BEA WebLogic
Server

Programming WebLogic XML

BEA WebLogic Server Version 6.1
Document Date: June 24, 2002

Copyright
Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It isagainst
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, trandated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(2)(ii) of the Rightsin Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clauseat NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent acommitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "ASIS' WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKEANY REPRESENTATIONSREGARDING THEUSE, ORTHE
RESULTSOF THE USE, OF THE SOFTWARE ORWRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebL ogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebL ogic, BEA eLink, BEA Manager, BEA WebL ogic Collaborate, BEA WebL ogic Commerce
Server, BEA WebL ogic E-Business Platform, BEA WebL ogic Enterprise, BEA WebL ogic Integration, BEA
WebL ogic Personalization Server, BEA WebL ogic Process Integrator, BEA WebL ogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.
Programming WebL ogic XML

Part Number Document Date Software Version

N/A June 24, 2002 BEA WebL ogic Server Version 6.1

Contents

About This Document

YU o [1= 3 T viii
E-AOCSWED SIE....ceeeee ettt e r e b viii
HOow to Print the DOCUMENEcccvieveireeeeceeee e snen viii
Related INfOrmation..........cceeoi e s iX
(@01 r=o: A U LS PSSR iX
Documentation CONVENTIONS..........couverererereseesie e seeeeeeseeseesesessessessessessessenseses X
1. XML Overview
WAL IS XML 2.ttt ettt sttt b e eae bt s aesresbesbestens 1-1
How Do You Describe an XML DOCUMENE?ccceivereeriereerereeneseenensesessennens 1-3
WHY USE XML ..ttt sttt se ettt sttt neeenne s 1-5
What Are XSL and XSLT 2 ..ottt sre bbb 1-5
What Are DOM @n0 SAX?....cviieiceieeiereeieeesesreeseesesestesesee e e saeseessessesensessens 1-6
SAX ettt Renae s Re e e te e e e et e e e e e e enennen 1-6
DOMi..ccteeeeee ettt sttt et ae et et e s be b e be e et eae et eneeneereeneans 1-6
WHEE IS JAXP? ..ttt sttt ere st st ne st e st ne e e naenenneeneas 1-7
JAXP PACKAOESc.vvueeueerieirie sttt s n e ene e 1-7
Common Uses of XML and XSLTooieiieciericece et 1-8
Using XML and XSLT to Separate Content from Presentation................. 1-9
XML as a Message Format for Business-to-Business Communication..... 1-9
WebLogic Server XML FEaLUIESooeiieeiereeeeercne e 1-10
XML DOCUMENT PaISErS......cccvviiiiiirieeiee ettt st s 1-11
XML Document TranSfOrMErccceovvereriereiesese s seeseeeseeseesesseeneenens 1-11
JAXP Plugability Layer Implementationccoceenerieneneneneeneenennens 1-12
WebLogic Servliet AtHDULES..........ccovveeereeeee e 1-12
WebLogic XSLT JSP Tag Library.....ccccccveeeeeesevievr e 1-12

Programming WebL ogic XML i

XML Registry For Configuring Parsers and Transformers...........c.co...... 1-13

XML Registry for Configuring External Entity Resolution..................... 1-14
COUE EXAMPIES.....ceeeeeeeeeereeee sttt e e st seenreneeneas 1-14
Editing XML FIlES.....ciieieicies et 1-14
Learning ADOUL XIML ..ottt s s 1-15

Developing XML Applications with WebLogic Server

Developing XML Applications: Main StEPS......ccccoveereeenieseneeneseeseseeeerenens 2-1
Parsing XML DOCUMENESccceiueierieeeireeeries ettt et 2-2
Parsing XML Documents Using JAXP in SAX MOdEccccevverervenveennnn. 2-3
Parsing XML Documents Using JAXP in DOM Mode.........ccccevvvervrnnnn. 2-4
Parsing XML DocumentSin aServlet.........coovvieneieneneienneeeseee e 2-4
Validating and Non-Validating Parsers..........ccccveevveverenieeenseenesese e 2-6
Handling Entity Resolution While Parsing an XML Document................ 2-7
Using Parsers Other Than the Built-1n Parsercoooeeeeceniceccncncenen, 2-9
Using the WebLogiC FastParserccoceveeevveeene s sesene e 2-9
Generating XML DOCUMENEScveveeeereeeeereseeeesesie e eee e aese e ens 2-10
Generating XML from a DOM Document Tree.........oecverreeeveneereneeneeens 2-10
Generating XML DocumentSin @JSPcccceveveeenecenie e se e 2-12
Using JAXP to Transform XML Data........ccccvrerverrreerneenesesieseseesieseeseeneenens 2-13
Example of Transforming an XML Document Using JAXP.......ccccccee..e. 2-14
Converting From the Xalan API to JAXP LLAPI ..cvcveveecereeeeveee 2-14
Using the JSP Tag to Transform XML Data.......cccceeeveervvennveneneneneeeeeenns 2-16
XSLT JSP Tag SYNLBX...cveuirieeireeiesieiisieresieresieseseesessesessesessesessesessesessasenss 2-17
XSLT ISP TAg USBOE......cceeieeeenieeeesieeieeseeeseestesseestesseessessesssesneessesnsesenns 2-18
Transforming XML DocumentsUsingan XSLT JSPTagcccceevveeeene. 2-20
Example of Usingthe XSLT JSP Tagin @JSP.......cccccoovvniiinnieneneens 2-21
Using Transformers Other Than the Built-In Transformercccceevevenene. 2-22

XML Programming Techniques

Sending and Receiving XML To and From Servletsand JSPs..........ccccoveeeenene 31
Handling XML Documentsin a IMS Applicationcoceoevereenercncneseneene 33
Accessing External Entities That Do Not Have an HTTP Interface. 34
XML Document Header InfOrmation...........coceeverenenenicie e 35

Programming WebL ogic XML

4. Administering WebLogic Server XML

Overview of Administering WebLogic Server XML.....ccccoovvievvneseseereeseenene, 4-1
XML AdMINiStration TaSKScccecereerereresiesesie e s 4-2
How the XML RegQiStry WOIKS........ccceovvirieierennseseeseeseseesssreseese s 4-3
Parser Selection Within the XML ReQISIIY......ccoovvvverererieenneeseneseseeenens 4-3

XML Parser and Transformer Configuration Tasks........cccoeeeeeererenienesienennens 4-4
Configuring a Parser or Transformer Other Than the Built-In 4-4
Configuring a Parser for a Particular Document TYPe........ccccoeeeeerercereennn. 4-7

External Entity Configuration Tasks.........ccceereiinenieneeieseeeee e 4-11
Configuring External Entity RESOIULION.........cccvvvivierererieseeereeieereenens 4-11
Configuring the External Entity Cache..........ccooevevineieneeeceeeeesene s 4-15
Monitoring the External Entity Cachecccceoienenineneneeieeeeeeees 4-16

5. XML Reference

Extensible Markup Language (XML) 1.0 Specification.........c.ccocevevrerereceenens 5-1

Simple API for XML (SAX) 2.0 et 5-2

Document Object Model (DOM) LeVel 2 APccvcvveveieseerireeseesese s 5-2

W3C XML Namespaces 1.0 Recommendation...........cccceeverererereeseeesenseenens 5-3

Java API for XML Processing (JAXP) 1.1 ..o 5-3

Apache Xerces Java Parser APl ..o viveiie i e 5-4

Apache Xalan XML Stylesheet Language Transformer (XSLT) API 5-4

AdditionNal RESOUICES.......ccuiiiiiiieeieree ettt ene s 5-4
(0010 L] e o o] = 55
Related WebL 0gic DOCUMENALIONccveevvreeeesiesie e seee e 5-5
General XML INfOrmationcccoeeoreiinenienisese e 5-5
TutorialS and ONliNE COUISES.........cviveerieerieirieesieesee st seere e 5-6
Other XML SpeCifiCationSccccevereriereecrnesie e s e e seeeenes 5-6

Index

Programming WebL ogic XML v

Vi

Programming WebL ogic XML

About This Document

This document explains how to use the BEA WebL ogic Server™ XML software. It
defines concepts associated with using the XML software and describes the
development process for XML applications. In addition, the document includes
descriptions of the application programming interfaces (APIs), administrative tasks,
and XML tools.

The document is organized as follows:

¢ Chapter 1, “XML Overview,” provides a basic description of the XML software
and its components.

¢ Chapter 2, “Developing XML Applications with WebL ogic Server,” describes
how to develop XML applications using WebL ogic Server and XML tools.

¢ Chapter 3, “XML Programming Techniques,” describes specific programming
techniques for tasks such as using message-driven beans and JM S queues with
XML documents, and so on.

¢ Chapter 4, “Administering WebL ogic Server XML,” describes the
Administration Console XML Registry and how to perform XML configuration
tasks.

¢ Chapter 5, “XML Reference,” provides pointers to specifications and application
programming interfaces supported by the XML software.

Programming WebL ogic XML vii

Audience

This document is written for system administrators and programmers who design,
develop, configure, and manage XML applications. It is assumed that readers know
Web technologies, XML, XSLT, the Java programming |anguage, and the Servlet and
JSP APIs of the J2EE specification.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebL ogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs61.

How to Print the Document

viii

Y ou can print acopy of this document from aWeb browser, one main topic at atime,
by using the File - Print option on your Web browser.

A PDF version of this document is available on the WebL ogic Server documentation
Home page on the e-docs Web site (and al so on the documentation CD). Y ou can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebL ogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Programming WebL ogic XML

http://e-docs.bea.com/wls/docs61
http://www.adobe.com

Related Information

Related Information

For related information about XML, see “Learning About XML” on page 1-15.

Contact Us!

Y our feedback on BEA documentation isimportant to us. Send us e-mail at

docsupport@bea.com if you have questions or comments. Y our comments will be

reviewed directly by the BEA professional s who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
aswell asthetitle and document date of your documentation. If you have any questions
about this version of BEA WebL ogic Server, or if you have problemsinstalling and

running BEA WebL ogic Server, contact BEA Customer Support through BEA

WebSupport at http://www.bea.com. Y ou can also contact Customer Support by using
the contact information provided on the Customer Support Card, which isincluded in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number
Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Programming WebL ogic XML

mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention

Usage

Ctrl+Tab

Keysyou press simultaneously.

italics

Emphasis and book titles.

nonospace
t ext

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chnmod u+w *

confi g/ exanpl es/ appl i cati ons

.java

config. xm

fl oat

nonospace
italic
t ext

Variablesin code.

Example:
String Custoner Nane;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:

LPT1

BEA_HOME

OR

{}

A set of choicesin asyntax line.

Optional itemsin asyntax line. Example:

java utils.MilticastTest -n nane -a address
[-p portnunber] [-t tineout] [-s send]

Programming WebL ogic XML

Documentation Conventions

Convention

Usage

Separates mutually exclusive choicesin asyntax line. Example:

java webl ogi c. depl oy [list| depl oy| undepl oy| updat e]
password {application} {source}

Indicates one of the following in a command line:

m Anargument can be repeated several timesin the command line.
m The statement omits additional optional arguments.

®m You can enter additional parameters, values, or other information

Indicates the omission of items from a code example or from a syntax line.

Programming WebL ogic XML Xi

Xii Programming WebL ogic XML

CHAPTER

1 XML Overview

The following sections provide an overview of XML technology and the WebL ogic
Server XML subsystem:

m What IsXML?

m How Do You Describe an XML Document?
m Why Use XML?

m What Are XSL and XSLT?

m What Are DOM and SAX?

m What IsJAXP?

m Common Uses of XML and XSLT

m WebLogic Server XML Features

m Learning About XML

What Is XML?

Extensible Markup Language (XML) is a markup language used to describe the
content and structure of datain adocument. It isasimplified version of Standard
Generalized Markup Language (SGML). XML is an industry standard for delivering
content on the Internet. Because it provides a facility to define new tags, XML isaso
extensible.

Programming WebL ogic XML 11

1 XML overview

1-2

LikeHTML, XML usestagsto describe content. However, rather than focusing on the
presentation of content, the tagsin XML describe the meaning and hierarchical
structure of data. This functionality allows for the sophisticated data types that are
required for efficient data interchange between different programs and systems.
Further, because XML enables separation of content and presentation, the content, or
data, is portable across heterogeneous systems.

The XML syntax uses matching start and end tags (such as <name> and </ name>) to
mark up information. Information delimited by tagsis called an element. Every XML
document hasasingleroot element, which isthe top-level element that containsall the
other elements. Elements that are contained by other elements are often referred to as
sub-elements. An element can optionally have attributes, structured as name-value
pairs, that are part of the element and are used to further define it.

The following sample XML file describes the contents of an address book:

<?xm version="1.0"?>

<addr ess_book>
<person gender="f">
<name>Jane Doe</ nane>
<addr ess>
<street>123 Main St.</street>
<city>San Francisco</city>
<st at e>CA</ st at e>
<zi p>94117</ zi p>
</ addr ess>
<phone area_code=415>555-1212</ phone>
</ per son>
<person gender="ni>
<nanme>John Sm t h</ nanme>
<phone area_code=510>555-1234</ phone>
<emai | >j ohnsm t h@onewher e. conx/ enai | >
</ per son>
</ addr ess_book>

The root element of the XML fileisthe addr ess_book. The address book currently
contains two entries in the form of per son elements. Jane Doe and John Smith. Jane
Do€' s entry includes her address and phone number; John Smith’sincludes his phone
and email address. Note that the structure of the XML document defines the phone
element as storing the area code using the ar ea_code attribute rather than a
sub-element in the body of theelement. Also notethat not all sub-elementsarerequired
for the per son element.

Programming WebL ogic XML

How Do You Describe an XML Document?

How Do You Describe an XML Document?

There are two ways to describe an XML document: DTDs and Schemas.

Document Type Definitions (DTDs) define the basic requirements on the structure of
an XML document. A DTD describes the elements and attributes that are valid in an
XML document, and the contextsin which they are valid. In other words, aDTD
specifies which tags are allowed within certain other tags, and which tags and
attributes are optional .

The following example shows a DTD that describes the preceding address book
sample XML document:

<! DOCTYPE addr ess_book |

<! ELEMENT person (nane, address?, phone?, enuil?)>
<! ELEMENT nane (#PCDATA) >

<! ELEMENT address (street, city, state, zip)>

<! ELEMENT phone (#PCDATA) >

<! ELEMENT enmi | (#PCDATA) >

<! ELEMENT street (#PCDATA)>

<! ELEMENT city (#PCDATA) >

<! ELEMENT state (#PCDATA)>

<! ELEMENT zi p (#PCDATA) >

<! ATTLI ST person gender CDATA #REQUI RED>
<I ATTLI ST phone area_code CDATA #REQUI RED>
1>

Schemas are a recent development in XML specifications and are intended to
supersede DTDs. They describe XML documentswith more flexibility and detail than
DTDsdo, and are XML documents themselves, which DTDs are not. The schema
specification, currently under development, is a product of the World Wide Web
Consortium (W3C) and isintended to address many limitations of DTDs. For detailed
information on XML schemas, see http://www.w3.org/TR/xmlschema-0/.

The following example shows a schema that describes the preceding address book
sample XML document:
<xsd: schema xm ns: xsd="http://ww. w3. or g/ 1999/ XM_Schema" >
<xsd: el emrent name="addr ess_book" type="bookType"/>

<xsd: conpl exType name="bookType">
<xsd: el enent nane=nane="person" type="personType"/>
</ xsd: conpl exType>

Programming WebL ogic XML 1-3

http://www.w3.org/TR/xmlschema-0/

1 XML overview

1-4

<xsd: conpl exType nane="personType">

<xsd: el enent nanme="nane" type="xsd: string"/>
<xsd: el enent nane="address" type="addressType"/>
<xsd: el enent name="phone" t ype="phoneType"/ >

<xsd: el enent nanme="enai | " type="xsd: string"/>
<xsd: attribute name="gender" type="xsd: string"/>

</ xsd: conpl exType>
<xsd: conpl exType nane="addressType">

<xsd: el enent nane="street" type="xsd:string"/>

<xsd: el enent name="city" type="xsd: string"/>
<xsd: el enent nane="st at e" type="xsd: string"/>
<xsd: el enent nanme="zi p" type="xsd: string"/>

</ xsd: conpl exType>

<xsd: si npl eType nanme="phoneType" >

<xsd:restriction base="xsd:string"/>

<xsd:attribute name="area_code" type="xsd:string"/>
</ xsd: si nmpl eType>

</ xsd: schema>

An XML document can include aDTD or Schema as part of the document itself,
reference an external DTD or Schemausing the DOCTY PE declaration, or not include
or referenceaDTD or Schemaat all. Thefollowing excerpt from an XML document
shows how to reference an external DTD called addr ess. dt d:

<?xm version=1.0?>
<! DOCTYPE address_book SYSTEM "address. dtd">
<addr ess_book>

XML documents only need to be accompanied by aDTD or Schemaif they need to be
validated by a parser or if they contain complex types. An XML document is
considered valid if 1) it has an associated DTD or Schema, and 2) it complies with the
constraints expressed in the associated DTD or Schema. If, however, an XML
document only needs to be well-formed, then the document does not have to be
accompanied by aDTD or Schema. A document is considered well-formed if it
followsall therulesin the W3C Recommendation for XML 1.0. For thefull XML 1.0
specification, see http://www.w3.0rg/XML/.

