o®%%,

9 F
: #
L e a

BEA WebLogic
Server

Using WebLogic
Workspaces
(Deprecated)

Contents

1. Using WebLogic Workspaces (Deprecated)

Deprecation of WOrkSpaces AP ..o e 2
gL 0o 17 1o o PR 2
OVverview Of WOIKSPACESccveveeererere st e sesie e siesteees e eseeseees e eseseeseeseens 2
TRE AP bbb bbbt b s 3
Overview of the WebLogic Workspace APl ... 3
Implementing with WebL ogiC WOrKSpaces.........ccovevverierieseneseereseneeseeeeneseens 4
Getting acCesS 10 WOIKSPECEScveeririiriererie e 4
Creating, leaving, and reentering WOorkSpaces...........ccoevereeneeieenenieeiesenennens 5
Using aWorkspace ID to create and reenter a Workspace..................... 5

Using a Workspace name to create and reenter aWorkspace................. 6

Using named Workspaces to store and fetch objects..........cccooeireincncene 8
Converting from the old model to the Newcccccvveveveverecereccece 10
Using Workspace MONITOFS........cccoiririrenenierie s 10
TYPES Of MONITOFS......eieeiiiitieieie ettt e 11

HOW MONIOrSWOTK ..o 12

WIItING @ MONITOE ...t 14
Adding aMonitor to aWOrKSPaCe.........cccverirereniiseeneie e 15

MONItOr EXAMPIES.....cveeeieeeeire e see e see e e se e er s srenre e 16
Example 1. Restricting the range of a Workspacevalue....................... 16
Example 2. Triggering an event with aMonitorccoceevieiiieenne 18
Example 3. Mirroring Workspace values in another Workspace.......... 19
Example 4. Altering a Workspace value with a Master Monitor.......... 22
Removing a Monitor from aWOorkSpace.cccoeeevrenenenencneneniens 23

Setting up ACLs for Workspacesin the WebLogic Realm...........cccccouee..e. 23

Using WebL ogic Workspaces iii

Copyright
Copyright © 2000 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied, photocopied, reproduced, translated, or reduced to any electronic medium or machine-readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems, Inc. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems, Inc.
DOES NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE,
OR THE RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF
CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, WebL ogic, Tuxedo, and Jolt are registered trademarks of BEA Systems, Inc. How Business Becomes
E-Business, BEA WebL ogic E-Business Platform, BEA Builder, BEA Manager, BEA eLink, BEA WebLogic
Commerce Server, BEA WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic
Collaborate, BEA WebL ogic Enterprise, and BEA WebL ogic Server are trademarks of BEA Systems, Inc.

All other product names may be trademarks of the respective companies with which they are associated.
Using WebL ogic Wor kspaces (Deprecated)

Document Edition Date Software Version

6.0 December 2000 BEA WebL ogic Server 6.0

1 Using WebLogic
Workspaces
(Deprecated)

Using WebL ogic Workspaces

Introduction
Overview of Workspaces

The API
WebL ogic Workspace API reference
Overview of the WebL ogic Workspace API

Implementing with Workspaces
Getting access to Workspaces
Creating, leaving, and reentering Workspaces
Using aWorkspace ID to create and reenter a Workspace
Using a Workspace name to create and reenter a Workspace
Using named Workspaces to store and fetch objects
Converting from the old model to the new
Using Workspace Monitors
Types of Monitors
How Monitors work
Writing a Monitor
Adding a Monitor to a Workspace
Monitor Examples
Removing a Monitor from a Workspace
Setting up ACLs for Workspaces in the WebL ogic Realm

Using WebL ogic Workspaces

1 us ng WebL ogic Wor kspaces (Deprecated)

Other related documents
Installing WebL ogic (non-Windows)
Installing WebL ogic (Windows)
Writing a WebL ogic client application
Developers Guides
APl Reference Manua
Glossary
Code Examples

Note: Thedocumentation for WebL ogic Server hasbeen revised for thisrelease. The
documents listed have been superseded by the revised documentation.

Deprecation of Workspaces API

The WebL ogic Workspaces APl has been deprecated for this release.

Seethe " Data Caching Design Pattern” topic in Progamming with WebL ogic JNDI for
aternatives to workspaces for temporary storage:

Introduction

Overview of Workspaces

WebL ogic providesmany different servicesand facilitiestoitsapplications. Facilities,
like common logs, instrumentation, configuration, and management, are available to
all applications that operate within the WebL ogic framework.

One of these facilitiesis the Workspace. The WebL ogic Server hosts a set of
hierarchically arranged, threadsafe Workspaces that are assigned to clients, groups of
clients, and the WebL ogic Server itself. A Workspace can contain any arbitrary
objects, and Workspaces can be named, saved, and reentered over several sessions.
Things inside a Workspace can be monitored so that an application executes certain
methods before destroying or saving Workspace contents.

1-2 Using WebL ogic Workspaces

http://e-docs.bea.com/wls/docs61/jndi/jndi.html

The API

A T3Client can create subWorkspaces inside its system-assigned client Workspace
and can leave and reenter the same work area again and again, depending upon how
the WebL ogic Server is configured to clean up a T3Client’ s resources (see Timeouts
for more information on T3Client lifetime).

Variousinformation about the Client—its context or state—isstored inits\Workspace,
including information associated with its T3User object, JDBC connections, etc.

Currently there are two levels of Workspaces, at the client level (defined by the final
staticint SCOPE_CLI ENT in WorkspaceDef) and at the server level (defined by thefinal
static int SCOPE_SERVER in WorkspaceDef).

