
BEA
 WebLogic
Server™

Developing WebLogic
Server Applications
Release 7.0
Document Revised:December 15, 2005

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Developing WebLogic Server Applications

Part Number Document Revised Software Version

N/A August 20, 2002 BEA WebLogic Server
Version 7.0

Contents

About This Document
Audience... xii
e-docs Web Site.. xii
How to Print the Document.. xii
Related Information... xiii
Contact Us!.. xiii
Documentation Conventions ... xiv

1. Understanding WebLogic Server J2EE Applications
What Are WebLogic Server J2EE Applications and Components? 1-2
J2EE Platform.. 1-3
Web Application Components .. 1-3

Servlets ... 1-4
JavaServer Pages .. 1-4
Web Application Directory Structure .. 1-4
For More Information on Web Application Components.......................... 1-5

Enterprise JavaBean Components ... 1-5
EJB Overview .. 1-5
EJB Interfaces .. 1-6
EJBs and WebLogic Server.. 1-7

Connector Component... 1-7
Enterprise Applications ... 1-8
WebLogic Web Services ... 1-8
Client Applications.. 1-9
Naming Conventions ... 1-10
Developing WebLogic Server Applications iii

2. Developing WebLogic Server J2EE Applications
Creating Web Applications: Main Steps ... 2-2
Creating Enterprise JavaBeans: Main Steps .. 2-4
Creating Resource Adapters: Main Steps .. 2-6

Creating a New Resource Adapter (RAR) ... 2-6
Modifying an Existing Resource Adapter (RAR) 2-7

Creating WebLogic Server Enterprise Applications: Main Steps 2-9
Establishing a Development Environment .. 2-13

Software Tools.. 2-13
Source Code Editor or IDE ... 2-13
XML Editor ... 2-13
Java Compiler.. 2-14
Development WebLogic Server .. 2-14
Database System and JDBC Driver .. 2-15
Web Browser... 2-15

Third-Party Software .. 2-15
Compiling Java Code... 2-16

Putting the Java Tools in Your Search Path ... 2-16
Setting the Classpath for Compiling Code ... 2-17
Setting Target Directories for Compiled Classes 2-17

3. WebLogic Server Application Classloading
Java Classloader Overview.. 3-2

Java Classloader Hierarchy .. 3-2
Loading a Class .. 3-2
PreferWebInfClasses Element.. 3-3
Changing Classes in a Running Program ... 3-4

WebLogic Server Application Classloader Overview....................................... 3-4
Application Classloading.. 3-4
Application Classloader Hierarchy... 3-5
Application Classloading and Pass by Value or Reference........................ 3-7

Resolving Class References Between Components and Applications 3-9
About Resource Adapter Classes ... 3-9
Packaging Shared Utility Classes... 3-9
Manifest Class-Path.. 3-10
iv Developing WebLogic Server Applications

4. WebLogic Server Application Packaging
Packaging Overview.. 4-2
JAR Files ... 4-2
XML Deployment Descriptors .. 4-4

Automatically Generating Deployment Descriptors 4-5
Limitations of DDInit.. 4-5
Example .. 4-6

Editing Deployment Descriptors .. 4-6
Using the BEA XML Editor ... 4-7
About EJBGen .. 4-7
Using the Administration Console Deployment Descriptor Editor 4-8
Editing EJB Deployment Descriptors ... 4-8
Editing Web Application Deployment Descriptors 4-10
Editing Resource Adapter Deployment Descriptors 4-12
Editing Enterprise Application Deployment Descriptors 4-14

Packaging Web Applications .. 4-16
Packaging Enterprise JavaBeans ... 4-17

Staging and Packaging EJBs .. 4-17
Using ejb-client.jar ... 4-19

Packaging Resource Adapters ... 4-20
Packaging Enterprise Applications.. 4-21

Enterprise Applications Deployment Descriptor Files............................. 4-21
Packaging Enterprise Applications: Main Steps 4-22

Packaging Client Applications .. 4-23
Executing a Client Application in an EAR File 4-24
Special Considerations for Deploying J2EE Client Applications............ 4-25

Packaging J2EE Applications Using Apache Ant... 4-26
Compiling Java Source Files.. 4-27
Running WebLogic Server Compilers ... 4-27
Packaging J2EE Deployment Units ... 4-28
Running Ant ... 4-31

5. WebLogic Server Deployment
Two-Phase Deployment .. 5-2

Restarting Admin Server.. 5-3
Developing WebLogic Server Applications v

Prepare Phase and Activate Phase.. 5-3
Prepare Phase .. 5-3
Activate Phase ... 5-4

Deployment Order for Resources and Applications.. 5-4
Setting the Order of Applications... 5-4
Ordering Components Within an Application.. 5-4
Ordering Startup Class Execution and Deployment................................... 5-5

Application Staging ... 5-6
Staging Modes .. 5-6
Configuring Staging Modes and Directories.. 5-8
Staging Scenarios ... 5-8

Deploy Application from its Source Location 5-9
Deploy Application from a Known Staging Area............................... 5-9
Distribute Application Files to Managed Servers 5-9
Deploy an Application Using external_stage Mode 5-9

Deployment Tools and Procedures.. 5-10
weblogic.Deployer Utility .. 5-11

Deploying Using weblogic.Deployer Utility 5-11
weblogic.Deployer Actions and Options .. 5-12
Example Uses of the weblogic.Deployer Utility............................... 5-16

wldeploy Ant Task ... 5-18
Basic Steps for Using wldeploy .. 5-18
Sample build.xml Files for wldeploy .. 5-19
wldeploy Ant Task Reference ... 5-20

WebLogic Server Administration Console .. 5-22
Configuring J2EE Applications for Deployment Using the

Administration Console ... 5-22
Deploying J2EE Applications with the Administration Console...... 5-23
Viewing Deployed Components with the Administration Console .. 5-24
Undeploying Components with the Administration Console 5-25
Updating Applications with the Administration Console 5-25

WebLogic Builder .. 5-26
Auto-Deployment ... 5-26

Enabling and Disabling Auto-Deployment 5-26
Auto-Deploying Applications ... 5-27
vi Developing WebLogic Server Applications

Undeploying and Redeploying Archived Applications 5-27
Redeploying Applications in Exploded Format................................ 5-28

Deployment Management API... 5-29
Best Practices for Application Deployment .. 5-29

Single Server Development.. 5-30
Testing Changes to Web Applications or Web Services 5-30
Testing Changes to EJBs and Resource Adapters 5-30

Multiple Server Development .. 5-30
Testing Changes in a Multiple Server Environment 5-31

File Structures for Exploded Applications ... 5-31
Staging Mode ... 5-33
Auto-Deployment... 5-33
Exploded Enterprise Applications.. 5-33
Partial Redeployment ... 5-34
Sharing Classes between Components That Are Part of an Enterprise

Application.. 5-34
Using WebLogic Server 6.x Deployment Protocol... 5-34

Updating to Two Phase Deployment ... 5-35
Additional Deployment Documentation.. 5-35

6. Programming Topics
Logging Messages ... 6-2
Using Threads in WebLogic Server .. 6-2
Using JavaMail with WebLogic Server Applications 6-3

About JavaMail Configuration Files .. 6-4
Configuring JavaMail for WebLogic Server.. 6-4
Sending Messages with JavaMail .. 6-6
Reading Messages with JavaMail .. 6-7

Programming Applications for WebLogic Server Clusters............................... 6-9

A. Application Deployment Descriptor Elements
application.xml Deployment Descriptor Elements... A-1
application .. A-3

icon .. A-3
small-icon... A-3
Developing WebLogic Server Applications vii

large-icon.. A-3
display-name.. A-3
description ... A-3
module ... A-4

alt-dd... A-4
connector .. A-4
ejb ... A-4
java ... A-4
web ... A-5

security-role... A-5
description .. A-5
role-name.. A-5

weblogic-application.xml Deployment Descriptor Elements........................... A-6
weblogic-application .. A-6

ejb .. A-7
entity-cache .. A-7
start-mdbs-with-application ... A-9

xml... A-9
parser-factory ... A-9
entity-mapping ... A-10

jdbc-connection-pool... A-11
data-source-name ... A-11
connection-factory.. A-11
pool-params.. A-12
driver-params ... A-15
acl-name ... A-16

application-param.. A-17

B. Client Application Deployment Descriptor Elements
application-client.xml Deployment Descriptor Elements B-2

application-client ... B-4
icon ... B-4
display-name .. B-4
description .. B-4
env-entry... B-5
viii Developing WebLogic Server Applications

ejb-ref ..B-5
resource-ref ...B-6

WebLogic Run-time Client Application Deployment Descriptor.....................B-7
application-client ..B-8

env-entry ...B-8
ejb-ref ..B-9
resource-ref ...B-9
Developing WebLogic Server Applications ix

x Developing WebLogic Server Applications

About This Document

This document introduces the BEA WebLogic Server™ application development
environment. It describes how to establish a development environment and how to
package applications for deployment on the WebLogic Server platform.

The document is organized as follows:

Chapter 1, “Understanding WebLogic Server J2EE Applications,” describes
components of WebLogic Server applications.

Chapter 2, “Developing WebLogic Server J2EE Applications,” outlines
high-level procedures for creating WebLogic Server applications and helps Java
programmers establish their programming environment.

Chapter 3, “WebLogic Server Application Classloading,” provides an overview
of Java classloaders, followed by details about WebLogic Server J2EE
application classloading.

Chapter 4, “WebLogic Server Application Packaging,” describes how to bundle
WebLogic Server components and applications in standard JAR files for
distribution and deployment.

Chapter 5, “WebLogic Server Deployment,”discusses WebLogic Server J2EE
application deployment.

Chapter 6, “Programming Topics,” covers general WebLogic Server application
programming issues, such as logging messages and using threads.

Appendix A, “Application Deployment Descriptor Elements,” is a reference for
the standard J2EE Enterprise application deployment descriptor,
application.xml and the WebLogic-specific application deployment
descriptor weblogic-application.xml.

Appendix B, “Client Application Deployment Descriptor Elements,” is a
reference for the standard J2EE Client application deployment descriptor,
Developing WebLogic Server Applications xi

application-client.xml, and the WebLogic-specific client application
deployment descriptor.

Audience

This document is written for application developers who want to build e-commerce
applications using the Java 2 Platform, Enterprise Edition (J2EE) from Sun
Microsystems. It is assumed that readers know Web technologies, object-oriented
programming techniques, and the Java programming language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
xii Developing WebLogic Server Applications

http://www.adobe.com

Related Information

The BEA corporate Web site provides all documentation for WebLogic Server. The
following WebLogic Server documents contain information that is relevant to creating
WebLogic Server application components:

Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs70/ejb/index.html

Programming WebLogic HTTP Servlets at
http://e-docs.bea.com/wls/docs70/servlet/index.html

Programming WebLogic JSP at http://e-docs.bea.com/wls/docs70/jsp/index.html

Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs70/webapp/index.html

Programming WebLogic JDBC at
http://e-docs.bea.com/wls/docs70/jdbc/index.html

Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs70/webServices/index.html

Programming WebLogic J2EE Connector Architecture at
http://e-docs.bea.com/wls/docs70/jconnector/index.html

For more information in general about Java application development, refer to the Sun
Microsystems, Inc. Java 2, Enterprise Edition Web Site at
http://java.sun.com/products/j2ee/.

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.
Developing WebLogic Server Applications xiii

http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/servlet/index.html
http://e-docs.bea.com/wls/docs70/jsp/index.html
http://e-docs.bea.com/wls/docs70/webapp/index.html
http://e-docs.bea.com/wls/docs70/jdbc/index.html
http://e-docs.bea.com/wls/docs70/webServices/index.html
http://e-docs.bea.com/wls/docs70/jconnector/index.html
http://e-docs.bea.com/wls/docs70/jconnector/index.html
http://java.sun.com/products/j2ee/
mailto:docsupport@bea.com

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
xiv Developing WebLogic Server Applications

http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.
Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:
LPT1
BEA_HOME
OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.Deployer [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:
An argument can be repeated several times in the command line.
The statement omits additional optional arguments.
You can enter additional parameters, values, or other information

Convention Usage
Developing WebLogic Server Applications xv

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
xvi Developing WebLogic Server Applications

CHAPTER
1 Understanding
WebLogic Server J2EE
Applications

The following sections provide an overview of WebLogic Server J2EE applications
and application components:

“What Are WebLogic Server J2EE Applications and Components?” on page 1-2

“J2EE Platform” on page 1-3

“Web Application Components” on page 1-3

“Enterprise JavaBean Components” on page 1-5

“Connector Component” on page 1-7

“Enterprise Applications” on page 1-8

“WebLogic Web Services” on page 1-8

“Client Applications” on page 1-9

“Naming Conventions”
Developing WebLogic Server Applications 1-1

1 Understanding WebLogic Server J2EE Applications
What Are WebLogic Server J2EE
Applications and Components?

A BEA WebLogic Server™ J2EE application consists of one of the following
components running on WebLogic Server:

Web components—HTML pages, servlets, JavaServer Pages, and related files

Enterprise Java Beans (EJB) components—entity beans, session beans, and
message-driven beans

Connector component—resource adapters

Components are packaged in Java ARchive (JAR) files—archives created with the
Java jar utility. JAR files bundle all component files in a directory into a single file,
maintaining the directory structure. JAR files also include XML descriptors that
instruct WebLogic Server how to deploy the components.

Web applications are packaged in a JAR file with a .war extension. Enterprise beans,
WebLogic components, and client applications are packaged in JAR files with .jar
extensions. Resource adapters are packaged in a JAR file with a .rar extension.

An enterprise application, consisting of assembled Web application components, EJB
components, and resource adapters, is a JAR file with an .ear extension. An EAR file
contains all of the JAR, WAR, and RAR component archive files for an application
and an XML descriptor that describes the bundled components.

To deploy a component, an application, or a resource adapter, you use the
Administration Console or the weblogic.Deployer command-line utility to upload
JAR files to the target WebLogic Server instances.

Client applications that are not Web browsers are Java classes that connect to
WebLogic Server using Remote Method Invocation (RMI). A Java client can remotely
access Enterprise JavaBeans, JDBC connections, JMS messaging, and other services
using access methods such as RMI.
1-2 Developing WebLogic Server Applications

J2EE Platform
J2EE Platform

WebLogic Server implements Java 2 Platform, Enterprise Edition (J2EE) version 1.3
technologies (http://java.sun.com/j2ee/sdk_1.3/index.html). J2EE is the
standard platform for developing multitier enterprise applications based on the Java
programming language. The technologies that make up J2EE were developed
collaboratively by Sun Microsystems and other software vendors, including BEA
Systems.

J2EE applications are based on standardized, modular components. WebLogic Server
provides a complete set of services for those components and handles many details of
application behavior automatically, without requiring programming.

Note: Because J2EE is backward compatible, you can still run J2EE 1.2 on
WebLogic Server 7.0.

Web Application Components

A Web archive (WAR) file has a .war extension and contains the components that
make up a Web application. A WAR file is deployed as a unit on one or more
WebLogic Servers.

A Web application on WebLogic Server includes the following files:

At least one servlet or JSP, along with any helper classes.

A web.xml deployment descriptor, a J2EE standard XML document that
describes the contents of a WAR file.

A weblogic.xml deployment descriptor, an XML document containing
WebLogic Server-specific elements for Web applications.

A Web application might also include HTML and XML pages with supporting files
such as images and multimedia files.
Developing WebLogic Server Applications 1-3

1 Understanding WebLogic Server J2EE Applications
Servlets

Servlets are Java classes that execute in WebLogic Server, accept a request from a
client, process it, and optionally return a response to the client. A GenericServlet is
protocol independent and can be used in J2EE applications to implement services
accessed from other Java classes. An HttpServlet extends GenericServlet with support
for the HTTP protocol. An HttpServlet is most often used to generate dynamic Web
pages in response to Web browser requests.

JavaServer Pages

JavaServer Pages (JSPs) are Web pages coded with an extended HTML that makes it
possible to embed Java code in a Web page. JSPs can call custom Java classes, called
taglibs, using HTML-like tags. The WebLogic JSP compiler, weblogic.jspc,
translates JSPs into servlets. WebLogic Server automatically compiles JSPs if the
servlet class file is not present or is older than the JSP source file.

You can also precompile JSPs and package the servlet class in a Web archive (WAR)
file to avoid compiling in the server. Servlets and JSPs may require additional helper
classes that must also be deployed with the Web application.

Web Application Directory Structure

You assemble Web application components in a directory, then package them into a
WAR file with the jar command.

HTML pages, JSPs, and the non-Java class files they reference are accessed beginning
in the top level of the staging directory.

The XML descriptors, compiled Java classes and JSP taglibs are stored in a WEB-INF
subdirectory at the top level of the staging directory. Java classes include servlets,
helper classes and, if desired, precompiled JSPs.

The entire directory, once staged, is bundled into a WAR file using the jar command.
You can deploy the WAR file alone or packaged in an Enterprise Archive (EAR file)
with other application components, including other Web Applications, EJB
components, and WebLogic Server components.
1-4 Developing WebLogic Server Applications

Enterprise JavaBean Components
See “Web Applications Directory Structure” in Assembling and Configuring Web
Applications for detailed information on the Web application directory structure.

For More Information on Web Application Components

For more information about creating Web application components, see these
documents:

Programming WebLogic Server HTTP Servlets at
http://e-docs.bea.com/wls/docs70/servlet/index.html

Programming WebLogic JSP at http://e-docs.bea.com/wls/docs70/jsp/index.html

Programming JSP Tag Extensions at
http://e-docs.bea.com/wls/docs70/taglib/index.html

Assembling and Configuring Web Applications at
http://e-docs.bea.com/wls/docs70/webapp/index.html

Enterprise JavaBean Components

Enterprise JavaBeans (EJBs) beans are server-side Java components that implement a
business task or entity and are written according to the EJB specification. There are
three types of enterprise beans: session beans, entity beans, and message-driven beans.

EJB Overview

Session beans execute a particular business task on behalf of a single client during a
single session. Session beans can be stateful or stateless, but are not persistent; when a
client finishes with a session bean, the bean goes away.

Entity beans represent business objects in a data store, usually a relational database
system. Persistence—loading and saving data—can be bean-managed or
container-managed. More than just an in-memory representation of a data object,
Developing WebLogic Server Applications 1-5

http://e-docs.bea.com/wls/docs70/webapp/basics.html
http://e-docs.bea.com/wls/docs70/webapp/index.html
http://e-docs.bea.com/wls/docs70/webapp/index.html
http://e-docs.bea.com/wls/docs70/servlet/index.html
http://e-docs.bea.com/wls/docs70/jsp/index.html
http://e-docs.bea.com/wls/docs70/taglib/index.html
http://e-docs.bea.com/wls/docs70/webapp/index.html

1 Understanding WebLogic Server J2EE Applications
entity beans have methods that model the behaviors of the business objects they
represent. Entity beans can be accessed concurrently by multiple clients and they are
persistent by definition.

A message-driven bean is an enterprise bean that runs in the EJB container and handles
asynchronous messages from a JMS Queue. When a message is received in the JMS
Queue, the message-driven bean assigns an instance of itself from a pool to process the
message. Message-driven beans are not associated with any client. They simply handle
messages as they arrive. A JMS ServerSessionPool provides a similar capability but
does not run in the EJB container.

Enterprise beans are bundled into a JAR file with a .jar extension that contains their
compiled classes and XML deployment descriptors.

EJB Interfaces

Entity beans and session beans have remote interfaces, home interfaces, and
implementation classes provided by the bean developer. (Message-driven beans do not
require home or remote interfaces, because they are not accessible outside of the EJB
container.)

The remote interface defines the methods a client can call on an entity bean or session
bean. The implementation class is the server-side implementation of the remote
interface. The home interface provides methods for creating, destroying, and finding
enterprise beans. The client accesses instances of an enterprise bean through the bean’s
home interface.

EJB home and remote interfaces and implementation classes are portable to any EJB
container that implements the EJB specification. An EJB developer can supply a JAR
file containing just the compiled EJB interfaces and classes and a deployment
descriptor.
1-6 Developing WebLogic Server Applications

Connector Component
EJBs and WebLogic Server

J2EE cleanly separates the development and deployment roles to ensure that
components are portable between EJB servers that support the EJB specification.
Deploying an enterprise bean in WebLogic Server requires running the WebLogic EJB
compiler, weblogic.ejbc, to generate classes that enforce the EJB security,
transaction, and life cycle policies.

The J2EE-specified deployment descriptor, ejb-jar.xml, describes the enterprise
beans packaged in an EJB JAR file. It defines the beans’ types, names, and the names
of their home and remote interfaces and implementation classes. The ejb-jar.xml
deployment descriptor defines security roles for the beans, and transactional behaviors
for the beans’ methods.

Additional deployment descriptors provide WebLogic-specific deployment
information. A weblogic-cmp-rdbms-jar.xml deployment descriptor for
container-managed entity beans maps a bean to tables in a database. The
weblogic-ejb-jar.xml deployment descriptor supplies additional information
specific to the WebLogic Server environment, such as clustering and cache
configuration.

For help creating and deploying EJBs, see Programming WebLogic Enterprise
JavaBeans at http://e-docs.bea.com/wls/docs70/ejb/index.html.

Connector Component

The WebLogic Server J2EE Connector architecture enables both Enterprise
Information Systems (EIS) vendors and third-party application developers to develop
resource adapters that can be deployed in any application server supporting the J2EE
1.3 specification from Sun Microsystems. Resource adapters contain the Java, and if
necessary, the native components required to interact with the EIS.

A resource adapter deployed in the WebLogic Server environment enables J2EE
applications to access a remote EIS system. Developers of WebLogic Server
applications can use HTTP servlets, JavaServer Pages (JSPs), Enterprise Java Beans
(EJBs), and other APIs to develop integrated applications that use the data and
business logic of the EIS.
Developing WebLogic Server Applications 1-7

http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/ejb/index.html

1 Understanding WebLogic Server J2EE Applications
As is, the basic Resource ARchive (RAR File) or deployment directory cannot be
deployed to WebLogic Server. You must first create and configure WebLogic
Server-specific deployment properties in the weblogic-ra.xml file, and add that file
to the deployment directory.

To configure and deploy resource adapters, see Programming the J2EE Connector
Architecture at http://e-docs.bea.com/wls/docs70/jconnector/index.html.

Enterprise Applications

An enterprise J2EE application contains Web and EJB components, deployment
descriptors, and archive files. These components are packaged in an Enterprise
Archive (EAR) file with an .ear extension.

The META-INF/application.xml deployment descriptor contains an entry for each
Web and EJB component, and additional entries to describe security roles and
application resources such as databases.

From the WebLogic Administration Server you use the Administration Console or the
weblogic.Deployer command line utility to deploy an EAR file on one or more
WebLogic Server instances in a domain.

WebLogic Web Services

Web services can be shared by and used as components of distributed Web-based
applications. They commonly interface with existing back-end applications, such as
customer relationship management systems, order-processing systems, and so on. Web
services can reside on different computers and can be implemented by vastly different
technologies, but they are packaged and transported using standard Web protocols,
such as XML and HTTP, thus making them easily accessible by any user on the Web.

A Web service consists of the following components:

A Web service implementation hosted by a server on the Web.
1-8 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/jconnector/index.html
http://e-docs.bea.com/wls/docs70/jconnector/index.html

Client Applications
WebLogic Web services are hosted by WebLogic Server. They are implemented
using standard J2EE components (such as Enterprise Java Beans) and packaged
as standard J2EE Enterprise Applications.

A standardized way to transmit data and Web service invocation calls between
the Web service and the user of the Web service.

WebLogic Web Services use Simple Object Access Protocol (SOAP) 1.1 as the
message format and HTTP as the connection protocol.

A standard way to describe the Web service to clients so they can invoke it.

WebLogic Web Services use Web Services Description Language (WSDL) 1.1,
an XML-based specification, to describe themselves.

For information on designing, developing, and invoking WebLogic Web services, see
Programming WebLogic Web Services at
http://e-docs.bea.com/wls/docs70/webServices/index.html.

Client Applications

Client-side applications written in Java that access WebLogic Server components
range from simple command line utilities that use standard I/O to highly interactive
GUI applications built using the Java Swing/AWT classes.

Client applications use WebLogic Server components indirectly through HTTP
requests or RMI requests. The components actually execute in WebLogic Server, not
in the client.

To execute a WebLogic Server Java client, the client computer needs the
weblogic.jar file, the remote interfaces for any RMI classes and enterprise beans on
WebLogic Server, and the client application classes.

The application developer packages client-side applications so they can be deployed
on client computers. To simplify maintenance and deployment, it is a good idea to
package a client-side application in a JAR file that can be added to the client’s
classpath along with the weblogic.jar.
Developing WebLogic Server Applications 1-9

http://e-docs.bea.com/wls/docs70/webserv/index.html

1 Understanding WebLogic Server J2EE Applications
WebLogic Server also supports J2EE client applications (as opposed to simple Java
programs) that are packaged in a JAR file with a standard XML deployment descriptor
(client-application.xml) and a WebLogic-specific deployment descriptor. The
weblogic.ClientDeployer command line utility is executed on the client computer
to run a client application packaged to this specification. See “Packaging Client
Applications” on page 4-23 for more about J2EE client applications.

Naming Conventions

WebLogic Server requires you to adhere to the following programmatic naming
conventions for WAR, EAR, JAR, and RAR archive files and exploded directories.

Enterprise JavaBean JAR archived files must end with the .jar extension.

Resource adapter RAR archived files must end with the .rar extension.

Web application WAR archived files must end with the .war extension.

Enterprise application EAR archived files must end with the .ear extension.

Exploded non-archived versions of all of the above archived files must not end
with the .jar, .rar, .war, or .ear extensions respectively.
1-10 Developing WebLogic Server Applications

CHAPTER
2 Developing WebLogic
Server J2EE
Applications

The following sections describe the steps for creating different types of WebLogic
Server J2EE applications, setting up a development environment, and preparing to
compile Java programs.

“Creating Web Applications: Main Steps” on page 2-2

“Creating Enterprise JavaBeans: Main Steps” on page 2-4

“Creating Resource Adapters: Main Steps” on page 2-6

“Creating Resource Adapters: Main Steps” on page 2-6

“Creating WebLogic Server Enterprise Applications: Main Steps” on page 2-9

“Establishing a Development Environment” on page 2-13

“Compiling Java Code” on page 2-16

WebLogic Server applications are created by Java programmers, Web designers, and
application assemblers. Programmers and designers create components that implement
the business logic and presentation logic for the application. Application assemblers
assemble the components into applications ready to deploy on WebLogic Server.
Developing WebLogic Server Applications 2-1

2 Developing WebLogic Server J2EE Applications
Creating Web Applications: Main Steps

Here are the main steps for creating a Web application:

1. Create the HTML pages and JavaServer Pages (JSPs) that make up the Web
interface of the Web application. Typically, Web designers create these parts of a
Web application.

For detailed information about creating JSPs, refer to Programming WebLogic
JSP.

2. Write the Java code for the servlets and the JSP taglibs referenced in JSPs.
Typically, Java programmers create these parts of a Web application.

For detailed information about creating servlets, refer to Programming
WebLogic HTTP Servlets.

3. Compile the servlets into class files.

For detailed information about compiling, refer to “Compiling Java Code” on
page 2-16.

