
Using WebLogic

W e b L o g i c S e r v e r 6 . 0
D o c u m e n t E d i t i o n 1 . 0

D e c e m b e r 2 0 0 0

BEA WebLogic
Server

Workspaces
(Deprecated)

Using WebLogic Workspaces iii

Contents

1. Using WebLogic Workspaces (Deprecated)
Deprecation of Workspaces API ...2

Introduction ...2

Overview of Workspaces ...2

The API ...3

Overview of the WebLogic Workspace API..3

Implementing with WebLogic Workspaces ..4

Getting access to Workspaces ..4

Creating, leaving, and reentering Workspaces...5

Using a Workspace ID to create and reenter a Workspace.....................5

Using a Workspace name to create and reenter a Workspace6

Using named Workspaces to store and fetch objects8

Converting from the old model to the new ..10

Using Workspace Monitors..10

Types of Monitors ...11

How Monitors work ..12

Writing a Monitor ...14

Adding a Monitor to a Workspace ..15

Monitor Examples...16

Example 1. Restricting the range of a Workspace value16

Example 2. Triggering an event with a Monitor18

Example 3. Mirroring Workspace values in another Workspace19

Example 4. Altering a Workspace value with a Master Monitor..........22

Removing a Monitor from a Workspace...23

Setting up ACLs for Workspaces in the WebLogic Realm23

Copyright

Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebLogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebLogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic
Collaborate, BEA WebLogic Enterprise, and BEA WebLogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.

Using WebLogic Workspaces (Deprecated)

Document Edition Date Software Version

6.0 December 2000 BEA WebLogic Server 6.0

1 Using WebLogic
Workspaces
(Deprecated)

Using WebLogic Workspaces

 Introduction
Overview of Workspaces

The API
WebLogic Workspace API reference
Overview of the WebLogic Workspace API

Implementing with Workspaces
Getting access to Workspaces
Creating, leaving, and reentering Workspaces

Using a Workspace ID to create and reenter a Workspace
Using a Workspace name to create and reenter a Workspace

Using named Workspaces to store and fetch objects
Converting from the old model to the new
Using Workspace Monitors

Types of Monitors
How Monitors work
Writing a Monitor
Adding a Monitor to a Workspace
Monitor Examples
Removing a Monitor from a Workspace

Setting up ACLs for Workspaces in the WebLogic Realm
Using WebLogic Workspaces 1-1

1 Using WebLogic Workspaces (Deprecated)
Other related documents
Installing WebLogic (non-Windows)
Installing WebLogic (Windows)
Writing a WebLogic client application
Developers Guides
API Reference Manual
Glossary
Code Examples

Note: The documentation for WebLogic Server has been revised for this release. The
documents listed have been superseded by the revised documentation.

Deprecation of Workspaces API

The WebLogic Workspaces API has been deprecated for this release.

See the “Data Caching Design Pattern” topic in Progamming with WebLogic JNDI for
alternatives to workspaces for temporary storage:

Introduction

Overview of Workspaces

WebLogic provides many different services and facilities to its applications. Facilities,
like common logs, instrumentation, configuration, and management, are available to
all applications that operate within the WebLogic framework.

One of these facilities is the Workspace. The WebLogic Server hosts a set of
hierarchically arranged, threadsafe Workspaces that are assigned to clients, groups of
clients, and the WebLogic Server itself. A Workspace can contain any arbitrary
objects, and Workspaces can be named, saved, and reentered over several sessions.
Things inside a Workspace can be monitored so that an application executes certain
methods before destroying or saving Workspace contents.
1-2 Using WebLogic Workspaces

http://e-docs.bea.com/wls/docs61/jndi/jndi.html

The API
A T3Client can create subWorkspaces inside its system-assigned client Workspace
and can leave and reenter the same work area again and again, depending upon how
the WebLogic Server is configured to clean up a T3Client’s resources (see Timeouts
for more information on T3Client lifetime).

Various information about the Client—its context or state—is stored in its Workspace,
including information associated with its T3User object, JDBC connections, etc.

Currently there are two levels of Workspaces, at the client level (defined by the final
static int SCOPE_CLIENT in WorkspaceDef) and at the server level (defined by the final
static int SCOPE_SERVER in WorkspaceDef).

Workspaces also offer a way to share objects. An object stored in a client’s Workspace
can be accessed by other clients. Objects may also be stored in the server Workspace,
to which all clients have access. The WebLogic Server itself can store an object (like
a database result set) in the server Workspace, and all of the WebLogic Server’s clients
can be granted access to the result set.

The API

WebLogic Workspace API reference

For a detailed reference on the WebLogic Workspace API, see the following packages
in the WebLogic Server API Reference.