Programming WebL ogic XML

http://www.w3.org/XML/

Why Use XML?

Why Use XML?

Anindustry typically uses data exchange methods that are meaningful and specific to
that industry. With the advent of e-commerce, businesses conduct an increasing
number of relationshipswith avariety of industries and, therefore, must devel op expert
knowledge of the various protocols used by those industries for electronic
communication.

The extensibility of XML makesit avery effectivetool for standardizing the format of
datainterchange among various industries. For example, when message brokers and
workflow engines must coordinate transactions among multiple industries or
departments within an enterprise, they can use XML to combine data from disparate
sources into aformat that is understandable by all parties.

What Are XSL and XSLT?

The Extensible Stylesheet Language (XSL) isaW3C standard for describing
presentation rulesthat apply to XML documents. X SL includes both atransformation
language, (XSLT), and aformatting language. These two languages function
independently of each other. XSLT isan XML -based language and W3C specification
that describes how to transform an XML document into another XML document, or
into HTML, PDF, or some other document format.

An XSLT transformer accepts as input an XML document and an XSLT document.
The template rules contained in an XSLT document include patterns that specify the
XML treeto which therule applies. The XSLT transformer scansthe XML document
for patterns that match the rule, and then it applies the template to the appropriate
section of the original XML document.

Programming WebL ogic XML 1-5

1 XML overview

What Are DOM and SAX?

SAX

DOM

1-6

DOM and SAX are two Java application programming interfaces (APIs) for parsing
XML data. Thetwo APIsdiffer in their approach to parsing, with each API having its
strengths and weaknesses.

SAX standsfor the Smple API for XML. Itisastandard interface for event-based XML
parsing. SAX defines events that can occur as a parser is reading through an XML
document, such asthe start or the end of an element. Programmers provide handlersto
deal with different events as the document is parsed.

Programmers that use the SAX API to parse XML documents have full control over
what happens when these events occur and can, as aresult, customize the parsing
process extensively. For example, aprogrammer might decide to stop parsing an XML
document as soon as the parser encounters an error that indicates that the document is
invalid, rather than waiting until the entire document is parsed, thus improving
performance.

The WebL ogic Server built-in parser (Apache Xerces) supports SAX Version 2.0.
Programmers who have created programs that use Version 1.0 of SAX to parse XML
documents should read about the changes between the two versions and update their
programs accordingly.

DOM stands for the Document Object Model. DOM reads an XML document into
memory and represents it as a tree; each node of the tree represents a particular piece
of datafrom the original XML document. Because the tree structure is a standard
programming mechanism for representing data, traversing and manipulating the tree
using Javaisrelatively easy, fast, and efficient. The main drawback, however, is that
the entire XML document has to be read into memory for DOM to create the tree,
which might decrease the performance of an application as the XML documents get
larger.

Programming WebL ogic XML

What Is JAXP?

The WebL ogic Server built-in parser (Apache Xerces) supports DOM Level 2.0 Core.
Programmers who have created programs that use Level 1.0 of DOM to parse XML
documents should read about the changes between the two versions and update their
programs accordingly. For detailed information about the differences, refer to
http://www.w3.0rg/DOM/DOMTR.

What Is JAXP?

The previous section discusses two APIs, SAX and DOM, that programmers can use
to parse XML data. The Java API for XML Processing (JAXP) providesameansto get
to these parsers. JAXP a so defines a Plugability layer that allows programmersto use
any compliant parser or transformer.

To facilitate XML application development and the work required to move XML
applications built on WebL ogic Server to other Web application servers, WebL ogic
Server implements the Java API for XML Processing (JAXP). JAXP was developed
by Sun Microsystemsto make XML applicationsportable; it provides basic support for
parsing and transforming XML documentsthrough a standardized set of Javaplatform
APIs. JAXP 1.1, included inthe WebL ogic Server distribution, isconfigured to use the
built-in parser. Therefore, by default, XML applications built using WebL ogic Server
use JAXP.

TheWebL ogic Server distribution containstheinterfacesand classes needed for JAXP
1.1. JAXP 1.1 contains explicit support for SAX Version 2 and DOM Level 2. The
Javadoc for JAXP isincluded with the WebL ogic Server online reference
documentation.

JAXP Packages

JAXP contains the following two packages:
m javax.xnl . parsers

B javax.xm .transform

Programming WebL ogic XML 1-7

http://www.w3.org/DOM/DOMTR

1 XML overview

Thej avax. xm . par ser s package contains the classes to parse XML datain SAX
Version 2.0 and DOM Level 2.0 mode. To parse an XML document in SAX mode, a
programmer first instantiates a new SaxPar ser Fact or y object with the

new nst ance() method. This method looks up the specific implementation of the
parser to load based on awell-defined list of locations. The programmer then obtains
aSaxPar ser instance from the SaxPar ser Fact ory and executes its par se()
method, passing it the XML document to be parsed. Parsing an XML document in
DOM modeis similar, except that the programmer uses the Docunent Bui | der and
Docunent Bui | der Fact or y classesinstead.

For detailed information on using JAXPto parse XML documents, see “Parsing XML
Documents’ on page 2-2.

Thej avax. xm . t r ansf or mpackage contains classes to transform XML data, such
asan XML document, aDOM tree, or SAX events, into a different format. The
transformer classes work similarly to the parser classes. To transform an XML
document, a programmer first instantiates a Tr ansf or mer Fact or y object with the
new nst ance() method. This method looks up the specific implementation of the
XSLT transformer to load based on awell-defined list of locations. The programmer
then instantiatesanew Tr ansf or mer object based on aspecific XSLT style sheet and
executesitst r ansf or () method, passing it the XML object to transform. The XML
object might be an XML file, aDOM tree, and so on.

For detailed information on using JAXP to transform XML objects, see“Using JAXP
to Transform XML Data’ on page 2-13.

Common Uses of XML and XSLT

1-8

How you use XML and XSLT depends on your particular business needs.

Programming WebL ogic XML

Common Uses of XML and XSLT

Using XML and XSLT to Separate Content from
Presentation

XML and XSLT are often used in applications that support multiple client types. For
exampl e, suppose you have aWeb-based application that supports both browser-based
clients and Wireless Application Pratocol (WAP) clients. These clients understand
different markup languages, HTML and Wireless Markup Language (WML),
respectively, but your application must deliver content that is appropriate for both.

To accomplish this goal, you can write your application to first produce an XML
document that represents the data it is sending to the client. Then the application can
transform the XML document that representsthe dataintoHTML or WML, depending
on the client’ s browser type. Y our application can determine the client browser type
by examining the User - Agent request header of an HTTP request. Once the
application knows the client browser type, it usesthe appropriate XSL T style sheet to
transform the document into the correct markup language. See the SnoopServlet
example included in the exanpl es/ ser vl et s directory of your WebL ogic Server
distribution for an example of how to access this type of header information.

This method of rendering the same XML document using different markup languages
in respective client types helps concentrate the effort required to support multiple
client typesinto the development of the appropriate XSLT style sheets. Additionally,
it allows your application to adapt to other clients types easily, if necessary.

For additional information about XSL T, see “ Additional Resources’ on page 5-4.

XML as a Message Format for Business-to-Business
Communication

In a business-to-business (B2B) environment, Company A and Company B want to
exchange information about e-commerce transactions in which both are involved.
Company A isamajor e-commerce site. Company B isasmall affiliate that sells
Company A’s products to a niche group of customers. When Company B sends
customersto Company A, Company B is compensated in two ways: it receives, from
Company A, both money and information about other customers that make the same

Programming WebL ogic XML 1-9

1 XML overview

sort of purchases asthose made by the customersreferred by Company B. To exchange
information, Company A and Company B must agree on adataformat for information
that is machine readable and that operates with systems from both companies easily.

XML isthelogical dataformat to usein this scenario, but selecting thisformat isonly
the first step. The companies must then agree on the format of the XML messages to
be exchanged. Because Company A has a one-to-many relationship with its affiliates,
Company A must define the format of the XML messages that will be exchanged.

To define the format of XML messages, or XML documents, Company A createstwo
document type definitions (DTDs): one that describes the information that A will
provide about customers and one that describestheinformation that A wantsto receive
about a newly affiliated company. Company B must also create two DTDs: oneto
process the XML documents received from Company A and one to prepare an XML
document in aformat that can be processed by Company A.

WebLogic Server XML Features

WebL ogic Server consolidates XML technol ogies applicable to WebL ogic Server and
XML applications based on WebL ogic Server. The WebL ogic Server XML subsystem
allows customers to use standard parsers, athe WebL ogic FastParser, XSLT
transformers, and DTDs and XML Schemasto process and convert XML files.

The WebL ogic Server XML subsystem includes the following features:
= XML Document Parsers

m XML Document Transformer

m JAXP Plugability Layer Implementation

m WebLogic Servlet Attributes

m WeblLogic XSLT JSP Teg Library

m XML Registry For Configuring Parsers and Transformers

m XML Registry for Configuring External Entity Resolution

m Code Examples

1-10 Programming WebLogic XML

WebLogic Server XML Features

XML Document Parsers

WebL ogic Server includes the following two parsers:

Par ser Description

Built-in The built-in parser is based on the Apache Xerces parser version 1.3.1.
Y ou can use the built-in parser in either Simple APl For XML (SAX)
mode or Document Object Model (DOM) mode.

WebL ogic A high-performance XML parser specifically designed for processing

FastParser small to medium size documents, such as SOAP and WSDL files
associated with WebL ogic Web services. Configure WebL ogic Server
to use FastParser if your application mostly handles small to medium
size (up to 10,000 elements) XML documents.

Note: Previous versions of WebL ogic Server included the ability to
create custom parsers. Because WebL ogic FastParser can be
used for the types of XML documents that customized parsers
were meant for, WebL ogic FastParser effectively replaces the
customized parser feature, and the ability to generate a
customized parser has been deprecated.

For detailed information on using WebL ogic FastParser, refer to“ Using
the WebL ogic FastParser” on page 2-9.

Y ou can also use any other XML parser of your choice by configuring it in the XML
Registry using the Administration Console. Y ou can configure a single instance of
WebL ogic Server to use one parser for a particular application and use another parser
for adifferent application.

XML Document Transformer

WebL ogic Server includes a built-in XSLT transformer that is based on the Apache
Xalan XSLT transformer version 2.0.1. Y ou can usethis built-in XSLT transformer or
other XSLT transformersin your XML application to transform XML documents. For
more information about transforming XML documents, see “Using JAXPto
Transform XML Data’ on page 2-13.

Programming WebL ogic XML 1-11

1 XML overview

JAXP Plugability Layer Implementation

Java APl for XML Processing (JAXP) 1.1isaJava-standard, parser-independent API
for XML. For more information on JAXP, see “What Is JAXP?’ on page 1-7.

Note: WebL ogic Server uses the XML Registry, accessed through the
Administration console, to plug-in parsers and transformers rather than using
system properties, as defined by the JAXP 1.1 specification.

WebLogic Servlet Attributes

WebL ogic Server supports the following special Servlet attributes:
® org. xnl.sax. Handl er Base

® org. xnl.sax. hel pers. Def aul t Handl er

® org. w3c. dom Docunent

Callingtheset Attri but e (for SAX parsing) and get At t ri but e (for DOM parsing)
methods on a Ser vI et Request object with the preceding attributes will parse any
given XML document.

The following code sections show an example of how to use these methods:
request.setAttribute("org. xnl.sax. hel pers. Def aul t Handl er”, new Def Handl er());

org. w3c. dom Docunment = (Docunent)request.getAttribute("org.w3c.dom Docurment");

Note: ThesetAttribute andget Attri bute methodsare provided for
convenience only; they are not required to parse XML from a Servlet.

WebLogic XSLT JSP Tag Library

The JSP tag library provides a simple tag that enables access to the built-in XSLT
transformer from within a Java Server Page (JSP) running on WebL ogic Server.
Currently, thistag supportsthe built-in XSLT transformer only; you cannot use the tag
to transform an XML document from within a JSP using a different transformer.

1-12 Programming WebLogic XML

WebLogic Server XML Features

TheJSPtag library isincludedinxm x-t ags. j ar, whichisinstalled whenyou install
your WebL ogic Server distribution.

Note: The JSPtag library is provided for convenience only; it is not required to
access XSLT transformers from within a JSP.

XML Registry For Configuring Parsers and Transformers

The XML Registry simplifies administration and configuration tasks by separating
these tasks from the XML application. Use the Administration Console (a graphical
user interface, or GUI, for WebL ogic Server administration) to configure the parsers
and transformers for an instance of WebL ogic Server.

Note: Each WebL ogic Server domain can include any number of registries; each
WebL ogic Server in adomain can be assigned zero or one registry.

By using the XML Registry, you:
m Can specify the parser or transformer at deployment time, not only at build time.

m Do not need to include any parser- or transformer- dependent code in your
applications.

m Can support multiple parsers and transformers in a single server more
conveniently.

You can usethe XML Registry to perform the following tasks:

m Configure an alternative XML parser instead of the built-in parser shipped in
this version of WebL ogic Server.

m Configure an aternative XSLT transformer instead of the built-in transformer
shipped in this version of WebL ogic Server.

m Configurean XML parser that should be used to process a particular document
type.

All the preceding capabilities are available if your application uses the standard Java
API for XML Processing (JAXP), which isincluded in this version of WebL ogic
Server. These capabilities are for use on the server side only.

Programming WebL ogic XML 1-13

1 XML overview

XML Registry for Configuring External Entity Resolution

WebLogic XML supports external entity resolution through the XML Registry. An
example of an external entity isaDTD filethat isused to validate an XML document.
To use this feature, open the Administration Console and use the XML Registry to
enter the Publ i ¢ | Dor Syst eml D associated with the external entity.

In addition to storing external entitieslocally, you can configure WebL ogic Server to
retrieve and cache external entities from external repositories that support an HTTP
interface, such asa URL. Y ou can configure WebL ogic Server to cache the external
entity in memory or on the disk and specify how long the entity should remain cached
before it is considered out of date.

For moreinformation about using the XML Registry for external entity resolution, see
“External Entity Configuration Tasks’ on page 4-11.

Code Examples

Editing

WebL ogic Server includes examples of parsing and transforming XML documents.

The examples are located in the BEA_HOME/samples/examples/xml directory,
where BEA_HOME refersto the main WebL ogic server installation directory.

For detailed instructions on how to build and run the examples, invoke the Web page
BEA HOVE/ sanpl es/ exanpl es/ xnl / package- summar y. ht m in your browser.

XML Files

Toedit XML files, usethe BEA XML Editor, an entirely Java-based XML stand-alone
editor. It isasimple, user-friendly tool for creating and editing XML files. It displays
XML file contents both as a hierarchical XML tree structure and as raw XML code.
This dual presentation of the document provides you with the following two methods
of editing the XML document:

m The hierarchical tree view allows structured, limited constrained editing,
providing you with a set of allowable functions at each point in the hierarchical

1-14 Programming WebLogic XML

Learning About XML

XML tree structure. The alowable functions are syntactically dictated and in
accordance with the XML document's DTD or schema, if one is specified.

m Theraw XML code view allows free-form editing of the data.

BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

For detailed information about using the BEA XML Editor, see its on-line help.

