
BEA
 WebLogic
Server™

Programming WebLogic
Web Services
Release 7.0
Document Revised: January 9, 2004

Copyright

Copyright © 2002 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic Web Services

Part Number Date Software Version

N/A January 9, 2004 BEA WebLogic Server
Version 7.0

Contents

About This Document
Audience.. xiii
e-docs Web Site... xiii
How to Print the Document... xiii
Contact Us!.. xiv
Documentation Conventions ... xiv

1. Overview of WebLogic Web Services
What Are Web Services?... 1-1
Why Use Web Services? ... 1-2
Web Service Standards.. 1-3

SOAP 1.1 with Attachments .. 1-4
WSDL 1.1... 1-5
JAX-RPC.. 1-6
UDDI 2.0.. 1-7

WebLogic Web Service Features .. 1-7
Examples Of Creating and Invoking a Web Service... 1-9
Creating WebLogic Web Services: Main Steps .. 1-10
Differences Between 6.1 and 7.X WebLogic Web Services........................... 1-12
Unsupported Features.. 1-13
Editing XML Files... 1-14

2. Architectural Overview
WebLogic Web Services Architecture .. 2-1
Backend Component-Only Operation ... 2-2
Backend Component and SOAP Message Handler Chain Operation 2-3
SOAP Message Handler Chain-Only Operation ... 2-5
Programming WebLogic Web Services iii

3. Creating a WebLogic Web Service: A Simple Example
Description of the Example ... 3-1
Example of Creating a WebLogic Web Service: Main Steps............................ 3-2
Writing the Java Code for the EJB .. 3-4
Writing the Java Code for the Non-Built-In Data Type 3-8
Creating EJB Deployment Descriptors.. 3-9
Assembling the EJB... 3-11
Creating the build.xml Ant Build File ... 3-11

4. Designing WebLogic Web Services
Choosing Between Synchronous or Asynchronous Operations 4-1
Choosing the Backend Components of Your Web Service............................... 4-2

EJB Backend Component... 4-3
Java Class Backend Component... 4-3

RPC-Oriented or Document-Oriented Web Services? 4-4
Data Types ... 4-5
Using SOAP Message Handlers to Intercept the SOAP Message..................... 4-6
Stateful WebLogic Web Service ... 4-7

5. Implementing WebLogic Web Services
Overview of Implementing a WebLogic Web Service...................................... 5-1
Implementing a WebLogic Web Service: Main Steps 5-2
Writing the Java Code for the Components... 5-3

Implementing a Web Service By Writing a Stateless Session EJB............ 5-4
Implementing a Web Service By Writing a Java Class.............................. 5-4
Implementing Non-Built-In Data Types .. 5-5
Implementing a Document-Oriented Web Service 5-6
Generating a Partial Implementation From a WSDL File.......................... 5-7

Running the wsdl2Service Ant Task... 5-7
Sample build.xml Files for the wsdl2Service Ant Task...................... 5-8

Implementing Multiple Return Values... 5-8
Using Holder Classes to Implement Multiple Return Values 5-9

Throwing SOAP Fault Exceptions ... 5-11
Using Built-In Data Types... 5-12

XML Schema-to-Java Mapping for Built-In Data Types......................... 5-13
iv Programming WebLogic Web Services

Java-to-XML Mapping for Built-In Data Types 5-16

6. Assembling WebLogic Web Services Using Ant Tasks
Overview of Assembling WebLogic Web Services Using Ant Tasks 6-2
Assembling WebLogic Web Services Using the servicegen Ant task 6-3

What the servicegen Ant Task Does .. 6-3
Assembling WebLogic Web Services Automatically: Main Steps............ 6-4
Running the servicegen Ant Task .. 6-5

Assembling WebLogic Web Services Using Other Ant Tasks 6-6
Running the source2wsdd Ant Task... 6-7

Sample build.xml Files for the source2wsdd Ant Task 6-8
Running the autotype Ant Task.. 6-8

Sample build.xml Files for the Autotype Ant Task 6-9
Running the clientgen Ant Task... 6-10

Sample build.xml File for the clientgen Ant Task 6-10
Running the wspackage Ant task ... 6-11

Sample build.xml Files for the wspackage Ant Task........................ 6-11
The Web Service EAR File Package... 6-12
Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks . 6-13

Supported XML Non-Built-In Data Types .. 6-14
Supported Java Non-Built-In Data Types .. 6-16
Data Type Non-Compliance with JAX-RPC ... 6-16

Non-Roundtripping of Generated Data Type Components............................. 6-17
Deploying WebLogic Web Services ... 6-18

7. Assembling a WebLogic Web Service Manually
Overview of Assembling a WebLogic Web Service Manually 7-1
Assembling a WebLogic Web Service Manually: Main Steps 7-2
Overview of the web-services.xml File... 7-3
Creating the web-services.xml File Manually: Main Steps............................... 7-4

Creating the <components> Element ... 7-6
Creating <operation> Elements.. 7-7

Specifying the Type of Operation... 7-7
Specifying the Parameters and Return Value of the Operation 7-9

Sample web-services.xml Files ... 7-10
Programming WebLogic Web Services v

EJB Component Web Service With Built-In Data Types 7-10
EJB Component Web Service With Non-Built-In Data Types 7-12
EJB Component and SOAP Message Handler Chain Web Service......... 7-14
SOAP Message Handler Chain-Only Web Service.................................. 7-15

8. Invoking Web Services
Overview of Invoking Web Services... 8-1

JAX-RPC API .. 8-2
Examples of Clients That Invoke Web Services .. 8-3

Creating Java Client Applications to Invoke Web Services: Main Steps.......... 8-4
Getting the Java Client JAR Files.. 8-4

Running the clientgen Ant Task ... 8-6
Sample build.xml File for the clientgen Ant Task 8-7

Writing the Java Client Application Code... 8-7
Getting Information about a Web Service.. 8-7
Maintaining the HTTP Session .. 8-8
Handling Web Services That Crash ... 8-9
Writing a Simple Static Client.. 8-9
Writing a Dynamic Client That Uses WSDL... 8-12
Writing a Dynamic Client That Does Not Use WSDL 8-14
Writing a Client that Uses Out or In-Out Parameters............................... 8-16

Writing a J2ME Client... 8-17
Writing a J2ME Client that Uses SSL.. 8-18

Creating and Using Portable Stubs .. 8-19
 Using the VersionMaker Utility .. 8-20

Using a Proxy Server with the WebLogic Web Services Client 8-21
The WebLogic Web Services Home Page and WSDL URLs......................... 8-22
Debugging Errors While Invoking Web Services ... 8-24
WebLogic Web Services System Properties ... 8-25

9. Using Non-Built-In Data Types
Overview of Using Non-Built-In Data Types ... 9-1
Creating Non-Built-In Data Types Manually: Main Steps................................ 9-2

Writing the XML Schema Data Type Representation 9-4
Writing the Java Data Type Representation... 9-5
vi Programming WebLogic Web Services

Writing the Serialization Class... 9-6
Creating the Data Type Mapping File.. 9-11
Updating the web-services.xml File With XML Schema Information 9-12

10. Creating SOAP Message Handlers to Intercept the SOAP
Message

Overview of SOAP Message Handlers and Handler Chains........................... 10-2
Creating SOAP Message Handlers: Main Steps ... 10-3
Designing the SOAP Message Handlers and Handler Chains 10-3
Implementing the Handler Interface.. 10-6

Implementing the Handler.init() Method ... 10-7
Implementing the Handler.destroy() Method... 10-8
Implementing the Handler.getHeaders() Method..................................... 10-8
Implementing the Handler.handleRequest() Method 10-8
Implementing the Handler.handleResponse() Method........................... 10-10
Implementing the Handler.handleFault() Method.................................. 10-11
The javax.xml.soap.SOAPMessage Object.. 10-12

The SOAPPart Object ... 10-12
The AttachmentPart Object... 10-13

Extending the GenericHandler Abstract Class .. 10-13
Updating the web-services.xml File with SOAP Message Handler Information....

10-16
Using SOAP Message Handlers and Handler Chains in a Client Application........

10-18

11. Configuring Security
Overview of Configuring Security .. 11-1
Configuring Security: Main Steps ... 11-2
Controlling Access to WebLogic Web Services ... 11-3

Securing Web Service URL ... 11-4
Securing the Stateless Session EJB and Its Methods 11-4
Securing the WSDL and Home Page of the Web Service 11-5

Specifying the HTTPS Protocol .. 11-5
Coding a Client Application to Invoke a Secure Web Service 11-6
Configuring SSL for a Client Application... 11-7
Programming WebLogic Web Services vii

Using the WebLogic Server-Provided SSL Implementation 11-8
Configuring SSL Programatically... 11-9

Using a Third-Party SSL Implementation.. 11-11
Extending the SSLAdapterFactory Class ... 11-12
Configuring Two-Way SSL For a Client Application 11-13
Using a Proxy Server.. 11-14

12. Creating JMS-Implemented WebLogic Web Services
Overview of JMS-Implemented WebLogic Web Services 12-2
Designing JMS-Implemented WebLogic Web Services 12-3

Choosing a Queue or Topic.. 12-3
Retrieving and Processing Messages.. 12-4
Example of Using JMS Components ... 12-4

Implementing JMS-Implemented WebLogic Web Services 12-5
Configuring JMS Components for Message-Style Web Services............ 12-6

Assembling JMS-Implemented WebLogic Web Services Automatically....... 12-7
Running the servicegen Ant Task... 12-8

Assembling JMS-Implemented WebLogic Web Services Manually 12-9
Packaging the JMS Message Consumers and Producers 12-10
Updating the web-services.xml File With Component Information 12-10
Sample web-services.xml File for JMS Component Web Service......... 12-11

Deploying JMS-Implemented WebLogic Web Services............................... 12-13
Invoking JMS-Implemented WebLogic Web Services 12-13

Invoking an Asynchronous Web Service Operation to Send Data . 12-14
Invoking a Synchronous Web Service Operation to Send Data...... 12-16

13. Administering WebLogic Web Services
Overview of Administering WebLogic Web Services 13-1
Viewing the Web Services Deployed on WebLogic Server............................ 13-3

14. Publishing and Finding Web Services Using UDDI
Introduction to UDDI .. 14-1

UDDI and Web Services .. 14-2
UDDI and Business Registry.. 14-2
UDDI Data Structure.. 14-3

WebLogic Server UDDI Features ... 14-5
viii Programming WebLogic Web Services

Invoking the UDDI Directory Explorer .. 14-5
Using the UDDI Client API .. 14-6

15. Interoperability
Overview of Interoperability ... 15-1
Avoid Using Vendor-Specific Extensions... 15-2
Stay Current With the Latest Interoperability Tests.. 15-3
Understand the Data Models of Your Applications .. 15-3
Understand the Interoperability of Various Data Types.................................. 15-4
Results of SOAPBuilders Interoperability Lab Round 3 Tests 15-5
Interoperating With .NET.. 15-6

16. Upgrading 6.1 WebLogic Web Services to 7.0
Overview of Upgrading 6.1 WebLogic Web Services 16-1
Upgrading 6.1 WebLogic Web Services to 7.0 Automatically 16-2
Upgrading 6.1 WebLogic Web Services to 7.0 Manually............................... 16-4
Converting a 6.1 build.xml file to 7.0 ... 16-5
Updating the URL Used to Access the Web Service 16-7

A. WebLogic Web Service Deployment Descriptor Elements
Graphical Representation ... A-1
Element Reference.. A-3

components.. A-3
ejb-link .. A-4
fault.. A-4
handler ... A-5
handler-chain... A-5
handler-chains ... A-5
init-param .. A-6
init-params... A-6
java-class ... A-6
jms-receive-queue ... A-6
jms-receive-topic... A-7
jms-send-destination.. A-8
jndi-name... A-8
operation.. A-8
Programming WebLogic Web Services ix

operations .. A-11
param ... A-11
params.. A-13
return-param .. A-14
stateless-ejb.. A-15
type-mapping... A-15
type-mapping-entry ... A-16
types... A-17
web-service.. A-18
web-services .. A-20

B. Web Service Ant Tasks and Command-Line Utilities
Overview of WebLogic Web Services Ant Tasks and Command-Line Utilities...

B-2
List of Web Services Ant Tasks and Command-Line Utilities B-3
Using the Web Services Ant Tasks ... B-4
Setting the Classpath for the WebLogic Ant Tasks................................... B-5
Differences in Operating System Case Sensitivity When Manipulating

WSDL and XML Schema Files ... B-6
Using the Web Services Command-Line Utilities B-7

autotype .. B-7
clientgen.. B-12
servicegen ... B-19

servicegen... B-20
service... B-22
client ... B-26

source2wsdd ... B-28
wsdl2Service... B-31
wspackage... B-33
wsgen .. B-36

C. Customizing WebLogic Web Services
Publishing a Static WSDL File... C-1
Creating a Custom WebLogic Web Service Home Page C-2

D. Specifications Supported by WebLogic Web Services
x Programming WebLogic Web Services

About This Document

This document describes BEA WebLogic® Web Services and describes how to
develop them and invoke them from a client application.

The document is organized as follows:

Chapter 1, “Overview of WebLogic Web Services,” provides conceptual
information about Web Services and the features of WebLogic Web services.

Chapter 2, “Architectural Overview,” provides an architectural overview of
WebLogic Web services.

Chapter 3, “Creating a WebLogic Web Service: A Simple Example,” describes
the end-to-end process of creating a simple WebLogic Web service based on a
stateless session EJB.

Chapter 4, “Designing WebLogic Web Services,” describes the design issues you
should consider before developing a WebLogic Web Service.

Chapter 5, “Implementing WebLogic Web Services,” describes how to create the
back-end components that implement a Web service.

Chapter 6, “Assembling WebLogic Web Services Using Ant Tasks,” describes
how to use the WebLogic Web services Ant tasks to automatically generate the
final parts of a Web service (such as the serialization information for non-built-in
data types and client JAR file), package them all together into a deployable EAR
file, and deploy the EAR file on WebLogic Server.

Chapter 7, “Assembling a WebLogic Web Service Manually,” describes how
assemble a WebLogic Web service manually without using the WebLogic Web
services Ant tasks.

Chapter 8, “Invoking Web Services,” describes how to write a client application
that invokes WebLogic Web services.
Programming WebLogic Web Services xi

Chapter 9, “Using Non-Built-In Data Types,” describes how to create the
serializers and deserializers that convert user-defined data types between their
XML and Java representations.

Chapter 10, “Creating SOAP Message Handlers to Intercept the SOAP
Message,” describes how to create handlers that intercept a SOAP message for
further processing.

Chapter 11, “Configuring Security,” describes how to configure security for
WebLogic Web services.

Chapter 12, “Creating JMS-Implemented WebLogic Web Services,” describes
how to create a WebLogic Web service that is implemented with a JMS message
consumer or producer.

Chapter 13, “Administering WebLogic Web Services,” describes how to use the
Administration Console to administer WebLogic Web services.

Chapter 14, “Publishing and Finding Web Services Using UDDI,” describes how
to use the UDDI features included in WebLogic Server.

Chapter 15, “Interoperability,” describes what it means for Web services to
interoperate with each other and provides tips for creating highly interoperable
Web services.

Chapter 16, “Upgrading 6.1 WebLogic Web Services to 7.0,” describes how to
upgrade Web services created in Version 6.1 of WebLogic Server to Version 7.0.

Appendix A, “WebLogic Web Service Deployment Descriptor Elements,”
describes the elements in the Web services deployment descriptor file,
web-services.xml.

Appendix B, “Web Service Ant Tasks and Command-Line Utilities,” describes
the Ant tasks, along with their equivalent command-line utilities, used to
assemble WebLogic Web services.

Appendix C, “Customizing WebLogic Web Services,” describes how to
customize WebLogic Web services by updating the Web application’s web.xml
deployment descriptor file.

Appendix D, “Specifications Supported by WebLogic Web Services,” provides
information about the specifications supported by WebLogic Web services, such
as SOAP 1.1, WSDL 1.1, and so on.
xii Programming WebLogic Web Services

Audience

This document is written for Java developers who want to create a Web service that
runs on WebLogic Server.

It is assumed that readers know Web technologies, XML, and the Java programming
language.

e-docs Web Site

BEA product documentation is available on the BEA corporate Web site. From the
BEA Home page, click on Product Documentation.

How to Print the Document

You can print a copy of this document from a Web browser, one main topic at a time,
by using the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation
Home page on the e-docs Web site (and also on the documentation CD). You can open
the PDF in Adobe Acrobat Reader and print the entire document (or a portion of it) in
book format. To access the PDFs, open the WebLogic Server documentation Home
page, click Download Documentation, and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.
Programming WebLogic Web Services xiii

http://www.adobe.com

Contact Us!

Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be
reviewed directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using,
as well as the title and document date of your documentation. If you have any questions
about this version of BEA WebLogic Server, or if you have problems installing and
running BEA WebLogic Server, contact BEA Customer Support through BEA
WebSupport at http://www.bea.com. You can also contact Customer Support by using
the contact information provided on the Customer Support Card, which is included in
the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions

The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.
xiv Programming WebLogic Web Services

mailto:docsupport@bea.com
http://www.bea.com

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that you enter from the keyboard.
Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Variables in code.
Example:
String CustomerName;

UPPERCASE
TEXT

Device names, environment variables, and logical operators.
Examples:
LPT1
BEA_HOME
OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:
An argument can be repeated several times in the command line.
The statement omits additional optional arguments.
You can enter additional parameters, values, or other information

Convention Usage
Programming WebLogic Web Services xv

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage
xvi Programming WebLogic Web Services

CHAPTER
1 Overview of WebLogic
Web Services

The following sections provide an overview of Web services, and how they are
implemented in WebLogic Server:

“What Are Web Services?” on page 1-1

“Why Use Web Services?” on page 1-2

“Web Service Standards” on page 1-3

“WebLogic Web Service Features” on page 1-7

“Examples Of Creating and Invoking a Web Service” on page 1-9

“Creating WebLogic Web Services: Main Steps” on page 1-10

“Differences Between 6.1 and 7.X WebLogic Web Services” on page 1-12

“Unsupported Features” on page 1-13

“Editing XML Files” on page 1-14

What Are Web Services?

Web services are a type of service that can be shared by and used as components of
distributed Web-based applications. They commonly interface with existing back-end
applications, such as customer relationship management systems, order-processing
systems, and so on.
Programming WebLogic Web Services 1-1

1 Overview of WebLogic Web Services
Traditionally, software application architecture tended to fall into two categories: huge
monolithic systems running on mainframes or client-server applications running on
desktops. Although these architectures work well for the purpose the applications were
built to address, they are closed and can not be easily accessed by the diverse users of
the Web.

Thus the software industry is evolving toward loosely coupled service-oriented
applications that dynamically interact over the Web. The applications break down the
larger software system into smaller modular components, or shared services. These
services can reside on different computers and can be implemented by vastly different
technologies, but they are packaged and transported using standard Web protocols,
such as XML and HTTP, thus making them easily accessible by any user on the Web.

The concept of services is not new—RMI, COM, and CORBA are all service-oriented
technologies. However, applications based on these technologies require them to be
written using that particular technology, often from a particular vendor. This
requirement typically hinders widespread acceptance of an application on the Web. To
solve this problem, Web services are defined to share the following properties that
make them easily accessible from heterogeneous environments:

Web services are accessed over the Web.

Web services describe themselves using an XML-based description language.

Web services communicate with clients (both end-user applications or other Web
services) through XML messages that are transmitted by standard Internet
protocols, such as HTTP.

Why Use Web Services?

Major benefits of Web services include:

Interoperability among distributed applications that span diverse hardware and
software platforms

Easy, widespread access to applications through firewalls using Web protocols

A cross-platform, cross-language data model (XML) that facilitates developing
heterogeneous distributed applications
1-2 Programming WebLogic Web Services

Web Service Standards
Because you access Web services using standard Web protocols such as XML and
HTTP, the diverse and heterogeneous applications on the Web (which typically
already understand XML and HTTP) can automatically access Web services, and thus
communicate with each other.

These different systems can be Microsoft SOAP ToolKit clients, J2EE applications,
legacy applications, and so on. They are written in Java, C++, Perl, and other
programming languages. Application interoperability is the goal of Web services and
depends upon the service provider's adherence to published industry standards.

Web Service Standards

A Web service consists of the following components:

An implementation hosted by a server on the Web.

WebLogic Web services are hosted by WebLogic Server; are implemented using
standard J2EE components (such as Enterprise Java Beans and JMS) and Java
classes; and are packaged as standard J2EE Enterprise Applications.

A standardized way to transmit data and Web service invocation calls between
the Web service and the user of the Web service.

WebLogic Web services use Simple Object Access Protocol (SOAP) 1.1 and 1.2
as the message format and HTTP as the connection protocol. See “SOAP 1.1
with Attachments” on page 1-4.

Note: WebLogic Web services accept both SOAP 1.1 and 1.2 incoming requests,
but produce only SOAP 1.1 outgoing responses.

A standard way to describe the Web service to clients so they can invoke it.

WebLogic Web services use Web Services Description Language (WSDL) 1.1,
an XML-based specification, to describe themselves. See “WSDL 1.1” on page
1-5.

A standard way for client applications to invoke a Web service.

WebLogic Web services implement the Java API for XML-based RPC
(JAX-RPC) as part of a client JAR that client applications can use to invoke
WebLogic and non-WebLogic Web services. See “JAX-RPC” on page 1-6.
Programming WebLogic Web Services 1-3

1 Overview of WebLogic Web Services
A standard way for client applications to find a registered Web service and to
register a Web service.

WebLogic Web services implement the Universal Description, Discovery, and
Integration (UDDI) specification. See “UDDI 2.0” on page 1-7.

SOAP 1.1 with Attachments

SOAP (Simple Object Access Protocol) is a lightweight XML-based protocol used to
exchange information in a decentralized, distributed environment. WebLogic Server
includes its own implementation of both the SOAP 1.1 and SOAP With Attachments
specifications. The protocol consists of:

An envelope that describes the SOAP message. The envelope contains the body
of the message, identifies who should process it, and describes how to process it.

A set of encoding rules for expressing instances of application-specific data
types.

A convention for representing remote procedure calls and responses.

This information is embedded in a Multipurpose Internet Mail Extensions
(MIME)-encoded package that can be transmitted over HTTP or other Web protocols.
MIME is a specification for formatting non-ASCII messages so that they can be sent
over the Internet.

Note: WebLogic Web services accept both SOAP 1.1 and 1.2 incoming requests,
but produce only SOAP 1.1 outgoing responses.

The following example shows a SOAP request for stock trading information
embedded inside an HTTP request:

POST /StockQuote HTTP/1.1
Host: www.sample.com
Content-Type: text/xml; charset="utf-8"
Content-Length: nnnn
SOAPAction: "Some-URI"

<SOAP-ENV:Envelope
 xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/"
 SOAP-ENV:encodingStyle="http://schemas.xmlsoap.org/soap/encoding/">
 <SOAP-ENV:Body>
 <m:GetLastStockQuote xmlns:m="Some-URI">
1-4 Programming WebLogic Web Services

Web Service Standards
 <symbol>BEAS</symbol>
 </m:GetLastStockQuote>
 </SOAP-ENV:Body>
</SOAP-ENV:Envelope>

WSDL 1.1

Web Services Description Language (WSDL) is an XML-based specification that
describes a Web service. A WSDL document describes Web service operations, input
and output parameters, and how to connect to the Web service.

Developers of WebLogic Web services do not need to create the WSDL files; you
generate these files automatically as part of the WebLogic Web services development
process.

The following example, for informational purposes only, shows a WSDL file that
describes the stock trading Web service StockQuoteService that contains the method
GetLastStockQuote:

<?xml version="1.0"?>
 <definitions name="StockQuote"
 targetNamespace="http://sample.com/stockquote.wsdl"
 xmlns:tns="http://sample.com/stockquote.wsdl"
 xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"
 xmlns:xsd1="http://sample.com/stockquote.xsd"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns="http://schemas.xmlsoap.org/wsdl/">
 <message name="GetStockPriceInput">
 <part name="symbol" element="xsd:string"/>
 </message>
 <message name="GetStockPriceOutput">
 <part name="result" type="xsd:float"/>
 </message>
 <portType name="StockQuotePortType">
 <operation name="GetLastStockQuote">
 <input message="tns:GetStockPriceInput"/>
 <output message="tns:GetStockPriceOutput"/>
 </operation>
 </portType>
 <binding name="StockQuoteSoapBinding" type="tns:StockQuotePortType">
 <soap:binding style="rpc"
 transport="http://schemas.xmlsoap.org/soap/http"/>
 <operation name="GetLastStockQuote">
 <soap:operation soapAction="http://sample.com/GetLastStockQuote"/>
 <input>
Programming WebLogic Web Services 1-5

1 Overview of WebLogic Web Services
 <soap:body use="encoded" namespace="http://sample.com/stockquote"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </input>
 <output>
 <soap:body use="encoded" namespace="http://sample.com/stockquote"
 encodingStyle="http://schemas.xmlsoap.org/soap/encoding/"/>
 </output>
 </operation>>
 </binding>
 <service name="StockQuoteService">
 <documentation>My first service</documentation>
 <port name="StockQuotePort" binding="tns:StockQuoteSoapBinding">
 <soap:address location="http://sample.com/stockquote"/>
 </port>
 </service>
 </definitions>

JAX-RPC

The Java API for XML-based RPC (JAX-RPC) is a Sun Microsystems specification
that defines the client API for invoking a Web service.

The following table briefly describes the core JAX-RPC interfaces and classes.

Table 1-1 JAX-RPC Interfaces and Classes

javax.xml.rpc
Interface or Class

Description

Service Main client interface. Used for both static and dynamic
invocations.

ServiceFactory Factory class for creating Service instances.

Stub Represents the client proxy for invoking the operations of a Web
service. Typically used for static invocation of a Web service.

Call Used to dynamically invoke a Web service.

JAXRPCException Exception thrown if an error occurs while invoking a Web
service.
1-6 Programming WebLogic Web Services

WebLogic Web Service Features
For detailed information on JAX-RPC, see the following Web site:
http://java.sun.com/xml/jaxrpc/index.html.

For a tutorial that describes how to use JAX-RPC to invoke Web services, see
http://java.sun.com/webservices/docs/ea1/tutorial/doc/JAXRPC.html.

UDDI 2.0

The Universal Description, Discovery and Integration (UDDI) specification defines a
standard way to describe a Web service; register a Web service in a well-known
registry; and discover other registered Web services.

See http://www.uddi.org.

WebLogic Web Service Features

The WebLogic Web services subsystem has the following features:

Standard Specifications

See “Web Service Standards” on page 1-3.

Support for Exposing Standard J2EE Components

WebLogic Web services support exposing standard J2EE components, such as
stateless session EJBs and JMS consumers or producers.

Ant Tasks and Command Line Utilities

Ant tasks facilitate the implementation and packaging of Web services. See
Appendix B, “Web Service Ant Tasks and Command-Line Utilities.”

UDDI Registry, Directory Explorer, and Client API

WebLogic Server includes a UDDI registry, a UDDI Directory Explorer, and an
implementation of the UDDI client API. See Chapter 14, “Publishing and
Finding Web Services Using UDDI.”

Support for Both RPC-Oriented and Document-Oriented Operations
Programming WebLogic Web Services 1-7

http://java.sun.com/xml/jaxrpc/index.html
http://java.sun.com/webservices/docs/ea1/tutorial/doc/JAXRPC.html
http://www.uddi.org

1 Overview of WebLogic Web Services
WebLogic Web service operations can be either RPC-oriented (SOAP messages
contain parameters and return values) or document-oriented (SOAP messages
contain documents.) For details, see “RPC-Oriented or Document-Oriented Web
Services?” on page 4-4.

Support for User-Defined Data Types

You can create a WebLogic Web service that uses non-built-in data types as its
parameters and returns values. Non-built-in data types are defined as data types
other than the supported built-in data types; examples of built-in data types
include int and String. WebLogic Server Ant tasks can generate the
components needed to use non-built-in data types; this feature is referred to as
autotyping. You can also create these components manually. See Appendix B,
“Web Service Ant Tasks and Command-Line Utilities,” and Chapter 9, “Using
Non-Built-In Data Types.”

SOAP Message Handlers to Access SOAP Messages

A SOAP message handler accesses the SOAP message and its attachment in
both the request and response of the Web service. You can create handlers in
both the Web service itself and the client applications that invoke the Web
service. See Chapter 10, “Creating SOAP Message Handlers to Intercept the
SOAP Message.”

Java Client to Invoke a Web Service

Developers can use an automatically generated thin Java client to create Java
client applications that invoke WebLogic and non-WebLogic Web services. See
Chapter 8, “Invoking Web Services.”

Note: For information about BEA’s current licensing of client functionality, see
the BEA eLicense Web Site at
http://elicense.bea.com/elicense_webapp/index.jsp.

The Web Services Home Web Page

All deployed WebLogic Web services automatically have a Home Web Page that
includes links to the WSDL of the Web service, the client JAR file that you can
download for invoking the Web service, and a mechanism for testing the Web
service to ensure that it is working as expected. See “The WebLogic Web
Services Home Page and WSDL URLs” on page 8-22.

Point-to-Point Security
1-8 Programming WebLogic Web Services

http://elicense.bea.com/elicense_webapp/index.jsp
http://elicense.bea.com/elicense_webapp/index.jsp

Examples Of Creating and Invoking a Web Service
WebLogic Server supports connection oriented point-to-point security for
WebLogic Web service operations, as well as authorization and authentication of
Web service operations. See Chapter 11, “Configuring Security.”

Interoperability

WebLogic Web services interoperate with major Web service platforms such as
Microsoft .NET.

Java 2 Platform Micro Edition (J2ME) Clients

The WebLogic Server the clientgen Ant task can create a client JAR file that
runs on J2ME. See Chapter 8, “Invoking Web Services.”

Examples Of Creating and Invoking a Web
Service

WebLogic Server includes the following examples of creating and invoking WebLogic
Web services in the WL_HOME\samples\server\src\examples\webservices
directory, where WL_HOME refers to the main WebLogic Platform directory:

basic.statelessSession : Uses a stateless session EJB backend component
with built-in data types as its parameters and return value.

basic.javaclass : Uses a Java class backend component with built-in data
types as its parameters and return value.

complex.statelessSession : Uses a stateless session EJB backend
component with non-built-in data types as its parameters and return value.

handler.log : Uses both a handler chain and a stateless session EJB.

handler.nocomponent : Uses only a handler chain with no backend
component.

client.static : Shows how to create a static client application that invokes a
non-WebLogic Web service.

client.static_out : Shows how to create a static client application that
invokes a non-WebLogic Web service that uses out parameters.
Programming WebLogic Web Services 1-9

1 Overview of WebLogic Web Services
client.dynamic_wsdl : Shows how to create a dynamic client application that
uses WSDL to invoke a non-WebLogic Web service.

client.dynamic_no_wsdl : Shows how to create a dynamic client application
that does not use WSDL to invoke a non-WebLogic Web service.

message: Shows how to create a JMS-implemented WebLogic Web service.

multicomponent: Shows how to create a WebLogic Web services implemented
with two Java classes.

r4client: Shows how to run the WebLogic Web service client to exercise the
SOAPBuilders Interoperability Lab Round 3 suite of tests.

For detailed instructions on how to build and run the examples, open the following
Web page in your browser:

WL_HOME\samples\server\src\examples\webservices\package-summary.html

Additional examples of creating and invoking WebLogic Web services are listed on
the Web services Web page on the Web Services dev2dev Download Page at
http://webservice.bea.com.

Creating WebLogic Web Services: Main Steps

The following procedure describes the high-level steps to create a WebLogic Web
service. Most steps are described in detail in later chapters.

Chapter 3, “Creating a WebLogic Web Service: A Simple Example,” briefly describes
an example of creating a Web service.

1. Design the WebLogic Web service.

Decide on a synchronous or asynchronous Web service; the type of back-end
components that implement the service; whether your service uses only built-in
data types or custom data types; whether you need to intercept the incoming or
outgoing SOAP message; and so on.

See Chapter 4, “Designing WebLogic Web Services.”

2. Implement the WebLogic Web service.
1-10 Programming WebLogic Web Services

http://webservice.bea.com
http://webservice.bea.com

Creating WebLogic Web Services: Main Steps
Write the Java code of the back-end components that make up the Web service;
optionally create SOAP message handlers that intercept the SOAP messages;
optionally create your own serialization class to convert data between XML and
Java; and so on.

See Chapter 5, “Implementing WebLogic Web Services.”

3. Assemble and package the WebLogic Web service.

Gather all the implementation class files into an appropriate directory structure;
create the Web service deployment descriptor file; create the supporting parts of
the service (such as client JAR file); and package everything into a deployable
EAR file.

If your Web service is fairly simple, use the servicegen Ant task which
performs all the assembly steps for you. If your Web service is more
complicated, use additional Ant tasks or assemble the Web service manually.

See Chapter 6, “Assembling WebLogic Web Services Using Ant Tasks.”

4. Create a client that accesses the Web service to test that your Web service is
working as you expect. You can also use the Web Service Home Page to test your
Web service.

 See Chapter 8, “Invoking Web Services.”

5. Deploy the WebLogic Web service.

Make the service available to remote clients. Because WebLogic Web services
are packaged as standard J2EE Enterprise applications, deploying a Web service
is the same as deploying an Enterprise application.

See Deployment at http://e-docs.bea.com/wls/docs70/deployment.html.

6. Optionally publish your Web service in a UDDI registry. See Chapter 14,
“Publishing and Finding Web Services Using UDDI.”
Programming WebLogic Web Services 1-11

http://e-docs.bea.com/wls/docs70/deployment.html

1 Overview of WebLogic Web Services
Differences Between 6.1 and 7.X WebLogic
Web Services

WebLogic Web services changed between versions 6.1 and 7.X of WebLogic Server:

Due to changes in the runtime system between the two versions, you must
upgrade WebLogic Web services created in version 6.1 of WebLogic Server to
run on version 7.x. Do not deploy a 6.1 Web service on a 7.x WebLogic Server
instance. See Appendix 16, “Upgrading 6.1 WebLogic Web Services to 7.0.”

The WebLogic Web services client API included in version 6.1 of WebLogic
Server has been deprecated. The 6.1 client API was packaged as
weblogic.soap.*. Version 7.x includes a new client API, based on the Java
API for XML based RPC (JAX-RPC). For details see Chapter 8, “Invoking Web
Services.”

You can implement 7.x Web services with multiple backend components, such
as a stateless session EJB, a Java class, and a JMS listener. In 6.1, however, a
single Web service was implemented with just one backend component. For this
reason, 7.x does not use the terminology “rpc-style” and “message-style” to refer
to an entire Web service.

Also in 7.x you can choose which methods of an EJB you expose to the public;
in 6.1 you were forced to expose all public methods of an EJB.

See Chapter 2, “Architectural Overview.”

7.x Web services support non-built-in data types as parameters and return values,
as well as out and in-out parameters. 6.1 WebLogic Web services were limited to
a list of built-in data types that could be used as parameters and return values.
See Chapter 9, “Using Non-Built-In Data Types.”

Version 7.x introduces SOAP message handlers and handler chains that can
intercept SOAP messages for further processing. 6.1 WebLogic Web services
were unable to access the request or response SOAP message. See Chapter 10,
“Creating SOAP Message Handlers to Intercept the SOAP Message.”

 In 7.x you can use SOAP message handlers to access the SOAP attachment for
further processing; in 6.1 you could not access the attachment. See Chapter 10,
“Creating SOAP Message Handlers to Intercept the SOAP Message.”
1-12 Programming WebLogic Web Services

Unsupported Features
7.x Web services now have their own deployment descriptor file, called
web-services.xml. For reference information on the web-services.xml file,
see Appendix A, “WebLogic Web Service Deployment Descriptor Elements.”
For examples of the file, see Chapter 7, “Assembling a WebLogic Web Service
Manually.”

WebLogic Server 7.x includes additional Ant task support for quickly
implementing, assembling, and packaging WebLogic Web services. See
Chapter 6, “Assembling WebLogic Web Services Using Ant Tasks.”

In 7.x you can specify that a Web service be asynchronous one-way, which
means the client application that invokes the Web service never receives a
response, including any exceptions. In Version 6.1, all Web services were
synchronous request-response, which meant that every time a client application
invoked a service the client received a response. See Appendix A, “WebLogic
Web Service Deployment Descriptor Elements.”

The 7.x WebLogic Server Administration Console has a new Web Services
Components deployment node for easy administration of Web services. See
Chapter 13, “Administering WebLogic Web Services.”

Version 7.x of WebLogic Server includes UDDI server-side and client-side
features. See Chapter 14, “Publishing and Finding Web Services Using UDDI.”

The 7.x Web Services Home Page has been enhanced from that of 6.1; the new
page includes a facility to test your Web service. See “The WebLogic Web
Services Home Page and WSDL URLs” on page 8-22.

Unsupported Features

WebLogic Server does not support the following WSDL and XML Schema features:

Overloading operations in WSDL, due to a SOAP limitation

XML Schema complex data type inheritance by restriction

XML Schema union simple data types
Programming WebLogic Web Services 1-13

1 Overview of WebLogic Web Services
Editing XML Files

When creating or invoking WebLogic Web services, you might need to edit XML files,
such as the web-services.xml Web services deployment descriptor file, the EJB
deployment descriptors, the Java Ant build files, and so on. You edit these files with
the BEA XML Editor.

Note: This guide describes how to create or update the web-services.xml
deployment descriptor manually so that programmers get a better
understanding of the file and how the elements describe a Web service. You
can also use the BEA XML Editor to update the file.

The BEA XML Editor is a simple, user-friendly Java-based tool for creating and
editing XML files. It displays XML file contents both as a hierarchical XML tree
structure and as raw XML code. This dual presentation of the document gives you two
options for editing the XML document:

The hierarchical tree view allows structured, constrained editing, with a set of
allowable functions at each point in the hierarchical XML tree structure. The
allowable functions are syntactically dictated and in accordance with the XML
document's DTD or schema, if one is specified.

The raw XML code view allows free-form editing of the data.

The BEA XML Editor can validate XML code according to a specified DTD or XML
schema.

For detailed information about using the BEA XML Editor, see its online help.

You can download the BEA XML Editor from dev2dev Online at
http://dev2dev.bea.com/resourcelibrary/utilitiestools.jsp.
1-14 Programming WebLogic Web Services

http://dev2dev.bea.com/resourcelibrary/utilitiestools.jsp
http://dev2dev.bea.com/resourcelibrary/utilitiestools.jsp

CHAPTER
2 Architectural Overview

The following sections provide an overview of WebLogic Web services architecture
and three types of WebLogic Web service operations:

“WebLogic Web Services Architecture” on page 2-1

“Backend Component-Only Operation” on page 2-2

“Backend Component and SOAP Message Handler Chain Operation” on page
2-3

“SOAP Message Handler Chain-Only Operation” on page 2-5

WebLogic Web Services Architecture

You develop a WebLogic Web service, by using standard J2EE components, such as
stateless session EJBs, and Java classes. Because WebLogic Web services are based
on the J2EE platform, they automatically inherit all the standard J2EE benefits, such
as a simple and familiar component-based development model, scalability, support for
transactions, life-cycle management, easy access to existing enterprise systems
through the use of J2EE APIs (such as JDBC and JTA), and a simple and unified
security model.

A single WebLogic Web service consists of one or more operations; you can
implement each operation using different backend components and SOAP message
handlers. For example, an operation might be implemented with a single method of a
stateless session EJB or with a combination of SOAP message handlers and a method
of a stateless session EJB.
Programming WebLogic Web Services 2-1

2 Architectural Overview
Backend Component-Only Operation

The following figure describes the architecture of a WebLogic Web service operation
that is implemented with only a backend component, such as a method of a stateless
session EJB.

Figure 2-1 WebLogic Web Service with Backend Component

Here’s what happens when a client application invokes this type of WebLogic Web
service operation:

1. The client application sends a SOAP message request to WebLogic Server over
HTTP. Based on the URI in the request, WebLogic Server identifies the Web
service being invoked.

2. The Web service reads the SOAP message request and identifies the operation
that it needs to run. The operation corresponds to an invoke of a method of a
stateless session EJB or a Java class.

Identify
Operation

SOAP request
over HTTP Deserialize

XML to

SOAP
request

backend
component

Serialize Java
to XML

Java
parameters

Java
return value

SOAP response
over HTTP

Invoke target

1 2
3

4

56

WebLogic Server

C
lie

nt
 A

pp
lic

at
io

n

Java
2-2 Programming WebLogic Web Services

Backend Component and SOAP Message Handler Chain Operation
3. The Web service converts the operation’s parameters in the SOAP message from
their XML representation to their Java representation using the appropriate
deserializer class. The deserializer class is either one provided by WebLogic
Server for built-in data types or a user-created one for non-built-in data types.

4. The Web service invokes the appropriate backend component method, passing it
the Java parameters.

5. The Web service converts the method’s return value from Java to XML using the
appropriate serializer class, and packages it into a SOAP message response.

6. The Web service sends the SOAP message response back to the client application
that invoked the Web service.

Backend Component and SOAP Message
Handler Chain Operation

The following figure describes a WebLogic Web service operation that is implemented
with both a SOAP message handler chain and a backend component.
Programming WebLogic Web Services 2-3

2 Architectural Overview
Figure 2-2 WebLogic Web Service Operation With Backend Component and
SOAP Message Handler Chain

Here’s what happens when a client application invokes this type of WebLogic Web
service operation:

1. The client application sends a SOAP message request to WebLogic Server over
HTTP. Based on the URI in the request, WebLogic Server identifies the Web
service being invoked.

2. The Web service reads the SOAP message request and identifies the operation
that it needs to run. The operation in this case corresponds to an invoke of a
SOAP message handler chain followed by an invoke of a method of a stateless
session EJB or a Java class.

3. The Web service invokes the appropriate handler chain. The handler chain
accesses the contents of the SOAP message request, possibly changing it in some
way.

Identify
Operation

SOAP
request

backend
component

Java
parameters

Java
return value

Invoke target

1

2 3 4

5

6

WebLogic Server

C
lie

nt
 A

pp
lic

at
io

n

SOAP
request
over HTTP

Modified
SOAP response
over HTTP

Invoke
Handler

Serialize Java
to XML

Chain

Invoke
Handler
Chain

78 SOAP
response

Deserialize
XML to
Java

Possibly
modified
SOAP
request
2-4 Programming WebLogic Web Services

SOAP Message Handler Chain-Only Operation
4. The Web service converts the operation’s parameters in the [possibly modified]
SOAP message from their XML representation to their Java representation using
the appropriate deserializer class. The deserializer class is either one provided by
WebLogic Server for built-in data types or a user-created one for non-built-in
data types.

5. The Web service invokes the appropriate backend component method, passing it
the Java parameters.

6. The Web service converts the method’s return value from Java to XML using the
appropriate serializer class, and packages it into a SOAP message response.

7. The Web service invokes the appropriate SOAP message handler chain. The
handler chain accesses the contents of the SOAP message response, possibly
changing it in some way.

8. The Web service sends the [possibly modified] SOAP message response back to
the client application that invoked the Web service.

SOAP Message Handler Chain-Only
Operation

The following figure describes the architecture of a WebLogic Web service operation
that is implemented with only a SOAP message handler chain.
Programming WebLogic Web Services 2-5

2 Architectural Overview
Figure 2-3 WebLogic Web Service Operation with SOAP Message Handler
Chain Only

Here’s what happens when a client application invokes this type of WebLogic Web
service operation:

1. The client application sends a SOAP message request to WebLogic Server over
HTTP. Based on the URI in the request, WebLogic Server identifies the Web
service being invoked.

2. The Web service reads the SOAP message request and identifies the operation
that it needs to run. The operation in this case corresponds to an invoke of a
SOAP message handler chain.

3. The Web service invokes the appropriate handler chain. The handler chain
accesses the contents of the SOAP message request, possibly changing it in some
way.

4. The Web service invokes the appropriate handler chain. The handler chain creates
the SOAP message response.

5. The Web service sends the SOAP message response back to the client application
that invoked the Web service.

Identify
Operation

SOAP request
over HTTP Invoke

Handler

SOAP
request

SOAP response
over HTTP

1 2
3

45

WebLogic Server

C
lie

nt
 A

pp
lic

at
io

n

Chain

Invoke
Handler
Chain

Modified
2-6 Programming WebLogic Web Services

CHAPTER
3 Creating a WebLogic
Web Service: A Simple
Example

The following sections describe a simple example of creating a WebLogic Web
service:

“Description of the Example” on page 3-1

“Example of Creating a WebLogic Web Service: Main Steps” on page 3-2

“Writing the Java Code for the EJB” on page 3-4

“Writing the Java Code for the Non-Built-In Data Type” on page 3-8

“Creating EJB Deployment Descriptors” on page 3-9

“Assembling the EJB” on page 3-11

“Creating the build.xml Ant Build File” on page 3-11

Description of the Example

This example describes the start-to-finish process of implementing, assembling, and
deploying the WebLogic Web service provided as a product example in the directory
WL_HOME\samples\server\src\examples\webservices\complex\stateless
Session, where WL_HOME refers to the main WebLogic Platform directory.
Programming WebLogic Web Services 3-1

3 Creating a WebLogic Web Service: A Simple Example
The example shows how to create a WebLogic Web service based on a stateless
session EJB. The example uses the Trader EJB, one of the EJB 2.0 examples located
in the
WL_HOME\samples\server\src\examples\ejb20\basic\statelessSession
directory.

The Trader EJB defines two methods, buy() and sell(), that take as input a String
stock symbol and an int number of shares to buy or sell. Both methods return a
non-built-in data type called TradeResult.