4. Create the web.xml and weblogic.xml deployment descriptors.

The web.xml file defines each servlet and JSP page and enumerates enterprise
beans referenced in the Web application. The weblogic.xml file adds additional
deployment information for WebLogic Server.

Create the web.xml and weblogic.xml deployment descriptors manually or use
a Java-based utility included in WebLogic Server to automatically generate
them.

See “Automatically Generating Deployment Descriptors” on page 4-5, and see
Assembling and Configuring Web Applications for detailed information on the
elements in these deployment descriptors and instructions for creating them
manually.

5. Package the HTML pages, servlet class files, JSP files, web.xml, and
weblogic.xml files into a WAR file.

Create a Web application staging directory and save the JSPs, HTML pages, and
multimedia files referenced by the pages in the top level of the staging directory.
2-2 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/jsp/index.html
http://e-docs.bea.com/wls/docs70/jsp/index.html
http://e-docs.bea.com/wls/docs70/servlet/index.html
http://e-docs.bea.com/wls/docs70/servlet/index.html
http://e-docs.bea.com/wls/docs70/webapp/index.html

Creating Web Applications: Main Steps
Store compiled servlet classes, taglibs, and, if desired, servlets compiled from
JSP pages are stored under a WEB-INF directory in the staging directory. When
the Web application components are all in place in the staging directory, you
create the WAR file with the JAR command.

For detailed information on creating WAR files, see “Packaging Web
Applications” on page 4-16.

6. Auto-deploy the WAR file on WebLogic Server for testing purposes.

While you are testing the Web application you might need to edit the web.xml
and weblogic.xml deployment descriptors; you can do this manually, or you
can use the deployment descriptor editor in the Administration Console. For
detailed information on using the deployment descriptor editor, see “Editing
Deployment Descriptors” on page 4-6.

Refer to BEA WebLogic Server Administration Guide for detailed information
about auto-deploying components and applications.

7. Deploy the WAR file on the WebLogic Server for production use or include it in
an Enterprise ARchive (EAR) file to be deployed as part of an enterprise
application. You use the Administration Console to deploy applications and
components.

Refer to Chapter 5, “WebLogic Server Deployment,” for detailed information
about deploying components and applications.
Developing WebLogic Server Applications 2-3

http://e-docs.bea.com/wls/docs70/adminguide/index.html

2 Developing WebLogic Server J2EE Applications
Creating Enterprise JavaBeans: Main Steps

Creating an Enterprise JavaBean requires creating the classes for the particular EJB
(session, entity, or message-driven) and the EJB-specific deployment descriptors, and
then packaging everything into an EAR file to be deployed on WebLogic Server.

Here are the main steps for creating an Enterprise JavaBean:

1. Write the Java code for the various classes required by each type of EJB (session,
entity, or message-driven) in accordance with the EJB specification. For example,
session and entity EJBs require the following three classes:

An EJB home interface

A remote interface for the EJB

An implementation class for the EJB

Message-driven beans, however, require only an implementation class.

2. Compile the Java code using a standard compiler for the interfaces and
implementation into class files.

For instructions on compiling, refer to “Compiling Java Code” on page 2-16.

3. Create the EJB-specific deployment descriptors:

ejb-jar.xml describes the EJB type and its deployment properties using a
standard DTD from Sun Microsystems.

weblogic-ejb-jar.xml adds additional WebLogic Server-specific
deployment information.

weblogic-cmp-rdbms-jar.xml maps a container-managed entity EJB to
tables in a database. This file can must have a different name for each
container-managed persistence (CMP) bean packaged in a JAR file. The
name of the file is specified in the bean’s entry in the weblogic-ejb.jar
file.

Component deployment descriptors are XML documents that provide
information needed to deploy the application in WebLogic Server. The J2EE
specifications define the contents of some deployment descriptors, such as
ejb-jar.xml and web.xml. Additional deployment descriptors supplement the
2-4 Developing WebLogic Server Applications

Creating Enterprise JavaBeans: Main Steps
J2EE-specified descriptors with information required to deploy components in
WebLogic Server.

Create and edit the XML deployment descriptors manually, or use a Java-based
utility included in WebLogic Server to automatically generate them. For more
information on automatically generating these files, see “Automatically
Generating Deployment Descriptors” on page 4-5.

For detailed information about the elements in the EJB-specific deployment
descriptors and how to create the files by hand, refer to Programming WebLogic
Enterprise JavaBeans.

4. Package the class files and deployment descriptors into a JAR file.

Create an EJB staging directory. Place the compiled Java classes in the staging
directory and the deployment descriptors in a subdirectory called META-INF.
Then run the weblogic.ejbc EJB compiler to generate classes that enforce the
EJB security, transaction, and lifecycle policies. Then you create the EJB archive
by executing a jar command like the following in the staging directory:
jar cvf myEJB.jar *

For detailed information about creating the EJB JAR file, refer to “Packaging
Enterprise JavaBeans” on page 4-17.

5. Auto-deploy the EJB JAR file on WebLogic Server for testing purposes.

While you are testing the EJB you might need to edit the EJB deployment
descriptors; you can do this manually, or use the deployment descriptor editor in
the Administration Console. For detailed information on using the deployment
descriptor editor, see “Editing Deployment Descriptors” on page 4-6.

Refer to BEA WebLogic Server Administration Guide for detailed information
about auto-deploying components and applications.

6. Deploy the JAR file on WebLogic Server for production use or include it in an
Enterprise ARchive (EAR) file to be deployed as part of an enterprise
application. You use the Administration Console to deploy applications and
components.

Refer to Chapter 5, “WebLogic Server Deployment,” for detailed information
about deploying components and applications.
Developing WebLogic Server Applications 2-5

http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/adminguide/index.html

2 Developing WebLogic Server J2EE Applications
Creating Resource Adapters: Main Steps

Creating a resource adapter requires creating the classes for a resource adapter and the
connector-specific deployment descriptors, and then packaging everything into a
resource adapter archive (RAR) file to be deployed on WebLogic Server.

Creating a New Resource Adapter (RAR)

The following are the main steps for creating a resource adapter (RAR):

1. Write the Java code for the various classes required by resource adapter
(ConnectionFactory, Connection, and so on) in accordance with the J2EE
Connector Specification, Version 1.0, Proposed Final Draft 2
(http://java.sun.com/j2ee/download.html#connectorspec).

When implementing a resource adapter, you must specify classes in the ra.xml
file. For example:

<managedconnectionfactory-class>com.sun.connector.blackbox.LocalTxManag
edConnectionFactory</managedconnectionfactory-class>

<connectionfactory-interface>javax.sql.DataSource</connectionfactory-interfac
e>

<connectionfactory-impl-class>com.sun.connector.blackbox.JdbcDataSource</c
onnectionfactory-impl-class>

<connection-interface>java.sql.Connection</connection-interface>

<connection-impl-class>com.sun.connector.blackbox.JdbcConnection</connect
ion-impl-class>

2. Compile the Java code using a standard compiler for the interfaces and
implementation into class files.

For instructions on compiling, refer to “Compiling Java Code” on page 2-16.

3. Create the resource connector-specific deployment descriptors:

ra.xml describes the resource adapter-related attributes type and its
deployment properties using a standard DTD from Sun Microsystems.
2-6 Developing WebLogic Server Applications

Creating Resource Adapters: Main Steps
weblogic-ra.xml adds additional WebLogic Server-specific deployment
information.

For detailed information about creating connector-specific deployment
descriptors, refer to Programming the WebLogic J2EE Connector Architecture.

4. Package the Java classes into a Java archive (JAR) file.

The first step in creating a JAR file is to create a connector staging directory
anywhere on your hard drive. Place the JAR file in the staging directory and the
deployment descriptors in a subdirectory called META-INF.

Then you create the resource adapter archive by executing a jar command like
the following in the staging directory:

jar cvf myRAR.rar *

For detailed information about creating the resource adapter RAR archive file,
refer to “Packaging Resource Adapters” on page 4-20.

5. Auto-deploy the RAR resource adapter archive file on WebLogic Server for
testing purposes.

During testing, you might need to edit the deployment descriptors. You can do
this manually or use the deployment descriptor editor in the Administration
Console. For detailed information on using the deployment descriptor editor, see
“Editing Deployment Descriptors” on page 4-6.

6. Deploy the RAR resource adapter archive file on WebLogic Server or include it
in an enterprise archive (EAR) file to be deployed as part of an enterprise
application.

Refer to Chapter 5, “WebLogic Server Deployment,” for detailed information
about deploying components and applications.

Modifying an Existing Resource Adapter (RAR)

The following is an example of how to take an existing resource adapter (RAR) and
modify it for deployment to WebLogic Server. This involves adding the
weblogic-ra.xml deployment descriptor and repacking.

1. Create a temporary directory anywhere on your hard drive to stage the resource
adapter:
Developing WebLogic Server Applications 2-7

http://e-docs.bea.com/wls/docs70/jconnector/index.html

2 Developing WebLogic Server J2EE Applications
mkdir c:/stagedir

2. Copy the resource adapter that you will deploy into the temporary directory:

cp blackbox-notx.rar c:/stagedir

3. Extract the contents of the resource adapter archive:

cd c:/stagedir

jar xf blackbox-notx.rar

The staging directory should now contain the following:

A jar file containing Java classes that implement the resource adapter

A META-INF directory containing the files: Manifest.mf and ra.xml

Execute these commands to see these files:

c:/stagedir> ls

blackbox-notx.rar

META-INF

c:/stagedir> ls META-INF

Manifest.mf

ra.xml

4. Create the weblogic-ra.xml file. This file is the WebLogic-specific
deployment descriptor for resource adapters. In this file, you specify parameters
for connection factories, connection pools, and security mappings.

Refer to Programming the WebLogic J2EE Connector Architecture for more
information on the weblogic-ra.xml DTD.

5. Copy the weblogic-ra.xml file into the temporary directory's META-INF
subdirectory. The META-INF directory is located in the temporary directory
where you extracted the RAR file or in the directory containing a resource
adapter in exploded directory format. Use the following command:

cp weblogic-ra.xml c:/stagedir/META-INF

c:/stagedir> ls META-INF

Manifest.mf

ra.xml
2-8 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/jconnector/index.html

Creating WebLogic Server Enterprise Applications: Main Steps
weblogic-ra.xml

6. Create the resource adapter archive:

jar cvf blackbox-notx.rar -C c:/stagedir

7. Deploy the resource adapter to WebLogic Server. There are several deployment
tools. For detailed information about deploying components and applications,
refer to Chapter 5, “WebLogic Server Deployment.”

Creating WebLogic Server Enterprise
Applications: Main Steps

Creating a WebLogic Server enterprise application requires creating Web, EJB, and
Connector (Resource Adapter) components, deployment descriptors, and archive files.
The result is an enterprise application archive (EAR file) that can be deployed on
WebLogic Server.

Here are the main steps for creating a WebLogic Server enterprise application:

1. Create Web, EJB, and Connector components for your application.

Programmers create servlets, EJBs, and Connectors using the J2EE APIs for
these components. Web designers create Web pages using HTML/XML and
JavaServer Pages.

For overview information about creating Web, EJB, and Connector components,
respectively refer to “Creating Web Applications: Main Steps” on page 2-2,
“Creating Enterprise JavaBeans: Main Steps” on page 2-4, and “Creating
Resource Adapters: Main Steps” on page 2-6.

For detailed information about creating the Java code that makes up the Web,
EJB, and Connector components, refer to Programming WebLogic Enterprise
JavaBeans, Programming WebLogic HTTP Servlets, Programming WebLogic
JSP, and Programming the WebLogic Server J2EE Connector Architecture.

2. Create Web, EJB, and Connector deployment descriptors.

Component deployment descriptors are XML documents that provide
information needed to deploy the application in WebLogic Server. The J2EE
Developing WebLogic Server Applications 2-9

http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/servlet/index.html
http://e-docs.bea.com/wls/docs70/jsp/index.html
http://e-docs.bea.com/wls/docs70/jsp/index.html
http://e-docs.bea.com/wls/docs70/jconnector/index.html

2 Developing WebLogic Server J2EE Applications
specifications define the contents of some deployment descriptors, such as
ejb-jar.xml, web.xml, and ra.xml. Additional deployment descriptors
supplement the J2EE-specified descriptors with information required to deploy
components in WebLogic Server.

Create these deployment descriptors manually, or you can use a Java-based
utility included in WebLogic Server to generate them automatically. For more
information on automatically generating these files, see “Automatically
Generating Deployment Descriptors” on page 4-5.

For detailed information about manually creating, Web, EJB, and Connector
deployment descriptors, refer to Assembling and Configuring Web Applications,
Programming WebLogic Enterprise JavaBeans, and Programming the WebLogic
Server J2EE Connector Architecture.

3. Package the Web, EJB, and Connector components into their component archive
files.

Component archives are JAR files containing all component files, including
deployment descriptors. You package Web components into a WAR file, EJB
components into an EJB JAR file, and Connector components into a RAR file.

Refer to “Packaging Web Applications” on page 4-16, “Packaging Enterprise
JavaBeans” on page 4-17, and “Packaging Resource Adapters” on page 4-20 for
detailed information for creating component archives.

4. Create the enterprise application deployment descriptor.

The enterprise application deployment descriptor, application.xml, lists
individual components that are assembled together in an application.

Create the application.xml deployment descriptor manually, or use a
Java-based utility included in WebLogic Server to automatically generate it. For
more information on automatically generating this file, see “Automatically
Generating Deployment Descriptors” on page 4-5.

Refer to “application.xml Deployment Descriptor Elements” on page A-1 for
detailed information about the elements of the application.xml file.

5. Package the enterprise application into an EAR file.

Package the Web, EJB, and Connector component archives along with the
enterprise application deployment descriptor into an enterprise archive (.ear
extension) file. This is the file that is deployed on WebLogic Server. WebLogic
Server uses the application.xml deployment descriptor to locate and deploy
the individual components packaged in the EAR file.
2-10 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/webapp/index.html
http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/jconnector/index.html
http://e-docs.bea.com/wls/docs70/jconnector/index.html

Creating WebLogic Server Enterprise Applications: Main Steps
For detailed information about creating the EAR file, refer to “Packaging
Enterprise Applications” on page 4-21.

6. For testing purposes, auto-deploy the EAR enterprise application on WebLogic
Server.

While you are testing the enterprise application you might need to edit the
application.xml deployment descriptor. Edit the file manually or use the
deployment descriptor editor in the Administration Console. For detailed
information on using the deployment descriptor editor, see “Editing Deployment
Descriptors” on page 4-6.

7. For production purposes, use the Administration Console to deploy the EAR file
on WebLogic Server.

Refer to Chapter 5, “WebLogic Server Deployment,” for detailed information
about deploying components and applications.

Figure 2-1 illustrates the process for developing and packaging WebLogic Server
enterprise applications.
Developing WebLogic Server Applications 2-11

2 Developing WebLogic Server J2EE Applications
Figure 2-1 Creating Enterprise Applications
2-12 Developing WebLogic Server Applications

Establishing a Development Environment
Establishing a Development Environment

In preparation for developing WebLogic Server applications, you assemble the
required software tools and set up an environment for creating, compiling, deploying,
testing, and debugging your code.

Software Tools

This section reviews the software required to develop WebLogic Server applications
and describes optional tools for development and debugging.

Source Code Editor or IDE

You need a text editor to edit Java source files, configuration files, HTML or XML
pages, and JavaServer Pages. An editor that gracefully handles Windows and UNIX
line-ending differences is preferred, but there are no other special requirements for
your editor.

Java Interactive Development Environments (IDEs) such as WebGain VisualCafé
usually include a programmer’s editor with custom support for Java. An IDE may also
have support for creating and deploying servlets and Enterprise JavaBeans on
WebLogic Server, which makes it much easier to develop, test, and debug
applications.

You can edit HTML or XML pages and JavaServer Pages with a plain text editor, or
use a Web page editor such as DreamWeaver.

XML Editor

You use an XML editor to edit the XML files used by WebLogic Server, such as the
EJB and Web application deployment descriptors, the config.xml file, and so on.
WebLogic Server includes the following two XML editors:

Deployment Descriptor Editor, part of the Administration Console

BEA XML Editor, a stand-alone Java-based editor
Developing WebLogic Server Applications 2-13

2 Developing WebLogic Server J2EE Applications
For detailed information about using these XML editors, see “Editing Deployment
Descriptors” on page 4-6.

Java Compiler

A Java compiler produces Java class files, containing portable byte code, from Java
source. The compiler compiles the Java code you write for your applications, as well
as the code generated by the WebLogic RMI, EJB, and JSP compilers.

Sun Microsystems Java 2, Standard Edition includes a Java compiler, javac. If you
install the bundled Java Runtime Environment (JRE) when you install WebLogic
Server, the javac compiler is installed on your computer.

Other Java compilers are available for various platforms. You can use a different Java
compiler for WebLogic Server application development as long as it produces
standard Java .class files. Most Java compilers are many times faster than javac,
and some are integrated nicely with an IDE.

Occasionally, a compiler generates optimized code that does not behave well in all
Java Virtual Machines (JVMs). When you debug problems, try disabling
optimizations, choosing a different set of optimizations, or compiling with javac to
rule out your Java compiler as the cause. Always test your code in each target JVM
before deploying.

Development WebLogic Server

Never deploy untested code on a WebLogic Server that is serving production
applications. Instead, set up a development WebLogic Server instance on the same
computer on which you edit and compile, or designate a WebLogic Server
development location elsewhere on the network.

Java is platform independent, so you can edit and compile code on any platform, and
test your applications on development WebLogic Servers running on other platforms.
For example, it is common to develop WebLogic Server applications on a PC running
Windows or Linux, regardless of the platform where the application is ultimately
deployed.

Even if you do not run a development WebLogic Server on your development
computer, you must have access to a WebLogic Server distribution to compile your
programs. To compile any code using WebLogic or J2EE APIs, the Java compiler
2-14 Developing WebLogic Server Applications

Establishing a Development Environment
needs access to the weblogic.jar file and other JAR files in the distribution
directory. Installing WebLogic Server on your development computer makes these
files available locally.

Database System and JDBC Driver

Nearly all WebLogic Server applications require a database system. You can use any
DBMS that you can access with a standard JDBC driver, but services such as
WebLogic Java Message Service (JMS) require a supported JDBC driver for Oracle,
Sybase, Informix, Microsoft SQL Server, IBM DB2, or PointBase. Refer to Platform
Support to find out about supported database systems and JDBC drivers.

JDBC connection pools offer such significant performance advantages that you should
only rarely consider writing an application that uses a two-tier JDBC driver directly.
On a WebLogic Server cluster, be sure to set up a multipool, which provides load
balancing over JDBC connection pools on multiple servers in the cluster.

Web Browser

Most J2EE applications are designed to be executed by Web browser clients.
WebLogic Server supports the HTTP 1.1 specification and is tested with current
versions of the Netscape Communicator and Microsoft Internet Explorer browsers.

When you write requirements for your application, note which Web browser versions
you will support. In your test plans, include testing plans for each supported version.
Be explicit about version numbers and browser configurations. Will your application
support Secure Socket Layers (SSL) protocol? Test alternative security settings in the
browser so that you can tell your users what choices you support.

If your application uses applets, it is especially important to test browser
configurations you want to support because of differences in the JVMs embedded in
various browsers. One solution is to require users to install the Java plug-in from Sun
so that everyone has the same Java run-time version.

Third-Party Software

You can use third-party software products, such as WebGain Studio, WebGain
StructureBuilder, and BEA WebLogic Integration Kit for VisualAge for Java, to
enhance your WebLogic Server development environment.
Developing WebLogic Server Applications 2-15

http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html

2 Developing WebLogic Server J2EE Applications
For more information, see BEA WebLogic Developer Tools Resources, which provides
developer tools information for products that support the BEA application servers.

To download some of these tools, see BEA WebLogic Server Downloads at
http://commerce.bea.com/downloads/weblogic_server_tools.jsp.

Note: Check with the software vendor to verify software compatibility with your
platform and WebLogic Server version.

Compiling Java Code

Compiling Java code for WebLogic Server is the same as compiling any other Java
code. To compile successfully, you must:

Place a standard Java compiler in your search path.

Set your classpath so that the Java compiler can find all of the dependent classes.

Specify the output directories for the compiled classes.

One way to set up your environment is to create a command file or shell script to set
variables in your environment, which you can then pass to the compiler. The
setExamplesEnv.cmd (Windows) and setExamplesEnv.sh (UNIX) files in the
samples\server\config\examples directory are examples of this technique.

Putting the Java Tools in Your Search Path

Make sure the operating system can find the compiler and other JDK tools by adding
it to the %PATH% environment variable in your command shell. If you are using the
JDK, the tools are in the bin subdirectory of the JDK directory. To use an alternative
compiler, such as the sj compiler from WebGain VisualCafé, add the directory
containing that compiler to your search path.

For example, if the JDK is installed in /usr/local/java/java130 on your UNIX
file system, use a command such as the following to add javac to your path in a
Bourne shell or shell script:
2-16 Developing WebLogic Server Applications

http://www.bea.com/products/weblogic/tools.shtml
http://commerce.bea.com/downloads/weblogic_server_tools.jsp

Compiling Java Code
PATH=/usr/local/java/java130/bin:$PATH; export $PATH

To add the WebGain sj compiler to your path on Windows NT or Windows 2000, use
a command such as the following in a command shell or in a command file:

PATH=c:\VisualCafe\bin;%PATH%

If you are using an IDE, see the IDE documentation for help setting up an equivalent
search path.

Setting the Classpath for Compiling Code

Most WebLogic services are based on J2EE standards and are accessed through
standard J2EE packages. The Sun, WebLogic, and other Java classes required to
compile programs that use WebLogic services are packaged in the weblogic.jar file
in the lib directory of your WebLogic Server installation. In addition to
weblogic.jar, include the following in your compiler’s CLASSPATH:

The lib/tools.jar file in the JDK directory, or other standard Java classes
required by the Java Development Kit you use.

Classes for third party Java tools or services your programs import.

Other application classes referenced by the programs you are compiling.

Include in your classpath the target directories where the compiler writes the
classes you are compiling so that the compiler can locate all of the
interdependent classes in your application. The next section has more
information on target directories.

Setting Target Directories for Compiled Classes

The Java compiler writes class files in the same directory with the Java source unless
you specify an output directory for the compiled classes. If you specify the output
directory, the compiler stores the class file in a directory structure that matches the
package name. This allows you to compile Java classes into the correct locations in the
staging directory you use to package your application. If you do not specify an output
directory, you have to move files around before you can create the JAR file that
contains your packaged component.
Developing WebLogic Server Applications 2-17

2 Developing WebLogic Server J2EE Applications
J2EE applications consist of modules assembled into an application and deployed on
one or more WebLogic Servers or WebLogic Server clusters. Each module should
have its own staging directory so that it can be compiled, packaged, and deployed
independently from other modules. For example, you can package EJBs in a separate
module, Web components in a separate module, and other server-side classes in
another module.

See the setExamplesEnv scripts in the samples\server\config\examples
directory of the WebLogic Server distribution for an example of setting up target
directories for the compiler. The scripts set the following variables:

CLIENT_CLASSES
samples\server\stage\examples\clientclasses
Directory where compiled client classes are written for the Examples domain.
These classes are usually standalone Java programs that connect to WebLogic
Server.

SERVER_CLASSES
samples\server\stage\examples\serverclasses by default.
Directory where server-side classes are written for the Examples domain.
Include startup classes and other Java classes that must be in the WebLogic
Server CLASSPATH when the server starts up. Application classes usually
should not be compiled into this directory, because the classes in this directory
cannot be redeployed without restarting WebLogic Server.

EX_WEBAPP_CLASSES
samples\server\stage\examples\applications\examplesWebApp\
WEB-INF\classes. Directory where classes used by a Web Application are
written for the Examples domain.

APPLICATIONS
SAMPLES_HOME\server\config\examples\applications
Applications directory for the Examples domain. This variable is not used to
specify a target for the Java compiler. It is used as a convenient reference to the
applications directory in copy commands that move files from source
directories into the applications directory. For example, if you have HTML,
JSP, and image files in your source tree, you can use the variable in a copy
command to install them in your development server.

These environment variables are passed to the compiler in commands such as the
following command for Windows:

javac -d %SERVER_CLASSES% *.java
2-18 Developing WebLogic Server Applications

Compiling Java Code
If you do not use an IDE, consider writing a make file, shell script, or command file to
compile and package your components and applications. Set the variables in the build
script so that you can rebuild components by typing a single command.
Developing WebLogic Server Applications 2-19

2 Developing WebLogic Server J2EE Applications
2-20 Developing WebLogic Server Applications

CHAPTER
3 WebLogic Server
Application
Classloading

The following sections provide an overview of Java classloaders, followed by details
about WebLogic Server J2EE application classloading.

“Java Classloader Overview” on page 3-2

“WebLogic Server Application Classloader Overview” on page 3-4

“Resolving Class References Between Components and Applications” on page
3-9
Developing WebLogic Server Applications 3-1

3 WebLogic Server Application Classloading
Java Classloader Overview

Classloaders are a fundamental component of the Java language. A classloader is a part
of the Java virtual machine (JVM) that loads classes into memory; it is the class
responsible for finding and loading class files at run time. Every successful Java
programmer needs to understand classloaders and their behavior. This section provides
an overview of Java classloaders.

Java Classloader Hierarchy

Classloaders contain a hierarchy with a parent classloader and child classloaders. The
relationship between parent and child classloaders is analogous to the object
relationship of super classes and subclasses. The bootstrap classloader is the parent of
the Java classloader hierarchy. The Java virtual machine (JVM) creates the bootstrap
classloader, which loads the Java development kit (JDK) internal classes and java.*
packages included in the JVM. (For example, the bootstrap classloader loads
java.lang.String.)

The extensions classloader is a child of the bootstrap classloader. The extensions
classloader loads any JAR files placed in the extensions directory of the JDK. This is
a convenient means to extending the JDK without adding entries to the classpath.
However, anything in the extensions directory must be self-contained and can only
refer to classes in the extensions directory or JDK classes.

The system classpath classloader extends the JDK extensions classloader. The system
classpath classloader loads the classes from the classpath of the JVM.
Application-specific classloaders (including WebLogic Server classloaders) are
children of the system classpath classloader.

Loading a Class

Classloaders use a delegation model when loading a class. The classloader
implementation first checks to see if the requested class has already been loaded. This
class verification improves performance in that the cached memory copy is used
instead of repeated loading of a class from disk. If the class is not found in memory,
3-2 Developing WebLogic Server Applications

Java Classloader Overview
the parent classloader loads the class. Only if the parent cannot load the class does the
classloader attempt to load the class. If a class exists in both the parent and child
classloaders, the parent version is loaded.

Note: Classloaders ask their parent classloader to load a class before attempting to
load the class themselves. If needed, you can configure the classloader to
check locally and then check the parent.

PreferWebInfClasses Element

The WebAppComponentMBean contains a PreferWebInfClasses element. By
default, this element is set to False. Setting this element to True subverts the
classloader delegation model and makes it very easy to obtain the same class loaded
into both the Web application and system classloader, which in turn makes it very easy
to obtain a ClassCastException.

Some users prefer to set this to True to override BEA implementations of various
services (most commonly, XML processing classes such as XERCES). If you choose to
set this element to True, be very careful not to mix instances of classes loaded from
different classloaders.

