
BEA
 WebLogic
Server™

Programming WebLogic
Management Services
with JMX
Release 7.0
Revised: March 18, 2004

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic Management Services with JMX

Part Number Document Revised Software Version

N/A March 14, 2004 BEA WebLogic Server
Version 7.0

Contents

About This Document
Audience.. viii
e-docs Web Site... viii
How to Print the Document... viii
Contact Us!.. ix
Documentation Conventions ... ix

1. Overview of WebLogic JMX Services
WebLogic Server Managed Resources and MBeans .. 1-2

Basic Organization of a WebLogic Server Domain................................... 1-3
MBeans for Configuring Managed Resources ... 1-3

Local Replicas of Configuration MBeans... 1-4
The Life Cycle of Configuration MBeans .. 1-5
Replication of MBeans for Managed Server Independence 1-8
Documentation for Configuration MBean APIs 1-8

MBeans for Viewing the Runtime State of Managed Resources............... 1-9
Documentation for Runtime MBean APIs.. 1-11

Security MBeans .. 1-12
Non-WebLogic Server MBeans ... 1-13

MBean Servers and the MBeanHome Interface.. 1-13
Local MBeanHome and the Administration MBeanHome...................... 1-15

Notifications and Monitoring .. 1-17
The Administration Console and the weblogic.Admin Utility........................ 1-17

The Administration Console .. 1-18
The weblogic.Admin Utility .. 1-18
Programming WebLogic Management Services with JMX iii

2. Accessing WebLogic Server MBeans
Accessing MBeans: Main Steps .. 2-1
Determining Which Interfaces to Use ... 2-2
Accessing an MBeanHome Interface .. 2-4

Using the Helper APIs to Retrieve an MBeanHome Interface................... 2-4
Example: Retrieving a Local MBeanHome Interface 2-5

Using JNDI to Retrieve an MBeanHome Interface.................................... 2-6
Example: Retrieving the Administration MBeanHome from an External

Client .. 2-8
Example: Retrieving a Local MBeanHome from an Internal Client .. 2-9

Using the Type-Safe Interface to Access MBeans .. 2-10
Retrieving a List of All MBeans .. 2-10
Retrieving MBeans By Type and Selecting From the List....................... 2-12
Walking the Hierarchy of Local Configuration and Runtime MBeans.... 2-14

Using the MBeanServer Interface to Access MBeans..................................... 2-18
Using WebLogicObjectNames for WebLogic Server MBeans....................... 2-20
Using weblogic.Admin to Find the WebLogicObjectName 2-24

3. Accessing and Changing Configuration Information
Example: Using weblogic.Admin to View the Message Level for Standard Out ..

3-2
Example: Configuring the Message Level for Standard Out............................. 3-3

4. Accessing Runtime Information
Example: Determining the Active Domain and Servers.................................... 4-2

Using weblogic.Admin to Determine Active Domains and Servers.......... 4-4
Example: Viewing and Changing the Runtime State of a WebLogic Server

Instance... 4-5
Using a Local MBeanHome and getRuntimeMBean() 4-5
Using the Administration MBeanHome and getMBeansByType() 4-8
Using the Administration MBeanHome and getMBean()........................ 4-10
Using the MBeanServer Interface .. 4-12

Example: Viewing Runtime Information About Clusters 4-14
Viewing Runtime Information for EJBs.. 4-16

Example: Retrieving Runtime Information for All Stateful and Stateless EJBs
4-20
iv Programming WebLogic Management Services with JMX

5. Using WebLogic Server MBean Notifications and Monitors
How Notifications are Broadcast and Received.. 5-2
Monitoring Changes in MBeans.. 5-3
Best Practices: Listening Directly Compared to Monitoring 5-6
Best Practices: Commonly Monitored Attributes.. 5-6
Listening for Notifications from WebLogic Server MBeans: Main Steps........ 5-9

WebLogic Server Notification Types .. 5-10
Creating a Notification Listener... 5-11
Creating a Notification Filter ... 5-14

Adding Filter Classes to the Server Classpath 5-15
Registering a Notification Listener and Filter.. 5-16
Listening for Configuration Auditing Messages: Main Steps.................. 5-19

Notification Listener for Configuration Auditing Messages 5-20
Notification Filter for Configuration Auditing Messages................. 5-21
Registration Class for Configuration Auditing Messages................. 5-22

Using Monitor MBeans to Observe Changes: Main Steps.............................. 5-24
Choosing a Monitor MBean Type.. 5-24
Monitor Notification Types.. 5-25

Error Notification Types ... 5-26
Creating a Notification Listener for a Monitor MBean............................ 5-27
Instantiating the Monitor and Listener ... 5-28

Example: Monitoring an MBean on a Single Server 5-29
Example: Monitoring Instances of an MBean on Multiple Servers.. 5-32

Configuring CounterMonitor Objects .. 5-36
Configuring GaugeMonitor Objects... 5-38
Configuring StringMonitor Objects ... 5-39

Sample Monitoring Scenarios ... 5-39
JDBC Monitoring... 5-40
Programming WebLogic Management Services with JMX v

vi Programming WebLogic Management Services with JMX

About This Document

This document describes how to use the BEA WebLogic Server™ management APIs
to configure and monitor WebLogic Server domains, clusters, and server instances.

The document is organized as follows:

Chapter 1, “Overview of WebLogic JMX Services” describes the WebLogic
Server management interface and provides overviews of WebLogic Server
MBeans, MBean home interfaces, and the distributed management architecture.

Chapter 2, “Accessing WebLogic Server MBeans,” describes how to access
interfaces for working with WebLogic Server MBeans.

Chapter 3, “Accessing and Changing Configuration Information,” provides
examples of retrieving and modifying the configuration of WebLogic Server
resources.

Chapter 4, “Accessing Runtime Information,” provides examples of retrieving
and modifying runtime information about WebLogic Server domains and server
instances.

Chapter 5, “Using WebLogic Server MBean Notifications and Monitors,”
describes how to observe and respond to changes in the values of WebLogic
Server MBean attributes.

Note: The WebLogic Security Service provides MBeans and tools for generating
additional MBeans that manage security on a WebLogic Server. These
MBeans are called Security MBeans and their usage model is different from
the one described in this document. For information on Security MBeans, refer
to Developing Security Providers for WebLogic Server.
Programming WebLogic Management Services with JMX vii

http://e-docs.bea.com/wls/docs70/dvspisec/index.html

Audience

This document is written for independent software vendors (ISVs) and other
developers who are interested in creating custom applications that use BEA WebLogic
Server facilities to monitor and configure applications and server instances. It assumes
that you are familiar with the BEA WebLogic Server platform and the Java
programming language, but not necessarily with Java Management Extensions (JMX).

While the document describes how to access and use the Managed Beans (MBeans)
that WebLogic Server provides, it does not describe how to create your own, additional
MBeans. For information about creating and using MBeans in addition to the ones that
WebLogic Server provides, refer to the JMX 1.0 specification, which you can
download from http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
viii Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://www.adobe.com

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
Programming WebLogic Management Services with JMX ix

mailto:docsupport@bea.com
http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that the user is told to enter from the keyboard.
Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Placeholders.
Example:
String CustomerName;

UPPERCASE
MONOSPACE
TEXT

Device names, environment variables, and logical operators.
Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:
An argument can be repeated several times in the command line.
The statement omits additional optional arguments.
You can enter additional parameters, values, or other information

Convention Usage
x Programming WebLogic Management Services with JMX

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
Programming WebLogic Management Services with JMX xi

xii Programming WebLogic Management Services with JMX

CHAPTER
1 Overview of WebLogic
JMX Services

WebLogic Server implements the Sun Microsystems, Inc. Java Management
Extensions (JMX) 1.0 specification to provide open and extensible management
services. WebLogic Server adds its own set of convenience methods and other
extensions to facilitate working in the WebLogic Server distributed environment.

All WebLogic Server resources are managed through these JMX-based services, and
third-party services and applications that run within WebLogic Server can be managed
through them as well. You can build your own management utilities that use these
JMX services to manage WebLogic Server resources and applications.

The following sections provide an overview of the WebLogic Server JMX services:

“WebLogic Server Managed Resources and MBeans” on page 1-2

“MBean Servers and the MBeanHome Interface” on page 1-13

“Notifications and Monitoring” on page 1-17

“The Administration Console and the weblogic.Admin Utility” on page 1-17

To view the JMX 1.0 specification, download it from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The API
documentation is included in the archive that you download.
Programming WebLogic Management Services with JMX 1-1

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

1 Overview of WebLogic JMX Services
WebLogic Server Managed Resources and
MBeans

Subsystems within WebLogic Server (such as JMS Provider and JDBC Container) and
the items that they control (such as JMS servers and JDBC connection pools) are called
WebLogic Server managed resources. Each managed resource includes a set of
attributes that can be configured and monitored for management purposes. For
example, each JDBC connection pool includes attributes that define its name, the name
of its driver, its initial capacity, and its cache size. Some managed resources provide
additional methods (operations) that can be used for management purposes. The
WebLogic JMX services expose these management attributes and operations through
one or more managed beans (MBeans). An MBean is a concrete Java class that is
developed per JMX specifications. It can provide getter and setter operations for each
management attribute within a managed resource along with additional management
operations that the resource makes available. (See Figure 1-1.)

Figure 1-1 Managed Resources and Managed Beans

WebLogic Server MBeans that expose attributes and operations for configuring a
managed resource are called Configuration MBeans while MBeans that provide
information about the runtime state of a managed resource are called Runtime
MBeans. The functions of configuring resources and viewing data about the runtime
state of resources in a WebLogic Server domain are different enough that
Configuration MBeans and Runtime MBeans are distributed and maintained
differently.

WebLogic Server

Managed Resource

*1

ManagementAttribute-A

ManagementOperation-A

ManagementAttribute-B

Managed Bean

getManagementAttribute-A

ManagementOperation-A

getManagementAttribute-B

setManagementAttribute-A

setManagementAttribute-B
1-2 Programming WebLogic Management Services with JMX

WebLogic Server Managed Resources and MBeans
The following sections describe how WebLogic Server distributes and maintains
MBeans:

“Basic Organization of a WebLogic Server Domain” on page 1-3

“MBeans for Configuring Managed Resources” on page 1-3

“MBeans for Viewing the Runtime State of Managed Resources” on page 1-9

“Security MBeans” on page 1-12

“Non-WebLogic Server MBeans” on page 1-13

Basic Organization of a WebLogic Server Domain

A WebLogic Server administration domain is a logically related group of WebLogic
Server resources. Domains include a special WebLogic Server instance called the
Administration Server, which is the central point from which you configure and
manage all resources in the domain. Usually, you configure a domain to include
additional WebLogic Server instances called Managed Servers. You deploy
applications, EJBs, and other resources developed onto the Managed Servers and use
the Administration Server for configuration and management purposes only.

Using multiple Managed Servers enables you to balance loads and provide failover
protection for critical applications, while using single Administration Server simplifies
the management of the Managed Server instances. For more information about
domains, refer to "Overview of WebLogic System Administration" in the WebLogic
Server Administration Guide.

MBeans for Configuring Managed Resources

To support the WebLogic Server model of centralizing management responsibilities
on the Administration Server, the Administration Server hosts Configuration MBeans
for all managed resources on all server instances in the domain. In addition, the
Administration Server saves changes to configuration data so that it is available when
you shut down and restart a server instance.

To change the configuration of a WebLogic Server resource, you modify the values in
the Configuration MBeans on the Administration Server.
Programming WebLogic Management Services with JMX 1-3

http://e-docs.bea.com/wls/docs70/adminguide/overview.html

1 Overview of WebLogic JMX Services
Local Replicas of Configuration MBeans

To enhance performance and to support some clustering features, each Managed
Server creates local replicas of all Configuration MBeans in a domain. WebLogic
Server subsystems and applications that interact with MBeans use the replicas on the
local server instead of initiating remote calls to the Administration Server. (See
Figure 1-2.)

Figure 1-2 MBean Replication

The Configuration MBeans on the Administration Server are called Administration
MBeans, and the replicas on the Managed Servers are called Local Configuration
MBeans.

Note: In addition to hosting Administration MBeans, the Administration Server
hosts the Local Configuration MBeans that are used by its own subsystems and
by any applications that are deployed on the Administration Server.

Administration Server

MBeans

MBeans

Managed
Resources
Managed
Resources
MBean
Client

Managed Servers
replicate the Configuration

MBean clients
use the local replicas.

Managed Server B

Managed Server A

MBeans

Managed
Resources
Managed
Resources
MBean
Client

The Administration Server
hosts Configuration MBeans
for all servers in a domain.

MBeans.
1-4 Programming WebLogic Management Services with JMX

WebLogic Server Managed Resources and MBeans
The Life Cycle of Configuration MBeans

This section describes how Administration MBeans and Local Configuration MBeans
are initialized, how changes to configuration data are propagated throughout the
WebLogic Server system, and how attribute values can be changed so that they are
available when you restart server instances:

1. The life cycle of a Configuration MBean begins when you start the Administration
Server. During its startup cycle, the Administration Server initializes all the
Administration MBeans for the domain with data from the domain’s config.xml
file. (See Figure 1-3.)

Figure 1-3 Initializing Configuration MBeans

The Administration Server reads data from the config.xml file only during its
startup cycle.

2. When a Managed Server starts, it contacts the Administration Server for its
configuration data. By default, it creates replicas of the Administration MBeans
that configure resources in the domain. However, you can use arguments in the
server’s startup command to override values of the Administration MBeans.

For example, for Managed Server A, the config.xml file states that its listen
port is 8000. When you use the weblogic.Server command to start Managed
Server A, you include the -Dweblogic.ListenPort=7501 startup option to
change the listen port for the current server session. The Managed Server creates
a replica of the Administration MBeans, but substitutes 7501 as the value of its

Administration Server

<Server

ListenPort="7001"
 Name="MyServer"

>

<?xml version="1.0"
encoding="UTF-8"?>

<Domain>

</Domain>

config.xml

ServerMBean

getListenPort
 getName

setListenPort
 setName

 Name="MyServer"

</Server>

ListenPort="7001"
Programming WebLogic Management Services with JMX 1-5

1 Overview of WebLogic JMX Services
listen port. When you restart Managed Server A, it will revert to using the value
from the config.xml file, 8000. (See Figure 1-4.)

Figure 1-4 Overriding Administration MBean Values

When you start an Administration Server, any startup command arguments that
you use to override the values in config.xml affect only the values of the Local
Configuration MBeans on the Administration Server. The command arguments

Administration Server

Managed
Resources
Managed
Resources
MBean
Client

2. At startup, Managed Servers
 replicate the Administration

Managed Server B

Managed Server A

MBean

config.xml

1. At startup, the Administration
 Server initializes Administration
 MBeans with data from the
 config.xml file.

 MBeans.

weblogic.Server
-Dweblogic.ListenPort=7501

 Startup options override
 the values from the
 Administration MBeans.

weblogic.ListenPort=8000

Administration MBeans

weblogic.ListenPort=7501

Local Configuration MBean
Managed
Resources
Managed
Resources
MBean
Client
1-6 Programming WebLogic Management Services with JMX

WebLogic Server Managed Resources and MBeans
do not affect the values of the Administration MBeans and therefore do not
affect subsequent server sessions. (See Figure 1-5.)

Figure 1-5 Overriding Values on the Administration Server

3. If you change a value in an Administration MBean, and if the corresponding
Managed Server is running, the Administration Server propagates the change to
the Local Configuration MBean. Depending on the attribute, the underlying
resource might not be able to accept the new value until it restarts. The WebLogic
Server Javadoc indicates whether a managed resource can accept new values for
an attribute during the current session. Even if a managed resource can accept
new values, depending on the frequency with which the resource checks for
configuration changes, the resource might not use the updated value immediately.

Note: BEA recommends that you change only the values of Administration
MBean attributes. Do not change attribute values in Local Configuration
MBeans. When a Managed Server replicates the data of other Managed
Servers, it uses the values that are stored in Administration MBeans.
Communication problems can occur if the values in Administration
MBeans and Local Configuration MBeans differ.

Administration Server

weblogic.Server
-Dweblogic.ListenPort=7501

Startup options for
Administration Server
affect only the Local
Configuration MBeans
on the Administration Server

MBean

Managed
Resources
Managed
Resources
MBean
Client

Local Configuration
MBean

MBean

MBean

MBean
Administration
MBean
Programming WebLogic Management Services with JMX 1-7

1 Overview of WebLogic JMX Services
4. Periodically, the Administration Server determines whether Administration
MBeans have been changed and writes any changes back to config.xml.
Changes also are written to config.xml when the Administration Server shuts
down or when MBean attributes are modified by a WebLogic Server utility such
as the Administration Console or weblogic.Admin.

5. Local Configuration MBeans are destroyed when you shut down Managed
Servers. Administration MBeans are destroyed when you shut down the
Administration Server.

Replication of MBeans for Managed Server Independence

Managed Server Independence (MSI) is a feature that enables a Managed Server to
start if the Administration Server is unavailable. If a Managed Server is configured for
MSI, in addition to its Local Configuration MBeans, it also contains a copy of all
Administration MBeans for the domain.

Do not interact with these Administration MBeans on a Managed Server. They reflect
the last known configuration for the domain and are used only for starting the Managed
Server in MSI mode. Modifying an Administration MBean on a Managed Server can
cause the Managed Server’s configuration to be inconsistent with the Administration
Server, which will lead to unpredictable results. In addition, Managed Servers are not
aware of the Administration MBeans on other Managed Servers.

For more information on MSI, refer to "Starting a Managed Server When the
Administration Server Is Not Accessible" in the Creating and Configuring WebLogic
Server Domains guide.

Documentation for Configuration MBean APIs

To view the documentation for Configuration MBeans:

1. Open the WebLogic Server Javadoc.

2. In the top left pane of the Web browser, click
weblogic.management.configuration.

The lower left pane displays links for the package.

3. In the lower left pane, click weblogic.management.configuration again.

The right pane displays the package summary. (See Figure 1-6.)
1-8 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/admin_domain/failures.html#starting_MS_when_AS_not_accessible
http://e-docs.bea.com/wls/docs70/admin_domain/failures.html#starting_MS_when_AS_not_accessible
http://e-docs.bea.com/wls/docs70/javadocs/index.html

WebLogic Server Managed Resources and MBeans
Figure 1-6 Javadoc for the configuration Package

4. Click on an interface name to view its API documentation.

MBeans for Viewing the Runtime State of Managed
Resources

WebLogic Server managed resources provide performance metrics and other
information about their runtime state through one or more Runtime MBeans. Runtime
MBeans are not replicated like Configuration MBeans, and they exist only on the same
server instance as their underlying managed resources.

Because Runtime MBeans contain only transient data, they do not save their data in
the config.xml file. When you shut down a server instance, all runtime statistics and
metrics from the Runtime MBeans are destroyed.

The following figure (Figure 1-7) illustrates how Runtime MBeans, Administration
MBeans, and Local Configuration MBeans are distributed throughout a domain.
Programming WebLogic Management Services with JMX 1-9

1 Overview of WebLogic JMX Services
Figure 1-7 Distribution of MBeans

You can use the Administration Console, the weblogic.Admin utility, or MBean APIs
to view the values. (See Figure 1-8.)

Administration Server

Managed
Resources
Managed
Resources
MBean
Client

Runtime MBeans

Managed
Resources
Managed
Resources
MBean
Client

Local Configuration
MBeansRuntime MBeans Local Configuration

MBeans

Administration
MBeans

Managed
Resources
Managed
Resources
MBean
Client

Local Configuration
MBeansRuntime MBeans

Managed Server B
Managed Server A
1-10 Programming WebLogic Management Services with JMX

WebLogic Server Managed Resources and MBeans
Figure 1-8 Viewing Runtime Metrics from the Administration Console

You can also use these interfaces to change some runtime values. For example, the
weblogic.management.runtime.DeployerRuntimeMBean activates and
deactivates a deployed module by changing its runtime state.

Documentation for Runtime MBean APIs

To view the documentation for Runtime MBeans:

1. Open the WebLogic Server Javadoc.

2. In the top left pane of the Web browser, click weblogic.management.runtime.

The lower left pane displays links for the package.

