavaBeans, and resource adapters.

Components are packaged in Java ARchive (JAR) files—archives created with the
Javaj ar utility. JAR filesbundle all component filesin adirectory into asinglefile,
maintaining the directory structure. JAR files aso include XML descriptors that
instruct WebL ogic Server how to deploy the components.

Web applications are packaged ina JAR filewith a. war extension. Enterprise beans,
WebL ogic components, and client applications are packaged in JAR fileswith . j ar
extensions. Resource adapters are packaged in aJAR filewith a. r ar extension.

An enterprise application, consisting of assembled Web application, EJB components,
and resource adapters, isaJAR filewith an . ear extension. An. ear file contains all
of the.jar,.war,and. rar component archive filesfor an application and an XML
descriptor that describes the bundled components.

To deploy acomponent, an application, or aresource adapter, you use the
Administration Console or the webl ogi c. depl oy command-line utility to upload
JAR filesto the target WebL ogic Servers.

Developing WebL ogic Server Applications

What Are WebL ogic Server J2EE Applications and Components?

Client applications that are not Web browsers are Java classes that connect to

WebL ogic Server using Remote Method Invocation (RMI). A Java client can access
Enterprise JavaBeans, JDBC connections, JM S messaging, and other servicesby using
RMI.

J2EE Platform

WebL ogic Server contains Java 2 Platform, Enterprise Edition (J2EE) technologies.
J2EE isthe standard platform for developing multitier enterprise applications based on
the Java programming language. The technologies that make up J2EE were devel oped
collaboratively by Sun Microsystems and other software vendors, including BEA
Systems.

J2EE applications are based on standardized, modular components. WebL ogic Server
provides acomplete set of services for those components and handles many details of
application behavior automatically, without requiring programming.

WebL ogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functionality

BEA WebL ogic Server 6.1 isthe first e-commerce transaction platform to implement
advanced J2EE 1.3 features. To comply with the rules governing J2EE, BEA Systems
provides two separate downloads: one with J2EE 1.3 features enabled, and onethat is
limited to J2EE 1.2 features only. Both downloads offer the same container and differ
only inthe APIs that are available.

Note: Your CLASSPATH setting for compiling J2EE components depends on
whether you want to create components that are completely J2EE
1.2-compliant or components that contain J2EE 1.3 features. For detailed
information, see “ Setting the Classpath for Compiling” on page 2-18.

WebL ogic Server 6.1 with J2EE 1.2 Plus Additional J2EE 1.3 Features

With this download, WebL ogic Server defaults to running with J2EE 1.3 features
enabled. These featuresinclude EJB 2.0, JSP 1.2, Servlet 2.3, and J2EE Connector
Architecture 1.0. When you run WebL ogic Server 6.1 with J2EE 1.3 features enabled,
J2EE 1.2 applications are till fully supported. The J2EE 1.3 feature implementations
use non-final versions of the appropriate API specifications. Therefore, application

Developing WebL ogic Server Applications 1-3

1 Understanding WebLogic Server J2EE Applications

code developed for BEA WebL ogic Server 6.1 that uses the new features of J2EE 1.3
may be incompatible with the J2EE 1.3 platform supported in future rel eases of BEA
WebL ogic Server.

WebL ogic Server 6.1 with J2EE 1.2 Certification

With this download, WebL ogic Server defaults to running with J2EE 1.3 features
disabled and is fully compliant with the J2EE 1.2 specification and regulations.

Web Application Components

Servlets

A Web archive contains the files that make up a Web application. A . war fileis
deployed as a unit on one or more WebL ogic Servers.

A Web archive on WebL ogic Server always includes the following files:
m at least one servlet or JSP page, along with any helper classes

m Aweb. xm deployment descriptor, a J2EE standard XML document that
describes the contents of a. war file.

m A webl ogi c. xm deployment descriptor, an XML document containing
WebL ogic Server-specific dements for Web applications.

A Web archive might also include HTML/XML pages with supporting files such as
images and multimediafiles.

Servlets are Java classes that execute in WebL ogic Server, accept arequest from a
client, processiit, and optionally return aresponse to the client. A GenericServlet is
protocol independent and can be used in J2EE applications to implement services
accessed from other Java classes. An HttpServlet extends GenericServlet with support
for the HTTP protocol. An HttpServlet is most often used to generate dynamic Web
pages in response to Web browser requests.

1-4 Developing WebL ogic Server Applications

What Are WebL ogic Server J2EE Applications and Components?

JavaServer Pages

JSP pages are Web pages coded with an extended HTML that makes it possible to
embed Javacodein aWeb page. JSP pages can call custom Javaclasses, called taglibs,
using HTML -like tags. The WebL ogic JSP compiler, webl ogi c. j spc, trandates JSP
pages into servlets. WebL ogic Server automatically compiles JSP pages if the servlet
classfileis not present or is older than the JSP source file.

Y ou can also precompile JSP pages and package the servlet classin the Web Archive
to avoid compiling in the server. Servlets and JSP pages may depend upon additional
helper classes that must al so be deployed with the Web application.

Web Application Directory Structure

Web application components are assembled in a directory in order to stage the . war
filefor thej ar command. HTML pages, JSP pages, and the non-Java class files they
reference are accessed beginning in the top level of the staging directory.

The XML descriptors, compiled Java classes and JSP taglibs are stored in a WEB- | NF
subdirectory at the top level of the staging directory. Java classesinclude servlets,
helper classes and, if desired, precompiled JSP pages.

The entire directory, once staged, isbundled into a. war fileusing thej ar command.
The. war file can be deployed alone or packaged in an Enterprise Archive (. ear file)
with other application components, including other Web Applications, EJB
components, and WebL ogic components.

For More I nformation on Web Application Components

For more information about creating Web application components, see these
documents:

m Programming WebLogic Serviets at
http://e-docs.bea.com/wls/docs61/servlet/index.html

m Programming WebLogic JSP at http://e-docs.bea.com/wls/docs6L/jsp/index.html
m Writing JSP Extensions at http://e-docs.bea.com/wls/docs61/taglib/index.html

m Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html.

Developing WebL ogic Server Applications 1-5

http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/taglib/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

1 Understanding WebLogic Server J2EE Applications

Enterprise JavaBean Components

Enterprise JavaBeans (EJBs) beans are server-side Java components that implement a
business task or entity and are written according to the EJB specification. There are
threetypes of enterprise beans: session beans, entity beans, and message-driven beans.

EJB Overview

Session beans execute a particular business task on behalf of asingle client during a
single session. Session beans can be stateful or stateless, but are not persistent; when a
client finishes with a session bean, the bean goes away.

Entity beans represent business objects in a data store, usually arelational database
system. Persistence—loading and saving data—can be bean-managed or
container-managed. More than just an in-memory representation of a data object,
entity beans have methods that model the behaviors of the business objects they
represent. Entity beans can be accessed concurrently by multiple clients and they are
persistent by definition.

A message-driven bean isan enterprise bean that runsin the EJB container and handles
asynchronous messages from a IMS Queue. When amessage is received in the IMS

Queue, the message-driven bean assigns an instance of itself from apool to processthe
message. M essage-driven beans are not associated with any client. They ssimply handle
messages as they arrive. A IM S ServerSessionPool provides asimilar capability, but

without the advantages of running in the EJB container.

Enterprise beans are bundled into a JAR file that contains their compiled classes and
XML deployment descriptors.

EJB Interfaces

1-6

Entity beans and session beans have remote interfaces, home interfaces, and
implementation classes provided by the bean devel oper. (M essage-driven beansdo not
require home or remote interfaces, because they are not accessible outside of the EJB
container.)

Developing WebL ogic Server Applications

What Are WebL ogic Server J2EE Applications and Components?

The remote interface defines the methods a client can call on an entity bean or session
bean. The implementation class is the server-side implementation of the remote
interface. The home interface provides methods for creating, destroying, and finding
enterprise beans. The client accessesinstances of an enterprise bean through thebean’s
home interface.

EJB home and remote interfaces and implementation classes are portable to any EJB
container that implements the EJB specification. An EJB developer can supply aJAR
file containing just the compiled EJB interfaces and classes and a depl oyment
descriptor.

EJBsand WebL ogic Server

J2EE cleanly separates the development and deployment roles to ensure that
components are portable between EJB servers that support the EJB specification.
Deploying an enterprise bean in WebL ogic Server requires running the WeblL ogic EJB
compiler, webl ogi c. ej bc, to generate the stub and skeleton classes that allow an
enterprise bean to be executed remotely.

WebL ogic stubs and skeletons can also contain support for WebL ogic clusters, which
enable load-balancing and fail over for enterprise beans. Y ou can runwebl ogi c. ej bc
to generate the stub and skeleton classes and add them to the EJB JAR file, or

WebL ogic Server can create them by running the compiler at deployment time.

The J2EE-specified deployment descriptor, ej b-j ar. xm , describes the enterprise
beans packaged in an EJB JAR file. It definesthe beans' types, names, and the names
of their home and remote interfaces and implementation classes. Theej b-j ar. xni
deployment descriptor defines security rolesfor the beans, and transactional behaviors
for the beans' methods.

Additional deployment descriptors provide WebL ogic-specific deployment
information. A webl ogi c- cnp-r dbms-j ar. xm deployment descriptor for
container-managed entity beans maps a bean to tablesin a database. The

webl ogi c- ej b-j ar. xm deployment descriptor supplies additional information
specific to the WebL ogic Server environment, such as clustering and cache
configuration.

For help creating and deploying EJBs, see Programming WebLogic Enterprise
JavaBeans at http://e-docs.bea.com/wls/docs61/ejb/index.html.

Developing WebL ogic Server Applications 1-7

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html

1 Understanding WebLogic Server J2EE Applications

WebL ogic Server Components

The WebL ogic Server components are startup and shutdown classes, Java classes that
execute when deployed or at shutdown time, respectively.

Startup classes can be RMI classes that register themselvesin the WebL ogic Server
naming tree or any other Java class that can be executed in WebL ogic Server. Startup
classes can be used to implement new servicesin WebL ogic Server. Y ou could create
a startup class that provides access to a legacy application or areal-time feed, for
example.

Shutdown classes execute when WebL ogic Server shuts down and are usually used to
free resources obtained by startup classes.

Startup and shutdown classes can be configured in WebL ogic Server from the
Administration Console. The Java class must be in the server’s CLASSPATH.

Connector Component

1-8

The central component within the WebL ogic J2EE Connector architecture isthe
resource adapter, which serves asthe“ connector.” The Connector architecture enables
both Enterprise Information Systems (EISs) vendors and third-party application
devel opersto devel op resource adaptersthat can be deployed in any application server
supporting the J2EE 1.3 specification from Sun Microsystems. Resource adapters
contain the Java, and if necessary, the native components required to interact with the
ElS.

When aresource adapter is deployed in the WebL ogic Server environment, it enables
the development of robust J2EE applications that now have accessto aremote EIS
system. Developers of WebL ogic Server applications can use HTTP servlets,
JavaServer Pages (JSPs), Enterprise Java Beans (EJBs), and other APIsto develop
integrated applications that use the data and business logic of the EIS.

Asis, the basic Resource ARchive (. r ar) or deployment directory cannot be
deployed to WebL ogic Server. You must first create and configure WebL ogic
Server-specific deployment propertiesinthewebl ogi c-ra. xni file, and add that file
to the deployment.

Developing WebL ogic Server Applications

Enterprise Applications

For help configuring and deploying resource adapters, see Programming the
WebL ogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html.

Enterprise Applications

An enterprise J2EE application contains both Web and EJB components, deployment
descriptors, and archive files. An Enterprise Archive (. ear) file contains the Web
archivesand EJB archives. The META- | NF/ appl i cati on. xml deployment descriptor
contains an entry for each Web and EJB component, and additional entriesto describe
security roles and application resources such as databases.

From the WebL ogic Administration Server you use the Administration Console or the
webl ogi c. depl oy command line utility to deploy an . ear file on one or more
WebL ogic Serversin adomain.

Client Applications

Client-side applications written in Java that access WebL ogic Server components
range from simple command line utilities that use standard /O to highly interactive
GUI applications built using the Java Swing/AWT classes.

Client applications use WebL ogic Server componentsindirectly, using HTTP requests
or RMI requests. The components actually execute in WebL ogic Server, not in the
client.

To execute aWebL ogic Server Java client, the client computer needs the

webl ogi c. j ar file, webl ogi c_sp. j ar file (if you are using a Service Pack version
of WebL ogic Server), the remote interfaces for any RMI classes and enterprise beans
on WebL ogic Server, and the client application classes.

Developing WebL ogic Server Applications 1-9

http://e-docs.bea.com/wls/docs61/jconnector/index.html
http://e-docs.bea.com/wls/docs61/jconnector/index.html

1 Understanding WebLogic Server J2EE Applications

The application devel oper packages client-side applications so they can be deployed
on client computers. To simplify maintenance and deployment, it is agood ideato
package a client-side application in a JAR file that can be added to the client’s
classpath along with the webl ogi c. j ar and webl ogi c_sp. j ar files.

WebL ogic Server also supports J2EE client applications (as opposed to simple Java
programs) that are packaged in aJAR filewith astandard XML depl oyment descriptor
(cli ent-application. xn) and aWebL ogic-specific deployment descriptor. The
webl ogi c. d i ent Depl oyer command line utility isexecuted on the client computer
to package a client application to this specification. See “Packaging Client
Applications’ on page 3-13 for more about J2EE client applications.

1-10 Developing WebL ogic Server Applications

CHAPTER

2

Developing WebLogic
Server J2EE
Applications

The following sections describe how to create different types of WebL ogic Server
J2EE applications (such as enterprise applications, Web applications, and Enterprise
JavaBeans) and set up a development environment:

Creating Web Applications: Main Steps

Creating Enterprise JavaBeans: Main Steps

Creating WebL ogic Server Enterprise Applications: Main Steps
Creating Resource Adapters: Main Steps

Establishing a Development Environment

Preparing to Compile

Editing Deployment Descriptors

WebL ogic Server applications are created by Java programmers, Web designers, and
application assembl ers. Programmersand designers create componentsthat i mplement
the business logic and presentation logic for the application. Application assemblers
assembl e the components into applications ready to deploy on WebL ogic Server.

Developing WebL ogic Server Applications 2-1

2 Developing WebLogic Server J2EE Applications

Creating Web Applications: Main Steps

2-2

Creating aWeb application requires creating HTML pages, JSPs, servlets, JSPtaglibs,
and two deployment descriptors, and then packaging everythingintoa*. war file. The
*, war fileisdeployed on WebL ogic Server as a Web application.

Here are the main steps for creating a Web application:

1. Createthe HTML pages and JSPs that make up the Web interface of the Web
application. Typically, Web designers create these parts of a Web application.

For detailed information about creating JSPs, refer to Programming WebLogic
JSP at http://e-docs.bea.com/wls/docs61/jsp/index.html.

2. Write the Java code for the servlets and the JSP taglibs referenced in JavaServer
Pages (JSPs). Typically, Java programmers create these parts of a Web
application.

For detailed information about creating servlets, refer to Programming
WebLogic HTTP Servlets at http://e-docs.bea.com/wls/docs61/servlet/index.html.

3. Compilethe servletsinto classfiles.

For detailed information about compiling, refer to “ Preparing to Compile” on
page 2-17.

4. Createtheweb. xm and webl ogi c. xmi deployment descriptors.

Theweb. xm file defines each servlet and JSP page and enumerates enterprise
beans referenced in the Web application. Thewebl ogi c. xmi file adds additional
deployment information for WebL ogic Server.

You can create theweb. xm and webl ogi c. xm deployment descriptors by
hand, or you can use a Java-based utility included in WebL ogic Server to
automatically generate them. For more information on automatically generating
these files, see “ Automatically Generating Deployment Descriptors’ on page
3-4.

See Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61l/webapp/index.html for detailed information on
the elementsin these deployment descriptors and instructions for creating them
by hand.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html

Creating Enterprise JavaBeans: Main Steps

5. Packagethe HTML pages, servlet classfiles, JSP files, web.xml, and
weblogic.xml filesinto aWeb archive (*. war) file.

Thefirst stepin creating a*. war fileisto create a Web application staging
directory. JSP pages, HTML pages, and multimediafiles referenced by the pages
are saved in the top level of the staging directory. Compiled servlet classes,
taglibs, and, if desired, servlets compiled from JSP pages are stored under a

VEB- | NF directory in the staging directory. When the Web application
components are al in place in the staging directory, you create the *. war file
with the JAR command.

For detailed information about creating a*. war file, refer to “Packaging Web
Applications’ on page 3-6.

6. Auto-deploy the*. war file on WebL ogic server for testing purposes.

While you are testing the Web application you might need to edit the web. xni
and webl ogi c. xm deployment descriptors; you can do this manually, or you
can use the deployment descriptor editor in the Administration Console. For
detailed information on using the deployment descriptor editor, see “Editing
Deployment Descriptors’ on page 2-20.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/admingui de/appman.html for detailed
information about auto-deploying components and applications.

7. Deploy the*. war file onthe WebL ogic Server for production use or includeit in
an enterprise archive (*. ear) file to be deployed as part of an enterprise
application. You use the Administration Console to deploy applications and
components.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/admingui de/appman.html for detailed
information about deploying components and applications.

Creating Enterprise JavaBeans: Main Steps

Creating an Enterprise JavaBean requires creating the classes for the particular EJB
(session, entity, or message-driven) and the EJB-specific depl oyment descriptors, and
then packaging everything up intoan *. ear fileto be deployed on WebL ogic Server.

Developing WebL ogic Server Applications 2-3

http://e-docs.bea.com/wls/docs61/adminguide/appman.html
http://e-docs.bea.com/wls/docs61/adminguide/appman.html

2 Developing WebLogic Server J2EE Applications

2-4

Here are the main steps for creating an Enterprise JavaBean:

1. Write the Java code for the various classes required by each type of EJB (session,

entity, or message-driven) in accordance with the EJB specification. For example,
session and entity EJBs require the following three classes:

e An EJB homeinterface
e A remote interface for the EJB
e Animplementation class for the EJB

M essage-driven beans, however, require only an implementation class.

. Compile the Java code for the interfaces and implementation into classfiles.

For detailed information about compiling, refer to “ Preparing to Compile” on
page 2-17.

