
Server™

B E A W e b L o g i c S e r v e r V e r s i o n 6 . 1
D o c u m e n t D a t e : J u n e 2 4 , 2 0 0 2

BEA WebLogic

Programming WebLogic XML

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against
the law to copy the software except as specifically allowed in the agreement. This document may not, in whole or
in part, be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable
form without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems
License Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause
at FAR 52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at
DFARS 252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED "AS IS" WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Collaborate, BEA WebLogic Commerce
Server, BEA WebLogic E-Business Platform, BEA WebLogic Enterprise, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Process Integrator, BEA WebLogic Server, E-Business
Control Center, How Business Becomes E-Business, Liquid Data, Operating System for the Internet, and Portal
FrameWork are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic XML

Part Number Document Date Software Version

N/A June 24, 2002 BEA WebLogic Server Version 6.1

Contents

About This Document
Audience.. viii

e-docs Web Site... viii

How to Print the Document... viii

Related Information... ix

Contact Us! .. ix

Documentation Conventions ...x

1. XML Overview
What Is XML?... 1-1

How Do You Describe an XML Document? .. 1-3

Why Use XML? .. 1-5

What Are XSL and XSLT? ... 1-5

What Are DOM and SAX?.. 1-6

SAX.. 1-6

DOM... 1-6

What Is JAXP? .. 1-7

JAXP Packages .. 1-7

Common Uses of XML and XSLT ... 1-8

Using XML and XSLT to Separate Content from Presentation................. 1-9

XML as a Message Format for Business-to-Business Communication..... 1-9

WebLogic Server XML Features .. 1-10

XML Document Parsers... 1-11

XML Document Transformer .. 1-11

JAXP Plugability Layer Implementation ... 1-12

WebLogic Servlet Attributes.. 1-12

WebLogic XSLT JSP Tag Library... 1-12
Programming WebLogic XML iii

XML Registry For Configuring Parsers and Transformers...................... 1-13

XML Registry for Configuring External Entity Resolution..................... 1-14

Code Examples... 1-14

Editing XML Files... 1-14

Learning About XML.. 1-15

2. Developing XML Applications with WebLogic Server
Developing XML Applications: Main Steps ... 2-1

Parsing XML Documents .. 2-2

Parsing XML Documents Using JAXP in SAX Mode 2-3

Parsing XML Documents Using JAXP in DOM Mode 2-4

Parsing XML Documents in a Servlet.. 2-4

Validating and Non-Validating Parsers.. 2-6

Handling Entity Resolution While Parsing an XML Document 2-7

Using Parsers Other Than the Built-In Parser .. 2-9

Using the WebLogic FastParser ... 2-9

Generating XML Documents .. 2-10

Generating XML from a DOM Document Tree....................................... 2-10

Generating XML Documents in a JSP ... 2-12

Using JAXP to Transform XML Data... 2-13

Example of Transforming an XML Document Using JAXP 2-14

Converting From the Xalan API to JAXP 1.1 API 2-14

Using the JSP Tag to Transform XML Data ... 2-16

XSLT JSP Tag Syntax.. 2-17

XSLT JSP Tag Usage... 2-18

Transforming XML Documents Using an XSLT JSP Tag 2-20

Example of Using the XSLT JSP Tag in a JSP .. 2-21

Using Transformers Other Than the Built-In Transformer 2-22

3. XML Programming Techniques
Sending and Receiving XML To and From Servlets and JSPs 3-1

Handling XML Documents in a JMS Application .. 3-3

Accessing External Entities That Do Not Have an HTTP Interface 3-4

XML Document Header Information .. 3-5
iv Programming WebLogic XML

4. Administering WebLogic Server XML
Overview of Administering WebLogic Server XML.. 4-1

XML Administration Tasks ... 4-2

How the XML Registry Works .. 4-3

Parser Selection Within the XML Registry.. 4-3

XML Parser and Transformer Configuration Tasks.. 4-4

Configuring a Parser or Transformer Other Than the Built-In 4-4

Configuring a Parser for a Particular Document Type............................... 4-7

External Entity Configuration Tasks ... 4-11

Configuring External Entity Resolution... 4-11

Configuring the External Entity Cache .. 4-15

Monitoring the External Entity Cache ... 4-16

5. XML Reference
Extensible Markup Language (XML) 1.0 Specification 5-1

Simple API for XML (SAX) 2.0 ... 5-2

Document Object Model (DOM) Level 2 API.. 5-2

W3C XML Namespaces 1.0 Recommendation... 5-3

Java API for XML Processing (JAXP) 1.1 ... 5-3

Apache Xerces Java Parser API .. 5-4

Apache Xalan XML Stylesheet Language Transformer (XSLT) API 5-4

Additional Resources... 5-4

Code Examples .. 5-5

Related WebLogic Documentation .. 5-5

General XML Information .. 5-5

Tutorials and Online Courses... 5-6

Other XML Specifications .. 5-6

Index
Programming WebLogic XML v

vi Programming WebLogic XML

About This Document

This document explains how to use the BEA WebLogic Server™ XML software. It
defines concepts associated with using the XML software and describes the
development process for XML applications. In addition, the document includes
descriptions of the application programming interfaces (APIs), administrative tasks,
and XML tools.

The document is organized as follows:

� Chapter 1, “XML Overview,” provides a basic description of the XML software
and its components.

� Chapter 2, “Developing XML Applications with WebLogic Server,” describes
how to develop XML applications using WebLogic Server and XML tools.

� Chapter 3, “XML Programming Techniques,” describes specific programming
techniques for tasks such as using message-driven beans and JMS queues with
XML documents, and so on.

� Chapter 4, “Administering WebLogic Server XML,” describes the
Administration Console XML Registry and how to perform XML configuration
tasks.

� Chapter 5, “XML Reference,” provides pointers to specifications and application
programming interfaces supported by the XML software.
Programming WebLogic XML vii

Audience

This document is written for system administrators and programmers who design,
develop, configure, and manage XML applications. It is assumed that readers know
Web technologies, XML, XSLT, the Java programming language, and the Servlet and
JSP APIs of the J2EE specification.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation or go directly to the WebLogic
Server Product Documentation page at http://e-docs.bea.com/wls/docs61.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
viii Programming WebLogic XML

http://e-docs.bea.com/wls/docs61
http://www.adobe.com

Related Information
Related Information

For related information about XML, see “Learning About XML” on page 1-15.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

� Your name, e-mail address, phone number, and fax number

� Your company name and company address

� Your machine type and authorization codes

� The name and version of the product you are using

� A description of the problem and the content of pertinent error messages
Programming WebLogic XML ix

mailto:docsupport@bea.com
http://www.bea.com

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.

Examples:

import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.

Example:

String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]
x Programming WebLogic XML

Documentation Conventions
| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:

� An argument can be repeated several times in the command line.

� The statement omits additional optional arguments.

� You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic XML xi

xii Programming WebLogic XML

CHAPTER
1 XML Overview

The following sections provide an overview of XML technology and the WebLogic
Server XML subsystem:

� What Is XML?

� How Do You Describe an XML Document?

� Why Use XML?

� What Are XSL and XSLT?

� What Are DOM and SAX?

� What Is JAXP?

� Common Uses of XML and XSLT

� WebLogic Server XML Features

� Learning About XML

What Is XML?

Extensible Markup Language (XML) is a markup language used to describe the
content and structure of data in a document. It is a simplified version of Standard
Generalized Markup Language (SGML). XML is an industry standard for delivering
content on the Internet. Because it provides a facility to define new tags, XML is also
extensible.
Programming WebLogic XML 1-1

1 XML Overview
Like HTML, XML uses tags to describe content. However, rather than focusing on the
presentation of content, the tags in XML describe the meaning and hierarchical
structure of data. This functionality allows for the sophisticated data types that are
required for efficient data interchange between different programs and systems.
Further, because XML enables separation of content and presentation, the content, or
data, is portable across heterogeneous systems.

The XML syntax uses matching start and end tags (such as <name> and </name>) to
mark up information. Information delimited by tags is called an element. Every XML
document has a single root element, which is the top-level element that contains all the
other elements. Elements that are contained by other elements are often referred to as
sub-elements. An element can optionally have attributes, structured as name-value
pairs, that are part of the element and are used to further define it.

The following sample XML file describes the contents of an address book:

<?xml version="1.0"?>

<address_book>
 <person gender="f">
 <name>Jane Doe</name>
 <address>
 <street>123 Main St.</street>
 <city>San Francisco</city>
 <state>CA</state>
 <zip>94117</zip>
 </address>
 <phone area_code=415>555-1212</phone>
 </person>
 <person gender="m">
 <name>John Smith</name>
 <phone area_code=510>555-1234</phone>
 <email>johnsmith@somewhere.com</email>
 </person>
</address_book>

The root element of the XML file is the address_book. The address book currently
contains two entries in the form of person elements: Jane Doe and John Smith. Jane
Doe’s entry includes her address and phone number; John Smith’s includes his phone
and email address. Note that the structure of the XML document defines the phone
element as storing the area code using the area_code attribute rather than a
sub-element in the body of the element. Also note that not all sub-elements are required
for the person element.
1-2 Programming WebLogic XML

How Do You Describe an XML Document?
How Do You Describe an XML Document?

There are two ways to describe an XML document: DTDs and Schemas.

Document Type Definitions (DTDs) define the basic requirements on the structure of
an XML document. A DTD describes the elements and attributes that are valid in an
XML document, and the contexts in which they are valid. In other words, a DTD
specifies which tags are allowed within certain other tags, and which tags and
attributes are optional.

The following example shows a DTD that describes the preceding address book
sample XML document:

<!DOCTYPE address_book [
<!ELEMENT person (name, address?, phone?, email?)>
<!ELEMENT name (#PCDATA)>
<!ELEMENT address (street, city, state, zip)>
<!ELEMENT phone (#PCDATA)>
<!ELEMENT email (#PCDATA)>
<!ELEMENT street (#PCDATA)>
<!ELEMENT city (#PCDATA)>
<!ELEMENT state (#PCDATA)>
<!ELEMENT zip (#PCDATA)>

<!ATTLIST person gender CDATA #REQUIRED>
<!ATTLIST phone area_code CDATA #REQUIRED>
]>

Schemas are a recent development in XML specifications and are intended to
supersede DTDs. They describe XML documents with more flexibility and detail than
DTDs do, and are XML documents themselves, which DTDs are not. The schema
specification, currently under development, is a product of the World Wide Web
Consortium (W3C) and is intended to address many limitations of DTDs. For detailed
information on XML schemas, see http://www.w3.org/TR/xmlschema-0/.

The following example shows a schema that describes the preceding address book
sample XML document:

<xsd:schema xmlns:xsd="http://www.w3.org/1999/XMLSchema">

<xsd:element name="address_book" type="bookType"/>

<xsd:complexType name="bookType">
 <xsd:element name=name="person" type="personType"/>
</xsd:complexType>
Programming WebLogic XML 1-3

http://www.w3.org/TR/xmlschema-0/

1 XML Overview
<xsd:complexType name="personType">
 <xsd:element name="name" type="xsd:string"/>
 <xsd:element name="address" type="addressType"/>
 <xsd:element name="phone" type="phoneType"/>
 <xsd:element name="email" type="xsd:string"/>
 <xsd:attribute name="gender" type="xsd:string"/>
</xsd:complexType>

<xsd:complexType name="addressType">

 <xsd:element name="street" type="xsd:string"/>
 <xsd:element name="city" type="xsd:string"/>
 <xsd:element name="state" type="xsd:string"/>
 <xsd:element name="zip" type="xsd:string"/>
</xsd:complexType>

<xsd:simpleType name="phoneType">
 <xsd:restriction base="xsd:string"/>
 <xsd:attribute name="area_code" type="xsd:string"/>
</xsd:simpleType>

</xsd:schema>

An XML document can include a DTD or Schema as part of the document itself,
reference an external DTD or Schema using the DOCTYPE declaration, or not include
or reference a DTD or Schema at all. The following excerpt from an XML document
shows how to reference an external DTD called address.dtd:

<?xml version=1.0?>
<!DOCTYPE address_book SYSTEM "address.dtd">
<address_book>
...

XML documents only need to be accompanied by a DTD or Schema if they need to be
validated by a parser or if they contain complex types. An XML document is
considered valid if 1) it has an associated DTD or Schema, and 2) it complies with the
constraints expressed in the associated DTD or Schema. If, however, an XML
document only needs to be well-formed, then the document does not have to be
accompanied by a DTD or Schema. A document is considered well-formed if it
follows all the rules in the W3C Recommendation for XML 1.0. For the full XML 1.0
specification, see http://www.w3.org/XML/.
1-4 Programming WebLogic XML

http://www.w3.org/XML/

Why Use XML?
Why Use XML?

An industry typically uses data exchange methods that are meaningful and specific to
that industry. With the advent of e-commerce, businesses conduct an increasing
number of relationships with a variety of industries and, therefore, must develop expert
knowledge of the various protocols used by those industries for electronic
communication.

The extensibility of XML makes it a very effective tool for standardizing the format of
data interchange among various industries. For example, when message brokers and
workflow engines must coordinate transactions among multiple industries or
departments within an enterprise, they can use XML to combine data from disparate
sources into a format that is understandable by all parties.

What Are XSL and XSLT?

The Extensible Stylesheet Language (XSL) is a W3C standard for describing
presentation rules that apply to XML documents. XSL includes both a transformation
language, (XSLT), and a formatting language. These two languages function
independently of each other. XSLT is an XML-based language and W3C specification
that describes how to transform an XML document into another XML document, or
into HTML, PDF, or some other document format.

An XSLT transformer accepts as input an XML document and an XSLT document.
The template rules contained in an XSLT document include patterns that specify the
XML tree to which the rule applies. The XSLT transformer scans the XML document
for patterns that match the rule, and then it applies the template to the appropriate
section of the original XML document.
Programming WebLogic XML 1-5

1 XML Overview
What Are DOM and SAX?

DOM and SAX are two Java application programming interfaces (APIs) for parsing
XML data. The two APIs differ in their approach to parsing, with each API having its
strengths and weaknesses.

SAX

SAX stands for the Simple API for XML. It is a standard interface for event-based XML
parsing. SAX defines events that can occur as a parser is reading through an XML
document, such as the start or the end of an element. Programmers provide handlers to
deal with different events as the document is parsed.