When the Trader EJB is converted into a Web service, the two methods become
public operations defined in the WSDL of the Web service. The Client.java
application uses a JAX-RPC style client API to create SOAP messages that invoke the
operations.

Example of Creating a WebLogic Web
Service: Main Steps

To create the sample Trader WebLogic Web service, follow these steps:

1. Set up your environment.

On Windows NT, execute the setExamplesEnv.cmd command, located in the
directory WL_HOME\samples\server\config\examples, where WL_HOME is
the main directory of your WebLogic Platform.

On UNIX, execute the setEnv.sh command, located in the directory
WL_HOME/samples/server/config/examples, where WL_HOME is the main
directory of your WebLogic Platform.

2. Write the Java interfaces and classes for the Trader stateless session EJB.

See “Writing the Java Code for the EJB” on page 3-4.

3. Write the Java code for the TradeResult non-built-in data type.

See “Writing the Java Code for the Non-Built-In Data Type” on page 3-8.

4. Compile the Java code into class files.
3-2 Programming WebLogic Web Services

Example of Creating a WebLogic Web Service: Main Steps
5. Create the EJB deployment descriptors.

See “Creating EJB Deployment Descriptors” on page 3-9.

6. Assemble the EJB class files and deployment descriptors into a trader.jar
archive file.

See “Assembling the EJB” on page 3-11.

7. Create the build.xml Ant build file. This file will execute the servicegen Ant
task used to assemble the WebLogic Web service.

See “Creating the build.xml Ant Build File” on page 3-11.

8. Create a staging directory.

9. Copy the EJB trader.jar file and the build.xml file into the staging directory.

10. Execute the Java Ant utility to assemble the Trader Web service into a
trader.ear archive file:

$ ant

11. Auto-deploy the Trader Web service to WebLogic Server for testing purposes by
copying the trader.ear archive file to the domain/applications directory,
where domain refers to the location of your domain.

12. View the Home Page of the Trader Web serivce by invoking the following URL
in your browser:

http://localhost:port/webservice/TraderService

 where

localhost refers to the machine on which WebLogic Server is running

port refers to port on which WebLogic Server is listening

From the Web Service Home Page you can view the generated WSDL and test
the Web service to make sure it's working correctly.

To invoke the Trader Web service from a Java client application, see the
Client.java file in the
WL_HOME\samples\server\src\examples\webservices\complex\stateless
Session directory.

For instructions for building and running the client application, invoke the
WL_HOME\samples\server\src\examples\webservices\complex\stateless
Session\package-summary.html Web page in your browser.
Programming WebLogic Web Services 3-3

3 Creating a WebLogic Web Service: A Simple Example
Writing the Java Code for the EJB

The sample Trader stateless session EJB contains two public methods: buy() and
sell(). The Trader EJB defines two methods, buy() and sell(), that take as input
a String stock symbol and an int number of shares to buy or sell. Both methods
return a non-built-in data type called TraderResult.

The following Java code is the public interface of the Trader EJB:

package examples.webservices.complex.statelessSession;

import java.rmi.RemoteException;
import javax.ejb.EJBObject;

/**
 * The methods in this interface are the public face of TraderBean.
 * The signatures of the methods are identical to those of the EJBean, except
 * that these methods throw a java.rmi.RemoteException.
 * Note that the EJBean does not implement this interface. The corresponding
 * code-generated EJBObject, TraderBeanE, implements this interface and
 * delegates to the bean.
 *
 * @author Copyright (c) 1999-2002 by BEA Systems, Inc. All Rights Reserved.
 */

public interface Trader extends EJBObject {
 /**
 * Buys shares of a stock.
 *
 * @param stockSymbol String Stock symbol
 * @param shares int Number of shares to buy
 * @return TradeResult Trade Result
 * @exception RemoteException if there is
 * a communications or systems failure
 */
 public TradeResult buy (String stockSymbol, int shares)
 throws RemoteException;
 /**
 * Sells shares of a stock.
 *
 * @param stockSymbol String Stock symbol
 * @param shares int Number of shares to sell
 * @return TradeResult Trade Result
 * @exception RemoteException if there is
 * a communications or systems failure
3-4 Programming WebLogic Web Services

Writing the Java Code for the EJB
 */
 public TradeResult sell (String stockSymbol, int shares)
 throws RemoteException;
}

The following Java code is the actual stateless session EJB class:

package examples.webservices.complex.statelessSession;

import javax.ejb.CreateException;
import javax.ejb.SessionBean;
import javax.ejb.SessionContext;
import javax.naming.InitialContext;
import javax.naming.NamingException;

/**
 * TraderBean is a stateless Session Bean. This bean illustrates:
 *
 * No persistence of state between calls to the Session Bean
 * Looking up values from the Environment
 *
 *
 * @author Copyright (c) 1999-2002 by BEA Systems, Inc. All Rights Reserved.
 */
public class TraderBean implements SessionBean {

 private static final boolean VERBOSE = true;
 private SessionContext ctx;
 private int tradeLimit;

 // You might also consider using WebLogic's log service
 private void log(String s) {
 if (VERBOSE) System.out.println(s);
 }

 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbActivate() {
 log("ejbActivate called");
 }

 /**
 * This method is required by the EJB Specification,
Programming WebLogic Web Services 3-5

3 Creating a WebLogic Web Service: A Simple Example
 * but is not used by this example.
 *
 */
 public void ejbRemove() {
 log("ejbRemove called");
 }

 /**
 * This method is required by the EJB Specification,
 * but is not used by this example.
 *
 */
 public void ejbPassivate() {
 log("ejbPassivate called");
 }

 /**
 * Sets the session context.
 *
 * @param ctx SessionContext Context for session
 */
 public void setSessionContext(SessionContext ctx) {
 log("setSessionContext called");
 this.ctx = ctx;
 }

 /**
 * This method corresponds to the create method in the home interface
 * "TraderHome.java".
 * The parameter sets of the two methods are identical. When the client calls
 * <code>TraderHome.create()</code>, the container allocates an instance of
 * the EJBean and calls <code>ejbCreate()</code>.
 *
 * @exception javax.ejb.CreateException if there is
 * a communications or systems failure
 * @see examples.ejb11.basic.statelessSession.Trader
 */
 public void ejbCreate () throws CreateException {
 log("ejbCreate called");
 try {
 InitialContext ic = new InitialContext();
 Integer tl = (Integer) ic.lookup("java:/comp/env/tradeLimit");
 tradeLimit = tl.intValue();
 } catch (NamingException ne) {
 throw new CreateException("Failed to find environment value "+ne);
 }
 }

 /**
 * Buys shares of a stock for a named customer.
3-6 Programming WebLogic Web Services

Writing the Java Code for the EJB
 *
 * @param customerName String Customer name
 * @param stockSymbol String Stock symbol
 * @param shares int Number of shares to buy
 * @return TradeResult Trade Result
 * if there is an error while buying the shares
 */
 public TradeResult buy(String stockSymbol, int shares) {
 if (shares > tradeLimit) {
 log("Attempt to buy "+shares+" is greater than limit of "+tradeLimit);
 shares = tradeLimit;
 }
 log("Buying "+shares+" shares of "+stockSymbol);
 return new TradeResult(shares, stockSymbol);
 }

 /**
 * Sells shares of a stock for a named customer.
 *
 * @param customerName String Customer name
 * @param stockSymbol String Stock symbol
 * @param shares int Number of shares to buy
 * @return TradeResult Trade Result
 * if there is an error while selling the shares
 */
 public TradeResult sell(String stockSymbol, int shares) {
 if (shares > tradeLimit) {
 log("Attempt to sell "+shares+" is greater than limit of "+tradeLimit);
 shares = tradeLimit;
 }
 log("Selling "+shares+" shares of "+stockSymbol);
 return new TradeResult(shares, stockSymbol);
 }
}

The following Java code is the Home interface of the Trader EJB:

package examples.webservices.complex.statelessSession;

import java.rmi.RemoteException;
import javax.ejb.CreateException;
import javax.ejb.EJBHome;

/**
 * This interface is the home interface for the TraderBean.java,
 * which in WebLogic is implemented by the code-generated container
 * class TraderBeanC. A home interface may support one or more create
 * methods, which must correspond to methods named "ejbCreate" in the EJBean.
Programming WebLogic Web Services 3-7

3 Creating a WebLogic Web Service: A Simple Example
 *
 * @author Copyright (c) 1998-2002 by BEA Systems, Inc. All Rights Reserved.
 */
public interface TraderHome extends EJBHome {
 /**
 * This method corresponds to the ejbCreate method in the bean
 * "TraderBean.java".
 * The parameter sets of the two methods are identical. When the client calls
 * <code>TraderHome.create()</code>, the container
 * allocates an instance of the EJBean and calls <code>ejbCreate()</code>.
 *
 * @return Trader
 * @exception RemoteException if there is
 * a communications or systems failure
 * @exception CreateException
 * if there is a problem creating the bean
 * @see examples.ejb11.basic.statelessSession.TraderBean
 */
 Trader create() throws CreateException, RemoteException;
}

Writing the Java Code for the Non-Built-In
Data Type

The two methods of the EJB return a non-built-in data type called TraderResult. The
following Java code describes this type:

package examples.webservices.complex.statelessSession;

import java.io.Serializable;

/**
 * This class reflects the results of a buy/sell transaction.
 *
 * @author Copyright (c) 1999-2002 by BEA Systems, Inc. All Rights Reserved.
 */
public final class TradeResult implements Serializable {

 // Number of shares really bought or sold.
 private int numberTraded;

 private String stockSymbol;
3-8 Programming WebLogic Web Services

Creating EJB Deployment Descriptors
 public TradeResult() {}

 public TradeResult(int nt, String ss) {
 numberTraded = nt;
 stockSymbol = ss;
 }

 public int getNumberTraded() { return numberTraded; }

 public void setNumberTraded(int numberTraded) {
 this.numberTraded = numberTraded;
 }

 public String getStockSymbol() { return stockSymbol; }

 public void setStockSymbol(String stockSymbol) {
 this.stockSymbol = stockSymbol;
 }
}

Creating EJB Deployment Descriptors

See “Editing XML Files” on page 1-14 for information on using the BEA XML Editor
to create and edit the ejb-jar.xml and weblogic-ejb-jar.xml files.

The following example shows the ejb-jar.xml deployment descriptor that describes
the Trader EJB:

<?xml version="1.0"?>

<!DOCTYPE ejb-jar PUBLIC
'-//Sun Microsystems, Inc.//DTD Enterprise JavaBeans 1.1//EN'
'http://java.sun.com/j2ee/dtds/ejb-jar_1_1.dtd'>

<ejb-jar>
 <enterprise-beans>
 <session>
 <ejb-name>TraderService</ejb-name>
 <home>examples.webservices.complex.statelessSession.TraderHome</home>
 <remote>examples.webservices.complex.statelessSession.Trader</remote>

<ejb-class>examples.webservices.complex.statelessSession.TraderBean</ejb-class>
 <session-type>Stateless</session-type>
 <transaction-type>Container</transaction-type>
 <env-entry>
Programming WebLogic Web Services 3-9

3 Creating a WebLogic Web Service: A Simple Example
 <env-entry-name>WEBL</env-entry-name>
 <env-entry-type>java.lang.Double </env-entry-type>
 <env-entry-value>10.0</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>INTL</env-entry-name>
 <env-entry-type>java.lang.Double </env-entry-type>
 <env-entry-value>15.0</env-entry-value>
 </env-entry>
 <env-entry>
 <env-entry-name>tradeLimit</env-entry-name>
 <env-entry-type>java.lang.Integer </env-entry-type>
 <env-entry-value>500</env-entry-value>
 </env-entry>
 </session>
 </enterprise-beans>
 <assembly-descriptor>
 <container-transaction>
 <method>
 <ejb-name>TraderService</ejb-name>
 <method-name>*</method-name>
 </method>
 <trans-attribute>Required</trans-attribute>
 </container-transaction>
 </assembly-descriptor>
</ejb-jar>

The following example shows the weblogic-ejb-jar.xml deployment descriptor
that describes the Trader EJB:

<?xml version="1.0"?>

<!DOCTYPE weblogic-ejb-jar PUBLIC
'-//BEA Systems, Inc.//DTD WebLogic 7.0.0 EJB//EN'
'http://www.bea.com/servers/wls700/dtd/weblogic700-ejb-jar.dtd'>

<weblogic-ejb-jar>
 <weblogic-enterprise-bean>
 <ejb-name>TraderService</ejb-name>
 <jndi-name>webservices-complex-statelessession</jndi-name>
 </weblogic-enterprise-bean>
</weblogic-ejb-jar>
3-10 Programming WebLogic Web Services

Assembling the EJB
Assembling the EJB

To assemble the EJB class files and deployment descriptors into a trader.jar
archive file, follow these steps:

1. Create a temporary staging directory.

2. Copy the compiled Java EJB class files into the staging directory.

3. Create a META-INF subdirectory in the staging directory.

4. Copy the ejb-jar.xml and weblogic-ejb-jar.xml deployment descriptors
into the META-INF subdirectory.

5. Create the pre_trader.jar archive file using the jar utility:

jar cvf pre_trader.jar -C staging_dir .

6. Run the weblogic.ejbc utility to generate and compile EJB 2.0 and 1.1
container classes and create the final trader.jar file:

java weblogic.ejbc pre_trader.jar trader.jar

Creating the build.xml Ant Build File

The Ant build file, build.xml, contains a call to the servicegen Ant task that
introspects the trader.jar EJB file, generates all data type components (such as the
serialization class), creates the web-services.xml deployment descriptor file, and
packages it all up into a deployable trader.ear file.

The following build.xml file contains instructions that will build the EAR file into a
temporary build_dir directory :

<project name="webServicesExample" default="build">
 <target name="build" >
 <delete dir="build_dir" />
 <mkdir dir="build_dir" />
 <copy todir="build_dir" file="trader.jar"/>
 <servicegen
 destEar="build_dir/trader.ear"
Programming WebLogic Web Services 3-11

3 Creating a WebLogic Web Service: A Simple Example
 warName="trader.war"
 contextURI="webservice">
 <service
 ejbJar="build_dir/trader.jar"
 targetNamespace="http://www.bea.com/examples/Trader"
 serviceName="TraderService"
 serviceURI="/TraderService"
 generateTypes="True"
 expandMethods="True" >
 </service>
 </servicegen>
 </target>
</project>
3-12 Programming WebLogic Web Services

CHAPTER
4 Designing WebLogic
Web Services

The following sections discuss design issues you should consider before implementing
WebLogic Web services:

“Choosing Between Synchronous or Asynchronous Operations” on page 4-1

“Choosing the Backend Components of Your Web Service” on page 4-2

“RPC-Oriented or Document-Oriented Web Services?” on page 4-4

“Data Types” on page 4-5

“Using SOAP Message Handlers to Intercept the SOAP Message” on page 4-6

“Stateful WebLogic Web Service” on page 4-7

Choosing Between Synchronous or
Asynchronous Operations

WebLogic Web service operations can be either synchronous request-response or
asynchronous one-way.
Programming WebLogic Web Services 4-1

4 Designing WebLogic Web Services
Synchronous request-response (the default behavior) means that every time a client
application invokes a Web service operation, it receives a SOAP response, even if the
method that implements the operation returns void. Asynchronous one-way means
that the client never receives a SOAP response, even a fault or exception.

You specify this type of behavior with the invocation-style attribute of the
<operation> element in the web-services.xml file.

Web service operations are typically synchronous request-response, mirroring typical
RPC-style behavior. Sometimes, however, you might want to implement
asynchronous behavior if your client application has no need for a response, even in
the case of an error. When designing asynchronous one-way Web service operations,
keep the following issues in mind:

The backend component that implements the operation must explicitly return
void.

You cannot specify out or in-out parameters to the operation, you can only
specify in parameters.

Choosing the Backend Components of Your
Web Service

You implement a WebLogic Web service operation with one of the following types of
backend component:

a method of a stateless session EJB

a method of a Java class

a JMS message consumer or producer. For details, see Chapter 12, “Creating
JMS-Implemented WebLogic Web Services.”
4-2 Programming WebLogic Web Services

Choosing the Backend Components of Your Web Service
EJB Backend Component

Web service operations implemented with a method of a stateless session EJB are
interface driven, which means that the business methods of the underlying stateless
session EJB determine how the Web service operation works. When clients invoke the
Web service operation, they send parameter values to the method, which executes and
sends back the return value.

Use a stateless session EJB backend component if your application has the following
characteristics:

The behavior of the Web service can be expressed as an interface.

The Web service is process-oriented rather than data-oriented.

The Web service can benefit from the facilities of EJBs, such as persistence,
security, transactions, and concurrency .

Examples of this type of Web service operation implementation include providing the
current weather conditions in a particular location; returning the current price for a
given stock; or checking the credit rating of a potential trading partner prior to the
completion of a business transaction.

Java Class Backend Component

Web service operations implemented with Java classes are similar to those
implemented with an EJB method. Creating a Java class, however, is often simpler
and faster than creating an EJB. Use a Java class as a backend component when you
do not need overhead of EJB facilities such as persistence, security, transactions, and
concurrency.

There are limitations and restrictions to using a Java class as a backend component,
however. For details, see “Implementing a Web Service By Writing a Java Class” on
page 5-4.
Programming WebLogic Web Services 4-3

4 Designing WebLogic Web Services
RPC-Oriented or Document-Oriented Web
Services?

The operations of a WebLogic Web service can be either RPC-oriented or
document-oriented. As described in the WSDL 1.1 specification, an RPC-oriented
operation is one in which the SOAP messages contain parameters and return values,
and a document-oriented operation is one in which the SOAP messages contain XML
documents.

The method that implements a document-oriented WebLogic Web service operation
can have only one parameter, of any supported data type. There are no restrictions on
the number of parameters of an RPC-oriented operation.

RPC-oriented WebLogic Web service operations use SOAP encoding.
Document-oriented WebLogic Web service operations use literal encoding.

All operations in a single WebLogic Web service must be either RPC-oriented or
documented-oriented; WebLogic Server does not support mixing the two styles within
the same Web service.

By default, the operations of a WebLogic Web service are RPC-oriented. If you want
to specify that the operations are document-oriented, use the style="document"
attribute of the <service> element when assembling a Web service using the
servicegen Ant task. The generated web-services.xml deployment descriptor
will contain a corresponding style="document" attribute for the appropriate
<web-service> element.

For information on implementing document-oriented WebLogic Web services, see
“Implementing a Document-Oriented Web Service” on page 5-6. For details on using
the servicegen Ant task to assemble a document-oriented Web service, see
“Assembling WebLogic Web Services Using the servicegen Ant task” on page 6-3 and
“servicegen” on page B-19.
4-4 Programming WebLogic Web Services

Data Types
Data Types

WebLogic Web services support both built-in and non-built-in data types as
parameters and return values to Web services operations. This means that WebLogic
Web services can handle any type of data that can be represented using XML Schema.

Built-in data types are those specified by the JAX-RPC specification. If your Web
service uses only built-in data types, the conversion of the data between its XML and
Java representation is handled automatically by WebLogic Server. For the full list of
built-in data types, see “Using Built-In Data Types” on page 5-12.

If, however, your Web service operation is more complex and uses a non-built-in data
type as a parameter or return value, you must:

a. Create the serialization class that convert the data between its XML and Java
representation

b. Describe the XML representation of the data type (using XML Schema
notation) in the web-services.xml file

c. Create the Java class file of the data type

d. Describe the data type mapping in the web-services.xml file

WebLogic Server includes Ant tasks that perform these tasks for many common XML
and Java data types; this feature is called autotyping. For the list of supported
non-built-in data types, see “Non-Built-In Data Types Supported by servicegen and
autotype Ant Tasks” on page 6-13. For information on running these Ant tasks, see
Chapter 6, “Assembling WebLogic Web Services Using Ant Tasks.”

Note: If you are using the autotyping Ant tasks to generate data type information for
a Java class, your class must conform to the guidelines described in
“Implementing Non-Built-In Data Types” on page 5-5.

If your data type is not either built-in or one of the supported non-built-in data types,
then you must create the serialization class, and so on, manually. For details, see
Chapter 9, “Using Non-Built-In Data Types.”
Programming WebLogic Web Services 4-5

4 Designing WebLogic Web Services
Using SOAP Message Handlers to Intercept
the SOAP Message

Some Web services need access to the SOAP message, for which you can create
SOAP message handlers.

A SOAP message handler provides a mechanism for intercepting the SOAP message
in both the request and response of the Web service. You can create handlers in both
the Web service itself and the client applications that invoke the Web service.

A simple example of using handlers is to encrypt and decrypt secure data in the body
of a SOAP message. A client application uses a handler to encrypt the data before it
sends the SOAP message request to the Web service. The Web service receives the
request and uses a handler to decrypt the data before it sends the data to the back-end
component that implements the Web service. The same steps happen in reverse for the
response SOAP message.

Another example is accessing information in the header part of the SOAP message.
You can use the SOAP header to store Web service specific information and then use
handlers to manipulate it.

You can also use SOAP message handlers to improve the performance of your Web
service. After your Web service has been deployed for a while, you might discover that
many consumers invoke it with the same parameters. You could improve the
performance of your Web service by caching the results of popular invokes of the Web
service (assuming the results are static) and immediately returning these results when
appropriate, without ever invoking the back-end components that implement the Web
service. You implement this performance improvement by using handlers to check the
request SOAP message to see if it contains the popular parameters.
4-6 Programming WebLogic Web Services

Stateful WebLogic Web Service
Stateful WebLogic Web Service

You implement a WebLogic Web service operation using stateless session EJBs or
Java classes, and thus a WebLogic Web service operation is not stateful, or one that
can conduct a back and forth conversation beyond the standard request/response
model.

You can, however, mimic a conversational Web service by using JDBC or entity
beans. For example, you could design a Web service so that client applications that
invoke it pass a unique ID to identify themselves to the stateless session EJB entry
point. This EJB uses the ID to persist the conversation in some kind of persistent
storage, using either entity beans or JDBC. The next time the same client application
invokes the Web service, the stateless session EJB can recover the previous state of the
conversation by selecting the persisted data using the unique ID.

For information on programming entity beans, see Programming WebLogic Enterprise
JavaBeans at http://e-docs.bea.com/wls/docs70/ejb/index.html. For information on
JDBC, see WebLogic jDrivers at http://e-docs.bea.com/wls/docs70/jdrivers.html.
Programming WebLogic Web Services 4-7

http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/jdrivers.html

4 Designing WebLogic Web Services
4-8 Programming WebLogic Web Services

CHAPTER
5 Implementing
WebLogic Web Services

The following sections describe how to implement WebLogic Web services:

“Overview of Implementing a WebLogic Web Service” on page 5-1

“Implementing a WebLogic Web Service: Main Steps” on page 5-2

“Writing the Java Code for the Components” on page 5-3

“Using Built-In Data Types” on page 5-12

Overview of Implementing a WebLogic Web
Service

Implementing a WebLogic Web service refers to writing the Java code for the backend
components that make up the Web service and optionally creating SOAP message
handlers. Backend components include stateless session EJBs, Java classes, and JMS
message consumers and producers. A Web service can be implemented with multiple
combinations of these components.

A single WebLogic Web service consists of one or more operations; you can
implement each operation using methods of different backend components and SOAP
message handlers. For example, an operation might be implemented with a single
method of a stateless session EJB or with a combination of SOAP message handlers
and a method of a stateless session EJB.
Programming WebLogic Web Services 5-1

5 Implementing WebLogic Web Services
If you are implementing a WebLogic Web service from an existing WSDL file, you
can use the WebLogic Server wsdl2Service Ant task to generate much of the needed
Java source code. You can use this generated file as a starting point, then add the rest
of the Java code needed to make the Web service behave as you want.

It is assumed that you have read and understood the design issues discussed in
Chapter 4, “Designing WebLogic Web Services,” designed your Web service and that
you know the types of components you need to create.

Implementing a WebLogic Web Service:
Main Steps

The following procedure describes the high-level steps to implement a WebLogic Web
service. Later parts of this document describe the steps in more detail. Although some
of the steps are mandatory, others are optional, depending on the type of Web service
you are implementing.

1. Write the Java code for the back-end components that make up the Web service.

See “Writing the Java Code for the Components” on page 5-3.

2. If you need to process information in the SOAP request or response or access the
SOAP attachments, create SOAP message handlers and handler chains.

See Chapter 10, “Creating SOAP Message Handlers to Intercept the SOAP
Message.”

3. If your backend components use non-built-in data types as parameters or return
values, generate or create the serialization class that converts the data between
XML and Java.

See “Implementing Non-Built-In Data Types” on page 5-5.
5-2 Programming WebLogic Web Services

Writing the Java Code for the Components
Writing the Java Code for the Components

When you implement a WebLogic Web service, you write Java code for one of these
backend components:

A stateless session EJB.

See “Implementing a Web Service By Writing a Stateless Session EJB” on page
5-4 for information on writing the Java code. For an example, see “Writing the
Java Code for the EJB” on page 3-4.

A Java class.

See “Implementing a Web Service By Writing a Java Class” on page 5-4 for
information on writing the Java code.

A JMS message consumer or producer, typically a message-driven bean.

See Chapter 12, “Creating JMS-Implemented WebLogic Web Services.”

If your Web service operations use non-built-in data types as parameters or return
values, see “Implementing Non-Built-In Data Types” on page 5-5.

If you are implementing a Web service that uses document-oriented operations, rather
than RPC-oriented, see “Implementing a Document-Oriented Web Service” on page
5-6.

If you are implementing a WebLogic Web service based on an existing WSDL file, and
you want to implement the Web service with a Java class, use the WebLogic Server
wsdl2Service Ant task to generate much of the needed Java code. For details about
using this Ant task, see “Generating a Partial Implementation From a WSDL File” on
page 5-7.

For information on throwing exceptions from your Web service implementation, see
“Throwing SOAP Fault Exceptions” on page 5-11.

If you want your Web service operation to return multiple values, see “Implementing
Multiple Return Values” on page 5-8.
Programming WebLogic Web Services 5-3

5 Implementing WebLogic Web Services
Implementing a Web Service By Writing a Stateless
Session EJB

Writing the Java code for the stateless session EJB for a Web service is no different
from writing a stand-alone EJB, except for the following issues:

You can specify in the web-services.xml deployment descriptor that a Web
service operation is one-way, which means that the client application that
invokes the Web service does not wait for a response. When you write the Java
code for the EJB method that implements this type of operation, you must
specify that it return void.

For more information on specifying in the web-services.xml file that a Web
service operation is one-way, see “operation” on page A-8.

If the data type of the parameters or return value of an EJB method are not part
of the set of built-in data types, then you must generate or create the serialization
class that converts these data types between their XML and Java representations.
For the list of built-in data types, see “Using Built-In Data Types” on page 5-12

See “Implementing Non-Built-In Data Types” on page 5-5.

For an example of how to write a stateless session EJB, see “Writing the Java Code for
the EJB” on page 3-4. For general information, see Programming WebLogic
Enterprise JavaBeans at http://e-docs.bea.com/wls/docs70/ejb/index.html.

Implementing a Web Service By Writing a Java Class

You can implement a Web service operation using a Java class as long as you follow
these rules:

Do not start any threads. This rule applies to all Java code that runs on
WebLogic Server.

Define a default no-argument constructor.

Define as public the methods of the Java class that are going to be exposed as
Web service operations.
5-4 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/ejb/index.html

Writing the Java Code for the Components
Write thread safe Java code, because WebLogic Server maintains just a single
instance of a Java class that implements a Web service operation, and each
invoke of the Web service uses this same instance.

For an example of implementing a WebLogic Web service operation with a Java class,
go to the
WL_HOME\samples\server\src\examples\webservices\basic\javaclass
directory, where WL_HOME refers to the main directory of your WebLogic Server
installation.

Implementing Non-Built-In Data Types

Stateless session EJBs or Java classes do not necessarily take built-in data types as
parameters and return values, but rather, might use a Java data type that you create
yourself. An example of a non-built-in data type is TradeResult, which has two
fields: a String stock symbol and an integer number of shares traded. For the list of
built-in data types, see “Using Built-In Data Types” on page 5-12.

If your backend components use non-built-in data types as parameters or return values,
you must generate or create the serialization class that converts the data between XML
and Java.You can do this in one of two ways:

Use WebLogic Server servicegen or autotype Ant tasks to introspect your
EJB and automatically generate the serialization class. These Ant tasks also
create the corresponding XML Schema to represent your data in XML format
and update your web-services.xml deployment descriptor file with the
relevant data type mapping information. You will run these Ant tasks as part of
assembling of the Web service, described in “Running the servicegen Ant Task”
on page 6-5 and “Running the autotype Ant Task” on page 6-8.

Warning: The serializer class and Java and XML representations generated by the
autotype, servicegen, and clientgen Ant tasks cannot be
round-tripped. For more information, see “Non-Roundtripping of
Generated Data Type Components” on page 6-17.

Create the serialization class and XML and Java representations of your data
type manually. This method is more complex and time-consuming than
generating them using the Ant task. For details on handling non-built-in data
types manually, see Chapter 9, “Using Non-Built-In Data Types.”
Programming WebLogic Web Services 5-5

5 Implementing WebLogic Web Services
If you are going to create the XML representation of your Java data type manually,
along with the serialization class, you can code the Java class any way you want,
because you will be writing all the conversion code yourself.

If you are going to use the servicegen or autotype Ant tasks to automatically
generate the data type components, follow these requirements when writing the Java
class for your data type:

Define a default constructor, which is a constructor that takes no parameters.

Define both getXXX() and setXXX() methods for each member variable which
you want to expose.

Make the data type of each exposed member variable one of the built-in data
types, or a non-built-in data type that consists of built-in data types and has the
corresponding serialization class and XML Schema representation.

The servicegen and autotype Ant tasks can generate data type components for most
common XML and Java data types. For the list of supported non-built-in data types,
see “Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks” on
page 6-13.

Implementing a Document-Oriented Web Service

When creating a WebLogic Web service, you can specify whether the Web service is
document-oriented (the SOAP message contains a document) or RPC-oriented (the
SOAP message contains parameters and return values).

If you create a document-oriented Web service:

the methods that implement each operation of the Web service can have only one
parameter. This single parameter can be of any supported data type; see “Data
Types” on page 4-5 for more information.

the methods that implement each operation cannot use out and in-out parameters.
5-6 Programming WebLogic Web Services

Writing the Java Code for the Components
Generating a Partial Implementation From a WSDL File

The wsdl2Service Ant task takes as input an existing WSDL file, and generates a Java source
file that partially implements the Web service.

The Java source file contains a template for the full Java class-implemented WebLogic
Web service. The template includes full method signatures that correspond to the
operations in the WSDL file. You write the actual code for these methods so that they
function as you want, following the guidelines in “Implementing a Web Service By
Writing a Java Class” on page 5-4.

The wsdl2Service Ant task generates a partial implementation for only one Web
service in a WSDL file (specified by the <service> element.) Use the serviceName
attribute to specify a particular service; if you do not specify this attribute, the
wsdl2Service Ant task generates a partial implementation for the first <service>
element in the WSDL.

Running the wsdl2Service Ant Task

To run the wsdl2Service Ant task, follow these steps:

1. Create a file called build.xml that contains a call to the wsdl2Service Ant task.
For details, see “Sample build.xml Files for the wsdl2Service Ant Task” on page
5-8.

2. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in
the same directory as the build.xml file:

prompt> ant

For reference information about the wsdl2Service Ant task, see “wsdl2Service” on
page B-31.
Programming WebLogic Web Services 5-7

5 Implementing WebLogic Web Services
Sample build.xml Files for the wsdl2Service Ant Task

The following example shows a simple build.xml file:

<project name="buildWebservice" default="generate-from-WSDL">
 <target name="generate-from-WSDL">
 <wsdl2service
 wsdl="c:\wsdls\myService.wsdl"
 destDir="c:\myService\implementation"
 typeMappingFile="c:\autotype\types.xml"
 packageName="example.ws2j.service" />
 </target>
</project>

In the example, the wsdl2Service Ant task generates a Java source file for the first
<service> element it finds in the WSDL file c:\wsdls\myService.wsdl. It uses
data type mapping information for any non-built-in data types from the
c:\autotype\types.xml file; typically you have previously run the autotype Ant
task to generate this file. The generated Java source file is in the package
example.ws2j.service.

Implementing Multiple Return Values

WebLogic Web service operations typically return a single value: the return value of
the EJB or Java class method that implements the Web service operation. If you want
a Web service operation to return multiple values, you can:

define the data type of the return value to be a complex type, such as an object
with multiple parts or an array.

specify that one or more of the parameters of the Web service operation be out
or in-out parameters.

Out and in-out parameters are a mechanism whereby parameters to an operation can
act as both standard in parameters and return values. The Out parameters are undefined
when the operation is invoked but defined by the method that implements the operation
when the operation completes; in-out parameters are defined when invoked and when
completed. For example, assume a Web service operation contains one out parameter,
and the operation is implemented with an EJB method. The EJB method sets the value
of the out parameter and sends this value back to the client application that invoked it.
The client application can then access the value of this out parameter as if it were a
return value. An in-out parameter is one that acts as both a standard input parameter
5-8 Programming WebLogic Web Services

Writing the Java Code for the Components
for sending information to the method and an out parameter. This section discusses
how to implement a Web service operation with an EJB or Java class method that uses
out or in-out parameters.

The following example shows a method whose second parameter is an in-out
parameter:

public String myMethod(String param1,
 javax.xml.rpc.holders.IntHolder intHolder) {

System.out.println ("The input value is: " + intHolder.value);
intHolder.value = 20; // the new value of the out parameter

return param1;
}

You invoke the method with two parameters, a String and an integer. The method
returns two values: a String (the standard return value) and an integer (via the
IntHolder holder parameter).

Out and in-out parameters must implement the javax.xml.rpc.holders.Holder
interface. Use the Holder.value field to first access the input value of an in-out
parameter and then set the value of out and in-out parameters. In the preceding
example, assume the method was invoked with a value of 40 as the second parameter;
when the method completes, the value of intHolder is now 20.

Using Holder Classes to Implement Multiple Return Values

If the out or in-out parameter is a standard data type, you can use one of the JAX-RPC
Holder classes, listed in the following table.

Table 5-1 Built-In Holder Classes Provided by WebLogic Server

Built-In Holder Class Java Data Type That It Holds

javax.xml.rpc.holders.BooleanHolder boolean

javax.xml.rpc.holders.ByteHolder byte

javax.xml.rpc.holders.ShortHolder short

javax.xml.rpc.holders.IntHolder int

javax.xml.rpc.holders.LongHolder long

javax.xml.rpc.holders.FloatHolder float
Programming WebLogic Web Services 5-9

5 Implementing WebLogic Web Services
If, however, the data type of the parameter is not provided, you must create your own
implementation.

To create your own implementation of the javax.xml.rpc.holders.Holder
interface, follow these guidelines:

Name your implementation class TypeHolder, where Type is the name of the
complex type. For example, if your complex type is called Person, then your
implementation class is called PersonHolder.

The Holder implementation class should be packaged in a holders
sub-package below the package of the class it is holding.

For example, if your complex type Person is in the examples.webservices
package, then the PersonHolder implementation class should be in the
examples.webservices.holders package.

Create a public field called value, whose data type is the same as that of the
parameter.

Create a default constructor that initializes the value field to a default value.

Create a constructor that sets the value field to the value of the passed
parameter.

The following example shows the outline of a PersonHolder implementation class:

package examples.webservices.holders;

javax.xml.rpc.holders.DoubleHolder double

javax.xml.rpc.holders.BigDecimalHolder java.math.BigDecimal

javax.xml.rpc.holders.BigIntegerHolder java.math.BigInteger

javax.xml.rpc.holders.ByteArrayHolder byte[]

javax.xml.rpc.holders.CalendarHolder java.util.Calendar

javax.xml.rpc.holders.QnameHolder javax.xml.namespace.QName

javax.xml.rpc.holders.StringHolder java.lang.String

Table 5-1 Built-In Holder Classes Provided by WebLogic Server

Built-In Holder Class Java Data Type That It Holds
5-10 Programming WebLogic Web Services

Writing the Java Code for the Components
public final class PersonHolder implements
 javax.xml.rpc.holders.Holder {

 public Person value;

 public PersonHolder() {

 // set the value variable to a default value
 }

 public PersonHolder (Person value) {

 // set the value variable to the passed in value
 }

}

Throwing SOAP Fault Exceptions

If you throw a javax.xml.rpc.soap.SOAPFaultException exception in your
stateless session EJB or Java class, WebLogic Server maps it to a SOAP fault and
sends it to the client application that invokes the operation.

The following excerpt describes the SOAPFaultException class:

public class SOAPFaultException extends java.lang.RuntimeException {
 public SOAPFaultException (QName faultcode,
 String faultstring,
 String faultactor,
 javax.xml.soap.Detail detail) {...}
 public Qname getFaultCode() {...}
 public String getFaultString() {...}
 public String getFaultActor() {...}
 public javax.xml.soap.Detail getDetail() {...}
}

If your EJB or Java class throws any other type of Java exception, WebLogic Server
tries to map it to a SOAP fault as best it can. However, to ensure that the client
application receives the best possible exception information, you should explicitly
throw a SOAPFaultException exception or one that extends the exception.

Use the weblogic.webservice.util.FaultUtil.newDetail() WebLogic Web
Service API to create the javax.xml.soap.Detail object, which is a JAX-RPC
container for DetailEntry objects that provide detailed application-specific
Programming WebLogic Web Services 5-11

5 Implementing WebLogic Web Services
information about the error. You can use the
javax.xml.soap.Detail.addDetailEntry() method to add a DetailEntry to
the Detail object.

The following excerpt shows an example of creating and throwing a
SOAPFaultException from within the implementation of your Web Service:

 throw new SOAPFaultException(
 new QName("http://schemas.xmlsoap.org/soap/envelope/", "Server"),
 "info on the fault",
 "info on the actor",
 weblogic.webservice.util.FaultUtil.newDetail());
 }

Warning: If you create and throw your own exception (rather than use
SOAPFaultException) and two or more of the properties of your
exception class are of the same data type, then you must also create setter
methods for these properties, even though the JAX-RPC specification
does not require it. This is because when a WebLogic Web Service
receives the exception in a SOAP message and converts the XML into the
Java exception class, there is no way of knowing which XML element
maps to which class property without the corresponding setter methods.

Using Built-In Data Types

The following sections describe the built-in data types supported by WebLogic Web
services and the mapping between their XML and Java representations. As long as the
data types of the parameters and return values of the backend components that
implement your Web service are in the set of built-in data types, WebLogic Server
automatically converts the data between XML and Java.

If, however, you use non-built-in data types, then you must create the serialization
class to convert the data between XML and Java. WebLogic Server includes the
servicegen and autotype Ant tasks that can generate the serialization class for most
non-built-in data types. See “Non-Built-In Data Types Supported by servicegen and
autotype Ant Tasks” on page 6-13 for a list of supported XML and Java data types. For
more information about using servicegen and autotype, see Chapter 6,
“Assembling WebLogic Web Services Using Ant Tasks.”
5-12 Programming WebLogic Web Services

Using Built-In Data Types
If your data type is not supported, then you must create your serialization class
manually. For details, see Chapter 9, “Using Non-Built-In Data Types.”

XML Schema-to-Java Mapping for Built-In Data Types

The following table lists the defined mappings for all built-in data types defined by
XML Schema (target namespace http://www.w3.org/2001/XMLSchema) and the
corresponding SOAP data types (target namespace
http://schemas.xmlsoap.org/soap/encoding/).

For a list of the supported non-built-in XML data types, see “Supported XML
Non-Built-In Data Types” on page 6-14.

Table 5-2 XML Schema-to-Java Mapping for Built-In Data Types

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)

boolean boolean

byte byte

short short

int int

long long

float float

double double

integer java.math.BigInteger

decimal java.math.BigDecimal

string java.lang.String

dateTime java.util.Calendar

base64Binary byte[]

hexBinary byte[]
Programming WebLogic Web Services 5-13

5 Implementing WebLogic Web Services
duration weblogic.xml.schema.binding.util.Duration

time java.util.Calendar

date java.util.Calendar

gYearMonth java.util.Calendar
The java.util.Calendar Java data type contains more fields than
the gYearMonth data type. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

gYear java.util.Calendar
The java.util.Calendar Java data type contains more fields than
the gYearMonth data type. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

gMonthDay java.util.Calendar
The java.util.Calendar Java data type contains more fields than
the gYearMonth data type. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

gDay java.util.Calendar
The java.util.Calendar Java data type contains more fields than
the gYearMonth data type. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

gMonth java.util.Calendar
The java.util.Calendar Java data type contains more fields than
the gYearMonth data type. This additional information is not
meaningful and is not generated from the actual XML data, but rather
created by the data binding facility.

anyURI java.lang.String

NOTATION java.lang.String

Table 5-2 XML Schema-to-Java Mapping for Built-In Data Types

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)
5-14 Programming WebLogic Web Services

Using Built-In Data Types
token java.lang.String

normalizedString java.lang.String

language java.lang.String

Name java.lang.String

NMTOKEN java.lang.String

NCName java.lang.String

NMTOKENS java.lang.String[]

ID java.lang.String

IDREF java.lang.String

ENTITY java.lang.String

IDREFS java.lang.String[]

ENTITIES java.lang.String[]

nonPositiveInteger java.math.BigInteger

nonNegativeInteger java.math.BigInteger

negativeInteger java.math.BigInteger

unsignedLong java.math.BigInteger

positiveInteger java.math.BigInteger

unsignedInt long

unsignedShort int

unsignedByte short

Qname javax.xml.namespace.QName

Table 5-2 XML Schema-to-Java Mapping for Built-In Data Types

XML Schema Data Type Equivalent Java Data Type
(lower case indicates a primitive data type)
Programming WebLogic Web Services 5-15

5 Implementing WebLogic Web Services
Java-to-XML Mapping for Built-In Data Types

For a list of the supported non-built-in Java data types, see “Supported Java
Non-Built-In Data Types” on page 6-16.

Table 5-3 Java-to-XML Mapping for Built-In Data Types

Java Data Type (lower case indicates a
primitive data type)

Equivalent XML Data Type

int int

short short

long long

float float

double double

byte byte

boolean boolean

char string (with facet of length=1)

java.lang.Integer int

java.lang.Short short

java.lang.Long long

java.lang.Float float

java.lang.Double double

java.lang.Byte byte

java.lang.Boolean boolean

java.lang.Character string (with facet of length=1)

java.lang.String string

java.math.BigInteger integer

java.math.BigDecimal decimal
5-16 Programming WebLogic Web Services

Using Built-In Data Types
java.lang.String string

java.util.Calendar dateTime

java.util.Date dateTime

byte[] base64Binary

weblogic.xml.schema.binding.util.Duration duration

javax.xml.namespace.QName Qname

Table 5-3 Java-to-XML Mapping for Built-In Data Types

Java Data Type (lower case indicates a
primitive data type)

Equivalent XML Data Type
Programming WebLogic Web Services 5-17

5 Implementing WebLogic Web Services
5-18 Programming WebLogic Web Services

CHAPTER
6 Assembling WebLogic
Web Services Using Ant
Tasks

The following sections describe how to assemble and deploy WebLogic Web services
using a variety of Ant tasks:

“Overview of Assembling WebLogic Web Services Using Ant Tasks” on page
6-2

“Assembling WebLogic Web Services Using the servicegen Ant task” on page
6-3

“Assembling WebLogic Web Services Using Other Ant Tasks” on page 6-6

“The Web Service EAR File Package” on page 6-12

“Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks” on
page 6-13

“Non-Roundtripping of Generated Data Type Components” on page 6-17

“Deploying WebLogic Web Services” on page 6-18
Programming WebLogic Web Services 6-1

6 Assembling WebLogic Web Services Using Ant Tasks
Overview of Assembling WebLogic Web
Services Using Ant Tasks

Assembling a WebLogic Web service refers to gathering all the components of the
service (such as the EJB JAR file, the SOAP message handler classes, and so on),
generating the web-services.xml deployment descriptor file, and packaging
everything into an Enterprise Application Archive (EAR) file that can be deployed on
WebLogic Server.

There are two ways to assemble a WebLogic Web service using Ant tasks:

Using the servicegen Ant task, which performs all assembly steps for you.

The servicegen Ant takes as input an EJB JAR file (for EJB-implemented Web
services) or a list of Java classes (for Java class-implemented Web services), and
based on information after introspecting the Java code and the attributes of the
Ant task, it automatically generates all the components that make up a WebLogic
Web service and packages them into an EAR file.

For detailed information, see “Assembling WebLogic Web Services Using the
servicegen Ant task” on page 6-3.

Using a variety of narrowly-focused Ant tasks, such as autotype,
source2wsdd, and so on.

Typically, the servicegen Ant task is adequate for assembling most WebLogic
Web services. If, however, you want more control over how your Web service is
assembled, you can use a set of narrowly-focused Ant tasks instead. For
example, you can use the source2wsdd to generate the web-services.xml
file, and then you can update this file manually if you want to add more
information.

For detailed information, see “Assembling WebLogic Web Services Using Other
Ant Tasks” on page 6-6.

For detailed reference information on the Web services Ant tasks, see Appendix B,
“Web Service Ant Tasks and Command-Line Utilities.”
6-2 Programming WebLogic Web Services

Assembling WebLogic Web Services Using the servicegen Ant task
Note: The Java Ant utility included in WebLogic Server uses the ant (UNIX) or
ant.bat (Windows) configuration files in the WL_HOME\server\bin
directory when setting the ANTCLASSPATH variable, where WL_HOME is the
top-level directory of your WebLogic Platform installation If you need to
update the ANTCLASSPATH variable, make the relevant changes to the
appropriate file for your operating system.

Assembling WebLogic Web Services Using
the servicegen Ant task

The servicegen Ant task takes as input an EJB JAR file or list of Java classes and
creates all the needed Web service components and packages them into a deployable
EAR file.