. Create the EJB-specific deployment descriptors:

e ejb-jar.xm describesthe EJB type and its deployment properties using a
standard DTD from Sun Microsystems.

e webl ogi c-ej b-j ar. xnl adds additional WebL ogic Server-specific
deployment information.

e webl ogi c-cnp-rdbns-j ar. xm maps acontainer-managed entity EJB to
tablesin a database. This file can must have a different name for each CMP
bean packaged in a JAR file. The name of the fileis specified in the bean’'s
entry inthewebl ogi c-ej b. j ar file.

You can create the EJB deployment descriptors by hand, or you can use a
Java-based utility included in WebL ogic Server to automatically generate them.
For more information on automatically generating these files, see “ Automatically
Generating Deployment Descriptors’ on page 3-4.

For detailed information about the elementsin the EJB-specific deployment
descriptors and how to create the files by hand, refer to Programming WebLogic
Enterprise JavaBeans at http://e-docs.bea.com/wls/docs61l/egjb/index.html.

. Package the class files and deployment descriptorsinto a*. j ar Javaarchivefile

Thefirst stepin creating a*. j ar fileisto create an EJB staging directory. Place
the compiled Java classes in the staging directory and the deployment
descriptorsin a subdirectory called META- | NF. Then run the webl ogi c. ej bc
EJB compiler to generate the stub and skeleton classesinto the staging directory.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html

Creating WebLogic Server Enterprise Applications: Main Steps

Then you create the EJB archive by executing aj ar command like the
following in the staging directory:

jar cvf nyBJB.jar *

For detailed information about creating the EJB *. j ar archivefile, refer to
“Packaging Enterprise JavaBeans’ on page 3-8.

5. Auto-deploy the*. j ar EJB archive file on WebL ogic server for testing
purposes.

While you are testing the EJB you might need to edit the EJB deployment
descriptors; you can do this manually, or you can use the deployment descriptor
editor in the Administration Console. For detailed information on using the
deployment descriptor editor, see “Editing Deployment Descriptors’ on page
2-20.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/admingui de/appman.html for detailed
information about auto-deploying components and applications.

6. Deploy the*. j ar file on WebL ogic Server for production use or includeit in an
enterprise archive (*. ear) file to be deployed as part of an enterprise application.
You use the Administration Console to deploy applications and components.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/admingui de/appman.html for detailed
information about deploying components and applications.

Creating WebLogic Server Enterprise
Applications: Main Steps

Creating a WebL ogic Server enterprise application requires creating Web and EJB
components, deployment descriptors, and archive files. The result is an enterprise
application archive (. ear file), that can be deployed on WebL ogic Server.

Here are the main steps for creating a WebL ogic Server enterprise application:

1. Create Web and EJB components for your application.

Developing WebL ogic Server Applications 2-5

http://e-docs.bea.com/wls/docs61/adminguide/appman.html
http://e-docs.bea.com/wls/docs61/adminguide/appman.html

2 Developing WebLogic Server J2EE Applications

2-6

Programmers create servlets and EJBs using the J2EE APIsfor these
components. Web designers create Web pages using HTML/XML, and
JavaServer Pages.

For overview information about creating Web and EJB components, refer to
“Creating Web Applications: Main Steps’ on page 2-2 and “ Creating Enterprise
JavaBeans. Main Steps’ on page 2-3.

For detailed information about creating the Java code that makes up the Web and
EJB components, refer to Programming WebL ogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs6l/ejb/index.html, Programming WebLogic HTTP
Servlets at http://e-docs.bea.com/wls/docs6l/servlet/index.html, and
Programming WebLogic JSP at http://e-docs.bea.com/wls/docs6/jsp/index.html.

. Create Web and EJB component deployment descriptors.

Component deployment descriptors are XML documents that provide
information needed to deploy the application in WebL ogic Server. The J2EE
specifications define the contents of some deployment descriptors, such as

ej b-jar.xm andweb. xnl . Additional deployment descriptors supplement the
J2EE-specified descriptors with information required to deploy componentsin
WebL ogic Server.

You can create the these depl oyment descriptors by hand, or you can use a
Java-based utility included in WebL ogic Server to automatically generate them.
For more information on automatically generating these files, see “ Automatically
Generating Deployment Descriptors’ on page 3-4.

Refer to Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html for detailed information
about writing Web component deployment descriptors by hand and to
Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs6l/ejb/index.html for detailed information about
writing EJB component deployment descriptors by hand.

. Package the Web and EJB componentsinto their component archive files.

Component archives are JAR files containing all of the component files,
including deployment descriptors. You package Web componentsinto a* . war
file and EJB componentsintoan EJB *. j ar file.

Refer to “Packaging Web Applications’ on page 3-6 and “Packaging Enterprise
JavaBeans’ on page 3-8 for detailed information for creating component
archives.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/webapp/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html

Creating WebLogic Server Enterprise Applications: Main Steps

4. Create the enterprise application deployment descriptor.

The enterprise application deployment descriptor, appl i cati on. xm , lists
individual components that are assembled together in an application.

You can create the appl i cat i on. xml deployment descriptor by hand, or you
can use a Java-based utility included in WebL ogic Server to automatically
generate it. For more information on automatically generating thisfile, see

“ Automatically Generating Deployment Descriptors’ on page 3-4.

Refer to “application.xml Deployment Descriptor Elements” on page -1 for
detailed information about the elements of the appl i cati on. xn file.

5. Package the enterprise application.

Package the Web and EJB component archives along with the enterprise
application deployment descriptor into an enterprise archive (*. ear) file. Thisis
thefile that is deployed on WebL ogic Server. WeblL ogic Server uses the

appl i cati on. xm deployment descriptor to locate and deploy the individual
components packaged in the EAR file.

For detailed information about creating the Enterprise Application *. ear
archivefile, refer to “ Packaging Enterprise Applications’ on page 3-11.

6. Auto-deploy the*. ear enterprise application on WebL ogic server for testing
purposes.

While you are testing the enterprise application you might need to edit the

appl i cation. xm deployment descriptor; you can do this manually, or you can
use the deployment descriptor editor in the Administration Console. For detailed
information on using the deployment descriptor editor, see “ Editing Deployment
Descriptors’ on page 2-20.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/admingui de/appman.html for detailed
information about auto-deploying components and applications.

7. Deploy the*. ear file on WebL ogic Server for production use. You use the
Administration Console to deploy applications and components.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/admingui de/appman.html for detailed
information about deploying components and applications.

Figure 2-1 illustrates the process for developing and packaging WebL ogic Server
enterprise applications.

Developing WebL ogic Server Applications 2-7

http://e-docs.bea.com/wls/docs61/adminguide/appman.html
http://e-docs.bea.com/wls/docs61/adminguide/appman.html

2 Developing WebLogic Server J2EE Applications

Figure2-1 Creating Enterprise Applications

Servlets
Create)
c Enterprise Beans JSP Pages
omponents
Web Pages
ej b-jar.xm
Create Component] b-] web. xmi

Deployment
Descriptor

webl ogi c-ej b-j ar. xm
webl ogi ¢- cnp-rdbns. xm

webl ogi c. xm

'

'

Create

Component

EJB Archive
.jar

Web Archive
. war

Archive

Create Application
Deployment
Descriptor

Y

Y

application.xmn

Assemble
Application

Y

2-8

Developing WebL ogic Server Applications

Enterprise Archive
. ear

Creating Resource Adapters: Main Steps

Creating Resource Adapters: Main Steps

Creating aresource adapter requires creating the classes for aresource adapter and the
connector-specific deployment descriptors, and then packaging everything up into an
.rar fileto be deployed on WebL ogic Server.

Creating a New Resource Adapter (.rar)

The following are the main steps for creating aresource adapter (. r ar):

1. Write the Java code for the various classes required by resource adapter
(ConnectionFactory, Connection, and so on) in accordance with the J2EE
Connector Specification, Version 1.0, Proposed Final Draft 2
(http://java.sun.com/j2ee/downl oad.html#connectorspec).

When implementing a resource adapter, you must specify classesin ther a. xm
file. For example:

<managedconnect i onf act ory- cl ass>com sun. connect or. bl ackbox. Loc
al TxManagedConnect i onFact or y</ managedconnect i onf act ory- cl ass
>

<connecti onfactory-interface> avax. sql . Dat aSour ce</ connect i onf
actory-interface>

<connecti onfactory-inpl - cl ass>com sun. connect or. bl ackbox. JdbcD
at aSour ce</ connecti onfactory-i npl -cl ass>

<connection-interface>j ava. sql . Connecti on</ connection-interfac
e>

<connecti on-inpl - cl ass>com sun. connect or . bl ackbox. JdbcConnect
on</ connection-inpl -cl ass>

2. Compile the Java code for the interfaces and implementation into classfiles.

3. Packagethe Java classesinto a Javaarchive (. j ar) file.

Thefirst stepin creating a. j ar fileisto create a connector staging directory.
Placethe. j ar filein the staging directory and the deployment descriptorsin a
subdirectory called META- I NF.

Developing WebL ogic Server Applications 2-9

2 Developing WebLogic Server J2EE Applications

2-10

Then you create the resource adapter archive by executing aj ar command like
the following in the staging directory:

jar cvf nmyRAR rar *

For detailed information about creating the resource adapter . j ar archivefile,
refer to “ Packaging Resource Adapters’ on page 3-10.

. Create the resource connector-specific deployment descriptors:

e ra.xnl describesthe resource adapter-related attributes type and its
deployment properties using a standard DTD from Sun Microsystems.

e webl ogi c-ra. xm addsadditional WebL ogic Server-specific deployment
information.

For detailed information about creating connector-specific deployment
descriptors, refer to Programming the WebL ogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html.

. Create aresource adapter archivefile (. rar file).

a. Thefirst step isto create an empty staging directory.

b. Placethe. rar file containing the resource adapter Java classesin the staging
directory.
c. Then, place the deployment descriptorsin a subdirectory called META- | NF.

d. Next, create the resource adapter archive by executingaj ar command likethe
following in the staging directory:
jar cvf nyRAR rar *

For detailed information about creating the resource adapter archivefile,
refer to “ Packaging Resource Adapters’ on page 3-10.

. Auto-deploy the. r ar resource adapter archive file on WebL ogic server for

testing purposes.

While you are testing the resource adapter you might need to edit the
deployment descriptors; you can do this manually, or you can use the
deployment descriptor editor in the Administration Console. For detailed
information on using the deployment descriptor editor, see “ Editing Deployment
Descriptors’ on page 2-20.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs61/jconnector/index.html

Creating Resource Adapters: Main Steps

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/admingui de/appman.html for detailed
information about auto-deploying components and applications.

7. Deploy the. rar resource adapter archive file on WebL ogic Server or include it
in an enterprise archive (. ear) file to be deployed as part of an enterprise
application.

Refer to BEA WebLogic Server Administration Guide at
http://e-docs.bea.com/wls/docs61/admingui de/appman.html for detailed
information about deploying components and applications.

Modifying an Existing Resource Adapter (.rar)

The following is an example of how to take an existing resource adapter (. r ar) and
modify it for deployment to WebL ogic Server. Thisinvolves adding the
webl ogi c-ra. xnl deployment descriptor and repacking.

1. Create atemporary directory to stage the resource adapter:
nkdir c:/stagedir

2. Copy the resource adapter that you will deploy into the temporary directory:
cp bl ackbox-notx.rar c:/stagedir

3. Extract the contents of the resource adapter archive:
cd c:/stagedir

jar xf blackbox-notx.rar

The staging directory should now contain the following:
m Aj ar file containing Java classes that implement the resource adapter
m A META- | NF directory containing the files: Mani f est . nf andra. xmi
Execute these commands to see these files:
c:/stagedir> 1|s
bl ackbox- not x. j ar

META- | NF

Developing WebL ogic Server Applications 2-11

http://e-docs.bea.com/wls/docs61/adminguide/appman.html
http://e-docs.bea.com/wls/docs61/adminguide/appman.html

2 Developing WebLogic Server J2EE Applications

c:/stagedir>|s META-INF
Mani f est . nf
ra.xm

4. Createthewebl ogi c-ra. xnl file. Thisfileisthe WebL ogic-specific
deployment descriptor for resource adapters. In thisfile, you specify parameters
for connection factories, connection pools, and security mappings.

Refer to Programming the WebL ogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html for more information on
the weblogic-raxml DTD.

5. Copy thewebl ogi c-ra. xnm fileinto the temporary directory's META- | NF
subdirectory. The META- | NF directory islocated in the temporary directory
where you extracted the . r ar file or in the directory containing aresource
adapter in exploded directory format. Use the following command:

cp webl ogic-ra.xm c:/stagedir/ META-| NF
c:/stagedir> |'s META-INF
Mani f est . nf
ra. xm
webl ogi c-ra. xm
6. Create the resource adapter archive:
jar cvf blackbox-notx.jar -C c:/stagedir

7. Deploy the resource adapter in WebL ogic Server. For more information on
deploying aresource adapter in WebL ogic Server, see Programming the
WebL ogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html.

2-12 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs61/jconnector/index.html
http://e-docs.bea.com/wls/docs61/jconnector/index.html
http://e-docs.bea.com/wls/docs61/jconnector/index.html

Establishing a Development Environment

Establishing a Development Environment

To develop WebL ogic Server applications, you need to assemble your software tools
and set up an environment for creating, compiling, deploying, testing, and debugging
your code. This section helps you start building your toolkit and setting up the
compiler-related environment on your development computer.

Software Tools

This section reviews the software required to develop WebL ogic Server applications
and describes optional tools for devel opment and debugging.

Source Code Editor or IDE

XML Editor

Y ou need atext editor to edit Javasourcefiles, configurationfiles, HTML/XML pages,
and JavaServer Pages. An editor that gracefully handles Windows and UNIX
line-ending differencesis preferred, but there are no other special requirements for
your editor.

Java I nteractive Devel opment Environments (IDEs) such as WebGain VisualCafé
usually include a programmer’ s editor with custom support for Java. An IDE may also
have support for creating and deploying servlets and Enterprise JavaBeans on

WebL ogic Server, which makes it much easier to develop, test, and debug
applications.

You can edit HTML/XML pages and JavaServer Pages with aplain text editor, or use
aWeb page editor such as DreamWeaver.

You use an XML editor to edit the XML files used by WebL ogic Server, such asthe
EJB and Web application deployment descriptors, the config.xml file, and so on.
WebL ogic Server includes the following two XML editors:

m Deployment Descriptor Editor, part of the Administration Console

m BEA XML Editor, a stand-alone Java-based editor

Developing WebL ogic Server Applications 2-13

2 Developing WebLogic Server J2EE Applications

For detailed information about using these XML editors, see “Editing Deployment
Descriptors’ on page 2-20.

Java Compiler

A Java compiler produces Java class files, containing portable byte code, from Java
source. The compiler compiles the Java code you write for your applications, as well
as the code generated by the WebL ogic RMI, EJB, and JSP compilers.

Sun Microsystems Java 2, Standard Edition includes a Java compiler, j avac. If you
install the bundled JRE when you install WebL ogic Server, thej avac compiler is
installed on your computer.

Other Javacompilers are available for various platforms. Y ou can use a different Java
compiler for WebL ogic Server application development as long as it produces
standard Java. cl ass files. Most Java compilers are many times faster than j avac,
and some are integrated nicely with an IDE.

Occasionally, acompiler generates optimized code that does not behave well in all
Java Virtual Machines (JVMs). When you debug problems, try disabling
optimizations, choosing a different set of optimizations, or compiling with j avac to
rule out your Java compiler as the cause. Always test your code in each target VM
before deploying.

Development WebLogic Server

2-14

Never deploy untested code on a WebL ogic Server that is serving production
applications. This means that you will need a development WebL ogic Server in your
environment. Y ou can run adevel opment WebL ogic Server on the same computer you
edit and compile on, or you can use one deployed somewhere on the network.

Javais platform independent, so you can edit and compile code on any platform, and
test your applications on development WebL ogic Servers running on other platforms.
For example, it iscommon to develop WebL ogic Server applications on a PC running
Windows or Linux, regardless of the platform where the application is ultimately
deployed.

Even if you do not run a development WebL ogic Server on your development
computer, you must have access to a WebL ogic Server distribution to compile your
programs. To compile any code using WebL ogic or J2EE APIs, the Java compiler

Developing WebL ogic Server Applications

Establishing a Development Environment

needs access to the webl ogi c. j ar file and other JAR filesin the distribution
directory. Installing WebL ogic Server on your development computer makes these
filesavailable locally.

Database System and JDBC Driver

Nearly all WebLogic Server applications require a database system. Y ou can use any
DBMS that you can access with a standard JDBC driver, but services such as

WebL ogic IMS require a supported JDBC driver for Oracle, Sybase, Informix,
Microsoft SQL Server, IBM DB2, or Cloudscape. Refer to the Platform Support Web
pageat http://e-docs.bea.com/wls/certifications/certs 610/index.html to find out about
supported database systems and JDBC drivers.

JDBC connection pools offer such significant performance advantagesthat you should
only rarely consider writing an application that uses atwo-tier JDBC driver directly.
Connection pools are a collection of ready-to-use database connections. When a
connection pool starts up, it creates a specified number of identical physical database
connections. By establishing connections at start-up, the connection pool eliminates
the overhead of creating adatabase connection for each application. BEA recommends
that both client and server-side applications obtain connections from a connection pool
through a Data Source on the INDI tree. When finished with aconnection, applications
return the connection to the connection pool.

Muultipoolsare multiplexersfor basic connection pools. To the application they appear
exactly as basic pools, but multipools allow you to establish a pool of connection
pooals, in which the connection attributes vary from connection pool to connection
pool. All of the connections in a given connection pool are identical, but the
connectionsin each connection pool in amultipool should vary in some significant
way such that an expected failure of one pool will not invalidate another pool in the
multipool. Usually these pools will be to different instances of the same database.

Multipools are only useful if there are multiple distinct database instances that can
equally handle an application connection, and the application system takes care of
synchronizing the databases when application work is distributed among the
databases. In rare cases it may be valuable to have the pools to the same database
instance, but as different users. This would be useful if the DBA disabled one user,
leaving the other user viable.

By default, a clustered multipool provides high availability (DBMS failover). A
multipool can be optionally configured to also provide load balancing.

Developing WebL ogic Server Applications 2-15

http://e-docs.bea.com/wls/certifications/certs_610/index.html

2 Developing WebLogic Server J2EE Applications

Web Browser

Most J2EE applications are designed to be executed by Web browser clients.
WebL ogic Server supportsthe HTTP 1.1 specification and is tested with current
versions of the Netscape Communicator and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions
you will support. In your test plans, include testing plans for each supported version.

