
BEAWebLogic
Server™

Programming WebLogic
Management Services
with JMX

Release 8.1
Revised: October 8, 2004

Copyright
Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems License
Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the law to copy
the software except as specifically allowed in the agreement. This document may not, in whole or in part, be copied,
photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form without prior
consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR supplement
16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT WARRANTY OF
ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT WARRANT, GUARANTEE, OR MAKE
ANY REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE SOFTWARE OR
WRITTEN MATERIAL IN TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks
BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA WebLogic Commerce
Server, BEA WebLogic Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic
Server, BEA WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

Programming WebLogic Management Services with JMX v

Contents

About This Document
Audience .xii

e-docs Web Site .xii

How to Print the Document .xii

Contact Us! .xii

Documentation Conventions . xiii

1. Overview of WebLogic JMX Services
WebLogic Server Managed Resources and MBeans . 1-2

Basic Organization of a WebLogic Server Domain . 1-3

MBeans for Configuring Managed Resources . 1-3

Local Replicas of Configuration MBeans . 1-4

The Life Cycle of Configuration MBeans . 1-5

Replication of MBeans for Managed Server Independence 1-8

Documentation for Configuration MBean APIs . 1-9

MBeans for Viewing the Runtime State of Managed Resources 1-10

Documentation for Runtime MBean APIs . 1-11

Security MBeans. 1-12

Non-WebLogic Server MBeans . 1-13

MBean Servers and the MBeanHome Interface . 1-13

Local MBeanHome and the Administration MBeanHome 1-15

Notifications and Monitoring. 1-17

vi Programming WebLogic Management Services with JMX

The Administration Console and the weblogic.Admin Utility . 1-17

The Administration Console . 1-17

The weblogic.Admin Utility . 1-18

2. Accessing WebLogic Server MBeans
Accessing MBeans: Main Steps . 2-2

Determining Which Interfaces to Use. 2-3

Accessing an MBeanHome Interface . 2-4

Using the Helper APIs to Retrieve an MBeanHome Interface 2-4

Example: Retrieving a Local MBeanHome Interface. 2-5

Using JNDI to Retrieve an MBeanHome Interface . 2-6

Example: Retrieving the Administration MBeanHome from an External Client 2-8

Example: Retrieving a Local MBeanHome from an Internal Client 2-9

Using the Type-Safe Interface to Access MBeans . 2-10

Retrieving a List of All MBeans . 2-10

Retrieving MBeans By Type and Selecting From the List 2-12

Walking the Hierarchy of Local Configuration and Runtime MBeans 2-14

Using the MBeanServer Interface to Access MBeans . 2-18

3. WebLogic Server Management Namespace
Conventions for WebLogicObjectName. 3-1

Conventions for Security-Provider MBean Names. 3-5

Locating Administration MBeans Within the Namespace . 3-6

Server Communication and Protocols Configuration Namespace. 3-7

Domain and Server Logging Configuration Namespace . 3-9

Applications Configuration Namespace . 3-10

Security Configuration Namespace . 3-12

JDBC Configuration Namespace . 3-15

Programming WebLogic Management Services with JMX vii

JMS Configuration Namespace . 3-16

Clusters Configuration Namespace . 3-19

Machines and Node Manager Configuration Namespace . 3-20

Using weblogic.Admin to Find the WebLogicObjectName . 3-21

Using weblogic.Admin to Find the Name of a Security Provider MBean 3-24

4. Accessing and Changing Configuration Information
Example: Using weblogic.Admin to View the Message Level for Standard Out 4-2

Example: Configuring the Message Level for Standard Out. 4-3

Setting and Getting Encrypted Values. 4-5

Set the Value of an Encrypted Attribute . 4-5

Compare an Unencrypted Value with an Encrypted Value . 4-6

Example: Setting and Getting an Encrypted Attribute . 4-6

5. Accessing Runtime Information
Example: Determining the Active Domain and Servers . 5-1

Getting the Name of the Current Server Instance . 5-4

Using weblogic.Admin to Determine Active Domains and Servers 5-5

Example: Viewing and Changing the Runtime State of a WebLogic Server Instance . . . 5-6

Using a Local MBeanHome and getRuntimeMBean() . 5-6

Using the Administration MBeanHome and getMBeansByType() 5-8

Using the Administration MBeanHome and getMBean() . 5-10

Using the MBeanServer Interface . 5-12

Example: Viewing Runtime Information About Clusters . 5-14

Viewing Runtime Information for EJBs . 5-16

Example: Retrieving Runtime Information for All Stateful and Stateless EJBs . . . 5-19

Viewing Runtime Information for Servlets . 5-23

Example: Retrieving Runtime Information for Servlets . 5-24

viii Programming WebLogic Management Services with JMX

6. Using WebLogic Server MBean Notifications and Monitors
How Notifications are Broadcast and Received . 6-1

Monitoring Changes in MBeans . 6-3

Best Practices: Listening Directly Compared to Monitoring . 6-5

Best Practices: Commonly Monitored Attributes . 6-6

Listening for Notifications from WebLogic Server MBeans: Main Steps 6-9

WebLogic Server Notification Types. 6-9

Creating a Notification Listener. 6-10

Creating a Notification Filter . 6-13

Adding Filter Classes to the Server Classpath . 6-14

Registering a Notification Listener and Filter . 6-15

Listening for Configuration Auditing Messages: Main Steps 6-18

Notification Listener for Configuration Auditing Messages 6-19

Notification Filter for Configuration Auditing Messages. 6-19

Registration Class for Configuration Auditing Messages 6-20

Using Monitor MBeans to Observe Changes: Main Steps . 6-22

Choosing a Monitor MBean Type . 6-22

Monitor Notification Types . 6-23

Error Notification Types . 6-24

Creating a Notification Listener for a Monitor MBean . 6-25

Instantiating the Monitor and Listener. 6-26

Example: Monitoring an MBean on a Single Server . 6-26

Example: Monitoring Instances of an MBean on Multiple Servers 6-30

Configuring CounterMonitor Objects . 6-31

Configuring GaugeMonitor Objects . 6-33

Configuring StringMonitor Objects . 6-34

Programming WebLogic Management Services with JMX ix

7. Using the WebLogic Timer Service to Generate and Receive
Notifications

Using the WebLogic Timer Service: Main Steps . 7-1

Configuring a Timer MBean to Emit Notifications. 7-2

Specifying Time Intervals . 7-4

Example: Generating a Notification Every Minute . 7-4

Removing Notifications. 7-7

x Programming WebLogic Management Services with JMX

Programming WebLogic Management Services with JMX xi

About This Document

This document describes how to use the BEA WebLogic Server™ management APIs
to configure and monitor WebLogic Server domains, clusters, and server instances.

The document is organized as follows:

Chapter 1, “Overview of WebLogic JMX Services” describes the WebLogic
Server management interface and provides overviews of WebLogic Server
MBeans, MBean home interfaces, and the distributed management architecture.

Chapter 2, “Accessing WebLogic Server MBeans,” describes how to access
interfaces for working with WebLogic Server MBeans.

Chapter 4, “Accessing and Changing Configuration Information,” provides
examples of retrieving and modifying the configuration of WebLogic Server
resources.

Chapter 5, “Accessing Runtime Information,” provides examples of retrieving
and modifying runtime information about WebLogic Server domains and server
instances.

Chapter 6, “Using WebLogic Server MBean Notifications and Monitors,”
describes how to observe and respond to changes in the values of WebLogic
Server MBean attributes.

Chapter 7, “Using the WebLogic Timer Service to Generate and Receive
Notifications,” which describes configuring the timer service to emit
notifications at specific dates and times or at a constant interval.

Note: The WebLogic Security Service provides MBeans and tools for generating
additional MBeans that manage security on a WebLogic Server. These
MBeans are called Security MBeans and their usage model is different from
the one described in this document. For information on Security MBeans, refer
to Developing Security Providers for WebLogic Server.

http://e-docs.bea.com/wls/docs81/dvspisec/index.html

About Th is Document

xii Programming WebLogic Management Services with JMX

Audience
This document is written for independent software vendors (ISVs) and other developers who are
interested in creating custom applications that use BEA WebLogic Server facilities to monitor
and configure applications and server instances. It assumes that you are familiar with the BEA
WebLogic Server platform and the Java programming language, but not necessarily with Java
Management Extensions (JMX).

While the document describes how to access and use the Managed Beans (MBeans) that
WebLogic Server provides, it does not describe how to create your own, additional MBeans. For
information about creating and using MBeans in addition to the ones that WebLogic Server
provides, refer to the JMX 1.0 specification, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

e-docs Web Site
BEA product documentation is available on the BEA corporate Web site. From the BEA Home
page, click on Product Documentation.

How to Print the Document
You can print a copy of this document from a Web browser, one main topic at a time, by using
the File→Print option on your Web browser.

A PDF version of this document is available on the WebLogic Server documentation Home page
on the e-docs Web site (and also on the documentation CD). You can open the PDF in Adobe
Acrobat Reader and print the entire document (or a portion of it) in book format. To access the
PDFs, open the WebLogic Server documentation Home page, click Download Documentation,
and select the document you want to print.

Adobe Acrobat Reader is available at no charge from the Adobe Web site at
http://www.adobe.com.

Contact Us!
Your feedback on BEA documentation is important to us. Send us e-mail at
docsupport@bea.com if you have questions or comments. Your comments will be reviewed
directly by the BEA professionals who create and update the documentation.

In your e-mail message, please indicate the software name and version you are using, as well as
the title and document date of your documentation. If you have any questions about this version

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://www.adobe.com
mailto:docsupport@bea.com

Programming WebLogic Management Services with JMX xiii

of BEA WebLogic Server, or if you have problems installing and running BEA WebLogic
Server, contact BEA Customer Support through BEA WebSupport at http://www.bea.com. You
can also contact Customer Support by using the contact information provided on the Customer
Support Card, which is included in the product package.

When contacting Customer Support, be prepared to provide the following information:

Your name, e-mail address, phone number, and fax number

Your company name and company address

Your machine type and authorization codes

The name and version of the product you are using

A description of the problem and the content of pertinent error messages

Documentation Conventions
The following documentation conventions are used throughout this document.

Convention Usage

Ctrl+Tab Keys you press simultaneously.

italics Emphasis and book titles.

monospace
text

Code samples, commands and their options, Java classes, data types,
directories, and file names and their extensions. Monospace text also
indicates text that the user is told to enter from the keyboard.

Examples:
import java.util.Enumeration;

chmod u+w *

config/examples/applications

.java

config.xml

float

monospace
italic
text

Placeholders.

Example:
String CustomerName;

http://www.bea.com

About Th is Document

xiv Programming WebLogic Management Services with JMX

UPPERCASE
MONOSPACE
TEXT

Device names, environment variables, and logical operators.

Examples:

LPT1

BEA_HOME

OR

{ } A set of choices in a syntax line.

[] Optional items in a syntax line. Example:

java utils.MulticastTest -n name -a address
[-p portnumber] [-t timeout] [-s send]

| Separates mutually exclusive choices in a syntax line. Example:

java weblogic.deploy [list|deploy|undeploy|update]
 password {application} {source}

... Indicates one of the following in a command line:
• An argument can be repeated several times in the command line.
• The statement omits additional optional arguments.
• You can enter additional parameters, values, or other information

.

.

.

Indicates the omission of items from a code example or from a syntax line.

Convention Usage

Programming WebLogic Management Services with JMX 1-1

C H A P T E R 1

Overview of WebLogic JMX Services

WebLogic Server implements the Sun Microsystems, Inc. Java Management Extensions (JMX)
1.0 specification to provide open and extensible management services. WebLogic Server adds its
own set of convenience methods and other extensions to facilitate working in the WebLogic
Server distributed environment.

All WebLogic Server resources are managed through these JMX-based services, and third-party
services and applications that run within WebLogic Server can be managed through them as well.
You can build your own management utilities that use these JMX services to manage WebLogic
Server resources and applications.

The following sections provide an overview of the WebLogic Server JMX services:

“WebLogic Server Managed Resources and MBeans” on page 1-2

“MBean Servers and the MBeanHome Interface” on page 1-13

“Notifications and Monitoring” on page 1-17

“The Administration Console and the weblogic.Admin Utility” on page 1-17

To view the JMX 1.0 specification, download it from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The API documentation is
included in the archive that you download.

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Overv iew o f WebLog ic JMX Serv ices

1-2 Programming WebLogic Management Services with JMX

WebLogic Server Managed Resources and MBeans
Subsystems within WebLogic Server (such as JMS Provider and JDBC Container) and the items
that they control (such as JMS servers and JDBC connection pools) are called WebLogic Server
managed resources. Each managed resource includes a set of attributes that can be configured
and monitored for management purposes. For example, each JDBC connection pool includes
attributes that define its name, the name of its driver, its initial capacity, and its cache size. Some
managed resources provide additional methods (operations) that can be used for management
purposes. The WebLogic JMX services expose these management attributes and operations
through one or more managed beans (MBeans). An MBean is a concrete Java class that is
developed per JMX specifications. It can provide getter and setter operations for each
management attribute within a managed resource along with additional management operations
that the resource makes available. (See Figure 1-1.)

Figure 1-1 Managed Resources and Managed Beans

WebLogic Server MBeans that expose attributes and operations for configuring a managed
resource are called Configuration MBeans while MBeans that provide information about the
runtime state of a managed resource are called Runtime MBeans. The functions of configuring
resources and viewing data about the runtime state of resources in a WebLogic Server domain are
different enough that Configuration MBeans and Runtime MBeans are distributed and
maintained differently.

WebLogic Server

Managed Resource

*1

ManagementAttribute-A

ManagementOperation-A

ManagementAttribute-B

Managed Bean

getManagementAttribute-A

ManagementOperation-A

getManagementAttribute-B

setManagementAttribute-A

setManagementAttribute-B

WebLogic Se rver Managed Resources and MBeans

Programming WebLogic Management Services with JMX 1-3

The following sections describe how WebLogic Server distributes and maintains MBeans:

“Basic Organization of a WebLogic Server Domain” on page 1-3

“MBeans for Configuring Managed Resources” on page 1-3

“MBeans for Viewing the Runtime State of Managed Resources” on page 1-10

“Security MBeans” on page 1-12

“Non-WebLogic Server MBeans” on page 1-13

Basic Organization of a WebLogic Server Domain
A WebLogic Server administration domain is a logically related group of WebLogic Server
resources. Domains include a special WebLogic Server instance called the Administration
Server, which is the central point from which you configure and manage all resources in the
domain. Usually, you configure a domain to include additional WebLogic Server instances called
Managed Servers. You deploy applications, EJBs, and other resources developed onto the
Managed Servers and use the Administration Server for configuration and management purposes
only.

Note: WebLogic Server does not support multi-domain interaction using either the
Administration Console, the weblogic.Admin utility, or WebLogic Ant tasks. This
restriction does not, however, explicitly preclude a user written Java application from
accessing multiple domains simultaneously.

Using multiple Managed Servers enables you to balance loads and provide failover protection for
critical applications, while using single Administration Server simplifies the management of the
Managed Server instances. For more information about domains, refer to "Overview of
WebLogic Server Domains" in Configuring and Managing WebLogic Server.

MBeans for Configuring Managed Resources
To support the WebLogic Server model of centralizing management responsibilities on the
Administration Server, the Administration Server hosts Configuration MBeans for all managed
resources on all server instances in the domain. In addition, the Administration Server saves
changes to configuration data so that it is available when you shut down and restart a server
instance.

To change the configuration of a WebLogic Server resource, you modify the values in the
Configuration MBeans on the Administration Server.

http://e-docs.bea.com/wls/docs81/adminguide/overview_domain.html
http://e-docs.bea.com/wls/docs81/adminguide/overview_domain.html

Overv iew o f WebLog ic JMX Serv ices

1-4 Programming WebLogic Management Services with JMX

Local Replicas of Configuration MBeans
To enhance performance, each Managed Server creates local replicas of all Configuration
MBeans in a domain. WebLogic Server subsystems and applications that interact with MBeans
use the replicas on the local server instead of initiating remote calls to the Administration Server.
(See Figure 1-2.)

Figure 1-2 MBean Replication

The Configuration MBeans on the Administration Server are called Administration MBeans,
and the replicas on the Managed Servers are called Local Configuration MBeans.

Note: In addition to hosting Administration MBeans, the Administration Server hosts the Local
Configuration MBeans that are used by its own subsystems and by any applications that
are deployed on the Administration Server.

Administration Server

MBeans

MBeans

Managed
Resources
Managed
Resources
MBean
Client

Managed Servers
replicate the Configuration

MBean clients
use the local replicas.

Managed Server B

Managed Server A

MBeans

Managed
Resources
Managed
Resources
MBean
Client

The Administration Server
hosts Configuration MBeans
for all servers in a domain.

MBeans.

WebLogic Se rver Managed Resources and MBeans

Programming WebLogic Management Services with JMX 1-5

The Life Cycle of Configuration MBeans
This section describes how Administration MBeans and Local Configuration MBeans are
initialized, how changes to configuration data are propagated throughout the WebLogic Server
system, and how attribute values can be changed so that they are available when you restart server
instances:

1. The life cycle of a Configuration MBean begins when you start the Administration Server.
During its startup cycle, the Administration Server initializes all the Administration MBeans
for the domain with data from the domain’s config.xml file. (See Figure 1-3.)

Figure 1-3 Initializing Configuration MBeans

The Administration Server reads data from the config.xml file only during its startup
cycle.

2. When a Managed Server starts, it contacts the Administration Server for its configuration
data. By default, it creates replicas of the Administration MBeans that configure resources
in the domain. However, you can use arguments in the server’s startup command to override
values of the Administration MBeans.

For example, for Managed Server A, the config.xml file states that its listen port is 8000.
When you use the weblogic.Server command to start Managed Server A, you include
the -Dweblogic.ListenPort=7501 startup option to change the listen port for the current
server session. The Managed Server creates a replica of the Administration MBeans, but
substitutes 7501 as the value of its listen port. When you restart Managed Server A, it will
revert to using the value from the config.xml file, 8000. (See Figure 1-4.)

Administration Server

<Server

ListenPort="7001"
 Name="MedRecServer"

>

<?xml version="1.0"
encoding="UTF-8"?>

<Domain>

</Domain>

config.xml

ServerMBean

getListenPort
 getName

setListenPort
 setName

 Name="MedRecServer"

</Server>

ListenPort="7001"

Overv iew o f WebLog ic JMX Serv ices

1-6 Programming WebLogic Management Services with JMX

Figure 1-4 Overriding Administration MBean Values

Administration Server

Managed
Resources
Managed
Resources
MBean
Client

2. At startup, Managed Servers
 replicate the Administration

Managed Server B

Managed Server A

MBean

config.xml

1. At startup, the Administration
 Server initializes Administration
 MBeans with data from the
 config.xml file.

 MBeans.

weblogic.Server
-Dweblogic.ListenPort=7501

 Startup options override
 the values from the
 Administration MBeans.

weblogic.ListenPort=8000

Administration MBeans

weblogic.ListenPort=7501

Local Configuration MBean
Managed
Resources
Managed
Resources
MBean
Client

WebLogic Se rver Managed Resources and MBeans

Programming WebLogic Management Services with JMX 1-7

When you start an Administration Server, any startup command arguments that you use to
override the values in config.xml affect only the values of the Local Configuration
MBeans on the Administration Server. The command arguments do not affect the values of
the Administration MBeans and therefore do not affect subsequent server sessions. (See
Figure 1-5.)

Figure 1-5 Overriding Values on the Administration Server

Administration Server

weblogic.Server
-Dweblogic.ListenPort=7501

Startup options for
Administration Server
affect only the Local
Configuration MBeans
on the Administration Server

MBean

Managed
Resources
Managed
Resources
MBean
Client

Local Configuration
MBean

MBean

MBean

MBean
Administration
MBean

Overv iew o f WebLog ic JMX Serv ices

1-8 Programming WebLogic Management Services with JMX

3. If you change a value in an Administration MBean, and if the corresponding Managed
Server is running, the Administration Server propagates the change to the Local
Configuration MBean. Depending on the attribute, the underlying resource might not be
able to accept the new value until it restarts. The WebLogic Server Javadoc indicates
whether a managed resource can accept new values for an attribute during the current
session. Even if a managed resource can accept new values, depending on the frequency
with which the resource checks for configuration changes, the resource might not use the
updated value immediately.

Note: BEA recommends that you change only the values of Administration MBean
attributes. Do not change attribute values in Local Configuration MBeans. When the
Managed Server replicates the data of other Managed Servers, it uses the values that
are stored in Administration MBeans. Communication problems can occur if the
values in Administration MBeans and Local Configuration MBeans differ.

4. Periodically, the Administration Server determines whether Administration MBeans have
been changed and writes any changes back to config.xml. Changes also are written to
config.xml when the Administration Server shuts down or when MBean attributes are
modified by a WebLogic Server utility such as the Administration Console or
weblogic.Admin.

5. Local Configuration MBeans are destroyed when you shut down Managed Servers.
Administration MBeans are destroyed when you shut down the Administration Server.

Replication of MBeans for Managed Server Independence
Managed Server Independence (MSI) is a feature that enables a Managed Server to start if the
Administration Server is unavailable. If a Managed Server is configured for MSI, in addition to
its Local Configuration MBeans, it also contains a copy of all Administration MBeans for the
domain.

Do not interact with these Administration MBeans on a Managed Server. They reflect the last
known configuration for the domain and are used only for starting the Managed Server in MSI
mode. Modifying an Administration MBean on a Managed Server can cause the Managed
Server’s configuration to be inconsistent with the Administration Server, which will lead to
unpredictable results. In addition, Managed Servers are not aware of the Administration MBeans
on other Managed Servers.

For more information on MSI, refer to "Starting a Managed Server When the Administration
Server Is Not Accessible" in Configuring and Managing WebLogic Server.

http://e-docs.bea.com/wls/docs81/adminguide/failures.html#starting_MS_when_AS_not_accessible
http://e-docs.bea.com/wls/docs81/adminguide/failures.html#starting_MS_when_AS_not_accessible

WebLogic Se rver Managed Resources and MBeans

Programming WebLogic Management Services with JMX 1-9

Documentation for Configuration MBean APIs
To view the documentation for Configuration MBeans:

1. Open the WebLogic Server Javadoc.

2. In the top left pane of the Web browser, click weblogic.management.configuration.

The lower left pane displays links for the package.

3. In the lower left pane, click weblogic.management.configuration again.

The right pane displays the package summary. (See Figure 1-6.)

Figure 1-6 Javadoc for the configuration Package

4. Click on an interface name to view its API documentation.

http://e-docs.bea.com/wls/docs81/javadocs/index.html

Overv iew o f WebLog ic JMX Serv ices

1-10 Programming WebLogic Management Services with JMX

MBeans for Viewing the Runtime State of Managed Resources
WebLogic Server managed resources provide performance metrics and other information about
their runtime state through one or more Runtime MBeans. Runtime MBeans are not replicated
like Configuration MBeans, and they exist only on the same server instance as their underlying
managed resources.

Because Runtime MBeans contain only transient data, they do not save their data in the
config.xml file. When you shut down a server instance, all runtime statistics and metrics from
the Runtime MBeans are destroyed.

The following figure (Figure 1-7) illustrates how Runtime MBeans, Administration MBeans, and
Local Configuration MBeans are distributed throughout a domain.

Figure 1-7 Distribution of MBeans

Administration Server

Managed
Resources
Managed
Resources
MBean
Client

Runtime MBeans

Managed
Resources
Managed
Resources
MBean
Client

Local Configuration
MBeansRuntime MBeans Local Configuration

MBeans

Administration
MBeans

Managed
Resources
Managed
Resources
MBean
Client

Local Configuration
MBeansRuntime MBeans

Managed Server B
Managed Server A

WebLogic Se rver Managed Resources and MBeans

Programming WebLogic Management Services with JMX 1-11

You can use the Administration Console, the weblogic.Admin utility, or MBean APIs to view
the values. (See Figure 1-8.)

Figure 1-8 Viewing Runtime Metrics from the Administration Console

You can also use these interfaces to change some runtime values. For example, the
weblogic.management.runtime.DeployerRuntimeMBean activates and deactivates a
deployed module by changing its runtime state.

Documentation for Runtime MBean APIs
To view the documentation for Runtime MBeans:

1. Open the WebLogic Server Javadoc.

2. In the top left pane of the Web browser, click weblogic.management.runtime.

The lower left pane displays links for the package.

http://e-docs.bea.com/wls/docs81/javadocs/index.html

Overv iew o f WebLog ic JMX Serv ices

1-12 Programming WebLogic Management Services with JMX

3. In the lower left pane, click weblogic.management.runtime again.

The right pane displays the package summary. (See Figure 1-9.)

Figure 1-9 Javadoc for the runtime Package

4. Click on an interface name to view its API documentation.

Security MBeans
The WebLogic Security Service provides MBeans and tools for generating additional MBeans
that manage security on a WebLogic Server. These MBeans are called Security MBeans and their
usage model is different from the one described in this document. For information on Security
MBeans, refer to Developing Security Providers for WebLogic Server.

http://e-docs.bea.com/wls/docs81/dvspisec/index.html

MBean Serve rs and the MBeanHome In te r face

Programming WebLogic Management Services with JMX 1-13

Non-WebLogic Server MBeans
WebLogic Server provides hundreds of MBeans, many of which are used to configure and
monitor EJBs, Web applications, and other deployable J2EE modules. If you want to use
additional MBeans to configure your applications or services, you can create your own MBeans.

Any MBeans that you create can take advantage of the full set of JMX 1.0 features, as defined by
the JMX specification (which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html).

However, only MBeans that are provided by WebLogic Server can use the WebLogic Server
extensions to JMX. For example, any MBeans that you create for your applications cannot save
data in the config.xml file and they cannot use the type-safe interface as described in the next
section, “MBean Servers and the MBeanHome Interface.”

MBean Servers and the MBeanHome Interface
Within a WebLogic Server instance, the actual work of registering and providing access to
MBeans is delegated to an MBean Server subsystem. The MBean Server on a Managed Server
registers and provides access only to the Local Configuration MBeans and Runtime MBeans on
the current Managed Server. The MBean Server on an Administration Server registers and
provides access to the domain’s Administration MBeans as well as the Local Configuration
MBeans and Runtime MBeans on the Administration Server.

Note: On a Managed Server that is configured for Managed Server Independence (MSI), the
MBean Server also registers the Administration MBean replicas that the server uses to
start if the Administration Server is not available. Do not interact with these
Administration MBean replicas. For more information, refer to “Replication of MBeans
for Managed Server Independence” on page 1-8.