What the servicegen Ant Task Does

In particular, the servicegen Ant task:

Introspects the Java code, looking for public methods to convert into Web
service operations and non-built-in data types used as parameters or return
values of the methods.

Creates a web-services.xml deployment descriptor file, based on the attributes
of the servicegen Ant task and introspected EJB or Java class information.

Optionally creates the serialization class that convert the non-built-in data
between its XML and Java representations. It also creates XML Schema
representations of the Java objects and updates the web-services.xml file
accordingly. For the list of supported non-built-in data types, see “Non-Built-In
Data Types Supported by servicegen and autotype Ant Tasks” on page 6-13.

Packages all the Web service components into a Web application WAR file, then
packages the WAR and EJB JAR files into a deployable EAR file.
Programming WebLogic Web Services 6-3

6 Assembling WebLogic Web Services Using Ant Tasks
Assembling WebLogic Web Services Automatically: Main
Steps

To assemble a Web service automatically using the servicegen Ant task:

1. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

2. Create a staging directory to hold the components of your Web service.

3. If the Web service operations are implemented with EJBs, package them, along
with any supporting EJBs, into an EJB JAR file. If the operations are
implemented with Java classes, compile them into class files.

For detailed information, refer to Developing WebLogic Server Applications at
http://e-docs.bea.com/wls/docs70/programming/packaging.html.

4. Copy the EJB JAR file and/or Java class files to the staging directory.

5. In the staging directory, create the Ant build file (called build.xml by default)
that contains a call to the servicegen Ant task.

For details about specifying the servicegen Ant task, see “Running the
servicegen Ant Task” on page 6-5.

For general information about creating Ant build files, see
http://jakarta.apache.org/ant/manual/.

6. Execute the Ant task or tasks specified in the build.xml file by typing ant in
the staging directory, optionally passing the command a target argument:

prompt> ant

The Ant task generates the Web services EAR file in the staging directory which
can then deploy on WebLogic Server.
6-4 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/programming/packaging.html
http://jakarta.apache.org/ant/manual/

Assembling WebLogic Web Services Using the servicegen Ant task
Running the servicegen Ant Task

The following sample build.xml, file taken from the
examples.webservices.basic.statelessession product example, specifies that
you will run the servicegen Ant task:

<project name="buildWebservice" default="ear">
 <target name="ear">
 <servicegen
 destEar="ws_basic_statelessSession.ear"
 contextURI="WebServices" >
 <service
 ejbJar="HelloWorldEJB.jar"
 targetNamespace="http://www.bea.com/webservices/basic/statelesSession"
 serviceName="HelloWorldEJB"
 serviceURI="/HelloWorldEJB"
 generateTypes="True"
 expandMethods="True"
 style="rpc" >
 </service>
 </servicegen>
 </target>
</project>

In the example, the servicegen Ant task creates one Web service called
HelloWorldEJB. The URI to identify this Web service is /HelloWorldEJB; the full
URL to access the Web service is

http://host:port/WebServices/HelloWorldEJB

The servicegen Ant task packages the Web service in an EAR file called
ws_basic_statelessSession.ear. The EAR file contains a WAR file called
web-services.war (default name) that contains all the Web service components,
such as the web-services.xml deployment descriptor file.

Because the generateTypes attribute is set to True, the WAR file also contains the
serialization class for any non-built-in data types used as parameters or return values
to the EJB methods. The Ant task introspects the EJBs contained in the
HelloWorldEJB.jar file, looking for public operations and non-built-in data types,
and updates the web-services.xml operation and data type mapping sections
accordingly. Because the expandMethods attribute is also set to True, the Ant task
lists each public EJB method as a separate operation in the web-services.xml file.
Programming WebLogic Web Services 6-5

6 Assembling WebLogic Web Services Using Ant Tasks
The style="rpc" attribute specifies that the operations in the Web service are all
RPC-oriented. If the operations in your Web service are document-oriented, specify
style="document".

Assembling WebLogic Web Services Using
Other Ant Tasks

Typically, the servicegen Ant task is adequate for assembling most WebLogic Web
services. If, however, you want more control over how your Web service is assembled,
you can use a set of narrowly-focused Ant tasks instead. For example, you can use the
source2wsdd to generate the web-services.xml file, and then you can update this
file manually if you want to add more information.

To assemble a WebLogic Web service using Ant tasks other than servicegen:

1. Package or compile the backend components that implement the Web service into
their respective packages. For example, package stateless session EJBs into an EJB
JAR file and Java classes into class files.

For detailed instructions, see WebLogic Server Application Packaging at
http://e-docs.bea.com/wls/docs70/programming/packaging.html.

2. Create the Web service deployment descriptor file (web-services.xml).

If you implemented your Web service with a Java class, you can use the
source2wsdd Ant task to generate a web-services.xml file. For details, see
“Running the source2wsdd Ant Task” on page 6-7. If you used the
wsdl2Service Ant task to generate a partial implementation of a Web service
from an existing WSDL file, then the Ant task already generated a
web-services.xml file for you.

For all other cases, such as EJB-implemented Web services, you might have to
create the web-services.xml file manually. See “Creating the
web-services.xml File Manually: Main Steps” on page 7-4.
6-6 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/programming/packaging.html

Assembling WebLogic Web Services Using Other Ant Tasks
3. If your Web service uses non-built-in data types, create all the needed
components, such as the serialization class, by using the autotype Ant task to
generate these components automatically, as described in “Running the autotype
Ant Task” on page 6-8.

4. Optionally create a client JAR file using the clientgen Ant task.

See “Running the clientgen Ant Task” on page 6-10.

5. Package all components into a deployable EAR file by using the wspackage Ant
task, as described in “Running the wspackage Ant task” on page 6-11.

Running the source2wsdd Ant Task

Use the source2wsdd Ant task to generate a web-services.xml deployment
descriptor file from the Java source file that implements a Web service.

Note: You cannot use this Ant task to generate the web-services.xml file for an
EJB-implemented Web service; you can only use it for Java
class-implemented Web service.

To run the source2wsdd Ant task, follow these steps:

1. Create a file called build.xml that contains a call to the source2wsdd Ant task.
See “Sample build.xml Files for the source2wsdd Ant Task.”

2. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in
the same directory as the build.xml file:

prompt> ant

For reference information about the source2wsdd Ant task, see “source2wsdd” on
page B-28.
Programming WebLogic Web Services 6-7

6 Assembling WebLogic Web Services Using Ant Tasks
Sample build.xml Files for the source2wsdd Ant Task

The following example shows a simple build.xml file:

<project name="buildWebservice" default="generate-typeinfo">
 <target name="generate-typeinfot">
 <source2wsdd
 javaSource="c:\source\MyService.java"
 typesInfo="c:\autotype\types.xml"
 ddFile="c:\ddfiles\web-services.xml"
 serviceURI="/MyService" />
</project>

In the example, the source2wsdd Ant task generates a web-services.xml file from
the Java source file called c:\source\MyService.java. It uses non-built-in data
type information from the c:\autotype\types.xml file; this information includes
the XML Schema representation of non-built-in data types used as parameters or return
values in your Web service, as well as data type mapping information that specifies the
location of the serialization class, and so on. You typically generate this file using the
autotype Ant task.

The source2wsdd Ant task outputs the generated deployment descriptor information
into the file c:\ddfiles\web-services.xml. The URI of the Web service is
/MyService, used in the full URL that invokes the Web service once it is deployed.

Running the autotype Ant Task

Use the autotype Ant task to generate non-built-in data type components, such as the
serialization class. For the list of supported non-built-in data types, see “Non-Built-In
Data Types Supported by servicegen and autotype Ant Tasks” on page 6-13.

To run the autotype Ant task, follow these steps:

1. Create a file called build.xml that contains a call to the autotype Ant task. For
details, see “Sample build.xml Files for the Autotype Ant Task.”

2. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.
6-8 Programming WebLogic Web Services

Assembling WebLogic Web Services Using Other Ant Tasks
On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in
the same directory as the build.xml file:

prompt> ant

For reference information about the autotype Ant task, see “autotype” on page B-7.

Sample build.xml Files for the Autotype Ant Task

The following example shows a simple build.xml file:

<project name="buildWebservice" default="generate-typeinfo">
 <target name="generate-typeinfot">
 <autotype javatypes="mypackage.MyType"
 targetNamespace="http://www.foobar.com/autotyper"
 packageName="a.package.name"
 destDir="d:\output" />
 </target>
</project>

In the example, the autotype Ant task creates the non-built-in data type components
for a Java class called mypackage.MyType. The package name used in the generated
serialization class is a.package.name. The serialization Java class and XML schema
inforamtion is generated and placed in the d:\output directory. The generated XML
Schema and type-mapping information are in a file called types.xml in this output
directory.

The following excerpt from a sample build.xml file shows another way to use the
autotype task:

<autotype wsdl="file:\wsdls\myWSDL"
 targetNamespace="http://www.foobar.com/autotyper"
 packageName="a.package.name"
 destDir="d:\output" />

This example is similar to the first, except that instead of starting with a Java
representation of a data type, the example starts with an XML Schema representation
embedded within the WSDL of a Web service. In this case, the task generates the
corresponding Java representation.
Programming WebLogic Web Services 6-9

6 Assembling WebLogic Web Services Using Ant Tasks
Running the clientgen Ant Task

To run the clientgen Ant task and automatically generate a client JAR file:

1. Create a file called build.xml that contains a call to the clientgen Ant task. For
details, see “Sample build.xml File for the clientgen Ant Task.”

2. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in
the same directory as the build.xml file:

prompt> ant

For reference information about the clientgen Ant task, see “clientgen” on page
B-12.

Sample build.xml File for the clientgen Ant Task

The following example shows a simple build.xml file:

<project name="buildWebservice" default="generate-client">
 <target name="generate-client">
 <clientgen ear="c:/myapps/myapp.ear"
 serviceName="myService"
 packageName="myapp.myservice.client"
 useServerTypes="True"
 clientJar="c:/myapps/myService_client.jar" />
 </target>
</project>

In the example, the clientgen Ant task creates the
c:/myapps/myService_client.jar client JAR file that contains the
service-specific client interfaces and stubs and the serialization class used to invoke the
WebLogic Web service called myService contained in the EAR file
c:/myapps/myapp.ear. It packages the client interface and stub files into a package
6-10 Programming WebLogic Web Services

Assembling WebLogic Web Services Using Other Ant Tasks
called myapp.myservice.client. The useServerTypes attribute specifies that the
clientgen Ant task should get the Java implementation of all non-built-in data types
used in the Web service from the c:/myapps/myapp.ear file rather than generating
Java code to implement the data types.

Running the wspackage Ant task

Use the wspackage Ant task to package the various components of a Web service into
a deployable EAR file.

To run the wspackage Ant task, follow these steps:

1. Create a file called build.xml that contains a call to the wspackage Ant task. For
details, see “Sample build.xml Files for the wspackage Ant Task.”

2. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in
the same directory as the build.xml file:

prompt> ant

For reference information about the wspackage Ant task, see “wspackage” on page
B-33.

Sample build.xml Files for the wspackage Ant Task

The following example shows a simple build.xml file for creating a deployable EAR
file for a Java class-implemented Web service:

<project name="buildWebservice" default="generate-typeinfo">
 <target name="generate-typeinfot">
 <wspackage
 output="c:\myWebService.ear"
 contextURI="web_services"
Programming WebLogic Web Services 6-11

6 Assembling WebLogic Web Services Using Ant Tasks
 codecDir="c:\autotype"
 webAppClasses="example.ws2j.service.SimpleTest"
 ddFile="c:\ddfiles\web-services.xml" />

</project>

In the example, the wspackage Ant task creates an EAR file called
c:\myWebService.ear. The context URI of the Web service, used in the full URL
that invokes it, is web_services. The serializer class that contains the serializer class
for the non-built-in data types is located in the c:\autotype directory. The Java class
that implements the Web service is called example.ws2j.service.SimpleTest and
will be packaged in the WEB-INF/classes directory of the Web application. Finally,
the existing deployment descriptor file is c:\ddfiles\web-services.xml.

The Web Service EAR File Package

Web services are packaged into standard Enterprise Application EAR files that contain
a Web application WAR file along with the EJB JAR files.
6-12 Programming WebLogic Web Services

Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks
The following graphic shows the hierarchy of a typical WebLogic Web services EAR
file.

Non-Built-In Data Types Supported by
servicegen and autotype Ant Tasks

The tables in the following sections list the non-built-in XML and Java data types for
which the servicegen and autotype Ant tasks can generate data type components,
such as the serializer class, the Java or XML representation, and so on.

If your XML or Java data type is not listed in these tables, and it is not one of the
built-in data types listed in “Using Built-In Data Types” on page 5-12, then you must
create the non-built-in data type components manually. For details, see Chapter 9,
“Using Non-Built-In Data Types.”

EAR file

WAR file

EJB JAR file

META-INF

WEB-INF

web-services.xml

client.jar

(Directory that contains standard application.xml file)

(Web services deployment descriptor file)

(Downloadable client JAR file, one per Web service)

classes (Directory that contains the serialization class,
handler implementations, Java class components, and all

(JAR file containing the EJBs that implement the Web service.)

lib (Directory that contains JAR files of Java classes.)

other supporting classes.)
Programming WebLogic Web Services 6-13

6 Assembling WebLogic Web Services Using Ant Tasks
Warning: The serializer class and Java and XML representations generated by the
autotype, servicegen, and clientgen Ant tasks cannot be
round-tripped. For more information, see “Non-Roundtripping of
Generated Data Type Components” on page 6-17.

For information on the ways that WebLogic Web Services are non-compliant with the
JAX-RPC specification with respect to data types, see “Data Type Non-Compliance
with JAX-RPC” on page 6-16.

Supported XML Non-Built-In Data Types

The following table lists the supported XML Schema non-built-in data types. If your
XML data type is listed in the table, then the servicegen and autotype Ant tasks can
generate the serializer class to convert the data between its XML and Java
representations, as well as the Java representation and type mapping information for
the web-services.xml deployment descriptor.

For details and examples of the data types, see the JAX-RPC specification.

Table 6-1 Supported Non-Built-In XML Schema Data Types

XML Schema Data Type Equivalent Java Data Type or
Mapping Mechanism

Enumeration Typesafe enumeration pattern. For
details, see Section 4.2.4 of the JAX-RPC
specification.

<xsd:complexType> with elements of both
simple and complex types.

JavaBean

<xsd:complexType> with simple content. JavaBean

<xsd:attribute> in
<xsd:complexType>

Property of a JavaBean

Derivation of new simple types by restriction of
an existing simple type.

Equivalent Java data type of simple type.
6-14 Programming WebLogic Web Services

Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks
Facets used with restriction element.

Note: The base primitive type must be one of
the following: string, decimal,
float, or double. Pattern facet is
not enforced.

Restriction enforced during serialization
and deserialization.

<xsd:list> Array of the list data type.

Array derived from soapenc:Array by
restriction using the wsdl:arrayType
attribute.

Array of the Java equivalent of the
arrayType data type.

Array derived from soapenc:Array by
restriction.

Array of Java equivalent.

Derivation of a complex type from a simple
type.

JavaBean with a property called
simpleContent of type String.

<xsd:anyType> java.lang.Object.

<xsd:nil> and <xsd:nillable> attribute Java null value.
If the XML data type is built-in and
usually maps to a Java primitive data type
(such as int or short), then the XML
data type is actually mapped to the
equivalent object wrapper type (such as
java.lang.Integer or
java.lang.Short).

Derivation of complex types by extension Mapped using Java inheritance.

Abstract types Abstract Java data type.

Table 6-1 Supported Non-Built-In XML Schema Data Types

XML Schema Data Type Equivalent Java Data Type or
Mapping Mechanism
Programming WebLogic Web Services 6-15

6 Assembling WebLogic Web Services Using Ant Tasks
Supported Java Non-Built-In Data Types

The following table lists the supported Java non-built-in data types. If your Java data
type is listed in the table, then the servicegen and autotype Ant tasks can generate
the serializer class to convert the data between its Java and XML representations.

Data Type Non-Compliance with JAX-RPC

The autotype Ant task does not comply with the JAX-RPC specification if the XML
Schema data type (for which it is generating the Java representation) has all the
following characteristics:

Table 6-2 Supported Non-Built-In Java Data Types

Java Data Type Equivalent XML Schema Data
Type

Array of any supported data type. SOAP Array.

JavaBean whose properties are any supported
data type.

<xsd:sequence>

java.util.List SOAP Array.

java.util.ArrayList SOAP Array.

java.util.LinkedList SOAP Array.

java.util.Vector SOAP Array.

java.util.Stack SOAP Array.

java.lang.Object

Note: The data type of the runtime object
must be a known type: either a built-in
data type or one that has type mapping
information.

<xsd:anyType>

JAX-RPC-style enumeration class <xsd:simpleType> with enumeration
facets
6-16 Programming WebLogic Web Services

Non-Roundtripping of Generated Data Type Components
The data type is a complexType.

The complexType contains a single sequence.

The sequence contains a single element with maxOccurs greater than 1 or
unbounded.

The following example shows such an XML Schema data type:

<xsd:complexType name="Response">

 <xsd:sequence >

 <xsd:element name="code" type="xsd:string" maxOccurs="10" />

 </xsd:sequence>

</xsd:complexType>

The autotype Ant task maps this type of XML Schema data type directly to a Java
array of the specified element. In the previous example, the autotype Ant task maps
the Response XML Schema data type to a java.lang.String[] Java type. This is
similar to the type of mapping that .NET does.

The JAX-RPC specification, in turn, states that this type of XML Schema data type
should map to a Java array with a pair of setter and getter methods in a JavaBean class.
WebLogic Web Services do not follow this last part of the specification.

Non-Roundtripping of Generated Data Type
Components

When you use the servicegen or autotype Ant tasks to create the serializer class and
Java or XML representation of non-built-in data types, it is very important to note that
the process cannot be round-tripped. This means that if, for example, you use the
autotype Ant task to generate the Java representation of an XML Schema data type,
and then use autotype to create an XML Schema data type from the generated Java
type, the original and generated XML Schema data type will not necessarily look the
same, although they both describe the same XML data. This is also true if you start
from Java, generate an XML Schema, then generate a new Java data type from the
Programming WebLogic Web Services 6-17

6 Assembling WebLogic Web Services Using Ant Tasks
generated XML Schema: the origianal and generated Java type will not necessarily
look exactly the same. One possible difference, for example, is that the original and
generated Java type might list the parameters of the constructor in a different order.

This behavior has a variety of repercussions. For example, assume you are developing
a Web service from an existing stateless session EJB that uses non-built-in data types.
You use the autotype Ant task to generate the serializer class and Java and XML
representation of the data types and you use this generated code in your server-side
code that implements your Web service. Later you use the clientgen Ant task to
generate the Web service-specific client JAR file, which also includes a serializer class
and the Java representation of the non-built-in data types. However, because
clientgen by default generates these components from the WSDL of the Web service
(and thus from an XML Schema), the clientgen-generated client-side Java
representation might look different from the autotype-generated server-side Java
code. This means that you might not necessarily be able to reuse any server-side code
that handles the data type in your client application. If you want the clientgen Ant
task to always use the generated serializer class and code from the WebLogic Web
service EAR file, specify the useServerTypes attribute.

Deploying WebLogic Web Services

Deploying a WebLogic Web service refers to making it available to remote clients.
Because WebLogic Web services are packaged as standard J2EE Enterprise
applications, deploying a Web service is the same as deploying an Enterprise
application.

For detailed information on deploying Enterprise applications, see WebLogic Server
Deployment at http://e-docs.bea.com/wls/docs70/programming/deploying.html.
6-18 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html

CHAPTER
7 Assembling a WebLogic
Web Service Manually

The following sections provide information about assembling a WebLogic Web
service manually:

“Overview of Assembling a WebLogic Web Service Manually” on page 7-1

“Assembling a WebLogic Web Service Manually: Main Steps” on page 7-2

“Overview of the web-services.xml File” on page 7-3

“Creating the web-services.xml File Manually: Main Steps” on page 7-4

“Sample web-services.xml Files” on page 7-10

Overview of Assembling a WebLogic Web
Service Manually

Assembling a WebLogic Web service refers to gathering all the components of the
service (such as the EJB JAR file, the SOAP message handler classes, and so on),
generating the web-services.xml deployment descriptor file, and packaging
everything into an Enterprise Application EAR file that can be deployed on WebLogic
Server.
Programming WebLogic Web Services 7-1

7 Assembling a WebLogic Web Service Manually
Typically you never assemble a WebLogic Web service manually, because the
procedure is complex and time-consuming. Rather, use the WebLogic Ant tasks such
as servicegen, autotype, source2wsdd, and so on to automatically generate all the
needed components and package them into a deployable EAR file.

If, however, your Web service is so complex that the Ant tasks are not able to generate
the needed components, or you want full control over all aspects of the Web service
assembly, then use this chapter as a guide to assembling the Web service manually.

Assembling a WebLogic Web Service
Manually: Main Steps

1. Package or compile the backend components that implement the Web service into
their respective packages. For example, package stateless session EJBs into an EJB
JAR file and Java classes into class files.

For detailed instructions, see WebLogic Server Application Packaging at
http://e-docs.bea.com/wls/docs70/programming/packaging.html.

2. Create the Web service deployment descriptor file (web-services.xml).

For a description of the web-services.xml file, see “Overview of the
web-services.xml File” on page 7-3. For detailed steps for creating the file
manually, see “Creating the web-services.xml File Manually: Main Steps” on
page 7-4.

3. If your Web service uses non-built-in data types, create all the needed
components, such as the serialization class.

For detailed information on creating these components manually, see Chapter 9,
“Using Non-Built-In Data Types.”

4. Package all components into a deployable EAR file.

When packaging the EAR file manually, be sure to put the correct Web service
components into a Web application WAR file. For details about the WAR and
EAR file hierarchy, see “The Web Service EAR File Package” on page 6-12.
7-2 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/programming/packaging.html

Overview of the web-services.xml File
For instructions on creating WAR and EAR files, see WebLogic Server
Application Packaging at
http://e-docs.bea.com/wls/docs70/programming/packaging.html.

Overview of the web-services.xml File

The web-services.xml deployment descriptor file contains information that
describes one or more WebLogic Web services, such as the backend components that
implement the Web service; the non-built-in data types used as parameters and return
values; the SOAP message handlers that intercept SOAP messages; and so on. As is
true for all deployment descriptors, web-services.xml is an XML file.

Based on the contents of the web-services.xml deployment descriptor file,
WebLogic Server dynamically generates the WSDL of a deployed WebLogic Web
service. See “The WebLogic Web Services Home Page and WSDL URLs” on page
8-22 for details on getting the URL of the dynamically generated WSDL.

A single WebLogic Web service consists of one or more operations; you can
implement each operation using methods of different backend components and SOAP
message handlers. For example, an operation might be implemented with a single
method of a stateless session EJB or with a combination of SOAP message handlers
and a method of a stateless session EJB.

A single web-services.xml file contains a descritpion of at least one, and maybe
more, WebLogic Web services.

If you are assembling a Web service manually (necessary, for example, is the service
uses SOAP message handlers and handler chains), you need to create the
web-services.xml file manually. If you assemble a WebLogic Web service with the
servicegen Ant task, you do not need to create the web-services.xml file
manually, because the Ant task generates one for you based on its introspection of the
EJBs, the attributes of the Ant task, and so on.

Even if you need to manually assemble a Web service, you can use the servicegen
Ant task to create a basic template, and then use this document to help you update the
generated web-services.xml with the extra information that servicegen does not
provide.
Programming WebLogic Web Services 7-3

http://e-docs.bea.com/wls/docs70/programming/packaging.html
http://e-docs.bea.com/wls/docs70/programming/packaging.html

7 Assembling a WebLogic Web Service Manually
Creating the web-services.xml File
Manually: Main Steps

The web-services.xml deployment descriptor file describes one or more WebLogic
Web service. The file includes information about the operations that make up the Web
services, the backend components that implement the operations, data type mapping
information about non-built-in data types used as parameters and return values of the
operations, and so on. See “Sample web-services.xml Files” on page 7-10 for complete
examples of web-services.xml files that describe different kinds of WebLogic Web
services. You can use any text editor to create the web-services.xml file.

For detailed descriptions of each element described in this section, see Appendix A,
“WebLogic Web Service Deployment Descriptor Elements.”

The following example shows a simple web-services.xml file:

<web-services>
 <web-service name="stockquotes" targetNamespace="http://example.com"
 uri="/myStockQuoteService">
 <components>
 <stateless-ejb name="simpleStockQuoteBean">
 <ejb-link path="stockquoteapp.jar#StockQuoteBean" />
 </stateless-ejb>
 </components>
 <operations>
 <operation method="getLastTradePrice"
 component="simpleStockQuoteBean" />
 </operations>
 </web-service>
</web-services>

To create the web-services.xml file manually:

1. Create the root <web-services> element which contains all other elements:

<web-services>
...
</web-servives>

2. If one or more of your Web services include SOAP message handlers to intercept
SOAP messages, create a <handler-chains> child element of the
<web-services> root element and include all the relevant child elements to
7-4 Programming WebLogic Web Services

Creating the web-services.xml File Manually: Main Steps
describe the handlers in the handler chain, the order in which they should be
invoked, and so on. For details, see “Updating the web-services.xml File with
SOAP Message Handler Information” on page 10-16.

3. For each Web service you want to define, follow these steps:

a. Create a <web-service> child element of the <web-services> element. Use
the name, targetNamespace, and uri attributes to specify the name of the
Web service, its target namespace, and the URI that clients will use to invoke
the Web service, as shown in the following example:

<web-service name="stockquote"
 targetNamespace="http://example.com"
 uri="myStockQuoteService">
...
</web-service>

To specify that the operations in your Web service are all document-oriented,
use the style="document" attribute. The default value of the style
attribute is rpc, which means the operations are all RPC-oriented.

b. Create a <components> child element of the <web-service> element that
lists the backend components that implement the operations of the Web service.
For details, see “Creating the <components> Element” on page 7-6.

c. If the operations in your Web service use non-built-in data types as parameters
or return values, add data type mapping information by creating <types> and
<type-mapping> child elements of the <web-service> element. For details,
see “Creating the Data Type Mapping File” on page 9-11.

Note: You do not have to perform this step if the operations of your Web
service use only built-in data types as parameters or return values. See
“Using Built-In Data Types” on page 5-12 for a list of the supported
built-in data types.

d. Create an <operations> child element of the <web-service> element that
lists the operations that make up the Web service:

<operations xmlns:xsd="http://www.w3.org/2001/XMLSchema">
....
</operations>

e. Within the <operations> element, list the operations defined for the Web
service. For details, see “Creating <operation> Elements” on page 7-7.
Programming WebLogic Web Services 7-5

7 Assembling a WebLogic Web Service Manually
Creating the <components> Element

Use the <components> child element of the <web-service> element to list and
describe the backend components that implement the operations of a Web service.
Each backend component has a name attribute that you later use when describing the
operation that the component implements.

Note: If you are creating a SOAP message handler-only type of Web service in
which handlers and handler chains do all the work and never execute a
backend component, you do not specify a <components> element in the
web-services.xml file. For all other types of Web services you must declare
a <components> element.

You can list one of the following types of backend components:

<stateless-ejb>

This element describes a stateless EJB backend component. Use either the
<ejb-link> child element to specify the name of the EJB and the JAR file
where it is located or the <jndi-name> child element to specify the JNDI name
of the EJB, as shown in the following example:

<components>
 <stateless-ejb name="simpleStockQuoteBean">
 <ejb-link path="stockquoteapp.jar#StockQuoteBean" />
 </stateless-ejb>
</components>

<java-class>

This element describes a Java class backend component. Use the class-name
attribute to specify the fully qualified path name of the Java class, as shown in
the following example:

<components>
 <java-class name="customClass"
 class-name="myclasses.MyOwnClass" />
</components>
7-6 Programming WebLogic Web Services

Creating the web-services.xml File Manually: Main Steps
Creating <operation> Elements

The <operation> element describes how the public operations of a WebLogic Web
service are implemented. (The public operations are those that are listed in the Web
service’s WSDL and are executed by a client application that invokes the Web
service.) The following example shows an <operation> declaration:

<operation name="getQuote"
 component="simpleStockQuoteBean"
 method="getQuote">
 <params>
 <param name="in1" style="in" type="xsd:string" location="Header"/>
 <param name="in2" style="in" type="xsd:int" location="Header"/>
 <return-param name="result" type="xsd:string" location="Header"/>
 </params>
</operation>

Typically, every instance of an <operation> element in the web-services.xml file
includes the name attribute which translates into the public name of the Web service
operation. The only exception is when you use the method="*" attribute to specify all
methods of an EJB or Java class in a single <operation> element; in this case, the
public name of the operation is the name of the method.

Use the attributes of the <operation> element in combination to specify different
kinds of operations. For details, see “Specifying the Type of Operation” on page 7-7.

Use the <params> element to optionally group together the parameters and return
value of the operation. For details, see “Specifying the Parameters and Return Value
of the Operation” on page 7-9.

Specifying the Type of Operation

Use the attributes of the <operation> element in different combination to identify the
type of operation, the type of component that implements it, whether it is a one-way
operation, and so on.

Note: For clarity, the examples in this section do not declare any parameters.

The following examples show how to declare a variety of different operations:

To specify that an operation is implemented with just a method of a stateless
session EJB, use the name, component, and method attributes, as shown in the
following example:
Programming WebLogic Web Services 7-7

7 Assembling a WebLogic Web Service Manually
<operation name="getQuote"
 component="simpleStockQuoteBean"
 method="getQuote">
</operation>

To specify with a single <operation> element that you want to include all the
methods of an EJB or Java class, use the method="*" attribute; in this case, the
public name of the operation is the name of the method:

<operation component="simpleStockQuoteBean"
 method="*">
</operation>

To specify that an operation only receives data and does not return anything to
the client application, add the invocation-style attribute:

<operation name="getQuote"
 component="simpleStockQuoteBean"
 method="getQuote(java.lang.String)"
 invocation-style="one-way">
</operation>

The example also shows how to specify the full signature of a method with the
method attribute. You only need to specify the full signature of a method if your
EJB or Java class overloads the method and you thus need to unambiguously
declare which method you are exposing as a Web service operation.

To specify that an operation is implemented with a SOAP message handler chain
and a method of a stateless session EJB, use the name, component, method, and
handler-chain attributes:

<operation name="getQuote"
 component="simpleStockQuoteBean"
 method="getQuote"
 handler-chain="myHandler">
</operation>

To specify that an operation is implemented with just a SOAP message handler
chain, use just the name and handler-chain attributes:

<operation name="justHandler"
 handler-chain="myHandler">

</operation>
7-8 Programming WebLogic Web Services

Creating the web-services.xml File Manually: Main Steps
Specifying the Parameters and Return Value of the Operation

Use the <params> element to explicitly declare the parameters and return values of the
operation.

You do not have to explicitly list the parameters or return values of an operation. If an
<operation> element does not have a <params> child element, WebLogic Server
introspects the backend component that implements the operation to determine its
parameters and return values. When generating the WSDL of the Web service,
WebLogic Server uses the names of the corresponding method’s parameters and return
value.

You explicitly list an operation’s parameters and return values when you need to:

Make the name of the parameters and return values in the generated WSDL
different from those of the method that implements the operation.

Map a parameter to a name in the SOAP header request or response.

Use out or in-out parameters.

Use the <param> child element of the <params> element to specify a single input
parameter and the <return-param> child element to specify the return value. You
must list the input parameters in the same order in which they are defined in the method
that implements the operation. The number of <param> elements must match the
number of parameters of the method. You can specify only one <return-param>
element.

Use the attributes of the <param> and <return-param> elements to specify the part
of the SOAP message where parameter is located (the body or header), the type of the
parameter (in, out, or in-out), and so on. You must always specify the XML Schema
data type of the parameter using the type attribute. The following examples show a
variety of input and return parameters.

To specify that a parameter is a standard input parameter, located in the header
of the request SOAP message, use the style and location attributes as shown:

<param name="inparam" style="in"
 location = "Header" type="xsd:string" />

Out and in-out parameters enable an operation to return more than one return
value (in addition to using the standard <return-value> element.) The
following sample <param> element shows how to specify that a parameter is an
in-out parameter, which means that it acts as both an input and output parameter:
Programming WebLogic Web Services 7-9

7 Assembling a WebLogic Web Service Manually
<param name="inoutparam" style="inout"
 type="xsd:int" />

Because the default value of the location attribute is Body, both the input and
output parameter values are found in the body of the SOAP message.

The following example shows how to specify a standard return value located in
the header of the response SOAP message:

 <return-param name="result" location="Header"
 type="xsd:string" />

Optionally use the <fault> child element of the <params> element to specify your
own Java exception that is thrown if there is an error while invoking the operation.
This exception will be thrown in addition to the java.rmi.RemoteException
exception. For example:

<fault name="MyServiceException"
 class-name="my.exceptions.MyServiceException" />

Sample web-services.xml Files

The following sections describe sample web-services.xml files for the following
types of WebLogic Web services:

EJB Component Web Service With Built-In Data Types

EJB Component Web Service With Non-Built-In Data Types

EJB Component and SOAP Message Handler Chain Web Service

SOAP Message Handler Chain-Only Web Service

EJB Component Web Service With Built-In Data Types

One kind of WebLogic Web service is implemented using a stateless session EJB
whose parameters and return values are one of the built-in data types. The following
Java interface is an example of such an EJB:
7-10 Programming WebLogic Web Services

Sample web-services.xml Files
public interface SimpleStockQuoteService extends javax.ejb.EJBObject {
 public float getLastTradePrice(String ticker) throws java.rmi.RemoteException;
}

The web-services.xml deployment descriptor for a Web service implemented with
this sample EJB can be as follows:

<web-services>
 <web-service name="stockquotes" targetNamespace="http://example.com"
 uri="/myStockQuoteService">
 <components>
 <stateless-ejb name="simpleStockQuoteBean">
 <ejb-link path="stockquoteapp.jar#StockQuoteBean" />
 </stateless-ejb>
 </components>
 <operations>
 <operation method="getLastTradePrice"
 component="simpleStockQuoteBean" />
 </operations>
 </web-service>
</web-services>

The example shows a Web service called stockquotes. The Web service is
implemented with a stateless session EJB whose <ejb-name> in the ejb-jar.xml file
is StockQuoteBean and is packaged in the EJB JAR file called stockquoteapp.jar.
The internal name of this component is simpleStockQuoteBean. The Web service
has one operation, called getLastTradePrice, the same as the EJB method name.
The input and output parameters are inferred from the method signature and thus do
not need to be explicitly specified in the web-services.xml file.

Note: The servicegen Ant task does not include the methods of EJBObject when
generating the list of operations in the web-services.xml file.

The previous example shows how to explicitly list an operation of a Web service. You
can, however, implicitly expose all the public methods of an EJB by including just one
<operation method="*"> element, as shown in the following example:

<operations>
 <operation method="*"
 component="simpleStockQuoteBean" />
</operations>

If your Web service supports only HTTPS, then use the protocol attribute of the
<web-service> element, as shown in the following example:

<web-service name="stockquotes"
 targetNamespace="http://example.com"
Programming WebLogic Web Services 7-11

7 Assembling a WebLogic Web Service Manually
 uri="/myStockQuoteService"
 protocol="https" >
...
</web-service>

EJB Component Web Service With Non-Built-In Data
Types

A more complex type of Web service is one whose operations take non-built-in data
types as parameters or return values. Because these non-built-in data types do not
directly map to a XML/SOAP data type, you must describe the data type in the
web-services.xml file.

For example, the following interface describes an EJB whose two methods return a
TradeResult object:

public interface Trader extends EJBObject {
 public TradeResult buy (String stockSymbol, int shares)
 throws RemoteException;
 public TradeResult sell (String stockSymbol, int shares)
 throws RemoteException;
}

The TradeResult class looks like the following:

public class TradeResult implements Serializable {

 private int numberTraded;
 private String stockSymbol;

 public TradeResult() {}

 public TradeResult(int nt, String ss) {
 numberTraded = nt;
 stockSymbol = ss;
 }

 public int getNumberTraded() { return numberTraded; }
 public void setNumberTraded(int numberTraded) {
 this.numberTraded = numberTraded; }

 public String getStockSymbol() { return stockSymbol; }
 public void setStockSymbol(String stockSymbol) {
 this.stockSymbol = stockSymbol; }
}

7-12 Programming WebLogic Web Services

Sample web-services.xml Files
The following web-services.xml file describes a Web service implemented with
this EJB:

<web-services>

 <web-service name="TraderService"
 uri="/TraderService"
 targetNamespace="http://www.bea.com/examples/Trader">

 <types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:stns="java:examples.webservices"
 attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="java:examples.webservices">
 <xsd:complexType name="TradeResult">
 <xsd:sequence><xsd:element maxOccurs="1" name="stockSymbol"
 type="xsd:string" minOccurs="1">
 </xsd:element>
 <xsd:element maxOccurs="1" name="numberTraded"
 type="xsd:int" minOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
 </types>

 <type-mapping>
 <type-mapping-entry
 deserializer="examples.webservices.TradeResultCodec"
 serializer="examples.webservices.TradeResultCodec"
 class-name="examples.webservices.TradeResult"
 xmlns:p1="java:examples.webservices"
 type="p1:TradeResult" >
 </type-mapping-entry>
 </type-mapping>

 <components>
 <stateless-ejb name="ejbcomp">
 <ejb-link path="trader.jar#TraderService" />
 </stateless-ejb>
 </components>

 <operations>
 <operation method="*" component="ejbcomp">
 </operation>
 </operations>

 </web-service>
Programming WebLogic Web Services 7-13

7 Assembling a WebLogic Web Service Manually
</web-services>

In the example, the <types> element uses XML Schema notation to describe the XML
representation of the TradeResult data type. The <type-mapping> element contains
an entry for each data type described in the <types> element (in this case there is just
one: TradeResult.) The <type-mapping-entry> lists the serialization class that
converts the data between XML and Java, as well as the Java class file used to create
the Java object.

EJB Component and SOAP Message Handler Chain Web
Service

Another type of Web service is implemented with both a stateless session EJB backend
component and a SOAP message handler chain that intercepts the request and response
SOAP message. The following sample web-services.xml file describes such a Web
service:

<web-services>
 <handler-chains>
 <handler-chain name="submitOrderCrypto">
 <handler class-name="com.example.security.EncryptDecrypt">
 <init-params>
 <init-param name="elementToDecrypt" value="credit-info" />
 <init-param name="elementToEncrypt" value="order-number" />
 </init-params>
 </handler>
 </handler-chain>
 </handler-chains>

 <web-service targetNamespace="http://example.com" name="myorderproc"
 uri="myOrderProcessingService">
 <components>
 <stateless-ejb name="orderbean">
 <ejb-link path="myEJB.jar#OrderBean" />
 </stateless-ejb>
 </components>
 <operations xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
 <operation name="submitOrder" method="submit"
 component="orderbean"
 handler-chain="submitOrderCrypto" >
 <params>
 <param name="purchase-order" style="in" type="xsd:anyType" />
 <return-param name="order-number" type="xsd:string" />
7-14 Programming WebLogic Web Services

Sample web-services.xml Files
 </params>
 </operation>
 </operations>
 </web-service>
</web-services>

The example shows a Web service that includes a SOAP message handler-chain called
submitOrderCrypto used for decrypting and encrypting information in the SOAP
request and response messages. The handler chain includes one handler, implemented
with the com.example.security.EncryptDecrypt Java class. The handler takes
two initialization parameters that specify the elements in the SOAP message that need
to be decrypted and encrypted.

The Web service defines one stateless session EJB backend component called
orderbean.

The submitOrder operation shows how to combine a handler-chain with a backend
component by specifying the method, component, and handler-chain attributes in
combination. When a client application invokes the submitOrder operation, the
submitOrderCrypto handler chain first processes the SOAP request, decrypting the
credit card information. The handler chain then invokes the submit() method of the
orderbean EJB, passing it the modified parameters from the SOAP message,
including the purchase-order input parameter. The submit() method then returns
an order-number, which is encrypted by the handler chain, and the handler chain
finally sends a SOAP response with the encrypted information to the client application
that originally invoked the submitOrder operation.

SOAP Message Handler Chain-Only Web Service

You can also implement a WebLogic Web service with just a SOAP message handler
chain and never invoke a backend component. This type of Web service might be
useful, for example, as a front end to an existing workflow processing system. The
handler chain simply takes the SOAP message request and hands it over to the
workflow system, which performs all the further processing.

The following sample web-services.xml file describes such a Web service:

<web-services>
 <handler-chains>
 <handler-chain name="enterWorkflowChain">
 <handler class-name="com.example.WorkFlowEntry">
 <init-params>
Programming WebLogic Web Services 7-15

7 Assembling a WebLogic Web Service Manually
 <init-param name="workflow-eng-jndi-name"
 value="workflow.entry" />
 </init-params>
 </handler>
 </handler-chain>
 </handler-chains>

 <web-service targetNamespace="http://example.com"
 name="myworkflow" uri="myWorkflowService">
 <operations xmlns:xsd="http://www.w3.org/2001/XMLSchema" >
 <operation name="enterWorkflow"
 handler-chain="enterWorkflowChain"
 invocation-style="one-way" />
 </operations>
 </web-service>
</web-services>

The example shows a Web service that includes one SOAP message handler chain,
called enterWorkflowChain. This handler chain has one handler, implemented with
the Java class com.example.WorkFlowEntry, that takes as an initialization
parameter the JNDI name of the existing workflow system.

The Web service defines one operation called enterWorkflow. When a client
application invokes this operation, the enterWorkflowChain handler chain takes the
SOAP message request and passes it to the workflow system running on WebLogic
Server whose JNDI name is workflow.entry. The operation is defined as
asynchronous one-way, which means that the client application does not receive a
SOAP response.

Note that because the enterWorkflow operation does not specify the method and
component attributes, no backend component is ever invoked directly by the Web
service. This also means that the web-services.xml file does not need to specify a
<components> element.
7-16 Programming WebLogic Web Services

CHAPTER
8 Invoking Web Services

The following sections describe how to invoke Web services, both WebLogic and
non-WebLogic, from client applications:

“Overview of Invoking Web Services” on page 8-1

“Creating Java Client Applications to Invoke Web Services: Main Steps” on
page 8-4

“Getting the Java Client JAR Files” on page 8-4

“Writing the Java Client Application Code” on page 8-7

“Writing a J2ME Client” on page 8-17

“Creating and Using Portable Stubs” on page 8-19

“Using a Proxy Server with the WebLogic Web Services Client” on page 8-21

“The WebLogic Web Services Home Page and WSDL URLs” on page 8-22

“Debugging Errors While Invoking Web Services” on page 8-24

“WebLogic Web Services System Properties” on page 8-25

Overview of Invoking Web Services

Invoking a Web service refers to the actions that a client application performs to use
the Web service. Client applications that invoke Web services can be written using any
technology: Java, Microsoft SOAP Toolkit, Microsoft .NET, and so on.
Programming WebLogic Web Services 8-1

8 Invoking Web Services
Note: This chapter uses the term client application to refer to both a standalone client
that uses the WebLogic thin client to invoke a Web service, and a client that
runs inside of an EJB running on WebLogic Server.

The sections that follow describe how to use BEA’s implementation of the JAX-RPC
specification to invoke a Web service from a Java client application. It is generally
assumed that you are going to invoke any Web service rather than one running on
WebLogic Server, except for those sections that describe the URLs needed to invoke
a WebLogic Web service and its Home Page.

WebLogic Server provides optional Java client JAR files that include, for your
convenience, all the classes, interfaces, and stubs you need to invoke a Web service.
The client JAR files include the client runtime implementation of the JAX-RPC
specification (called webserviceclient.jar and webserviceclient+ssl.jar) as
well as Web service-specific implementations to minimize the amount of Java code
needed to invoke a particular Web service.

JAX-RPC API

The Java API for XML based RPC (JAX-RPC) is a Sun Microsystems specification
that defines the client API for invoking a Web service.

The following table briefly describes the core JAX-RPC interfaces and classes.

Table 8-1 JAX-RPC Interfaces and Classes

javax.xml.rpc
Interface or Class

Description

Service Main client interface. Used for both static and dynamic
invocations.

ServiceFactory Factory class for creating Service instances.

Stub Represents the client proxy for invoking the operations of a Web
service. Typically used for static invocation of a Web service.

Call Used to dynamically invoke a Web service.

JAXRPCException Exception thrown if an error occurs while invoking a Web
service.
8-2 Programming WebLogic Web Services

Overview of Invoking Web Services
WebLogic Server includes an implementation of the JAX-RPC specification.

For detailed information on JAX-RPC, see the following Web site:
http://java.sun.com/xml/jaxrpc/index.html.

For a tutorial that describes how to use JAX-RPC to invoke Web services, see
http://java.sun.com/webservices/docs/ea1/tutorial/doc/JAXRPC.html.

Examples of Clients That Invoke Web Services

WebLogic Server includes the following examples of creating and invoking WebLogic
Web services in the WL_HOME/samples/server/src/examples/webservices
directory, where WL_HOME refers to the main WebLogic Platform directory:

basic.statelessSession : Uses a stateless session EJB backend component
with built-in data types as its parameters and return value

basic.javaclass : Uses a Java class backend component with built-in data
types as its parameters and return value

complex.statelessSession : Uses a stateless session EJB backend
component with non-built-in data types as its parameters and return value

handler.log : Uses both a handler chain and a stateless session EJB.

handler.nocomponent : Uses only a handler chain with no backend
component.

client.static : Shows how to create a static client application that invokes a
non-WebLogic Web service.

client.static_out : Shows how to create a static client application that
invokes a non-WebLogic Web service that uses out parameters.

client.dynamic_wsdl : Shows how to create a dynamic client application that
uses WSDL to invoke a non-WebLogic Web service.

client.dynamic_no_wsdl : Shows how to create a dynamic client application
that does not use WSDL to invoke a non-WebLogic Web service.