3. In the lower left pane, click weblogic.management.runtime again.

The right pane displays the package summary. (See Figure 1-9.)
Programming WebLogic Management Services with JMX 1-11

http://e-docs.bea.com/wls/docs70/javadocs/index.html

1 Overview of WebLogic JMX Services
Figure 1-9 Javadoc for the runtime Package

4. Click on an interface name to view its API documentation.

Security MBeans

The WebLogic Security Service provides MBeans and tools for generating additional
MBeans that manage security on a WebLogic Server. These MBeans are called
Security MBeans and their usage model is different from the one described in this
document. For information on Security MBeans, refer to the Developing Security
Services for WebLogic Server guide.
1-12 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/dvspisec/index.html
http://e-docs.bea.com/wls/docs70/dvspisec/index.html

MBean Servers and the MBeanHome Interface
Non-WebLogic Server MBeans

WebLogic Server provides hundreds of MBeans, many of which are used to configure
and monitor EJBs, Web applications, and other deployable J2EE modules. If you want
to use additional MBeans to configure your applications or services, you can create
your own MBeans.

Any MBeans that you create can take advantage of the full set of JMX 1.0 features, as
defined by the JMX specification (which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html).

However, only MBeans that are provided by WebLogic Server can use the WebLogic
Server extensions to JMX. For example, any MBeans that you create for your
applications cannot save data in the config.xml file and they cannot use the type-safe
interface as described in the next section, “MBean Servers and the MBeanHome
Interface.”

MBean Servers and the MBeanHome
Interface

Within a WebLogic Server instance, the actual work of registering and providing
access to MBeans is delegated to an MBean Server subsystem. The MBean Server on
a Managed Server registers and provides access only to the Local Configuration
MBeans and Runtime MBeans on the current Managed Server. The MBean Server on
an Administration Server registers and provides access to the domain’s Administration
MBeans as well as the Local Configuration MBeans and Runtime MBeans on the
Administration Server.

Note: On a Managed Server that is configured for Managed Server Independence
(MSI), the MBean Server also registers the Administration MBean replicas
that the server uses to start if the Administration Server is not available. Do not
interact with these Administration MBean replicas. For more information,
refer to “Replication of MBeans for Managed Server Independence” on page
1-8.
Programming WebLogic Management Services with JMX 1-13

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

1 Overview of WebLogic JMX Services
To access the MBean Server subsystem, you use the
weblogic.management.MBeanHome interface. From MBeanHome, you can use any of
the following interfaces to interact with the MBean Server and its MBeans (see
Figure 1-10):

javax.management.MBeanServer, which is the standard JMX interface for
interacting with MBeans. You can use this interface to look up MBeans that are
registered in an MBean Server, determine the set of operations available for an
MBean, and determine the type of data that each operation returns. If you invoke
MBean operations through the MBeanServer interface, you must use standard
JMX methods. For example:

MBeanHome.getMBeanServer().getAttribute(MBeanObjectName,
attributeName)

MBeanHome.getMBeanServer().setAttribute(MBeanObjectName,
attributeName)

MBeanHome.getMBeanServer().invoke(MBeanObjectName,
operationName, params, signature)

For a complete list of MBeanServer APIs, refer to view the JMX 1.0 API
documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive
that you download includes the API documentation.

The MBeanServer interface is your only option for interacting with MBeans that
you have created and registered (non-WebLogic MBeans).

weblogic.management.RemoteMBeanServer, which extends the
javax.management.MBeanServer and java.rmi.Remote interfaces.Use the
RemoteMBeanServer interface if you want to use standard JMX techniques to
access WebLogic Server MBeans from remote JVMs or if you want to interact
with non-WebLogic MBeans from a remote JVM.

A WebLogic Server type-safe interface that makes it appear as though you can
invoke an MBean’s methods directly. You can use this interface to look up
MBeans that are registered in an MBean Server and invoke get, set, and other
operations on the MBean. For example:

wlMBean = MBeanHome.getMBean(WebLogicObjectName)
wlMBean.getAttribute
wlMBean.setAttribute
wlMBean.operationName
1-14 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

MBean Servers and the MBeanHome Interface
The type-safe interface extends the java.rmi.Remote interface, so you can use
it to access WebLogic Server MBeans from remote JVMs.

Figure 1-10 MBeans Servers and Their Interfaces

Local MBeanHome and the Administration MBeanHome

All instances of WebLogic Server provide a local MBeanHome interface through which
you can access the MBeans that are hosted in the server instance’s MBean Server.

For Managed Servers and Administration Servers, the local MBeanHome interface
provides access to the Runtime MBeans for the current server only and to all Local
Configuration MBeans in the domain.

The Administration Server provides an additional instance of the MBeanHome
interface. This Administration MBeanHome provides access to Administration
MBeans along with all other MBeans on all server instances in the domain. The
Administration MBeanHome uses RMI to contact MBeans on Managed Servers, which
uses more network resources and might take longer than using a local MBeanServer
or MBeanHome interface. (See Figure 1-11.)

WebLogic Server

MBean Server
Type-Safe

MBeanServer

MBeanHome
Programming WebLogic Management Services with JMX 1-15

1 Overview of WebLogic JMX Services
Figure 1-11 Local and Administration MBeanHome Interfaces

The local MBeanHome and the Administration MBeanHome are two instances of the
same interface class, so the APIs for the two types of MBeanHome differ only in the
name of the MBeanHome instance and in the set of MBeans that you can access.

MBeanHome
Administration

Administration Server

MBean Server
Type-Safe

MBeanServer

MBeanHome
Local

Managed Server

MBean Server
Type-Safe

MBeanServer

MBeanHome
Local

Type-Safe

MBeanServer

Administration
MBeans

Local Configuration
MBeans

Runtime MBeans

Local Configuration
MBeans

Runtime MBeans
1-16 Programming WebLogic Management Services with JMX

Notifications and Monitoring
Notifications and Monitoring

Depending on your management needs, you can use MBean APIs to view MBean
attributes only upon request, or you can use the WebLogic Server notification and
monitoring facilities, which automatically broadcast reports (JMX notifications) when
MBean attributes change.

To use these facilities:

Create a JMX listener, which listens for and reports all attribute changes within
an MBean that you specify. For example, you could use a listener with some
additional logic to send an email to a System Administrator any time a user
changes the configuration of a deployed component. For information about using
listeners, refer to Chapter 5, “Using WebLogic Server MBean Notifications and
Monitors.”

Create a JMX monitor, which listens for and reports only the changes to specific
MBean attributes that fall outside a set of parameters that you set. For example,
you could use a monitor with some additional logic to send an email to a System
Administrator when the number of open thread pools exceeds a specified limit.
For more information, refer to Chapter 5, “Using WebLogic Server MBean
Notifications and Monitors.”

The Administration Console and the
weblogic.Admin Utility

The WebLogic Server Administration Console and the weblogic.Admin utility are
examples of management utilities that use the WebLogic Server JMX services. You
can use these interfaces to familiarize yourself with WebLogic Server management
services before developing your JMX applications.
Programming WebLogic Management Services with JMX 1-17

1 Overview of WebLogic JMX Services
The Administration Console

The Administration Console is a Web application with servlets that invoke the
WebLogic Server JMX APIs. Almost all of the values that the Administration Console
presents are attributes of Administration MBeans and Runtime MBeans. Because the
Administration Console does not read or write Local Configuration MBeans, it is
possible that it reports a value that a server instance is not currently using. For example,
if you use a weblogic.Server startup option to override the configured listen port,
the Administration Console reports the value that is in the config.xml file, not the
overriding value.

To determine which MBean attribute the Administration Console is presenting, click
the question mark icon in the top banner. In the help window, click the Attributes link
to see the MBean class and attribute that is associated with field on the Administration
Console.

The caution icon (yellow triangle with an exclamation point) next to a field in the
Administration Console indicates that an attribute is not dynamic. If you modify such
an attribute, the underlying managed resource cannot use the new value until you
restart the server.

If you modify a dynamic value from the Administration Console, the console updates
the corresponding Administration MBean. For information on how this change is
propagated to the Local Configuration MBean, refer to “The Life Cycle of
Configuration MBeans” on page 1-5.

The weblogic.Admin Utility

The weblogic.Admin utility provides several commands that create, get and set
values for, invoke operations on, and delete instances of Administration and
Configuration MBeans. It also provides commands to get values and invoke operations
on Runtime MBeans. You could create shell scripts that use this utility instead of
creating JMX applications to programmatically interact with the WebLogic Server
management services, however, the performance of a JMX application is superior to a
shell script that invokes command-line utilities.
1-18 Programming WebLogic Management Services with JMX

The Administration Console and the weblogic.Admin Utility
You can also use the weblogic.Admin utility to verify object names of MBeans and
to get and set attributes from a command line before committing to writing JMX code.
Subsequent sections in this document provide examples of using the weblogic.Admin
utility as part of your JMX development.

For more information, refer to "MBean Management Command Reference" in the
WebLogic Server Administration Guide.
Programming WebLogic Management Services with JMX 1-19

http://e-docs.bea.com/wls/docs70/adminguide/cli.html#MBean_Management_Command_Reference

1 Overview of WebLogic JMX Services
1-20 Programming WebLogic Management Services with JMX

CHAPTER
2 Accessing WebLogic
Server MBeans

All JMX tasks—viewing or changing MBean attributes, using notifications, and
monitoring changes—use the same process to access MBeans.

The following sections describe how to access WebLogic Server MBeans:

“Accessing MBeans: Main Steps” on page 2-1

“Determining Which Interfaces to Use” on page 2-2

“Accessing an MBeanHome Interface” on page 2-4

“Using the Type-Safe Interface to Access MBeans” on page 2-10

“Using the MBeanServer Interface to Access MBeans” on page 2-18

“Using WebLogicObjectNames for WebLogic Server MBeans” on page 2-20

“Using weblogic.Admin to Find the WebLogicObjectName” on page 2-24

Accessing MBeans: Main Steps

The main steps for accessing MBeans in WebLogic Server are as follows:

1. Use a weblogic.management.MBeanHome interface to access the MBean Server.
See “Accessing an MBeanHome Interface” on page 2-4.
Programming WebLogic Management Services with JMX 2-1

2 Accessing WebLogic Server MBeans
2. Use one of the following interfaces to retrieve, look up, and invoke operations on
MBeans:

A type-safe interface that WebLogic Server provides. This interface, which is
a WebLogic Server extension to JMX, can retrieve and invoke operations
only on the MBeans that WebLogic Server provides. See “Using the
Type-Safe Interface to Access MBeans” on page 2-10.

The standard JMX javax.management.MBeanServer interface, which can
retrieve and invoke operations on WebLogic Server MBeans or on MBeans
that you create. See “Using the MBeanServer Interface to Access MBeans”
on page 2-18.

The weblogic.management.RemoteMBeanServer interface, which extends
the javax.management.MBeanServer and java.rmi.Remote interfaces.

In most cases, you use these interfaces to retrieve a list of MBeans and then
filter the list to retrieve and invoke operations on a specific MBean. However, if
you know the WebLogicObjectName of an MBean, you can retrieve an MBean
directly by name.

Determining Which Interfaces to Use

When accessing MBeans, you must make two choices about which interfaces you use:

Whether to use the MBeanHome interface on a local server instance or the
Administration MBeanHome interface to access the MBean Server. The
MBeanHome interface that you choose determines the set of MBeans you can
access.

The following table lists typical considerations for determining whether to use
the local MBeanHome interface or the Administration MBeanHome interface.
2-2 Programming WebLogic Management Services with JMX

Determining Which Interfaces to Use
Whether to use the WebLogic Server type-safe interface, the standard JMX
MBeanServer interface, or the WebLogic RemoteMBeanServer interface to
access and invoke operations on MBeans.

The following table lists typical considerations for determining whether to use
the type-safe interface or the MBeanServer interface.

Table 2-1 Deciding Between the Local or Administration MBeanHome

If your application manages... Retrieve this MBeanHome interface...

Local Configuration MBeans or
Runtime MBeans

Administration MBeanHome or local MBeanHome
The Administration MBeanHome provides a single,
convenient interface from which to access all
MBeans on all server instances in a domain. When
you use this interface, you typically retrieve MBeans
from multiple server instances and then iterate
through the list to find an MBean for a specific server
instance.
A local MBeanHome provides access to the Runtime
MBeans for the current server only and to all Local
Configuration MBeans in the domain. The interface
uses fewer network hops to access MBeans because
it requires your client to establish a direct connection
to the server instance.
When using a local MBeanHome, you typically
retrieve one of several top-level MBeans and use
them to walk the MBean hierarchy. See “Walking the
Hierarchy of Local Configuration and Runtime
MBeans” on page 14.

Administration MBeans Administration MBeanHome

Table 2-2 Deciding Between the Type-Safe Interface or the MBeanServer
Interface

If your application... Use this interface...

Interacts only with WebLogic Server
MBeans.

The WebLogic Server type-safe interface
Programming WebLogic Management Services with JMX 2-3

2 Accessing WebLogic Server MBeans
Accessing an MBeanHome Interface

The simplest process for retrieving a local MBeanHome interface or an Administration
MBeanHome interface is to use the WebLogic Server Helper class. If you are more
comfortable with a standard J2EE approach, you can use the Java Naming and
Directory Interface (JNDI) to retrieve MBeanHome.

Using the Helper APIs to Retrieve an MBeanHome
Interface

WebLogic Server provides the weblogic.management.Helper APIs to simplify the
process of retrieving MBeanHome interfaces.

To use the Helper APIs, collect the following information:

The username and password of a WebLogic Server user who has permission to
invoke MBean operations. For more information, refer to “Protecting System
Administration Operations” in WebLogic Server Administration Guide.

Might need to run on J2EE platforms
other than WebLogic Server

MBeanServer
If your client accesses MBeans that are running in a
separate JVM, use RemoteMBeanServer. Your
client code will still be portable to other J2EE
servers, although you cannot on other J2EE servers
you must substitute RemoteMBeanServer with
some other interface that extends the standard
MBeanServer interface.

Interacts with non-WebLogic Server
MBeans

MBeanServer
If your client accesses MBeans that are running in a
separate JVM, use RemoteMBeanServer.

Table 2-2 Deciding Between the Type-Safe Interface or the MBeanServer
Interface

If your application... Use this interface...
2-4 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html
http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Accessing an MBeanHome Interface
If you are accessing a local MBeanHome interface, the name of the target server
(as defined in the domain configuration) and the URL of the target server.

If you are accessing the Administration MBeanHome, the URL of the
Administration Server.

After you collect the information, use one of the following APIs:

To retrieve a local MBeanHome:
Helper.getMBeanHome(java.lang.String user, java.lang.String
password, java.lang.String serverURL, java.lang.String
serverName)

To retrieve the Administration MBeanHome:
Helper.getAdminMBeanHome(java.lang.String user,
java.lang.String password, java.lang.String adminServerURL)

For more information about the Helper APIs, refer to the WebLogic Server Javadoc.

Example: Retrieving a Local MBeanHome Interface

The following example (Listing 2-1) is a class that uses the Helper API to obtain the
local MBeanHome interface for a server named MS1.

Listing 2-1 Retrieving a Local MBeanHome Interface

import weblogic.management.Helper;
import weblogic.management.MBeanHome;

public class UseHelper {
public static void main(String[] args) {

String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";
String msName = "MS1";
MBeanHome localHome = null;

try {
localHome = (MBeanHome)Helper.getMBeanHome(username, password, url,

msName);
System.out.println("Local MBeanHome for" + localHome +

" found using the Helper class");
} catch (IllegalArgumentException iae) {

System.out.println("Illegal Argument Exception: " + iae);
Programming WebLogic Management Services with JMX 2-5

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/Helper.html

2 Accessing WebLogic Server MBeans
}
}

}

Using JNDI to Retrieve an MBeanHome Interface

While the Helper APIs provide a simple way to obtain an MBeanHome interface, you
might be more familiar with the standard approach of using JNDI to retrieve the
MBeanHome. From the JNDI tree of a Managed Server, you can access the server’s
local MBeanHome interface. From the JNDI tree of the Administration Server, you can
access the Administration MBeanHome as well as the local MBeanHome interface for any
server instance in the domain.

To use JNDI to retrieve an MBeanHome interface:

1. Construct a weblogic.jndi.Environment object and use Environment
methods to configure the object:

a. Use the setSecurityPrincipal and setSecurityCredentials methods to
specify user credentials.

WebLogic Server verifies that the user credentials you supply have been
granted permission to carry out requests through the MBeanHome interface.
For more information, refer to “Protecting System Administration
Operations” in WebLogic Server Administration Guide.

b. If your application and the MBeanHome interface are in different JVMs, use the
Environment.setProviderUrl method to specify the server instance that
hosts the MBeanHome interface. The URL must specify the listen address of the
server and the port on which the server listens for administrative requests.

If you want to retrieve the Administration MBeanHome, setProviderUrl
must specify the Administration Server.

c. Use the getInitialContext method to initialize a javax.naming.Context
object.

For example, the following lines of code set the initial context to a server
instance that runs on a host computer named WLServerHost and uses the default
domain-wide administration port to receive administrative requests:
2-6 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html
http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Accessing an MBeanHome Interface
Environment env = new Environment();
 env.setProviderUrl("t3://WLServerHost:9002");
 env.setSecurityPrincipal("weblogic");
 env.setSecurityCredentials("weblogic");
 Context ctx = env.getInitialContext();

For more information about weblogic.jndi.Environment, refer to the
WebLogic Server Javadoc.

2. Use javax.naming.Context methods to look up and retrieve the MBeanHome
interface for the current context.

Use one of the following APIs, depending on whether you are retrieving a local
MBeanHome interface or the Administration MBeanHome:

To retrieve the local MBeanHome for the current context, use the following
API:
javax.naming.Context.lookup(MBeanHome.LOCAL_JNDI_NAME)

If the current context is an Administration Server, use the following API to
retrieve the local MBeanHome of any server instance in the domain:
javax.naming.Context.lookup("weblogic.management.home.releva
ntServerName")

where relevantServerName is the name of a server as defined in the
domain configuration.

If the current context is an Administration Server, use the following API to
retrieve the Administration MBeanHome:
javax.naming.Context.lookup(MBeanHome.ADMIN_JNDI_NAME)

The Administration MBeanHome interface provides access to all Local
Configuration, Administration, and Runtime MBeans in the domain.

For more information about
javax.naming.Context.lookup(String name), refer to the Sun Javadoc.

The following sections are examples of retrieving MBeanHome interfaces:

Example: Retrieving the Administration MBeanHome from an External Client

Example: Retrieving a Local MBeanHome from an Internal Client
Programming WebLogic Management Services with JMX 2-7

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/jndi/Environment.html
http://java.sun.com/j2se/1.3/docs/api/javax/naming/Context.html

2 Accessing WebLogic Server MBeans
Example: Retrieving the Administration MBeanHome from an External Client

The following example (Listing 2-2) shows how an application running in a separate
JVM looks up the Administration MBeanHome interface. In the example, weblogic is
a user who has permission to view and modify MBean attributes. For information
about permissions to view and modify MBeans, refer to "Protecting System
Administration Operations" in WebLogic Server Administration Guide.

Listing 2-2 Retrieving the Administration MBeanHome from an External Client

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.AuthenticationException;
import javax.naming.CommunicationException;
import javax.naming.NamingException;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;

public class RetrieveMBeanHome{

public static void main(String[] args) {
MBeanHome home = null;
//domain variables
String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";

//Setting an initial context.
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//Retrieving the Administration MBeanHome interface
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home + " from the

Admin server");

} catch (Exception e) {
System.out.println("Exception caught: " + e);

}
}

}

2-8 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html
http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Accessing an MBeanHome Interface
Example: Retrieving a Local MBeanHome from an Internal Client

If your client application resides in the same JVM as the Administration Server (or the
WebLogic Server instance you want to manage), the JNDI lookup for the MBeanHome
is simpler. Listing 2-3 shows how a JMX application running in the same JVM as a
WebLogic Server instance would look up the local MBeanHome for a server instance
that listens at t3://localhost:7001.

Listing 2-3 Retrieving a Local MBeanHome from an Internal Client

import javax.naming.Context;
import javax.management.ObjectName;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.jndi.Environment;

public class serverInfo {
 public static void main(String[] args) {

 MBeanHome home = null;
 //domain variables
 String url = "t3://localhost:7001";
 String username = "weblogic";
 String password = "weblogic";

 try {
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(username);
 env.setSecurityCredentials(password);

 //Setting the initial context
 Context ctx = env.getInitialContext();

 //Retrieving the server-specific MBeanHome interface
 home = (MBeanHome)ctx.lookup(MBeanHome.LOCAL_JNDI_NAME);
 System.out.println("Got the Server-specific MBeanHome: " + home);
Programming WebLogic Management Services with JMX 2-9

2 Accessing WebLogic Server MBeans
Using the Type-Safe Interface to Access
MBeans

After you retrieve the MBeanHome interface, the easiest approach for accessing
MBeans is to use methods in the MBeanHome interface that retrieve a type-safe
interface for MBeans.