Programmers that use the SAX API to parse XML documents have full control over
what happens when these events occur and can, as a result, customize the parsing
process extensively. For example, a programmer might decide to stop parsing an XML
document as soon as the parser encounters an error that indicates that the document is
invalid, rather than waiting until the entire document is parsed, thus improving
performance.

The WebLogic Server built-in parser (Apache Xerces) supports SAX Version 2.0.
Programmers who have created programs that use Version 1.0 of SAX to parse XML
documents should read about the changes between the two versions and update their
programs accordingly.

DOM

DOM stands for the Document Object Model. DOM reads an XML document into
memory and represents it as a tree; each node of the tree represents a particular piece
of data from the original XML document. Because the tree structure is a standard
programming mechanism for representing data, traversing and manipulating the tree
using Java is relatively easy, fast, and efficient. The main drawback, however, is that
the entire XML document has to be read into memory for DOM to create the tree,
which might decrease the performance of an application as the XML documents get
larger.
1-6 Programming WebLogic XML

What Is JAXP?
The WebLogic Server built-in parser (Apache Xerces) supports DOM Level 2.0 Core.
Programmers who have created programs that use Level 1.0 of DOM to parse XML
documents should read about the changes between the two versions and update their
programs accordingly. For detailed information about the differences, refer to
http://www.w3.org/DOM/DOMTR.

What Is JAXP?

The previous section discusses two APIs, SAX and DOM, that programmers can use
to parse XML data. The Java API for XML Processing (JAXP) provides a means to get
to these parsers. JAXP also defines a Plugability layer that allows programmers to use
any compliant parser or transformer.

To facilitate XML application development and the work required to move XML
applications built on WebLogic Server to other Web application servers, WebLogic
Server implements the Java API for XML Processing (JAXP). JAXP was developed
by Sun Microsystems to make XML applications portable; it provides basic support for
parsing and transforming XML documents through a standardized set of Java platform
APIs. JAXP 1.1, included in the WebLogic Server distribution, is configured to use the
built-in parser. Therefore, by default, XML applications built using WebLogic Server
use JAXP.

The WebLogic Server distribution contains the interfaces and classes needed for JAXP
1.1. JAXP 1.1 contains explicit support for SAX Version 2 and DOM Level 2. The
Javadoc for JAXP is included with the WebLogic Server online reference
documentation.

JAXP Packages

JAXP contains the following two packages:

� javax.xml.parsers

� javax.xml.transform
Programming WebLogic XML 1-7

http://www.w3.org/DOM/DOMTR

1 XML Overview
The javax.xml.parsers package contains the classes to parse XML data in SAX
Version 2.0 and DOM Level 2.0 mode. To parse an XML document in SAX mode, a
programmer first instantiates a new SaxParserFactory object with the
newInstance() method. This method looks up the specific implementation of the
parser to load based on a well-defined list of locations. The programmer then obtains
a SaxParser instance from the SaxParserFactory and executes its parse()
method, passing it the XML document to be parsed. Parsing an XML document in
DOM mode is similar, except that the programmer uses the DocumentBuilder and
DocumentBuilderFactory classes instead.

For detailed information on using JAXP to parse XML documents, see “Parsing XML
Documents” on page 2-2.

The javax.xml.transform package contains classes to transform XML data, such
as an XML document, a DOM tree, or SAX events, into a different format. The
transformer classes work similarly to the parser classes. To transform an XML
document, a programmer first instantiates a TransformerFactory object with the
newInstance() method. This method looks up the specific implementation of the
XSLT transformer to load based on a well-defined list of locations. The programmer
then instantiates a new Transformer object based on a specific XSLT style sheet and
executes its transform() method, passing it the XML object to transform. The XML
object might be an XML file, a DOM tree, and so on.

For detailed information on using JAXP to transform XML objects, see “Using JAXP
to Transform XML Data” on page 2-13.

Common Uses of XML and XSLT

How you use XML and XSLT depends on your particular business needs.
1-8 Programming WebLogic XML

Common Uses of XML and XSLT
Using XML and XSLT to Separate Content from
Presentation

XML and XSLT are often used in applications that support multiple client types. For
example, suppose you have a Web-based application that supports both browser-based
clients and Wireless Application Protocol (WAP) clients. These clients understand
different markup languages, HTML and Wireless Markup Language (WML),
respectively, but your application must deliver content that is appropriate for both.

To accomplish this goal, you can write your application to first produce an XML
document that represents the data it is sending to the client. Then the application can
transform the XML document that represents the data into HTML or WML, depending
on the client’s browser type. Your application can determine the client browser type
by examining the User-Agent request header of an HTTP request. Once the
application knows the client browser type, it uses the appropriate XSLT style sheet to
transform the document into the correct markup language. See the SnoopServlet
example included in the examples/servlets directory of your WebLogic Server
distribution for an example of how to access this type of header information.

This method of rendering the same XML document using different markup languages
in respective client types helps concentrate the effort required to support multiple
client types into the development of the appropriate XSLT style sheets. Additionally,
it allows your application to adapt to other clients types easily, if necessary.

For additional information about XSLT, see “Additional Resources” on page 5-4.

XML as a Message Format for Business-to-Business
Communication

In a business-to-business (B2B) environment, Company A and Company B want to
exchange information about e-commerce transactions in which both are involved.
Company A is a major e-commerce site. Company B is a small affiliate that sells
Company A’s products to a niche group of customers. When Company B sends
customers to Company A, Company B is compensated in two ways: it receives, from
Company A, both money and information about other customers that make the same
Programming WebLogic XML 1-9

1 XML Overview
sort of purchases as those made by the customers referred by Company B. To exchange
information, Company A and Company B must agree on a data format for information
that is machine readable and that operates with systems from both companies easily.

XML is the logical data format to use in this scenario, but selecting this format is only
the first step. The companies must then agree on the format of the XML messages to
be exchanged. Because Company A has a one-to-many relationship with its affiliates,
Company A must define the format of the XML messages that will be exchanged.

To define the format of XML messages, or XML documents, Company A creates two
document type definitions (DTDs): one that describes the information that A will
provide about customers and one that describes the information that A wants to receive
about a newly affiliated company. Company B must also create two DTDs: one to
process the XML documents received from Company A and one to prepare an XML
document in a format that can be processed by Company A.

WebLogic Server XML Features

WebLogic Server consolidates XML technologies applicable to WebLogic Server and
XML applications based on WebLogic Server. The WebLogic Server XML subsystem
allows customers to use standard parsers, a the WebLogic FastParser, XSLT
transformers, and DTDs and XML Schemas to process and convert XML files.

The WebLogic Server XML subsystem includes the following features:

� XML Document Parsers

� XML Document Transformer

� JAXP Plugability Layer Implementation

� WebLogic Servlet Attributes

� WebLogic XSLT JSP Tag Library

� XML Registry For Configuring Parsers and Transformers

� XML Registry for Configuring External Entity Resolution

� Code Examples
1-10 Programming WebLogic XML

WebLogic Server XML Features
XML Document Parsers

WebLogic Server includes the following two parsers:

You can also use any other XML parser of your choice by configuring it in the XML
Registry using the Administration Console. You can configure a single instance of
WebLogic Server to use one parser for a particular application and use another parser
for a different application.

XML Document Transformer

WebLogic Server includes a built-in XSLT transformer that is based on the Apache
Xalan XSLT transformer version 2.0.1. You can use this built-in XSLT transformer or
other XSLT transformers in your XML application to transform XML documents. For
more information about transforming XML documents, see “Using JAXP to
Transform XML Data” on page 2-13.

Parser Description

Built-in The built-in parser is based on the Apache Xerces parser version 1.3.1.
You can use the built-in parser in either Simple API For XML (SAX)
mode or Document Object Model (DOM) mode.

WebLogic
FastParser

A high-performance XML parser specifically designed for processing
small to medium size documents, such as SOAP and WSDL files
associated with WebLogic Web services. Configure WebLogic Server
to use FastParser if your application mostly handles small to medium
size (up to 10,000 elements) XML documents.

Note: Previous versions of WebLogic Server included the ability to
create custom parsers. Because WebLogic FastParser can be
used for the types of XML documents that customized parsers
were meant for, WebLogic FastParser effectively replaces the
customized parser feature, and the ability to generate a
customized parser has been deprecated.

For detailed information on using WebLogic FastParser, refer to “Using
the WebLogic FastParser” on page 2-9.
Programming WebLogic XML 1-11

1 XML Overview
JAXP Plugability Layer Implementation

Java API for XML Processing (JAXP) 1.1 is a Java-standard, parser-independent API
for XML. For more information on JAXP, see “What Is JAXP?” on page 1-7.

Note: WebLogic Server uses the XML Registry, accessed through the
Administration console, to plug-in parsers and transformers rather than using
system properties, as defined by the JAXP 1.1 specification.

WebLogic Servlet Attributes

WebLogic Server supports the following special Servlet attributes:

� org.xml.sax.HandlerBase

� org.xml.sax.helpers.DefaultHandler

� org.w3c.dom.Document

Calling the setAttribute (for SAX parsing) and getAttribute (for DOM parsing)
methods on a ServletRequest object with the preceding attributes will parse any
given XML document.

The following code sections show an example of how to use these methods:

request.setAttribute("org.xml.sax.helpers.DefaultHandler", new DefHandler());

org.w3c.dom.Document = (Document)request.getAttribute("org.w3c.dom.Document");

Note: The setAttribute and getAttribute methods are provided for
convenience only; they are not required to parse XML from a Servlet.

WebLogic XSLT JSP Tag Library

The JSP tag library provides a simple tag that enables access to the built-in XSLT
transformer from within a Java Server Page (JSP) running on WebLogic Server.
Currently, this tag supports the built-in XSLT transformer only; you cannot use the tag
to transform an XML document from within a JSP using a different transformer.
1-12 Programming WebLogic XML

WebLogic Server XML Features
The JSP tag library is included in xmlx-tags.jar, which is installed when you install
your WebLogic Server distribution.

Note: The JSP tag library is provided for convenience only; it is not required to
access XSLT transformers from within a JSP.

XML Registry For Configuring Parsers and Transformers

The XML Registry simplifies administration and configuration tasks by separating
these tasks from the XML application. Use the Administration Console (a graphical
user interface, or GUI, for WebLogic Server administration) to configure the parsers
and transformers for an instance of WebLogic Server.

Note: Each WebLogic Server domain can include any number of registries; each
WebLogic Server in a domain can be assigned zero or one registry.

By using the XML Registry, you:

� Can specify the parser or transformer at deployment time, not only at build time.

� Do not need to include any parser- or transformer- dependent code in your
applications.

� Can support multiple parsers and transformers in a single server more
conveniently.

You can use the XML Registry to perform the following tasks:

� Configure an alternative XML parser instead of the built-in parser shipped in
this version of WebLogic Server.

� Configure an alternative XSLT transformer instead of the built-in transformer
shipped in this version of WebLogic Server.

� Configure an XML parser that should be used to process a particular document
type.

All the preceding capabilities are available if your application uses the standard Java
API for XML Processing (JAXP), which is included in this version of WebLogic
Server. These capabilities are for use on the server side only.
Programming WebLogic XML 1-13

1 XML Overview
XML Registry for Configuring External Entity Resolution

WebLogic XML supports external entity resolution through the XML Registry. An
example of an external entity is a DTD file that is used to validate an XML document.
To use this feature, open the Administration Console and use the XML Registry to
enter the Public ID or System ID associated with the external entity.

In addition to storing external entities locally, you can configure WebLogic Server to
retrieve and cache external entities from external repositories that support an HTTP
interface, such as a URL. You can configure WebLogic Server to cache the external
entity in memory or on the disk and specify how long the entity should remain cached
before it is considered out of date.

For more information about using the XML Registry for external entity resolution, see
“External Entity Configuration Tasks” on page 4-11.

Code Examples

WebLogic Server includes examples of parsing and transforming XML documents.

The examples are located in the BEA_HOME/samples/examples/xml directory,
where BEA_HOME refers to the main WebLogic server installation directory.

For detailed instructions on how to build and run the examples, invoke the Web page
BEA_HOME/samples/examples/xml/package-summary.html in your browser.

Editing XML Files

To edit XML files, use the BEA XML Editor, an entirely Java-based XML stand-alone
editor. It is a simple, user-friendly tool for creating and editing XML files. It displays
XML file contents both as a hierarchical XML tree structure and as raw XML code.
This dual presentation of the document provides you with the following two methods
of editing the XML document:

� The hierarchical tree view allows structured, limited constrained editing,
providing you with a set of allowable functions at each point in the hierarchical
1-14 Programming WebLogic XML

Learning About XML
XML tree structure. The allowable functions are syntactically dictated and in
accordance with the XML document's DTD or schema, if one is specified.

� The raw XML code view allows free-form editing of the data.

BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

For detailed information about using the BEA XML Editor, see its on-line help.

You can download BEA XML Editor from the BEA dev2dev at
http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools.

Learning About XML

To learn about XML, see the following online courses and tutorials:

� A Technical Introduction to XML at
“http://www.xml.com/pub/a/98/10/guide0.html”

� XML Authoring Tutorial at “http://www.xml.com/pub/r/32.”

� Working with XML and Java at “http://java.sun.com/xml/tutorial_intro.html.”

� Tutorials for using the Java 2 platform and XML technology at
“http://developerlife.com/.”

� XML, Java, and the Future of the Web at
“http://www.xml.com/pub/a/w3j/s3.bosak.html.”

� Chapter 14 of The XML Bible: XSL Transformations at
“http://metalab.unc.edu/xml/books/bible/updates/14.html.”

� XSL Tutorial by Miloslav Nic at
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html.

� SAX 2.0: The Simple API for XML at “http://www.saxproject.org/”

� Document Object Model (DOM) at “http://www.w3.org/DOM/”
Programming WebLogic XML 1-15

http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools
http://dev2dev.bea.com/resourcelibrary/utilitiestools/xml.jsp?highlight=utilitiestools
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/r/32
http://java.sun.com/xml/tutorial_intro.html
http://developerlife.com/
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html
http://www.saxproject.org/
http://www.w3.org/DOM/

1 XML Overview
1-16 Programming WebLogic XML

CHAPTER
2 Developing XML
Applications with
WebLogic Server

The following sections describe how to use the Java programming language and
WebLogic Server to develop XML applications. It is assumed that you know how to
use Java Servlets and Java Server Pages (JSPs) to write Java applications. For
information about how to write servlet and JSP applications, see Programming
WebLogic HTTP Servlets at http://e-docs.bea.com/wls/docs61/servlet/index.html and
Programming WebLogic JSP at http://e-docs.bea.com/wls/docs61/jsp/index.html.