For detailed instructions on how to build and run the examples, open the following
Web page in your browser:
Programming WebLogic Web Services 8-3

http://java.sun.com/xml/jaxrpc/index.html
http://java.sun.com/webservices/docs/ea1/tutorial/doc/JAXRPC.html

8 Invoking Web Services
WL_HOME/samples/server/src/examples/webservices/package-summary.html

Additional examples of creating and invoking WebLogic Web services are listed on
the Web services Web page on the Web Services dev2dev Download Page at
http://webservice.bea.com.

Creating Java Client Applications to Invoke
Web Services: Main Steps

To create a Java client application that invokes a Web service, follow these steps:

1. Get the Java client JAR files provided by WebLogic Server and add them to your
CLASSPATH.

If your client application is running on WebLogic Server, you can omit this step.

Note: For information about BEA’s current licensing of client functionality, see
the BEA eLicense Web Site at
http://elicense.bea.com/elicense_webapp/index.jsp.

For details, see “Getting the Java Client JAR Files” on page 8-4.

2. Write the Java client application code.

For details on writing different kinds of client applications (static, dynamic, and
so on), see “Writing the Java Client Application Code” on page 8-7 and “Writing
a J2ME Client” on page 8-17.

3. Compile and run your Java client application.

Getting the Java Client JAR Files

WebLogic Server provides the following client JAR files:
8-4 Programming WebLogic Web Services

http://webservice.bea.com
http://webservice.bea.com
http://elicense.bea.com/elicense_webapp/index.jsp
http://elicense.bea.com/elicense_webapp/index.jsp

Getting the Java Client JAR Files
A runtime JAR file, called webserviceclient.jar, that contains the client
runtime implementation of JAX-RPC. This JAR file is distributed as part of the
WebLogic Server product.

A runtime JAR file, called webserviceclient+ssl.jar, that contains the
runtime implementation of SSL. This JAR file is distributed as part of the
WebLogic Server product.

A runtime JAR file, called webserviceclient+ssl_pj.jar, that contains the
runtime implementation of SSL for the CDC profile of J2ME. This JAR file is
distributed as part of the WebLogic Server product.

A Web service-specific JAR file that you generate with the clientgen Ant task.
This file contains the Web service-specific stubs, defined by the JAX-RPC
specification, that client applications use to statically invoke a Web service
(either WebLogic or non-WebLogic), such as Stub and Service. Almost all
the code you need is automatically generated for you.

Note: If you are creating dynamic client applications, you do not need to use this
JAR file; BEA Systems provides the file as a convenience when you use
static clients to invoke Web services.

For information about BEA’s current licensing of client functionality, see the BEA
eLicense Web Site at http://elicense.bea.com/elicense_webapp/index.jsp.

To get the client JAR files, follow these steps:

1. Copy the file WL_HOME\server\lib\webserviceclient.jar to your client
application development computer, where WL_HOME refers to the top-level
directory of WebLogic Platform. This client JAR file contains the client runtime
implementation of JAX-RPC.

Note: If you are using SSL to secure your Web service and you want to use the
WebLogic Server-provided implementation of the SSL client classes, copy
the file WL_HOME\server\lib\webserviceclient+ssl.jar to your
client application development computer. In addition to the SSL
implementation, this JAR file includes the same class files as in
webserviceclient.jar.

If you are writing a J2ME client that uses SSL, copy the file
WL_HOME\server\lib\webserviceclient+ssl_pj.jar to your client
application computer.
Programming WebLogic Web Services 8-5

http://elicense.bea.com/elicense_webapp/index.jsp
http://elicense.bea.com/elicense_webapp/index.jsp

8 Invoking Web Services
2. Generate the Web service-specific client JAR file by running the clientgen Ant
task.

Specify the wsdl attribute to create a client JAR file for any Web service
(including non-WebLogic ones) or the ear attribute for WebLogic Web services
packaged in EAR files.

For details and examples of running the clientgen Ant task, see “Running the
clientgen Ant Task” on page 8-6. For reference information, see Appendix B,
“Web Service Ant Tasks and Command-Line Utilities.”

Note: If you are creating a client application to invoke a WebLogic Web service,
you can also download the client JAR file from the Home Page. See “The
WebLogic Web Services Home Page and WSDL URLs” on page 8-22 for
more information.

3. Put these client JAR files on your client computer and update your CLASSPATH
environment variable to find them.

Running the clientgen Ant Task

To run the clientgen Ant task and automatically generate a client JAR file:

1. Create a file called build.xml that contains a call to the clientgen Ant task. For
details, see “Sample build.xml File for the clientgen Ant Task.”

2. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in
the same directory as the build.xml file:

prompt> ant

For reference information about the clientgen Ant task, see “clientgen” on page
B-12.
8-6 Programming WebLogic Web Services

Writing the Java Client Application Code
Sample build.xml File for the clientgen Ant Task

The following example shows a simple build.xml file:

<project name="buildWebservice" default="generate-client">
 <target name="generate-client">
 <clientgen wsdl="http://example.com/myapp/myservice.wsdl"
 packageName="myapp.myservice.client"
 clientJar="c:/myapps/myService_client.jar"
/>

 </target>
</project>

In the example, the clientgen task creates a client JAR file (called
c:/myapps/myService_client.jar) to invoke the Web service described in the
http://example.com/myapp/myservice.wsdl WSDL file. It packages the
interface and stub files in the myapp.myservice.client package.

Writing the Java Client Application Code

The following sections describe how to write different types of Java client applications
for invoking Web services, from the simplest static client that requires almost no Java
code to a more complex client that uses out parameters.

All examples use the JAX-RPC API and assume that you have the necessary
BEA-provided client JAR files in your CLASSPATH.

Getting Information about a Web Service

You usually need to know the name of the Web service and the signature of its
operations before you write your client code.

Look at the WSDL of the Web service. The name of the Web service is contained in
the <service> element, as shown in the following excerpt of the TraderService
WSDL:
Programming WebLogic Web Services 8-7

8 Invoking Web Services
 <service name="TraderService">
 <port name="TraderServicePort"
 binding="tns:TraderServiceSoapBinding">
 ...
 </port>
 </service>

The operations defined for this Web service are listed under the corresponding
<binding> element. For example, the following WSDL excerpt shows that the
TraderService Web service has two operations, buy and sell (for clarity, only
relevant parts of the WSDL are shown):

 <binding name="TraderServiceSoapBinding" ...>
 ...
 <operation name="sell">
 ...
 </operation>
 <operation name="buy">
 </operation>
 </binding>

To find the full signature of the Web service operations, un-JAR the Web
service-specific client JAR file (generated with the clientgen Ant task) and look at
the actual *.java files. The file ServiceNamePort.java contains the interface
definition of your Web service, where ServiceName refers to the name of the Web
service. For example, look at the TraderServicePort.java file for the signature of
the buy and sell operations.

Maintaining the HTTP Session

You specify whether your client application will participate in an HTTP session with
a Web service endpoint by setting the following property in your application:

javax.xml.rpc.Call.SESSION_MAINTAIN_PROPERTY

When a client application invokes a WebLogic Web service, an internal servlet first
handles the request and creates an HttpSession object for each client. The lifetime
of this HttpSession object follows the standard J2EE guideslines. For more
information about HttpSession objects, see Session Tracking from a Servlet at
http://e-docs.bea.com/wls/docs70/servlet/progtasks.html#session_tracking.
8-8 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/servlet/progtasks.html#session_tracking

Writing the Java Client Application Code
Handling Web Services That Crash

The first time you invoke a Web service from a client application that uses the
WebLogic client JAR files, the client caches the IP address of the computer on which
the Web service is running, and by default this cache is never refreshed with a new
DNS lookup. This means that if you invoke a Web service, and later the computer on
which the Web service is running crashes, but then another computer with a different
IP address takes over for the crashed computer, a subsequent invoke of the Web service
from the original client application will fail because the client application continues to
think that the Web service is running on the computer with the old cached IP address.
In other words, it does not try to re-resolve the IP address with a new DNS lookup, but
rather uses the cached information from the original lookup.

To work around this problem, update your client application to set the JDK 1.4 system
property sun.net.inetaddr.ttl to the number of seconds that you want the
application to cache the IP address.

Warning: This workaround is valid only for standalone client applications; if your
client application is running in WebLogic Server 7.0, you cannot set this
property. This is because WebLogic Server 7.0 uses Version 1.3.1 of the
JDK, and this system property exists only in JDK 1.4.

Writing a Simple Static Client

When you use a static client application to invoke a Web service, you use a
strongly-typed Java interface, in contrast to a dynamic client where you indirectly
reference the Web service operations and parameters. Using a dynamic client is
analogous to looking up and invoking a method using the Java reflection APIs.

You must include the Web service-specific client JAR file in your CLASSPATH when
statically invoking a Web service. This JAR file includes the following classes and
interfaces:

A Web service-specific implementation of the Service interface, which acts a
stub factory. The stub factory class uses the value of the wsdl attribute of the
clientgen Ant task used to generate the client JAR file in its default
constructor.

An interface and implementation of each SOAP port in the WSDL.
Programming WebLogic Web Services 8-9

8 Invoking Web Services
Serialization class for non-built-in data types and their Java representations.

The following code shows an example of writing a client application that invokes the
sample TraderService Web service; in the example, TraderService is the stub
factory and TraderServicePort is the stub itself:

package examples.webservices.complex.statelessSession;

/**
 * This class illustrates how to use the JAX-RPC API to invoke the TraderService
 * Web service to perform the following tasks:
 *
 * Buy 100 shares of some stocks
 * Sell 100 shares of some stocks
 *
 *
 * The TraderService Web service is implemented using the Trader
 * stateless session EJB.
 *
 * @author Copyright (c) 1998-2002 by BEA Systems, Inc. All Rights Reserved.
 */

public class Client {

 public static void main(String[] args) throws Exception {

 // Setup the global JAXM message factory
 System.setProperty("javax.xml.soap.MessageFactory",
 "weblogic.webservice.core.soap.MessageFactoryImpl");
 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 // Parse the argument list
 Client client = new Client();
 String wsdl = (args.length > 0? args[0] : null);
 client.example(wsdl);
 }

 public void example(String wsdlURI) throws Exception {

 TraderServicePort trader = null;
 if (wsdlURI == null) {
 trader = new TraderService_Impl().getTraderServicePort();
 } else {
 trader = new TraderService_Impl(wsdlURI).getTraderServicePort();
 }
 String [] stocks = {"BEAS", "MSFT", "AMZN", "HWP" };
8-10 Programming WebLogic Web Services

Writing the Java Client Application Code
 // execute some buys
 for (int i=0; i<stocks.length; i++) {
 int shares = (i+1) * 100;
 log("Buying "+shares+" shares of "+stocks[i]+".");
 TradeResult result = trader.buy(stocks[i], shares);
 log("Result traded "+result.getNumberTraded()
 +" shares of "+result.getStockSymbol());
 }
 // execute some sells
 for (int i=0; i<stocks.length; i++) {
 int shares = (i+1) * 100;
 log("Selling "+shares+" shares of "+stocks[i]+".");
 TradeResult result = trader.sell(stocks[i], shares);
 log("Result traded "+result.getNumberTraded()
 +" shares of "+result.getStockSymbol());

 }

 }

 private static void log(String s) {
 System.out.println(s);
 }

}

The main points to notice about the example are as follows:

The following code shows how to create a TraderServicePort stub:

 trader = new TraderService_Impl().getTraderServicePort();

The TraderService_Impl stub implements the JAX-RPC Service interface.
The default constructor of TraderService_Impl creates a stub based on the
WSDL URI specified when using the clientgen Ant task to create the client
JAR file. The getTraderServicePort() method implements the
Service.getPort() method, used to return an instance of the TraderService
stub implementation.

The following code shows how to invoke the buy operation of the
TraderService Web service:

 TradeResult result = trader.buy(stocks[i], shares);

The trader Web service has two operations: buy() and sell(). Both
operations return a non-built-in data type called TradeResult.
Programming WebLogic Web Services 8-11

8 Invoking Web Services
Writing a Dynamic Client That Uses WSDL

When you create a dynamic client that uses WSDL, you first create a service factory
using the ServiceFactory.newInstance() method, then create a Service object
from the factory and pass it the WSDL and the name of the Web service you are going
to invoke. You then create a Call object from the Service, passing it the name of the
port and the operation you want to execute, and finally use the Call.invoke()
method to actually invoke the Web service operation.

When you write a dynamic client, you do not use the Web service-specific client JAR
file generated with the clientgen Ant task, because this JAR file is used only for
static clients. You do, however, need to include the JAR file that contains WebLogic’s
implementation of the JAX-RPC specification in your CLASSPATH. For more
information about these JAR files, see “Getting the Java Client JAR Files” on page 8-4.

For example, assume you want to create a dynamic client application that uses WSDL
to invoke the Web service found at the following URL:

http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl

The following Java code shows one way to do this:

/**
 * This class demonstrates a java client invoking a WebService.
 *
 * @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
 */

import java.net.URL;

import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

public class Main {

 public static void main(String[] args) throws Exception {

 // Setup the global JAXM message factory
 System.setProperty("javax.xml.soap.MessageFactory",
 "weblogic.webservice.core.soap.MessageFactoryImpl");
 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");
8-12 Programming WebLogic Web Services

Writing the Java Client Application Code
 // create service factory
 ServiceFactory factory = ServiceFactory.newInstance();

 // define qnames
 String targetNamespace =
 "http://www.themindelectric.com/"
 + "wsdl/net.xmethods.services.stockquote.StockQuote/";

 QName serviceName =
 new QName(targetNamespace,
 "net.xmethods.services.stockquote.StockQuoteService");

 QName portName =
 new QName(targetNamespace,
 "net.xmethods.services.stockquote.StockQuotePort");

 QName operationName = new QName("urn:xmethods-delayed-quotes",
 "getQuote");

 URL wsdlLocation =
 new
URL("http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl");

 // create service
 Service service = factory.createService(wsdlLocation, serviceName);

 // create call
 Call call = service.createCall(portName, operationName);

 // invoke the remote web service
 Float result = (Float) call.invoke(new Object[] {
 "BEAS"
 });

 System.out.println("\n");
 System.out.println("This example shows how to create a dynamic client
 application that invokes a non-WebLogic Web service.");
 System.out.println("The webservice used was:

http://services.xmethods.net/soap/urn:xmethods-delayed-quotes.wsdl");
 System.out.println("The quote for BEAS is: ");
 System.out.println(result);
 }

}

Note: When you use the javax.xml.rpc.Call API to create a dynamic client that
uses WSDL, you cannot use the following methods in your client application:

getParameterTypeByName()
Programming WebLogic Web Services 8-13

8 Invoking Web Services
getReturnType()

Additionally, if you want to execute the getTargetEndpointAddress()
method, you must have previously executed the
setTargetEndpointAddress() method, even if the targetEndPointAddress
is available in the WSDL.

Writing a Dynamic Client That Does Not Use WSDL

Dynamic clients that do not use WSDL are similar to those that use WSDL except for
having to explicitly set information that is found in the WSDL, such as the parameters
to the operation, the target endpoint address, and so on.

The following example shows how to create a client application that invokes a Web
service without specifying the WSDL in the client application:

/**
 * This class demonstrates a java client invoking a WebService.
 *
 * @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
 */

import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

public class Main {

 public static void main(String[] args) throws Exception {
 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 // create service factory
 ServiceFactory factory = ServiceFactory.newInstance();

 // define qnames
 String targetNamespace =
 "http://www.themindelectric.com/"
 + "wsdl/net.xmethods.services.stockquote.StockQuote/";
8-14 Programming WebLogic Web Services

Writing the Java Client Application Code
 QName serviceName =
 new QName(targetNamespace,
 "net.xmethods.services.stockquote.StockQuoteService");

 QName portName =
 new QName(targetNamespace,
 "net.xmethods.services.stockquote.StockQuotePort");

 QName operationName = new QName("urn:xmethods-delayed-quotes",
 "getQuote");

 // create service
 Service service = factory.createService(serviceName);

 // create call
 Call call = service.createCall();

 // set port and operation name
 call.setPortTypeName(portName);
 call.setOperationName(operationName);
 // add parameters
 call.addParameter("symbol",
 new QName("http://www.w3.org/2001/XMLSchema", "string"),
 ParameterMode.IN);

 call.setReturnType(new QName("http://www.w3.org/2001/XMLSchema","float"));

 // set end point address
 call.setTargetEndpointAddress("http://www.xmethods.com:9090/soap");

 // invoke the remote web service
 Float result = (Float) call.invoke(new Object[] {
 "BEAS"
 });

 System.out.println("\n");
 System.out.println("This example shows how to create a dynamic client
 application that invokes a non-WebLogic Web service.");
 System.out.println("The webservice used was:

http://www.themindelectric.com/wsdl/net.xmethods.services.stockquote.StockQuote
");
 System.out.println("The quote for BEAS is:");
 System.out.println(result);
 }

}

Programming WebLogic Web Services 8-15

8 Invoking Web Services
Note: In dynamic clients that do not use WSDL, the getPorts() method always
returns null. This behaviour is different from dynamic clients that do use
WSDL in which the method actually returns the ports.

Writing a Client that Uses Out or In-Out Parameters

Web services can use out or in-out parameters as a way of returning multiple values.

When you write a client application that invokes a Web service that uses out or in-out
parameters, the data type of the out or in-out parameter must implement the
javax.xml.rpc.holders.Holder interface. After the client application invokes
the Web service, the client can query the out or in-out parameters in the Holder object
and treat them as if they were standard return values.

For example, the Web service described by the following WSDL has an operation
called echoStructAsSimpleTypes() that takes one standard input parameter and
three out parameters:

http://soap.4s4c.com/ilab/soap.asp?WSDL

The following static client application shows one way to invoke this Web service. The
application assumes that you have included the Web service-specific client JAR file
that contains the Stub classes, generated using the clientgen Ant task, in your
CLASSPATH.

package websvc;

/**
 * This class demonstrates a java client invoking a WebService.
 *
 * @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
 */

public class Main {

 public static void main(String[] args) throws Exception {
 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 InteropLab_Impl test = new InteropLab_Impl();
 InteropTest2PortType soap = test.getinteropTest2PortType();

 org.tempuri.x4s4c.x1.x3.wsdl.types.SOAPStruct inputStruct =
 new org.tempuri.x4s4c.x1.x3.wsdl.types.SOAPStruct();
8-16 Programming WebLogic Web Services

Writing a J2ME Client
 inputStruct.setVarInt(10);
 inputStruct.setVarFloat(10.1f);
 inputStruct.setVarString("hi there");

 javax.xml.rpc.holders.StringHolder outputString =
 new javax.xml.rpc.holders.StringHolder();
 javax.xml.rpc.holders.IntHolder outputInteger =
 new javax.xml.rpc.holders.IntHolder();
 javax.xml.rpc.holders.FloatHolder outputFloat =
 new javax.xml.rpc.holders.FloatHolder();

 soap.echoStructAsSimpleTypes(inputStruct, outputString, outputInteger,
 outputFloat);

 System.out.println("This example shows how to create a static client
 application that invokes a non-WebLogic Web service.");
 System.out.println("The webservice used was:
 http://soap.4s4c.com/ilab/soap.asp?WSDL");
 System.out.println("This webservice shows how to invoke an operation that
 uses out parameters. The set parameters are below:");
 System.out.println("outputString.value: " + outputString.value);
 System.out.println("outputInteger.value: " + outputInteger.value);
 System.out.println("outputFloat.value: " + outputFloat.value);
 }

}

Writing a J2ME Client

You can create a Java 2 Platform, Micro Edition (J2ME) Web service-specific client
JAR file to use with client applications that run on J2ME.

Note: The specific J2ME environment that we support is the CDC and Foundation
profile.

Creating a J2ME client application that invokes a Web service is almost the same as
creating a non-J2ME client. For example, you use the same runtime client JAR file as
non-J2ME client applications (WL_HOME\server\lib\webserviceclient.jar.)

To write a J2ME client application, follow the steps described in “Creating Java Client
Applications to Invoke Web Services: Main Steps” on page 8-4 but with the following
changes:
Programming WebLogic Web Services 8-17

8 Invoking Web Services
When you run the clientgen Ant task to generate the Web service-specific
client JAR file, be sure you specify the j2me="True" attribute, as shown in the
following example:

<clientgen wsdl="http://example.com/myapp/myservice.wsdl"
 packageName="myapp.myservice.client"
 clientJar="c:/myapps/myService_clients.jar"
 j2me="True"
/>

Note: The J2ME Web service-specific client JAR file generated by clientgen
is not compliant with the JAX-RPC specification in the following ways:

The methods of the generated stubs do not throw
java.rmi.RemoteException.

The generated stubs do not extend java.rmi.Remote.

When you write, compile, and run your Java client application, be sure you use
the J2ME virtual machine and APIs.

For more information about J2ME, see http://java.sun.com/j2me/.

Writing a J2ME Client that Uses SSL

WebLogic Server includes support for creating J2ME client applications that use SSL.
If you are writing a J2ME client that uses SSL, follow these guidelines in addition to
the guidelines specified in the preceding section:

You must use the following additional class and package:

java.math.BigInteger (class)

java.util.* (entire package)

Copy the file WL_HOME\server\lib\webserviceclient+ssl_pj.jar to your
client application computer and add it to your CLASSPATH.

Warning: Do not include the weblogic.jar file in your CLASSPATH.

If your client application uses the WSDL file to invoke a Web service, you must
use a local copy of the WSDL file stored on your client computer; you cannot
access the WSDL file using a URLConnection object.
8-18 Programming WebLogic Web Services

http://java.sun.com/j2me/

Creating and Using Portable Stubs
Creating and Using Portable Stubs

If you use the Web services client JAR files (both the ones distributed with the product
and the Web service-specific one generated by the clientgen Ant task) as part of an
application that runs in WebLogic Server, you might find that the Java classes in the
JAR file collide with the classes of WebLogic Server itself. This problem is more
apparent if the WebLogic Server in which the client JAR file is deployed is a different
version from that which the client JAR file was generated. To solve this problem, use
portable stubs.

Note: You need to use portable stubs only if your client application is deployed and
running on WebLogic Server. If your client application is standalone, you do
not need to use portable stubs.

To enable your client application to use portable stubs:

1. Use the WebLogic Server release-specific client JAR file called wsclient70.jar
(distributed with WebLogic Server in the WL_HOME\server\lib directory) with
your client application rather than the generic webserviceclient.jar client JAR
file. The wsclient70.jar file contains the same class files as the standard client
JAR file, but they are renamed weblogic70.*. Because these class files are
version-specific, they will not collide with any weblogic.* WebLogic Server
classes.

2. Run the Web-service specific client JAR file you generated with the clientgen
Ant task, as well as any supporting client JAR files, through the VersionMaker
utility. This utility makes the following changes to the classes in these client JAR
files:

renames all weblogic.* classes to weblogic70.*.

all references to weblogic.* classes are changed to reference
weblogic70.* instead.

Use these new version-specific client JAR files with your client application.

For details on using VersionMaker, see “Using the VersionMaker Utility” on
page 8-20.
Programming WebLogic Web Services 8-19

8 Invoking Web Services
 Using the VersionMaker Utility

The weblogic.webservice.tools.versioning.VersionMaker utility takes the
following parameters:

destination_dir : the destination directory that will contain the new
version-specific client JAR files.

client_jar_file : the client JAR file, generated by the clientgen Ant task,
whose class files are named weblogic.* and should be renamed
weblogic70.*.

other_jar_files : supporting JAR files

Follow these steps to update your client JAR files to use version-specific WebLogic
Server classes:

1. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

2. Execute the utility
weblogic.webservice.tools.versioning.VersionMaker, as shown in the
following example:

java weblogic.webservice.tools.versioning.VersionMaker \
 new_directory myclient.jar supporting.jar

In the example, the weblogic.* classes in the myclient.jar and
supporting.jar client JAR files are renamed weblogic70.*, and all
references to these classes updated accordingly. The new client JAR files are
generated into the directory called new_directory under the current directory.
8-20 Programming WebLogic Web Services

Using a Proxy Server with the WebLogic Web Services Client
Using a Proxy Server with the WebLogic Web
Services Client

You can use a proxy server to proxy requests from a WebLogic Web Services client
application to a server (either WebLogic or non-WebLogic) that is hosting a Web
Service. However, be sure to set all the following system properties in your client
application:

http.proxyHost

http.proxyPort

weblogic.webservice.transport.http.proxy.host

weblogic.webservice.transport.http.proxy.port

Note: If you are using HTTPS as the transport when invoking the Web Service,
replace the http in the preceding properties with https. For example, use
https.proxyHost instead of http.proxyHost.

For more information on these, and other, WebLogic system properties you can set in
your client application, see “WebLogic Web Services System Properties” on page
8-25.

Additionally, if you have set up your proxy server to use proxy authentication, then
you must also set the property weblogic.net.proxyAuthenticatorClassName in
your client application to the name of the Java class that implements the
weblogic.common.ProxyAuthentication interface, as shown in the following
excerpt from a client application:

 System.setProperty("weblogic.net.proxyAuthenticatorClassName",
"my.ProxyAuthenticator");

In the example, my.ProxyAuthenticator is a class in the client application’s
CLASSPATH that implements the weblogic.common.ProxyAuthentication
interface.
Programming WebLogic Web Services 8-21

8 Invoking Web Services
The weblogic.common.ProxyAuthentication interface allows a client application
to provide user authentication information required when tunneling WebLogic HTTP
and SSL protocols through a proxy server that requires user authentication. For details
on implementing this interface, see the weblogic.common.ProxyAuthentication
Javadocs.

The WebLogic Web Services Home Page and
WSDL URLs

Every Web service deployed on WebLogic Server has a Home Page. From the Home
page you can:

View the WSDL that describes the service.

Download the Web service-specific client JAR file that contains the interfaces,
classes, and stubs needed to invoke the Web service from a client application.

Note: A link to download this client JAR file appears on the Home page only if
the name of the client JAR file is WebServiceName_client.jar, where
WebServiceName refers to the name of the Web service, specified by the
name attribute of the <web-service> element in the web-services.xml
file. If this is not true for your Web service, you must use the clientgen
Ant task to create the JAR file. For details, see “Running the clientgen Ant
Task” on page 6-10.

Test each operation to ensure that it is working correctly.

As part of testing a Web service, you can edit the XML in the SOAP request that
describes non-built-in data types to debug interoperability conflicts.

View the SOAP request and response messages from a successful execution of
an operation

The following URLs show first how to invoke the Web service Home page and then
the WSDL in your browser:

[protocol]://[host]:[port]/[contextURI]/[serviceURI]

[protocol]://[host]:[port]/[contextURI]/[serviceURI]?WSDL
8-22 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/common/ProxyAuthenticator.html

The WebLogic Web Services Home Page and WSDL URLs
where:

protocol refers to the protocol over which the service is invoked, either http or
https. This value corresponds to the protocol attribute of the <web-service>
element that describes the Web service in the web-servicex.xml file. If you
used the servicegen Ant task to assemble your Web service, this value
corresponds to the protocol attribute.

host refers to the computer on which WebLogic Server is running.

port refers to the port number on which WebLogic Server is listening (default
value is 7001).

contextURI refers to the context root of the Web application, corresponding to
the <context-root> element in the application.xml deployment descriptor
of the EAR file. If you used the servicegen Ant task to assemble your Web
service, this value corresponds to the contextURI attribute.

If your application.xml file does not include the <context-root> element,
then the value of contextURI is the name of the Web application archive file or
exploded directory.

serviceURI refers to the URI of the Web service. This value corresponds to the
uri attribute of the <web-service> element in the web-services.xml file. If
you used the servicegen Ant task to assemble your Web service, this value
corresponds to the serviceURI attribute.

For example, assume you used the following build.xml file to assemble a WebLogic
Web service using the servicegen Ant task:

<project name="buildWebservice" default="build-ear">
 <target name="build-ear">
 <servicegen
 destEar="myWebService.ear"
 warName="myWAR.war"
 contextURI="web_services">
 <service
 ejbJar="myEJB.jar"
 targetNamespace="http://www.bea.com/examples/Trader"
 serviceName="TraderService"
 serviceURI="/TraderService"
 generateTypes="True"
 expandMethods="True" >
 </service>
 </servicegen>
Programming WebLogic Web Services 8-23

8 Invoking Web Services
 </target>
</project>

The URL to invoke the Web service Home Page, assuming the service is running on a
host called ariel at the default port number, is:

http://ariel:7001/web_services/TraderService

The URL to get the automatically generated WSDL of the Web service is:

http://ariel:7001/web_services/TraderService?WSDL

Debugging Errors While Invoking Web
Services

If you encounter an error while trying to invoke a Web service (either WebLogic or
non-WebLogic), it is useful to view the SOAP request and response messages that are
generated because they often point to the problem.

To view the SOAP request and response messages, run your client application with the
-Dweblogic.webservice.verbose=true flag, as shown in the following example
that runs a client application called runService:

prompt> java -Dweblogic.webservice.verbose=true runService

The full SOAP request and response messages are printed in the command window
from which you ran your client application.

You can also configure WebLogic Server to print the SOAP request and response
messages each time a deployed WebLogic Web service is invoked by specifying the
-Dweblogic.webservice.verbose=true flag when you start WebLogic Server.
The SOAP messages are printed to the command window from which you started
WebLogic Server.

Note: Because of possible decrease in performance due to the extra work of printing
debugging messages to the command window, BEA recommends you set this
WebLogic Server flag only during the development phase.
8-24 Programming WebLogic Web Services

WebLogic Web Services System Properties
WebLogic Web Services System Properties

The following table lists the WebLogic Web services system properties you can set in
client applications that invoke Web services. Use the System.setProperty()
method to set the properties.

Table 8-2 WebLogic Web Services System Properties

System Property Description Data
Type

weblogic.webservice.transport.http.full-url Specifies that the full URL, rather than the
relative URL, of the Web Service that the client
application is invoking be specified in the
Request-URI field of HTTP request.
Valid values are True and False. Default
value is False.

Boolean.

weblogic.webservice.transport.http.proxy.host If you use a proxy server to make HTTP
connections, use this system property to specify
the host name of the proxy server in your client
applications.

String.

weblogic.webservice.transport.http.proxy.port If you use a proxy server to make HTTP
connections, use this system property to specify
the port of the proxy server in your client
applications.

String.

weblogic.webservice.transport.https.proxy.host If you use a proxy server to make HTTPS
(HTTP over SSL) connections, use this system
property to specify the host name of the proxy
server in your client applications.

String.

weblogic.webservice.transport.https.proxy.port If you use a proxy server to make HTTPS
(HTTP over SSL) connections, use this system
property to specify the port of the proxy server
in your client applications.

String.
Programming WebLogic Web Services 8-25

8 Invoking Web Services
weblogic.webservice.verbose Enables verbose mode during Web service
invocation so you can view the SOAP request
and response messages.
Valid values are True and False. Default
value is False.
For details, see “Debugging Errors While
Invoking Web Services” on page 8-24.

Boolean.

weblogic.webservice.client.ssl.strictcertchecking Enables or disables strict certificate
validation when using the
WebLogic-provided implementation of
SSL.
Set to True to enable strict certificate
validation, and False to disable. Default value
is False.
For an example, see “Using the WebLogic
Server-Provided SSL Implementation” on page
11-8.

Boolean.

weblogic.webservice.client.ssl.trustedcertfile The name of the file (located on the client
application computer) that contains the
certificates of CA (certificate authority). The
CAs are trusted to issue WebLogic Server
certificates. The file can also contain
certificates that you trust directly.

String.

weblogic.webservice.client.ssl.adapterclass Fully qualified name of an adapter class you
have implemented to use a third-party SSL
implementation.
For an example, see “Using a Third-Party SSL
Implementation” on page 11-11.

String.

weblogic.http.KeepAliveTimeoutSeconds Number of seconds to maintain HTTP
keep-alive before timing out the request. If you
do not want to use HTTP keep-alive, set this
property to 0.
Default value is 30 seconds.

Integer.

Table 8-2 WebLogic Web Services System Properties

System Property Description Data
Type
8-26 Programming WebLogic Web Services

CHAPTER
9 Using Non-Built-In
Data Types

The following sections describe how to use non-built-in data types in WebLogic Web
services:

“Overview of Using Non-Built-In Data Types” on page 9-1

“Creating Non-Built-In Data Types Manually: Main Steps” on page 9-2

Overview of Using Non-Built-In Data Types

You can create a WebLogic Web service that uses non-built-in data types as the Web
service parameters and return value. Non-built-in data types are defined as data types
other than the supported built-in data types, such as int and String. For the full list
of built-in types, see “Using Built-In Data Types” on page 5-12.

WebLogic Server transparently handles the conversion of the built-in data types
between their XML and Java representation. However, if your Web service operation
uses non-built-in data types, you must provide the following information so that
WebLogic Server can perform the conversion:

Serialization class that converts between the XML and Java representation of the
data.

A Java class to contain the Java representation of the data type.

An XML Schema representation of the data type.
Programming WebLogic Web Services 9-1

9 Using Non-Built-In Data Types
Data type mapping information in the web-services.xml deployment
descriptor file.

WebLogic Server includes the servicegen and autotype Ant tasks which
automatically generate the preceding components by introspecting the stateless session
EJB or Java class backend component for your Web service. These Ant tasks can
handle many non-built-in data types, so most programmers will not ever have to create
the components manually.

Sometimes, however, you may need to create the non-built-in data type components
manually. Your data type may be so complex that the Ant task cannot correctly
generate the components. Or maybe you want more control over how the data is
converted between its XML and Java representations rather than relying on the default
conversion procedure used by WebLogic Server.

For a full list of the supported non-built-in data types, see “Non-Built-In Data Types
Supported by servicegen and autotype Ant Tasks” on page 6-13.

For procedural instructions on using servicegen and autotype, see Chapter 6,
“Assembling WebLogic Web Services Using Ant Tasks.” For reference information,
see Appendix B, “Web Service Ant Tasks and Command-Line Utilities.”

Creating Non-Built-In Data Types Manually:
Main Steps

The following procedure describes how to create non-built-in data types and use the
servicegen Ant task to create a deployable Web service:

1. Write the XML Schema representation of your data type. See “Writing the XML
Schema Data Type Representation” on page 9-4.

2. Write a Java class that represents your data type. See “Writing the Java Data
Type Representation” on page 9-5.

3. Write a serialization class that converts the data between its XML and Java
representations. See “Writing the Serialization Class” on page 9-6.
9-2 Programming WebLogic Web Services

Creating Non-Built-In Data Types Manually: Main Steps
4. Compile your Java code into classes. Ensure that your CLASSPATH variable can
locate the classes.

5. Create a text file that contains the data type mapping information about your
non-built-in data type. See “Creating the Data Type Mapping File” on page 9-11.

6. Assemble your Web service using the servicegen Ant task as described in
“Assembling WebLogic Web Services Using the servicegen Ant task” on page
6-3, with the following addition: when creating the build.xml file that calls the
servicegen Ant task, be sure you specify the typeMappingFile attribute of
servicegen, setting it equal to the name of the data type mapping file you
created in the preceding step.

BEA recommends that you create an exploded directory, rather than an EAR
file, by specifying a value for the destEar attribute of servicegen that does
not have an .ear suffix. You can later package the exploded directory into an
EAR file when you are ready to deploy the Web service.

7. Update the web-services.xml file (which was generated by the servicegen
Ant task), adding the XML Schema representation of your data type that you
created in the first step of this procedure. See “Updating the web-services.xml
File With XML Schema Information” on page 9-12.

8. Either deploy the exploded directory as your Web service, or package the
directory into an EAR file and deploy it on WebLogic Server.

9. If you want to use the clientgen Ant task to generate a Java client, follow the
procedure described in “Running the clientgen Ant Task” on page 6-10 with the
following additions to the build.xml file that calls clientgen:

Specify the ear attribute and set it to the full name of your Web service EAR
file. Do not specify the wsdl attribute.

Specify the useServerTypes attribute and set it to True.
Programming WebLogic Web Services 9-3

9 Using Non-Built-In Data Types
Writing the XML Schema Data Type Representation

Web services use SOAP as the message format to transmit data between the service
and the client application that invokes the service. Because SOAP is an XML-based
protocol, you must use XML Schema notation to describe the structure of non-built-in
data types used by Web service operations.

Warning: XML Schema is a powerful and complex data description language, and
its use is not recommended for the faint of heart.

The following example shows the XML Schema that describes a non-built-in data type
called EmployBean:

<xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:stns="java:examples.newTypes"
 attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="java:examples.newTypes">
 <xsd:complexType name="EmployeeBean">
 <xsd:sequence>
 <xsd:element name="name"
 type="xsd:string"
 nillable="true"
 minOccurs="1"
 maxOccurs="1">
 </xsd:element>
 <xsd:element name="id"
 type="xsd:int"
 minOccurs="1"
 maxOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
</xsd:schema>

The following XML shows an instance of the EmployeeBean data type:

<EmployeeBean>
 <name>Beverley Talbott</name>
 <id>1234</id>
</EmployeeBean>

For detailed information about using XML Schema notation to describe your
non-built-in data type, see the XML Schema specification at
http://www.w3.org/TR/xmlschema-0/.
9-4 Programming WebLogic Web Services

http://www.w3.org/TR/xmlschema-0/
http://www.w3.org/TR/xmlschema-0/

Creating Non-Built-In Data Types Manually: Main Steps
Writing the Java Data Type Representation

You use the Java representation of the non-built-in data type in your EJB or Java class
that implements the Web service operation.

The following example shows one possible Java representation of the EmployeeBean
data type whose XML representation is described in the preceding section:

package examples.newTypes;

/**
 * @author Copyright (c) 2002 by BEA Systems. All Rights Reserved.
 */

public final class EmployeeBean {

 private String name = "John Doe";
 private int id = -1;

 public EmployeeBean() {
 }

 public EmployeeBean(String n, int i) {
 name = n;
 id = i;
 }

 public String getName() {
 return name;
 }
 public void setName(String v) {
 this.name = v;
 }

 public int getId() {
 return id;
 }
 public void setId(int v) {
 this.id = v;
 }

 public boolean equals(Object obj) {
 if (obj instanceof EmployeeBean) {
 EmployeeBean e = (EmployeeBean) obj;
 return (e.name.equals(name) && (e.id == id));
 }
 return false;
Programming WebLogic Web Services 9-5

9 Using Non-Built-In Data Types
 }
}

Writing the Serialization Class

The serialization class performs the actual conversion of your data between its XML
and Java representations. You write only one class that contains methods to serialize
and deserialize your data. In the class you use the WebLogic XML Streaming API to
process the XML data.

The WebLogic XML Streaming API provides an easy and intuitive way to consume
and generate XML documents. It enables a procedural, stream-based handling of XML
documents.

For detailed information on using the WebLogic XML Streaming API, see
Programming WebLogic XML at
http://e-docs.bea.com/wls/docs70/xml/xml_stream.html.

The following example shows a class that uses the XML Streaming API to serialize
and deserialize the data type described in “Writing the XML Schema Data Type
Representation” on page 9-4 and “Writing the Java Data Type Representation” on page
9-5; the procedure after the example lists the main steps to create such a class:

package examples.newTypes;

import weblogic.webservice.encoding.AbstractCodec;

import weblogic.xml.schema.binding.DeserializationContext;
import weblogic.xml.schema.binding.DeserializationException;
import weblogic.xml.schema.binding.Deserializer;
import weblogic.xml.schema.binding.SerializationContext;
import weblogic.xml.schema.binding.SerializationException;
import weblogic.xml.schema.binding.Serializer;

import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.CharacterData;
import weblogic.xml.stream.ElementFactory;
import weblogic.xml.stream.EndElement;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLName;
import weblogic.xml.stream.XMLOutputStream;
9-6 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/xml/xml_stream.html

Creating Non-Built-In Data Types Manually: Main Steps
import weblogic.xml.stream.XMLStreamException;

public final class EmployeeBeanCodec extends
 weblogic.webservice.encoding.AbstractCodec
{
 public void serialize(Object obj,
 XMLName name,
 XMLOutputStream writer,
 SerializationContext context)
 throws SerializationException
 {
 EmployeeBean emp = (EmployeeBean) obj;

 try {

 //outer start element
 writer.add(ElementFactory.createStartElement(name));

 //employee name element
 writer.add(ElementFactory.createStartElement("name"));
 writer.add(ElementFactory.createCharacterData(emp.getName()));
 writer.add(ElementFactory.createEndElement("name"));

 //employee id element
 writer.add(ElementFactory.createStartElement("id"));
 String id_string = Integer.toString(emp.getId());
 writer.add(ElementFactory.createCharacterData(id_string));
 writer.add(ElementFactory.createEndElement("id"));

 //outer end element
 writer.add(ElementFactory.createEndElement(name));

 } catch(XMLStreamException xse) {
 throw new SerializationException("stream error", xse);
 }
 }

 public Object deserialize(XMLName name,
 XMLInputStream reader,
 DeserializationContext context)
 throws DeserializationException
 {
 // extract the desired information out of reader, consuming the
 // entire element representing the type,
 // construct your object, and return it.
 EmployeeBean employee = new EmployeeBean();

 try {
 if (reader.skip(name, XMLEvent.START_ELEMENT)) {
 StartElement top = (StartElement)reader.next();
Programming WebLogic Web Services 9-7

9 Using Non-Built-In Data Types
 //next start element should be the employee name
 if (reader.skip(XMLEvent.START_ELEMENT)) {
 StartElement emp_name = (StartElement)reader.next();

 //assume that the next element is our name character data
 CharacterData cdata = (CharacterData) reader.next();
 employee.setName(cdata.getContent());
 } else {
 throw new DeserializationException("employee name not found");
 }

 //next start element should be the employee id
 if (reader.skip(XMLEvent.START_ELEMENT)) {
 StartElement emp_id = (StartElement)reader.next();

 //assume that the next element is our id character data
 CharacterData cdata = (CharacterData) reader.next();
 employee.setId(Integer.parseInt(cdata.getContent()));
 } else {
 throw new DeserializationException("employee id not found");
 }

 //we must consume our entire element to leave the stream in a
 //good state for any other deserializer
 if (reader.skip(name, XMLEvent.END_ELEMENT)) {
 XMLEvent end = reader.next();
 } else {
 throw new DeserializationException("expected end element not found");
 }
 } else {
 throw new DeserializationException("expected start element not found");
 }
 } catch (XMLStreamException xse) {
 throw new DeserializationException("stream error", xse);
 }
 return employee;
 }

 public Object deserialize(XMLName name,
 Attribute att,
 DeserializationContext context)
 throws DeserializationException
 {
 //NOTE: not used in this example

 // extract the desired information out of att, consuming the
 // entire element representing the type,
 // construct your object, and return it.
 return new EmployeeBean();
9-8 Programming WebLogic Web Services

Creating Non-Built-In Data Types Manually: Main Steps
 }
}

To create the serialization class using the WebLogic XML Streaming API, follow
these steps:

1. Import the following classes, which are implemented by the abstract class that your
serialization class will extend:

import weblogic.xml.schema.binding.DeserializationContext;
import weblogic.xml.schema.binding.DeserializationException;
import weblogic.xml.schema.binding.Deserializer;
import weblogic.xml.schema.binding.SerializationContext;
import weblogic.xml.schema.binding.SerializationException;
import weblogic.xml.schema.binding.Serializer;

2. Import the WebLogic XML Streaming API classes as needed. The preceding
example imports the following classes:

import weblogic.xml.stream.Attribute;
import weblogic.xml.stream.CharacterData;
import weblogic.xml.stream.ElementFactory;
import weblogic.xml.stream.EndElement;
import weblogic.xml.stream.StartElement;
import weblogic.xml.stream.XMLEvent;
import weblogic.xml.stream.XMLInputStream;
import weblogic.xml.stream.XMLName;
import weblogic.xml.stream.XMLOutputStream;
import weblogic.xml.stream.XMLStreamException;

3. Write your Java class to extend the following abstract class:

weblogic.webservice.encoding.AbstractCodec

4. Implement the serialize() method, used to convert the data from Java to
XML. The signature of this method is as follows:

 void serialize(Object obj,
 XMLName name,
 XMLOutputStream writer,
 SerializationContext context)
 throws SerializationException;

Your Java object will be contained in the Object parameter. Use the XML
Streaming API to write the Java object to the XMLOutputStream parameter. Use
the XMLName parameter as the name of the resulting element.
Programming WebLogic Web Services 9-9

9 Using Non-Built-In Data Types
Warning: Do not update the SerializationContext parameter; it is used
internally by WebLogic Server.

5. Implement the deserialize() method, used to convert the data from XML to
Java. The signature of this method is as follows:

 Object deserialize(XMLName name,
 XMLInputStream reader,
 DeserializationContext context)
 throws DeserializationException;

The XML that you want to deserialize is contained in the XMLInputStream
parameter. Use the WebLogic XML Streaming API to parse the XML and
convert it into the returned Object. The XMLName parameter contains the
expected name of the XML element.

Call the deserialize() method recursively to build contained Objects.

When you use the XML Streaming API to read the stream of events that make
up your XML document, be sure you always finish reading an element all the
way up to and including the EndElement event, rather than finish reading once
you have read all the actual data. If you finish before reaching an EndElement
event, the deserialization of subsequent elements might fail.

Warning: Do not update the DeserializationContext parameter; it is used
internally by WebLogic Server.

6. If the data type for which you are creating a serialization class is used as an
attribute value in your XML files, implement the following variation of the
deserialize() method:

 Object deserialize(XMLName name,
 Attribute att,
 DeserializationContext context)
 throws DeserializationException;

The Attribute parameter contains the attribute value to deserialize. The
XMLName attribute contains the expected name of the XML element.