Listing 3-1 PreferWebInfClasses Element

/**

* If true, classes located in the WEB-INF directory of a web-app
will be loaded in preference to classes loaded in the application
or system classloader.

* @default false

*/

boolean isPreferWebInfClasses();

void setPreferWebInfClasses(boolean b);
Developing WebLogic Server Applications 3-3

3 WebLogic Server Application Classloading
Changing Classes in a Running Program

WebLogic Server allows you to deploy newer versions of application components
such as EJBs while the server is running. This process is known as hot-deploy or
hot-redeploy and is closely related to classloading

When you deploy a new version of an application, a new application classloader is
created. This scheme works as long as the application classes are being loaded by the
new classloader. If a class is in the system classpath, it cannot be changed while the
server is running.

Note: Java classloaders do not have any standard mechanism to undeploy or unload
a set of classes; nor can they load new versions of classes. One way to get
around this is to create an application-specific classloader as a child of the
classpath classloader.

WebLogic Server Application Classloader
Overview

This section provides an overview of the WebLogic Server application classloaders.

Application Classloading

WebLogic Server classloading is centered on the concept of an application. An
application is normally packaged in an Enterprise Archive (EAR) file containing
application classes. Everything within an EAR file is considered part of the same
application. Other applications include:

An Enterprise JavaBean (EJB) JAR file

A Web Application WAR file

Note: For information on Resource Adapter RAR files and classloading, see “About
Resource Adapter Classes.”
3-4 Developing WebLogic Server Applications

WebLogic Server Application Classloader Overview
If you deploy an EJB JAR file and a Web Application WAR file separately, they are
considered two applications. If they are deployed together within an EAR file, they are
one application. You deploy components together in an EAR file for them to be
considered part of the same application.

Make sure that no resource-adapter specific classes exist in your WebLogic Server
system classpath. If you need to use resource adapter-specific classes with Web
components (for example, an EJB or Web application), you must bundle these classes
in the corresponding component’s archive file (for example, the JAR file for EJBs or
the WAR file for Web applications).

Every application receives its own classloader hierarchy; the parent of this hierarchy
is the system classpath classloader. This isolates applications so that application A
cannot see the classloaders or classes of application B. In classloaders, no sibling or
friend concepts exist. Application classloaders can only see their parent classloader,
the system classpath classloader. This allows WebLogic Server to host multiple
isolated applications within the same JVM.

Application Classloader Hierarchy

WebLogic Server automatically creates a set of classloaders when an application is
deployed. The base application classloader loads any EJB JAR files in the application.
A child classloader is created for each Web Application WAR file.

Because it is common for Web Applications to call EJBs, the WebLogic Server
application classloader architecture allows JavaServer Page (JSP) files and servlets to
see the EJB interfaces in their parent classloader. This architecture also allows Web
Applications to be redeployed without redeploying the EJB tier. In practice, it is more
common to change JSP files and servlets than to change the EJB tier.

The following graphic illustrates this WebLogic Server application classloading
concept:
Developing WebLogic Server Applications 3-5

3 WebLogic Server Application Classloading
Figure 3-1 WebLogic Server Classloading

If your application includes servlets and JSPs that use EJBs:

Package the servlets and JSPs in a WAR file

Package the enterprise beans in an EJB JAR file

Package the WAR and JAR files in an EAR file

Deploy the EAR file

Although you could deploy the WAR and JAR files separately, deploying them
together in an EAR file produces a classloader arrangement that allows the servlets and
JSPs to find the EJB classes. If you deploy the WAR and JAR files separately,
WebLogic Server creates sibling classloaders for them. This means that you must
include the EJB home and remote interfaces in the WAR file, and WebLogic Server
must use the RMI stub and skeleton classes for EJB calls, just as it does when EJB
clients and implementation classes are in different JVMs. This concept is discussed in
more detail in the next section “Application Classloading and Pass by Value or
Reference” on page 3-7.
3-6 Developing WebLogic Server Applications

WebLogic Server Application Classloader Overview
Note: The Web application classloader contains all classes for the Web application
except for the servlet implementation classes and JSPs. Each servlet
implementation class and JSP class obtains its own classloader, which is a
child of the Web application classloader. This allows servlets and JSPs to be
individually reloaded.

Application Classloading and Pass by Value or Reference

Modern programming languages use two common parameter passing models: pass by
value and pass by reference. With pass by value, parameters and return values are
copied for each method call. With pass by reference, a pointer (or reference) to the
actual object is passed to the method. Pass by reference improves performance because
it avoids copying objects, but it also allows a method to modify the state of a passed
parameter.

WebLogic Server includes an optimization to improve the performance of Remote
Method Interface (RMI) calls within the server. Rather than using pass by value and
the RMI subsystem’s marshalling and unmarshalling facilities, the server makes a
direct Java method call using pass by reference. This mechanism greatly improves
performance and is also used for EJB 2.0 local interfaces.

RMI call optimization and call by reference can only be used when the caller and callee
are within the same application. As usual, this is related to classloaders. Since
applications have their own classloader hierarchy, any application class has a
definition in both classloaders and receives a ClassCastException error if you try to
assign between applications. To work around this, WebLogic Server uses call by value
between applications, even if they are within the same JVM.

Note: Calls between applications are slower than calls within the same application.
Deploy components together as an EAR file to enable fast RMI calls and use
of the EJB 2.0 local interfaces.

The following is a list of pass-by-value and pass-by-reference parameters called by
EJB versions 2.0 and 1.1.
Developing WebLogic Server Applications 3-7

3 WebLogic Server Application Classloading
Table 3-1 Parameters Called by EJB Version 2.0

Table 3-2 Parameters Called by EJB Version 1.1

Packaging Called
Interface

Default Call Type Effect of
enable-call-by-reference

Caller WebApp/EJB are in
an EAR file

Local

Remote

Pass-by-Reference

Pass-by-Value

Pass-by-Value if False

Pass-by-Reference if True

Caller EJB and called EJB
are in the same JAR file,
not the same EAR file

Local

Remote

Pass-by-Reference

Pass-by-Value

Pass-by-Value if False

Pass-by-Reference if True

Caller WebApp/EJB and
called EJB are in separate
deployment module
(EAR/JAR)

Local

Remote

Pass-by-Value

Pass-by-Value

N/A

N/A

Packaging Called
Interface

Default Call Type Effect of
enable-call-by-reference

Caller WebApp/EJB are in
an EAR file

Remote Pass-by-Reference Pass-by-Value if False

Caller EJB and called EJB
are in the same JAR file,
not the same EAR file

Remote Pass-by-Reference Pass-by-Value if False

Caller WebApp/EJB and
called EJB are in separate
deployment module
(EAR/JAR)

Remote Pass-by-Value N/A
3-8 Developing WebLogic Server Applications

Resolving Class References Between Components and Applications
Resolving Class References Between
Components and Applications

Your applications may use many different Java classes, including enterprise beans,
servlets and JavaServer Pages, utility classes, and third-party packages. WebLogic
Server deploys applications in separate classloaders to maintain independence and to
facilitate dynamic redeployment and undeployment. Because of this, you need to
package your application classes in such a way that each component has access to the
classes it depends on. In some cases, you may have to include a set of classes in more
than one application or component. This section describes how WebLogic Server uses
multiple classloaders so that you can stage your applications successfully.

About Resource Adapter Classes

Make sure that no resource-adapter specific classes exist in your WebLogic Server
system classpath. If you need to use resource adapter-specific classes with Web
components (for example, an EJB or Web application), you must bundle these classes
in the corresponding component’s archive file (for example, the JAR file for EJBs or
the WAR file for Web applications).

Packaging Shared Utility Classes

Applications usually have shared utility classes. If you create or acquire utility classes
that you will use in more than one application, you must package them with each
application as separate JAR files. The JAR files should be self contained and not have
any references to the classes in the EJB or Web components. Common types of shared
utility classes are data transfer objects or JavaBeans, which are passed between the
Web tier and EJB tier.

Alternatively, you can add shared utility classes to the Java system classpath by editing
the java command in the script that runs WebLogic Server. If you modify your utility
classes and they are in the Java system classpath, however, you will have to restart
WebLogic Server after you modify the utility classes.
Developing WebLogic Server Applications 3-9

3 WebLogic Server Application Classloading
Classes that WebLogic Server uses during startup must be in the Java system classpath.
For example, JDBC drivers used for connection pools must be in the classpath when
you start WebLogic Server. Again, if you need to modify classes in the Java system
classpath, or modify the classpath itself, you will have to restart WebLogic Server after
you modify the classes or the classpath.

Manifest Class-Path

The J2EE specification provides the manifest Class-Path entry as a means for a
component to specify that it requires an auxiliary JAR of classes. You only need to use
this manifest Class-Path entry if you have additional supporting JAR files as part of
your EJB JAR or WAR file. In such cases, when you create the JAR or WAR file, you
must include a manifest file with a Class-Path element that references the required
JAR files.

The following is a simple manifest file that references a utility.jar file:

Manifest-Version: 1.0 [CRLF]
Class-Path: utility.jar [CRLF]

In first line of the manifest file, you must always include the Manifest-Version
attribute, followed by a new line (CR | LF |CRLF) and then the Class-Path attribute.
More information about the manifest format can be found at:
http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#JAR

The manifest Class-Path entries refer to other archives relative to the current archive
in which these entries are defined. This structure allows multiple WAR files and EJB
JAR files to share a common library JAR. For example, if a WAR file contains a
manifest entry of y.jar, this entry should be next to the WAR file (not within it) as
follows:

/<directory>/x.war

/<directory>/y.jars

The manifest file itself should be located in the archive at META-INF/MANIFEST.MF.

For more information, see
http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html
3-10 Developing WebLogic Server Applications

http://java.sun.com/j2se/1.4/docs/guide/jar/jar.html#JAR
http://java.sun.com/docs/books/tutorial/jar/basics/manifest.html

CHAPTER
4 WebLogic Server
Application Packaging

The following sections describe how to package WebLogic Server components. You
must package components before you deploy them to WebLogic Server.

“Packaging Overview” on page 4-2

“JAR Files” on page 4-2

“XML Deployment Descriptors” on page 4-4

“Packaging Web Applications” on page 4-16

“Packaging Enterprise JavaBeans” on page 4-17

“Packaging Resource Adapters” on page 4-20

“Packaging Enterprise Applications” on page 4-21

“Packaging Client Applications” on page 4-23

“Packaging J2EE Applications Using Apache Ant” on page 4-26
Developing WebLogic Server Applications 4-1

4 WebLogic Server Application Packaging
Packaging Overview

WebLogic Server J2EE applications are packaged according to J2EE specifications.
J2EE defines component behaviors and packaging in a generic, portable way,
postponing run-time configuration until the component is actually deployed on an
application server.

J2EE includes deployment specifications for Web applications, EJB modules,
enterprise applications, client applications, and resource adapters. J2EE does not
specify how an application is deployed on the target server—only how a standard
component or application is packaged.

For each component type, the specifications define the files required and their location
in the directory structure. Components and applications may include Java classes for
EJBs and servlets, resource adapters, Web pages and supporting files, XML-formatted
deployment descriptors, and JAR files containing other components.

An application that is ready to deploy on WebLogic Server may require
WebLogic-specific deployment descriptors and, possibly, container classes generated
with the WebLogic EJB, RMI, or JSP compilers.

For more information, refer to the the J2EE 1.3 specification at:
http://java.sun.com/j2ee/download.html#platformspec

JAR Files

A file created with the Java jar tool bundles the files in a directory into a single Java
ARchive (JAR) file, maintaining the directory structure. The Java classloader can
search for Java class files (and other file types) in a JAR file the same way that it
searches a directory in its classpath. Because the classloader can search a directory or
a JAR file, you can deploy J2EE components on WebLogic Server in either an
“exploded” directory or a JAR file.

JAR files are convenient for packaging components and applications for distribution.
They are easier to copy, they use up fewer file handles than an exploded directory, and
they can save disk space with file compression.
4-2 Developing WebLogic Server Applications

http://java.sun.com/j2ee/download.html#platformspec

JAR Files
The jar utility is in the bin directory of your Java Development Kit. If you have
javac in your path, you also have jar in your path. The jar command syntax and
behavior is similar to the UNIX tar command.

The most common usages of the jar command are:

jar cf jar-file files ...
Creates a JAR file named jar-file containing listed files. If you include a
directory in the list of files, all files in that directory and its subdirectories are
added to the JAR file.

jar xf jar-file
Extract (unbundle) a JAR file in the current directory.

jar tf jar-file
List (tell) the contents of a JAR file.

The first flag specifies the operation: create, extract, or list (tell). The f flag must be
followed by a JAR file name. Without the f flag, jar reads or writes JAR file contents
on stdin or stdout which is usually not what you want. See the documentation for
the JDK utilities for more about jar command options.
Developing WebLogic Server Applications 4-3

4 WebLogic Server Application Packaging
XML Deployment Descriptors

Components and applications have deployment descriptors—XML documents—that
describe the contents of the directory or JAR file. Deployment descriptors are text
documents formatted with XML tags. The J2EE specifications define standard,
portable deployment descriptors for J2EE components and applications. BEA defines
additional WebLogic-specific deployment descriptors for deploying a component or
application in the WebLogic Server environment.

Table 4-1 lists the types of components and applications and their J2EE-standard and
WebLogic-specific deployment descriptors.

When you package a component or application, you create a directory to hold the
deployment descriptors—WEB-INF or META-INF—and then create the XML
deployment descriptors in that directory.

Table 4-1 J2EE and WebLogic Deployment Descriptors

Component or
Application

Scope Deployment Descriptors

Web Application J2EE web.xml

WebLogic weblogic.xml

Enterprise Bean J2EE ejb-jar.xml

WebLogic weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

Resource
Adapter

J2EE ra.xml

WebLogic weblogic-ra.xml

Enterprise
Application

J2EE application.xml

WebLogic weblogic-application.xml

Client
Application

J2EE application-client.xml

WebLogic client-application.runtime.xml
4-4 Developing WebLogic Server Applications

XML Deployment Descriptors
You can create the deployment descriptors manually, or you can use
WebLogic-specific Java-based utilities to automatically generate them for you. For
more information about generating deployment descriptors, see “Automatically
Generating Deployment Descriptors” on page 4-5.

If you receive a J2EE-compliant JAR file from a developer, it already contains
J2EE-defined deployment descriptors. To deploy the JAR file on WebLogic Server,
you extract the contents of the JAR file into a directory, add the WebLogic-specific
deployment descriptors and any generated container classes, and then create a new
JAR file containing the old and new files. Note that the JAR utility contains a “u”
option, which allows you to change or add files directly to an existing JAR.

Automatically Generating Deployment Descriptors

WebLogic Server includes a set of Java-based utilities that automatically generate the
deployment descriptors for the following J2EE components: Web applications,
Enterprise JavaBeans (version 2.0).

These utilities examine the objects you have assembled in a staging directory and build
the appropriate deployment descriptors based on the servlet classes, EJB classes, and
existing descriptors. The utilities generate both the standard J2EE and
WebLogic-specific deployment descriptors for each component.

WebLogic Server includes the following utilities:

weblogic.marathon.ddinit.WebInit

Creates the deployment descriptors for Web Applications.

weblogic.marathon.ddinit.EJBInit

Creates the deployment descriptors for Enterprise JavaBeans 2.0.If
ejb-jar.xml exists, DDInit uses its deployment information to generate
weblogic-ejb-jar.xml.

Limitations of DDInit

DDInit attempts to create deployment descriptor files that are complete and accurate
for your component or application, but must guess at the value of many of the required
elements. If such a guess is wrong, WebLogic Server will return an error when you
deploy the component or application. If this happens, you must undeploy the
Developing WebLogic Server Applications 4-5

4 WebLogic Server Application Packaging
component or application, edit the deployment descriptor using the Deployment
Descriptor Editor of the Administration Console, and then redeploy it. For details on
using the Deployment Descriptor Editor, see “Editing Deployment Descriptors.”

Relations among entity beans are a particular problem for DDInit, because it can only
be sure of one-to-one bi-directional relations. If a relation has a “many” side to it,
DDInit will guess at the nature of the relation.

Example

For an example of DDInit, assume that you have created a directory called c:\stage
that contains the WEB-INF directory, the JSP files, and other objects that make up a
Web application but you have not yet created the web.xml and weblogic.xml
deployment descriptors. To automatically generate them, execute the following
command:

java weblogic.marathon.ddinit.WebInit c:\stage

The utility generates the web.xml and weblogic.xml deployment descriptors and
places them in the WEB-INF directory, which DDInit will create if it does not already
exist.

Editing Deployment Descriptors

BEA offers two tools for editing the deployment descriptors of WebLogic Server
applications and components:

BEA XML Editor

Deployment Descriptor Editor from within the Administration Console

Use either editor to update existing elements in, add new elements to, and delete
existing elements from the following deployment descriptors:

web.xml

weblogic.xml

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml
4-6 Developing WebLogic Server Applications

XML Deployment Descriptors
ra.xml

weblogic-ra.xml

application.xml

weblogic-application.xml

application-client.xml

client-application.runtime.xml

Using the BEA XML Editor

To edit XML files, use the BEA XML Editor, an entirely Java-based XML stand-alone
editor. It is a simple, user-friendly tool for creating and editing XML files. It displays
XML file contents both as a hierarchical XML tree structure and as raw XML code.
This dual presentation of the document gives you a choice of editing:

The hierarchical tree view allows structured, constrained editing, with a set of
allowable functions at each point in the hierarchical XML tree structure. The
allowable functions are syntactically dictated and in accordance with the XML
document's DTD or schema, if one is specified.

The raw XML code view allows free-form editing of the data.

BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

For more documentation about using the BEA XML Editor and to download it, visit
BEA dev2dev Online at http://developer.bea.com/tools/utilities.jsp.

About EJBGen

EJBGen is an Enterprise JavaBeans 2.0 code generator or command-line tool that uses
Javadoc markup to generate EJB deployment descriptor files. You annotate your Bean
class file with javadoc tags and then use EJBGen to generate the Remote and Home
classes and the deployment descriptor files for an EJB application, reducing to one the
number of EJB files you need to edit and maintain.

For more information about EJBGen, see Programming WebLogic Enterprise
JavaBeans at http://e-docs.bea.com/wls/docs70/ejb/EJB_utilities.html.
Developing WebLogic Server Applications 4-7

http://e-docs.bea.com/wls/docs70/ejb/EJB_utilities.html
http://e-docs.bea.com/wls/docs70/ejb/EJB_utilities.html

4 WebLogic Server Application Packaging
Using the Administration Console Deployment Descriptor Editor

The Administration Console Deployment Descriptor Editor looks very much like the
main Administration Console: the left pane lists the elements of the deployment
descriptor files in tree form and the right pane contains the form for updating a
particular element.

When you use the editor, you can either update the in-memory deployment descriptor
only, or update both the in-memory and disk files. When you click the Apply button
after updating a particular element, or the Create button to create a new element, only
the deployment descriptor in WebLogic Server’s memory is updated; the change has
not yet been written to disk. To do this, click the Persist button. If you do not explicitly
persist the changes to disk, the changes are lost when you stop and restart WebLogic
Server.

Editing EJB Deployment Descriptors

This section describes the procedure for editing the following EJB deployment
descriptors using the Administration Console Deployment Descriptor Editor:

ejb-jar.xml

weblogic-ejb-jar.xml

weblogic-cmp-rdbms-jar.xml

For detailed information about the elements in the EJB-specific deployment
descriptors, refer to Programming WebLogic Enterprise JavaBeans.

To edit the EJB deployment descriptors:

1. Invoke the Administration Console in your browser using the following URL:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the EJB node under the Deployments node.

4. Right-click the name of the EJB whose deployment descriptors you want to edit
and choose Edit EJB Descriptor from the drop-down menu. The Administration
Console window appears in a new browser.
4-8 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/ejb/index.html

XML Deployment Descriptors
The left pane contains a tree structure that lists all the elements in the three EJB
deployment descriptors and the right pane contains a form for the descriptive
elements of the ejb-jar.xml file.

5. To edit, delete, or add elements in the EJB deployment descriptors, click to
expand the node in the left pane that corresponds to the deployment descriptor
file you want to edit, as described in the following list:

The EJB JAR node contains the elements of the ejb-jar.xml deployment
descriptor.

The WebLogic EJB Jar node contains the elements of the
weblogic-ejb-jar.xml deployment descriptor.

The container-managed persistence (CMP) node contains the elements of the
weblogic-cmp-rdbms-jar.xml deployment descriptor.

6. To edit an existing element in one of the EJB deployment descriptors, follow
these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

7. To add a new element to one of the EJB deployment descriptors, follow these
steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

8. To delete an existing element from one of the EJB deployment descriptors,
follow these steps:
Developing WebLogic Server Applications 4-9

4 WebLogic Server Application Packaging
a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

9. Once you make all your changes to the EJB deployment descriptors, click the
root element of the tree in the left pane. The root element is the either the name of
the EJB JAR archive file or the display name of the EJB.

10. Click Validate if you want to ensure that the entries in the EJB deployment
descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server memory.

Editing Web Application Deployment Descriptors

This section describes the procedure for editing the web.xml and weblogic.xml Web
application deployment descriptors using the Administration Console Deployment
Descriptor Editor.

See Assembling and Configuring Web Applications for detailed information on the
elements in the Web application deployment descriptors.

To edit the Web application deployment descriptors:

1. Invoke the Administration Console in your browser:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the Web Applications node under the Deployments node.

4. Right-click the name of the Web application whose deployment descriptors you
want to edit and choose Edit Web Application Descriptor from the drop-down
menu. The Administration Console window appears in a new browser.

The left pane contains a tree structure that lists all the elements in the two Web
application deployment descriptors and the right pane contains a form for the
descriptive elements of the web.xml file.
4-10 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/webapp/index.html

XML Deployment Descriptors
5. To edit, delete, or add elements in the Web application deployment descriptors,
click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit:

The Web App Descriptor node contains the elements of the web.xml
deployment descriptor.

The WebApp Ext node contains the elements of the weblogic.xml
deployment descriptor.

6. To edit an existing element in one of the Web application deployment descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

7. To add a new element to one of the Web application deployment descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

8. To delete an existing element from one of the Web application deployment
descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and choose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.
Developing WebLogic Server Applications 4-11

4 WebLogic Server Application Packaging
9. Once you make all your changes to the Web application deployment descriptors,
click the root element of the tree in the left pane. The root element is the either
the name of the Web application WAR archive file or the display name of the
Web application.

10. Click Validate to ensure that the entries in the Web application deployment
descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server memory.

Editing Resource Adapter Deployment Descriptors

This section describes the procedure for editing the ra.xml and weblogic-ra.xml
resource adapter deployment descriptors using the Administration Console
Deployment Descriptor Editor.

For detailed information about the elements in the resource adapter deployment
descriptors, refer to Programming WebLogic J2EE Connectors.

To edit the resource adapter deployment descriptors:

1. Invoke the Administration Console in your browser:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the Connectors node under the Deployments node.

4. Right-click the name of the resource adapter whose deployment descriptors you
want to edit and choose Edit Connector Descriptor from the drop-down menu.
The Administration Console window appears in a new browser.

The left pane contains a tree structure that lists all the elements in the two
resource adapter deployment descriptors and the right pane contains a form for
the descriptive elements of the ra.xml file.

5. To edit, delete, or add elements in the resource adapter deployment descriptors,
click to expand the node in the left pane that corresponds to the deployment
descriptor file you want to edit:
4-12 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/jconnector/index.html

XML Deployment Descriptors
The RA node contains the elements of the ra.xml deployment descriptor.

The WebLogic RA node contains the elements of the weblogic-ra.xml
deployment descriptor.

6. To edit an existing element in one of the resource adapter deployment
descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

7. To add a new element to one of the resource adapter deployment descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and chose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

8. To delete an existing element from one of the resource adapter deployment
descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

9. Once you make all your changes to the resource adapter deployment descriptors,
click the root element of the tree in the left pane. The root element is the either
the name of the resource adapter RAR archive file or the display name of the
resource adapter.
Developing WebLogic Server Applications 4-13

4 WebLogic Server Application Packaging
10. Click Validate to ensure that the entries in the resource adapter deployment
descriptors are valid.

11. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server memory.

Editing Enterprise Application Deployment Descriptors

This section describes the procedure for editing the Enterprise Application deployment
descriptors (application.xml and weblogic-application.xml) using the
Administration Console Deployment Descriptor Editor.

Refer to “application.xml Deployment Descriptor Elements” in Appendix A,
“Application Deployment Descriptor Elements,” for detailed information about the
application.xml and weblogic-application.xml files.

Note: The following procedure describes only how to edit the application.xml
and weblogic-application.xml files; to edit the deployment descriptors in
the components that make up the Enterprise application, see “Editing EJB
Deployment Descriptors” on page 4-8, “Editing Web Application Deployment
Descriptors” on page 4-10, or “Editing Resource Adapter Deployment
Descriptors” on page 4-12.

To edit the Enterprise Application deployment descriptor:

1. Invoke the Administration Console in your browser:

http://host:port/console

where host refers to the name of the computer upon which WebLogic Server is
running and port refers to the port number to which it is listening.

2. Click to expand the Deployments node in the left pane.

3. Click to expand the Applications node under the Deployments node.

4. Right-click the name of the Enterprise Application whose deployment descriptor
you want to edit and choose Edit Application Descriptor from the drop-down
menu. The Administration Console window appears in a new browser.

The left pane contains a tree structure that lists all the elements in the
application.xml file and the right pane contains a form for its descriptive
elements, such as the display name and icon file names.
4-14 Developing WebLogic Server Applications

XML Deployment Descriptors
5. To edit an existing element in the application.xml deployment descriptor,
follow these steps:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
element you want to edit.

b. Click the element. A form appears in the right pane that lists either its attributes
or sub-elements.

c. Edit the text in the form in the right pane.

d. Click Apply.

6. To add a new element to the application.xml deployment descriptors:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to create.

b. Right-click the element and choose Configure a New Element from the
drop-down menu.

c. Enter the element information in the form that appears in the right pane.

d. Click Create.

7. To delete an existing element from the application.xml deployment
descriptor:

a. Navigate the tree in the left pane, clicking on parent elements until you find the
name of the element you want to delete.

b. Right-click the element and chose Delete Element from the drop-down menu.

c. Click Yes to confirm that you want to delete the element.

8. Once you make all your changes to the application.xml deployment
descriptor, click the root element of the tree in the left pane. The root element is
the either the name of the Enterprise application EAR archive file or the display
name of the Enterprise application.

9. Click Validate if you want to ensure that the entries in the application.xml
deployment descriptor are valid.

10. Click Persist to write your edits of the deployment descriptor files to disk in
addition to WebLogic Server memory.
Developing WebLogic Server Applications 4-15

4 WebLogic Server Application Packaging
Packaging Web Applications

If your Web application is accessed by a programmatic Java client, see “Packaging
Client Applications” on page 4-23, which describes how WebLogic server loads your
application classes.

To stage and package a Web application:

1. Create a temporary staging directory anywhere on your hard drive. You can name
this directory anything you want.

2. Copy all of your HTML files, JSP files, images, and any other files that these
Web pages reference into the staging directory, maintaining the directory
structure for referenced files. For example, if an HTML file has a tag such as
, the pic.gif file must be in the images
subdirectory beneath the HTML file.

3. Create META-INF and WEB-INF/classes subdirectories in the staging directory
to hold deployment descriptors and compiled Java classes.