You can use this type-safe interface only with the MBeans that WebLogic Server
provides. You cannot use this type-safe interface for MBeans that are based on MBean
types that you create.

Retrieving a List of All MBeans

You can use the MBeanHome.getAllMBeans method to look up the object names of
MBeans that are within the scope of the MBeanHome interface that you retrieve. For
example, if you retrieve the Administration MBeanHome, using getAllMBeans()
returns a list of all MBeans in the domain. If you retrieve a Local MBeanHome interface,
using getAllMBeans() returns a list of the Runtime MBeans for the current server
only and of all Local Configuration MBeans in the domain.

The example class in Listing 2-4:

1. Uses JNDI APIs to retrieve the Administration MBeanHome interface.

2. Uses the MBeanHome.getAllMBeans method to retrieve all MBeans in a domain.

3. Assigns the list of MBeans to a Set object and uses methods of the Set and
Iterator interfaces to iterate through the list.

4. Uses the WebLogicMBean.getObjectName method to retrieve the
WebLogicObjectName of each MBean.

5. Uses the WebLogicObjectName.getName and getType methods to retrieve the
Name and Type values of the WebLogicObjectName
2-10 Programming WebLogic Management Services with JMX

Using the Type-Safe Interface to Access MBeans
In the example, weblogic is a user who has permission to view and modify MBean
attributes. For information about permissions to view and modify MBeans, refer to
"Protecting System Administration Operations" in WebLogic Server Administration
Guide.

Listing 2-4 Retrieving All MBeans in a Domain

import javax.naming.Context;
import java.util.Set;
import java.util.Iterator;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;

public class ListAllMBeans{
public static void main(String args[]) {

String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";

try {
//Obtaining an MBeanHome Using JNDI
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();
MBeanHome home = (MBeanHome)ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

Set allMBeans = home.getAllMBeans();
System.out.println("Size: " + allMBeans.size());
for (Iterator itr = allMBeans.iterator(); itr.hasNext();) {

WebLogicMBean mbean = (WebLogicMBean)itr.next();
WebLogicObjectName objectName = mbean.getObjectName();
System.out.println(objectName.getName() + " is a(n) " +

mbean.getType());
}

}catch(Exception e){
System.out.println(e);

}
}

}

Programming WebLogic Management Services with JMX 2-11

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

2 Accessing WebLogic Server MBeans
For more information about the MBeanHome.getAllMBeans method, refer to the
WebLogic Server Javadoc.

Retrieving MBeans By Type and Selecting From the List

Instead of retrieving a list of all MBeans in the scope of MBeanHome, you can retrieve
a list of MBeans that match a specific type. Type indicates the type of resource that the
MBean manages and whether the MBean is an Administration, Local Configuration,
or Runtime MBean. For more information about types of MBeans, refer to the next
section, “Using WebLogicObjectNames for WebLogic Server MBeans” on page 2-20.

The example class in Listing 2-5:

1. Uses JNDI to retrieve the Administration MBeanHome interface.

2. Uses the MBeanHome.getMBeansByType method to retrieve a list of all
ServerRuntime MBeans in a domain.

3. Assigns the list of MBeans to a Set object and uses methods of the Set and
Iterator interfaces to iterate through the list.

4. Uses the ServerRuntime.getName method to retrieve the name of each
ServerRuntime MBean. The name of a ServerRuntime MBean corresponds to
the name of a server instance.

5. When it finds the ServerRuntime MBean for a server named Server1, it prints
a message to standard out.

In the example, weblogic is a user who has permission to view and modify MBean
attributes. For information about permissions to view and modify MBeans, refer to
"Protecting System Administration Operations" in WebLogic Server Administration
Guide.

Listing 2-5 Selecting by Type from a List of MBeans

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.Context;
import javax.management.ObjectName;
2-12 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/MBeanHome.html
http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Using the Type-Safe Interface to Access MBeans
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.runtime.ServerRuntimeMBean;
import weblogic.jndi.Environment;

public class serverRuntimeInfo {

public static void main(String[] args) {

MBeanHome home = null;

//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";

ServerRuntimeMBean serverRuntime = null;
Set mbeanSet = null;
Iterator mbeanIterator = null;

//Using JNDI to retrieve the Administration MBeanHome
//Setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//Getting the Administration MBeanHome
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home);

} catch (Exception e) {
System.out.println("Exception caught: " + e);

}

//Using the getMBeansByType method to get all ServerRuntime MBeans
//in the domain.
try {

mbeanSet = home.getMBeansByType("ServerRuntime");

//Iterating through the results and comparing the server names
//find the one we want.
mbeanIterator = mbeanSet.iterator();
while(mbeanIterator.hasNext()) {

serverRuntime = (ServerRuntimeMBean)mbeanIterator.next();
//Using serverRuntime.getName to find the ServerRuntime
//MBean for Server1.
Programming WebLogic Management Services with JMX 2-13

2 Accessing WebLogic Server MBeans
if(serverRuntime.getName().equals(serverName)) {
System.out.println("Got the serverRuntimembean: " +
serverRuntime + " for: " + serverName);

}
}

} catch (Exception e) {
System.out.println("Exception caught: " + e);

}
}

}

For more information about the MBeanHome.getMBeansByType method, refer to the
WebLogic Server Javadoc.

Walking the Hierarchy of Local Configuration and
Runtime MBeans

WebLogic Server MBeans exist within a hierarchy that reflects the resources with
which they are associated. For example, each server instance can contain multiple
execute queues, and WebLogic Server represents this relationship by making each
ExecuteQueueMBean a child of a ServerMBean.

Walking the hierarchy of MBeans is the easiest way to retrieve Local Configuration
and Runtime MBeans. If you want to retrieve Administration MBeans, or if you want
to use the Administration MBeanHome to retrieve MBeans, BEA recommends that you
retrieve MBeans by type and then filter the list. See “Retrieving MBeans By Type and
Selecting From the List” on page 2-12.

The root of the Configuration MBean hierarchy is DomainMBean. Below this root are
MBeans such as:

ClusterMBean

ServerMBean

ApplicationMBean

RealmMBean

JDBC and JMS configuration MBeans
2-14 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/MBeanHome.html

Using the Type-Safe Interface to Access MBeans
The root of the Runtime hierarchy is ServerRuntimeMBean. Just below this root are
MBeans such as:

ClusterRuntimeMBean

ApplicationRuntimeMBean

JDBC and JMS runtime MBeans

Parent MBeans usually provide methods for retrieving their children. For example,
ServerMBean.getExecuteQueues returns all ExecuteQueueMBeans that have been
configured for the server.

To walk the hierarchy of Local Configuration MBeans or Runtime MBeans:

1. From your JMX application, retrieve the local MBeanHome interface.

2. From the local MBeanHome interface, retrieve one of the top-level MBeans by
invoking one of the following methods:

getConfigurationMBean (java.lang.String name,
java.lang.String type)

See the Javadoc for MBeanHome.getConfigurationMBean.

getRuntimeMBean (java.lang.String name,
java.lang.String type)

See the Javadoc for MBeanHome.getRuntimeMBean.

Use these methods to retrieve only MBeans that are immediately below
DomainMBean or ServerRuntimeMBean. These methods do not return MBeans
that are below the first level of the MBean hierarchy.

3. From the MBean that you retrieved, invoke methods to retrieve the MBean’s
children.

If a parent MBean does not provide methods to retrieve child MBeans, use
getMBeanByType() and iterate over the results to find the MBean that matches
your criteria. If you want to retrieve Local Configuration MBeans, be sure to
append Config to the MBean type value. See “Retrieving MBeans By Type and
Selecting From the List” on page 2-12.

Note: BEA recommends that you retrieve Local Configuration MBeans only to read
values; do not change attribute values in Local Configuration MBeans. When
the Managed Server replicates the data of other Managed Servers, it uses the
Programming WebLogic Management Services with JMX 2-15

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/MBeanHome.html#getConfigurationMBean(java.lang.String, java.lang.String)
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/MBeanHome.html#getRuntimeMBean(java.lang.String, java.lang.String)

2 Accessing WebLogic Server MBeans
values that are stored in Administration MBeans. Communication problems
can occur if the values in Administration MBeans and Local Configuration
MBeans differ.

Listing 2-6 is an example of retrieving all Local Configuration ExecuteQueueMBeans
on a server instance named ManagedServer1.

Listing 2-6 Retrieving Local Configuration ExecuteQueueMBeans

import javax.naming.Context;
import javax.management.ObjectName;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.configuration.ConfigurationMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.configuration.ExecuteQueueMBean;

import weblogic.jndi.Environment;

public class serverConfigInfo {
 public static void main(String[] args) {
 MBeanHome home = null;
 ServerMBean servercfg = null;
 ExecuteQueueMBean[] xqueues = null;
 ExecuteQueueMBean xqueue = null;

 //domain variables
 String url = "t3://localhost:7001";
 String serverName = "ManagedServer1";
 String username = "weblogic";
 String password = "weblogic";

 try {
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(username);
 env.setSecurityCredentials(password);

 //Setting the initial context
 Context ctx = env.getInitialContext();

 //Retrieving the server-specific MBeanHome interface
 home = (MBeanHome)ctx.lookup(MBeanHome.LOCAL_JNDI_NAME);
 System.out.println("Got the Server-specific MBeanHome: " + home);
2-16 Programming WebLogic Management Services with JMX

Using the Type-Safe Interface to Access MBeans
 //Retrieving the Local Configuration ServerMBean
 servercfg = (ServerMBean)home.getConfigurationMBean(serverName,
 "ServerConfig");
 System.out.println("Got the Server Config MBean: " + servercfg);

 //Retrieving all ExecuteQueue MBeans that have been
 //configured for the server instance
 xqueues = servercfg.getExecuteQueues();

 //Iterating through the results
 for (int i=0; i < xqueues.length; i++){
 xqueue = xqueues[i];
 System.out.println("Execute queue name: " +
 xqueue.DEFAULT_QUEUE_NAME);
 System.out.println("Thread count:" + xqueue.getThreadCount());

 }
 } catch (Exception e) {
 System.out.println("Exception caught: " + e);
 }
 }
}

If you want to create generic JMX code that you can run on any server instance to
retrieve its Server Configuration MBean:

1. From the local MBeanHome interface, use the getMBeansByType method to
retrieve the server’s ServerRuntimeMBean:
serverRuntime = MBeanHome.getMBeansByType(ServerRuntime)

The local MBeanHome interface can access only the runtime MBeans that are
specific to the current server instance, so getMBeansByType(ServerRuntime)
returns only the ServerRuntimeMBean for the current server.

2. Use ServerRuntimeMBean’s getName method to retrieve the name of the server:
serverName = serverRuntime.getName()

3. Use the server name when invoking MBeanHome.getConfigurationMBean:
MBeanHome.getConfigurationMBean(serverName,"ServerConfig")

For more information, see “Example: Determining the Active Domain and Servers” on
page 4-2.
Programming WebLogic Management Services with JMX 2-17

2 Accessing WebLogic Server MBeans
Using the MBeanServer Interface to Access
MBeans

A standard JMX approach for interacting with MBeans is to use the
javax.management.MBeanServer interface to look up the MBeans that are
registered in the MBean Server. Then you use the MBeanServer interface to get or set
MBean attributes or to invoke MBean operations. For the complete list of
MBeanServer methods, refer to the JMX 1.0 API documentation, which you can
download from http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html.
The archive that you download includes the API documentation.

In the WebLogic Server implementation of JMX, you use the MBeanHome interface to
look up the MBeanServer interface.

The example class in Listing 2-7:

1. Uses JNDI to retrieve the Administration MBeanHome interface. Because this
example retrieves Administration MBeans, it must use the Administration
MBeanHome interface.

2. Uses the Administration MBeanHome interface to retrieve the MBeanServer
interface.

3. Uses the MBeanServer.queryNames method to look up all instances of
JDBCConnectionPoolMBean in the domain. Note that the queryNames method
signature requires the example to cast the string
"examples:Type=JDBCConnectionPool,*" as an Object.

4. Assigns the list of MBeans to a Set object and uses methods of the Set and
Iterator interfaces to iterate through the list.

In the example, weblogic is a user who has permission to view and modify MBean
attributes. For information about permissions to view and modify MBeans, refer to
"Protecting System Administration Operations" in WebLogic Server Administration
Guide.
2-18 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Using the MBeanServer Interface to Access MBeans
Listing 2-7 Using the MBeanServer Interface

import java.util.Iterator;
import java.util.Set;
import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.AuthenticationException;
import javax.naming.CommunicationException;
import javax.naming.NamingException;
import javax.management.MBeanServer;
import javax.management.ObjectName;
import javax.management.QueryExp;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.RemoteMBeanServer;

public class ListJDBCInfo {

public static void main(String[] args) {
QueryExp query = null;
MBeanHome home = null;
RemoteMBeanServer homeServer = null;

//domain variables
String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";

//Setting an initial context.
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//Retrieving the Administration MBeanHome interface
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home + " from the

Admin server");

//Retrieving the MBeanServer interface
homeServer = home.getMBeanServer();

//Retrieving a list of MBeans with object names that include
//"JDBCConnectionPool"
Set JDBCMBeans = homeServer.queryNames(new

ObjectName("mydomain:Type=JDBCConnectionPool,*"), query);
Programming WebLogic Management Services with JMX 2-19

2 Accessing WebLogic Server MBeans
//where "query" could be any object that implements the JMX
//javax.managementQueryExp

for (Iterator itr = JDBCMBeans.iterator(); itr.hasNext();) {
ObjectName mbean = (ObjectName)itr.next();
System.out.println("Matches to the MBean query:" + mbean);

}
}catch(Exception e){

System.out.println(e);
}

}
}

Using WebLogicObjectNames for WebLogic
Server MBeans

When you instantiate a WebLogic Server MBean, the MBean Server registers the
instance under a name that conforms to the
weblogic.management.WebLogicObjectName conventions. If you know the
WebLogicObjectName of an MBean, after you retrieve an MBeanHome interface, you
can retrieve an MBean directly by name.

The MBean’s WebLogicObjectName uses the following conventions to provide a
unique identification for a given MBean across all domains:

domain:Name=name,Type=type[,Location=serverName]
[,TypeOfParentMBean=NameOfParentMBean][,TypeOfParentMBean1=NameOf
ParentMBean1]...

The order of the attribute=value pairs is not significant, but the name must begin
with domain:. Note also that MBeans can express multiple parent MBeans.

For example, the following is the WebLogicObjectName for an
EJBComponentRuntime MBean for an EJB in an application that is deployed on a
server instance named MyServer. The first and fourth attribute/value pairs in this
name, ApplicationRuntime=MyServer_MyEAR and ServerRuntime=MyServer,
identify the parent MBeans of this EJB.
2-20 Programming WebLogic Management Services with JMX

Using WebLogicObjectNames for WebLogic Server MBeans
mydomain:ApplicationRuntime=MyServer_MyEAR,Location=MyServer,Name
=MyServer_MyEAR_SessionEJB,ServerRuntime=MyServer,Type=EJBCompone
ntRuntime

The following table describes each name component.

Table 2-3 WebLogic Server MBean Naming Conventions

This Component Specifies

domain The name of the WebLogic Server administration domain.

Name=name The string that you provided when you created the associated resource. For
example, when you create a JDBC connection pool, you must provide a
name for that pool, such as MyPool1. The JDBCConnectionPoolMBean
that represents MyPool1 uses Name=MyPool1 in its JMX object name.
The WebLogicObjectName.getName method returns this value for any
given MBean.
If you create an MBean, you must specify a value for this Name component that is
unique amongst all other MBeans in a domain.

Type=type Refers to the interface class of which the MBean is an instance. All WebLogic
Server MBeans are an instance of one of the interface classes defined in the
weblogic.management.configuration or
weblogic.management.runtime packages. For Configuration MBeans,
Type also refers to whether an instance is an Administration MBean or a Local
Configuration MBean. For a complete list of all WebLogic Server MBean interface
classes, refer to the WebLogic Server Javadoc for the
weblogic.management.configuration or
weblogic.management.runtime packages.
To determine the value that you provide for the Type component:
1. Find the MBean’s interface class and remove the MBean suffix from the class

name. For example, for an MBean that is an instance of the
weblogic.management.runtime.JDBCConnectionPoolRuntime
MBean, use JDBCConnectionPoolRuntime.

2. For a Local Configuration MBean, append Config to the name. For
example, for a Local Configuration MBean that is an instance of the
weblogic.management.configuration.JDBCConnectionPool
MBean interface class, use JDBCConnectionPoolConfig. For the
corresponding Administration MBean instance, use
JDBCConnectionPool.
Programming WebLogic Management Services with JMX 2-21

http://e-docs.bea.com/wls/docs70/javadocs/index.html

2 Accessing WebLogic Server MBeans
Location=servername All Runtime and Local Configuration MBeans include a Location
component that specifies the name of the server on which that MBean is
located. Administration MBeans do not include this component.

For example, for the ServletRuntime MBean that runs on a server named
myserver, the WebLogicObjectName includes the following components:

mydomain:Name=myServlet,Type=ServletRuntime,Location=
myserver

The WebLogicObjectName.getLocation method returns this value for any
given MBean.

Table 2-3 WebLogic Server MBean Naming Conventions

This Component Specifies
2-22 Programming WebLogic Management Services with JMX

Using WebLogicObjectNames for WebLogic Server MBeans
Figure 2-1 illustrates that one instance of LogMBean is a child of DomainMBean and is
used to manage the domain-wide log file. Another instance of LogMBean is a child of
a server instance’s ServerMBean and is used to manage the server-specific log file.
The TypeOfParentMBean=NameOfParentMBean component of the
WebLogicObjectName removes any ambiguity in the application of an MBean
instance.

TypeOfParentMBean=
NameOfParentMBean

Runtime, Local Configuration, or Administration MBeans that have a child
relationship with a parent MBean use this extra attribute in their object names to
identify the relationship.

Note: With the exception of DomainMBean, all MBeans are direct or indirect
children of the domain’s DomainMBean. Because this parent-child
relationship applies to all MBeans, it is not expressed in
WebLogicObjectName.

For example, an instance of LogMBean is used by a domain to configure the
domain-wide log file. Each WebLogic Server instance also maintains its own
instance of LogMBean to configure its server-specific log file. The LogMBean that
a domain uses does not express a child relationship, while the LogMBean that a
server instance uses expresses its child relationship with the server’s
ServerMBean. (See Figure 2-1.)
To express the name of the Administration LogMBean that examplesServer
uses to maintain its log file, use the following name:
examples:Name=examplesServer,Server=examplesServer,
Type=Log
To express the name of the Local Configuration LogMBean that
examplesServer uses to maintain its log file, use the following name:
examples:Location=examplesServer,Name=examplesServer,
ServerConfig=examplesServer,Type=LogConfig
By convention, WebLogic Server child MBeans use the same value for the Name
component as the parent MBean. For example, the LogMBean that is a child of the
examplesServer Server MBean uses Name=examplesServer in its
WebLogicObjectName. WebLogic Server cannot follow this convention when a
parent MBean has multiple children of the same type.
To determine whether the WebLogicObjectName of an MBean expresses a
parent-child relation, use the WebLogicObjectName.getParent method or
the weblogic.Admin GET command.

Table 2-3 WebLogic Server MBean Naming Conventions

This Component Specifies
Programming WebLogic Management Services with JMX 2-23

2 Accessing WebLogic Server MBeans
Figure 2-1 Parent-Child Relation of LogMBean Instances

Using weblogic.Admin to Find the
WebLogicObjectName

If you are unsure which values to supply for an MBean’s WebLogicObjectName, you
can use the weblogic.Admin utility to find the WebLogicObjectName. The utility can
return information only for WebLogic Server MBeans that are on an active server
instance.