Warning: Do not update the DeserializationContext parameter; it is used
internally by WebLogic Server.
9-10 Programming WebLogic Web Services

Creating Non-Built-In Data Types Manually: Main Steps
Creating the Data Type Mapping File

The data type mapping file is a subset of the web-services.xml deployment
descriptor file. It centralizes some of the information about non-built-in data types,
such as the name of the Java class that describes the Java representation of the data,
the name of the serialization class that converts the data between XML and Java, and
so on. The servicegen Ant task uses this data type mapping file when creating the
web-services.xml deployment descriptor for the WebLogic Web service that uses
the non-built-in data type.

To create the data type mapping file, follow these steps:

1. Create a text file with any name.

2. Within in the text file, add a <type-mapping> root element:

<type-mapping>
...
</type-mapping>

3. For each non-built-in data type for which you have created a serialization class,
add a <type-mapping-entry> child element of the <type-mapping> element.
Include the following attributes:

xmlns:name —Declares a namespace.

class-name—Specifies the fully qualified name of the Java class.

type—Specifies the name of XML Schema type for which this data type
mapping entry applies.

serializer—The fully qualified name of the serialization class that
converts the data from its Java to its XML representation. For details on
creating this class, see “Writing the Serialization Class” on page 9-6.

deserializer—The fully qualified name of the serialization class that
converts the data from its XML to its Java representation. For details on
creating this class, see “Writing the Serialization Class” on page 9-6.

The following example shows a possible data type mapping file with one
<type-mapping> entry for the XML Schema data type shown in “Updating the
web-services.xml File With XML Schema Information” on page 9-12:

<type-mapping>
 <type-mapping-entry
 xmlns:p2="java:examples.newTypes"
Programming WebLogic Web Services 9-11

9 Using Non-Built-In Data Types
 class-name="examples.newTypes.EmployeeBean"
 type="p2:EmployeeBean"
 serializer="examples.newTypes.EmployeeBeanCodec">
 deserializer="examples.newTypes.EmployeeBeanCodec"
 </type-mapping-entry>
</type-mapping>

Updating the web-services.xml File With XML Schema
Information

The web-services.xml file generated by servicegen will not have the XML
Schema information for the non-built-in data type for which you have created your
own custom serialization class. For this reason, you must manually add the XML
Schema information to the deployment descriptor, as described in the following steps:

1. In the existing web-services.xml file generated by the servicegen Ant task,
find the <types> child element of the <web-service> element:

<types>
...
</types>

2. Merge your XML Schema representation of your non-built-in data type that you
created in “Writing the XML Schema Data Type Representation” on page 9-4
with the any existing information within the <types> element, as shown in the
following example:

<types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:stns="java:examples.newTypes"
 attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="java:examples.newTypes">
 <xsd:complexType name="EmployeeBean">
 <xsd:sequence>
 <xsd:element name="name"
 type="xsd:string"
 nillable="true"
 minOccurs="1"
 maxOccurs="1">
 </xsd:element>
 <xsd:element name="id"
 type="xsd:int"
 minOccurs="1"
9-12 Programming WebLogic Web Services

Creating Non-Built-In Data Types Manually: Main Steps
 maxOccurs="1">
 </xsd:element>
 </xsd:sequence>
 </xsd:complexType>
 </xsd:schema>
</types>
Programming WebLogic Web Services 9-13

9 Using Non-Built-In Data Types
9-14 Programming WebLogic Web Services

CHAPTER
10 Creating SOAP
Message Handlers to
Intercept the SOAP
Message

The following sections discuss how to use SOAP message handlers to intercept the
request and response SOAP messages when developing a WebLogic Web service:

“Overview of SOAP Message Handlers and Handler Chains” on page 10-2

“Creating SOAP Message Handlers: Main Steps” on page 10-3

“Designing the SOAP Message Handlers and Handler Chains” on page 10-3

“Implementing the Handler Interface” on page 10-6

“Updating the web-services.xml File with SOAP Message Handler Information”
on page 10-16

“Using SOAP Message Handlers and Handler Chains in a Client Application”
on page 10-18
Programming WebLogic Web Services 10-1

10 Creating SOAP Message Handlers to Intercept the SOAP Message
Overview of SOAP Message Handlers and
Handler Chains

A SOAP message handler intercepts the SOAP message in both the request and
response of the Web service. You can create handlers in both the Web service itself
and the client applications that invoke the Web service. Refer to “Using SOAP
Message Handlers to Intercept the SOAP Message” on page 4-6 for examples of when
to use handlers.

The following table describes the main classes and interfaces of the
javax.xml.rpc.handler API; later sections in this chapter describe how to use them
to create handlers.

Table 10-1 JAX-RPC Handler Interfaces and Classes

javax.xml.rpc.handler Classes
and Interfaces

Description

Handler Main interface that you implement when creating a
handler. Contains methods to handle the SOAP request,
response, and faults.

HandlerInfo Contains information about the handler, in particular the
initialization parameters, specified in the
web-services.xml file.

MessageContext Abstracts the message context processed by the handler.
The MessageContext properties allow the handlers in a
handler chain to share processing state.

soap.SOAPMessageContext Sub-interface of the MessageContext interface used to get
at or update the SOAP message.

javax.xml.soap.SOAPMessage Object that contains the actual request or response SOAP
message, including its header, body, and attachment.
10-2 Programming WebLogic Web Services

Creating SOAP Message Handlers: Main Steps
Creating SOAP Message Handlers: Main
Steps

To create SOAP message handlers to intercept request and response SOAP messages
when developing WebLogic Web services:

1. Design the handlers and handler chains. See “Designing the SOAP Message
Handlers and Handler Chains” on page 10-3.

2. For each handler in the handler chain, create a Java class that implements the
javax.xml.rpc.handler.Handler interface. See “Implementing the Handler
Interface” on page 10-6.

WebLogic Server includes an extension to the JAX-RPC handler API which you
can use to simplify the coding of your handler class: an abstract class called
weblogic.webservice.GenericHandler. See “Extending the GenericHandler
Abstract Class” on page 10-13.

3. Compile the Java code into class files. You will later package these class files
into a deployable Web services EAR file, as described in Chapter 6, “Assembling
WebLogic Web Services Using Ant Tasks.”

4. Update the web-services.xml deployment descriptor file with the appropriate
information. See “Updating the web-services.xml File with SOAP Message
Handler Information” on page 10-16.

For information about creating client-side SOAP message handlers and handler chains,
see “Using SOAP Message Handlers and Handler Chains in a Client Application” on
page 10-18.

Designing the SOAP Message Handlers and
Handler Chains

When designing your SOAP message handlers, you must decide:
Programming WebLogic Web Services 10-3

10 Creating SOAP Message Handlers to Intercept the SOAP Message
The number of handlers needed to perform all the work

The sequence of execution

Whether to invoke a backend component or whether the Web service consists of
only a handler chain.

Each handler in a handler chain has one method for handling the request SOAP
message and another method for handling the response SOAP message. You specify
the handlers in the web-services.xml deployment descriptor file. An ordered group
of handlers is referred to as a handler chain.

When invoking a Web service, WebLogic Server executes handlers as follows:

1. The handleRequest() methods of the handlers in the handler chain are all
executed, in the order specified in the web-services.xml file. Any of these
handleRequest() methods might change the SOAP message request.

2. When the handleRequest() method of the last handler in the handler chain
executes, WebLogic Server invokes the backend component that implements the
Web service, passing it the final SOAP message request.

Note: This step only occurs if a backend component has actually been defined for the
Web service; it is possible to develop a Web service that consists of only a
handler chain.

3. When the backend component has finished executing, the handleResponse()
methods of the handlers in the handler chain are executed in the reverse order
specified in the web-services.xml file. Any of these handleResponse()
methods might change the SOAP message response.

4. When the handleResponse() method of the first handler in the handler chain
executes, WebLogic server returns the final SOAP message response to the client
application that invoked the Web service.

For example, assume that you have specified a handler chain called myChain that
contains three handlers in the web-services.xml deployment descriptor, as shown in
the following excerpt:

<handler-chains>
 <handler-chain name="myChain">
 <handler class-name="myHandlers.handlerOne" />
 <handler class-name="myHandlers.handlerTwo" />
 <handler class-name="myHandlers.handlerThree" />
10-4 Programming WebLogic Web Services

Designing the SOAP Message Handlers and Handler Chains
 </handler-chain>
</handler-chains>

The following graphic shows the order in which WebLogic Server executes the
handleRequest() and handleResponse() methods of each handler:

Each SOAP message handler has a separate method to process the request and
response SOAP message because the same type of processing typically must happen
in both places. For example, you might design an Encryption handler whose
handleRequest() method decrypts secure data in the SOAP request and
handleResponse() method encrypts the SOAP response.

You can, however, design a handler that process only the SOAP request and does no
equivalent processing of the response.

You can also choose not to invoke the next handler in the handler chain and send an
immediate response to the client application at any point. The way to do this is
discussed in later sections.

Finally, you can design a Web service that contains only handlers in a handler chain,
and no backend component at all. In this case, when the handleRequest() method in
the last handler has executed, the chain of handleResponse() methods is
automatically invoked. See “Updating the web-services.xml File with SOAP Message
Handler Information” on page 10-16 for an example of using the web-services.xml
file to specify that only a handler chain, and no backend component, implements a
Web service.

handlerThree.
handleResponse()

handlerTwo.
handleResponse()

handlerOne.
handleResponse()

handlerThree.
handleRequest()

handlerTwo.
handleRequest()

handlerOne.
handleRequest()

Backend
Component
Programming WebLogic Web Services 10-5

10 Creating SOAP Message Handlers to Intercept the SOAP Message
Implementing the Handler Interface

Your SOAP message handler class must implement the
javax.rpc.xml.handler.Handler interface, as shown in the following example.
The example demonstrates a simple way to print out the SOAP request and response
messages:

package examples.webservices.handler.log;

import java.util.Map;

import javax.xml.rpc.handler.Handler;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.rpc.JAXRPCException;
import javax.xml.namespace.QName;

import weblogic.logging.NonCatalogLogger;

/**
 * @author Copyright (c) 2002 by BEA Systems. All Rights Reserved.
 */

public final class LogHandler
 implements Handler
{
 private NonCatalogLogger log;

 private HandlerInfo handlerInfo;

 public void init(HandlerInfo hi) {
 log = new NonCatalogLogger("WebService-LogHandler");
 handlerInfo = hi;
 }

 public void destroy() {}

 public QName[] getHeaders() { return handlerInfo.getHeaders(); }

 public boolean handleRequest(MessageContext mc) {
 SOAPMessageContext messageContext = (SOAPMessageContext) mc;

 System.out.println("** Request: "+messageContext.getMessage().toString());
 log.info(messageContext.getMessage().toString());
 return true;
 }
10-6 Programming WebLogic Web Services

Implementing the Handler Interface
 public boolean handleResponse(MessageContext mc) {

 SOAPMessageContext messageContext = (SOAPMessageContext) mc;

 System.out.println("** Response: "+messageContext.getMessage().toString());
 log.info(messageContext.getMessage().toString());
 return true;
 }

 public boolean handleFault(MessageContext mc) {
 SOAPMessageContext messageContext = (SOAPMessageContext) mc;

 System.out.println("** Fault: "+messageContext.getMessage().toString());
 log.info(messageContext.getMessage().toString());
 }
}

The javax.xml.rpc.handler.Handler interface contains the following methods
that you must implement:

init()

destroy()

getHeaders()

handleRequest()

handleResponse()

handleFault()

The following sections describe how to use each method to code your implementation.

Implementing the Handler.init() Method

The Handler.init() method is called to create an instance of a Handler object and
to enable the instance to initialize itself. Its signature is:

 public void init(HandlerInfo config) throws JAXRPCException {}

The HandlerInfo object contains information about the SOAP message handler, in
particular the initialization parameters, specified in the web-services.xml file. Use
the HandlerInfo.getHandlerConfig() method to get the parameters; the method
returns a Map object that contains name-value pairs.

Implement the init() method if you need to process the initialization parameters or
if you have other initialization tasks to perform.
Programming WebLogic Web Services 10-7

10 Creating SOAP Message Handlers to Intercept the SOAP Message
Sample uses of initialization parameters are to turn debugging on or off, specify the
name of a log file to which to write messages or errors, and so on.

Implementing the Handler.destroy() Method

The Handler.destroy() method is called to destroy an instance of a Handler object.
Its signature is:

 public void destroy() throws JAXRPCException {}

Implement the destroy() method to release any resources acquired throughout the
handler’s lifecycle.

Implementing the Handler.getHeaders() Method

The Handler.getHeaders() method gets the header blocks processed by this
Handler instance. Its signature is:

 public QName[] getHeaders() {}

Implementing the Handler.handleRequest() Method

The Handler.handleRequest() method is called to intercept a SOAP message
request before it is processed by the back-end component. Its signature is:

 public boolean handleRequest(MessageContext mc) throws JAXRPCException {}

Implement this method to decrypt data in the SOAP message before it is processed by
the back-end component, to make sure that the request contains the correct number of
parameters, and so on.

The MessageContext object abstracts the message context processed by the SOAP
message handler. The MessageContext properties allow the handlers in a handler
chain to share processing state.
10-8 Programming WebLogic Web Services

Implementing the Handler Interface
 Use the SOAPMessageContext sub-interface of MessageContext to get at or update
the contents of the SOAP message request. The SOAP message request itself is stored
in a javax.xml.soap.SOAPMessage object. For detailed information on this object,
see “The javax.xml.soap.SOAPMessage Object” on page 10-12.

The SOAPMessageContext class defines two methods for processing the SOAP
request:

SOAPMessageContext.getMessage()returns a
javax.xml.soap.SOAPMessage object that contains the SOAP message
request.

SOAPMessageContext.setMessage(javax.xml.soap.SOAPMessage)updates
the SOAP message request after you have made changes to it.

After you code all the processing of the SOAP request, do one of the following:

Invoke the next handler on the handler request chain by returning true.

The next handler on the request chain is specified as the next <handler>
subelement of the <handler-chain> element in the web-services.xml
deployment descriptor. If there are no more handlers in the chain, the method
either invokes the backend-end component, passing it the final SOAP message
request, or invokes the handleResponse() method of the last handler,
depending on how you have configured your Web service.

Block processing of the handler request chain by returning false.

Blocking the handler request chain processing implies that the backend
component does not get executed for this invoke of the Web service. You might
want to do this if you have cached the results of certain invokes of the Web
service, and the current invoke is on the list.

Although the handler request chain does not continue processing, WebLogic
Server does invoke the handler response chain, starting at the current handler.
For example, assume that a handler chain consists of two handlers: handlerA and
handlerB, where the handleRequest() method of handlerA is invoked before
that of handlerB. If processing is blocked in handlerA (and thus the
handleRequest() method of handlerB is not invoked), the handler response
chain starts at handlerA and the handleRequest() method of handlerB is not
invoked either.

Throw the javax.xml.rpc.soap.SOAPFaultException to indicate a SOAP
fault.
Programming WebLogic Web Services 10-9

10 Creating SOAP Message Handlers to Intercept the SOAP Message
If the handleRequest() method throws a SOAPFaultException, WebLogic
Server catches the exception, terminates further processing of the handler request
chain, and invokes the handleFault() method of this handler.

Throw a JAXRPCException for any handler specific runtime errors.

If the handleRequest() method throws a JAXRPCException, WebLogic
Server catches the exception, terminates further processing of the handler request
chain, logs the exception to the WebLogic Server logfile, and invokes the
handleFault() method of this handler.

Implementing the Handler.handleResponse() Method

The Handler.handleResponse() method is called to intercept a SOAP message
response after it has been processed by the backend component, but before it is sent
back to the client application that invoked the Web service. Its signature is:

 public boolean handleResponse(MessageContext mc) throws JAXRPCException {}

Implement this method to encrypt data in the SOAP message before it is sent back to
the client application, to further process returned values, and so on.

The MessageContext object abstracts the message context processed by the SOAP
message handler. The MessageContext properties allow the handlers in a handler
chain to share processing state.

 Use the SOAPMessageContext sub-interface of MessageContext to get at or update
the contents of the SOAP message response. The SOAP message response itself is
stored in a javax.xml.soap.SOAPMessage object. See “The
javax.xml.soap.SOAPMessage Object” on page 10-12.

The SOAPMessageContext class defines two methods for processing the SOAP
response:

SOAPMessageContext.getMessage(): returns a
javax.xml.soap.SOAPMessage object that contains the SOAP message
response.

SOAPMessageContext.setMessage(javax.xml.soap.SOAPMessage):
updates the SOAP message response after you have made changes to it.

After you code all the processing of the SOAP response, do one of the following:
10-10 Programming WebLogic Web Services

Implementing the Handler Interface
Invoke the next handler on the handler response chain by returning true.

The next response on the handler chain is specified as the preceding <handler>
subelement of the <handler-chain> element in the web-services.xml
deployment descriptor. (Remember that responses on the handler chain execute
in the reverse order that they are specified in the web-services.xml file. See
“Designing the SOAP Message Handlers and Handler Chains” on page 10-3 for
more information.)

If there are no more handlers in the chain, the method sends the final SOAP
message response to the client application that invoked the Web service.

Block processing of the handler response chain by returning false.

Blocking the handler response chain processing implies that the remaining
handlers on the response chain do not get executed for this invoke of the Web
service and the current SOAP message is sent back to the client application.

Throw a JAXRPCException for any handler specific runtime errors.

If the handleRequest() method throws a JAXRPCException, WebLogic
Server catches the exception, terminates further processing of the handler request
chain, logs the exception to the WebLogic Server logfile, and invokes the
handleFault() method of this handler.

Implementing the Handler.handleFault() Method

The Handler.handleFault() method processes the SOAP faults based on the SOAP
message processing model. Its signature is:

 public boolean handleFault(MessageContext mc) throws JAXRPCException {}

Implement this method to handle processing of any SOAP faults generated by the
handleResponse() and handleRequest() methods, as well as faults generated by
the backend component.

The MessageContext object abstracts the message context processed by the SOAP
message handler. The MessageContext properties allow the handlers in a handler
chain to share processing state.
Programming WebLogic Web Services 10-11

10 Creating SOAP Message Handlers to Intercept the SOAP Message
Use the SOAPMessageContext sub-interface of MessageContext to get at or update
the contents of the SOAP message. The SOAP message itself is stored in a
javax.xml.soap.SOAPMessage object. See “The javax.xml.soap.SOAPMessage
Object” on page 10-12.

The SOAPMessageContext class defines the following two methods for processing
the SOAP message:

SOAPMessageContext.getMessage(): returns a
javax.xml.soap.SOAPMessage object that contains the SOAP message.

SOAPMessageContext.setMessage(javax.xml.soap.SOAPMessage):
updates the SOAP message after you have made changes to it.

After you code all the processing of the SOAP fault, do one of the following:

Invoke the handleFault() method on the next handler in the handler chain by
returning true.

Block processing of the handler fault chain by returning false.

The javax.xml.soap.SOAPMessage Object

The javax.xml.soap.SOAPMessage abstract class is part of the Java API for XML
Messaging (JAXM) specification. You use the class to manipulate request and
response SOAP messages when creating SOAP message handlers. This section
describes the basic structure of a SOAPMessage object and some of the methods you
can use to view and update a SOAP message.

A SOAPMessage object consists of a SOAPPart object (which contains the actual
SOAP XML document) and zero or more attachments.

Refer to the JAXM API Javadocs for the full description of the SOAPMessage class.
For more information on JAXM, go to http://java.sun.com/xml/jaxm/index.html.

The SOAPPart Object

The SOAPPart object contains the XML SOAP document inside of a SOAPEnvelope
object. You use this object to get the actual SOAP headers and body.
10-12 Programming WebLogic Web Services

http://java.sun.com/xml/jaxm/index.html

Extending the GenericHandler Abstract Class
The following sample Java code shows how to retrieve the SOAP message from a
MessageContext object, provided by the Handler class, and get at its parts:

SOAPMessage soapMessage = messageContext.getRequest();
SOAPPart soapPart = soapMessage.getSOAPPart();
SOAPEnvelope soapEnvelope = soapPart.getEnvelope();
SOAPBody soapBody = soapEnvelope.getBody();
SOAPHeader soapHeader = soapEnvelope.getHeader();

The AttachmentPart Object

The AttachmentPart object contains the optional attachments to the SOAP message.
Unlike the rest of a SOAP message, an attachment is not required to be in XML format
and can therefore be anything from simple text to an image file.

Use the following methods of the SOAPMessage class to manipulate the attachments:

countAttachments(): returns the number of attachments in this SOAP
message.

getAttachments(): retrieves all the attachments (as AttachmentPart objects)
into an Iterator object.

createAttachmentPart(): create an AttachmentPart object from another
type of Object.

addAttachmentPart(): adds an AttachmentPart object, after it has been
created, to the SOAPMessage.

Extending the GenericHandler Abstract Class

WebLogic Server includes an extension to the JAX-RPC handler API that you can use
to simplify the Java code of your SOAP message handler class. This extension is the
abstract class weblogic.webservices.GenericHandler. It implements the
JAX-RPC javax.xml.rpc.handler.Handler interface.

Note: The weblogic.webservices.GenericHandler abstract class was
originally developed for WebLogic Server when the JAX-RPC specification
was not yet final and did not include this functionality. However, now that
JAX-RPC includes its own GenericHandler class which is almost exactly
Programming WebLogic Web Services 10-13

10 Creating SOAP Message Handlers to Intercept the SOAP Message
the same as the WebLogic Server class, BEA highly recommends that you use
the standard JAX-RPC abstract class rather than the WebLogic-specific one.
The documentation in this section is provided for compatibility reasons only.

For more information about the JAX-RPC
javax.xml.rpc.handler.GenericHandler abstract class, see the
JAX-RPC Javadocs.

Because GenericHandler is an abstract class, you need only implement the methods
that will contain actual code, rather than having to implement every method of the
Handler interface even if the method does nothing. For example, if your handler does
not use initialization parameters and you do not need to allocate any additional
resources, you do not need to implement the init() method.

The GenericHandler class is defined as follows:

package weblogic.webservice;

import javax.xml.rpc.handler.Handler;
import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.namespace.QName;

/**
 * @author Copyright (c) 2002 by BEA Systems. All Rights Reserved.
 */

public abstract class GenericHandler
 implements Handler
{

 private HandlerInfo handlerInfo;

 public void init(HandlerInfo handlerInfo) {
 this.handlerInfo = handlerInfo;
 }

 protected HandlerInfo getHandlerInfo() { return handlerInfo; }

 public boolean handleRequest(MessageContext msg) {
 return true;
 }

 public boolean handleResponse(MessageContext msg) {
 return true;
 }

 public boolean handleFault(MessageContext msg) {}
10-14 Programming WebLogic Web Services

http://java.sun.com/webservices/docs/1.3/api/index.html

Extending the GenericHandler Abstract Class
 public void destroy() {}
 public QName[] getHeaders() { return handlerInfo.getHeaders(); }

}

The following sample code, taken from the
examples.webservices.handler.nocomponent product example, shows how to
use the GenericHandler abstract class to create your own handler. The example
implements only the handleRequest() and handleResponse() methods. It does
not implement (and thus does not include in the code) the init(), destroy(),
getHeaders(), and handleFault() methods.

package examples.webservices.handler.nocomponent;

import java.util.Map;

import javax.xml.rpc.JAXRPCException;
import javax.xml.rpc.handler.MessageContext;
import javax.xml.rpc.handler.soap.SOAPMessageContext;
import javax.xml.soap.*;

import weblogic.webservice.GenericHandler;

import weblogic.utils.Debug;

/**
 * @author Copyright (c) 2002 by BEA Systems. All Rights Reserved.
 */

public final class EchoStringHandler
 extends GenericHandler
{
 private int me = System.identityHashCode(this);

 public boolean handleRequest(MessageContext messageContext) {
 System.err.println("** handleRequest called in: "+me);
 return true;
 }

 public boolean handleResponse(MessageContext messageContext) {

 try {
 MessageFactory messageFactory = MessageFactory.newInstance();

 SOAPMessage m = messageFactory.createMessage();

 SOAPEnvelope env = m.getSOAPPart().getEnvelope();

 SOAPBody body = env.getBody();
Programming WebLogic Web Services 10-15

10 Creating SOAP Message Handlers to Intercept the SOAP Message
 SOAPElement fResponse =
 body.addBodyElement(env.createName("echoResponse"));

 fResponse.addAttribute(env.createName("encodingStyle"),
 "http://schemas.xmlsoap.org/soap/encoding/");

 SOAPElement result =
 fResponse.addChildElement(env.createName("result"));

 result.addTextNode("Hello World");

 ((SOAPMessageContext)messageContext).setMessage(m);

 return true;

 } catch (SOAPException e) {
 e.printStackTrace();
 throw new JAXRPCException(e);
 }
 }
}

Updating the web-services.xml File with
SOAP Message Handler Information

The web-services.xml deployment descriptor file describes the SOAP message
handlers and handler chains defined for a Web service and the order in which they
should be executed.

To update the web-services.xml file with handler information:

1. Create a <handler-chains> child element of the <web-services> root element
that will contain a list of all handler chains defined for the Web service.

2. Create a <handler-chain> child element of the <handler-chains> element;
within this element list all the handlers in the handler chain. For each handler, use
the class-name attribute to specify the fully qualified name of the Java class that
implements the handler. Use the <init-params> element to specify any
initialization parameters of the handler.

The following sample excerpt shows a handler chain called myChain that
contains three handlers, the first of which has an initialization parameter:
10-16 Programming WebLogic Web Services

Updating the web-services.xml File with SOAP Message Handler Information
<web-services>
 <handler-chains>
 <handler-chain name="myChain">
 <handler class-name="myHandlers.handlerOne" >
 <init-params>
 <init-param name="debug" value="on" />
 </init-params>
 </handler>
 <handler class-name="myHandlers.handlerTwo" />
 <handler class-name="myHandlers.handlerThree" />
 </handler-chain>
 </handler-chains>
...
</web-services>

3. Use the <operation> child element of the <operations> element (which itself
is a child of the <web-service> element) to specify that the handler chain is an
operation of the Web service. Follow one of the next two scenarios:

The handler chain executes together with a backend component, such as a
stateless session EJB.

In this case use the component, method, and handler-chain attributes of
the <operation> element, as shown in the following partial excerpt of a
web-services.xml file:

<web-service>
 <components>
 <stateless-ejb name="myEJB">
 ...
 </stateless-ejb>
 </components>
 <operations>
 <operation name="getQuote"
 method="getQuote"
 component="myEJB"
 handler-chain="myChain" />
 </operations>
</web-service>

In the example, the request chain of the myChain handler chain executes
first, then the getQuote() method of the myEJB stateless session EJB
component, and finally the response chain of myChain.

The handler chain executes on its own, without a backend component.
Programming WebLogic Web Services 10-17

10 Creating SOAP Message Handlers to Intercept the SOAP Message
In this case use only the handler-chain attribute of the <operation> element
and explicitly do not specify the component or method attributes, as shown
in the following excerpt:

<web-service>
 <operations>
 <operation name="chainService"
 handler-chain="myChain" />
 </operations>
</web-service>

In the example, the Web service consists solely of the myChain handler
chain.

Using SOAP Message Handlers and Handler
Chains in a Client Application

Most of this chapter describes how to create SOAP message handlers in a handler
chain that execute as part of the Web service running on WebLogic Server. You can
also create handlers that execute in a client application. In the case of a client-side
handler, the handler executes twice when a client application invokes a Web service:

directly before the client appliation sends the SOAP request to the Web service

directly after the client application receives the SOAP response from the Web
service

You create a client-side handler in the same way you create a server-side handler: write
a Java class that implements the javax.rpc.xml.handler.Handler interface. In
many cases you can use the exact same handler class on both the Web service running
on WebLogic Server and the client applications that invoke the Web service. For
example, you can write a generic logging handler class that logs all sent and received
SOAP messages, both for the server and for the client. For details about writing the
handler Java class, see “Implementing the Handler Interface” on page 10-6.

After you have created your client-side handler class, the process for registering the
handler on the client application is different from that of the server. Because client
applications do not have deployment descriptors, you must register the handler
programmatically using the javax.xml.rpc.handler.HandlerInfo and
10-18 Programming WebLogic Web Services

Using SOAP Message Handlers and Handler Chains in a Client Application
javax.xml.rpc.handler.HandlerRegistry classes. The following sample client
application shows how to do this, with relevant sections in bold discussed after the
example:

import java.util.ArrayList;

import java.io.IOException;

import javax.xml.namespace.QName;

import javax.xml.rpc.ServiceException;

import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.HandlerRegistry;

public class Main{

 public static void main(String[] args){

 if(args.length == 1){
 new Main(args[0]);
 }else{
 throw new IllegalArgumentException("URL of the service not specified");
 }
 }

 public Main(String wsdlUrl){
 try{

 HelloWorldService service = new HelloWorldService_Impl(wsdlUrl);
 HelloWorldServicePort port = service.getHelloWorldServicePort();

 QName portName = new QName("http://tutorial/sample4/",
 "HelloWorldServicePort");

 HandlerRegistry registry = service.getHandlerRegistry();

 List handlerList = new ArrayList();
 handlerList.add(new HandlerInfo(ClientHandler.class, null, null));

 registry.setHandlerChain(portName, handlerList);

 System.out.println(port.helloWorld());
 }catch(IOException e){
 System.out.println("Failed to create web service client:" + e);
 }catch(ServiceException e){
 System.out.println("Failed to create web service client:" + e);
 }
 }
}

Programming WebLogic Web Services 10-19

10 Creating SOAP Message Handlers to Intercept the SOAP Message
The main points to notice about the example are as follows:

Import the JAX-RPC HandlerInfo and HandlerRegistry classes which will
be used to register the client-side handler class:

import javax.xml.rpc.handler.HandlerInfo;
import javax.xml.rpc.handler.HandlerRegistry;

Create a QName object that contains the qualified name of the Web service port:

 QName portName = new QName("http://tutorial/sample4/",
 "HelloWorldServicePort");

Refer to the WSDL of the Web service you are invoking for the name of the port
and its namespace.

Create a HandlerRegistry object:

HandlerRegistry registry = service.getHandlerRegistry();

Create a List object that contains a list of the handlers you want to register.
This list becomes the client-side handler chain. Use the HandlerInfo class to
specify the name of your Java handler class:

List handlerList = new ArrayList();
handlerList.add(new HandlerInfo(ClientHandler.class, null,
null));

In the example, the handler chain consists of just one handler:
ClientHandler.class. You can, however, create a handler chain of as many
handlers as you want.

Warning: The order in which you add the handlers to the List object specifies
the order in which the handlers are executed in the client application.
For example, if you want HandlerA.class to execute first and then
HandlerB.class, be sure you add HandlerA.class to the list before
HandlerB.class.

Register the handler chain with the client application using the
HandlerRegistry.setHandlerChain() method:

registry.setHandlerChain(portName, handlerList);
10-20 Programming WebLogic Web Services

CHAPTER
11 Configuring Security

The following sections describe how to configure security for WebLogic Web
services:

“Overview of Configuring Security” on page 11-1

“Configuring Security: Main Steps” on page 11-2

“Controlling Access to WebLogic Web Services” on page 11-3

“Specifying the HTTPS Protocol” on page 11-5

“Coding a Client Application to Invoke a Secure Web Service” on page 11-6

“Configuring SSL for a Client Application” on page 11-7

Overview of Configuring Security

Configuring security for WebLogic Web services is basically no different from
securing any other type of application or component that runs on WebLogic Server.
You can secure the entire Web service by restricting access to the URLs that invoke
the Web service and its WSDL. When you secure the entire Web service, the
components that make up the Web service are automatically secured. Or you can
secure individual components of the Web service, such as the stateless session EJB, a
selected list of its methods, the Web application that contains the web-services.xml
file, and so on.

After you secure access to the Web service or some of its components, you configure
client applications to use HTTP or SSL to authenticate themselves when they invoke
the Web service.
Programming WebLogic Web Services 11-1

11 Configuring Security
For additional examples of securing WebLogic Web Services, see the Webservice
Download Page at http://webservice.bea.com/index.html.

Configuring Security: Main Steps

To configure security for a WebLogic Web service and a client that invokes the
service, follow these steps. Later sections describe the steps in detail.

1. Control access to either the entire Web service or some of its components by
creating roles, mapping the roles to principals in your realm, then specifying which
components are secured and accessible only by the principals in the role.

See “Controlling Access to WebLogic Web Services” on page 11-3.

2. Optionally update the web-services.xml file to specify that the Web service
can be accessed only by HTTPS.

See “Specifying the HTTPS Protocol” on page 11-5.

3. If your client application will use SSL to authenticate itself, configure SSL for
WebLogic Server.

You can configure one-way SSL (the default) where WebLogic Server is
required to present a certificate to the client application, or two-way SSL where
both the client applications and WebLogic server present certificates to each
other.

For details about SSL, the difference between one-way and two-way, and
procedures to configure both, see Configuring SSL at
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html.

Warning: If you use 2-way SSL to secure the connection when invoking a
WebLogic Web Service, WebLogic Server always asserts the identity
of the certificate to ensure that it maps to a valid WebLogic Server user,
even if the Web Service or the stateless EJB backend component does
not require any special privileges. This is not true for 1-way SSL,
because in that case the client application does not send its certificate.

4. Code your client to authenticate itself using HTTP or SSL when invoking a
WebLogic Web service.
11-2 Programming WebLogic Web Services

http://webservice.bea.com/index.html
http://webservice.bea.com/index.html
http://e-docs.bea.com/wls/docs70/secmanage/ssl.html

Controlling Access to WebLogic Web Services
See “Coding a Client Application to Invoke a Secure Web Service” on page
11-6.

5. If your client application is using SSL, configure SSL on the client-side.

See “Configuring SSL for a Client Application” on page 11-7.

Controlling Access to WebLogic Web Services

As previously discussed, WebLogic Web services are packaged as standard J2EE
Enterprise applications. Consequently, to secure access to the Web service, you secure
access to some or all of the following standard J2EE components that make up the Web
service:

The Web Service URL

The stateless session EJB that implements the Web service

A subset of the methods of the stateless session EJB

The WSDL and Home Page of the Web Service

You can use basic HTTP authentication or SSL to authenticate a client that is
attempting to access a WebLogic Web Service. Because the preceding components are
standard J2EE components, you secure them by using standard J2EE security
procedures.

Note: If the backend component that implements your Web service is a Java class or
a JMS listener, the only way to secure the Web service is by adding security
constraints to the URL that invokes the Web service, as described in the next
section.

 For additional and detailed information about configuring, programming, and
managing WebLogic security, see the security documentation at
http://e-docs.bea.com/wls/docs70/security.html.
Programming WebLogic Web Services 11-3

http://e-docs.bea.com/wls/docs70/security.html
http://e-docs.bea.com/wls/docs70/security.html

11 Configuring Security
Securing Web Service URL

Client applications use a URL to access a Web service, as described in “The WebLogic
Web Services Home Page and WSDL URLs” on page 8-22. An example of such a
URL is:

http://ariel:7001/web_services/TraderService

You can restrict access to the entire Web service by restricting access to its URL. To
do this, update the web.xml and weblogic.xml deployment descriptor files (in the
Web application that contains the web-services.xml file) with security information.

For detailed information about restricting access to URLs, see Securing WebLogic
Resources at http://e-docs.bea.com/wls/docs70/secwlres/index.html.

Securing the Stateless Session EJB and Its Methods

If you secure the stateless session EJB that implements a Web Service, client
applications that invoke the service have access to the Web application, the WSDL,
and the Web Service Home Page, but might not be able to invoke the actual method
that implements an operation. This type of security is useful if you want to closely
monitor who has access to the business logic of the EJB but do not want to block access
to the entire Web Service.

You can also use this type of security to decide at the method-level who has access to
the various operations of the Web Service. For example, you can specify that any user
can invoke a method that views information, but only a certain subset of users are
allowed to update the information.

For more information and procedures about securing EJBs and individual methods of
an EJB using the Adminstration Console, see Securing WebLogic Resources at
http://e-docs.bea.com/wls/docs70/secwlres/intro.html.
11-4 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/secwlres/index.html
http://e-docs.bea.com/wls/docs70/secwlres/index.html
http://e-docs.bea.com/wls/docs70/secwlres/intro.html

Specifying the HTTPS Protocol
Securing the WSDL and Home Page of the Web Service

You can restrict access to either the WSDL or Home Page of a WebLogic Web Service
by updating the web-services.xml deployment descriptor that describes the service,
as described in the following procedure:

1. Open the web-services.xml file in your favorite editor.

The web-services.xml file is located in the WEB-INF directory of the Web
application of the Web Services EAR file. See “The Web Service EAR File
Package” on page 6-12 for more information on locating the file.

2. To restrict access to the WSDL, add the exposeWSDL="False" attribute to the
<web-service> element that describes your Web Service. To restrict access to
the Home page, add the exposeHomePage="False" attribute. The following
excerpt shows an example:

 <web-service
 name="stockquotes"
 uri="/myStockQuoteService"
 exposeWSDL="False"
 exposeHomePage="False" >
 ...
 </web-service>

3. Re-deploy your Web Service for the change to take affect. The WSDL and Home
Page of the Web Service will be inaccessible to all users.

Specifying the HTTPS Protocol

You make a Web service accessible only through HTTPS by updating the protocol
attribute of the <web-service> element in the web-services.xml file that describes
the Web service, as shown in the following excerpt:

<web-services>
 <web-service name="stockquotes"
 targetNamespace="http://example.com"
 uri="/myStockQuoteService"
 protocol="https" >
 ...
Programming WebLogic Web Services 11-5

11 Configuring Security
 </web-service>
</web-services>

Note: If you configure SSL for WebLogic Server and you do not specify the HTTPS
protocol in the web-services.xml file, client applications can access the
Web service using both HTTP and HTTPS. However, if you specify HTTPS
access in the web-services.xml file, client applications cannot use HTTP to
access the Web service.

If you use the servicegen Ant task to assemble the Web service, use the protocol
attribute of the <service> element to specify the HTTPS protocol, as shown in the
following sample build.xml file:

<project name="buildWebservice" default="ear">
 <target name="ear">
 <servicegen
 destEar="ws_basic_statelessSession.ear"
 contextURI="WebServices"
 <service
 ejbJar="HelloWorldEJB.jar"
 targetNamespace="http://www.bea.com/webservices/basic/statelesSession"
 serviceName="HelloWorldEJB"
 serviceURI="/HelloWorldEJB"
 protocol="https"
 generateTypes="True"
 expandMethods="True">
 </service>
 </servicegen>
 </target>
</project>

Coding a Client Application to Invoke a
Secure Web Service

When you write a JAX-RPC client application that invokes a Web service, you use the
following two properties to send a user name and password to the service so that the
client can authenticate itself:

javax.xml.rpc.security.auth.username

javax.xml.rpc.security.auth.password
11-6 Programming WebLogic Web Services

Configuring SSL for a Client Application
The following example, taken from the JAX-RPC specification, shows how to use
these properties when using the javax.xml.rpc.Stub interfaces to invoke a secure
Web service:

StockQuoteProviderStub sqp = // ... get the Stub;
sqp._setProperty ("javax.xml.rpc.security.auth.username", "juliet");
sqp._setProperty ("javax.xml.rpc.security.auth.password", "mypassword");
float quote sqp.getLastTradePrice("BEAS");

If you use the WebLogic-generated client JAR file to invoke a Web service, the Stub
classes are already created for you, and you can pass the user name and password to
the Service-specific implementation of the getServicePort() method, as shown in
the following example taken from the JAX-RPC specification:

StockQuoteService sqs = // ... Get access to the service;
StockQuoteProvider sqp = sqs.getStockQuoteProviderPort ("juliet", "mypassword");
float quote = sqp.getLastTradePrice ("BEAS");

In this example, the implementation of the getStockQuoteProvidePort() method
sets the two authentication properties.

For additional information on writing a client application using JAX-RPC to invoke a
secure Web service, see http://java.sun.com/xml/jaxrpc/index.html.

Configuring SSL for a Client Application

Configure SSL for your client application by using either:

The WebLogic Server-provided SSL implementation

A third-party SSL implementation

If you are using two-way SSL, your client application must also present its certificate
to WebLogic Server. For details, see “Configuring Two-Way SSL For a Client
Application” on page 11-13.

For additional detailed information about the APIs discussed in this section see the
Web service security Javadocs at
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-sum
mary.html.
Programming WebLogic Web Services 11-7

http://java.sun.com/xml/jaxrpc/index.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html

11 Configuring Security
Using the WebLogic Server-Provided SSL
Implementation

WebLogic Server provides an implementation of SSL in the
webserviceclient+ssl.jar client runtime JAR file. In addition to the SSL
implementation, this client JAR file contains the standard client JAX-RPC runtime
classes contained in webservicesclient.jar.

Note: For information about BEA’s current licensing of client functionality, see the
BEA eLicense Web Site at
http://elicense.bea.com/elicense_webapp/index.jsp.

To configure basic SSL support for your client application, follow these steps:

1. Copy the file WL_HOME\server\lib\webserviceclient+ssl.jar to your
client application development computer, where WL_HOME refers to the top-level
directory of WebLogic Platform. This client JAR file contains the client runtime
implementation of JAX-RPC as well as the implementation of SSL.

2. Add the client JAR file to the client application’s CLASSPATH variable.

3. Set the filename of the file containing trusted Certificate Authority (CA)
certificates. Do this by either:

Setting the System property trustedfile to the name of the file that
contains a collection of PEM-encoded certificates.

Executing the
BaseWLSSLAdapter.setTrustedCertificatesFile(String
ca_filename) method in your client application.

4. When you run your client application, set the following System properties on the
command line:

bea.home=license_file_directory

java.protocol.handler.pkgs=com.certicom.net.ssl

where license_file_directory refers to the directory that contains the BEA
license file license.bea, as shown in the following example:

java -Dbea.home=c:\bea_home \
 -Djava.protocol.handler.pkgs=com.certicom.net.ssl my_app
11-8 Programming WebLogic Web Services

http://elicense.bea.com/elicense_webapp/index.jsp
http://elicense.bea.com/elicense_webapp/index.jsp

Configuring SSL for a Client Application
Note: If your client application is running on a computer different from the
computer hosting WebLogic Server (which is typically the case), copy the
BEA license file from the server computer to a directory on the client
computer, and then point the bea.home System property to this client-side
directory.

5. To disable strict certificate validation, either set the
weblogic.webservice.client.ssl.strictcertchecking System property
to false at the command line when you run the application, or programmatically
use the BaseWLSSLAdapter.setStrictCheckingDefault() method.

For detailed information, see the Web service security Javadocs at
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-sum
mary.html.

Configuring SSL Programatically

You can also configure the WebLogic Server-provided SSL implementation
programatically by using the weblogic.webservice.client.WLSSLAdapter
adapter class. This adapter class hold configuration information specific to WebLogic
Server’s SSL implementation and allows the configuration to be queried and modified.

The following excerpt shows an example of configuring the WLSSLAdapter class for
a specific WebLogic Web service; the lines in bold are discussed after the example:

 // instantiate an adapter...
 WLSSLAdapter adapter = new WLSSLAdapter();
 adapter.setTrustedCertifcatesFile("mytrustedcerts.pem");

 // optionally set the Adapter factory to use this
 // instance always...
 SSLAdapterFactory.getDefaultFactory().setDefaultAdapter(adapter);
 SSLAdapterFactory.getDefaultFactory().setUseDefaultAdapter(true);

 //create service factory
 ServiceFactory factory = ServiceFactory.newInstance();

 //create service
 Service service = factory.createService(serviceName);

 //create call
 Call call = service.createCall();

 call.setProperty("weblogic.webservice.client.ssladapter",
 adapter);
Programming WebLogic Web Services 11-9

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html

11 Configuring Security
 try {

 //invoke the remote web service
 String result = (String) call.invoke(new Object[]{ "BEAS" });
 System.out.println("Result: " +result);
 } catch (JAXRPCException jre) {
 ...
 }

The example first shows how to instantiate an instance of the WebLogic
Server-provided WLSSLAdapter class, which supports the SSL implementation
contained in the webserviceclient+ssl.jar file. It then configures the adapter
instance by setting the name of the file that contains the Certificate Authority
certificates using the setTrustedCertificatesFile(String) method; in this case
the file is called mytrustedcerts.pem.

The example then shows how to set WLSSLAdapter as the default adapter of the
adapter factory and configures the factory to always return this default.

Note: This step is optional; it allows all Web services to share the same adapter class
along with its associated configuration.

You can also set the adapter for a particular Web service port or call. The preceding
example shows how to do this when using the Call class to invoke a Web service
dynamically:

call.setProperty("weblogic.webservice.client.ssladapter", adapter);

Set the property to an object that implements the
weblogic.webservice.client.SSLAdapter interface (which in this case is the
WebLogic Server-provided WLSSLAdapter class.)

The following excerpt shows how to set the adapter when using the Stub interface to
statically invoke a Web service:

((javax.xml.rpc.Stub)stubClass)._setProperty("weblogic.webservice.client.sslada
pter", adapterInstance);

You can get the adapter for a specific instance of a Web service call or port by using
the following method for dynamic invocations:

call.getProperty("weblogic.webservice.client.ssladapter");

Use the following method for static invocations:

((javax.xml.rpc.Stub)stubClass)._getProperty("weblogic.webservice.client.sslada
pter");
11-10 Programming WebLogic Web Services

Configuring SSL for a Client Application
For detailed information, see the Web service security Javadocs at
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-sum
mary.html.