� weblogic.common

� weblogic.workspace.common

Overview of the WebLogic Workspace API

Workspaces are one of the powerful tools that a T3Client has in the WebLogic
framework. The API for Workspaces is closely intertwined with that for the T3Client;
many of those interfaces and classes are found in the weblogic.common package.
Here we overview how the Workspace-related classes in the weblogic.common
package and the WorkspaceDef interface in weblogic.workspace.common are
related and interoperate.
Using WebLogic Workspaces 1-3

1 Using WebLogic Workspaces (Deprecated)
Implementing with WebLogic Workspaces

Getting access to Workspaces

Creating, leaving, and reentering Workspaces
Using a Workspace ID to create and reenter a Workspace
Using a Workspace name to create and reenter a Workspace

Using named Workspaces to store and fetch objects

Converting from the old model to the new

Using Workspace Monitors
Types of Monitors
How Monitors work
Writing a Monitor
Adding a Monitor to a Workspace
Monitor Examples
Removing a Monitor from a Workspace

Setting up ACLs for Workspaces in the WebLogic Realm

Getting access to Workspaces

The currently available services and facilities, includingWorkspaces, are accessed
through factory methods. Conceptually, a factory method allows the allocation of
resources inside the WebLogic Server in a configurable, controllable way. Factory
methods take the place of constructors.

A T3Client gains access to the Workspace facility through its services object. When
you create a T3Client, a default Workspace is automatically created for the T3Client.
The code for requesting access to the default Workspace follows this pattern:

 T3Client t3 = new T3Client("t3://localhost:7001");
 t3.connect();
 WorkspaceDef defaultWS =
 t3.services.workspace().getWorkspace();
1-4 Using WebLogic Workspaces

Implementing with WebLogic Workspaces
The WorkspaceDef object provides access to all of the Workspace functionality
available to a T3Client. Before you do any work with Workspaces in a T3Client
application, you must get a reference to the WorkspaceDef object that defines the
default T3Client Workspace.

Creating, leaving, and reentering Workspaces

weblogic.workspace.common.WorkspaceDef

weblogic.common.WorkspaceServicesDef.getWorkspace()

Using a Workspace ID to create and reenter a Workspace

You create a client Workspace by default when you create a T3Client. All Workspaces,
including the default Workspace, are always identifiable by the unique ID that the
WebLogic Server assigns to the Workspace when it is created. By retrieving and
saving the ID of the Workspace, you can then use the Workspace ID to reenter the
same Workspace with a different T3Client, as shown here:

T3Client t3 = new T3Client("t3://localhost:7001");
t3.connect();
// Set the Workspace timeout so the Workspace
// will hang around even after the client disconnects
t3.setSoftDisconnectTimeoutMins(T3Client.DISCONNECT_TIMEOUT_NEVER
);

// Retrieves the default T3Client Workspace
WorkspaceDef defaultWS =
 t3.services.workspace().getWorkspace();
String wsid = defaultWS.getID();
// . . . do some work . . .
t3.disconnect();

// Reconnect, passing the workspace ID wsid
T3Client newt3 = new T3Client("t3://localhost:7001", wsid);
newt3.connect();
// . . . finish up work . . .
// When work is finished, set the Workspace for immediate
// cleanup and disconnect
newt3.setSoftDisconnectTimeoutMins(0);
newt3.disconnect();
Using WebLogic Workspaces 1-5

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/workspace/common/WorkspaceDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/WorkspaceServicesDef.html#getWorkspace()

1 Using WebLogic Workspaces (Deprecated)
Using a Workspace name to create and reenter a Workspace

You can also set the name of the default Workspace by supplying a name for the
Workspace as an argument when the T3Client is created. The Workspace name can be
used later to reenter the Workspace, as in this example:

T3Client t3 = new T3Client("t3://localhost:7001",
 "MY_CLIENT_WS");
t3.connect();
// Set the Workspace timeout so the Workspace
// will hang around even after the client disconnects
t3.setSoftDisconnectTimeoutMins(T3Client.DISCONNECT_TIMEOUT_NEVER
);
// . . . do some work . . .
t3.disconnect();

T3Client newt3 = new T3Client("t3://localhost:7001",
 "MY_CLIENT_WS");
newt3.connect();
// . . . finish up work . . .
// When work is finished, set the Workspace for immediate
// cleanup and disconnect
newt3.setSoftDisconnectTimeoutMins(0);
newt3.disconnect();

Setting the soft disconnect timeout to NEVER means that the WebLogic Server will not
cleanup the client’s serverside resources, even though the client disconnects and goes
away. Technically, you can delay the cleanup of client workspace resources forever (or
as long as the WebLogic Server is running), but practically, for performance and
efficiency, you will want to clean up resources as clients finish with them. Once you
have finished the client’s work, you can set the soft disconnect timeout to zero, which
forces the WebLogic Server to release the T3Client’s serverside resources as soon as
the client disconnects.

You can also create and name a subWorkspace that exists as a child of a certain
Workspace (by default, as a child of the default T3Client Workspace). Note that
Workspaces that you create are always (technically) created as a subWorkspace; for
example, if you create a Workspace with SCOPE_SERVER, it will be created as a
subWorkspace of the server Workspace that was created at server startup. You also
can’t create mis-matched subWorkspaces; for example, you can’t create a
subWorkspace of the server Workspace that has a scope of SCOPE_CLIENT.
1-6 Using WebLogic Workspaces

Implementing with WebLogic Workspaces
SubWorkspaces operate exactly as any other Workspaces; they allow the developer to
more finely control how and where application or client objects are stored. The
methods in WorkspaceDef operate on any Workspace, no matter its scope, except that
(by definition) you can only create subWorkspaces, and you can only destroy those
subWorkspaces that you have created. In these docs, we do not differentiate between
subWorkspaces and Workspaces.