Administration Server

Administration LogMBean Administration ServerMBean

Administration LogMBean

examples:Name=examplesServer,
Server=examplesServer,Type=Log

examples:Name=examplesServer,
Type=Server

examples:Name=examples,
Type=Log

examples:Name=examples,
Type=Domain

Administration DomainMBean

Implied
relationship

Expressed
relationship
2-24 Programming WebLogic Management Services with JMX

Using weblogic.Admin to Find the WebLogicObjectName
For example, to find the WebLogicObjectName for the Administration instance of the
LogMBean in the examples domain, enter the following command on the
examplesServer Administration Server, where the Administration Server is listening
on port 8001 and weblogic is the name and password of a user who has permission to
view MBean attributes:

java weblogic.Admin -url localhost:8001 -username weblogic
 -password weblogic GET -pretty -type Log

The command returns the output in Listing 2-8. Notice that the command returns two
MBeans of type Log on the Administration Server. The first MBean,
examples:Name=examplesServer,Server=examplesServer,Type=Log, has a
child relationship with the ServerMBean of examplesServer; this relationship
indicates that the MBean is the LogMBean that configures the server-specific log file.
The second MBean, examples:Name=examples,Type=Log, has no child
relationship, which indicates that it configures the domain-wide log file.

The -pretty causes the weblogic.Admin utility to place each MBean attribute and
value on a separate line. Without this argument, the utility surrounds each
attribute/value pair with curly braces {}, but all output is on a single line.

Listing 2-8 Output from weblogic.Admin

MBeanName:
"examples:Name=examplesServer,Server=examplesServer,Type=Log"
 CachingDisabled: true
 FileCount: 7
 FileMinSize: 500
 FileName: examplesServer\examplesServer.log
 FileTimeSpan: 24
 Name: examplesServer
 Notes:
 NumberOfFilesLimited: false
 ObjectName: examplesServer
 Parent: examplesServer
 Registered: false
 RotationTime: 00:00
 RotationType: none
 Type: Log

MBeanName: "examples:Name=examples,Type=Log"
 CachingDisabled: true
Programming WebLogic Management Services with JMX 2-25

2 Accessing WebLogic Server MBeans
 FileCount: 7
 FileMinSize: 500
 FileName: ./logs/wl-domain.log
 FileTimeSpan: 24
 Name: examples
 Notes:
 NumberOfFilesLimited: false
 ObjectName: examples
 Parent: examples
 Registered: false
 RotationTime: 00:00
 RotationType: none
 Type: Log

To view the Local Configuration MBean instances of LogMBean, append Config to
the value of the type argument:

java weblogic.Admin -url localhost:8001 -username weblogic
-password weblogic GET -pretty -type LogConfig

The command returns output in Listing 2-9. Notice that the WebLogicObjectName of
the Local Configuration MBeans includes a Location component.

Listing 2-9 Local Configuration MBeans

MBeanName:
"examples:Location=examplesServer,Name=examplesServer,ServerConfi
g=examplesServer,Type=LogConfig"
 CachingDisabled: true
 FileCount: 7
 FileMinSize: 500
 FileName: examplesServer\examplesServer.log
 FileTimeSpan: 24
 Name: examplesServer
 Notes:
 NumberOfFilesLimited: false
 ObjectName: examplesServer
 Registered: false
 RotationTime: 00:00
 RotationType: none
 Type: LogConfig
2-26 Programming WebLogic Management Services with JMX

Using weblogic.Admin to Find the WebLogicObjectName

MBeanName:
"examples:Location=examplesServer,Name=examples,Type=LogConfig"
 CachingDisabled: true
 FileCount: 7
 FileMinSize: 500
 FileName: ./logs/wl-domain.log
 FileTimeSpan: 24
 Name: examples
 Notes:
 NumberOfFilesLimited: false
 ObjectName: examples
 Registered: false
 RotationTime: 00:00
 RotationType: none
 Type: LogConfig
Programming WebLogic Management Services with JMX 2-27

2 Accessing WebLogic Server MBeans
2-28 Programming WebLogic Management Services with JMX

CHAPTER
3 Accessing and
Changing
Configuration
Information

Configuration MBeans on the Administration Server (Administration MBeans)
configure the managed resources on all WebLogic Server instances in a domain. To
enhance performance, each server instance creates and uses local replicas of the
Administration MBeans. These local replicas are called Local Configuration MBeans.

Note: While you can view the values of Local Configuration MBeans, BEA
recommends that you do not change attribute values in Local
Configuration MBeans. Instead, change only the values of Administration
MBean attributes. When the Managed Server replicates the domain’s
configuration data, it uses the values that are stored in Administration
MBeans. Communication problems can occur if the values in
Administration MBeans and Local Configuration MBeans differ.

The following sections provide examples for programmatically viewing and
modifying the configuration of WebLogic Server resources using the
weblogic.Admin utility, the JMX MBeanServer APIs, and the WebLogic Server
type-safe interface:

“Example: Using weblogic.Admin to View the Message Level for Standard Out”
on page 3-2

“Example: Configuring the Message Level for Standard Out” on page 3-3
Programming WebLogic Management Services with JMX 3-1

3 Accessing and Changing Configuration Information
Example: Using weblogic.Admin to View the
Message Level for Standard Out

This example uses the weblogic.Admin utility to connect directly to a Managed
Server and look up the value of its StdoutSeverityLevel attribute. This attribute,
which belongs to the server’s ServerMBean, specifies a threshold for determining
which severity-level of messages a server prints to its standard out.

While BEA recommends that you use only Administration MBeans to change values,
there might be situations in which it is preferable to look up the values that are in Local
Configuration MBeans. For example, the Administration Server might be down,
making it impossible for you to access Administration MBeans.

The example command:

1. Uses the -url argument to connect to a Managed Server that runs on a host named
myHost and that listens on port 8001.

2. Uses the -username and -password arguments to specify the credentials of a
user who has permission to view MBean attributes. For information about
permissions to view and modify MBeans, refer to “Protecting System
Administration Operations” in WebLogic Server Administration Guide.

3. Uses the GET command to retrieve a Local Configuration MBean.

To specify a Local Configuration MBean, it removes MBean and appends
Config to the ServerMBean interface name. Note that the -type value for a
Local Configuration instance of the ServerMBean is ServerConfig while the
-type value for the corresponding Administration MBean instance is Server.
For more information, refer to the description of Type in Table 2-3, “WebLogic
Server MBean Naming Conventions,” on page 2-21.

Listing 3-1 Configuring the Message Level

java weblogic.Admin -url myHost:8001 -username weblogic -password weblogic
GET -pretty -type ServerConfig

MBeanName:
3-2 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html
http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Example: Configuring the Message Level for Standard Out
"examples:Location=examplesServer,Name=examplesServer,Type=ServerConfig"
 AcceptBacklog: 50
 AdministrationPort: 0
...

 StdoutDebugEnabled: false
 StdoutEnabled: true
 StdoutFormat: standard
 StdoutLogStack: true
 StdoutSeverityLevel: 16

Example: Configuring the Message Level for
Standard Out

The class in this example changes the value of the StdoutSeverityLevel attribute
in the weblogic.management.configuration.ServerMBean to change the level
of messages that a server instance named examplesServer sends to standard out.

Because the example is changing configuration values, it changes the value in the
Administration MBean and relies on the WebLogic management services to propagate
the change to the Managed Server.

The example class:

1. Uses JNDI to look up the Administration MBeanHome interface on the
Administration Server.

2. Uses the MBeanHome.getMBean(String name, String type) API to retrieve
the type-safe interface of the ServerMBean Administration MBean for a server
instance named Server1.

3. Uses the type-safe interface to invoke the
ServerMBean.setStdoutSeverityLevel method and set the severity level to
64.
Programming WebLogic Management Services with JMX 3-3

3 Accessing and Changing Configuration Information
In the example, weblogic is a user who has permission to view and modify MBean
attributes. For information about permissions to view and modify MBeans, refer to
“Protecting System Administration Operations” in WebLogic Server Administration
Guide.

Listing 3-2 Configuring Standard Out Severity Level

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.Context;
import javax.management.MBeanServer;
import javax.management.Attribute;
import java.lang.Object;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.configuration.ServerMBean;

public class ChangeStandardOut1 {

public static void main(String[] args) {
MBeanHome home = null;
ServerMBean server = null;
//domain variables
String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";
String serverName = "Server1";

//setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//getting the Administration MBeanHome
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

// Using MBeanHome.getMBean(name, type) to retrieve a type-safe
// interface for a ServerMBean
server = (ServerMBean)home.getMBean(serverName,"Server");

// Using ServerMBean.setStdoutSeverityLevel
server.setStdoutSeverityLevel(64);
3-4 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Example: Configuring the Message Level for Standard Out
// Providing feedback that operation succeeded.
System.out.println("Changed standard out severity level to: " +

server.getStdoutSeverityLevel());
} catch (Exception e) {

System.out.println("Caught exception: " + e);
}

}
}

Programming WebLogic Management Services with JMX 3-5

3 Accessing and Changing Configuration Information
3-6 Programming WebLogic Management Services with JMX

CHAPTER
4 Accessing Runtime
Information

WebLogic Server includes a large number of MBeans that provide information about
the runtime state of managed resources. If you want to create applications that view
and modify this runtime data, you must first use the MBeanServer interface or the
WebLogic Server type-safe interface to retrieve Runtime MBeans. Then you use APIs
in the weblogic.management.runtime package to view or change the runtime data.
For information about viewing the API documentation, refer to “Documentation for
Runtime MBean APIs” on page 1-11.

The following sections provide examples for retrieving and modifying runtime
information about WebLogic Server domains and server instances:

“Example: Determining the Active Domain and Servers” on page 4-2

“Example: Viewing and Changing the Runtime State of a WebLogic Server
Instance” on page 4-5

“Example: Viewing Runtime Information About Clusters” on page 4-14

“Viewing Runtime Information for EJBs” on page 4-16
Programming WebLogic Management Services with JMX 4-1

4 Accessing Runtime Information
Example: Determining the Active Domain
and Servers

The MBeanHome interface includes APIs that you can use to determine the name of the
currently active domain and the name of a server instance. You can use this
information in other APIs that take the domain name or a server name as arguments.

The example class in Listing 4-1 does the following:

1. Retrieves the Administration MBeanHome interface.

While this example uses the Administration MBeanHome, you can also use a
Local MBeanHome interface. A Local MBeanHome interface can retrieve only the
name of the current domain and server instance. The Administration MBeanHome
interface can retrieve the names of all currently active servers in the domain.

2. Uses MBeanHome.getActiveDomain().getName() to retrieve the name of the
domain.

3. Uses the getMBeansByType method to retrieve the set of all ServerRuntime
MBeans in the domain.

4. Iterates through the set and compares the names of the ServerRuntimeMBean
instances with the name of the WebLogic Server instance. If the instance is
active, it prints the name of the server.

5. If the instance is active, it prints the name of the server.

In the following example, weblogic is the username and password for a user who has
permission to view and modify MBean attributes. For information about permissions
to modify MBeans, refer to “Protecting System Administration Operations” in
WebLogic Server Administration Guide.

Listing 4-1 Determining the Active Domain and Servers

import java.util.Set;
import java.util.Iterator;
import javax.naming.Context;
4-2 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Example: Determining the Active Domain and Servers
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.runtime.ServerRuntimeMBean;

public class getActiveDomainAndServers {
public static void main(String[] args) {

MBeanHome home = null;

//url of the Administration Server
String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";

//setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//getting the Administration MBeanHome
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

} catch (Exception e) {
System.out.println("Exception caught: " + e);

}

//getting the name of the active domain
try {

System.out.println("Active Domain: " +
home.getActiveDomain().getName());

} catch (Exception e) {
System.out.println("Exception: " + e);

}

//getting the names of servers in the domain
System.out.println("Active Servers: ");
Set mbeanSet = home.getMBeansByType("ServerRuntime");
Iterator mbeanIterator = mbeanSet.iterator();
while(mbeanIterator.hasNext()) {

ServerRuntimeMBean serverRuntime =
(ServerRuntimeMBean)mbeanIterator.next();

//printing the names of active servers
if(serverRuntime.getState().equalsIgnoreCase("RUNNING")) {

System.out.println("Name: " + serverRuntime.getName());
System.out.println("ListenAddress: " +

serverRuntime.getListenAddress());
System.out.println("ListenPort: " +

serverRuntime.getListenPort());
//count++;
Programming WebLogic Management Services with JMX 4-3

4 Accessing Runtime Information
}
}

System.out.println("Number of servers active in the domain: " +
mbeanSet.size());

}
}

Using weblogic.Admin to Determine Active Domains and
Servers

While you can compile and run the example code in Listing 4-1 to determine active
domains and servers, you can use the weblogic.Admin utility to accomplish a similar
task without having to compile Java classes.

The following command returns the name of the currently active domain, where
AdminServer is the domain’s Administration Server, MyHost is the Administration
Server’s host computer, and weblogic is the name and password of a user who has
permission to view MBean attributes:

java weblogic.Admin -url MyHost:8001 -username weblogic -password
weblogic GET -type DomainRuntime -property Name

The command output includes the WebLogicObjectName of the
DomainRuntimeMBean and the value of its Name attribute:

{MBeanName="myDomain:Location=AdminServer,Name=myDomain,ServerRun
time=AdminServer,Type=DomainRuntime"{Name=myDomain}}
4-4 Programming WebLogic Management Services with JMX

Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
Example: Viewing and Changing the
Runtime State of a WebLogic Server
Instance

The weblogic.management.runtime.ServerRuntimeMBean interface provides
runtime information about a WebLogic Server instance. For example, it indicates
which listen ports and addresses a server is using. It also includes operations that can
gracefully or forcefully shut down a server.

This section provides examples of finding ServerRuntimeMBean and using it to
gracefully shut down a server instance. When you initiate a graceful shutdown, the
server notifies subsystems to complete all in-work requests. After the subsystems
complete their work, the server stops.

Each example illustrates a different way of retrieving ServerRuntimeMBean:

“Using a Local MBeanHome and getRuntimeMBean()” on page 4-5

“Using the Administration MBeanHome and getMBean()” on page 4-10

“Using the Administration MBeanHome and getMBeansByType()” on page 4-8

“Using the MBeanServer Interface” on page 4-12

You cannot use the weblogic.Admin utility to change the value of Runtime MBean
attributes.

Using a Local MBeanHome and getRuntimeMBean()

Each WebLogic Server instance hosts its own MBeanHome interface, which provides
access to the Local Configuration and Runtime MBeans on the server instance. As
opposed to using the Administration MBeanHome interface, using the local MBeanHome
saves you the trouble of filtering Runtime MBeans to find those that apply to the
current server. It also uses fewer network hops to access MBeans, because you are
connecting directly to the server (instead of routing requests through the
Administration Server).
Programming WebLogic Management Services with JMX 4-5

4 Accessing Runtime Information
The MBeanHome interface includes the getRuntimeMBean() method, which returns
only the top-level Runtime MBeans that reside on the current WebLogic Server (see
“Walking the Hierarchy of Local Configuration and Runtime MBeans” on page 2-14).
If you invoke MBeanHome.getRuntimeMBean()on the Administration Server, it
returns only the Runtime MBeans that manage and monitor the Administration Server.

The example class in Listing 4-2 does the following:

1. Configures a javax.naming.Context object with information for connecting to
a server instance that listens for requests at t3://ServerHost:7001.

2. Uses the Context.lookup method to retrieve the local MBeanHome interface for
the server instance.

The MBeanHome.LOCAL_JNDI_NAME field returns the JNDI name of the current
server’s local MBeanHome.

3. Uses the MBeanHome.getRuntimeMBean(String name,String type)method
to retrieve the ServerRuntimeMBean for the current server instance.

4. Invokes ServerRuntimeMBean methods to retrieve and modify the server state.

In the following example, weblogic is the username and password for a user who has
permission to view and modify MBean attributes and Server1 is the name of the
WebLogic Server instance for which you want to view and change status. For
information about permissions to modify MBeans, refer to “Protecting System
Administration Operations” in WebLogic Server Administration Guide.

Listing 4-2 Using a Local MBeanHome and getRuntimeMBean()

import javax.naming.Context;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.runtime.ServerRuntimeMBean;

public class serverRuntime1 {

public static void main(String[] args) {
MBeanHome home = null;

//domain variables
String url = "t3://ServerHost:7001";
String serverName = "Server1";
String username = "weblogic";
4-6 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html
http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
String password = "weblogic";
ServerRuntimeMBean serverRuntime = null;

//setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//getting the local MBeanHome
home = (MBeanHome) ctx.lookup(MBeanHome.LOCAL_JNDI_NAME);
System.out.println("Got the MBeanHome: " + home + " for server: " +

serverName);
} catch (Exception e) {

System.out.println("Caught exception: " + e);
}

// Here we use the getRuntimeMBean method to access the
//ServerRuntimeMbean of the server instance.

try {
serverRuntime =

(ServerRuntimeMBean)home.getRuntimeMBean
(serverName,"ServerRuntime");

System.out.println("Got serverRuntimeMBean: " + serverRuntime);

//Using ServerRuntimeMBean to retrieve and change state.
System.out.println("Current state: " + serverRuntime.getState());

} catch (javax.management.InstanceNotFoundException e) {
System.out.println("Caught exception: " + e);

}

try{
serverRuntime.shutdown();
System.out.println("Current state: " + serverRuntime.getState());

} catch (weblogic.server.ServerLifecycleException e) {
System.out.println("Caught exception: " + e);

}
}

}

Programming WebLogic Management Services with JMX 4-7

4 Accessing Runtime Information
Using the Administration MBeanHome and
getMBeansByType()

Like the example in Listing 4-1, “Determining the Active Domain and Servers,” on
page 4-2, the example class in this section uses the Administration MBeanHome
interface to retrieve a ServerRuntime MBean. The Administration MBeanHome
provides a single access point for all MBeans in the domain, but it requires you to
either construct the WebLogicObjectName of the MBean you want to retrieve or to
filter MBeans to find those that apply to a specific current server.

The example class in Listing 4-3 does the following:

1. Retrieves the Administration MBeanHome interface.

2. Uses the MBeanHome.getMBeansByType method to retrieve the set of all
ServerRuntime MBeans in the domain.

3. Assigns the list of MBeans to a Set object and uses methods of the Set and
Iterator interfaces to iterate through the list.

4. Uses the ServerRuntimeMBean.getName method to retrieve the Name
component of the MBean’s WebLogicObjectName. It then compares the Name
value with another value.

5. When it finds the ServerRuntimeMBean for a specific server instance, it uses the
ServerRuntimeMBean.getState method to return the current server state.

6. Then it invokes the ServerRuntimeMBean.shutdown() method, which initiates
a graceful shutdown.

In the following example, weblogic is the username and password for a user who has
permission to change the state of servers, and Server1 is the name of the WebLogic
Server instance for which you want to view and change status. For information about
permissions to modify MBeans, refer to “Protecting System Administration
Operations” in WebLogic Server Administration Guide.

Listing 4-3 Using the Administration MBeanHome and getMBeansByType()

import java.util.Set;
import java.util.Iterator;
import javax.naming.Context;
4-8 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html
http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.runtime.ServerRuntimeMBean;

public class serverRuntimeInfo {
public static void main(String[] args) {

MBeanHome home = null;

//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";
ServerRuntimeMBean serverRuntime = null;
Set mbeanSet = null;
Iterator mbeanIterator = null;

//Setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

// Getting the Administration MBeanHome.
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home);

} catch (Exception e) {
System.out.println("Exception caught: " + e);

}

// Using the getMBeansByType method to get the set of
//ServerRuntime mbeans.
try {

mbeanSet = home.getMBeansByType("ServerRuntime");
mbeanIterator = mbeanSet.iterator();
// Comparing the name of the server in each ServerRutime
// MBean to the value specified by serverName
while(mbeanIterator.hasNext()) {

serverRuntime = (ServerRuntimeMBean)mbeanIterator.next();
if(serverRuntime.getName().equals(serverName)) {

System.out.println("Found the serverRuntimembean: " +
serverRuntime + " for: " + serverName);

System.out.println("Current state: " +
serverRuntime.getState());

System.out.println("Stopping the server ...");
serverRuntime.shutdown();
System.out.println("Current state: " +

serverRuntime.getState());
Programming WebLogic Management Services with JMX 4-9

4 Accessing Runtime Information
}
}

} catch (Exception e) {
System.out.println("Caught exception: " + e);

}
}

}

Using the Administration MBeanHome and getMBean()

Instead of retrieving a list of all MBeans and then filtering the list to find the
ServerRuntimeMBean for a specific server, this example uses the MBean naming
conventions to construct the WebLogicObjectName for the ServerRuntimeMBean on
a server instance named Server1. For information about constructing a
WebLogicObjectName, refer to “Using WebLogicObjectNames for WebLogic Server
MBeans” on page 2-20.