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Overv iew o f WebLog ic JMX Serv ices

1-14 Programming WebLogic Management Services with JMX

To access the MBean Server subsystem, you use the weblogic.management.MBeanHome
interface. From MBeanHome, you can use any of the following interfaces to interact with the
MBean Server and its MBeans (see Figure 1-10):

javax.management.MBeanServer, which is the standard JMX interface for interacting
with MBeans. You can use this interface to look up MBeans that are registered in an
MBean Server, determine the set of operations available for an MBean, and determine the
type of data that each operation returns. If you invoke MBean operations through the
MBeanServer interface, you must use standard JMX methods. For example:

– MBeanHome.getMBeanServer().getAttribute(MBeanObjectName,

attributeName)

– MBeanHome.getMBeanServer().setAttribute(MBeanObjectName,

attributeName)

– MBeanHome.getMBeanServer().invoke(MBeanObjectName, operationName,

params, signature)

For a complete list of MBeanServer APIs, refer to view the JMX 1.0 API documentation,
which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that you
download includes the API documentation.

The MBeanServer interface is your only option for interacting with MBeans that you have
created and registered (non-WebLogic MBeans).

weblogic.management.RemoteMBeanServer, which extends the
javax.management.MBeanServer and java.rmi.Remote interfaces.Use the
RemoteMBeanServer interface if you want to use standard JMX techniques to access
WebLogic Server MBeans from remote JVMs or if you want to interact with
non-WebLogic MBeans from a remote JVM.

A WebLogic Server type-safe interface that makes it appear as though you can invoke an
MBean’s methods directly. You can use this interface to look up MBeans that are registered
in an MBean Server and invoke get, set, and other operations on the MBean. For example:

wlMBean = MBeanHome.getMBean(WebLogicObjectName)
wlMBean.getAttribute
wlMBean.setAttribute

wlMBean.operationName

The type-safe interface extends the java.rmi.Remote interface, so you can use it to
access WebLogic Server MBeans from remote JVMs.

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

MBean Serve rs and the MBeanHome In te r face

Programming WebLogic Management Services with JMX 1-15

Figure 1-10 MBeans Servers and Their Interfaces

Local MBeanHome and the Administration MBeanHome
All instances of WebLogic Server provide a local MBeanHome interface through which you can
access the MBeans that are hosted in the server instance’s MBean Server.

For Managed Servers and Administration Servers, the local MBeanHome interface provides access
to the Runtime MBeans for the current server only and to all Local Configuration MBeans in the
domain.

The Administration Server provides an additional instance of the MBeanHome interface. This
Administration MBeanHome provides access to Administration MBeans along with all other
MBeans on all server instances in the domain. The Administration MBeanHome uses RMI to
contact MBeans on Managed Servers, which uses more network resources and might take longer
than using a local MBeanServer or MBeanHome interface. (See Figure 1-11.)

WebLogic Server

MBean Server
Type-Safe

MBeanServer

MBeanHome

Overv iew o f WebLog ic JMX Serv ices

1-16 Programming WebLogic Management Services with JMX

Figure 1-11 Local and Administration MBeanHome Interfaces

The local MBeanHome and the Administration MBeanHome are two instances of the same interface
class, so the APIs for the two types of MBeanHome differ only in the name of the MBeanHome
instance and in the set of MBeans that you can access.

MBeanHome
Administration

Administration Server

MBean Server
Type-Safe

MBeanServer

MBeanHome
Local

Managed Server

MBean Server
Type-Safe

MBeanServer

MBeanHome
Local

Type-Safe

MBeanServer

Administration
MBeans

Local Configuration
MBeans

Runtime MBeans

Local Configuration
MBeans

Runtime MBeans

Not i f i ca t i ons and Mon i to r ing

Programming WebLogic Management Services with JMX 1-17

Notifications and Monitoring
Depending on your management needs, you can use MBean APIs to view MBean attributes only
upon request, or you can use the WebLogic Server notification and monitoring facilities, which
automatically broadcast reports (JMX notifications) when MBean attributes change.

To use these facilities:

Create a JMX listener, which listens for and reports all attribute changes within an MBean
that you specify. For example, you could use a listener with some additional logic to send
an email to a System Administrator any time a user changes the configuration of a
deployed component. For information about using listeners, refer to Chapter 6, “Using
WebLogic Server MBean Notifications and Monitors.”

Create a JMX monitor, which listens for and reports only the changes to specific MBean
attributes that fall outside a set of parameters that you set. For example, you could use a
monitor with some additional logic to send an email to a System Administrator when the
number of open thread pools exceeds a specified limit. For more information, refer to
Chapter 6, “Using WebLogic Server MBean Notifications and Monitors.”

The Administration Console and the weblogic.Admin Utility
The WebLogic Server Administration Console and the weblogic.Admin utility are examples of
management utilities that use the WebLogic Server JMX services. You can use these interfaces
to familiarize yourself with WebLogic Server management services before developing your JMX
applications.

The Administration Console
The Administration Console is a Web application with servlets that invoke the WebLogic Server
JMX APIs. Almost all of the values that the Administration Console presents are attributes of
Administration MBeans and Runtime MBeans. Because the Administration Console does not
read or write Local Configuration MBeans, it is possible that it reports a value that a server
instance is not currently using. For example, if you use a weblogic.Server startup option to
override the configured listen port, the Administration Console reports the value that is in the
config.xml file, not the overriding value.

To determine which MBean attribute the Administration Console is presenting, click the question
mark icon in the top banner. In the help window, click the Attributes link to see the MBean class
and attribute that is associated with field on the Administration Console.

Overv iew o f WebLog ic JMX Serv ices

1-18 Programming WebLogic Management Services with JMX

The caution icon (yellow triangle with an exclamation point) next to a field in the Administration
Console indicates that an attribute is not dynamic. If you modify such an attribute, the underlying
managed resource cannot use the new value until you restart the server.

If you modify a dynamic value from the Administration Console, the console updates the
corresponding Administration MBean. For information on how this change is propagated to the
Local Configuration MBean, refer to “The Life Cycle of Configuration MBeans” on page 1-5.

The weblogic.Admin Utility
The weblogic.Admin utility provides several commands that create, get and set values for,
invoke operations on, and delete instances of Administration and Configuration MBeans. It also
provides commands to get values and invoke operations on Runtime MBeans. You could create
shell scripts that use this utility instead of creating JMX applications to programmatically interact
with the WebLogic Server management services, however, the performance of a JMX application
is superior to a shell script that invokes command-line utilities.

You can also use the weblogic.Admin utility to verify object names of MBeans and to get and
set attributes from a command line before committing to writing JMX code. Subsequent sections
in this document provide examples of using the weblogic.Admin utility as part of your JMX
development.

For more information, refer to "Commands for Managing WebLogic Server MBeans" in the
WebLogic Server Command Line Reference.

http://e-docs.bea.com/wls/docs81/admin_ref/cli.html#MBean_Management_Command_Reference

Programming WebLogic Management Services with JMX 2-1

C H A P T E R 2

Accessing WebLogic Server MBeans

All JMX tasks—viewing or changing MBean attributes, using notifications, and monitoring
changes—use the same process to access MBeans.

The following sections describe how to access WebLogic Server MBeans:

“Accessing MBeans: Main Steps” on page 2-2

“Determining Which Interfaces to Use” on page 2-3

“Accessing an MBeanHome Interface” on page 2-4

“Using the Type-Safe Interface to Access MBeans” on page 2-10

“Using the MBeanServer Interface to Access MBeans” on page 2-18

Access ing WebLog ic Se rve r MBeans

2-2 Programming WebLogic Management Services with JMX

Accessing MBeans: Main Steps
The main steps for accessing MBeans in WebLogic Server are as follows:

1. Use a weblogic.management.MBeanHome interface to access the MBean Server. See
“Accessing an MBeanHome Interface” on page 2-4.

2. Use one of the following interfaces to retrieve, look up, and invoke operations on MBeans:

– A type-safe interface that WebLogic Server provides. This interface, which is a
WebLogic Server extension to JMX, can retrieve and invoke operations only on the
MBeans that WebLogic Server provides. See “Using the Type-Safe Interface to Access
MBeans” on page 2-10.

– The standard JMX javax.management.MBeanServer interface, which can retrieve
and invoke operations on WebLogic Server MBeans or on MBeans that you create. See
“Using the MBeanServer Interface to Access MBeans” on page 2-18.

– The weblogic.management.RemoteMBeanServer interface, which extends the
javax.management.MBeanServer and java.rmi.Remote interfaces.

In most cases, you use these interfaces to retrieve a list of MBeans and then filter the list to
retrieve and invoke operations on a specific MBean. However, if you know the
WebLogicObjectName of an MBean, you can retrieve an MBean directly by name.

Dete rmin ing Wh ich In te r faces to Use

Programming WebLogic Management Services with JMX 2-3

Determining Which Interfaces to Use
When accessing MBeans, you must make two choices about which interfaces you use:

Whether to use the MBeanHome interface on a local server instance or the Administration
MBeanHome interface to access the MBean Server. The MBeanHome interface that you
choose determines the set of MBeans you can access.

The following table lists typical considerations for determining whether to use the local
MBeanHome interface or the Administration MBeanHome interface.

Whether to use the WebLogic Server type-safe interface, the standard JMX MBeanServer
interface, or the WebLogic RemoteMBeanServer interface to access and invoke operations
on MBeans.

The following table lists typical considerations for determining whether to use the
type-safe interface or the MBeanServer interface.

Table 2-1 Deciding Between the Local or Administration MBeanHome

If your application manages... Retrieve this MBeanHome interface...

Local Configuration MBeans or
Runtime MBeans

Administration MBeanHome or local MBeanHome

The Administration MBeanHome provides a single,
convenient interface from which to access all
MBeans on all server instances in a domain. When
you use this interface, you typically retrieve MBeans
from multiple server instances and then iterate
through the list to find an MBean for a specific server
instance.

A local MBeanHome provides access to the Runtime
MBeans for the current server only and to all Local
Configuration MBeans in the domain. The interface
uses fewer network hops to access MBeans because
it requires your client to establish a direct connection
to the server instance.

When using a local MBeanHome, you typically
retrieve one of several top-level MBeans and use
them to walk the MBean hierarchy. See “Walking the
Hierarchy of Local Configuration and Runtime
MBeans” on page 2-14.

Administration MBeans Administration MBeanHome

Access ing WebLog ic Se rve r MBeans

2-4 Programming WebLogic Management Services with JMX

Accessing an MBeanHome Interface
The simplest process for retrieving a local MBeanHome interface or an Administration MBeanHome
interface is to use the WebLogic Server Helper class. If you are more comfortable with a
standard J2EE approach, you can use the Java Naming and Directory Interface (JNDI) to retrieve
MBeanHome.

Using the Helper APIs to Retrieve an MBeanHome Interface
WebLogic Server provides the weblogic.management.Helper APIs to simplify the process of
retrieving MBeanHome interfaces.

To use the Helper APIs, collect the following information:

The username and password of a WebLogic Server user who has permission to invoke
MBean operations. For more information, refer to "Security Roles" in the Securing
WebLogic Resources guide.

If you are accessing a local MBeanHome interface, the name of the target server (as defined
in the domain configuration) and the URL of the target server.

If you are accessing the Administration MBeanHome, the URL of the Administration Server.

Table 2-2 Deciding Between the Type-Safe Interface or the MBeanServer Interface

If your application... Use this interface...

Interacts only with WebLogic Server
MBeans.

The WebLogic Server type-safe interface

Might need to run on J2EE platforms
other than WebLogic Server

MBeanServer

If your client accesses MBeans that are running in a
separate JVM, use RemoteMBeanServer. Your
client code will still be portable to other J2EE
servers, although you cannot on other J2EE servers
you must substitute RemoteMBeanServer with
some other interface that extends the standard
MBeanServer interface.

Interacts with non-WebLogic Server
MBeans

MBeanServer

If your client accesses MBeans that are running in a
separate JVM, use RemoteMBeanServer.

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Access ing an MBeanHome In te r face

Programming WebLogic Management Services with JMX 2-5

After you collect the information, use one of the following APIs:

To retrieve a local MBeanHome:
Helper.getMBeanHome(java.lang.String user, java.lang.String password,

java.lang.String serverURL, java.lang.String serverName)

To retrieve the Administration MBeanHome:
Helper.getAdminMBeanHome(java.lang.String user, java.lang.String

password, java.lang.String adminServerURL)

For more information about the Helper APIs, refer to the WebLogic Server Javadoc.

Example: Retrieving a Local MBeanHome Interface
The following example (Listing 2-1) is a class that uses the Helper API to obtain the local
MBeanHome interface for a server named MS1.

Listing 2-1 Retrieving a Local MBeanHome Interface

import weblogic.management.Helper;
import weblogic.management.MBeanHome;

public class UseHelper {
public static void main(String[] args) {

String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";
String msName = "MS1";
MBeanHome localHome = null;

try {
localHome = (MBeanHome)Helper.getMBeanHome(username, password, url,

msName);
System.out.println("Local MBeanHome for" + localHome +

" found using the Helper class");
} catch (IllegalArgumentException iae) {

System.out.println("Illegal Argument Exception: " + iae);
}

}
}

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/Helper.html

Access ing WebLog ic Se rve r MBeans

2-6 Programming WebLogic Management Services with JMX

Using JNDI to Retrieve an MBeanHome Interface
While the Helper APIs provide a simple way to obtain an MBeanHome interface, you might be
more familiar with the standard approach of using JNDI to retrieve the MBeanHome. From the
JNDI tree of a Managed Server, you can access the server’s local MBeanHome interface. From the
JNDI tree of the Administration Server, you can access the Administration MBeanHome as well as
the local MBeanHome interface for any server instance in the domain.

To use JNDI to retrieve an MBeanHome interface:

1. Construct a weblogic.jndi.Environment object and use Environment methods to
configure the object:

a. Use the setSecurityPrincipal and setSecurityCredentials methods to specify
user credentials.

WebLogic Server verifies that the user credentials you supply have been granted
permission to carry out requests through the MBeanHome interface. For more
information, refer to "Security Roles" in the Securing WebLogic Resources guide.

b. If your application and the MBeanHome interface are in different JVMs, use the
Environment.setProviderUrl method to specify the server instance that hosts the
MBeanHome interface. The URL must specify the listen address of the server and the port
on which the server listens for administrative requests.

If you want to retrieve the Administration MBeanHome, setProviderUrl must
specify the Administration Server.

c. Use the getInitialContext method to initialize a javax.naming.Context object.

For example, the following lines of code set the initial context to a server instance that runs
on a host computer named WLServerHost and uses the default domain-wide
administration port to receive administrative requests:
Environment env = new Environment();
 env.setProviderUrl("t3://WLServerHost:9002");
 env.setSecurityPrincipal("weblogic");
 env.setSecurityCredentials("weblogic");
 Context ctx = env.getInitialContext();

For more information about weblogic.jndi.Environment, refer to the WebLogic Server
Javadoc.

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/Environment.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/jndi/Environment.html

Access ing an MBeanHome In te r face

Programming WebLogic Management Services with JMX 2-7

2. Use javax.naming.Context methods to look up and retrieve the MBeanHome interface for
the current context.

Use one of the following APIs, depending on whether you are retrieving a local
MBeanHome interface or the Administration MBeanHome:

– To retrieve the local MBeanHome for the current context, use the following API:
javax.naming.Context.lookup(MBeanHome.LOCAL_JNDI_NAME)

– If the current context is an Administration Server, use the following API to retrieve the
local MBeanHome of any server instance in the domain:
javax.naming.Context.lookup(“weblogic.management.home.relevantServer

Name”)

where relevantServerName is the name of a server as defined in the domain
configuration.

– If the current context is an Administration Server, use the following API to retrieve the
Administration MBeanHome:
javax.naming.Context.lookup(MBeanHome.ADMIN_JNDI_NAME)

The Administration MBeanHome interface provides access to all Local Configuration,
Administration, and Runtime MBeans in the domain.

For more information about javax.naming.Context.lookup(String name), refer
to the Sun Javadoc.

The following sections are examples of retrieving MBeanHome interfaces:

Example: Retrieving the Administration MBeanHome from an External Client

Example: Retrieving a Local MBeanHome from an Internal Client

http://java.sun.com/j2se/1.3/docs/api/javax/naming/Context.html

Access ing WebLog ic Se rve r MBeans

2-8 Programming WebLogic Management Services with JMX

Example: Retrieving the Administration MBeanHome from an External Client
The following example (Listing 2-2) shows how an application running in a separate JVM looks
up the Administration MBeanHome interface. In the example, weblogic is a user who has
permission to view and modify MBean attributes. For information about permissions to view and
modify MBeans, refer to "Security Roles" in the Securing WebLogic Resources guide.

Listing 2-2 Retrieving the Administration MBeanHome from an External Client

import javax.naming.Context;
import javax.naming.InitialContext;
import javax.naming.AuthenticationException;
import javax.naming.CommunicationException;
import javax.naming.NamingException;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;

public class RetrieveMBeanHome{

public static void main(String[] args) {
MBeanHome home = null;
//domain variables
String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";

//Setting an initial context.
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//Retrieving the Administration MBeanHome interface
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home + " from the

Admin server");

} catch (Exception e) {
System.out.println("Exception caught: " + e);

}
}

}

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Access ing an MBeanHome In te r face

Programming WebLogic Management Services with JMX 2-9

Example: Retrieving a Local MBeanHome from an Internal Client
If your client application resides in the same JVM as the Administration Server (or the WebLogic
Server instance you want to manage), the JNDI lookup for the MBeanHome is simpler. Listing 2-3
shows how a servlet running in the same JVM as the Administration Server would look up the
local MBeanHome for a server instance named myserver.

Listing 2-3 Retrieving a Local MBeanHome from an Internal Client

import java.io.PrintWriter;
import java.io.IOException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.ServletException;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import javax.naming.Context;

public class MyServlet extends HttpServlet {
public void doGet(HttpServletRequest req, HttpServletResponse res)
throws ServletException{

doPost(req,res);
}

public void doPost(HttpServletRequest req,HttpServletResponse res)
throws ServletException{

try {
Environment env = new Environment();
env.setProviderUrl("t3://localhost:7001");

env.setSecurityPrincipal("weblogic");
env.setSecurityCredentials("weblogic");

//Setting the initial context
Context ctx = env.getInitialContext();

 //Retrieving the server-specific MBeanHome interface
MBeanHome home = (MBeanHome)ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Server-specific MBeanHome: " + home);

} catch (Exception e) {
System.out.println("Exception caught: " + e);

}
}

}

Access ing WebLog ic Se rve r MBeans

2-10 Programming WebLogic Management Services with JMX

Using the Type-Safe Interface to Access MBeans
After you retrieve the MBeanHome interface, the easiest approach for accessing MBeans is to use
methods in the MBeanHome interface that retrieve a type-safe interface for MBeans.

You can use this type-safe interface only with the MBeans that WebLogic Server provides. You
cannot use this type-safe interface for MBeans that are based on MBean types that you create.

Retrieving a List of All MBeans
You can use the MBeanHome.getAllMBeans method to look up the object names of MBeans that
are within the scope of the MBeanHome interface that you retrieve. For example, if you retrieve
the Administration MBeanHome, using getAllMBeans() returns a list of all MBeans in the
domain. If you retrieve a Local MBeanHome interface, using getAllMBeans() returns a list of the
Runtime MBeans for the current server only and of all Local Configuration MBeans in the
domain.

The example class in Listing 2-4:

1. Uses JNDI APIs to retrieve the Administration MBeanHome interface.

2. Uses the MBeanHome.getAllMBeans method to retrieve all MBeans in a domain.

3. Assigns the list of MBeans to a Set object and uses methods of the Set and Iterator
interfaces to iterate through the list.

4. Uses the WebLogicMBean.getObjectName method to retrieve the WebLogicObjectName
of each MBean.

5. Uses the WebLogicObjectName.getName and getType methods to retrieve the Name and
Type values of the WebLogicObjectName

In the example, weblogic is a user who has permission to view and modify MBean attributes.
For information about permissions to view and modify MBeans, refer to "Security Roles" in the
Securing WebLogic Resources guide.

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Using the Type-Safe In te r face to Access MBeans

Programming WebLogic Management Services with JMX 2-11

Listing 2-4 Retrieving All MBeans in a Domain

import javax.naming.Context;
import java.util.Set;
import java.util.Iterator;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;

public class ListAllMBeans{
public static void main(String args[]) {

String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";

try {
//Obtaining an MBeanHome Using JNDI
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();
MBeanHome home = (MBeanHome)ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

Set allMBeans = home.getAllMBeans();
System.out.println("Size: " + allMBeans.size());
for (Iterator itr = allMBeans.iterator(); itr.hasNext();) {

WebLogicMBean mbean = (WebLogicMBean)itr.next();
WebLogicObjectName objectName = mbean.getObjectName();
System.out.println(objectName.getName() + " is a(n) " +

mbean.getType());
}

}catch(Exception e){
System.out.println(e);

}
}

}

For more information about the MBeanHome.getAllMBeans method, refer to the WebLogic
Server Javadoc.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/MBeanHome.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/MBeanHome.html

Access ing WebLog ic Se rve r MBeans

2-12 Programming WebLogic Management Services with JMX

Retrieving MBeans By Type and Selecting From the List
Instead of retrieving a list of all MBeans in the scope of MBeanHome, you can retrieve a list of
MBeans that match a specific type. Type indicates the type of resource that the MBean manages
and whether the MBean is an Administration, Local Configuration, or Runtime MBean. For more
information about types of MBeans, refer to the next section, “WebLogic Server Management
Namespace” on page 3-1.

The example class in Listing 2-5:

1. Uses JNDI to retrieve the Administration MBeanHome interface.

2. Uses the MBeanHome.getMBeansByType method to retrieve a list of all ServerRuntime
MBeans in a domain.

3. Assigns the list of MBeans to a Set object and uses methods of the Set and Iterator
interfaces to iterate through the list.

4. Uses the ServerRuntime.getName method to retrieve the name of each ServerRuntime
MBean. The name of a ServerRuntime MBean corresponds to the name of a server
instance.

5. When it finds the ServerRuntime MBean for a server named Server1, it prints a message
to standard out.

In the example, weblogic is a user who has permission to view and modify MBean attributes.
For information about permissions to view and modify MBeans, refer to "Security Roles" in the
Securing WebLogic Resources guide.

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Using the Type-Safe In te r face to Access MBeans

Programming WebLogic Management Services with JMX 2-13

Listing 2-5 Selecting by Type from a List of MBeans

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.Context;
import javax.management.ObjectName;

import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.runtime.ServerRuntimeMBean;
import weblogic.jndi.Environment;

public class serverRuntimeInfo {

public static void main(String[] args) {

MBeanHome home = null;

//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";

ServerRuntimeMBean serverRuntime = null;
Set mbeanSet = null;
Iterator mbeanIterator = null;

//Using JNDI to retrieve the Administration MBeanHome
//Setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//Getting the Administration MBeanHome
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home);

} catch (Exception e) {
System.out.println("Exception caught: " + e);

}

//Using the getMBeansByType method to get all ServerRuntime MBeans
//in the domain.

Access ing WebLog ic Se rve r MBeans

2-14 Programming WebLogic Management Services with JMX

try {
mbeanSet = home.getMBeansByType("ServerRuntime");

//Iterating through the results and comparing the server names
//find the one we want.
mbeanIterator = mbeanSet.iterator();
while(mbeanIterator.hasNext()) {

serverRuntime = (ServerRuntimeMBean)mbeanIterator.next();
//Using serverRuntime.getName to find the ServerRuntime
//MBean for Server1.
if(serverRuntime.getName().equals(serverName)) {

System.out.println("Got the serverRuntimembean: " +
serverRuntime + " for: " + serverName);

}
}

} catch (Exception e) {
System.out.println("Exception caught: " + e);

}
}

}

For more information about the MBeanHome.getMBeansByType method, refer to the WebLogic
Server Javadoc.

Walking the Hierarchy of Local Configuration and Runtime
MBeans
WebLogic Server MBeans exist within a hierarchy that reflects the resources with which they are
associated. For example, each server instance can contain multiple execute queues, and
WebLogic Server represents this relationship by making each ExecuteQueueMBean a child of a
ServerMBean.

Walking the hierarchy of MBeans is the easiest way to retrieve Local Configuration and Runtime
MBeans. If you want to retrieve Administration MBeans, or if you want to use the Administration
MBeanHome to retrieve MBeans, BEA recommends that you retrieve MBeans by type and then
filter the list. See “Retrieving MBeans By Type and Selecting From the List” on page 2-12.

The root of the configuration MBean hierarchy is DomainMBean. Below this root are MBeans
such as:

ClusterMBean

ServerMBean

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/MBeanHome.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/MBeanHome.html

Using the Type-Safe In te r face to Access MBeans

Programming WebLogic Management Services with JMX 2-15

ApplicationMBean

RealmMBean

JDBC and JMS configuration MBeans

The root of the runtime hierarchy is ServerRuntimeMBean. Just below this root are MBeans
such as:

ClusterRuntimeMBean

ApplicationRuntimeMBean

JDBC and JMS runtime MBeans

Parent MBeans usually provide methods for retrieving their children. For example,
ServerMBean.getExecuteQueues returns all ExecuteQueueMBeans that have been
configured for the server.

For more information about the hierarchy, see Chapter 3, “WebLogic Server Management
Namespace.”

To walk the hierarchy of Local Configuration MBeans or Runtime MBeans:

1. From your JMX application, retrieve the local MBeanHome interface.

2. From the local MBeanHome interface, retrieve one of the top-level MBeans by invoking one
of the following methods:

– getConfigurationMBean (java.lang.String name, java.lang.String type)

See the Javadoc for MBeanHome.getConfigurationMBean.

– getRuntimeMBean (java.lang.String name, java.lang.String type)

See the Javadoc for MBeanHome.getRuntimeMBean.

Use these methods to retrieve only MBeans that are immediately below DomainMBean or
ServerRuntimeMBean. These methods do not return MBeans that are below the first level
of the MBean hierarchy.