This example illustrates how to name a subWorkspace and use it for storing and
retrieving Objects. To use a named subWorkspace, first get access to the T3Client’s
default Workspace as shown here:

 T3Client t3 = new T3Client("t3://localhost:7001");
 t3.connect();
 WorkspaceDef defaultWS =
 t3.services.workspace().getWorkspace();

Then create a subWorkspace as a child of the T3Client’s default Workspace. (Note that
all child Workspaces are destroyed when the parent is destroyed, which means that
when you destroy the T3Client’s default Workspace, any named Workspaces that you
have created will be destroyed as well.)

 WorkspaceDef subWS = defaultWS.getWorkspace("DATA_STORE");

You can specify a scope when you create the Workspace that controls where the
Workspace is created. You can create a subWorkspace that is scoped at the following
levels, all of which are defined as final static ints in the WorkspaceDef interface:

� SCOPE_CLIENT is for creating subWorkspaces of the T3Client workspace. If you
do not specify scope when getting a WorkspaceDef, the default sets the scope to
SCOPE_CLIENT.

� SCOPE_SERVER creates a subWorkspace at the WebLogic Server system level.
All T3Clients with access to the WebLogic Server have access to objects stored
within the server scope. You will probably use this scope for storing Objects for
general client use created by startup classes. Note that for security reasons, the
contents of workspaces of scope server are not shown in either the WebLogic
Console or the Admin servlets.

You can also specify a mode when you create the Workspace that controls how the
Workspace is created. There are three modes for creating or reentering a Workspace
that are defined as final static ints in the WorkspaceDef interface:

� WorkspaceDef.CREATE, which creates a new Workspace only if an existing
Workspace that matches it does not already exist.
Using WebLogic Workspaces 1-7

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/workspace/common/WorkspaceDef.html

1 Using WebLogic Workspaces (Deprecated)
� WorkspaceDef.ATTACH, which attaches to an existing Workspace only if an
existing Workspace that matches it already exists.

� WorkspaceDef.OPEN, which creates a new Workspace if a matching one does
not exist, or attaches to an existing Workspace. This mode is used as default if
you do not supply a mode.

With mode, you can be very selective about the conditions under which you want to
enter a Workspace. If, for example, you have created a Workspace named
DATASTORE_SPACE at the system scope and stored an object in it, you can make certain
that you return to that Workspace by using the ATTACH mode when you get the
Workspace. If you attempt to ATTACH to a Workspace that doesn’t exist, your
application will throw an Exception that you can catch and act upon.

In the same way, you can be certain that you get a completely new Workspace by using
the CREATE mode. If you call the getWorkspace() method in the CREATE mode and
supply a Workspace name or ID to create that already exists, your application will
throw an Exception.

Here is the example we used above, except here we create a subWorkspace with the
mode set to WorkspaceDef.CREATE:

 T3Client t3 = new T3Client("t3://localhost:7001");
 t3.connect();
 WorkspaceDef defaultWS =
 t3.services.workspace().getWorkspace();
 WorkspaceDef subWS =
 defaultWS.getWorkspace("DATA_STORE",
 WorkspaceDef.CREATE);

You can create subWorkspaces of subWorkspaces to organize objects in the way that
makes the most sense for your application.

You can get an Enumeration of the names of all the subWorkspaces of a Workspace
with the WorkspaceDef.subspaces() method.

Using named Workspaces to store and fetch objects

Workspaces are useful to store objects in. You store and fetch objects as name-value
pairs. You can manipulate arbitrary Objects, with the following restrictions:

� The Object is a java.lang or java.util Object.
1-8 Using WebLogic Workspaces

Implementing with WebLogic Workspaces
� Or, the Object is java.io.serializable.

There are three methods for managing objects in Workspaces. All of them use a String
key to refer to the object.

� WorkspaceDef.store(String key, Object p) stores an Object.

� WorkspaceDef.fetch(String key) retrieves a stored Object
non-destructively.

� WorkspaceDef.remove(String key) retrieves a stored Object and removes it
from the Workspace.

You can get an Enumeration of all the keys in a particular Workspace with the method
WorkspaceDef.keys().

Here is an example of storing a WebLogic JDBC ResultSet in a Workspace that we
create as DATA_SPACE. DATA_SPACE is a subWorkspace of the system Workspace.

 T3Client t3 = new T3Client("t3://toyboat.toybox.com:7001");
 t3.connect();
 // Get the default T3Client Workspace

 WorkspaceDef defaultWS =
 t3.services.workspace().getWorkspace();
 WorkspaceDef dataWS =
 defaultWS.getWorkspace("DATA_WORKSPACE",
 WorkspaceDef.CREATE,
 WorkspaceDef.SCOPE_SERVER);
 // . . . Connect to the DB and get a ResultSet rs . . .
 // Then store it in the system subWorkspace we created
 dataWS.store("MyResults", rs);
 t3.disconnect();

Here is the reverse: fetching the ResultSet. In this example, we attach to the
already-existing subWorkspace DATA_SPACE. Since we want to leave the ResultSet
intact in the Workspace for use by other clients, we will use the fetch() method to
get the ResultSet, rather than the remove() method, which is a destructive fetch.