Workspaces also offer away to share objects. An object stored inaclient’sWorkspace
can be accessed by other clients. Objects may also be stored in the server Workspace,
towhich all clients have access. The WebL ogic Server itself can store an object (like
adatabase result set) in the server Workspace, and all of the WebL ogic Server’ sclients
can be granted access to the result set.

The API

WebL ogic Workspace API reference

For adetailed reference on the WebL ogic Workspace API, see the following packages
in the WebL ogic Server APl Reference.

® webl ogi c. conmon

® webl ogi c. wor kspace. common

Overview of the WebLogic Workspace API

Workspaces are one of the powerful tools that a T3Client hasin the WebL ogic
framework. The API for Workspacesis closely intertwined with that for the T3Client;
many of those interfaces and classes are found in the webl ogi ¢. conmon package.
Here we overview how the Workspace-related classes in the webl ogi ¢. conmon
package and the Wor kspaceDef interfaceinwebl ogi c. wor kspace. conmon are
related and interoperate.

Using WebL ogic Workspaces 1-3

1 us ng WebL ogic Wor kspaces (Deprecated)

Implementing with WebLogic Workspaces

Getting access to Workspaces

Creating, leaving, and reentering Workspaces
Using aWorkspace ID to create and reenter a Workspace
Using a Workspace name to create and reenter a Workspace

Using named Workspaces to store and fetch objects
Converting from the old model to the new

Using Workspace Monitors
Types of Monitors
How Monitors work
Writing a Monitor
Adding a Monitor to a Workspace
Monitor Examples
Removing a Monitor from a Workspace

Setting up ACL s for Workspaces in the WebL ogic Realm

Getting access to Workspaces

1-4

The currently available services and facilities, includingWorkspaces, are accessed
through factory methods. Conceptually, a factory method allows the allocation of
resources inside the WebL ogic Server in a configurable, controllable way. Factory
methods take the place of constructors.

A T3Client gains access to the Workspace facility through its ser vices object. When
you create a T3Client, adefault Workspace is automatically created for the T3Client.
The code for requesting access to the default Workspace follows this pattern:

T3Client t3 = new T3Cient("t3://1ocal host: 7001");
t 3. connect ();
Wor kspaceDef defaul tWs =

t 3. servi ces. wor kspace() . get Wr kspace() ;

Using WebL ogic Workspaces

Implementing with WebLogic Workspaces

The WorkspaceDef object provides access to all of the Workspace functionality
available to a T3Client. Before you do any work with Workspacesin a T3Client
application, you must get a reference to the WorkspaceDef object that defines the
default T3Client Workspace.

Creating, leaving, and reentering Workspaces

webl ogi c. wor kspace. cormon. Wor kspaceDef

webl ogi c. common. Wor kspaceSer vi cesDef . get Wr kspace()

Using a Workspace ID to create and reenter a Workspace

Y ou createaclient Workspace by default when you createa T3Client. All Workspaces,
including the default Workspace, are always identifiable by the unique ID that the
WebL ogic Server assigns to the Workspace when it is created. By retrieving and
saving the ID of the Workspace, you can then use the Workspace ID to reenter the
same Workspace with a different T3Client, as shown here:

T3d ient t3 = new T3C ient("t3://1ocal host: 7001");

t 3. connect () ;

/1 Set the Wrkspace timeout so the Wrkspace

/1 will hang around even after the client disconnects

t 3. set Sof t Di sconnect Ti meout M ns(T3C i ent . DI SCONNECT_TI MEOUT_NEVER

)

/! Retrieves the default T3d ient Wrkspace
Wor kspaceDef defaul tWs =

t 3. servi ces. wor kspace() . get Wr kspace() ;
String wsid = defaul t Ws. get 1 () ;
/1 . . . do some work .
t 3. di sconnect () ;

/1 Reconnect, passing the workspace ID wsid

T3d ient newt3 = new T3Cient("t3://1ocal host:7001", wsid);
newt 3. connect () ;

/1 . . . finish up work . .

/1 When work is finished, set the Wrkspace for inmediate
/1 cleanup and di sconnect

newt 3. set Sof t Di sconnect Ti meout M ns(0) ;

newt 3. di sconnect () ;

Using WebL ogic Workspaces 1-5

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/workspace/common/WorkspaceDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/WorkspaceServicesDef.html#getWorkspace()

1 us ng WebL ogic Wor kspaces (Deprecated)

Using a Workspace name to create and reenter a Workspace

1-6

Y ou can also set the name of the default Workspace by supplying a name for the
Workspace as an argument when the T3Client is created. The Workspace name can be
used later to reenter the Workspace, asin this example:

T3Cient t3 = new T3Cient("t3://1ocal host: 7001",
"MY_CLI ENT_WE") ;
t 3. connect () ;
/1 Set the Workspace tinmeout so the Wirkspace
/1 will hang around even after the client disconnects
t 3. set Sof t Di sconnect Ti mreout M ns(T3C i ent. DI SCONNECT_TI MEOUT_NEVER
)
/[l . . . do sone work .
t 3. di sconnect () ;

T3Cient newt3 = new T3dient("t3://1ocal host: 7001",
"MY_CLI ENT_WS") ;

newt 3. connect () ;

[l . . . finish up work . .

/1 When work is finished, set the Wrkspace for inmediate

/1 cleanup and di sconnect

new 3. set Sof t Di sconnect Ti meout M ns(0);

new 3. di sconnect () ;

Setting the soft disconnect timeout to NEVER means that the WebL ogic Server will not
cleanup the client’ s serverside resources, even though the client disconnects and goes
away. Technically, you can delay the cleanup of client workspace resourcesforever (or
aslong asthe WebL ogic Server is running), but practically, for performance and
efficiency, you will want to clean up resources as clients finish with them. Once you
have finished the client’s work, you can set the soft disconnect timeout to zero, which
forces the WebL ogic Server to release the T3Client’ s serverside resources as soon as
the client disconnects.