Be explicit about version numbers and browser configurations. Will your application
support SSL? Test alternative security settingsin the browser so that you can tell your
users what choices you support.

If your application uses applets, it is especially important to test browser
configurations you want to support because of differencesin the JVMs embedded in
various browsers. One solution isto require usersto install the Java plug-in from Sun
so that everyone has the same Java run-time version.

Third-Party Software

2-16

Y ou can use third-party software products, such as WebGain Studio, WebGain
StructureBuilder, and BEA WebL ogic Integration Kit for VisualAge for Java, to
enhance your WebL ogic Server development environment.

For more information, see the BEA WebLogic Developer Tools Resour ces Web page
at http://www.bea.com/products/webl ogic/tool s.shtml which provides devel oper tools
information for products that support the BEA application servers.

To download some of thesetools, seethe BEA WebL ogic Server Downloads Web page
at http://commerce.bea.com/downloads/weblogic_server_tools.jsp.

Note: Check with the software vendor to verify software compatibility with your
platform and WebL ogic Server version.

Developing WebL ogic Server Applications

http://www.bea.com/products/weblogic/tools.shtml
http://commerce.bea.com/downloads/weblogic_server_tools.jsp

Preparing to Compile

Preparing to Compile

Compiling Java programs for WebL ogic Server isthe same as compiling any other
Java program. To compile successfully, you must:

m Have the Java compiler in your search path
m Set your classpath so that the Java compiler can find all of the dependent classes
m Specify the output directories for the compiled classes

One way to set up your environment isto create acommand file or shell script to set
variablesin your environment, which you can then pass to the compiler. The

set Exanpl esEnv. cnd (Windows) and set Exanpl esEnv. sh (UNIX) filesin the
conf i g/ exanpl es directory are examples of this technique.

Putting the Java Tools in Your Search Path

Make sure the operating system can find the compiler and other JDK tools by adding
it to the PATH environment variable in your command shell. If you are using the JDK,
the tools are in the bi n subdirectory of the JDK directory. To use an alternative
compiler, such asthe sj compiler from WebGain Visual Café, add the directory
containing that compiler to your search path.

For example, if the JDK isinstalledin/ usr/ 1 ocal / j ava/ j aval30 on your UNIX
file system, use a command such as the following to add j avac to your pathin a
Bourne shell or shell script:

PATH=/ usr/1 ocal / j aval/ j aval30/ bi n: $PATH, export PATH

To add the WebGainsj compiler to your path on Windows NT or Windows 2000, use
a command such as the following in acommand shell or in acommand file:

PATH=c: \ Vi sual Caf e\ bi n; %PATH%

If you are using an IDE, see the IDE documentation for help setting up an equivalent
search path.

Developing WebL ogic Server Applications 2-17

2 Developing WebLogic Server J2EE Applications

Setting the Classpath for Compiling

Most WebL ogic services are based on J2EE standards and are accessed through
standard J2EE packages. The Sun, WebL ogic, and other Java classes required to
compile programsthat use WebL ogi ¢ services are packaged inthewebl ogi c. j ar file
inthel i b directory of your WebL ogic Server installation. In addition to

webl ogi c. j ar, include the following in your compiler's CLASSPATH:

m If you are using the version of WebL ogic Server 6.1 that is limited to J2EE 1.2
features (rather than the one that also includes J2EE 1.3 features), you must
include thej 2ee12. j ar filein your CLASSPATH before you specify the
webl ogi c. j ar file. BEA recommendsthat you include thej 2ee12. j ar filein
the beginning of your CLASSPATH.

For more information on the version of J2EE (1.2 or 1.3) that your WebL ogic
Server instance implements, see “J2EE Platform” on page 1-3.

m Thelib/tools.jar fileinthe JDK directory, or other standard Java classes
required by the Java Development Kit you use.

m Classesfor third party Javatools or services your programs import.

m Other application classes referenced by the programs you are compiling.

Include in your classpath the target directories where the compiler writes the
classes you are compiling so that the compiler can locate al of the
interdependent classes in your application. The next section has more
information on target directories.

Setting Target Directories for Compiled Classes

2-18

The Java compiler writes class files in the same directory with the Java source unless
you specify an output directory for the compiled classes. If you specify the output
directory, the compiler storesthe classfilein adirectory structure that matches the
package name. This allowsyou to compile Java classesinto the correct locationsin the
staging directory you use to package your application. If you do not specify an output
directory, you have to move files around before you can create thej ar file that
contains your packaged component.

Developing WebL ogic Server Applications

Preparing to Compile

J2EE applications consist of modules assembled into an application and deployed on
one or more WebL ogic Servers or WebL ogic clusters. Each module should have its
own staging directory so that it can be compiled, packaged, and deployed
independently from other modules. For example, you can package EJBsin a separate
module, Web components in a separate module, and other server-side classesin
another module.

Seetheset Exanpl esEnv scriptsintheconf i g/ exanpl es directory of the WebL ogic
Server distribution for an example of setting up target directoriesfor the compiler. The
scripts set the following variables:

CLI ENT_CLASSES
The directory where compiled client classes are written. These classes are
usually standal one Java programsthat connect to WebL ogic Server. They do
not have to bein the WebL ogic Server CLASSPATH.

SERVER_CLASSES
The directory where server-side classes are written. These classes include
startup classes and other Java classes that must be in the WebL ogic Server
CLASSPATH when the server starts up. Application classes should usually
not be compiled into this directory, because the classes in this directory
cannot be redeployed without restarting WebL ogic Server.

EX_VEBAPP_CLASSES
The directory where classes used by the Web Application are written.

APPLI CATI ONS
Theappl i cat i ons directory for the examples domain. Unlike the others,
thisvariable is not used to specify atarget for the Java compiler. It isused as
aconvenient reference to the appl i cat i ons directory in copy commands
that movefilesfrom sourcedirectoriesinto theappl i cat i ons directory. For
example, if you have. ht i, . j sp, and image filesin your source tree, you
can use the variable in a copy command to install them in your devel opment
server.

These environment variables are passed to the compiler in commands such as the
following command for Windows:

javac -d %SERVER CLASSES% *. | ava

If you do not use an I DE, consider writing amake file, shell script, or command fileto
compile and package your components and applications. Set the variablesin the build
script so that you can rebuild components by typing a single command.

Developing WebL ogic Server Applications ~ 2-19

2 Developing WebLogic Server J2EE Applications

Editing Deployment Descriptors

Y ou can edit the deployment descriptors of WebL ogic applications and components
using one of the following toals:

m BEA XML Editor
m Deployment Descriptor Editor from within the Administration Console

Use either editor to update existing elementsin, add new elementsto, and delete
existing elements from the following deployment descriptors:

® web. xm

® webl ogi c. xni

m ejb-jar.xn

® webl ogi c-ej b-jar. xm

® webl ogi c- cnp-rdbns-j ar. xm
® ra.xn

® webl ogi c-ra. xn

® application.xn

Using the BEA XML Editor

2-20

Toedit XML files, usethe BEA XML Editor, an entirely Java-based XML stand-alone
editor. It isasimple, user-friendly tool for creating and editing XML files. It displays
XML file contents both as a hierarchical XML tree structure and as raw XML code.
This dual presentation of the document provides you with the following two methods
of editing the XML document:

m The hierarchical tree view allows structured, limited constrained editing,
providing you with a set of allowable functions at each point in the hierarchical
XML tree structure. The allowable functions are syntactically dictated and in
accordance with the XML document's DTD or schema, if one is specified.

m Theraw XML code view alows free-form editing of the data.

Developing WebL ogic Server Applications

Editing Deployment Descriptors

BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

For detailed information about using the BEA XML Editor, see its on-line help.

Y ou can download BEA XML Editor from the BEA dev2dev at
http://dev2dev.bea.com/resourcelibrary/utilitiestool s/index.jsp.

Using the Administration Console Deployment
Descriptor Editor

The Administration Console Deployment Descriptor Editor 1ooks very much like the
main Administration Console: the left pane lists the elements of the deployment
descriptor filesin tree form and the right pane contains the form for updating a
particular element.

When you use the editor, you can either update the in-memory deployment descriptor
only, or update both the in-memory and disk files. When you click the Apply button
after updating aparticular element, or the Create button to create a new element, only
the deployment descriptor in WebL ogic Server’s memory is updated; the change has
not yet been written to disk. To do thisyou must explicitly click the Persist button. If
you do not explicitly persist the changesto disk, the changeswill belost when you stop
and restart WebL ogic Server.

Editing EJB Deployment Descriptors
This section describes the procedure for editing the following EJB deployment
descriptors using the Administration Console Deployment Descriptor Editor:
m ejb-jar.xm
m webl ogi c-ej b-jar. xm
m webl ogi c- cnp-rdbns-jar. xn

For detailed information about the elementsin the EJB-specific deployment
descriptors, refer to Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html.

To edit the EJB deployment descriptors, follow these steps:

Developing WebL ogic Server Applications 2-21

http://dev2dev.bea.com/resourcelibrary/utilitiestools/index.jsp
http://e-docs.bea.com/wls/docs61/ejb/index.html

2 Developing WebLogic Server J2EE Applications

2-22

. Invoke the Administration Console in your browser using the following URL :

http://host: port/consol e

where host refersto the name of the computer upon which WebL ogic Server is
running and port refersto the port number to which it islistening.

. Click to expand the Deployments node in the |eft pane.
. Click to expand the EJB node under the Deployments node.

. Right-click the name of the EJB whose deployment descriptors you want to edit

and choose Edit EJB Descriptor from the drop-down menu. The Administration
Console window appearsin anew browser.

The left pane contains a tree structure that lists all the elementsin the three EJB
deployment descriptors and the right pane contains aform for the descriptive
elements of theej b-j ar. xm file.

. To edit, delete, or add elements in the EJB deployment descriptors, click to

expand the node in the left pane that corresponds to the deployment descriptor
file you want to edit, as described in the following list:

e the EJB Jar node contains the elements of the ej b-j ar. xm deployment
descriptor.

e the WebL ogic EJB Jar node contains the elements of the
webl ogi c- ej b-j ar. xm deployment descriptor.

e the CMP node contains the elements of the webl ogi c- cnp-rdbns-j ar. xni
deployment descriptor.

. To edit an existing element in one of the EJB deployment descriptors, follow

these steps:

a. Navigatethetreein theleft pane, clicking on parent elements until you find the
element you want to edit.

b. Click theelement. A form appearsin theright panethat lists either its attributes
or sub-elements.

c. Edit thetext in the form in the right pane.
d. Click Apply.

. To add a new element to one of the EJB deployment descriptors, follow these

steps:

Developing WebL ogic Server Applications

Editing Deployment Descriptors

C.

d.

Navigate the tree in the | eft pane, clicking on parent elements until you find the
name of the element you want to create.

Right-click the element and chose Configure a New Element from the
drop-down menu.

Enter the element information in the form that appears in the right pane.

Click Create.

8. To delete an existing element from one of the EJB deployment descriptors,
follow these steps:

a

b.

C.

Navigate the tree in the | eft pane, clicking on parent elements until you find the
name of the element you want to delete.

Right-click the element and chose Delete Element from the drop-down menu.

Click Yesto confirm that you want to delete the element.

9. Onceyou have made all your changes to the EJB deployment descriptors, click
the root element of the treein the left pane. The root element is the either the
name of the EJB *. j ar archivefile or the display name of the EJB.

10. Click Validate if you want to ensure that the entries in the EJB deployment
descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor filesto disk in
addition to WebL ogic Server’s memory.

Editing Web Application Deployment Descriptors

This section describes the procedure for editing the following Web application
deployment descriptors using the Administration Console Deployment Descriptor

Editor:

m web. xm

® webl ogi c. xm

See Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html for detailed information on the
elements in the Web application deployment descriptors.

To edit the Web application deployment descriptors, follow these steps:

Developing WebL ogic Server Applications 2-23

http://e-docs.bea.com/wls/docs61/webapp/index.html

2 Developing WebLogic Server J2EE Applications

2-24

. Invoke the Administration Console in your browser using the following URL :

http://host: port/consol e

where host refersto the name of the computer upon which WebL ogic Server is
running and port refersto the port number to which it islistening.

. Click to expand the Deployments node in the |eft pane.
. Click to expand the Web Applications node under the Deployments node.

. Right-click the name of the Web application whose deployment descriptors you

want to edit and choose Edit Web Application Descriptor from the drop-down
menu. The Administration Console window appearsin a new browser.

The left pane contains a tree structure that lists all the elements in the two Web
application deployment descriptors and the right pane contains aform for the
descriptive elements of theweb. xm file.

. To edit, delete, or add elements in the Web application deployment descriptors,

click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit, as described in the following list:

e the Web App Descriptor node contains the elements of the web. xni
deployment descriptor.

e the WebApp Ext node contains the elements of the webl ogi c. xni
deployment descriptor.

. To edit an existing element in one of the Web application deployment descriptors,

follow these steps:

a. Navigatethetreein theleft pane, clicking on parent elements until you find the
element you want to edit.

b. Click theelement. A form appearsin theright panethat lists either its attributes
or sub-elements.

c. Edit thetext in the form in the right pane.
d. Click Apply.

. To add a new element to one of the Web application deployment descriptors,

follow these steps:

a. Navigatethetreein theleft pane, clicking on parent elements until you find the
name of the element you want to create.

Developing WebL ogic Server Applications

Editing Deployment Descriptors

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appearsin the right pane.
d. Click Create.

8. To delete an existing element from one of the Web application deployment
descriptors, follow these steps:

a. Navigatethetreeintheleft pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.
c. Click Yesto confirm that you want to delete the element.

9. Onceyou have made all your changes to the Web application deployment
descriptors, click the root element of the tree in the left pane. The root element is
the either the name of the Web application *. war archivefile or the display name
of the Web application.

10. Click Validate if you want to ensure that the entries in the Web application
deployment descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor filesto disk in
addition to WebL ogic Server’s memory.

Editing Resource Adapter Deployment Descriptors

This section describes the procedure for editing the following resource adapter
deployment descriptors using the Administration Console Deployment Descriptor
Editor:

m ra.xn

® webl ogi c-ra. xm

For detailed information about the elementsin the resource adapter deployment
descriptors, refer to Programming the WebL ogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html.

To edit the resource adapter deployment descriptors, follow these steps:

1. Invoke the Administration Consolein your browser using the following URL :

Developing WebL ogic Server Applications 2-25

http://e-docs.bea.com/wls/docs61/jconnector/index.html

2 Developing WebLogic Server J2EE Applications

2-26

http://host: port/consol e

where host refersto the name of the computer upon which WebL ogic Server is
running and port refersto the port number to which it islistening.

. Click to expand the Deployments node in the |eft pane.
. Click to expand the Connectors node under the Deployments node.

. Right-click the name of the resource adapter whose deployment descriptors you

want to edit and choose Edit Connector Descriptor from the drop-down menu.
The Administration Console window appears in a new browser.

The left pane contains a tree structure that lists all the elementsin the two
resource adapter deployment descriptors and the right pane contains aform for
the descriptive elements of ther a. xni file.

. To edit, delete, or add elements in the resource adapter deployment descriptors,

click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit, as described in the following list:

e the RA node contains the elements of ther a. xm deployment descriptor.

e the WebL ogic RA node contains the elements of the webl ogi c-ra. xni
deployment descriptor.

. To edit an existing element in one of the resource adapter deployment

descriptors, follow these steps:

a. Navigatethetreein theleft pane, clicking on parent elements until you find the
element you want to edit.

b. Click theelement. A form appearsin theright panethat lists either its attributes
or sub-elements.

c. Edit thetext inthe form in the right pane.
d. Click Apply.

. To add a new element to one of the resource adapter deployment descriptors,

follow these steps:

a. Navigatethetreein theleft pane, clicking on parent elementsuntil you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

Developing WebL ogic Server Applications

Editing Deployment Descriptors

c. Enter the element information in the form that appearsin the right pane.
d. Click Create.

8. To delete an existing element from one of the resource adapter deployment
descriptors, follow these steps:

a. Navigatethetreeintheleft pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.
c. Click Yesto confirm that you want to delete the element.

9. Onceyou have made all your changes to the resource adapter deployment
descriptors, click the root element of the tree in the left pane. The root element is
the either the name of the resource adapter *. r ar archive file or the display name
of the resource adapter.

10. Click Validate if you want to ensure that the entries in the resource adapter
deployment descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor filesto disk in
addition to WebL ogic Server’s memory.

Editing Enterprise Application Deployment Descriptors

This section describesthe procedurefor editing the Enterprise Application depl oyment
descriptor (appl i cati on. xm) using the Administration Console Deployment
Descriptor Editor.

Refer to “application.xml Deployment Descriptor Elements” on page -1 for detailed
information about the elements of the appl i cati on. xni file.

Note: The following procedure describes only how to edit the appl i cat i on. xni
file; to edit the deployment descriptors in the components that make up the
Enterprise application, see “ Editing EJB Deployment Descriptors’ on page
2-21, “Editing Web Application Deployment Descriptors’ on page 2-23, or
“Editing Resource Adapter Deployment Descriptors’ on page 2-25.

To edit the Enterprise Application deployment descriptor, follow these steps:

1. Invoke the Administration Consolein your browser using the following URL :

Developing WebL ogic Server Applications ~ 2-27

2 Developing WebLogic Server J2EE Applications

2-28

http://host: port/consol e

where host refersto the name of the computer upon which WebL ogic Server is
running and port refersto the port number to which it islistening.

. Click to expand the Deployments node in the |eft pane.
. Click to expand the Applications node under the Deployments node.

. Right-click the name of the Enterprise Application whose deployment descriptor

you want to edit and choose Edit Application Descriptor from the drop-down
menu. The Administration Console window appearsin a new browser.

The left pane contains a tree structure that lists all the elementsin the
appl i cation. xm fileand the right pane contains aform for its descriptive
elements, such as the display name and icon file names.

. To edit an existing element in the appl i cati on. xm deployment descriptor,

follow these steps:

a. Navigatethetreein theleft pane, clicking on parent elementsuntil you find the
element you want to edit.

b. Click theelement. A form appearsin theright panethat lists either its attributes
or sub-elements.

c. Edit thetext in the form in the right pane.
d. Click Apply.