To make sure that you supply the correct object name, use the weblogic.Admin GET
command. For example, the following command returns the object name and list of
attributes of the ServerRuntimeMBean for a server instance that runs on a host
computer named MyHost:

java weblogic.Admin -url http://MyHost:7001 -username weblogic
 -password weblogic GET -pretty -type ServerRuntime

For more information about using the weblogic.Admin utility to find information
about MBeans, refer to "MBean Management Command Reference" in the WebLogic
Server Administration Guide.

In Listing 4-4, weblogic is the username and password for a user who has permission
to view and modify MBean attributes, Server1 is the name of the WebLogic Server
instance for which you want to view and change status, and mihirDomain is the name
of the WebLogic Server administration domain. For information about permissions to
modify MBeans, refer to “Protecting System Administration Operations” in WebLogic
Server Administration Guide.
4-10 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/cli.html#MBean_Management_Command_Reference
http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
Listing 4-4 Using the Administration MBeanHome and getMBean()

import java.util.Set;
import java.util.Iterator;
import javax.naming.Context;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.runtime.ServerRuntimeMBean;
import weblogic.management.WebLogicObjectName;

public class serverRuntimeInfo2 {
public static void main(String[] args) {

MBeanHome home = null;
//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";
String domain = "examples";
ServerRuntimeMBean serverRuntime = null;

//setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got Admin MBeanHome from the Admin server: "

+ home);
} catch (Exception e) {

System.out.println("Exception caught: " + e);
}

try {
WebLogicObjectName objName = new WebLogicObjectName(serverName,

"ServerRuntime",home.getDomainName(),serverName);
System.out.println("Created WebLogicObjectName: " + objName);
serverRuntime = (ServerRuntimeMBean)home.getMBean(objName);
System.out.println("Got the serverRuntime using the adminHome: " +

serverRuntime);
System.out.println("Current state: " + serverRuntime.getState());
System.out.println("Stopping the server ...");

//changing the state to SHUTDOWN
serverRuntime.shutdown();
Programming WebLogic Management Services with JMX 4-11

4 Accessing Runtime Information
System.out.println("Current state: " + serverRuntime.getState());
} catch(Exception e) {

System.out.println("Exception: " + e);
}

}
}

Using the MBeanServer Interface

The example in this section uses a standard JMX approach for interacting with
MBeans. It uses the Administration MBeanHome interface to retrieve the
javax.management.MBeanServer interface and then uses MBeanServer to retrieve
the value of the ListenPort attribute of the ServerRuntimeMBean for a server
instance named Server1.

In the following example, weblogic is the username and password for a user who has
permission to view and modify MBean attributes and mihirDomain is the name of the
WebLogic Server administration domain. For information about permissions to
modify MBeans, refer to “Protecting System Administration Operations” in WebLogic
Server Administration Guide.

Listing 4-5 Using the Administration MBeanHome and getMBean()

import java.util.Set;
import java.util.Iterator;
import javax.naming.Context;
import javax.management.MBeanServer;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicObjectName;

public class serverRuntimeInfo3 {
public static void main(String[] args) {

MBeanHome home = null;

//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";
4-12 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
Object attributeValue = null;
MBeanServer homeServer = null;

//setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

// Getting the Administration MBeanHome.
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got Admin MBeanHome from the Admin server: " +

home);
} catch (Exception e) {

System.out.println("Exception caught: " + e);
}
try {

// Creating the mbean object name.
WebLogicObjectName objName = new WebLogicObjectName(serverName,

"ServerRuntime",home.getDomainName(),serverName);
System.out.println("Created WebLogicObjectName: " + objName);

//Retrieving the MBeanServer interface
homeServer = home.getMBeanServer();

//Retrieving the ListenPort attribute of ServerRuntimeMBean
attributeValue = homeServer.getAttribute(objName, "ListenPort");
System.out.println("ListenPort for " + serverName + " is:" +

attributeValue);
} catch(Exception e) {

System.out.println("Exception: " + e);
}

}
}

Programming WebLogic Management Services with JMX 4-13

4 Accessing Runtime Information
Example: Viewing Runtime Information
About Clusters

The example in this section retrieves the number and names of WebLogic Server
instances currently running in a cluster. It uses
weblogic.management.runtime.ClusterRuntimeMBean, which provides
information about a single Managed Server’s view of the members of a WebLogic
cluster.

Only Managed Servers host instances of ClusterRuntimeMBean, and you must
retrieve the ClusterRuntimeMBean instance from a Managed Server that is actively
participating in a cluster.

To make sure that it retrieves a ClusterRuntimeMBean from an active Managed
Server that is in a cluster, this example does the following:

1. Retrieves the Administration MBeanHome, which runs on the Administration Server
and can provide access to all ClusterRuntimeMBeans in the domain.

2. Retrieves all ClusterRuntimeMBeans and determines whether they belong to a
specific cluster.

3. Finds one ClusterRuntimeMBean for a Managed Server in the cluster of
interest.

4. Uses the ClusterRuntimeMBean APIs on the Managed Server to determine the
number and name of active servers in the cluster.

In the example, weblogic is the username and password for a user who has permission
to view and modify MBean attributes. For information about permissions to modify
MBeans, refer to “Protecting System Administration Operations” in WebLogic Server
Administration Guide.

Listing 4-6 Retrieving a List of Servers Running in a Cluster

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.Context;
4-14 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Example: Viewing Runtime Information About Clusters
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import javax.management.ObjectName;
import weblogic.management.WebLogicMBean;
import weblogic.management.runtime.ClusterRuntimeMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.MBeanHome;

public class getRunningServersInCluster {
public static void main(String[] args) {

MBeanHome home = null;

//domain variables
String url = "t3://localhost:7001"; //url of the Administration Server
/* If you have more than one cluster in your domain, define a list of
* all the servers in the cluster. You compare the servers in the domain
* with this list to determine which servers are in a specific cluster.
*/
String server1 = "cs1"; // name of server in the cluster
String server2 = "cs2"; // name of server in the cluster
String username = "weblogic";
String password = "weblogic";
ClusterRuntimeMBean clusterRuntime = null;
Set mbeanSet = null;
Iterator mbeanIterator = null;
String name = "";
String[] aliveServerArray = null;

//Setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

// Getting the Administration MBeanHome.
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

// Retrieving a list of ClusterRuntime MBeans in the domain.
mbeanSet = home.getMBeansByType("ClusterRuntime");
mbeanIterator = mbeanSet.iterator();
while(mbeanIterator.hasNext()) {

// Retrieving one ClusterRuntime MBean from the list.
clusterRuntime = (ClusterRuntimeMBean)mbeanIterator.next();
// Getting the name of the ClusterRuntime MBean.
name = clusterRuntime.getName();
// Determining if the current ClusterRuntimeMBean belongs to a
// server in the cluster of interest.
Programming WebLogic Management Services with JMX 4-15

4 Accessing Runtime Information
if(name.equals(server1) || name.equals(server2)) {
// Using the current ClusterRuntimeMBean to retrieve the
// number of servers in the cluster.
System.out.println("\nNumber of active servers in the

cluster: " + clusterRuntime.getAliveServerCount());
// Retrieving the names of servers in the cluster.
aliveServerArray = clusterRuntime.getServerNames();
break;

}
}

} catch (Exception e) {
System.out.println("Caught exception: " + e);

}
if(aliveServerArray == null) {

System.out.println("\nThere are no running servers in the cluster");
System.exit(1);

}

System.out.println("\nThe running servers in the cluster are: ");
for (int i=0; i < aliveServerArray.length; i++) {

System.out.println("server " + i + " : " + aliveServerArray[i]);
}

}
}

Viewing Runtime Information for EJBs

For each EJB that you deploy on a server instance, WebLogic Server instantiates
MBean types from the weblogic.management.runtime package (see Table 4-1).
For more information about the MBeans in the weblogic.management.runtime
package, refer to the WebLogic Server Javadoc.

Table 4-1 MBeans that Provide Runtime Information for EJBs

MBean Type Description

EJBComponentRuntimeMBean The top level interface for all runtime information
collected for an EJB module.
4-16 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/runtime/package-summary.html

Viewing Runtime Information for EJBs
WebLogic Server provides an additional, abstract interface, EJBRuntimeMBean,
which contains methods that the other EJB runtime MBeans use.

EJB runtime MBeans are instantiated within a hierarchy. For example:

Each EJB jar file exposes its runtime data through an instance of
EJBComponentRuntimeMBean.

StatefulEJBRuntimeMBean Instantiated for stateful session beans only.
Contains methods for accessing EJB runtime information
collected for a Stateful Session Bean.

StatelessEJBRuntimeMBean Instantiated for stateless session beans only.
Contains methods for accessing EJB runtime information
collected for a Stateless Session Bean.

MessageDrivenEJBRuntimeMBean Instantiated for message driven bean only.
Contains methods for accessing EJB runtime information
collected for a Message Driven Bean.

EntityEJBRuntimeMBean Contains methods for accessing EJB runtime information
collected for an Entity Bean.

EJBCacheRuntimeMBean Contains methods for accessing cache runtime
information collected for an EJB.

EJBLockingRuntimeMBean Contains methods for accessing lock manager runtime
information collected for an EJB.

EJBTransactionRuntimeMBean Contains methods for accessing transaction runtime
information collected for an EJB.

EJBPoolRuntimeMBean Instantiated for stateless session beans only.
Contains methods for accessing free pool runtime
information collected for a stateless session EJB.
WebLogic Server uses a free pool to improve
performance and throughput for stateless session EJBs.
The free pool stores unbound stateless session EJBs.
Unbound EJB instances are instances of a stateless session
EJB class that are not processing a method call.

Table 4-1 MBeans that Provide Runtime Information for EJBs

MBean Type Description
Programming WebLogic Management Services with JMX 4-17

4 Accessing Runtime Information
Each entity bean within the jar exposes its runtime data through an instance of
EntityEJBRuntimeMBean.

Each EntityEJBRuntimeMBean is the parent of up to four additional MBeans.

EntityEJBRuntimeMBean is always the parent of the EJBCacheRuntimeMBean,
EJBTransactionRuntimeMBean, and EJBPoolRuntimeMBean MBeans. The
fourth child MBean, EJBLockingRuntimeMBean, is only created if the entity
bean uses an exclusive concurrency strategy (which is configured in the
weblogic-ejb-jar.xml deployment descriptor).

Depending on the type of runtime data that you retrieve, you typically also need to
retrieve the name of any parent MBeans to provide context for the data. For example,
if you retrieve the value of
EJBTransactionRuntimeMBean.TransactionsRolledBackTotalCount, you
also retrieve the name of the parent EJBEntityRuntimeMBean to determine which
entity bean the value comes from.

Figure 4-1 illustrates the hierarchical relationships.
4-18 Programming WebLogic Management Services with JMX

Viewing Runtime Information for EJBs
Figure 4-1 Hierarchy of EJB Runtime MBeans

EJBTransactionMBean

EJBLockingRuntimeMBean

EJBCacheRuntimeMBean

EJBPoolRuntimeRuntimeMBean

EntityEJBRuntimeMBean

(1 per entity bean)

EJBPoolRuntimeMBean

EJBTransactionRuntimeMBean

StatelessEJBRuntimeMBean

(1 per stateless session bean)

EJBPoolRuntimeMBean

EJBTransactionRuntimeMBean

MessageDrivenEJBRuntimeMBean

(1 per message-driven bean)

EJBLockingRuntimeMBean

EJBCacheRuntimeMBean

EJBTransactionRuntimeMBean

StatefulEJBRuntimeMBean

(1 per entity bean)

EJBComponentRuntimeMBean

(1 per EJB JAR file)
Programming WebLogic Management Services with JMX 4-19

4 Accessing Runtime Information
Example: Retrieving Runtime Information for All
Stateful and Stateless EJBs

To retrieve runtime information for all EJBs deployed in a domain, the example in
Listing 4-7 does the following:

1. Connects to the Administration Server and retrieves the Administration
MBeanHome interface.

If you want to retrieve runtime information only for the EJBs that are deployed
on a specific server instance, you can connect to the specific server instance and
retrieve the local MBeanHome interface. For more information, refer to “Example:
Retrieving a Local MBeanHome from an Internal Client” on page 2-9.

2. To display the number of idle bean instances in the free pool., the example:

a. Invokes the MBeanHome.getMBeansByType to retrieve all
StatelessEJBRuntime MBeans.

b. For each stateless EJB, it invokes the displayEJBInfo method (which is
defined later in this class). This method:

Invokes the StatelessEJBRuntimeMBean.getEJBName method (which all
EJB runtime MBeans inherit from EJBRuntimeMBean) to retrieve the name
of the MBean.

Walks up the MBean hierarchy to retrieve the names of the parent EJB
component and application.

All EJBs are packaged within an EJB component, which functions as a J2EE
module. EJB components can be packaged with an enterprise application.

c. Invokes the StatelessEJBRuntime.getPoolRuntime method to retrieve the
EJBPoolRuntimeMBean that is associated with the stateless EJB.

d. Invokes the EJBPoolRuntimeMBean.getIdleBeansCount method.

3. To determine percentage of transactions that have been rolled back for each
stateful EJB in the domain, the example:

a. Invokes the MBeanHome.getMBeansByType to retrieve all
StatefulEJBRuntime MBeans.

b. Invokes the displayEJBInfo method (which is defined later in this class).
4-20 Programming WebLogic Management Services with JMX

Viewing Runtime Information for EJBs
c. Invokes the EJBRuntime.getTransactionRuntime method to retrieve the
EJBTransactionRuntimeMBean that is associated with the stateful EJB.

d. Invokes the
EJBTransactionRuntimeMBean.getTransactionsRolledBackTotalCou
nt and getTransactionsCommittedTotalCount methods.

e. Divides the number of committed transactions by the number rolled
transactions to determine the percentage of rolled back transactions.

Listing 4-7 Viewing Runtime Information for EJBs

import java.util.Iterator;
import java.util.Set;
import javax.management.InstanceNotFoundException;
import javax.naming.Context;
import javax.naming.InitialContext;

import weblogic.management.MBeanHome;
import weblogic.management.WebLogicObjectName;
import weblogic.management.configuration.ApplicationMBean;
import weblogic.management.configuration.EJBComponentMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.runtime.EJBComponentRuntimeMBean;
import weblogic.management.runtime.EJBPoolRuntimeMBean;
import weblogic.management.runtime.EJBRuntimeMBean;
import weblogic.management.runtime.EJBTransactionRuntimeMBean;
import weblogic.management.runtime.StatelessEJBRuntimeMBean;
import weblogic.jndi.Environment;

public final class EJBMonitor {
private String url = "t3://localhost:7001";
private String user = "weblogic";
private String password = "weblogic";
private MBeanHome mBeanHome; // admin

public EJBMonitor() throws Exception {
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(user);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();
mBeanHome = (MBeanHome)ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

}

public void displayStatelessEJBPoolIdleCount()
throws Exception
Programming WebLogic Management Services with JMX 4-21

4 Accessing Runtime Information
{
int idleCount = 0;
String type = "StatelessEJBRuntime";
Set beans = mBeanHome.getMBeansByType(type);
System.out.println("Printing Stateless Session pool idle count:");
for(Iterator it=beans.iterator();it.hasNext();) {

StatelessEJBRuntimeMBean rt = (StatelessEJBRuntimeMBean)it.next();
displayEJBInfo(rt);
EJBPoolRuntimeMBean pool = rt.getPoolRuntime();
idleCount = pool.getIdleBeansCount();

}
System.out.println("Pool Idle Bean Count: "+ idleCount +"\n");

}

public void displayStatefulEJBTransactionRollbackPercentages()
throws Exception
{

String type = "StatefulEJBRuntime";
Set beans = mBeanHome.getMBeansByType(type);
System.out.println("Printing Stateful transaction rollback

 percentages:");
for(Iterator it=beans.iterator();it.hasNext();) {

EJBRuntimeMBean rt = (EJBRuntimeMBean)it.next();
displayEJBInfo(rt);
EJBTransactionRuntimeMBean trans = rt.getTransactionRuntime();
String rollbackPercentage = "0";
long rollbackCount = trans.getTransactionsRolledBackTotalCount();
if(rollbackCount > 0) {

long totalTransactions = rollbackCount +
trans.getTransactionsCommittedTotalCount();

rollbackPercentage =
""+(float)rollbackCount/totalTransactions*100;

}

System.out.println("Transaction rollback percentage: "+
rollbackPercentage +"\n");

}
}

private void displayEJBInfo(EJBRuntimeMBean rt) throws Exception {
System.out.println("EJB Name: "+rt.getEJBName());
EJBComponentRuntimeMBean compRTMBean =

EJBComponentMBean compMBean = compRTMBean.getEJBComponent();
ApplicationMBean appMBean = (ApplicationMBean)compMBean.getParent();
System.out.println("Application Name: "+appMBean.getName());
System.out.println("Component Name: "+compMBean.getName());
WebLogicObjectName objName = rt.getObjectName();
System.out.println("Server Name: "+objName.getLocation());

}

4-22 Programming WebLogic Management Services with JMX

Viewing Runtime Information for EJBs
public static void main(String[] argv) throws Exception {
EJBMonitor m = new EJBMonitor();
m.displayStatelessEJBPoolIdleCount();
m.displayStatefulEJBTransactionRollbackPercentages();

}
}

Programming WebLogic Management Services with JMX 4-23

4 Accessing Runtime Information
4-24 Programming WebLogic Management Services with JMX

CHAPTER
5 Using WebLogic Server
MBean Notifications
and Monitors

To report changes in configuration and runtime information, all WebLogic Server
MBeans emit JMX notifications. A notification is a JMX object that describes a state
change or some other specific condition that has occurred in an underlying resource.

You can create Java classes called listeners that listen for these notifications. For
example, your application can include a listener that receives notifications when
applications are deployed, undeployed, or redeployed.

The following sections describe working with notifications and listeners:

“How Notifications are Broadcast and Received” on page 5-2

“Monitoring Changes in MBeans” on page 5-3

“Best Practices: Listening Directly Compared to Monitoring” on page 5-6

“Listening for Notifications from WebLogic Server MBeans: Main Steps” on
page 5-9

“Using Monitor MBeans to Observe Changes: Main Steps” on page 5-24
Programming WebLogic Management Services with JMX 5-1

5 Using WebLogic Server MBean Notifications and Monitors
How Notifications are Broadcast and
Received

All WebLogic Server MBeans implement the
javax.management.NotificationBroadcaster interface, which enable them to
emit different types of notification objects depending on the type of event that occurs.
For example, MBeans emit notifications when the values of their attributes change.

To listen for these notifications, you create a listener class that implements
javax.management.NotificationListener.

By default, your listener receives all notifications that the MBean emits. However,
typically, you want your listener to retrieve only specific notifications. For example,
the LogBroadCasterRuntime MBean emits a notification each time a WebLogic
Server instance generates a log message. Usually you listen for only specific log
messages, such as messages of specific severity level. To limit the notifications that
your listener receives, you can create a notification filter.

After creating your listener and optional filter, you register the classes with the
MBeans from which you want to receive notifications.

Figure 5-1 shows a basic system in which a NotificationListener receives only a
subset of the notifications that an MBean broadcasts.
5-2 Programming WebLogic Management Services with JMX

Monitoring Changes in MBeans
Figure 5-1 Receiving Notifications from an MBean

For a complete explanation of JMX notifications and how they work, download the
JMX 1.0 specification from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html.

Monitoring Changes in MBeans

WebLogic Server includes a set of monitor MBeans that can be configured to
periodically observe MBeans and emit JMX notifications only if a specific MBean
attribute has changed beyond a specific threshold. A monitor MBean can observe the

3. You register the
listener and optional
filter with an MBean.

MBean

MyRegistrationClass

new MyNotificationListener()

1. You create a listener.

MyFilter

NotificationBroadcaster

2. (Optional) You
create a filter.

4. MBean emits
a notification.

5. The filter determines
which notifications the
listener receives.

MyNotificationListener

handleNotification()
Programming WebLogic Management Services with JMX 5-3

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

5 Using WebLogic Server MBean Notifications and Monitors
exact value of an attribute in an MBean, or optionally, the difference between two
consecutive values of a numeric attribute. The value that a monitor MBean observes is
called the derived gauge.

When the value of the derived gauge satisfies a set of conditions, the monitor MBean
emits a specific notification type. Monitors can also send notifications when certain
error cases are encountered while monitoring an attribute value.