Y ou can download BEA XML Editor from the BEA dev2dev at
http://dev2dev.bea.com/resourcelibrary/utilitiestool s/xml.jsp?highlight=utilitiestools.

Learning About XML

To learn about XML, see the following online courses and tutorials:

m A Technical Introduction to XML at
“http://ww.xml.com/pub/a/98/10/guidel.html”

m XML Authoring Tutoria at “http://www.xml.com/pub/r/32.”
m Working with XML and Javaat “http://java.sun.com/xml/tutorial_intro.html.”

m Tutorialsfor using the Java 2 platform and XML technology at
“http://devel operlife.com/.”

m XML, Java, and the Future of the Web at
“http://ww.xml.com/pub/a/w3j/s3.bosak.html.”

m Chapter 14 of The XML Bible: XSL Transformations at
“http://metal ab.unc.edu/xml/books/bible/updates/14.html.”

m XSL Tutorial by Miloslav Nic at
http://zvon.vscht.czZHTML only/X SL Tutorial/Books/Book 1/index.html.

m SAX 2.0: The Simple API for XML at “http://www.saxproject.org/”
m Document Object Model (DOM) at “ http://www.w3.0rg/DOM/”

Programming WebL ogic XML 1-15

http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools
http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/r/32
http://java.sun.com/xml/tutorial_intro.html
http://developerlife.com/
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html
http://www.saxproject.org/
http://www.w3.org/DOM/

1 XML overview

1-16 Programming WebLogic XML

CHAPTER

2 Developing XML

Applications with
WebLogic Server

The following sections describe how to use the Java programming language and
WebL ogic Server to develop XML applications. It is assumed that you know how to
use Java Servlets and Java Server Pages (JSPs) to write Java applications. For
information about how to write serviet and JSP applications, see Programming
WebLogic HTTP Serviets at http://e-docs.bea.com/wls/docs61/servlet/index.html and
Programming WebLogic JSP at http://e-docs.bea.com/wls/docs61/jsp/index.html.

e Developing XML Applications: Main Steps
e Parsing XML Documents

e Generating XML Documents

e Using JAXPto Transform XML Data

e Using the JSP Tag to Transform XML Data

e Using Transformers Other Than the Built-In Transformer

Developing XML Applications: Main Steps

Programmers using the WebL ogic Server XML subsystem typically perform some or
all of the following programming tasks when developing XML applications:

Programming WebL ogic XML 2-1

http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html

2 Developing XML Applications with WebLogic Server

1. Parse an XML document.

The XML document can originate from a number of sources. For example, a
programmer might develop a Servlet to receive an XML document from aclient,
write an EJB to receive an XML document from a Servlet or another EJB, and
so on. In each instance, the XML document may have to be parsed so that its
data can be manipulated.

For more information on this task, refer to “Parsing XML Documents’ on page
2-2.

. Generate anew XML document.

After a Servlet or EJB has received and parsed an XML document and possibly
manipulated the data in some way, the Servlet or EJB might need to generate a
new XML document to send back to the client or to pass on to another EJB.

For more information on this task, refer to “Generating XML Documents’ on
page 2-10.

. Transform XML datainto another format.

After parsing an XML document or generating a new one, the Servlet or EJB
may need to transform it into another format, such as HTML, WML, or plain
text.

For more information on this task, refer to “Using JAXP to Transform XML
Data’ on page 2-13.

Parsing XML Documents

This section describes how to parse XML documents.

Asmentioned previously, you use the Administration Console XML Registry to
configure the following:

e Per-doctype parsers, which supersede the built-in parser for the specified
doctype

e [External entity resolution, or the process that an XML parser goes through
when requested to find an external file in the course of parsing an XML
document

Programming WebL ogic XML

Parsing XML Documents

For detailed information on how to use the Administration Console for these tasks,
refer to Chapter 4, “ Administering WebL ogic Server XML.”

For a complete example of parsing an XML document in SAX mode, see the
BEA HOVE/ sanpl es/ exanpl es/ xm / sax directory, where BEA_HOVE refersto the
main WebL ogic server installation directory.

Parsing XML Documents Using JAXP in SAX Mode

The following code example shows how to configure a SAX parser factory to create a
validating parser. The example a so shows how to register the MyHandl er class with
the parser. The MyHandl er class can override any method of the Def aul t Handl er
class to provide custom behavior for SAX parsing events or errors.

i mport javax.xmnl . parsers. SAXPar ser;
i mport javax.xml . parsers. SAXParser Factory;

MyHandl er handl er = new MyHandl er () ;
/1 MyHandl er extends org.xm . sax. hel pers. Def aul t Handl er.

/] Qotain an instance of SAXParserFactory.
SAXPar ser Fact ory spf = SAXParser Factory. new nstance();
/1 Specify a validating parser.
spf.setValidating(true); // Requires |oading the DTD.
// Qbtain an instance of a SAX parser fromthe factory.
SAXPar ser sp = spf.newSAXParser();

// Parse the docummt.
sp.parse("http://server/file.xm", handler);

Note: If you want to use a parser other than the built-in parser, you must use the
WebL ogic Server Administration Console to specify the parser in the XML
Registry; otherwise the SaxPar ser Fact ory. newl nst ance method returns
the built-in parser. For instructions about configuring WebL ogic Server to use
a parser other than the built-in parser, see “ Configuring a Parser or
Transformer Other Than the Built-In" on page 4-4.

For a complete example of parsing an XML document in SAX mode, see the
BEA HOVE/ sanpl es/ exanpl es/ xm / sax directory, where BEA_HOVE refersto the
main WebL ogic server installation directory.

Programming WebL ogic XML 2-3

2 Developing XML Applications with WebLogic Server

Parsing XML Documents Using JAXP in DOM Mode

The following code example shows how to parse an XML document and create an
org. wadc. dom Docunent treefrom aDocunent Bui | der object:

i mport javax.xml . parsers. Docunent Bui | der;
i mport javax.xmnl . parsers. Docunent Bui | der Fact ory;

i mport org.w3c. dom Docunent ;

// Obtain an instance of DocunentBuil der Factory.
Docurent Bui | der Factory dbf =
Document Bui | der Fact ory. newl nst ance() ;
/1 Specify a validating parser.
dbf.setValidating(true); // Requires |oading the DID.
[/ Obtain an instance of a DocunmentBuilder fromthe factory.
Docurent Bui | der db = dbf. newDocunent Bui | der () ;
// Parse the docunent.
Docurment doc = db. parse(inputFile);

Note: If you want to use a parser other than the built-in parser, you must use the
WebL ogic Server Administration Console to specify it; otherwise the
Docunent Bui | der Fact ory. newl nst ance method returns the built-in
parser. For instructions about configuring WebL ogic Server to use a parser
other than the built-in parser, see “ Configuring a Parser or Transformer Other
Than the Built-In" on page 4-4.

For a complete example of parsing an XML document in DOM mode, see the
BEA HOVE/ sanpl es/ exanpl es/ xm / domdirectory, where BEA_HOVE refersto the
main WebL ogic server installation directory.

Parsing XML Documents in a Servlet

2-4

Support for theset At t ri but e and get At t ri but e methods was added to version 2.2
of the Java Servlet Specification. Attributes are objects associated with arequest. The
reguest object encapsulates all information from the client request. Inthe HTTP
protocol, thisinformation is transmitted from the client to the server by the HTTP
headers and message body of the request.

Programming WebL ogic XML

Parsing XML Documents

With WebL ogic Server, you can use these methods to parse XML documents. The

set Attri but e method isused for SAX mode parsing; the get At t ri but e method,
for DOM mode parsing.

For a complete example of parsing an XML document in a Servlet, see the

BEA HOVE/ sanpl es/ exanpl es/ xm / at t ri but es directory, where BEA_HOVE refers
to the main WebL ogic server installation directory.

Using the org.xml.sax.DefaultHandler Attribute to Parse a Document

The following code example shows how to usethe set At t r i but e method:

i mport webl ogi c. servl et. XM_Pr ocessi hgExcepti on;
i mport org.xm . sax. hel pers. Def aul t Handl er;

public void doPost (Ht t pServl et Request request,

Ht t pSer vl et Response response)
throws Servl et Exception, |OException {

try {
request.setAttribute("org.xm .sax. hel pers. Def aul t Handl er ",

new Def aul t Handl er ());
} catch(XM.Processi ngExcepti on xpe) {

Systemout.println("Error in processing XM.");
Xxpe. print StackTrace();
return;

You can aso usetheor g. xn . sax. Handl er Base attribute to parse an XML
document, although it is deprecated:

request.setAttribute("org.xm . sax. Handl er Base",
new Handl er Base());

Note: This code example shows a simple way to parse a document using SAX and
theset At t ri but e method. This method of parsing adocumentisa
WebL ogic Server conveniencefeature, and it is not supported by other servlet

vendors. Therefore, if you plan to run your application on other servlet
platforms, do not use this feature.

Using the org.w3c.dom.Document Attribute to Parse a Document

The following code example shows how to use the get At t r i but e method.

Programming WebL ogic XML 2-5

2 Developing XML Applications with WebLogic Server

i mport org.w3c. dom Docunent ;
i mport webl ogi c. servl et. XMLProcessi ngExcepti on;

public void doPost (HttpServl et Request request,

Ht t pSer vl et Response response)
throws Servl et Exception, |OException {

try {
Docunment doc = request.getAttribute("org.w3c.dom Docunent");
} catch(XM.Processi ngException xpe) {
Systemout.printIn("Error in processing X\M.");
xpe. print StackTrace();
return;

Note: This code example shows a simple way to parse a document using DOM and
the get At t ri but e method. This method of parsing adocument isa
WebL ogic Server convenience feature, and it is not supported by other serviet
vendors. Therefore, if you plan to run your application on other servlet
platforms, do not use this feature.

Validating and Non-Validating Parsers

2-6

As previoudly discussed, awell-formed document is one that is syntactically correct
according to the rules outlined in the W3C Recommendation for XML 1.0. A valid
document is one that follows the constraints specified by its DTD or schema.

A non-validating parser verifies that a document is well-formed, but does not verify
that it isvalid. The WebL ogic FastParser, described in “ Using the WebL ogic
FastParser” on page 2-9, is hon-validating by default.

To turn on validation while parsing a document (assuming you are using a validating
parser), you must:

m Set the SAXPar ser Fact ory. set Val i dat i ng() method to true, as shown in the
following example:

SAXPar ser Factory factory = SAXParser Fact ory. newl nst ance();
factory. setValidating(true);

m Ensure that the XML document you are parsing includes (either in-line or by
reference) aDTD or a schema.

Programming WebL ogic XML

Parsing XML Documents

Handling Entity Resolution While Parsing an XML
Document

This section provides general information about external entities; how they are
identified and resolved by an XML parser; and the features provided by WebL ogic
Server to improve the performance of external entity resolution in your XML
applications.

For a complete example of resolving an external entity while parsing an XML
document, see the BEA HOVE/ sanpl es/ exanpl es/ xnl / enti tyresol ution
directory, where BEA HOVE refers to the main WebL ogic server installation directory.

General Information About External Entities

External entities are chunks of text that are not literally part of an XML document, but
arereferenced inside the XML document. The actual text might reside anywhere - in
another file on the same computer or even somewhere on the Web. While parsing a
document, if the parser encounters an external entity reference, it fetches the
referenced chunk of text, places the text into the XML document, then continues
parsing. An example of an external entity isa DTD; rather than including the full text
of the DTD inthe XML document, the XML document hasareferencetothe DTD that
isstored in a separate file.

There are two ways to identify an external entity: a system identifier and a public
identifier. System identifiers use URIsto reference an external entity based on its
location. Public identifiers use a publicly declared name to refer the information.

Thefollowing example shows how a public identifier isused to referencethe DTD for
theappl i cati on. xm file that describes a J2EE application archive (*.ear file):

<! DOCTYPE application PUBLIC "-//Sun M crosystens,
Inc.//DTD J2EE Application 1.2//EN'>

The following example shows areference to an external DTD by a system identifier
only:

<! DOCTYPE appl i cati on SYSTEM
"http://java.sun.confj2ee/ dtds/application_1_2.dtd">

Programming WebL ogic XML 2-7

2 Developing XML Applications with WebLogic Server

Here is areference that uses both the public and system identifier; note that the
keyword SY STEM is omitted:

<! DOCTYPE application
PUBLIC "-//Sun M crosystens, Inc.//DTD J2EE Application 1.2//EN'
"http://java.sun.com j 2ee/ dtds/application_1_2.dtd">

Using the WebLogic Server Entity Resolution Features

2-8

Use the following WebL ogic Server features to improve the performance of external
entity resolution in your XML applications:

m Permanently store acopy of an external entity on the computer that hosts the
WebL ogic Administration Server.

m Specify that WebL ogic server automatically retrieve and cache an external entity
that resides in an external repository that supports an HTTP interface, such asa
URL. You can specify that WebL ogic Server cache the entity either in memory
or on disk and specify when the cached entry becomes stale, at which point
WebL ogic Server automatically updates the cached entry.

Using this feature, you do not have to actually copy the external entity to the
local computer. The XML application refers to the actual external entity only at
specified time intervals, rather than each time the document is parsed, thus
potentially greatly improving the performance of your application while also
keeping as up to date with the latest external entity as desired.

Y ou use the XML Registry to create entity resolution entries to identify where the
external entry islocated (locally or at a URL) and what the caching options are for
entities on the Web. Y ou identify the external entity entry using a system or public
identifier. Then, in your XML document, when you reference this external entity,
WebL ogic Server fetchesthe local copy or the cached copy (whichever you have
configured) when parsing the document.

For detailed information on creating external entity registries with the XML Registry,
refer to “ External Entity Configuration Tasks’ on page 4-11.

Programming WebL ogic XML

Parsing XML Documents

Using Parsers Other Than the Built-In Parser

If you use JAXP to parse your XML documents, the WebL ogic Server XML Registry
(which is configured through the Administration Console) offers the following
options:

e Accept the built-in parser as the server-wide parser.
e Configure the WebL ogic FastParser as the server-wide parser.
e Configure a parser of your choice as the server-wide parser.

e Configure a parser for aparticular DTD based on its system or public
identifier, or its root tag.

For instructions on how to use the XML Registry to configure parsing options, see
“XML Parser and Transformer Configuration Tasks’ on page 4-4.

Using the WebLogic FastParser

WebL ogic Server includes a high-performance non-validating XML parser (called
WebL ogic FastParser) specifically designed to parse small to medium (up to 10,000
elements) XML documents. For larger documents, the performance of this parser is
comparable to that of other standard parsers, such as Apache Xerces.

Note: WebL ogic FastParser supports only SAX-style parsing.

Y ou can specify that WebL ogic FastParser be used as the WebL ogic Server-wide
parser, or just for a particular DOCTY PE by using the XML Registry as described in
“XML Parser and Transformer Configuration Tasks’ on page 4-4. Set the

SAXPar ser Fact ory fieldto

webl ogi c. xm . babel . j axp. SAXPar ser Fact oryl npl .

Note: Previous versions of WebL ogic Server included the ability to create custom
parsers. Because you can use the WebL ogic FastParser for the types of XML
documents that customized parsers were meant for, FastParser effectively
replacesthe customized parser feature, and the ability to generate acustomized
parser has been deprecated.

Programming WebL ogic XML 29

2 Developing XML Applications with WebLogic Server

Generating XML Documents

This section describes how to generate XML documents from a DOM document tree
and by using JSP.

Generating XML from a DOM Document Tree

This section describes two ways to create an XML document from a DOM document
tree:

m Using the Apacheseri al i ze classes

m Using the JAXP Tr ansf or mer classes

Using the Apache Serialize Class

To generate an XML document from a DOM document tree, you can use the class
webl ogi c. apache. xni . seri al i ze to convert aDOM document treeto XML text.
For a description of this class, see Javadoc for webl ogi c. apache. xmi . seri al i ze.

The following code example shows how to use this class.