Using a Third-Party SSL Implementation

If you want to use a third-party SSL implementation, you must first implement your
own adapter class. The following example shows a simple class that provides support
for JSSE; the main steps to implementing your own class are discussed after the
example:

import java.net.URL;
import java.net.Socket;
import java.net.URLConnection;
import java.io.IOException;

public class JSSEAdapter implements weblogic.webservice.client.SSLAdapter {

 javax.net.SocketFactory factory =
 javax.net.ssl.SSLSocketFactory.getDefault();

 // implements weblogic.webservice.client.SSLAdapter interface...

 public Socket createSocket(String host, int port) throws IOException {
 return factory.createSocket(host, port);
 }

 public URLConnection openConnection(URL url) throws IOException {
 // assumes you have java.protocol.handler.pkgs properly set..
 return url.openConnection();
 }

 // the configuration interface...

 public void setSocketFactory(javax.net.ssl.SSLSocketFactory factory) {
 this.factory = factory;
 }

 public javax.net.ssl.SSLSocketFactory getSocketFactory() {
 return (javax.net.ssl.SSLSocketFactory) factory;
 }
}

To create your own adapter class, follow these steps:

1. Create a class that implements the following interface:
Programming WebLogic Web Services 11-11

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html

11 Configuring Security
weblogic.webservice.client.SSLAdapter

2. Implement the createSocket method, whose signature is:

public Socket createSocket(String host, int port)
 throws IOException

This method returns an object that extends java.net.Socket. The object is
connected to the designated hostname and port when a Web service is invoked.

3. Implement the openConnection method, whose signature is:

public URLConnection openConnection(URL url) throws IOException

This method returns an object that extends the java.net.URLConnection
class. The object is configured to connect to the designated URL. These
connections are used for infrequent network operations, such as downloading the
Web service WSDL.

4. When you run your client application, set the following System property to the
fully qualified name of your adapter class:

weblogic.webservice.client.ssl.adapterclass

The default SSLAdapterFactory class loads your adapter class and creates an
instance of the class using the default no-argument constructor.

5. Configure your custom adapter class as shown in “Configuring SSL
Programatically” on page 11-9, substituting your class for WLSSLAdapter and
using the configuration methods defined for your adapter.

For detailed information, see the Web service security Javadocs at
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-sum
mary.html.

Extending the SSLAdapterFactory Class

You can create your own custom SSL adapter factory class by extending the
SSLAdapterFactory class, which is used to create instances of adapters. One reason
for extending the factory class is to allow custom configuration of each adapter when
it is created, prior to use.

To create a custom SSL adapter factory class, follow these steps:

1. Create a class that extends the following class:
11-12 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html

Configuring SSL for a Client Application
weblogic.webservice.client.SSLAdapterFactory

2. Override the following method of the SSLAdapterFactory class:

public weblogic.webservice.client.SSLAdapter createSSLAdapter();

This method is called whenever a new SSLAdapter, or an adapter that
implements this interface, is created by the adapter factory. By overriding this
method, you can perform custom configuration of each new adapter before it is
actually used.

3. In your client application, create an instance of your factory and set it as the
default factory by executing the following method:

SSLAdapterFactory.setDefaultFactory(factoryInstance);

For detailed information, see the Web service security Javadocs at
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-sum
mary.html.

Configuring Two-Way SSL For a Client Application

If you configured two-way SSL for WebLogic Server, the client application must
present a certificate to WebLogic Server, in addition to WebLogic Server presenting a
certificate to the client application as required by one-way SSL. The following sample
Java code shows one way of doing this where the client application receives the client
certificate file as an argument (relevant code in bold):

...

SSLAdapterFactory factory = SSLAdapterFactory.getDefaultFactory();
WLSSLAdapter adapter = (WLSSLAdapter) factory.getSSLAdapter();

if (argv.length > 1) {
 System.out.println("loading client certs from "+argv[1]);

FileInputStream clientCredentialFile = new FileInputStream (argv[1]);
String pwd = "clientkey";

adapter.loadLocalIdentity(clientCredentialFile, pwd.toCharArray());

javax.security.cert.X509Certificate[] certChain = adapter.getIdentity("RSA",0);

factory.setDefaultAdapter(adapter);
Programming WebLogic Web Services 11-13

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/webservice/client/package-summary.html

11 Configuring Security
factory.setUseDefaultAdapter(true);

...

For a complete example of using two-way SSL with WebLogic Web Services, see the
Two-Way SSL Example at http://webservice.bea.com/index.html#qz25.

Using a Proxy Server

If your client application is running inside a firewall, for example, and needs to use a
proxy server, set the host name and the port of the proxy server using the following two
System properties:

weblogic.webservice.transport.https.proxy.host

weblogic.webservice.transport.https.proxy.port

For more information on these System properties, see “WebLogic Web Services
System Properties” on page 8-25.
11-14 Programming WebLogic Web Services

http://webservice.bea.com/index.html#qz25

CHAPTER
12 Creating
JMS-Implemented
WebLogic Web Services

The following sections describe how to create JMS-implemented WebLogic Web
services:

“Designing JMS-Implemented WebLogic Web Services” on page 12-3

“Implementing JMS-Implemented WebLogic Web Services” on page 12-5

“Assembling JMS-Implemented WebLogic Web Services Automatically” on
page 12-7

“Assembling JMS-Implemented WebLogic Web Services Manually” on page
12-9

“Deploying JMS-Implemented WebLogic Web Services” on page 12-13

“Invoking JMS-Implemented WebLogic Web Services” on page 12-13
Programming WebLogic Web Services 12-1

12 Creating JMS-Implemented WebLogic Web Services
Overview of JMS-Implemented WebLogic
Web Services

In addition to implementing a Web service operation with a stateless session EJB or a
Java class, you can use a JMS message consumer or producer, such as a
message-driven bean.

There are three types of JMS-implemented operations:

Operations that send data to a JMS destination.

You implement this type of operation with a JMS message consumer. The
message consumer consumes the message after a client that invokes the Web
service operation sends data to the JMS destination.

Operations that receive data from a JMS queue.

You implement this type of operation with a JMS message producer. The
message producer puts a message on the specified JMS queue and a client
invoking this message-style Web service component polls and receives the
message.

Operations that receive data from a JMS topic.

You implement this type of operation with a JMS message producer. The
message producer publishes a message to the specified JMS topic, and a client
invoking this message-style Web service component polls and receives the
message.

Note: Receiving data from a JMS topic is deprecated in this version of WebLogic
Server. This means that although this feature currently works, future
versions of WebLogic Server might not support it.

If you are currently using this feature, update your application to use a
stateless session EJB as the backend implementation of your Web service
rather than a JMS topic. Program the EJB to use the JMS APIs to listen to
the JMS topic in the same way that your client applications currently listen
to the JMS implemented Web service. Then use the servicegen Ant task
to reassemble your Web service. Finally, rewrite your client applications
to poll the new EJB-implemented Web service for messages from the JMS
topic.
12-2 Programming WebLogic Web Services

Designing JMS-Implemented WebLogic Web Services
When a client application sends data to a JMS-implemented Web service operation,
WebLogic Server first converts the XML data to its Java representation using either
the built-in or custom serializers, depending on whether the data type of the data is
built-in or not. WebLogic Server then wraps the resulting Java object in a
javax.jms.ObjectMessage object and puts it on the JMS destination. You can then
write a JMS listener, such as a message-driven bean, to take the ObjectMessage and
process it. Similar steps happen in reverse when a client application invokes a Web
service to receive data from a JMS queue.

If you are using non-built-in data types, you must update the web-services.xml
deployment descriptor file with the correct data type mapping information. If the Web
service cannot find data type mapping information for the data, then it converts the data
to a javax.xml.soap.SOAPElement data type, defined by the Java API for XML
Messaging (JAXM).

Note: Input and return parameters to a Web service operation implemented with a
JMS consumer or producer must implement the java.io.Serializable
interface.

For detailed information about programming message-driven beans, see Programming
WebLogic Enterprise JavaBeans at http://e-docs.bea.com/wls/docs70/ejb/index.html.

Designing JMS-Implemented WebLogic Web
Services

This section describes the relationship between JMS and WebLogic Web services
operations implemented with a JMS consumer or producer, and design considerations
for developing these types of Web services.

Choosing a Queue or Topic

JMS queues implement a point-to-point messaging model whereby a message is
delivered to exactly one recipient. JMS topics implement a publish/subscribe
messaging model whereby a message is delivered to multiple recipients.
Programming WebLogic Web Services 12-3

http://e-docs.bea.com/wls/docs70/ejb/index.html
http://e-docs.bea.com/wls/docs70/ejb/index.html

12 Creating JMS-Implemented WebLogic Web Services
Before you implement a Web service operation with a JMS consumer or producer as
the backend component, you must decide:

Whether you want to use a JMS queue or topic.

Whether the client application that invokes the Web service sends the message to
or receives the message from the service. The same operation cannot support
both sending and receiving.

Retrieving and Processing Messages

After you decide what type of JMS destination you are going to use, you must decide
what type of J2EE component will retrieve the message from the JMS destination and
process it. Typically this will be a message-driven bean. This message-driven bean can
do all the message-processing work, or it can parcel out some or all of the work to other
EJBs. Once the message-driven bean finishes processing the message, the execution of
the Web service is complete.

Because a single Web service operation cannot both send and receive data, you must
create two Web service operations if you want a client application to be able to both
send data and receive data. The sending Web service operation is related to the
receiving one because the original message-driven bean that processed the message
puts the response on the JMS destination corresponding to the receiving Web service
operation.

Example of Using JMS Components

Figure 12-1 shows two separate Web service operations, one for receiving a message
from a client and one for sending a message back to the client. The two Web service
operations have their own JMS destinations. The message-driven bean gets messages
from the first JMS destination, processes the information, then puts a message back
onto the second JMS destination. The client invokes the first Web service operation to
send the message to WebLogic Server and then invokes the second Web service
operation to receive a message back from WebLogic Server.
12-4 Programming WebLogic Web Services

Implementing JMS-Implemented WebLogic Web Services
Figure 12-1 Data Flow Between JMS-Implemented Web Service Operations and
JMS

Implementing JMS-Implemented WebLogic
Web Services

To implement a Web service implemented with a JMS message producer or consumer,
follow these steps:

1. Write the Java code for the J2EE component (typically a message-driven bean) that
will consume or produce the message from or on the JMS destination.

For detailed information, see Programming WebLogic Enterprise JavaBeans at
http://e-docs.bea.com/wls/docs70/ejb/index.html.

Client
Message-Driven Bean

JMS
Destination

JMS
Destination

Send Web Service

Receive Web Service

WebLogic Server

Operation

Operation
Programming WebLogic Web Services 12-5

http://e-docs.bea.com/wls/docs70/ejb/index.html

12 Creating JMS-Implemented WebLogic Web Services
2. Use the Administration Console to configure the following JMS components of
WebLogic Server:

The JMS destination (queue or topic) that will either receive the XML data
from a client or send XML data to a client. Later, when you assemble the
Web service as described in Chapter 6, “Assembling WebLogic Web Services
Using Ant Tasks,” you will use the name of this JMS destination.

The JMS Connection factory that the WebLogic Web service uses to create
JMS connections.

For more information on this step, see “Configuring JMS Components for
Message-Style Web Services” on page 12-6.

Configuring JMS Components for Message-Style Web
Services

This section assumes that you have already configured a JMS server. For information
about configuring JMS servers, and general information about JMS, see the WebLogic
Server Administration Guide at
http://e-docs.bea.com/wls/docs70/adminguide/jms.html and Programming WebLogic
JMS at http://e-docs.bea.com/wls/docs70/jms/index.html.

To configure a JMS destination (either queue or topic) and JMS Connection Factory,
follow these steps:

1. Invoke the Administration Console in your browser. For details, see “To invoke the
Administration Console in your browser, enter the following URL:” on page 13-2.

2. Click to expand the Services node in the left pane and expand the JMS node.

3. Right-click the Connection Factories node and choose Configure a new
JMSConnectionFactory from the drop-down list.

4. Enter a name for the Connection Factory in the Name field.

5. Enter the JNDI name of the Connection Factory in the JNDIName field.

6. Click Create.

7. Click the Targets tab.
12-6 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/adminguide/jms.html
http://e-docs.bea.com/wls/docs70/adminguide/jms.html
http://e-docs.bea.com/wls/docs70/jms/index.html
http://e-docs.bea.com/wls/docs70/jms/index.html

Assembling JMS-Implemented WebLogic Web Services Automatically
8. Move the name of the WebLogic Server hosting the service to the Chosen list
box, if not already there.

9. Click Apply.

10. Click to expand the Servers node under the JMS node in the left pane.

11. Click to expand your JMS server node.

12. Right-click the Destinations node and choose either:

Configure a new JMSTopic from the drop-down list if you want to create a
topic

Configure a new JMSQueue if you want to create a queue.

13. Enter the name of the JMS destination in the Name text field.

14. Enter the JNDI name of the destination in the JNDIName text field.

15. Click Create.

Assembling JMS-Implemented WebLogic
Web Services Automatically

You can use the servicegen Ant task to automatically assemble a JMS-implemented
Web service. The Ant task creates a web-services.xml deployment descriptor file
based on the attributes of the build.xml file, optionally creates the non-built-in data
type components (such as serialization class), optionally creates a client JAR file used
to invoke the Web service, and packages everything into a deployable EAR file.

To automatically assemble a Web service using the servicegen Ant task:

1. Create a staging directory to hold the components of your Web service.

2. Package your JMS message consumers and producers (such as message-driven
beans) into a JAR file.

For detailed information on this step, refer to Developing WebLogic Server
Applications at http://e-docs.bea.com/wls/docs70/programming/packaging.html.
Programming WebLogic Web Services 12-7

http://e-docs.bea.com/wls/docs70/programming/packaging.html
http://e-docs.bea.com/wls/docs70/programming/packaging.html

12 Creating JMS-Implemented WebLogic Web Services
3. Copy the JAR file to the staging directory.

4. In the staging directory, create the Ant build file (called build.xml by default)
that contains a call to the servicegen Ant task.

For details about specifying the servicegen Ant task, see “Running the
servicegen Ant Task” on page 12-8.

For general information about creating Ant build files, see
http://jakarta.apache.org/ant/manual/.

5. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

6. Execute the Ant task or tasks specified in the build.xml file by typing ant in
the staging directory, optionally passing the command a target argument:

prompt> ant

The Ant task generates the Web services EAR file in the staging directory which
you can then deploy on WebLogic Server.

Running the servicegen Ant Task

The following sample build.xml, files shows how to run the servicegen Ant task:

<project name="buildWebservice" default="ear">
 <target name="ear">
 <servicegen
 destEar="jms_send_queue.ear"
 contextURI="WebServices" >
 <service
 JMSDestination="jms.destination.queue1"
 JMSAction="send"
 JMSDestinationType="queue"
 JMSConnectionFactory="jms.connectionFactory.queue"
 JMSOperationName="sendName"
 JMSMessageType="types.myType"
12-8 Programming WebLogic Web Services

http://jakarta.apache.org/ant/manual/

Assembling JMS-Implemented WebLogic Web Services Manually
 generateTypes="True"
 targetNamespace="http://tempuri.org"
 serviceName="jmsSendQueueService"
 serviceURI="/jmsSendQueue"
 expandMethods="True">
 </service>
 </servicegen>
 </target>
</project>

In the example, the servicegen Ant task creates a single Web service called
jmsSendQueueService. The URI to identify this Web service is /jmsSendQueue;
the full URL to access the Web service is

http://host:port/WebServices/jmsSendQueue

The servicegen Ant task packages the Web service in an EAR file called
jms_send_queue.ear. The EAR file contains a WAR file called
web-services.war (default name) that contains all the Web service components,
such as the web-services.xml deployment descriptor file.

The Web service exposes a single operation called sendName. Client applications that
invoke this Web service operation send messages to a JMS queue whose JNDI name
is jms.destination.queue1. The JMS ConnectionFactory used to create the
connection to this queue is jms.connectionFactory.queue. The data type of the
single parameter of the sendName operation is types.myType. Because the
generateTypes attribute is set to True, the servicegen Ant task generates the
non-built-in data type components for this data type, such as the serialization class.

Note: The types.myType Java class must be in servicegen’s CLASSPATH so
that servicegen can generate appropriate components.

Assembling JMS-Implemented WebLogic
Web Services Manually

If you want to assemble a JMS-implemented WebLogic Web service manually, follow
these steps:
Programming WebLogic Web Services 12-9

12 Creating JMS-Implemented WebLogic Web Services
1. Read this section which describes JMS-specific information about assembling Web
services.

2. Follow the steps described in “Assembling WebLogic Web Services Using Other
Ant Tasks” on page 6-6, using the JMS-specific information where appropriate.

The following sections describe JMS-specific information about assembling Web
services manually.

Packaging the JMS Message Consumers and Producers

Package your JMS message consumers and producers (such as message-driven beans)
into a JAR file.

When you create the EAR file that contains the entire Web service, put this JAR file
in the top-level directory, in the same location as EJB JAR files.

Updating the web-services.xml File With Component
Information

Use the <components> child element of the <web-service> element to list and
describe the JMS backend components that implement the operations of the Web
service. Each backend component has a name attribute that you later use when
describing the operation that the component implements.

See “Sample web-services.xml File for JMS Component Web Service” on page 12-11
for an example.

You can list the following types of backend components for JMS-implemented Web
services:

<jms-send-destination>

This element describes a JMS backend component to which client applications
send data. The component puts the sent data on to a JMS destination. Use the
connection-factory attribute of this element to specify the JMS Connection
factory that WebLogic Server uses to create a JMS Connection object. Use the
<jndi-name> child element to specify the JNDI name of the destination, as shown in
the following example:
12-10 Programming WebLogic Web Services

Assembling JMS-Implemented WebLogic Web Services Manually
<components>
 <jms-send-destination name="inqueue"
 connection-factory="myapp.myqueueCF">
 <jndi-name path="myapp.myqueueIN" />
 </jms-send-destination>
</components>

<jms-receive-queue>, <jms-receive-topic>

These elements describe two JMS backend components in which client
applications receive data, the first from a JMS queue and the second from a JMS
topic. Use the connection-factory attribute to specify the JMS Connection
factory that WebLogic Server users to create a JMS Connection object. Use the
<jndi-name> child element to specify the JNDI name of either the queue or the topic,
as shown in the following example:

<components>
 <jms-receive-queue name="outqueue"
 connection-factory="myapp.myqueueCF">
 <jndi-name path="myapp.myqueueOUT" />
 </jms-receive-queue>
</components>

Sample web-services.xml File for JMS Component Web
Service

The following sample web-services.xml file describes a Web service that is
implemented with a JMS message consumer or producer:

<web-services>
 <web-service targetNamespace="http://example.com"
 name="myMessageService" uri="MessageService">

 <components>
 <jms-send-destination name="inqueue"
 connection-factory="myapp.myqueuecf">
 <jndi-name path="myapp.myinputqueue" />
 </jms-send-destination>
 <jms-receive-queue name="outqueue"
 connection-factory="myapp.myqueuecf">
 <jndi-name path="myapp.myoutputqueue" />
 </jms-receive-queue>
 </components>
Programming WebLogic Web Services 12-11

12 Creating JMS-Implemented WebLogic Web Services
 <operations xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <operation invocation-style="one-way" name="enqueue"
 component="inqueue" />
 <params>
 <param name="input_payload" style="in" type="xsd:anyType" />
 </params>
 </operation>
 <operation invocation-style="request-response" name="dequeue"
 component="outqueue" >
 <params>
 <return-param name="output_payload" type="xsd:anyType"/>
 </params>
 </operation>
 </operations>
 </web-service>
</web-services>

The example shows two JMS backend components, one called inqueue in which a
client application sends data to a JMS destination, and one called outqueue in which
a client application receives data from a JMS queue.

Two corresponding Web service operations, enqueue and dequeue, are implemented
with these backend components.

The enqueue operation is implemented with the inqueue component. This operation
is defined to be asynchronous one-way, which means that the client application, after
sending the data to the JMS destination, does not receive a SOAP response (not even
an exception.) The data sent by the client is contained in the input_payload
parameter.

The dequeue operation is implemented with the outqueue component. The dequeue
operation is defined as synchronous request-response because the client application
invokes the operation to receive data from the JMS queue. The response data is
contained in the output parameter output_payload.
12-12 Programming WebLogic Web Services

Deploying JMS-Implemented WebLogic Web Services
Deploying JMS-Implemented WebLogic Web
Services

Deploying a WebLogic Web service refers to making it available to remote clients.
Because WebLogic Web services are packaged as standard J2EE Enterprise
applications, deploying a Web service is the same as deploying an Enterprise
application.

For detailed information on deploying Enterprise applications, see WebLogic Server
Deployment at http://e-docs.bea.com/wls/docs70/programming/deploying.html.

Invoking JMS-Implemented WebLogic Web
Services

This section shows two sample client applications that invoke JMS-implemented
WebLogic Web services: one that sends data to a service operation, and one to receive
data from another operation within the same Web service. The first operation is
implemented with a JMS destination, the second with a JMS queue, as shown in the
following web-services.xml file that describes the Web service:

<web-services xmlns:xsd="http://www.w3.org/2001/XMLSchema" >

 <web-service
 name="BounceService"
 targetNamespace="http://www.foobar.com/echo"
 uri="/BounceService">

 <components>

 <jms-send-destination name="inqueue"
 connection-factory="weblogic.jms.ConnectionFactory">
 <jndi-name path="weblogic.jms.inqueue" />
 </jms-send-destination>
 <jms-receive-queue name="outqueue"
 connection-factory="weblogic.jms.ConnectionFactory">
 <jndi-name path="weblogic.jms.outqueue" />
Programming WebLogic Web Services 12-13

http://e-docs.bea.com/wls/docs70/programming/deploying.html
http://e-docs.bea.com/wls/docs70/programming/deploying.html

12 Creating JMS-Implemented WebLogic Web Services
 </jms-receive-queue>
 </components>

 <operations xmlns:xsd="http://www.w3.org/2001/XMLSchema">
 <operation invocation-style="one-way" name="submit" component="inqueue" >
 </operation>

 <operation invocation-style="request-response"
 name="query" component="outqueue" >
 <params>
 <return-param name="output_payload" type="xsd:string"/>
 </params>
 </operation>
 </operations>

 </web-service>

</web-services>

Invoking an Asynchronous Web Service Operation to Send Data

The following example shows a dynamic client application that invokes the submit
operation, described in the web-services.xml file in the preceding section. The
submit operation sends data from the client application to the
weblogic.jms.inqueue JMS destination. Because the operation is defined as
one-way, it is asynchronous and does not return any value to the client application that
invoked it.

import java.io.BufferedReader;
import java.io.InputStream;
import java.io.InputStreamReader;
import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

/**
 * @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
 */

/**
 * send2WS - this module sends to a specific Web service connected JMS queue
 * If the message is 'quit' then the module exits.
 *
 * @returns
12-14 Programming WebLogic Web Services

Invoking JMS-Implemented WebLogic Web Services
 * @throws Exception
 */

public class send2WS{

 public static void main(String[] args) throws Exception {

 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 ServiceFactory factory = ServiceFactory.newInstance();

 //define qnames
 String targetNamespace = "http://www.foobar.com/echo";

 QName serviceName = new QName(targetNamespace, "BounceService");
 QName portName = new QName(targetNamespace, "BounceServicePort");

 //create service
 Service service = factory.createService(serviceName);

 //create outbound call
 Call Ws2JmsCall = service.createCall();

 QName operationName = new QName(targetNamespace, "submit");

 //set port and operation name
 Ws2JmsCall.setPortTypeName(portName);
 Ws2JmsCall.setOperationName(operationName);

 //add parameters
 Ws2JmsCall.addParameter("param",
 new QName("http://www.w3.org/2001/XMLSchema", "string"), ParameterMode.IN

);
 //set end point address
 Ws2JmsCall.setTargetEndpointAddress(
 "http://localhost:7001/BounceBean/BounceService");

 // get message from user
 BufferedReader msgStream =
 new BufferedReader(new InputStreamReader(System.in));
 String line = null;
 boolean quit = false;
 while (!quit) {
 System.out.print("Enter message (\"quit\" to quit): ");
 line = msgStream.readLine();
 if (line != null && line.trim().length() != 0) {
 String result = (String)Ws2JmsCall.invoke(new Object[]{ line });
 if(line.equalsIgnoreCase("quit")) {
Programming WebLogic Web Services 12-15

12 Creating JMS-Implemented WebLogic Web Services
 quit = true;
 System.out.print("Done!");
 }
 }
 }
 }
}

Invoking a Synchronous Web Service Operation to Send Data

The following example shows a dynamic client application that invokes the query
operation, described in the web-services.xml file in “Invoking JMS-Implemented
WebLogic Web Services” on page 12-13. The client application invoking the query
operation receives data from the weblogic.jms.outqueue JMS queue. Because the
operation is defined as request-response, it is synchronous and returns the data
from the JMS queue to the client application.

import javax.xml.rpc.ServiceFactory;
import javax.xml.rpc.Service;
import javax.xml.rpc.Call;
import javax.xml.rpc.ParameterMode;

import javax.xml.namespace.QName;

/**
 * @author Copyright (c) 2002 by BEA Systems, Inc. All Rights Reserved.
 */

/**
 * fromWS - this module receives from a Web service associated JMS queue
 * If the message is 'quit' then the module exits.
 *
 * @returns
 * @throws Exception
 */

public class fromWS {

 public static void main(String[] args) throws Exception {

 boolean quit = false;
 // Setup the global JAX-RPC service factory
 System.setProperty("javax.xml.rpc.ServiceFactory",
 "weblogic.webservice.core.rpc.ServiceFactoryImpl");

 ServiceFactory factory = ServiceFactory.newInstance();
12-16 Programming WebLogic Web Services

Invoking JMS-Implemented WebLogic Web Services
 //define qnames
 String targetNamespace = "http://www.foobar.com/echo";

 QName serviceName = new QName(targetNamespace, "BounceService");
 QName portName = new QName(targetNamespace, "BounceServicePort");

 //create service
 Service service = factory.createService(serviceName);

 //create outbound call
 Call Ws2JmsCall = service.createCall();

 QName operationName = new QName(targetNamespace, "query");

 //set port and operation name
 Ws2JmsCall.setPortTypeName(portName);
 Ws2JmsCall.setOperationName(operationName);

 //add parameters
 Ws2JmsCall.addParameter("output_payload",
 new QName("http://www.w3.org/2001/XMLSchema", "string"),
 ParameterMode.OUT);
 //set end point address
 Ws2JmsCall.setTargetEndpointAddress(
 "http://localhost:7001/BounceBean/BounceService");

 System.out.println("Setup complete. Waiting for a message...");

 while (!quit) {
 String result = (String)Ws2JmsCall.invoke(new Object[] {});
 if(result != null) {
 System.out.println("TextMessage:" + result);
 if (result.equalsIgnoreCase("quit")) {
 quit = true;
 System.out.println("Done!");
 }
 continue;
 }
 try {Thread.sleep(2000);} catch (Exception ignore) {}
 }
 }
}

Programming WebLogic Web Services 12-17

12 Creating JMS-Implemented WebLogic Web Services
12-18 Programming WebLogic Web Services

CHAPTER
13 Administering
WebLogic Web Services

The following sections describe tasks for administering WebLogic Web services:

“Overview of Administering WebLogic Web Services” on page 13-1

“Viewing the Web Services Deployed on WebLogic Server” on page 13-3

Overview of Administering WebLogic Web
Services

Once you develop, assemble, and deploy a WebLogic Web service, you can use the
Administration Console to view the Web services deployed on WebLogic Server.
Additionally, you can use the Administration Console to perform standard WebLogic
administration tasks on the deployed Web services.

A Web service is packaged as an EAR file. The EAR file consists of a WAR file that
contains the web-services.xml file and optional Java classes (such as the Java
classes that implement a Web service, handlers, and serialization classes for
non-built-in data types) and a optional EJB JAR files that contain the stateless EJBs or
JMS consumers and producers that implement the Web service operations.

The Administration Console identifies a Web service by the contents of the WAR file.
In other words, if the WAR file contained in an EAR file contains a
web-services.xml file, then the Administration Console lists the WAR file as a Web
service.
Programming WebLogic Web Services 13-1

13 Administering WebLogic Web Services
For information on standard administration tasks for Web applications, see
Configuring WebLogic Server Web Components at
http://e-docs.bea.com/wls/docs70/adminguide/web_server.html.

To invoke the Administration Console in your browser, enter the following URL:

http://host:port/console

where

host refers to the computer on which the Administration Server is running.

port refers to the port number where the Administration Server is listening for
connection requests. The default port number for the Administration server is
7001.

The following figure shows the main Administration Console window.
13-2 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/adminguide/web_server.html

Viewing the Web Services Deployed on WebLogic Server
Figure 13-1 WebLogic Server Administration Console Main Window

Viewing the Web Services Deployed on
WebLogic Server

WebLogic Web services are packaged as EAR files that contain the following
components:

a Web application WAR file that contains the web-services.xml deployment
descriptor, optional supporting class files (such as SOAP message handler
Programming WebLogic Web Services 13-3

13 Administering WebLogic Web Services
implementations and the serialization class), and so on. In the Administration
Console, this WAR file is referred to as the Web Service Component.

optional EJB JAR file that contains the EJBs that implement the Web service
operations.

To view the Web services deployed on WebLogic server:

1. Invoke the Administration Console in your browser. See “Overview of
Administering WebLogic Web Services” on page 13-1.

2. Expand the Deployments->Web Service Components node in the left pane.

A list of deployed Web services appears below the Web Service Components
node, as well as in a table in the right pane.

The list of Web services corresponds to the list of deployed Web applications
that contain the web-services.xml deployment descriptor. Other than
containing the web-services.xml file, a the Web service WAR file is exactly
the same as a standard Web application WAR file and is treated the same way in
the Administration Console.

The Application column in the table in the right pane lists the Enterprise
Application that contains the Web service component.

The following figure shows one deployed Web service component, called
trader_service.war, that is part of an Enterprise application called
_appsdir_webservices_trader_ear.
13-4 Programming WebLogic Web Services

Viewing the Web Services Deployed on WebLogic Server
Figure 13-2 Deployed Web Service

3. To view the other components that make up the Web service, such as the EJB
JAR file, expand the Applications node under the Deployments node in the left
pane.

4. Click on the name of the Enterprise application that contains the Web service
component, such as _appsdir_webservices_trader_ear in our example. A
list of all the components contained in the application appears under the name of
the application in the left pane.

The preceding figure shows that in addition to the trader_services.war
component, the _appsdir_webservices_trader_ear Enterprise application
also contains an EJB JAR file called trader.jar. This EJB JAR file contains
the EJB backend components that implement some or all of the Web service
operations.
Programming WebLogic Web Services 13-5

13 Administering WebLogic Web Services
13-6 Programming WebLogic Web Services

CHAPTER
14 Publishing and Finding
Web Services Using
UDDI

The following sections provide information about publishing and finding Web services
using UDDI:

“Introduction to UDDI” on page 14-1

“WebLogic Server UDDI Features” on page 14-5

“Invoking the UDDI Directory Explorer” on page 14-5

“Using the UDDI Client API” on page 14-6

Introduction to UDDI

UDDI stands for Universal Description, Discovery and Integration. The UDDI Project
is an industry initiative that is working to enable businesses to quickly, easily, and
dynamically find and carry out transactions with one another.

A populated UDDI registry contains cataloged information about businesses, the
services that they offer and communication standards and interfaces they use to
conduct transactions.
Programming WebLogic Web Services 14-1

14 Publishing and Finding Web Services Using UDDI
Built on the Simple Object Access Protocol (SOAP) data communication standard,
UDDI creates a global, platform-independent, open architecture space that will benefit
businesses.

The UDDI registry can be broadly divided into two categories:

UDDI and Web Services

UDDI and Business Registry

For details about the UDDI data structure, see “UDDI Data Structure” on page 14-3.

UDDI and Web Services
The owners of Web Services publish them to the UDDI registry. Once published, the
UDDI registry maintains pointers to the Web Service description and to the service.

The UDDI allows clients to search this registry, find the intended service and retrieve
its details. These details include the service invocation point as well as other
information to help identify the service and its functionality.

Web Service capabilities are exposed through a programming interface, and usually
explained through Web Services Description Language (WSDL). In a typical
publish-and-inquire scenario, the provider publishes its business, registers a service
under it and defines a binding template with technical information on its Web Service.
The binding template also holds reference to one or several tModels, which represent
abstract interfaces implemented by this Web Service. The tModels might have been
uniquely published by the provider, with information on the interfaces and URL
references to the WSDL document.

A typical client inquiry may have one of two objectives:

1. To seek an implementation of a known interface.

In other words, the client has a tModel ID and seeks binding templates
referencing that tModel.

2. To seek the updated value of the invocation point (i.e., access point) of a known
binding template ID.

UDDI and Business Registry
As a Business Registry solution, UDDI enables companies to advertise the business
products and services they provide, as well as how they conduct business transactions
14-2 Programming WebLogic Web Services

Introduction to UDDI
on the Web. This use of UDDI has the potential of fueling growth of
business-to-business (B2B) electronic commerce.

The minimum required information to publish a business is a single business name.
Once completed, a full description of a business entity may contain a wealth of
information, all of which helps to advertise the business entity and its products and
services in a precise and accessible manner.

A Business Registry may contain the following:

Business Identification—Multiple names and descriptions of the business,
comprehensive contact information and standard business identifiers such as a
tax identifier.

Categories—Standard categorization information (for example a D-U-N-S
business category number).

Service Description—Multiple names and descriptions of a service. As a
container for service information, companies can advertise numerous services,
while clearly displaying the ownership of services. The bindingTemplate
information describes how to access the service.

Standards Compliance—In some cases it is important to specify compliance
with standards. These standards might display detailed technical requirements on
how to use the service.

Custom Categories—It is possible to publish proprietary specifications
(tModels) that identify or categorize businesses or services.

UDDI Data Structure
The data structure within UDDI is comprised of four constructions: a
businessEntity structure, a businessService structure, a bindingTemplate
structure and a tModel structure.
Programming WebLogic Web Services 14-3

14 Publishing and Finding Web Services Using UDDI
The following table outlines the difference between these constructions when used for
Web Service or Business Registry applications.

Table 14-1 UDDI Data Structure

Data Structure Web Service Business Registry

businessEntity Represents a Web Service provider:
• Company name
• Contact detail
• Other business information

Represents a company, a division or a
department within a company:
• Company name(s)
• Contact details
• Identifiers and Categories

businessService A logical group of one or several Web
Services.

API(s) with a single name stored as a child
element, contained by the business entity
named above.

A group of services may reside in a single
businessEntity.
• Multiple names and descriptions
• Categories
• Indicators of compliancy with

standards

bindingTemplate A single Web Service.

Information provided here gives client
applications the technical information
needed to bind and interact with the target
Web Service.

Contains access point (i.e., URI to invoke a
Web Service).

Further instances of standards conformity.

Access points for the service in form of
URLs, phone numbers, email addresses, fax
numbers or other similar address types.

tModel Represents a technical specification;
typically a specifications pointer, or
metadata about a specification document,
including a name and a URL pointing to the
actual specifications. In the context of Web
Services, the actual specifications
document is presented in the form of a
WSDL file.

Represents a standard or technical
specification, either well established or
registered by a user for specific use.
14-4 Programming WebLogic Web Services

WebLogic Server UDDI Features
WebLogic Server UDDI Features

Weblogic Server provides the following UDDI features:

A UDDI Directory Explorer

A UDDI registry

An implementation of the client-side UDDI API so you can programmatically
search for and publish Web services

The UDDI Directory Explorer allows authorized users to publish Web services in
private WebLogic Server UDDI registries and to modify information for previously
published Web services.

The UDDI Directory Explorer also enables you to search both public and private
UDDI registries for Web services and information about the companies and
departments that provide these Web services. The Directory Explorer also provides
access to details about the Web services and associated WSDL files (if available.)

Invoking the UDDI Directory Explorer

To invoke the UDDI Directory Explorer in your browser, enter the following URL:

http://host:port/uddiexplorer

where

host refers to the computer on which WebLogic Server is running.

port refers to the port number where WebLogic Server is listening for
connection requests. The default port number is 7001.

You can perform the following tasks with the UDDI Directory Explorer:

Search public registries

Search private registries
Programming WebLogic Web Services 14-5

14 Publishing and Finding Web Services Using UDDI
Publish to a private registry

Modify private registry details

Setup UDDI directory explorer

For more information about using the UDDI Directory Explorer, click the Help link on
the main page.

Using the UDDI Client API

Use the UDDI client API in a Java client application to search for and publish Web
Services.

The two main classes of the UDDI client API are Inquiry and Publish. Use the
Inquiry class to search for Web Services in a known UDDI registry and the Publish
class to add your Web Service to a known registry.

WebLogic Server provides an implementation of the following client UDDI API
packages:

weblogic.uddi.client.service

weblogic.uddi.client.structures.datatypes

weblogic.uddi.client.structures.exception

weblogic.uddi.client.structures.request

weblogic.uddi.client.structures.response

For detailed information on using these packages, see the UDDI API Javadocs at
http://e-docs.bea.com/wls/docs70/javadocs/index.html.

For examples of using the UDDI client API, go to the Web Services dev2dev
Download Page at http://webservice.bea.com and scroll down until you find the
following examples:

UDDI Client API Example

UDDI Publish Example

UDDI Inquire Example
14-6 Programming WebLogic Web Services

http://e-docs.bea.com/wls/docs70/javadocs/weblogic/uddi/client/service/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/uddi/client/structures/datatypes/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/uddi/client/structures/exception/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/uddi/client/structures/request/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/weblogic/uddi/client/structures/response/package-summary.html
http://e-docs.bea.com/wls/docs70/javadocs/index.html
http://e-docs.bea.com/wls/docs70/javadocs/index.html
http://webservice.bea.com
http://webservice.bea.com

CHAPTER
15 Interoperability

The following sections provide an overview of what it means for Web services to be
interoperable and tips on creating Web services that interoperate with each other as
much as possible:

“Overview of Interoperability” on page 15-1

“Avoid Using Vendor-Specific Extensions” on page 15-2

“Stay Current With the Latest Interoperability Tests” on page 15-3

“Understand the Data Models of Your Applications” on page 15-3

“Understand the Interoperability of Various Data Types” on page 15-4

“Results of SOAPBuilders Interoperability Lab Round 3 Tests” on page 15-5

“Interoperating With .NET” on page 15-6

Overview of Interoperability

A fundamental characteristic of Web services is that they are interoperable. This means
that a client can invoke a Web service regardless of the client’s hardware or software.
In particular, interoperability demands that the functionality of a Web service
application be the same across differing:

Application platforms, such as BEA WebLogic Server, IBM Websphere, or
Microsoft .NET.

Programming languages, such as Java, C++, C#, or Visual Basic.

Hardware, such as mainframes, PCs, or peripheral devices.
Programming WebLogic Web Services 15-1

15 Interoperability
Operating systems, such as different flavors of UNIX or Windows.

Application data models.

For example, an interoperable Web service running on WebLogic Server on a Sun
Microsystems computer running Solaris can be invoked from a Microsoft .NET Web
service client written in Visual Basic.

To ensure the maximum interoperability, WebLogic Server supports the following
specifications and versions when generating your Web service:

HTTP 1.1 for the transport protocol

XML Schema to describe your data

WSDL 1.1 to describe your Web service

SOAP 1.1 for the message format

The following sections provide some useful interoperability tips and information when
writing Web service applications.

Avoid Using Vendor-Specific Extensions

Avoid using vendor-specific implementation extensions to specifications (such as
SOAP, WSDL, and HTTP) that are used by Web services. If your Web service relies
on this extension, a client application that invokes it might not use the extension and
the invoke might fail.
15-2 Programming WebLogic Web Services

Stay Current With the Latest Interoperability Tests
Stay Current With the Latest Interoperability
Tests

Public interoperability tests provide information about how different vendor
implementations of Web service specifications interoperate with each other. This
information is very useful if you are creating a Web service on WebLogic Server that
has to, for example, interoperate with Web services from other vendors, such as .NET.

Warning: BEA’s participation in these interoperability tests does not imply that
BEA officially certifies its Web Services implemenation against the other
platforms participating in the tests.

The following Web sites include public interoperability tests:

Web Service Interoperability Organization at http://www.ws-i.org/

SoapBuilder Interoperability Lab at http://www.whitemesa.net/

You can also use the vendor implementations listed in these Web sites to exhaustively
test your Web service for interoperability.

Understand the Data Models of Your
Applications

A good use of Web services is to provide a cross-platform technology for integrating
existing applications. These applications typically have very different data models
which your Web service must reconcile.

For example, assume that you are creating a Web service application to integrate the
two accounting systems in a large company. Although the data models of each
accounting system are probably similar, they most likely differ in at least some way,
such as the name of a data field, the amount of information stored about each customer,
and so on. It is up to the programmer of the Web service to understand each data model,
and then create an intermediate data model to reconcile the two. Typically this
Programming WebLogic Web Services 15-3

http://www.ws-i.org/
http://www.whitemesa.net

15 Interoperability
intermediate data model is expressed in XML using XML Schema. If you base your
Web service application on only one of the data models, the two applications probably
will not interoperate very well.

Understand the Interoperability of Various
Data Types

The data types of the parameters and return values of your Web service operations
have a great impact on the interoperability of your Web service. The following table
describes how interoperable the various types of data types are.

Table 15-1 Interoperability of Various Types of Data Types

Data Type Description

JAX-RPC built-in
data types

Interoperate with no additional programming.
The JAX-RPC specification defines a subset of the XML Schema
built-in data types that any implementation of JAX-RPC must
support. Because all of these data types map directly to a
SOAP-ENC data type, they are interoperable.

Built-in WebLogic
Server data types

Interoperate with no additional programming.
WebLogic Server includes support for all the XML Schema built-in
data types. Because all of these data types map directly to a
SOAP-ENC data type, they are interoperable.
For the full list of built-in WebLogic Server data types, see “Using
Built-In Data Types” on page 5-12.
15-4 Programming WebLogic Web Services

Results of SOAPBuilders Interoperability Lab Round 3 Tests
Results of SOAPBuilders Interoperability
Lab Round 3 Tests

For the results of WebLogic Web services’ participation in the SOAPBuilders
Interoperability Lab Round 3 tests, see http://webservice.bea.com:7001. The tests
were run with version 7.0.0.1 of WebLogic Server.

For the test results, see http://webservice.bea.com/index.html#qz41; for the source
code of the tests, see http://webservice.bea.com/index.html#qz40.

Non-built-in data
types

Interoperate with additional programming or tools support.
If your Web service uses non-built-in data types, you must create the
XML Schema that describes the XML representation of the data, the
Java class that describes the Java representation, and the
serialization class that converts the data between its XML and Java
representation. WebLogic Server includes the servicegen and
autotype Ant tasks that automatically generate these objects.
Keep in mind, however, that these Ant tasks might generate an XML
Schema that does not interoperate well with client applications or it
might not be able to create an XML Schema at all if the Java data
type is very complex. In these cases you might need to manually
create the objects needed by non-built-in data types, as described in
Chapter 9, “Using Non-Built-In Data Types.”
Additionally, you must ensure that client applications that invoke
your Web service include the serialization class needed to convert
the data between its XML representation and the language-specific
representation of the client application. WebLogic Server can
generate the serialization class for Weblogic client applications with
the clientgen Ant task. If, however, the client applications that
invoke your Web service are not written in Java, then you must
create the serialization class manually.

Table 15-1 Interoperability of Various Types of Data Types

Data Type Description
Programming WebLogic Web Services 15-5

http://webservice.bea.com:7001
http://webservice.bea.com/index.html#qz41
http://webservice.bea.com/index.html#qz40

15 Interoperability
For more information on the SOAPBuilder Interoperability tests, see
http://www.whitemesa.net.

Warning: BEA’s participation in these interoperability tests does not imply that
BEA officially certifies its Web Services implemenation against the other
platforms participating in the tests.

Interoperating With .NET

WebLogic Web Services interoperate seamlessly with .NET Web Services.

You invoke a .NET Web Service from a WebLogic Web Services client application
exactly as described in Chapter 8, “Invoking Web Services.” When you execute the
clientgen Ant task to generate the Web Service-specific client JAR file, use the wsdl
attribute to specify the URL of the WSDL of the deployed .NET Web Service.

To invoke a deployed WebLogic Web Service from a .NET client application, use
Microsoft Visual Studio .NET to create an application, then add a Web Reference,
specifying the WSDL of the deployed WebLogic Web Service, as described in the
following example. In Microsoft Visual Studio, adding a Web Reference is equivalent
to executing the WebLogic clientgen Ant task.

Warning: The following example describes one way to invoke a WebLogic Web
Service from a .NET client application. For the most current and detailed
information about using Microsoft Visual Studio .NET to invoke
WebLogic (and other) Web Services, consult the Microsoft
documentation at
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro
7/html/vxconATourOfVisualStudio.asp.

1. Start and use Microsoft Visual Studio .NET to create your application as usual.

2. In the Solution Explorer in the right pane, right-click your application and chose
Add Web Reference. The Solution Explorer Browser appears.

3. Enter the WSDL of the deployed WebLogic Web Service in the Solution
Explorer Browser. As soon as the browser accepts the WSDL, the Add
Reference button becomes active.
15-6 Programming WebLogic Web Services

http://www.whitemesa.net
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxconATourOfVisualStudio.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxconATourOfVisualStudio.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vsintro7/html/vxconATourOfVisualStudio.asp

Interoperating With .NET
See “The WebLogic Web Services Home Page and WSDL URLs” on page 8-22
for information on getting the WSDL of a deployed WebLogic Web Service.