To use monitor MBeans, you configure and register a monitor with a WebLogic Server
MBean. Then you create a listener class and register the class with the monitor
MBean. Because monitor MBeans emit only very specific types of notification, you
usually do not use filters when listening for notifications from monitor MBeans.

Figure 5-2 shows a basic system in which a monitor MBean is registered with a
WebLogic Server MBean. A NotificationListener is registered with the monitor
MBean, and it receives notifications when the conditions within the monitor MBean
are satisfied.
5-4 Programming WebLogic Management Services with JMX

Monitoring Changes in MBeans
Figure 5-2 Monitor MBeans

MyNotificationListener

MyMonitor MBean

handleNotification()

MyRegistrationClass

new MyNotificationListener()

2. You create a listener

NotificationBroadcaster

3. When a specific change occurs

Observed MBean

1. You create a monitor
MBean and register
it with an MBean.

and register it with
your monitor MBean. in the observed MBean, the

monitor MBean emits a
notification. All listeners that
are registered with the
monitor MBean receive the
notification.
Programming WebLogic Management Services with JMX 5-5

5 Using WebLogic Server MBean Notifications and Monitors
Best Practices: Listening Directly Compared
to Monitoring

WebLogic Server provides two ways to be notified about changes in an MBean: you
can create a listener and register it directly with an MBean (see Figure 5-1), or you can
configure a monitor MBean that periodically observes an MBean and sends
notifications when an attribute value satisfies criteria that you specify (see Figure 5-2).
The method that you choose depends mostly on the complexity of the situations in
which you want to receive notifications.

If your requirements are simple, registering a listener directly with an MBean is the
preferred technique. The NotificationListener and NotificationFilter
interfaces, which are classes that you implement in your listener and filter, provide few
facilities for comparing values with thresholds and other values. You must create you
own code to evaluate the data within notifications and respond accordingly. However,
the advantage of registering a listener directly with an MBean is that the MBean pushes
its notifications to your listener and you are notified of a change almost immediately.

If your notification requirements are sufficiently complex, or if you want to monitor
some set of changes that are not directly associated with a single change in the value
of an MBean attribute, use a monitor MBean. The monitor MBeans provide a rich set
of tools for comparing data and sending notifications only under highly specific
circumstances. However, the monitor periodically polls the observed MBean for
changes in attribute value and you are notified of a change only as frequently as the
polling interval that you specify.

Best Practices: Commonly Monitored Attributes
The attributes in Table 5-3 provide a general overview of the performance of
WebLogic Server. You can monitor these attributes either by creating a listener and
registering it directly with the MBeans that contain the attributes or by configuring
monitor MBeans.

To create and register a listener or to configure monitor MBeans, you must provide the
WebLogicObjectName of the MBean that contains the attributes you want to monitor.
(See “Registering a Notification Listener and Filter” on page 5-16 and “Instantiating
the Monitor and Listener” on page 5-28.)
5-6 Programming WebLogic Management Services with JMX

Best Practices: Commonly Monitored Attributes
Use the information in Table 5-3 to construct the WebLogicObjectName for each
MBean. In the table, domain refers to the name of the WebLogic Server domain, and
server refers to the name of the WebLogic Server instance that hosts the MBean you
want to monitor.

Table 5-3 Commonly Monitored WebLogic Server Attributes

MBean and Attribute Names Description

MBean Type: ServerRuntime

Attribute Name: State

WebLogicObjectName for the MBean:
domain:Location=server,Name=server,
Type=ServerRuntime

For example:
examples:Location=ExamplesServer,Name=
ExamplesServer,Type=ServerRuntime

Indicates whether the server is in an
Initializing, Suspended, Running, or
ShuttingDown state.

MBean Type: ServerRuntime
Attribute Name: OpenSocketsCurrentCount
WebLogicObjectName for the MBean:
See the previous row in this table.

Use these two attributes together to compare the
current activity on the server’s listen ports to the total
number of requests that can be backlogged on the
ports.
Note that the attributes are located in two separate
MBeans:

OpenSocketsCurrentCount is in the
ServerRuntime MBean.
AcceptBacklog is in the Server
configuration MBean.

MBean Type: Server
Attribute Name: AcceptBacklog

WebLogicObjectName for the MBean:
domain:Name=server,Type=Server
For example:
examples:Name=ExamplesServer,Type=
Server
Programming WebLogic Management Services with JMX 5-7

5 Using WebLogic Server MBean Notifications and Monitors
MBean Type: ExecuteQueueRuntime
Attribute Name:
ExecuteThreadCurrentIdleCount

WebLogicObjectName for the MBean:
domain:Location=server,Name=default,
ServerRuntime=server,Type=
ExecuteQueueRuntime
For example:
examples:Location=ExamplesServer,Name=
default,ServerRuntime=ExamplesServer,
Type=ExecuteQueueRuntime

Displays the number of threads in a server’s default
execute queue that are taking up memory space but
are not being used to process data.
You can create multiple execute queues on a server
instance to optimize the performance of critical
applications, but the default execute queue is
available by default. For more information, refer to
"Using Execute Queues to Control Thread Usage."

MBean Type:ExecuteQueueRuntime

Attribute Name: PendingRequestCurrentCount

WebLogicObjectName for the MBean:
See the previous row in this table.

Displays the number of requests waiting in a server’s
default execute queue.

MBean Type: JVMRuntime
Attribute Name: HeapSizeCurrent

WebLogicObjectName for the MBean:
domain:Location=server,Name=server,
ServerRuntime=server,Type=JVMRuntime
For example:
examples:Location=ExamplesServer,Name=
ExamplesServer,ServerRuntime=ExamplesSe
rver,Type=JVMRuntime

Displays the amount of memory (in bytes) that is
currently available in the server’s JVM heap.
For more information, refer to "Tuning Java Virtual
Machines (JVMs)."

Table 5-3 Commonly Monitored WebLogic Server Attributes

MBean and Attribute Names Description
5-8 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/perform/AppTuning.html#exqueuesmain
http://e-docs.bea.com/wls/docs70/perform/JVMTuning.html
http://e-docs.bea.com/wls/docs70/perform/JVMTuning.html

Listening for Notifications from WebLogic Server MBeans: Main Steps
Listening for Notifications from WebLogic
Server MBeans: Main Steps

To listen for the notifications that WebLogic Server MBeans emit directly:

1. Determine which notification type you want to listen for. See “WebLogic Server
Notification Types” on page 5-10.

2. Create a listener class in your application. See “Creating a Notification Listener”
on page 5-11.

MBean Type: JDBCConnectonPoolRuntime

Attribute Name:
ActiveConnectionsCurrentCount

WebLogicObjectName for the MBean:
domain:Location=server,Name=poolName,
ServerRuntime=server,
Type=JDBCConnectionPoolRuntime

where poolName is the name that you gave to the
connection pool when you created it.

For example:
examples:Location=ExamplesServer,Name=
MyPool-PointBase,ServerRuntime=
ExamplesServer,Type=
JDBCConnectionPoolRuntime

Displays the current number of active connections in
a JDBC connection pool.
For more information, refer to "Tuning WebLogic
Server."

MBean Type: JDBCConnectonPoolRuntime

Attribute Name: ConnectionsHighCount

WebLogicObjectName for the MBean:
See the previous row in this table.

The high water mark of active connections in a JDBC
connection pool. The count starts at zero each time
the connection pool is instantiated.

Table 5-3 Commonly Monitored WebLogic Server Attributes

MBean and Attribute Names Description
Programming WebLogic Management Services with JMX 5-9

http://e-docs.bea.com/wls/docs70/perform/WLSTuning.html
http://e-docs.bea.com/wls/docs70/perform/WLSTuning.html

5 Using WebLogic Server MBean Notifications and Monitors
3. Optionally create a filter class, which specifies the types of notifications that the
listener receives from the MBeans. See “Creating a Notification Filter” on page
5-14.

4. Create an additional class that registers your listener and filter with the MBeans
whose notifications you want to receive. See “Registering a Notification Listener
and Filter” on page 5-16.

WebLogic Server Notification Types

WebLogic Server MBeans implement the
javax.management.NotificationBroadcaster interface, which enable them to
emit different types of notification objects depending on the type of event that occurs:

When an MBean’s attribute value changes, it emits a
javax.management.AttributeChangeNotification object.

When a WebLogic Server resource generates a log message, the server’s
LogBroadcasterRuntimeMBean emits a notification of type
weblogic.management.WebLogicLogNotification. For more information
about WebLogicLogNotification, refer to the WebLogic Server Javadoc.

When MBeans are registered or unregistered, the WebLogic Server JMX
services emit notifications of type
javax.management.MBeanServerNotification.

If an MBean attribute is an array, when you invoke the MBean’s
addAttributeName method to add an element to the array, the MBean emits a
weblogic.management.AttributeAddNotification object. One example of
an MBean that exposes addAttributeName methods is
weblogic.management.configuration.XMLRegistryMBean. For more
information, refer to the WebLogic Server Javadoc.

If an MBean attribute is an array, when you invoke the MBean’s
removeAttributeName method to remove an element from the array, the
MBean emits a weblogic.management.AttributeRemoveNotification
object.
5-10 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/logging/WebLogicLogNotification.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/configuration/XMLRegistryMBean.html

Listening for Notifications from WebLogic Server MBeans: Main Steps
For more information about the javax.management notification types, refer to the
JMX 1.0 API documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that
you download includes the API documentation.

For more information about the weblogic.management notification types, refer to the
Javadoc for AttributeAddNotification and AttributeRemoveNotification.

Creating a Notification Listener

To create a notification listener:

1. Create a class that implements one of the following:

For a client that runs within the same JVM as WebLogic Server, implement
javax.management.NotificationListener.

For a client that runs in a remote JVM, implement
weblogic.management.RemoteNotificationListener.

RemoteNotificationListener extends
javax.management.NotificationListener and java.rmi.Remote,
making MBean notifications available to external clients via RMI.

2. Within the class, add one of the following:

For a client that runs within the same JVM as WebLogic Server, add a
NotificationListener.handleNotification(Notification
notification, java.lang.Object handback) method.

For a client that runs within the same JVM as WebLogic Server, add a
RemoteNotificationListener.handleNotification(Notification
notification, java.lang.Object handback) method.

Note: Your implementation of this method should return as soon as possible to
avoid blocking its notification broadcaster.

3. To retrieve data from the notification objects that the listener receives, within
your handleNotification method, invoke
javax.management.Notification methods on the notification objects.

For example, to retrieve the time stamp associated with the notification, invoke
notification.getTimeStamp().
Programming WebLogic Management Services with JMX 5-11

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/AttributeAddNotification.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/AttributeRemoveNotification.html

5 Using WebLogic Server MBean Notifications and Monitors
Because all notification types extend javax.management.Notification, the
following Notification methods are available for all notifications:

getMessage()

getSequenceNumber()

getTimeStamp()

getType()

getUserData()

For more information on Notification methods, refer to the
javax.management.Notification Javadoc in the JMX 1.0 API
documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive
that you download includes the API documentation.

4. Most notification types provide additional methods for retrieving data that is
specific to the notification. For example, WebLogicLogNotification provides
methods for retrieving specific attributes of WebLogic Server log messages, such
as getSeverity(), which retrieves the severity level that the log message
specifies.

If you want to retrieve data that is specific to a notification type (and therefore
not retrievable through the standard javax.management.Notification
methods):

a. Add logic within the handleNotification method to filter through the
notifications and select only notifications of a specific type.

b. Invoke methods that the notification type provides to extract data from the
notification object.

For example:

if(notification instanceof MonitorNotification) {
MonitorNotification monitorNotification =

(MonitorNotification)
notific

ation;
System.out.println("This notification is a

MonitorNotification");
System.out.println("Observed Attribute: " +

monitorNotification.getObservedAttrib
5-12 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Listening for Notifications from WebLogic Server MBeans: Main Steps
ute());
}

In addition to the previous steps, consider the following while creating your
NotificationListener class:

Unless you create and use a notification filter, your listener receives all
notifications (of all notification types) from the MBeans with which it is
registered.

Instead of using one listener for all possible notifications that an MBean emits,
the best practice is to use a combination of filters and listeners. While having
multiple listeners adds to the amount of time for initializing the JVM, the
trade-off is ease of code maintenance.

If your WebLogic Server environment contains multiple instances of MBean
types that you want to monitor, you can create one notification listener and then
create as many registration classes as MBean instances that you want to monitor.

For example, if your WebLogic Server domain contains three JDBC connection
pools, you can create one listener class that listens for
AttributeChangeNotifications. Then, you create three registration classes.
Each registration class registers the listener with a specific instance of a
JDBCConnectionPoolRuntime MBean.

While the handleNotification method signature includes an argument for a
handback object, your listener does not need to retrieve data from or otherwise
manipulate the handback object. It is an opaque object that helps the listener to
associate information regarding the MBean emitter.

The following example creates a remote listener. Then the listener receives a
AttributeChangeNotification object, it uses AttributeChangeNotification
methods to retrieve the name of the attribute with a changed value, and the old and new
values.

Listing 5-1 Notification Listener

import javax.management.Notification;
import javax.management.NotificationFilter;
import javax.management.NotificationListener;
import weblogic.management.RemoteNotificationListener;
import javax.management.AttributeChangeNotification;

public class MyListener implements RemoteNotificationListener {
Programming WebLogic Management Services with JMX 5-13

5 Using WebLogic Server MBean Notifications and Monitors
public void handleNotification(Notification notification, Object obj) {

if(notification instanceof AttributeChangeNotification) {
AttributeChangeNotification attributeChange =

(AttributeChangeNotification) notification;
System.out.println("This notification is an

AttributeChangeNotification");
System.out.println("Observed Attribute: " +

attributeChange.getAttributeName());
System.out.println("Old Value: " + attributeChange.getOldValue());
System.out.println("New Value: " + attributeChange.getNewValue());

}
}

}

Creating a Notification Filter

To create and register a filter:

1. Create a serializable class that implements
javax.management.NotificationFilter.

Optionally import the javax.management.NotificationFilterSupport
class, which provides utility methods for filtering notifications. For more
information about using these methods, refer to the JMX 1.0 API documentation,
which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive
that you download includes the API documentation.

The filter needs to be serializable only if it is used in a remote notification
listener. A class that is used with RMI must be serializable so it can be
deconstructed and reconstructed in remote JVMs.

2. Use the isNotificationEnabled(Notification notification) method to
indicate whether the serializable object returns a true value when a set of
conditions are satisfied.

If the boolean returns true, then the filter forwards the notification to the listener
with which the filter is registered.
5-14 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Listening for Notifications from WebLogic Server MBeans: Main Steps
3. (Optional) You can include code that retrieves data from notifications and carries
out actions based on the data in the notification. For example, your filter can use
javax.management.AttributeChangeNotification methods to view the
new value of a specific attribute. If the value is over a threshold that you specify,
you can use JavaMail API to send e-mail to an administrator.

Listing 5-2 provides an example NotificationFilter that forwards only
notifications of type AttributeChangeNotification.

Listing 5-2 Example Notification Filter

import javax.management.Notification;
import javax.management.NotificationFilter;
import javax.management.AttributeChangeNotification;

public class MyHiCountFilter implements NotificationFilter,
java.io.Serializable {

public boolean isNotificationEnabled(Notification notification) {
if (!(notification instanceof AttributeChangeNotification)) {

return false;
}
AttributeChangeNotification acn =

(AttributeChangeNotification)notification;
acn.getAttributeName().equals("ActiveConnectionsHighCount"); {

return true;
}

}
}

Adding Filter Classes to the Server Classpath

If you create a filter for a listener that runs in a remote JVM, you can add the filter’s
classes to the classpath of the server instance from which you are listening for
notifications. Although the listener runs in the remote JVM, adding the filter’s classes
to the server’ s classpath minimizes the transportation of serialized data between the
filter and the listener. (See Figure 5-4.)
Programming WebLogic Management Services with JMX 5-15

5 Using WebLogic Server MBean Notifications and Monitors
Figure 5-4 Filters Can Run on WebLogic Server

Registering a Notification Listener and Filter

After you implement a notification listener class and optional filter class, you create an
additional class that registers your listener and filter with an MBean instance. You
must create one registration class for each MBean instance that you want to monitor.

To register a notification listener and filter:

1. Create a class that retrieves the MBeanHome interface and then uses MBeanHome to
retrieve the MBeanServer interface.

JSP

NotificationListener

WebLogic Server JVM

Remote JVM

MyRemoteNotificationListener

LogBroadcasterRuntimeMBean

MBean

handleNotification()

handleNotification()

Filter

Filter
5-16 Programming WebLogic Management Services with JMX

Listening for Notifications from WebLogic Server MBeans: Main Steps
If you want to register a listener and filter with an Administration MBean, you
must retrieve the Administration MBeanHome, which resides only on the
Administration Server. If you want to register with a Local Configuration
MBean or a Runtime MBean, you must retrieve the Local MBeanHome for the
server instance that hosts the MBean.

2. Instantiates the listener class and filter class that you created.

3. Constructs the WebLogicObjectName of the MBean with which you want to
register.

4. Registers the listener and filter by passing the WebLogicObjectName, listener
class, and filter class to the addNotificationListener() method of the
MBeanServer interface.

While Figure 5-1 illustrates registering a listener and filter directly with an
MBean (which you can do by calling the MBean’s
addNotificationListener() method), in practice it is preferable to use the
addNotificationListener() method of the MBeanServer interface, which
saves the trouble of looking up a particular MBean simply for registration
purposes.

The following example is a registration class that runs in a remote JVM. If the class
ran within the same JVM as a WebLogic Server instance, the code for retrieving the
MBeanHome interface would be simpler. For more information, refer to “Accessing an
MBeanHome Interface” on page 2-4.

The example class registers the listener from Listing 5-1 and filter from Listing 5-2
with the Server Administration MBean for a server instance named Server1. In the
example, weblogic is a user who has permission to view and modify MBean
attributes. For information about permissions to view and modify MBeans, refer to
“Protecting System Administration Operations” in WebLogic Server Administration
Guide.

The example class also includes some code the keep the class active until it receives a
notification. Usually this code is not necessary because a listener class runs in the
context of some larger application that is responsible for invoking the class and
keeping it active. It is included here so you can easily compile and see the example
working.
Programming WebLogic Management Services with JMX 5-17

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

5 Using WebLogic Server MBean Notifications and Monitors
Listing 5-3 Registering a Listener for an Administration MBean

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.Context;
import javax.management.ObjectName;
import javax.management.Notification;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.RemoteMBeanServer;
import weblogic.management.configuration.ServerMBean;

public class listener {

public static void main(String[] args) {

MBeanHome home = null;
RemoteMBeanServer rmbs = null;

//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";

//Using MBeanHome to get MBeanServer.
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//Getting the Administration MBeanHome.
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home);
rmbs = home.getMBeanServer();

} catch (Exception e) {
System.out.println("Caught exception: " + e);

}

try {
//Instantiating your listener class.
MyListener listener = new MyListener();
MyFilter filter = new MyFilter();
5-18 Programming WebLogic Management Services with JMX

Listening for Notifications from WebLogic Server MBeans: Main Steps
//Constructing the WebLogicObjectName of the MBean that you want
//to listen to.
WebLogicObjectName mbeanName = new WebLogicObjectName(serverName,

"Server",home.getDomainName());
System.out.println("Created WebLogicObjectName: " + mbeanName);

//Passing the name of the MBean and your listener class to the
//addNotificationListener method of MBeanServer.
rmbs.addNotificationListener(mbeanName, listener, filter, null);
System.out.println("\n[myListener]: Listener registered ...");

//Keeping the remote client active.
System.out.println("pausing...........");
System.in.read();

} catch(Exception e) {
System.out.println("Exception: " + e);

}
}

}

Listening for Configuration Auditing Messages: Main
Steps

By default, the Administration Server emits a log message when a user changes the
configuration or invokes management operations on any resource within a domain. For
example, if a user disables SSL on a Managed Server in a domain, the Administration
Server emits a log message. These messages provide an audit trail of changes within a
domain’s configuration (configuration auditing). See "Configuration Auditing" in the
Administration Guide.

To create and use a JMX listener and filter that respond to configuration auditing
messages:

1. Create and compile a notification listener that extracts information from WebLogic
Server log messages.

See “Notification Listener for Configuration Auditing Messages” on page 5-20.