Note: The following example does not use JAXP but rather the Apache proprietary
API directly.

package test;

import java.io.QutputStreanWiter;
import java.util.Date;
i mport java.text. Dat eFormat;

i mport org.w3c. dom Docunent ;
i mport org.w3c. dom El enent ;

i mport webl ogi c. apache. xer ces. dom Docurnent | npl ;
i mport webl ogi c. apache. xnm . seri al i ze. DOVBeri al i zer;
i nport webl ogi c. apache. xm . seri alize. XM_Seri al i zer;

public class WiteXM {

public static void main(String[] args) throws Exception {

2-10 Programming WebL ogic XML

Generating XML Documents

/'l Create a DOMtree.
Docunent doc= new Docurent | npl () ;
El ement message = doc. creat eEl enent (" nmessage") ;
doc. appendChi | d(nessage) ;
El ement text = doc.createEl ement ("text");
t ext . appendChi |l d(doc. creat eText Node("Hello world."));
message. appendChi | d(text);
El ement tinmestanp = doc.createEl ement ("ti mestanmp");
ti nest anp. appendChi | d(

doc. cr eat eText Node(

Dat eFor mat . get Dat el nst ance() . format (new Date()))

)
message. appendChi | d(ti nest anp) ;

/1 Serialize the DOMto XM. text and output to stdout.
DOvBeri al i zer xm Ser =

new XM.Seri al i zer (new Qut put StreamWiter(Systemout),null);
xm Ser. serialize(doc);

Using the JAXP Transformer Class

You canusethej avax. xnl . transf orm Transf or mer classto serializea DOM
object into an XML stream, as shown in the following exampl e segment:

i mport javax.xmnl . parsers. Docunent Bui | der;
i mport javax.xml . parsers. Docunent Bui | der Fact ory;

i mport org.w3c. dom Docunent ;

i mport javax.xml .transform Transforner;

i mport javax.xmnl .transform Transf orner Fact ory;

i mport javax.xml .transform dom DOVBour ce;

i mport javax.xm .transform stream StreanResul t;

import java.io.*;

TransfornerFactory trans_factory =

Tr ansf or ner Fact ory. newl nst ance() ;

Transforner xml _out = trans_factory. newlransfornmer();
Properties props = new Properties();

props. put (“nethod”, “xm”);

xm _out . set Qut put Properti es(props);

xm _out. transform new DOVSour ce(doc), new

StreanResul t (System out));

Programming WebL ogic XML 2-11

2 Developing XML Applications with WebLogic Server

Intheexample, the Tr ansf or mer . t ransf or n() doesthework of convertingaDOM
object into an XML stream. Thet r ansf or m() method takes asinput a

j avax. xnl . transf orm dom DOVSour ce object, created from the DOM tree stored
in the doc variable, and convertsitinto a

j avax. xnl . transform stream St reanResul t object and writes the resulting
XML document to the standard output.

Generating XML Documents in a JSP

Y ou typically use JSPsto generate HTML, but you can also use a JSP to generate an
XML document.

Using JSPs to generate XML requires that you set the content type of the JSP page as
follows:

<%@ page content Type="text/xm "%
... XM docunent

The following code shows an example of how to use JSP to generate an XML
document:

<?xm version="1.0">

<%@ page content Type="text/xm"
i mport="java.text.DateFormat,java.util.Date" %

<nmessage>

<t ext >

Hell o Worl d.

</ text>

<ti nest anp>
<%
out . print (Dat eFor mat. get Dat el nstance() . format (new Date()));
%

</timestanmp>
</ nessage>

For more information about using JSP to generate XML, see
http://java. sun.com products/jsp/htm /JSPXM. htn .

2-12 Programming WebL ogic XML

http://java.sun.com/products/jsp/html/JSPXML.html

Using JAXP to Transform XML Data

Using JAXP to Transform XML Data

Transformation refers to converting an XML document (the sour ce of the
transformation) into another format, typically a different XML document, HTML,
Wireless Markup Language (WML) (the result of the transformation.) Version 1.1 of
JAXP provides plugable transformation, which means that you can use any
JAXP-compliant transformer engine.

JAXP provides the following interfaces to transform XML datainto a variety of
formats:

m javax.xm .transform Thispackage containsthe generic APIs for
transforming documents. This package does not have any dependencies on SAX
or DOM and makes the fewest possible assumptions about the format of the
source and result.

m javax.xm . transform stream This package implements stream- and
URI-specific transformation APIs. In particular, it definesthe St r eanSour ce
and St reanResul t classes that enable you to specify | nput St r eans and URLS
as the source of atransformation and Qut put St r eans and URLs as the results,
respectively.

m javax.xn . transform donm This package implements DOM-specific
transformation APIs. In particular, it defines the DOVSour ce and DOVResul t
classes that enable you to specify aDOM tree as either the source or result, or
both, of atransformation.

m javax.xm . transform sax: This package implements SAX-specific
transformation APIs. In particular, it defines the SAXSour ce and SAXResul t
classes that enable you to specify or g. xm . sax. Cont ent Handl er eventsas
either the source or result, or both, of atransformation.

Transformation encompasses many possible combinations of inputs and outputs.

For a complete example of transforming an XML document, see the
BEA HOVE/ sanpl es/ exanpl es/ xm / xsl t directory, where BEA_ HOME refersto the
main WebL ogic server installation directory.

Programming WebL ogic XML 2-13

2 Developing XML Applications with WebLogic Server

Example of Transforming an XML Document Using JAXP

The following exampl e snippet shows how to use JAXP to transform ny XM.doc. xmni
into adifferent XML document using the nyst yl esheet . xs| stylesheet:

i mport javax.xmnl .transform Transforner;

i mport javax.xm .transform Transf orner Fact ory;

i mport javax.xml .transform stream StreanSource;
import javax.xml .transform stream StreanResul t;

Transforner trans;

TransfornerFactory factory = TransfornerFact ory. new nst ance();
String stylesheet = “file://styl esheets/nystyl esheet. xsl”;
String xm _doc = “file://xm _docs/ nyXM.doc. xm ”;

trans = factory. newlr ansfornmer (new StreanSource(styl esheet));
trans. transforn(new StreanSource(xm _doc),
new StreanResul t (System out));

For an example of how to transform a DOM document into an XML stream, see
“Using the JAXP Transformer Class’ on page 2-11.

Converting From the Xalan APl to JAXP 1.1 API

2-14

If your application contain Xalan-specific code, BEA recommends that you modify it
to use JAXP instead.

This section briefly describes the changes you must make to your XML applicationin
order to convert from the Xalan API to JAXP. The section compares two code
segmentsthat perform asimilar transformation task: one code segment uses the Xalan
API directly and the other uses JAXP.

The following Java code segment uses JAXP:

i mport javax.xml .transform Transforner;

i mport javax.xml .transform Transforner Fact ory;

i mport javax.xml .transform stream StreanSource;
import javax.xm .transform stream StreanResul t;

Transformer trans;
TransfornerFactory factory = TransfornerFactory. new nst ance();

Programming WebL ogic XML

Using JAXP to Transform XML Data

String stylesheet = "file://styl esheets/nystyl esheet. xsl";
String xm _doc = "file://xm _docs/ nyXM.doc. xm ";

trans = factory. newlransforner(new StreanSource(styl esheet));
trans. transform new StreanSource(xm _doc),
new StreanmResul t (System out));

The following Java code segment uses the Xalan APl directly:

/*

* This code exanpl e was taken from code exanpl es provi ded by the

* Apache Software Foundation. It consists of voluntary
contributions nade by many individuals on behalf of the Apache
Sof t war e Foundation and was originally based on software
copyright (c) 1999, Lotus Devel opnent Corporation.,
http://ww. | otus.com For nmore information on the Apache
Sof t war e Foundation, please see <http://ww. apache. org/>.

/

EE I I T I

i mport org. apache. xal an. xsl t. XSLTPr ocessor Fact ory;
i nport org. apache. xal an. xsl t. XSLTI nput Sour ce;

i nport org.apache. xal an. xsl t. XSLTResul t Tar get ;

i mport org. apache. xal an. xsl t. XSLTPr ocessor ;

XSLTProcessor processor = XSLTProcessor Factory. get Processor();

String stylesheet = "file://styl esheets/nystyl esheet. xsl";
String xm _doc = "file://xm _docs/ nyXM.doc. xm ";

processor. process(new XSLTI nput Sour ce(xm _doc),
new XSLTI nput Sour ce(styl esheet),
new XSLTResul t Target (System out));

The following table summarizes the names of the Xaan and JAXPI interfaces and
methods used in the preceding examples to transform XML documents; use thistable
as afirst step toward converting your existing Xalan application to afull JAXP
application.

Programming WebL ogic XML 2-15

2 Developing XML Applications with WebLogic Server

Note: Thistable does not include an entire mapping between Xalan and JAXP, but
rather covers only the main classes and methods used in the preceding
examples. Refer to the Apache and Sun Web sites at http://www.apache.org
and http://java.sun.com/xml/index.html for more detailed information on each

APIL.
Description of Class or Xalan 1.X JAXP 1.1
Interface
Main class used to transform XSLTPr ocessor Tr ansf or mer

XML documents

Factory class used to create the
transformer objects

XSLTPr ocessor Factory

Tr ansf or ner Fact ory

Method used to create a new
instance of the factory

na

Transf or mer Fact ory. newi ns
tance()

Method used to create a new
transformer object

XSLTProcessor Factory. get P
rocessor ()

Transf or ner Fact ory. newTr a
nsforner ()

Classthat holdsthe source of the
transformation, such asthe
XML document or an XSL
stylesheet

XSLTI nput Sour ce

St r eanSour ce

Classthat holds the result of the
transformation

XSLTResul t Tar get

St reanResul t

Method that performs the
transformation

XSLTProcessor. process()

Transforner. transforn()

Using the JSP Tag to Transform XML Data

WebL ogic Server provides a small JSP tag library for convenient accessto an XSLT
transformer from within aJSP. Y ou can use thistag to transform XML documentsinto

HTML, WML, and so on, but it is not required.

The JSP tag library consists of one main tag, x: xsl t , and two subtags you can use
withinthex: xsl t tag: x: styl esheet and x: xm .

2-16

Programming WebL ogic XML

http://www.apache.org
http://java.sun.com/xml/index.html

Using the JSP Tag to Transform XML Data

XSLT JSP Tag Syntax

The XSLT JSP tag syntax is based on XML. A JSP tag consists of a start tag, an
optional body, and a matching end tag. The start tag includes the element name and
optional attributes.

The following syntax describes how to use the three XSLT JSP tags provided by
WebL ogic Server in a JSP. The attributes are optional, as are the subtags

x: styl esheet andx: xm . The tables following the syntax describe the attributes of
thex: xsl't and x: styl esheet tags, thex: xn tag does not have any attributes.

<x:xslt [xm="uri of XM file"]
[medi a="nedi a type to determ ne styl esheet"]
[styl esheet="uri of stylesheet"]
<x:xm >l n-1ine XM. goes here
</ x:xm >
<x:styl esheet [nedia="nedia type to determ ne styl esheet"]
[uri="uri of stylesheet"]
</ x: styl esheet >
</ x:xslt>

The following table describes the attributes of the x: xsl t tag.

x:xdtTag Required Data Description
Attribute Type
xml No String Specifies the location of the XML file that you want to transform.

Thelocation isrelative to the document root of the Web application
in which thetag is used.

media No String Defines the document output type, such asHTML or WML, that
determines which stylesheet to use when transforming the XML
document.

This attribute can be used in conjunction with the nedi a attribute
of any enclosed x: st yl esheet tags within the body of the

x: xsl t tag. Thevalueof thenmedi a attribute of thex: xsl t tagis
compared to the value of the medi a attribute of any enclosed

x: styl esheet tags. If the values are equal, then the stylesheet
specified by theur i attribute of thex: st yl esheet tagisapplied
to the XML document.

NOTE: Itisan error to set both the mredi a and st yl esheet
attributes within the same x: xsl t tag.

Programming WebL ogic XML 2-17

2 Developing XML Applications with WebLogic Server

x:xsdtTag Required Data Description
Attribute Type
stylesheet No String Specifiesthe location of the stylesheet to use to transform the XML

document. Thelocation is relative to the document root of the Web
application in which the tag is used.

NOTE: Itisan error to set both the medi a and st yl esheet
attributes within the same x: xsl t tag.

The following table describes the attributes of the x: st yl esheet tag.

X:stylesheet Required Data Description
Tag Attribute Type
media No String Defines the document output type, such asHTML or WML,

that determines which stylesheet to use when transforming the
XML document.

Use this attribute in conjunction with the medi a attribute of
enveloping x:xdt tag. The value of the nedi a attribute of the
x: xsl t tagiscompared to thevaue of thenredi a attribute of
theenclosedx: st yl esheet tags. If thevaluesareequal, then
the stylesheet specified by theur i attribute of the

x: st yl esheet tagisapplied to the XML document.

uri No String Specifiesthelocation of the stylesheet to use when the value of
the medi a attribute matches the value of the medi a attribute
of theenveloping x: xsl t tag. Thelocation isrelative to the
document root of the Web application in which the tag is used.

XSLT JSP Tag Usage

Thex: xsl t tag can be used with or without abody, and itsattributesare optional. This
section describesthe rulesthat dictate how the tag behaves depending on whether you
specify abody or one or more attributes.

If thex: xsl t JSPtag isan empty tag (no body), the following statements apply:

e |f no attributes are set, the XML document is processed using the servlet path
and the default media stylesheet. You specify the default media stylesheet in

2-18 Programming WebL ogic XML

Using the JSP Tag to Transform XML Data

your XML file with the<?xm - st yl esheet > processing instruction; the
default stylesheet is the one that does not have anedi a attribute.

This type of processing allows you to register the JSP page that contains the
tag extension as afile servlet that performs X SLT processing.

If only the nedi a attribute is set, the XML document is processed using the
servlet path and the specified media type. The value of the nedi a type
attribute of the x: xsl t tag is compared to the value of the medi a attribute of
any <?xn - styl esheet > processing instructionsin your XML document; if
any match then the corresponding stylesheet is applied. If none match then
the default media stylesheet is used. The mediatype attribute is used to
define the document output type (for example, XML, HTML, postscript, or
WML). This feature enables you to organize stylesheets by document output

type.

If only thexml attributeis set, the specified XML document is processed
using the default media stylesheet.

If themedi a and xm attributes are set, the specified XML document is
processed using the specified media type.

If thest yl esheet attribute is defined, the XML document is processed
using the specified stylesheet.

Caution: Itisan error to set both the medi a and st yl esheet attributes within the

same x: xsl t tag.

AnXSLT JSPtag that hasabody may contain <x: xm > tagsand/or <x: st yl esheet >
tags. The following statements apply:

The <x: xm > tag allows you specify an XML document for inline
processing. This tag has no attributes.

The <x: st yl esheet > tag, when used without any attributes, allows you
specify the default stylesheet inline.

Usetheuri attribute of the <x: st yl esheet > tag to specify the location of
the default stylesheet.

If you want to specify different stylesheets for different media types, you can
use multiple <x: st yl esheet > tags with different values for the nedi a

Programming WebL ogic XML 2-19

2 Developing XML Applications with WebLogic Server

attribute. You can specify a stylesheet for each media type in the body of the
tag, or specify the location of the stylesheet withtheuri attribute.

Transforming XML Documents Using an XSLT JSP Tag

2-20

Tousean XSLT JSP tag to transform XML documents, perform the following steps:

1. Openthexni x. zi p fileinthe BEA Hone/ W ser ver 6. 0/ ext directory; extract the
xm x-tags. jar file;and putitinthe/ i b directory of your Web application,
where BEA Hone isthetop-level directory in which you installed the WebL ogic
Server distribution.

2. Adda<tagl i b>entry to theweb. xmi file. For example:

<tagl i b>

<taglib-uri>xmx.tld</taglib-uri>

<taglib-location> WEB-1NF/I|ib/xm x-tags.jar</taglib-Ilocation>
</taglib>

3. Tousethetags, add the following line to your JSP page:
<U@taglib uri="xmx.tld" prefix="x"%

4. Configure the transformer. The following procedure shows a generic way to
configure the transformer:

a. Enter thefollowing codelineto createan xsl t . j sp file:
<v@taglib uri="xmx.tld" prefix="x"%<x:xslt/>
b. Registerthexslt.jsp fileinyour web. xm file, asfollows:

<servl et >
<servl et - name>nyxsl ti nt er cept or </ servl et - nane>
<jsp-file>xslt.jsp</jsp-file>

</servl et>

<servl et - mappi ng>
<servl et - name>nyxsl ti nt ercept or </ servl et - nane>
<url-pattern>/xslt/*</url-pattern>

</ servl et - mappi ng>

c. Put your XML/DTD/XSL documents or servletsin your Web application.