. To add anew element to the appl i cati on. xm deployment descriptors, follow

these steps:

a. Navigatethetreein theleft pane, clicking on parent elementsuntil you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

. To delete an existing element from the appl i cati on. xn deployment

descriptor, follow these steps:

Developing WebL ogic Server Applications

Editing Deployment Descriptors

a. Navigatethetreeintheleft pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.
c. Click Yesto confirm that you want to delete the element.

8. Onceyou have made all your changesto the appl i cati on. xm deployment
descriptor, click the root element of the tree in the left pane. The root element is
the either the name of the Enterprise application *. ear archive file or the display
name of the Enterprise application.

9. Click Validate if you want to ensure that the entriesin the appl i cati on. xn
deployment descriptor are valid.

10. Click Persist to write your edits of the deployment descriptor filesto disk in
addition to WebL ogic Server’s memory.

Developing WebL ogic Server Applications 2-29

2 Developing WebLogic Server J2EE Applications

2-30 Developing WebL ogic Server Applications

CHAPTER

3

Packaging WebLogic
Server J2EE
Applications

The following sections describe how to package and deploy WebL ogic Server J2EE
applications:

Packaging Overview

Packaging Web Applications

Packaging Enterprise JavaBeans

Packaging Resource Adapters

Packaging Enterprise Applications

Packaging Client Applications

Packaging J2EE Applications Using Apache Ant
Packaging Client Applications

Developing WebL ogic Server Applications

3 Packaging WebLogic Server J2EE Applications

Packaging Overview

JAR Files

WebL ogic Server J2EE applications are packaged in a standard way, defined by the
J2EE specifications. J2EE defines component behaviors and packaging in ageneric,
portable way, postponing run-time configuration until the component is actually
deployed on an application server.

J2EE includes deployment specifications for Web applications, EJB modules,
enterprise applications, client applications, and resource adapters. J2EE does not
specify how an application is deployed on the target server—only how a standard
component or application is packaged.

For each component type, the specifications define the filesrequired and their location
in the directory structure. Components and applications may include Java classes for
EJBsand servlets, resource adapters, Web pages and supporting files, XML -formatted
deployment descriptors, and JAR files containing other components.

An application that is ready to deploy on WebL ogic Server contains additional,
WebL ogic-specific deployment descriptors and, possibly, container classes generated
with the WebL ogic EJB, RMI, or JSP compilers.

A filecreated with the Javaj ar utility bundlesthefilesinadirectory into asingle Java
ARchive (JAR) file, maintaining the directory structure. The Java classloader can
search for Java class files (and other file types) in a JAR file the same way that it
searches adirectory in its classpath. Because the clasd oader can search adirectory or
aJAR file, you can deploy J2EE components on WebL ogic Server in either an
“exploded” directory or aJAR file.

JAR files are convenient for packaging components and applications for distribution.
They are easier to copy, they use up fewer file handles than an exploded directory, and
they can save disk space with file compression. If your Administration Server manages
adomain with multiple WebL ogic Servers, you can only deploy JAR files, because the
Administration Console does not copy expanded directories to managed servers.

32 Developing WebL ogic Server Applications

Packaging Overview

Thej ar utility isinthe bi n directory of your Java Development Kit. If you have
j avac inyour path, you also havej ar inyour path. Thej ar command syntax and
behavior is similar to the UNIX t ar command.

The most common usages of thej ar command are:

jar cf jar-file files ...
Createsa JAR filenamedj ar - fi | e containing listed files. If you include a
directory inthelist of files, all filesin that directory and its subdirectories are
added to the JAR file.

jar xf jar-file
Extract (unbundle) a JAR file in the current directory.

jar tf jar-file
List (tell) the contents of a JAR file.

Thefirst flag specifies the operation: create, extract, or list (t €ll). Thef flag must be
followed by aJAR file name. Without thef flag, j ar readsor writes JAR file contents
on st di n or st dout whichis usually not what you want. See the documentation for
the JDK utilities for more about j ar command options.

XML Deployment Descriptors

Components and applications have deployment descriptors—XML documents—that
describe the contents of the directory or JAR file. Deployment descriptors are text
documents formatted with XML tags. The J2EE specifications define standard,
portable deployment descriptors for J2EE components and applications. BEA defines
additional WebL ogic-specific deployment descriptors required to depl oy acomponent
or application in the WebL ogic Server environment.

Table 3-1 lists the types of components and applications and their J2EE-standard and
WebL ogic-specific deployment descriptors.

Table 3-1 J2EE and WebL ogic Deployment Descriptors

Component or Scope Deployment Descriptors
Application
Web Application J2EE VEB- | NF/ web. xni

WebLogic WEB- | NF/ webl ogi c. xm

Developing WebL ogic Server Applications 33

3 Packaging WebLogic Server J2EE Applications

Table 3-1 J2EE and WebL ogic Deployment Descriptors

Component or Scope Deployment Descriptors
Application
EnterpriseBean J2EE META- | NF/ ej b-j ar. xm

WebLogic META- | NF/ webl ogi c-ej b-jar. xm
META- | NF/ webl ogi c- cnp-rdbns-j ar. xm

Resource J2EE META- | NF/ ra. xm
Adapter

WebLogic META-| NF/ webl ogi c-ra. xm
Enterprise JEE META- | NF/ appl i cati on. xm
Application
Client JPEE application-client.xnl
Application

WebLogic client-application.runtime.xmn

When you package a component or application, you create a directories to hold the
deployment descriptors—WEB- | NF or META- | NF—and then create the required XML
deployment descriptorsin that directory.

Y ou can create the deployment descriptors by hand, or you can use WebL ogi c-specific
Java-based utilities to automatically generate them for you. For more information
about generating deployment descriptors, see* Automatically Generating Depl oyment
Descriptors’ on page 3-4.

If you receive a J2EE-compliant JAR file from a developer, it already contains
J2EE-defined deployment descriptors. To deploy the JAR file on WebL ogic Server,
you must extract the contents of the JAR fileinto a directory, add the required

WebL ogic-specific deployment descriptors and any generated container classes, and
then create anew JAR file containing the old and new files.

Automatically Generating Deployment Descriptors

WebL ogic Server includes a set of Java-based utilities that automatically generate the
deployment descriptors for the following J2EE components or applications: Web
applications, Enterprise JavaBeans (versions 1.1 and 2.0), and Enterprise Applications.

34 Developing WebL ogic Server Applications

Packaging Overview

These utilities examine the objects you have assembled in astaging directory and build
the appropriate deployment descriptors based on the servlet classes, EJB classes, and
so on. The utilities generate both the standard J2EE and WebL ogic-specific
deployment descriptors for each component.

WebL ogic Server includes the following utilities:
® webl ogi c. ant.taskdefs.ejb. DDl nit

Creates the deployment descriptors for Enterprise JavaBeans 1.1.
® vwebl ogi c. ant. taskdefs. ej b20. DDl ni t

Creates the deployment descriptors for Enterprise JavaBeans 2.0.
m webl ogi c. ant. taskdefs. war. DDl ni t

Creates the deployment descriptors for Web applications.
® webl ogi c. ant.taskdefs.ear. DDl nit

Creates the deployment descriptors for Enterprise Applications.

Note: Although these utilities attempt to create deployment descriptor files that are
complete and accurate for your component or application, the utilities must
guess at the value of many of therequired elements. Often this guessiswrong,
causing WebL ogic Server to return an error when you deploy the component
or application. In this case, you must undeploy the component or application,
edit the deployment descriptor using the Deployment Descriptor Editor of the
Administration Console, and then redeploy it. For details on using the

Deployment Descriptor Editor, see* Editing Deployment Descriptors’ on page
2-20.

Each utility takes a single parameter: the root directory that contains the objectsin the
component or application for which you are generating deployment descriptors. The
root directory is the one that contains the WEB- | NF or META- | NF subdirectories.

For example, assume that you have created adirectory called c: \ st age that contains
the VEB- | NF directory, JSPfiles, and other objectsthat make up aWeb application but
you have not yet created theweb. xnl andwebl ogi c. xm deployment descriptors. To
automatically generate them, execute the following command:

$ java webl ogic. ant.taskdefs.war.DDlnit c:\stage

The utility generatestheweb. xm and webl ogi c. xm deployment descriptors and
places them in the WEB- | NF directory.

Developing WebL ogic Server Applications 35

3

Packaging WebLogic Server J2EE Applications

Development Mode vs. Production Mode

Y ou can run WebL ogic Server in two different modes: development and production.
Y ou determine this mode by configuring the STARTMODE script variable, which isa

variable you can modify in domai n_nane\ st art WebLogi ¢. The STARTMODE
variable allows you to toggle the start mode from production to development.

To enable development mode, configure the STARTMODE script variable as follows:
- Dwebl ogi c. Product i onMbdeEnabl ed=f al se

To enable production mode, set the variable as follows:

- Dwebl ogi c. Product i onMbdeEnabl ed=t r ue
Note: The default settingisf al se.

For more information on starting WebL ogic Server in development and production
modes, refer to “ Starting and Stopping WebL ogic Servers.”

When you specify development mode, you can use the auto-deploy feature of the
appl i cati ons directory. This means that you can copy new filesinto the

appl i cati ons directory of your Administration Server, located in the

conf i g/domai n_nane directory of the WebL ogic Server installation (where
domai n_nare isthe name of a WebL ogic Server domain). The aplications will be
automatically deployed and updated.

In production mode, you must use the WebL ogic Server Administration Consoleor the
weblogic.Deploy tool to redeploy an application. Both deployment methods require a
user name and password. This addresses security concerns around users who have

write accessto the file system and have the ability to deploy applications on the server.

Packaging Web Applications

Before you package your Web application, be sure you read and understand
“Packaging Client Applications’ on page 3-13 which describes how WebL ogic server
loads your application classes.

To stage and package a Web application:

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs61/adminguide/startstop.html

Packaging Web Applications

. Create atemporary staging directory. You can name this directory anything you
want.

. Copy all of your HTML files, JSP files, images, and any other files that these
Web pages reference into the staging directory, maintaining the directory
structure for referenced files. For example, if an HTML file has atag such as
<ing src="images/pic.gif">, thepic.gif filemustbeinthei mages
subdirectory beneath the HTML file.

. Create META- | NF and VEB- | NF/ cl asses subdirectoriesin the staging directory
to hold deployment descriptors and compiled Java classes.

. Copy or compile any servlet classes and helper classesinto the
VEB- | NF/ ¢l asses subdirectory.

. Copy the home and remote interface classes for enterprise beans used by the
servletsinto the VEB- | NF/ ¢l asses subdirectory.

Note: See“Classloader Overview” on page 3-21 to understand how the
WebL ogic Server class-loading mechanism affects EJB references from
servlets within the same application.

. Copy JSP tag libraries into the VEB- | NF subdirectory. (Tag libraries may be
installed in a subdirectory beneath WEB- | NF; the pathto the. t | d fileis coded in
the.j spfile)

. Set up your shell environment.

On Windows NT, execute the set Env. cnd command, located in the directory
BEA_HOME\ conf i g\ domai n, where BEA_HOME is the directory in which
WebL ogic Server isinstalled and domai n refers to the name of your domain.

On UNIX, execute the set Env. sh command, located in the directory
BEA HOVE/ conf i g/ domai n, where BEA_HOME is the directory in which
WebL ogic Server isinstalled and domai n refers to the name of your domain.

. Execute the following command to automatically generate theweb. xm and
webl ogi c. xm deployment descriptorsin the VEB- | NF subdirectory:

java webl ogi c. ant.taskdefs.war.DDInit staging-dir
where st agi ng- di r refersto the staging directory.

For more information on the Java-based DDI ni t utility for generating
deployment descriptors, see “ Automatically Generating Deployment
Descriptors’ on page 3-4.

Developing WebL ogic Server Applications 37

3 Packaging WebLogic Server J2EE Applications

Alternatively, you can create theweb. xml and webl ogi c. xnl filesin the
VEB- | NF subdirectory by hand.

Note: See Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs61/webapp/index.html for detailed
descriptions of the elements of theweb. xm and webl ogi c. xn files.

9. Bundlethe staging directory into a. war file by executing aj ar command such
asthe following:

jar cvf nyapp.war -C staging-dir .

Theresulting . war file can be added to an Enterprise application (. ear file) or
deployed independently using the Administration Console or the
webl ogi c. depl oy command-line utility.

Packaging Enterprise JavaBeans

Y ou can stage one or more enterprise beansin adirectory and package themin an EJB
JAR file.

Before you package your EJBs, be sure you read and understand “ Packaging Client
Applications’ on page 3-13 which describes how WebL ogic server loads your EJB
classes.

To stage and package an enterprise bean:
1. Create atemporary staging directory.
2. Compile or copy the bean’s Java classes into the staging directory.
3. Create aMETA- | NF subdirectory in the staging directory.
4

. Set up your shell environment.

On Windows NT, execute the set Env. cnd command, located in the directory
BEA HOVE\ conf i g\ domai n, where BEA_HOME isthe directory in which
WebL ogic Server isinstalled and domai n refers to the name of your domain.

On UNIX, execute the set Env. sh command, located in the directory
BEA HOVE/ conf i g/ domai n, where BEA_HOME isthe directory in which
WebL ogic Server isinstalled and domai n refers to the name of your domain.

3-8 Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs61/webapp/index.html

Packaging Enterprise JavaBeans

5. Execute the following command to automatically generatethe ej b-j ar. xm ,
webl ogi c- ej b-j ar. xm , andwebl ogi c- r dbns- cnp-j ar - bean_name. xm (if
needed) deployment descriptors in the META- | NF subdirectory:

java webl ogi c. ant.taskdefs.ejb. DDl nit staging-dir

where st agi ng- di r refersto the staging directory. Use this utility for EJB 1.1.
If you are creating EJB 2.0, use the following utility:

java webl ogi c. ant.taskdefs. ej b20. DDl nit staging-dir

For more information on the Java-based DDI ni t utility for generating
deployment descriptors, see “ Automatically Generating Deployment
Descriptors’ on page 3-4.

Alternatively, you can create the EJB deployment descriptor files by hand.
Createanej b-j ar. xml andwebl ogi c- ej b-j ar. xm filesinthe META- | NF
subdirectory. If the bean is an entity bean with container-managed persistence,
create awebl ogi c- r dbns- cnp- j ar —bean_name. xm deployment descriptor in
the META- | NF directory with entries for the bean. Map the bean to this CMP
deployment descriptor with a<t ype- st or age> attribute in the

webl ogi c-ej b-j ar. xm file.

Note: See Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html for help compiling
enterprise beans and creating EJB deployment descriptors.

6. When al of the enterprise bean classes and deployment descriptors are set up in
the staging directory, you can create the EJB JAR filewith aj ar command such
as:

jar cvf jar-file.jar -C staging-dir .

This command createsaj ar file that you can deploy on a WebL ogic Server or
package in an application JAR file.

The - Cst agi ng-di r option instructsthej ar command to change to the
st agi ng-di r directory so that the directory paths recorded in the JAR file are
relative to the directory where you staged the enterprise beans.

Enterprise beans require container classes, classes the WebL ogic EIJB compiler
generates to allow the bean to deploy in a WebL ogic Server. The WeblL ogic EJB
compiler reads the deployment descriptorsin the EJB JAR file to determine how
to generate the classes. Y ou can run the WebL ogic EJB compiler on the JAR file
before you deploy the beans, or you can let WebL ogic Server run the compiler
for you at deployment time. See Programming WebL ogic Enterprise JavaBeans

Developing WebL ogic Server Applications 39

http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html

3

Packaging WebLogic Server J2EE Applications

at http://e-docs.bea.com/wls/docs61/ejb/index.html for help with the WebL ogic
EJB compiler.

Packaging Resource Adapters

3-10

Y ou can stage one or more resource adaptersin adirectory and packagetheminaJAR
file.

Before you package your resource adapters, be sure you read and understand
“Packaging Client Applications’ on page 3-13 which describes how WebL ogic server
loads classes.

To stage and package a resource adapter:

1

2
3.
4

Create atemporary staging directory.

. Compile or copy the resource adapter’s Java classes into the staging directory.

Create a META- | NF subdirectory in the staging directory.

. Createanra. xm deployment descriptor in the META- | NF subdirectory and add

entries for the resource adapter.

Note: Refer to the following Sun Microsystems documentation for information
onthera. xm document type definition:

http://java.sun.com/dtd/connector_1_0.dtd

Create awebl ogi c-ra. xm deployment descriptor in the META- | NF subdirectory
and add entries for the resource adapter.

Note: Refer to Programming the WebLogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs61/jconnector/index.html for information
on thewebl ogi c-ra. xm document type definition.

When all of the resource adapter classes and deployment descriptors are set up in
the staging directory, you can create the resource adapter JAR file with aj ar
command such as:

jar cvf jar-file.jar -C staging-dir.

Developing WebL ogic Server Applications

http://java.sun.com/dtd/connector_1_0.dtd
http://e-docs.bea.com/wls/docs61/jconnector/index.html

Packaging Enterprise Applications

This command createsaj ar file that you can deploy on aWebL ogic Server or
package in an application JAR file.

The - Cst agi ng-di r optioninstructsthej ar command to change to the
st agi ng- di r directory so that the directory paths recorded in the JAR file are
relative to the directory where you staged the resource adapters.

Note: For instructions on creating a resource adapter and modifying an existing
resource adapter for deployment to WebL ogic Server, see “ Creating
Resource Adapters: Main Steps’ on page 2-9 of Chapter 2, “ Developing
WebL ogic Server J2EE Applications.”

Packaging Enterprise Applications

An Enterprise archive contains EJB and Web modules that are part of arelated
application. The EJB and Web modul es are bundled together in another JAR file with
an . ear extension.

The META- | NF subdirectory inan . ear file containsan appl i cati on. xm
deployment descriptor, which identifies the modules packaged in the . ear file. You
can find the DTD for the appl i cati on. xm fileat
http://java.sun. conj 2ee/ dt ds/ application_1 2.dtd.No

WebL ogic-specific deployment descriptor is needed for an enterprise archive.