 T3Client t3 = new T3Client("t3://toyboat.toybox.com:7001");
 t3.connect();
 // Get the default T3Client Workspace
 WorkspaceDef defaultWS =
 t3.services.workspace().getWorkspace();
 // Attach to the system subWorkspace already created
 WorkspaceDef myDataWS =
 defaultWS.getWorkspace("DATA_WORKSPACE",
Using WebLogic Workspaces 1-9

1 Using WebLogic Workspaces (Deprecated)
 WorkspaceDef.ATTACH,
 WorkspaceDef.SCOPE_SERVER);
 // Get the ResultSet and clean up
 ResultSet rs = (ResultSet) myDataWS.fetch("MyResults");
 t3.disconnect();

Converting from the old model to the new

If you are moving from release 2.4, you will find that the major difference in coding
usage with the new Workspace object is accessing the Workspace facility.

The methods that allow you to get access to and operate on Workspaces were
originally in the T3Client class. Here is how you used to access the facility:

 T3Client t3 = new T3Client("t3://localhost:7001");
 t3.connect();
 String wsid = t3.getID();

With the new model, you access the Workspace facility through the T3Client’s
services stub and the weblogic.common.workspace.WorkspaceDef interface, as
shown here:

 T3Client t3 = new T3Client("t3://localhost:7001");
 t3.connect();
 WorkspaceDef defaultWS =
 t3.services.workspace().getWorkspace();

Then you use methods in that interface to operate on the WorkspaceDef. The methods
getID() and getName() are identical to the same methods that were formerly in the
T3Client class. The methods for storing in and fetching from workspaces are similar
to the same methods that were formerly in
weblogic.common.WorkspaceServicesDef. These have been deprecated in favor
of the more powerful model in WorkspaceDef.

Using Workspace Monitors

The new interface WorkspaceDef also gives you access to Monitor functionality,
which allows you to call user-written methods on Workspace contents before and after
certain operations, like save and destroy. Monitors are useful for implementing
business rules, where workflow and data validation are enforced by a global policy.
1-10 Using WebLogic Workspaces

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/WorkspaceServicesDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/workspace/common/WorkspaceDef.html

Implementing with WebLogic Workspaces
Classes and interfaces of interest in working with Monitors:

Setting up Monitors
weblogic.common.SetMonitor
weblogic.common.GetMonitor
weblogic.common.DestroyMonitor
weblogic.common.MonitorException

Activating Monitors
weblogic.common.GetMonitor
weblogic.common.Monitor
weblogic.common.MonitorDef

For example, here are some operations for which you might use monitors. We’ll use
these examples later in this section to demonstrate how to write and use monitors.

� Restricting a workspace value to a particular range. Your application can ensure
that values fall into a particular range by checking the value prior to an operation
and throwing a MonitorException if a value is invalid.

� Triggering an event when a Workspace value is destroyed. Because your
application is operating in the WebLogic framework, you have access to other
WebLogic APIs, such as events. You can use Events and Monitors together.

� Mirroring a Workspace value in another Workspace. You can use Monitors to
mirror changes in one Workspace to another Workspace.

� Altering/encoding a Workspace value when set. With a Master Monitor it is
possible to capture any attempt to set the value and substitute an encoded value,
which can be used for data compression and encryption of sensitive information.

Types of Monitors

There are two types of Monitors: regular Monitors, which we refer to by default with
the term Monitor; and Master Monitors. There can be only a single Master Monitor for
each monitored object; there may be many regular Monitors on a single Object.

Regular Monitors are using for merely watching values and perhaps reporting on their
changes, or even vetoing an operation on those values. Regular Monitors can’t actually
affect the value itself. There is no guaranteed order of monitor operations if there are
multiple monitors on a value.

A Master Monitor is identical to a regular monitor except for two characteristics:
Using WebLogic Workspaces 1-11

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/SetMonitor.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/GetMonitor.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/DestroyMonitor.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/MonitorException.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/GetMonitor.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/Monitor.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/MonitorDef.html

1 Using WebLogic Workspaces (Deprecated)
� A Master Monitor is guaranteed to be the first monitor executed before a
monitored operation is performed, and the first to be executed after a monitored
operation is performed. That is, its pre and post operations preempt the same
operations of regular Monitors.

� Master Monitors can alter the state of a monitored object. While a Master
Monitor is executing, the target object is unlocked and can be altered by the
Master Monitor. Regular monitors can only observe (and potentially veto)
alterations to an object’s state. Here is an example of how a Master Monitor
might change a value of an Object target, an operation that a regular Monitor
couldn’t complete:

public void preSet(Setable target, ParamSet callbackData)
 throws MonitorException {
 target.newValue("ALTERED Value");
}

A Master Monitor is created from a regular Monitor by calling the Monitor’s
setMaster() method with the argument true. If there already exists a Master Monitor
for the target object, a MonitorException will be thrown. Here is a code excerpt that
creates a Monitor and then sets it to be a Master Monitor:

 Monitor monitor = new Monitor("mycode.MyMonitor", ps);
 monitor.setMaster(true);

 try {
 workspace.addMonitor(key, monitor);
 }
 catch (Exception e) {
 inform("addMonitor failed: a Master Monitor " +
 "may already be installed.");
 }

How Monitors work

What a Monitor monitors depends on the interfaces that it implements and on what
operations the monitored object supports. Monitorable objects must implement
Setable, Getable, and or Destroyable. Currently, only Workspace implements these
interfaces, so only Workspace values can be monitored.