4. Click the Add Reference button. The WebLogic Web Service appears in the
Solution Explorer.

5. In your application component that will be used to invoke the Web Service, such
as a button, add Visual C# or Visual Basic code to invoke a particular operation
of the Web Service. Visual Studio .NET uses statement completion to help you
write this code. The following Visual C# code excerpt shows a simple example
of invoking the echoString operation of the SoapInteropBaseService Web
Service:

WebReference1.SoapInteropBaseService s = new SoapInteropBaseService();
string s = s.echoString("Hi there!");

In the example, WebReference1 is the name of the Web Reference you added in
preceding steps.
Programming WebLogic Web Services 15-7

15 Interoperability
15-8 Programming WebLogic Web Services

CHAPTER
16 Upgrading 6.1
WebLogic Web Services
to 7.0

The following sections describe how to upgrade a 6.1 WebLogic Web service to 7.0:

“Overview of Upgrading 6.1 WebLogic Web Services” on page -1

“Upgrading 6.1 WebLogic Web Services to 7.0 Automatically” on page -2

“Upgrading 6.1 WebLogic Web Services to 7.0 Manually” on page -4

“Converting a 6.1 build.xml file to 7.0” on page -5

“Updating the URL Used to Access the Web Service” on page -7

Overview of Upgrading 6.1 WebLogic Web
Services

Due to changes in the Web service runtime system between Versions 6.1 and 7.0 of
WebLogic Server, you should upgrade Web services created in version 6.1 to run on
version 7.0. This chapter describes the upgrade process.

There are two ways to upgrade a 6.1 Web service:
Programming WebLogic Web Services 16-1

16 Upgrading 6.1 WebLogic Web Services to 7.0
Automatically, using the wsgen Ant task. The Ant task uses default values for
any required 7.0 web-services.xml attributes that have no corresponding 6.1
attribute.

For details, see “Upgrading 6.1 WebLogic Web Services to 7.0 Automatically”
on page -2.

Manually, by rewriting the build.xml file you used to create a 6.1 Web service
to now call the servicegen Ant task rather than the wsgen Ant task

 For details, see “Upgrading 6.1 WebLogic Web Services to 7.0 Manually” on
page -4.

Note: You cannot deploy a 6.1 Web service on a 7.0 WebLogic Server instance.

The WebLogic Web services client API included in version 6.1 of WebLogic Server
has been deprecated and you should not use it to invoke 7.0 Web services. Version 7.0
includes a new client API, based on the Java API for XML based RPC (JAX-RPC).
You should rewrite client applications that used the 6.1 Web services client API to now
use the JAX-RPC APIs. For details, see Chapter 8, “Invoking Web Services.”

For more detailed information on the differences between 6.1 and 7.0 Web services,
see Chapter 1, “Overview of WebLogic Web Services.”

Upgrading 6.1 WebLogic Web Services to 7.0
Automatically

Use the wsgen Ant task to automatically upgrade a Web service from 6.1 to 7.0. It
takes as input the build.xml file you used to assemble the 6.1 Web service, and based
on the values in this file, the task:

Generates a web-services.xml file that describes the Web service. The task
uses default values for any required elements or attributes in the deployment
descriptor that do not apply to 6.1 Web services. For details on these default
values, see Appendix A, “WebLogic Web Service Deployment Descriptor
Elements.”
16-2 Programming WebLogic Web Services

Upgrading 6.1 WebLogic Web Services to 7.0 Automatically
Optionally creates a client JAR file that includes the Web service-specific
classes, stubs, and interfaces needed by client applications that invoke the Web
service. The classes, stubs, and interfaces are based on the JAX-RPC API.

Packages all the Web service components into a Web application WAR file, then
packages the WAR and EJB JAR files into a deployable EAR file.

To upgrade a 6.1 WebLogic Web service to 7.0 automatically, follow these steps:

1. Create a temporary staging directory.

2. If you are upgrading a 6.1 RPC-style Web service, copy the EJB JAR file that
contains the EJB that implements the service, along with any supporting EJBs, to
the staging directory.

3. Copy the 6.1 build.xml file that contains a call to the wsgen Ant task to the
staging directory.

4. If, in your 6.1 build.xml file, you explicitly declared the wsgen Ant task using
the <taskdef> element, as shown in the following example:

<taskdef name="wsgen" classname="weblogic.ant.taskdefs.ejb.WSGen"/>

remove this <taskdef> element from the build.xml file.

5. Optionally add the targetNameSpace and packageName attributes to the
<wsgen> element of the build.xml file. For descriptions of these optional
attributes, see “wsgen” on page B-36.

6. Set your WebLogic Server 7.0 environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

7. Execute the wsgen Ant task in the build.xml file by typing ant in the same
directory as the build.xml file:

prompt> ant

The Ant task generates an EAR file that you can deploy on WebLogic Server
7.0.
Programming WebLogic Web Services 16-3

16 Upgrading 6.1 WebLogic Web Services to 7.0
8. In your client application, update the URL you use to access the Web service or
the WSDL of the Web service from that used in 6.1 to 7.0. For details, see
“Updating the URL Used to Access the Web Service” on page -7.

Upgrading 6.1 WebLogic Web Services to 7.0
Manually

To upgrade a 6.1 WebLogic Web service to 7.0 manually, follow these steps:

1. Convert the build.xml Ant build file used to assemble 6.1 Web services with the
wsgen Ant task to the 7.0 version that calls the servicegen Ant task.

For details see “Converting a 6.1 build.xml file to 7.0” on page -5.

2. Un-jar the 6.1 Web services EAR file and extract the EJB JAR file that contains
the stateless session EJBs (for 6.1 RPC-style Web services) or message-driven
beans (for 6.1 message-style Web services), along with any supporting class files.

3. If your 6.1 Web service was RPC-style, see“Assembling WebLogic Web Services
Using the servicegen Ant task” on page 6-3 for instruction on using the
servicegen Ant task.

If your 6.1 Web service was message-style, you must assemble the 7.0 Web
service manually. For detailed instructions, see Chapter 12, “Creating
JMS-Implemented WebLogic Web Services.”

4. In your client application, update the URL you use to access the Web service or
the WSDL of the Web service from that used in 6.1 to 7.0. For details, see
“Updating the URL Used to Access the Web Service” on page -7.
16-4 Programming WebLogic Web Services

Converting a 6.1 build.xml file to 7.0
Converting a 6.1 build.xml file to 7.0

The main difference between the 6.1 and 7.0 build.xml files used to assemble a Web
service is the Ant task: in 6.1 the task was called wsgen and in 7.0 it is called
servicegen. The servicegen Ant task uses many of the same elements and
attributes of wsgen, although some do not apply anymore. The servicegen Ant task
also includes additional configuration options. The table at the end of this section
describes the mapping between the elements and attributes of the two Ant tasks.

Note: Although in 6.1 you were able to use the wsgen Ant task to assemble a
message-style Web service, the servicegen Ant task does not have
equivalent 7.0 functionality for JMS implemented backend components.
Therefore, if you are upgrading a 6.1 message-style Web service, there is no
need to convert the old build.xml file.

The following build.xml excerpt is from the 6.1 RPC-style Web services example:

<project name="myProject" default="wsgen">
 <target name="wsgen">
 <wsgen destpath="weather.ear"
 context="/weather">
 <rpcservices path="weather.jar">
 <rpcservice bean="statelessSession"
 uri="/weatheruri"/>
 </rpcservices>
 </wsgen>
 </target>
</project>

The following example shows an equivalent 7.0 build.xml file:

<project name="myProject" default="servicegen">
 <target name="servicegen">
 <servicegen
 destEar="weather.ear"
 contextURI="weather" >
 <service
 ejbJar="weather.jar"
 serviceURI="/weatheruri"
 includeEJBs="statelessSession" >
 </service>
 </servicegen>
Programming WebLogic Web Services 16-5

16 Upgrading 6.1 WebLogic Web Services to 7.0
 </target>
</project>

For detailed information on the WebLogic Web service Ant tasks, see Appendix B,
“Web Service Ant Tasks and Command-Line Utilities.”

The following table maps the 6.1 wsgen elements and attributes to their equivalent 7.0
servicegen elements and attributes.

Table 0-1 6.1 to 7.0 wsgen Ant Task Mapping

6.1 wsgen
Element

Attribute Equivalent 7.0
servicegen element

Attribute

wsgen basepath No equivalent. No equivalent

destpath servicegen destEar

context servicegen contextURI

protocol servicegen.service protocol

host No equivalent. No equivalent

port No equivalent. No equivalent

webapp servicegen warName

classpath servicegen classpath

rpcservices module No equivalent. No equivalent

path servicegen.service ejbJar

rpcservice bean servicegen.service includeEJBS,
excludeEJBs

uri servicegen.service serviceURI

messageservices N/A No equivalent. No equivalent

messageservice All attributes. No equivalent. No equivalent

clientjar path servicegen.service.client clientJarName
16-6 Programming WebLogic Web Services

Updating the URL Used to Access the Web Service
Updating the URL Used to Access the Web
Service

The default URL used by client applications to access a WebLogic Web service and
its WSDL has changed between versions 6.1 and 7.0 of WebLogic Server.

In Version 6.1, the default URL was:

[protocol]://[host]:[port]/[context]/[WSname]/[WSname].wsdl

as described in URLs to Invoke WebLogic Web Services and Get the WSDL at
http://e-docs.bea.com/wls/docs61/webServices/client.html#client008.

For example, the URL to invoke a 6.1 Web service built with the build.xml file
shown in “Converting a 6.1 build.xml file to 7.0” on page -5, is:

http://host:port/weather/statelessSession.WeatherHome/statelessSession.WeatherH
ome.wsdl

In 7.0, the default URL is:

[protocol]://[host]:[port]/[contextURI]/[serviceURI]?WSDL

as described in “The WebLogic Web Services Home Page and WSDL URLs” on page
8-22.

For example, the URL to invoke the equivalent 7.0 Web service after converting the
6.1 build.xml file shown in “Converting a 6.1 build.xml file to 7.0” on page -5 and
running wsgen is:

http://host:port/weather/weatheruri?WSDL
Programming WebLogic Web Services 16-7

http://e-docs.bea.com/wls/docs61/webServices/client.html#client008

16 Upgrading 6.1 WebLogic Web Services to 7.0
16-8 Programming WebLogic Web Services

APPENDIX
A WebLogic Web Service
Deployment Descriptor
Elements

The web-services.xml deployment descriptor file contains information that
describes one or more WebLogic Web services. This information includes details
about the backend components that implement the operations of a Web service, the
non-built-in data types used as parameters and return values, the SOAP message
handlers that intercept SOAP messages, and so on. As is true for all deployment
descriptors, web-services.xml is an XML file.

The following sections describe the web-services.xml file using different formats:

“Graphical Representation” on page A-1

“Element Reference” on page A-3

Graphical Representation

The following graphic describes the web-services.xml element hierarchy.
Programming WebLogic Web Services A-1

A WebLogic Web Service Deployment Descriptor Elements
web-services

web-service

components

stateless-ejb

ejb-link

jndi-name

jms-send-destination

jndi-name

jms-receive-queue

jndi-name

jms-receive-topic

jndi-name

(Continued)

java-class

handler-chains

handler

init-params

init-param

handler-chain

types

XML Schema

type-mapping

type-mapping-entry
A-2 Programming WebLogic Web Services

Element Reference
Element Reference

The following sectins, arranged alphabetically, describe each element in the
web-services.xml file.

See “Sample web-services.xml Files” on page 7-10 for sample Web services
deployment descriptor files for a variety of different types of WebLogic Web services.

components

Defines the backend components that implement the Web service.

A WebLogic Web service can be implemented using one or more of the following
components:

Stateless session EJB

JMS destination

A Java class

This element has no attributes.

operations

operation

params

param

return-param

fault
Programming WebLogic Web Services A-3

wsp.html#components

A WebLogic Web Service Deployment Descriptor Elements
ejb-link

Identifies which EJB in an EJB JAR file is used to implement the stateless session EJB
backend component.

fault

Specifies the SOAP fault that should be thrown if there is an error invoking this
operation.

This element is not required.

Attribute Description Datatype Required?

path Name of the EJB in the form of:

jar-name#ejb-name

jar-name refers to the name of the JAR file, contained
within the Web service EAR file, that contains the
stateless session EJB. The name should include
pathnames relative to the top level of the EAR file.
ejb-name refers to the name of the stateless session
EJB, corresponding to the <ejb-name> element in the
ejb-jar.xml deployment descriptor file in the EJB
JAR file.
Example: myapp.jar#StockQuoteBean

String Yes

Attribute Description Datatype Required?

name Name of the fault. String Yes

class-name Fully qualified Java class that implements the SOAP fault. String Yes
A-4 Programming WebLogic Web Services

wsp.html#ejb-link
wsp.html#fault

Element Reference
handler

Describes a SOAP message handler in a handler chain. A single handler chain can
consist of one or more handlers.

If the Java class that implements the handler expects initialization parameters, specify
them using the optional <init-params> child element of the <handler> element.

handler-chain

Lists the SOAP message handlers that make up a particular handler chain. A single
WebLogic Web service can define zero or more handler chains.

The order in which the handlers (defined by the <handler> child element) are listed
is important. By default, the handleRequest() methods of the handlers execute in the
order that they are listed as child elements of the <handler-chain> element. The
handleResponse() methods of the handlers execute in the reverse order that they are
listed.

handler-chains

Contains a list of <handler-chain> elements that describe the SOAP message
handler chains used in the Web service described by this web-services.xml file. A
single WebLogic Web service can define zero or more handler chains.

This element does not have any attributes.

Attribute Description Datatype Required?

class-name Fully qualified Java class that implements the SOAP
message handler.

String Yes

Attribute Description Datatype Required?

name Name of this handler chain. String Yes
Programming WebLogic Web Services A-5

wsp.html#handler
wsp.html#handler-chain
wsp.html#handler-chains

A WebLogic Web Service Deployment Descriptor Elements
init-param

Specifies a name-value pair that represents one of the initialization parameters of a
handler.

init-params

Contains the list of initialization parameters that are passed to the Java class that
implements a handler.

This element does not have any attributes.

java-class

Describes the Java class component that implements one or more operations of a Web
service.

jms-receive-queue

Specifies that one of the operations in the Web service is mapped to a JMS queue. Use
this element to describe a Web service operation that receives data from a JMS queue.

Attribute Description Datatype Required?

name Name of the parameter. String Yes

value Value of the parameter. String Yes

Attribute Description Datatype Required

name Name of this component. String Yes

class-name Fully qualified name of the Java class that implements this
component.

String Yes
A-6 Programming WebLogic Web Services

wsp.html#param
wsp.html#init-params
wsp.html#java-class
wsp.html#jms-receive-queue

Element Reference
Typically, a message producer puts a message on the specified JMS queue, and a client
invoking this Web service operation polls and receives the message.

jms-receive-topic

Specifies that one of the operations in the Web service is mapped to a JMS topic. Use
this element to describe a Web service operation that receives data from a JMS topic.

Typically, a message producer puts a message on the specified JMS topic, and a client
invoking this Web service component polls and receives the message.

Attribute Description Datatype Required?

name Name of this component. String Yes

connection-factory JNDI name of the JMS Connection factory that
WebLogic Server uses to create a JMS
Connection object.

String Yes

provider-url URL used to connect to a non-WebLogic Server
JMS implementation.

String No

initial-context-factory Context factory for a non-WebLogic Server JMS
implementation.

String No

Attribute Description Datatype Required?

name Name of this component. String Yes

connection-factory JNDI name of the JMS Connection factory that
WebLogic Server uses to create a JMS
Connection object.

String Yes

provider-url URL used to connect to a non-WebLogic Server
JMS implementation.

String No

initial-context-factory Context factory for a non-WebLogic Server JMS
implementation.

String No
Programming WebLogic Web Services A-7

wsp.html#jms-receive-topic

A WebLogic Web Service Deployment Descriptor Elements
jms-send-destination

Specifies that one of the operations in the Web service is mapped to a JMS destination
(either a queue or a topic). Use this element to describe a Web service operation that
sends data to a JMS destination.

Typically, a message consumer (such as a message-driven bean) consumes the
message after it is sent to the JMS destination.

jndi-name

Specifies a reference to an object bound into a JNDI tree. The reference can be to a
stateless session EJB or to a JMS destination.

operation

Configures a single operation of a Web service. Depending on the value and
combination of attributes for this element, you can configure the following types of
operations:

Attribute Description Datatype Required?

name Name of this component. String Yes

connection-factory JNDI name of the JMS Connection factory that
WebLogic Server uses to create a JMS
Connection object.

String Yes

provider-url URL used to connect to a non-WebLogic Server
JMS implementation.

String No

initial-context-factory Context factory for a non-WebLogic Server JMS
implementation.

String No

Attribute Description Datatype Required?

path Path name to the object from the JNDI context root. String Yes
A-8 Programming WebLogic Web Services

wsp.html#jms-send-destination
wsp.html#jndi-name
wsp.html#operation

Element Reference
An invoke of a method of a stateless session EJB or Java class. Specify this type
of operation by setting the component attribute to the name of the stateless
session EJB or Java class component and the method attribute to the name of the
method.

An invoke of a JMS backend component. Specify this type of operation by
setting the component attribute to the name of the JMS component.

The sequential invoke of the SOAP message handlers on a handler chain
together with the invoke of a backend component. Specify this type of operation
by setting the component attribute to the name of the component, and the
handler-chain attribute to the name of the handler chain you want to invoke.

The sequential invoke of the SOAP message handlers on a handler chain, but
with no backend component. Specify this type of operation by just setting the
handler-chain attribute to the name of the handler chain you want to invoke
and not setting the component and method attributes.

Use the <params> child element to explicitly specify the parameters and return values
of the operation.

Attribute Description Datatype Required?

name Name of the operation that will be used in the
generated WSDL.
If you do not specify this attribute, the name of the
operation defaults to either the name of the method or
the name of the SOAP message handler chain.

String No

component Name of the component that implements this
operation.
The value of this attribute corresponds to the name
attribute of the appropriate <component> element.

String No
Programming WebLogic Web Services A-9

A WebLogic Web Service Deployment Descriptor Elements
method Name of the method of the EJB or Java class that
implements the operation if you specify with the
component attribute that the operation is
implemented with a stateless session EJB or Java
class.
You can specify all the methods with the asterisk (*)
character.
If your EJB or Java class does not overload the
method, you need only specify the name of the
method, such as:

method="sell"

If, however, the EJB or Java class overloads the
method, then specify the full signature, such as:

method="sell(int)"

String No

handler-chain Name of the SOAP message handler chain that
implements the operation.
The value of this attribute corresponds to the name
attribute of the appropriate <handler-chain>
element.

String No

invocation-style Specifies whether the operation both receives a SOAP
request and sends a SOAP response, or whether the
operation only receives a SOAP request but does not
send back a SOAP response.
This attribute accepts only two values:
request-response (default value) or one-way.

Note: If the backend component that implements
this operation is a method of a stateless
session EJB or Java class and you set this
attribute to one-way, the method must
return void

String No

Attribute Description Datatype Required?
A-10 Programming WebLogic Web Services

Element Reference
operations

The <operations> element groups together the explicitly declared operations of this
Web service.

This element does not have any attributes.

param

The <param> element specifies a single parameter of an operation.

You must list the parameters in the same order in which they are defined in the method
that implements the operation. The number of <param> elements must match the
number of parameters of the method.

portTypeName Port type in the WSDL file to which this operation
belongs. You can include this operation in multiple
port types by specifying a comma-separated list of
port types. When the WSDL for this Web service is
generated, a separate <portType> element is
created for each specified port type.
The default value is the value of the portType
attribute of the <web-service> element.

String No

Attribute Description Datatype Required?

Attribute Description Datatype Required?

name Name of the input parameter that will be used in the
generated WSDL.
If you do not specify this attribute, the parameter
names are based on the data type of the parameter,
such as intvalue1, intvalue2,
traderesult, and so on.

String No.
Programming WebLogic Web Services A-11

wsp.html#operations
wsp.html#param

A WebLogic Web Service Deployment Descriptor Elements
location Part of the request SOAP message (either the
header, the body, or the attachment) that contains
the value of the input parameter.
Valid values for this attribute are Body, Header, or
attachment. The default value is Body.
If you specify Body, the value of the parameter is
extracted from the SOAP Body, according to
regular SOAP rules for RPC operation invocation.
If you specify Header, the value is extracted from
a SOAP Header element whose name is the value of
the type attribute.
If you specify attachment, the value of the
parameter is extracted from the SOAP Attachment
rather than the SOAP envelope. As specified by the
JAX-RPC specification, only the following Java
data types can be extracted from the SOAP
Attachment:

java.awt.Image

java.lang.String

javax.mail.internet.MimeMultiport

javax.xml.transform.Source

javax.activation.DataHandler

String No.

style Style of the input parameter, either a standard input
parameter, an out parameter used as a return value,
or an in-out parameter for both inputting and
outputting values.
Valid values for this attribute are in, out, and
in-out.
If you specify a parameter as out or in-out, the
Java class of the parameter in the backend
component’s method must implement the
javax.xml.rpc.holders.Holder interface.

String Yes.

type XML Schema data type of the parameter. NMTOKEN Yes.

Attribute Description Datatype Required?
A-12 Programming WebLogic Web Services

Element Reference
params

The <params> element groups together the explicitly declared parameters and return
values of an operation.

You do not have to explicitly list the parameters or return values of an operation. If an
<operation> element does not have a <params> child element, WebLogic Server
introspects the backend component that implements the operation to determine its
parameters and return values. When generating the WSDL file of the Web service,
WebLogic Server uses the names of the corresponding method’s parameters and return
value.

You explicitly list an operation’s parameters and return values when you want:

The name of the parameters and return values in the generated WSDL to be
different from those of the method that implements the operation.

To map a parameter to a name in the SOAP header request or response.

To use out or in-out parameters.

Use the <param> child element to specify the parameters of the operation.

Use the <return-param> child element to specify the return value of the operation.

class-name Java class name of the Java representation of the
data type of the parameter.
If you do not specify this attribute, WebLogic
Server introspects the backend component that
implements the operation for the Java class of the
parameter.
You are required to specify this attribute only if you
want the mapping between the XML and Java
representations of the parameter to be different than
the default. For example, xsd:int maps to the
Java primitive int type by default, so use this
attribute to map it to java.lang.Integer
instead.

NMTOKEN Maybe. See
the
description
of the
attribute.

Attribute Description Datatype Required?
Programming WebLogic Web Services A-13

wsp.html#params

A WebLogic Web Service Deployment Descriptor Elements
The <params> element does not have any attributes.

return-param

The <return-param> element specifies the return value of the Web service operation.

You can specify only one <return-param> element for a given operation.

Attribute Description Datatype Required?

name Name of the return parameter that will be used in the
generated WSDL file.
If you do not specify this attribute, the return
parameter is called result.

String No.

location Part of the response SOAP message (either the
header or the body) that contains the value of the
return parameter.
Valid values for this attribute are Body or Header.
The default value is Body.
If you specify Body, the value of the return
parameter will be added to the SOAP Body. If you
specify Header, the value will added as a SOAP
Header element whose name is the value of the
type attribute.

String No.

type XML Schema data type of the return parameter. NMTOKEN Yes.
A-14 Programming WebLogic Web Services

Element Reference
stateless-ejb

Describes the stateless session EJB component that implements one or more
operations of a Web service.

type-mapping

The <type-mapping> element contains the list of mappings between the XML data
types defined in the <types> element and their Java representations.

class-name Java class name of the Java representation of the
data type of the return parameter.
If you do not specify this attribute, WebLogic
Server introspects the backend component that
implements the operation for the Java class of the
return parameter.
You are required to specify this attribute if:

The backend component that implements the
operation is either <jms-receive-queue>
or <jms-receive-topic>.
The mapping between the XML and Java
representations of the return parameter is
ambiguous, such as mapping xsd:int to
either the int Java primitive type or
java.lang.Integer.

NMTOKEN Maybe. See
the
description
of the
attribute.

Attribute Description Datatype Required?

Attribute Description Datatype Required?

name Name of the stateless EJB component.

Note: The name is internal to the
web-services.xml file; it does not refer to
the name of the EJB in the ejb-jar.xml file.

String Yes.
Programming WebLogic Web Services A-15

wsp.html#stateless-ejb
wsp.html#type-mapping

A WebLogic Web Service Deployment Descriptor Elements
For each data type in the <types> element, there is a corresponding
<type-mapping-entry> element that lists the Java class that implements the data
type, how to serialize and deserialize the data, and so on.

This element has no attributes.

type-mapping-entry

Describes the mapping between a single XML data type in the <types> element and
its Java representation.

Attribute Description Datatype Required?

class-name Fully qualified name of the Java class that maps to its
corresponding XML data type.

String Yes.

element Name of the XML data type that maps to the Java data
type. Specify only if the XML Schema definition of the
data type uses the <element> element.

NMTOKEN One, but not both,
of either element
or type is
required.

type Name of the XML data type that maps to the Java data
type. Specify only if the XML Schema definition of the
data type uses the <type> element.

NMTOKEN One, but not both,
of either element
or type is
required.

serializer Fully qualified name of the Java class that converts the
data from Java to XML.

String Only required if the
data type is not one
of the built-in data
dates supported by
the WebLogic Web
services runtime,
listed in “Using
Built-In Data
Types” on page
5-12.
A-16 Programming WebLogic Web Services

wsp.html#type-mapping-entry

Element Reference
types

Describes, using XML Schema notation, the non-built-in data types used as parameters
or return types of the Web service operations.

For details on using XML Schema to describe the XML representation of a
non-built-in data type, see http://www.w3.org/TR/xmlschema-0/.

The following example shows an XML Schema declaration of a data type called
TradeResult that contains two elements: stockSymbol, a string data type, and
numberTraded, an integer.

<types>
 <xsd:schema xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:stns="java:examples.webservices"
 attributeFormDefault="qualified"
 elementFormDefault="qualified"
 targetNamespace="java:examples.webservices">
 <xsd:complexType name="TradeResult">
 <xsd:sequence>
 <xsd:element maxOccurs="1"
 name="stockSymbol"
 type="xsd:string" minOccurs="1">
 </xsd:element>
 <xsd:element maxOccurs="1"
 name="numberTraded"
 type="xsd:int"
 minOccurs="1">
 </xsd:element>
 </xsd:sequence>

deserializer Fully qualified name of the Java class that converts the
data from XML to Java.

String Only required if the
data type is not one
of the built-in data
dates supported by
the WebLogic Web
services runtime,
listed in “Using
Built-In Data
Types” on page
5-12.

Attribute Description Datatype Required?
Programming WebLogic Web Services A-17

wsp.html#types
http://www.w3.org/TR/xmlschema-0/

A WebLogic Web Service Deployment Descriptor Elements
 </xsd:complexType>
 </xsd:schema>
</types>

web-service

Defines a single Web service.

The Web service is defined by the following:

Backend components that implement an operation, such as a stateless session
EJB, a Java class, or a JMS consumer or producer..

An optional set of data type declarations for non-built-in data types used as
parameters or return values to the Web service operations.

An optional set of XML to Java data type mappings that specify the serialization
class and Java classes for the non-built-in data types.

A declaration of the operations supported by the Web service.

Attribute Description Datatype Required?

name Name of the Web service. String Yes.

targetNamespace Namespace of this Web service. String Yes.

uri URI of the Web service, used subsequently in the URL
that invokes the Web service.

Note: Be sure to specify the leading "/", such as
/TraderService.

String Yes.

protocol Protocol over which the service is invoked.
Valid values are http or https. Default is http.

String No.

exposeHomePage Specifies whether to publicly expose the Home Page of
the Web Service.

Valid values for this attribute are True and False.
The default value is True. This means that by default
the Home Page is publicly accessible.

Boolean No.
A-18 Programming WebLogic Web Services

wsp.html#web-service

Element Reference
exposeWSDL Specifies whether to publicly expose the automatically
generated WSDL of the Web Service.

Valid values for this attribute are True and False.
The default value is True. This means that by default
the WSDL is publicly accessible.

Boolean No.

style Specifies whether the Web service has RPC-oriented or
document-oriented operations.
RPC-oriented WebLogic Web service operations use
SOAP encoding. Document-oriented WebLogic Web
service operations use literal encoding.
Valid values are rpc and document. Default value is
rpc.

Warning: If you specify document for this
attribute, all the methods that
implement the operations of the Web
service must have only one
parameter.

Note: Because the style attribute applies to an
entire Web service, all operations specified in
a single <web-service> element must be
either RPC-oriented or documented-oriented;
WebLogic Server does not support mixing the
two styles within the same Web service.

String No.

portName Name of the <port> child element of the <service>
element of the dynamically generated WSDL of this
Web service.
The default value is the name attribute of this element
with Port appended. For example, if the name of this
Web service is TraderService, the port name will be
TraderServicePort.

String No

Attribute Description Datatype Required?
Programming WebLogic Web Services A-19

A WebLogic Web Service Deployment Descriptor Elements
web-services

The root element of the web-services.xml deployment descriptor.

This element does not have any attributes.

portTypeName Name of the default <portType> element in the
dynamically generated WSDL of this Web service.
The default value is the name attribute of this element
with Port appended. For example, if the name of this
Web service is TraderService, the portType name
will be TraderServicePort.

String No.

ignoreAuthHeader Specifies that the Web Service ignore the
Authorization HTTP header in the SOAP request.

Note: Be careful using this attribute. If you set the
value of this attribute to True, WebLogic
Server never authenticates a client application
that is attempting to invoke a Web Service,
even if access control security constraints have
been defined for the EJB, Web Application, or
Enterprise Application that make up the Web
Service. Or in other words, a client application
that does not provide athentication credentials
is still allowed to invoke a Web Service that
has security constraints defined on it.

Valid values are True and False. Default value is
False.

Boolean. No.

Attribute Description Datatype Required?
A-20 Programming WebLogic Web Services

wsp.html#web-services

APPENDIX
B Web Service Ant Tasks
and Command-Line
Utilities

The following sections describe WebLogic Web service Ant tasks and the
command-line utilities based on these Ant tasks:

“Overview of WebLogic Web Services Ant Tasks and Command-Line Utilities”
on page B-2

“autotype” on page B-7

“clientgen” on page B-12

“servicegen” on page B-19

“source2wsdd” on page B-28

“wsdl2Service” on page B-31

“wspackage” on page B-33

“wsgen” on page B-36
Programming WebLogic Web Services B-1

B Web Service Ant Tasks and Command-Line Utilities
Overview of WebLogic Web Services Ant
Tasks and Command-Line Utilities

Ant is a Java-based build tool, similar to the make command but much more powerful.
Ant uses XML-based configuration files (called build.xml by default) to execute
tasks written in Java.

BEA provides a number of Ant tasks that help you generate important parts of a Web
service (such as the serialization class, a client JAR file, and the web-services.xml
file) and to package all the pieces of a WebLogic Web service into a deployable EAR
file.

The Apache Web site provides other useful Ant tasks for packaging EAR, WAR, and
EJB JAR files. For more information, see http://jakarta.apache.org/ant/manual/.

You can also run some of the Ant tasks as a command-line utility, using flags rather
than attributes to specify how the utility works. The description of the flags is exactly
the same as the description of its corresponding attribute.

Warning: Not all the attributes of the Ant tasks are available as flags to the
equivalent command-line utility. See the sections that describe each Ant
task for a list of the supported flags when using the command-line
equivalent.

For further examples and explanations of using these Ant tasks, see Chapter 6,
“Assembling WebLogic Web Services Using Ant Tasks.”
B-2 Programming WebLogic Web Services

http://jakarta.apache.org/ant/manual/

Overview of WebLogic Web Services Ant Tasks and Command-Line Utilities
List of Web Services Ant Tasks and Command-Line
Utilities

The following table provides an overview of the Web service Ant tasks provided by
BEA and the name of the corresponding command-line utility.

Table B-1 WebLogic Web Services Ant Tasks

Ant Task Corresponding
Command-Line Utility

Description

autotype Not available. Generates the serialization class, Java representation,
XML Schema representation, and data type mapping
information for non-built-in data types used as parameters
or return values to a WebLogic Web service.

clientgen weblogic.webservice.clientgen Generates a client JAR file that contains a thin Java client
used to invoke a Web service.

servicegen weblogic.webservice.servicegen Main Ant task that performs all the steps needed to
assemble a Web service. These steps include:

Creating the Web service deployment descriptor
(web-services.xml).
Introspecting EJBs and Java classes and generating
any needed non-built-in data type supporting
components.
Generating the client JAR file.
Packaging all the pieces into a deployable EAR file.

source2wsdd Not available Generates a web-services.xml deployment
descriptor file from the Java source file for a Java
class-implemented WebLogic Web service.

wsdl2Service Not available. Generates the components of a WebLogic Web service
from a WSDL file. The components include the
web-services.xml deployment descriptor file and a
Java source file that you can use as a starting point to
implement the Web service.

wspackage Not available. Packages the components of a WebLogic Web service
into a deployable EAR file.
Programming WebLogic Web Services B-3

B Web Service Ant Tasks and Command-Line Utilities
Using the Web Services Ant Tasks

To use the Ant tasks, follow these steps:

1. Create a file called build.xml that contains a call to the Web services Ant tasks.

The following example shows a simple build.xml file (with details of the Web
services Ant tasks servicegen and clientgen omitted for clarity):

<project name="buildWebservice" default="build-ear">
 <target name="build-ear">
 <servicegen attributes go here...>
 ...
 </servicegen>
 </target>
 <target name="build-client" depends="build-ear">
 <clientgen attributes go here .../>
 </target>
 <target name="clean">
 <delete>
 <fileset dir="."
 includes="example.ear,client.jar" />
 </delete>
 </target>
</project>

Later sections provide examples of specifying the Ant task in the build.xml
file.

2. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.

wsgen Not available. Upgrades a 6.1 WebLogic Web service to Version 7.0 of
WebLogic Server.

Table B-1 WebLogic Web Services Ant Tasks

Ant Task Corresponding
Command-Line Utility

Description
B-4 Programming WebLogic Web Services

Overview of WebLogic Web Services Ant Tasks and Command-Line Utilities
On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

3. Execute the Ant task or tasks specified in the build.xml file by typing ant in
the same directory as the build.xml file:

prompt> ant

Setting the Classpath for the WebLogic Ant Tasks

Each WebLogic Ant task accepts a classpath attribute or element so that you can add
new directories or JAR files to your current CLASSPATH environment variable.

The following example shows how to use the classpath attribute of the servicegen
Ant task to add to the CLASSPATH variable:

<servicegen destEar="myEJB.ear"
 classpath="${java.class.path};d:\my_fab_directory"
 ...
</servicegen>

The following example shows how to add to the CLASSPATH by using the
<classpath> element:

<servicegen ...>
 <classpath>
 <pathelement path="${java.class.path}" />
 <pathelement path="d:\my_fab_directory" />
 </classpath>
...
</servicegen>

The following example shows how you can build your CLASSPATH variable outside
of the WebLogic Web service Ant task declarations, then specify the variable from
within the task using the <classpath> element:

<path id="myid">
 <pathelement path="${java.class.path}"/>
 <pathelement path="${additional.path1}"/>
 <pathelement path="${additional.path2}"/>
</path>

<servicegen>
 <classpath refid="myid" />
Programming WebLogic Web Services B-5

B Web Service Ant Tasks and Command-Line Utilities
...
</servicegen>

Note: The Java Ant utility included in WebLogic Server uses the ant (UNIX) or
ant.bat (Windows) configuration files in the WL_HOME\server\bin
directory when setting the ANTCLASSPATH variable, where WL_HOME is the
top-level directory of your WebLogic Platform installation If you need to
update the ANTCLASSPATH variable, make the relevant changes to the
appropriate file for your operating system.

Differences in Operating System Case Sensitivity When
Manipulating WSDL and XML Schema Files

Many of the WebLogic Web Service Ant tasks have attributes that you can use to
specify an operating system file, such as a WSDL or an XML Schema file. For
example, you can use the wsdl attribute of the clientgen Ant task to create the Web
Services-specific client JAR file from an existing WSDL file that describes a Web
Service.

The Ant tasks process these files in a case-sensitive way. This means that if, for
example, the XML Schema file specifies two complex types whose names differ only
in their capilatization (for example, MyReturnType and MYRETURNTYPE), the
clientgen Ant task correctly generates two separate sets of Java source files for the
Java represenation of the complex data type: MyReturnType.java and
MYRETURNTYPE.java.

However, compiling these source files into their respective class files might cause a
problem if you are running the Ant task on Microsoft Windows, because Windows is
a case insensitive operating system. This means that Windows considers the files
MyReturnType.java and MYRETURNTYPE.java to have the same name. So when you
compile the files on Windows, the second class file overwrites the first, and you end
up with only one class file. The Ant tasks, however, expect that two classes were
compiled, thus resulting in an error similar to the following:

c:\src\com\bea\order\MyReturnType.java:14:
class MYRETURNTYPE is public, should be declared in a file named
MYRETURNTYPE.java
public class MYRETURNTYPE
 ^
B-6 Programming WebLogic Web Services

autotype
To work around this problem rewrite the XML Schema so that this type of naming
conflict does not occur, or if that is not possible, run the Ant task on a case sensitive
operating system, such as Unix.

Using the Web Services Command-Line Utilities

To use the command-line utility equivalents of the Ant tasks, follow these steps:

1. Open a command shell window.

2. Set your environment.

On Windows NT, execute the setWLSEnv.cmd command, located in the
directory WL_HOME\server\bin, where WL_HOME is the top-level directory of
your WebLogic Platform installation.

On UNIX, execute the setWLSEnv.sh command, located in the directory
WL_HOME/server/bin, where WL_HOME is the top-level directory of your
WebLogic Platform installation.

3. Execute the utility using the java command, as shown in the following example:

prompt> java weblogic.webservice.clientgen \
 -ear c:\myapps\myapp.ear \
 -serviceName myService \
 -packageName myservice.client \
 -clientJar c:/myapps/myService_client.jar

Run the command with no arguments to get a usage message.

autotype

The autotype Ant task generates the following components for non-built-in data
types that used as parameters or return values of your Web service operation:

Serialization class that converts between the XML and Java representation of the
data.
Programming WebLogic Web Services B-7

B Web Service Ant Tasks and Command-Line Utilities
Given an XML Schema or WSDL file, a Java class to contain the Java
representation of the data type.

Given a Java class that represents the non-built-in data type, an XML Schema
representation of the data type.

Data type mapping information to be included in the web-services.xml
deployment descriptor file.

For the list of non-built-in data types for which autotype can generate data type
components, see “Non-Built-In Data Types Supported by servicegen and autotype Ant
Tasks” on page 6-13.

You can specify one of the following types of input to the autotype Ant task:

A Java class file that represents your non-built-in data types by specifying the
javaTypes attribute. The autotype Ant task generates the corresponding XML
Schemas, the serializer classes, and the data type mapping information for the
web-services.xml file.

A Java class file that contains a backend component, such as a stateless session
EJB, by specifying the javaComponents attribute. The autotype Ant task
looks for non-built-in data types used in the component, then generates the
corresponding XML Schemas, the serializer classes, and the data type mapping
information for the web-services.xml file.

An XML Schema file that represents your non-built-in data type by specifying
the schemaFile attribute. The autotype Ant task generates the corresponding
Java representations, the serializer classes, and the data type mapping
information for the web-services.xml file.

A URL to a WSDL file that contains a description of your non-built-in data type
by specifying the wsdlURI attribute. The autotype Ant task generates the
corresponding Java representations, the serializer classes, and the data type
mapping information for the web-services.xml file.

Use the destDir attribute to specify the name of a directory that contains the
generated components. The generated XML Schema and data type mapping
information are generated in a file called types.xml. You can use this file to
manually update an existing web-services.xml file with non-built-in data type
mapping information, or use it in conjunction with the typeMappingFile attribute of
the servicegen or clientgen Ant tasks, or the typesInfo attribute of the
source2wsdd Ant task.
B-8 Programming WebLogic Web Services

autotype
Warning: The serializer class and Java and XML representations generated by the
autotype, servicegen, and clientgen Ant tasks cannot be
round-tripped. For more information, see “Non-Roundtripping of
Generated Data Type Components” on page 6-17.

Note: The fully qualified name for the autotype Ant task is
weblogic.ant.taskdefs.webservices.javaschema.JavaSchema.

Example

The following example shows how to create non-built-in data type components for the
Java class mypackage.MyType:

<autotype javaTypes="mypackage.MyType"
 targetNamespace="http://www.foobar.com/autotyper"
 packageName="a.package.name"
 destDir="d:\output" />

The following example is similar to the preceding one, except it creates non-built-in
data type components for an array of mypackage.MyType Java data types:

<autotype javaTypes="[Lmypackage.MyType;"
 targetNamespace="http://www.foobar.com/autotyper"
 packageName="a.package.name"
 destDir="d:\output" />

Note: The [Lclassname; syntax follows the Java class naming conventions as
outlined in the java.lang.Class.getName() method documentation.

The following example shows how to use the autotype Ant task against a WSDL file:

<autotype wsdl="file:\wsdls\myWSDL"
 targetNamespace="http://www.foobar.com/autotyper"
 packageName="a.package.name"
 destDir="d:\output" />
Programming WebLogic Web Services B-9

http://java.sun.com/j2se/1.3/docs/api/java/lang/Class.html#getName()

B Web Service Ant Tasks and Command-Line Utilities
Attributes

The following table describes the attributes of the autotype Ant task.

Attribute Description Required?

schemaFile Name of a file that contains the XML Schema
representation of your non-built-in data types.

You must specify
one, and only one, of
the following
attributes:
schemaFile,
wsdl, javaTypes,
or
javaComponents.

wsdl Full path name or URI of the WSDL that contains the XML
Schema description of your non-built-in data type.

You must specify
one, and only one, of
the following
attributes:
schemaFile,
wsdl, javaTypes,
or
javaComponents.

javaTypes Comma-separated list of Java class names that represent
your non-built-in data types. The Java classes must be
compiled and in your CLASSPATH.
For example:
javaTypes="my.class1,my.class2"

Note: Use the syntax [Lclassname; to specify an
array of the Java data type. For an example, see
“Example” on page B-9.

You must specify
one, and only one, of
the following
attributes:
schemaFile,
wsdl, javaTypes,
or
javaComponents.

javaComponents Comma-separated list of Java class names that implement
the Web service operation. The Java classes must be
compiled and in your CLASSPATH.
For example:
javaComponents="my.class1,my.class2"

The autotype Ant task introspects the Java classes to
automatically generate the components for all non-built-in
data types it finds.

You must specify
one, and only one, of
the following
attributes:
schemaFile,
wsdl, javaTypes,
or
javaComponents.
B-10 Programming WebLogic Web Services

autotype
destDir Full pathname of the directory that will contain the
generated components. The generated XML Schema
and data type mapping information are generated in a
file called types.xml.

Yes.

typeMappingFile File that contains data type mapping information for
non-built-in data types for which have already generated
needed components. The format of the information is the
same as the data type mapping information in the
<type-mapping> element of the web-services.xml
file.
The autotype Ant task does not generate non-built-in data
type components for any data types listed in this file.

No.

packageBase Base package name of the generated Java classes for any
non-built-in data types used as a return value or parameter
in a Web service. This means that each generated Java class
will be part of the same package name, although the
autotype Ant task generates its own specific name for
each Java class which it appends to the specified package
base name.
If you do not specify this attribute, the autotype Ant task
generates a base package name for you.

Note: BEA recommends you not use this attribute, but
rather, specify the full package name using the
packageName attribute. The packageBase
attribute is available for JAX-RPC compliance.

No.
If you specify this
attribute, you cannot
also specify
packageName.

Attribute Description Required?
Programming WebLogic Web Services B-11

B Web Service Ant Tasks and Command-Line Utilities
clientgen

The clientgen Ant task generates a Web service-specific client JAR file that client
applications can use to invoke both WebLogic and non-WebLogic Web services.
Typically, you use the clientgen Ant task to generate a client JAR file from an
existing WSDL file; you can also use it with an EAR file that contains the
implementation of a WebLogic Web service.

The contents of the client JAR file includes:

Client interface and stub files (conforming to the JAX-RPC specification) used
to invoke a Web service in static mode.

Optional serialization class for converting non-built-in data between its XML
and Java representation.

Optional client-side copy of the Web service WSDL file

packageName Full package name of the generated Java classes for any
non-built-in data types used as a return value or parameter
in a Web service.
If you do not specify this attribute, the autotype Ant task
generates a package name for you.

Note: Although not required, BEA recommends you
specify this attribute in most cases.

Currently, the only situation in which you should not
specify this attribute is if you use the javaTypes
attribute to specify a list of Java data types whose class
names are the same, but their package names are
different. In this case, if you also specify the
packageName attribute, the autotype Ant task
generates a serialization class for only the last class.

No.
If you specify this
attribute, you cannot
also specify
packageBase.

targetNamespace Namespace URI of the Web service. Yes.

Attribute Description Required?
B-12 Programming WebLogic Web Services

clientgen
You can use the clientgen Ant task to generate a client JAR file from the WSDL file
of an existing Web service (not necessarily running on WebLogic Server) or from an
EAR file that contains a Weblogic Web service implementation.

The WebLogic Server distribution includes a client runtime JAR file that contains the
client side classes needed to support the WebLogic Web services runtime component.
For more information, see “Getting the Java Client JAR Files” on page 8-4.

Warning: The serializer class and Java and XML representations generated by the
autotype, servicegen, and clientgen Ant tasks cannot be
round-tripped. For more information, see “Non-Roundtripping of
Generated Data Type Components” on page 6-17.

Warning: The clientgen Ant task does not support solicit-response or notification
WSDL operations. This means that if you attempt to create a client JAR
file from a WSDL file that contains these types of operations, the Ant task
ignores the operations.

Note: The fully qualified name of the clientgen Ant task is
weblogic.ant.taskdefs.webservices.clientgen.ClientGenTask.