Hereistheappl i cation. xn filefrom the Pet Store example:
<?xm version="1.0" encodi ng="UTF-8"?>

<! DOCTYPE application PUBLIC '-//Sun M crosystens, Inc.//DTD
J2EE Application 1.2//EN
"http://java. sun.conl j 2ee/ dtds/application_1_2.dtd" >

<application>
<di spl ay- name>est or e</ di spl ay- nane>
<descri ption>Application description</description>
<nodul e>
<web>
<web- uri >pet St or e. war </ web-uri >
<cont ext - r oot >est or e</ cont ext - r oot >
</ web>
</ modul e>

Developing WebL ogic Server Applications 3-11

http://java.sun.com/j2ee/dtds/application_1_2.dtd

3 Packaging WebLogic Server J2EE Applications

<nodul e>
<ej b>pet Store_EJB.jar</ej b>

</ modul e>

<security-rol e>
<description>the gold custoner rol e</description>
<r ol e- name>gol d_cust onmer </ r ol e- nane>

</security-rol e>

<security-rol e>
<description>the custoner rol e</description>
<r ol e- nane>cust oner </ r ol e- nane>

</ security-rol e>

</ application>

Before you package your enterprise application, be sure you read and understand
“Packaging Client Applications’ on page 3-13 which describes how WebL ogic server
loads your enterprise application classes.

To stage and package an Enterprise application:
1. Create atemporary staging directory.

2. Copy the Web archives (. war files) and EJB archives (. j ar files) into the
staging directory.

3. Create aMETA- | NF subdirectory in the staging directory.

4. Set up your shell environment.

On Windows NT, execute the set Env. cnd command, located in the directory
BEA_HOMVE\ conf i g\ domai n, where BEA_ HOME isthe directory in which
WebL ogic Server isinstalled and domai n refersto the name of your domain.

On UNIX, execute the set Env. sh command, located in the directory
BEA HOVE/ conf i g/ domai n, where BEA HOME isthe directory in which
WebL ogic Server isinstalled and domai n refersto the name of your domain.

5. Execute the following command to automatically generate the
appl i cation. xm deployment descriptor in the META- | NF subdirectory:

java webl ogic. ant.taskdefs.ear.DDInit staging-dir
where st agi ng- di r refersto the staging directory.

For more information on the Java-based DDI ni t utility for generating
deployment descriptors, see “ Automatically Generating Deployment
Descriptors’ on page 3-4.

3-12 Developing WebL ogic Server Applications

Packaging Client Applications

Alternatively, you can create the appl i cati on. xm fileby handin the
META- | NF directory. See Appendix A, “application.xml Deployment Descriptor
Elements,” for detailed information about the elementsin thisfile.

6. Createthe Enterprise Archive (. ear file) for the application, using aj ar
command such as:;

jar cvf application.ear -C staging-dir .

Theresulting . ear file can be deployed using the Administration Console or the
webl ogi c. depl oy command-line utility.

Packaging Client Applications

Although not required for WebL ogic Server applications, J2EE includes a standard for
deploying client applications. A J2EE client application moduleis packaged in aJAR
file. ThisJAR file containsthe Java classesthat executeintheclient WM (JavaVirtua
Machine) and deployment descriptors that describe EJBs (Enterprise JavaBeans) and
other WebL ogic Server resources used by the client.

A de-facto standard deployment descriptor appl i cati on-client.xn from Sunis
used for J2EE clients and a supplemental deployment descriptor contains additional
WebL ogic-specific deployment information.

Note: See “application.xml Deployment Descriptor Elements” in Appendix A,
“application.xml Deployment Descriptor Elements,” for help with these
deployment descriptors.

Executing a Client Application in an EAR File

In order to simplify distribution of an application, J2EE defines away to include
client-side componentsin an EAR file, along with the server-side modules that are
used by WebL ogic Server. This enables both the server-side and client-side
components to be distributed as a single unit.

Developing WebL ogic Server Applications 3-13

3

Packaging WebLogic Server J2EE Applications

314

The client VM must be able to locate the Java classes you create for your application
and any Java classes your application depends upon, including WebL ogic Server
classes. Y ou stage aclient application by copying all of the required files on the client
into adirectory and bundling the directory in aJJAR file. The top level of the client
application directory can have a batch file or script to start the application. Create a
cl asses subdirectory to hold Java classes and JAR files, and add them to the client
Cl ass- Pat h in the startup script. Y ou may also want to package a Java Runtime
Environment (JRE) with a Java client application.

Note: Theuseof thed ass- Pat h manifest entriesin client component JARs is not
portable, because it has not yet been addressed by the J2EE standard.

TheMai n- d ass attribute of the JAR file manifest definesthe main classfor the client
application. Theclient typically usesj ava: / conp/ env JNDI lookups to execute the
Mai n- Cl ass attribute. As a deployer, you must provide runtime values for the INDI
lookup entries and populate the component local INDI tree before calling the client’s
Mai n- Cl ass attribute. Y ou define INDI lookup entries in the client deployment
descriptor. (Refer to “ Client Application Deployment Descriptor Elements.”)

Youusewebl ogi c. d i ent Depl oyer to extract the client-side JAR file from a J2EE
EAR file, creating a deployable JAR file. The webl ogi c. T i ent Depl oyer classis
executed on the Java command line with the following syntax:

java webl ogic.CientDeployer ear-file client

Theear-fil e argument isan expanded directory (or Java archive filewith a. ear
extension) that contains one or more client application JAR files.

For example:
java webl ogi c. d i ent Depl oyer app.ear nyclient

where app. ear isthe EAR filethat contains a J2EE client packaged in
nmyclient.jar.

Oncethe client-side JAR fileis extracted from the EAR file, use the
webl ogi c. j 2eecl i ent . Mai n utility to bootstrap the client-side application and
point it to aWebL ogic Server instance as follows:

java webl ogic.j2eeclient.Main clientjar URL [application
ar gsl

For example

java webl ogic.j 2eeclient.Main hell oWrld.jar
t3://1ocal host: 7001 Greetings

Developing WebL ogic Server Applications

Packaging Client Applications

Special Considerations for Deploying J2EE Client
Applications

Thefollowingisalist of special considerationsfor deploying J2EE client applications:

m Name the WebL ogic Server client deployment file using the suffix
.runtime. xm.

m Thewebl ogi c. d i ent Depl oyer classisresponsible for generating and adding
aclient.properties filetotheclient JAR file. A separate program,
webl ogi c. j 2eecl i ent. Mai n, createsalocal client JINDI context and runs the
client from the entry point named in the client manifest file.

Note: To runthe J2EE client application using webl ogi c¢. d i ent Depl oyer,
you need the webl ogi c. j 2eecl i ent . Mai n class (located in the
webl ogi c. j ar file).

m |f aresource mentioned by the appl i cati on-client.xnl fileisone of the
following types, thewebl ogi c. j 2eecl i ent. Mai n class attempts to bind it
from the global JNDI tree on the server toj ava: conp/ env/ :

ej b-ref

j avax. j ms. QueueConnect i onFact ory
j avax. j ms. Topi cConnect i onFact ory
javax. mai |l . Session

j avax. sql . Dat aSour ce

m Thewebl ogi c. j 2eecl i ent. Mai n classbinds User Tr ansact i on to
j ava: conp/ User Tr ansact i on.

m Therest of the client environment isbound fromthecl i ent . properti es file
created by thewebl ogi c. O i ent Depl oyer classintoj ava: conp/ env/ . The
webl ogi c. j 2eecl i ent . Mai n class emits error messages for missing or
incomplete bindings.

m The<res- aut h> tag in the application deployment file is currently ignored and
should be entered as Appl i cat i on. We do not currently support form-based
authentication.

Developing WebL ogic Server Applications 3-15

3 Packaging WebLogic Server J2EE Applications

Packaging J2EE Applications Using Apache
Ant

The topicsin this section discuss building and packaging J2EE applications using
Apache Ant, an extensible Java-based tool. Ant issimilar to the make command but is
designed for building Java applications. Ant libraries are bundled with WebLogic
Server to make it easier for our customers to build Java applications out of the box.

Developerswrite Ant build scripts using eXtensible Markup Language (XML). XML
tags define the targets to build, dependencies among targets, and tasks to execute in
order to build the targets.

For a complete explanation of ant capabilities, see:
http://jakarta. apache. org/ ant/ manual /i ndex. ht m

3-16 Developing WebL ogic Server Applications

Packaging J2EE Applications Using Apache Ant

Compiling Java Source Files

Ant provides aj avac task for compiling Java source files. The following example
compiles all of the Javafilesin the current directory into acl asses directory.

<target nane="conpile”>
<javac srcdir="." destdir="classes”/>
</target>

Refer to Apache Ant online documentation for afull set of options relating to the
j avac task.

Running WebLogic Server Compilers

Running arbitrary Java programs from Ant can be accomplished by either writing
custom Ant tasks or by simply executing the program using thej ava task. Tasks such
asej bc or rmi c can be executed using the j ava task as shown below:

Listing 3-1 Running WebL ogic Server Compilers

<j ava cl assname="webl ogi c. ej bc" fork="yes" failonerror="yes">
<sysproperty key="webl ogi c. home" val ue="${W._HOVE}"/ >
<arg line="-conpiler java ${di st}/std_ejb_basi c_contai ner Managed. j ar
${ APPLI CATI ONS} / ej b_basi c_cont ai ner Managed. j ar"/ >
<cl asspat h>
<pat hel ement pat h="${ CLASSPATH} "/ >
</ cl asspat h>

</java>

The above exampleusesthef or k system call to createaJavaprocesstorunej bc. The
example supplies asyst emproperty to define webl ogi c. horre and provide
command line arguments using the ar g tag. The classpath for the called Java process
is specified using the cl asspat h tag.

Developing WebL ogic Server Applications 3-17

3

Packaging WebLogic Server J2EE Applications

Packaging J2EE Deployment Units

3-18

As previously discussed, J2EE applications are packaged as JAR files containing a
specific file extension depending on the component type:

m EJIBsare packaged as JAR files.

m Web Applications are packaged as WAR files.

m Resource Adapters are packaged as RAR files.

m Enterprise Applications are packaged as EAR files.

These components are structured according to the J2EE specifications. In addition to
the standard XML deployment descriptors, components may also be packaged with
WebL ogic Server-specific XML deployment descriptors.

Ant provides tasks that make the construction of these JAR files easier. In addition to
the features of the JAR command, Ant provides specific tasks for building EAR and
WAR files. Using Ant, you can specify the pathname asit appearsin the JAR archive,
which may differ from the original path in the file system. This ability is useful for
packaging deployment descriptors (in which J2EE specifies an exact location in the
archive), which may not correspond to thelocationin your sourcetree. Seethe Apache
Ant online documentation pertaining to the Zi pFi | eSet command for related
information.

The following listing shows:

Listing 3-2 WAR Task Example

<war warfile="cookie.war" webxm ="web.xm"
mani f est ="mani fest .t xt">

<zipfileset dir="." prefix="WEB-INF" includes="webl ogic.xm"/>
<zipfileset dir="." prefix="imges" includes="*.qgif,*.jpg"/>
<cl asses dir="cl asses" includes="**/Cooki eCounter.cl ass"/>
<fileset dir="." includes="*.jsp,*.htm ">

</fileset>

</ war >

Developing WebL ogic Server Applications

Packaging J2EE Applications Using Apache Ant

Packaging J2EE deployment units requires the following steps:

1
2.

Specify the standard XML deployment descriptor using the webxni parameter.

Thewar task automatically maps XML deployment descriptor to the standard
name in the WAR archive VEB- | NF/ web. xni .

Apache Ant stores the nani f est file, specified using the mani f est parameter,
under the standard name META- | NF/ MANI FEST. M-,

Use the Apache Ant Zi pFi | eSet command to define a set of files (in this case,
just the WebL ogic Server-specific deployment descriptor webl ogi ¢. xn) that
should be stored in the VEB- | NF directory.

Use asecond Zi pFi | eSet command to package all theimagesin ani mages
directory.

Thecl asses tag packages servlet classesin the VEB- | NF/ ¢l asses directory.

Finally, add al the. j sp and . ht nl filesfrom the current directory to the
archive.

Y ou can achieve the same result by staging the filesin a directory that directly
corresponds to the structure of the WAR file and creating a JAR file from that
directory. Using special features of the Ant JAR tasks eliminates the need to copy files
into a specific directory hierarchy.

Thefollowing example builds a Web application and an EJB, and then packages them
together in an EAR file:

Listing 3-3 Packaging Example

<proj ect name="app" defaul t="app.ear">

<property nane="w hone" val ue="/bea/W server6. 1"/ >

<property nane="srcdir" val ue="/beal/ nyproject/src"/>

<property nane="appdir" val ue="/beal/ nyproj ect/confi g/ nydomai n/ applications"/>

<target name="timer.war">

<nkdir dir="cl asses"/>

Developing WebL ogic Server Applications 3-19

3 Packaging WebLogic Server J2EE Applications

<javac srcdir="${srcdir}" destdir="classes" includes="nyapp/j2ee/timer/*.java"/>
<war warfile="timer.war" webxm ="timer/web.xm" manifest="tinmer/ manifest.txt">
<cl asses dir="cl asses" includes="**/TinerServlet.class"/>
</ war >
</target>
<target name="trader.jar">
<nmkdir dir="cl asses"/>
<javac srcdir="%{srcdir}" destdir="classes" includes="nyapp/j2ee/trader/*.java"/>
<jar jarfile="traderO.jar" manifest="trader/mani fest.txt">
<zipfileset dir="trader" prefix="META-INF" includes="*ejb-jar.xm"/>
<fileset dir="classes" includes="**/Trade*.class"/>
</jar>
<ej bc source="traderO.jar" target="trader.jar"/>
</target>
<target name="app.ear" depends="trader.jar, tiner.war">

<jar jarfile="app.ear">

<zipfileset dir="." prefix="MeTA-INF" includes="application.xm"/>
<fileset dir="." includes="trader.jar, tinmer.war"/>
</jar>
</target>

<target nanme="depl oy" depends="app.ear">
<copy file="app.ear" todir="%{appdir}/>
</target>

</ proj ect >

3-20 Developing WebL ogic Server Applications

Resolving Class References Between Components

Running Ant

BEA providesasimplescripttorun Antintheser ver / bi n directory. By default, Ant
loadsthebui | d. xm build file, but you can override thisusing the - f flag. Use the
following command to build and deploy an application using the build script shown
above:

ant -f yourbuil dscript.xm

Resolving Class References Between
Components

Y our applications may use many different Java classes, including enterprise beans,
servletsand JavaServer Pages, startup classes, utility classes, and third-party packages.
WebL ogic Server deploys applications in separate classloaders to maintain
independence and to facilitate dynamic redeployment and undeployment. Because of
this, you need to package your application classes in such away that each component
has access to the classes it depends on. In some cases, you may have to include a set
of classes in more than one application or component. This section describes how
WebL ogic Server uses multiple classloaders so that you can stage your applications
successfully.

Classloader Overview

A classloader is a Java class that locates and |oads a requested class into the Java
virtual machine (JVM). A classloader resolves references by searching for filesin the
directories or JAR fileslisted in its classpath. Most Java programs have asingle
classloader, the default system class oader created when the VM starts up. WebL ogic
Server creates additional classloaders when it deploys applications because these
classloaders can be destroyed in order to undeploy the application. This allows
WebL ogic Server to redeploy modified applications without having to restart the
server.

Developing WebL ogic Server Applications 3-21

3

Packaging WebLogic Server J2EE Applications

Classloaders are hierarchical. When you start WebL ogic Server, the Java system
classloader is active and is the parent of all subsequent classloaders that WebL ogic
Server creates. A classloader always asksits parent for a class before it searches its
own classpath, but a parent classloader does not consult its children. Because the
search only proceeds upwardsin the classloader hierarchy, thisaso meansthat achild
classloader cannot locate classes on asibling's classpath.

The search protocol also clarifies how duplicate classes are handled in Java. Classes
located in the Java system classpath always have precedence over any class with the
samenamein achild classloader’ s classpath. Because of this, you should avoid placing
application classesin the Java system classpath before you start WebL ogic Server. The
classloader created at startup time cannot be destroyed, so any classesit contains
cannot be redeployed without restarting WebL ogic Server.

About Application Classloaders

322

When WebL ogic Server deploys an application, it creates two new classloaders: one
for EJBs and one for Web applications. The EJB classloader is a child of the Java
system classloader and the Web application classloader is a child of the EJB
classloader. Thisallows classesin a Web application to locate EJB classes, but EJB
classescannot locate Web application classes. A positive side-effect of this classloader
hierarchy isthat it allows servlets and JSPs direct access to EJB implementation
classes. WebL ogic Server can bypass the intermediate RMI classes because the EJB
client and implementation are in the same JVM.

If your application includes servlets and JSPs that use enterprise beans:
m Package the servletsand JSPsina. war file

m Packagethe enterprisebeansinan EJB . j ar file

m Packagethe.war and.j ar filesinan. ear file

m Deploy the. ear file

Although you could deploy the. war and . j ar files separately, deploying them
together inan. ear file producesaclassloader arrangement that allowsthe servletsand
JSPsto find the EJB classes. If you deploy the . war and . ej b files separately,

WebL ogic Server creates sibling classloaders for them. This means that you must

Developing WebL ogic Server Applications

Resolving Class References Between Components

include the EJB home and remote interfacesin the . war file, and WebL ogic Server
must use the RMI stub and skeleton classes for EJB calls, just as it does when EJB
clients and implementation classes are in different JVMs.

About Resource Adapter Classes

Make sure that no resource-adapter specific classes exist in your WebL ogic Server
system classpath. If you need to use resource adapter-specific classes with Web
components (for example, an EJB or Web application), you must bundle these classes
intheir corresponding archivefile (for example, inthe. war ’s / cl asses directory for
servletsorinthe.jar’s / cl asses directory for EJBS).

Using PreferWebInfClasses in J2EE Applications

By default, the classloader for aweb application followsthe standard del egation model
described in the Javasoft documentation. The servlet specification requiresthat aWeb
application obtain its class definition from the WAR file.

To support this requirement, BEA has included a switch that modifies the delegation
model for aWeb application so that the Web application's classloader looksfor aclass
inthe WAR file before asking its parent classloader for the class. Thisswitchiscalled
Pr ef er Wbl nf Cl asses and islocated on the WebAppConponent MBean. Y ou can
set this switch in the WebL ogic Server console.

When you set Pr ef er Webl nf O asses to false (the default), the classloader for a
Web application follows the standard del egation model. When set to true, it looks for
class definitionsin the WAR file before asking its parent for a class definition.

This switch satisfies the specification requirement. However, it leadsto the possibility
of having different versions of the same classes |oaded in the Web application
classloader than those versions existing in parent classloaders. This can lead to

C assCast Except i ons if the developer is not careful to keep these two instances
separate. For this reason, we have set the default for this setting to false, which means
you use the standard del egation model.