Workspaces support monitoring of the following operations:

� Set

� Get
1-12 Using WebLogic Workspaces

Implementing with WebLogic Workspaces
� Destroy

To monitor an object in a Workspace, you write a class that does something—anything
you want—whenever a Workspace object that implements Destroyable, Setable,
and/or Getable has one of its xxxValue() methods called.

Monitors allows your user-written code to be executed whenever a particular
Workspace object is queried, modified, or destroyed.

There are six points in at which a Monitor can intervene in a Workspace object’s
operations:

1. preSet and postSet, called before or after a Workspace object’s setValue(),
newValue(), oldValue(), etc., operation has completed. A preSet operation is
blocked by throwing a MonitorException.

2. preGet and postGet, called before or after a get operation is performed. A preGet
operation can be blocked by throwing a MonitorException.

3. preDestroy and postDestroy, called before or after a destroy operation has
completed. A preDestroy operation can be blocked by throwing a
MonitorException.

Any Monitor can veto an operation (in the pre stage) by throwing a MonitorException.
When an operation is vetoed, all Monitors are notified of the veto. A Master Monitor
can override the veto.

In order to monitor set, get, or destroy operations, your Monitor must implement one
or more of the interfaces:

� SetMonitor

� GetMonitor

� DestroyMonitor

Within your class, you can set up tasks to be called before and after set, get, and destroy
operations are called on a specific Workspace object. A class that implements all three
interfaces will have the appropriate methods for get, set, and destroy operations, which
are implemented by the developer.

Practically, there are two parts of monitoring:

� Write the class that does the monitoring—that carries out some operation before
or after set, get, and destroy operations are performed on Workspace objects.
Using WebLogic Workspaces 1-13

1 Using WebLogic Workspaces (Deprecated)
This class must implement one or more of the Monitor interfaces, SetMonitor,
GetMonitor, or DestroyMonitor.

� Write the class that adds the Monitor to a Workspace. The Monitor that you
write has to be instantiated by WebLogic, which is done by adding the Monitor
to the Workspace in which it will operate.

First we provide a simple example of each step. Then we explicate the process with
four different examples.

Writing a Monitor

Your Monitor must implement one or more of the SetMonitor, GetMonitor, or
DestroyMonitor interfaces; and another class that adds the Monitor to the Workspace
so that it operates on the Workspace’s values.

The operations that a Monitor monitors depends upon which interfaces are
implemented by the objects being monitored. Here is an example of a very simple
Monitor that monitors set operations.

package mycode;

import weblogic.common.*;

public class MyMonitor implements SetMonitor {
 public T3ServicesDef services;
 public void monitorInit(ParamSet params, boolean isMaster) {}

 public void setServices(T3ServicesDef services) {
 this.services = services;
 }

 public void preSet(Setable target,
 ParamSet callbackData)
 throws MonitorException
 {
 System.out.println("preSet called");
 }

 public void postSet(Setable target,
 ParamSet callbackData,
 Exception e) {
 System.out.println("postSet called");
 }
}

1-14 Using WebLogic Workspaces

Implementing with WebLogic Workspaces
Adding a Monitor to a Workspace

weblogic.workspace.common.WorkspaceDef.addMonitor()

To put a Monitor to work, you need to add the Monitor to a Workspace, where it then
monitors the values in the Workspace. You do this by calling the
WorkspaceDef.addMonitor() method.

The addMonitor() method takes two parameters, a name by which you can identify
it later, and a Monitor object. The Monitor object is essentially a wrapper for a
user-written MonitorDef—that is, a class you have written that implements
SetMonitor, GetMonitor, or DestroyMonitor, each of which implement
MonitorDef.

Here is an example of how you construct the Monitor that you pass to the
addMonitor() method. Potentially you can use an assortment of these arguments in
the Monitor constructor, depending upon whether the Monitor needs initialization
parameters and whether it is constructed by a client or server:

� The name of the MonitorDef class (that is, a class that implements SetMonitor,
GetMonitor, or DestroyMonitor). The class must be in the CLASSPATH of
your WebLogic Server. If you are adding a Monitor from a WebLogic Server,
you can alternatively pass an instance of the MonitorDef class to the
addMonitor() method instead.

� Optionally, a ParamSet object that is a set of initialization parameters. Since the
default constructor—without any arguments—must be used to instantiate a class
remotely, we pass a set of initialization parameters which are evaluated by the
monitorInit() method as soon as the Monitor is instantiated.

� Optionally, a ParamSet object that is a set of callback parameters. If you add a
Monitor from a client, you might want to set some callback parameters. Callback
parameters are passed to the pre and post methods defined by the Monitors.