4. Copy or compile any servlet classes and helper classes into the
WEB-INF/classes subdirectory.

5. Copy the home and remote interface classes for enterprise beans used by the
servlets into the WEB-INF/classes subdirectory.

6. Copy JSP tag libraries into the WEB-INF subdirectory. (Tag libraries may be
installed in a subdirectory beneath WEB-INF; the path to the .tld file is coded in
the .jsp file.)

7. Set up your shell environment.

On Windows NT, execute the setenv.cmd command, located in the directory
server\bin\setenv.cmd, where server is the top-level directory in which
WebLogic Server is installed.

On UNIX, execute the setenv.sh command, located in the directory
server/bin/setenv.sh, where server is the top-level directory in which
WebLogic Server is installed.

8. Execute the following command to automatically generate the web.xml and
weblogic.xml deployment descriptors in the WEB-INF subdirectory:
4-16 Developing WebLogic Server Applications

Packaging Enterprise JavaBeans
java weblogic.marathon.ddinit.WebInit staging-dir

where staging-dir refers to the staging directory.

For more information on the Java-based DDInit utility for generating
deployment descriptors, see “Automatically Generating Deployment
Descriptors” on page 4-5.

Alternatively, you can create the web.xml and weblogic.xml files manually in
the WEB-INF subdirectory manually.

Note: See Assembling and Configuring Web Applications for detailed
descriptions of the elements of the web.xml and weblogic.xml files.

9. Bundle the staging directory into a WAR file by executing a jar command such
as:

jar cvf myapp.war -C staging-dir

The resulting WAR file can be added to an Enterprise application (EAR file) or
deployed independently using the Administration Console or the
weblogic.Deployer command-line utility.

Note: Now that you have packaged your Web application, see Deploying
Applications for instructions on deploying applications in WebLogic
Server.

Packaging Enterprise JavaBeans

You can stage one or more Enterprise JavaBeans (EJBs) in a directory and package
them in an EJB JAR file. If your EJB is accessed by a programmatic Java client, see
“Packaging Client Applications” on page 4-23 which describes how WebLogic Server
loads your EJB classes.

Staging and Packaging EJBs

To stage and package an Enterprise JavaBean (EJB):
Developing WebLogic Server Applications 4-17

http://e-docs.bea.com/wls/docs70/webapp/index.html
http://e-docs.bea.com/wls/docs70/adminguide/index.html

4 WebLogic Server Application Packaging
1. Create a temporary staging directory anywhere on your hard drive (for example,
c:\stagedir).

2. Compile or copy the bean’s Java classes into the staging directory.

3. Create a META-INF subdirectory in the staging directory.

4. Set up your shell environment.

On Windows NT, execute the setenv.cmd command, located in the directory
server\bin\setenv.cmd, where server is the top-level directory in which
WebLogic Server is installed.

On UNIX, execute the setenv.sh command, located in the directory
server/bin/setenv.sh, where server is the top-level directory in which
WebLogic Server is installed and domain refers to the name of your domain.

5. Execute the following command to automatically generate the ejb-jar.xml,
weblogic-ejb-jar.xml, and weblogic-rdbms-cmp-jar-bean_name.xml (if
needed) deployment descriptors in the META-INF subdirectory:

java weblogic.marathon.ddinit.EJBInit staging-dir

where staging-dir refers to the staging directory. This utility generates
deployment descriptors for EJB 2.0.

For more information on the Java-based DDInit utility for generating
deployment descriptors, see “Automatically Generating Deployment
Descriptors” on page 4-5.

Alternatively, you can create the EJB deployment descriptor files manually.
Create an ejb-jar.xml and weblogic-ejb-jar.xml files in the META-INF
subdirectory. If the bean is an entity bean with container-managed persistence,
create a weblogic-rdbms-cmp-jar—bean_name.xml deployment descriptor in
the META-INF directory with entries for the bean. Map the bean to this CMP
deployment descriptor with a <type-storage> attribute in the
weblogic-ejb-jar.xml file.

Note: See Programming WebLogic Enterprise JavaBeans for help compiling
enterprise beans and creating EJB deployment descriptors.

6. When all of the enterprise bean classes and deployment descriptors are set up in
the staging directory, create the EJB JAR file with a jar command such as:

jar cvf jar-file.jar -C staging-dir

This command creates a JAR file that you can deploy on WebLogic Server.
4-18 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/ejb/index.html

Packaging Enterprise JavaBeans
The -C staging-dir option instructs the jar command to change to the
staging-dir directory so that the directory paths recorded in the JAR file are
relative to the directory where you staged the enterprise beans.

Enterprise beans require container classes, classes the WebLogic EJB compiler
generates to allow the bean to deploy in a WebLogic Server. The WebLogic EJB
compiler reads the deployment descriptors in the EJB JAR file to determine how
to generate the classes. You can run the WebLogic EJB compiler on the JAR file
before you deploy the beans, or you can let WebLogic Server run the compiler
for you at deployment time. See Programming WebLogic Enterprise JavaBeans
for help with the WebLogic EJB compiler.

Note: Now that you have packaged your EJB, see Deploying Applications for
instructions on deploying applications in WebLogic Server.

Using ejb-client.jar

WebLogic Server supports the use of ejb-client.jar files. Create an
ejb-client.jar file by specifying this feature in the bean’s ejb-jar.xml
deployment descriptor file and then generating the ejb-client.jar file using
weblogic.ejbc. An ejb-client.jar contains the class files that a client program
needs to call the EJBs contained in the ejb-jar file. The files are the classes required
to compile the client. If you specify this feature, WebLogic Server automatically
creates the ejb-client.jar.

For more information, refer to “Packaging EJBs for the WebLogic Server Container”
in Programming WebLogic Enterprise JavaBeans.
Developing WebLogic Server Applications 4-19

http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/adminguide/appman.html
http://e-docs.bea.com/wls/docs70/ejb/EJB_packaging.html
http://e-docs.bea.com/wls/docs70/ejb/EJB_packaging.html
http://e-docs.bea.com/wls/docs70/ejb/index.html

4 WebLogic Server Application Packaging
Packaging Resource Adapters

After you stage one or more resource adapters in a directory, you package them in a
Java Archive (JAR). Before you package your resource adapters, be sure you read and
understand the chapter entitled “WebLogic Server Application Classloading” in this
guide, which describes how WebLogic Server loads classes.

To stage and package a resource adapter:

1. Create a temporary staging directory anywhere on your hard drive.

2. Compile or copy the resource adapter Java classes into the staging directory.

3. Create a JAR to store the resource adapter Java classes. Add this JAR to the top
level of the staging directory.

4. Create a META-INF subdirectory in the staging directory.

5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add
entries for the resource adapter.

Note: Refer to the following Sun Microsystems documentation for information
on the ra.xml document type definition at:
http://java.sun.com/dtd/connector_1_0.dtd

6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory
and add entries for the resource adapter.

Note: Refer to Programming WebLogic J2EE Connectors for information on the
weblogic-ra.xml document type definition.

7. When the resource adapter classes and deployment descriptors are set up in the
staging directory, you can create the RAR with a JAR command such as:

jar cvf jar-file.rar -C staging-dir

This command creates a RAR that you can deploy on a WebLogic Server or
package in an enterprise application archive (EAR).

The -C staging-dir option instructs the JAR command to change to the
staging-dir directory so that the directory paths recorded in the JAR are
relative to the directory where you staged the resource adapters.
4-20 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/programming/classloading.html
http://java.sun.com/dtd/connector_1_0.dtd
http://e-docs.bea.com/wls/docs70/jconnector/index.html

Packaging Enterprise Applications
Packaging Enterprise Applications

An Enterprise archive contains EJB and Web modules that are part of a related
application. The EJB and Web modules are bundled together, along with the Enterprise
Application deployment descriptor files, in another JAR file with an EAR extension.

Enterprise Applications Deployment Descriptor Files

The META-INF subdirectory in an EAR file contains an application.xml
deployment descriptor provided by the application assembler; the format definition of
this deployment descriptor is provided by Sun Microsystems. The application.xml
deployment descriptor identifies the modules packaged in the EAR file.

You can find the DTD for the application.xml file at
http://java.sun.com/j2ee/dtds/application_1_2.dtd.

Within application.xml, you define items such as the modules that make up your
application and the security roles used within your application. The following is the
application.xml file from the Pet Store example:

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE application PUBLIC '-//Sun Microsystems, Inc.//DTD
J2EE Application 1.2//EN'
'http://java.sun.com/j2ee/dtds/application_1_2.dtd'>

<application>
 <display-name>estore</display-name>
 <description>Application description</description>
 <module>
 <web>
 <web-uri>petStore.war</web-uri>
 <context-root>estore</context-root>
 </web>
 </module>
 <module>
 <ejb>petStore_EJB.jar</ejb>
 </module>
 <security-role>
 <description>the gold customer role</description>
 <role-name>gold_customer</role-name>
Developing WebLogic Server Applications 4-21

http://java.sun.com/j2ee/dtds/application_1_2.dtd

4 WebLogic Server Application Packaging
 </security-role>
 <security-role>
 <description>the customer role</description>
 <role-name>customer</role-name>
 </security-role>
</application>

A supplemental deployment descriptor, weblogic-application.xml contains
additional WebLogic-specific deployment information. This deployment descriptor is
optional and is only needed if you want to configure application scoping.

Application scoping refers to configuring resources for a particular enterprise
application rather than for an entire WebLogic Server configuration. Examples of
resources include the XML parser used by an application, the EJB entity cache, the
JDBC connection pool, and so on. The main advantage of application scoping is that
it isolates the resources for a given application to the application itself.

Another advantage of using application scoping is that by associating the resources
with the EAR file, you can run this EAR file on another instance of WebLogic Server
without having to configure the resources for that server.

For information about application scoping, see Application Scoped JDBC Connection
Pools at http://e-docs.bea.com/wls/docs70/jdbc/programming.html#1050534, and
XML Application Scoping at
http://e-docs.bea.com/wls/docs70/xml/xml_appscop.html.

Refer to “weblogic-application.xml Deployment Descriptor Elements” in
Appendix A, “Application Deployment Descriptor Elements,” for
weblogic-application.xml deployment descriptor elements.

Packaging Enterprise Applications: Main Steps

If your enterprise application is accessed by a programmatic Java client, see
“Packaging Client Applications” on page 4-23, which describes how WebLogic Server
loads your enterprise application classes.

To stage and package an Enterprise application:

1. Create a temporary staging directory anywhere on your hard drive.

2. Copy the Web archives (WAR files) and EJB archives (JAR files) into the staging
directory.
4-22 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/xml/xml_appscop.html

Packaging Client Applications
3. Create a META-INF subdirectory in the staging directory.

4. Set up your shell environment.

On Windows NT, execute the setenv.cmd command, located in the directory
server\bin\setenv.cmd, where server is the top-level directory in which
WebLogic Server is installed.

On UNIX, execute the setenv.sh command, located in the directory
server/bin/setenv.sh, where server is the directory in which WebLogic
Server is installed.

5. Create the application.xml deployment descriptor file that describes the
enterprise application in the META-INF directory. See Appendix A, “Application
Deployment Descriptor Elements,” for detailed information about the elements in
this file.

6. Optionally create the weblogic-application.xml file manually in the
META-INF directory, as described in Appendix A, “Application Deployment
Descriptor Elements.”

7. Create the Enterprise Archive (EAR file) for the application, using a jar
command such as:

jar cvf application.ear -C staging-dir

The resulting EAR file can be deployed using the Administration Console or the
weblogic.Deployer command-line utility.

Note: Now that you have packaged your enterprise application, see Deploying
Applications for instructions on deploying applications in WebLogic
Server.

Packaging Client Applications

Although not required for WebLogic Server applications, J2EE includes a standard for
deploying client applications. A J2EE client application module is packaged in a JAR
file. This JAR file contains the Java classes that execute in the client JVM (Java Virtual
Machine) and deployment descriptors that describe EJBs (Enterprise JavaBeans) and
other WebLogic Server resources used by the client.
Developing WebLogic Server Applications 4-23

4 WebLogic Server Application Packaging
A de-facto standard deployment descriptor application-client.xml from Sun is
used for J2EE clients and a supplemental deployment descriptor contains additional
WebLogic-specific deployment information.

Note: See “application-client.xml Deployment Descriptor Elements” in
Appendix B, “Client Application Deployment Descriptor Elements,” for help
with these deployment descriptors.

Executing a Client Application in an EAR File

In order to simplify distribution of an application, J2EE defines a way to include
client-side components in an EAR file, along with the server-side modules that are
used by WebLogic Server. This enables both the server-side and client-side
components to be distributed as a single unit.

The client JVM must be able to locate the Java classes you create for your application
and any Java classes your application depends upon, including WebLogic Server
classes. You stage a client application by copying all of the required files on the client
into a directory and bundling the directory in a JAR file. The top level of the client
application directory can have a batch file or script to start the application. Create a
classes subdirectory to hold Java classes and JAR files, and add them to the client
Class-Path in the startup script. You may also want to package a Java Runtime
Environment (JRE) with a Java client application.

Note: The use of the Class-Path manifest entries in client component JARs is not
portable, because it has not yet been addressed by the J2EE standard.

The Main-Class attribute of the JAR file manifest defines the main class for the client
application. The client typically uses java:/comp/env JNDI lookups to execute the
Main-Class attribute. As a deployer, you must provide runtime values for the JNDI
lookup entries and populate the component local JNDI tree before calling the client’s
Main-Class attribute. You define JNDI lookup entries in the client deployment
descriptor. (Refer to “Client Application Deployment Descriptor Elements.”)

You use weblogic.ClientDeployer to extract the client-side JAR file from a J2EE
EAR file, creating a deployable JAR file. The weblogic.ClientDeployer class is
executed on the Java command line with the following syntax:

java weblogic.ClientDeployer ear-file client
4-24 Developing WebLogic Server Applications

Packaging Client Applications
The ear-file argument is an expanded directory (or Java archive file with a .ear
extension) that contains one or more client application JAR files.

For example:

java weblogic.ClientDeployer app.ear myclient

where app.ear is the EAR file that contains a J2EE client packaged in
myclient.jar.

Once the client-side JAR file is extracted from the EAR file, use the
weblogic.j2eeclient.Main utility to bootstrap the client-side application and
point it to a WebLogic Server instance as follows:

java weblogic.j2eeclient.Main clientjar URL [application args]

For example

java weblogic.j2eeclient.Main helloWorld.jar t3://localhost:7001 Greetings

Special Considerations for Deploying J2EE Client
Applications

The following is a list of special considerations for deploying J2EE client applications:

Name the WebLogic Server client deployment file using the suffix
.runtime.xml.

The weblogic.ClientDeployer class is responsible for generating and adding
a client.properties file to the client JAR file. A separate program,
weblogic.j2eeclient.Main, creates a local client JNDI context and runs the
client from the entry point named in the client manifest file.

Note: To run the J2EE client application using weblogic.ClientDeployer,
you need the weblogic.j2eeclient.Main class (located in the
weblogic.jar file).

If a resource mentioned by the application-client.xml file is one of the
following types, the weblogic.j2eeclient.Main class attempts to bind it
from the global JNDI tree on the server to java:comp/env/:

ejb-ref

javax.jms.QueueConnectionFactory
Developing WebLogic Server Applications 4-25

4 WebLogic Server Application Packaging
javax.jms.TopicConnectionFactory

javax.mail.Session

javax.sql.DataSource

The weblogic.j2eeclient.Main class binds UserTransaction to
java:comp/UserTransaction.

The rest of the client environment is bound from the client.properties file
created by the weblogic.ClientDeployer class into java:comp/env/. The
weblogic.j2eeclient.Main class emits error messages for missing or
incomplete bindings.

The <res-auth> tag in the application deployment file is currently ignored and
should be entered as Application. We do not currently support form-based
authentication.

Note: For more information on deploying, refer to Chapter 5, “WebLogic Server
Deployment.”

Packaging J2EE Applications Using Apache
Ant

The topics in this section discuss building and packaging J2EE applications using
Apache Ant, an extensible Java-based tool. Ant is similar to the make command but is
designed for building Java applications. Ant libraries are bundled with WebLogic
Server to make it easier for our customers to build Java applications out of the box.

Developers write Ant build scripts using eXtensible Markup Language (XML). XML
tags define the targets to build, dependencies among targets, and tasks to execute in
order to build the targets.

For a complete explanation of ant capabilities, see:
http://jakarta.apache.org/ant/manual/index.html
4-26 Developing WebLogic Server Applications

Packaging J2EE Applications Using Apache Ant
Compiling Java Source Files

Ant provides a javac task for compiling Java source files. The following example
compiles all of the Java files in the current directory into a classes directory.

<target name=”compile”>

 <javac srcdir=”.” destdir=”classes”/>

</target>

Refer to Apache Ant online documentation for a full set of options relating to the
javac task.

Running WebLogic Server Compilers

Running arbitrary Java programs from Ant can be accomplished by either writing
custom Ant tasks or by simply executing the program using the java task. Tasks such
as ejbc or rmic can be executed using the java task as shown below:

Listing 4-1 Running WebLogic Server Compilers

<java classname="weblogic.ejbc" fork="yes" failonerror="yes">

 <sysproperty key="weblogic.home" value="${WL_HOME}"/>

 <arg line="-compiler java
${dist}/std_ejb_basic_containerManaged.jar

 ${APPLICATIONS}/ejb_basic_containerManaged.jar"/>

 <classpath>

 <pathelement path="${CLASSPATH}"/>

 </classpath>

</java>
Developing WebLogic Server Applications 4-27

4 WebLogic Server Application Packaging
The above example uses the fork system call to create a Java process to run ejbc. The
example supplies a system property to define weblogic.home and provide
command line arguments using the arg tag. The classpath for the called Java process
is specified using the classpath tag.

Packaging J2EE Deployment Units

As previously discussed, J2EE applications are packaged as JAR files containing a
specific file extension depending on the component type:

EJBs are packaged as JAR files.

Web Applications are packaged as WAR files.

Resource Adapters are packaged as RAR files.

Enterprise Applications are packaged as EAR files.

These components are structured according to the J2EE specifications. In addition to
the standard XML deployment descriptors, components may also be packaged with
WebLogic Server-specific XML deployment descriptors.

Ant provides tasks that make the construction of these JAR files easier. In addition to
the features of the JAR command, Ant provides specific tasks for building EAR and
WAR files. Using Ant, you can specify the pathname as it appears in the JAR archive,
which may differ from the original path in the file system. This ability is useful for
packaging deployment descriptors (in which J2EE specifies an exact location in the
archive), which may not correspond to the location in your source tree. See the Apache
Ant online documentation pertaining to the ZipFileSet command for related
information.

The following listing shows:

Listing 4-2 WAR Task Example

<war warfile="cookie.war" webxml="web.xml"
manifest="manifest.txt">

 <zipfileset dir="." prefix="WEB-INF" includes="weblogic.xml"/>

 <zipfileset dir="." prefix="images" includes="*.gif,*.jpg"/>
4-28 Developing WebLogic Server Applications

Packaging J2EE Applications Using Apache Ant
 <classes dir="classes" includes="**/CookieCounter.class"/>

 <fileset dir="." includes="*.jsp,*.html">

 </fileset>

</war>

Packaging J2EE deployment units requires the following steps:

1. Specify the standard XML deployment descriptor using the webxml parameter.

2. The war task automatically maps XML deployment descriptor to the standard
name in the WAR archive WEB-INF/web.xml.

3. Apache Ant stores the manifest file, specified using the manifest parameter,
under the standard name META-INF/MANIFEST.MF.

4. Use the Apache Ant ZipFileSet command to define a set of files (in this case,
just the WebLogic Server-specific deployment descriptor weblogic.xml) that
should be stored in the WEB-INF directory.

5. Use a second ZipFileSet command to package all the images in an images
directory.

6. The classes tag packages servlet classes in the WEB-INF/classes directory.

7. Finally, add all the .jsp and .html files from the current directory to the
archive.

You can achieve the same result by staging the files in a directory that directly
corresponds to the structure of the WAR file and creating a JAR file from that
directory. Using special features of the Ant JAR tasks eliminates the need to copy files
into a specific directory hierarchy.

The following example builds a Web application and an EJB, and then packages them
together in an EAR file:

Listing 4-3 Packaging Example

<project name="app" default="app.ear">

 <property name="wlhome" value="/bea/wlserver6.1"/>
Developing WebLogic Server Applications 4-29

4 WebLogic Server Application Packaging
 <property name="srcdir" value="/bea/myproject/src"/>

 <property name="appdir" value="/bea/myproject/config/mydomain/applications"/>

 <target name="timer.war">

 <mkdir dir="classes"/>

 <javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/timer/*.java"/>

 <war warfile="timer.war" webxml="timer/web.xml"
manifest="timer/manifest.txt">

 <classes dir="classes" includes="**/TimerServlet.class"/>

 </war>

 </target>

 <target name="trader.jar">

 <mkdir dir="classes"/>

 <javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/trader/*.java"/>

 <jar jarfile="trader0.jar" manifest="trader/manifest.txt">

 <zipfileset dir="trader" prefix="META-INF" includes="*ejb-jar.xml"/>

 <fileset dir="classes" includes="**/Trade*.class"/>

 </jar>

 <ejbc source="trader0.jar" target="trader.jar"/>

 </target>

 <target name="app.ear" depends="trader.jar, timer.war">

 <jar jarfile="app.ear">

 <zipfileset dir="." prefix="META-INF" includes="application.xml"/>

 <fileset dir="." includes="trader.jar, timer.war"/>

 </jar>

 </target>

 <target name="deploy" depends="app.ear">

 <copy file="app.ear" todir="${appdir}/>

 </target>
4-30 Developing WebLogic Server Applications

Packaging J2EE Applications Using Apache Ant
</project>

Running Ant

BEA provides a simple script to run Ant in the server/bin directory. By default, Ant
loads the build.xml build file, but you can override this using the -f flag. Use the
following command to build and deploy an application using the build script shown
above:

ant -f yourbuildscript.xml
Developing WebLogic Server Applications 4-31

4 WebLogic Server Application Packaging
4-32 Developing WebLogic Server Applications

CHAPTER
5 WebLogic Server
Deployment

This release of WebLogic Server introduces a new deployment protocol, two-phase
deployment, which helps prevent inconsistent deployment states across servers,
especially clustered servers. See Two-Phase Deployment on page 2.

You can deploy an application using the WebLogic Server Administration Console,
weblogic.Deployer utility, WebLogic Builder, or auto-deployment. These
deployment tools are discussed in Deployment Tools and Procedures.

The following sections discuss WebLogic Server deployment:

Two-Phase Deployment

Deployment Order for Resources and Applications

Application Staging

Deployment Tools and Procedures

Best Practices for Application Deployment

Using WebLogic Server 6.x Deployment Protocol

Additional Deployment Documentation
Developing WebLogic Server Applications 5-1

http://e-docs.bea.com/wls/docs70/programming/deploying.html#1112532

5 WebLogic Server Deployment
Two-Phase Deployment

The new two-phase deployment protocol helps to maintain domain consistency. In
previous versions of WebLogic Server, when you deployed an application, the
administration server sent a copy of the application file(s) to all the targeted servers,
which then loaded the application. If deployment to any of those servers failed or
partially failed, the entire deployment’s state across its target servers became
inconsistent.

In the current release of WebLogic Server, deployment first prepares the application
across all target servers and then activates the application in a separate phase. If a
deployment of an application fails in either the preparation or activation phase, then
the cluster deployment is failed.

For information about using the earlier WebLogic Server deployment protocol, see
Using WebLogic Server 6.x Deployment Protocol.
The new deployment protocol supports the following new features for deployed
applications:

Consistent deployment states for clusters. If an application targeted to a
cluster fails on any of the cluster members in the prepare phase and then in the
activate phase, the application is not activated on any of the cluster members.
This helps to ensure that the cluster is kept homogeneous.

Application ordering. At server startup, you set the order of application
activations. See Deployment Order for Resources and Applications.

Application-scoped configuration. Certain resources can be configured and
scoped for an application. These include connection pools, security realms and
XML related resources. See Overview of Application Scoping.

Improved redeployment. You do not need to undeploy before redeploying. See
Updating Applications with the Administration Console, Undeploying and
Redeploying Archived Applications, and Redeploying Applications in Exploded
Format.

Note: An application becomes unavailable to clients during redeployment. For
this reason, redeployment is not recommended for use in a production
environment.
5-2 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/xml/xml_appscop.html#1073290

Two-Phase Deployment
Improved API. A simple API separates configuration from the actual
deployment operations. When a deployment is requested, this API creates the
necessary configuration (MBeans) for you. Also, the deployment operations are
not on the MBeans themselves, so you can change the configuration (such as the
target lists) without affecting the deployed application, until a deployment
request is initiated. See Deployment Management API, and see also the API
documentation at weblogic.management.deploy.

Deployment status. It is now easier to track the progress of a deployment
especially when it has multiple targets. See Example Uses of the
weblogic.Deployer Utility, and WebLogic Administration Console help on
Tasks.

Restarting Admin Server

Stopping and restarting your Admin Server cancels pending deployment requests. If
your are deploying to a cluster and one of the targeted servers in the cluster is down,
an Admin Server restart will prevent the targeted server from receiving the deployment
request when the targeted server comes back up.

Prepare Phase and Activate Phase

The two-phase model makes inconsistent deployment states in clusters less likely by
confirming the success of the prepare phase before deploying the application on any
targeted servers. A deployment that fails during the prepare phase will not enter the
activation phase.

Prepare Phase

The prepare phase of deployment, the first phase, distributes or copies files and
prepares the application and its components for activation, validating them and
performing error checks on them. The purpose of the prepare phase is to ensure that
the application and its components are in a state in which they can be reliably
deployed.
Developing WebLogic Server Applications 5-3

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/deploy/package-summary.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/task_runtimes.html#1104914
http://e-docs.bea.com/wls/docs70/ConsoleHelp/task_runtimes.html#1104914

5 WebLogic Server Deployment
Activate Phase

The second phase, the activate phase, is the actual deployment, or activation, of the
application and its component with the relevant server subsystem. After the activate
phase, the application is made available to clients.

Deployment Order for Resources and
Applications

By default, WebLogic Server deploys server-level resources (JDBC followed by JMS)
before deploying applications and standalone modules, followed by startup classes.
The order of startup class execution is configurable, as described in “Ordering Startup
Class Execution and Deployment” on page 5-5.

Setting the Order of Applications

Applications are deployed in this order: connectors, then EJBs, then Web
Applications. WebLogic Server 7.0 allows you to select the load order for applications.
See the ApplicationMBean LoadOrder attribute in Application.

Ordering Components Within an Application

If the application is an EAR, the individual components are loaded in the order in
which they are declared in the application.xml deployment descriptor. See Editing
Enterprise Application Deployment Descriptors.
5-4 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/config_xml/Application.html
http://e-docs.bea.com/wls/docs70/programming/packaging.html#1080467
http://e-docs.bea.com/wls/docs70/programming/packaging.html#1080467

Deployment Order for Resources and Applications
Ordering Startup Class Execution and Deployment

By default WebLogic Server startup classes are run after the server initializes JMS and
JDBC services, and after applications and standalone modules have been deployed.

If you want to perform startup tasks after JMS and JDBC services are available, but
before applications and modules have been activated, you can select the Run Before
Application Deployments option in the Administration Console (or set the
StartupClassMBean’s LoadBeforeAppActivation attribute to “true”).