3. From the MBean that you retrieved, invoke methods to retrieve the MBean’s children.

If a parent MBean does not provide methods to retrieve child MBeans, use
getMBeanByType() and iterate over the results to find the MBean that matches your
criteria. If you want to retrieve Local Configuration MBeans, be sure to append Config to
the MBean type value. See “Retrieving MBeans By Type and Selecting From the List” on
page 2-12.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/MBeanHome.html#getConfigurationMBean(java.lang.String, java.lang.String)
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/MBeanHome.html#getRuntimeMBean(java.lang.String, java.lang.String)

Access ing WebLog ic Se rve r MBeans

2-16 Programming WebLogic Management Services with JMX

Note: BEA recommends that you retrieve Local Configuration MBeans only to read values; do
not change attribute values in Local Configuration MBeans. When the Managed Server
replicates the data of other Managed Servers, it uses the values that are stored in
Administration MBeans. Communication problems can occur if the values in
Administration MBeans and Local Configuration MBeans differ.

Listing 2-6 is an example of retrieving all Local Configuration ExecuteQueueMBeans on a
server instance named MedRecServer.

Listing 2-6 Retrieving Local Configuration ExecuteQueueMBeans

import javax.naming.Context;
import javax.management.ObjectName;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.configuration.ConfigurationMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.configuration.ExecuteQueueMBean;

import weblogic.jndi.Environment;

public class serverConfigInfo {
 public static void main(String[] args) {
 MBeanHome home = null;
 ServerMBean servercfg = null;
 ExecuteQueueMBean[] xqueues = null;
 ExecuteQueueMBean xqueue = null;

 //domain variables
 String url = "t3://localhost:7001";
 String serverName = "MedRecServer";
 String username = "weblogic";
 String password = "weblogic";

 try {
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(username);
 env.setSecurityCredentials(password);

 //Setting the initial context
 Context ctx = env.getInitialContext();

 //Retrieving the server-specific MBeanHome interface
 home = (MBeanHome)ctx.lookup(MBeanHome.LOCAL_JNDI_NAME);
 System.out.println("Got the Server-specific MBeanHome: " + home);

Using the Type-Safe In te r face to Access MBeans

Programming WebLogic Management Services with JMX 2-17

 //Retrieving the Local Configuration ServerMBean
 servercfg = (ServerMBean)home.getConfigurationMBean(serverName,
 "ServerConfig");
 System.out.println("Got the Server Config MBean: " + servercfg);

 //Retrieving all ExecuteQueue MBeans that have been
 //configured for the server instance
 xqueues = servercfg.getExecuteQueues();

 //Iterating through the results
 for (int i=0; i < xqueues.length; i++){
 xqueue = xqueues[i];
 System.out.println("Execute queue name: " +
 xqueue.DEFAULT_QUEUE_NAME);
 System.out.println("Thread count:" + xqueue.getThreadCount());

 }
 } catch (Exception e) {
 System.out.println("Exception caught: " + e);
 }
 }
}

If you want to create generic JMX code that you can run on any server instance to retrieve its
Server Configuration MBean:

1. From the local MBeanHome interface, use the getMBeansByType method to retrieve the
server’s ServerRuntimeMBean:
serverRuntime = MBeanHome.getMBeansByType(ServerRuntime)

The local MBeanHome interface can access only the runtime MBeans that are specific to the
current server instance, so getMBeansByType(ServerRuntime) returns only the
ServerRuntimeMBean for the current server.

2. Use ServerRuntimeMBean’s getName method to retrieve the name of the server:
serverName = serverRuntime.getName()

3. Use the server name when invoking MBeanHome.getConfigurationMBean:
MBeanHome.getConfigurationMBean(serverName,"ServerConfig")

For more information, see “Example: Determining the Active Domain and Servers” on page 5-1.

Access ing WebLog ic Se rve r MBeans

2-18 Programming WebLogic Management Services with JMX

Using the MBeanServer Interface to Access MBeans
A standard JMX approach for interacting with MBeans is to use the
javax.management.MBeanServer interface to look up the MBeans that are registered in the
MBean Server. Then you use the MBeanServer interface to get or set MBean attributes or to
invoke MBean operations. For the complete list of MBeanServer methods, refer to the JMX 1.0
API documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that you
download includes the API documentation.

You can use the following techniques to retrieve the MBeanServer interface:

Use the getMBeanServer() method in the weblogic.management.MBeanHome interface.

Use this technique if your JMX client already has a reference to the MBeanHome interface.
See the Javadoc for MBeanHome.getMBeanServer().

Look up the javax.management.MBeanServer interface from the WebLogic Server JNDI
tree.

Use this technique if you do not want to import WebLogic Server classes into your JMX
client. Each server instance publishes it MBeanServer interface under the following JNDI
name: weblogic.management.server.

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/MBeanHome.html#getMBeanServer()

Us ing the MBeanServe r In te r face to Access MBeans

Programming WebLogic Management Services with JMX 2-19

The example code in Listing 2-7 looks up the MBeanServer interface from a server’s JNDI tree.
To establish an initial context in a WebLogic Server JNDI tree, a client must specify the server’s
connection information, the name of the WebLogic Server context factory, and the WebLogic
Server login credentials. See the Javadoc for javax.naming.Context.

In the example, weblogic is a user who has permission to view and modify MBean attributes.
For information about permissions to view and modify MBeans, refer to "Security Roles" in the
Securing WebLogic Resources guide.

Listing 2-7 Retrieving MBeanServer Through JNDI

String url = "t3://localhost:7001"; //URL of the server instance
String username = "weblogic";
String password = "weblogic";
MBeanServer rmbs = null;

Hashtable props = new Hashtable();
props.put(Context.PROVIDER_URL, url);
props.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
props.put(Context.SECURITY_PRINCIPAL, username);
props.put(Context.SECURITY_CREDENTIALS, password);

InitialContext ctx = new InitialContext(props);
rmbs = (MBeanServer) ctx.lookup("weblogic.management.server");

http://java.sun.com/j2se/1.4.2/docs/api/javax/naming/Context.html
http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Access ing WebLog ic Se rve r MBeans

2-20 Programming WebLogic Management Services with JMX

Programming WebLogic Management Services with JMX 3-1

C H A P T E R 3

WebLogic Server Management
Namespace

When you instantiate a WebLogic Server MBean, the MBean Server subsystem registers the
instance under a name that conforms to the weblogic.management.WebLogicObjectName
conventions. These naming conventions create a hierarchical JMX namespace that you use when
looking up MBeans. (For more information about the MBean Server subsystem, see “MBean
Servers and the MBeanHome Interface” on page 1-13.)

The following sections describe the WebLogic Server management namespace:

“Conventions for WebLogicObjectName” on page 3-1

“Conventions for Security-Provider MBean Names” on page 3-5

“Locating Administration MBeans Within the Namespace” on page 3-6

“Using weblogic.Admin to Find the WebLogicObjectName” on page 3-21

“Using weblogic.Admin to Find the Name of a Security Provider MBean” on page 3-24

Conventions for WebLogicObjectName
WebLogicObjectName is a subclass of javax.management.ObjectName. To provide unique
names for MBeans, all JMX object names consist of two parts:

A JMX domain name, which is a case-sensitive string that defines a top level within the
JMX namespace.

For WebLogic Server MBeans, the JMX domain name is the name of the WebLogic Server
domain in which the MBean resides.

WebLogic Se rver Management Namespace

3-2 Programming WebLogic Management Services with JMX

For example, in a WebLogic Server domain named mydomain, all WebLogic Server
MBean names start with the mydomain: string and therefore are in the mydomain JMX
domain. If you create custom MBeans for your applications, you can add them to the
mydomain: JMX domain or create your own JMX domain.

An unordered set of one or more name-value pairs (key properties).

The key properties create unique object names within a given JMX domain. They do not
need to reflect attributes within the MBean that they name.

The MBean’s WebLogicObjectName uses the following conventions to provide a unique
identification for a given MBean:

domain:Name=name,Type=type[,Location=serverName]

[,TypeOfParentMBean=NameOfParentMBean][,TypeOfParentMBean1=NameOfParentMBe

an1]...

The order of the attribute=value pairs is not significant, but the name must begin with
domain:.

Convent i ons fo r WebLogicObjec tName

Programming WebLogic Management Services with JMX 3-3

The following table describes each name component.

Table 3-1 WebLogic Server MBean Naming Conventions

This Component Specifies

domain: The name of the JMX domain. By convention, the JMX domain name for all
WebLogic Server MBeans corresponds to the name of the WebLogic Server
administration domain.

Name=name The string that you provided when you created the resource that the MBean
represents. For example, when you create a JDBC connection pool, you
must provide a name for that pool, such as MyPool1. The
JDBCConnectionPoolMBean that represents MyPool1 uses
Name=MyPool1 in its JMX object name.
The WebLogicObjectName.getName method returns this value for any
given MBean.
If you create an MBean, you must specify a value for this Name component that is
unique amongst all other MBeans in a domain.

Type=type Refers to the interface class of which the MBean is an instance. All WebLogic
Server MBeans are an instance of one of the interface classes defined in the
weblogic.management.configuration or
weblogic.management.runtime packages. For Configuration MBeans,
Type also refers to whether an instance is an Administration MBean or a Local
Configuration MBean. For a complete list of all WebLogic Server MBean interface
classes, refer to the WebLogic Server Javadoc for the
weblogic.management.configuration or
weblogic.management.runtime packages.

To determine the value that you provide for the Type component:
1. Find the MBean’s interface class and remove the MBean suffix from the class

name. For example, for an MBean that is an instance of the
weblogic.management.runtime.JDBCConnectionPoolRuntime
MBean, use JDBCConnectionPoolRuntime.

2. For a Local Configuration MBean, append Config to the name. For
example, for a Local Configuration MBean that is an instance of the
weblogic.management.configuration.JDBCConnectionPool

MBean interface class, use JDBCConnectionPoolConfig. For the
corresponding Administration MBean instance, use
JDBCConnectionPool.

http://e-docs.bea.com/wls/docs81/javadocs/index.html

WebLogic Se rver Management Namespace

3-4 Programming WebLogic Management Services with JMX

Location=servername All Runtime and Local Configuration MBeans include a Location
component that specifies the name of the server on which that MBean is
located. Administration MBeans do not include this component.

For example, for a server instance named myserver, there are two instances
of ServerMBean:
• The Administration MBean, whose object name is

mydomain:Name=myserver,Type=Server
• The Local Configuration MBean, whose object name is:

mydomain:Name=myserver,Type=Server,Location=myserver

For information about accessing these MBean instances, see “Determining Which
Interfaces to Use” on page 2-3.

The WebLogicObjectName.getLocation method returns this value for any
given MBean.

Table 3-1 WebLogic Server MBean Naming Conventions

This Component Specifies

Convent i ons fo r Secur i t y -P rov ide r MBean Names

Programming WebLogic Management Services with JMX 3-5

Conventions for Security-Provider MBean Names
While the MBeans that you use to manage security providers use JMX object names, they do not
use names of type weblogic.management.WebLogicObjectName. Instead, the security
providers that are included with WebLogic Server use the following JMX-compliant naming
conventions:

Security:Name=realmNameProviderName

TypeOfParentMBean=
NameOfParentMBean

To create a hierarchical namespace, Runtime, Local Configuration, or
Administration MBeans use one or more instances of this attribute in their object
names. The levels of the hierarchy are used to indicate scope. For example, a
LogMBean at the domain level of the hierarchy manages the domain-wide message
log, while a LogMBean at a server level manages a server-specific message log.

By convention, WebLogic Server child MBeans use the same value for the Name
component as the parent MBean. For example, the LogMBean that is a child of the
MedRecServer Server MBean uses Name=MedRecServer in its
WebLogicObjectName:

medrec:Name=MedRecServer,Type=Log

WebLogic Server cannot follow this convention when a parent MBean has multiple
children of the same type.

Some MBeans use multiple instances of this component to provide unique
identification. For example, the following is the WebLogicObjectName for
an EJBComponentRuntime MBean for in the MedRec sample application:
medrec:ApplicationRuntime=MedRecServer_MedRecEAR,
Location=MedRecServer,Name=MedRecServer_MedRecEAR_Session
EJB,ServerRuntime=MedRecServer,Type=EJBComponentRuntime

The ApplicationRuntime=MedRecServer_MedRecEAR attribute/value
pair indicates that the EJB instance is a module within the MedRec enterprise
application and a child of the MedRecServer_MedRecEAR
ApplicationRuntimeMBean. The ServerRuntime=MedRecServer
attribute/value pair indicates that the EJB instance is currently deployed on a server
named MedRecServer and a child of the MedRecServer ServerRuntimeMBean.

See:
• “Locating Administration MBeans Within the Namespace” on page 3-6
• “Using weblogic.Admin to Find the WebLogicObjectName” on page 3-21

Table 3-1 WebLogic Server MBean Naming Conventions

This Component Specifies

WebLogic Se rver Management Namespace

3-6 Programming WebLogic Management Services with JMX

In this convention, Security: is the name of the JMX domain, realmName is the name of a
security realm and ProviderName is the name that you give to the security provider. For
example, the name of the MBean for the authentication provider that WebLogic Server installs is
Security:Name=myrealmDefaultAuthenticator.

BEA recommends that you follow this convention for any additional security providers that you
configure. If you use the Administration Console to add a security provider to the realm, your
security-provider MBean names will follow the recommended naming convention.

For more information about security providers, see Developing Security Providers for WebLogic
Server.

Locating Administration MBeans Within the Namespace
System administrators frequently use JMX APIs, the weblogic.Admin utility, or the wlconfig
Ant task to automate the creation of resources within a WebLogic Server domain. To successfully
configure these resources, you must create Administration MBeans and locate them within the
namespace hierarchy.

Note: The management namespace for Local Configuration MBeans and Runtime MBeans is
also hierarchical; however, because system administrators infrequently use APIs or other
command-line utilities to access these types of MBeans, their namespace is not
documented.

The following sections describe the namespace for the Administration MBeans that configure
many WebLogic Server resources and server attributes:

“Server Communication and Protocols Configuration Namespace” on page 3-7

“Domain and Server Logging Configuration Namespace” on page 3-9

“Applications Configuration Namespace” on page 3-10

“Security Configuration Namespace” on page 3-12

“JDBC Configuration Namespace” on page 3-15

“JMS Configuration Namespace” on page 3-16

“Clusters Configuration Namespace” on page 3-19

“Machines and Node Manager Configuration Namespace” on page 3-20

http://e-docs.bea.com/wls/docs81/dvspisec/index.html
http://e-docs.bea.com/wls/docs81/dvspisec/index.html

Locat ing Admin is t ra t ion MBeans Wi th in the Namespace

Programming WebLogic Management Services with JMX 3-7

Note: With the exception of DomainMBean, all MBeans are direct or indirect children of the
domain’s DomainMBean. Because this parent-child relationship applies to all MBeans, it
is not expressed in MBean object names.

Server Communication and Protocols Configuration
Namespace
A WebLogic Server instance uses attributes from several MBeans to determine how it
communicates with clients and other servers. Table 3-2 introduces the MBeans and Figure 3-1
illustrates the namespace in the sample MedRec domain.

Table 3-2 MBeans for Server Communication and Protocols

This MBean... Configures...

ServerMBean Listen address, listen port, and enables protocols and tunneling.

See ServerMBean Javadoc.

SSLMBean The SSL protocol.

See SSLMBean Javadoc.

IIOPMBean The IIOP protocol.

See IIOPMBean Javadoc.

COMMBean The COM protocol.

See COMMBean Javadoc.

WebServerMBean The HTTP and HTTPS protocols.

See WebServerMBean Javadoc .

ServerStartMBean Arguments that a Node Manager uses to start this server
instance.

See ServerStartMBean Javadoc.

NetworkAccessPointMBean Additional network connections (network channel).

See NetworkAccessPointMBean Javadoc.

VirtualHostMBean Host names to which the server responds.

See VirtualHostMBean Javadoc.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/ServerMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/SSLMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/IIOPMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/COMMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/WebServerMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/ServerStartMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/NetworkAccessPointMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/VirtualHostMBean.html

WebLogic Se rver Management Namespace

3-8 Programming WebLogic Management Services with JMX

Figure 3-1 MBean Namespace for Server Communication and Protocols

Locat ing Admin is t ra t ion MBeans Wi th in the Namespace

Programming WebLogic Management Services with JMX 3-9

Domain and Server Logging Configuration Namespace
Within a WebLogic Server domain, several MBeans configure logging services. Table 3-3
introduces the MBeans and Figure 3-2 illustrates the namespace in the sample MedRec domain.

Table 3-3 MBeans for Domain and Server Logging

This MBean... Configures...

LogMBean Log file names and rotation criteria. The Administration Server
maintains an instance of LogMBean for the domain-wide
message log, and each server instance maintains its own
instance for its local server log.

See LogMBean Javadoc.

DomainLogFilterMBean A domain log filter, which determines which messages a server
instance sends to the domain-wide message log. Each domain
log filter is represented by its own instance of
DomainLogFilterMBean.

See DomainLogFilterMBean Javadoc.

ServerMBean JDBC and JTA logging. Also determines which domain log
filter the server instance uses.

See ServerMBean Javadoc.

WebServerMBean Logging HTTP requests.

See WebServerMBean Javadoc .

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/LogMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/DomainLogFilterMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/ServerMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/WebServerMBean.html

WebLogic Se rver Management Namespace

3-10 Programming WebLogic Management Services with JMX

Figure 3-2 Logging MBeans

Applications Configuration Namespace
When you target and deploy J2EE modules (enterprise applications, Web applications, or EJBs),
WebLogic Server creates MBeans for managing the module’s configuration.

Locat ing Admin is t ra t ion MBeans Wi th in the Namespace

Programming WebLogic Management Services with JMX 3-11

In addition, WebLogic Server creates MBeans for the startup classes and shutdowns classes that
you configure and target. Table 3-4 introduces the MBeans and Figure 3-3 illustrates the
namespace in the sample MedRec domain.

Table 3-4 MBeans for Applications

This MBean... Configures...

StartupClassMBean A startup class and the server instances to which the class is
targeted.

See StartupClassMBean Javadoc.

ShutdownClassMBean A shutdown class and the server instances to which the class is
targeted.

See ShutdownClassMBean Javadoc.

ApplicationMBean Deployment options for the Web applications and EJBs that it
contains. Each application is managed by its own instance of
ApplicationMBean.

See ApplicationMBean Javadoc.

WebAppComponentMBean A Web application.

See WebAppComponentMBean Javadoc .

EJBComponentMBean Location and deployment information for all EJBs in an EJB
JAR file.

See EJBComponentMBean Javadoc .

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/StartupClassMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/ShutdownClassMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/ApplicationMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/WebAppComponentMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/EJBComponentMBean.html

WebLogic Se rver Management Namespace

3-12 Programming WebLogic Management Services with JMX

Figure 3-3 Application MBeans

Security Configuration Namespace
Within a WebLogic Server domain, each security realm is managed by its own instance of
RealmMBean and several MBeans for the security providers that are configured for the realm.

Because each security realm can be customized, the
weblogic.management.security.RealmMBean and security-provider MBeans occupy a
separate management namespace from all other WebLogic Server MBeans. In addition, while the
RealmMBean and security-provider MBean names are valid JMX object names, they do not
follow WebLogicObjectName conventions. Instead, BEA recommends the following naming
convention for any security realm and security-provider MBeans you create:

Security:realmnameProviderName

Locat ing Admin is t ra t ion MBeans Wi th in the Namespace

Programming WebLogic Management Services with JMX 3-13

If you use the Administration Console to configure your realm and security providers, the MBean
names follow the recommended convention.

In addition to realm and security-provider MBeans, a WebLogic Server domain uses the MBeans
in Table 3-5 to configure security. These MBeans are in the same namespace as other WebLogic
Server MBeans.

Figure 3-4 illustrates the security namespace in the sample MedRec domain. The security realm
and providers in Figure 3-4 are those that WebLogic Server installs by default. In a domain that
you create, your security namespace might look different depending on the realm and security
providers that you configure.

Table 3-5 MBeans for Security

This MBean... Configures...

SecurityMBean Domain-wide security configuration information.

See SecurityMBean Javadoc.

SecurityConfigurationMBea
n

The security realm, password policy, and connection filter that
the domain uses.

See SecurityConfigurationMBean Javadoc.

weblogic.management.confi
guration.RealmMBean

This RealmMBean, which is in a different package from the
weblogic.management.security.RealmMBean
described above, is deprecated and used to configure realms
that use compatibility security.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/SecurityMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/SecurityConfigurationMBean.html

WebLogic Se rver Management Namespace

3-14 Programming WebLogic Management Services with JMX

Figure 3-4 Security MBeans

Locat ing Admin is t ra t ion MBeans Wi th in the Namespace

Programming WebLogic Management Services with JMX 3-15

JDBC Configuration Namespace
WebLogic Server uses several MBeans to provide a management interface for JDBC services.
The names of JDBC MBeans do not reflect a hierarchy because all JDBC MBeans are direct
children of the DomainMBean. Table 3-6 introduces the MBeans and Figure 3-5 illustrates the
namespace in the sample MedRec domain. Figure 3-5 adds MBeans for the JDBC features that
the MedRec domain does not use.

Table 3-6 MBeans for JDBC

This MBean... Configures...

JDBCConnectionPoolMBean A JDBC connection pool.

See JDBCConnectionPoolMBean Javadoc.

JDBCMultiPool A JDBC multipool, which is a pool of JDBC connection pools.

See JDBCMultiPool Javadoc.

JDBCDataSource A non-transactional data source.

See JDBCDataSource Javadoc.

JDBCTxDataSource A transactional data source.

See JDBCTxDataSource Javadoc .

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JDBCConnectionPoolMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JDBCMultiPoolMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JDBCDataSourceMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JDBCTxDataSourceMBean.html

WebLogic Se rver Management Namespace

3-16 Programming WebLogic Management Services with JMX

Figure 3-5 JDBC MBeans

JMS Configuration Namespace
WebLogic Server uses several MBeans to provide a management interface for its JMS services.
Table 3-7 introduces the MBeans and Figure 3-6 illustrates the namespace in the sample MedRec
domain.

Table 3-7 MBeans for JMS

This MBean... Configures...

JMSServerMBean A JMS server.

See JMSMBean Javadoc.

JMSQueueMBean A JMS queue (Point-To-Point) destination for a JMS server.

See JMSQueueMBean Javadoc.

JMSTopicMBean A JMS topic (Pub/Sub) destination for a JMS server.

See JMSTopicMBean Javadoc.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JMSServerMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JMSQueueMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JMSTopicMBean.html

Locat ing Admin is t ra t ion MBeans Wi th in the Namespace

Programming WebLogic Management Services with JMX 3-17

JMSSessionPoolMBean A server-managed pool of server sessions that enables an
application to process messages concurrently.

See JMSSessionPoolMBean Javadoc .

JMSConnectionConsumerMBea
n

A JMS connection consumer, which is a JMS destination
(queue or topic) that retrieves server sessions and processes
messages.

See JMSConnectionConsumerMBean Javadoc .

JMSConnectionFactoryMBean A JMS connection factory, which enables JMS clients to create
JMS connections.

See JMSConnectionFactoryMBean Javadoc .

JMSJDBCStoreMBean A JMS JDBC store for storing persistent messages and durable
subscribers in a JDBC-accessible database.

See JMSJDBCStoreMBean Javadoc .

JMSFileStoreMBean A disk-based JMS file store that stores persistent messages and
durable subscribers in a file-system directory.

See JMSFileStoreMBean Javadoc .

JMSDestinationKeyMBean A key value for a destination, which is used to define the sort
order of messages as they arrive on a destination.

See JMSDestinationKeyMBean Javadoc .

Table 3-7 MBeans for JMS

This MBean... Configures...

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JMSSessionPoolMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JMSConnectionConsumerMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JMSConnectionFactoryMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JMSJDBCStoreMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JMSFileStoreMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/JMSDestinationKeyMBean.html

WebLogic Se rver Management Namespace

3-18 Programming WebLogic Management Services with JMX

Figure 3-6 JMS MBeans

Locat ing Admin is t ra t ion MBeans Wi th in the Namespace

Programming WebLogic Management Services with JMX 3-19

Clusters Configuration Namespace
WebLogic Server uses several MBeans to provide a management interface for clusters and
cluster-related resources. Table 3-8 introduces the MBeans and Figure 3-7 illustrates the
namespace in the sample MedRec domain.

Table 3-8 MBeans for Clusters

This MBean... Configures...

MachineMBean A representation of the WebLogic Server host on which a
cluster member runs. Clusters use machines to determine
default failover behavior.

See MachineMBean Javadoc.

ClusterMBean Cluster address and multicast settings.

See ClusterMBean Javadoc.

ServerMBean An individual server instance.

See ServerMBean Javadoc.

VirtualHostMBean Host names to which the cluster responds.

See VirtualHostMBean Javadoc.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/MachineMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/ClusterMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/ServerMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/VirtualHostMBean.html

WebLogic Se rver Management Namespace

3-20 Programming WebLogic Management Services with JMX

Figure 3-7 Cluster MBeans

Machines and Node Manager Configuration Namespace
If your domain consists of multiple server instances running on multiple WebLogic Server host
computers, you can use machines and Node Manager to facilitate managing the life cycle of
servers. WebLogic Server uses several MBeans to provide a management interface for machines
and Node Managers. Table 3-9 introduces the MBeans and Figure 3-8 illustrates the namespace
in the sample MedRec domain.

Table 3-9 MBeans for Machines and Node Manager

This MBean... Configures...

MachineMBean A representation of the WebLogic Server host on which a
server instance runs.

See MachineMBean Javadoc.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/MachineMBean.html

Us ing web log ic .Admin to F ind the WebLogicObjec tName

Programming WebLogic Management Services with JMX 3-21

Figure 3-8 Machines and Node Manager MBeans

Using weblogic.Admin to Find the WebLogicObjectName
If you are unsure which values to supply for an MBean’s WebLogicObjectName, you can use the
weblogic.Admin utility to find the WebLogicObjectName. The utility can return information
only for WebLogic Server MBeans that are on an active server instance.

NodeManagerMBean Listen address, listen port, and security information that a
server instance uses to communicate with a Node Manager
running on a specific machine.

See NodeManagerMBean Javadoc.

ServerStartMBean Information that a Node Manager uses to start a Managed
Server instance.

See ServerStartMBean Javadoc.

Table 3-9 MBeans for Machines and Node Manager

This MBean... Configures...