Developing WebL ogic Server Applications 3-23

3

Packaging WebLogic Server J2EE Applications

Packaging Common Utilities and Third-Party Classes

If you create or acquire utility classes that you will use in more than one application,
you must package them with each application. Alternatively, you could add them to
the Java system classpath by editing the j ava command in the script that runs

WebL ogic Server. If you modify your utility classes and they are in the Java system
classpath, however, you will have to restart WebL ogic Server after you modify the
utility classes.

Classesthat WebL ogic Server uses during startup must bein the Java system classpath.
For example, JDBC drivers used for connection pools must be in the classpath when
you start WebL ogic Server. Again, if you need to modify classes in the Java system
classpath, or modify the classpath itself, you will haveto restart WebL ogic Server after
you modify the classes or the classpath.

Handling Interactions Between Startup Classes and
Applications

324

Startup classes are classes you create that Webl ogic Server executes at startup time.
Startup classes are located by the Java system classpath, so you must put them in the
system classpath before you start the server. Also, any classes they require must be
included in the system classpath.

If astartup class uses application classes (such as EJB interfaces) you will also haveto
add those classesto the WebL ogic Server startup classpath. Unfortunately, this means
that you cannot modify those classes without restarting the server afterwards.

Startup classes that use application objects must wait for WebL ogic Server to finish
deploying the applications before the classes attempt to access the application objects.
For example, if astartup class uses EJBs, you must include the home and remote
interfaces in the system classpath, and you must ensure that the startup class does not
create any EJB instances until WebL ogic Server has finished deploying the EJB
application.

The Pet Store application has a startup class that demonstrates one method a startup
class can use to wait for applications to finish deploying. The
com bea. estore. startup. StartBrowser startup classdisplaystheinitial URL to

Developing WebL ogic Server Applications

Resolving Class References Between Components

accessthe Pet Store application, and on Windowsit al so launches the browser with the
URL. St art Browser executesawhi | e loop until applications have deployed and the
server begins accepting connection regquests.

Hereis an excerpt from that class to show how thisworks:

while (loop) {

try {
socket = new Socket (host, new I nteger(port).intValue());

socket. cl ose();

/11 aunch browser
String[] cndArray = new String[3];

cmdArray[0] = "beaexec. exe";

cmdArray[1] = "-target: browser";

cmdArray[2] = "-command: \"http://"+host+":"+port+"\"";
try {

Process p = Runtine.getRuntime().exec(cndArray);
p. get I nput Stream().cl ose();

p. get Qut put Strean() . cl ose();
p.getErrorStreanm(). cl ose();

catch (I CException ioe) {
}
| oop = fal se;
} catch (Exception e) {
try {
Thread. sl eep(SLEEPTIME); // try every 500 ms
} catch (InterruptedException ie) {}
finally {
try {
socket . cl ose();
} catch (Exception se) {}
}
}
}

If the system fails to create a socket, the class sleeps for 500 milliseconds before
repeating the loop. If a startup class needsto create an EJB instance, it could use a
similar technique by looping until the EJB create method succeeds.

Developing WebL ogic Server Applications 3-25

3 Packaging WebLogic Server J2EE Applications

3-26 Developing WebL ogic Server Applications

CHAPTER

4 Programming Topics

The following sections contain information about programming in the WebL ogic
Server environment, including descriptions of useful WebL ogic Server facilities and
advice about using various programming techniques:

m L ogging Messages
m Using Threads in WebL ogic Server
m Using JavaMail with WebL ogic Server Applications

m Programming Applications for WebL ogic Server Clusters
Logging Messages

Each WebL ogic Server instance has alog file that contains messages generated from
that server. Y our applications can write messages to the log file using

internationalization services that access localized message catalogs. If localization is
not required, you can usethewebl ogi c. | oggi ng. NonCat al ogLogger classtowrite

messages to the log. This class can also be usein client applicationsto write messages
inaclient-sidelog file.

This section describes how to use the NonCat al ogLogger class. See the BEA
WebLogic Server Internationalization Guide at
http://e-docs.bea.com/wls/docs61/i18n/index.html for details on using the
internationalization interface.

Developing WebL ogic Server Applications 4-1

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/logging/NonCatalogLogger.html
http://e-docs.bea.com/wls/docs61/i18n/index.html
http://e-docs.bea.com/wls/docs61/i18n/index.html

4 Programming Topics

Thelog file name, location, and other properties can be administered in the
Administration Console. Log messages written viathe NonCat al ogLogger class
contain the following information.

Table4-1 L og Message For mat

Property Description

Localized Timestamp Date and time when message originated, including the year, month, day of month,
hours, minutes and seconds.

millisecondsFromEpoch The origination time of the message, in milliseconds since the epoch.

ServerName, The origin of the message. Transactionld is present only for messages logged within
MachineName, the context of atransaction.
Threadld, Transactionld

User Id User on behalf of whom the system was executing when the error was reported.

Subsystem Source of the message, for example EJB, IMS, or RMI. A user application supplies
a Subsystem String in the NonCat al ogLogger constructor.

Message Id A unique six-digit identifier for the message. All message |Ds through 499000 are
reserved for WebL ogic Server.

4-2 Developing WebL ogic Server Applications

Logging Messages

Table 4-1 Log Message Format

Property

Description

Severity

One of the following severity values:

Debug Should be output only when the server/applicationis configured
in adebug mode. May contain detailed information about
operations or the state of the server/application.

Informational Used to log normal operations for later examination.

Warning A suspicious operation, event, or configuration that does not
affect the normal operation of the server/application.

Error A user level error. The system/application can handle the error
with no interruption and with limited degradation in service.

In addition to the above, some severity levels are reserved for WebL ogic Server

messages:

Notice A warning message. A suspicious operation or configuration
that does not affect the normal operation of the server.

Critical A system/service level error. The system is able to recover,
perhaps with a momentary loss or permanent degradation of
service.

Alert A particular serviceisin an unusable state. Other parts of the
system continue to function. Automatic recovery isnot possible
and the immediate attention of the administrator is required to
resolve the problem.

Emergency The server isin an unusable state. Thisis used to designate

severe system failures or panics.

ExceptionName

If the message islogging an Exception, thisfield contains the name of the Exception.

Message text

For WebL ogic Server messages, this field contains the “ short description” of the
message defined in the system message catal og.

To use NonCat al ogLogger , import thewebl ogi c. | oggi ng. NonCat al ogLogger
class and call the constructor with a subsystem String. Here is an example using the
subsystem name “MyApp”:

Developing WebL ogic Server Applications 4-3

4 Programming Topics

i mport webl ogi c. | oggi ng. NonCat al ogLogger ;
NonCat al ogLogger nyl ogger = new NonCat al ogLogger (" MyApp") ;

NonCat al ogLogger providesthe methodsdebug(),info(),warn(),anderror(),
which write messages with Debug, Informational, Warning, and Error severities,
respectively. Each method has two signatures, one that takes a String message
argument, and another that takes a String message and aj ava. | ang. Thr owabl e
argument. If you use the latter form, the log message includes a stack trace.

Hereisan example of writing an informational message, without stack trace, to thelog:

nmyl ogger.info("M/App initialized.");

If you are using NonCat al ogLogger inaJavaclient, you specify the name of thelog
file on thej ava command line, using the webl ogi c. | og. Fi | eName Java system
property. For example:

java -Dwebl ogi c. | og. Fi | eName=nyapp. | og nyapp

If you have special processing requirements for some log messages, you can add your
own message handlers.Y our message handler provides afilter to select the messages
itisinterested in processing. For each log message, the WebL ogic Server logging
infrastructure raises a JIMX notification, which is delivered to the registered message
handlers with filters that match the message.

Seewebl ogi c. management . | oggi ng. WebLogi cLogNot i fi cat i on information
about using this IMX feature.

Using Threads in WebLogic Server

4-4

WebL ogic Server is a sophisticated, multi-threaded application server and it carefully
manages resource allocation, concurrency, and thread synchronization for the
components it hosts. To obtain the greatest advantage from WebL ogic Server’s
architecture you should construct your applicationsfrom components created using the
standard J2EE APIs.

It is advisable to avoid application designs that require creating new threadsin
server-side components for several reasons:

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/management/logging/WebLogicLogNotification.html

Using Threads in WebLogic Server

m Applications that create their own threads do not scale well. Threadsin the VM
are alimited resource that must be allocated thoughtfully. Your applications may
break or cause WebL ogic Server to thrash when the server |oad increases.
Problems such as deadlocks and thread starvation may not appear until the
application is under aheavy load.

m Multithreaded components are complex and difficult to debug. Interactions
between application-generated threads and WebL ogic Server threads are
especialy difficult to anticipate and analyze.

There are some situations where creating threads may be appropriate, in spite of these
warnings. For example, an application that searches several repositories and returns a
combined result set can return results sooner if the searches are done asynchronously
using anew thread for each repository instead of synchronously using the main client
thread.

If you decide you must use threads in your application code, your should create a pool
of threads so that you can control the number of threads your application creates. Like
a JDBC connection pool, you allocate a given number of threads to a pool, and then
obtain an available thread from the pool for your runnable class. If al threadsin the
pool arein use, wait until oneisreturned. A thread pool can help avoid performance
issuesand will also alow you to optimize the allocation of threads between WebL ogic
Server execution threads and your application.

Be sure you understand where your threads can deadlock and handl e the deadlocks
when they occur. Review your design carefully to ensure that your threads do not
compromise the security system.

To avoid undesirable interactions with WebL ogic Server threads, do not let your
threads call into WebL ogic Server components. For example, do not use enterprise
beans or servlets from threads that you create. Application threads are best used for
independent, isolated tasks, such as conversing with an external servicewithaTCP/IP
connection or, with proper locking, reading or writing tofiles. A short-lived thread that
accomplishes asingle purpose and ends (or returns to the thread pool) isless likely to
interfere with other threads.

Be sureto test multithreaded code under increasingly heavy loads, adding clientseven
to the point of failure. Observe the application performance and WebL ogic Server
behavior and then add checks to prevent failures from occurring in production.

Developing WebL ogic Server Applications 4-5

4 Programming Topics

Using JavaMail with WebLogic Server
Applications

WebL ogic Server includes the JavaMail API version 1.1.3 reference implementation
from Sun Microsystems. Using the JavaMail AP, you can add email capabilitiesto
your WebL ogic Server applications. JavaMail provides access from Java applications
to IMAP- and SMTP-capable mail servers on your network or the Internet. It does not
provide mail server functionality; so you must have accessto amail server to use
JavaMail.

Compl ete documentation for using the JavaMail API isavailable on the JavaMail page
on the Sun Web site at http://java.sun.com/products/javamail/index.html. This section
describes how you can use JavaMail in the WebL ogic Server environment.

Thewebl ogi c. j ar filecontainsthej avax. mai | andj avax. mai | . i nt er net
packages from Sun. webl ogi c. j ar aso contains the Java Activation Framework
(JAF) package, which JavaMail requires.

Thej avax. mai | package includes providers for Internet Message A ccess protocol
(IMAP) and Simple Mail Transfer Protocol (SMTP) mail servers. Sun has a separate
POP3 provider for JavaMail, which is not included in webl ogi c. j ar. You can
download the POP3 provider from Sun and add it to the WebL ogic Server classpath if
you want to use it.

About JavaMail Configuration Files

JavaMail depends on configuration files that define the mail transport capabilities of
the system. Thewebl ogi c. j ar file contains the standard configuration files from
Sun, which enable IMAP and SMTP mail serversfor JavaMail and define the default
message types JavaMail can process.

Unless you want to extend JavaMail to support additional transports, protocols, and
message types, you do not have to modify any JavaMail configuration files. If you do
want to extend JavaMail, you should download JavaMail from Sun and follow Sun’s
instructions for adding your extensions. Then add your extended JavaMail packagein
the WebL ogic Server classpath in front of webl ogi c. j ar .

4-6 Developing WebL ogic Server Applications

http://java.sun.com/products/javamail/index.html

Using JavaMail with WebL ogic Server Applications

Configuring JavaMail for WebLogic Server

To configure JavaMail for use in WebL ogic Server, you create aMail Session in the
WebL ogic Server Administration Console. This allows server-side components and
applications to access JavaMail services with INDI, using Session properties you
preconfigure for them. For example, by creating aMail Session, you can designate the
mail hosts, transport and store protocols, and the default mail user in the
Administration Console so that components that use JavaMail do not have to set these
properties. Applications that are heavy email users benefit because WebL ogic Server
creates a single Session object and makesit available via JNDI to any component that
needsit.

1. Inthe Administration Console, click on the Mail node in the left pane of the
Administration Console.

2. Click Create aNew Mail Session.

3. Complete the form in the right pane, as follows:
e Inthe Namefield, enter a name for the new session.

e Inthe INDINamefield, enter a JNDI lookup name. Your code uses this
string to look up thej avax. mai | . Sessi on object.

e Inthe Propertiesfield, enter properties to configure the Session. The property
names are specified in the JavaMail APl Design Specification. JavaMail
provides default values for each property, and you can override the valuesin
the application code. The following table lists the properties you can set in
thisfield.

Table 4-2 Mail Session Properties Field

Property Description Default
mai | . store. protocol The protocol to use to retrieve email. The bundled JavaMail
Example: library has support for
nmai | . store. protocol =i map IMAP.
mai | . transport. protocol Theprotocol to useto send email. The bundled JavaMail
Example: library has support for
SMTP.

mai | . transport. protocol =snt p

Developing WebL ogic Server Applications 4-7

4 Programming Topics

Table 4-2 Mail Session Properties Field

Property Description Default

mai | . host The name of the mail host machine. The default is the loca
Example: machine.
mai | . host =mai | server

mai | . user The name of the default user for retrieving The default is the value

email.
Example:

mai | . user =post mast er

of theuser . nane Java
system property.

mai | . protocol . host

The mail host for a specific protocol. For
example, you can set mail.SMTP.host and
mail.IMAP.host to different machine
names.

Examples:

mai | . snt p. host =mai | . mydom com
mai | . i map. host =l ocal host

The value of the
mail.host property.

mai | . protocol . user

The protocol-specific default user name
for logging into a mailer server.

Examples:

mai | . snt p. user =webl ogi c

The value of the
mail.user property.

mai | . i map. user =appuser

mai | . from The default return address. user nane@ost
Examples:
mai | . fromemast er @rydom com

mai | . debug Set to True to enable JavaMail debug False

output.

Y ou can override any properties set in the Mail Session in your code by creating a
Properti es object containing the properties you want to override. Then, after you
lookup the Mail Session object in JNDI, call the Sessi on. get | nst ance() method
with your Pr oper ti es to get a customized Session.

4-8 Developing WebL ogic Server Applications

Using JavaMail with WebL ogic Server Applications

Sending Messages with JavaMail

Here are the steps to send a message with JavaMail from within a WebL ogic Server
component:

1

Import the INDI (naming), JavaBean Activation, and JavaMail packages. You will
alsoneedtoimport j ava. util . Properties:

import java.util.*;

i mport javax.activation.*;

i mport javax. mail.*;

import javax.mail.internet.*;
i mport javax.nam ng.*;

Look up the Mail Sessionin JNDI:

Initial Context ic = new Initial Context();
Sessi on session = (Session) ic.lookup("nyMil Session");

If you need to override the properties you set for the Session in the
Administration Console, create aPr operti es object and add the properties you
want to override. Then call get I nst ance() to get anew Session object with the
new properties.

Properties props = new Properties();

props. put("mail.transport.protocol”, "sntp");

props. put("mail.sntp.host", "mailhost");

/1 use nmil address from HTM. formfor from address
props.put("nail.fronf', ennil Address);

Sessi on session2 = session. getlnstance(props);

Construct aM neMessage. In the following example, t o, subj ect , and
messageTxt are String variables containing input from the user.

Message nmsg = new M nmeMessage(session2);
nsg. set From() ;
nsg. set Reci pi ent s(Message. Reci pi ent Type. TO,
I nt er net Addr ess. parse(to, false));
neg. set Subj ect (subj ect);
nsg. set Sent Dat e(new Date());
/1 Content is stored in a MM nulti-part nessage
/1 with one body part
M nmeBodyPart nbp = new M neBodyPart () ;
nbp. set Text (nessageTxt) ;

Miltipart mp = new MnmeMiul tipart();
np. addBodyPart (mbp) ;
nsg. set Cont ent (np) ;

Developing WebL ogic Server Applications 4-9

Programming Topics

5. Send the message.

Transport. send(nsg);

The INDI lookup can throw a Nani ngExcept i on on failure. JavaMail can throw a
Messagi ngExcept i on if there are problems |locating transport classes or if
communications with the mail host fails. Be sureto put your code in atry block and
catch these exceptions and handl e them.

Reading Messages with JavaMail

4-10

The JavaMail API allows you to connect to amessage store, which could be an IMAP
server or POP3 server. Messages are stored in folders. With IMAP, message folders
are stored on the mail server, including folders that contain incoming messages and
foldersthat contain archived messages. With POP3, the server provides afolder that
stores messages as they arrive. When a client connects to a POP3 server, it retrieves
the messages and transfers them to a message store on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain
messages or other folders. The default folder is at the top of the structure. The special
folder name INBOX refersto the primary folder for the user, and is within the default
folder. To read incoming mail, you get the default folder from the store, and then get
the INBOX folder from the default folder.

The API provides several options for reading messages, such as reading a specified
message number or range of message numbers, or pre-fetching specific parts of
messages into the folder’ s cache. See the JavaMail API for more information.

Here are steps to read incoming messages on a POP3 server from within aWebL ogic
Server component:

1. Import the INDI (naming), JavaBean Activation, and JavaMail packages. You will
alsoneedtoimport j ava. util . Properties:

import java.util.*;

i mport javax.activation.*;

i mport javax.mail.*;

import javax.mail.internet.*;
i mport javax.nam ng.*;

2. Look up the Mail Session in JNDI:

Developing WebL ogic Server Applications

Using JavaMail with WebL ogic Server Applications

Initial Context ic = new Initial Context();
Sessi on session = (Session) ic.lookup("nyMil Session");

3. If you need to override the properties you set for the Session in the
Administration Console, create aPr operti es object and add the properties you
want to override. Then call get | nst ance() to get anew Session object with the
new properties:

Properties props = new Properties();

props. put ("mail.store.protocol”, "pop3");
props. put ("mail . pop3. host", "mail host");

Sessi on sessi on2 = session. getlnstance(props);

4. Get astor e object from the Session and call itsconnect () method to connect
to the mail server. To authenticate the connection, you need to supply the
mailhost, username, and password in the connect method:

Store store = session.getStore();
store. connect (nai |l host, usernane, password);

5. Get the default folder, then use it to get the INBOX folder:

Fol der fol der = store.getDefaultFol der();
fol der = fol der. get Fol der ("1 NBOX");

6. Read the messagesin the folder into an array of Messages:

Message[] nessages = fol der. get Messages();

7. Operate on messages in the Message array. The Message class has methods that
allow you to access the different parts of a message, including headers, flags, and
message contents.