If you want to perform startup tasks before JMS and JDBC services are available, you
can select the Run Before Application Activations option in the Administration
Console (or set the StartupClassMBean’s LoadBeforeAppDeployments attribute to
“true”).

The following figure summarizes the time at which WebLogic Server executes startup
classes.

Figure 5-1 Startup Class Execution

BEA provides the examples.jms.startup API code example which demonstrates
how to establish a JMS message consumer from a WebLogic startup class. See the full
Javadocs for StartupClassMBean for more information.

java weblogic.Server

Initialize JDBC/JMS
Services

Deploy Applications
and Standalone Modules

Execute Startup Classes with

Execute Startup Classes with
LoadBeforeAppActivation

Execute Startup Classes
(Default Behavior)

LoadBeforeAppDeployments
Developing WebLogic Server Applications 5-5

http://e-docs.bea.com/wls/docs70/javadocs/index.html

5 WebLogic Server Deployment
Note: WebLogic Server 7.0 optionally installs API code examples in
WL_HOME\samples\server\src\examples, where WL_HOME is the top-level
directory of your WebLogic Server installation. You can start the examples
server, and obtain information about the samples and how to run them.

Application Staging

In this release of WebLogic Server, the staging mode controls whether or not, where,
and by whom application files are copied for deployment. Staging means the copying
of application files to the locations from which they will be deployed. Each server has
a staging mode. Once an application is deployed, its staging mode cannot be changed.
See Best Practices for Application Deployment for help on when to use staging modes.

Staging Modes

 Available staging modes are:

nostage: does not copy application files to another location.

A server in nostage mode will run applications deployed to it directly from their
source directories. In this mode, the web application container detects changes to
JSPs and servlets.

stage: copies application files to server targeted in deployment

The stage mode means that the Administration Server copies source files to the
staging directory on target servers when you perform a deployment operation.
The target servers then initialize and run the application from this directory.

external_stage: the user, and not WebLogic Server, ensures that application
files are copied to the server’s staging directory before deployment.

The deployment should be copied to a directory with the same name as the
application name under each target server’s staging directory.
5-6 Developing WebLogic Server Applications

Application Staging
The external stage mode means that the application will be run from a staging
directory, to which an external entity is expected to distribute the files. This
mode is useful in environments that are managed by third-party tools.

Note: In order to use either nostage or external_stage modes, the files to deploy
must be accessible to the Administration Server machine. You can either copy
the files to the Administration Server machine or place them on a shared
directory that is available from the Administration Server machine.

Staging mode defaults are:

for managed servers, staging mode is stage by default, meaning that the default
staging behavior is to copy the application files to their targeted managed servers

for administration servers, staging mode is nostage by default, meaning that the
default staging behavior is to deploy from the source location provided

The following table describes how staging attribute and path settings affect an
application’s deployment:

Table 5-1 Deployment Staging Modes

Staging
Mode

Staging
Directory

Administration Server Deployment
Behavior

Managed Server
Deployment Behavior

stage Absolute,
Relative

Application files are copied to a directory
named after the application deployment in
the server staging directory, and activated
from there (e.g.,
server/stage/myapp/app.ear).

If the staging path is relative, the path is
evaluated relative to the server’s root
directory.

Same as for Administration
Server.

nostage Absolute,
Relative

Staging path is ignored, and no files are
copied. Files are deployed from their location
on the Administration Server, or from a
shared directly accessible by the
Administration Server.

Same as for Administration
Server. (Source files must be
accessible from the Managed
Server machine in order to
deploy.)
Developing WebLogic Server Applications 5-7

5 WebLogic Server Deployment
Configuring Staging Modes and Directories

By default, when you deploy an application to a managed server, it is staged to the
target server staging area (ServerMBean.StagingDirectoryName) and deployed
from there. You can disable staging using the ServerMBean.StagingMode attribute
or the ApplicationMBean.StagingMode attribute. The
ServerMBean.StagingMode attribute applies to all applications deployed to that
server. It can be overridden by ApplicationMBean.StagingMode.

See Best Practices for Application Deployment for help on when to use staging modes.

For Javadoc on the attributes mentioned here, see Javadocs for WebLogic Classes.

Staging Scenarios

You can configure the system to perform some common tasks described in the sections
that follow.

external_stage Absolute,
Relative

No files are copied, but deployment files are
assumed to reside in a subdirectory named
after the deployment in the server staging
directory. and are loaded from there. For
example, if you deploy an application using
the deployment name “myextapp” and the
server staging directory is
.\myserver\stage, you must ensure that
the deployment files are available in
.\myserver\stage\myextapp before
deploying.

If the staging path is relative, the path is
evaluated relative to the server’s root
directory.

Same as for Administration
Server. (You must ensure
deployment files are copied to
the correct subdirectory of the
Managed Server’s staging
directory.)

Table 5-1 Deployment Staging Modes

Staging
Mode

Staging
Directory

Administration Server Deployment
Behavior

Managed Server
Deployment Behavior
5-8 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/javadocs/index.html

Application Staging
Deploy Application from its Source Location

Configure the StagingMethod attribute on the application or on a specific server to
be set to nostage. If you configure this on the application, you must do so when the
application is configured in the server using the weblogic.Deployer tool.

This mode is useful for incremental development on a single server, and is also handy
in a shared disk environment where multiple servers are using the same copy of the
application.

Deploy Application from a Known Staging Area

Configure the StagingDirName attribute on each server to point to a well-known
directory. You must place the actual EAR/JAR/WAR/RAR file in a directory having
the name of the application within that directory.

Distribute Application Files to Managed Servers

If you set the StagingMode attribute to stage, WebLogic Server will copy the files
from the source to the staging directory. To deploy using stage mode:

1. Configure the Managed Servers to use stage mode, and specify the staging
directory each server uses.

2. Ensure that the files to deploy are available to the Administration Server for the
domain—either copy the files to the Administration Server machine or place
them on a shared filessytem available to the Administration Server machine.

3. Deploy the files to the Managed Servers using the Administration Console.

Deploy an Application Using external_stage Mode

external_stage mode requires that you either manually copy deployment files to
Managed Servers or have an application or script copy the file for you. To deploy an
application to Managed Servers using external_stage mode:

1. Configure the Managed Servers to use stage mode, and specify the staging
directory each server uses.
Developing WebLogic Server Applications 5-9

5 WebLogic Server Deployment
2. In the staging area for the Managed Server, create a subdirectory with the
deployment name you will use (for example, “mywar”), and copy the deployment
files to that subdirectory.

3. Ensure that the files to deploy are available to the Administration Server for the
domain—either copy the files to the Administration Server machine or place
them on a shared filessytem available to the Administration Server machine.

4. Deploy the files to the Managed Servers using the Administration Console, using
the same deployment name (“mywar”). The Managed Servers deploy using the
deployment files you copied in Step 2 above.

Deployment Tools and Procedures

WebLogic Server deployment tools provide interfaces to the deployment API
described in Deployment Management API.

The deployment instructions provided in this document presume that you have created
a functional J2EE application that uses the correct directory structure and contains the
appropriate deployment descriptors. Deployment descriptors, which are text files
formatted with XML tags, describe the contents of the application directory or archive.
The J2EE specifications define standard, portable deployment descriptors for J2EE
applications and their components. BEA defines additional WebLogic-specific
deployment descriptors for deploying an application and its components in the
WebLogic Server environment. For more information, see XML Deployment
Descriptors.

The following is a list of WebLogic Server deployment tools:

weblogic.Deployer Utility

wldeploy Ant Task

WebLogic Server Administration Console

WebLogic Builder

Auto-Deployment (for Development Mode only)
5-10 Developing WebLogic Server Applications

Deployment Tools and Procedures
weblogic.Deployer Utility

The weblogic.Deployer utility is new in WebLogic Server 7.0 and replaces the
earlier weblogic.deploy utility, which has been deprecated. The
weblogic.Deployer utility is a Java-based deployment tool that provides a
command-line interface to the WebLogic Server deployment API. This utility was
developed for administrators and developers who need to initiate deployment from the
command line, a shell script, or any automated environment other than Java.

This section describes how to use the weblogic.Deployer utility to perform the
following tasks:

Deploying a New Application

Deploying a New Application to a Cluster

Redeploying an Entire Application

Deploying a Module Newly Added to an EAR

Redeploying Part of an Exploded Application, or Refreshing

Deactivating an Application on All Active Targets, Making It Unavailable

Reactivating a Deactivated Application

Removing an Application from All Targeted Servers

Cancelling a Deployment Task

Listing All Deployment Tasks

Deploying or Redeploying an Application to a Single Server

Deploying an Application to an Additional Server

Deploying Using weblogic.Deployer Utility

To deploy an application or its components using the weblogic.Deployer utility:

1. Set up your local environment so that WebLogic Server classes are in your system
CLASSPATH and the JDK is available. You can use the setenv script located in
your server’s /bin directory to set the CLASSPATH.
Developing WebLogic Server Applications 5-11

5 WebLogic Server Deployment
2. Use the following command syntax:

% java weblogic.Deployer [options]
[-activate|-deactivate|-remove|-cancel|-list] [files]

You can also list the specific -files in the archive that are to be deployed (or
redeployed, or undeployed, or unprepared, or deactivated, or removed). The file list
can include file names and directories relative to the root of the application. If you
specify a directory, its entire subtree is deployed or redeployed.

weblogic.Deployer Actions and Options

Table 5-2 weblogic.Deployer Actions

Action Description

activate Deploys or redeploys the application specified by -name to
the servers specified by -targets.

cancel Attempts to cancel the task identified by -id if it is not yet
completed.

deactivate Deactivates the application on the target servers. Deactivation
suspends the deployed components, leaving staged data in place in
anticipation of subsequent reactivation. This command only works
in the two-phase deployment protocol.

delete_files Removes files specified in the file list and leaves the application
activated. This is valid only for unarchived applications. You must
specify target servers.

deploy A convenient alias for -activate.

examples Displays example usages of the tool.

help Prints a help message.

list Lists the status of the task identified by -id.
5-12 Developing WebLogic Server Applications

Deployment Tools and Procedures
weblogic.Deployer options include:

Table 5-3 weblogic.Deployer Options

remove Physically removes the application and any staged data from the
target servers. The components are deactivated and the targets are
removed from the applications configuration. If you remove the
application entirely, the associated MBeans are also deleted from the
system configuration. This command only works with the two-phase
deployment model.

undeploy A convenient alias for -unprepare.

unprepare Deactivates and unloads classes for the application identified
by -name on the target servers, leaving the staged
application files in a state where they may be edited or
quickly reloaded.

upload Transfers the specified source file(s) to the administration server.
Use this option when you are on a remote system and want to deploy
an application that resides on the remote system. The application
files are uploaded to the WebLogic Server administration server
prior to distribution to named target servers.

version Prints version information.

Option Description

adminurl https://<server>:<port> is the URL of the administration
server. Default is http://localhost:7001.

debug Turns on debug messages in the output log.

enforceClus
terConstrain
ts

Specifies whether a deployment to a cluster succeeds or fails when one
or more members of the cluster are unavailable. Set this option to
“true” to ensure that deployments succeed only when all members of
the cluster are available.

Action Description
Developing WebLogic Server Applications 5-13

5 WebLogic Server Deployment
external_sta
ge

Indicates that user wants to copy the application to the servers’ staging
area externally on their own, or using a third-party tool. When
specified, WLS looks for the application under
StagingDirectoryName (of target
server)/applicationName.

id The task identifier -id is a unique identifier for the deployment
task. You can specify an -id with the -activate,
-deactivate, or -remove commands, and use it later as an
argument to -cancel or -list. Make sure the -id is unique
from all other existing deployment tasks. The system generates
an -id if you do not specify one.

name The application -name specifies the name of the application
being deployed. This can be the name of an existing, configured
application or the name to use when creating a new
configuration.

nostage Does not stage the application; instead, deploys it from its current
location which you specify using the -source option.
Defaults: nostage for admin server and stage for managed server
targets.

nowait Once the action is initiated, the tool prints the task id and exits.
This is used to initiate multiple tasks and then monitor them
later using the -list action.

output Specify either raw or formatted to control the appearance of
weblogic.Deployer output messages. Both output types contain
the same information, but raw output does not contain embedded tabs.
By default, weblogic.Deployer displays raw output.

password Specifies the password on the command line. If you do not provide a
password, you will be prompted for one.

remote Signals that weblogic.Deployer is not running on the same
machine as the administration server and that the source path
should be passed through unchanged because it represents the
path on the remote server.

Option Description
5-14 Developing WebLogic Server Applications

Deployment Tools and Procedures
source Specifies the location of the archive, file or directory to be
deployed. Use this option to set the application Path. The
source option should reference the root directory or archive
being deployed. If you are using it with the upload command,
the source path is relative to the current directory. Otherwise, it
is relative to the administration server root directory—the
directory where the config.xml file resides.

stage Indicates that application needs to be copied into the target servers
staging area before deployment. Defaults: nostage for admin server,
and stage for managed server targets. Sets the stagingMethod
attribute on the application when it is created so that the application
will always be staged. This value overrides the stagingMethod
attribute on any targeted servers.

targets Displays a comma-separated list of the targeted server and/or cluster
names (<server 1>,...<component>@<server N>). Each
target may be qualified with a J2EE component name. This enables
different components of the archive to deployed on different servers.
Default: For an application which is currently deployed, the default is
all current targets. For a new application, it is deployed to the
administration server, by default.

timeout Seconds. Specifies the maximum time in seconds to wait for the
completion of the deployment task. When the time expires,
weblogic.Deployer prints out the current status of the
deployment and exits.

user User name.

userconfigfi
le

Specifies the location of a user configuration file to use for the
administrative username and password. Use this option, instead of the
-user and -password options, in automated scripts or in situations
where you do not want to have the password shown on-screen or in
process-level utilities such as ps. Before specifying the
-userconfig option, you must first generate the file using the
weblogic.Admin STOREUSERCONFIG command.

Option Description
Developing WebLogic Server Applications 5-15

5 WebLogic Server Deployment
Example Uses of the weblogic.Deployer Utility

Below are example usages of the weblogic.Deployer utility.

Deploying a New Application

java weblogic.Deployer -adminurl http://admin:7001 -name app
-source /myapp/app.ear -targets server1,server2 -activate

Deploying a New Application to a Cluster

java weblogic.Deployer -adminurl http://admin:7001 -name app
-source /myapp/app.ear -targets cluster1 -activate
-enforceClusterConstraints

Redeploying an Entire Application

java weblogic.Deployer -source /myapp/app.ear -adminurl
http://admin:7001 -name app -activate

Notes: Ensure that you specify the –source option or provide the list of updated files.
Without this, the operation will have no effect as the system will assume that
nothing has been changed in the application.

When redeploying a Web Application, the system defaults to deploying the
application on the Administration Server. To change the settings, use the
-source and -targets options.

userkeyfile Specifies the location of a user key file to use for encrypting and
decrypting the username and password information stored in a user
configuration file (the -userconfigfilefile option). Before
specifying the -userkeyfile option, you must first generate the key
file using the weblogic.Admin STOREUSERCONFIG command.

verbose Displays additional progress messages.

Option Description
5-16 Developing WebLogic Server Applications

Deployment Tools and Procedures
Deploying a Module Newly Added to an EAR

If you have added the module newmodule.war to the deployed application
myapp.ear and updated the module in the application.xml file, you can
deploy newmodule.war in myapp.ear using the following:

java weblogic.Deployer -username myname -password mypassword
-name myapp.ear -activate -targets newmodule.war@myserver
-source /myapp/myapp.ear

Note that this command will deploy the new module without redeploying the other
modules in the application.

Redeploying Part of an Exploded Application, or Refreshing

java weblogic.Deployer -adminurl http://admin:7001 -name app
-activate jsps/login.jsp

where jsps is a directory in the top level of the exploded web application. Note
that partial redeployment is only supported on exploded WAR files. The path is
relative to the root of the application as originally deployed. For example, if you
modified the login.jsp file in a working directory, you would need to first
copy the updated file into the appropriate source directory of the exploded
application before entering the weblogic.Deployer command.

Deactivating an Application on All Active Targets, Making It Unavailable

java weblogic.Deployer -adminurl http://admin:7001 -name app
-deactivate

Reactivating a Deactivated Application

 java weblogic.Deployer -adminurl http://7001 -name app
-activate

Removing an Application from All Targeted Servers

java weblogic.Deployer -adminurl http://admin:7001 -name app
-targets server -remove

Cancelling a Deployment Task

java weblogic.Deployer -adminurl http://admin:7001 -cancel -id
tag
Developing WebLogic Server Applications 5-17

5 WebLogic Server Deployment
Listing All Deployment Tasks

java weblogic.Deployer -adminurl http://admin:7001 -list

Deploying or Redeploying an Application to a Single Server

java weblogic.Deployer -activate -name ArchivedEarJar -source
C:/MyApps/JarEar.ear –target server1

Deploying an Application to an Additional Server

java weblogic.Deployer -activate -name ArchivedEarJar –target
server2

wldeploy Ant Task

The wldeploy Ant task enables you to perform weblogic.Deployer functions using
attributes specified in an Ant .xml file. You can use wldeploy along with other
WebLogic Server Ant tasks to create a single Ant build script that:

Creates, starts, and configures a new WebLogic Server domain, using the
wlserver and wlconfig Ant tasks.

Deploys a compiled application to the newly-created domain, using the
wldeploy Ant task.

See Using Ant Tasks to Configure a WebLogic Server Domain in the Administration
Guide for more information about wlserver and wlconfig.

Note: The WebLogic Server Ant tasks are incompatible with Ant versions prior to
1.5. Also, if you use a version of Ant that is not included with WebLogic
Server, you must specify the wldeploy task definition in your build.xml
file, as described in “Basic Steps for Using wldeploy” on page 5-18.

Basic Steps for Using wldeploy

To use the wldeploy Ant task:

1. Set your environment.
5-18 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/adminguide/ant_tasks.html
http://e-docs.bea.com/wls/docs70/adminguide/index.html
http://e-docs.bea.com/wls/docs70/adminguide/index.html

Deployment Tools and Procedures
On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Server installation.

2. In the staging directory, create the Ant build file (build.xml by default). If you
want to use an Ant installation that is different from the one installed with
WebLogic Server, start by defining the wldeploy Ant task definition:

<taskdef name="wldeploy"
classname="weblogic.ant.taskdefs.management.WLDeploy"/>

3. If necessary, add task definitions and calls to the wlserver and wlconfig tasks
in the build script to create and start a new WebLogic Server domain. See Using
Ant Tasks to Configure a WebLogic Server Domain in the WebLogic Server
Command Reference for information about wlserver and wlconfig.

4. Add a call to wldeploy to deploy your application to one or more WebLogic
Server instances or clusters. See “Sample build.xml Files for wldeploy” on page
5-19 and “wldeploy Ant Task Reference” on page 5-20.

5. Execute the Ant task or tasks specified in the build.xml file by typing ant in
the staging directory, optionally passing the command a target argument:

prompt> ant

Sample build.xml Files for wldeploy

The following output shows a wldeploy target that deploys an application to a single
WebLogic Server instance:

<target name="deploy">
<wldeploy action="activate"

source="${build}/ejb11_basic_statelessSession.ear"
name="ejbapp"

user="a" password="a" verbose="true"
adminurl="t3://localhost:7001"

debug="true" targets="myserver"/>
</target>
Developing WebLogic Server Applications 5-19

http://e-docs.bea.com/wls/docs70/adminguide/ant_tasks.html
http://e-docs.bea.com/wls/docs70/adminguide/ant_tasks.html

5 WebLogic Server Deployment
wldeploy Ant Task Reference

The following table describes the attributes of the wldeploy Ant task. For more
information about the definition of various terms, see “weblogic.Deployer Actions and
Options” on page 5-12.

Table 5-4 Attributes of the wldeploy Ant Task

Attribute Description Data
Type

Required?

action The deployment action to perform. Valid values are
activate, deactivate, remove, cancel, list
and unprepare.

String No

adminurl The URL of the Administration Server. String No

debug Enable wldeploy debugging messages. boolean No

id Identification used for obtaining status or cancelling the
deployment.

String No

name The deployment name for the deployed application. String No

nostage Specifies whether the deployment uses nostage
deployment mode.

boolean No

nowait Specifies whether wldeploy returns immediately after
making a deployment call (by deploying as a background
task).

boolean No

user The administrative username. String No
5-20 Developing WebLogic Server Applications

Deployment Tools and Procedures
password The administrative password.
To avoid having the plain text password appear in the
build file or in process utilities such as ps, first store a
valid username and encrypted password in a
configuration file using the weblogic.Admin
STOREUSERCONFIG command. Then omit both the
username and password attributes in your Ant build
file. When the attributes are omitted, wldeploy attempts
to login using values obtained from the default
configuration file.
If you want to obtain a username and password from a
non-default configuration file and key file, use the
userconfigfile and userkeyfile attributes with
wldeploy.

String No

remote Specifies whether the server is located on a different
machine. This affects how filenames are transmitted.

boolean No

source The source file to deploy. File No

targets The list of target servers to deploy to. String No

timeout The maximum time to wait for a deployment to succeed. int No

userconfigfile Specifies the location of a user configuration file to use
for obtaining the administrative username and password.
Use this option, instead of the user and password
attributes, in your build file when you do not want to have
the plain text password shown in-line or in process-level
utilities such as ps. Before specifying the
userconfigfile attribute, you must first generate the
file using the weblogic.Admin STOREUSERCONFIG
command as described in STOREUSERCONFIG in the
WebLogic Server Command-Line Reference.

File No

Table 5-4 Attributes of the wldeploy Ant Task

Attribute Description Data
Type

Required?
Developing WebLogic Server Applications 5-21

http://e-docs.bea.com/wls/docs70/adminguide/cli.html#STOREUSERCONFIG
http://e-docs.bea.com/wls/docs70/adminguide/cli.html

5 WebLogic Server Deployment
WebLogic Server Administration Console

This section discusses deployment tasks performed through the Administration
Console. The Console supports the same functionality as the weblogic.Deployer
utility. It allows deployers to submit new or updated applications and to query the
status and remove pending deployments.

Configuring J2EE Applications for Deployment Using the Administration
Console

To configure a J2EE Application using the WebLogic Server Administration Console:

1. Start the WebLogic Server Administration Console.

2. Select the Domain in which you will be working.

3. In the left pane of the Console, click Deployments.

4. In the left pane of the Console, click Applications. A table is displayed in the
right pane of the Console showing all the deployed J2EE Applications.

userkeyfile Specifies the location of a user key file to use for
encrypting and decrypting the username and password
information stored in a user configuration file (the
userconfigfile attribute). Before specifying the
userkeyfile attribute, you must first generate the key
file using the weblogic.Admin STOREUSERCONFIG
command.

File No

verbose Specifies whether wldeploy displays verbose output
messages.

boolean No

failonerror This is a global attribute used by WebLogic Server Ant
tasks. It specifies whether the task should fail if it
encounters an error during the build. This attribute is set
to true by default.

Boolean No

Table 5-4 Attributes of the wldeploy Ant Task

Attribute Description Data
Type

Required?
5-22 Developing WebLogic Server Applications

Deployment Tools and Procedures
5. Select the Configure a new Application option.

6. Locate the archive file (WAR, EAR, RAR, JAR) to configure.

Note: You can also configure an exploded application or component directory.
Note that WebLogic Server deploys all components it finds in and below
the specified directory.

7. Click [select] to the left of a directory or file to choose it and proceed to the next
step.

8. Select a Target Server from among Available Servers.

9. Enter a name for the Application in the provided field.

10. Click Configure and Deploy. The Console will display the Deploy panel, which
lists deployment status and deployment activities for the J2EE Application.

11. Using the available tabs, enter the following information:

Configuration—Edit the staging mode and enter the deployment order.

Targets—Indicate the Targets-Server for this configured J2EE Application by
moving the server from the Available list to the Chosen list.

Note: If you do not select any targets, the application will just be configured and
not deployed. You can modify and deploy this later by accessing it in the
mydomain/applications directory.

Deploy/Undeploy—Deploy the J2EE Application to all or selected targets or
undeploy it from all or selected targets; undeploy the J2EE Application.
Deploy/Undeploy are toggle options.

Monitoring—Enable session monitoring for the J2EE Application.

Notes—Enter notes related to the J2EE Application.

Deploying J2EE Applications with the Administration Console

To deploy a J2EE application using the WebLogic Server Administration Console:

1. Expand the Deployments node in the left pane.

2. Right-click on the Applications node.

3. Select Configure a New Application.
Developing WebLogic Server Applications 5-23

5 WebLogic Server Deployment
4. Locate the archive (WAR, EAR, RAR, JAR) or the directory containing the
exploded application to configure.

5. Click [select] to the left of a directory or file to choose it and proceed to the next
step. If you specify a directory, WebLogic Server will deploy all components it
finds in and below the specified directory.

6. Select a Target Server from among Available Servers.

7. Enter a name for the J2EE Application in the provided field.

8. Click Configure and Deploy. The Console will display the Deploy panel, which
lists deployment status and deployment activities for the J2EE Application.

9. Use the Deploy button to deploy the J2EE Application to all or selected targets or
undeploy it from all or selected targets.

10. Test your J2EE Application by accessing a resource through a Web browser.
Access resources with a URL constructed as follows:

http://myServer:myPort/myApp/resource

Where:

myServer is the name of the machine hosting WebLogic Server.

myPort is the port number where WebLogic Server is listening for requests.

myApp is the name of the J2EE Application archive file (myApp.ear, for
instance) or the name of a directory containing the J2EE Application.

resource is the name of a resource such as a JSP, HTTP servlet, or HTML
page.

Viewing Deployed Components with the Administration Console

To view a deployed component in the Administration Console:

1. In the Administration Console under Deployments, select the <component> in the
left panel.

2. View a list of deployed components in the Deployments table in the right pane.
5-24 Developing WebLogic Server Applications

Deployment Tools and Procedures
Undeploying Components with the Administration Console

To undeploy a deployed component from the WebLogic Server Administration
Console:

1. In the Administration Console under Deployments, select the component in the left
panel.

2. In the component Deployments table, select the component to undeploy.

3. Click Apply.

Undeploying a component does not remove the <component> name from WebLogic
Server. The component remains undeployed for the duration of the Server session, as
long as you do not change it once it has been undeployed. You cannot re-use the
deployment name with the deploy argument until you reboot the server. You can re-use
the deployment name to update the deployment, as described in the following section.

Updating Applications with the Administration Console

To update a deployed J2EE application:

1. In the Console, click Deployments.

2. Click the Applications option.

3. In the displayed table, click the name of the application you wish to update.

4. Update the Application Name and Deployed status as needed.

Note: An application becomes unavailable to clients during redeployment. For
this reason, redeployment is not recommended for use in a production
environment.

5. Click Apply.

To add a module to a deployed application and deploy the added module:

1. Add the module by redeploying the application, using steps 1-5 above.

2. Click the module name in the table in the Deployments >Applications tab.

3. Select the Targets tab.
Developing WebLogic Server Applications 5-25

5 WebLogic Server Deployment
4. Move the desired server from the Available area to the Chosen area, and click
Apply.

WebLogic Builder

WebLogic Builder is a WebLogic Server tool for generating and editing deployment
descriptors for J2EE applications. It can also deploy applications to single servers.