� Developing XML Applications: Main Steps

� Parsing XML Documents

� Generating XML Documents

� Using JAXP to Transform XML Data

� Using the JSP Tag to Transform XML Data

� Using Transformers Other Than the Built-In Transformer

Developing XML Applications: Main Steps

Programmers using the WebLogic Server XML subsystem typically perform some or
all of the following programming tasks when developing XML applications:
Programming WebLogic XML 2-1

http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html

2 Developing XML Applications with WebLogic Server
1. Parse an XML document.

The XML document can originate from a number of sources. For example, a
programmer might develop a Servlet to receive an XML document from a client,
write an EJB to receive an XML document from a Servlet or another EJB, and
so on. In each instance, the XML document may have to be parsed so that its
data can be manipulated.

For more information on this task, refer to “Parsing XML Documents” on page
2-2.

2. Generate a new XML document.

After a Servlet or EJB has received and parsed an XML document and possibly
manipulated the data in some way, the Servlet or EJB might need to generate a
new XML document to send back to the client or to pass on to another EJB.

For more information on this task, refer to “Generating XML Documents” on
page 2-10.

3. Transform XML data into another format.

After parsing an XML document or generating a new one, the Servlet or EJB
may need to transform it into another format, such as HTML, WML, or plain
text.

For more information on this task, refer to “Using JAXP to Transform XML
Data” on page 2-13.

Parsing XML Documents

This section describes how to parse XML documents.

As mentioned previously, you use the Administration Console XML Registry to
configure the following:

� Per-doctype parsers, which supersede the built-in parser for the specified
doctype

� External entity resolution, or the process that an XML parser goes through
when requested to find an external file in the course of parsing an XML
document
2-2 Programming WebLogic XML

Parsing XML Documents
For detailed information on how to use the Administration Console for these tasks,
refer to Chapter 4, “Administering WebLogic Server XML.”

For a complete example of parsing an XML document in SAX mode, see the
BEA_HOME/samples/examples/xml/sax directory, where BEA_HOME refers to the
main WebLogic server installation directory.

Parsing XML Documents Using JAXP in SAX Mode

The following code example shows how to configure a SAX parser factory to create a
validating parser. The example also shows how to register the MyHandler class with
the parser. The MyHandler class can override any method of the DefaultHandler
class to provide custom behavior for SAX parsing events or errors.

import javax.xml.parsers.SAXParser;
import javax.xml.parsers.SAXParserFactory;

...
MyHandler handler = new MyHandler();
// MyHandler extends org.xml.sax.helpers.DefaultHandler.

 //Obtain an instance of SAXParserFactory.
 SAXParserFactory spf = SAXParserFactory.newInstance();
 //Specify a validating parser.
 spf.setValidating(true); // Requires loading the DTD.
 //Obtain an instance of a SAX parser from the factory.
 SAXParser sp = spf.newSAXParser();
 //Parse the documnt.
 sp.parse("http://server/file.xml", handler);
...

Note: If you want to use a parser other than the built-in parser, you must use the
WebLogic Server Administration Console to specify the parser in the XML
Registry; otherwise the SaxParserFactory.newInstance method returns
the built-in parser. For instructions about configuring WebLogic Server to use
a parser other than the built-in parser, see “Configuring a Parser or
Transformer Other Than the Built-In” on page 4-4.

For a complete example of parsing an XML document in SAX mode, see the
BEA_HOME/samples/examples/xml/sax directory, where BEA_HOME refers to the
main WebLogic server installation directory.
Programming WebLogic XML 2-3

2 Developing XML Applications with WebLogic Server
Parsing XML Documents Using JAXP in DOM Mode

The following code example shows how to parse an XML document and create an
org.w3c.dom.Document tree from a DocumentBuilder object:

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;

...
//Obtain an instance of DocumentBuilderFactory.
DocumentBuilderFactory dbf =
 DocumentBuilderFactory.newInstance();
//Specify a validating parser.
dbf.setValidating(true); // Requires loading the DTD.
//Obtain an instance of a DocumentBuilder from the factory.
DocumentBuilder db = dbf.newDocumentBuilder();
//Parse the document.
Document doc = db.parse(inputFile);
...

Note: If you want to use a parser other than the built-in parser, you must use the
WebLogic Server Administration Console to specify it; otherwise the
DocumentBuilderFactory.newInstance method returns the built-in
parser. For instructions about configuring WebLogic Server to use a parser
other than the built-in parser, see “Configuring a Parser or Transformer Other
Than the Built-In” on page 4-4.

For a complete example of parsing an XML document in DOM mode, see the
BEA_HOME/samples/examples/xml/dom directory, where BEA_HOME refers to the
main WebLogic server installation directory.

Parsing XML Documents in a Servlet

Support for the setAttribute and getAttribute methods was added to version 2.2
of the Java Servlet Specification. Attributes are objects associated with a request. The
request object encapsulates all information from the client request. In the HTTP
protocol, this information is transmitted from the client to the server by the HTTP
headers and message body of the request.
2-4 Programming WebLogic XML

Parsing XML Documents
With WebLogic Server, you can use these methods to parse XML documents. The
setAttribute method is used for SAX mode parsing; the getAttribute method,
for DOM mode parsing.

For a complete example of parsing an XML document in a Servlet, see the
BEA_HOME/samples/examples/xml/attributes directory, where BEA_HOME refers
to the main WebLogic server installation directory.

Using the org.xml.sax.DefaultHandler Attribute to Parse a Document

The following code example shows how to use the setAttribute method:

import weblogic.servlet.XMLProcessingException;
import org.xml.sax.helpers.DefaultHandler;
...
public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException {
 try {
 request.setAttribute("org.xml.sax.helpers.DefaultHandler",
 new DefaultHandler());
 } catch(XMLProcessingException xpe) {
 System.out.println("Error in processing XML");
 xpe.printStackTrace();
 return;
 }
...

You can also use the org.xml.sax.HandlerBase attribute to parse an XML
document, although it is deprecated:

request.setAttribute("org.xml.sax.HandlerBase",
 new HandlerBase());

Note: This code example shows a simple way to parse a document using SAX and
the setAttribute method. This method of parsing a document is a
WebLogic Server convenience feature, and it is not supported by other servlet
vendors. Therefore, if you plan to run your application on other servlet
platforms, do not use this feature.

Using the org.w3c.dom.Document Attribute to Parse a Document

The following code example shows how to use the getAttribute method.
Programming WebLogic XML 2-5

2 Developing XML Applications with WebLogic Server
import org.w3c.dom.Document;
import weblogic.servlet.XMLProcessingException;

...

public void doPost(HttpServletRequest request,
 HttpServletResponse response)
throws ServletException, IOException {

try {
 Document doc = request.getAttribute("org.w3c.dom.Document");
 } catch(XMLProcessingException xpe) {
 System.out.println("Error in processing XML");
 xpe.printStackTrace();
 return;
 }
...

Note: This code example shows a simple way to parse a document using DOM and
the getAttribute method. This method of parsing a document is a
WebLogic Server convenience feature, and it is not supported by other servlet
vendors. Therefore, if you plan to run your application on other servlet
platforms, do not use this feature.

Validating and Non-Validating Parsers

As previously discussed, a well-formed document is one that is syntactically correct
according to the rules outlined in the W3C Recommendation for XML 1.0. A valid
document is one that follows the constraints specified by its DTD or schema.

A non-validating parser verifies that a document is well-formed, but does not verify
that it is valid. The WebLogic FastParser, described in “Using the WebLogic
FastParser” on page 2-9, is non-validating by default.

To turn on validation while parsing a document (assuming you are using a validating
parser), you must:

� Set the SAXParserFactory.setValidating() method to true, as shown in the
following example:

SAXParserFactory factory = SAXParserFactory.newInstance();
factory.setValidating(true);

� Ensure that the XML document you are parsing includes (either in-line or by
reference) a DTD or a schema.
2-6 Programming WebLogic XML

Parsing XML Documents
Handling Entity Resolution While Parsing an XML
Document

This section provides general information about external entities; how they are
identified and resolved by an XML parser; and the features provided by WebLogic
Server to improve the performance of external entity resolution in your XML
applications.

For a complete example of resolving an external entity while parsing an XML
document, see the BEA_HOME/samples/examples/xml/entityresolution
directory, where BEA_HOME refers to the main WebLogic server installation directory.

General Information About External Entities

External entities are chunks of text that are not literally part of an XML document, but
are referenced inside the XML document. The actual text might reside anywhere - in
another file on the same computer or even somewhere on the Web. While parsing a
document, if the parser encounters an external entity reference, it fetches the
referenced chunk of text, places the text into the XML document, then continues
parsing. An example of an external entity is a DTD; rather than including the full text
of the DTD in the XML document, the XML document has a reference to the DTD that
is stored in a separate file.

There are two ways to identify an external entity: a system identifier and a public
identifier. System identifiers use URIs to reference an external entity based on its
location. Public identifiers use a publicly declared name to refer the information.

The following example shows how a public identifier is used to reference the DTD for
the application.xml file that describes a J2EE application archive (*.ear file):

<!DOCTYPE application PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application 1.2//EN">

The following example shows a reference to an external DTD by a system identifier
only:

<!DOCTYPE application SYSTEM
"http://java.sun.com/j2ee/dtds/application_1_2.dtd">
Programming WebLogic XML 2-7

2 Developing XML Applications with WebLogic Server
Here is a reference that uses both the public and system identifier; note that the
keyword SYSTEM is omitted:

<!DOCTYPE application
PUBLIC "-//Sun Microsystems, Inc.//DTD J2EE Application 1.2//EN"
"http://java.sun.com/j2ee/dtds/application_1_2.dtd">

Using the WebLogic Server Entity Resolution Features

Use the following WebLogic Server features to improve the performance of external
entity resolution in your XML applications:

� Permanently store a copy of an external entity on the computer that hosts the
WebLogic Administration Server.

� Specify that WebLogic server automatically retrieve and cache an external entity
that resides in an external repository that supports an HTTP interface, such as a
URL. You can specify that WebLogic Server cache the entity either in memory
or on disk and specify when the cached entry becomes stale, at which point
WebLogic Server automatically updates the cached entry.

Using this feature, you do not have to actually copy the external entity to the
local computer. The XML application refers to the actual external entity only at
specified time intervals, rather than each time the document is parsed, thus
potentially greatly improving the performance of your application while also
keeping as up to date with the latest external entity as desired.

You use the XML Registry to create entity resolution entries to identify where the
external entry is located (locally or at a URL) and what the caching options are for
entities on the Web. You identify the external entity entry using a system or public
identifier. Then, in your XML document, when you reference this external entity,
WebLogic Server fetches the local copy or the cached copy (whichever you have
configured) when parsing the document.

For detailed information on creating external entity registries with the XML Registry,
refer to “External Entity Configuration Tasks” on page 4-11.
2-8 Programming WebLogic XML

Parsing XML Documents
Using Parsers Other Than the Built-In Parser

If you use JAXP to parse your XML documents, the WebLogic Server XML Registry
(which is configured through the Administration Console) offers the following
options:

� Accept the built-in parser as the server-wide parser.

� Configure the WebLogic FastParser as the server-wide parser.

� Configure a parser of your choice as the server-wide parser.

� Configure a parser for a particular DTD based on its system or public
identifier, or its root tag.

For instructions on how to use the XML Registry to configure parsing options, see
“XML Parser and Transformer Configuration Tasks” on page 4-4.

Using the WebLogic FastParser

WebLogic Server includes a high-performance non-validating XML parser (called
WebLogic FastParser) specifically designed to parse small to medium (up to 10,000
elements) XML documents. For larger documents, the performance of this parser is
comparable to that of other standard parsers, such as Apache Xerces.

Note: WebLogic FastParser supports only SAX-style parsing.

You can specify that WebLogic FastParser be used as the WebLogic Server-wide
parser, or just for a particular DOCTYPE by using the XML Registry as described in
“XML Parser and Transformer Configuration Tasks” on page 4-4. Set the
SAXParserFactory field to
weblogic.xml.babel.jaxp.SAXParserFactoryImpl.

Note: Previous versions of WebLogic Server included the ability to create custom
parsers. Because you can use the WebLogic FastParser for the types of XML
documents that customized parsers were meant for, FastParser effectively
replaces the customized parser feature, and the ability to generate a customized
parser has been deprecated.
Programming WebLogic XML 2-9

2 Developing XML Applications with WebLogic Server
Generating XML Documents

This section describes how to generate XML documents from a DOM document tree
and by using JSP.

Generating XML from a DOM Document Tree

This section describes two ways to create an XML document from a DOM document
tree:

� Using the Apache serialize classes

� Using the JAXP Transformer classes

Using the Apache Serialize Class

To generate an XML document from a DOM document tree, you can use the class
weblogic.apache.xml.serialize to convert a DOM document tree to XML text.
For a description of this class, see Javadoc for weblogic.apache.xml.serialize.

The following code example shows how to use this class.

Note: The following example does not use JAXP but rather the Apache proprietary
API directly.

package test;

import java.io.OutputStreamWriter;
import java.util.Date;
import java.text.DateFormat;

import org.w3c.dom.Document;
import org.w3c.dom.Element;

import weblogic.apache.xerces.dom.DocumentImpl;
import weblogic.apache.xml.serialize.DOMSerializer;
import weblogic.apache.xml.serialize.XMLSerializer;

public class WriteXML {

 public static void main(String[] args) throws Exception {
2-10 Programming WebLogic XML

Generating XML Documents
 // Create a DOM tree.
 Document doc= new DocumentImpl();
 Element message = doc.createElement("message");
 doc.appendChild(message);
 Element text = doc.createElement("text");
 text.appendChild(doc.createTextNode("Hello world."));
 message.appendChild(text);
 Element timestamp = doc.createElement("timestamp");
 timestamp.appendChild(
 doc.createTextNode(
 DateFormat.getDateInstance().format(new Date()))
);
 message.appendChild(timestamp);

 // Serialize the DOM to XML text and output to stdout.
 DOMSerializer xmlSer =
 new XMLSerializer(new OutputStreamWriter(System.out),null);
 xmlSer.serialize(doc);
 }
}

Using the JAXP Transformer Class

You can use the javax.xml.transform.Transformer class to serialize a DOM
object into an XML stream, as shown in the following example segment:

import javax.xml.parsers.DocumentBuilder;
import javax.xml.parsers.DocumentBuilderFactory;

import org.w3c.dom.Document;

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.dom.DOMSource;
import javax.xml.transform.stream.StreamResult;

import java.io.*;

...