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/NodeManagerMBean.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/ServerStartMBean.html

WebLogic Se rver Management Namespace

3-22 Programming WebLogic Management Services with JMX

For example, to find the WebLogicObjectName for the Administration instance of the LogMBean
in the medrec domain, enter the following command on the MedRecServer Administration
Server, where the Administration Server is listening on port 8001 and weblogic is the name and
password of a user who has permission to view MBean attributes:

java weblogic.Admin -url localhost:8001 -username weblogic -password

weblogic GET -pretty -type Log

The command returns the output in Listing 3-1. Notice that the command returns two MBeans of
type Log on the Administration Server. The first MBean,
medrec:Name=MedRecServer,Server=MedRecServer,Type=Log, has a child relationship
with the ServerMBean of MedRecServer; this relationship indicates that the MBean is the
LogMBean that configures the server-specific log file. The second MBean,
medrec:Name=medrec,Type=Log, has no child relationship, which indicates that it configures
the domain-wide log file.

The -pretty causes the weblogic.Admin utility to place each MBean attribute and value on a
separate line. Without this argument, the utility surrounds each attribute/value pair with curly
braces {}, but all output is on a single line.

Listing 3-1 Output from weblogic.Admin

MBeanName: "medrec:Name=MedRecServer,Server=MedRecServer,Type=Log"

 CachingDisabled: true

 FileCount: 7

 FileMinSize: 500

 FileName: MedRecServer\MedRecServer.log

 FileTimeSpan: 24

 Name: MedRecServer

 Notes:

 NumberOfFilesLimited: false

 ObjectName: MedRecServer

 Registered: false

 RotationTime: 00:00

 RotationType: none

 Type: Log

MBeanName: "medrec:Name=medrec,Type=Log"

Us ing web log ic .Admin to F ind the WebLogicObjec tName

Programming WebLogic Management Services with JMX 3-23

 CachingDisabled: true

 FileCount: 7

 FileMinSize: 500

 FileName: ./logs/wl-domain.log

 FileTimeSpan: 24

 Name: medrec

 Notes:

 NumberOfFilesLimited: false

 ObjectName: medrec

 Registered: false

 RotationTime: 00:00

 RotationType: none

 Type: Log

To view the Local Configuration MBean instances of LogMBean, append Config to the value of
the type argument:

java weblogic.Admin -url localhost:8001 -username weblogic -password

weblogic GET -pretty -type LogConfig

The command returns output in Listing 3-2. Notice that the WebLogicObjectName of the Local
Configuration MBeans includes a Location component.

Listing 3-2 Local Configuration MBeans

MBeanName:

"medrec:Location=MedRecServer,Name=MedRecServer,ServerConfig=MedRecServer,

Type=LogConfig"

 CachingDisabled: true

 FileCount: 7

 FileMinSize: 500

 FileName: MedRecServer\MedRecServer.log

 FileTimeSpan: 24

 Name: MedRecServer

 Notes:

 NumberOfFilesLimited: false

WebLogic Se rver Management Namespace

3-24 Programming WebLogic Management Services with JMX

 ObjectName: MedRecServer

 Registered: false

 RotationTime: 00:00

 RotationType: none

 Type: LogConfig

MBeanName: "medrec:Location=MedRecServer,Name=medrec,Type=LogConfig"

 CachingDisabled: true

 FileCount: 7

 FileMinSize: 500

 FileName: ./logs/wl-domain.log

 FileTimeSpan: 24

 Name: medrec

 Notes:

 NumberOfFilesLimited: false

 ObjectName: medrec

 Registered: false

 RotationTime: 00:00

 RotationType: none

 Type: LogConfig

Using weblogic.Admin to Find the Name of a Security Provider
MBean

If you are unsure which values to supply for a security MBean’s object name, you can use the
weblogic.Admin QUERY command to retrieve the object name. The domain in which the
security MBean exists must be active.

If you followed the recommended naming convention, or if you used the Administration Console
to create the security MBean, you can use the following command to list all security MBeans in
a domain:

java weblogic.Admin -url localhost:8001 -username weblogic -password

weblogic QUERY -pretty -pattern Security:*

Otherwise, you can use other forms of the QUERY command to find MBean names. See “QUERY”
in WebLogic Server Command Reference.

http://e-docs.bea.com/wls/docs81/admin_ref/cli.html#QUERY

Us ing weblog ic .Admin to F ind the Name o f a Secur i t y P rov ider MBean

Programming WebLogic Management Services with JMX 3-25

WebLogic Se rver Management Namespace

3-26 Programming WebLogic Management Services with JMX

Programming WebLogic Management Services with JMX 4-1

C H A P T E R 4

Accessing and Changing Configuration
Information

Configuration MBeans on the Administration Server (Administration MBeans) configure the
managed resources on all WebLogic Server instances in a domain. To enhance performance, each
server instance creates and uses local replicas of the Administration MBeans. These local replicas
are called Local Configuration MBeans.

Note: While you can view the values of Local Configuration MBeans, BEA recommends that
you do not change attribute values in Local Configuration MBeans. Instead, change only
the values of Administration MBean attributes. When the Managed Server replicates the
data of other Managed Servers, it uses the values that are stored in Administration
MBeans. Communication problems can occur if the values in Administration MBeans
and Local Configuration MBeans differ.

The following sections provide examples for programmatically viewing and modifying the
configuration of WebLogic Server resources using the weblogic.Admin utility, the JMX
MBeanServer APIs, and the WebLogic Server type-safe interface:

“Example: Using weblogic.Admin to View the Message Level for Standard Out” on
page 4-2

“Example: Configuring the Message Level for Standard Out” on page 4-3

“Setting and Getting Encrypted Values” on page 4-5

Access ing and Changing Conf igurat ion In fo rmat i on

4-2 Programming WebLogic Management Services with JMX

Example: Using weblogic.Admin to View the Message Level for
Standard Out

This example uses the weblogic.Admin utility to connect directly to a Managed Server and look
up the value of its StdoutSeverityLevel attribute. This attribute, which belongs to the server’s
ServerMBean, specifies a threshold for determining which severity-level of messages a server
prints to its standard out.

While BEA recommends that you use only Administration MBeans to change values, there might
be situations in which it is preferable to look up the values that are in Local Configuration
MBeans. For example, the Administration Server might be down, making it impossible for you
to access Administration MBeans.

The example command:

1. Uses the -url argument to connect to a Managed Server that runs on a host named myHost
and that listens on port 8001.

2. Uses the -username and -password arguments to specify the credentials of a user who has
permission to view MBean attributes. For information about permissions to view and
modify MBeans, refer to "Security Roles" in the Securing WebLogic Resources guide.

3. Uses the GET command to retrieve a Local Configuration MBean.

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Example : Conf igur ing the Message Leve l fo r S tandard Out

Programming WebLogic Management Services with JMX 4-3

To specify a Local Configuration MBean, it removes MBean and appends Config to the
ServerMBean interface name. Note that the -type value for a Local Configuration
instance of the ServerMBean is ServerConfig while the -type value for the
corresponding Administration MBean instance is Server. For more information, refer to
the description of Type in Table 3-1, “WebLogic Server MBean Naming Conventions,” on
page 3-3.

Listing 4-1 Configuring the Message Level

java weblogic.Admin -url myHost:8001 -username weblogic -password weblogic
GET -pretty -type ServerConfig

MBeanName: "medrec:Location=MedRecServer,Name=MedRecServer,Type=ServerConfig"
 AcceptBacklog: 50
 AdministrationPort: 0
...

 StdoutDebugEnabled: false
 StdoutEnabled: true
 StdoutFormat: standard
 StdoutLogStack: true
 StdoutSeverityLevel: 16

Example: Configuring the Message Level for Standard Out
The class in this example changes the value of the StdoutSeverityLevel attribute in the
weblogic.management.configuration.ServerMBean to change the level of messages that a
server instance named MedRecServer sends to standard out.

Because the example is changing configuration values, it changes the value in the Administration
MBean and relies on the WebLogic management services to propagate the change to the
Managed Server.

The example class:

1. Uses JNDI to look up the Administration MBeanHome interface on the Administration Server.

2. Uses the MBeanHome.getMBean(String name, String type) API to retrieve the
type-safe interface of the ServerMBean Administration MBean for a server instance named
Server1.

Access ing and Changing Conf igurat ion In fo rmat i on

4-4 Programming WebLogic Management Services with JMX

3. Uses the type-safe interface to invoke the ServerMBean.setStdoutSeverityLevel
method and set the severity level to 64.

In the example, weblogic is a user who has permission to view and modify MBean attributes.
For information about permissions to view and modify MBeans, refer to "Security Roles" in the
Securing WebLogic Resources guide.

Listing 4-2 Configuring Standard Out Severity Level

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.Context;
import javax.management.MBeanServer;
import javax.management.Attribute;
import java.lang.Object;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.configuration.ServerMBean;

public class ChangeStandardOut1 {

public static void main(String[] args) {
MBeanHome home = null;
ServerMBean server = null;
//domain variables
String url = "t3://localhost:7001";
String username = "weblogic";
String password = "weblogic";
String serverName = "Server1";

//setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//getting the Administration MBeanHome
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

// Using MBeanHome.getMBean(name, type) to retrieve a type-safe
// interface for a ServerMBean
server = (ServerMBean)home.getMBean(serverName,"Server");

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Set t ing and Get t ing Encr ypted Va lues

Programming WebLogic Management Services with JMX 4-5

// Using ServerMBean.setStdoutSeverityLevel
server.setStdoutSeverityLevel(64);

// Providing feedback that operation succeeded.
System.out.println("Changed standard out severity level to: " +

server.getStdoutSeverityLevel());
} catch (Exception e) {

System.out.println("Caught exception: " + e);
}

}
}

Setting and Getting Encrypted Values
To prevent unauthorized access to sensitive data such as passwords, some attributes in
configuration MBeans are encrypted. The attributes persist their values in the domain’s
config.xml file as an encrypted string and represent the in-memory value in the form of an
encrypted byte array. The names of encrypted attributes end with Encrypted. For example, the
JDBCConnectionPoolMBean exposes the password that is used to access the database in an
attribute named PasswordEncrypted.

The following sections describe how to work with encrypted attributes:

“Set the Value of an Encrypted Attribute” on page 4-5

“Compare an Unencrypted Value with an Encrypted Value” on page 4-6

“Example: Setting and Getting an Encrypted Attribute” on page 4-6

Set the Value of an Encrypted Attribute
To set the value of an encrypted attribute, encode a String object as a byte array and pass the
output directly to the setter method as a parameter. Do not assign the byte array to a variable
because this causes the unencrypted byte array to remain in memory until garbage collection
removes it.

For example, if you use weblogic.management.MBeanHome:

ServerMBean.setCustomIdentityKeyStorePassPhraseEncrypted(

(new String("myNewCustomIdentityKeyStorePassPhrase")).getBytes());

If you use weblogic.management.RemoteMBeanServer:

Access ing and Changing Conf igurat ion In fo rmat i on

4-6 Programming WebLogic Management Services with JMX

Attribute passphrase = new Attribute("CustomIdentityKeyStorePassPhrase",

new String("myNewCustomIdentityKeyStorePassPhrase").getBytes());

String server = "examples:Name=examplesServer,Type=Server";

ObjectName serverOn = new ObjectName(server);

RemoteMBeanServer.setAttribute(serverOn, passphrase);

Compare an Unencrypted Value with an Encrypted Value
A management application might need to compare a password or some other value that a user
enters with a value that is in an MBean’s encrypted attribute. Instead of decrypting the MBean
attribute value and risk exposing the data to someone with unauthorized access, you encrypt the
user-supplied value and compare the two encrypted values.

You must encrypt the user-supplied value on the same server that originally encrypted the MBean
value. Each server uses its own salt file to encrypt data unless the server is sharing its root
directory with another server. See “A Server’s Root Directory” in Configuring and Managing
WebLogic Server.

To compare a password or some other value that a user enters with a value that is in an encrypted
attribute:

1. On the same server that set the encrypted value in the MBean, write the user-supplied value
as a byte array and pass the byte array to the
weblogic.management.EncryptionHelper.encrypt() method.

2. Use the getter method of the MBean’s encrypted value to retrieve its encrypted byte array.

For example, invoke JDBCConnectionPoolMBean.getPasswordEncrypted, which
returns an encrypted byte array.

3. Compare the two encrypted byte arrays.

Example: Setting and Getting an Encrypted Attribute
The class in Listing 4-3 retrieves and displays the encrypted pass phrase for a custom identity key
store. Then it changes the pass phrase, retrieves and displays the newly encrypted phrase.

Because the example is changing configuration values, it changes the value in the Administration
MBean.

The example class:

1. Uses JNDI to look up the Administration MBeanHome interface on the Administration Server.

http://e-docs.bea.com/wls/docs81/admin_guide/overview_domain.html#server_root_directory

Set t ing and Get t ing Encr ypted Va lues

Programming WebLogic Management Services with JMX 4-7

2. Uses the MBeanHome.getMBean(String name, String type) API to retrieve the
type-safe interface of the ServerMBean Administration MBean for a server instance named
myserver.

3. Gets the encrypted pass phrase for the custom identity key store by invoking
ServerMBean.getCustomIdentityKeyStorePassPhraseEncrypted().

The getCustomIdentityKeyStorePassPhraseEncrypted() method returns an
encrypted byte array.

4. Displays the encrypted value by converting the encrypted byte array to a String object and
printing the object to standard out.

5. Sets a new pass phrase for the custom identity key store by doing the following:

a. Creates a String object that contains the new pass phrase.

b. Uses String.getBytes() to create a byte array that contains the value of the String
object.

c. Passes the byte array as input for the
ServerMBean.setCustomIdentityKeyStorePassPhraseEncrypted method:

mbean.setCustomIdentityKeyStorePassPhraseEncrypted((new

String("myCustomIdentityKeyStorePassPhrase")).getBytes())

6. Gets the encrypted pass phrase for the custom identity key store by invoking
ServerMBean.getCustomIdentityKeyStorePassPhraseEncrypted().

7. Displays the unencrypted value by converting the unencrypted byte array to a String
object and printing the object to standard out.

Listing 4-3 Getting and Setting Encrypted Values

import java.util.*;

import java.rmi.RemoteException;

import javax.naming.*;

import javax.management.MBeanServer;

import javax.management.Attribute;

import javax.management.InstanceNotFoundException;

import weblogic.jndi.Environment;

import weblogic.management.WebLogicMBean;

Access ing and Changing Conf igurat ion In fo rmat i on

4-8 Programming WebLogic Management Services with JMX

import weblogic.management.MBeanHome;

import weblogic.management.configuration.ServerMBean;

public class GetSetEncrypted {

private static MBeanHome home = null;

static MBeanHome getHome(String[] args) {

Context ctx= null;

Hashtable ht = new Hashtable();

ht.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");

ht.put(Context.PROVIDER_URL, "t3://localhost:7001");

ht.put(Context.SECURITY_PRINCIPAL, args[0]);

ht.put(Context.SECURITY_CREDENTIALS, args[1]);

try {

System.out.println("Getting the initialContext ...");

ctx = new InitialContext(ht);

System.out.println("Got initialContext");

home = (MBeanHome)ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

} catch(Exception e) {

e.printStackTrace();

}

return home;

}

 static void getsetServerMBean() throws Exception {

byte[] bytes = null;

String serverName = "myserver";

ServerMBean mbean=(ServerMBean)home.getMBean(serverName,"Server");

System.out.println("Found admin mbean,name=" +

((WebLogicMBean)mbean).getObjectName());

bytes = mbean.getCustomIdentityKeyStorePassPhraseEncrypted();

if (bytes != null) {

System.out.println("\n\ngetCustomIdentityKeyStorePassPhraseEncry

pted returned=\n" + (new String(bytes)));

} else {

System.out.println("\n\ngetEncrypted Attribute returned NULL");

}

System.out.println("\n\nInvoking

setCustomIdentityKeyStorePassPhraseEncrypted() with

Set t ing and Get t ing Encr ypted Va lues

Programming WebLogic Management Services with JMX 4-9

myNewCustomIdentityKeyStorePassPhrase");

mbean.setCustomIdentityKeyStorePassPhraseEncrypted((new

String("myNewCustomIdentityKeyStorePassPhrase")).getBytes());

bytes = mbean.getCustomIdentityKeyStorePassPhraseEncrypted();

System.out.println("\n\nAfter

setCustomIdentityKeyStorePassPhraseEncrypted(),

getCustomIdentityKeyStorePassPhraseEncrypted returned=\n" +

(new String(bytes)));

}

 public static void main (String[] args) {

getHome(args);

try {

getsetServerMBean();

} catch (Exception e) {

e.printStackTrace();

}

}

}

Access ing and Changing Conf igurat ion In fo rmat i on

4-10 Programming WebLogic Management Services with JMX

Programming WebLogic Management Services with JMX 5-1

C H A P T E R 5

Accessing Runtime Information

WebLogic Server includes a large number of MBeans that provide information about the runtime
state of managed resources. If you want to create applications that view and modify this runtime
data, you must first use the MBeanServer interface or the WebLogic Server type-safe interface
to retrieve Runtime MBeans. Then you use APIs in the weblogic.management.runtime
package to view or change the runtime data. For information about viewing the API
documentation, refer to “Documentation for Runtime MBean APIs” on page 1-11.

The following sections provide examples for retrieving and modifying runtime information about
WebLogic Server domains and server instances:

“Example: Determining the Active Domain and Servers” on page 5-1

“Example: Viewing and Changing the Runtime State of a WebLogic Server Instance” on
page 5-6

“Example: Viewing Runtime Information About Clusters” on page 5-14

“Viewing Runtime Information for EJBs” on page 5-16

“Viewing Runtime Information for Servlets” on page 5-23

Example: Determining the Active Domain and Servers
The MBeanHome interface includes APIs that you can use to determine the name of the currently
active domain and the name of server instances.

The example class in Listing 5-1 gets the name of the current domain and the names of all active
servers in the domain:

Access ing Runt ime In fo rmat ion

5-2 Programming WebLogic Management Services with JMX

1. Retrieves the Administration MBeanHome interface.

Note: To get only the name of the current server instance, use the Local MBeanHome
interface instead of Administration MBeanHome. See “Getting the Name of the
Current Server Instance” on page 5-4.

2. Uses MBeanHome.getActiveDomain().getName() to retrieve the name of the domain.

3. Uses the getMBeansByType method to retrieve the set of all ServerRuntime MBeans in
the domain.

4. Iterates through the set and compares the names of the ServerRuntimeMBean instances
with the name of the WebLogic Server instance.

5. Invokes the serverRuntime.getState method to retrieve the state of each server
instance.

6. Compares the value that the getState method returns with a field name from the
weblogic.management.runtime.ServerStates class. This class contains one field for
each state within a server’s life cycle. For more information about
weblogic.management.runtime.ServerStates, refer to the WebLogic Server Javadoc.

7. If the instance is active, it prints the name of the server.

In the following example, weblogic is the username and password for a user who has permission
to view and modify MBean attributes. For information about permissions to modify MBeans,
refer to "Security Roles" in the Securing WebLogic Resources guide.

Listing 5-1 Determining the Active Domain and Servers

import java.util.Set;
import java.util.Iterator;
import javax.naming.Context;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.runtime.ServerRuntimeMBean;
import weblogic.management.runtime.ServerStates;

public class getActiveDomainAndServers {
public static void main(String[] args) {

MBeanHome home = null;

//url of the Administration Server
String url = "t3://localhost:7001";

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/runtime/ServerStates.html
http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Example : De te rmin ing the Act i ve Domain and Se rve rs

Programming WebLogic Management Services with JMX 5-3

String username = "weblogic";
String password = "weblogic";

//setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//getting the Administration MBeanHome
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

} catch (Exception e) {
System.out.println("Exception caught: " + e);

}

//getting the name of the active domain
try {

System.out.println("Active Domain: " +
home.getActiveDomain().getName());

} catch (Exception e) {
System.out.println("Exception: " + e);

}

//getting the names of servers in the domain
System.out.println("Active Servers: ");
Set mbeanSet = home.getMBeansByType("ServerRuntime");
Iterator mbeanIterator = mbeanSet.iterator();
while(mbeanIterator.hasNext()) {

ServerRuntimeMBean serverRuntime =
(ServerRuntimeMBean)mbeanIterator.next();

//printing the names of active servers
if(serverRuntime.getState().equals(ServerStates.RUNNING)){

System.out.println("Name: " + serverRuntime.getName());
System.out.println("ListenAddress: " +

serverRuntime.getListenAddress());
System.out.println("ListenPort: " +

serverRuntime.getListenPort());
//count++;

}
}

System.out.println("Number of servers active in the domain: " +
mbeanSet.size());

}
}

Access ing Runt ime In fo rmat ion

5-4 Programming WebLogic Management Services with JMX

Getting the Name of the Current Server Instance
To retrieve only the name of the current server instance, create a JMX client that does the
following:

1. Retrieves the Local MBeanHome interface.

2. Uses MBeanHome.getMBeansByType() to retrieve the set of all ServerRuntime MBeans
in the server.

Because the Local MBeanHome interface can access only the runtime MBeans for the
current server instance, the getMBeansByType() method returns a set that contains only
the ServerRuntimeMBean for the current server.

3. Invokes the ServerRuntimeMBean.getName method.

Listing 5-2 is a code segment that you can use for a JMX client that runs within a WebLogic
Server JVM.

Listing 5-2

// Get a JNDI Context

weblogic.jndi.Environment env = new Environment();

env.setSecurityPrincipal(USERNAME);

env.setSecurityCredentials(PASSWORD);

Context ctx = env.getInitialContext();

// Get the Local MBeanHome

MBeanHome home =

(MBeanHome)ctx.lookup(MBeanHome.LOCAL_JNDI_NAME);

Set s = home.getMBeansByType("ServerRuntime");

Iterator i = s.iterator();

ServerRuntimeMBean serverRT = (ServerRuntimeMBean) i.next();

String serverName = serverRT.getName();

return serverName;

Example : De te rmin ing the Act i ve Domain and Se rve rs

Programming WebLogic Management Services with JMX 5-5

Using weblogic.Admin to Determine Active Domains and
Servers
While you can compile and run the example code in Listing 5-1 to determine active domains and
servers, you can use the weblogic.Admin utility to accomplish a similar task without having to
compile Java classes.

The following command returns the name of the currently active domain, where AdminServer
is the domain’s Administration Server, MyHost is the Administration Server’s host computer, and
weblogic is the name and password of a user who has permission to view MBean attributes:

java weblogic.Admin -url MyHost:8001 -username weblogic -password weblogic

GET -type DomainRuntime -property Name

The command output includes the WebLogicObjectName of the DomainRuntimeMBean and the
value of its Name attribute:
{MBeanName="myDomain:Location=AdminServer,Name=myDomain,ServerRuntime=Admi
nServer,Type=DomainRuntime"{Name=myDomain}}

To see a list of all server instances that are currently active, you use ask the Administration Server
to retrieve all ServerRuntime MBeans that are registered in its Administration MBeanHome
interface. (Only active server instances register ServerRuntime MBeans with the
Administration MBeanHome interface.)

You must specify the -adminurl argument to instruct the GET command to use the
Administration Server’s Administration MBeanHome interface:
java weblogic.Admin -adminurl MyHost:8001 -username weblogic -password
weblogic GET -type ServerRuntime -property State

The command output includes the WebLogicObjectName of all ServerRuntime MBeans and
the value of each State attribute:

MBeanName: "myDomain:Location=MedRecMS2,Name=MedRecMS2,Type=ServerRuntime"

 State: RUNNING

MBeanName:

"myDomain:Location=AdminServer,Name=AdminServer,Type=ServerRuntime"

 State: RUNNING

Access ing Runt ime In fo rmat ion

5-6 Programming WebLogic Management Services with JMX

MBeanName: "myDomain:Location=MedRecMS1,Name=MedRecMS1,Type=ServerRuntime"

 State: RUNNING

Example: Viewing and Changing the Runtime State of a
WebLogic Server Instance

The weblogic.management.runtime.ServerRuntimeMBean interface provides runtime
information about a WebLogic Server instance. For example, it indicates which listen ports and
addresses a server is using. It also includes operations that can gracefully or forcefully shut down
a server.

This section provides examples of finding ServerRuntimeMBean and using it to gracefully shut
down a server instance. For more information about graceful shutdowns and controlling the
graceful shutdown period, refer to “Graceful Shutdown” in Configuring and Managing
WebLogic Server.

Each example illustrates a different way of retrieving ServerRuntimeMBean:

“Using a Local MBeanHome and getRuntimeMBean()” on page 5-6

“Using the Administration MBeanHome and getMBean()” on page 5-10

“Using the Administration MBeanHome and getMBeansByType()” on page 5-8

“Using the MBeanServer Interface” on page 5-12

You cannot use the weblogic.Admin utility to change the value of Runtime MBean attributes.

Using a Local MBeanHome and getRuntimeMBean()
Each WebLogic Server instance hosts its own MBeanHome interface, which provides access to the
Local Configuration and Runtime MBeans on the server instance. As opposed to using the
Administration MBeanHome interface, using the local MBeanHome saves you the trouble of
filtering Runtime MBeans to find those that apply to the current server. It also uses fewer network
hops to access MBeans, because you are connecting directly to the server (instead of routing
requests through the Administration Server).

The MBeanHome interface includes the getRuntimeMBean() method, which returns only
Runtime MBeans that reside on the current WebLogic Server. If you invoke
MBeanHome.getRuntimeMBean()on the Administration Server, it returns only the Runtime
MBeans that manage and monitor the Administration Server.

http://e-docs.bea.com/wls/docs81/adminguide/overview_lifecycle.html#Graceful_Shutdown

Example : V iewing and Chang ing the Runt ime S ta te o f a WebLogic Se rve r Ins tance

Programming WebLogic Management Services with JMX 5-7

The example class in Listing 5-3 does the following:

1. Configures a javax.naming.Context object with information for connecting to a server
instance that listens for requests at t3://ServerHost:7001.

2. Uses the Context.lookup method to retrieve the local MBeanHome interface for the server
instance.

The MBeanHome.LOCAL_JNDI_NAME field returns the JNDI name of the current server’s
local MBeanHome.

3. Uses the MBeanHome.getRuntimeMBean(String name,String type)method to retrieve
the ServerRuntimeMBean for the current server instance.

4. Invokes ServerRuntimeMBean methods to retrieve and modify the server state.

In the following example, weblogic is the username and password for a user who has permission
to view and modify MBean attributes and Server1 is the name of the WebLogic Server instance
for which you want to view and change status. For information about permissions to modify
MBeans, refer to "Security Roles" in the Securing WebLogic Resources guide.