Programming WebL ogic XML

Using the JSP Tag to Transform XML Data

d.

Note:

Add an xsl t prefix to the pathname for the XML document (for example,
changedocs/ fred. xm toxslt/docs/fred.xn) and then accessthe
document. Because of the <ur | - pat t er n> entry in theweb. xm file,
WebL ogic Server automatically runsthe XSLT transformer on the XML
document and sets the default stylesheet in the document.

To define media type, add code to the JSP to determine the media type for the
XML document and the content type for the output.

Pass the mediatypeinto the xsI t tag and then set the content type of the
response object.

The other forms of the XSLT JSP tag are used when stylesheets are not
specified in the XML document or your XML stylesheet can be generated
inline.

Example of Using the XSLT JSP Tag in a JSP

The following snippet of code from a JSP shows how to use the XSLT JSP tag to
transform XML intoHTML or WML, depending on the type of client that isrequesting
the JSP. If the client is a browser, the JSP returns HTML; if the client isawireless

device,

the JSP returns WML.

First the JSP uses the get Header () method of the Ht t pSer vl et Request object to
determine the type of client that is requesting the JSP and setsthe ny Medi a variableto

wni or

ht m appropriately. If the JSP set the myMedi a variabletoht m , thenit applies

theht m . xs!| stylesheet to the XML document contained in the cont ent variable.
Similarly, if the JSP set the myMedi a variable to wni , then it appliesthe wni . xsl
styleshest.

<%

%

<X:

String clientType = request.getHeader (" User-Agent");
/1 default to WWL client
String nyMedia = "wr";

// if client is an HTM. browser

if (clientType.indexO("Mzilla") '= -1) {
nyMedia = "http"
}

xslt medi a=" <%nyMedi a%" >

Programming WebL ogic XML 2-21

2 Developing XML Applications with WebLogic Server

<x: xm ><%--cont ent %</ x: xm >

<x:styl esheet nedia="htm" uri="htm.xsl"/>

<x:styl esheet nedia="wrd" uri="wm.xsl"/>
</ x:xslt>

Using Transformers Other Than the Built-In
Transformer

The WebL ogic Server XML Registry (which you configure using the Administration
Console) offersthe following options:

e Accept the built-in transformer as the server-wide transformer.

e Configure atransformer other than the built-in transformer as the server-wide
transformer. The transformer must be JAXP-compliant.

For instructions on how to use the XML Registry to configure transforming options,
see “XML Parser and Transformer Configuration Tasks’ on page 4-4.

2-22 Programming WebL ogic XML

CHAPTER

3 XML Programming
Techniques

The following sections provide information about specific XML programming
techniques for devel oping a J2EE application that processes XML data:

m Sending and Receiving XML To and From Servlets and JSPs
m Handling XML DocumentsinaJMS Application
m Accessing External Entities That Do Not Have an HTTP Interface

m XML Document Header Information

Sending and Receiving XML To and From
Servlets and JSPs

Inatypical J2EE application, aclient application sends XML datato a Servlet or aJSP
that processes the XML data. The Servlet or JSP then either sends the data on to
another J2EE component, such asa JM S destination or an EJB, or sendsthe processed
XML data back to the client in the form of another XML document.

Tosend and receive XML datafrom aJavaclient to aWebL ogic Server-hosted Servlet
or JSP and back, usethej ava. net . URLConnect i on class. This class represents the
communication link between an application and an URL, whichinthiscaseisthe URL
that invokes the Servlet or JSP. Instances of the URLConnect i on class send the XML
document using the HTTP POST method.

Programming WebL ogic XML 31

3 XML Programming Techniques

The following Java client program from the WebL ogic XML examples shows how to

send and receive XML datato and from a JSP;

i mport java.net.*;
import java.io.*;
import java.util.*;

public class Cient {

public static void main(String[] args) throws Exception {
if (args.length < 2) {

Systemout.println("Usage: java exanples.xm .Client URL Filenane");

}

el se {
try {
URL url = new URL(args[0]);
String docunment = args[1];
Fi | eReader fr = new Fi | eReader (docunent);
char[] buffer = new char[1024*10];
int bytes_read = O;
if ((bytes_read = fr.read(buffer)) !=-1)
{
URLConnection urlc = url.openConnection();
url c. set Request Property(" Content - Type", "text/xm");
url c. set DoQut put (true);
url c. set Dol nput (true);
PrintWiter pw = new PrintWiter(urlc.getQutputStrean());

/1 send xm to jsp
pw.wite(buffer, 0, bytes_read);
pw. cl ose();

Buf f eredReader in = new BufferedReader (new
I nput St reanmReader (url c. getlnputStrean()));
String inputlLine;
while ((inputLine = in.readLine()) !'= null)
System out . printl n(i nputLine);

in.close();

catch (Exception e) {
e.printStackTrace();

}

32 Programming WebL ogic XML

Handling XML Documents in a JMS Application

The example first shows how to open a URL connection to the JSP using a URL from
the argument list, obtain the output stream from the connection, and print the XML
document provided in the argument list to the output stream, thus sending the XML
data to the JSP. The example then shows how to use the get | nput St r ean{) method
of the URLConnect i on class to read the XML data that the JSAP returns to the client
application.

The following code segments from a sample JSP shows how the JSP receives XML
datafrom the client application, parsesthe XML document, and sends XML data back:

Buf f eredReader br = new BufferedReader (request. get Reader());
Docurent Bui | der Factory fact = Docunent Bui | der Fact ory. newl nst ance();
Docurent Bui | der db = fact. newDocunent Bui | der () ;

Docurment doc = db. parse(new | nput Source(br));

PrintWiter responseWiter = response.getWiter();
responseWiter.println("<?xm version="1.0"?>");

For detailed information on programming WebL ogic Servlets and JSPs, see
Programming WebLogic HTTP Serviets at
http://e-docs.bea.com/wls/docs61/servlet/index.html and Programming WebLogic
JSP at http://e-docs.bea.com/wls/docs61/jsp/index.html

Handling XML Documents in a JMS
Application

WebL ogic Server provides the following extensions to some Java M essage Service
(IMS) classes to specifically handle XML documentsin an JM S application:

®m webl ogi c. j ms. ext ensi ons. W.Sessi on, which extends the IMS class
javax. j ms. Sessi on

® webl ogi c. j ms. ext ensi ons. W.QueueSessi on, which extends the IMS class
j avax. j ms. QueueSessi on

m webl ogi c. j ms. ext ensi ons. W.Topi cSessi on, which extends the IMS class
j avax. j ms. Topi cSessi on

Programming WebL ogic XML 33

http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html

3 XML Programming Techniques

B webl ogi c. j ms. ext ensi ons. XM_Message, which extends the IMS class
j avax. j ms. Text Message

If you use the XM_Message class to send and receive XML documentsinaJMS
application, rather than the more generic Text Message class, you can use
XML-specific message selectorsto filter unwanted messages. In particular, you can
use the method JMS_BEA_SELECT to specify an X Path query to search for an XML
fragment in the XML document. Based on the results of the query, a message
consumer might decide not to receive the message, thus possibly reducing network
traffic and improving performance of the IM S application.

To usethe XM_Message classto contain XML messagesin a JM S application, you
must create either aW.QueueSessi on or W.Topi cSessi on object, depending on
whether you want to use JIM S queues or topics, rather than the generic QueueSessi on
or Topi cSessi on objects, after you have created a JMS Connect i on. Then use the
creat eXM_Message() method of the W.Sessi on interface to create an XM_Message
object.

For detailed information on using XM_Message objectsin your IM S application, see
Programming WebLogic JMSat http://e-docs.bea.com/wls/docs61l/jms/index.html.

Accessing External Entities That Do Not Have
an HTTP Interface

34

WebL ogic Server can retrieve and cache external entities that reside in external
repositories, aslong asthey have an HTTP interface, such as an URL, that returnsthe
entity. See “External Entity Configuration Tasks’ on page 4-11 for detailed
information on using the XML Registry to configure external entities.

If you want to access an external entity that is stored in arepository that does not have
an HTTPinterface, you must create one. For example, assume you store the DTDsfor
your XML documents in a database table, with columns for the systemid, public id,
and text of theDTD. Toaccessthe DTD asan external entity from aWebLogic XML
application, you could create a Servlet that uses JDBC to accessthe DTDsin the
database.

Programming WebL ogic XML

http://e-docs.bea.com/wls/docs61/jms/index.html

XML Document Header Information

Because you invoke Servlets with URLS, you now have an HTTP interface to the
external entity. When you create the entity registry entry in the XML Registry, you
specify the URL that invokes the Servlet as the location of the external entity. When
WebL ogic Server is parsing an XML document that contains areference to this
external entity, it invokesthe Servlet, passing it the public and system id, which the
Servlet can internally use to query the database.

XML Document Header Information

Sometimes you might want to only get information about an XML document, such as
the root element, system ID, or public ID, instead of getting all the actual datawithin
the document. In this case, fully parsing the document is unnecessary, and indeed
might decrease the performance of your application if the XML document is very
large.

Instead of parsing the XML document, you can get header information about the XML
document by using the webl ogi c. xn . sax. XM_I nput Sour ce class, whichis
Weblogic Server’ sextensiontotheor g. xni . sax. | nput Sour ce class. Thefollowing
exampl e segment shows how to use this class:

i mport webl ogi c. xnl . sax. XML.I nput Sour ce;

String input XML = “file://xm _docs/ myXM.doc. xm ”;
XMLI nput Source xi s = new XM.I nput Sour ce(i nput XM.) ;
String docType = xis. getRoot Tag();

String publiclD = xis.getPublicld();

String system D = xis.getSystenm d();

String nanespaceURl = xis. getNamespaceURl ();

See the WebL ogic Server API Reference for more information on the
webl ogi c. xml . sax. XMLl nput Sour ce class.

Programming WebL ogic XML 35

http://e-docs.bea.com/wls/docs61/javadocs/index.html

3 XML Programming Techniques

36 Programming WebL ogic XML

CHAPTER

4 Administering
WebLogic Server XML

The following sections describe XML administration with WebL ogic Server:
m Overview of Administering WebL ogic Server XML

m XML Parser and Transformer Configuration Tasks

m External Entity Configuration Tasks

Overview of Administering WebLogic Server
XML

Y ou access the XML Registry through the Administration Console and use it to
configure WebL ogic Server for XML applications.

To invoke the Administration Consolein your browser, enter the following URL :

http://host: port/console

where

m host refers to the computer on which WebL ogic Administration server is
running.

Programming WebL ogic XML 4-1

4 Administering WebLogic Server XML

m port refersto the port number where WebL ogic Administration server is
listening for connection requests. The default port number for WebL ogic
Administration server is 7001.

XML Administration Tasks

Y ou create, configure, and usethe XML Registry through the Administration Console.
The benefits of using the Administration Console XML Registry are as follows:

m Configuration of XML Registry changes take effect automatically at run time,
provided you use JAXP in your XML applications.

m When you make changes to the XML Registry, it is not necessary to change your
XML application code.

m Entity resolution is donelocally. You can use the XML Registry either to define
alocal copy of an entity or to specify that WebL ogic Server cache an entity from
the Web for a specified duration and use the cached copy rather than the one out
on the Web.

Y ou can use the XML Registry to specify:

m Anaternative server-wide XML parser instead of the built-in parser.

m An XML parser per document.

m An alternative server-wide transformer instead of the built-in transformer.

m Externa entitiesthat are to be resolved by using local copies of the entities.
Once you specify these entities, the Administration Server stores local copies of
them in the file system and automatically distributes them to the server’s parser
at parse time. This feature eliminates the need to construct and set SAX
EntityResolvers.

m Externa entitiesto be cached by WebL ogic Server after retrieval from the Web.
You specify how long these external entities should be cached before WebL ogic
Server re-retrieves them and when WebL ogic should first retrieve the entities,
either at application run time or when WebL ogic Server starts.

These capabilities are for use on the server side only.

4-2 Programming WebL ogic XML

Overview of Administering WebLogic Server XML

How the XML Registry Works

Y ou can create as many XML Registries asyou like; however, you can associate only
one XML Registry with a particular instance of WebL ogic Server.

If an instance of WebL ogic Server does not have an XML Registry associated with it,
then the built-in parser and transformer are used when parsing or transforming
documents. In addition, you cannot configure external entity resolution to increase the
performance of your XML applications.

Once you associate an XML Registry with an instance of WebL ogic Server, all XML
configuration options are available for XML applications that use that server.

Y ou can configure the following two types of entriesfor agiven XML registry:
m to configure parsers and transformers.

m to configure external entity resolution.

Note: The XML Registry is case sensitive. For example, if you are configuring a
parser for an XML document type whose root element is <CAR>, you must
enter CAR in the Root Element Tag field and not car or Car .

Parser Selection Within the XML Registry

The XML Registry is automatically consulted whenever you use JAXP to write your
XML applications. WebL ogic Server follows an ordered lookup when determining
which parser classto load:

1. Usethe parser defined for a particular document type.

2. Usethe dternative server-wide parser defined in the XML Registry associated
with the WebL ogic Server instance.

3. Usethebuilt-in Xerces parser.

The processis also true for transformers, except for the first step, because you cannot
define atransformer for a particular document type.

Programming WebL ogic XML 4-3

4 Administering WebLogic Server XML

Additionally, when WebL ogic Server starts, aSAX entity resolver isautomatically set
so that it can resolve entities that are declared in the registry. As aresult, users are not
required to modify their XML application code to control the parsers used, or to set the
location of local copies of external entities. The parser being used and the location of
the external entity is controlled by the XML Registry.

Note: If you elect to use an API provided by a parser instead of JAXP, the XML
Registry has no effect on the processing of XML documents. For this reason,
it is highly recommended that you always use JAXP in your XML
applications.

XML Parser and Transformer Configuration
Tasks

By default, WebL ogic Server is configured to use the built-in parser and transformer
to parse and transform XML documents. In release 6.1, the built-in XML parser is
Apache Xerces and the built-in transformer is Apache Xalan. Aslong as you use the
default, you do not have to perform any configuration tasks for your XML
applications. If you want to useaparser or transformer other than the built-in, you must
use the XML Registry to configure them, as described in the following sections.

Configuring a Parser or Transformer Other Than the
Built-In

The following procedure first describes how to create an XML registry that defines
SAX and DOM parsers and transformers. It then describes how to associate the new
XML Registry with an instance of WebL ogic Server so that the server startsto use the
new parsers and transformer.

1. Start the WebL ogic Administration server and invoke the Administration Console
in your browser. See “Overview of Administering WebL ogic Server XML” on
page 4-1 for information on invoking the Administration Console.

4-4 Programming WebL ogic XML

XML Parser and Transformer Configuration Tasks

2. Intheleft pane, right-click the XML node under the Services node and select
Configure anew XML Registry from the drop-down menu. The window to create
anew XML registry is displayed, as shown in the following figure:

Figure4-1 Main XML Registry Window in Administration Console

eblogic Server Console - Netscape

File Edt “iew Go Communicator Help
T 4 2 3 & - @ < & O B
i Back Fopward Reload Home Search Metzcape Prink Security Shop Stop
v wvaookmarks .3 Location:|http:a’a’|ocalhost:?ﬂﬂ1a’consolea’actions#mheana’MBeanFrameseL&ction?isNew=false&sidebarFrameId= j @'What's Related
4 (,%InstantMessage Wb ail Radio People ‘rellow Pages Download Calendar CI' Channels
@ Consaole 2| examples> XML L%
= "Eegmples Registries> Create a new] =5 ? hea
pners XMLRegistr
@ cxamplesServer
Elciusters
Machines
= ereponments
E‘Applicatiuns
DEJE &? Name: InyHL Registry
E‘Web Applications)
Elconnectars ? DocumentBuilderFactory: Iorg.apache.xerces.jaxp.Docu.mentBuil
Estartup & Shutdown
B Esernices 2P SAXParserFactory: Iweblogic.xml.ba.bel.jaxp.SJlXParserFa
Hioec
Elams ? Transformer Factory: Iorg.apache.xalan.processor.Transfor
B Bl
@ cuamples¥MLRegist ? When To Cache: |cache-on-reference j
" o
Elanmp
ElywiLec
r—r_‘.Jolt 53 | | »
[=B=| |Applet navapplet stopped s 7

3. Enter aunique registry name in the Name field and set the
DocumentBuilderFactory, SaxParserFactory, and TransformerFactory fieldsto
the appropriate Factory parser and transformer classes.