Reading messages from an IMAP server is similar to reading messages from a POP3
server. With IMAP, however, the JavaMail API provides methods to create and
manipulate folders and transfer messages between them. If you use an IMAP server,
you can implement afull-featured, Web-based mail client with much less code than if
you use a POP3 server. With POP3, you must provide code to manage a message store
viaWebL ogic Server, possibly using a database or file system to represent folders.

Developing WebL ogic Server Applications 4-11

4 Programming Topics

Programming Applications for WebLogic
Server Clusters

4-12

JSPs and Servlets that will be deployed to a WebL ogic Server cluster must observe
certain requirements for preserving session data. See Session Programming
Requirementsin Using WebL ogic Server Clusters for more information.

EJBs deployed in aWebL ogic Server cluster have certain restrictions based on EJB
type. See The WebL ogic Server EJB Container for information about the capabilities
of different EJB typesin acluster. EJBs can be deployed to a cluster by setting
clustering properties in the EJB deployment descriptor. weblogic-gjb-jar.xml
Deployment Descriptors describes the XML deployment elements relevant for
clustering.

If you are devel oping either EJBs or custom RMI objects for deployment in a cluster,
also refer to Using WebL ogic JNDI in a Clustered Enviroment to understand the
implications of binding clustered objectsin the JINDI tree.

Developing WebL ogic Server Applications

http://e-docs.bea.com/wls/docs61/cluster/servlet.html#sessionprog
http://e-docs.bea.com/wls/docs61/cluster/servlet.html#sessionprog
http://e-docs.bea.com/wls/docs61/cluster/index.html
http://e-docs.bea.com/wls/docs61/ejb/EJB_environment.html
http://e-docs.bea.com/wls/docs61/ejb/reference.html
http://e-docs.bea.com/wls/docs61/ejb/reference.html
http://e-docs.bea.com/wls/docs61/jndi/jndi.html#jndi012

APPENDI X

A

application.xml

DeploymentDescriptor
Elements

The following sections describe the appl i cati on. xm file.

Theappl i cation. xnl fileisthe deployment descriptor for Enterprise Application
Archives. Thefileislocated in the META- | NF subdirectory of the application archive.
It must begin with the following DOCTY PE declaration:

<! DOCTYPE application PUBLIC "-//Sun M crosystens,

Inc.//DTD J2EE Application 1.2//EN

"http://java.sun.confj2ee/ dtds/application_1_2.dtd">

The following diagram summarizes the structure of the appl i cati on. xm
deployment descriptor.

Developing WebL ogic Server Applications A-1

A application.xml Deployment Descriptor Elements

‘ application ‘

4{ icon ‘
small-icon ‘
large-icon ‘

4{ display-name ‘

4{ description? ‘

4{ module+ ‘

ejb ‘

java ‘

web ‘

web-uri ‘

context-root ‘

4{ security-role* ‘

description ‘ ? = Optional
+ = One or more
role-name ‘ * = Zero or more

The following sections describe each of the elements that can appear in thefile.

application

appl i cati on istheroot element of the application deployment descriptor. The
elements within the appl i cat i on element are described in the following sections.

A-2 Developing WebL ogic Server Applications

application

icon

small-icon

large-icon

Thei con element specifies the locations of small and large images that represent the
application in a GUI tool. This element is not currently used by WebL ogic Server.

Optional. Specifiesthe location for asmall (16x16 pixel) . gi f or. j pg image used to
represent the application in aGUI tool. Currently, thisis not used by WebL ogic Server.

Optional. Specifiesthelocation for alarge (32x32 pixel) . gi f or . j pg image used to
represent the application in a GUI tool. Currently, this element is not used by
WebL ogic Server.

display-name

Optional. Thedi spl ay- name element specifies the application display name, a short
name that is intended to be displayed by GUI toals.

description

module

The optional description element provides descriptive text about the application.

Theappl i cati on. xm deployment descriptor containsone modul e element for each
modulein the Enterprise Archivefile. Each modul e element containsanej b, j ava, or
web element that indicates the module type and location of the module within the
application. An optional al t - dd element specifies an optional URI to the
post-assembly version of the deployment descriptor.

Developing WebL ogic Server Applications A-3

A application.xml Deployment Descriptor Elements

ejb

java

web

A-4

Defines an EJB module in the application file. Contains the path to an EJB JAR filein
the application.

Example:

<ej b>pet Store_EJB. j ar</ ej b>

Defines aclient application module in the application file.
Example:

<java>client_app.jar</java>

Defines a Web application module in the application file. Theweb element contains a
web-uri element and acont ext - r oot element.

web-uri

Defines the location of a Web module in the application file. Thisis the name of the
.war file.

context-root
Required. Specifies a context root for the Web application.
Example:
<web>
<web- uri >pet St or e. war </ web-uri >

<cont ext - r oot >est or e</ cont ext - r oot >
</ web>

Developing WebL ogic Server Applications

security-role

description

role-name

Thesecuri ty-rol e element containsthe definition of a security role which isglobal
to the application. Each securi t y-r ol e element contains an optional descri pti on
element, and ar ol e- nane eement.

Optional. Text description of the security role.

Required. Definesthe name of asecurity role or principal that isused for authorization
within the application. Roles are mapped to WebL ogic Server users or groupsin the
appl i cation. xm deployment descriptor.

Example:

<security-rol e>
<descri ption>the gold custoner rol e</description>
<r ol e- nanme>gol d_cust oner </ r ol e- nane>
</ security-rol e>
<security-rol e>
<descri ption>the custoner rol e</description>
<r ol e- nanme>cust oner </ r ol e- nane>
</security-rol e>

Developing WebL ogic Server Applications A-5

A application.xml Deployment Descriptor Elements

A-6 Developing WebL ogic Server Applications

APPENDI X

B Client Application

DeploymentDescriptor
Elements

The following sections describe deployment descriptors for J2EE Client applications
on WebL ogic Server. Two deployment descriptors are required: a J2EE standard
deployment descriptor, named appl i cat i on-cl i ent. xnl , and aWebL ogic-specific
runtime deployment descriptor with a name derived from the client application JAR
file.

m agpplication-client.xml Deployment Descriptor Elements

m WebL ogic Run-time Client Application Deployment Descriptor

application-client.xml Deployment
Descriptor Elements

Theapplication-client.xnm fileisthe deployment descriptor for J2EE client
applications. It must begin with the following DOCTY PE declaration:

<! DOCTYPE application-client PUBLIC "-//Sun M crosystens,

Inc.//DTD J2EE Application dient 1.2//EN
"http://java. sun.conl j 2ee/ dtds/application-client_1 2.dtd">

Developing WebL ogic Server Applications B-1

B client Application Deployment Descriptor Elements

The following diagram summarizes the structure of the appl i cati on-cl i ent. xni
deployment descriptor.

B-2 Developing WebL ogic Server Applications

application-client.xml Deployment Descriptor Elements

‘ application-client ‘

_{ icon? ‘

H small-icon? ‘
large-icon? ‘

_{ display-name ‘

_{ description? ‘

_{ env-entry* ‘
_{ description? ‘

_{ env-entry-name ‘

_{ env-entry-type ‘
_{ env-entry-value? ‘
_{ ejb-ref* ‘

_{ description?

_{ ejb-ref-name
_{ ejb-ref-type
_{ home

_{ remote
_{ ejb-link?

+ =0ne or more
* = Zero or more

|
|
‘ ? = Optional
|
|
|

_{ resource-ref* ‘

_{ description?

|
_{ res-ref-name ‘
|

_{ res-type
_{ res-auth ‘

The following sections describe each of the elements that can appear in thefile.

Developing WebL ogic Server Applications

B-3

B client Application Deployment Descriptor Elements

application-client

icon

small-icon

large-icon

display-name

description

appl i cation-client istheroot element of the application client deployment
descriptor. The application client deployment descriptor describes the EJB
components and other resources used by the client application.

Theelementswithintheappl i cati on-cl i ent element aredescribedinthefollowing
sections.

Optional. Thei con element specifies the locations of small and large images that
represent the application in a GUI tool. This element is not currently used by
WebL ogic Server.

Optional. Specifiesthelocation for asmall (16x16 pixel) . gi f or. j pg image used to
represent the application in aGUI tool. Currently, thisis not used by WebL ogic Server.

Optional. Specifiesthelocation for alarge (32x32 pixél) . gi f or. j pg image used to
represent the application in a GUI tool. Currently, this element is not used by
WebL ogic Server.

Thedi spl ay- nanme element specifies the application display name, a short name that
isintended to be displayed by GUI tools.

Optional. Thedescri pti on element provides a description of the client application.

B-4 Developing WebL ogic Server Applications

application-client.xml Deployment Descriptor Elements

env-entry

description

env-entry-name

env-entry-type

env-entry-value

ejb-ref

description

Theenv- ent ry element containsthe declaration of aclient application’ s environment
entries.

Optional. Thedescri pti on element contains a description of the particular
environment entry.

The env- ent ry- name element contains the name of aclient application’s
environment entry.

Theenv-entry-type element contains the fully-qualified Javatype of the
environment entry. The possible values are; j ava. | ang. Bool ean,

java.lang. String,java.l ang. | nteger,java. | ang. Doubl e,

java.l ang. Byte,java. |l ang. Short,java. | ang. Long, andj ava. | ang. Fl oat .

Optional. Theenv- ent ry- val ue element contains the value of aclient application’s
environment entry. The value must be a String that is valid for the constructor of the
specified env-ent ry-type.

The gjb-ref element is used for the declaration of areferenceto an EJB referenced in
the client application.

Optiona. Thedescri pti on element provides a description of the referenced EJB.

Developing WebL ogic Server Applications B-5

B client Application Deployment Descriptor Elements

ejb-ref-name

ejb-ref-type

home

remote

ejb-link

resource-ref

description

The ej b-r ef - name element contains the name of the referenced EJB. Typically the
name is prefixed by ej b/, such asej b/ Deposi t.

Theej b-ref -t ype element contains the expected type of the referenced EJB, either
SessionoOrEntity.

The hone element contains the fully-qualified name of the referenced EJB’s home
interface.

Ther enmot e element contains the fully-qualified name of the referenced EJB’ sremote
interface.

Theej b-1i nk element specifiesthat an EJB reference is linked to an enterprise
JavaBean in the J2EE application package. The value of the ej b- 1 i nk element must
be the name of the ej b- name of an EJB in the same J2EE application.

Ther esour ce- r ef element containsadeclaration of the client application’ sreference
to an external resource.

Optional. Thedescri pt i on element contains a description of the referenced external
resource.

B-6 Developing WebL ogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor

res-ref-name

res-type

res-auth

Ther es-r ef - name element specifies the name of the resource factory reference
name. The resource factory reference name is the name of the client application’s
environment entry whose value contains the JNDI name of the data source.

Ther es-t ype element specifies the type of the data source. The type is specified by
the Javainterface or class expected to be implemented by the data source.

Ther es- aut h element specifies whether the EJB code signs on programmatically to
the resource manager, or whether the Container will sign on to the resource manager
on behalf of the EJB. In the latter case, the Container uses information that is supplied
by the Deployer. The res-auth element can have one of two values: Appl i cati on or
Cont ai ner.

WebLogic Run-time Client Application
Deployment Descriptor

This XML-formatted deployment descriptor is not stored inside of the client
application JAR file like other deployment descriptors, but must be in the same
directory asthe client application JAR file.

Thefile name for the deployment descriptor isthe base name of the JAR file, with the
extension . runti me. xm . For example, if the client application is packaged in afile
named c: / appl i cations/ d i ent Mai n. j ar , the run-time deployment descriptor is
inthefilenamed c: / appl i cations/ d i ent Mai n. runtime. xm .

Developing WebL ogic Server Applications B-7

B client Application Deployment Descriptor Elements

Thefollowing diagram showsthe structure of the elementsin the run-time depl oyment
descriptor.

‘ application-client ‘

4{ env-entry* ‘

4{ env-entry-name ‘

4{ env-entry-value ‘

4{ ejb-ref* ‘

4{ ejb-ref-name ‘
4{ jndi-name ‘
—{ resource-ref* ‘
_{ resource-ref-name ‘ ? = Optional
+ = One or more
—{ jndi-name ‘ * = Zero or more

application-client

Theappl i cation-client elementisthe root element of a\WebL ogic-specific
run-time client deployment descriptor.
env-entry*

Theenv- ent ry element specifies values for environment entries declared in the
deployment descriptor.

env-entry-name

The env- ent ry- name element contains the name of an application client's
environment entry.

Example:

B-8 Developing WebL ogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor

env-entry-value

ejb-ref*

ejb-ref-name

jndi-name

resource-ref*

<env-ent ry-name>Enpl oyeeAppDB</ env- ent ry- nanme>

Theenv-ent ry-val ue element contains the value of an application client’s
environment entry. The value must be astring valid for the constructor of the specified
type that takes a single string parameter.

Theej b-r ef element specifiesthe INDI name for a declared EJB referencein the
deployment descriptor.

Theej b-r ef - nane element contains the name of an EJB reference. The EJB
reference is an entry in the application client’s environment. It is recommended that
nameis prefixed with ej b/ .

Example:

<ej b-ref - nanme>ej b/ Payr ol | </ ej b-r ef - nanme>

Thej ndi - name element specifies the INDI name for the EJB.

Theresour ce-ref element declares an application client’ s reference to an external
resource. It contains the resource factory reference name, an indication of the resource
factory type expected by the application client’s code, and the type of authentication
(bean or container).

Example:

<resource-ref>

<r es-r ef - name>Enpl oyeeAppDB</ r es-r ef - nane>

<j ndi - nanme>ent er pri se/ dat abases/ HR1984</ j ndi - nanme>
</resource-ref>

Developing WebL ogic Server Applications B-9

B client Application Deployment Descriptor Elements

resource-ref-name

Ther es-ref - name element specifies the name of the resource factory reference
name. The resource factory reference name is the name of the application client’s
environment entry whose value contains the INDI name of the data source.

jndi-name

Thej ndi - name element specifies the INDI name for the resource.

B-10 Developing WebL ogic Server Applications

Symbols
.ear file 1-9, 2-3, 2-5
Jar file 2-5
rar file 1-8, 2-9
modifying an existing 2-11
war file 1-4
A
Administration Console
creating aMail Session 4-7
editing deployment descriptors 2-20
application classloaders 3-22
application components 1-2
application element A-2
application.xml file
application element A-2
deployment descriptor elements A-1
description element A-3, A-5
display-name element A-3
gjb element A-4
icon element A-3
javaelement A-4
large-icon element A-3
module element A-3
role-name element A-5
security-role A-5
small-icon element A-3
web element A-4
application-client element B-4, B-8
application-client.xml
application-client element B-4
deployment descriptor elements B-1
description element B-4, B-5, B-6
display-name element B-4
gjb-link element B-6
gjb-ref element B-5
€jb-ref-name element B-6
€jb-ref-type element B-6
env-entry element B-5
env-entry-name B-5
env-entry-type element B-5

env-entry-value element B-5
home element B-6
icon element B-4
large-icon element B-4
remote element B-6
res-auth element B-7
resource-ref element B-6
res-ref-name element B-7
res-type element B-7
small-icon element B-4
applications 1-2
and threads 4-5
deployment descriptors 3-3
developing WebL ogic Server 2-1
interactions between startup classes and 3-24
B
BEA XML Editor 2-20
C
class references
resolving between components 3-21
classes
interactions between startup classes and applications 3-24
resource adapter 3-23
third-party, packaging 3-24
classloader
application 3-22
overview 3-21
classpath setting 2-18
client applications 1-3, 1-9
deployment descriptor B-7
deployment descriptor elements B-1
HTTP requests 1-9
packaging and deploying 3-13
RMI requests 1-9
ClientMain.runtime.xml file
application-client element B-8
gjb-ref element B-9
€jb-ref-name element B-9
env-entry element B-8
env-entry-name B-8

env-entry-value element B-9
jndi-name element B-9, B-10
resource-ref element B-9
resource-ref-name element B-10
common utilities in packaging 3-23
compiled classes, setting target directories for 2-18
compiling
preparation 2-17
putting the Java tools in your search path 2-17
setting target directories for compiled classes 2-18
setting the classpath 2-18
components 1-2, 1-8
Connector 1-2
connector 1-8
deployment descriptors 3-3
EJB 1-2, 1-6
Enterprise JavaBean 1-6
packaging 1-2
Web 1-2
Web application 1-4
WebL ogic Server 1-2
configuration
modifying an existing resource adapter 2-11
configuration files, JavaMail 4-6
connector components 1-2, 1-8
connectors
developing, main steps 2-9
modifying existing 2-13
packaging 3-10
XML deployment descriptors 3-4
customer support contact information ix
D
database system 2-15
deploying
client applications 3-13
enterprise applications 2-7
Enterprise JavaBeans 2-5
Web applications 2-3
deployment descriptors
application.xml elements A-1

automatically generating 3-4
client application elements B-1
editing connector 2-25
editing EJB 2-21
editing enterprise application 2-27
editing resource adapter 2-25
editing using the Administration Console 2-20
editing Web application 2-23
WebL ogic run-time client application B-7
description element A-3, A-5, B-4, B-5, B-6
developing
connectors, main steps 2-9
enterprise applications 2-5
Enterprise JavaBeans, main steps 2-3
establishing a devel opment environment 2-13
resource adapters, main steps 2-9
Web applications 2-2
WebL ogic Server applications 2-1
development environment 2-13
development WebL ogic Server 2-14
software tools 2-13
third-party software 2-16
display-name element A-3, B-4
documentation, whereto find it viii
E
editing
connector deployment descriptors 2-25
deployment descriptors 2-20
EJB deployment descriptors 2-21
enterprise application deployment descriptors 2-27
resource adapter deployment descriptors 2-25
Web application deployment descriptors 2-23
EJB components 1-2
gjb element A-4
gjb-link element B-6
gjb-ref element B-5, B-9
€jb-ref-name element B-6, B-9
€jb-ref-type element B-6
EJBs 1-6
and WebL ogic Server 1-7

compiling Java code 2-4
deploying 2-5
deployment descriptor 1-7, 2-4
developing 2-3
interfaces 1-6
overview 1-6
packaging 2-4, 3-8
XML deployment descriptors 3-3
enterprise applications 1-2, 1-9
archives A-1
deploying 2-7
deployment descriptor 2-7
developing, main steps 2-5
packaging 2-6, 2-7, 3-11
Enterprise JavaBeans 1-6
and WebL ogic Server 1-7
compiling Java code 2-4
deploying 2-5
deployment descriptor 1-7
deployment descriptors 2-4
developing 2-3
interfaces 1-6
overview 1-6
packaging 2-4, 3-8
XML deployment descriptors 3-3
entity beans 1-2, 1-6
env-entry element B-5, B-8
env-entry-name element B-5, B-8
env-entry-type element B-5
env-entry-value element B-5, B-9
ExceptionName, logging message 4-3
G
generating deployment descriptors automatically 3-4
H
home element B-6
home interfaces 1-6
HTML pages 1-2
HTTP requests 1-9
I
icon element A-3, B-4