Y ou can also create and name a subWorkspace that exists as a child of acertain
Workspace (by default, as a child of the default T3Client Workspace). Note that
Workspaces that you create are always (technically) created as a subWorkspace; for
example, if you create a Workspace with SCOPE_SERVER, it will be created as a
subWorkspace of the server Workspace that was created at server startup. Y ou also
can't create mis-matched subWorkspaces; for example, you can’t create a
subWorkspace of the server Workspace that has a scope of SCOPE_CLI ENT.

Using WebL ogic Workspaces

Implementing with WebLogic Workspaces

SubWorkspaces operate exactly as any other Workspaces; they allow the devel oper to
more finely control how and where application or client objects are stored. The
methodsin WorkspaceDef operate on any Workspace, no matter its scope, except that
(by definition) you can only create subWorkspaces, and you can only destroy those
subWorkspaces that you have created. In these docs, we do not differentiate between
subWorkspaces and Workspaces.

This example illustrates how to name a subWorkspace and use it for storing and
retrieving Objects. To use a named subWorkspace, first get access to the T3Client’s
default Workspace as shown here:

T3Cient t3 = new T3d ient("t3://1ocal host:7001");
t 3. connect ();
Wor kspaceDef defaul tWs =

t 3. services. wor kspace() . get Wor kspace() ;

Then create asubWorkspace asachild of the T3Client’ sdefault Workspace. (Notethat
all child Workspaces are destroyed when the parent is destroyed, which means that
when you destroy the T3Client’ s default Workspace, any named Workspaces that you
have created will be destroyed as well.)

Wor kspaceDef subWs = def aul t W5. get Wor kspace(" DATA_STORE") ;

Y ou can specify a scope when you create the Workspace that controls where the
Workspace is created. Y ou can create a subWorkspace that is scoped at the following
levels, all of which are defined asfinal static intsin the WorkspaceDef interface:

m SCOPE_CLI ENT isfor creating subWorkspaces of the T3Client workspace. If you
do not specify scope when getting a WorkspaceDef, the default sets the scope to
SCOPE_CLI ENT.

m SCOPE_SERVER creates a subWorkspace at the WebL ogic Server system level.
All T3Clients with access to the WebL ogic Server have access to objects stored
within the server scope. You will probably use this scope for storing Objects for
genera client use created by startup classes. Note that for security reasons, the
contents of workspaces of scope server are not shown in either the WebL ogic
Console or the Admin servlets.

Y ou can also specify amode when you create the Workspace that controls how the
Workspace is created. There are three modes for creating or reentering a Workspace
that are defined asfinal static intsin the Wor kspaceDef interface:

m \WrkspaceDef . CREATE, which creates a new Workspace only if an existing
Workspace that matches it does not already exist.

Using WebL ogic Workspaces 1-7

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/workspace/common/WorkspaceDef.html

1 us ng WebL ogic Wor kspaces (Deprecated)

m \WrkspaceDef . ATTACH, which attaches to an existing Workspace only if an
existing Workspace that matches it already exists.

m \WrkspaceDef . OPEN, which creates a new Workspace if a matching one does
not exist, or attaches to an existing Workspace. This mode is used as default if
you do not supply a mode.

With mode, you can be very selective about the conditions under which you want to
enter aWorkspace. If, for example, you have created a Workspace named
DATASTORE_SPACE at the system scope and stored an object init, you can make certain
that you return to that Workspace by using the ATTACH mode when you get the
Workspace. If you attempt to ATTACH to a Workspace that doesn’t exist, your
application will throw an Exception that you can catch and act upon.

In the same way, you can be certain that you get acompletely new Workspace by using
the CREATE mode. If you call the get Wor kspace() method in the CREATE mode and
supply a Workspace name or ID to create that already exists, your application will
throw an Exception.

Here is the example we used above, except here we create a subWorkspace with the
mode set to Wor kspaceDef . CREATE:

T3Client t3 = new T3Cient("t3://1ocal host: 7001");
t 3. connect ();
Wor kspaceDef defaul t\Ws =
t 3. servi ces. wor kspace() . get Wr kspace() ;
Wor kspaceDef subWs =
def aul t W5. get Wor kspace(" DATA_STORE",
Wor kspaceDef . CREATE) ;

Y ou can create subWorkspaces of subWorkspaces to organize objects in the way that
makes the most sense for your application.

Y ou can get an Enumeration of the names of all the subWorkspaces of a Workspace
with the Wor kspaceDef . subspaces() method.

Using named Workspaces to store and fetch objects

Workspaces are useful to store objectsin. Y ou store and fetch objects as name-value
pairs. Y ou can manipulate arbitrary Objects, with the following restrictions:

m TheObjectisajava.lang orjava. util Object.

1-8 Using WebL ogic Workspaces

Implementing with WebLogic Workspaces

m Or, theObjectisj ava.io. serializabl e.

There are three methods for managing objectsin Workspaces. All of them usea String
key to refer to the object.

m \WrkspaceDef.store(String key, Object p) storesan Object.

m \WrkspaceDef.fetch(String key) retrievesastored Object
non-destructively.

m \WrkspaceDef.remove(String key) retrievesastored Object and removes it
from the Workspace.

Y ou can get an Enumeration of all the keysin aparticular Workspace with the method
Wor kspaceDef . keys() .

Hereis an example of storing a WebL ogic JDBC ResultSet in a Workspace that we
create as DATA_SPACE. DATA SPACE is a subWorkspace of the system Workspace.