Listing 5-3 Using a Local MBeanHome and getRuntimeMBean()

import javax.naming.Context;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.runtime.ServerRuntimeMBean;

public class serverRuntime1 {

public static void main(String[] args) {
MBeanHome home = null;

//domain variables
String url = "t3://ServerHost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";
ServerRuntimeMBean serverRuntime = null;

//setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Access ing Runt ime In fo rmat ion

5-8 Programming WebLogic Management Services with JMX

env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//getting the local MBeanHome
home = (MBeanHome) ctx.lookup(MBeanHome.LOCAL_JNDI_NAME);
System.out.println("Got the MBeanHome: " + home + " for server: " +

serverName);
} catch (Exception e) {

System.out.println("Caught exception: " + e);
}

// Here we use the getRuntimeMBean method to access the
//ServerRuntimeMbean of the server instance.

try {
serverRuntime =

(ServerRuntimeMBean)home.getRuntimeMBean
(serverName,"ServerRuntime");

System.out.println("Got serverRuntimeMBean: " + serverRuntime);

//Using ServerRuntimeMBean to retrieve and change state.
System.out.println("Current state: " + serverRuntime.getState());
serverRuntime.shutdown();
System.out.println("Current state: " + serverRuntime.getState());

} catch (javax.management.InstanceNotFoundException e) {
System.out.println("Caught exception: " + e);

}
}

}

Using the Administration MBeanHome and
getMBeansByType()
Like the example in Listing 5-1, “Determining the Active Domain and Servers,” on page 5-2, the
example class in this section uses the Administration MBeanHome interface to retrieve a
ServerRuntime MBean. The Administration MBeanHome provides a single access point for all
MBeans in the domain, but it requires you to either construct the WebLogicObjectName of the
MBean you want to retrieve or to filter MBeans to find those that apply to a specific current
server.

The example class in Listing 5-4 does the following:

1. Retrieves the Administration MBeanHome interface.

Example : V iewing and Chang ing the Runt ime S ta te o f a WebLogic Se rve r Ins tance

Programming WebLogic Management Services with JMX 5-9

2. Uses the MBeanHome.getMBeansByType method to retrieve the set of all ServerRuntime
MBeans in the domain.

3. Assigns the list of MBeans to a Set object and uses methods of the Set and Iterator
interfaces to iterate through the list.

4. Uses the ServerRuntimeMBean.getName method to retrieve the Name component of the
MBean’s WebLogicObjectName. It then compares the Name value with another value.

5. When it finds the ServerRuntimeMBean for a specific server instance, it uses the
ServerRuntimeMBean.getState method to return the current server state.

6. Then it invokes the ServerRuntimeMBean.shutdown() method, which initiates a graceful
shutdown.

In the following example, weblogic is the username and password for a user who has permission
to change the state of servers, and Server1 is the name of the WebLogic Server instance for
which you want to view and change status. For information about permissions to modify MBeans,
refer to "Security Roles" in the Securing WebLogic Resources guide.

Listing 5-4 Using the Administration MBeanHome and getMBeansByType()

import java.util.Set;
import java.util.Iterator;
import javax.naming.Context;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.runtime.ServerRuntimeMBean;

public class serverRuntimeInfo {
public static void main(String[] args) {

MBeanHome home = null;

//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";
ServerRuntimeMBean serverRuntime = null;
Set mbeanSet = null;
Iterator mbeanIterator = null;

//Setting the initial context
try {

Environment env = new Environment();

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Access ing Runt ime In fo rmat ion

5-10 Programming WebLogic Management Services with JMX

env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

// Getting the Administration MBeanHome.
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home);

} catch (Exception e) {
System.out.println("Exception caught: " + e);

}

// Using the getMBeansByType method to get the set of
//ServerRuntime mbeans.
try {

mbeanSet = home.getMBeansByType("ServerRuntime");
mbeanIterator = mbeanSet.iterator();
// Comparing the name of the server in each ServerRutime
// MBean to the value specified by serverName
while(mbeanIterator.hasNext()) {

serverRuntime = (ServerRuntimeMBean)mbeanIterator.next();
if(serverRuntime.getName().equals(serverName)) {

System.out.println("Found the serverRuntimembean: " +
serverRuntime + " for: " + serverName);

System.out.println("Current state: " +
serverRuntime.getState());

System.out.println("Stopping the server ...");
serverRuntime.shutdown();
System.out.println("Current state: " +

serverRuntime.getState());
}

}
} catch (Exception e) {

System.out.println("Caught exception: " + e);
}

}
}

Using the Administration MBeanHome and getMBean()
Instead of retrieving a list of all MBeans and then filtering the list to find the
ServerRuntimeMBean for a specific server, this example uses the MBean naming conventions
to construct the WebLogicObjectName for the ServerRuntimeMBean on a server instance
named Server1. For information about constructing a WebLogicObjectName, refer to
Table 3-1, “WebLogic Server MBean Naming Conventions,” on page 3-3.

Example : V iewing and Chang ing the Runt ime S ta te o f a WebLogic Se rve r Ins tance

Programming WebLogic Management Services with JMX 5-11

To make sure that you supply the correct object name, use the weblogic.Admin GET command.
For example, the following command returns the object name and list of attributes of the
ServerRuntimeMBean for a server instance that runs on a host computer named MyHost:

java weblogic.Admin -url http://MyHost:7001 -username weblogic

 -password weblogic GET -pretty -type ServerRuntime

For more information about using the weblogic.Admin utility to find information about
MBeans, refer to "Commands for Managing WebLogic Server MBeans" in the WebLogic Server
Command Line Reference.

In Listing 5-5, weblogic is the username and password for a user who has permission to view
and modify MBean attributes, Server1 is the name of the WebLogic Server instance for which
you want to view and change status, and mihirDomain is the name of the WebLogic Server
administration domain. For information about permissions to modify MBeans, refer to "Security
Roles" in the Securing WebLogic Resources guide.

Listing 5-5 Using the Administration MBeanHome and getMBean()

import java.util.Set;
import java.util.Iterator;
import javax.naming.Context;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.runtime.ServerRuntimeMBean;
import weblogic.management.WebLogicObjectName;

public class serverRuntimeInfo2 {
public static void main(String[] args) {

MBeanHome home = null;
//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";
String domain = "medrec";
ServerRuntimeMBean serverRuntime = null;

//setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);

http://e-docs.bea.com/wls/docs81/admin_ref/cli.html#MBean_Management_Command_Reference
http://e-docs.bea.com/wls/docs81/secwlres/secroles.html
http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Access ing Runt ime In fo rmat ion

5-12 Programming WebLogic Management Services with JMX

env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got Admin MBeanHome from the Admin server: "

+ home);
} catch (Exception e) {

System.out.println("Exception caught: " + e);
}

try {
WebLogicObjectName objName = new WebLogicObjectName(serverName,

"ServerRuntime",home.getDomainName(),serverName);
System.out.println("Created WebLogicObjectName: " + objName);
serverRuntime = (ServerRuntimeMBean)home.getMBean(objName);
System.out.println("Got the serverRuntime using the adminHome: " +

serverRuntime);
System.out.println("Current state: " + serverRuntime.getState());
System.out.println("Stopping the server ...");

//changing the state to SHUTDOWN
serverRuntime.shutdown();
System.out.println("Current state: " + serverRuntime.getState());

} catch(Exception e) {
System.out.println("Exception: " + e);

}
}

}

Using the MBeanServer Interface
The example in this section uses a standard JMX approach for interacting with MBeans. It uses
the Administration MBeanHome interface to retrieve the javax.management.MBeanServer
interface and then uses MBeanServer to retrieve the value of the ListenPort attribute of the
ServerRuntimeMBean for a server instance named Server1.

In the following example, weblogic is the username and password for a user who has permission
to view and modify MBean attributes and mihirDomain is the name of the WebLogic Server
administration domain. For information about permissions to modify MBeans, refer to "Security
Roles" in the Securing WebLogic Resources guide.

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html
http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Example : V iewing and Chang ing the Runt ime S ta te o f a WebLogic Se rve r Ins tance

Programming WebLogic Management Services with JMX 5-13

Listing 5-6 Using the Administration MBeanHome and getMBean()

import java.util.Set;
import java.util.Iterator;
import javax.naming.Context;
import javax.management.MBeanServer;

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicObjectName;

public class serverRuntimeInfo2 {
public static void main(String[] args) {

MBeanHome home = null;

//domain variables
String url = "t3://localhost:7001";
String serverName = "MedRecServer";
String username = "weblogic";
String password = "weblogic";
Object attributeValue = null;
MBeanServer homeServer = null;

//setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

// Getting the Administration MBeanHome.
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got Admin MBeanHome from the Admin server: " +

home);
} catch (Exception e) {

System.out.println("Exception caught: " + e);
}
try {

// Creating the mbean object name.
WebLogicObjectName objName = new WebLogicObjectName(serverName,

"ServerRuntime",home.getDomainName(),serverName);
System.out.println("Created WebLogicObjectName: " + objName);

//Retrieving the MBeanServer interface
homeServer = home.getMBeanServer();

//Retrieving the ListenPort attribute of ServerRuntimeMBean
attributeValue = homeServer.getAttribute(objName, "ListenPort");

Access ing Runt ime In fo rmat ion

5-14 Programming WebLogic Management Services with JMX

System.out.println("ListenPort for " + serverName + " is:" +
attributeValue);

} catch(Exception e) {
System.out.println("Exception: " + e);

}
}

}

Example: Viewing Runtime Information About Clusters
The example in this section retrieves the number and names of WebLogic Server instances
currently running in a cluster. It uses
weblogic.management.runtime.ClusterRuntimeMBean, which provides information about
a single Managed Server’s view of the members of a WebLogic cluster.

Only Managed Servers host instances of ClusterRuntimeMBean, and you must retrieve the
ClusterRuntimeMBean instance from a Managed Server that is actively participating in a
cluster.

To make sure that it retrieves a ClusterRuntimeMBean from an active Managed Server that is
in a cluster, this example does the following:

1. Retrieves the Administration MBeanHome, which runs on the Administration Server and can
provide access to all ClusterRuntimeMBeans in the domain.

2. Retrieves all ClusterRuntimeMBeans and determines whether they belong to a specific
cluster.

3. Finds one ClusterRuntimeMBean for a Managed Server in the cluster of interest.

4. Uses the ClusterRuntimeMBean APIs on the Managed Server to determine the number
and name of active servers in the cluster.

In the example, weblogic is the username and password for a user who has permission to view
and modify MBean attributes. For information about permissions to modify MBeans, refer to
"Security Roles" in the Securing WebLogic Resources guide.

Listing 5-7 Retrieving a List of Servers Running in a Cluster

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Example : V i ewing Runt ime In fo rmat i on About C luste rs

Programming WebLogic Management Services with JMX 5-15

import javax.naming.Context;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import javax.management.ObjectName;
import weblogic.management.WebLogicMBean;
import weblogic.management.runtime.ClusterRuntimeMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.MBeanHome;

public class getRunningServersInCluster {
public static void main(String[] args) {

MBeanHome home = null;

//domain variables
String url = "t3://localhost:7001"; //url of the Administration Server
/* If you have more than one cluster in your domain, define a list of
* all the servers in the cluster. You compare the servers in the domain
* with this list to determine which servers are in a specific cluster.
*/
String server1 = "cs1"; // name of server in the cluster
String server2 = "cs2"; // name of server in the cluster
String username = "weblogic";
String password = "weblogic";
ClusterRuntimeMBean clusterRuntime = null;
Set mbeanSet = null;
Iterator mbeanIterator = null;
String name = "";
String[] aliveServerArray = null;

//Setting the initial context
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

// Getting the Administration MBeanHome.
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

// Retrieving a list of ClusterRuntime MBeans in the domain.
mbeanSet = home.getMBeansByType("ClusterRuntime");
mbeanIterator = mbeanSet.iterator();
while(mbeanIterator.hasNext()) {

// Retrieving one ClusterRuntime MBean from the list.
clusterRuntime = (ClusterRuntimeMBean)mbeanIterator.next();
// Getting the name of the ClusterRuntime MBean.
name = clusterRuntime.getName();
// Determining if the current ClusterRuntimeMBean belongs to a

Access ing Runt ime In fo rmat ion

5-16 Programming WebLogic Management Services with JMX

// server in the cluster of interest.
if(name.equals(server1) || name.equals(server2)) {

// Using the current ClusterRuntimeMBean to retrieve the
// number of servers in the cluster.
System.out.println("\nNumber of active servers in the

cluster: " + clusterRuntime.getAliveServerCount());
// Retrieving the names of servers in the cluster.
aliveServerArray = clusterRuntime.getServerNames();
break;

}
}

} catch (Exception e) {
System.out.println("Caught exception: " + e);

}
if(aliveServerArray == null) {

System.out.println("\nThere are no running servers in the cluster");
System.exit(1);

}

System.out.println("\nThe running servers in the cluster are: ");
for (int i=0; i < aliveServerArray.length; i++) {

System.out.println("server " + i + " : " + aliveServerArray[i]);
}

}
}

Viewing Runtime Information for EJBs
For each EJB that you deploy on a server instance, WebLogic Server instantiates MBean types
from the weblogic.management.runtime package (see Table 5-1). For more information
about the MBeans in the weblogic.management.runtime package, refer to the WebLogic
Server Javadoc.

Table 5-1 MBeans that Provide Runtime Information for EJBs

MBean Type Description

EJBComponentRuntimeMBean The top level interface for all runtime information
collected for an EJB module.

StatefulEJBRuntimeMBean Instantiated for stateful session beans only.

Contains methods for accessing EJB runtime information
collected for a Stateful Session Bean.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/runtime/package-summary.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/runtime/package-summary.html

V iewing Runt ime In fo rmat ion fo r E JBs

Programming WebLogic Management Services with JMX 5-17

WebLogic Server provides an additional, abstract interface, EJBRuntimeMBean, which contains
methods that the other EJB runtime MBeans use.

EJB runtime MBeans are instantiated within a hierarchy. For example:

Each EJB jar file exposes its runtime data through an instance of
EJBComponentRuntimeMBean.

Each entity bean within the jar exposes its runtime data through an instance of
EntityEJBRuntimeMBean.

StatelessEJBRuntimeMBean Instantiated for stateless session beans only.

Contains methods for accessing EJB runtime information
collected for a Stateless Session Bean.

MessageDrivenEJBRuntimeMBean Instantiated for message driven bean only.

Contains methods for accessing EJB runtime information
collected for a Message Driven Bean.

EntityEJBRuntimeMBean Contains methods for accessing EJB runtime information
collected for an Entity Bean.

EJBCacheRuntimeMBean Contains methods for accessing cache runtime
information collected for an EJB.

EJBLockingRuntimeMBean Contains methods for accessing lock manager runtime
information collected for an EJB.

EJBTransactionRuntimeMBean Contains methods for accessing transaction runtime
information collected for an EJB.

EJBPoolRuntimeMBean Instantiated for stateless session beans only.

Contains methods for accessing free pool runtime
information collected for a stateless session EJB.

WebLogic Server uses a free pool to improve
performance and throughput for stateless session EJBs.
The free pool stores unbound stateless session EJBs.
Unbound EJB instances are instances of a stateless session
EJB class that are not processing a method call.

Table 5-1 MBeans that Provide Runtime Information for EJBs

MBean Type Description

Access ing Runt ime In fo rmat ion

5-18 Programming WebLogic Management Services with JMX

Each EntityEJBRuntimeMBean is the parent of up to four additional MBeans.

EntityEJBRuntimeMBean is always the parent of the EJBCacheRuntimeMBean,
EJBTransactionRuntimeMBean, and EJBPoolRuntimeMBean MBeans. The fourth child
MBean, EJBLockingRuntimeMBean, is only created if the entity bean uses an exclusive
concurrency strategy (which is configured in the weblogic-ejb-jar.xml deployment
descriptor).

Depending on the type of runtime data that you retrieve, you typically also need to retrieve the
name of any parent MBeans to provide context for the data. For example, if you retrieve the value
of EJBTransactionRuntimeMBean.TransactionsRolledBackTotalCount, you also
retrieve the name of the parent EJBEntityRuntimeMBean to determine which entity bean the
value comes from.

Figure 5-1 illustrates the hierarchical relationships.

V iewing Runt ime In fo rmat ion fo r E JBs

Programming WebLogic Management Services with JMX 5-19

Figure 5-1 Hierarchy of EJB Runtime MBeans

Example: Retrieving Runtime Information for All Stateful and
Stateless EJBs
To retrieve runtime information for all EJBs deployed in a domain, the example in Listing 5-8
does the following:

EJBTransactionMBean

EJBLockingRuntimeMBean

EJBCacheRuntimeMBean

EJBPoolRuntimeRuntimeMBean

EntityEJBRuntimeMBean
(1 per entity bean)

EJBPoolRuntimeMBean

EJBTransactionRuntimeMBean

StatelessEJBRuntimeMBean
(1 per stateless session bean)

EJBPoolRuntimeMBean

EJBTransactionRuntimeMBean

MessageDrivenEJBRuntimeMBean
(1 per message-driven bean)

EJBLockingRuntimeMBean

EJBCacheRuntimeMBean

EJBTransactionRuntimeMBean

StatefulEJBRuntimeMBean
(1 per entity bean)

EJBComponentRuntimeMBean
(1 per EJB JAR file)

Access ing Runt ime In fo rmat ion

5-20 Programming WebLogic Management Services with JMX

1. Connects to the Administration Server and retrieves the Administration MBeanHome interface.

If you want to retrieve runtime information only for the EJBs that are deployed on a
specific server instance, you can connect to the specific server instance and retrieve the
local MBeanHome interface. For more information, refer to “Example: Retrieving a Local
MBeanHome from an Internal Client” on page 2-9.

2. To display the percentage of times a stateless bean instance wasn't available in the free pool
when an attempt was made to obtain one, the example:

a. Invokes the MBeanHome.getMBeansByType to retrieve all StatelessEJBRuntime
MBeans.

b. For each stateless EJB, it invokes the displayEJBInfo method (which is defined later in
this class). This method:

– Invokes the StatelessEJBRuntimeMBean.getEJBName method (which all EJB
runtime MBeans inherit from EJBRuntimeMBean) to retrieve the name of the MBean.

– Walks up the MBean hierarchy to retrieve the names of the parent EJB component and
application.

All EJBs are packaged within an EJB component, which functions as a J2EE module.
EJB components can be packaged with an enterprise application.

c. Invokes the StatelessEJBRuntime.getPoolRuntime method to retrieve the
EJBPoolRuntimeMBean that is associated with the stateless EJB.

d. Invokes the EJBPoolRuntimeMBean.getMissTotalCount method to retrieve the
number of failed attempts.

3. To determine percentage of transactions that have been rolled back for each stateful EJB in
the domain, the example:

a. Invokes the MBeanHome.getMBeansByType to retrieve all StatefulEJBRuntime
MBeans.

b. Invokes the displayEJBInfo method (which is defined later in this class).

c. Invokes the EJBRuntime.getTransactionRuntime method to retrieve the
EJBTransactionRuntimeMBean that is associated with the stateful EJB.

d. Invokes the
EJBTransactionRuntimeMBean.getTransactionsRolledBackTotalCount and
getTransactionsCommittedTotalCount methods.

V iewing Runt ime In fo rmat ion fo r E JBs

Programming WebLogic Management Services with JMX 5-21

e. Divides the number of committed transactions by the number rolled transactions to
determine the percentage of rolled back transactions.

Listing 5-8 Viewing Runtime Information for EJBs

import java.util.Iterator;
import java.util.Set;

import javax.management.InstanceNotFoundException;
import javax.naming.Context;
import javax.naming.InitialContext;

import weblogic.management.MBeanHome;
import weblogic.management.WebLogicObjectName;
import weblogic.management.configuration.ApplicationMBean;
import weblogic.management.configuration.EJBComponentMBean;
import weblogic.management.configuration.ServerMBean;
import weblogic.management.runtime.EJBComponentRuntimeMBean;
import weblogic.management.runtime.EJBPoolRuntimeMBean;
import weblogic.management.runtime.EJBRuntimeMBean;
import weblogic.management.runtime.EJBTransactionRuntimeMBean;
import weblogic.management.runtime.StatelessEJBRuntimeMBean;
import weblogic.jndi.Environment;

public final class EJBMonitor {

private String url = "t3://localhost:7001";
private String user = "weblogic";
private String password = "weblogic";

private MBeanHome mBeanHome; // admin

public EJBMonitor() throws Exception {
Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(user);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

mBeanHome = (MBeanHome)ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
}

public void displayStatelessEJBPoolMissPercentages()
throws Exception
{

String type = "StatelessEJBRuntime";
Set beans = mBeanHome.getMBeansByType(type);
System.out.println("Printing Stateless Session pool miss

Access ing Runt ime In fo rmat ion

5-22 Programming WebLogic Management Services with JMX

percentages:");
for(Iterator it=beans.iterator();it.hasNext();) {

StatelessEJBRuntimeMBean rt = (StatelessEJBRuntimeMBean)it.next();
displayEJBInfo(rt);
EJBPoolRuntimeMBean pool = rt.getPoolRuntime();

String missPercentage = "0";
long missCount = pool.getMissTotalCount();
if(missCount > 0) {

missPercentage =
""+(float)missCount/pool.getAccessTotalCount()*100;

}
System.out.println("Pool Miss Percentage: "+ missPercentage +"\n");

}
}

public void displayStatefulEJBTransactionRollbackPercentages()
throws Exception
{

String type = "StatefulEJBRuntime";
Set beans = mBeanHome.getMBeansByType(type);
System.out.println("Printing Stateful transaction rollback

percentages:");
for(Iterator it=beans.iterator();it.hasNext();) {

EJBRuntimeMBean rt = (EJBRuntimeMBean)it.next();
displayEJBInfo(rt);
EJBTransactionRuntimeMBean trans = rt.getTransactionRuntime();

 String rollbackPercentage = "0";
long rollbackCount = trans.getTransactionsRolledBackTotalCount();
if(rollbackCount > 0) {

long totalTransactions = rollbackCount +
trans.getTransactionsCommittedTotalCount();

rollbackPercentage =
""+(float)rollbackCount/totalTransactions*100;

}
System.out.println("Transaction rollback percentage: "+

rollbackPercentage +"\n");
}

}

private void displayEJBInfo(EJBRuntimeMBean rt) throws Exception {
System.out.println("EJB Name: "+rt.getEJBName());
EJBComponentRuntimeMBean compRTMBean =

(EJBComponentRuntimeMBean)rt.getParent();
EJBComponentMBean compMBean = compRTMBean.getEJBComponent();
ApplicationMBean appMBean = (ApplicationMBean)compMBean.getParent();
System.out.println("Application Name: "+appMBean.getName());
System.out.println("Component Name: "+compMBean.getName());

V iewing Runt ime In fo rmat ion fo r Se rv le ts

Programming WebLogic Management Services with JMX 5-23

WebLogicObjectName objName = rt.getObjectName();
System.out.println("Server Name: "+objName.getLocation());

}

public static void main(String[] argv) throws Exception {
EJBMonitor m = new EJBMonitor();
m.displayStatelessEJBPoolMissPercentages();
m.displayStatefulEJBTransactionRollbackPercentages();

}
}

Viewing Runtime Information for Servlets
Instances of ServletRuntimeMBean provide access to information about how individual
servlets are performing. For example, the ServletRuntime.InvocationTotalCount attribute
indicates the number of times a servlet instance has been invoked.

Because the WebLogicObjectName for instances of ServletRuntimeMBean is dynamically
generated each time a servlet type is instantiated, it is not feasible to register JMX listeners or
monitors with each servlet. Instead, you can look up ServletRuntime MBeans and invoke
ServletRuntime methods.

The general structure for ServletRuntime object names is as follows:
domain:Location=dynamic-name,ServerRuntime=server,Type=ServletRuntime

The dynamic-name value includes the name of the server on which the servlet is deployed, the
name of the application that contains the servlet, the class name of the servlet, and a number that
is assigned to the specific servlet instance.

For example:
medrec:Location=MedRecServer,Name=MedRecServer_MedRecServer_MainWAR_org.

apache.struts.action.ActionServlet_549,ServerRuntime=MedRecServer,

Type=ServletRuntime

ServletRuntime MBeans are instantiated with an MBean hierarchy (see Figure 5-2):

Each enterprise application exposes its runtime data through an instance of
ApplicationRuntimeMBean.

If you deploy J2EE modules (such as EJBs or Web applications) without declaring them as
components of an enterprise application, WebLogic Server creates a runtime wrapper
enterprise application and deploys each module within its own wrapper application. The
wrapper application name is the same as the module that it contains. For example, if you

Access ing Runt ime In fo rmat ion

5-24 Programming WebLogic Management Services with JMX

deploy myApp.WAR, WebLogic Server wraps the web application in an enterprise
application named myApp. You do not need to interact with this wrapper application; it is
an artifact of the WebLogic Server deployment implementation.

Each Web application exposes its runtime data through an instance of
WebAppComponentRuntimeMBean.

Each servlet instance exposes its runtime data through an instance of
ServletRuntimeMBean.

Figure 5-2 Hierarchy of Application, Web Application, and Servlet Runtime MBeans

Although you can retrieve instances of ServletRuntimeMBean without walking the MBean
hierarchy, BEA recommends that you use the hierarchical organization to retrieve only servlets
within a specific Web application. (Depending on the number of servlets on a server instance,
retrieving all ServletRuntime MBeans on a server instance can lead to poor performance.)
After you retrieve servlets within a Web application, you can iterate through the list to retrieve
monitoring data.

Example: Retrieving Runtime Information for Servlets
To retrieve the value of the ServletRuntime.InvocationTotalCount attribute for all
instances of the action servlet within the sample Patient Web application (which is a component
of the MedRec application), the sample class in Listing 5-9:

1. Connects to the Administration Server and retrieves the Administration MBeanHome interface.

ServletRuntimeMBean

WebAppComponentRuntimeMBean
(1 per web application)

ApplicationRuntimeMBean
(1 per enterprise application or

(1 per servlet instance)

standalone J2EE Module)

V iewing Runt ime In fo rmat ion fo r Se rv le ts

Programming WebLogic Management Services with JMX 5-25

The Administration MBeanHome interface provides access to all Web applications (and
therefore all of their servlet instances) that are deployed in the domain.

If you want to retrieve runtime information only for the servlet instances on a specific
server instance, you can connect to the specific server instance and retrieve the local
MBeanHome interface. For more information, refer to “Example: Retrieving a Local
MBeanHome from an Internal Client” on page 2-9.

2. To retrieve the ApplicationRuntimeMBean for the MedRec application, the class:

a. Invokes MBeanHome.getMBeansByType to retrieve all ApplicationRuntime MBeans
in the domain.

b. For each ApplicationRuntimeMBean, it invokes
ApplicationRuntimeMBean.getApplicationName and compares the returned value
to the value of the appName variable.

c. When it finds the ApplicationRuntimeMBean for the MedRec application, it returns the
MBean.