2. Create and compile a notification filter that selects only configuration auditing
messages.

See “Notification Filter for Configuration Auditing Messages” on page 5-21.
Programming WebLogic Management Services with JMX 5-19

http://e-docs.bea.com/wls/docs70/adminguide/logging.html#ConfigurationAuditing

5 Using WebLogic Server MBean Notifications and Monitors
3. Create and compile a class that registers the listener and filter with the
Administration Server’s LogBroadcasterRuntime MBean. This is the MBean
that a WebLogic Server instance uses to broadcast its log messages as JMX
notifications.

See “Registration Class for Configuration Auditing Messages” on page 5-22.

4. Add the notification filter to the classpath for the Administration Server.

If the notification listener runs within the Administration Server’s JVM (for
example, if it runs as a startup class), add the notification listener and
registration class to the Administration Server’s classpath as well.

5. Invoke the registration class or configure it as a startup class for the
Administration Server.

See "Configuring Startup and Shutdown Classes" in the Administration Guide.

Notification Listener for Configuration Auditing Messages

Like the notification listener in Listing 5-1, the listener in Listing 5-1 implements
RemoteNotificationListener and its handleNotification method.

Because all configuration auditing messages are of type
WebLogicLogNotification, the listener in Listing 5-1 imports the
WebLogicLogNotification interface and uses its methods to retrieve information
within each configuration auditing message.

Table 5-1 Notification Listener for Configuration Auditing Messages

import javax.management.Notification;
import javax.management.NotificationListener;
import weblogic.management.RemoteNotificationListener;
import weblogic.management.logging.WebLogicLogNotification;

public class ConfigAuditListener implements RemoteNotificationListener {
 public void handleNotification(Notification notification, Object obj) {
 WebLogicLogNotification changeNotification =
 (WebLogicLogNotification) notification;
 System.out.println("A user has attempted to change the configuration
 of a WebLogic Server domain.");
 System.out.println("Admin Server Name: " +
 changeNotification.getServername());
 System.out.println("Time of attempted change:" +
 changeNotification.getTimeStamp());
 System.out.println("Message details:" +
5-20 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#ConfiguringStartupShutdownClasses

Listening for Notifications from WebLogic Server MBeans: Main Steps
 changeNotification.getMessage());
 System.out.println("Message ID string:" +
 changeNotification.getMessageId());
 }
}

Notification Filter for Configuration Auditing Messages

Without a notification filter, the listener in Listing 5-1 would print the Server Name,
Timestamp, and Message Text for all messages that the Administration Server
broadcast.

To forward only the configuration auditing message that indicates a resource has been
modified, the filter in Listing 5-4 uses the
WebLogicLogNotification.getMessageId method to retrieve the message ID of
all incoming log notifications.

The resource-change configuration auditing message is identified by the message ID
159904 (see "Configuration Auditing" in the Administration Guide). If the message ID
value in an incoming log notification matches the configuration auditing message ID,
the filter evaluates as true and forwards the message to its registered listener.

Listing 5-4 Notification Filter for Configuration Auditing Messages

import javax.management.Notification;
import javax.management.NotificationFilter;
import weblogic.management.logging.WebLogicLogNotification;

public class ConfigAuditFilter implements NotificationFilter ,
 java.io.Serializable{
 int configChangedId = 159904;

 public boolean isNotificationEnabled(Notification notification) {
 if (!(notification instanceof WebLogicLogNotification)) {
 return false;

 }

 WebLogicLogNotification wln =
 (WebLogicLogNotification)notification;
 int messageId = wln.getMessageId();
 if (configChangedId == messageId) {
 return true;
Programming WebLogic Management Services with JMX 5-21

http://e-docs.bea.com/wls/docs70/adminguide/logging.html#ConfigurationAuditing

5 Using WebLogic Server MBean Notifications and Monitors
 } else {
 return false;
 }
 }
}

Registration Class for Configuration Auditing Messages

The class in Listing 5-5 registers the notification listener and filter with the
LogBroadcasterRuntime MBean of the Administration Server. This MBean is a
singleton in each instance of WebLogic Server and is always named
TheLogBroadcaster.

Listing 5-5 Registration Class for Configuration Auditing Messages

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.Context;
import javax.management.ObjectName;
import javax.management.Notification;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.RemoteMBeanServer;
import weblogic.management.configuration.ServerMBean;

public class ListenRegistration {
 public static void main(String[] args) {
 MBeanHome home = null;
 RemoteMBeanServer rmbs = null;

 //domain variables
 String url = "t3://localhost:7001";
 String serverName = "examplesServer";
 String username = "weblogic";
 String password = "weblogic";

 //Using MBeanHome to get MBeanServer.
 try {
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(username);
5-22 Programming WebLogic Management Services with JMX

Listening for Notifications from WebLogic Server MBeans: Main Steps
 env.setSecurityCredentials(password);
 Context ctx = env.getInitialContext();

 //Getting the Administration MBeanHome.
 home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
 System.out.println("Got the Admin MBeanHome: " + home);
 rmbs = home.getMBeanServer();

 } catch (Exception e) {
 System.out.println("Caught exception: " + e);
 }

 try {
 //Instantiating your listener class.
 ConfigAuditListener listener = new ConfigAuditListener();
 ConfigAuditFilter filter = new ConfigAuditFilter();

 //Constructing the WebLogicObjectName of the MBean that you want
 //to listen to.

 WebLogicObjectName mbeanName = new WebLogicObjectName(
 "TheLogBroadcaster",
 "LogBroadcasterRuntime",
 home.getDomainName(),
 serverName);
 System.out.println("Created WebLogicObjectName: " + mbeanName);

 //Passing the name of the MBean and your listener class to the
 //addNotificationListener method of MBeanServer.
 rmbs.addNotificationListener(mbeanName, listener, filter, null);
 System.out.println("\n[myListener]: Listener registered ...");

 //Keeping the remote client active.
 System.out.println("pausing...........");
 System.in.read();
 } catch(Exception e) {
 System.out.println("Exception: " + e);

 }
 }
}

Programming WebLogic Management Services with JMX 5-23

5 Using WebLogic Server MBean Notifications and Monitors
Using Monitor MBeans to Observe Changes:
Main Steps

To configure and use monitor MBeans:

1. Choose a monitor MBean type that matches the type of data you want to observe.
“Choosing a Monitor MBean Type” on page 5-24

2. Create a listener class that can listen for notifications from monitor MBeans. See
“Creating a Notification Listener for a Monitor MBean” on page 5-27.

3. Create a class that configures a monitor MBean, registers your listener class with
the monitor MBean, and then registers the monitor MBean with an observed
MBean. “Instantiating the Monitor and Listener” on page 5-28

Choosing a Monitor MBean Type

WebLogic Server provides monitor MBeans that are specialized to observe changes in
specific data types. You must configure and instantiate the type of monitor MBean that
matches the type of the object that an MBean returns for an attribute value. For
example, a monitor MBean based on the StringMonitor type can observe an attribute
that is declared as an Object as long as actual values of the attributes are String
instances, as determined by the instanceof operator.

To choose a monitor type:

1. Determine the type of object that is returned by the MBean attribute that you want
to observe by doing any of the following:

Refer to the WebLogic Server Javadoc.

Use the weblogic.Admin GET command, which provides information about
the MBean that you specify. For more information, refer to "MBean
Management Command Reference" in the WebLogic Server Administration
Guide.

Use the javap command on the MBean you are monitoring. The javap
command is a standard Java utility that disassembles a class file.
5-24 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/cli.html#MBean_Management_Command_Reference
http://e-docs.bea.com/wls/docs70/adminguide/cli.html#MBean_Management_Command_Reference

Using Monitor MBeans to Observe Changes: Main Steps
2. Choose a monitor type from the following table.

For more information about monitor types, refer to the JMX 1.0 specification, which
you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that
you download includes the API documentation.

Monitor Notification Types

Each type of monitor MBean emits specific types of
javax.management.monitor.MonitorNotification notifications. For any given
notification, you can use the MonitorNotification.getType() method to
determine its type.

The following table describes the type of notifications that monitor MBeans emit.

Table 5-2 Monitor MBeans and Observed Object Types

A Monitor MBean of This
Type

Observes This Object Type

CounterMonitor Integer

GaugeMonitor Integer or floating-point (Byte, Integer, Short,
Long, Float, Double)

StringMonitor String

Table 5-3 Monitor MBeans and MonitorNotification Types

A Monitor MBean of
This Type

Emits This MonitorNotification Type

CounterMonitor A counter monitor emits a jmx.monitor.counter.threshold when the
value of the counter reaches or exceeds a threshold known as the comparison level.
Programming WebLogic Management Services with JMX 5-25

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

5 Using WebLogic Server MBean Notifications and Monitors
Error Notification Types

All monitors can emit the following notification types to indicate error cases:

jmx.monitor.error.mbean, which indicates that the observed MBean is not
registered in the MBean Server. The observed object name is provided in the
notification.

jmx.monitor.error.attribute, which indicates that the observed attribute
does not exist in the observed object. The observed object name and observed
attribute name are provided in the notification.

jmx.monitor.error.type, which indicates that the object instance of the
observed attribute value is null or not of the appropriate type for the given
monitor. The observed object name and observed attribute name are provided in
the notification.

GaugeMonitor If the observed attribute value is increasing and becomes equal to or greater
than the high threshold value, the monitor emits a notification type of
jmx.monitor.gauge.high. Subsequent crossings of the high threshold
value do not cause further notifications unless the attribute value becomes equal
to or less than the low threshold value.
If the observed attribute value is decreasing and becomes equal to or less than
the low threshold value, the monitor emits a notification type of
jmx.monitor.gauge.low. Subsequent crossings of the low threshold
value do not cause further notifications unless the attribute value becomes equal
to or greater than the high threshold value.

StringMonitor If the observed attribute value matches the string to compare value, the monitor
emits a notification type of jmx.monitor.string.matches. Subsequent
matches of the string to compare values do not cause further notifications unless
the attribute value differs from the string to compare value.
If the attribute value differs from the string to compare value, the monitor emits
a notification type of jmx.monitor.string.differs. Subsequent
differences from the string to compare value do not cause further notifications
unless the attribute value matches the string to compare value.

Table 5-3 Monitor MBeans and MonitorNotification Types

A Monitor MBean of
This Type

Emits This MonitorNotification Type
5-26 Programming WebLogic Management Services with JMX

Using Monitor MBeans to Observe Changes: Main Steps
jmx.monitor.error.runtime, which contains exceptions that are thrown
while trying to get the value of the observed attribute (for reasons other than the
cases described above).

The counter and the gauge monitors can also emit the following
jmx.monitor.error.threshold notification type under the following
circumstances:

For a counter monitor, when the threshold, the offset, or the modulus is not of
the same type as the observed counter attribute.

For a gauge monitor, when the low threshold or high threshold is not of the same type as
the observed gauge attribute.

Creating a Notification Listener for a Monitor MBean

As any other MBean, monitor MBeans emit notifications by implementing
javax.management.NotificationBroadcaster. To create a listener for
notifications from a monitor MBean, create a class that does the following:

1. Implements NotificationBroadcaster or
weblogic.management.RemoteNotificationListener.

2. Includes the NotificationListener.handleNotification() or the
RemoteNotificationListener.handleNotification() method.

You can register the same notification listener with instances of
LogBroadcasterMBean, monitor MBeans, or any other MBean.

The example below creates a listener object for an application that runs in a JVM
outside the WebLogic Server JVM. It includes logic that outputs additional messages
when it receives notifications from monitor MBeans. You could further refine the logic
so that listener responds differently to the different types of monitor notifications
described in “Monitor Notification Types” on page 5-25.

Listing 5-6 Listener for Monitor Notifications

import java.rmi.Remote;
import javax.management.Notification;
Programming WebLogic Management Services with JMX 5-27

5 Using WebLogic Server MBean Notifications and Monitors
import javax.management.NotificationListener;
import javax.management.monitor.MonitorNotification;

import weblogic.management.RemoteNotificationListener;
import weblogic.management.MBeanHome;

public class CounterListener implements RemoteNotificationListener {

public void handleNotification(Notification notification ,Object obj) {
System.out.println("\n\n Notification Received ...");
System.out.println("Type=" + notification.getType());
System.out.println("SequenceNumber=" +

notification.getSequenceNumber());
System.out.println("Source=" + notification.getSource());
System.out.println("Timestamp=" + notification.getTimeStamp() + "\n");
if(notification instanceof MonitorNotification) {

MonitorNotification monitorNotification = (MonitorNotification)
notification;

System.out.println("This notification is a MonitorNotification");
System.out.println("Observed Attribute: " +

monitorNotification.getObservedAttribute());
System.out.println("Observed Object: " +

monitorNotification.getObservedObject());
System.out.println("Trigger value: " +

monitorNotification.getTrigger());
}

}
}

Instantiating the Monitor and Listener

The steps you take to register a monitor MBean with an observed MBean differ
depending on whether you are registering the monitor MBean on a single server
instance or on multiple server instances in a domain.

To register a monitor MBean on a single server instance:

1. Instantiate and configure the monitor MBean.

2. Retrieve the MBeanHome interface of the server instance that hosts the observed
MBean.

3. Register the monitor MBean with the observed MBean.
5-28 Programming WebLogic Management Services with JMX

Using Monitor MBeans to Observe Changes: Main Steps
To register a monitor MBean on multiple server instances:

1. Instantiate and configure the monitor MBean.

2. Retrieve the MBeanHome interface of each server instance that hosts instances of
the observed MBean.

3. For each server instance, register the monitor MBean with the observed MBean
instance.

The following sections provide examples for both tasks:

“Example: Monitoring an MBean on a Single Server” on page 5-29

“Example: Monitoring Instances of an MBean on Multiple Servers” on page
5-32

Example: Monitoring an MBean on a Single Server

The following example creates a monitor for the ServicedRequestTotalCount
attribute of the ExecuteQueRuntimeMBean, which returns the number of requests that
have been processed by the corresponding execution queue. WebLogic Server uses
execute queues to optimize the performance of critical applications. For more
information, refer to "Using Execute Queues to Control Thread Usage."

To create a counter monitor for an ExecuteQueRuntimeMBean on a single server
instance, the example class in Listing 5-7:

1. Instantiates a javax.management.monitor.CounterMonitor object.

2. Configures the monitor object by doing the following:

a. Assign the JMX object name for the monitor object to a variable.

Listing 5-7 uses WebLogicObjectName(), but you can use
javax.management.ObjectName for the monitor object. The object name
must be unique throughout the entire WebLogic Server domain, and it must
follow the JMX conventions:

domain name:Name=name,Type=type[,attr=value]...

b. Uses WebLogicObjectName() to assigns the JMX object name for the
observed MBean to a variable.
Programming WebLogic Management Services with JMX 5-29

http://e-docs.bea.com/wls/docs70/perform/AppTuning.html#exqueuesmain

5 Using WebLogic Server MBean Notifications and Monitors
If the observed MBean is a WebLogic Server MBean, you must use
WebLogicObjectName() instead of javax.management.ObjectName. You
can also use MBeanHome.getMBeansByType() or other WebLogic Server
APIs to get the name of the observed MBean object. For examples of
different methods of retrieving MBeans, refer to “Accessing WebLogic
Server MBeans” on page 2-1.

c. Sets values for the monitor’s threshold parameters. The set of available
parameters varies, depending on whether you are instantiating a
CounterMonitor, GaugeMonitor, or StringMonitor.

d. Configures the monitor object using the monitor’s APIs.

For more information about the parameters that you pass to configure monitors,
refer to:

“Configuring CounterMonitor Objects” on page 5-36

“Configuring GaugeMonitor Objects” on page 5-38

“Configuring StringMonitor Objects” on page 5-39.

3. Instantiates the listener object that you created in “Creating a Notification
Listener for a Monitor MBean” on page 5-27.

4. Registers the listener object using the monitor’s addNotificationListener()
method.

5. (This step is needed only if your monitor class runs in a JVM that is outside the
WebLogic Server JVM.) Pre-registers a reference to the MBean Server in the
remote JVM by doing the following:

a. Retrieve the MBeanServer interface using the Administration MBeanHome
interface.

b. Use the monitor’s preRegister() method.

6. Starts the monitor using the monitor’s start() method.

In the example, weblogic is a user who has permission to view and modify MBean
attributes. For information about permissions to view and modify MBeans, refer to
“Protecting System Administration Operations” in WebLogic Server Administration
Guide.
5-30 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/adminguide/secsysadm.html

Using Monitor MBeans to Observe Changes: Main Steps
Listing 5-7 Instantiating the Monitor and Listener

import javax.management.monitor.CounterMonitor;
import javax.management.ObjectName;
import javax.naming.Context;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.RemoteMBeanServer;
import weblogic.management.configuration.ServerMBean;

public class clientMonitor {

// The name of the WebLogic domain, please change this to match the //
// name of your installation specific domain name //
private static String weblogicDomain = "mydomain";

// The name of the WebLogic server, please change this to match the //
// name of your installation specific server name //
private static String weblogicServer = "myserver";

public static void main (String Args[]) {

try {
//Instantiate a CounterMonitor
CounterMonitor monitor = new CounterMonitor();

// construct the objectName for your CounterMonitor object
WebLogicObjectName monitorObjectName = new

WebLogicObjectName("MyCounter",
"CounterMonitor",weblogicDomain);

// Construct the objectName for the parent MBean
WebLogicObjectName pObjectName = new

WebLogicObjectName(weblogicServer,
"ServerRuntime",weblogicDomain);

// Construct the objectName for the observed MBean
WebLogicObjectName qObjectName = new
WebLogicObjectName("default",
"ExecuteQueueRuntime",weblogicDomain,
weblogicServer, pObjectName);

// Define variables to be used when configuring your CounterMonitor
// object.
Integer threshold = new Integer(10);
Integer offset = new Integer(1);
Programming WebLogic Management Services with JMX 5-31

5 Using WebLogic Server MBean Notifications and Monitors
//Configure your monitor object using the CounterMonitor APIs
monitor.setThreshold(threshold);
monitor.setNotify(true);
monitor.setOffset(offset);
monitor.setObservedObject(qObjectName);
monitor.setObservedAttribute("ServicedRequestTotalCount");

//Instantiate and register your listener with the monitor
CounterListener listener = new CounterListener();
monitor.addNotificationListener(listener, null, null);

//Use the Administration MBeanHome API to get the MBeanServer
//interface this is needed when you are registering a monitor from
// the client side.
String url = "t3://localhost:7001"; //URL of the Admin Server
String username = "weblogic";
String password = "weblogic";
MBeanHome home = null;
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
RemoteMBeanServer rmbs = home.getMBeanServer();
monitor.preRegister(rmbs, monitorObjectName);

//start the monitor
monitor.start();

}catch (Exception e) { e.printStackTrace(); }
}

}

Example: Monitoring Instances of an MBean on Multiple Servers

A WebLogic Server domain maintains a set of MBean instances for each server
instance. For example, each server instance hosts its own ServerRuntimeMBean,
LogMBean, and ExecuteQueueRuntimeMBean.

Some MBeans are instantiated only if a server instance hosts a specific service. For
example, if you use the Java Messaging Service (JMS), each server instance that is
defined as a JMS destination hosts its own JMSDestinationRuntimeMBean. For
information about JMS destinations, refer to “Using Distributed Destinations” in
Programming WebLogic JMS.
5-32 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/jms/implement.html#using_distributed_destinations

Using Monitor MBeans to Observe Changes: Main Steps
To monitor instances of a JMSDestinationRuntimeMBean on each server instance in
a domain, the example in Listing 5-8:

1. Retrieves the domain’s Administration MBeanHome.

2. Invokes MBeanHome.getMBeansByType to retrieve all instances of
JMSDestinationRuntimeMBean in the domain.

3. For each JMSDestinationRuntimeMBean, the class instantiates and configures a
GaugeMonitor object by doing the following:

a. Instantiates a GaugeMonitor object using the default constructor of
javax.management.monitor.GaugeMonitor.

b. Configures the GaugeMonitor object.

To provide the value for the GaugeMonitor.setObservedObject method,
the class casts the JMSDestinationRuntimeMBean as a WebLogicMBean.
Then it invokes WebLogicMBean.getObjectName.

4. For each GaugeMonitor object, the class instantiates a notification listener and
registers the listener with the monitor by invoking the
GaugeMonitor.addNotificationListener method.

To see an example notification listener, refer to “Creating a Notification Listener
for a Monitor MBean” on page 5-27.