TransformerFactory trans_factory =
TransformerFactory.newInstance();
Transformer xml_out = trans_factory.newTransformer();
Properties props = new Properties();
props.put(“method”, “xml”);
xml_out.setOutputProperties(props);
xml_out.transform(new DOMSource(doc), new
StreamResult(System.out));
Programming WebLogic XML 2-11

2 Developing XML Applications with WebLogic Server
In the example, the Transformer.transform() does the work of converting a DOM
object into an XML stream. The transform() method takes as input a
javax.xml.transform.dom.DOMSource object, created from the DOM tree stored
in the doc variable, and converts it into a
javax.xml.transform.stream.StreamResult object and writes the resulting
XML document to the standard output.

Generating XML Documents in a JSP

You typically use JSPs to generate HTML, but you can also use a JSP to generate an
XML document.

Using JSPs to generate XML requires that you set the content type of the JSP page as
follows:

<%@ page contentType="text/xml"%>
 ... XML document

The following code shows an example of how to use JSP to generate an XML
document:

<?xml version="1.0">

<%@ page contentType="text/xml"
import="java.text.DateFormat,java.util.Date" %>

<message>
 <text>
 Hello World.
 </text>
 <timestamp>
<%
out.print(DateFormat.getDateInstance().format(new Date()));
%>
 </timestamp>
</message>

For more information about using JSP to generate XML, see
http://java.sun.com/products/jsp/html/JSPXML.html.
2-12 Programming WebLogic XML

http://java.sun.com/products/jsp/html/JSPXML.html

Using JAXP to Transform XML Data
Using JAXP to Transform XML Data

Transformation refers to converting an XML document (the source of the
transformation) into another format, typically a different XML document, HTML,
Wireless Markup Language (WML) (the result of the transformation.) Version 1.1 of
JAXP provides plugable transformation, which means that you can use any
JAXP-compliant transformer engine.

JAXP provides the following interfaces to transform XML data into a variety of
formats:

� javax.xml.transform: This package contains the generic APIs for
transforming documents. This package does not have any dependencies on SAX
or DOM and makes the fewest possible assumptions about the format of the
source and result.

� javax.xml.transform.stream: This package implements stream- and
URI-specific transformation APIs. In particular, it defines the StreamSource
and StreamResult classes that enable you to specify InputStreams and URLs
as the source of a transformation and OutputStreams and URLs as the results,
respectively.

� javax.xml.transform.dom: This package implements DOM-specific
transformation APIs. In particular, it defines the DOMSource and DOMResult
classes that enable you to specify a DOM tree as either the source or result, or
both, of a transformation.

� javax.xml.transform.sax: This package implements SAX-specific
transformation APIs. In particular, it defines the SAXSource and SAXResult
classes that enable you to specify org.xml.sax.ContentHandler events as
either the source or result, or both, of a transformation.

Transformation encompasses many possible combinations of inputs and outputs.

For a complete example of transforming an XML document, see the
BEA_HOME/samples/examples/xml/xslt directory, where BEA_HOME refers to the
main WebLogic server installation directory.
Programming WebLogic XML 2-13

2 Developing XML Applications with WebLogic Server
Example of Transforming an XML Document Using JAXP

The following example snippet shows how to use JAXP to transform myXMLdoc.xml
into a different XML document using the mystylesheet.xsl stylesheet:

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

Transformer trans;
TransformerFactory factory = TransformerFactory.newInstance();
String stylesheet = “file://stylesheets/mystylesheet.xsl”;
String xml_doc = “file://xml_docs/myXMLdoc.xml”;

trans = factory.newTransformer(new StreamSource(stylesheet));
trans.transform(new StreamSource(xml_doc),
 new StreamResult(System.out));

For an example of how to transform a DOM document into an XML stream, see
“Using the JAXP Transformer Class” on page 2-11.

Converting From the Xalan API to JAXP 1.1 API

If your application contain Xalan-specific code, BEA recommends that you modify it
to use JAXP instead.

This section briefly describes the changes you must make to your XML application in
order to convert from the Xalan API to JAXP. The section compares two code
segments that perform a similar transformation task: one code segment uses the Xalan
API directly and the other uses JAXP.

The following Java code segment uses JAXP:

import javax.xml.transform.Transformer;
import javax.xml.transform.TransformerFactory;
import javax.xml.transform.stream.StreamSource;
import javax.xml.transform.stream.StreamResult;

...

Transformer trans;
TransformerFactory factory = TransformerFactory.newInstance();
2-14 Programming WebLogic XML

Using JAXP to Transform XML Data
String stylesheet = "file://stylesheets/mystylesheet.xsl";
String xml_doc = "file://xml_docs/myXMLdoc.xml";

trans = factory.newTransformer(new StreamSource(stylesheet));
trans.transform(new StreamSource(xml_doc),
 new StreamResult(System.out));

The following Java code segment uses the Xalan API directly:

 /*
 * This code example was taken from code examples provided by the
 * Apache Software Foundation. It consists of voluntary
 * contributions made by many individuals on behalf of the Apache
 * Software Foundation and was originally based on software
 * copyright (c) 1999, Lotus Development Corporation.,
 * http://www.lotus.com. For more information on the Apache
 * Software Foundation, please see <http://www.apache.org/>.
 */

import org.apache.xalan.xslt.XSLTProcessorFactory;
import org.apache.xalan.xslt.XSLTInputSource;
import org.apache.xalan.xslt.XSLTResultTarget;
import org.apache.xalan.xslt.XSLTProcessor;

...

XSLTProcessor processor = XSLTProcessorFactory.getProcessor();

String stylesheet = "file://stylesheets/mystylesheet.xsl";
String xml_doc = "file://xml_docs/myXMLdoc.xml";

processor.process(new XSLTInputSource(xml_doc),
 new XSLTInputSource(stylesheet),
 new XSLTResultTarget(System.out));

The following table summarizes the names of the Xalan and JAXPI interfaces and
methods used in the preceding examples to transform XML documents; use this table
as a first step toward converting your existing Xalan application to a full JAXP
application.
Programming WebLogic XML 2-15

2 Developing XML Applications with WebLogic Server
Note: This table does not include an entire mapping between Xalan and JAXP, but
rather covers only the main classes and methods used in the preceding
examples. Refer to the Apache and Sun Web sites at http://www.apache.org
and http://java.sun.com/xml/index.html for more detailed information on each
API.

Using the JSP Tag to Transform XML Data

WebLogic Server provides a small JSP tag library for convenient access to an XSLT
transformer from within a JSP. You can use this tag to transform XML documents into
HTML, WML, and so on, but it is not required.

The JSP tag library consists of one main tag, x:xslt, and two subtags you can use
within the x:xslt tag: x:stylesheet and x:xml.

Description of Class or
Interface

Xalan 1.X JAXP 1.1

Main class used to transform
XML documents

XSLTProcessor Transformer

Factory class used to create the
transformer objects

XSLTProcessorFactory TransformerFactory

Method used to create a new
instance of the factory

n/a TransformerFactory.newIns
tance()

Method used to create a new
transformer object

XSLTProcessorFactory.getP
rocessor()

TransformerFactory.newTra
nsformer()

Class that holds the source of the
transformation, such as the
XML document or an XSL
stylesheet

XSLTInputSource StreamSource

Class that holds the result of the
transformation

XSLTResultTarget StreamResult

Method that performs the
transformation

XSLTProcessor.process() Transformer.transform()
2-16 Programming WebLogic XML

http://www.apache.org
http://java.sun.com/xml/index.html

Using the JSP Tag to Transform XML Data
XSLT JSP Tag Syntax

The XSLT JSP tag syntax is based on XML. A JSP tag consists of a start tag, an
optional body, and a matching end tag. The start tag includes the element name and
optional attributes.

The following syntax describes how to use the three XSLT JSP tags provided by
WebLogic Server in a JSP. The attributes are optional, as are the subtags
x:stylesheet and x:xml. The tables following the syntax describe the attributes of
the x:xslt and x:stylesheet tags; the x:xml tag does not have any attributes.

<x:xslt [xml="uri of XML file"]
 [media="media type to determine stylesheet"]
 [stylesheet="uri of stylesheet"]
 <x:xml>In-line XML goes here
 </x:xml>
 <x:stylesheet [media="media type to determine stylesheet"]
 [uri="uri of stylesheet"]
 </x:stylesheet>
</x:xslt>

The following table describes the attributes of the x:xslt tag.

x:xslt Tag
Attribute

Required Data
Type

Description

xml No String Specifies the location of the XML file that you want to transform.
The location is relative to the document root of the Web application
in which the tag is used.

media No String Defines the document output type, such as HTML or WML, that
determines which stylesheet to use when transforming the XML
document.

This attribute can be used in conjunction with the media attribute
of any enclosed x:stylesheet tags within the body of the
x:xslt tag. The value of the media attribute of the x:xslt tag is
compared to the value of the media attribute of any enclosed
x:stylesheet tags. If the values are equal, then the stylesheet
specified by the uri attribute of the x:stylesheet tag is applied
to the XML document.

NOTE: It is an error to set both the media and stylesheet
attributes within the same x:xslt tag.
Programming WebLogic XML 2-17

2 Developing XML Applications with WebLogic Server
The following table describes the attributes of the x:stylesheet tag.

XSLT JSP Tag Usage

The x:xslt tag can be used with or without a body, and its attributes are optional. This
section describes the rules that dictate how the tag behaves depending on whether you
specify a body or one or more attributes.

If the x:xslt JSP tag is an empty tag (no body), the following statements apply:

� If no attributes are set, the XML document is processed using the servlet path
and the default media stylesheet. You specify the default media stylesheet in

stylesheet No String Specifies the location of the stylesheet to use to transform the XML
document. The location is relative to the document root of the Web
application in which the tag is used.

NOTE: It is an error to set both the media and stylesheet
attributes within the same x:xslt tag.

x:xslt Tag
Attribute

Required Data
Type

Description

x:stylesheet
Tag Attribute

Required Data
Type

Description

media No String Defines the document output type, such as HTML or WML,
that determines which stylesheet to use when transforming the
XML document.

Use this attribute in conjunction with the media attribute of
enveloping x:xslt tag. The value of the media attribute of the
x:xslt tag is compared to the value of the media attribute of
the enclosed x:stylesheet tags. If the values are equal, then
the stylesheet specified by the uri attribute of the
x:stylesheet tag is applied to the XML document.

uri No String Specifies the location of the stylesheet to use when the value of
the media attribute matches the value of the media attribute
of the enveloping x:xslt tag. The location is relative to the
document root of the Web application in which the tag is used.
2-18 Programming WebLogic XML

Using the JSP Tag to Transform XML Data
your XML file with the <?xml-stylesheet> processing instruction; the
default stylesheet is the one that does not have a media attribute.

This type of processing allows you to register the JSP page that contains the
tag extension as a file servlet that performs XSLT processing.

� If only the media attribute is set, the XML document is processed using the
servlet path and the specified media type. The value of the media type
attribute of the x:xslt tag is compared to the value of the media attribute of
any <?xml-stylesheet> processing instructions in your XML document; if
any match then the corresponding stylesheet is applied. If none match then
the default media stylesheet is used. The media type attribute is used to
define the document output type (for example, XML, HTML, postscript, or
WML). This feature enables you to organize stylesheets by document output
type.

� If only the xml attribute is set, the specified XML document is processed
using the default media stylesheet.

� If the media and xml attributes are set, the specified XML document is
processed using the specified media type.

� If the stylesheet attribute is defined, the XML document is processed
using the specified stylesheet.

Caution: It is an error to set both the media and stylesheet attributes within the
same x:xslt tag.

An XSLT JSP tag that has a body may contain <x:xml> tags and/or <x:stylesheet>
tags. The following statements apply:

� The <x:xml> tag allows you specify an XML document for inline
processing. This tag has no attributes.

� The <x:stylesheet> tag, when used without any attributes, allows you
specify the default stylesheet inline.

� Use the uri attribute of the <x:stylesheet> tag to specify the location of
the default stylesheet.

� If you want to specify different stylesheets for different media types, you can
use multiple <x:stylesheet> tags with different values for the media
Programming WebLogic XML 2-19

2 Developing XML Applications with WebLogic Server
attribute. You can specify a stylesheet for each media type in the body of the
tag, or specify the location of the stylesheet with the uri attribute.

Transforming XML Documents Using an XSLT JSP Tag

To use an XSLT JSP tag to transform XML documents, perform the following steps:

1. Open the xmlx.zip file in the BEA Home/wlserver6.0/ext directory; extract the
xmlx-tags.jar file; and put it in the /lib directory of your Web application,
where BEA Home is the top-level directory in which you installed the WebLogic
Server distribution.

2. Add a <taglib> entry to the web.xml file. For example:

<taglib>
 <taglib-uri>xmlx.tld</taglib-uri>
 <taglib-location>/WEB-INF/lib/xmlx-tags.jar</taglib-location>
</taglib>

3. To use the tags, add the following line to your JSP page:

<%@ taglib uri="xmlx.tld" prefix="x"%>

4. Configure the transformer. The following procedure shows a generic way to
configure the transformer:

a. Enter the following code line to create an xslt.jsp file:

<%@ taglib uri="xmlx.tld" prefix="x"%><x:xslt/>

b. Register the xslt.jsp file in your web.xml file, as follows:

<servlet>
 <servlet-name>myxsltinterceptor</servlet-name>
 <jsp-file>xslt.jsp</jsp-file>
</servlet>
<servlet-mapping>
 <servlet-name>myxsltinterceptor</servlet-name>
 <url-pattern>/xslt/*</url-pattern>
</servlet-mapping>

c. Put your XML/DTD/XSL documents or servlets in your Web application.
2-20 Programming WebLogic XML

Using the JSP Tag to Transform XML Data
d. Add an xslt prefix to the pathname for the XML document (for example,
change docs/fred.xml to xslt/docs/fred.xml) and then access the
document. Because of the <url-pattern> entry in the web.xml file,
WebLogic Server automatically runs the XSLT transformer on the XML
document and sets the default stylesheet in the document.

e. To define media type, add code to the JSP to determine the media type for the
XML document and the content type for the output.

f. Pass the media type into the xslt tag and then set the content type of the
response object.

Note: The other forms of the XSLT JSP tag are used when stylesheets are not
specified in the XML document or your XML stylesheet can be generated
inline.