Note: Depending on the number of Web applications in your domain, this step might not be
necessary. If your domain contains only a few Web applications, you can simply
retrieve all WebAppComponentRuntime MBeans and iterate through this list to find
a specific Web application.

3. To retrieve the WebAppComponentRuntimeMBean for the Patient Web application, the class:

a. Invokes ApplicationRuntimeMBean.lookupComponents to retrieve all application
components.

b. Iterates through the list to retrieve only the Web application components (which are
represented by WebAppComponentRuntime MBeans.

c. For each WebAppComponentRuntimeMBean, it invokes
WebAppComponentMBean.getContextRoot and compares the returned value with the
value of the ctxRoot variable.

The context root is a convenient, unique identifier for a Web application. If you deploy
a Web application as part of an enterprise application, you specify the context root in
the application’s application.xml deployment descriptor. If you deploy a Web
application as a standalone module, you define the context root in the Web application’s
weblogic.xml deployment descriptor.

Access ing Runt ime In fo rmat ion

5-26 Programming WebLogic Management Services with JMX

For the Patient Web application, its context root is defined with the following XML
elements from WL_HOME\samples\server\medrec\src\medrecEar\
META-INF\application.xml:

<module>
<web>

<web-uri>patientWebApp</web-uri>
<context-root>/patient</context-root>

</web>

</module>

d. When it finds the WebAppComponentRuntimeMBean for the Patient Web application, it
returns the MBean.

4. To find all instances of the action servlet within the Patient Web application, the code:

a. Invokes WebAppComponentMBean.getServlets to retrieve all instances of
ServletRuntimeMBean.

b. For each ServletRuntimeMBean, it invokes ServletRuntimeMBean.getServletName
and compares the returned value to the value of the servletName variable.

c. When it finds a ServletRuntimeMBean that represents an instance of the action servlet,
it returns the MBean.

5. To return the invocation count for each instance of the action servlet, the code invokes
ServletRuntimeMBean.getInvocationTotalCount and prints the returned value to
standard out.

Listing 5-9 Retrieving Invocation Count from Servlets in a Web Application

import java.util.Set;

import java.util.Iterator;

import java.util.regex.Pattern;

import javax.naming.Context;

import weblogic.jndi.Environment;

import weblogic.management.MBeanHome;

import weblogic.management.runtime.ServletRuntimeMBean;

import weblogic.management.runtime.ApplicationRuntimeMBean;

import weblogic.management.runtime.WebAppComponentRuntimeMBean;

import weblogic.management.runtime.ComponentRuntimeMBean;

V iewing Runt ime In fo rmat ion fo r Se rv le ts

Programming WebLogic Management Services with JMX 5-27

public class ServletRuntime {

public static void main(String[] args) {

//url of the Administration Server

String url = "t3://localhost:7001";

String username = "weblogic";

String password = "weblogic";

String appName = "MedRecEAR";

String ctxRoot = "/patient";

String servletName = "action";

try {

MBeanHome home = getMBeanHome(url, username, password);

ApplicationRuntimeMBean app = getApplicationRuntimeMBean

(home, appName);

WebAppComponentRuntimeMBean webapp =

getWebAppComponentRuntimeMBean(app,ctxRoot);

ServletRuntimeMBean servlet = getServletRuntimeMBean

(webapp,servletName);

System.out.println("Invocation count is " +

servlet.getInvocationTotalCount());

} catch (Exception e) {

System.out.println("Exception caught: " + e);

}

}

/**

* Get an initial context and lookup the Admin MBean Home

*/

private static MBeanHome getMBeanHome(String url,

String username, String password) throws Exception

{

Environment env = new Environment();

env.setProviderUrl(url);

env.setSecurityPrincipal(username);

env.setSecurityCredentials(password);

Context ctx = env.getInitialContext();

// Retrieve the Administration MBeanHome

return (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);

}

Access ing Runt ime In fo rmat ion

5-28 Programming WebLogic Management Services with JMX

/**

* Find the RuntimeMBean for an application

*/

private static ApplicationRuntimeMBean

getApplicationRuntimeMBean(MBeanHome home, String appName)

throws Exception

{

//

// Get the Set of RuntimeMBeans for all applications.

//

Set appMBeans = home.getMBeansByType("ApplicationRuntime");

Iterator appIterator = appMBeans.iterator();

//

// Iterate over the Set and find the app you are interested in

//

while (appIterator.hasNext()) {

ApplicationRuntimeMBean appRuntime = (ApplicationRuntimeMBean)

appIterator.next();

if (appName.equals(appRuntime.getApplicationName())) {

return appRuntime;

}

}

throw new Exception("Could not find RuntimeMBean for "+appName);

}

/**

* Find the RuntimeMBean for a web application within a given application

*/

private static WebAppComponentRuntimeMBean

getWebAppComponentRuntimeMBean(ApplicationRuntimeMBean app,

String ctxroot) throws Exception

{

ComponentRuntimeMBean[] compMBeans = app.lookupComponents();

if (compMBeans == null) {

throw new Exception("Application has no components");

}

for (int i=0; i<compMBeans.length; i++) {

if (compMBeans[i] instanceof WebAppComponentRuntimeMBean) {

V iewing Runt ime In fo rmat ion fo r Se rv le ts

Programming WebLogic Management Services with JMX 5-29

WebAppComponentRuntimeMBean webMBean =

(WebAppComponentRuntimeMBean)compMBeans[i];

if (ctxroot.equals(webMBean.getContextRoot())) {

return webMBean;

}

}

}

throw new Exception("Could not find web application with context

root "+ctxroot);

}

/**

* Find the RuntimeMBean for a servlet within a given web application

*/

private static ServletRuntimeMBean

getServletRuntimeMBean(WebAppComponentRuntimeMBean webapp,

String servletName) throws Exception

{

ServletRuntimeMBean[] svltMBeans = webapp.getServlets();

if (svltMBeans == null) {

throw new Exception("No servlets in "+webapp.getComponentName());

}

for (int j=0; j<svltMBeans.length; j++) {

if (servletName.equals(svltMBeans[j].getServletName())) {

return svltMBeans[j];

}

}

throw new Exception("Could not find servlet named "+servletName);

}

}

Access ing Runt ime In fo rmat ion

5-30 Programming WebLogic Management Services with JMX

Programming WebLogic Management Services with JMX 6-1

C H A P T E R 6

Using WebLogic Server MBean
Notifications and Monitors

To report changes in configuration and runtime information, all WebLogic Server MBeans emit
JMX notifications. A notification is a JMX object that describes a state change or some other
specific condition that has occurred in an underlying resource.

You can create Java classes called listeners that listen for these notifications. For example, your
application can include a listener that receives notifications when applications are deployed,
undeployed, or redeployed.

The following sections describe working with notifications and listeners:

“How Notifications are Broadcast and Received” on page 6-1

“Monitoring Changes in MBeans” on page 6-3

“Best Practices: Listening Directly Compared to Monitoring” on page 6-5

“Best Practices: Commonly Monitored Attributes” on page 6-6

“Listening for Notifications from WebLogic Server MBeans: Main Steps” on page 6-9

“Using Monitor MBeans to Observe Changes: Main Steps” on page 6-22

How Notifications are Broadcast and Received
All WebLogic Server MBeans implement the
javax.management.NotificationBroadcaster interface, which enable them to emit
different types of notification objects depending on the type of event that occurs. For example,
MBeans emit notifications when the values of their attributes change.

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-2 Programming WebLogic Management Services with JMX

To listen for these notifications, you create a listener class that implements
javax.management.NotificationListener.

By default, your listener receives all notifications that the MBean emits. However, typically, you
want your listener to retrieve only specific notifications. For example, the
LogBroadCasterRuntime MBean emits a notification each time a WebLogic Server instance
generates a log message. Usually you listen for only specific log messages, such as messages of
specific severity level. To limit the notifications that your listener receives, you can create a
notification filter.

After creating your listener and optional filter, you register the classes with the MBeans from
which you want to receive notifications.

Figure 6-1 shows a basic system in which a NotificationListener receives only a subset of
the notifications that an MBean broadcasts.

Moni to r ing Changes in MBeans

Programming WebLogic Management Services with JMX 6-3

Figure 6-1 Receiving Notifications from an MBean

For a complete explanation of JMX notifications and how they work, download the JMX 1.0
specification from http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html.

Monitoring Changes in MBeans
WebLogic Server includes a set of monitor MBeans that can be configured to periodically
observe MBeans and emit JMX notifications only if a specific MBean attribute has changed
beyond a specific threshold. A monitor MBean can observe the exact value of an attribute in an
MBean, or optionally, the difference between two consecutive values of a numeric attribute. The
value that a monitor MBean observes is called the derived gauge.

3. You register the
listener and optional
filter with an MBean.

MBean

MyRegistrationClass

new MyNotificationListener()

1. You create a listener.

MyFilter

NotificationBroadcaster

2. (Optional) You
create a filter.

4. MBean emits
a notification.

5. The filter determines
which notifications the
listener receives.

MyNotificationListener

handleNotification()

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-4 Programming WebLogic Management Services with JMX

When the value of the derived gauge satisfies a set of conditions, the monitor MBean emits a
specific notification type. Monitors can also send notifications when certain error cases are
encountered while monitoring an attribute value.

To use monitor MBeans, you configure and register a monitor with a WebLogic Server MBean.
Then you create a listener class and register the class with the monitor MBean. Because monitor
MBeans emit only very specific types of notification, you usually do not use filters when listening
for notifications from monitor MBeans.

Figure 6-2 shows a basic system in which a monitor MBean is registered with a WebLogic Server
MBean. A NotificationListener is registered with the monitor MBean, and it receives
notifications when the conditions within the monitor MBean are satisfied.

Bes t P ract ices : L is ten ing D i rec t l y Compared to Mon i to r ing

Programming WebLogic Management Services with JMX 6-5

Figure 6-2 Monitor MBeans

Best Practices: Listening Directly Compared to Monitoring
WebLogic Server provides two ways to be notified about changes in an MBean: you can create
a listener and register it directly with an MBean (see Figure 6-1), or you can configure a monitor
MBean that periodically observes an MBean and sends notifications when an attribute value
satisfies criteria that you specify (see Figure 6-2). The method that you choose depends mostly
on the complexity of the situations in which you want to receive notifications.

If your requirements are simple, registering a listener directly with an MBean is the preferred
technique. The NotificationListener and NotificationFilter interfaces, which are

MyNotificationListener

MyMonitor MBean

handleNotification()

MyRegistrationClass

new MyNotificationListener()

2. You create a listener

NotificationBroadcaster

3. When a specific change occurs

Observed MBean

1. You create a monitor
MBean and register
it with an MBean.

and register it with
your monitor MBean. in the observed MBean, the

monitor MBean emits a
notification. All listeners that
are registered with the
monitor MBean receive the
notification.

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-6 Programming WebLogic Management Services with JMX

classes that you implement in your listener and filter, provide few facilities for comparing values
with thresholds and other values. You must create you own code to evaluate the data within
notifications and respond accordingly. However, the advantage of registering a listener directly
with an MBean is that the MBean pushes its notifications to your listener and you are notified of
a change almost immediately.

If your notification requirements are sufficiently complex, or if you want to monitor some set of
changes that are not directly associated with a single change in the value of an MBean attribute,
use a monitor MBean. The monitor MBeans provide a rich set of tools for comparing data and
sending notifications only under highly specific circumstances. However, the monitor
periodically polls the observed MBean for changes in attribute value and you are notified of a
change only as frequently as the polling interval that you specify.

Best Practices: Commonly Monitored Attributes
The attributes in Table 6-1 provide a general overview of the performance of WebLogic Server.
You can monitor these attributes either by creating a listener and registering it directly with the
MBeans that contain the attributes or by configuring monitor MBeans.

To create and register a listener or to configure monitor MBeans, you must provide the
WebLogicObjectName of the MBean that contains the attributes you want to monitor. (See
“Registering a Notification Listener and Filter” on page 6-15 and “Instantiating the Monitor and
Listener” on page 6-26.)

Use the information in Table 6-1 to construct the WebLogicObjectName for each MBean. In the
table, domain refers to the name of the WebLogic Server domain, and server refers to the name
of the WebLogic Server instance that hosts the MBean you want to monitor.

Table 6-1 Commonly Monitored WebLogic Server Attributes

MBean and Attribute Names Description

MBean Type: ServerRuntime

Attribute Name: State

WebLogicObjectName for the MBean:
domain:Location=server,Name=server,
Type=ServerRuntime

For example:
medrec:Location=MedRecServer,Name=MedRe
cServer,Type=ServerRuntime

Indicates whether the server is in an
Initializing, Suspended, Running, or
ShuttingDown state.

Best P rac t i ces : Commonly Mon i to red A t t r ibutes

Programming WebLogic Management Services with JMX 6-7

MBean Type: ServerRuntime
Attribute Name: OpenSocketsCurrentCount
WebLogicObjectName for the MBean:
See the previous row in this table.

Use these two attributes together to compare the
current activity on the server’s listen ports to the total
number of requests that can be backlogged on the
ports.
Note that the attributes are located in two separate
MBeans:

OpenSocketsCurrentCount is in the
ServerRuntime MBean.
AcceptBacklog is in the Server
configuration MBean.

MBean Type: Server
Attribute Name: AcceptBacklog

WebLogicObjectName for the MBean:
domain:Name=server,Type=Server
For example:
medrec:Name=MedRecServer,Type=Server

MBean Type: ExecuteQueueRuntime
Attribute Name:
ExecuteThreadCurrentIdleCount

WebLogicObjectName for the MBean:
domain:Location=server,
Name=weblogic.kernel.Default,
ServerRuntime=server,
Type=ExecuteQueueRuntime
For example:
medrec:Location=MedRecServer,Name=
weblogic.kernel.Default,
ServerRuntime=MedRecServer,
Type=ExecuteQueueRuntime

Displays the number of threads in a server’s default
execute queue that are taking up memory space but
are not being used to process data.
You can create multiple execute queues on a server
instance to optimize the performance of critical
applications, but the default execute queue is
available by default. For more information, refer to
"Using Execute Queues to Control Thread Usage."

MBean Type:ExecuteQueueRuntime

Attribute Name: PendingRequestCurrentCount

WebLogicObjectName for the MBean:
See the previous row in this table.

Displays the number of requests waiting in a server’s
default execute queue.

Table 6-1 Commonly Monitored WebLogic Server Attributes

MBean and Attribute Names Description

http://e-docs.bea.com/wls/docs81/perform/AppTuning.html#exqueuesmain

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-8 Programming WebLogic Management Services with JMX

MBean Type: JVMRuntime
Attribute Name: HeapSizeCurrent

WebLogicObjectName for the MBean:
domain:Location=server,Name=server,
ServerRuntime=server,Type=JVMRuntime
For example:
medrec:Location=MedRecServer,Name=
MedRecServer,ServerRuntime=MedRecServer
,Type=JVMRuntime

Displays the amount of memory (in bytes) that is
currently available in the server’s JVM heap.
For more information, refer to "Tuning Java Virtual
Machines (JVMs)."

MBean Type: JDBCConnectionPoolRuntime

Attribute Name:
ActiveConnectionsCurrentCount

WebLogicObjectName for the MBean:
domain:Location=server,Name=poolName,
ServerRuntime=server,
Type=JDBCConnectionPoolRuntime

where poolName is the name that you gave to the
connection pool when you created it.

For example:
medrec:Location=MedRecServer,Name=
MedRecPool-PointBase,ServerRuntime=
MedRecServer,Type=JDBCConnectionPoolRun
time

Displays the current number of active connections in
a JDBC connection pool.
For more information, refer to "How JDBC
Connection Pools Enhance Performance."

MBean Type: JDBCConnectionPoolRuntime

Attribute Name: ActiveConnectionsHighCount

WebLogicObjectName for the MBean:
See the previous row in this table.

The high water mark of active connections in a JDBC
connection pool. The count starts at zero each time
the connection pool is instantiated.

MBean Type: JDBCConnectionPoolRuntime
Attribute Name: LeakedConnectionCount

Notify a listener when the total number of leaked
connections reaches a predefined threshold. Leaked
connections are connections that have been checked
out but never returned to the connection pool via a
close() call; it is important to monitor the total
number of leaked connections, as a leaked
connection cannot be used to fulfill later connection
requests.

Table 6-1 Commonly Monitored WebLogic Server Attributes

MBean and Attribute Names Description

http://e-docs.bea.com/wls/docs81/perform/JVMTuning.html
http://e-docs.bea.com/wls/docs81/perform/JVMTuning.html
http://e-docs.bea.com/wls/docs81/perform/WLSTuning.html#JDBCConnectionPoolsEnhancePerformance
http://e-docs.bea.com/wls/docs81/perform/WLSTuning.html#JDBCConnectionPoolsEnhancePerformance

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Programming WebLogic Management Services with JMX 6-9

Listening for Notifications from WebLogic Server MBeans: Main
Steps

To listen for the notifications that WebLogic Server MBeans emit directly:

1. Determine which notification type you want to listen for. See “WebLogic Server Notification
Types” on page 6-9.

2. Create a listener class in your application. See “Creating a Notification Listener” on
page 6-10.

3. Optionally create a filter class, which specifies the types of notifications that the listener
receives from the MBeans. See “Creating a Notification Filter” on page 6-13.

4. Create an additional class that registers your listener and filter with the MBeans whose
notifications you want to receive. See “Registering a Notification Listener and Filter” on
page 6-15.

WebLogic Server Notification Types
WebLogic Server MBeans implement the javax.management.NotificationBroadcaster
interface, which enable them to emit different types of notification objects depending on the type
of event that occurs:

MBean Type: JDBCConnectionPoolRuntime
Attribute Name:
ActiveConnectionsCurrentCount

Notify a listener when the current number of active
connections to a specified JDBC connection pool
reaches a predefined threshold.

MBean Type: JDBCConnectionPoolRuntime
Attribute Name: ConnectionDelayTime

Notify a listener when the average time to connect to
a connection pool exceeds a predefined threshold.

MBean Type: JDBCConnectionPoolRuntime
Attribute Name: FailuresToReconnect

Notify a listener when the connection pool fails to
reconnect to its datastore. Applications may notify a
listener when this attribute increments, or when the
attribute reaches a threshold, depending on the level
of acceptable downtime.

Table 6-1 Commonly Monitored WebLogic Server Attributes

MBean and Attribute Names Description

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-10 Programming WebLogic Management Services with JMX

When an MBean’s attribute value changes, it emits a
javax.management.AttributeChangeNotification object.

When a WebLogic Server resource generates a log message, the server’s
LogBroadcasterRuntimeMBean emits a notification of type
weblogic.management.WebLogicLogNotification. For more information about
WebLogicLogNotification, refer to the WebLogic Server Javadoc.

When MBeans are registered or unregistered, the WebLogic Server JMX services emit
notifications of type javax.management.MBeanServerNotification.

If an MBean attribute is an array, when you invoke the MBean’s addAttributeName
method to add an element to the array, the MBean emits a
weblogic.management.AttributeAddNotification object. One example of an MBean
that exposes addAttributeName methods is
weblogic.management.configuration.XMLRegistryMBean. For more information,
refer to the WebLogic Server Javadoc.

If an MBean attribute is an array, when you invoke the MBean’s removeAttributeName
method to remove an element from the array, the MBean emits a
weblogic.management.AttributeRemoveNotification object.

For more information about the javax.management notification types, refer to the JMX 1.0 API
documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that you
download includes the API documentation.

For more information about the weblogic.management notification types, refer to the Javadoc
for AttributeAddNotification and AttributeRemoveNotification.

Creating a Notification Listener
To create a notification listener:

1. Create a class that implements one of the following:

– For a client that runs within the same JVM as WebLogic Server, implement
javax.management.NotificationListener.

– For a client that runs in a remote JVM, implement
weblogic.management.RemoteNotificationListener.

RemoteNotificationListener extends
javax.management.NotificationListener and java.rmi.Remote, making
MBean notifications available to external clients via RMI.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/logging/WebLogicLogNotification.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/configuration/XMLRegistryMBean.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/AttributeAddNotification.html
http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/AttributeRemoveNotification.html

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Programming WebLogic Management Services with JMX 6-11

2. Within the class, add one of the following:

– For a client that runs within the same JVM as WebLogic Server, add a
NotificationListener.handleNotification(Notification notification,

java.lang.Object handback) method.

– For a client that runs within the same JVM as WebLogic Server, add a
RemoteNotificationListener.handleNotification(Notification

notification, java.lang.Object handback) method.

Note: Your implementation of this method should return as soon as possible to avoid
blocking its notification broadcaster.

3. To retrieve data from the notification objects that the listener receives, within your
handleNotification method, invoke javax.management.Notification methods on
the notification objects.

For example, to retrieve the time stamp associated with the notification, invoke
notification.getTimeStamp().

Because all notification types extend javax.management.Notification, the following
Notification methods are available for all notifications:

– getMessage()

– getSequenceNumber()

– getTimeStamp()

– getType()

– getUserData()

For more information on Notification methods, refer to the
javax.management.Notification Javadoc in the JMX 1.0 API documentation, which
you can download from http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html.
The archive that you download includes the API documentation.

4. Most notification types provide additional methods for retrieving data that is specific to the
notification. For example, WebLogicLogNotification provides methods for retrieving
specific attributes of WebLogic Server log messages, such as getSeverity(), which
retrieves the severity level that the log message specifies.

If you want to retrieve data that is specific to a notification type (and therefore not
retrievable through the standard javax.management.Notification methods):

a. Add logic within the handleNotification method to filter through the notifications and
select only notifications of a specific type.

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-12 Programming WebLogic Management Services with JMX

b. Invoke methods that the notification type provides to extract data from the notification
object.

For example:

if(notification instanceof MonitorNotification) {
MonitorNotification monitorNotification = (MonitorNotification)

notification;
System.out.println("This notification is a MonitorNotification");
System.out.println("Observed Attribute: " +

monitorNotification.getObservedAttribute());

}

In addition to the previous steps, consider the following while creating your
NotificationListener class:

Unless you create and use a notification filter, your listener receives all notifications (of all
notification types) from the MBeans with which it is registered.

Instead of using one listener for all possible notifications that an MBean emits, the best
practice is to use a combination of filters and listeners. While having multiple listeners
adds to the amount of time for initializing the JVM, the trade-off is ease of code
maintenance.

If your WebLogic Server environment contains multiple instances of MBean types that you
want to monitor, you can create one notification listener and then create as many
registration classes as MBean instances that you want to monitor.

For example, if your WebLogic Server domain contains three JDBC connection pools, you
can create one listener class that listens for AttributeChangeNotifications. Then, you
create three registration classes. Each registration class registers the listener with a specific
instance of a JDBCConnectionPoolRuntime MBean.

While the handleNotification method signature includes an argument for a handback
object, your listener does not need to retrieve data from or otherwise manipulate the
handback object. It is an opaque object that helps the listener to associate information
regarding the MBean emitter.

The following example creates a remote listener. Then the listener receives a
AttributeChangeNotification object, it uses AttributeChangeNotification methods to
retrieve the name of the attribute with a changed value, and the old and new values.

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Programming WebLogic Management Services with JMX 6-13

Listing 6-1 Notification Listener

import javax.management.Notification;
import javax.management.NotificationFilter;
import javax.management.NotificationListener;
import weblogic.management.RemoteNotificationListener;
import javax.management.AttributeChangeNotification;

public class MyListener implements RemoteNotificationListener {

public void handleNotification(Notification notification, Object obj) {

if(notification instanceof AttributeChangeNotification) {
AttributeChangeNotification attributeChange =

(AttributeChangeNotification) notification;
System.out.println("This notification is an

AttributeChangeNotification");
System.out.println("Observed Attribute: " +

attributeChange.getAttributeName());
System.out.println("Old Value: " + attributeChange.getOldValue());
System.out.println("New Value: " + attributeChange.getNewValue());

}
}

}

Creating a Notification Filter
To create and register a filter:

1. Create a serializable class that implements javax.management.NotificationFilter.

Optionally import the javax.management.NotificationFilterSupport class, which
provides utility methods for filtering notifications. For more information about using these
methods, refer to the JMX 1.0 API documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that you
download includes the API documentation.

The filter needs to be serializable only if it is used in a remote notification listener. A class
that is used with RMI must be serializable so it can be deconstructed and reconstructed in
remote JVMs.

2. Use the isNotificationEnabled(Notification notification) method to indicate
whether the serializable object returns a true value when a set of conditions are satisfied.

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-14 Programming WebLogic Management Services with JMX

If the boolean returns true, then the filter forwards the notification to the listener with
which the filter is registered.

3. (Optional) You can include code that retrieves data from notifications and carries out
actions based on the data in the notification. For example, your filter can use
javax.management.AttributeChangeNotification methods to view the new value of
a specific attribute. If the value is over a threshold that you specify, you can use JavaMail
API to send e-mail to an administrator.

Listing 6-2 provides an example NotificationFilter that forwards only notifications of type
AttributeChangeNotification.

Listing 6-2 Example Notification Filter

import javax.management.Notification;
import javax.management.NotificationFilter;
import javax.management.AttributeChangeNotification;

public class MyHiCountFilter implements NotificationFilter,
java.io.Serializable {

public boolean isNotificationEnabled(Notification notification) {
if (!(notification instanceof AttributeChangeNotification)) {

return false;
}
AttributeChangeNotification acn =

(AttributeChangeNotification)notification;
acn.getAttributeName().equals("ActiveConnectionsHighCount"); {

return true;
}

}
}

Adding Filter Classes to the Server Classpath
If you create a filter for a listener that runs in a remote JVM, you can add the filter’s classes to
the classpath of the server instance from which you are listening for notifications. Although the
listener runs in the remote JVM, adding the filter’s classes to the server’ s classpath minimizes
the transportation of serialized data between the filter and the listener. (See Figure 6-3.)

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Programming WebLogic Management Services with JMX 6-15

Figure 6-3 Filters Can Run on WebLogic Server

Registering a Notification Listener and Filter
After you implement a notification listener class and optional filter class, you create an additional
class that registers your listener and filter with an MBean instance. You must create one
registration class for each MBean instance that you want to monitor.

To register a notification listener and filter:

1. Create a class that retrieves the MBeanHome interface and then uses MBeanHome to retrieve the
MBeanServer interface.

If you want to register a listener and filter with an Administration MBean, you must
retrieve the Administration MBeanHome, which resides only on the Administration Server.