Here is an example of the code you might use to add a Monitor to the default client
Workspace:

 T3Client t3 = new T3Client("t3://localhost:7001");
 t3.connect();
 ParamSet initps = new ParamSet();
 ParamSet cbps = new ParamSet();

 WorkspaceDef defaultWS =
 t3.services.workspace().getWorkspace();
Using WebLogic Workspaces 1-15

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/workspace/common/WorkspaceDef.html#addMonitor(weblogic.common.Monitor)

1 Using WebLogic Workspaces (Deprecated)
 initps.setParam("topic", "newBooks");
 Monitor myMon =
 new Monitor("mycode.MyMonitor", initps, cbps);
 defaultWS.addMonitor("topic", myMon);

Monitor Examples

In these examples, we show the code that adds the Monitor, and in more detail, the
code for the Monitor itself. There are four examples. Each is detailed fully in the code
examples in the examples/workspace/monitor directory in the distribution.

Note: The workspace code examples are not packaged with this release.

� Example 1. Restricting the range of a Workspace value.

� Example 2. Triggering an event with a Monitor.

� Example 3. Mirroring Workspace values in another Workspace.

� Example 4. Altering a Workspace value with a Master Monitor.

Example 1. Restricting the range of a Workspace value

examples.workspace.monitor.RangeMonitor

This example of a Monitor restricts a Workspace value to a particular range. As a client
changes the Workspace value, the Monitor checks the range before the value is set and
throws a MonitorException if the value is out of the prescribed range.

How addMonitor() is called

 T3Client t3 = new T3Client("t3://localhost:7001");
 t3.connect();
 // Create 2 ParamSets to be used with the pre-
 // and post- operations.
 // Since we do not really need params, we'll leave them empty.
 ParamSet initPS = new ParamSet();
 ParamSet callbackPS = new ParamSet();

 // Get the Workspace
 WorkspaceDef defaultWS =
 t3.services.workspace().getWorkspace();
 WorkspaceDef workspace = defaultWS;
 try {
 Monitor rangeMonitor =
1-16 Using WebLogic Workspaces

Implementing with WebLogic Workspaces
 new Monitor("examples.workspace.monitor.RangeMonitor",
 initPS, callbackPS);

 workspace.addMonitor("key3", rangeMonitor);
 System.out.println("Setting Value within range 0-100");
 workspace.store("key3", new Integer(50));
 try {
 System.out.println("Setting Value outside range 0-100");
 workspace.store("key3", new Integer(150));
 }
 catch (T3Exception ex) {
 System.out.println("Received Exception for " +
 "out-of-range value");
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 t3.disconnect();

The Monitor itself

In this example (the full example is in
examples/workspace/monitor/RangeMonitor.java) we show just the
implementation of the preSet() and postSet() methods—although all the work is
done in the preSet() method. The class implements the SetMonitor interface and is
monitoring a Workspace object passed in as target.

Note: The workspace code examples are not packaged with this release.

 public void preSet(Setable target,
 ParamSet callbackData)
 throws MonitorException
 {
 if (!target.newValue() instanceof Integer) {
 throw MonitorException("Value must be of type Integer");
 }
 integer newValue = ((Integer) target.newValue()).intValue();
 if (newValue < 0 || newValue > 100) {
 throw MonitorException(newValue +
 " must be between 0 and 100");
 }

 public void postSet(Setable target,
 ParamSet callbackData,
 Exception e) {}
Using WebLogic Workspaces 1-17

1 Using WebLogic Workspaces (Deprecated)
Example 2. Triggering an event with a Monitor

This example of a Monitor triggers an event when a Workspace value is destroyed.
Notice that the class in which the Monitor is added must implement
weblogic.event.actions.ActionDef.

How addMonitor() is called

Here we send an event when a Workspace value is removed. For more information on
submitting events, check the Developers Guide Using WebLogic Events.

In this example, for the sake of brevity, we skip the code fragment for creating and
connecting the T3Client (t3), creating the initialization and callback parameters (initPS
and callbackPS), and getting the Workspace (workspace). Check the first example for
details, or see the full code example in
examples/workspace/monitor/MonitorDemo.java.

Note: The workspace code examples are not packaged with this release.

DestructionMonitor sends an event when a Workspace value is removed. The lock is
used to force the thread to wait until the message notification arrives.

 initPS.setParam("topic", "destroyTopic");
 Monitor destuctionMonitor =
 new Monitor("examples.workspace.monitor.DestructionMonitor",
 initPS, callbackPS);

 Evaluate eval =
 new Evaluate("weblogic.event.evaluators.EvaluateTrue");
 Action action = new Action(this);

 EventRegistrationDef destroyReg =
 t3.services.events().getEventRegistration("destroyTopic",
 eval, action);
 destroyReg.register();

 workspace.addMonitor("key1", destuctionMonitor);
 System.out.println("Storing value under key1");
 workspace.store("key1", "testValue");
 System.out.println("Removing key1 from workspace " +
 "(expect message notification)");
 synchronized(md.lock) {
 workspace.remove("key1");
 md.lock.wait();
 }
1-18 Using WebLogic Workspaces

Implementing with WebLogic Workspaces
// This implements ActionDef, which this class must
// do in order to submit an EventRegistration
public void setServices(T3ServicesDef services) {}

public void registerInit(ParamSet ps) {}

public void action(EventMessageDef message) {
 System.out.println("Message Received: " + message.getTopic());
 synchronized(lock) {
 lock.notify();
 }
}