Example of Using the XSLT JSP Tag in a JSP

The following snippet of code from a JSP shows how to use the XSLT JSP tag to
transform XML into HTML or WML, depending on the type of client that is requesting
the JSP. If the client is a browser, the JSP returns HTML; if the client is a wireless
device, the JSP returns WML.

First the JSP uses the getHeader() method of the HttpServletRequest object to
determine the type of client that is requesting the JSP and sets the myMedia variable to
wml or html appropriately. If the JSP set the myMedia variable to html, then it applies
the html.xsl stylesheet to the XML document contained in the content variable.
Similarly, if the JSP set the myMedia variable to wml, then it applies the wml.xsl
stylesheet.

<%
 String clientType = request.getHeader("User-Agent");
 // default to WML client
 String myMedia = "wml";

 // if client is an HTML browser

 if (clientType.indexOf("Mozilla") != -1) {
 myMedia = "http"
 }
%>

<x:xslt media="<%=myMedia%>">
Programming WebLogic XML 2-21

2 Developing XML Applications with WebLogic Server
 <x:xml><%=content%></x:xml>
 <x:stylesheet media="html" uri="html.xsl"/>
 <x:stylesheet media="wml" uri="wml.xsl"/>
</x:xslt>

Using Transformers Other Than the Built-In
Transformer

The WebLogic Server XML Registry (which you configure using the Administration
Console) offers the following options:

� Accept the built-in transformer as the server-wide transformer.

� Configure a transformer other than the built-in transformer as the server-wide
transformer. The transformer must be JAXP-compliant.

For instructions on how to use the XML Registry to configure transforming options,
see “XML Parser and Transformer Configuration Tasks” on page 4-4.
2-22 Programming WebLogic XML

CHAPTER
3 XML Programming
Techniques

The following sections provide information about specific XML programming
techniques for developing a J2EE application that processes XML data:

� Sending and Receiving XML To and From Servlets and JSPs

� Handling XML Documents in a JMS Application

� Accessing External Entities That Do Not Have an HTTP Interface

� XML Document Header Information

Sending and Receiving XML To and From
Servlets and JSPs

In a typical J2EE application, a client application sends XML data to a Servlet or a JSP
that processes the XML data. The Servlet or JSP then either sends the data on to
another J2EE component, such as a JMS destination or an EJB, or sends the processed
XML data back to the client in the form of another XML document.

To send and receive XML data from a Java client to a WebLogic Server-hosted Servlet
or JSP and back, use the java.net.URLConnection class. This class represents the
communication link between an application and an URL, which in this case is the URL
that invokes the Servlet or JSP. Instances of the URLConnection class send the XML
document using the HTTP POST method.
Programming WebLogic XML 3-1

3 XML Programming Techniques
The following Java client program from the WebLogic XML examples shows how to
send and receive XML data to and from a JSP:

import java.net.*;
import java.io.*;
import java.util.*;

public class Client {

 public static void main(String[] args) throws Exception {
 if (args.length < 2) {
 System.out.println("Usage: java examples.xml.Client URL Filename");
 }
 else {
 try {
 URL url = new URL(args[0]);
 String document = args[1];
 FileReader fr = new FileReader(document);
 char[] buffer = new char[1024*10];
 int bytes_read = 0;
 if ((bytes_read = fr.read(buffer)) != -1)
 {
 URLConnection urlc = url.openConnection();
 urlc.setRequestProperty("Content-Type","text/xml");
 urlc.setDoOutput(true);
 urlc.setDoInput(true);
 PrintWriter pw = new PrintWriter(urlc.getOutputStream());

 // send xml to jsp
 pw.write(buffer, 0, bytes_read);
 pw.close();

 BufferedReader in = new BufferedReader(new
InputStreamReader(urlc.getInputStream()));
 String inputLine;
 while ((inputLine = in.readLine()) != null)
 System.out.println(inputLine);

 in.close();
 }
 }
 catch (Exception e) {
 e.printStackTrace();
 }
 }
 }
}

3-2 Programming WebLogic XML

Handling XML Documents in a JMS Application
The example first shows how to open a URL connection to the JSP using a URL from
the argument list, obtain the output stream from the connection, and print the XML
document provided in the argument list to the output stream, thus sending the XML
data to the JSP. The example then shows how to use the getInputStream() method
of the URLConnection class to read the XML data that the JSAP returns to the client
application.

The following code segments from a sample JSP shows how the JSP receives XML
data from the client application, parses the XML document, and sends XML data back:

BufferedReader br = new BufferedReader(request.getReader());
DocumentBuilderFactory fact = DocumentBuilderFactory.newInstance();
DocumentBuilder db = fact.newDocumentBuilder();
Document doc = db.parse(new InputSource(br));

...

PrintWriter responseWriter = response.getWriter();
responseWriter.println("<?xml version='1.0'?>");

...
For detailed information on programming WebLogic Servlets and JSPs, see
Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs61/servlet/index.html and Programming WebLogic
JSP at http://e-docs.bea.com/wls/docs61/jsp/index.html

Handling XML Documents in a JMS
Application

WebLogic Server provides the following extensions to some Java Message Service
(JMS) classes to specifically handle XML documents in an JMS application:

� weblogic.jms.extensions.WLSession, which extends the JMS class
javax.jms.Session

� weblogic.jms.extensions.WLQueueSession, which extends the JMS class
javax.jms.QueueSession

� weblogic.jms.extensions.WLTopicSession, which extends the JMS class
javax.jms.TopicSession
Programming WebLogic XML 3-3

http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html

3 XML Programming Techniques
� weblogic.jms.extensions.XMLMessage, which extends the JMS class
javax.jms.TextMessage

If you use the XMLMessage class to send and receive XML documents in a JMS
application, rather than the more generic TextMessage class, you can use
XML-specific message selectors to filter unwanted messages. In particular, you can
use the method JMS_BEA_SELECT to specify an XPath query to search for an XML
fragment in the XML document. Based on the results of the query, a message
consumer might decide not to receive the message, thus possibly reducing network
traffic and improving performance of the JMS application.

To use the XMLMessage class to contain XML messages in a JMS application, you
must create either a WLQueueSession or WLTopicSession object, depending on
whether you want to use JMS queues or topics, rather than the generic QueueSession
or TopicSession objects, after you have created a JMS Connection. Then use the
createXMLMessage() method of the WLSession interface to create an XMLMessage
object.

For detailed information on using XMLMessage objects in your JMS application, see
Programming WebLogic JMS at http://e-docs.bea.com/wls/docs61/jms/index.html.

Accessing External Entities That Do Not Have
an HTTP Interface

WebLogic Server can retrieve and cache external entities that reside in external
repositories, as long as they have an HTTP interface, such as an URL, that returns the
entity. See “External Entity Configuration Tasks” on page 4-11 for detailed
information on using the XML Registry to configure external entities.

If you want to access an external entity that is stored in a repository that does not have
an HTTP interface, you must create one. For example, assume you store the DTDs for
your XML documents in a database table, with columns for the system id, public id,
and text of the DTD. To access the DTD as an external entity from a WebLogic XML
application, you could create a Servlet that uses JDBC to access the DTDs in the
database.
3-4 Programming WebLogic XML

http://e-docs.bea.com/wls/docs61/jms/index.html

XML Document Header Information
Because you invoke Servlets with URLs, you now have an HTTP interface to the
external entity. When you create the entity registry entry in the XML Registry, you
specify the URL that invokes the Servlet as the location of the external entity. When
WebLogic Server is parsing an XML document that contains a reference to this
external entity, it invokes the Servlet, passing it the public and system id, which the
Servlet can internally use to query the database.

XML Document Header Information

Sometimes you might want to only get information about an XML document, such as
the root element, system ID, or public ID, instead of getting all the actual data within
the document. In this case, fully parsing the document is unnecessary, and indeed
might decrease the performance of your application if the XML document is very
large.

Instead of parsing the XML document, you can get header information about the XML
document by using the weblogic.xml.sax.XMLInputSource class, which is
Weblogic Server’s extension to the org.xml.sax.InputSource class. The following
example segment shows how to use this class:

import weblogic.xml.sax.XMLInputSource;
...

 String inputXML = “file://xml_docs/myXMLdoc.xml”;
 XMLInputSource xis = new XMLInputSource(inputXML);
 String docType = xis.getRootTag();
 String publicID = xis.getPublicId();
 String systemID = xis.getSystemId();
 String namespaceURI = xis.getNamespaceURI();

See the WebLogic Server API Reference for more information on the
weblogic.xml.sax.XMLInputSource class.
Programming WebLogic XML 3-5

http://e-docs.bea.com/wls/docs61/javadocs/index.html

3 XML Programming Techniques
3-6 Programming WebLogic XML

CHAPTER
4 Administering
WebLogic Server XML

The following sections describe XML administration with WebLogic Server:

� Overview of Administering WebLogic Server XML

� XML Parser and Transformer Configuration Tasks

� External Entity Configuration Tasks

Overview of Administering WebLogic Server
XML

You access the XML Registry through the Administration Console and use it to
configure WebLogic Server for XML applications.

To invoke the Administration Console in your browser, enter the following URL:

http://host:port/console

where

� host refers to the computer on which WebLogic Administration server is
running.
Programming WebLogic XML 4-1

4 Administering WebLogic Server XML
� port refers to the port number where WebLogic Administration server is
listening for connection requests. The default port number for WebLogic
Administration server is 7001.

XML Administration Tasks

You create, configure, and use the XML Registry through the Administration Console.
The benefits of using the Administration Console XML Registry are as follows:

� Configuration of XML Registry changes take effect automatically at run time,
provided you use JAXP in your XML applications.

� When you make changes to the XML Registry, it is not necessary to change your
XML application code.

� Entity resolution is done locally. You can use the XML Registry either to define
a local copy of an entity or to specify that WebLogic Server cache an entity from
the Web for a specified duration and use the cached copy rather than the one out
on the Web.

You can use the XML Registry to specify:

� An alternative server-wide XML parser instead of the built-in parser.

� An XML parser per document.

� An alternative server-wide transformer instead of the built-in transformer.

� External entities that are to be resolved by using local copies of the entities.
Once you specify these entities, the Administration Server stores local copies of
them in the file system and automatically distributes them to the server’s parser
at parse time. This feature eliminates the need to construct and set SAX
EntityResolvers.

� External entities to be cached by WebLogic Server after retrieval from the Web.
You specify how long these external entities should be cached before WebLogic
Server re-retrieves them and when WebLogic should first retrieve the entities,
either at application run time or when WebLogic Server starts.

These capabilities are for use on the server side only.
4-2 Programming WebLogic XML

Overview of Administering WebLogic Server XML
How the XML Registry Works

You can create as many XML Registries as you like; however, you can associate only
one XML Registry with a particular instance of WebLogic Server.

If an instance of WebLogic Server does not have an XML Registry associated with it,
then the built-in parser and transformer are used when parsing or transforming
documents. In addition, you cannot configure external entity resolution to increase the
performance of your XML applications.

Once you associate an XML Registry with an instance of WebLogic Server, all XML
configuration options are available for XML applications that use that server.

You can configure the following two types of entries for a given XML registry:

� to configure parsers and transformers.

� to configure external entity resolution.

Note: The XML Registry is case sensitive. For example, if you are configuring a
parser for an XML document type whose root element is <CAR>, you must
enter CAR in the Root Element Tag field and not car or Car.

Parser Selection Within the XML Registry

The XML Registry is automatically consulted whenever you use JAXP to write your
XML applications. WebLogic Server follows an ordered lookup when determining
which parser class to load:

1. Use the parser defined for a particular document type.

2. Use the alternative server-wide parser defined in the XML Registry associated
with the WebLogic Server instance.

3. Use the built-in Xerces parser.

The process is also true for transformers, except for the first step, because you cannot
define a transformer for a particular document type.
Programming WebLogic XML 4-3

4 Administering WebLogic Server XML
Additionally, when WebLogic Server starts, a SAX entity resolver is automatically set
so that it can resolve entities that are declared in the registry. As a result, users are not
required to modify their XML application code to control the parsers used, or to set the
location of local copies of external entities. The parser being used and the location of
the external entity is controlled by the XML Registry.

Note: If you elect to use an API provided by a parser instead of JAXP, the XML
Registry has no effect on the processing of XML documents. For this reason,
it is highly recommended that you always use JAXP in your XML
applications.

XML Parser and Transformer Configuration
Tasks

By default, WebLogic Server is configured to use the built-in parser and transformer
to parse and transform XML documents. In release 6.1, the built-in XML parser is
Apache Xerces and the built-in transformer is Apache Xalan. As long as you use the
default, you do not have to perform any configuration tasks for your XML
applications. If you want to use a parser or transformer other than the built-in, you must
use the XML Registry to configure them, as described in the following sections.

Configuring a Parser or Transformer Other Than the
Built-In

The following procedure first describes how to create an XML registry that defines
SAX and DOM parsers and transformers. It then describes how to associate the new
XML Registry with an instance of WebLogic Server so that the server starts to use the
new parsers and transformer.

1. Start the WebLogic Administration server and invoke the Administration Console
in your browser. See “Overview of Administering WebLogic Server XML” on
page 4-1 for information on invoking the Administration Console.
4-4 Programming WebLogic XML

XML Parser and Transformer Configuration Tasks
2. In the left pane, right-click the XML node under the Services node and select
Configure a new XML Registry from the drop-down menu. The window to create
a new XML registry is displayed, as shown in the following figure:

Figure 4-1 Main XML Registry Window in Administration Console

3. Enter a unique registry name in the Name field and set the
DocumentBuilderFactory, SaxParserFactory, and TransformerFactory fields to
the appropriate Factory parser and transformer classes.

For example, to use WebLogic FastParser, enter the following information:

Name: WebLogic FastParser
DocumentBuilderFactory:
SAXParserFactory: weblogic.xml.babel.jaxp.SAXParserFactoryImpl
TransformerFactory:
Programming WebLogic XML 4-5

4 Administering WebLogic Server XML
Note that in the preceding example, DocumentBuilderFactory and
TransformerFactory have been left blank. This means that for DOM parsing and
transformation, the built-in parser and transformer are used, respectively. The
WebLogic FastParser will only be used for SAX parsing.