See WebLogic Builder.

Auto-Deployment

Auto-deployment is a method for quickly deploying an application on the
administration server. It is recommended that this method be used only in a
single-server development environment for testing an application. Use of
auto-deployment in a production environment or for deployment of components on
managed servers is not recommended.

If auto-deployment is enabled, when an application is copied into the \applications
directory of the administration server, the administration server detects the presence of
the new application and deploys it automatically (if the administration server is
running). If WebLogic Server is not running when you copy the application to the
\applications directory, the application is deployed the next time the WebLogic
Server is started. Auto-deployment deploys only to the administration server

Note: Due to the strict file locking limitations of Windows NT, if your applications
are exploded, all the components within your applications must also be
exploded. In other words, WebLogic Server cannot support a JAR file within
an exploded application or component.

Enabling and Disabling Auto-Deployment

You can run WebLogic Server in two different modes: development and production.
You use development mode to test your applications. Once they are ready for a
production environment, you deploy your applications on a server that is started in
production mode.
5-26 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/wlbuilder/index.html

Deployment Tools and Procedures
Development mode enables a WebLogic Server to automatically deploy and update
applications that are in the domain_name/applications directory (where domain_name
is the name of a WebLogic Server domain). In other words, development mode lets
you use auto-deploy.

Production mode disables the auto-deployment feature. Instead, you must use the
WebLogic Server Administration Console or the weblogic.Deployer tool.

By default, a WebLogic Server runs in development mode. To specify the mode for a
server, do one of the following:

If you use the startWebLogic startup script, edit the script and set the STARTMODE
variable as follows:

STARTMODE = false enables deployment mode

STARTMODE = true enables production mode

If you start a server entering the weblogic.Server command directly on the
command line, use the -Dweblogic.ProductionModeEnabled option as follows:

-Dweblogic.ProductionModeEnabled=false enables deployment mode

-Dweblogic.ProductionModeEnabled=true enables production mode

For more information on starting WebLogic Server in development and production
modes, refer to “Starting and Stopping WebLogic Servers.”

Auto-Deploying Applications

This is a convenience feature for deploying applications during development. It allows
deploying of applications or individual J2EE modules to the administration server just
by copying the deployment into a predefined auto-deployment directory. This
directory is located under the domain directory, e.g., mydomain/applications.

Undeploying and Redeploying Archived Applications

An application or its component that was auto-deployed can be dynamically
redeployed while the server is running. To dynamically redeploy a JAR, WAR or EAR
file, simply copy the new version of the file over the existing file in the
\applications directory.
Developing WebLogic Server Applications 5-27

http://e-docs.bea.com/wls/docs70/adminguide/startstop.html#development_v_production_mode

5 WebLogic Server Deployment
This feature is useful for developers who can simply add the copy to the
\applications directory as the last step in their makefile, and the server will then be
updated.

If you delete the application from the \applications directory, the application will
be undeployed and removed from the configuration.

Redeploying Applications in Exploded Format

You can also dynamically redeploy applications or components that have been
auto-deployed in exploded format. When an application has been deployed in
exploded format, the administration server periodically looks for a file named
REDEPLOY in the exploded application directory. If the timestamp on this file changes,
the administration server redeploys the exploded directory.

If you want to update files in an exploded application directory, do the following:

1. When you first deploy the exploded application, create an empty file named
REDEPLOY, and place it in the WEB-INF or META-INF directory, depending on the
application type you are deploying:

An exploded application contains a META-INF top-level directory; this contains
the application.xml file.

An exploded Web application contains a WEB-INF top-level directory; this
contains the web.xml file.

An exploded EJB application contains a META-INF F top-level directory; this
contains the ejb-jar.xml file.

An exploded connector contains a META-INF top-level directory; this contains
the ra.xml file.

Note: The REDEPLOY file works only for an entire deployed application or a
deployed standalone module. If you have deployed an exploded Enterprise
Application, the REDEPLOY file controls redeployment for the entire
application—not for individual modules (for example, a Web Application)
within the Enterprise Application. If you deploy a Web Application by
itself as an exploded archive directory, the REDEPLOY file controls
redeployment for the entire Web Application.

2. To update the exploded application, copy the updated files over the existing files
in that directory.
5-28 Developing WebLogic Server Applications

Best Practices for Application Deployment
3. After copying the new files, modify the REDEPLOY file in the exploded directory
to alter its timestamp.

When the administration server detects the changed timestamp, it redeploys the
contents of the exploded directory.

Deployment Management API

A deployment task is initiated through a DeployerRuntimeMBean—a singleton (an
object for which only one instance exists) that resides on a WebLogic Administration
Server. DeployerRuntimeMBean provides methods for activating, deactivating, and
removing an application. These methods return a DeploymentTaskRuntimeMBean
that encapsulates the request and provides the means for tracking its progress.
DeploymentTaskRuntimeMBean provides ongoing status of the request through
TargetStatus objects, one per target.

The WebLogic Server deployment management API is defined by the following
WebLogic Server MBeans:

DeployerRuntimeMBean—programmatic interface to deployment requests.
Deployment requests provided through the DeployerRuntimeMBean manifest
the configuration state into the application and appropriate component
configuration MBeans. These MBeans persist the deployment state of
applications in the WebLogic Server domain.

DeploymentTaskRuntimeMBean—interface for encompassing deployment
tasks.

The deployment management API is asynchronous. The client must poll the status or
utilize ApplicationMBean notifications to determine when the task is complete.

For more information about WebLogic Server deployment management APIs, see the
weblogic.management.deploy Javadoc.

Best Practices for Application Deployment

The following are some best practices for deploying applications.
Developing WebLogic Server Applications 5-29

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/runtime/DeployerRuntimeMBean.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/runtime/DeploymentTaskRuntimeMBean.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/management/deploy/package-summary.html

5 WebLogic Server Deployment
Single Server Development

In an iterative development environment, it is most efficient to maintain all files in an
exploded form and deploy the application directly from its source location.

If you are working in a single server environment (deploying only to the administration
server), you can use directory-based auto deployment. In other words, you can simply
place the exploded application in the mydomain/applications directory to deploy it.
For more information, see Auto-Deployment in this document.

Testing Changes to Web Applications or Web Services

You can change JSPs or any static data files in the application under the
mydomain/applications directory, and view your changes in the application.

You can also directly compile updated servlet classes into a web application
under the mydomain/applications directory (for instance,
mydomain/applications/exploded_web_app_dir/WEB-INF/classes). The
new classes are incorporated in the Web application; no additional steps are
required.

To incorporate changes made to the Web application deployment descriptors,
modify the WEB-INF/REDEPLOY file in the mydomain/applications directory,
so that the auto deployer detects the change. This redeploys the Web application.

Testing Changes to EJBs and Resource Adapters

To incorporate changes made to the EJB or Resource Adapter deployment descriptors,
modify the META-INF/REDEPLOY file in the mydomain/applications directory, so
that the auto deployer detects the change. This redeploys the EJB or Resource Adapter.

Note: If the EJB is part of an enterprise application, the entire application is
redeployed.

Multiple Server Development

If you are working in a multiple server environment, it is recommended that you use
the weblogic.Deployer tool to deploy applications.
5-30 Developing WebLogic Server Applications

Best Practices for Application Deployment
Testing Changes in a Multiple Server Environment

If you have made any changes to application files, you must communicate these
changes to the server using the weblogic.Deployer tool. This allows the changes to
be incorporated into the deployed application.

The following steps illustrate how you communicate changes made to a Web
application to the server. The steps are identical for any type of application. However,
you should note that if an EJB is part of an enterprise application, the entire application
and application components are redeployed.

1. Deploy the Web application using the Administration Console or as follows:

java weblogic.Deployer -adminurl http://adminAddr:7001 -name
webapp -activate -source /myapp/webapp -targets
managedserver1,managedserver2

2. Make needed changes to the JSP: /myapp/webapp/jsps/login.jsp

3. Apply the changes as follows:

java weblogic.Deployer -adminurl http://adminAddr:7001 -name
webapp -activate jsps/login.jsp

In the above example, login.jsp is distributed and incorporated to all servers where
the Web application is deployed.

File Structures for Exploded Applications

For more information about packaging deployable units, see WebLogic Server
Application Packaging and Classloading.

If a directory contains multiple modules but no overall application descriptor file, each
module should be contained in its own directory and have its own descriptor files. In
other words, in non-archived applications each module must be independent of the
other modules, just as in an archive.

sourceDirectory\

 \Module1
 WEB-INF\
 web.xml
 Module1FilesDir
Developing WebLogic Server Applications 5-31

http://e-docs.bea.com/wls/docs70/programming/packaging.html#1029830
http://e-docs.bea.com/wls/docs70/programming/packaging.html#1029830

5 WebLogic Server Deployment
 \Module2
 META-INF\
 ejb-jar.xml
 Module2FilesDir

For exploded non-EAR deployments, the source directory should always be either A
or B:

A.

 \Module1
 WEB-INF\
 web.xml
 Module1FilesDir

B.

 \Module1
 WEB-INF\
 web.xml
 Module1FilesDir

 \Module2
 META-INF\
 ejb-jar.xml
 Module2FilesDir
 \Module3
 META-INF\
 ra.xml
 Module3FilesDir

The following directory structures are not supported and do not make sense:

sourceDirectory/

 META-INF/ejb-jar.xml

 WEB-INF/web.xml

 webfiles/

 ejbfiles/

moduledir/

 WEB-INF/web.xml
5-32 Developing WebLogic Server Applications

Best Practices for Application Deployment
 webfiles

 ejb.jar

moduledir/

 WEB-INF/web.xml

 web1files

 web2/WEB-INF/web.xml

 web2/webfiles

Staging Mode

Use the system defaults of -nostage for administration server and -stage for
managed servers, unless:

You want to use third-party solutions to manage file copying and distribution
from the administration server to the managed server machines.

You want to use a shared file system for sharing the source of an application
between different servers in a domain.

Auto-Deployment

You should only use auto-deployment in development setups for single server
deployments.

Exploded Enterprise Applications

Exploded deployments with multiple modules should always have an application
descriptor defined in META-INF/application.xml.
Developing WebLogic Server Applications 5-33

5 WebLogic Server Deployment
Partial Redeployment

If you redeploy a module or file to which other modules in the application have
references, you must also redeploy the referencing modules.

Sharing Classes between Components That Are Part of an
Enterprise Application

To share classes between components that are part of an Enterprise Application, use
the MANIFEST classpath. A JAR utility containing the shared classes is packed in the
EAR next to the other component archives. Each component needing to use these
classes creates a Class-Path entry in a file named META-INF/MANIFEST.MF within the
component’s archive. This scheme is part of the J2EE standard and should be used if
you require portability between application servers.

For more information, refer to “Manifest Class-Path” on page 3-10.

Using WebLogic Server 6.x Deployment
Protocol

By default, the two-phase deployment protocol is used for deploying new applications
by all available deployment tools. The current administration server still supports the
WebLogic Server 6.x deployment protocol, and this protocol is used when:

Configured applications do not specify the two-phase deployment protocol by
setting ApplicationMBean.TwoPhase=false.

The application contains multiple modules and is not an EAR.

See Deploying Applications in the WebLogic Server 6.1 Administration Guide.
5-34 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/adminguide/appman.html

Additional Deployment Documentation
Note: When using the WebLogic Server 6.x deployment protocol, a server instance
creates a .wlnotdelete directory to manage the deployment process. You
should not delete this directory or its contents.

Updating to Two Phase Deployment

To configure an application that uses 6.x protocol to start using the two-phase protocol,
remove the application from the domain—removing its configuration—and then
re-activate the application, as follows:

1. Remove the application using weblogic.Deployer. Enter a command in the
following form:

java weblogic.Deployer -adminurl http://admin:7001 -name app
-targets server -remove

2. Reactivate the application using weblogic.Deployer. Enter a command in the
following form:

java weblogic.Deployer -activate -name ArchivedEarJar -source
C:/MyApps/JarEar.ear –target server1

The application will redeploy using the new protocol.

Additional Deployment Documentation

For more information on WebLogic Server deployment, see the following
documentation:

Document Deployment Topics

WebLogic Builder How to use WebLogic Builder to edit and generate XML
deployment descriptor files for J2EE applications and their
components.

Administration
Console Online Help

How to use the Administration Console for deployment tasks.
Developing WebLogic Server Applications 5-35

http://e-docs.bea.com/wls/docs70/wlbuilder/index.html
http://e-docs.bea.com/wls/docs70/ConsoleHelp/index.html

5 WebLogic Server Deployment
Understanding Cluster
Configuration and
Application
Deployment

How to deploy to clustered servers.

Programming
WebLogic EJBs

How to deploy WebLogic Server EJBs.

Programming
WebLogic J2EE
Connectors

How to deploy WebLogic Server J2EE Connectors.

Assembling and
Configuring Web
Applications

How to deploy Weblogic Server Web Applications.

Programming
WebLogic JSP

How to deploy applets from JSP.

WebLogic Server
Application
Packaging and
Classloading

How to package WebLogic Server application components.

Document Deployment Topics
5-36 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/cluster/config.html
http://e-docs.bea.com/wls/docs70/cluster/config.html#1028166
http://e-docs.bea.com/wls/docs70/ejb/deploy.html#1050867
http://e-docs.bea.com/wls/docs70/jconnector/packdepla.html
http://e-docs.bea.com/wls/docs70/webapp/deployment.html#141411
http://e-docs.bea.com/wls/docs70/jsp/reference.html#57772
http://e-docs.bea.com/wls/docs70/programming/packaging.html#1029830

CHAPTER
6 Programming Topics

The following sections contain information about programming in the WebLogic
Server environment, including descriptions of useful WebLogic Server facilities and
advice about using various programming techniques:

“Logging Messages” on page 6-2

“Using Threads in WebLogic Server” on page 6-2

“Using JavaMail with WebLogic Server Applications” on page 6-3

“Programming Applications for WebLogic Server Clusters” on page 6-9
Developing WebLogic Server Applications 6-1

6 Programming Topics
Logging Messages

Each WebLogic Server instance has a log file that contains messages generated from
that server. Your applications can write messages to the log file using
internationalization services that access localized message catalogs. If localization is
not required, you can use the weblogic.logging.NonCatalogLogger class to write
messages to the log. This class can also be used in client applications to write messages
in a client-side log file.

For more information, refer to the Using WebLogic Logging Services guide.

Using Threads in WebLogic Server

WebLogic Server is a sophisticated, multi-threaded application server and it carefully
manages resource allocation, concurrency, and thread synchronization for the
components it hosts. To obtain the greatest advantage from WebLogic Server’s
architecture, construct your application components created according to the standard
J2EE APIs.

In most cases, avoid application designs that require creating new threads in
server-side components:

Applications that create their own threads do not scale well. Threads in the JVM
are a limited resource that must be allocated thoughtfully. Your applications may
break or cause WebLogic Server to thrash when the server load increases.
Problems such as deadlocks and thread starvation may not appear until the
application is under a heavy load.

Multithreaded components are complex and difficult to debug. Interactions
between application-generated threads and WebLogic Server threads are
especially difficult to anticipate and analyze.

In some situations, creating threads may be appropriate, in spite of these warnings. For
example, an application that searches several repositories and returns a combined
result set can return results sooner if the searches are done asynchronously using a new
thread for each repository instead of synchronously using the main client thread.
6-2 Developing WebLogic Server Applications

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/logging/NonCatalogLogger.html
http://e-docs.bea.com/wls/docs70/logging/index.html

Using JavaMail with WebLogic Server Applications
If you must use threads in your application code, create a pool of threads so that you
can control the number of threads your application creates. Like a JDBC connection
pool, you allocate a given number of threads to a pool, and then obtain an available
thread from the pool for your runnable class. If all threads in the pool are in use, wait
until one is returned. A thread pool helps avoid performance issues and allows you to
optimize the allocation of threads between WebLogic Server execution threads and
your application.

Be sure you understand where your threads can deadlock and handle the deadlocks
when they occur. Review your design carefully to ensure that your threads do not
compromise the security system.

To avoid undesirable interactions with WebLogic Server threads, do not let your
threads call into WebLogic Server components. For example, do not use enterprise
beans or servlets from threads that you create. Application threads are best used for
independent, isolated tasks, such as conversing with an external service with a TCP/IP
connection or, with proper locking, reading or writing to files. A short-lived thread that
accomplishes a single purpose and ends (or returns to the thread pool) is less likely to
interfere with other threads.

Be sure to test multithreaded code under increasingly heavy loads, adding clients even
to the point of failure. Observe the application performance and WebLogic Server
behavior and then add checks to prevent failures from occurring in production.

Using JavaMail with WebLogic Server
Applications

WebLogic Server includes the JavaMail API version 1.1.3 reference implementation
from Sun Microsystems. Using the JavaMail API, you can add email capabilities to
your WebLogic Server applications. JavaMail provides access from Java applications
to Internet Message Access Protocol (IMAP)- and Simple Mail Transfer Protocol
(SMTP)-capable mail servers on your network or the Internet. It does not provide mail
server functionality; so you must have access to a mail server to use JavaMail.

Complete documentation for using the JavaMail API is available on the JavaMail page
on the Sun Web site at http://java.sun.com/products/javamail/index.html. This section
describes how you can use JavaMail in the WebLogic Server environment.
Developing WebLogic Server Applications 6-3

http://java.sun.com/products/javamail/index.html

6 Programming Topics
The weblogic.jar file contains the javax.mail and javax.mail.internet
packages from Sun. weblogic.jar also contains the Java Activation Framework
(JAF) package, which JavaMail requires.

The javax.mail package includes providers for Internet Message Access protocol
(IMAP) and Simple Mail Transfer Protocol (SMTP) mail servers. Sun has a separate
POP3 provider for JavaMail, which is not included in weblogic.jar. You can
download the POP3 provider from Sun and add it to the WebLogic Server classpath if
you want to use it.

About JavaMail Configuration Files

JavaMail depends on configuration files that define the mail transport capabilities of
the system. The weblogic.jar file contains the standard configuration files from
Sun, which enable IMAP and SMTP mail servers for JavaMail and define the default
message types JavaMail can process.

Unless you want to extend JavaMail to support additional transports, protocols, and
message types, you do not have to modify any JavaMail configuration files. If you do
want to extend JavaMail, download JavaMail from Sun and follow Sun’s instructions
for adding your extensions. Then add your extended JavaMail package in the
WebLogic Server classpath in front of weblogic.jar.

Configuring JavaMail for WebLogic Server

To configure JavaMail for use in WebLogic Server, you create a Mail Session in the
WebLogic Server Administration Console. This allows server-side components and
applications to access JavaMail services with JNDI, using Session properties you
preconfigure for them. For example, by creating a Mail Session, you can designate the
mail hosts, transport and store protocols, and the default mail user in the
Administration Console so that components that use JavaMail do not have to set these
properties. Applications that are heavy email users benefit because WebLogic Server
creates a single Session object and makes it available via JNDI to any component that
needs it.

1. In the Administration Console, click on the Mail node in the left pane of the
Administration Console.
6-4 Developing WebLogic Server Applications

Using JavaMail with WebLogic Server Applications
2. Click Create a New Mail Session.

3. Complete the form in the right pane, as follows:

In the Name field, enter a name for the new session.

In the JNDIName field, enter a JNDI lookup name. Your code uses this
string to look up the javax.mail.Session object.

In the Properties field, enter properties to configure the Session. The property
names are specified in the JavaMail API Design Specification. JavaMail
provides default values for each property, and you can override the values in
the application code. The following table lists the properties you can set in
this field.

Property Description Default

mail.store.protocol The protocol to use to retrieve email.
Example:
mail.store.protocol=imap

The bundled JavaMail
library has support for
IMAP.

mail.transport.protocol The protocol to use to send email.
Example:
mail.transport.protocol=smtp

The bundled JavaMail
library has support for
SMTP.

mail.host The name of the mail host machine.
Example:
mail.host=mailserver

The default is the local
machine.

mail.user The name of the default user for retrieving
email.
Example:
mail.user=postmaster

The default is the value
of the user.name Java
system property.

mail.protocol.host The mail host for a specific protocol. For
example, you can set mail.SMTP.host and
mail.IMAP.host to different machine
names.
Examples:
mail.smtp.host=mail.mydom.com
mail.imap.host=localhost

The value of the
mail.host property.
Developing WebLogic Server Applications 6-5

6 Programming Topics
You can override any properties set in the Mail Session in your code by creating a
Properties object containing the properties you want to override. Then, after you
lookup the Mail Session object in JNDI, call the Session.getInstance() method
with your Properties to get a customized Session.

Sending Messages with JavaMail

Here are the steps to send a message with JavaMail from within a WebLogic Server
component:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will
also need to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

mail.protocol.user The protocol-specific default user name
for logging into a mailer server.
Examples:
mail.smtp.user=weblogic
mail.imap.user=appuser

The value of the
mail.user property.

mail.from The default return address.
Examples:
mail.from=master@mydom.com

username@host

mail.debug Set to True to enable JavaMail debug
output.

False

Property Description Default
6-6 Developing WebLogic Server Applications

Using JavaMail with WebLogic Server Applications
3. If you need to override the properties you set for the Session in the
Administration Console, create a Properties object and add the properties you
want to override. Then call getInstance() to get a new Session object with the
new properties.

Properties props = new Properties();
props.put("mail.transport.protocol", "smtp");
props.put("mail.smtp.host", "mailhost");
// use mail address from HTML form for from address
props.put("mail.from", emailAddress);
Session session2 = session.getInstance(props);

4. Construct a MimeMessage. In the following example, to, subject, and
messageTxt are String variables containing input from the user.

Message msg = new MimeMessage(session2);
msg.setFrom();
msg.setRecipients(Message.RecipientType.TO,

InternetAddress.parse(to, false));
msg.setSubject(subject);
msg.setSentDate(new Date());
// Content is stored in a MIME multi-part message
// with one body part
MimeBodyPart mbp = new MimeBodyPart();
mbp.setText(messageTxt);

Multipart mp = new MimeMultipart();
mp.addBodyPart(mbp);
msg.setContent(mp);

5. Send the message.

Transport.send(msg);

The JNDI lookup can throw a NamingException on failure. JavaMail can throw a
MessagingException if there are problems locating transport classes or if
communications with the mail host fails. Be sure to put your code in a try block and
catch these exceptions.

Reading Messages with JavaMail

The JavaMail API allows you to connect to a message store, which could be an IMAP
server or POP3 server. Messages are stored in folders. With IMAP, message folders
are stored on the mail server, including folders that contain incoming messages and
Developing WebLogic Server Applications 6-7

6 Programming Topics
folders that contain archived messages. With POP3, the server provides a folder that
stores messages as they arrive. When a client connects to a POP3 server, it retrieves
the messages and transfers them to a message store on the client.

Folders are hierarchical structures, similar to disk directories. A folder can contain
messages or other folders. The default folder is at the top of the structure. The special
folder name INBOX refers to the primary folder for the user, and is within the default
folder. To read incoming mail, you get the default folder from the store, and then get
the INBOX folder from the default folder.

The API provides several options for reading messages, such as reading a specified
message number or range of message numbers, or pre-fetching specific parts of
messages into the folder’s cache. See the JavaMail API for more information.

Here are steps to read incoming messages on a POP3 server from within a WebLogic
Server component:

1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will
also need to import java.util.Properties:

import java.util.*;
import javax.activation.*;
import javax.mail.*;
import javax.mail.internet.*;
import javax.naming.*;

2. Look up the Mail Session in JNDI:

InitialContext ic = new InitialContext();
Session session = (Session) ic.lookup("myMailSession");

3. If you need to override the properties you set for the Session in the
Administration Console, create a Properties object and add the properties you
want to override. Then call getInstance() to get a new Session object with the
new properties:

Properties props = new Properties();
props.put("mail.store.protocol", "pop3");
props.put("mail.pop3.host", "mailhost");
Session session2 = session.getInstance(props);

4. Get a Store object from the Session and call its connect() method to connect
to the mail server. To authenticate the connection, you need to supply the
mailhost, username, and password in the connect method:

Store store = session.getStore();
store.connect(mailhost, username, password);
6-8 Developing WebLogic Server Applications

Programming Applications for WebLogic Server Clusters
5. Get the default folder, then use it to get the INBOX folder:

Folder folder = store.getDefaultFolder();
folder = folder.getFolder("INBOX");

6. Read the messages in the folder into an array of Messages:

Message[] messages = folder.getMessages();

7. Operate on messages in the Message array. The Message class has methods that
allow you to access the different parts of a message, including headers, flags, and
message contents.

Reading messages from an IMAP server is similar to reading messages from a POP3
server. With IMAP, however, the JavaMail API provides methods to create and
manipulate folders and transfer messages between them. If you use an IMAP server,
you can implement a full-featured, Web-based mail client with much less code than if
you use a POP3 server. With POP3, you must provide code to manage a message store
via WebLogic Server, possibly using a database or file system to represent folders.

Programming Applications for WebLogic
Server Clusters

JSPs and Servlets that will be deployed to a WebLogic Server cluster must observe
certain requirements for preserving session data. See "Using WebLogic Server
Clusters" for more information.

EJBs deployed in a WebLogic Server cluster have certain restrictions based on EJB
type. See "The WebLogic Server EJB Container" in "Programming WebLogic
Enterprise JavaBeans" for information about the capabilities of different EJB types in
a cluster. EJBs can be deployed to a cluster by setting clustering properties in the EJB
deployment descriptor. "weblogic-ejb-jar.xml Deployment Descriptors" in
"Programming WebLogic Enterprise JavaBeans" describes the XML deployment
elements relevant for clustering.

If you are developing either EJBs or custom RMI objects for deployment in a cluster,
also refer to "Using WebLogic JNDI in a Clustered Enviroment" in "Programming
WebLogic JNDI" to understand the implications of binding clustered objects in the
JNDI tree.
Developing WebLogic Server Applications 6-9

http://e-docs.bea.com/wls/docs70/cluster/index.html
http://e-docs.bea.com/wls/docs70/cluster/index.html
http://e-docs.bea.com/wls/docs70/ejb/EJB_environment.html
http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/ejb/reference.html
http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/jndi/jndi.html#jndi012
http://e-docs.bea.com/wls/docs70/jndi/index.html
http://e-docs.bea.com/wls/docs70/jndi/index.html

6 Programming Topics
6-10 Developing WebLogic Server Applications

APPENDIX
A Application
Deployment Descriptor
Elements

The following sections describe deployment descriptors for J2EE applications on
ProductName. Two deployment descriptors are required: a J2EE standard deployment
descriptor named application.xml, and a WebLogic-specific application
deployment descriptor named weblogic-application.xml. The
weblogic-application.xml file is optional if you are not using any WebLogic
Server extensions.

“application.xml Deployment Descriptor Elements” on page A-1

“weblogic-application.xml Deployment Descriptor Elements” on page A-6

application.xml Deployment Descriptor
Elements

The following sections describe the application.xml file.

The application.xml file is the deployment descriptor for Enterprise Application
Archives. The file is located in the META-INF subdirectory of the application archive.
It must begin with the following DOCTYPE declaration:
Application Deployment Descriptor Elements A-1

A Application Deployment Descriptor Elements
<!DOCTYPE application PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application 1.3//EN"
"http://java.sun.com/dtd/application_1_3.dtd">

The following diagram summarizes the structure of the application.xml
deployment descriptor.