The Monitor itself

In this example, we show only the postDestroy() method, which is where the work
is done. The class implements the DestroyMonitor interface and passes in a
Destroyable Workspace object called target.

 public void postDestroy(Destroyable target,
 ParamSet callbackData, Exception e) {
 if (e == null) {
 ParamSet ps = new ParamSet();
 try {
 if (target instanceof WorkspaceValue) {
 ps.setParam("key", ((WorkspaceValue) target).getKey());
}
EventMessageDef em =
 services.events().getEventMessage(topic, ps);
em.submit();
 }
 catch (ParamSetException pse) {
 }
 catch (EventGenerationException ege) {}
 }
 }

Example 3. Mirroring Workspace values in another Workspace

How addMonitor() is called

In this example, for the sake of brevity, we skip the code fragment for creating and
connecting the T3Client (t3), creating the initialization and callback parameters (initPS
and callbackPS), and getting the Workspace (workspace). Check the first example for
details, or see the full code example in
examples/workspace/monitor/MonitorDemo.java.
Using WebLogic Workspaces 1-19

1 Using WebLogic Workspaces (Deprecated)
Note: The workspace code examples are not packaged with this release.

 try {
 // MirrorMonitor uses a SetMonitor and a DestroyMonitor
 // to mirror the state of a workspace value in
 // another workspace.
 initPS.setParam("mirror", "mirroredWorkspace");
 Monitor mirrorMonitor =
 new Monitor("examples.workspace.monitor.MirrorMonitor",
 initPS, callbackPS);

 workspace.addMonitor("key2", mirrorMonitor);
 String mirrorVal = "mirror this";
 workspace.store("key2", mirrorVal);
 System.out.println("Set key2 = " + mirrorVal +
 ", in default workspace");
 WorkspaceDef mirror =
 defaultWS.getWorkspace("mirroredWorkspace",
 WorkspaceDef.OPEN,
 WorkspaceDef.SCOPE_SERVER);
 String mirroredValue =
 (String) mirror.fetch("key2");
 System.out.println("Got key2 = " + mirrorVal +
 ", in workspace " + mirror.getName());

 }
 catch (Exception e) {
 e.printStackTrace();
 }

 // Disconnect the client. Since the soft disconnect
 // timeout is NEVER, the WebLogic Server will
 // preserve the session.
 t3.disconnect();
 }

The Monitor itself

This Monitor mirrors a Workspace value in another Workspace; each time the value in
the first Workspace changes, the Monitor causes the mirrored value to change.

Here we implement both the SetMonitor and the DestroyMonitor interfaces, since
the Monitor operates both set and destroy operations. The Workspace object being
monitored (it implements both Setable and Destroyable) is passed in as target.

We also take advantage of the monitorInit() method in this Monitor class and its
ParamSet. In this case, we use the ParamSet to pass the name of the mirrored
Workspace to the monitoring class.
1-20 Using WebLogic Workspaces

Implementing with WebLogic Workspaces
public class MirrorMonitor implements SetMonitor,
 DestroyMonitor {
 public T3ServicesDef services;
 WorkspaceDef mirror = null;

 public void setServices(T3ServicesDef services) {
 this.services = services;
 }

 public void monitorInit(ParamSet params, boolean isMaster)
 throws ParamSetException
 {
 String mirrorName = params.getParam("mirror").asString();
 mirror =
 services.workspace().getWorkspace(mirrorName,
 WorkspaceDef.OPEN,
 WorkspaceDef.SCOPE_SERVER);
 }

 public void preSet(Setable target, ParamSet callbackData)
 throws MonitorException {}

 // Implement this to mirror changes
 public void postSet(Setable target,
 ParamSet callbackData,
 Exception e)
 {
 if (e == null && target instanceof WorkspaceValue) {
 try {
 mirror.store(((WorkspaceValue)target).getKey(),
 target.newValue());
 }
 catch (T3Exception t3e) {}
 }
 }

 public void preDestroy(Destroyable target,
 ParamSet callbackData) {}

 // Implement this to mirror deletes
 public void postDestroy(Destroyable target,
 ParamSet callbackData,
 Exception e) {
 try {
 mirror.destroy(((WorkspaceValue)target).getKey());
 }
 catch (T3Exception t3e) {}
 }
}

Using WebLogic Workspaces 1-21

1 Using WebLogic Workspaces (Deprecated)
Example 4. Altering a Workspace value with a Master Monitor

A monitored object may have at most one Master Monitor. The Master Monitor is
guaranteed to be the first Monitor executed before or after a monitored operation can
be performed. Unlike a Monitor that is not the master, a Master Monitor can also
modify the target object’s state; that is, the target object is unlocked while the Master
Monitor is running.

You make a Monitor into a master by calling Monitor.setMaster(true) on the
Monitor itself. If a Master Monitor has already been set, a MonitorException is thrown.

Here is an example of a Master Monitor. In this case, we want to obscure (encode or
encrypt) the value that is stored in the Workspace object for security reasons.