If you want to directly specify the Apache Xerces parser and Xalan transformer,
enter the following information:

Name: Apache Xerces/Xalan Registry
DocumentBuilderFactory: org.apache.xerces.jaxp.DocumentBuilderFactoryImpl
SAXParserFactory: org.apache.xerces.jaxp.SAXParserFactoryImpl
TransformerFactory: org.apache.xalan.processor.TransformerFactoryImpl

4. Click the Create button. The XML Registry is created and listed under the XML
node in the left pane.

5. In the left pane under the Servers node, click the name of the server with which
you want to associate the new XML registry.

6. In the right pane, select the Services tab.

7. Select the XML tab. The window to configure XML properties of WebLogic
Server appears in the right pane, as shown in the following figure:
4-6 Programming WebLogic XML

XML Parser and Transformer Configuration Tasks
Figure 4-2 Window to Configure XML Properties in Administration Console

8. Select the XML registry name that you want to associate with this server in the
XML Registry field and click the Apply button.

9. Restart your server so the new settings to take effect.

Configuring a Parser for a Particular Document Type

When you configure a parser for a particular document type, you can use the
document’s system id, public id, or root element tag to identify the document type.
Programming WebLogic XML 4-7

4 Administering WebLogic Server XML
Note: The following procedure assumes that you are going to create a new XML
registry, add the necessary parser registry entries, and associate it with a
server. If you have already associated an existing XML registry with your
server, skip to step 5.

To configure a parser for a particular document type, follow these steps:

1. Start the WebLogic Administration server and invoke the Administration Console
in your browser.

See “Overview of Administering WebLogic Server XML” on page 4-1 for
information on invoking the Administration Console.

2. In the left pane, right-click the XML node under the Services node and select
Configure a new XML Registry from the drop-down menu. The window to create
a new XML registry is displayed, as shown in Figure 4-1.

3. Enter a unique registry name in the Name field. If you want to configure default
parsers and transformer for your server, enter the factory class names in the
DocumentBuilderFactory, SaxParserFactory, and TransformerFactory fields.
Otherwise, leave these fields blank.

4. Click the Create button. The XML Registry is created and listed under the XML
node in the left pane.

5. Under the XML node in the left pane, right-click the XML Parser Select Registry
Entry node under your XML registry. Select Configure a New
XMLParserSelectRegistryEntry from the drop-down menu. A blank window for
entering document type information appears in the right pane, as shown in the
following figure:
4-8 Programming WebLogic XML

XML Parser and Transformer Configuration Tasks
Figure 4-3 Configuring an XML Parser Using the Administration Console

6. Enter the document type information in one of the following ways:

a. Use either the Public Id or the System Id field to specify the doctype. For
example, for the car.xml (see Listing 4-1), enter -//BEA Systems,
Inc.//DTD for cars//EN in the Public Id field.

b. Specify the Root Element Tag name of the document. For the car.xml
example, enter CAR in the Root Element Tag field.

If your XML document defines a namespace, be sure to enter the fully
qualified root element tag, such as VEHICLES:CAR.
Programming WebLogic XML 4-9

4 Administering WebLogic Server XML
Listing 4-1 car.xml File

<?xml version="1.0"?>
<!-- This XML document describes a car -->
<!DOCTYPE CAR PUBLIC "-//BEA Systems, Inc.//DTD for cars//EN"
"http://www.bea.com/dtds/car.dtd">
<CAR>
<MAKE>Toyota</MAKE>
<MODEL>Corrolla</MODEL>
<YEAR>1998</YEAR>
<ENGINE>1.5L</ENGINE>
<HP>149</HP>
</CAR>

7. Set the DocumentBuilderFactory or SaxParserFactory fields to the appropriate
Factory parser classes.

For example, enter weblogic.xml.babel.jaxp.SAXParserFactoryImpl in
the SaxParserFactory field to specify that this document type be parsed by
WebLogic FastParser.

Note: Do not enter any information in the Parser Class Name field; this field is
for backward compatibility with previous versions of WebLogic Server
only.

8. Click the Create button. The XMLParserSelect registry entry is created.

9. In the left pane under the Servers node, click the name of the server with which
you want to associate the new XML registry.

10. In the right pane, select the Services tab.

11. Select the XML tab. The window to configure XML properties of WebLogic
Server appears in the right pane, as shown in Figure 4-2.

12. In the XML Registry field, select the XML registry name that you want to
associate with this server, and click the Apply button.

13. Restart your server so the new settings to take effect.
4-10 Programming WebLogic XML

External Entity Configuration Tasks
External Entity Configuration Tasks

You can use the XML Registry to configure external entity resolution and to configure
and monitor the external entity cache.

Configuring External Entity Resolution

You can configure external entity resolution with WebLogic Server in the following
two ways:

� Physically copy the entity files to a directory accessible by WebLogic
Administration Server and specify that the Administration Server use the local
copy whenever the external entity is referenced in an XML document.

� Specify that a managed WebLogic Server cache external entities that are
referenced with a URL or a pathname relative to the Administration server,
either at server-startup or when the entity is first referenced.

Caching the external entity in the managed WebLogic Server saves the remote
access time and provides a local backup in the event that the Administration
server cannot be accessed while an XML document is being parsed, due to the
network or the Administration server being down.

You can configure the expiration date a cached entity, at which point WebLogic
Server re-retrieves the entity from the URL or Administration server and
re-caches it.

Note: In the following procedure it is assumed that you are going to create a new
XML registry, add the necessary external entity resolution registry entries, and
associate it with a server. If you have already associated an existing XML
registry with your server, skip to step 5.

To configure external entity resolution, perform the following steps:

1. Start the WebLogic Administration Server and invoke the Administration Console
in your browser.

See “Overview of Administering WebLogic Server XML” on page 4-1 for
information on invoking the Administration Console.
Programming WebLogic XML 4-11

4 Administering WebLogic Server XML
2. Right-click the XML node under the Services node in the left pane and select
Configure a new XML Registry from the drop-down menu. The window to create
a new XML registry is displayed, as shown in Figure 4-1.

3. In the Name field, enter a unique registry name. If you want to configure
default parsers and transformer for your server, enter the factory class names in
the DocumentBuilderFactory, SaxParserFactory, and TransformerFactory fields.
Otherwise, leave these fields blank.

4. Click the Create button. The XML Registry is created and listed under the XML
node in the left pane.

5. Under the XMl node in the left pane, right-click the XML Entity Spec Registry
Entry node under your XML registry. Select Configure a New
XMLEntitySpecRegistryEntry from the drop-down menu. A blank window for
entering entity resolution information appears in the right pane, as shown in the
following figure:
4-12 Programming WebLogic XML

External Entity Configuration Tasks
Figure 4-4 Configuring External Entities using the Administration Console

6. Enter either the System Id or Public Id that is used to reference the external
entity in the XML document. For example, for the following car.xml file, enter
http://www.bea.com/dtds/car.dtd for the System Id:

Listing 4-2 car.xml File

<?xml version="1.0"?>
<!-- This XML document describes a car -->
<!DOCTYPE CAR PUBLIC "-//BEA Systems, Inc.//DTD for cars//EN"
"http://www.bea.com/dtds/car.dtd">
<CAR>
<MAKE>Toyota</MAKE>
<MODEL>Corrolla</MODEL>
<YEAR>1998</YEAR>
<ENGINE>1.5L</ENGINE>
Programming WebLogic XML 4-13

4 Administering WebLogic Server XML
<HP>149</HP>
</CAR>

7. In the EntityURI field, enter one of the following two entity paths:

a. The pathname of the copy of the entity file in the Administration Server. This
pathname must be relative to the registries entity directory, which is
BEAHome/wlserver6.1/config/domain/xml/registries/reg_name in
the domain configuration directory, where BEAHome is the top-level directory in
which the WebLogic Server software is installed, domain is the name of your
WebLogic Server domain, and reg_name is the name of the new XML
Registry. For example, for the car.xml file, you might enter dtds/car.dtd in
the EntityURI field.

b. A URL that points to an external entity out on the Web or an entity stored in a
repository. For example, enter
http://java.sun.com/j2ee/dtds/application_1_2.dtd to reference
the DTD for the application.xml file used to describe J2EE Enterprise
Applications or use jdbc: to reference an entity in a database.

Use the following protocol declarations to specify an external entity:
http://, file://, jdbc:, or ftp://.

8. Select one of the following options from the WhenToCache list box:

� cache-on-reference—WebLogic Server caches the external entity
referenced by a URL the first time the entity is referenced in an XML
document.

� cache-at-initialization—WebLogic Server caches the entity when the
server starts.

� defer-to-registry-setting—WebLogic Server uses the default caching
setting. See “Configuring the External Entity Cache” on page 4-15 for
information on configuring default caching settings.

9. In the CacheTimeoutInternal field, enter the number of seconds after which the
cached external entity becomes stale, or out-of-date. WebLogic Server
re-retrieves the external entity from the specified URL or pathname relative to the
Administration server if the cached copy has been in the cache for longer than
this amount.
4-14 Programming WebLogic XML

External Entity Configuration Tasks
The default value for this field is -1, which means that the global timeout value
for WebLogic Server is used. See “Configuring the External Entity Cache” on
page 4-15 for information on configuring global cache timeout settings.

10. Click the Create button. The XMLEntitySpec registry entry is created.

11. In the left pane under the Servers node, click the name of the server with which
you want to associate the new XML registry.

12. In the right pane, select the Services tab.

13. Select the XML tab. The window to configure XML properties of WebLogic
Server appears in the right pane, as shown in Figure 4-2.

14. In the XML Registry field, select the XML registry name that you want to
associate with this server, and click the Apply button.

15. Restart your server so the new settings to take effect.

16. If you specified that a local copy of the entity be used, rather than caching the
one from the Web, copy the entity file into the entity directory. For example, you
would copy the car.dtd file to the directory
BEAHome/wlserver6.1/config/domain/xml/registries/reg_name/dtds,
where BEAHome is the top-level directory in which the WebLogic Server software
is installed, domain is the name of your WebLogic Server domain, and reg_name
is the name of the new XML Registry.

Configuring the External Entity Cache

You can configure the following properties of the external entity cache:

� Size, in KB, of the cache memory. The default value for this property is 500 KB.

� Size, in MB, of the persistent disk cache. The default value for this property is 5
MB.

� Number of seconds after which external entities in the cache become stale after
they have been cached by WebLogic Server. This is the default value for the
entire server - you can override this value for specific external entities when you
configure the entity. The default value for this property is 120 seconds (2
minutes).
Programming WebLogic XML 4-15

4 Administering WebLogic Server XML
To configure the external entity cache, follow these steps:

1. Start the WebLogic Administration server and invoke the Administration Console
in your browser.

See “Overview of Administering WebLogic Server XML” on page 4-1 for
information on invoking the Administration Console.

2. Under the Servers node in the left pane, click the name of the WebLogic Server
for which you want to configure the external entity cache.

3. Select the Services tab in the right pane.

4. Select the XML tab. The window to configure XML properties of WebLogic
Server appears in the right pane, as shown in Figure 4-2.

5. In the Cache Memory Size field, enter the size, in KB, of the cache memory.

6. In the Cache Disk Size field, enter the size, in MB, of the persistent disk cache.

7. In the Cache Timeout Interval field, enter the number of seconds after which
entities become stale.

8. Click the Apply button.

Monitoring the External Entity Cache

A set of statistics that describes the external entity cache is available for you to use to
monitor the effectiveness of the cache. These statistics describe:

� The current state of the cache.

� The cumulative activity for the current session.

� The cumulative activity since the cache was created, typically when WebLogic
Server started.

To access the statistics, use the J2EE Java Management Extension (JMX) specification
with the WebLogic Server Management API to create and deploy Management Beans
(or MBeans) to monitor entity external caching in WebLogic Server. Use the following
MBean interfaces:

� weblogic.management.runtime.EntityCacheCumulativeRuntimeMBean
4-16 Programming WebLogic XML

External Entity Configuration Tasks
� weblogic.management.runtime.EntityCacheCurrentStateRuntimeMBean

� weblogic.management.runtime.EntityCacheRuntimeMBean

The WebLogic Server Management API is fully documented online in JavaDocs.

The following table describes the methods you can use to get statics on the current state
of the external entity cache.

Table 4-1 Current State of Cache Statistics

Method Description

getMemoryUsage Returns the number of bytes used to store all
memory-resident entries.

getDiskUsage Returns the number of bytes used to store all disk
resident entries.

getTotalCurrentEntries Returns the number of total entries in the cache.

getTotalPersistentCurrentEntries Returns the number of persistent entries in the cache.

getTotalTransientCurrentEntries Returns the number of transient entries in the cache.

getAvgPercentTransient Returns the percent of entries which are transient.

getAvgPercentPersistent Returns the percent of entries which are persistent.

getAvgTimeout Returns the average timeout value for the entries.

getMinEntryTimeout Returns the smallest timeout value for any current entry.

getMaxEntryTimeout Returns the largest timeout value for any current entry.

getAvgPerEntryMemorySize Returns the average memory size of the current entries.

getMaxEntryMemorySize Returns the largest memory size for any current entry.

getMinEntryMemorySize Returns the smallest memory size for any current entry.

getAvgPerEntryDiskSize Returns the average disk size of the current entries.
Programming WebLogic XML 4-17

http://e-docs.bea.com/wls/docs61/javadocs/index.html

4 Administering WebLogic Server XML
The following table describes the methods you can use to get statics on the cumulative
activity of the external entity cache.

Table 4-2 Cumulative Activity of the Cache

Method Description

getTotalCurrentEntries Returns the number of total entries in the cache.

getTotalPersistentCurrentEntries Returns the number of persistent entries in the cache.

getTotalTransientCurrentEntries Returns the number of transient entries in the cache.

getAvgPercentTransient Returns the percent of entries which are transient.

getAvgPercentPersistent Returns the percent of entries which are persistent.

getAvgTimeout Returns the average timeout value for the entries.

getMinEntryTimeout Returns the smallest timeout value for any current entry.

getMaxEntryTimeout Returns the largest timeout value for any current entry.

getAvgPerEntryMemorySize Returns the average memory size of the current entries.

getMaxEntryMemorySize Returns the largest memory size for any current entry.

getMinEntryMemorySize Returns the smallest memory size for any current entry.

getAvgPerEntryDiskSize Returns the average disk size of the current entries.

getTotalNumberMemoryPurges Returns the number of memory purges done.

getTotalItemsMemoryPurged Returns the total number of items purged in all memory
purges.

getAvgEntrySizeMemoryPurged Returns the average size in bytes of items memory
purged.

getMostRecentMemoryPurge Returns the time of the most recent memory purge.

getMemoryPurgesPerHour Returns the average number of memory purges per
hour.

getTotalNumberDiskPurges Returns the number of disk purges done.

getTotalItemsDiskPurged Returns the total number of items purged in all disk
purges.
4-18 Programming WebLogic XML

External Entity Configuration Tasks
getAvgEntrySizeDiskPurged Returns the average size in bytes of items disk purged.

getMostRecentDiskPurge Returns the time of the most recent disk purge.

getDiskPurgesPerHour Returns the average number of disk purges per hour.

getTotalNumberOfRejections Returns the number of entries that have been rejected.

getTotalSizeOfRejections Returns the total size in bytes of all items rejected.

getPercentRejected Returns the percent of inserts that were rejected.

getTotalNumberOfRenewals Returns the number of times an stale entry was renewed.