T3Cient t3 = new T3d ient("t3://toyboat.toybox.com 7001");
t 3. connect ();
/1 Get the default T3Cient Wrkspace

Wor kspaceDef defaul tWs =

t 3. services. wor kspace() . get Wor kspace() ;
Wor kspaceDef dataWs =

def aul t W5. get Wr kspace(" DATA_WORKSPACE" ,

Wor kspaceDef . CREATE,
Wor kspaceDef . SCOPE_SERVER) ;

/1 . . . Connect to the DB and get a ResultSet rs .
/1 Then store it in the system subWrkspace we created
dat aWs. store("M/Resul ts", rs);
t 3. di sconnect () ;

Hereisthe reverse: fetching the ResultSet. In this example, we attach to the
already-existing subWorkspace DATA_SPACE. Since we want to leave the ResultSet
intact in the Workspace for use by other clients, we will use thef et ch() method to
get the ResultSet, rather than the r enove() method, which is a destructive fetch.

T3C ient t3 = new T3d ient("t3://toyboat.toybox.com 7001");
t 3. connect ();
/1 Get the default T3Cdient Wrkspace
Wor kspaceDef defaul tWs =
t 3. servi ces. wor kspace() . get Wor kspace() ;
/1 Attach to the system subWrkspace al ready created
Wor kspaceDef nyDataWs =
def aul t W5. get Wr kspace(" DATA_WORKSPACE" ,

Using WebL ogic Workspaces 1-9

1 us ng WebL ogic Wor kspaces (Deprecated)

Wor kspaceDef . ATTACH,
Wor kspaceDef . SCOPE_SERVER) ;
/1 Get the ResultSet and clean up
ResultSet rs = (ResultSet) nyDataWs. fetch("MResults");
t 3. di sconnect ();

Converting from the old model to the new

If you are moving from release 2.4, you will find that the major difference in coding
usage with the new Workspace object is accessing the Workspace facility.

The methods that allow you to get access to and operate on Workspaces were
originally inthe T3Client class. Here is how you used to access the facility:

T3Client t3 = new T3Cient("t3://1ocal host: 7001");
t 3. connect ();
String wsid = t3.getlD);

With the new model, you access the Workspace facility through the T3Client’s
services stub and the webl ogi c. conmon. wor kspace. Wr kspaceDef interface, as
shown here:

T3Client t3 = new T3Cient("t3://1ocal host: 7001");
t 3. connect ();
Wor kspaceDef defaul t\Ws =

t 3. servi ces. wor kspace() . get Wr kspace() ;

Then you use methodsin that interface to operate on the WorkspaceDef. The methods
get I D() and get Narre() areidentical to the same methods that were formerly in the
T3Client class. The methods for storing in and fetching from workspaces are similar

to the same methods that were formerly in

webl ogi c. conmon. Wr kspaceSer vi cesDef . These have been deprecated in favor

of the more powerful model in Wor kspaceDef .

Using Workspace Monitors

1-10

The new interface WorkspaceDef also gives you access to Monitor functionality,
which alowsyou to call user-written methods on Workspace contents before and after
certain operations, like save and destroy. Monitors are useful for implementing
business rules, where workflow and data validation are enforced by a global policy.

Using WebL ogic Workspaces

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/WorkspaceServicesDef.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/workspace/common/WorkspaceDef.html

Implementing with WebLogic Workspaces

Classes and interfaces of interest in working with Monitors:

Setting up Monitors
webl ogi c. cormon. Set Moni t or
webl ogi c. cormon. Get Moni t or
webl ogi c. common. Dest r oyMoni t or
webl ogi c. cormon. Moni t or Excepti on

Activating Monitors
webl ogi c. common. Get Moni t or
webl ogi c. conmon. Moni t or
webl ogi c. common. Moni t or Def

For example, here are some operations for which you might use monitors. We'll use
these examples later in this section to demonstrate how to write and use monitors.

m Restricting aworkspace value to a particular range. Your application can ensure
that values fall into a particular range by checking the value prior to an operation
and throwing a MonitorException if avalueisinvalid.

m Triggering an event when a Workspace value is destroyed. Because your
application is operating in the WebL ogic framework, you have access to other
WebL ogic APIs, such as events. You can use Events and Monitors together.

m Mirroring a Workspace value in another Workspace. You can use Monitors to
mirror changes in one Workspace to another Workspace.

m Altering/encoding a Workspace value when set. With a Master Monitor itis
possible to capture any attempt to set the value and substitute an encoded value,
which can be used for data compression and encryption of sensitive information.

Types of Monitors

There are two types of Monitors: regular Monitors, which we refer to by default with
theterm Monitor; and Master Monitors. There can be only asingle Master Monitor for
each monitored object; there may be many regular Monitors on asingle Object.

Regular Monitors are using for merely watching values and perhaps reporting on their
changes, or even vetoing an operation on those values. Regular Monitorscan’t actually
affect the value itself. There is no guaranteed order of monitor operationsif there are
multiple monitors on avalue.