5. For each GaugeMonitor object, the class registers a reference to the MBean
Server in the host server’s JVM by doing the following:

a. Invokes the Context.lookup(MBeanHome.JNDI_NAME.serverName)
method to retrieve the MBeanServer interface using the Administration
MBeanHome interface.

To provide the serverName value in the lookup method, the class refers to
the WebLogicMBean cast of the JMSDestinationRuntimeMBean and
invokes its WebLogicMBean.getObjectName().getLocation() method.

b. Invokes the monitor’s preRegister() method.

6. Starts the monitor using the monitor’s start() method.

7. Includes code that keep the class active. Usually this code is not necessary
because a monitor runs in the context of some larger application that is
responsible for invoking the class and keeping it active. It is included here so you
can easily compile and see the example working.
Programming WebLogic Management Services with JMX 5-33

5 Using WebLogic Server MBean Notifications and Monitors
8. Includes code that stops the monitor (and thereby ends the thread that the JVM
assigned to the monitor).

In the example, weblogic is a user who has permission to view and modify MBean
attributes. For information about permissions to view and modify MBeans, refer to
"Security Roles" in the Securing WebLogic Resources guide.

Listing 5-8 Instantiating a Gauge Monitor on Multiple Server Instances

import java.util.Set;
import java.util.Iterator;
import java.util.List;
import java.util.ArrayList;
import java.util.Collections;
import javax.naming.Context;

import javax.management.monitor.GaugeMonitor;
import javax.management.ObjectName;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.RemoteMBeanServer;
import weblogic.management.runtime.JMSDestinationRuntimeMBean;
import weblogic.management.WebLogicObjectName;

public class GaugeMonitorClient {

public static void main (String Args[]) throws Exception {
//url of the Administration Server
String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";
String domain = "examples";

try {
//retrieve the Administration MBeanHome
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();
MBeanHome home = (MBeanHome)

ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

//retrieve all JMSDestinationRuntimeMBean instances in
//the domain
5-34 Programming WebLogic Management Services with JMX

http://e-docs.bea.com/wls/docs70/secwlres/secroles.html

Using Monitor MBeans to Observe Changes: Main Steps
Set mbeanSet =
home.getMBeansByType("JMSDestinationRuntime");

System.out.println("Retrieved the following mbeans");
Iterator iter = mbeanSet.iterator();
while (iter.hasNext()){

WebLogicMBean bean = (WebLogicMBean) iter.next();
System.out.println("Name = "+bean.getName());
System.out.println("WebLogicObjectName =

"+bean.getObjectName()+"\n");
}

List list = Collections.synchronizedList(new ArrayList());
Iterator it = mbeanSet.iterator();
int i = 0;
while (it.hasNext()) {

//instantiate a Gauge monitor
GaugeMonitor monitor = new GaugeMonitor();
//configure the Gauge monitor
monitor.setThresholds(new Long("30"), new Long("4"));
monitor.setNotifyHigh(true);
monitor.setNotifyLow(true);
WebLogicMBean bean = (WebLogicMBean) it.next();
ObjectName myON = bean.getObjectName();
monitor.setObservedObject(myON);
monitor.setObservedAttribute("MessagesCurrentCount");

//instantiate and register a notification listener
MyNotificationListener listener = new MyNotificationListener();
monitor.addNotificationListener(listener,null,null);
//pre-registering and starting the monitor
MBeanHome localhome = (MBeanHome)

ctx.lookup(MBeanHome.JNDI_NAME
+"."+bean.getObjectName().getLocation());

RemoteMBeanServer rmbs = localhome.getMBeanServer();
WebLogicObjectName monitorObjectName = new WebLogicObjectName

("myGaugeMonitor" + (++i), "GaugeMonitor", domain,
bean.getObjectName().getLocation());

monitor.preRegister(rmbs, monitorObjectName);
monitor.start();
System.out.println("Monitor waiting on event notification.");
list.add(monitor);
myON = null;

}

//Keeping the monitor active.
System.out.println("pausing...........");
System.in.read();
Programming WebLogic Management Services with JMX 5-35

5 Using WebLogic Server MBean Notifications and Monitors
//stopping each monitor.
Iterator deregisterList = list.iterator();
while (deregisterList.hasNext()) {

GaugeMonitor gauge = (GaugeMonitor) deregisterList.next();
System.out.println("deregistering...");
gauge.preDeregister();

}
return;

}
catch (Exception e){

e.printStackTrace();
}

}
}

Configuring CounterMonitor Objects

CounterMonitor objects observe changes in MBean attributes that are expressed as
integers. The following list describes groups of CounterMonitor operations that you
use to achieve typical configurations of a CounterMonitor instance:

Sends a notification when the observed attribute exceeds the threshold.
setThreshold(int threshold);
setNotify(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

Sends a notification when the observed attribute exceeds the threshold. Then it
increases the threshold by the offset value. Each time the observed attribute
exceeds the new threshold, the threshold is increased by the offset value. For
example, if you set Threshold to 1000 and Offset to 2000, when the observed
attribute exceeds 1000, the CounterMonitor object sends a notification and
increases the threshold to 3000. When the observed attribute exceeds 3000, the
CounterMonitor object sends a notification and increases the threshold again to
5000.
setThreshold(int threshold);
setNotify(true);
setOffset(int offset);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");
5-36 Programming WebLogic Management Services with JMX

Using Monitor MBeans to Observe Changes: Main Steps
Sends a notification when the observed attribute exceeds the threshold, and
increases the threshold by the offset value. When the threshold reaches the value
specified by the setModulus method, the threshold is returned to the value that
was specified through the latest call to the monitor’s setThreshold method,
before any offsets were applied. For example, if the original Threshold is set to
1000 and the Modulus is set to 5000, when the Threshold exceeds 5000, the
monitor sends a notification and resets the Threshold to 1000.
setThreshold(int threshold);
setNotify(true);
setOffset(int offset);
setModulus(int modulus);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

Sends a notification when the difference between two consecutive observations
exceeds the threshold. For example, the Threshold is 20 and the monitor
observes an attribute value of 2. If the next observation is greater than 22, then
the monitor sends a notification. However, if the value is 10 at the next
observation, and 25 at the following observation, then the monitor does not send
a notification because the value has not changed by more than 20 for any two
consecutive observations.
setThreshold(int threshold);
setNotify(true);
setDifferenceMode(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

Sends a notification when the difference between two consecutive observations
exceeds the threshold, and increases the threshold by the offset value. When the
threshold reaches the value specified by the setModulus method, the threshold
is returned to the value that was specified through the latest call to the monitor’s
setThreshold method, before any offsets were applied.
setThreshold(int threshold);
setNotify(true);
setOffset(int offset);
setModulus(int modulus);
setDifferenceMode(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");
Programming WebLogic Management Services with JMX 5-37

5 Using WebLogic Server MBean Notifications and Monitors
To see all possible configurations of a CounterMonitor instance, refer to the JMX 1.0
API documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that
you download includes the API documentation.

Configuring GaugeMonitor Objects

GaugeMonitor objects observe changes in MBean attributes that are expressed as
integers or floating-point. The following list describes groups of GaugeMonitor
operations that you use to achieve typical configurations of a GaugeMonitor instance:

Sends a notification when the observed attribute is beyond the high threshold.
setHighThreshold(int Highthreshold);
setNotifyHigh(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

Sends a notification when the observed attribute is outside the range of the high
or low threshold.
setThresholds(int Highthreshold, Lowthreshold);
setNotifyHigh(true);
setNotifyLow(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

Sends a notification when the difference between two consecutive observations
is outside the range of the high or low threshold.
setThresholds(int Highthreshold, Lowthreshold);
setNotifyHigh(true);
setNotifyLow(true);
setDifferenceMode(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

GaugeMonitor does not support an offset or modulus.

To see all possible configurations of a GaugeMonitor instance, refer to the JMX 1.0
API documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that
you download includes the API documentation.
5-38 Programming WebLogic Management Services with JMX

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Sample Monitoring Scenarios
Configuring StringMonitor Objects

StringMonitor objects observe changes in MBean attributes that are expressed as
strings. The following list describes groups of StringMonitor operations that you use
to achieve typical configurations of a StringMonitor instance:

Sends a notification when the observed attribute matches the string specified in
StringToCompare.
setStringToCompare(String);
setNotifyMatch(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

Sends a notification when the observed attribute differs from the string
specified in StringToCompare.
setStringToCompare(String);
setNotifyDiffer(true);
setObservedObject(ObjectName);
setObservedAttribute("AttributeName");

To see all possible configurations of a StringMonitor instance, refer to the JMX 1.0
API documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that
you download includes the API documentation.

Sample Monitoring Scenarios

This section outlines some typical MBean attributes that you might consider
monitoring to observe performance and/or resource usage. For more details on
individual MBean attributes or methods, see the WebLogic Server Javadoc for the
MBean.
Programming WebLogic Management Services with JMX 5-39

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://e-docs.bea.com/wls/docs70/javadocs/index.html

5 Using WebLogic Server MBean Notifications and Monitors
JDBC Monitoring

The JDBCConnectionPoolRuntime MBean maintains several attributes that describe
the connections to a deployed JDBC connection pool. Applications may monitor these
attributes to observe the connection delays and connection failures, as well as
connection leaks. The following table outlines those MBean attributes typically used
for JDBC monitoring.

Table 5-4 JDBC Monitoring Attributes

JDBCConnectionPoolRuntime
MBean Attribute

Typical Monitoring Application

LeakedConnectionCount Notify a listener when the total number of
leaked connections reaches a predefined
threshold. Leaked connections are connections
that have been checked out but never returned to
the connection pool via a close() call; it is
important to monitor the total number of leaked
connections, as a leaked connection cannot be
used to fulfill later connection requests.

ActiveConnectionsCurrentCount Notify a listener when the current number of
active connections to a specified JDBC
connection pool reaches a predefined threshold.

ConnectionDelayTime Notify a listener when the average time to
connect to a connection pool exceeds a
predefined threshold.

FailuresToReconnect Notify a listener when the connection pool fails
to reconnect to its datastore. Applications may
notify a listener when this attribute increments,
or when the attribute reaches a threshold,
depending on the level of acceptable downtime.
5-40 Programming WebLogic Management Services with JMX

Index

A
ADMIN_JNDI_NAME JNDI variable 2-7
Administration Console

defined 1-18
administration domain. See domain 1-3
Administration MBeanHome interface

defined 1-15
retrieving ClusterRuntimeMBean 4-14
retrieving from an external client 2-8
retrieving ServerRuntimeMBean 4-8,

4-10
retrieving through JNDI 2-7
retrieving with the Helper API 2-5
when to use 2-3

Administration MBeans
accessing from Administration Console

1-18
accessing from weblogic.Admin 1-18
API documentation 1-8
defined 1-4
interfaces for accessing 2-3
lifecycle 1-5–1-8
Managed Server Independence 1-8
retrieving a list of ??–2-14
WebLogicObjectName 2-21

Administration Servers 1-4–1-8
accessing MBeans 1-15
defined 1-3
JNDI tree 2-6
LogMBeans 2-25
registered MBeans 1-13

AttributeAddNotification object 5-10
AttributeChangeNotification object

5-10
AttributeRemoveNotification object

5-10

C
child relationship with MBeans 2-23
clusters 4-14
config.xml file ??–1-8

editing from Administration Console
1-18

no runtime data 1-9
configurable MBean attributes. See dynamic

changes to MBeans
Configuration MBeans

defined 1-2
See also Local Configuration MBeans

and Administration MBeans
CounterMonitor objects

configuring 5-36
type of data monitored 5-25
type of notifications emitted 5-25

custom MBeans 1-13

D
derived gauge, defined 5-4
destroying MBeans 1-5
DifferenceMode attribute

for CounterMonitor objects 5-37
Programming WebLogic Management Services with JMX I-1

for GaugeMonitor objects 5-38
domains

defined 1-3
retrieving all MBeans 2-10
specified in WebLogicObjectName 2-21

dynamic attributes in the Administration
Console 1-18

dynamic changes to MBeans 1-7

E
e-mail 5-15
error notification types 5-26
examples

notification filter 5-15

G
GaugeMonitor objects

configuring 5-38
type of data monitored 5-25
type of notifications emitted 5-26

getAllMBeans method 2-10
getMBeansByType method 2-14

H
handleNotification method 5-11

for local applications 5-27
for remote applications 5-11, 5-27

Helper API 2-4
hierarchical relationship of MBeans 2-23

I
instantiating MBeans 1-5
Integer data type, monitoring 5-25

J
Javadoc

for Configuration MBeans 1-8

for Runtime MBeans 1-11
JDBC monitoring 5-40
JMX object names 2-20
JMX specification 1-1
JNDI tree

Administration Servers 2-6
Managed Servers 2-6

L
lifecycle of MBeans 1-5
listen ports, setting 1-6
listeners

creating 5-9, 5-27
defined 5-1
types of notification objects 5-25

Local Configuration MBeans
accessing from weblogic.Admin 1-18
API documentation 1-8
defined 1-4
interfaces for accessing 2-3
lifecycle 1-5–1-8
no access from Administration Console

1-18
on Administration Server 1-13
retrieving a list of ??–2-14
WebLogicObjectName 2-21
WebLogicObjectName, examples 2-26

Local MBeanHome interface
defined 1-15
retrieving from an internal client 2-9
retrieving ServerRuntimeMBean 4-5
retrieving through JNDI 2-7
retrieving with the Helper API 2-5
when to use 2-3

LOCAL_JNDI_NAME JNDI variable 2-7
log messages 5-10
LogMBean on Administration Servers 2-25
I-2 Programming WebLogic Management Services with JMX

M
managed resources, defined 1-2
Managed Server Independence (MSI) 1-8
Managed Servers

defined 1-3
JNDI tree 2-6
local interface, performance of 1-15, 2-3
MBean replicas 1-4, 1-5
MBeans accessible from 1-13, 1-15
propagating changes to Local

Configuration MBeans 1-7
runtime information about clusters 4-14
See also Local MBeanHome interface

MBean types, defined 2-21
MBeanHome interface 1-14

See also Local MBeanHome interface,
Administration MBeanHome
interface, and type-safe
interface

MBeanHome methods. See type-safe interface
MBeans

accessing, main steps 2-1
creating custom 1-13
defined 1-2
notifications generated 5-10
See also Local Configuration MBeans,

Administration MBeans, and
Runtime MBeans

MBeanServer interface
accessing MBeans 2-18
defined 1-14
registering listeners 5-17
retrieving and changing runtime data

4-12
when to use 2-4

message level for standard out 3-2
metrics for runtime data 1-9
modulus for CounterMonitor objects 5-37
monitor MBeans

defined 5-3

types 5-24
monitoring attributes of MBeans

comparing changes to MBean attributes
5-39

JDBC example 5-40
main steps 5-24
notification types 5-25

MSI 1-8

N
names of MBeans 2-21
notification filters

creating and registering 5-14
example 5-15

notification listeners. See listeners
notifications

defined 5-1
types 5-25

O
object names for MBeans 2-10, 2-20
overriding values

in config.xml 1-6

P
parent relationship with MBeans 2-23
performance metrics 1-9
persistence

of runtime data 1-9
propagating changes to Local Configuration

MBeans 1-7

R
registering MBeans 1-13
RemoteMBeanServer interface

defined 1-14
RemoteNotificationListener object

5-11, 5-27
Programming WebLogic Management Services with JMX I-3

replicas of Administration MBeans 1-5
RMI 1-15
runtime changes to MBeans 1-7, 1-18
Runtime MBeans

API documentation 1-11
defined 1-2
distribution 1-9
interfaces for accessing 2-3
on Administration Server 1-13
persistence 1-9
retrieving a list of ??–2-14
retrieving with Administration

MBeanHome.getMBeansByTyp
e 4-8

WebLogicObjectName 2-21
Runtime MBeans, accessing

from Administration Console 1-18
from Administration MBeanHome 2-12,

4-8
from Local MBeanHome 4-6
from MBeanServer 4-12
from weblogic.Admin 1-18

S
security MBeans 1-12
ServerRuntimeMBean interface

accessing from Administration
MBeanHome 4-8

changing with MBeanServer 4-12
defined 4-5

standard out
configuring message level with

MBeanServer 3-3
String data type, monitoring 5-25
StringMonitor objects

configuring 5-39
type of data monitored 5-25
type of notifications emitted 5-26

T
thresholds

for CounterMonitor objects 5-36
for GaugeMonitor objects 5-38

type, MBean 2-21
type-safe interface

accessing MBeans 2-10–2-14
defined 1-14
when to use 2-3

W
weblogic.Admin utility

changing configuration data 3-2
defined 1-18
determining active domain and servers

4-4
finding WebLogicObjectName 2-24

weblogic.Server startup command 1-5
WebLogicObjectName

defined 2-20
examples 2-26
finding with weblogic.Admin 2-24
retrieving with

WebLogicMBean.getName
2-10

using to retrieve ServerRuntimeMBean
4-10
I-4 Programming WebLogic Management Services with JMX

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic JMX Services
	WebLogic Server Managed Resources and MBeans
	Basic Organization of a WebLogic Server Domain
	MBeans for Configuring Managed Resources
	Local Replicas of Configuration MBeans
	The Life Cycle of Configuration MBeans
	Replication of MBeans for Managed Server Independence
	Documentation for Configuration MBean APIs

	MBeans for Viewing the Runtime State of Managed Resources
	Documentation for Runtime MBean APIs

	Security MBeans
	Non-WebLogic Server MBeans

	MBean Servers and the MBeanHome Interface
	Local MBeanHome and the Administration MBeanHome

	Notifications and Monitoring
	The Administration Console and the weblogic.Admin Utility
	The Administration Console
	The weblogic.Admin Utility

	2 Accessing WebLogic Server MBeans
	Accessing MBeans: Main Steps�
	Determining Which Interfaces to Use
	Accessing an MBeanHome Interface
	Using the Helper APIs to Retrieve an MBeanHome Interface
	Example: Retrieving a Local MBeanHome Interface

	Using JNDI to Retrieve an MBeanHome Interface
	Example: Retrieving the Administration MBeanHome from an External Client
	Example: Retrieving a Local MBeanHome from an Internal Client

	Using the Type-Safe Interface to Access MBeans
	Retrieving a List of All MBeans
	Retrieving MBeans By Type and Selecting From the List
	Walking the Hierarchy of Local Configuration and Runtime MBeans

	Using the MBeanServer Interface to Access MBeans
	Using WebLogicObjectNames for WebLogic Server MBeans
	Using weblogic.Admin to Find the WebLogicObjectName

	3 Accessing and Changing Configuration Information
	Example: Using weblogic.Admin to View the Message Level for Standard Out
	Example: Configuring the Message Level for Standard Out

	4 Accessing Runtime Information
	Example: Determining the Active Domain and Servers
	Using weblogic.Admin to Determine Active Domains and Servers

	Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
	Using a Local MBeanHome and getRuntimeMBean()
	Using the Administration MBeanHome and getMBeansByType()
	Using the Administration MBeanHome and getMBean()
	Using the MBeanServer Interface

	Example: Viewing Runtime Information About Clusters
	Viewing Runtime Information for EJBs
	Example: Retrieving Runtime Information for All Stateful and Stateless EJBs

	5 Using WebLogic Server MBean Notifications and Monitors
	How Notifications are Broadcast and Received
	Monitoring Changes in MBeans
	Best Practices: Listening Directly Compared to Monitoring
	Best Practices: Commonly Monitored Attributes
	Listening for Notifications from WebLogic Server MBeans: Main Steps
	WebLogic Server Notification Types
	Creating a Notification Listener
	Creating a Notification Filter
	Adding Filter Classes to the Server Classpath

	Registering a Notification Listener and Filter
	Listening for Configuration Auditing Messages: Main Steps
	Notification Listener for Configuration Auditing Messages
	Notification Filter for Configuration Auditing Messages
	Registration Class for Configuration Auditing Messages

	Using Monitor MBeans to Observe Changes: Main Steps
	Choosing a Monitor MBean Type
	Monitor Notification Types
	Error Notification Types

	Creating a Notification Listener for a Monitor MBean
	Instantiating the Monitor and Listener
	Example: Monitoring an MBean on a Single Server
	Example: Monitoring Instances of an MBean on Multiple Servers

	Configuring CounterMonitor Objects
	Configuring GaugeMonitor Objects
	Configuring StringMonitor Objects

	Sample Monitoring Scenarios
	JDBC Monitoring

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