For example, to use WebL ogic FastParser, enter the following information:

Nane: WebLogi ¢ Fast Parser

Docunent Bui | der Fact ory:

SAXPar ser Factory: webl ogi c. xm . babel . j axp. SAXPar ser Fact or yl npl
Transf orner Fact ory:

Programming WebL ogic XML 4-5

4 Administering WebLogic Server XML

Note that in the preceding example, DocumentBuilderFactory and
TransformerFactory have been left blank. This means that for DOM parsing and
transformation, the built-in parser and transformer are used, respectively. The
WebL ogic FastParser will only be used for SAX parsing.

If you want to directly specify the Apache Xerces parser and Xalan transformer,
enter the following information:

Nane: Apache Xerces/ Xal an Registry
Docurent Bui | der Fact ory: org. apache. xer ces. j axp. Docunent Bui | der Fact oryl np

SAXPar ser Fact ory:

or g. apache. xer ces. j axp. SAXPar ser Fact or yl npl

Transf orner Fact ory: org. apache. xal an. processor. Tr ansf or ner Fact or yl npl

4.

Click the Create button. The XML Registry is created and listed under the XML
node in the left pane.

In the left pane under the Servers node, click the name of the server with which
you want to associate the new XML registry.

In the right pane, select the Servicestab.

Select the XML tab. The window to configure XML properties of WebL ogic
Server appearsin the right pane, as shown in the following figure:

4-6 Programming WebL ogic XML

XML Parser and Transformer Configuration Tasks

Figure4-2 Window to Configure XML Propertiesin Administration Console

Weblogic Server Conzole - Hetscape

ile Edit “iew Go Communicator Help
v« 2 A 4 o < & B @
Back Fopward Reload Home Search Metscape Frink Security Shop Stop

w‘vBookmarks .15 Location:Ihttp:.-".-"localhost:?ﬂﬂ‘l Joonzoledactions/mbean/tBeanFramesetictionisM ew=falzelsidebarFrameld= j @‘What's Related

ﬁlnstantMessage wiehbdail Radio People ‘ellow Pages Download Calendar Ci Channels

@ Console 1 PRI
E @ examples examples> Servers> examplesServer M 5 ? ;’he-a
B Hserers . /4
@ cxamplesServer
Elciusters 5 .
Elmachines ervices
& ElDeployments
E‘Applications
Slese M7 XMLRegistry MyXML Registr =
Elwyeh Applications : gistry: I ¥ gistry J
Elconnectars o i
g : 500
Elstartup & Shutdown Cache Memory Size
B Elgeni
EE]T;;SC ? cache Disk Size: |5
Elums e ;
Elwami ¢ Cache Timeout Interval: [1z0
@t
Elanmp -
SWLEC R onitor XML Entity Cache. .
Jalt -
r—r_‘\finual Hosts 5 | o
E =4D'=| |Document: Done

8. Select the XML registry name that you want to associate with this server in the
XML Registry field and click the Apply button.

9. Restart your server so the new settings to take effect.

Configuring a Parser for a Particular Document Type

When you configure a parser for a particular document type, you can use the
document’s system id, public id, or root element tag to identify the document type.

Programming WebL ogic XML 4-7

4 Administering WebLogic Server XML

4-8

Note: The following procedure assumes that you are going to create anew XML

registry, add the necessary parser registry entries, and associate it with a
server. If you have already associated an existing XML registry with your
server, skip to step 5.

To configure a parser for a particular document type, follow these steps:

1

Start the WebL ogic Administration server and invoke the Administration Console
in your browser.

See “Overview of Administering WebL ogic Server XML” on page 4-1 for
information on invoking the Administration Console.

In the left pane, right-click the XML node under the Services node and select
Configureanew XML Registry from the drop-down menu. The window to create
anew XML registry is displayed, as shown in Figure 4-1.

Enter aunique registry name in the Name field. If you want to configure default
parsers and transformer for your server, enter the factory class namesin the
DocumentBuilderFactory, SaxParserFactory, and TransformerFactory fields.
Otherwise, leave these fiel ds blank.

Click the Create button. The XML Registry is created and listed under the XML
node in the left pane.

Under the XML node in the left pane, right-click the XML Parser Select Registry
Entry node under your XML registry. Select Configure a New

XML ParserSelectRegistryEntry from the drop-down menu. A blank window for
entering document type information appears in the right pane, as shown in the
following figure:

Programming WebL ogic XML

XML Parser and Transformer Configuration Tasks

Figure4-3 Configuringan XML Parser Using the Administration Console

2 Weblogic Server Console - Netscape
File Edit Yiew Go Communicator Help

a2 A @ e o m oa & B

Back Reload Home: Search Metzcape Frint Security Shop
i thookmarks £ Location: |http Hocalhost: 7001 fconsoledactions /mbeanME eanFi L ction PisMew=fal 'debarFrameId=w|_conso|e_fj @'Whal's Related
(,'%Instant Message ' “wieb il ' Radia ' Feople ' “rellow Pages ' Download ' Calendar ci Channels
@ consale 4| examples> XML Registries> MyXNL
o0,
= ?E‘egmples Reglst! b iad XMLParser Select Reglst! i d = 2 ‘o" "
- H
seners Entries> Create a new z hea
@ cuamplesSerer ey
Blcjusters XMLParserSeIectRe gist Ent
ElMachines |
= erep\oyments
IjApplicatiuns
Eess
Elwiah applications 2 Public Id: |—f,-’BE.ﬂ. Systems, Inc.//DTD for
El¢onnectors
Elstartup & Shutdown ? System Id: |
B Elsenices
Hopsc ? Root Element Tag: |
Elums
B S ? Document Builder Factory: |
@ cuamplessMLRegistr
B @ My Registy 2 Parser Class Name |
ElymL Entity Spec R
@ EbanL Parser Selec) | ? SAXParser Factory: |weblogic .xml.babel. jaxp. SAXPar
JTA
Elsnmp
Bwiec Create |
ot
Fluivhial Hncte =l
=5 == Metscape s s HE Ea] w2

6. Enter the document type information in one of the following ways:

a. Useeither the Public Id or the System Id field to specify the doctype. For
example, for thecar. xm (seeListing 4-1), enter - / / BEA Syst ens,
Inc.//DTD for cars//ENinthePublic Id field.

b. Specify the Root Element Tag name of the document. For the car . xni
example, enter CARin the Root Element Tag field.

If your XML document defines a namespace, be sure to enter the fully
qualified root element tag, such as VEH CLES: CAR.

Programming WebL ogic XML 4-9

4 Administering WebLogic Server XML

4-10

Listing4-1 car.xml File

<?xm version="1.0"7?>

<l-- This XM. docunent describes a car -->
<! DOCTYPE CAR PUBLIC "-//BEA Systens, Inc.//DTD for cars//EN'
"http://ww. bea. com dtds/ car. dtd">

<CAR>

<MAKE>Toyot a</ MAKE>

<MODEL>Cor r ol | a</ MODEL>

<YEAR>1998</ YEAR>

<ENG NE>1. 5L</ ENG NE>

<HP>149</ HP>

</ CAR>

7. Set the DocumentBuilderFactory or SaxParserFactory fields to the appropriate
Factory parser classes.

For example, enter webl ogi c. xm . babel . j axp. SAXPar ser Fact or yl npl in
the SaxParserFactory field to specify that this document type be parsed by
WebL ogic FastParser.

Note: Do not enter any information in the Parser Class Namefield; thisfield is
for backward compatibility with previous versions of WebL ogic Server
only.

8. Click the Create button. The XML ParserSelect registry entry is created.

9. Intheleft pane under the Servers node, click the name of the server with which
you want to associate the new XML registry.

10. In the right pane, select the Servicestab.

11. Select the XML tab. The window to configure XML properties of WebL ogic
Server appearsin the right pane, as shown in Figure 4-2.

12. Inthe XML Registry field, select the XML registry name that you want to
associate with this server, and click the Apply button.

13. Restart your server so the new settings to take effect.

Programming WebL ogic XML

External Entity Configuration Tasks

External Entity Configuration Tasks

Y ou can usethe XML Registry to configure external entity resolution and to configure
and monitor the external entity cache.

Configuring External Entity Resolution

Y ou can configure external entity resolution with WebL ogic Server in the following
two ways:

m Physically copy the entity files to a directory accessible by WebL ogic
Administration Server and specify that the Administration Server use the local
copy whenever the external entity isreferenced in an XML document.

m Specify that amanaged WebL ogic Server cache external entities that are
referenced with a URL or a pathname relative to the Administration server,
either at server-startup or when the entity isfirst referenced.

Caching the external entity in the managed WebL ogic Server saves the remote
access time and provides alocal backup in the event that the Administration
server cannot be accessed while an XML document is being parsed, due to the
network or the Administration server being down.

You can configure the expiration date a cached entity, at which point WebL ogic
Server re-retrieves the entity from the URL or Administration server and
re-cachesit.

Note: Inthefollowing procedure it is assumed that you are going to create a new
XML registry, add the necessary external entity resolution registry entries, and
associate it with a server. If you have already associated an existing XML
registry with your server, skip to step 5.

To configure external entity resolution, perform the following steps:

1. Start the WebL ogic Administration Server and invoke the Administration Console
in your browser.

See “Overview of Administering WebL ogic Server XML” on page 4-1 for
information on invoking the Administration Console.

Programming WebL ogic XML 4-11

4 Administering WebLogic Server XML

4-12

2. Right-click the XML node under the Services node in the left pane and select

Configure anew XML Registry from the drop-down menu. The window to create
anew XML registry isdisplayed, as shown in Figure 4-1.

In the Name field, enter a unique registry name. If you want to configure
default parsers and transformer for your server, enter the factory class namesin
the DocumentBuilderFactory, SaxParserFactory, and TransformerFactory fields.
Otherwise, leave these fields blank.

. Click the Create button. The XML Registry is created and listed under the XML

node in the left pane.

. Under the XMI node in the left pane, right-click the XML Entity Spec Registry

Entry node under your XML registry. Select Configure a New

XML EntitySpecRegistryEntry from the drop-down menu. A blank window for
entering entity resolution information appears in the right pane, as shown in the
following figure:

Programming WebL ogic XML

External Entity Configuration Tasks

Figure4-4 Configuring External Entities using the Administration Console

‘Weblogic Server Conzole - Netzcape

e Edit “iew Go Communicator Help
4 o A 4 2 mW S & O &
Back Reload Home Search Metscape Frint Security Shop

Mt ” Bookmarks)! Location: |MBean=examples°/°3AName°/°3Dexamp\es%IType%SDDomain&bodyFrameId=w|_conso|e_lrame_9931 4BER7E0Z ﬂ @' What's Related

ﬁlnstant Message ‘wfehid ail Fiadio People “rellow Pages Download Calendar d Channels

@ Console 21 examples> XML Registries> MyXML
B @ sxamples Registry> XMLEntity Spec Registry Entries> a
Sifu“;f;fs Create a new L=l 7 hea
Elyachines pecRegistryEnt

Active Domain

=] erep\oyments
Elapplications
Hess
Elweb Applications
Elconnestors 2 Public Id: |
Estartup & Shutdawn
B Hsenices ? System Id: |t,t,p:ffwmw.bea.com.fdt,dsx’car.dt,d
Hipec
Eims ? EntityURI. [dcds/car . ded
B L
® campleskMLRegistn 2 \When To Cache: |Cache-un-reference j
B @ wy¥ML Registry —

EbanL Enaty Spec R 2 Cache Timeout Interval: [3600d]

CEl¥ML Parser Select

@.1n Create

Elanmp
ElwLEc =l
= =P= Document: Dane Sige Y F Fal 2

6. Enter either the System I d or Publ i ¢ | d that is used to reference the external
entity in the XML document. For example, for the following car . xni file, enter
http://ww. bea. conl dt ds/ car . dt d for the Syst em |1 d:

Listing 4-2 car.xml File

<?xm version="1.0"7?>

<l-- This XM. docunent describes a car -->

<! DOCTYPE CAR PUBLIC "-//BEA Systens, Inc.//DTD for cars//EN'
“http://ww. bea. conf dtds/ car.dtd">

<CAR>

<MAKE>Toyot a</ MAKE>

<MODEL>Cor r ol | a</ MODEL>

<YEAR>1998</ YEAR>

<ENG NE>1. 5L</ ENG NE>

Programming WebL ogic XML 4-13

4 Administering WebLogic Server XML

4-14

<HP>149</ HP>
</ CAR>

7. Inthe EntityURI field, enter one of the following two entity paths:

a. The pathname of the copy of the entity file in the Administration Server. This
pathname must be relative to the registries entity directory, which is
BEAHome/ Wl server 6. 1/ confi g/ domai n/ xm /regi stries/reg_nanein
the domain configuration directory, where BEAHone isthetop-level directory in
which the WebL ogic Server software isinstalled, domai n isthe name of your
WebL ogic Server domain, and r eg_nane is the name of the new XML
Registry. For example, for thecar . xni file, you might enter dt ds/ car . dtdin
the EntityURI field.

b. A URL that pointsto an external entity out on the Web or an entity storedin a
repository. For example, enter
http://java. sun. com j 2ee/ dt ds/ appl i cati on_1_2. dt d to reference
the DTD for the appl i cati on. xm file used to describe J2EE Enterprise
Applications or usej dbc: to reference an entity in a database.

Use the following protocol declarations to specify an external entity:
http://,file://,jdbc:,orftp://.

8. Select one of the following options from the WhenToCache list box:

e cache-on-ref erence—WebLogic Server caches the external entity
referenced by a URL the first time the entity isreferenced in an XML
document.

e cache-at-initializati on—WebLogic Server cachesthe entity when the
server starts.

e defer-to-registry-setti ng—WebLogic Server uses the default caching
setting. See “Configuring the External Entity Cache” on page 4-15 for
information on configuring default caching settings.

9. Inthe CacheTimeoutinternal field, enter the number of seconds after which the
cached external entity becomes stale, or out-of-date. WebL ogic Server
re-retrieves the external entity from the specified URL or pathname relative to the
Administration server if the cached copy has been in the cache for longer than
this amount.

Programming WebL ogic XML

External Entity Configuration Tasks

The default value for thisfield is -1, which means that the global timeout value
for WebL ogic Server is used. See “Configuring the External Entity Cache” on
page 4-15 for information on configuring global cache timeout settings.

10. Click the Create button. The XMLEntitySpec registry entry is created.

11. In the left pane under the Servers node, click the name of the server with which
you want to associate the new XML registry.

12. Intheright pane, select the Services tab.

13. Select the XML tab. The window to configure XML properties of WebL ogic
Server appearsin the right pane, as shown in Figure 4-2.

14. Inthe XML Registry field, select the XML registry name that you want to
associate with this server, and click the Apply button.

15. Restart your server so the new settings to take effect.

16. If you specified that alocal copy of the entity be used, rather than caching the
one from the Web, copy the entity file into the entity directory. For example, you
would copy thecar . dt d file to the directory
BEAHone/ Wl server 6. 1/ confi g/ domai n/ xm / regi stri es/ reg_nane/ dt ds,
where BEAHone is the top-level directory in which the WebL ogic Server software
isinstalled, domai n isthe name of your WebL ogic Server domain, and r eg_namne
is the name of the new XML Registry.

Configuring the External Entity Cache

Y ou can configure the following properties of the external entity cache:
m Size, in KB, of the cache memory. The default value for this property is 500 KB.

m Size, in MB, of the persistent disk cache. The default value for this property is5
MB.

m Number of seconds after which external entities in the cache become stale after
they have been cached by WebL ogic Server. Thisisthe default value for the
entire server - you can override this value for specific external entities when you
configure the entity. The default value for this property is 120 seconds (2
minutes).

Programming WebL ogic XML 4-15

4 Administering WebLogic Server XML

To configure the external entity cache, follow these steps:

1

Start the WebL ogic Administration server and invoke the Administration Console
in your browser.