A Master Monitor isidentical to aregular monitor except for two characteristics:

Using WebL ogic Workspaces 1-11

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/SetMonitor.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/GetMonitor.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/DestroyMonitor.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/MonitorException.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/GetMonitor.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/Monitor.html
http://e-docs.bea.com/wls/docs61/javadocs/weblogic/common/MonitorDef.html

1 us ng WebL ogic Wor kspaces (Deprecated)

m A Master Monitor is guaranteed to be the first monitor executed before a
monitored operation is performed, and the first to be executed after a monitored
operation is performed. That is, its pre and post operations preempt the same
operations of regular Monitors.

m Master Monitors can alter the state of a monitored object. While a Master
Monitor is executing, the target object is unlocked and can be altered by the
Master Monitor. Regular monitors can only observe (and potentially veto)
aterations to an object’s state. Here is an example of how a Master Monitor
might change a value of an Object target, an operation that a regular Monitor
couldn’'t complete:

public void preSet(Setable target, ParantBet call backDat a)
t hrows Monitor Exception {
target.newal ue("ALTERED Val ue");

}

A Master Monitor is created from aregular Monitor by calling the Monitor’s
setMaster() method with the argument true. If there already exists a Master Monitor
for the target object, a MonitorException will be thrown. Here is a code excerpt that
creates a Monitor and then sets it to be a Master Monitor:

Moni tor nonitor = new Monitor("nycode. MyMonitor", ps);
noni tor. set Master(true);

try {
wor kspace. addMbni t or (key, nonitor);

catch (Exception e) {
inform("addMonitor failed: a Master Mnitor " +
"may already be installed.");

How Monitors work

1-12

What a Monitor monitors depends on the interfaces that it implements and on what
operations the monitored object supports. Monitorabl e objects must implement
Setable, Getable, and or Destroyable. Currently, only Workspace implements these
interfaces, so only Workspace values can be monitored.

Workspaces support monitoring of the following operations:
m Set
m Get

Using WebL ogic Workspaces

Implementing with WebLogic Workspaces

m Destroy

To monitor an abject in aWorkspace, you write aclassthat does something—anything
you want—whenever a Workspace object that implements Destroyable, Setable,
and/or Getable has one of its xxxVal ue() methods called.

Monitors allows your user-written code to be executed whenever a particular
Workspace object is queried, modified, or destroyed.

There are six pointsin at which a Monitor can intervene in a Workspace object’s
operations:

1. preSet and postSet, called before or after a Workspace object’sset Val ue()
newVal ue() , ol dVal ue(), €etc., operation has completed. A preSet operation is
blocked by throwing a M onitorException.

2. preGet and postGet, called before or after a get operation is performed. A preGet
operation can be blocked by throwing a MonitorException.

3. preDestroy and postDestroy, called before or after a destroy operation has
completed. A preDestroy operation can be blocked by throwing a
MonitorException.

Any Monitor can veto an operation (in the pre stage) by throwing a M onitorException.
When an operation is vetoed, all Monitors are notified of the veto. A Master Monitor
can override the veto.

In order to monitor set, get, or destroy operations, your Monitor must implement one
or more of the interfaces:

m Set Monitor
m Cet Monitor
m DestroyMnitor

Withinyour class, you can set up tasksto be called before and after set, get, and destroy
operations are called on a specific Workspace object. A classthat implementsall three
interfaceswill have the appropriate methodsfor get, set, and destroy operations, which
are implemented by the developer.

Practically, there are two parts of monitoring:

m Write the class that does the monitoring—that carries out some operation before
or after set, get, and destroy operations are performed on Workspace objects.

Using WebL ogic Workspaces ~ 1-13

1 us ng WebL ogic Wor kspaces (Deprecated)

This class must implement one or more of the Monitor interfaces, Set Moni t or,
Get Moni t or, Or Dest r oyMoni t or.

m Write the class that adds the Monitor to a Workspace. The Monitor that you
write has to be instantiated by WebL ogic, which is done by adding the Monitor
to the Workspace in which it will operate.

First we provide a simple example of each step. Then we explicate the process with
four different examples.

Writing a Monitor

1-14

Y our Monitor must implement one or more of the Set Moni t or , Get Moni t or, or
Dest r oyMoni t or interfaces; and another classthat addsthe Monitor to the Workspace
so that it operates on the Workspace' s values.

The operations that a Monitor monitors depends upon which interfaces are
implemented by the objects being monitored. Here is an example of avery simple
Monitor that monitors set operations.

package mycode;
i mport webl ogi ¢c. conmon. *;

public class MyMnitor inplenents SetMnitor {
public T3Servi cesDef services;
public void nonitorlnit(ParantSet parans, boolean isMaster) {}

public void setServices(T3Servi cesDef services) {
this.services = services;

}

public void preSet(Setable target,
Par anSet cal | backDat a)
t hrows Monit or Exception
{

System out. println("preSet called");

}

public void postSet(Setable target,
Par antet cal | backDat a,
Exception e) {
System out. println("postSet called");
}
}

Using WebL ogic Workspaces

Implementing with WebLogic Workspaces

Adding a Monitor to a Workspace

webl ogi c. wor kspace. cormon. Wor kspaceDef . addMoni t or ()

To put aMonitor to work, you need to add the Monitor to a Workspace, where it then
monitors the valuesin the Workspace. Y ou do this by calling the
Wor kspaceDef . addMoni t or () method.

The addMoni t or () method takes two parameters, a name by which you can identify
it later, and a Monitor object. The Monitor object is essentially awrapper for a
user-written MonitorDef—that is, a class you have written that implements

Set Moni t or , Get Moni t or, or Dest r oyMoni t or , each of which implement
MonitorDef.

Here is an example of how you construct the Monitor that you pass to the

addMoni t or () method. Potentially you can use an assortment of these argumentsin
the Monitor constructor, depending upon whether the Monitor needs initialization
parameters and whether it is constructed by aclient or server:

m The name of the MonitorDef class (that is, a class that implements Set Moni t or,
Get Moni t or, or Dest r oyMoni t or). The class must be in the CLASSPATH of
your WebL ogic Server. If you are adding a Monitor from a WebL ogic Server,
you can aternatively pass an instance of the MonitorDef class to the
addMoni t or () method instead.

m Optionaly, a ParamSet object that is a set of initialization parameters. Since the
default constructor—without any arguments—must be used to instantiate a class
remotely, we pass a set of initialization parameters which are evaluated by the
moni t or | ni t () method as soon as the Monitor is instantiated.

m Optionally, a ParamSet object that is a set of callback parameters. If you add a
Monitor from aclient, you might want to set some callback parameters. Callback
parameters are passed to the pre and post methods defined by the Monitors.