Table 4-2 Cumulative Activity of the Cache

Method Description
Programming WebLogic XML 4-19

4 Administering WebLogic Server XML
4-20 Programming WebLogic XML

CHAPTER
5 XML Reference

The following sections describe the XML specifications, application programming
interfaces (APIs), and tools supported by WebLogic Server:

� Extensible Markup Language (XML) 1.0 Specification

� Simple API for XML (SAX) 2.0

� Document Object Model (DOM) Level 2 API

� W3C XML Namespaces 1.0 Recommendation

� Java API for XML Processing (JAXP) 1.1

� Apache Xerces Java Parser API

� Apache Xalan XML Stylesheet Language Transformer (XSLT) API

� Additional Resources

Extensible Markup Language (XML) 1.0
Specification

The W3C Recommendation for XML provides the following abstract:

“The Extensible Markup Language (XML) is a subset of SGML that is completely
described in this document. Its goal is to enable generic SGML to be served, received,
and processed on the Web in the way that is now possible with HTML. XML has been
designed for ease of implementation and for interoperability with both SGML and
HTML.”
Programming WebLogic XML 5-1

5 XML Reference
The complete XML specification is available at http://www.w3.org/TR/REC-xml/.

Simple API for XML (SAX) 2.0

The SAX API is platform-independent and language-neutral. It is a standard interface
for event-based XML parsing that was developed collaboratively by the members of
the XML-DEV mailing list.

SAX applications process an XML document by creating a parser object and
associating handlers with XML events. Once these tasks are done, the parser can read
through the document as events occur, and pass them to the handlers. Events represent
the entities within the document, such as start of document, end of document, start of
element, and end of element. The SAX interface provides a simple coding model and
is useful for processing XML documents with a relatively simple hierarchical
structure. Hence, the SAX interface provides what is required by the bundled parser to
parse XML documents.

For more information on SAX, see http://www.saxproject.org/. For Javadoc
documentation, see SAX (Simple API for XML) at
http://e-docs.bea.com/wls/docs61/xerces/index.html.

Document Object Model (DOM) Level 2 API

The DOM API is a platform- and language-neutral interface It allows programs and
scripts to access and update the content, structure, and style of XML documents
dynamically. DOM gives you access to the information stored in your XML document
as a hierarchical object model, much like a tree with the document's root element as the
tree's root node. Using the DOM interface, you can access different parts of XML
documents, navigate through them, and make changes and additions to them.

When an application invokes a DOM parser, the parser processes the entire document,
creating an in-memory object model, which the application can process in any fashion
it chooses. The DOM approach is most useful for more complex documents because it
does not require a developer to interpret every element.
5-2 Programming WebLogic XML

http://www.w3.org/TR/REC-xml/
http://www.saxproject.org/
http://e-docs.bea.com/wls/docs61/xerces/index.html
http://e-docs.bea.com/wls/docs61/xerces/index.html

W3C XML Namespaces 1.0 Recommendation
For more information on DOM, see the DOM (Document Object Model) Level 2
Specification at http://www.w3.org/TR/DOM-Level-2/. For Javadoc documentation,
see DOM (Document Object Model) at
http://e-docs.bea.com/wls/docs61/xerces/index.html.

W3C XML Namespaces 1.0 Recommendation

The following abstract is taken from the W3C XML Namespace Recommendation:

“XML namespaces provide a simple method for qualifying element and attribute
names used in Extensible Markup Language documents by associating them with
namespaces identified by Universal Resource Identifier (URI) references.”

The XML Namespaces 1.0 Recommendation is available on the Internet at
http://www.w3.org/TR/REC-xml-names/.

Java API for XML Processing (JAXP) 1.1

JAXP is Sun’s Java API for XML parsing and transforming. JAXP provides basic
support for parsing, manipulating, and transforming XML documents through a
standardized set of Java platform APIs. Thus, applications that use JAXP to process
XML documents are portable across platforms.

JAXP does not replace either the SAX or DOM API. Instead, it adds some convenience
methods that are designed to make applications that use the SAX and DOM APIs
portable.

JAXP 1.1 consists of the javax.xml.parsers and javax.xml.transform packages
that contain the interfaces, classes, and methods for parsing and transforming XML
data.

The JAXP specification is available on the Internet at http://java.sun.com/xml/.
The JAXP Javadoc is available at
http://java.sun.com/xml/jaxp/dist/1.1/docs/api/index.html.
Programming WebLogic XML 5-3

http://www.w3.org/TR/DOM-Level-2/
http://www.w3.org/TR/DOM-Level-2/
http://e-docs.bea.com/wls/docs61/xerces/index.html
http://e-docs.bea.com/wls/docs61/xerces/index.html
http://www.w3.org/TR/REC-xml-names/
http://java.sun.com/xml/
http://java.sun.com/xml/jaxp/dist/1.1/docs/api/index.html

5 XML Reference
Apache Xerces Java Parser API

The Apache Xerces Java Parser package includes the API documentation for SAX and
DOM, the two most common interfaces for programming XML. In addition, the parser
provides documentation for classes that are not part of the SAX and DOM APIs, but
are useful for writing parser programs.

For more information about the Apache Xerces Java parser, refer to
http://xml.apache.org/xerces-j/index.html. For Javadoc documentation, refer to
Apache Xerces Java Parser at http://e-docs.bea.com/wls/docs61/xerces/index.html.

Apache Xalan XML Stylesheet Language
Transformer (XSLT) API

The Apache Xalan-Java XSLT transformer is used for transforming XML documents.
It implements the W3C Recommendation 16 November 1999 XSL Transformations
(XSLT) Version 1.0. XSLT is a stylesheet language for transforming XML documents
into other XML documents, HTML documents, or other document types. The
language includes the XSL Transformation vocabulary and XPath, a language for
addressing parts of an XML document. An XSL stylesheet describes how to transform
the tree of nodes in the XML input into another tree of nodes.

For more information about the Apache Xalan XSLT transformer, refer to
http://xml.apache.org/xalan-j/index.html. For Javadoc documentation, refer to Apache
Xalan XSLT Transformer at http://e-docs.bea.com/wls/docs61/Xalan/index.html.

Additional Resources

This section lists various resources that are available online to help you learn about
programming with WebLogic XML:
5-4 Programming WebLogic XML

http://xml.apache.org/xerces-j/index.html
http://e-docs.bea.com/wls/docs61/xerces/index.html
http://xml.apache.org/xalan-j/index.html
http://e-docs.bea.com/wls/docs61/Xalan/index.html
http://e-docs.bea.com/wls/docs61/Xalan/index.html

Additional Resources
� Code Examples

� Related WebLogic Documentation

� General XML Information

� Tutorials and Online Courses

� Other XML Specifications

Code Examples

XML code examples and supporting documentation are included in the WebLogic
Server distribution at BEA Home\wlserver6.1\samples\examples\xml, where
BEA Home is the directory in which the WebLogic Server software is installed.

Related WebLogic Documentation

� Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs61/webServices/index.html

� Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs61/ejb/index.html

� Programming WebLogic JMS at
http://e-docs.bea.com/wls/docs61/jms/index.html

� Programming WebLogic JSP at http://e-docs.bea.com/wls/docs61/jsp/index.html

� Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs61/servlet/index.html

� Programming WebLogic Server for Wireless Services at
http://e-docs.bea.com/wls/docs61/wireless/index.html

General XML Information

� W3C (World Wide Web Consortium) at http://www.w3c.org.
Programming WebLogic XML 5-5

http://e-docs.bea.com/wls/docs61/webServices/index.html
http://e-docs.bea.com/wls/docs61/ejb/index.html
http://e-docs.bea.com/wls/docs61/jms/index.html
http://e-docs.bea.com/wls/docs61/jsp/index.html
http://e-docs.bea.com/wls/docs61/servlet/index.html
http://e-docs.bea.com/wls/docs61/wireless/index.html
http://www.w3c.org

5 XML Reference
� XML.com at http://www.xml.com.

� XML FAQ at http://www.ucc.ie/xml/.

� XML.org, The XML Industry Portal at http://www.xml.org/.

� W3C: Extensible Stylesheet Language at http://www.w3.org/Style/XSL/.

Tutorials and Online Courses

� A Technical Introduction to XML at
http://www.xml.com/pub/a/98/10/guide0.html.

� XML Authoring Tutorial at http://www.xml.com/pub/r/32.

� Working with XML and Java at http://java.sun.com/xml/tutorial_intro.html.

� Tutorials for using the Java 2 platform and XML technology at
http://developerlife.com/.

� Developing XML Solutions with JavaServer Pages Technology at
http://java.sun.com/products/jsp/html/JSPXML.html.

� XML, Java, and the Future of the Web at
http://www.xml.com/pub/a/w3j/s3.bosak.html.

� Chapter 14 of the XML Bible: XSL Transformations at
http://metalab.unc.edu/xml/books/bible/updates/14.html.

� XSL Tutorial by Miloslav Nic at
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html.

� XML Schema Part 0: Primer at
http://www.w3.org/TR/2000/CR-xmlschema-0-20001024/.

Other XML Specifications

� Extensible Stylesheet Language (XSL) 1.0 Specification at
http://www.w3.org/TR/xsl/.
5-6 Programming WebLogic XML

http://www.w3c.org
http://www.xml.com
http://www.ucc.ie/xml/
http://www.xml.org/
http://www.w3.org/Style/XSL/
http://www.xml.com/pub/a/98/10/guide0.html
http://www.xml.com/pub/r/32
http://java.sun.com/xml/tutorial_intro.html
http://developerlife.com/
http://java.sun.com/products/jsp/html/JSPXML.html
http://www.xml.com/pub/a/w3j/s3.bosak.html
http://metalab.unc.edu/xml/books/bible/updates/14.html
http://zvon.vscht.cz/HTMLonly/XSLTutorial/Books/Book1/index.html
http://www.w3.org/TR/2000/CR-xmlschema-0-20001024/
http://www.w3.org/TR/xsl/

Additional Resources
� JSR-000031 XML Data Binding Specification at
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031_xmld.htm.

� XML Path Language (XPath) Version 1.0 Specification at
http://www.w3.org/TR/xpath.

� XML Linking Language (XLink) Specification at http://www.w3.org/TR/xlink.

� XML Pointer Language (XPointer) Specification at
http://www.w3.org/TR/WD-xptr.

� XML Schema Part 1: Structures at http://www.w3.org/TR/xmlschema-1/.

� XML Schema Part 2: Datatypes at http://www.w3.org/TR/xmlschema-2/.
Programming WebLogic XML 5-7

http://www.w3.org/TR/xsl/
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_031_xmld.html
http://www.w3.org/TR/xpath
http://www.w3.org/TR/xlink
http://www.w3.org/TR/WD-xptr
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://www.w3.org/TR/xmlschema-2/

5 XML Reference
5-8 Programming WebLogic XML

Index

A
Administration Console

configuring external entity cache 4-15
configuring external entity resolution 4-

11
configuring parsers 4-4
configuring transformers 4-4
invoking 4-1
monitoring external entity cache 4-16

Apache Serialize class 2-10
Apache Xalan 1-11, 5-4
Apache Xerces 1-11, 5-4

B
BEA XML Editor 1-14
built-in parser 1-11
built-in transformer 1-11

C
Classes

DefaultHandler 1-12, 2-3
DocumentBuilder 2-4
HandlerBase 1-12
InputSource 3-5
SAXParserFactory 4-5
Serialize 2-10
TransformerFactory 4-5
URLConnection 3-1
WLQueueSession 3-3

WLTopicSession 3-3
XMLInputSource 3-5
XMLMessage 3-4

customer support contact information ix

D
DefaultHandler class 1-12, 2-3
DOCTYPE declaration 1-4, 2-7
Document Object Model 1-6
documentation, where to find it viii
DocumentBuilder class 2-4
DocumentBuilderFactory class

Classes
DocumentBuilderFactory 4-5

DOM 1-6
specification 5-2

DTDs
definition 1-3
example of 1-3
used when validating 2-6

E
external entities

accessing 3-4
external entity resolution

description 2-7
overview 1-14
parsing XML 2-7
WebLogic Server features 2-8
Programming WebLogic XML I-1

G
generating XML

from a DOM tree 2-10
in a JSP 2-12

getAttribute method 1-12, 2-4
getAvgEntrySizeDiskPurged method 4-19
getAvgEntrySizeMemoryPurged method 4-

18
getAvgPercentPersistent method 4-17, 4-18
getAvgPercentTransient method 4-17, 4-18
getAvgPerEntryDiskSize method 4-17, 4-18
getAvgPerEntryMemorySize method 4-17,

4-18
getAvgTimeout method 4-17, 4-18
getDiskPurgesPerHour method 4-19
getDiskUsage method 4-17
getMaxEntryMemorySize method 4-17, 4-18
getMaxEntryTimeout method 4-17, 4-18
getMemoryPurgesPerHour method 4-18
getMemoryUsage method 4-17
getMinEntryMemorySize method 4-17, 4-18
getMinEntryTimeout method 4-17, 4-18
getMostRecentDiskPurge method 4-19
getMostRecentMemoryPurge method 4-18
getPercentRejected method 4-19
getTotalCurrentEntries method 4-17, 4-18
getTotalItemsDiskPurged method 4-18
getTotalItemsMemoryPurged method 4-18
getTotalNumberDiskPurges method 4-18
getTotalNumberMemoryPurges method 4-18
getTotalNumberOfRejections method 4-19
getTotalNumberOfRenewals method 4-19
getTotalPersistentCurrentEntries method 4-

17, 4-18
getTotalSizeOfRejections method 4-19
getTotalTransientCurrentEntries method 4-