See “Overview of Administering WebL ogic Server XML” on page 4-1 for
information on invoking the Administration Console.

Under the Servers node in the | eft pane, click the name of the WebL ogic Server
for which you want to configure the external entity cache.

Select the Services tab in the right pane.

Select the XML tab. The window to configure XML properties of WebL ogic
Server appearsin the right pane, as shown in Figure 4-2.

In the Cache Memory Sizefield, enter the size, in KB, of the cache memory.
In the Cache Disk Size field, enter the size, in MB, of the persistent disk cache.

In the Cache Timeout Interval field, enter the number of seconds after which
entities become stale.

Click the Apply button.

Monitoring the External Entity Cache

4-16

A set of statisticsthat describes the external entity cache isavailable for you to use to
monitor the effectiveness of the cache. These statistics describe:

The current state of the cache.
The cumulative activity for the current session.

The cumulative activity since the cache was created, typically when WebL ogic
Server started.

To accessthe statistics, use the J2EE Java M anagement Extension (JM X) specification
with the WebL ogic Server Management API to create and deploy Management Beans
(or MBeans) to monitor entity external cachingin WebL ogic Server. Usethefollowing
M Bean interfaces:

B webl ogi c. managenent . runti me. Enti t yCacheCunul ati veRunt i mneMBean

Programming WebL ogic XML

External Entity Configuration Tasks

® webl ogi c. managenent . runti me. Enti t yCacheCur r ent St at eRunt i meMBean

® webl ogi c. managenent. runti me. Enti t yCacheRunt i meMBean

The WebL ogic Server Management API is fully documented online in JavaDocs.

Thefollowing table describesthe methodsyou can useto get staticsonthe current state

of the external entity cache.

Table 4-1 Current Sate of Cache Satistics

Method Description

getMemoryUsage Returns the number of bytes used to store all
memory-resident entries.

getDiskUsage Returns the number of bytes used to store al disk

resident entries.

getTotalCurrentEntries

Returns the number of total entriesin the cache.

getTotal PersistentCurrentEntries

Returns the number of persistent entries in the cache.

getTota TransientCurrentEntries

Returns the number of transient entries in the cache.

getAvgPercentTransient

Returns the percent of entries which are transient.

getAvgPercentPersistent

Returns the percent of entries which are persistent.

getAvgTimeout

Returns the average timeout value for the entries.

getMinEntry Timeout

Returnsthe smallest timeout value for any current entry.

getMaxEntry Timeout

Returns the largest timeout value for any current entry.

getAvgPerEntryMemorySize

Returns the average memory size of the current entries.

getMaxEntryMemorySize

Returns the largest memory size for any current entry.

getMinEntryMemorySize

Returns the smallest memory size for any current entry.

getAvgPerEntryDiskSize

Returns the average disk size of the current entries.

Programming WebL ogic XML 4-17

http://e-docs.bea.com/wls/docs61/javadocs/index.html

4 Administering WebLogic Server XML

The following table describes the methods you can use to get statics on the cumulative
activity of the external entity cache.

Table 4-2 Cumulative Activity of the Cache

Method

Description

getTotal CurrentEntries

Returns the number of total entriesin the cache.

getTotal PersistentCurrentEntries

Returns the number of persistent entriesin the cache.

getTotal TransientCurrentEntries

Returns the number of transient entries in the cache.

getAvgPercentTransient Returns the percent of entries which are transient.
getAvgPercentPersistent Returns the percent of entries which are persistent.
getAvgTimeout Returns the average timeout value for the entries.

getMinEntry Timeout

Returnsthe smallest timeout value for any current entry.

getMaxEntry Timeout

Returns the largest timeout value for any current entry.

getAvgPerEntryMemorySize

Returns the average memory size of the current entries.

getMaxEntryMemorySize

Returns the largest memory size for any current entry.

getMinEntryMemorySize

Returns the smallest memory size for any current entry.

getAvgPerEntryDiskSize

Returns the average disk size of the current entries.

getTotalNumberMemoryPurges

Returns the number of memory purges done.

getTotalltemsMemoryPurged

Returnsthe total number of items purged in all memory
purges.

getAvgEntrySizeMemoryPurged Returns the average size in bytes of items memory
purged.

getM ostRecentM emoryPurge Returns the time of the most recent memory purge.

getMemoryPurgesPerHour Returns the average number of memory purges per

hour.

getTotalNumberDiskPurges

Returns the number of disk purges done.

getTotalltemsDiskPurged

4-18 Programming WebL ogic XML

Returns the total number of items purged in all disk
purges.

External Entity Configuration Tasks

Table 4-2 Cumulative Activity of the Cache

Method Description

getAvgEntrySizeDiskPurged Returns the average size in bytes of items disk purged.
getM ostRecentDiskPurge Returns the time of the most recent disk purge.
getDiskPurgesPerHour Returns the average number of disk purges per hour.

getTotalNumberOfRejections Returns the number of entries that have been rejected.

getTotal SizeOf Rejections Returns the total sizein bytes of al itemsrejected.
getPercentRejected Returns the percent of inserts that were rejected.
getTotalNumberOfRenewal s Returnsthe number of times an stale entry was renewed.

Programming WebL ogic XML 4-19

4 Administering WebLogic Server XML

4-20 Programming WebL ogic XML

CHAPTER

5 XML Reference

The following sections describe the XML specifications, application programming
interfaces (APIs), and tools supported by WebL ogic Server:

Extensible Markup Language (XML) 1.0 Specification

Simple API for XML (SAX) 2.0

Document Object Model (DOM) Level 2 API

W3C XML Namespaces 1.0 Recommendation

Java API for XML Processing (JAXP) 1.1

Apache Xerces Java Parser AP

Apache Xalan XML Stylesheet L anguage Transformer (XSLT) API

Additional Resources

Extensible Markup Language (XML) 1.0
Specification

The W3C Recommendation for XML provides the following abstract:

“The Extensible Markup Language (XML) is a subset of SGML that is completely
described in this document. Its goal isto enable generic SGML to be served, received,
and processed on the Web in the way that is now possiblewith HTML. XML hasbeen
designed for ease of implementation and for interoperability with both SGML and
HTML.”

Programming WebL ogic XML 51

5 XML Reference

The complete XML specification is available at http://www.w3.0rg/ TR/REC-xml/.

Simple API for XML (SAX) 2.0

The SAX API is platform-independent and language-neutral. It is a standard interface
for event-based XML parsing that was developed collaboratively by the members of
the XML-DEV mailing list.

SAX applications process an XML document by creating a parser object and
associating handlerswith XML events. Once these tasks are done, the parser can read
through the document as events occur, and pass them to the handlers. Events represent
the entities within the document, such as start of document, end of document, start of
element, and end of element. The SAX interface provides a ssimple coding model and
isuseful for processing XML documents with arelatively simple hierarchical
structure. Hence, the SAX interface provideswhat isrequired by the bundled parser to
parse XML documents.

For more information on SAX, see http://www.saxproject.org/. For Javadoc
documentation, see SAX (Simple API for XML) at
http://e-docs.bea.com/wls/docs6l/xerces/index.html.

Document Object Model (DOM) Level 2 API

5-2

The DOM API isaplatform- and language-neutral interface It alows programs and
scripts to access and update the content, structure, and style of XML documents
dynamically. DOM givesyou accessto theinformation stored in your XML document
asahierarchical object model, much like atree with the document'sroot element asthe
tree's root node. Using the DOM interface, you can access different parts of XML
documents, navigate through them, and make changes and additions to them.

When an application invokesaDOM parser, the parser processes the entire document,
creating an in-memory object model, which the application can processin any fashion
it chooses. The DOM approach ismost useful for more complex documents because it
does not require a developer to interpret every element.

Programming WebL ogic XML

http://www.w3.org/TR/REC-xml/
http://www.saxproject.org/
http://e-docs.bea.com/wls/docs61/xerces/index.html
http://e-docs.bea.com/wls/docs61/xerces/index.html

W3C XML Namespaces 1.0 Recommendation

For more information on DOM, see the DOM (Document Object Model) Level 2
Specification at http://www.w3.0rg/TR/IDOM-Level-2/. For Javadoc documentation,
see DOM (Document Object Maodel) at
http://e-docs.bea.com/wls/docs61/xerces/index.html.

W3C XML Namespaces 1.0 Recommendation

The following abstract is taken from the W3C XML Namespace Recommendation:

“XML namespaces provide a simple method for qualifying element and attribute
names used in Extensible Markup Language documents by associating them with
namespaces identified by Universal Resource Identifier (URI) references.”

The XML Namespaces 1.0 Recommendation is available on the Internet at
http://www.w3.org/ TR/REC-xml-names/.

Java API for XML Processing (JAXP) 1.1

JAXPisSun's Java APl for XML parsing and transforming. JAXP provides basic
support for parsing, manipulating, and transforming XML documents through a
standardized set of Java platform APIs. Thus, applications that use JAXP to process
XML documents are portable across platforms.

JAXP doesnot replace either the SAX or DOM API. Instead, it adds some convenience
methods that are designed to make applications that use the SAX and DOM APIs
portable.

JAXP1.1consistsof thej avax. xm . par ser s andj avax. xni . t r ansf or mpackages
that contain the interfaces, classes, and methods for parsing and transforming XML
data

The JAXP specificationisavailableontheInternet at ht t p: / / j ava. sun. comi xm / .
The JAXP Javadoc is available at
http://java.sun.com/xml/jaxp/dist/1.1/docs/api/index.html.

Programming WebL ogic XML 5-3

http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/DOM-Level-2/
http://e-docs.bea.com/wls/docs61/xerces/index.html
http://e-docs.bea.com/wls/docs61/xerces/index.html
http://www.w3.org/TR/REC-xml-names/
http://java.sun.com/xml/
http://java.sun.com/xml/jaxp/dist/1.1/docs/api/index.html

5 XML Reference

Apache Xerces Java Parser API

The Apache Xerces Java Parser packageincludesthe APl documentation for SAX and
DOM, thetwo most common interfaces for programming XML. In addition, the parser
provides documentation for classes that are not part of the SAX and DOM APIs, but
are useful for writing parser programs.

For more information about the Apache Xerces Java parser, refer to
http://xml.apache.org/xerces-j/index.html. For Javadoc documentation, refer to
Apache Xerces Java Parser at http://e-docs.bea.com/wls/docs61/xerces/index.html.

Apache Xalan XML Stylesheet Language
Transformer (XSLT) API

The Apache Xalan-Java X SLT transformer isused for transforming XML documents.
It implements the W3C Recommendation 16 November 1999 XSL Transformations
(XSLT) Version 1.0. XSL T isastylesheet language for transforming XML documents
into other XML documents, HTML documents, or other document types. The
language includes the X SL Transformation vocabulary and X Path, alanguage for
addressing parts of an XML document. An X SL stylesheet describes how to transform
the tree of nodesin the XML input into another tree of nodes.

For more information about the Apache Xaan XSLT transformer, refer to
http://xml.apache.org/xalan-j/index.html. For Javadoc documentation, refer to Apache
Xalan XSLT Transformer at http://e-docs.bea.com/wls/docs61/Xalan/index.html.

Additional Resources

This section lists various resources that are available online to help you learn about
programming with WebL ogic XML:

54 Programming WebL ogic XML

http://xml.apache.org/xerces-j/index.html
http://e-docs.bea.com/wls/docs61/xerces/index.html
http://xml.apache.org/xalan-j/index.html
http://e-docs.bea.com/wls/docs61/Xalan/index.html
http://e-docs.bea.com/wls/docs61/Xalan/index.html

Additional Resources

m Code Examples

m Related WebL ogic Documentation
m General XML Information

m Tutorials and Online Courses

m Other XML Specifications

Code Examples

XML code examples and supporting documentation are included in the WebL ogic
Server distribution at BEA Hone\ wi server 6. 1\ sanpl es\ exanpl es\ xnl , where
BEA Home isthe directory in which the WebL ogic Server softwareisinstalled.

Related WebLogic Documentation

m Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs61/webServices/index.html

m Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html

m Programming WebLogic JMS at
http://e-docs.bea.com/wls/docs61/jms/index.html

m Programming WebLogic JSP at http://e-docs.bea.com/wls/docs61/jsp/index.html

m Programming WebLogic HTTP Serviets at
http://e-docs.bea.com/wls/docs61/servlet/index.html

m Programming WebLogic Server for Wireless Services at
http://e-docs.bea.com/wls/docs61/wirel ess/index.html

General XML Information

m W3C (World Wide Web Consortium) at http://www.w3c.org.

Programming WebL ogic XML 5-5

http://e-docs.bea.com/wls/docs61/webServices/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/jms/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/wireless/index.html
http://www.w3c.org

5 XML Reference

m XML.com at http://www.xml.com.

m XML FAQ at http://www.ucc.ie/xml/.

m XML.org, The XML Industry Portal at http://www.xml.org/.

m W3C: Extensible Stylesheet Language at http://www.w3.org/Style/XSL/.

Tutorials and Online Courses

m A Technica Introduction to XML at
http://www.xml.com/pub/a/98/10/guide0.html.

m XML Authoring Tutorial at http://www.xml.com/pub/r/32.
m Working with XML and Java at http://java.sun.com/xml/tutorial_intro.html.

m Tutorialsfor using the Java 2 platform and XML technology at
http://devel operlife.com/.

m Developing XML Solutions with JavaServer Pages Technology at
http://java.sun.com/products/jsp/html/JISPXML.html.

m XML, Java, and the Future of the Web at
http://www.xml.com/pub/a/w3j/s3.bosak.html.

m Chapter 14 of the XML Bible: XSL Transformations at
http://metal ab.unc.edu/xml/books/bible/updates/14.html.

m XSL Tutorial by Miloslav Nic at
http://zvon.vscht.cz/ZHTM L only/X SL Tutorial/Books/Book L/index.html.

m XML Schema Part O: Primer at
http://www.w3.0rg/TR/2000/CR-xmlschema-0-20001024/.

Other XML Specifications

m Extensible Stylesheet Language (XSL) 1.0 Specification at
http://www.w3.org/TR/xsl/.

5-6 Programming WebL ogic XML

http://www.w3c.org
http://www.xml.com
http://www.ucc.ie/xml/
http://www.xml.org/
http://www.w3.org/Style/XSL/
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/r/32
http://java.sun.com/xml/tutorial_intro.html
http://developerlife.com/
http://java.sun.com/products/jsp/html/JSPXML.html
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html
http://www.w3.org/TR/2000/CR-xmlschema-0-20001024/
http://www.w3.org/TR/xsl/

Additional Resources

JSR-000031 XML Data Binding Specification at
http://java.sun.com/aboutJava/lcommunityprocess/jsr/jsr_031_xmld.htm.

XML Path Language (XPath) Version 1.0 Specification at
http://ww.w3.org/TR/xpath.

XML Linking Language (XLink) Specification at http://www.w3.org/TR/xlink.

XML Pointer Language (X Pointer) Specification at
http://www.w3.org/TR/WD-xptr.

XML Schema Part 1: Structures at http://www.w3.org/TR/xmlschema-1/.

XML Schema Part 2: Datatypes at http://www.w3.org/TR/xmlschema-2/.