Here is an example of the code you might use to add a Monitor to the default client
Workspace:

T3Cient t3 = new T3d ient("t3://1ocal host:7001");
t 3. connect ();

ParanfSet initps = new ParanSet ();

Par anSet cbps = new Par anSet () ;

Wor kspaceDef defaul tWs =
t 3. services. wor kspace() . get Wor kspace() ;

Using WebL ogic Workspaces ~ 1-15

http://e-docs.bea.com/wls/docs61/javadocs/weblogic/workspace/common/WorkspaceDef.html#addMonitor(weblogic.common.Monitor)

1 us ng WebL ogic Wor kspaces (Deprecated)

initps.setParam"topic", "newBooks");
Moni tor nmyMon =

new NMoni tor ("mnmycode. MyMoni tor"™, initps, cbhps);
def aul t W5. addMoni tor ("topic", myMon);

Monitor Examples

In these examples, we show the code that adds the Monitor, and in more detail, the
code for the Monitor itself. There are four examples. Each is detailed fully in the code
examples in the exampl es’'workspace/monitor directory in the distribution.

Note: The workspace code examples are not packaged with this release.

Example 1. Restricting the range of a Workspace value.
Example 2. Triggering an event with a Monitor.
Example 3. Mirroring Workspace values in another Workspace.

Example 4. Altering a Workspace value with a Master Monitor.

Example 1. Restricting the range of a Workspace value

exanpl es. wor kspace. nmoni t or . RangeMbni t or

Thisexample of aMonitor restrictsaWorkspace valueto aparticular range. Asaclient
changes the Workspace value, the Monitor checksthe range before the value is set and
throws a MonitorException if the valueis out of the prescribed range.

How addMonitor() is called

T3Client t3 = new T3Cient("t3://1ocal host: 7001");

t 3. connect ();

// Create 2 ParanBets to be used with the pre-

// and post- operations.

/1 Since we do not really need parans, we'll |eave themenpty.
ParanmBet initPS = new ParanBet ();

Par anet cal | backPS = new Par anfet () ;

/1 Get the Workspace
Wor kspaceDef defaul t\Ws =

t 3. servi ces. wor kspace() . get Wr kspace() ;
Wor kspaceDef wor kspace = def aul t W5;

try {
Moni t or rangeMonitor =

1-16 Using WebL ogic Workspaces

Implementing with WebLogic Workspaces

new Moni t or (" exanpl es. wor kspace. nmoni t or. RangeMoni t or ",
initPS, callbackPS);

wor kspace. addMoni t or (" key3", rangeMonitor);
Systemout.println("Setting Value within range 0-100");
wor kspace. store("key3", new | nteger(50));

try {
Systemout.println("Setting Val ue outside range 0-100");
wor kspace. st ore("key3", new | nteger(150));

}
catch (T3Exception ex) {
Systemout. println("Recei ved Exception for " +
"out - of -range val ue");

catch (Exception e) {
e.printStackTrace();
}

t 3. di sconnect () ;

The Monitor itself

In this example (the full exampleisin

exanpl es/ wor kspace/ moni t or / RangeMoni t or . j ava) we show just the
implementation of the pr eSet () and post Set () methods—although all the work is
doneinthepreSet () method. The classimplementsthe Set Moni t or interfaceandis
monitoring a Workspace object passed in astarget.

Note: The workspace code examples are not packaged with this release.

public void preSet(Setable target,
Par anSet cal | backDat a)
t hrows Mbnitor Exception

if (!target.newal ue() instanceof Integer) ({
t hrow Moni t or Excepti on("Val ue nust be of type Integer");
}
i nteger newal ue = ((Integer) target.newal ue()).intValue();
if (newalue < 0 || newvalue > 100) {
t hrow Moni t or Excepti on(newval ue +
nmust be between 0 and 100");

}

public voi d post Set (Setable target,
Par anSet cal | backDat a,
Exception e) {}

Using WebL ogic Workspaces 1-17

1 us ng WebL ogic Wor kspaces (Deprecated)

Example 2. Triggering an event with a Monitor

This example of a Monitor triggers an event when a Workspace value is destroyed.
Notice that the classin which the Monitor is added must implement
webl ogi c. event . acti ons. Acti onDef.

How addMonitor() is called

Here we send an event when a Workspace value isremoved. For more information on
submitting events, check the Devel opers Guide Using WebL ogic Events.

In this example, for the sake of brevity, we skip the code fragment for creating and
connectingthe T3Client (t3), creating theinitialization and callback parameters (initPS
and callbackPS), and getting the Workspace (workspace). Check the first examplefor
details, or see the full code examplein

exanpl es/ wor kspace/ noni t or / Moni t or Deno. j ava.

Note: The workspace code examples are not packaged with this release.