17, 4-18

H
HandlerBase class 1-12

I
InputSource class 3-5

J
JAXP

definition 1-7
packages 1-7
parsing XML 2-3
specification 5-3
transforming XML 2-11, 2-13
WebLogic implementation 1-12

JMS
handling XML documents 3-3

JSP tag library for XSLT 1-12
JSP, sending and receiving XML 3-1

M
Methods

getAttribute 1-12, 2-4
getAvgEntrySizeDiskPurged 4-19
getAvgEntrySizeMemoryPurged 4-18
getAvgPercentPersistent 4-17, 4-18
getAvgPercentTransient 4-17, 4-18
getAvgPerEntryDiskSize 4-17, 4-18
getAvgPerEntryMemorySize 4-17, 4-18
getAvgTimeout 4-17, 4-18
getDiskPurgesPerHour 4-19
getDiskUsage 4-17
getMaxEntryMemorySize 4-17, 4-18
getMaxEntryTimeout 4-17, 4-18
getMemoryPurgesPerHour 4-18
getMemoryUsage 4-17
getMinEntryMemorySize 4-17, 4-18
getMinEntryTimeout 4-17, 4-18
getMostRecentDiskPurge 4-19
getMostRecentMemoryPurge 4-18
getPercentRejected 4-19
getTotalCurrentEntries 4-17, 4-18
getTotalItemsDiskPurged 4-18
I-2 Programming WebLogic XML

getTotalItemsMemoryPurged 4-18
getTotalNumberDiskPurges 4-18
getTotalNumberMemoryPurges 4-18
getTotalNumberOfRejections 4-19
getTotalNumberOfRenewals 4-19
getTotalPersistentCurrentEntries 4-17,

4-18
getTotalSizeOfRejections 4-19
getTotalTransientCurrentEntries 4-17,

4-18
setAttribute 1-12, 2-4
setValidating 2-6

P
parsers

built-in 1-11
non-validating 2-6
using other than built-in 2-9
validating 2-6
WebLogic FastParser 1-11, 2-9

parsing XML
external entity resolution 2-7
in a servlet 2-4
in DOM mode 2-4
in SAX mode 2-3

printing product documentation viii
public identifier 2-7, 3-5, 4-9, 4-13

R
related information 5-5

S
SAX 1-6, 2-9

specification 5-2
SAXParserFactory class 4-5
schemas

definition 1-3
example 1-3

used when validating 2-6
Serialize class 2-10
servlet attributes 1-12
servlet, sending and receiving XML 3-1
setAttribute method 1-12, 2-4
setValidating method 2-6
SGML 1-1
Simple API for XML 1-6
Specifications

DOM 5-2
JAXP 5-3
JAXR 5-6
SAX 5-2
Xalan 5-4
Xerces 5-4
XLink 5-6
XML 5-1
XML Namespaces 5-3
XML Schemas 5-6
XPath 5-6
XPointer 5-6
XSL 5-6

support
technical ix

system identifier 2-7, 3-5, 4-9, 4-13

T
TransformerFactory class 4-5
transformers

built-in 1-11
using other than the built-in 2-21, 2-22

transforming XML
overview 2-13
using JAXP 2-13
using JSP tag library 2-16

U
URLConnection class 3-1
Programming WebLogic XML I-3

V
valid XML document 1-4, 2-6

W
WebLogic FastParser 1-11, 2-9, 4-5
WebLogic Server Management API 4-17
WebLogic Server XML

administering overview 4-1
administration tasks 4-2
features of 1-10

well-formed XML document 1-4, 2-6
WLQueueSession class 3-3
WLSession class

Classes
WLSession 3-3

WLTopicSession class 3-3
WML 1-9

X
Xalan

built-in transformer 1-11
converting to JAXP 2-14
specification 5-4

Xerces
built-in parser 1-11
specification 5-4

XML
code examples 1-14
common uses of 1-8
definition 1-1
DOM 1-6
DTD 1-3
editing 1-14
examples 1-2, 5-5
general information 5-5
generating 2-10
getting document header information 3-5
learning about 1-15
namespace specification 5-3

online classes 5-6
parsing 2-2
programming techniques 3-1
SAX 1-6
schema 1-3
sending to and from servlets and jsp 3-1
specification 5-1
syntax 1-2
transforming 2-13
tutorials 5-6
valid 1-4, 2-6
well-formed 1-4, 2-6
why use it 1-5

XML applications
steps to develop 2-1

XML Registry
benefits of using 4-2
configuring external entity cache 4-15
configuring external entity resolution 1-

14, 2-8, 4-11
configuring parser for document type 4-

7
configuring parsers 2-9, 4-3, 4-4
configuring transformers 2-22, 4-3, 4-4
description 1-13, 4-2
how it works 4-3
main window 4-5
monitoring external entity cache 4-16

XMLInputSource class 3-5
XMLMessage class 3-4
XMLT JSP tag library

tags 2-16
XSLT

common uses of 1-8
definition 1-5
JSP tag library 1-12

XSLT JSP tags
example of using 2-21
procedure for using 2-20
syntax 2-17
usage 2-18
I-4 Programming WebLogic XML

	Copyright
	Restricted Rights Legend
	Trademarks or Service Marks

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 XML Overview
	What Is XML?
	How Do You Describe an XML Document?
	Why Use XML?
	What Are XSL and XSLT?
	What Are DOM and SAX?
	SAX
	DOM

	What Is JAXP?
	JAXP Packages

	Common Uses of XML and XSLT
	Using XML and XSLT to Separate Content from Presentation
	XML as a Message Format for Business-to-Business Communication

	WebLogic Server XML Features
	XML Document Parsers
	XML Document Transformer
	JAXP Plugability Layer Implementation
	WebLogic Servlet Attributes
	request.setAttribute("org.xml.sax.helpers.DefaultHandler", new DefHandler());
	org.w3c.dom.Document = (Document)request.getAttribute("org.w3c.dom.Document");

	WebLogic XSLT JSP Tag Library
	XML Registry For Configuring Parsers and Transformers
	XML Registry for Configuring External Entity Resolution
	Code Examples

	Editing XML Files
	Learning About XML

	2 Developing XML Applications with WebLogic Server
	Developing XML Applications: Main Steps
	1. Parse an XML document.
	2. Generate a new XML document.
	3. Transform XML data into another format.

	Parsing XML Documents
	Parsing XML Documents Using JAXP in SAX Mode
	Parsing XML Documents Using JAXP in DOM Mode
	Parsing XML Documents in a Servlet
	Using the org.xml.sax.DefaultHandler Attribute to Parse a Document
	Using the org.w3c.dom.Document Attribute to Parse a Document

	Validating and Non-Validating Parsers
	Handling Entity Resolution While Parsing an XML Document
	General Information About External Entities
	Using the WebLogic Server Entity Resolution Features

	Using Parsers Other Than the Built-In Parser
	Using the WebLogic FastParser

	Generating XML Documents
	Generating XML from a DOM Document Tree
	Using the Apache Serialize Class
	Using the JAXP Transformer Class

	Generating XML Documents in a JSP

	Using JAXP to Transform XML Data
	Example of Transforming an XML Document Using JAXP
	Converting From the Xalan API to JAXP 1.1 API

	Using the JSP Tag to Transform XML Data
	XSLT JSP Tag Syntax
	XSLT JSP Tag Usage
	Transforming XML Documents Using an XSLT JSP Tag
	1. Open the xmlx.zip file in the BEA Home/wlserver6.0/ext directory; extract the xmlx-tags.jar fi...
	2. Add a <taglib> entry to the web.xml file. For example:
	3. To use the tags, add the following line to your JSP page:
	4. Configure the transformer. The following procedure shows a generic way to configure the transf...
	a. Enter the following code line to create an xslt.jsp file:
	b. Register the xslt.jsp file in your web.xml file, as follows:
	c. Put your XML/DTD/XSL documents or servlets in your Web application.
	d. Add an xslt prefix to the pathname for the XML document (for example, change docs/fred.xml to ...
	e. To define media type, add code to the JSP to determine the media type for the XML document and...
	f. Pass the media type into the xslt tag and then set the content type of the response object.

	Example of Using the XSLT JSP Tag in a JSP

	Using Transformers Other Than the Built-In Transformer

	3 XML Programming Techniques
	Sending and Receiving XML To and From Servlets and JSPs
	import java.net.*; import java.io.*; import java.util.*;
	public class Client {
	public static void main(String[] args) throws Exception { if (args.length < 2) { System.out.print...
	// send xml to jsp pw.write(buffer, 0, bytes_read); pw.close();
	BufferedReader in = new BufferedReader(new InputStreamReader(urlc.getInputStream())); String inpu...
	in.close(); } } catch (Exception e) { e.printStackTrace(); } } } }
	BufferedReader br = new BufferedReader(request.getReader()); DocumentBuilderFactory fact = Docume...
	...
	PrintWriter responseWriter = response.getWriter(); responseWriter.println("<?xml version='1.0'?>");

	Handling XML Documents in a JMS Application
	Accessing External Entities That Do Not Have an HTTP Interface
	XML Document Header Information

	4 Administering WebLogic Server XML
	Overview of Administering WebLogic Server XML
	XML Administration Tasks
	How the XML Registry Works
	Parser Selection Within the XML Registry
	1. Use the parser defined for a particular document type.
	2. Use the alternative server-wide parser defined in the XML Registry associated with the WebLogi...
	3. Use the built-in Xerces parser.

	XML Parser and Transformer Configuration Tasks
	Configuring a Parser or Transformer Other Than the Built-In
	1. Start the WebLogic Administration server and invoke the Administration Console in your browser...
	2. In the left pane, right-click the XML node under the Services node and select Configure a new ...
	Figure 4�1 Main XML Registry Window in Administration Console
	3. Enter a unique registry name in the Name field and set the DocumentBuilderFactory, SaxParserFa...

	Name: WebLogic FastParser DocumentBuilderFactory: SAXParserFactory: weblogic.xml.babel.jaxp.SAXPa...
	Name: Apache Xerces/Xalan Registry DocumentBuilderFactory: org.apache.xerces.jaxp.DocumentBuilder...
	4. Click the Create button. The XML Registry is created and listed under the XML node in the left...
	5. In the left pane under the Servers node, click the name of the server with which you want to a...
	6. In the right pane, select the Services tab.
	7. Select the XML tab. The window to configure XML properties of WebLogic Server appears in the r...
	Figure 4�2 Window to Configure XML Properties in Administration Console
	8. Select the XML registry name that you want to associate with this server in the XML Registry f...
	9. Restart your server so the new settings to take effect.

	Configuring a Parser for a Particular Document Type
	1. Start the WebLogic Administration server and invoke the Administration Console in your browser.
	2. In the left pane, right-click the XML node under the Services node and select Configure a new ...
	3. Enter a unique registry name in the Name field. If you want to configure default parsers and t...
	4. Click the Create button. The XML Registry is created and listed under the XML node in the left...
	5. Under the XML node in the left pane, right-click the XML Parser Select Registry Entry node und...
	Figure 4�3 Configuring an XML Parser Using the Administration Console
	6. Enter the document type information in one of the following ways:
	a. Use either the Public Id or the System Id field to specify the doctype. For example, for the c...
	b. Specify the Root Element Tag name of the document. For the car.xml example, enter CAR in the R...

	Listing 4-1 car.xml File
	7. Set the DocumentBuilderFactory or SaxParserFactory fields to the appropriate Factory parser cl...
	8. Click the Create button. The XMLParserSelect registry entry is created.
	9. In the left pane under the Servers node, click the name of the server with which you want to a...
	10. In the right pane, select the Services tab.
	11. Select the XML tab. The window to configure XML properties of WebLogic Server appears in the ...
	12. In the XML Registry field, select the XML registry name that you want to associate with this ...
	13. Restart your server so the new settings to take effect.

	External Entity Configuration Tasks
	Configuring External Entity Resolution
	1. Start the WebLogic Administration Server and invoke the Administration Console in your browser.
	2. Right-click the XML node under the Services node in the left pane and select Configure a new X...
	3. In the Name field, enter a unique registry name. If you want to configure default parsers and ...
	4. Click the Create button. The XML Registry is created and listed under the XML node in the left...
	5. Under the XMl node in the left pane, right-click the XML Entity Spec Registry Entry node under...
	Figure 4�4 Configuring External Entities using the Administration Console
	6. Enter either the System Id or Public Id that is used to reference the external entity in the X...

	Listing 4-2 car.xml File
	7. In the EntityURI field, enter one of the following two entity paths:
	a. The pathname of the copy of the entity file in the Administration Server. This pathname must b...
	b. A URL that points to an external entity out on the Web or an entity stored in a repository. Fo...
	8. Select one of the following options from the WhenToCache list box:
	9. In the CacheTimeoutInternal field, enter the number of seconds after which the cached external...
	10. Click the Create button. The XMLEntitySpec registry entry is created.
	11. In the left pane under the Servers node, click the name of the server with which you want to ...
	12. In the right pane, select the Services tab.
	13. Select the XML tab. The window to configure XML properties of WebLogic Server appears in the ...
	14. In the XML Registry field, select the XML registry name that you want to associate with this ...
	15. Restart your server so the new settings to take effect.
	16. If you specified that a local copy of the entity be used, rather than caching the one from th...

	Configuring the External Entity Cache
	1. Start the WebLogic Administration server and invoke the Administration Console in your browser.
	2. Under the Servers node in the left pane, click the name of the WebLogic Server for which you w...
	3. Select the Services tab in the right pane.
	4. Select the XML tab. The window to configure XML properties of WebLogic Server appears in the r...
	5. In the Cache Memory Size field, enter the size, in KB, of the cache memory.
	6. In the Cache Disk Size field, enter the size, in MB, of the persistent disk cache.
	7. In the Cache Timeout Interval field, enter the number of seconds after which entities become s...
	8. Click the Apply button.

	Monitoring the External Entity Cache
	Table 4�1 Current State of Cache Statistics
	Table 4�2 Cumulative Activity of the Cache

	5 XML Reference
	Extensible Markup Language (XML) 1.0 Specification
	Simple API for XML (SAX) 2.0
	Document Object Model (DOM) Level 2 API
	W3C XML Namespaces 1.0 Recommendation
	Java API for XML Processing (JAXP) 1.1
	Apache Xerces Java Parser API
	Apache Xalan XML Stylesheet Language Transformer (XSLT) API
	Additional Resources
	Code Examples
	Related WebLogic Documentation
	General XML Information
	Tutorials and Online Courses
	Other XML Specifications

	Index