The following sections describe each of the elements that can appear in the file.

application

icon?

small-icon?

large-icon?

display-name

description?

module+

security-role*

ejb

java

web

web-uri

context-root

description?

role-name

? = Optional
+ = One or more
* = Zero or more

alt-dd

connector
A-2 Application Deployment Descriptor Elements

application
application

application is the root element of the application deployment descriptor. The
elements within the application element are described in the following sections.

icon

Optional. The icon element specifies the locations of small and large images that
represent the application in a GUI tool. This element is not currently used by
WebLogic Server.

small-icon

Optional. Specifies the location for a small (16x16 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this is not used by WebLogic Server.

large-icon

Optional. Specifies the location for a large (32x32 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this element is not used by
WebLogic Server.

display-name

The display-name element specifies the application display name, a short name that
is intended to be displayed by GUI tools.

description

The optional description element provides descriptive text about the application.
Application Deployment Descriptor Elements A-3

A Application Deployment Descriptor Elements
module

The application.xml deployment descriptor contains one module element for each
module in the Enterprise Archive file. Each module element contains an ejb, java, or
web element that indicates the module type and location of the module within the
application. An optional alt-dd element specifies an optional URI to the
post-assembly version of the deployment descriptor.

alt-dd

Specifies an optional URI to the post-assembly version of the deployment descriptor
file for a particular J2EE module. The URI must specify the full pathname of the
deployment descriptor file relative to the application’s root directory. If you do not
specify alt-dd, the deployer must read the deployment descriptor from the default
location and file name required by the respective component specification.

connector

Specifies the URI of a resource adapter (connector) archive file, relative to the top level
of the application package.

ejb

Defines an EJB module in the application file. Contains the path to an EJB JAR file in
the application.

Example:

<ejb>petStore_EJB.jar</ejb>

java

Defines a client application module in the application file.

Example:

<java>client_app.jar</java>
A-4 Application Deployment Descriptor Elements

application
web

Defines a Web application module in the application.xml file. The web element
contains a web-uri element and a context-root element. If you do not declare a
value for the context-root, then the basename of the web-uri element is used as
the context path of the Web application. (Note that the context path must be unique in
a given Web server. More than one Web application may be using the same Web
server, so you must avoid having context path clashes across multiple applications.)

web-uri

Defines the location of a Web module in the application.xml file. This is the name
of the WAR file.

context-root

Specifies a context root for the Web application.

Example:

<web>
<web-uri>petStore.war</web-uri>
<context-root>estore</context-root>

</web>

security-role

The security-role element contains the definition of a security role which is global
to the application. Each security-role element contains an optional description
element, and a role-name element.

description

Optional. Text description of the security role.

role-name

Defines the name of a security role or principal that is used for authorization within the
application. Roles are mapped to ProductName users or groups in the
weblogic-application.xml deployment descriptor.
Application Deployment Descriptor Elements A-5

A Application Deployment Descriptor Elements
Example:

<security-role>
<description>the gold customer role</description>
<role-name>gold_customer</role-name>

</security-role>
<security-role>

<description>the customer role</description>
<role-name>customer</role-name>

</security-role>

weblogic-application.xml Deployment
Descriptor Elements

The following sections describe the weblogic-application.xml file. The
weblogic-application.xml file is the BEA WebLogic Server-specific
deployment descriptor extension for the application.xml deployment descriptor
from Sun Microsystems. This is where you configure features such as
application-scoped JDBC Pools and EJB Caching.

The file is located in the META-INF subdirectory of the application archive. It must
begin with the following DOCTYPE declaration:

<!DOCTYPE weblogic-application PUBLIC "-//BEA Systems, Inc.//DTD
WebLogic Application 7.0.0//EN"

"http://www.bea.com/servers/wls700/dtd/weblogic-application_1_0.d
td;">

The following sections describe each element that can appear in the file.

weblogic-application

The weblogic-application element is the root element of the application
deployment descriptor.
A-6 Application Deployment Descriptor Elements

http://www.bea.com/servers/wls700/dtd/weblogic-application_1_0.dtd
http://www.bea.com/servers/wls700/dtd/weblogic-application_1_0.dtd

weblogic-application
ejb

Optional. The ejb element contains information that is specific to the EJB modules
that are part of a WebLogic application. Currently, one can use the ejb element to
specify one or more application level caches that can be used by the application’s
entity beans.

entity-cache

One or more. The entity-cache element is used to define a named application level
cache that is used to cache entity EJB instances at runtime. Individual entity beans refer
to the application-level cache that they must use, referring to the cache name. There is
no restriction on the number of different entity beans that may reference an individual
cache.

Application-level caching is used by default whenever an entity bean does not specify
its own cache in the weblogic-ejb-jar.xml descriptor. Two default caches named
ExclusiveCache and MultiVersionCache are used for this purpose. An
application may explicitly define these default caches to specify non-default values for
their settings. Note that the caching-strategy cannot be changed for the default caches.
By default, a cache uses max-beans-in-cache with a value of 1000 to specify its
maximum size.

Example:

<entity-cache>

<entity-cache-name>ExclusiveCache</entity-cache-name>

<max-cache-size>

<megabytes>50</megabytes>

</max-cache-size>

</entity-cache>

entity-cache-name

The entity-cache-name element specifies a unique name for an entity bean cache.
The name must be unique within an ear file and may not be the empty string.
Application Deployment Descriptor Elements A-7

A Application Deployment Descriptor Elements
Example:

<entity-cache-name>ExclusiveCache</entity-cache-name>

max-beans-in-cache

Optional. The max-beans-in-cache element specifies the maximum number of
entity beans that are allowed in the cache. If the limit is reached, beans may be
passivated. This mechanism does not take into account the actual amount of memory
that different entity beans require. This element can be set to a value of 1 or greater.

Default Value: 1000

max-cache-size

The max-cache-size element is used to specify a limit on the size of an entity cache
in terms of memory size—expressed either in terms of bytes or megabytes. A bean
provider should provide an estimate of the average size of a bean in the
weblogic-ejb-jar.xml descriptor if the bean uses a cache that specifies its
maximum size using the max-cache-size element. By default, a bean is assumed to
have an average size of 100 bytes.

bytes | megabytes—The size of an entity cache in terms of memory size,
expressed in bytes or megabytes. Used in the max-cache-size element.

caching-strategy

Optional. The caching-strategy element specifies the general strategy that the EJB
container uses to manage entity bean instances in a particular application level cache.
A cache buffers entity bean instances in memory and associates them with their
primary key value.

The caching-strategy element can only have one of the following values:

Exclusive—Caches a single bean instance in memory for each primary key
value. This unique instance is typically locked using the EJB container’s
exclusive locking when it is in use, so that only one transaction can use the
instance at a time.

MultiVersion—Caches multiple bean instances in memory for a given
primary key value. Each instance can be used by a different transaction
concurrently.
A-8 Application Deployment Descriptor Elements

weblogic-application
Default Value: MultiVersion

Example:

<caching-strategy>Exclusive</caching-strategy>

start-mdbs-with-application

Optional. Allows you to configure the EJB container to start Message
Driven BeanS (MDBS) with the application. If set to true, the
container starts MDBS as part of the application. If set to false,
the container keeps MDBS in a queue and the server starts them as
soon as it has started listening on the ports.

xml

Optional. The xml element contains information about parsers and entity mappings for
XML processing that is specific to this application.

parser-factory

Optional. The parser-factory element contains three elements:
saxparser-factory?, document-builder-factory?, and
transformer-factory?.

saxparser-factory

Optional. The saxparser-factory element allows you to set the SAXParser Factory
for the XML parsing required in this application only. This element determines the
factory to be used for SAX style parsing. If you do not specify the
saxparser-factory element setting, the configured SAXParser Factory style in the
Server XML Registry is used.

Default Value: Server XML Registry setting
Application Deployment Descriptor Elements A-9

A Application Deployment Descriptor Elements
document-builder-factory

Optional. The document-builder-factory element allows you to set the Document
Builder Factory for the XML parsing required in this application only. This element
determines the factory to be used for DOM style parsing. If you do not specify the
document-builder-factory element setting, the configured DOM style in the
Server XML Registry is used.

Default Value: Server XML Registry setting

transformer-factory

Optional. The transformer-factory element allows you to set the Transformer
Engine for the style sheet processing required in this application only. If you do not
specify a value for this element, the value configured in the Server XML Registry is
used.

Default value: Server XML Registry setting.

entity-mapping

Zero or more. The entity-mapping element is used to specify entity mapping. This
mapping determines the alternative entity URI for a given public or system ID. The
default place to look for this entity URI is the lib/xml/registry directory.

entity-mapping-name

The entity-mapping-name element specifies the name for this entity mapping.

public-id

Optional. The public-id element specifies the public ID of the mapped entity.

system-id

Optional. The system-id element specifies the system ID of the mapped entity.

entity-uri

Optional. The entity-uri element specifies the entityuri for the mapped entity.
A-10 Application Deployment Descriptor Elements

weblogic-application
when-to-cache

Optional. Legal values are:

cache-on-reference

cache-at-initialization

cache-never

The default value is cache-on-reference.

cache-timeout-interval

Optional. The cache-timeout-interval element allows you to specify the integer
value in seconds.

jdbc-connection-pool

Zero or more. The jdbc-connection-pool element specifies an application-scoped
JDBC connection pool.

data-source-name

The data-source-name element specifies the JNDI name in the application-specific
JNDI tree.

connection-factory

The connection-factory element defines the number of physical database
connections to create when the pool is initialized. The default value is 1.

factory-name

The factory-name element specifies the name of a
JDBCDataSourceFactoryMBean in the config.xml file.
Application Deployment Descriptor Elements A-11

A Application Deployment Descriptor Elements
connection-properties

Optional. The connection-properties element specifies the connection parameters
that define overrides for default connection factory settings.

user-name—Optional. The user-name element is used to override UserName
in the JDBCDataSourceFactoryMBean.

url—Optional. The url element is used to override URL in the
JDBCDataSourceFactoryMBean.

driver-class-name—Optional. The driver-class-name element is used to
override DriverName in the JDBCDataSourceFactoryMBean.

connection-params—Zero or more.

parameter+ (param-value, param-name)—One or more

pool-params

Optional. The pool-params element defines parameters that affect the behavior of
the pool.

size-params

Optional. The size-params element defines parameters that affect the number of
connections in the pool.

initial-capacity—Optional. The initial-capacity element defines the
number of physical database connections to create when the pool is initialized.
The default value is 1.

max-capacity—Optional. The max-capacity element defines the maximum
number of physical database connections that this pool can contain. Note that the
JDBC Driver may impose further limits on this value. The default value is 1.

capacity-increment—Optional. The capacity-increment element
defines the increment by which the pool capacity is expanded. When there are
no more available physical connections to service requests, the pool creates this
number of additional physical database connections and adds them to the pool.
The pool ensures that it does not exceed the maximum number of physical
connections as set by max-capacity. The default value is 1.
A-12 Application Deployment Descriptor Elements

weblogic-application
shrinking-enabled—Optional. The shrinking-enabled element indicates
whether or not the pool can shrink back to its initial-capacity when
connections are detected to not be in use.

shrink-period-minutes—Optional. The shrink-period-minutes
element defines the number of minutes to wait before shrinking a connection
pool that has incrementally increased to meet demand. The
shrinking-enabled element must be set to true for shrinking to take place.

xa-params

Optional. The xa-params element defines the parameters for the XA DataSources.

debug-level—Optional. Integer. The debug-level element defines the
debugging level for XA operations. The default value is 0.

keep-conn-until-tx-complete-enabled—Optional. Boolean. If you set
the keep-conn-until-tx-complete-enabled element to true, the XA
connection pool associates the same XA connection with the distributed
transaction until the transaction completes.

end-only-once-enabled—Optional. Boolean. If you set the
end-only-once-enabled element to true, the XAResource.end() method
is only called once for each pending XAResource.start() method.

recover-only-once-enabled—Optional. Boolean. If you set the
recover-only-once-enabled element to true, recover is only called one
time on a resource.

tx-context-on-close-needed—Optional. Set the
tx-context-on-close-needed element to true if the XA driver requires a
distributed transaction context when closing various JDBC objects (for example,
result sets, statements, connections, and so on). If set to true, the SQL
exceptions that are thrown while closing the JDBC objects in no transaction
context are swallowed.

new-conn-for-commit-enabled—Optional. Boolean. If you set the
new-conn-for-commit-enabled element to true, a dedicated XA
connection is used for commit/rollback processing of a particular distributed
transaction.

prepared-statement-cache-size—Optional. Use the
prepared-statement-cache-size element to set the size of the prepared
Application Deployment Descriptor Elements A-13

A Application Deployment Descriptor Elements
statement cache. The size of the cache is a number of prepared statements
created from a particular connection and stored in the cache for further use.
Setting the size of the prepared statement cache to 0 turns it off.

keep-logical-conn-open-on-release—Optional. Boolean. Set the
keep-logical-conn-open-on-release element to true, to keep the logical
JDBC connection open when the physical XA connection is returned to the XA
connection pool. The default value is false.

local-transaction-supported—Optional. Boolean. Set the
local-transaction-supported to true if the XA driver supports SQL with
no global transaction; otherwise, set it to false. The default value is false.

resource-health-monitoring-enabled—Optional. Set the
resource-health-monitoring-enabled element to true to enable JTA
resource health monitoring for this connection pool.

login-delay-seconds

Optional. Integer value. The login-delay-seconds element sets the number of
seconds to delay before creating each physical database connection. Some database
servers cannot handle multiple requests for connections in rapid succession. This
property allows you to build in a small delay to let the database server catch up. This
delay occurs both during initial pool creation and during the lifetime of the pool
whenever a physical database connection is created.

leak-profiling-enabled

Optional. The leak-profiling-enabled element enables JDBC connection leak
profiling. A connection leak occurs when a connection from the pool is not closed
explicitly by calling the close() method on that connection. When connection leak
profiling is active, the pool stores the stack trace at the time the connection object is
allocated from the pool and given to the client. When a connection leak is detected
(when the connection object is garbage collected), this stack trace is reported.

This element uses extra resources and will likely slowdown connection pool
operations, so it is not recommended for production use.

connection-check-params

Optional. The connection-check-params element defines whether, when, and
how connections in a pool is checked to make sure they are still alive.
A-14 Application Deployment Descriptor Elements

weblogic-application
table-name—Optional. The table-name element defines a table in the
schema that can be queried.

check-on-reserve-enabled—Optional. If the
check-on-reserve-enabled element is set to true, then the connection will
be tested each time before it is handed out to a user.

check-on-release-enabled—Optional. If the
check-on-release-enabled element is set to true, then the connection will
be tested each time a user returns a connection to the pool.

refresh-minutes—Optional. If the refresh-minutes element is defined, a
trigger is fired periodically (based on the number of minutes specified). This
trigger checks each connection in the pool to make sure it is still valid.

driver-params

Optional. The driver-params element sets behavior on WebLogic Server drivers.

statement

Optional.

profiling-enabled—Optional. profiling-enabled boolean. The
profiling-enabled element enables the running of JDBC SQL roundtrip
profiling. When enabled, SQL statement text, execution time, and other metrics
are stored externally for further analysis. This is a resource-consuming feature,
so it is recommended that you turn it off on a production server. The default
value is false.

prepared-statement

Optional. profiling-enabled boolean. The prepared-statement element
enables the running of JDBC prepared statement cache profiling. When enabled,
prepared statement cache profiles are stored in external storage for further analysis.
This is a resource-consuming feature, so it is recommended that you turn it off on a
production server. The default value is false.

profiling-enabled—Optional.

cache-profiling-threshold—Optional. The
cache-profiling-threshold element defines a number of statement
Application Deployment Descriptor Elements A-15

A Application Deployment Descriptor Elements
requests after which the state of the prepared statement cache is logged. This
element minimizes the ouput volume. This is a resource-consuming feature, so it
is recommended that you turn it off on a production server.

cache-size—Optional. The cache-size element returns the size of the
prepared statement cache. The size of the cache is a number of prepared
statements created from a particular connection and stored in the cache for
further use.

parameter-logging-enabled—Optional. During SQL roundtrip profiling it
is possible to store values of prepared statement parameters. The
parameter-logging-enabled element enables the storing of statement
parameters. This is a resource-consuming feature, so it is recommended that you
turn it off on a production server.

max-parameter-length—Optional. During SQL roundtrip profiling it is
possible to store values of prepared statement parameters. The
max-parameter-length element defines maximum length of the string passed
as a parameter for JDBC SQL roundtrip profiling. This is a resource-consuming
feature, so you should limit the length of data for a parameter to reduce the
output volume.

row-prefetch-enabled

Optional

row-prefetch-size

Optional

stream-chunk-size

Optional

acl-name

Optional
A-16 Application Deployment Descriptor Elements

weblogic-application
application-param

Zero or more. The application-param element defines various parameters that
affect container behavior. These parameters are as follows:

webapp.encoding.usevmdefault

webapp.encoding.default

webapp.getrealpath.accept_context_path
Application Deployment Descriptor Elements A-17

A Application Deployment Descriptor Elements
A-18 Application Deployment Descriptor Elements

CHAPTER
B Client Application
Deployment Descriptor
Elements

The following sections describe deployment descriptors for J2EE client applications
on WebLogic Server. Often, when it comes to J2EE applications, users are only
concerned with the server-side components (Web Applications, EJBs, Connectors).
You configure these server-side components using the application.xml
deployment descriptor, discussed in Appendix A, “Application Deployment
Descriptor Elements.”

However, it is also possible to include a client component (a JAR file) in an EAR file.
This JAR file is only used on the client side; you configure this client component using
the client-application.xml deployment descriptor. This scheme makes it
possible to package both client and server side components together. The server looks
only at the parts it is interested in (based on the application.xml file) and the client
looks only at the parts it is interested in (based on the client-application.xml
file).

For client-side components, two deployment descriptors are required: a J2EE standard
deployment descriptor, application-client.xml, and a WebLogic-specific
runtime deployment descriptor with a name derived from the client application JAR
file.

“application-client.xml Deployment Descriptor Elements” on page B-2

“WebLogic Run-time Client Application Deployment Descriptor” on page B-7
Developing WebLogic Server Applications B-1

B Client Application Deployment Descriptor Elements
application-client.xml Deployment
Descriptor Elements

The application-client.xml file is the deployment descriptor for J2EE client
applications. It must begin with the following DOCTYPE declaration:

<!DOCTYPE application-client PUBLIC "-//Sun Microsystems,
Inc.//DTD J2EE Application Client 1.2//EN"
"http://java.sun.com/j2ee/dtds/application-client_1_2.dtd">

The following diagram summarizes the structure of the application-client.xml
deployment descriptor.
B-2 Developing WebLogic Server Applications

application-client.xml Deployment Descriptor Elements
The following sections describe each of the elements that can appear in the file.

application-client

icon?

small-icon?

large-icon?

display-name

description?

env-entry*

description?

env-entry-name

env-entry-type

? = Optional
+ = One or more
* = Zero or more

env-entry-value?

ejb-ref*

description?

ejb-ref-name

ejb-ref-type

home

remote

ejb-link?

resource-ref*

description?

res-ref-name

res-type

res-auth
Developing WebLogic Server Applications B-3

B Client Application Deployment Descriptor Elements
application-client

application-client is the root element of the application client deployment
descriptor. The application client deployment descriptor describes the EJB
components and other resources used by the client application.

The elements within the application-client element are described in the following
sections.

icon

Optional. The icon element specifies the locations of small and large images that
represent the application in a GUI tool. This element is not currently used by
WebLogic Server.

small-icon

Optional. Specifies the location for a small (16x16 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this is not used by WebLogic Server.

large-icon

Optional. Specifies the location for a large (32x32 pixel) .gif or .jpg image used to
represent the application in a GUI tool. Currently, this element is not used by
WebLogic Server.

display-name

The display-name element specifies the application display name, a short name that
is intended to be displayed by GUI tools.

description

Optional. The description element provides a description of the client application.
B-4 Developing WebLogic Server Applications

application-client.xml Deployment Descriptor Elements
env-entry

The env-entry element contains the declaration of a client application’s environment
entries.

description

Optional. The description element contains a description of the particular
environment entry.

env-entry-name

The env-entry-name element contains the name of a client application’s
environment entry.

env-entry-type

The env-entry-type element contains the fully-qualified Java type of the
environment entry. The possible values are: java.lang.Boolean,
java.lang.String, java.lang.Integer, java.lang.Double,
java.lang.Byte, java.lang.Short, java.lang.Long, and java.lang.Float.

env-entry-value

Optional. The env-entry-value element contains the value of a client application’s
environment entry. The value must be a String that is valid for the constructor of the
specified env-entry-type.

ejb-ref

The ejb-ref element is used for the declaration of a reference to an EJB referenced
in the client application.

description

Optional. The description element provides a description of the referenced EJB.
Developing WebLogic Server Applications B-5

B Client Application Deployment Descriptor Elements
ejb-ref-name

The ejb-ref-name element contains the name of the referenced EJB. Typically the
name is prefixed by ejb/, such as ejb/Deposit.

ejb-ref-type

The ejb-ref-type element contains the expected type of the referenced EJB, either
Session or Entity.

home

The home element contains the fully-qualified name of the referenced EJB’s home
interface.

remote

The remote element contains the fully-qualified name of the referenced EJB’s remote
interface.

ejb-link

The ejb-link element specifies that an EJB reference is linked to an enterprise
JavaBean in the J2EE application package. The value of the ejb-link element must
be the name of the ejb-name of an EJB in the same J2EE application.

resource-ref

The resource-ref element contains a declaration of the client application’s reference
to an external resource.

description

Optional. The description element contains a description of the referenced external
resource.
B-6 Developing WebLogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor
res-ref-name

The res-ref-name element specifies the name of the resource factory reference
name. The resource factory reference name is the name of the client application’s
environment entry whose value contains the JNDI name of the data source.

res-type

The res-type element specifies the type of the data source. The type is specified by
the Java interface or class expected to be implemented by the data source.

res-auth

The res-auth element specifies whether the EJB code signs on programmatically to
the resource manager, or whether the Container will sign on to the resource manager
on behalf of the EJB. In the latter case, the Container uses information that is supplied
by the Deployer. The res-auth element can have one of two values: Application or
Container.

WebLogic Run-time Client Application
Deployment Descriptor

This XML-formatted deployment descriptor is not stored inside of the client
application JAR file like other deployment descriptors, but must be in the same
directory as the client application JAR file.

The file name for the deployment descriptor is the base name of the JAR file, with the
extension .runtime.xml. For example, if the client application is packaged in a file
named c:/applications/ClientMain.jar, the run-time deployment descriptor is
in the file named c:/applications/ClientMain.runtime.xml.
Developing WebLogic Server Applications B-7

B Client Application Deployment Descriptor Elements
The following diagram shows the structure of the elements in the run-time deployment
descriptor.

application-client

The application-client element is the root element of a WebLogic-specific
run-time client deployment descriptor.

env-entry

The env-entry element specifies values for environment entries declared in the
deployment descriptor.

env-entry-name

The env-entry-name element contains the name of an application client's
environment entry.

Example:

application-client

env-entry

env-entry-name

env-entry-value

ejb-ref

ejb-ref-name

jndi-name

resource-ref

resource-ref-name

jndi-name

? = Optional
+ = One or more
* = Zero or more
B-8 Developing WebLogic Server Applications

WebLogic Run-time Client Application Deployment Descriptor
<env-entry-name>EmployeeAppDB</env-entry-name>

env-entry-value

The env-entry-value element contains the value of an application client’s
environment entry. The value must be a string valid for the constructor of the specified
type that takes a single string parameter.

ejb-ref

The ejb-ref element specifies the JNDI name for a declared EJB reference in the
deployment descriptor.

ejb-ref-name

The ejb-ref-name element contains the name of an EJB reference. The EJB
reference is an entry in the application client’s environment. It is recommended that
name is prefixed with ejb/.

Example:

<ejb-ref-name>ejb/Payroll</ejb-ref-name>

jndi-name

The jndi-name element specifies the JNDI name for the EJB.

resource-ref

The resource-ref element declares an application client’s reference to an external
resource. It contains the resource factory reference name, an indication of the resource
factory type expected by the application client’s code, and the type of authentication
(bean or container).