DestructionMonitor sends an event when a Workspace value is removed. Thelock is
used to force the thread to wait until the message notification arrives.

initPS. setParam"topic", "destroyTopic");
Moni t or destuctionMnitor =
new Moni t or (" exanpl es. wor kspace. noni t or. Dest ructi onMoni tor”,
initPS, callbackPS);

Eval uate eval =
new Eval uat e("webl ogi c. event. eval uat or s. Eval uat eTrue");
Action action = new Action(this);

Event Regi strati onDef destroyReg =
t 3. services. events().get Event Regi stration("destroyTopic",
eval , action);
destroyReg. register();

wor kspace. addMoni t or ("keyl", destuctionMonitor);
Systemout.println("Storing val ue under keyl");
wor kspace. store("keyl", "testValue");
System out . println("Renmoving keyl from workspace " +
"(expect nmessage notification)");

synchroni zed(nd. | ock) {

wor kspace. renove(" keyl");

nd. | ock. wai t () ;

}

1-18 Using WebL ogic Workspaces

Implementing with WebLogic Workspaces

/1 This inmplenents ActionDef, which this class nust
/1 do in order to submit an EventRegistration
public void setServices(T3Servi cesDef services) {}

public void registerlnit(Parantet ps) {}

public void action(Event MessageDef message) {
System out. println("Mssage Received: " + nessage.getTopic());
synchroni zed(l ock) {
|l ock. notify();
}

}
The Monitor itself

In this example, we show only the post Dest r oy() method, which iswhere the work
is done. The class implements the DestroyMonitor interface and passesin a
Destroyable Workspace object called target.

public void postDestroy(Destroyabl e target,
Par antSet cal | backData, Exception e) {
if (e ==null) {
Par amBet ps = new Parantet ();

try {
if (target instanceof WrkspaceVal ue) {

ps. set Paran("key", ((WrkspaceVal ue) target).getKey());

}
Event MessageDef em =

servi ces. event s(). get Event Message(topic, ps);
em submt();

catch (Parantet Exception pse) {

}
catch (Event Generati onException ege) {}

}
}

Example 3. Mirroring Workspace values in another Workspace
How addMonitor() is called

In this example, for the sake of brevity, we skip the code fragment for creating and
connecting the T3Client (t3), creating theinitialization and callback parameters (initPS
and callbackPS), and getting the Workspace (workspace). Check the first examplefor
details, or see the full code examplein

exanpl es/ wor kspace/ noni t or/ Moni t or Deno. j ava.

Using WebL ogic Workspaces 1-19

1 us ng WebL ogic Wor kspaces (Deprecated)

Note: The workspace code examples are not packaged with this release.

try {
/1 MrrorMnitor uses a SetMnitor and a DestroyMnitor
/1l to mirror the state of a workspace value in
/1 anot her workspace.
initPS. setParam("mrror", "mrroredWrkspace");
Monitor mrrorMnitor =
new Moni t or (" exanpl es. wor kspace. nonitor. M rrorNbnitor"
initPS, callbackPS);

wor kspace. addMvbni t or ("key2", mrrorhMonitor);

String mrrorVal = "mrror this";
wor kspace. store("key2", mirrorVval);
Systemout.printIn("Set key2 =" + mrrorVal +

in default workspace");
Wor kspaceDef nmirror =
def aul t WB. get Wor kspace(" mi rror edWr kspace",
Wor kspaceDef . OPEN,
Wor kspaceDef . SCOPE_SERVER) ;
String mrroredVval ue =
(String) mrror.fetch("key2");
Systemout. println("CGot key2 =" + mrrorVal +
", in workspace " + mirror.getNane());

}

catch (Exception e) {
e.printStackTrace();

}

/1 Disconnect the client. Since the soft disconnect
/1 timeout is NEVER, the WebLogic Server wll

/1 preserve the session.

t 3. di sconnect () ;

}
The Monitor itself

ThisMonitor mirrorsaWorkspace valuein another Workspace; each timethevauein
the first Workspace changes, the Monitor causes the mirrored value to change.

Here we implement both the Set Moni t or and the Dest r oyMoni t or interfaces, since
the Monitor operates both set and destroy operations. The Workspace object being
monitored (it implements both Setable and Destroyable) is passed in as target.

We also take advantage of the monitorlnit() method in this Monitor class and its
ParamSet. In this case, we use the ParamSet to pass the name of the mirrored
Workspace to the monitoring class.

1-20 Using WebL ogic Workspaces

Implementing with WebLogic Workspaces

public class MrrorMonitor inplenments SetMonitor,

}

DestroyMnitor {
public T3Servi cesDef services;
Wor kspaceDef mirror = null;

public void setServices(T3ServicesDef services) {
this.services = services;

}

public void nonitorlnit(ParanBSet params, bool ean isMaster)

t hrows Par anSet Excepti on
{

String mirrorNane = parans.getParan("mrror").asString();

mrror =

servi ces. wor kspace() . get Wor kspace(m rror Nane,
Wor kspaceDef . OPEN,
Wor kspaceDef . SCOPE_SERVER) ;

}

public void preSet(Setable target, ParantSet call backDat a)
t hrows Monitor Exception {}

/1 lnmplement this to mrror changes
public voi d post Set (Setable target,
Par anSet cal | backDat a,

Exception e)
{
if (e == null && target instanceof WrkspaceVal ue) {
try {
mrror.store(((WrkspaceVal ue)target). get Key(),
target. newal ue());
}
catch (T3Exception t3e) {}
}
}

public void preDestroy(Destroyabl e target,
Par antSet cal | backData) {}

/1 lmplement this to mirror del etes

public void postDestroy(Destroyabl e target,
Par anet cal | backDat a,

Exception e) {

try {
mrror.destroy(((WrkspaceVal ue)target).getKey());

}
catch (T3Exception t3e) {}
}

Using WebL ogic Workspaces 1-21

1 us ng WebL ogic Wor kspaces (Deprecated)

Example 4. Altering a Workspace value with a Master Monitor

1-22

A monitored object may have at most one Master Monitor. The Master Monitor is
guaranteed to be the first Monitor executed before or after a monitored operation can
be performed. Unlike a Monitor that is not the master, a Master Monitor can also
modify the target object’ s state; that is, the target object is unlocked while the Master
Monitor is running.

Y ou make a Monitor into a master by calling Moni t or . set Mast er (true) onthe
Monitor itself. If aMaster Monitor has already been set, aMonitorExceptionisthrown.