Programming WebL ogic XML 5-7

http://www.w3.org/TR/xsl/
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031_xmld.html
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xlink
http://www.w3.org/TR/WD-xptr
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

5 XML Reference

5-8 Programming WebL ogic XML

Index

A

Administration Console
configuring external entity cache 4-15
configuring external entity resolution 4-
11
configuring parsers 4-4
configuring transformers 4-4
invoking 4-1
monitoring external entity cache 4-16
Apache Seridlize class 2-10
Apache Xaan 1-11, 5-4
Apache Xerces 1-11, 5-4

B

BEA XML Editor 1-14
built-in parser 1-11
built-in transformer 1-11

C

Classes
DefaultHandler 1-12, 2-3
DocumentBuilder 2-4
HandlerBase 1-12
InputSource 3-5
SAXParserFactory 4-5
Serialize 2-10
TransformerFactory 4-5
URL Connection 3-1
WL QueueSession 3-3

WL TopicSession 3-3
XMLInputSource 3-5
XMLMessage 3-4

customer support contact information ix

D

DefaultHandler class 1-12, 2-3
DOCTY PE declaration 1-4, 2-7
Document Object Model 1-6
documentation, where to find it viii
DocumentBuilder class 2-4
DocumentBuilderFactory class

Classes

DocumentBuilderFactory 4-5

DOM 1-6

specification 5-2
DTDs

definition 1-3

example of 1-3

used when validating 2-6

E

external entities
accessing 3-4
external entity resolution
description 2-7
overview 1-14
parsing XML 2-7
WebL ogic Server features 2-8

Programming WebL ogic XML

G

generating XML
from aDOM tree 2-10
inaJspP 2-12
getAttribute method 1-12, 2-4
getAvgEntrySizeDiskPurged method 4-19
getAvgEntrySizeM emoryPurged method 4-
18
getAvgPercentPersistent method 4-17, 4-18
getAvgPercentTransient method 4-17, 4-18
getAvgPerEntryDiskSize method 4-17, 4-18
getAvgPerEntryMemorySize method 4-17,
4-18
getAvgTimeout method 4-17, 4-18
getDiskPurgesPerHour method 4-19
getDiskUsage method 4-17
getMaxEntryMemorySize method 4-17, 4-18
getMaxEntry Timeout method 4-17, 4-18
getMemoryPurgesPerHour method 4-18
getMemoryUsage method 4-17
getMinEntryMemorySize method 4-17, 4-18
getMinEntryTimeout method 4-17, 4-18
getM ostRecentDiskPurge method 4-19
getM ostRecentM emoryPurge method 4-18
getPercentRejected method 4-19
getTotal CurrentEntries method 4-17, 4-18
getTotalltemsDiskPurged method 4-18
getTotalltemsM emoryPurged method 4-18
getTotalNumberDiskPurges method 4-18
getTotal NumberMemoryPurges method 4-18
getTotal NumberOfRejections method 4-19
getTotal NumberOfRenewal s method 4-19
getTotal PersistentCurrentEntries method 4-
17,4-18
getTotal SizeOfRejections method 4-19
getTotal TransientCurrentEntries method 4-
17,4-18

H

HandlerBase class 1-12

-2 Programming WebL ogic XML

InputSource class 3-5

J

JAXP
definition 1-7
packages 1-7
parsing XML 2-3
specification 5-3

transforming XML 2-11, 2-13

WebL ogic implementation 1-12
MS

handling XML documents 3-3
JSPtag library for XSLT 1-12
JSP, sending and receiving XML 3-1

M

Methods
getAttribute 1-12, 2-4
getAvgEntrySizeDiskPurged 4-19
getAvgEntrySizeMemoryPurged 4-18
getAvgPercentPersistent 4-17, 4-18
getAvgPercentTransient 4-17, 4-18
getAvgPerEntryDiskSize 4-17, 4-18
getAvgPerEntryMemorySize 4-17, 4-18
getAvgTimeout 4-17, 4-18
getDiskPurgesPerHour 4-19
getDiskUsage 4-17
getMaxEntryMemorySize 4-17, 4-18
getMaxEntryTimeout 4-17, 4-18
getMemoryPurgesPerHour 4-18
getMemoryUsage 4-17
getMinEntryMemorySize 4-17, 4-18
getMinEntryTimeout 4-17, 4-18
getM ostRecentDiskPurge 4-19
getM ostRecentM emoryPurge 4-18
getPercentRejected 4-19
getTotal CurrentEntries 4-17, 4-18
getTotalltemsDiskPurged 4-18

getTotalltemsMemoryPurged 4-18

getTotalNumberDiskPurges 4-18

getTotal NumberMemoryPurges 4-18

getTotal NumberOfRejections 4-19

getTotalNumberOfRenewal s 4-19

getTotal PersistentCurrentEntries 4-17,
4-18

getTotal SizeOf Regjections 4-19

getTotal TransientCurrentEntries 4-17,
4-18

setAttribute 1-12, 2-4

setValidating 2-6

P

parsers
built-in 1-11
non-validating 2-6
using other than built-in 2-9
validating 2-6
WebL ogic FastParser 1-11, 2-9
parsing XML
external entity resolution 2-7
inaserviet 2-4
in DOM mode 2-4
in SAX mode 2-3
printing product documentation viii
public identifier 2-7, 3-5, 4-9, 4-13

R
related information 5-5

S
SAX 1-6, 2-9

specification 5-2
SAXParserFactory class 4-5
schemas

definition 1-3

example 1-3

used when validating 2-6
Serialize class 2-10
servlet attributes 1-12
servlet, sending and receiving XML 3-1
setAttribute method 1-12, 2-4
setValidating method 2-6
SGML 1-1
Simple API for XML 1-6
Specifications

DOM 5-2

JAXP5-3

JAXR 5-6

SAX 5-2

Xaan 5-4

Xerces5-4

XLink 5-6

XML 5-1

XML Namespaces 5-3

XML Schemas 5-6

XPath 5-6

XPointer 5-6

XSL 5-6
support

technical ix
system identifier 2-7, 3-5, 4-9, 4-13

T

TransformerFactory class 4-5
transformers

built-in 1-11

using other than the built-in 2-21, 2-22
transforming XML

overview 2-13

using JAXP 2-13

using JSP tag library 2-16

U

URL Connection class 3-1

Programming WebL ogic XML 1-3

V
valid XML document 1-4, 2-6

W
WebL ogic FastParser 1-11, 2-9, 4-5
WebL ogic Server Management APl 4-17
WebL ogic Server XML
administering overview 4-1
administration tasks 4-2
features of 1-10
well-formed XML document 1-4, 2-6
WL QueueSession class 3-3
WL Session class
Classes
WL Session 3-3
WL TopicSession class 3-3
WML 1-9

X

Xaan
built-in transformer 1-11
converting to JAXP 2-14
specification 5-4

Xerces
built-in parser 1-11
specification 5-4

XML
code examples 1-14
common uses of 1-8
definition 1-1
DOM 1-6
DTD 1-3
editing 1-14
examples 1-2, 5-5
general information 5-5
generating 2-10

getting document header information 3-5

learning about 1-15
namespace specification 5-3

-4 Programming WebL ogic XML

online classes 5-6
parsing 2-2
programming techniques 3-1
SAX 1-6
schema 1-3
sending to and from servlets and jsp 3-1
specification 5-1
syntax 1-2
transforming 2-13
tutorials 5-6
valid 1-4, 2-6
well-formed 1-4, 2-6
why useit 1-5
XML applications
steps to develop 2-1
XML Registry
benefits of using 4-2
configuring external entity cache 4-15
configuring external entity resolution 1-
14, 2-8, 4-11
configuring parser for document type 4-
7
configuring parsers 2-9, 4-3, 4-4
configuring transformers 2-22, 4-3, 4-4
description 1-13, 4-2
how it works 4-3
main window 4-5
monitoring external entity cache 4-16
XMLInputSource class 3-5
XMLMessage class 3-4
XMLT JSPtag library
tags 2-16
XSLT
common uses of 1-8
definition 1-5
JSPtag library 1-12
XSLT JSP tags
example of using 2-21
procedure for using 2-20
syntax 2-17
usage 2-18

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 XML Overview
	What Is XML?
	How Do You Describe an XML Document?
	Why Use XML?
	What Are XSL and XSLT?
	What Are DOM and SAX?
	SAX
	DOM

	What Is JAXP?
	JAXP Packages

	Common Uses of XML and XSLT
	Using XML and XSLT to Separate Content from Presentation
	XML as a Message Format for Business-to-Business Communication

	WebLogic Server XML Features
	XML Document Parsers
	XML Document Transformer
	JAXP Plugability Layer Implementation
	WebLogic Servlet Attributes
	request.setAttribute("org.xml.sax.helpers.DefaultHandler", new DefHandler());
	org.w3c.dom.Document = (Document)request.getAttribute("org.w3c.dom.Document");

	WebLogic XSLT JSP Tag Library
	XML Registry For Configuring Parsers and Transformers
	XML Registry for Configuring External Entity Resolution
	Code Examples

	Editing XML Files
	Learning About XML

	2 Developing XML Applications with WebLogic Server
	Developing XML Applications: Main Steps
	1. Parse an XML document.
	2. Generate a new XML document.
	3. Transform XML data into another format.

	Parsing XML Documents
	Parsing XML Documents Using JAXP in SAX Mode
	Parsing XML Documents Using JAXP in DOM Mode
	Parsing XML Documents in a Servlet
	Using the org.xml.sax.DefaultHandler Attribute to Parse a Document
	Using the org.w3c.dom.Document Attribute to Parse a Document

	Validating and Non-Validating Parsers
	Handling Entity Resolution While Parsing an XML Document
	General Information About External Entities
	Using the WebLogic Server Entity Resolution Features

	Using Parsers Other Than the Built-In Parser
	Using the WebLogic FastParser

	Generating XML Documents
	Generating XML from a DOM Document Tree
	Using the Apache Serialize Class
	Using the JAXP Transformer Class

	Generating XML Documents in a JSP

	Using JAXP to Transform XML Data
	Example of Transforming an XML Document Using JAXP
	Converting From the Xalan API to JAXP 1.1 API

	Using the JSP Tag to Transform XML Data
	XSLT JSP Tag Syntax
	XSLT JSP Tag Usage
	Transforming XML Documents Using an XSLT JSP Tag
	1. Open the xmlx.zip file in the BEA Home/wlserver6.0/ext directory; extract the xmlx-tags.jar fi...
	2. Add a <taglib> entry to the web.xml file. For example:
	3. To use the tags, add the following line to your JSP page:
	4. Configure the transformer. The following procedure shows a generic way to configure the transf...
	a. Enter the following code line to create an xslt.jsp file:
	b. Register the xslt.jsp file in your web.xml file, as follows:
	c. Put your XML/DTD/XSL documents or servlets in your Web application.
	d. Add an xslt prefix to the pathname for the XML document (for example, change docs/fred.xml to ...
	e. To define media type, add code to the JSP to determine the media type for the XML document and...
	f. Pass the media type into the xslt tag and then set the content type of the response object.

	Example of Using the XSLT JSP Tag in a JSP

	Using Transformers Other Than the Built-In Transformer

	3 XML Programming Techniques
	Sending and Receiving XML To and From Servlets and JSPs
	import java.net.*; import java.io.*; import java.util.*;
	public class Client {
	public static void main(String[] args) throws Exception { if (args.length < 2) { System.out.print...
	// send xml to jsp pw.write(buffer, 0, bytes_read); pw.close();
	BufferedReader in = new BufferedReader(new InputStreamReader(urlc.getInputStream())); String inpu...
	in.close(); } } catch (Exception e) { e.printStackTrace(); } } } }
	BufferedReader br = new BufferedReader(request.getReader()); DocumentBuilderFactory fact = Docume...
	...
	PrintWriter responseWriter = response.getWriter(); responseWriter.println("<?xml version='1.0'?>");

	Handling XML Documents in a JMS Application
	Accessing External Entities That Do Not Have an HTTP Interface
	XML Document Header Information

	4 Administering WebLogic Server XML
	Overview of Administering WebLogic Server XML
	XML Administration Tasks
	How the XML Registry Works
	Parser Selection Within the XML Registry
	1. Use the parser defined for a particular document type.
	2. Use the alternative server-wide parser defined in the XML Registry associated with the WebLogi...
	3. Use the built-in Xerces parser.

	XML Parser and Transformer Configuration Tasks
	Configuring a Parser or Transformer Other Than the Built-In
	1. Start the WebLogic Administration server and invoke the Administration Console in your browser...
	2. In the left pane, right-click the XML node under the Services node and select Configure a new ...
	Figure 4�1 Main XML Registry Window in Administration Console
	3. Enter a unique registry name in the Name field and set the DocumentBuilderFactory, SaxParserFa...

	Name: WebLogic FastParser DocumentBuilderFactory: SAXParserFactory: weblogic.xml.babel.jaxp.SAXPa...
	Name: Apache Xerces/Xalan Registry DocumentBuilderFactory: org.apache.xerces.jaxp.DocumentBuilder...
	4. Click the Create button. The XML Registry is created and listed under the XML node in the left...
	5. In the left pane under the Servers node, click the name of the server with which you want to a...
	6. In the right pane, select the Services tab.
	7. Select the XML tab. The window to configure XML properties of WebLogic Server appears in the r...
	Figure 4�2 Window to Configure XML Properties in Administration Console
	8. Select the XML registry name that you want to associate with this server in the XML Registry f...
	9. Restart your server so the new settings to take effect.

	Configuring a Parser for a Particular Document Type
	1. Start the WebLogic Administration server and invoke the Administration Console in your browser.
	2. In the left pane, right-click the XML node under the Services node and select Configure a new ...
	3. Enter a unique registry name in the Name field. If you want to configure default parsers and t...
	4. Click the Create button. The XML Registry is created and listed under the XML node in the left...
	5. Under the XML node in the left pane, right-click the XML Parser Select Registry Entry node und...
	Figure 4�3 Configuring an XML Parser Using the Administration Console
	6. Enter the document type information in one of the following ways:
	a. Use either the Public Id or the System Id field to specify the doctype. For example, for the c...
	b. Specify the Root Element Tag name of the document. For the car.xml example, enter CAR in the R...

	Listing 4-1 car.xml File
	7. Set the DocumentBuilderFactory or SaxParserFactory fields to the appropriate Factory parser cl...
	8. Click the Create button. The XMLParserSelect registry entry is created.
	9. In the left pane under the Servers node, click the name of the server with which you want to a...
	10. In the right pane, select the Services tab.
	11. Select the XML tab. The window to configure XML properties of WebLogic Server appears in the ...
	12. In the XML Registry field, select the XML registry name that you want to associate with this ...
	13. Restart your server so the new settings to take effect.

	External Entity Configuration Tasks
	Configuring External Entity Resolution
	1. Start the WebLogic Administration Server and invoke the Administration Console in your browser.
	2. Right-click the XML node under the Services node in the left pane and select Configure a new X...
	3. In the Name field, enter a unique registry name. If you want to configure default parsers and ...
	4. Click the Create button. The XML Registry is created and listed under the XML node in the left...
	5. Under the XMl node in the left pane, right-click the XML Entity Spec Registry Entry node under...
	Figure 4�4 Configuring External Entities using the Administration Console
	6. Enter either the System Id or Public Id that is used to reference the external entity in the X...

	Listing 4-2 car.xml File
	7. In the EntityURI field, enter one of the following two entity paths:
	a. The pathname of the copy of the entity file in the Administration Server. This pathname must b...
	b. A URL that points to an external entity out on the Web or an entity stored in a repository. Fo...
	8. Select one of the following options from the WhenToCache list box:
	9. In the CacheTimeoutInternal field, enter the number of seconds after which the cached external...
	10. Click the Create button. The XMLEntitySpec registry entry is created.
	11. In the left pane under the Servers node, click the name of the server with which you want to ...
	12. In the right pane, select the Services tab.
	13. Select the XML tab. The window to configure XML properties of WebLogic Server appears in the ...
	14. In the XML Registry field, select the XML registry name that you want to associate with this ...
	15. Restart your server so the new settings to take effect.
	16. If you specified that a local copy of the entity be used, rather than caching the one from th...

	Configuring the External Entity Cache
	1. Start the WebLogic Administration server and invoke the Administration Console in your browser.
	2. Under the Servers node in the left pane, click the name of the WebLogic Server for which you w...
	3. Select the Services tab in the right pane.
	4. Select the XML tab. The window to configure XML properties of WebLogic Server appears in the r...
	5. In the Cache Memory Size field, enter the size, in KB, of the cache memory.
	6. In the Cache Disk Size field, enter the size, in MB, of the persistent disk cache.
	7. In the Cache Timeout Interval field, enter the number of seconds after which entities become s...
	8. Click the Apply button.

	Monitoring the External Entity Cache
	Table 4�1 Current State of Cache Statistics
	Table 4�2 Cumulative Activity of the Cache

	5 XML Reference
	Extensible Markup Language (XML) 1.0 Specification
	Simple API for XML (SAX) 2.0
	Document Object Model (DOM) Level 2 API
	W3C XML Namespaces 1.0 Recommendation
	Java API for XML Processing (JAXP) 1.1
	Apache Xerces Java Parser API
	Apache Xalan XML Stylesheet Language Transformer (XSLT) API
	Additional Resources
	Code Examples
	Related WebLogic Documentation
	General XML Information
	Tutorials and Online Courses
	Other XML Specifications

	Index