How addMonitor() is called and the Monitor is set to Master

 try {
 // XXXMonitor is an example of a MasterMonitor, which
 // has the ability to alter the value being monitored.
 // The monitor replaces the supplied value with "XXX".
 Monitor xxxMonitor =
 new Monitor("examples.workspace.monitor.XXXMonitor",
 initPS, callbackPS);
 xxxMonitor.setMaster(true);

 String val = "hello world";
 workspace.addMonitor("key4", xxxMonitor);
 workspace.store("key4", val);
 System.out.println("Set Value: "+val);
 val = (String) workspace.fetch("key4");
 System.out.println("Got Value: "+val);
 }
 catch (Exception e) {
 e.printStackTrace();
 }

The Monitor itself

In this simple example, we simply replace the value with XXX; you might write the
preSet() method instead to use a form of encryption so that the value would also be
decodable when retrieved.

public class XXXMonitor implements SetMonitor {
 T3ServicesDef services;
 boolean isMaster;

 public void monitorInit(ParamSet params, boolean isMaster) {
1-22 Using WebLogic Workspaces

Implementing with WebLogic Workspaces
 this.isMaster = isMaster;
 }

 public void setServices(T3ServicesDef services) {
 this.services = services;
 }

 public void preSet(Setable target, ParamSet callbackData)
 throws MonitorException
 {
 if (isMaster) {
 target.newValue("XXX");
 }
 }

 public void postSet(Setable target,
 ParamSet callbackData,
 Exception e) {}
}

Removing a Monitor from a Workspace

A Monitor can be removed by calling the removeMonitor() method on the
Workspace object, as shown here:

 workspace.removeMonitor(key, monitor);

removes the Monitor for the Workspace value specified by key. You can also call the
method with a single argument, the Monitor itself.

Setting up ACLs for Workspaces in the WebLogic Realm

weblogic.workspace

weblogic.workspace.namedWorkspace

WebLogic controls access to internal resources like Workspaces through ACLs set up
in the WebLogic Realm Entries for ACLs in the WebLogic Realm are listed as
properties in the weblogic.properties file.

Note: This release of WebLogic Server provides a Web-based Administration
Console for all configuration and administration tasks. The
weblogic.properties file is no longer used.
Using WebLogic Workspaces 1-23

1 Using WebLogic Workspaces (Deprecated)
You can set the Permissions read and write for Workspaces and named Workspaces
by entering a property in the properties file. The ACL name weblogic.workspace
controls access to all Workspaces created. If you leave the ACL for a user’s named
Workspace unset, an ACL is created dynamically for the user at login by copying the
ACL for weblogic.workspace and adding read and write Permissions which allows
each user to use its own Workspace without an explicit ACL, but allows users to be
given explicit read and write Permission for other workspaces.

Here are some examples. The first ACL (the first pair of ACL entries) allows four users
to read and write objects in the T3UserSales named Workspace, as well as in the
Workspace created for each user at connect. The second ACL gives the T3User
sysMonitor read and write access for every workspace; as each Workspace is created,
this ACL will be copied and read and write Permissions for the user logging in will be
added to it.

Example:
weblogic.allow.read.weblogic.workspace.T3UserSales=karl,michael,s
kip,msmithweblogic.allow.write.weblogic.workspace.T3UserSales=kar
l,michael,skip,msmithweblogic.allow.read.weblogic.workspace=sysMo
nitorweblogic.allow.write.weblogic.workspace=sysMonitor
1-24 Using WebLogic Workspaces

	Contents
	1. Using WebLogic Workspaces (Deprecated)

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	1 Using WebLogic Workspaces (Deprecated)
	Introduction
	The API
	Implementing with Workspaces
	Other related documents
	Deprecation of Workspaces API
	Introduction
	Overview of Workspaces

	The API
	Overview of the WebLogic Workspace API

	Implementing with WebLogic Workspaces
	Getting access to Workspaces
	Creating, leaving, and reentering Workspaces
	Using named Workspaces to store and fetch objects
	Converting from the old model to the new
	Using Workspace Monitors
	Setting up ACLs for Workspaces in the WebLogic Realm
	Getting access to Workspaces
	Creating, leaving, and reentering Workspaces
	Using a Workspace ID to create and reenter a Workspace
	Using a Workspace name to create and reenter a Workspace

	Using named Workspaces to store and fetch objects
	Converting from the old model to the new
	Using Workspace Monitors
	Setting up Monitors
	Activating Monitors
	Types of Monitors
	How Monitors work
	1. preSet and postSet, called before or after a Workspace object’s setValue(), newValue(), oldVal...
	2. preGet and postGet, called before or after a get operation is performed. A preGet operation ca...
	3. preDestroy and postDestroy, called before or after a destroy operation has completed. A preDes...

	Writing a Monitor
	Adding a Monitor to a Workspace
	Monitor Examples
	Example 1. Restricting the range of a Workspace value
	examples.workspace.monitor.RangeMonitor

	Example 2. Triggering an event with a Monitor
	Example 3. Mirroring Workspace values in another Workspace
	Example 4. Altering a Workspace value with a Master Monitor
	Removing a Monitor from a Workspace

	Setting up ACLs for Workspaces in the WebLogic Realm
	weblogic.workspace
	weblogic.workspace.namedWorkspace