Here is an example of a Master Monitor. In this case, we want to obscure (encode or
encrypt) the value that is stored in the Workspace object for security reasons.

How addMonitor() is called and the Monitor is set to Master

try {

/1 XXXMonitor is an exanple of a MasterMonitor, which
/1 has the ability to alter the value being nonitored.
/1 The nonitor replaces the supplied value with "XXX".
Moni t or xxxMonitor =

new Moni t or (" exanpl es. wor kspace. noni t or. XXXMoni tor",

initPS, callbackPS);

xxxMoni tor. set Master(true);

String val = "hello world";

wor kspace. addMoni t or (" key4", xxxMonitor);
wor kspace. store("key4", val);

System out. println("Set Value: "+val);
val = (String) workspace.fetch("key4");
System out. println("CGot Value: "+val);

catch (Exception e) {
e.printStackTrace();
}

The Monitor itself

In this simple example, we simply replace the value with XXX; you might write the
preSet () method instead to use a form of encryption so that the value would aso be
decodable when retrieved.

public class XXXMonitor inplenents SetMnitor {
T3Servi cesDef services;
bool ean i sMaster;

public void nonitorlnit(ParanSet parans, bool ean isMster) {

Using WebL ogic Workspaces

Implementing with WebLogic Workspaces

this.isMaster = i sMaster;

}

public void setServices(T3ServicesDef services) {
this.services = services;

}

public void preSet(Setable target, ParantSet call backDat a)
t hrows Mbnitor Exception

{
if (isMaster) {
target. newal ue(" XXX");

}
}

public void postSet(Setable target,

Par anSet cal | backDat a,
Exception e) {}

Removing a Monitor from a Workspace

A Monitor can be removed by calling the r emoveMoni t or () method on the
Workspace object, as shown here;

wor kspace. renoveMoni t or (key, nonitor);

removes the Monitor for the Workspace value specified by key. You can aso call the
method with a single argument, the Monitor itself.

Setting up ACLs for Workspaces in the WebLogic Realm

webl ogi c. wor kspace
webl ogi c. wor kspace. nanmedWr kspace
WebL ogic controls accessto internal resources like Workspaces through ACL s set up

in the WebL ogic Realm Entriesfor ACLs in the WebL ogic Realm are listed as
properties in the webl ogic.properties file.

Note: Thisrelease of WebL ogic Server provides a Web-based Administration
Console for al configuration and administration tasks. The
weblogic.properties fileis no longer used.

Using WebL ogic Workspaces 1-23

1 us ng WebL ogic Wor kspaces (Deprecated)

1-24

Y ou can set the Permissionsr ead and wr i t e for Workspaces and named Workspaces
by entering a property in the properties file. The ACL namewebl ogi c. wor kspace
controls access to all Workspaces created. If you leave the ACL for a user’s named
Workspace unset, an ACL is created dynamically for the user at login by copying the
ACL for webl ogi c. wor kspace and adding read and write Permissions which allows
each user to use its own Workspace without an explicit ACL, but allows usersto be
given explicit read and write Permission for other workspaces.

Here are some examples. Thefirst ACL (thefirst pair of ACL entries) allowsfour users
to read and write objectsin the T3UserSales named Workspace, aswell asin the
Workspace created for each user at connect. The second ACL gives the T3User
sysMoni t or read and write accessfor every workspace; as each Workspaceis created,
this ACL will be copied and read and write Permissions for the user logging in will be
added to it.

Example:

webl ogi c. al | ow. read. webl ogi c. wor kspace. T3User Sal es=kar |, m chael , s
ki p, mem t hwebl ogi c. al | ow. wri te. webl ogi c. wor kspace. T3User Sal es=kar
|, m chael, ski p, msm t hwebl ogi c. al | ow. r ead. webl ogi c. wor kspace=syshb
ni t orwebl ogi c. al | ow. wite.webl ogi c. wor kspace=sysMoni t or

Using WebL ogic Workspaces

	Contents
	1. Using WebLogic Workspaces (Deprecated)

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	1 Using WebLogic Workspaces (Deprecated)
	Introduction
	The API
	Implementing with Workspaces
	Other related documents
	Deprecation of Workspaces API
	Introduction
	Overview of Workspaces

	The API
	Overview of the WebLogic Workspace API

	Implementing with WebLogic Workspaces
	Getting access to Workspaces
	Creating, leaving, and reentering Workspaces
	Using named Workspaces to store and fetch objects
	Converting from the old model to the new
	Using Workspace Monitors
	Setting up ACLs for Workspaces in the WebLogic Realm
	Getting access to Workspaces
	Creating, leaving, and reentering Workspaces
	Using a Workspace ID to create and reenter a Workspace
	Using a Workspace name to create and reenter a Workspace

	Using named Workspaces to store and fetch objects
	Converting from the old model to the new
	Using Workspace Monitors
	Setting up Monitors
	Activating Monitors
	Types of Monitors
	How Monitors work
	1. preSet and postSet, called before or after a Workspace object’s setValue(), newValue(), oldVal...
	2. preGet and postGet, called before or after a get operation is performed. A preGet operation ca...
	3. preDestroy and postDestroy, called before or after a destroy operation has completed. A preDes...

	Writing a Monitor
	Adding a Monitor to a Workspace
	Monitor Examples
	Example 1. Restricting the range of a Workspace value
	examples.workspace.monitor.RangeMonitor

	Example 2. Triggering an event with a Monitor
	Example 3. Mirroring Workspace values in another Workspace
	Example 4. Altering a Workspace value with a Master Monitor
	Removing a Monitor from a Workspace

	Setting up ACLs for Workspaces in the WebLogic Realm
	weblogic.workspace
	weblogic.workspace.namedWorkspace