Example:

<resource-ref>
<res-ref-name>EmployeeAppDB</res-ref-name>
<jndi-name>enterprise/databases/HR1984</jndi-name>

</resource-ref>
Developing WebLogic Server Applications B-9

B Client Application Deployment Descriptor Elements
resource-ref-name

The res-ref-name element specifies the name of the resource factory reference
name. The resource factory reference name is the name of the application client’s
environment entry whose value contains the JNDI name of the data source.

jndi-name

The jndi-name element specifies the JNDI name for the resource.
B-10 Developing WebLogic Server Applications

Index

Symbols
.ear file 1-8, 2-4, 2-5
.jar file 2-5
.rar file 1-8, 2-6

modifying an existing 2-7
.war file 1-3

A
Administration Console

creating a Mail Session 6-4
deploying resource adapters 5-22
editing deployment descriptors 4-6
undeploying resource adapters 5-25
updating resource adapters 5-25
viewing deployed resource adapters 5-24

application components 1-2
application element A-3, A-6
application.xml file

application element A-3, A-6
deployment descriptor elements A-1
description element A-3, A-5
display-name element A-3
ejb element A-4
icon element A-3
java element A-4
large-icon element A-3
module element A-4
role-name element A-5
security-role A-5
small-icon element A-3

web element A-5
application-client element B-4, B-8
application-client.xml

application-client element B-4
deployment descriptor elements B-1
description element B-4, B-5, B-6
display-name element B-4
ejb-link element B-6
ejb-ref element B-5
ejb-ref-name element B-6
ejb-ref-type element B-6
env-entry element B-5
env-entry-name B-5
env-entry-type element B-5
env-entry-value element B-5
home element B-6
icon element B-4
large-icon element B-4
remote element B-6
res-auth element B-7
resource-ref element B-6
res-ref-name element B-7
res-type element B-7
small-icon element B-4

applications 1-2
and threads 6-2

auto-deployment 5-26
enabling 5-26
Developing WebLogic Server Applications I-i

B
BEA XML Editor 4-7

C
class references

resolving between components 3-9
classes

resource adapter 3-9
classpath setting 2-17
client applications 1-2, 1-9

deployment descriptor B-7
deployment descriptor elements B-1
HTTP requests 1-9
packaging and deploying 4-23
RMI requests 1-9

ClientMain.runtime.xml file
application-client element B-8
ejb-ref element B-9
ejb-ref-name element B-9
env-entry element B-8
env-entry-name B-8
env-entry-value element B-9
jndi-name element B-9, B-10
resource-ref element B-9
resource-ref-name element B-10

common utilities in packaging 3-9
compiled classes, setting target directories

for 2-17
compiling

putting the Java tools in your search path
2-16

setting target directories for compiled
classes 2-17

setting the classpath 2-17
components 1-2

Connector 1-2
connector 1-7
EJB 1-2, 1-5
Enterprise JavaBean 1-5
packaging 1-2

Web 1-2
Web application 1-3
WebLogic Server 1-2

configuration
modifying an existing resource adapter

2-7
configuration files, JavaMail 6-4
connector components 1-2, 1-7
connectors

developing, main steps 2-6
modifying existing 2-9
packaging 4-20
XML deployment descriptors 4-4

customer support contact information xiii

D
database system 2-15
deploying

client applications 4-23
enterprise applications 2-10
Enterprise JavaBeans 2-5
Web applications 2-3

deployment
undeploying resource adapters using the

Administration Console 5-25
updating resource adapters using the

Administration Console 5-25
using the Administration Console 5-22

deployment descriptors
application.xml elements A-1
automatically generating 4-5
client application elements B-1
editing connector 4-12
editing EJB 4-8
editing enterprise application 4-14
editing resource adapter 4-12
editing using the Administration

Console 4-6
editing Web application 4-10
WebLogic run-time client application
I-ii Developing WebLogic Server Applications

B-7
description element A-3, A-5, B-4, B-5, B-6
developing

connectors, main steps 2-6
enterprise applications 2-6
Enterprise JavaBeans, main steps 2-4
establishing a development environment

2-9
resource adapters, main steps 2-6
Web applications 2-2

development environment 2-9
development WebLogic Server 2-14
software tools 2-13
third-party software 2-15

display-name element A-3, B-4
documentation, where to find it xii

E
editing

connector deployment descriptors 4-12
deployment descriptors 4-6
EJB deployment descriptors 4-8
enterprise application deployment

descriptors 4-14
resource adapter deployment descriptors

4-12
Web application deployment descriptors

4-10
EJB components 1-2
ejb element A-4
ejb-link element B-6
ejb-ref element B-5, B-9
ejb-ref-name element B-6, B-9
ejb-ref-type element B-6
EJBs 1-5

and WebLogic Server 1-7
compiling Java code 2-4, 2-6
deploying 2-5
deployment descriptor 1-7, 2-4, 2-6
developing 2-4

interfaces 1-6
overview 1-5
packaging 2-5, 4-17
XML deployment descriptors 4-4, 5-7

enterprise applications 1-2, 1-8
archives A-1
deploying 2-10
deployment descriptor 2-10
developing, main steps 2-6
packaging 2-10, 4-21

Enterprise JavaBeans 1-5
and WebLogic Server 1-7
compiling Java code 2-4, 2-6
deploying 2-5
deployment descriptor 1-7
deployment descriptors 2-4, 2-6
developing 2-4
interfaces 1-6
overview 1-5
packaging 2-5, 4-17
XML deployment descriptors 4-4, 5-7

entity beans 1-5
env-entry element B-5, B-8
env-entry-name element B-5, B-8
env-entry-type element B-5
env-entry-value element B-5, B-9

G
generating deployment descriptors

automatically 4-5

H
home element B-6
home interfaces 1-6
HTTP requests 1-9

I
icon element A-3, B-4
Developing WebLogic Server Applications I-iii

IDE 2-13
implementation classes 1-6

J
JAR files 1-2
JAR utility 1-2
Java 2 Platform, Enterprise Edition (J2EE)

about 1-3
Java compiler 2-14, 2-17
java element A-4
Java tools

putting in your search path 2-16
JavaMail

API version 1.1.3 6-3
configuration files 6-4
configuring for WebLogic Server 6-4
reading messages 6-7
sending messages 6-6
using with WebLogic Server

applications 6-3
JavaServer pages 1-4
javax.mail package 6-4
JDBC driver 2-15
jndi-name element B-9, B-10

L
large-icon element A-3, B-4
logging messages 6-2

M
Mail Session

creating in the Console 6-4
message-driven beans 1-6
modifying

existing .rar file 2-9
existing resource adapter 2-9

module element A-4
multithreaded components 6-2

P
packaging

automatically generating deployment
descriptors 4-5

client applications 4-23
connectors 4-20
enterprise application 2-10
enterprise applications 2-10, 4-21
Enterprise JavaBeans 2-5, 4-17
resolving class references between

components 3-9
resource adapters 4-20
Web applications 2-2, 4-16

printing product documentation xii
programming

JavaMail configuration files 6-4
logging messages 6-2
reading messages with JavaMail 6-7
sending messages with JavaMail 6-6
topics 6-1
using JavaMail with WebLogic Server

applications 6-3

R
remote element B-6
remote interfaces 1-6
res-auth element B-7
resource adapters 1-2, 1-7

classes 3-9
deploying using the Administration

Console 5-22
developing, main steps 2-6
modifying an existing 2-7
modifying existing 2-9
packaging 4-20
updating using the Administration

Console 5-25
viewing deployed, using the

Administration Console 5-24
XML deployment descriptors 4-4
I-iv Developing WebLogic Server Applications

resource-ref element B-6, B-9
resource-ref-name element B-10
res-ref-name element B-7
res-type element B-7
RMI requests 1-9
role-name element A-5
run-time deployment descriptor B-8

S
search path 2-16
security-role element A-5
servlets 1-4

compiling into class files 2-2
session beans 1-5
small-icon element A-3, B-4
software tools

database system 2-15
development WebLogic Server 2-14
IDE 2-13
Java compiler 2-14
JDBC driver 2-15
source code editor 2-13
Web browser 2-15

source code editor 2-13
Sun Microsystems 1-3
support

technical xiv

T
target directories setting 2-17
third-party software 2-15
threads

and applications 6-2
avoiding undesirable interactions with

WebLogic Server threads 6-3
multithreaded components 6-2
testing multithreaded code 6-3
using in WebLogic Server 6-2

U
undeployment 5-25

W
Web application components 1-3

directory structure 1-4
JavaServer pages 1-4
more information 1-5
servlets 1-4

Web applications 1-2
compiling servlets into class files 2-2
creating HTML pages and JSPs 2-2
deploying 2-3
main steps for developing 2-2
packaging 2-2, 4-16
XML deployment descriptors 4-4

Web archive 1-3
Web browser 2-15
Web components 1-2
web element A-5
WebLogic run-time client application

deployment descriptor B-7
WebLogic Server

configuring JavaMail for 6-4
development server 2-14
editing deployment descriptors using the

Console 4-6
EJBs 1-7
using threads in 6-2

WebLogic Server application
components 1-2

WebLogic Server applications 1-2
establishing a developing environment

2-9
programming topics 6-1
using JavaMail with 6-3

X
XML,editing 4-7
Developing WebLogic Server Applications I-v

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Related Information
	Contact Us!
	Documentation Conventions

	1 Understanding WebLogic Server J2EE Applications
	What Are WebLogic Server J2EE Applications and Components?
	J2EE Platform
	Web Application Components
	Servlets
	JavaServer Pages
	Web Application Directory Structure
	For More Information on Web Application Components

	Enterprise JavaBean Components
	EJB Overview
	EJB Interfaces
	EJBs and WebLogic Server

	Connector Component
	Enterprise Applications
	WebLogic Web Services
	Client Applications
	Naming Conventions

	2 Developing WebLogic Server J2EE Applications
	Creating Web Applications: Main Steps
	1. Create the HTML pages and JavaServer Pages (JSPs) that make up the Web interface of the Web ap...
	2. Write the Java code for the servlets and the JSP taglibs referenced in JSPs. Typically, Java p...
	3. Compile the servlets into class files.
	4. Create the web.xml and weblogic.xml deployment descriptors.
	5. Package the HTML pages, servlet class files, JSP files, web.xml, and weblogic.xml files into a...
	6. Auto-deploy the WAR file on WebLogic Server for testing purposes.
	7. Deploy the WAR file on the WebLogic Server for production use or include it in an Enterprise A...

	Creating Enterprise JavaBeans: Main Steps
	1. Write the Java code for the various classes required by each type of EJB (session, entity, or ...
	2. Compile the Java code using a standard compiler for the interfaces and implementation into cla...
	3. Create the EJB-specific deployment descriptors:
	4. Package the class files and deployment descriptors into a JAR file.
	5. Auto-deploy the EJB JAR file on WebLogic Server for testing purposes.
	6. Deploy the JAR file on WebLogic Server for production use or include it in an Enterprise ARchi...

	Creating Resource Adapters: Main Steps
	Creating a New Resource Adapter (RAR)
	1. Write the Java code for the various classes required by resource adapter (ConnectionFactory, C...
	2. Compile the Java code using a standard compiler for the interfaces and implementation into cla...
	3. Create the resource connector-specific deployment descriptors:
	4. Package the Java classes into a Java archive (JAR) file.
	5. Auto-deploy the RAR resource adapter archive file on WebLogic Server for testing purposes.
	6. Deploy the RAR resource adapter archive file on WebLogic Server or include it in an enterprise...

	Modifying an Existing Resource Adapter (RAR)
	1. Create a temporary directory anywhere on your hard drive to stage the resource adapter:
	2. Copy the resource adapter that you will deploy into the temporary directory:
	3. Extract the contents of the resource adapter archive:
	4. Create the weblogic-ra.xml file. This file is the WebLogic-specific deployment descriptor for ...
	5. Copy the weblogic-ra.xml file into the temporary directory's META-INF subdirectory. The META-I...
	6. Create the resource adapter archive:
	7. Deploy the resource adapter to WebLogic Server. There are several deployment tools. For detail...

	Creating WebLogic Server Enterprise Applications: Main Steps
	1. Create Web, EJB, and Connector components for your application.
	2. Create Web, EJB, and Connector deployment descriptors.
	3. Package the Web, EJB, and Connector components into their component archive files.
	4. Create the enterprise application deployment descriptor.
	5. Package the enterprise application into an EAR file.
	6. For testing purposes, auto-deploy the EAR enterprise application on WebLogic Server.
	7. For production purposes, use the Administration Console to deploy the EAR file on WebLogic Ser...
	Figure 2�1 Creating Enterprise Applications

	Establishing a Development Environment
	Software Tools
	Source Code Editor or IDE
	XML Editor
	Java Compiler
	Development WebLogic Server
	Database System and JDBC Driver
	Web Browser

	Third-Party Software
	Compiling Java Code
	Putting the Java Tools in Your Search Path
	Setting the Classpath for Compiling Code
	Setting Target Directories for Compiled Classes
	CLIENT_CLASSES
	SERVER_CLASSES
	EX_WEBAPP_CLASSES
	APPLICATIONS

	3 WebLogic Server Application Classloading
	Java Classloader Overview
	Java Classloader Hierarchy
	Loading a Class
	PreferWebInfClasses Element
	Listing 3-1 PreferWebInfClasses Element

	Changing Classes in a Running Program
	WebLogic Server Application Classloader Overview
	Application Classloading
	Application Classloader Hierarchy
	Figure 3�1 WebLogic Server Classloading

	Application Classloading and Pass by Value or Reference
	Table 3�1 Parameters Called by EJB Version 2.0
	Table 3�2 Parameters Called by EJB Version 1.1

	Resolving Class References Between Components and Applications
	About Resource Adapter Classes
	Packaging Shared Utility Classes
	Manifest Class-Path

	4 WebLogic Server Application Packaging
	Packaging Overview
	JAR Files
	jar cf jar-file files ...
	jar xf jar-file
	jar tf jar-file

	XML Deployment Descriptors
	Table 4�1 J2EE and WebLogic Deployment Descriptors
	Automatically Generating Deployment Descriptors
	Limitations of DDInit
	Example

	Editing Deployment Descriptors
	Using the BEA XML Editor
	About EJBGen
	Using the Administration Console Deployment Descriptor Editor
	Editing EJB Deployment Descriptors
	1. Invoke the Administration Console in your browser using the following URL:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the EJB node under the Deployments node.
	4. Right-click the name of the EJB whose deployment descriptors you want to edit and choose Edit ...
	5. To edit, delete, or add elements in the EJB deployment descriptors, click to expand the node i...
	6. To edit an existing element in one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the EJB deployment descriptors, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you make all your changes to the EJB deployment descriptors, click the root element of th...
	10. Click Validate if you want to ensure that the entries in the EJB deployment descriptors are v...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Web Application Deployment Descriptors
	1. Invoke the Administration Console in your browser:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Web Applications node under the Deployments node.
	4. Right-click the name of the Web application whose deployment descriptors you want to edit and ...
	5. To edit, delete, or add elements in the Web application deployment descriptors, click to expan...
	6. To edit an existing element in one of the Web application deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the Web application deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the Web application deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and choose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you make all your changes to the Web application deployment descriptors, click the root e...
	10. Click Validate to ensure that the entries in the Web application deployment descriptors are v...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Resource Adapter Deployment Descriptors
	1. Invoke the Administration Console in your browser:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Connectors node under the Deployments node.
	4. Right-click the name of the resource adapter whose deployment descriptors you want to edit and...
	5. To edit, delete, or add elements in the resource adapter deployment descriptors, click to expa...
	6. To edit an existing element in one of the resource adapter deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	7. To add a new element to one of the resource adapter deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	8. To delete an existing element from one of the resource adapter deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	9. Once you make all your changes to the resource adapter deployment descriptors, click the root ...
	10. Click Validate to ensure that the entries in the resource adapter deployment descriptors are ...
	11. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Editing Enterprise Application Deployment Descriptors
	1. Invoke the Administration Console in your browser:
	2. Click to expand the Deployments node in the left pane.
	3. Click to expand the Applications node under the Deployments node.
	4. Right-click the name of the Enterprise Application whose deployment descriptor you want to edi...
	5. To edit an existing element in the application.xml deployment descriptor, follow these steps:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the element you...
	b. Click the element. A form appears in the right pane that lists either its attributes or sub-el...
	c. Edit the text in the form in the right pane.
	d. Click Apply.
	6. To add a new element to the application.xml deployment descriptors:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and choose Configure a New Element from the drop-down menu.
	c. Enter the element information in the form that appears in the right pane.
	d. Click Create.
	7. To delete an existing element from the application.xml deployment descriptor:
	a. Navigate the tree in the left pane, clicking on parent elements until you find the name of the...
	b. Right-click the element and chose Delete Element from the drop-down menu.
	c. Click Yes to confirm that you want to delete the element.
	8. Once you make all your changes to the application.xml deployment descriptor, click the root el...
	9. Click Validate if you want to ensure that the entries in the application.xml deployment descri...
	10. Click Persist to write your edits of the deployment descriptor files to disk in addition to W...

	Packaging Web Applications
	1. Create a temporary staging directory anywhere on your hard drive. You can name this directory ...
	2. Copy all of your HTML files, JSP files, images, and any other files that these Web pages refer...
	3. Create META-INF and WEB-INF/classes subdirectories in the staging directory to hold deployment...
	4. Copy or compile any servlet classes and helper classes into the WEB-INF/classes subdirectory.
	5. Copy the home and remote interface classes for enterprise beans used by the servlets into the ...
	6. Copy JSP tag libraries into the WEB-INF subdirectory. (Tag libraries may be installed in a sub...
	7. Set up your shell environment.
	8. Execute the following command to automatically generate the web.xml and weblogic.xml deploymen...
	9. Bundle the staging directory into a WAR file by executing a jar command such as:
	Packaging Enterprise JavaBeans
	Staging and Packaging EJBs
	1. Create a temporary staging directory anywhere on your hard drive (for example, c:\stagedir).
	2. Compile or copy the bean’s Java classes into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Set up your shell environment.
	5. Execute the following command to automatically generate the ejb-jar.xml, weblogic-ejb-jar.xml,...
	6. When all of the enterprise bean classes and deployment descriptors are set up in the staging d...

	Using ejb-client.jar

	Packaging Resource Adapters
	1. Create a temporary staging directory anywhere on your hard drive.
	2. Compile or copy the resource adapter Java classes into the staging directory.
	3. Create a JAR to store the resource adapter Java classes. Add this JAR to the top level of the ...
	4. Create a META-INF subdirectory in the staging directory.
	5. Create an ra.xml deployment descriptor in the META-INF subdirectory and add entries for the re...
	6. Create a weblogic-ra.xml deployment descriptor in the META-INF subdirectory and add entries fo...
	7. When the resource adapter classes and deployment descriptors are set up in the staging directo...
	Packaging Enterprise Applications
	Enterprise Applications Deployment Descriptor Files
	Packaging Enterprise Applications: Main Steps
	1. Create a temporary staging directory anywhere on your hard drive.
	2. Copy the Web archives (WAR files) and EJB archives (JAR files) into the staging directory.
	3. Create a META-INF subdirectory in the staging directory.
	4. Set up your shell environment.
	5. Create the application.xml deployment descriptor file that describes the enterprise applicatio...
	6. Optionally create the weblogic-application.xml file manually in the META-INF directory, as des...
	7. Create the Enterprise Archive (EAR file) for the application, using a jar command such as:

	Packaging Client Applications
	Executing a Client Application in an EAR File
	Special Considerations for Deploying J2EE Client Applications

	Packaging J2EE Applications Using Apache Ant
	Compiling Java Source Files
	Running WebLogic Server Compilers
	Listing 4-1 Running WebLogic Server Compilers

	Packaging J2EE Deployment Units
	Listing 4-2 WAR Task Example
	1. Specify the standard XML deployment descriptor using the webxml parameter.
	2. The war task automatically maps XML deployment descriptor to the standard name in the WAR arch...
	3. Apache Ant stores the manifest file, specified using the manifest parameter, under the standar...
	4. Use the Apache Ant ZipFileSet command to define a set of files (in this case, just the WebLogi...
	5. Use a second ZipFileSet command to package all the images in an images directory.
	6. The classes tag packages servlet classes in the WEB-INF/classes directory.
	7. Finally, add all the .jsp and .html files from the current directory to the archive.

	Listing 4-3 Packaging Example
	<project name="app" default="app.ear">
	<property name="wlhome" value="/bea/wlserver6.1"/>
	<property name="srcdir" value="/bea/myproject/src"/>
	<property name="appdir" value="/bea/myproject/config/mydomain/applications"/>
	<target name="timer.war">
	<mkdir dir="classes"/>
	<javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/timer/*.java"/>
	<war warfile="timer.war" webxml="timer/web.xml" manifest="timer/manifest.txt">
	<classes dir="classes" includes="**/TimerServlet.class"/>
	</war>
	</target>
	<target name="trader.jar">
	<mkdir dir="classes"/>
	<javac srcdir="${srcdir}" destdir="classes" includes="myapp/j2ee/trader/*.java"/>
	<jar jarfile="trader0.jar" manifest="trader/manifest.txt">
	<zipfileset dir="trader" prefix="META-INF" includes="*ejb-jar.xml"/>
	<fileset dir="classes" includes="**/Trade*.class"/>
	</jar>
	<ejbc source="trader0.jar" target="trader.jar"/>
	</target>
	<target name="app.ear" depends="trader.jar, timer.war">
	<jar jarfile="app.ear">
	<zipfileset dir="." prefix="META-INF" includes="application.xml"/>
	<fileset dir="." includes="trader.jar, timer.war"/>
	</jar>
	</target>
	<target name="deploy" depends="app.ear">
	<copy file="app.ear" todir="${appdir}/>
	</target>
	</project>

	Running Ant

	5 WebLogic Server Deployment
	Two-Phase Deployment
	Restarting Admin Server
	Prepare Phase and Activate Phase
	Prepare Phase
	Activate Phase

	Deployment Order for Resources and Applications
	Setting the Order of Applications
	Ordering Components Within an Application
	Ordering Startup Class Execution and Deployment
	Figure 5�1 Startup Class Execution

	Application Staging
	Staging Modes
	Table 5�1 Deployment Staging Modes

	Configuring Staging Modes and Directories
	Staging Scenarios
	Deploy Application from its Source Location
	Deploy Application from a Known Staging Area
	Distribute Application Files to Managed Servers
	1. Configure the Managed Servers to use stage mode, and specify the staging directory each server...
	2. Ensure that the files to deploy are available to the Administration Server for the domain—eith...
	3. Deploy the files to the Managed Servers using the Administration Console.

	Deploy an Application Using external_stage Mode
	1. Configure the Managed Servers to use stage mode, and specify the staging directory each server...
	2. In the staging area for the Managed Server, create a subdirectory with the deployment name you...
	3. Ensure that the files to deploy are available to the Administration Server for the domain—eith...
	4. Deploy the files to the Managed Servers using the Administration Console, using the same deplo...

	Deployment Tools and Procedures
	weblogic.Deployer Utility
	Deploying Using weblogic.Deployer Utility
	1. Set up your local environment so that WebLogic Server classes are in your system CLASSPATH and...
	2. Use the following command syntax:

	weblogic.Deployer Actions and Options
	Table 5�2 weblogic.Deployer Actions
	Table 5�3 weblogic.Deployer Options

	Example Uses of the weblogic.Deployer Utility
	Deploying a New Application
	Deploying a New Application to a Cluster
	Redeploying an Entire Application
	Notes: Ensure that you specify the –source option or provide the list of updated files. Without t...

	Deploying a Module Newly Added to an EAR
	Redeploying Part of an Exploded Application, or Refreshing
	Deactivating an Application on All Active Targets, Making It Unavailable
	Reactivating a Deactivated Application
	Removing an Application from All Targeted Servers
	Cancelling a Deployment Task
	Listing All Deployment Tasks
	Deploying or Redeploying an Application to a Single Server
	Deploying an Application to an Additional Server

	wldeploy Ant Task
	Basic Steps for Using wldeploy
	1. Set your environment.
	2. In the staging directory, create the Ant build file (build.xml by default). If you want to use...
	3. If necessary, add task definitions and calls to the wlserver and wlconfig tasks in the build s...
	4. Add a call to wldeploy to deploy your application to one or more WebLogic Server instances or ...
	5. Execute the Ant task or tasks specified in the build.xml file by typing ant in the staging dir...

	Sample build.xml Files for wldeploy
	wldeploy Ant Task Reference
	Table 5�4 Attributes of the wldeploy Ant Task

	WebLogic Server Administration Console
	Configuring J2EE Applications for Deployment Using the Administration Console
	1. Start the WebLogic Server Administration Console.
	2. Select the Domain in which you will be working.
	3. In the left pane of the Console, click Deployments.
	4. In the left pane of the Console, click Applications. A table is displayed in the right pane of...
	5. Select the Configure a new Application option.
	6. Locate the archive file (WAR, EAR, RAR, JAR) to configure.
	7. Click [select] to the left of a directory or file to choose it and proceed to the next step.
	8. Select a Target Server from among Available Servers.
	9. Enter a name for the Application in the provided field.
	10. Click Configure and Deploy. The Console will display the Deploy panel, which lists deployment...
	11. Using the available tabs, enter the following information:

	Deploying J2EE Applications with the Administration Console
	1. Expand the Deployments node in the left pane.
	2. Right-click on the Applications node.
	3. Select Configure a New Application.
	4. Locate the archive (WAR, EAR, RAR, JAR) or the directory containing the exploded application t...
	5. Click [select] to the left of a directory or file to choose it and proceed to the next step. I...
	6. Select a Target Server from among Available Servers.
	7. Enter a name for the J2EE Application in the provided field.
	8. Click Configure and Deploy. The Console will display the Deploy panel, which lists deployment ...
	9. Use the Deploy button to deploy the J2EE Application to all or selected targets or undeploy it...
	10. Test your J2EE Application by accessing a resource through a Web browser. Access resources wi...

	Viewing Deployed Components with the Administration Console
	1. In the Administration Console under Deployments, select the <component> in the left panel.
	2. View a list of deployed components in the Deployments table in the right pane.

	Undeploying Components with the Administration Console
	1. In the Administration Console under Deployments, select the component in the left panel.
	2. In the component Deployments table, select the component to undeploy.
	3. Click Apply.

	Updating Applications with the Administration Console
	1. In the Console, click Deployments.
	2. Click the Applications option.
	3. In the displayed table, click the name of the application you wish to update.
	4. Update the Application Name and Deployed status as needed.
	5. Click Apply.
	1. Add the module by redeploying the application, using steps 1-5 above.
	2. Click the module name in the table in the Deployments >Applications tab.
	3. Select the Targets tab.
	4. Move the desired server from the Available area to the Chosen area, and click Apply.

	WebLogic Builder
	Auto-Deployment
	Enabling and Disabling Auto-Deployment
	Auto-Deploying Applications
	Undeploying and Redeploying Archived Applications
	Redeploying Applications in Exploded Format
	1. When you first deploy the exploded application, create an empty file named REDEPLOY, and place...
	2. To update the exploded application, copy the updated files over the existing files in that dir...
	3. After copying the new files, modify the REDEPLOY file in the exploded directory to alter its t...

	Deployment Management API

	Best Practices for Application Deployment
	Single Server Development
	Testing Changes to Web Applications or Web Services
	Testing Changes to EJBs and Resource Adapters

	Multiple Server Development
	Testing Changes in a Multiple Server Environment
	1. Deploy the Web application using the Administration Console or as follows:
	2. Make needed changes to the JSP: /myapp/webapp/jsps/login.jsp
	3. Apply the changes as follows:

	File Structures for Exploded Applications
	Staging Mode
	Auto-Deployment
	Exploded Enterprise Applications
	Partial Redeployment
	Sharing Classes between Components That Are Part of an Enterprise Application

	Using WebLogic Server 6.x Deployment Protocol
	Updating to Two Phase Deployment
	1. Remove the application using weblogic.Deployer. Enter a command in the following form:
	2. Reactivate the application using weblogic.Deployer. Enter a command in the following form:

	Additional Deployment Documentation

	6 Programming Topics
	Logging Messages
	Using Threads in WebLogic Server
	Using JavaMail with WebLogic Server Applications
	About JavaMail Configuration Files
	Configuring JavaMail for WebLogic Server
	1. In the Administration Console, click on the Mail node in the left pane of the Administration C...
	2. Click Create a New Mail Session.
	3. Complete the form in the right pane, as follows:

	Sending Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Construct a MimeMessage. In the following example, to, subject, and messageTxt are String vari...
	5. Send the message.

	Reading Messages with JavaMail
	1. Import the JNDI (naming), JavaBean Activation, and JavaMail packages. You will also need to im...
	2. Look up the Mail Session in JNDI:
	3. If you need to override the properties you set for the Session in the Administration Console, ...
	4. Get a Store object from the Session and call its connect() method to connect to the mail serve...
	5. Get the default folder, then use it to get the INBOX folder:
	6. Read the messages in the folder into an array of Messages:
	7. Operate on messages in the Message array. The Message class has methods that allow you to acce...

	Programming Applications for WebLogic Server Clusters

	A Application Deployment Descriptor Elements
	application.xml Deployment Descriptor Elements
	application
	icon
	small-icon
	large-icon

	display-name
	description
	module
	alt-dd
	connector
	ejb
	java
	web

	security-role
	description
	role-name

	weblogic-application.xml Deployment Descriptor Elements
	weblogic-application
	ejb
	entity-cache
	start-mdbs-with-application

	xml
	parser-factory
	entity-mapping

	jdbc-connection-pool
	data-source-name
	connection-factory
	pool-params
	driver-params
	acl-name

	application-param

	B Client Application Deployment Descriptor Elements
	application-client.xml Deployment Descriptor Elements
	application-client
	icon
	small-icon
	large-icon

	display-name
	description
	env-entry
	description
	env-entry-name
	env-entry-type
	env-entry-value

	ejb-ref
	description
	ejb-ref-name
	ejb-ref-type
	home
	remote
	ejb-link

	resource-ref
	description
	res-ref-name
	res-type
	res-auth

	WebLogic Run-time Client Application Deployment Descriptor
	application-client
	env-entry
	env-entry-name
	env-entry-value

	ejb-ref
	ejb-ref-name
	jndi-name

	resource-ref
	resource-ref-name
	jndi-name

	Index
	Symbols
	A
	B
	C
	D
	E
	G
	H
	I
	J
	L
	M
	P
	R
	S
	T
	U
	W
	X

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