JSP

NotificationListener

WebLogic Server JVM

Remote JVM

MyRemoteNotificationListener

LogBroadcasterRuntimeMBean

MBean

handleNotification()

handleNotification()

Filter

Filter

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-16 Programming WebLogic Management Services with JMX

If you want to register with a Local Configuration MBean or a Runtime MBean, you must
retrieve the Local MBeanHome for the server instance that hosts the MBean.

2. Instantiates the listener class and filter class that you created.

3. Constructs the WebLogicObjectName of the MBean with which you want to register.

For a list of commonly monitored MBeans and their WebLogicObjectName, refer to
Table 6-1, “Commonly Monitored WebLogic Server Attributes,” on page 6-6.

4. Registers the listener and filter by passing the WebLogicObjectName, listener class, and
filter class to the addNotificationListener() method of the MBeanServer interface.

While Figure 6-1 illustrates registering a listener and filter directly with an MBean (which
you can do by calling the MBean’s addNotificationListener() method), in practice it
is preferable to use the addNotificationListener() method of the MBeanServer
interface, which saves the trouble of looking up a particular MBean simply for registration
purposes.

The following example is a registration class that runs in a remote JVM. If the class ran within
the same JVM as a WebLogic Server instance, the code for retrieving the MBeanHome interface
would be simpler. For more information, refer to “Accessing an MBeanHome Interface” on
page 2-4.

The example class registers the listener from Listing 6-1 and filter from Listing 6-2 with the
Server Administration MBean for a server instance named Server1. In the example, weblogic
is a user who has permission to view and modify MBean attributes. For information about
permissions to view and modify MBeans, refer to "Security Roles" in the Securing WebLogic
Resources guide.

The example class also includes some code the keep the class active until it receives a
notification. Usually this code is not necessary because a listener class runs in the context of some
larger application that is responsible for invoking the class and keeping it active. It is included
here so you can easily compile and see the example working.

Listing 6-3 Registering a Listener for an Administration MBean

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.Context;
import javax.management.ObjectName;
import javax.management.Notification;

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Programming WebLogic Management Services with JMX 6-17

import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.RemoteMBeanServer;
import weblogic.management.configuration.ServerMBean;

public class listener {

public static void main(String[] args) {

MBeanHome home = null;
RemoteMBeanServer rmbs = null;

//domain variables
String url = "t3://localhost:7001";
String serverName = "Server1";
String username = "weblogic";
String password = "weblogic";

//Using MBeanHome to get MBeanServer.
try {

Environment env = new Environment();
env.setProviderUrl(url);
env.setSecurityPrincipal(username);
env.setSecurityCredentials(password);
Context ctx = env.getInitialContext();

//Getting the Administration MBeanHome.
home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
System.out.println("Got the Admin MBeanHome: " + home);
rmbs = home.getMBeanServer();

} catch (Exception e) {
System.out.println("Caught exception: " + e);

}

try {
//Instantiating your listener class.
MyListener listener = new MyListener();
MyFilter filter = new MyFilter();

//Constructing the WebLogicObjectName of the MBean that you want
//to listen to.
WebLogicObjectName mbeanName = new WebLogicObjectName(serverName,

"Server",home.getDomainName());
System.out.println("Created WebLogicObjectName: " + mbeanName);

//Passing the name of the MBean and your listener class to the
//addNotificationListener method of MBeanServer.
rmbs.addNotificationListener(mbeanName, listener, filter, null);
System.out.println("\n[myListener]: Listener registered ...");

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-18 Programming WebLogic Management Services with JMX

//Keeping the remote client active.
System.out.println("pausing...........");
System.in.read();

} catch(Exception e) {
System.out.println("Exception: " + e);

}
}

}

Listening for Configuration Auditing Messages: Main Steps
You can configure the Administration Server to emit a log message when a user changes the
configuration or invokes management operations on any resource within a domain. For example,
if a user disables SSL on a Managed Server in a domain, the Administration Server emits a log
message. These messages provide an audit trail of changes within a domain’s configuration
(configuration auditing). See "Configuration Auditing" in Administration Console Online Help.

To create and use a JMX listener and filter that respond to configuration auditing messages:

1. Create and compile a notification listener that extracts information from WebLogic Server log
messages.

See “Notification Listener for Configuration Auditing Messages” on page 6-19.

2. Create and compile a notification filter that selects only configuration auditing messages.

See “Notification Filter for Configuration Auditing Messages” on page 6-19.

3. Create and compile a class that registers the listener and filter with the Administration
Server’s LogBroadcasterRuntime MBean. This is the MBean that a WebLogic Server
instance uses to broadcast its log messages as JMX notifications.

See “Registration Class for Configuration Auditing Messages” on page 6-20.

4. Add the notification filter to the classpath for the Administration Server.

If the notification listener runs within the Administration Server’s JVM (for example, if it
runs as a startup class), add the notification listener and registration class to the
Administration Server’s classpath as well.

5. Invoke the registration class or configure it as a startup class for the Administration Server.

See "Startup and Shutdown Classes" in Administration Console Online Help.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/logging.html#ConfigurationAuditing
http://e-docs.bea.com/wls/docs81/ConsoleHelp/startup_shutdown.html

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Programming WebLogic Management Services with JMX 6-19

Notification Listener for Configuration Auditing Messages
Like the notification listener in Listing 6-1, the listener in Listing 6-4 implements
RemoteNotificationListener and its handleNotification method.

Because all configuration auditing messages are of type WebLogicLogNotification, the
listener in Listing 6-4 imports the WebLogicLogNotification interface and uses its methods to
retrieve information within each configuration auditing message.

Listing 6-4 Notification Listener for Configuration Auditing Messages

import javax.management.Notification;
import javax.management.NotificationListener;
import weblogic.management.RemoteNotificationListener;
import weblogic.management.logging.WebLogicLogNotification;

public class ConfigAuditListener implements RemoteNotificationListener {
 public void handleNotification(Notification notification, Object obj) {
 WebLogicLogNotification changeNotification =
 (WebLogicLogNotification) notification;
 System.out.println("A user has attempted to change the configuration
 of a WebLogic Server domain.");
 System.out.println("Admin Server Name: " +
 changeNotification.getServername());
 System.out.println("Time of attempted change:" +
 changeNotification.getTimeStamp());
 System.out.println("Message details:" +
 changeNotification.getMessage());
 System.out.println("Message ID string:" +
 changeNotification.getMessageId());
 }
}

Notification Filter for Configuration Auditing Messages
Without a notification filter, the listener in Listing 6-4 would print the Server Name, Timestamp,
and Message Text for all messages that the Administration Server broadcast.

To forward only the configuration auditing message that indicates a resource has been modified,
the filter in Listing 6-5 uses the WebLogicLogNotification.getMessageId method to
retrieve the message ID of all incoming log notifications.

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-20 Programming WebLogic Management Services with JMX

The resource-change configuration auditing message is identified by the message ID 159904 (see
Configuration Auditing" in Administration Console Online Help). If the message ID value in an
incoming log notification matches the configuration auditing message ID, the filter evaluates as
true and forwards the message to its registered listener.

Listing 6-5 Notification Filter for Configuration Auditing Messages

import javax.management.Notification;
import javax.management.NotificationFilter;
import weblogic.management.logging.WebLogicLogNotification;

public class ConfigAuditFilter implements NotificationFilter ,
 java.io.Serializable{
 int configChangedId = 159904;

 public boolean isNotificationEnabled(Notification notification) {
 if (!(notification instanceof WebLogicLogNotification)) {
 return false;

 }

 WebLogicLogNotification wln =
 (WebLogicLogNotification)notification;
 int messageId = wln.getMessageId();
 if (configChangedId == messageId) {
 return true;

 } else {
 return false;
 }
 }
}

Registration Class for Configuration Auditing Messages
The class in Listing 6-6 registers the notification listener and filter with the
LogBroadcasterRuntime MBean of the Administration Server. This MBean is a singleton in
each instance of WebLogic Server and is always named TheLogBroadcaster.

http://e-docs.bea.com/wls/docs81/ConsoleHelp/logging.html#ConfigurationAuditing

L i s ten ing fo r Not i f i cat ions f rom WebLog ic Se rve r MBeans : Ma in Steps

Programming WebLogic Management Services with JMX 6-21

Listing 6-6 Registration Class for Configuration Auditing Messages

import java.util.Set;
import java.util.Iterator;
import java.rmi.RemoteException;
import javax.naming.Context;
import javax.management.ObjectName;
import javax.management.Notification;
import weblogic.jndi.Environment;
import weblogic.management.MBeanHome;
import weblogic.management.WebLogicMBean;
import weblogic.management.WebLogicObjectName;
import weblogic.management.RemoteMBeanServer;
import weblogic.management.configuration.ServerMBean;

public class ListenRegistration {
 public static void main(String[] args) {
 MBeanHome home = null;
 RemoteMBeanServer rmbs = null;

 //domain variables
 String url = "t3://localhost:7001";
 String serverName = "examplesServer";
 String username = "weblogic";
 String password = "weblogic";

 //Using MBeanHome to get MBeanServer.
 try {
 Environment env = new Environment();
 env.setProviderUrl(url);
 env.setSecurityPrincipal(username);
 env.setSecurityCredentials(password);
 Context ctx = env.getInitialContext();

 //Getting the Administration MBeanHome.
 home = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
 System.out.println("Got the Admin MBeanHome: " + home);
 rmbs = home.getMBeanServer();

 } catch (Exception e) {
 System.out.println("Caught exception: " + e);
 }

 try {
 //Instantiating your listener class.
 ConfigAuditListener listener = new ConfigAuditListener();
 ConfigAuditFilter filter = new ConfigAuditFilter();

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-22 Programming WebLogic Management Services with JMX

 //Constructing the WebLogicObjectName of the MBean that you want
 //to listen to.

 WebLogicObjectName mbeanName = new WebLogicObjectName(
 "TheLogBroadcaster",
 "LogBroadcasterRuntime",
 home.getDomainName(),
 serverName);
 System.out.println("Created WebLogicObjectName: " + mbeanName);

 //Passing the name of the MBean and your listener class to the
 //addNotificationListener method of MBeanServer.
 rmbs.addNotificationListener(mbeanName, listener, filter, null);
 System.out.println("\n[myListener]: Listener registered ...");

 //Keeping the remote client active.
 System.out.println("pausing...........");
 System.in.read();
 } catch(Exception e) {
 System.out.println("Exception: " + e);

 }
 }
}

Using Monitor MBeans to Observe Changes: Main Steps
To configure and use monitor MBeans:

1. Choose a monitor MBean type that matches the type of data you want to observe. “Choosing
a Monitor MBean Type” on page 6-22

2. Create a listener class that can listen for notifications from monitor MBeans. See “Creating
a Notification Listener for a Monitor MBean” on page 6-25.

3. Create a class that configures a monitor MBean, registers your listener class with the
monitor MBean, and then registers the monitor MBean with an observed MBean.
“Instantiating the Monitor and Listener” on page 6-26

Choosing a Monitor MBean Type
WebLogic Server provides monitor MBeans that are specialized to observe changes in specific
data types. You must configure and instantiate the type of monitor MBean that matches the type
of the object that an MBean returns for an attribute value. For example, a monitor MBean based

Us ing Mon i to r MBeans to Observe Changes : Main S teps

Programming WebLogic Management Services with JMX 6-23

on the StringMonitor type can observe an attribute that is declared as an Object as long as
actual values of the attributes are String instances, as determined by the instanceof operator.

To choose a monitor type:

1. Determine the type of object that is returned by the MBean attribute that you want to observe
by doing any of the following:

– Refer to the WebLogic Server Javadoc.

– Use the weblogic.Admin GET command, which provides information about the
MBean that you specify. For more information, refer to "MBean Management
Command Reference" in Configuring and Managing WebLogic Server.

– Use the javap command on the MBean you are monitoring. The javap command is a
standard Java utility that disassembles a class file.

2. Choose a monitor type from the following table.

For more information about monitor types, refer to the JMX 1.0 specification, which you can
download from http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive
that you download includes the API documentation.

Monitor Notification Types
Each type of monitor MBean emits specific types of
javax.management.monitor.MonitorNotification notifications. For any given
notification, you can use the MonitorNotification.getType() method to determine its type.

The following table describes the type of notifications that monitor MBeans emit.

Table 6-2 Monitor MBeans and Observed Object Types

A Monitor MBean of This
Type

Observes This Object Type

CounterMonitor Integer

GaugeMonitor Integer or floating-point (Byte, Integer, Short,
Long, Float, Double)

StringMonitor String

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-24 Programming WebLogic Management Services with JMX

Error Notification Types
All monitors can emit the following notification types to indicate error cases:

jmx.monitor.error.mbean, which indicates that the observed MBean is not registered in the
MBean Server. The observed object name is provided in the notification.

jmx.monitor.error.attribute, which indicates that the observed attribute does not
exist in the observed object. The observed object name and observed attribute name are
provided in the notification.

jmx.monitor.error.type, which indicates that the object instance of the observed
attribute value is null or not of the appropriate type for the given monitor. The observed
object name and observed attribute name are provided in the notification.

Table 6-3 Monitor MBeans and MonitorNotification Types

A Monitor MBean of This
Type

Emits This MonitorNotification Type

CounterMonitor A counter monitor emits a jmx.monitor.counter.threshold when the
value of the counter reaches or exceeds a threshold known as the comparison level.

GaugeMonitor • If the observed attribute value is increasing and becomes equal to or greater
than the high threshold value, the monitor emits a notification type of
jmx.monitor.gauge.high. Subsequent crossings of the high threshold
value do not cause further notifications unless the attribute value becomes equal
to or less than the low threshold value.

• If the observed attribute value is decreasing and becomes equal to or less than
the low threshold value, the monitor emits a notification type of
jmx.monitor.gauge.low. Subsequent crossings of the low threshold
value do not cause further notifications unless the attribute value becomes equal
to or greater than the high threshold value.

StringMonitor • If the observed attribute value matches the string to compare value, the monitor
emits a notification type of jmx.monitor.string.matches. Subsequent
matches of the string to compare values do not cause further notifications unless
the attribute value differs from the string to compare value.

• If the attribute value differs from the string to compare value, the monitor emits
a notification type of jmx.monitor.string.differs. Subsequent
differences from the string to compare value do not cause further notifications
unless the attribute value matches the string to compare value.

Us ing Mon i to r MBeans to Observe Changes : Main S teps

Programming WebLogic Management Services with JMX 6-25

jmx.monitor.error.runtime, which contains exceptions that are thrown while trying to
get the value of the observed attribute (for reasons other than the cases described above).

The counter and the gauge monitors can also emit the following
jmx.monitor.error.threshold notification type under the following circumstances:

For a counter monitor, when the threshold, the offset, or the modulus is not of the same
type as the observed counter attribute.

For a gauge monitor, when the low threshold or high threshold is not of the same type as the
observed gauge attribute.

Creating a Notification Listener for a Monitor MBean
As any other MBean, monitor MBeans emit notifications by implementing
javax.management.NotificationBroadcaster. To create a listener for notifications from a
monitor MBean, create a class that does the following:

1. Implements NotificationBroadcaster or
weblogic.management.RemoteNotificationListener.

2. Includes the NotificationListener.handleNotification() or the
RemoteNotificationListener.handleNotification() method.

You can register the same notification listener with instances of LogBroadcasterMBean,
monitor MBeans, or any other MBean.

The example below creates a listener object for an application that runs in a JVM outside the
WebLogic Server JVM. It includes logic that outputs additional messages when it receives
notifications from monitor MBeans. You could further refine the logic so that listener responds
differently to the different types of monitor notifications described in “Monitor Notification
Types” on page 6-23.

Listing 6-7 Listener for Monitor Notifications

import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.monitor.MonitorNotification;
import weblogic.management.RemoteNotificationListener;

public class CounterListener implements RemoteNotificationListener {
public void handleNotification(Notification notification ,Object obj) {

System.out.println("\n\n Notification Received ...");

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-26 Programming WebLogic Management Services with JMX

System.out.println("Type=" + notification.getType());
System.out.println("Message=" + notification.getMessage());
System.out.println("SequenceNumber=" +

notification.getSequenceNumber());
System.out.println("Source=" + notification.getSource());
System.out.println("Timestamp=" + notification.getTimeStamp() + "\n");
if(notification instanceof MonitorNotification) {

MonitorNotification monitorNotification =
MonitorNotification)notification;

System.out.println("This notification is a MonitorNotification");
System.out.println("Observed Attribute: " +

monitorNotification.getObservedAttribute());
System.out.println("Observed Object: " +

monitorNotification.getObservedObject());
System.out.println("Trigger value: " +

monitorNotification.getTrigger());
}

}
}

Instantiating the Monitor and Listener
The steps you take to register a monitor MBean with an observed MBean differ depending on
whether you are registering the monitor MBean on a single server instance or on multiple server
instances in a domain.

Note: Because WebLogic Server does not provide type-safe stubs for monitor MBeans, you
must use standard JMX design patterns in which your JMX client uses the MBeanServer
interface to get and set attributes and invoke operations on the monitor MBean.

The following sections provide examples for both tasks:

“Example: Monitoring an MBean on a Single Server” on page 6-26

“Example: Monitoring Instances of an MBean on Multiple Servers” on page 6-30

Example: Monitoring an MBean on a Single Server
The following example creates a counter monitor for the ServicedRequestTotalCount
attribute of the ExecuteQueueRuntimeMBean, which returns the number of requests that have
been processed by the corresponding execution queue. WebLogic Server uses execute queues to
optimize the performance of critical applications. For more information, refer to "Using Execute
Queues to Control Thread Usage."

http://e-docs.bea.com/wls/docs81/perform/AppTuning.html#exqueuesmain
http://e-docs.bea.com/wls/docs81/perform/AppTuning.html#exqueuesmain

Us ing Mon i to r MBeans to Observe Changes : Main S teps

Programming WebLogic Management Services with JMX 6-27

To create a counter monitor for an ExecuteQueueRuntimeMBean on a single server instance, the
example class in Listing 6-8:

1. Looks up the javax.management.MBeanServer through the server’s JNDI tree.

See “Using the MBeanServer Interface to Access MBeans” on page 2-18.

2. Constructs an object name for the monitor MBean instance.

The object name must be unique throughout the entire WebLogic Server domain and it
must follow the JMX conventions:

domain name:Name=name,Type=type[,attr=value]...

See the Javadoc for javax.management.ObjectName, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html.

3. Creates an instance of CounterMonitorMBean and registers it under the object name that
you created in the previous step.

The MBeanServer.createMBean method both creates the MBean object in the WebLogic
Server JVM and registers the object in the server’s MBean server.

4. Configures the monitor MBean by doing the following:

a. Constructs the object name of the observed MBean and sets it as the value of the
CounterMonitorMBean ObservedObject attribute.

For a list of commonly monitored MBeans and their WebLogicObjectName, refer to
Table 6-1, “Commonly Monitored WebLogic Server Attributes,” on page 6-6.

b. Sets values of the monitor MBean attributes.

For information about the attributes and operations that you use to configure monitors,
refer to:

“Configuring CounterMonitor Objects” on page 6-31

“Configuring GaugeMonitor Objects” on page 6-33

“Configuring StringMonitor Objects” on page 6-34.

5. Instantiates the listener object that you created in “Creating a Notification Listener for a
Monitor MBean” on page 6-25.

6. Registers the listener object using the MBean server’s addNotificationListener()
operation.

7. Starts the monitor using the monitor’s start() operation.

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-28 Programming WebLogic Management Services with JMX

In the example, weblogic is a user who has permission to view and modify MBean attributes.
For information about permissions to view and modify MBeans, refer to "Security Roles" in the
Securing WebLogic Resources guide.

Listing 6-8 Instantiating a Counter Monitor and Listener on a Single Server

import javax.management.Attribute;
import javax.management.AttributeList;
import javax.management.MBeanServer;
import javax.management.ObjectInstance;
import javax.management.ObjectName;
import javax.management.monitor.CounterMonitor;
import javax.naming.Context;
import javax.naming.InitialContext;
import java.util.Hashtable;

public class ClientMonitor {
// The name of the WebLogic domain. Please change this to match the
// name of your installation specific domain name
private static String weblogicDomain = "mydomain";
// The name and URL of the WebLogic server. Please change these to match the
// name of your installation specific server name and URL
private static String weblogicServer = "myserver";
private static String url = "t3://localhost:7001";
// The credentials for a user in the Administrator role. Please change these
// to match the name of an administrator in your security realm.
private static String username = "weblogic";
private static String password = "weblogic";

public static void main(String Args[]) {
try {

//Get the MBeanServer interface this is needed when you are
// creating/registering a monitor from the client side.
MBeanServer rmbs = null;
Hashtable props = new Hashtable();
props.put(Context.PROVIDER_URL, url);
props.put(Context.INITIAL_CONTEXT_FACTORY,

"weblogic.jndi.WLInitialContextFactory");
props.put(Context.SECURITY_PRINCIPAL, username);
props.put(Context.SECURITY_CREDENTIALS, password);
InitialContext ctx = new InitialContext(props);
rmbs = (MBeanServer) ctx.lookup("weblogic.management.server");

// Construct the objectName for your CounterMonitor object
ObjectName monitorObjectName = new ObjectName(

"mcompany:Name=MyCounter,Type=CounterMonitor");

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html

Us ing Mon i to r MBeans to Observe Changes : Main S teps

Programming WebLogic Management Services with JMX 6-29

// Create the Monitor MBean.
rmbs.createMBean(

"javax.management.monitor.CounterMonitor", monitorObjectName);

//Configure your monitor object using the MBean attributes
AttributeList monitorAttributes = new AttributeList();
// Construct the objectName for the observed MBean
ObjectName qObjectName = new ObjectName(weblogicDomain

+ ":Name=weblogic.kernel.Default,Location=" + weblogicServer
+ ",Type=ExecuteQueueRuntime,ServerRuntime=" + weblogicServer);

Attribute observedObjectAttribute = new Attribute("ObservedObject",
qObjectName);

monitorAttributes.add(observedObjectAttribute);

Attribute observedAttributeAttribute =
new Attribute("ObservedAttribute", "ServicedRequestTotalCount");

monitorAttributes.add(observedAttributeAttribute);

Attribute notifyAttribute = new Attribute("Notify", new Boolean(true));
monitorAttributes.add(notifyAttribute);

// Define variables to be used when configuring your
// CounterMonitor object.
Integer threshold = new Integer(10);
Integer offset = new Integer(1);
Attribute thresholdAttribute = new Attribute("Threshold", threshold);
monitorAttributes.add(thresholdAttribute);

Attribute offsetAttribute = new Attribute("Offset", offset);
monitorAttributes.add(offsetAttribute);

monitorAttributes = rmbs.setAttributes(monitorObjectName,
monitorAttributes);

//Instantiate and register your listener with the monitor
CounterListener listener = new CounterListener();
rmbs.addNotificationListener(monitorObjectName, listener, null, null);

// Start the monitor
Object[] params = new Object[0];
String[] signature = new String[0];
rmbs.invoke(monitorObjectName, "start", params, signature);

 // Prevent the client program from exiting
synchronized (listener) {

try {
listener.wait();

} catch (InterruptedException ignore) {
}

}
} catch (Exception e) {

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-30 Programming WebLogic Management Services with JMX

e.printStackTrace();
}

}
}

Example: Monitoring Instances of an MBean on Multiple Servers
A WebLogic Server domain maintains a set of MBean instances for each server instance. For
example, each server instance hosts its own ServerRuntimeMBean, LogMBean, and
ExecuteQueueRuntimeMBean. As a convenience, you can access all of these MBean instances
from a single connection to the Administration Server. This single connection also enables you
to create monitor MBeans for these MBeans on all servers in the domain. For example, your JMX
client can connect to the Administration Server and create a counter monitor MBean on each
Managed Server to monitor the server’s ExecuteQueueRuntimeMBean.

JMX clients that use this technique must import the weblogic.management.MBeanHome and
weblogic.management.runtime.ServerRuntimeMBean classes.

To monitor instances of ExecuteQueueRuntimeMBean on each server instance in a domain, the
code excerpt in Listing 6-9 does the following:

1. Retrieves the domain’s Administration MBeanHome.

The Administration MBeanHome interface enables your client to access all active server
instances in the domain without having to determine the listen address and listen port for
each server instance and without having to determine whether the server instance is
currently active.

2. Invokes MBeanHome.getMBeansByType to retrieve all instances of ServerRuntimeMBean
in the domain.

Only servers that are currently running maintain a ServerRuntimeMBean instance. If a
server is not running, the MBeanHome.getMBeansByType method will not return a
ServerRuntimeMBean for the server.

3. For each ServerRuntimeMBean, the code does the following:

a. Gets the corresponding server’s local MBeanHome interface from the Administration
Server’s JNDI tree.

The Administration Server’s JNDI tree contains a reference to local MBeanHome
interface for each Managed Server. The ServerRuntimeMBean.getName() method

Us ing Mon i to r MBeans to Observe Changes : Main S teps

Programming WebLogic Management Services with JMX 6-31

returns the name of the server instance. This returned value, plus
MBeanHome.JNDI_NAME is the JNDI name of the server’s local MBeanHome interface.

b. Uses the MBeanHome.getMBeanSever() method to get the local server’s
javax.management.MBeanServer interface.

Once the code retrieves the local server’s MBeanServer interface, it can proceed with creating
monitor MBeans as in Listing 6-8.

Listing 6-9 Instantiating a Monitor on Multiple Server Instances

import weblogic.management.MBeanHome;
import weblogic.management.runtime.ServerRuntimeMBean;
...
// Get the Admin home
MBeanHome adminhome = (MBeanHome) ctx.lookup(MBeanHome.ADMIN_JNDI_NAME);
// Get the list of running managed servers and iterate over it
Set srSet = adminhome.getMBeansByType("ServerRuntime");
Iterator sr_iter = srSet.iterator();
while (sr_iter.hasNext()) {

ServerRuntimeMBean bean = (ServerRuntimeMBean) sr_iter.next();
// Get the local home for the managed server
MBeanHome localhome =

(MBeanHome) ctx.lookup(MBeanHome.JNDI_NAME + "." + bean.getName());
// Get the MBeanServer for the managed server
MBeanServer rmbs = localhome.getMBeanServer();

... // code to create monitor MBeans
}

Configuring CounterMonitor Objects
CounterMonitor objects observe changes in MBean attributes that are expressed as integers.
The following list describes groups of CounterMonitor attributes that you set to achieve typical
configurations of a CounterMonitor instance:

Sends a notification when the observed attribute exceeds the threshold.