IDE 2-13
implementation classes 1-6
interactions between startup classes and applications 3-24
J
JAR files 1-2, 3-2
JAR utility 1-2, 3-2
Java 2 Platform, Enterprise Edition (J2EE)
about 1-3
Java classes 1-8
Java compiler 2-14, 2-18
javaelement A-4
Javatools
putting in your search path 2-17
JavaMail
APl version 1.1.3 4-6
configuration files 4-6
configuring for WebL ogic Server 4-7
Mail Session properties 4-7
reading messages 4-10
sending messages 4-9
using with WebL ogic Server applications 4-6
JavaServer pages 1-2, 1-5
javax.mail package 4-6
JDBC driver 2-15
jndi-name element B-9, B-10
L
large-icon element A-3, B-4
localized timestamp, logging message 4-2
logging messages 4-1
format, property and description 4-2
how to write 4-4
processing requirements 4-4
M
MachineName, logging message 4-2
Mail Session
creating in the Console 4-7
properties 4-7
Message |d, logging message 4-2
Message text, logging message 4-3
message-driven beans 1-2, 1-6

millisecondsFromEpoch, logging message 4-2
modifying
existing .rar file 2-13
existing resource adapter 2-13
module element A-3
multithreaded components 4-5
P
packaging
automatically generating deployment descriptors 3-4
classloader overview 3-21
client applications 3-13
common utilities and third-party classes 3-24
connectors 3-10
enterprise application 2-7
enterprise applications 2-6, 3-11
Enterprise JavaBeans 2-4, 3-8
handling interactions between startup classes and applications 3-24
JAR files 3-2
resolving class references between components 3-21
resource adapters 3-10
Web applications 2-3, 3-6
WebL ogic Server applications 3-1
XML deployment descriptors 3-3
preparing to compile 2-17
printing product documentation viii
programming
JavaMail configuration files 4-6
logging messages 4-1
reading messages with JavaMail 4-10
sending messages with JavaMail 4-9
topics4-1
using JavaMail with WebL ogic Server applications 4-6
R
remote element B-6
remote interfaces 1-6
res-auth element B-7
resource adapters 1-2, 1-8
classes 3-23
developing, main steps 2-9
modifying an existing 2-11

modifying existing 2-13

packaging 3-10

XML deployment descriptors 3-4
resource-ref element B-6, B-9
resource-ref-name element B-10
res-ref-name element B-7
res-type element B-7
RMI requests 1-9
role-name element A-5
run-time deployment descriptor B-8
S
search path 2-17
security-role element A-5
ServerName, logging message 4-2
servlets 1-2, 1-4

compiling into classfiles 2-2
session beans 1-2, 1-6
severity, logging message 4-3
shutdown classes 1-2, 1-8
small-icon element A-3, B-4
sockets, creation failure 3-25
software tools

database system 2-15

development WebL ogic Server 2-14

IDE 2-13

Javacompiler 2-14

JDBC driver 2-15

source code editor 2-13

Web browser 2-16
source code editor 2-13
startup classes 1-2, 1-8, 3-24
Subsystem, logging message 4-2
Sun Microsystems 1-3
support

technical x
T
target directories setting 2-18
third-party software 2-16
Threadld, logging message 4-2
threads

and applications 4-5
avoiding undesirable interactions with WebL ogic Server threads 4-5
multithreaded components 4-5
testing multithreaded code 4-5
using in WebL ogic Server 4-4

Transactionld, logging message 4-2

U

User 1d, logging message 4-2

W

Web application components 1-4
directory structure 1-5
JavaServer pages 1-5
more information 1-5
serviets 1-4

Web applications 1-2
compiling servletsinto classfiles 2-2
creating HTML pages and JSPs 2-2
deploying 2-3
main steps for developing 2-2
packaging 2-3, 3-6
XML deployment descriptors 3-3

Web archive 1-4

Web browser 2-16

Web components 1-2

web element A-4

WebL ogic run-time client application
deployment descriptor B-7

WebL ogic Server
components 1-8
configuring JavaMail for 4-7
development server 2-14
editing deployment descriptors using the Console 2-20
EJBs 1-7
using threads in 4-4

WebL ogic Server application
components 1-2

WebL ogic Server applications 1-2
developing 2-1
establishing a devel oping environment 2-13
packaging 3-1

preparing to compile 2-17
programming topics 4-1
using JavaMail with 4-6

X

XML deployment descriptors 3-3

XML, editing 2-20

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	Contents
	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Understanding WebLogic Server J2EE Applications
	What Are WebLogic Server J2EE Applications and Components?
	J2EE Platform
	WebLogic Server 6.1 with J2EE 1.2 and J2EE 1.3 Functionality
	WebLogic Server 6.1 with J2EE 1.2 Plus Additional J2EE 1.3 Features
	WebLogic Server 6.1 with J2EE 1.2 Certification

	Web Application Components
	Servlets
	JavaServer Pages
	Web Application Directory Structure
	For More Information on Web Application Components

	Enterprise JavaBean Components
	EJB Overview
	EJB Interfaces
	EJBs and WebLogic Server

	WebLogic Server Components
	Connector Component

	Enterprise Applications
	Client Applications

	2 Developing WebLogic Server J2EE Applications
	Creating Web Applications: Main Steps
	1. Create the HTML pages and JSPs that make up the Web interface of the Web application. Typicall...
	2. Write the Java code for the servlets and the JSP taglibs referenced in JavaServer Pages (JSPs)...
	3. Compile the servlets into class files.
	4. Create the web.xml and weblogic.xml deployment descriptors.
	5. Package the HTML pages, servlet class files, JSP files, web.xml, and weblogic.xml files into a...
	6. Auto-deploy the *.war file on WebLogic server for testing purposes.
	7. Deploy the *.war file on the WebLogic Server for production use or include it in an enterprise...

	Creating Enterprise JavaBeans: Main Steps
	1. Write the Java code for the various classes required by each type of EJB (session, entity, or ...
	2. Compile the Java code for the interfaces and implementation into class files.
	3. Create the EJB-specific deployment descriptors:
	4. Package the class files and deployment descriptors into a *.jar Java archive file
	5. Auto-deploy the *.jar EJB archive file on WebLogic server for testing purposes.
	6. Deploy the *.jar file on WebLogic Server for production use or include it in an enterprise arc...

	Creating WebLogic Server Enterprise Applications: Main Steps
	1. Create Web and EJB components for your application.
	2. Create Web and EJB component deployment descriptors.
	3. Package the Web and EJB components into their component archive files.
	4. Create the enterprise application deployment descriptor.
	5. Package the enterprise application.
	6. Auto-deploy the *.ear enterprise application on WebLogic server for testing purposes.
	7. Deploy the *.ear file on WebLogic Server for production use. You use the Administration Consol...
	Figure 2�1 Creating Enterprise Applications

	Creating Resource Adapters: Main Steps
	Creating a New Resource Adapter (.rar)
	1. Write the Java code for the various classes required by resource adapter (ConnectionFactory, C...
	2. Compile the Java code for the interfaces and implementation into class files.
	3. Package the Java classes into a Java archive (.jar) file.
	4. Create the resource connector-specific deployment descriptors:
	5. Create a resource adapter archive file (.rar file).
	a. The first step is to create an empty staging directory.
	b. Place the .rar file containing the resource adapter Java classes in the staging directory.
	c. Then, place the deployment descriptors in a subdirectory called META-INF.
	d. Next, create the resource adapter archive by executing a jar command like the following in the...
	6. Auto-deploy the .rar resource adapter archive file on WebLogic server for testing purposes.
	7. Deploy the .rar resource adapter archive file on WebLogic Server or include it in an enterpris...

	Modifying an Existing Resource Adapter (.rar)
	1. Create a temporary directory to stage the resource adapter:
	2. Copy the resource adapter that you will deploy into the temporary directory:
	3. Extract the contents of the resource adapter archive:
	4. Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment descriptor for ...
	5. Copy the weblogic-ra.xml file into the temporary directory's META-INF subdirectory. The META-I...
	6. Create the resource adapter archive:
	7. Deploy the resource adapter in WebLogic Server. For more information on deploying a resource a...

	Establishing a Development Environment
	Software Tools
	Source Code Editor or IDE
	XML Editor
	Java Compiler
	Development WebLogic Server
	Database System and JDBC Driver
	Web Browser

	Third-Party Software

	Preparing to Compile
	Putting the Java Tools in Your Search Path
	Setting the Classpath for Compiling
	Setting Target Directories for Compiled Classes
	CLIENT_CLASSES
	SERVER_CLASSES
	EX_WEBAPP_CLASSES
	APPLICATIONS

	Editing Deployment Descriptors
	Using the BEA XML Editor
	Using the Administration Console Deployment Descriptor Editor
	Editing EJB Deployment Descriptors
	1. Invoke the Administration Console in your browser using the following URL:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the EJB node under the Deployments node.
	4. Right-click the name of the EJB whose deployment descriptors you want to edit and choose Edit ...
	5. To edit, delete, or add elements in the EJB deployment descriptors, click to expand the node i...
	6. To edit an existing element in one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you have made all your changes to the EJB deployment descriptors, click the root element ...
	10. Click Validate if you want to ensure that the entries in the EJB deployment descriptors are v...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Web Application Deployment Descriptors
	1. Invoke the Administration Console in your browser using the following URL:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Web Applications node under the Deployments node.
	4. Right-click the name of the Web application whose deployment descriptors you want to edit and ...
	5. To edit, delete, or add elements in the Web application deployment descriptors, click to expan...
	6. To edit an existing element in one of the Web application deployment descriptors, follow these...
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the Web application deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the Web application deployment descriptors, follow t...
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you have made all your changes to the Web application deployment descriptors, click the r...
	10. Click Validate if you want to ensure that the entries in the Web application deployment descr...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Resource Adapter Deployment Descriptors
	1. Invoke the Administration Console in your browser using the following URL:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Connectors node under the Deployments node.
	4. Right-click the name of the resource adapter whose deployment descriptors you want to edit and...
	5. To edit, delete, or add elements in the resource adapter deployment descriptors, click to expa...
	6. To edit an existing element in one of the resource adapter deployment descriptors, follow thes...
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the resource adapter deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the resource adapter deployment descriptors, follow ...
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you have made all your changes to the resource adapter deployment descriptors, click the ...
	10. Click Validate if you want to ensure that the entries in the resource adapter deployment desc...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Enterprise Application Deployment Descriptors
	1. Invoke the Administration Console in your browser using the following URL:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Applications node under the Deployments node.
	4. Right-click the name of the Enterprise Application whose deployment descriptor you want to edi...
	5. To edit an existing element in the application.xml deployment descriptor, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	6. To add a new element to the application.xml deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	7. To delete an existing element from the application.xml deployment descriptor, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	8. Once you have made all your changes to the application.xml deployment descriptor, click the ro...
	9. Click Validate if you want to ensure that the entries in the application.xml deployment descri...
	10. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	3 Packaging WebLogic Server J2EE Applications
	Packaging Overview
	JAR Files
	jar cf jar-file files ...
	jar xf jar-file
	jar tf jar-file

	XML Deployment Descriptors
	Table 3�1 J2EE and WebLogic Deployment Descriptors

	Automatically Generating Deployment Descriptors
	Development Mode vs. Production Mode

	Packaging Web Applications
	1. Create a temporary staging directory. You can name this directory anything you want.
	2. Copy all of your HTML files, JSP files, images, and any other files that these Web pages refer...
	3. Create META-INF and WEB-INF/classes subdirectories in the staging directory to hold deployment...
	4. Copy or compile any servlet classes and helper classes into the WEB-INF/classes subdirectory.
	5. Copy the home and remote interface classes for enterprise beans used by the servlets into the ...
	6. Copy JSP tag libraries into the WEB-INF subdirectory. (Tag libraries may be installed in a sub...
	7. Set up your shell environment.
	8. Execute the following command to automatically generate the web.xml and weblogic.xml deploymen...
	9. Bundle the staging directory into a .war file by executing a jar command such as the following:

	Packaging Enterprise JavaBeans
	1. Create a temporary staging directory.
	2. Compile or copy the bean’s Java classes into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Set up your shell environment.
	5. Execute the following command to automatically generate the ejb-jar.xml, weblogic-ejb-jar.xml,...
	6. When all of the enterprise bean classes and deployment descriptors are set up in the staging d...

	Packaging Resource Adapters
	1. Create a temporary staging directory.
	2. Compile or copy the resource adapter’s Java classes into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Create an ra.xml deployment descriptor in the META-INF subdirectory and add entries for the re...
	5. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory and add entries fo...
	6. When all of the resource adapter classes and deployment descriptors are set up in the staging ...

	Packaging Enterprise Applications
	1. Create a temporary staging directory.
	2. Copy the Web archives (.war files) and EJB archives (.jar files) into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Set up your shell environment.
	5. Execute the following command to automatically generate the application.xml deployment descrip...
	6. Create the Enterprise Archive (.ear file) for the application, using a jar command such as:

	Packaging Client Applications
	Executing a Client Application in an EAR File
	Special Considerations for Deploying J2EE Client Applications

	Packaging J2EE Applications Using Apache Ant
	Compiling Java Source Files
	Running WebLogic Server Compilers
	Listing 3-1 Running WebLogic Server Compilers

	Packaging J2EE Deployment Units
	Listing 3-2 WAR Task Example
	1. Specify the standard XML deployment descriptor using the webxml parameter.
	2. The war task automatically maps XML deployment descriptor to the standard name in the WAR arch...
	3. Apache Ant stores the manifest file, specified using the manifest parameter, under the standar...
	4. Use the Apache Ant ZipFileSet command to define a set of files (in this case, just the WebLogi...
	5. Use a second ZipFileSet command to package all the images in an images directory.
	6. The classes tag packages servlet classes in the WEB-INF/classes directory.
	7. Finally, add all the .jsp and .html files from the current directory to the archive.

	Listing 3-3 Packaging Example
	<project name="app" default="app.ear">
	<property name="wlhome" value="/bea/wlserver6.1"/>
	<property name="srcdir" value="/bea/myproject/src"/>
	<property name="appdir" value="/bea/myproject/config/mydomain/applications"/>
	<target name="timer.war">
	<mkdir dir="classes"/>
	<javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/timer/*.java"/>
	<war warfile="timer.war" webxml="timer/web.xml" manifest="timer/manifest.txt">
	<classes dir="classes" includes="**/TimerServlet.class"/>
	</war>
	</target>
	<target name="trader.jar">
	<mkdir dir="classes"/>
	<javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/trader/*.java"/>
	<jar jarfile="trader0.jar" manifest="trader/manifest.txt">
	<zipfileset dir="trader" prefix="META-INF" includes="*ejb-jar.xml"/>
	<fileset dir="classes" includes="**/Trade*.class"/>
	</jar>
	<ejbc source="trader0.jar" target="trader.jar"/>
	</target>
	<target name="app.ear" depends="trader.jar, timer.war">
	<jar jarfile="app.ear">
	<zipfileset dir="." prefix="META-INF" includes="application.xml"/>
	<fileset dir="." includes="trader.jar, timer.war"/>
	</jar>
	</target>
	<target name="deploy" depends="app.ear">
	<copy file="app.ear" todir="${appdir}/>
	</target>
	</project>

	Running Ant

	Resolving Class References Between Components
	Classloader Overview
	About Application Classloaders
	About Resource Adapter Classes
	Using PreferWebInfClasses in J2EE Applications
	Packaging Common Utilities and Third-Party Classes
	Handling Interactions Between Startup Classes and Applications

	4 Programming Topics
	Logging Messages
	Table 4�1 Log Message Format

	Using Threads in WebLogic Server
	Using JavaMail with WebLogic Server Applications
	About JavaMail Configuration Files
	Configuring JavaMail for WebLogic Server
	1. In the Administration Console, click on the Mail node in the left pane of the Administration C...
	2. Click Create a New Mail Session.
	3. Complete the form in the right pane, as follows:
	Table 4�2 Mail Session Properties Field

	Sending Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Construct a MimeMessage. In the following example, to, subject, and messageTxt are String vari...
	5. Send the message.

	Reading Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Get a Store object from the Session and call its connect() method to connect to the mail serve...
	5. Get the default folder, then use it to get the INBOX folder:
	6. Read the messages in the folder into an array of Messages:
	7. Operate on messages in the Message array. The Message class has methods that allow you to acce...

	Programming Applications for WebLogic Server Clusters

	A application.xml Deployment Descriptor Elements
	application
	icon
	small-icon
	large-icon

	display-name
	description
	module
	ejb
	java
	web
	web-uri
	context-root

	security-role
	description
	role-name

	B Client Application Deployment Descriptor Elements
	application-client.xml Deployment Descriptor Elements
	application-client
	icon
	small-icon
	large-icon

	display-name
	description
	env-entry
	description
	env-entry-name
	env-entry-type
	env-entry-value

	ejb-ref
	description
	ejb-ref-name
	ejb-ref-type
	home
	remote
	ejb-link

	resource-ref
	description
	res-ref-name
	res-type
	res-auth

	WebLogic Run-time Client Application Deployment Descriptor
	application-client
	env-entry*
	env-entry-name
	env-entry-value

	ejb-ref*
	ejb-ref-name
	jndi-name

	resource-ref*
	resource-ref-name
	jndi-name