Example

<clientgen wsdl="http://example.com/myapp/myservice.wsdl"
 packageName="myapp.myservice.client"
 clientJar="c:/myapps/myService_client.jar"
/>
Programming WebLogic Web Services B-13

B Web Service Ant Tasks and Command-Line Utilities
Attributes

The following table describes the attributes of the clientgen Ant task.

Attribute Description Required?

wsdl Full path name or URL of the WSDL that describes a Web
service (either WebLogic or non-WebLogic) for which a client
JAR file should be generated.
The generated stub factory classes in the client JAR file use the
value of this attribute in the default constructor.

Either wsdl
or ear must
be specified.

ear Name of an EAR file or exploded directory that contains the
WebLogic Web service implementation for which a client JAR
file should be generated.

Note: If the saveWSDL attribute of clientgen is set to
True (the default value), the clientgen Ant task
generates a WSDL file from the information in the
EAR file, and stores it in the generated client JAR file.
Because clientgen does not know the host name or
port number of the WebLogic Server instance which
will host the Web service, clientgen uses the
following endpoint address in the generated WSDL:

http://localhost:7001/contextURI/serviceURI

where contextURI and serviceURI are the same values
as described in “The WebLogic Web Services Home Page
and WSDL URLs” on page 8-22. If this endpoint address
is not correct, and your client application uses the WSDL
file stored in the client JAR file, you must manually update
the WSDL file with the correct endpoint address.

Either wsdl
or ear must
be specified.

warName Name of the WAR file which contains the Web service(s).
The default value is web-services.war.

No.
You can
specify this
attribute only
in
combination
with the ear
attribute.
B-14 Programming WebLogic Web Services

clientgen
serviceName Web service name for which a corresponding client JAR file
should be generated.
If you specify the wsdl attribute, the Web service name
corresponds to the <service> elements in the WSDL file. If
you specify the ear attribute, the Web service name
corresponds to the <web-service> element in the
web-services.xml deployment descriptor file.
If you do not specify the serviceName attribute, the
clientgen task generates client classes for the first service
name found in the WSDL or web-services.xml file.

No.

typeMappingFile File that contains data type mapping information, used by the
clientgen task when generating the JAX-RPC stubs. The
format of the information is the same as the data type mapping
information in the <type-mapping> element of the
web-services.xml file.
If you specified the ear attribute, the information in this file
overrides the data type mapping information found in the
web-services.xml file.

No.

packageName Package name into which the generated JAX-RPC client
interfaces and stub files should be packaged.

Yes.

autotype Specifies whether the clientgen task should generate and
include in the client JAR file the serialization class for any
non-built-in data types used as parameters or return values to the
Web service operations.
Valid values are True and False. Default value is True.

No.

clientJar Name of a JAR file or exploded directory into which the
clientgen task puts the generated client interface classes,
stub classes, optional serialization class, and so on.
To create or update a JAR file, use a.jar suffix when
specifying the JAR file, such as myclientjar.jar. If the
attribute value does not have a.jar suffix, then the
clientgen task assumes you are referring to a directory name.
If you specify a JAR file or directory that does not exist, the
clientgen task creates a new JAR file or directory.

Yes.

overwrite Specifies whether to overwrite an existing client JAR file.
Valid values are True and False. Default value is True.

No.

Attribute Description Required?
Programming WebLogic Web Services B-15

B Web Service Ant Tasks and Command-Line Utilities
useServerTypes Specifies where the clientgen task gets the implementation
of any non-built-in Java data types used in a Web service: either
the task generates the Java code or the task gets it from the EAR
file that contains the full implementation of the Web service.
Valid values are True (use the Java code in the EAR file) and
False. Default value is False.
For the list of non-built-in data types for which
clientgen can generate data type components, see
“Non-Built-In Data Types Supported by servicegen and
autotype Ant Tasks” on page 6-13.

No.
Use only in
combination
with the ear
attribute.

saveWSDL When set to True, specifies that the WSDL of the Web service
be saved in the generated client JAR file. This means that client
applications do not need to download the WSDL every time they
create a stub to the Web service, possibly improving
performance of the client because of reduced network usage.
Valid values are True and False. Default value is True.

No.

j2me Specifies whether the clientgen Ant task should create a
J2ME/CDC-compliant client JAR file.

Note: The generated client code is not JAX-RPC compliant.
Valid values are True and False. Default value is False.

No.

useLowerCaseMethodNames When set to true, specifies that the method names in the
generated stubs have a lower-case first character. Otherwise, all
method names will the same as the operation names in the
WSDL file.
Valid values are True and False. Default value is True.

No.

Attribute Description Required?
B-16 Programming WebLogic Web Services

clientgen
typePackageName Specifies the full package name of the generated Java class for
any non-built-in data types used as a return value or parameter
in a Web service.
If you specify this attribute, you cannot also specify
typePackageBase.

If you do not specify this attribute and the XML Schema in the
WSDL file defines a target namespace, then the clientgen
Ant task generates a package name for you based on the target
namespace. This means that if your XML Schema does not
define a target namespace, then you must specify either the
typePackageName (preferred) or typePackageBase
attributes of the clientgen Ant task.

Note: Although not required, BEA recommends you specify
this attribute.

Required
only if you
specified the
wsdl
attribute and
the XML
Schema in
the WSDL
file does not
define a
target
namespace.

typePackageBase Specifies the base package name of the generated Java class for
any non-built-in data types used as a return value or parameter
in a Web service. This means that each generated Java class will
be part of the same package name, although the clientgen
Ant task generates its own specific name for each Java class
which it appends to the specified package base name.
If you specify this attribute, you cannot also specify
typePackageName.

If you do not specify this attribute and the XML Schema in the
WSDL file defines a target namespace, then the clientgen
Ant task generates a package name for you based on the target
namespace. This means that if your XML Schema does not
define a target namespace, then you must specify either the
typePackageName (preferred) or typePackageBase
attributes of the clientgen Ant task.

Note: Rather than using this attribute, BEA recommends that
you specify the full package name with the
typePackageName attribute. The
typePackageBase attribute is available for
JAX-RPC compliance.

Required
only if you
specified the
wsdl
attribute and
the XML
Schema in
the WSDL
file does not
define a
target
namespace.

Attribute Description Required?
Programming WebLogic Web Services B-17

B Web Service Ant Tasks and Command-Line Utilities
Equivalent Command-Line Utility

The equivalent command-line utility of the clientgen Ant task is called
weblogic.webservice.clientgen. The description of the flags of the utility is the
same as the description of the Ant task attributes, described in the preceding section.

The weblogic.webservice.clientgen utility supports the following flags (see the
equivalent attribute for a description of the flag):

-wsdl uri

-ear pathname

-clientJar pathname

-packageName name

-warName name

-serviceName name

-typeMappings pathname

-useServerTypes

usePortNameAsMethodName Specifies where the clientgen Ant task should get the names
of the operations when generating a client from a WSDL file.
If this value is set to true, then operations take the name
specified by the name attribute of the <port> element in the
WSDL file (where <port> is the child element of the
<service> element). If usePortNameAsMethodName is
set to false, then operations take the name specified by the name
attribute of the <portType> element in the WSDL file (where
<portType> is the child element of the <definitions>
element).
Valid values are True and False. Default value is False.

No.

Attribute Description Required?
B-18 Programming WebLogic Web Services

servicegen
servicegen

The servicegen Ant task takes as input an EJB JAR file or list of Java classes, and
creates all the needed Web service components and packages them into a deployable
EAR file.

In particular, the servicegen Ant task:

Introspects the EJBs and Java classes, looking for public methods to convert into
Web service operations.

Creates a web-services.xml deployment descriptor file, based on the attributes
of the servicegen Ant task and introspected information.

Optionally creates the serialization class that converts the non-built-in data
between its XML and Java representations. It also creates XML Schema
representations of the Java objects and updates the web-services.xml file
accordingly. This feature is referred to as autotyping.

Optionally creates a client JAR file that includes the Web service-specific
classes, stubs, and interfaces needed by client applications that invoke the Web
service. The classes, stubs, and interfaces are based on the JAX-RPC API.

Packages all the Web service components into a Web application WAR file, then
packages the WAR and EJB JAR files into a deployable EAR file.

Warning: The serializer class and Java and XML representations generated by the
autotype, servicegen, and clientgen Ant tasks cannot be
round-tripped. For more information, see “Non-Roundtripping of
Generated Data Type Components” on page 6-17.

Note: The fully qualified name of the servicegen Ant task is
weblogic.ant.taskdefs.webservices.servicegen.ServiceGenTask.

Example

 <servicegen
 destEar="c:\myWebService.ear"
 warName="myWAR.war"
Programming WebLogic Web Services B-19

B Web Service Ant Tasks and Command-Line Utilities
 contextURI="web_services" >
 <service
 ejbJar="c:\myEJB.jar"
 targetNamespace="http://www.bea.com/examples/Trader"
 serviceName="TraderService"
 serviceURI="/TraderService"
 generateTypes="True"
 expandMethods="True" >
 </service>
 </servicegen>

Attributes and Child Elements

The servicegen Ant task has four attributes and one child element (<service>) for
each Web service you want to define in a single EAR file. You must specify at least
one <service> element.

The <service> element has one optional <client> element.

The following graphic describes the hierarchy of the servicegen Ant task.

servicegen

The servicegen Ant task is the main task for automatically generating and
assembling all the parts of a Web service and packaging it into a deployable EAR file.

servicegen

client

service

client

service
B-20 Programming WebLogic Web Services

servicegen
The following table describes the attributes of the servicegen Ant task.

Attribute Description Required?

destEar Pathname of the EAR file or exploded directory which
will contain the Web service and all its components.
To create or update an EAR file, use a.ear suffix when
specifying the EAR file, such as
c:\mywebservice.ear. If the attribute value does not
have a.ear suffix, then the servicegen task creates an
exploded directory.
If you specify an EAR file or directory that does not exist,
the servicegen task creates a new one.

Yes

overwrite Specifies whether you want the components of an existing
EAR file or directory to be overwritten. The components
include the web-services.xml file, serialization
class, client JAR files, and so on.
Valid values for this attribute are True and False. The
default value is True.
If you specify False, the servicegen Ant task
attempts to merge the contents of the EAR file/directory
and information in the web-services.xml file.

No

warName Name of the WAR file or exploded directory into which
the Web service Web application is written. The WAR file
or directory is created at the top level of the EAR file.
The default value is a WAR file called
web-services.war.
To specify a WAR file, use a .war suffix, such as
mywebserviceWAR.war. If the attribute value does not
have a .war suffix, then the servicegen task creates an
exploded directory.

No

contextURI Context root of the Web service. You use this value in the
URL that invokes the Web service.
The default value of the contextURI attribute is the
value of the warName attribute.

No.
Programming WebLogic Web Services B-21

B Web Service Ant Tasks and Command-Line Utilities
service

The <service> element describes a single Web service implemented with either a
stateless session EJB or a Java class.

The following table describes the attributes of the <service> element of the
servicegen Ant task. Include one <service> element for every Web service you
want to package in a single EAR file.

Attribute Description Required?

ejbJar JAR file or exploded directory that contains the EJBs that
implement the backend component of a Web service
operation. The servicegen Ant task introspects the EJBs to
automatically generate all the components.

You must specify
either the ejbJar,
javaClassCompo
nents, or JMS*
attribute.

javaClassComponents Comma-separated list of Java class names that implement the
Web service operation. The Java classes must be compiled
and in your CLASSPATH.
For example:
javaClassComponents="my.FirstClass,my.Seco
ndClass"

Note: Do not include the .class extension when
specifying the class names.

The servicegen Ant task introspects the Java classes to
automatically generate all the needed components.

You must specify
either the ejbJar,
javaClassCompo
nents, or JMS*
attribute.

ignoreAuthHeader Specifies that the Web Service ignore the Authorization
HTTP header in the SOAP request.

Note: Be careful using this attribute. If you set the value of
this attribute to True, WebLogic Server never
authenticates a client application that is attempting to
invoke a Web Service, even if access control security
constraints have been defined for the EJB, Web
Application, or Enterprise Application that make up
the Web Service. Or in other words, a client
application that does not provide athentication
credentials is still allowed to invoke a Web Service
that has security constraints defined on it.

Valid values are True and False. Default value is False.

No.
B-22 Programming WebLogic Web Services

servicegen
includeEJBs Comma-separated list of EJB names for which non-built-in
data type components should be generated.
If you specify this attribute, the servicegen task processes
only those EJBs on the list.
The EJB names correspond to the <ejb-name> element in
the ejb-jar.xml deployment descriptor in the EJB JAR file
(specified with the ejbJar attribute).

No.
Used only in
combination with
the ejbJar
attribute.

excludeEJBs Comma-separated list of EJB names for which non-built-in
data type components should not be generated.
If you specify this attribute, the servicegen task processes
all EJBs except those on the list.
The EJB names correspond to the <ejb-name> element in
the ejb-jar.xml deployment descriptor in the EJB JAR file
(specified with the ejbJar attribute).

No.
Used only in
combination with
the ejbJar
attribute.

serviceName Name of the Web service which will be published in the
WSDL.

Note: If you specify more than one <service> element in
your build.xml file that calls servicegen, and
set the serviceName attribute for each element to
the same value, servicegen attempts to merge the
multiple <service> elements into a single Web
service.

Yes.

Attribute Description Required?
Programming WebLogic Web Services B-23

B Web Service Ant Tasks and Command-Line Utilities
serviceURI Web service URI portion of the URL used by client
applications to invoke the Web service.

Note: Be sure to specify the leading "/", such as
/TraderService.

The full URL to invoke the Web service will be:
protocol://host:port/contextURI/serviceURI

where
protocol refers to the protocol attribute of the
<service> element
host refers to the computer on which WebLogic Server
is running
port refers to the port on which WebLogic Server is
listening
contextURI refers to the contextURI attribute of the
main servicegen Ant task
serviceURI refers to this attribute

Yes.

targetNamespace The namespace URI of the Web service. Yes.

protocol Protocol over which this Web service is deployed.
Valid values are http and https. The default value is http.

No.

expandMethods Specifies whether the servicegen task, when generating
the web-services.xml file, should create a separate
<operation> element for each method of the EJB or Java
class, or whether the task should implicitly refer to all methods
by specifying only one <operation> element that contains
a method="*" attribute.
Valid values are True and False. Default value is False.

No.

generateTypes Specifies whether the servicegen task should generate the
serialization class and Java representations for non-built-in
data types used as parameters or return values.
Valid values are True and False. Default value is True.
For the list of non-built-in data types for which servicegen can
generate data type components, see “Non-Built-In Data
Types Supported by servicegen and autotype Ant
Tasks” on page 6-13.

No.

Attribute Description Required?
B-24 Programming WebLogic Web Services

servicegen
typeMappingFile File that contains additional XML data type mapping
information. The format of the information is the same as the
data type mapping information in a web-services.xml.
Use this attribute if you want to include extra XML data type
information in the <type-mapping> element of the
web-services.xml file, in addition to the required XML
descriptions of data types used by the EJB or Java class that
implements an operation. The servicegen task adds the
extra information in the specified file to a generated
web-services.xml file.

No.

style Specifies whether the servicegen Ant task should generate
RPC-oriented or document-oriented Web service operations.
RPC-oriented WebLogic Web service operations use SOAP
encoding. Document-oriented WebLogic Web service
operations use literal encoding.
If you specify document for this attribute, the methods that
implement the operations of the generated Web service must
have only one parameter. If servicegen encounters
methods that have more than one parameter, servicegen
ignores the method and does not generate a corresponding
Web service operation for it.
Valid values for this attribute are rpc and document.
Default value is rpc.

Note: Because the style attribute applies to an entire
Web service, all operations in a single WebLogic
Web service must be either RPC-oriented or
documented-oriented; WebLogic Server does not
support mixing the two styles within the same Web
service.

No.

JMSDestination JNDI name of a JMS topic or queue. Yes, if creating a
JMS-implemented
Web service.

JMSDestinationType Type of JMS destination, either a Queue or a Topic.
Valid values are topic or queue.

Yes, if creating a
JMS-implemented
Web service.

Attribute Description Required?
Programming WebLogic Web Services B-25

B Web Service Ant Tasks and Command-Line Utilities
client

The optional <client> element describes how to create the client JAR file that client
applications use to invoke the Web service. Specify this element only if you want the
servicegen Ant task to create a client JAR file.

Note: You do not have to create the client JAR file when you assemble your Web
service. You can later use the clientgen Ant task to generate the JAR file.

JMSAction Specifies whether the client application that invokes this
JMS-implemented Web service sends or receives messages to
or from the JMS destination.
Valid values are send or receive.
Specify send if the client sends messages to the JMS
destination and receive if the client receives messages from
the JMS destination.

Yes, if creating a
JMS-implemented
Web service.

JMSConnectionFactory JNDI name of the ConnectionFactory used to create a
connection to the JMS destination.

Yes, if creating a
JMS-implemented
Web service.

JMSOperationName Name of the operation in the generated WSDL file.
Default value is either send or receive, depending on the
value of the JMSAction attribute.

No.

JMSMessageType Data type of the single parameter to the send or receive
operation.
Default value is java.lang.String.
If you use this attribute to specify a non-built-in data type, and
set the generateTypes attribute to True, be sure the Java
represenation of this non-built-in data type is in your
CLASSPATH.

No.

Attribute Description Required?
B-26 Programming WebLogic Web Services

servicegen
The following table describes the attributes of the <client> element.

Attribute Description Required?

clientJarName Name of the generated client JAR file.
When the servicegen task packages the Web service, it puts
the client JAR file in the top-level directory of the Web service
WAR file of the EAR file.
Default name is serviceName_client.jar, where
serviceName refers to the name of the Web service (the
serviceName attribute)

Note: If you want a link to the client JAR file to automatically
appear in the Web service Home Page, you should not
change its default name.

No.

packageName Package name into which the generated client interfaces and
stub files are packaged.

Yes.

useServerTypes Specifies where the servicegen task gets the implementation
of any non-built-in Java data types used in a Web service: either
the task generates the Java code or the task gets it from the EAR
file that contains the full implementation of the Web service.
Valid values are True (use the Java code in the EAR file) and
False. Default value is False.
For the list of non-built-in data types for which servicegen can
generate data type components, see “Non-Built-In Data
Types Supported by servicegen and autotype Ant Tasks”
on page 6-13.

No.

saveWSDL When set to True, saves the WSDL file of the Web service in
the generated client JAR file. This means that client applications
do not need to download the WSDL file every time they create
a stub to the Web service, possibly improving performance of
the client because of reduced network usage.
Valid values are True and False. Default value is True.

No.
Programming WebLogic Web Services B-27

B Web Service Ant Tasks and Command-Line Utilities
Equivalent Command-Line Utility

The equivalent command-line utility of the servicegen Ant task is called
weblogic.webservice.servicegen. The description of the flags of the utility is
the same as the description of the Ant task attributes, described in the preceding
sections.

Warning: If you use the weblogic.webservice.servicegen command-line
utility to automatically assemble a Web service, you can create only one
Web service in the web-services.xml file.

The weblogic.webservice.servicegen utility supports the following flags (see
the equivalent attribute for a description of the flag):

-destEar pathname

-warName name

-ejbJar pathname

-javaClassComponents list_of_classnames

-serviceName name

-serviceURI uri

-targetNamespace uri

-protocol protocol

-expandMethods

-clientPackageName name

-clientJarName name

source2wsdd

The source2wsdd Ant task generates a web-services.xml deployment descriptor
file from the Java source file for a Java class-implemented WebLogic Web service.
B-28 Programming WebLogic Web Services

source2wsdd
The source2wsdd Ant task does not generate data type mapping information for any
non-built-in data types used as parameters or return values of the methods of your Java
class If your Java class uses non-built-in data types, you must first run the autotype
Ant task to generate the needed components, then point the typesInfo attribute of the
source2wsdd Ant task to the types.xml file generated by the autotype Ant task.

If your Java class refers to other Java class files, be sure to set the sourcePath
attribute to the directory that contains them.

Note: The fully qualified name of the source2wsdd Ant task is
weblogic.ant.taskdefs.webservices.autotype.JavaSource2DD.

Example

<source2wsdd
 javaSource="c:\source\MyService.java"
 typesInfo="c:\autotype\types.xml"
 ddFile="c:\ddfiles\web-services.xml"
 serviceURI="/MyService"
/>

Attributes

The following table describes the attributes of the source2wsdd Ant task.

Attribute Description Required?

javaSource Name of the Java source file that implements your
Web service component.

Yes.

ddFile Full pathname of the Web services deployment descriptor
file (web-services.xml) which will contain the
generated deployment descriptor information.

Yes.
Programming WebLogic Web Services B-29

B Web Service Ant Tasks and Command-Line Utilities
typesInfo Name of the file that contains the XML Schema
representation and data type mapping information for any
non-built-in data types used as parameters or return value of
the Web service.
The format of the data type mapping information is the same
as that in the <type-mapping> element of the
web-services.xml file.
Typically you have already run the autotype Ant task to
generate this information into a file called types.xml.

Yes.

serviceURI Web service URI portion of the URL used by client
applications to invoke the Web service.

Note: Be sure to specify the leading "/", such as
/TraderService.

The value of this attribute becomes the uri attribute of the
<web-service> element in the generated
web-services.xml deployment descriptor.

Yes.

sourcePath Full pathname of the directory that contains any additional
classes referred to by the Java source file specified with the
javaSource attribute.

No.

ignoreAuthHeader Specifies that the Web Service ignore the
Authorization HTTP header in the SOAP request.

Note: Be careful using this attribute. If you set the value
of this attribute to True, WebLogic Server never
authenticates a client application that is attempting
to invoke a Web Service, even if access control
security constraints have been defined for the EJB,
Web Application, or Enterprise Application that
make up the Web Service. Or in other words, a
client application that does not provide
athentication credentials is still allowed to invoke a
Web Service that has security constraints defined
on it.

Valid values are True and False. Default value is False.

No.

Attribute Description Required?
B-30 Programming WebLogic Web Services

wsdl2Service
wsdl2Service

The wsdl2Service Ant task takes as input an existing WSDL file, and generates the
following WebLogic Web service components:

the web-services.xml deployment descriptor file

a Java source file that partially implements the Web service.

The Java source file contains a template for the full Java class-implemented WebLogic
Web service. The template includes full method signatures that correspond to the
operations in the WSDL file. You write the actual code for these methods so that they
function as you want.

The wsdl2Service Ant task generates a partial implementation for only one service
in a WSDL file (specified by the <service> element.) Use the serviceName
attribute to specify a particular service; if you do not specify this attribute, the
wsdl2Service Ant task generates a partial implementation for the first <service>
element in the WSDL.

The wsdl2Service Ant task does not generate data type mapping information for any
non-built-in data types used as parameters or return values of the operations in the
WSDL file. If the WSDL uses non-built-in data types, you must first run the
autotype Ant task to generate the data type mapping information, then point the
typeMappingFile attribute of the wsdl2Service Ant task to the types.xml file
generated by the autotype Ant task.

Note: The fully qualified name of the wsdl2Service Ant task is
weblogic.ant.taskdefs.webservices.wsdl2service.WSDL2Service.

Example

<wsdl2service
 wsdl="c:\wsdls\myService.wsdl"
 destDir="c:\myService\implementation"
 typeMappingFile="c:\autotype\types.xml"
 packageName="example.ws2j.service"
/>
Programming WebLogic Web Services B-31

B Web Service Ant Tasks and Command-Line Utilities
Attributes

The following table describes the attributes of the wsdl2Service Ant task.

Attribute Description Required?

wsdl The full path name or URL of the WSDL that describes a
Web service for which a partial WebLogic Web service
implementation will be generated.

Yes.

destDir The full pathname of the directory that will contain the
generated components (web-services.xml file and Java
source file that partially implements the Web service.)

Yes.

packageName The package name for the generated Java source file that
partially implements the Web service.

Yes.

serviceName The name of the Web service in the WSDL file for which a
partial WebLogic implementation will be generated. The
name of a Web service in a WSDL file is the value of the
name attribute of the <service> element.
If you do not specify this attribute, the wsdl2Service Ant
task generates a partial implementation for the first
<service> element it finds in the WSDL file.

Note: The wsdl2Service Ant task generates a partial
WebLogic Web service implementation for only
one service in a WSDL file. If your WSDL file
contains more than one Web service, then you
must run wsdl2Service multiple times,
changing the value of this attribute each time.

No.
B-32 Programming WebLogic Web Services

wspackage
wspackage

The wspackage Ant task packages the various components of a WebLogic Web
service into a deployable EAR file. It is assumed that you have already generated these
components, which can include:

The web-services.xml deployment descriptor file

The EJB JAR file that contains the EJBs the implement a Web service

The Java class file that implements a Web service

A client JAR file that users can download and use to invoke the Web service

Implementations of SOAP handlers

Components for any non-built-in data types used as parameters and return values
for the Web service. These components include the XML and Java
representations of the data type and the serialization class that converts the data
between its two representations.

Typically you use other Ant tasks, such as clientgen, autotype, source2wsdd, and
wsdl2Service, to generate the preceding components.

typeMappingFile File that contains data type mapping information for all
non-built-in data types referred to by the operations of the
Web service in the WSDL file. The format of the
information is the same as the data type mapping
information in the <type-mapping> element of the
web-services.xml file.
Typically, you first run the autotype Ant task (specifying
the wsdl attribute) against the same WSDL file and
generate all the non-built-in data type components. One of
the components is a file called types.xml that contains
the non-built-in data type mapping information. Set the
typeMappingFile attribute equal to this file.

Required only if the
operations of the
Web service in the
WSDL file refer to
any non-built-in data
types.

Attribute Description Required?
Programming WebLogic Web Services B-33

B Web Service Ant Tasks and Command-Line Utilities
Note: The fully qualified name of the wspackage Ant task is
weblogic.ant.taskdefs.webservices.wspackage.WSPackage.

Example

<wspackage
 output="c:\myWebService.ear"
 contextURI="web_services"
 codecDir="c:\autotype"
 webAppClasses="example.ws2j.service.SimpleTest"
 ddFile="c:\ddfiles\web-services.xml"
/>

Attributes

The following table describes the attributes of the wspackage Ant task.

Attribute Description Required?

output Pathname of the EAR file or exploded directory which will
contain the Web service and all its components.
To create or update an EAR file, use a.ear suffix when
specifying the EAR file, such as
c:\mywebservice.ear. If the attribute value does not
have a.ear suffix, then the wspackage task creates an
exploded directory.
If you specify an EAR file or directory that does not exist,
the wspackage task creates a new one.

Yes

warName Name of the WAR file into which the Web service is
written. The WAR file is created at the top level of the EAR
file.
The default value is web-services.war.

Note: If you specified an exploded directory with the
output attribute, the wspackage task creates an
exploded Web application directory, even if you
specify a.war suffix for the warName attribute.

No
B-34 Programming WebLogic Web Services

wspackage
contextURI Context root of the Web service. You use this value in the
URL that invokes the Web service.
The default value of the contextURI attribute is the value
of the warName attribute.

No.

ddFile Full pathname of an existing Web services deployment
descriptor file (web-services.xml).

Yes.

filesToEar Comma-separated list of files to be packaged in the root
directory of the EAR.
Use this attribute to specify the EJB JAR files that
implement a Web service, as well as any other supporting
EJB JAR files.

No.

filesToWar Comma-separated list of additional files, such as the client
JAR file, to be packaged in the root directory of the Web
service’s Web application.

No.

webAppClasses Comma-separated list of class files that should be packaged
in the WEB-INF/classes directory of the Web service’s
Web application.
Use this attribute to specify the Java class that implements a
Web service, SOAP handler classes, and so on.

No.

codecDir Name of the directory that contains the serialization classes
for any non-built-in data types used as parameters or return
values in your Web service.

No.

overwrite Specifies whether you want the components of an existing
EAR file or directory to be overwritten. The components
include the web-services.xml file, serialization class,
client JAR files, and so on.
Valid values for this attribute are True and False. The
default value is True.
If you specify False, the wspackage Ant task attempts
to merge the contents of the EAR file/directory and
information in the web-services.xml file.

No

Attribute Description Required?
Programming WebLogic Web Services B-35

B Web Service Ant Tasks and Command-Line Utilities
wsgen

The wsgen Ant task upgrades a Version 6.1 WebLogic Web service to Version 7.0. In
particular, it:

Creates a new web-services.xml file that describes the upgraded Web service.
The task uses values found in the 6.1 build.xml file and default values to
generate the deployment descriptor.

Optionally creates a client JAR file that includes all the classes, stubs, and
interfaces needed by client applications that invoke the Web service. The classes,
stubs, and interfaces are based on the JAX-RPC API.

Packages all the Web service components into a WAR file called
web-services.war, then packages the WAR and EJB JAR files into a
deployable EAR file.

The task takes as input the same build.xml file you used in Version 6.1 to create a
Web service. You can optionally add two new attributes, as described in “Additional
Attributes” on page B-37. The task also takes as input the same archive file or exploded
directory that you used to create the 6.1 Web service.

Warning: Do not use this Ant task for assembling a new 7.0 Web service. Instead,
use the servicegen Ant task. Because the wsgen Ant task is used only
for upgrading Web services from Version 6.1 to 7.0, the task is deprecated
in this version of WebLogic Server.

Note: The fully qualified name of the wsgen Ant task is
weblogic.ant.taskdefs.webservices.wsgen.WSGenTask.

Example

The following build.xml excerpt is taken from the 6.1 RPC-style Web services
example. It includes a new attribute targetNameSpace.

<wsgen
 destpath="weather.ear"
 context="/weather">
 <rpcservices path="weather.jar">
B-36 Programming WebLogic Web Services

wsgen
 <rpcservice bean="statelessSession"
 uri="/weatheruri"
 targetNameSpace="http://www.bea.com/examples"/>
 </rpcservices>
</wsgen>

Additional Attributes

Because you use the 6.1 build.xml file when using wsgen to upgrade your 6.1 Web
service to Version 7.0, the attributes and elements of the build.xml file are those
documented in the 6.1 version of the Programming WebLogic Web Services guide. For
details, see build.xml Attributes and Elements at
http://e-docs.bea.com/wls/docs61/webServices/build_xml.html.

You can, however, add the two attributes listed in the following table to your 6.1
build.xml file and wsgen will add the appropriate information to the new
web-services.xml deployment descriptor file.

Attribute Element Description

targetNameSpace rpcservice,
messageservice

Namespace URI of the Web service.
The default value of this attribute, if you do not add it to your
existing 6.1 build.xml file, is http://example.org.

packageName clientjar Package name into which the generated client interfaces and
stub files should be packaged in the client JAR file.
The default value of this attribute, if you do not add it to your
existing 6.1 build.xml file, is org.example.
Programming WebLogic Web Services B-37

http://e-docs.bea.com/wls/docs61/webServices/build_xml.html
http://e-docs.bea.com/wls/docs61/webServices/build_xml.html

B Web Service Ant Tasks and Command-Line Utilities
B-38 Programming WebLogic Web Services

APPENDIX
C Customizing WebLogic
Web Services

The following sections describe how to customize your WebLogic Web service by
updating the Web application deployment descriptor files of your Web service WAR
file:

“Publishing a Static WSDL File” on page C-1

“Creating a Custom WebLogic Web Service Home Page” on page C-2

Publishing a Static WSDL File

By default, WebLogic Server dynamically generates the WSDL of a WebLogic Web
service, based on the contents of its web-services.xml deployment descriptor file.
See “The WebLogic Web Services Home Page and WSDL URLs” on page 8-22 for
details on getting the URL of the dynamically generated WSDL.

You can, however, include a static version of the WSDL file in the Web services EAR
file and publish its URL as the public description of your Web service. One reason for
publishing a static WSDL is to be able to add more custom documentation than what
the dynamically generated WSDL contains.

Warning: If you publish a static WSDL as the public description of your Web
service, you must always ensure that it remains up to date with the actual
Web service. In other words, if you change your Web service, you must
also manually change the static WSDL to reflect the changes you made to
Programming WebLogic Web Services C-1

C Customizing WebLogic Web Services
your Web service. One advantage of using the dynamic
WebLogic-generated WSDL is that it is always up to date.

To include a static WSDL file in your Web services EAR file and publish it, rather than
the dynamically generated WSDL, to the Web, follow these steps:

1. Un-JAR the WebLogic Web services EAR file and then the WAR file that contains
the web-services.xml file.

2. Put the static WSDL file in a directory of the exploded Web application. This
procedure assumes you put the file at the top-level directory.

3. Update the web.xml file of the Web application, adding a <mime-mapping>
element to map the extension of your WSDL file to an XML mime type.

For example, if the name of your static WSDL file is myService.wsdl, the
corresponding entry in the web.xml file is as follows:

 <mime-mapping>
 <extension>wsdl</extension>
 <mime-type>text/xml</mime-type>
 </mime-mapping>

4. Re-JAR the Web services WAR and EAR files.

5. Invoke the static WSDL file using the standard URL to invoke a static file in a
Web application.

For example, use the following URL to invoke the myService.wsdl file in a
Web application that has a context root of web_services:

http://host:port/web_services/myService.wsdl

Creating a Custom WebLogic Web Service
Home Page

Every WebLogic Web service has a default Home Page that contains links to view the
WSDL of the Web service, test the service, download the client JAR file, and view the
SOAP requests and responses of a client application invoking the Web service. See
“The WebLogic Web Services Home Page and WSDL URLs” on page 8-22 for details.
C-2 Programming WebLogic Web Services

Creating a Custom WebLogic Web Service Home Page
WebLogic Server dynamically generates the Web services Home page and thus it
cannot be customized. If you want to create your own custom Home Page, add an
HTML or JSP file to the Web services WAR file. For more information on creating
JSPs, see Programming WebLogic JSP at
http://e-docs.bea.com/wls/docs70/jsp/index.html.
Programming WebLogic Web Services C-3

http://e-docs.bea.com/wls/docs70/jsp/index.html

C Customizing WebLogic Web Services
C-4 Programming WebLogic Web Services

APPENDIX
D Specifications
Supported by
WebLogic Web Services

WebLogic Web services support the following specifications:

JAX-RPC 1.0 at http://java.sun.com/xml/jaxrpc/index.html

SOAP 1.1 at http://www.w3.org/TR/SOAP

SOAP Messages With Attachments at
http://www.w3.org/TR/SOAP-attachments

Web Services Description Language (WSDL) 1.1 at http://www.w3.org/TR/wsdl

UDDI 2.0 at http://www.uddi.org

XML Schema Part 1: Structures at http://www.w3.org/TR/xmlschema-1/

XML Schema Part 2: Data Types at http://www.w3.org/TR/xmlschema-2/

JSSE at http://java.sun.com/products/jsse
Programming WebLogic Web Services D-1

http://java.sun.com/xml/jaxrpc/index.html
http://www.w3.org/TR/SOAP
http://www.w3.org/TR/SOAP-attachments
http://www.w3.org/TR/wsdl
http://www.uddi.org
http://www.w3.org/TR/xmlschema-1/
http://www.w3.org/TR/xmlschema-2/
http://java.sun.com/products/jsse

D Specifications Supported by WebLogic Web Services
D-2 Programming WebLogic Web Services

	Copyright
	Contents
	About This Document
	1. Overview of WebLogic Web Services
	2. Architectural Overview
	3. Creating a WebLogic Web Service: A Simple Example
	4. Designing WebLogic Web Services
	5. Implementing WebLogic Web Services
	6. Assembling WebLogic Web Services Using Ant Tasks
	7. Assembling a WebLogic Web Service Manually
	8. Invoking Web Services
	9. Using Non-Built-In Data Types
	10. Creating SOAP Message Handlers to Intercept the SOAP Message
	11. Configuring Security
	12. Creating JMS-Implemented WebLogic Web Services
	13. Administering WebLogic Web Services
	14. Publishing and Finding Web Services Using UDDI
	15. Interoperability
	16. Upgrading 6.1 WebLogic Web Services to 7.0
	A. WebLogic Web Service Deployment Descriptor Elements
	B. Web Service Ant Tasks and Command-Line Utilities
	C. Customizing WebLogic Web Services
	D. Specifications Supported by WebLogic Web Services

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	1 Overview of WebLogic Web Services
	What Are Web Services?
	Why Use Web Services?
	Web Service Standards
	SOAP 1.1 with Attachments
	WSDL 1.1
	JAX-RPC
	UDDI 2.0

	WebLogic Web Service Features
	Examples Of Creating and Invoking a Web Service
	Creating WebLogic Web Services: Main Steps
	Differences Between 6.1 and 7.X WebLogic Web Services
	Unsupported Features
	Editing XML Files

	2 Architectural Overview
	WebLogic Web Services Architecture
	Backend Component-Only Operation
	Backend Component and SOAP Message Handler Chain Operation
	SOAP Message Handler Chain-Only Operation

	3 Creating a WebLogic Web Service: A Simple Example
	Description of the Example
	Example of Creating a WebLogic Web Service: Main Steps
	Writing the Java Code for the EJB
	Writing the Java Code for the Non-Built-In Data Type
	Creating EJB Deployment Descriptors
	Assembling the EJB
	Creating the build.xml Ant Build File

	4 Designing WebLogic Web Services
	Choosing Between Synchronous or Asynchronous Operations
	Choosing the Backend Components of Your Web Service
	EJB Backend Component
	Java Class Backend Component

	RPC-Oriented or Document-Oriented Web Services?
	Data Types
	Using SOAP Message Handlers to Intercept the SOAP Message
	Stateful WebLogic Web Service

	5 Implementing WebLogic Web Services
	Overview of Implementing a WebLogic Web Service
	Implementing a WebLogic Web Service: Main Steps
	Writing the Java Code for the Components
	Implementing a Web Service By Writing a Stateless Session EJB
	Implementing a Web Service By Writing a Java Class
	Implementing Non-Built-In Data Types
	Implementing a Document-Oriented Web Service
	Generating a Partial Implementation From a WSDL File
	Running the wsdl2Service Ant Task
	Sample build.xml Files for the wsdl2Service Ant Task

	Implementing Multiple Return Values
	Using Holder Classes to Implement Multiple Return Values

	Throwing SOAP Fault Exceptions

	Using Built-In Data Types
	XML Schema-to-Java Mapping for Built-In Data Types
	Java-to-XML Mapping for Built-In Data Types

	6 Assembling WebLogic Web Services Using Ant Tasks
	Overview of Assembling WebLogic Web Services Using Ant Tasks
	Assembling WebLogic Web Services Using the servicegen Ant task
	What the servicegen Ant Task Does
	Assembling WebLogic Web Services Automatically: Main Steps
	Running the servicegen Ant Task

	Assembling WebLogic Web Services Using Other Ant Tasks
	Running the source2wsdd Ant Task
	Sample build.xml Files for the source2wsdd Ant Task

	Running the autotype Ant Task
	Sample build.xml Files for the Autotype Ant Task

	Running the clientgen Ant Task
	Sample build.xml File for the clientgen Ant Task

	Running the wspackage Ant task
	Sample build.xml Files for the wspackage Ant Task

	The Web Service EAR File Package
	Non-Built-In Data Types Supported by servicegen and autotype Ant Tasks
	Supported XML Non-Built-In Data Types
	Supported Java Non-Built-In Data Types
	Data Type Non-Compliance with JAX-RPC

	Non-Roundtripping of Generated Data Type Components
	Deploying WebLogic Web Services

	7 Assembling a WebLogic Web Service Manually
	Overview of Assembling a WebLogic Web Service Manually
	Assembling a WebLogic Web Service Manually: Main Steps
	Overview of the web-services.xml File
	Creating the web-services.xml File Manually: Main Steps
	Creating the <components> Element
	Creating <operation> Elements
	Specifying the Type of Operation
	Specifying the Parameters and Return Value of the Operation

	Sample web-services.xml Files
	EJB Component Web Service With Built-In Data Types
	EJB Component Web Service With Non-Built-In Data Types
	EJB Component and SOAP Message Handler Chain Web Service
	SOAP Message Handler Chain-Only Web Service

	8 Invoking Web Services
	Overview of Invoking Web Services
	JAX-RPC API
	Examples of Clients That Invoke Web Services

	Creating Java Client Applications to Invoke Web Services: Main Steps
	Getting the Java Client JAR Files
	Running the clientgen Ant Task
	Sample build.xml File for the clientgen Ant Task

	Writing the Java Client Application Code
	Getting Information about a Web Service
	Maintaining the HTTP Session
	Handling Web Services That Crash
	Writing a Simple Static Client
	Writing a Dynamic Client That Uses WSDL
	Writing a Dynamic Client That Does Not Use WSDL
	Writing a Client that Uses Out or In-Out Parameters

	Writing a J2ME Client
	Writing a J2ME Client that Uses SSL

	Creating and Using Portable Stubs
	Using the VersionMaker Utility

	Using a Proxy Server with the WebLogic Web Services Client
	The WebLogic Web Services Home Page and WSDL URLs
	Debugging Errors While Invoking Web Services
	WebLogic Web Services System Properties

	9 Using Non-Built-In Data Types
	Overview of Using Non-Built-In Data Types
	Creating Non-Built-In Data Types Manually: Main Steps
	Writing the XML Schema Data Type Representation
	Writing the Java Data Type Representation
	Writing the Serialization Class
	Creating the Data Type Mapping File
	Updating the web-services.xml File With XML Schema Information

	10 Creating SOAP Message Handlers to Intercept the SOAP Message
	Overview of SOAP Message Handlers and Handler Chains
	Creating SOAP Message Handlers: Main Steps
	Designing the SOAP Message Handlers and Handler Chains
	Implementing the Handler Interface
	Implementing the Handler.init() Method
	Implementing the Handler.destroy() Method
	Implementing the Handler.getHeaders() Method
	Implementing the Handler.handleRequest() Method
	Implementing the Handler.handleResponse() Method
	Implementing the Handler.handleFault() Method
	The javax.xml.soap.SOAPMessage Object
	The SOAPPart Object
	The AttachmentPart Object

	Extending the GenericHandler Abstract Class
	Updating the web-services.xml File with SOAP Message Handler Information
	Using SOAP Message Handlers and Handler Chains in a Client Application

	11 Configuring Security
	Overview of Configuring Security
	Configuring Security: Main Steps
	Controlling Access to WebLogic Web Services
	Securing Web Service URL
	Securing the Stateless Session EJB and Its Methods
	Securing the WSDL and Home Page of the Web Service

	Specifying the HTTPS Protocol
	Coding a Client Application to Invoke a Secure Web Service
	Configuring SSL for a Client Application
	Using the WebLogic Server-Provided SSL Implementation
	Configuring SSL Programatically

	Using a Third-Party SSL Implementation
	Extending the SSLAdapterFactory Class
	Configuring Two-Way SSL For a Client Application
	Using a Proxy Server

	12 Creating JMS-Implemented WebLogic Web Services
	Overview of JMS-Implemented WebLogic Web Services
	Designing JMS-Implemented WebLogic Web Services
	Choosing a Queue or Topic
	Retrieving and Processing Messages
	Example of Using JMS Components

	Implementing JMS-Implemented WebLogic Web Services
	Configuring JMS Components for Message-Style Web Services

	Assembling JMS-Implemented WebLogic Web Services Automatically
	Running the servicegen Ant Task

	Assembling JMS-Implemented WebLogic Web Services Manually
	Packaging the JMS Message Consumers and Producers
	Updating the web-services.xml File With Component Information
	Sample web-services.xml File for JMS Component Web Service

	Deploying JMS-Implemented WebLogic Web Services
	Invoking JMS-Implemented WebLogic Web Services
	Invoking an Asynchronous Web Service Operation to Send Data
	Invoking a Synchronous Web Service Operation to Send Data

	13 Administering WebLogic Web Services
	Overview of Administering WebLogic Web Services
	Viewing the Web Services Deployed on WebLogic Server

	14 Publishing and Finding Web Services Using UDDI
	Introduction to UDDI
	UDDI and Web Services
	UDDI and Business Registry
	UDDI Data Structure

	WebLogic Server UDDI Features
	Invoking the UDDI Directory Explorer
	Using the UDDI Client API

	15 Interoperability
	Overview of Interoperability
	Avoid Using Vendor-Specific Extensions
	Stay Current With the Latest Interoperability Tests
	Understand the Data Models of Your Applications
	Understand the Interoperability of Various Data Types
	Results of SOAPBuilders Interoperability Lab Round 3 Tests
	Interoperating With .NET

	16 Upgrading 6.1 WebLogic Web Services to 7.0
	Overview of Upgrading 6.1 WebLogic Web Services
	Upgrading 6.1 WebLogic Web Services to 7.0 Automatically
	Upgrading 6.1 WebLogic Web Services to 7.0 Manually
	Converting a 6.1 build.xml file to 7.0
	Updating the URL Used to Access the Web Service

	A WebLogic Web Service Deployment Descriptor Elements
	Graphical Representation
	Element Reference
	components
	ejb-link
	fault
	handler
	handler-chain
	handler-chains
	init-param
	init-params
	java-class
	jms-receive-queue
	jms-receive-topic
	jms-send-destination
	jndi-name
	operation
	operations
	param
	params
	return-param
	stateless-ejb
	type-mapping
	type-mapping-entry
	types
	web-service
	web-services

	B Web Service Ant Tasks and Command-Line Utilities
	Overview of WebLogic Web Services Ant Tasks and Command-Line Utilities
	List of Web Services Ant Tasks and Command-Line Utilities
	Using the Web Services Ant Tasks
	Setting the Classpath for the WebLogic Ant Tasks
	Differences in Operating System Case Sensitivity When Manipulating WSDL and XML Schema Files
	Using the Web Services Command-Line Utilities

	autotype
	clientgen
	servicegen
	servicegen
	service
	client

	source2wsdd
	wsdl2Service
	wspackage
	wsgen

	C Customizing WebLogic Web Services
	Publishing a Static WSDL File
	Creating a Custom WebLogic Web Service Home Page

	D Specifications Supported by WebLogic Web Services

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