Threshold

Notify (set to true)
ObservedObject
ObservedAttribute

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-32 Programming WebLogic Management Services with JMX

Sends a notification when the observed attribute exceeds the threshold. Then it increases
the threshold by the offset value. Each time the observed attribute exceeds the new
threshold, the threshold is increased by the offset value. For example, if you set
Threshold to 1000 and Offset to 2000, when the observed attribute exceeds 1000, the
CounterMonitor object sends a notification and increases the threshold to 3000. When
the observed attribute exceeds 3000, the CounterMonitor object sends a notification and
increases the threshold again to 5000.

Threshold

Notify (set to true)
ObservedObject
ObservedAttribute

Offset

Sends a notification when the observed attribute exceeds the threshold, and increases the
threshold by the offset value. When the threshold reaches the value specified by the
Modulus attribute, the threshold is returned to the value that was specified through the
latest call to setter for the monitor’s Threshold attribute, before any offsets were applied.
For example, if the original Threshold is set to 1000 and the Modulus is set to 5000,
when the Threshold exceeds 5000, the monitor sends a notification and resets the
Threshold to 1000.

Threshold

Notify (set to true)
ObservedObject
ObservedAttribute
Offset

Modulus

Sends a notification when the difference between two consecutive observations exceeds the
threshold. For example, the Threshold is 20 and the monitor observes an attribute value
of 2. If the next observation is greater than 22, then the monitor sends a notification.
However, if the value is 10 at the next observation, and 25 at the following observation,
then the monitor does not send a notification because the value has not changed by more
than 20 for any two consecutive observations.

Threshold

Notify (set to true)
ObservedObject
ObservedAttribute

DifferenceMode (set to true)

Sends a notification when the difference between two consecutive observations exceeds the
threshold, and increases the threshold by the offset value. When the threshold reaches the

Us ing Mon i to r MBeans to Observe Changes : Main S teps

Programming WebLogic Management Services with JMX 6-33

value specified by the Modulus attribute, the threshold is returned to the value that was
specified through the latest call to setter for the monitor’s Threshold attribute, before any
offsets were applied.

Threshold

Notify (set to true)
ObservedObject
ObservedAttribute
Offset
Modulus

DifferenceMode (set to true)

To see all possible configurations of a CounterMonitor instance, refer to the JMX 1.0 API
documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that you
download includes the API documentation.

Configuring GaugeMonitor Objects
GaugeMonitor objects observe changes in MBean attributes that are expressed as integers or
floating-point. The following list describes groups of GaugeMonitor attributes and operations
that you use to achieve typical configurations of a GaugeMonitor instance:

Sends a notification when the observed attribute is beyond the high threshold.

Set the following attributes:

HighThreshold

NotifyHigh (set to true)
ObservedObject

ObservedAttribute

Sends a notification when the observed attribute is outside the range of the high or low
threshold.

Set the following attributes:

HighThreshold

NotifyHigh (set to true)
ObservedObject
ObservedAttribute

NotifyLow (set to true)

Sends a notification when the difference between two consecutive observations is outside
the range of the high or low threshold.

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Using WebLog ic Se rve r MBean No t i f i cat ions and Moni to rs

6-34 Programming WebLogic Management Services with JMX

Set the following attributes:

NotifyHigh (set to true)
ObservedObject
ObservedAttribute

NotifyLow (set to true)
DifferenceMode (set to true)

Invoke the following operation as well:
setThresholds(int Highthreshold, Lowthreshold)

GaugeMonitor does not support an offset or modulus.

To see all possible configurations of a GaugeMonitor instance, refer to the JMX 1.0 API
documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that you
download includes the API documentation.

Configuring StringMonitor Objects
StringMonitor objects observe changes in MBean attributes that are expressed as strings. The
following list describes groups of StringMonitor attributes that you set to achieve typical
configurations of a StringMonitor instance:

Sends a notification when the observed attribute matches the string specified in
StringToCompare.

StringToCompare

NotifyMatch (set to true)
ObservedObject

ObservedAttribute

Sends a notification when the observed attribute differs from the string specified in
StringToCompare.

StringToCompare

NotifyDiffer (set to true)
ObservedObject

ObservedAttribute

To see all possible configurations of a StringMonitor instance, refer to the JMX 1.0 API
documentation, which you can download from
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html. The archive that you
download includes the API documentation.

http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html
http://jcp.org/aboutJava/communityprocess/final/jsr003/index.html

Programming WebLogic Management Services with JMX 7-1

C H A P T E R 7

Using the WebLogic Timer Service to
Generate and Receive Notifications

WebLogic Server includes a timer service that you can configure to emit notifications at specific
dates and times or at a constant interval. To listen and respond to these timer notifications, you
create a JMX notification listener and register it with the timer service.

The WebLogic timer service extends the standard JMX timer service, enabling it to run within a
Weblogic Server execute thread and within the security context of a WebLogic Server user
account. (Execute threads enable you to fine-tune your application's use of server resources and
optimize performance. For more information, refer to “Using Execute Queues to Control Thread
Usage” in WebLogic Server Performance and Tuning.)

The following sections describe how to use the WebLogic timer service:

“Using the WebLogic Timer Service: Main Steps” on page 7-1

“Example: Generating a Notification Every Minute” on page 7-4

“Removing Notifications” on page 7-7

Using the WebLogic Timer Service: Main Steps
WebLogic Server does not provide a centralized timer service that can be accessed by all
resources that are deployed on a specific server instance. Instead, each application constructs and
manages instances of the timer service as it requires. Each time you restart a server instance, each
application must re-instantiate any timer service configurations it needs.

To configure the WebLogic timer service to emit notifications and to create a listener that
receives those notifications, create a class that does the following:

http://e-docs.bea.com/wls/docs81/perform/AppTuning.html#exqueuesmain
http://e-docs.bea.com/wls/docs81/perform/AppTuning.html#exqueuesmain

Using the WebLog ic T imer Se rv ice to Gene rate and Rece ive No t i f i cat ions

7-2 Programming WebLogic Management Services with JMX

1. Constructs an instance of the weblogic.management.timer.Timer MBean.

2. Invokes the Timer.addNotification API to configure the Timer MBean to emit a
notification object at a specific time or at a recurring interval.

The class can invoke the addNotification API multiple times to configure the Timer
MBean to emit notification objects at different times and time intervals.

See “Configuring a Timer MBean to Emit Notifications” on page 7-2.

3. Creates a notification listener with optional filter and registers the listener and filter with the
Timer MBean.

Your class can register multiple listeners and filters with the Timer MBean instance.

For information about creating and registering listeners, refer to “Listening for
Notifications from WebLogic Server MBeans: Main Steps” on page 6-9.

4. Invokes the Timer.start method to start an instance of the timer service.

When your listener receives notifications, it can invoke TimerNotification methods to
retrieve data from the notification.

An application can include multiple classes that construct and configure a Timer MBean. Each
class uses its own instance of the Timer MBean and listens for notifications only from the Timer
MBean that it instantiated.

Configuring a Timer MBean to Emit Notifications
To configure a Timer MBean instance to emit notifications, you invoke the MBean’s
addNotification method. The method includes parameters that configure the frequency of
notifications and specify a handback object.

When you invoke the addNotification method, the timer service creates a
TimerNotification object and returns an identifier for the new object. You can use this
identifier to retrieve information about the TimerNotification object from the timer or to
remove the object from the timer’s list of notifications. When the time that you specify arrives,
the timer service emits the TimerNotification object along with a reference to the handback
object.

The method signature for addNotification is as follows:

addNotification (java.lang.String type, java.lang.String message,

java.lang.Object userData,java.util.Date startTime,

long period, long nbOccurences)

Conf igur ing a T imer MBean to Emi t No t i f i cat ions

Programming WebLogic Management Services with JMX 7-3

Table 7-1 describes each parameter of the addNotification API. For more information, refer
to the WebLogic Server Javadoc for weblogic.management.timer.Timer.

Table 7-1 Parameters of the addNotification API

Parameter Description

java.lang.String type A string that you use to identify the event that triggers this notification
to be broadcast. For example, you can specify midnight for a
notification that you configure to be broadcast each day at midnight.

java.lang.String message Specifies the value of the TimerNotification object’s
message attribute.

java.lang.Object userData Specifies the name of an object that contains whatever data you
want to send to your listeners. Usually, you specify a reference
to the class that registered the notification, which functions as
a callback.

java.util.Date startTime Specifies a Date object that contains the time and day at which
the timer emits your notification.
For more information, refer to the next section, “Specifying Time
Intervals” on page 7-4.

long period (Optional) Specifies the interval in milliseconds between
notification occurrences. Repeating notifications are not
enabled if this parameter is zero or is not defined (null).
For more information, refer to the next section, “Specifying Time
Intervals” on page 7-4.

long nbOccurences (Optional) Specifies the total number of times that the
notification will occur. If the value of this parameter is zero or
is not defined (null) and if the period is not zero or null, then
the notification will repeat indefinitely.
If you specify this parameter, each time the Timer MBean
emits the associated notification, it decrements the number of
occurrences by one. You can use Timer.getNbOccurrences
method to determine the number of occurrences that remain.
When the number of occurrences reaches zero, the Timer
MBean removes the notification from its list of configured
notifications.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/timer/Timer.html

Using the WebLog ic T imer Se rv ice to Gene rate and Rece ive No t i f i cat ions

7-4 Programming WebLogic Management Services with JMX

Specifying Time Intervals
To facilitate specifying dates, the Timer MBean includes the following integer constants:

ONE_SECOND, which resolves to the number of milliseconds in one second.

ONE_MINUTE, which resolves to the number of milliseconds in one minute.

ONE_HOUR, which resolves to the number of milliseconds in one hour.

ONE_DAY, which resolves to the number of milliseconds in one day.

ONE_WEEK, which resolves to the number of milliseconds in one week.

For example, the following code configures the timer service to emit a TimerNotification
object once a day at midnight:

java.util.Date midnight =

java.util.Calendar.getInstance.set(HOUR_OF_DAY=24:00:00).getTime();

addNotification (eachMidnight, “the time is midnight”,

this,midnight,Timer.ONE_DAY);

If the time and date that you specify is earlier than the current time and date, the
addNotification method attempts to update this entry as follows:

If you provided a value for the period parameter, the method increments the date value by the
period value until the date is later than the current date. For example, if you specified
ONE_DAY for the period value, the addNotification increments the date value one day
until it is later than the current date.

If you provided a value for the nbOccurrences parameter, the method updates the notification
date as explained above. Each time it increments the date value, it decreases the specified
number of occurrences by one. If the number of occurrences reaches 0 and the notification
date remains earlier than the current date, the method throws
IllegalArgumentException.

If you did not provide a value for the period parameter, the notification date cannot be updated
and the method throws IllegalArgumentException.

Example: Generating a Notification Every Minute
The code in Listing 7-1 is a servlet listener that configures the timer service to emit notifications
every minute. It takes the following actions:

Example : Genera t ing a Not i f i ca t ion Eve ry M inute

Programming WebLogic Management Services with JMX 7-5

1. Extends the NotificationListener class so it can listen for notifications from the Timer
MBean that the class instantiates.

The handleNotification method that all listeners must implement is at the end of the
class.

2. Instantiates a weblogic.management.timer.Timer MBean.

3. Registers itself with the Timer MBean as a notification listener.

4. Invokes the addNotification method.

The Date object configures the timer to start emitting this notification 5 seconds after it is
added to the Timer MBean’s notification list. The PERIOD value causes the notification to
be emitted every minute.

The class attaches itself as the user-defined userData object.

Each time the Timer MBean emits a notification, it will emit a TimerNotification
object that contains this object, and whose Message attribute contains the string a
recurring call, and whose Type attribute contains the string oneMinuteTimer.

5. Starts the Timer MBean instance.

When you redeploy or undeploy the servlet, it invokes it the Timer.stop method for the Timer
MBean instance that is represented by the timer variable.

Listing 7-1 Servlet Listener

import java.util.Date;

import javax.management.Notification;
import javax.management.NotificationListener;
import javax.management.InstanceNotFoundException;

import javax.servlet.ServletContextEvent;
import javax.servlet.ServletContextListener;

import weblogic.management.timer.Timer;

// Implementing NotificationListener
public final class LifecycleListener implements ServletContextListener,

NotificationListener {

private static final long PERIOD = Timer.ONE_MINUTE;
private Timer timer;
private Integer notificationId;

Using the WebLog ic T imer Se rv ice to Gene rate and Rece ive No t i f i cat ions

7-6 Programming WebLogic Management Services with JMX

public void contextInitialized(ServletContextEvent event) {
System.out.println(">>> contextInitialized called.");

// Instantiating the Timer MBean
timer = new Timer();

// Registering this class as a listener
timer.addNotificationListener(this, null, "some handback object");

// Adding the notification to the Timer and assigning the
// ID that the Timer returns to a variable
Date timerTriggerAt = new Date((new Date()).getTime() + 5000L);
notificationId = timer.addNotification("oneMinuteTimer",

"a recurring call", this,
timerTriggerAt, PERIOD);

timer.start();
System.out.println(">>> timer started.");

}

public void contextDestroyed(ServletContextEvent event) {
System.out.println(">>> contextDestroyed called.");
try {

timer.stop();
timer.removeNotification(notificationId);
System.out.println(">>> timer stopped.");

} catch (InstanceNotFoundException e) {
e.printStackTrace();

}
}
/* callback method */
public void handleNotification(Notification notif, Object handback) {

System.out.println(">>> "+(new Date())+
" timer handleNotification="+notif+
", handback="+handback);

}
}

The deployment descriptor for the servlet listener must use the <listener> and
<listener-class> statements to declare the class in the example above. See Listing 7-2.

Listing 7-2 Deployment Descriptor for Servlet Listener

<!DOCTYPE web-app PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN" "http://java.sun.com/j2ee/dtds/web-app_2_3.dtd">
<web-app>

Remov ing Not i f i ca t ions

Programming WebLogic Management Services with JMX 7-7

<listener>
<listener-class>

examples.jmxtimer.LifecycleListener
</listener-class>

</listener>
</web-app>

Removing Notifications
The Timer MBean removes notifications from its list when either of the following occurs:

A non-repeating notification has been emitted.

A repeating notification has exhausted its number of occurrences.

The Timer MBean also provides the following APIs to remove notifications:

removeAllNotifications(), which remove all notifications that are registered with the
Timer MBean instance.

removeNotification(java.lang.Integer id), which removes the notification whose
ID matches the ID you specify. The addNotification method returns this ID when you
invoke it. You can also use Timer APIs to retrieve IDs.

removeNotifications(java.lang.String type), which removes all notifications
whose type corresponds to the type that you specify.

To use these remove notification APIs for a given Timer MBean instance, add them to the class
that you use to instantiate the Timer MBean. Wrap each API within a method, similar to the
timer.start() and timer.stop() invocations in Listing 7-1. For example, if you assigned the
Timer MBean instance to a variable named timer, add the following method to your class:

public void removeMyNotification (java.lang.Integer id) {

timer.removeNotification(id);

}

For more information, refer to the WebLogic Server Javadoc for
weblogic.management.timer.Timer.

http://e-docs.bea.com/wls/docs81/javadocs/weblogic/management/timer/Timer.html

Using the WebLog ic T imer Se rv ice to Gene rate and Rece ive No t i f i cat ions

7-8 Programming WebLogic Management Services with JMX

Programming WebLogic Management Services with JMX Index-1

Index

A
ADMIN_JNDI_NAME JNDI variable 2-7
Administration Console

defined 1-17
administration domain. See domain 1-3
Administration MBeanHome interface

defined 1-15
retrieving ClusterRuntimeMBean 5-14
retrieving from an external client 2-8
retrieving ServerRuntimeMBean 5-8, 5-10
retrieving through JNDI 2-7
retrieving with the Helper API 2-5
when to use 2-3

Administration MBeans
accessing from Administration Console 1-17
accessing from weblogic.Admin 1-18
API documentation 1-9
defined 1-4
interfaces for accessing 2-3
lifecycle 1-5–1-8
Managed Server Independence 1-8
retrieving a list of ??–2-14
WebLogicObjectName 3-3

Administration Servers 1-4–1-8
accessing MBeans 1-15
defined 1-3
JNDI tree 2-6
LogMBeans 3-22
registered MBeans 1-13

AttributeAddNotification object 6-10
AttributeChangeNotification object 6-10
AttributeRemoveNotification object 6-10

C
clusters 5-14
config.xml file ??–1-8

editing from Administration Console 1-17
no runtime data 1-10

configurable MBean attributes. See dynamic
changes to MBeans
Configuration MBeans

defined 1-2
See also Local Configuration MBeans and

Administration MBeans
CounterMonitor objects

configuring 6-31
type of data monitored 6-23
type of notifications emitted 6-24

custom MBeans 1-13

D
derived gauge, defined 6-3
destroying MBeans 1-5
domains

defined 1-3
retrieving all MBeans 2-10
specified in WebLogicObjectName 3-3

dynamic attributes in the Administration Console
1-18
dynamic changes to MBeans 1-8

E
e-mail 6-14
error notification types 6-24

Index-2 Programming WebLogic Management Services with JMX

examples
notification filter 6-14

G
GaugeMonitor objects

configuring 6-33
type of data monitored 6-23
type of notifications emitted 6-24

getAllMBeans method 2-10
getMBeansByType method 2-14

H
handleNotification method 6-11

for local applications 6-25
for remote applications 6-11, 6-25

Helper API 2-4

I
instantiating MBeans 1-5
Integer data type, monitoring 6-23

J
Javadoc

for Configuration MBeans 1-9
for Runtime MBeans 1-11

JMX object names 3-1
JMX specification 1-1
JNDI tree

Administration Servers 2-6
Managed Servers 2-6

L
lifecycle of MBeans 1-5
listen ports, setting 1-5
listeners

creating 6-9, 6-25
defined 6-1

types of notification objects 6-23
Local Configuration MBeans

accessing from weblogic.Admin 1-18
API documentation 1-9
defined 1-4
interfaces for accessing 2-3
lifecycle 1-5–1-8
no access from Administration Console 1-17
on Administration Server 1-13
retrieving a list of ??–2-14
WebLogicObjectName 3-3
WebLogicObjectName, examples 3-23

Local MBeanHome interface
defined 1-15
retrieving from an internal client 2-9
retrieving ServerRuntimeMBean 5-6
retrieving through JNDI 2-7
retrieving with the Helper API 2-5
when to use 2-3

LOCAL_JNDI_NAME JNDI variable 2-7
log messages 6-10
LogMBean on Administration Servers 3-22

M
managed resources, defined 1-2
Managed Server Independence (MSI) 1-8
Managed Servers

defined 1-3
JNDI tree 2-6
local interface, performance of 1-15, 2-3
MBean replicas 1-4, 1-5
MBeans accessible from 1-13, 1-15
propagating changes to Local Configuration

MBeans 1-8
runtime information about clusters 5-14
See also Local MBeanHome interface

MBean types, defined 3-3
MBeanHome interface 1-14

Programming WebLogic Management Services with JMX Index-3

See also Local MBeanHome interface,
Administration MBeanHome
interface, and type-safe interface

MBeanHome methods. See type-safe interface
MBeans

accessing, main steps 2-2
creating custom 1-13
defined 1-2
notifications generated 6-9
See also Local Configuration MBeans,

Administration MBeans, and
Runtime MBeans

MBeanServer interface
accessing MBeans 2-18
defined 1-14
registering listeners 6-16
retrieving and changing runtime data 5-12
when to use 2-4

message level for standard out 4-2
metrics for runtime data 1-10
modulus for CounterMonitor objects 6-32
monitor MBeans

defined 6-3
types 6-22

monitoring attributes of MBeans
comparing changes to MBean attributes

6-34
main steps 6-22
notification types 6-23

MSI 1-8

N
names of MBeans 3-3
notification filters

creating and registering 6-13
example 6-14

notification listeners. See listeners
notifications

defined 6-1
types 6-23

O
object names for MBeans 2-10, 3-1
overriding values

in config.xml 1-7

P
performance metrics 1-10
persistence

of runtime data 1-10
propagating changes to Local Configuration
MBeans 1-8

R
registering MBeans 1-13
RemoteMBeanServer interface

defined 1-14
RemoteNotificationListener object 6-10,
6-25
replicas of Administration MBeans 1-5
RMI 1-15
runtime changes to MBeans 1-8, 1-18
Runtime MBeans

API documentation 1-11
defined 1-2
distribution 1-10
interfaces for accessing 2-3
on Administration Server 1-13
persistence 1-10
retrieving a list of ??–2-14
retrieving with Administration

MBeanHome.getMBeansByType
5-9

WebLogicObjectName 3-3
Runtime MBeans, accessing

from Administration Console 1-17
from Administration MBeanHome 2-12, 5-8
from Local MBeanHome 5-6
from MBeanServer 5-12
from weblogic.Admin 1-18

Index-4 Programming WebLogic Management Services with JMX

S
security MBeans 1-12
ServerRuntimeMBean interface

accessing from Administration MBeanHome
5-8

changing with MBeanServer 5-12
defined 5-6

standard out
configuring message level with

MBeanServer 4-3
String data type, monitoring 6-23
StringMonitor objects

configuring 6-34
type of data monitored 6-23
type of notifications emitted 6-24

T
thresholds

for CounterMonitor objects 6-31
for GaugeMonitor objects 6-33

type, MBean 3-3
type-safe interface

accessing MBeans 2-10–2-14
defined 1-14
when to use 2-4

W
weblogic.Admin utility

changing configuration data 4-2
defined 1-18
determining active domain and servers 5-5
finding WebLogicObjectName 3-21, 3-24

weblogic.Server startup command 1-5
WebLogicObjectName

defined 3-1, 3-5
examples 3-23
finding with weblogic.Admin 3-21
retrieving with WebLogicMBean.getName

2-10

using to retrieve ServerRuntimeMBean
5-10

	About This Document
	Audience
	e-docs Web Site
	How to Print the Document
	Contact Us!
	Documentation Conventions

	Overview of WebLogic JMX Services
	WebLogic Server Managed Resources and MBeans
	Basic Organization of a WebLogic Server Domain
	MBeans for Configuring Managed Resources
	Local Replicas of Configuration MBeans
	The Life Cycle of Configuration MBeans
	Replication of MBeans for Managed Server Independence
	Documentation for Configuration MBean APIs

	MBeans for Viewing the Runtime State of Managed Resources
	Documentation for Runtime MBean APIs

	Security MBeans
	Non-WebLogic Server MBeans

	MBean Servers and the MBeanHome Interface
	Local MBeanHome and the Administration MBeanHome

	Notifications and Monitoring
	The Administration Console and the weblogic.Admin Utility
	The Administration Console
	The weblogic.Admin Utility

	Accessing WebLogic Server MBeans
	Accessing MBeans: Main Steps
	Determining Which Interfaces to Use
	Accessing an MBeanHome Interface
	Using the Helper APIs to Retrieve an MBeanHome Interface
	Example: Retrieving a Local MBeanHome Interface

	Using JNDI to Retrieve an MBeanHome Interface
	Example: Retrieving the Administration MBeanHome from an External Client
	Example: Retrieving a Local MBeanHome from an Internal Client

	Using the Type-Safe Interface to Access MBeans
	Retrieving a List of All MBeans
	Retrieving MBeans By Type and Selecting From the List
	Walking the Hierarchy of Local Configuration and Runtime MBeans

	Using the MBeanServer Interface to Access MBeans

	WebLogic Server Management Namespace
	Conventions for WebLogicObjectName
	Conventions for Security-Provider MBean Names
	Locating Administration MBeans Within the Namespace
	Server Communication and Protocols Configuration Namespace
	Domain and Server Logging Configuration Namespace
	Applications Configuration Namespace
	Security Configuration Namespace
	JDBC Configuration Namespace
	JMS Configuration Namespace
	Clusters Configuration Namespace
	Machines and Node Manager Configuration Namespace

	Using weblogic.Admin to Find the WebLogicObjectName
	Using weblogic.Admin to Find the Name of a Security Provider MBean

	Accessing and Changing Configuration Information
	Example: Using weblogic.Admin to View the Message Level for Standard Out
	Example: Configuring the Message Level for Standard Out
	Setting and Getting Encrypted Values
	Set the Value of an Encrypted Attribute
	Compare an Unencrypted Value with an Encrypted Value
	Example: Setting and Getting an Encrypted Attribute

	Accessing Runtime Information
	Example: Determining the Active Domain and Servers
	Getting the Name of the Current Server Instance
	Using weblogic.Admin to Determine Active Domains and Servers

	Example: Viewing and Changing the Runtime State of a WebLogic Server Instance
	Using a Local MBeanHome and getRuntimeMBean()
	Using the Administration MBeanHome and getMBeansByType()
	Using the Administration MBeanHome and getMBean()
	Using the MBeanServer Interface

	Example: Viewing Runtime Information About Clusters
	Viewing Runtime Information for EJBs
	Example: Retrieving Runtime Information for All Stateful and Stateless EJBs

	Viewing Runtime Information for Servlets
	Example: Retrieving Runtime Information for Servlets

	Using WebLogic Server MBean Notifications and Monitors
	How Notifications are Broadcast and Received
	Monitoring Changes in MBeans
	Best Practices: Listening Directly Compared to Monitoring
	Best Practices: Commonly Monitored Attributes
	Listening for Notifications from WebLogic Server MBeans: Main Steps
	WebLogic Server Notification Types
	Creating a Notification Listener
	Creating a Notification Filter
	Adding Filter Classes to the Server Classpath

	Registering a Notification Listener and Filter
	Listening for Configuration Auditing Messages: Main Steps
	Notification Listener for Configuration Auditing Messages
	Notification Filter for Configuration Auditing Messages
	Registration Class for Configuration Auditing Messages

	Using Monitor MBeans to Observe Changes: Main Steps
	Choosing a Monitor MBean Type
	Monitor Notification Types
	Error Notification Types

	Creating a Notification Listener for a Monitor MBean
	Instantiating the Monitor and Listener
	Example: Monitoring an MBean on a Single Server
	Example: Monitoring Instances of an MBean on Multiple Servers

	Configuring CounterMonitor Objects
	Configuring GaugeMonitor Objects
	Configuring StringMonitor Objects

	Using the WebLogic Timer Service to Generate and Receive Notifications
	Using the WebLogic Timer Service: Main Steps
	Configuring a Timer MBean to Emit Notifications
	Specifying Time Intervals

	Example: Generating a Notification Every Minute
	Removing Notifications

	Index

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

