
BEA
 WebLogic
Server™

MedRec Development
Tutorial
Release 8.1
Document Date: February 2003
Revised: June 28, 2006

Copyright

Copyright © 2003 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend

This software and documentation is subject to and made available only pursuant to the terms of the BEA Systems
License Agreement and may be used or copied only in accordance with the terms of that agreement. It is against the
law to copy the software except as specifically allowed in the agreement. This document may not, in whole or in part,
be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine readable form
without prior consent, in writing, from BEA Systems, Inc.

Use, duplication or disclosure by the U.S. Government is subject to restrictions set forth in the BEA Systems License
Agreement and in subparagraph (c)(1) of the Commercial Computer Software-Restricted Rights Clause at FAR
52.227-19; subparagraph (c)(1)(ii) of the Rights in Technical Data and Computer Software clause at DFARS
252.227-7013, subparagraph (d) of the Commercial Computer Software--Licensing clause at NASA FAR
supplement 16-52.227-86; or their equivalent.

Information in this document is subject to change without notice and does not represent a commitment on the part
of BEA Systems. THE SOFTWARE AND DOCUMENTATION ARE PROVIDED “AS IS” WITHOUT
WARRANTY OF ANY KIND INCLUDING WITHOUT LIMITATION, ANY WARRANTY OF
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. FURTHER, BEA Systems DOES NOT
WARRANT, GUARANTEE, OR MAKE ANY REPRESENTATIONS REGARDING THE USE, OR THE
RESULTS OF THE USE, OF THE SOFTWARE OR WRITTEN MATERIAL IN TERMS OF CORRECTNESS,
ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks or Service Marks

BEA, Jolt, Tuxedo, and WebLogic are registered trademarks of BEA Systems, Inc. BEA Builder, BEA Campaign
Manager for WebLogic, BEA eLink, BEA Manager, BEA WebLogic Commerce Server, BEA WebLogic
Enterprise, BEA WebLogic Enterprise Platform, BEA WebLogic Express, BEA WebLogic Integration, BEA
WebLogic Personalization Server, BEA WebLogic Platform, BEA WebLogic Portal, BEA WebLogic Server, BEA
WebLogic Workshop and How Business Becomes E-Business are trademarks of BEA Systems, Inc.

All other trademarks are the property of their respective companies.

MedRec Tutorials

Part Number Date Software Version

N/A March 28, 2003 BEA WebLogic Server
Version 8.1

Overview of the Avitek Medical Records Development Tutorials 1-1

Configuring Domains and Servers
Tutorial 1: Creating a WebLogic Domain and Server Instance for Development ..

2-1
Tutorial 2: Starting the PointBase Development Database 1-1
Tutorial 3: Setting Up WebLogic Server Resources for the MedRec Server.... 1-1
Tutorial 4: Using WebLogic Server Development Mode 1-1

Building the MedRec Applications
Tutorial 5: Creating the MedRec Project Directory .. 6-1
Tutorial 6: Understanding the WebLogic Server Split Directory Structure...... 6-1
Tutorial 7: Compiling Applications Using the Split Development Directory... 6-1
Tutorial 8: Walkthrough of Web Application Deployment Descriptors 1-1
Tutorial 9: Deploying MedRec from the Development Environment............... 1-1
Tutorial 10: Using EJBGen to Generate EJB Deployment Descriptors............ 1-1
Tutorial 11: Exposing a Stateless Session EJB as a Web Service..................... 1-1
Tutorial 12: Invoking a Web Service from a Client Application 1-1
Tutorial 13: Compiling the Entire MedRec Project .. 1-1

Moving to Production Mode
Tutorial 14: Packaging MedRec for Distribution.. 1-1
Tutorial 15: Deploying the MedRec Package for Production 1-1
Tutorial 16: Using a Production Database Management System...................... 1-1
Tutorial 17: Securing Application and URL (Web) Resources Using the

Administration Console.. 1-1
Tutorial 18: Securing Enterprise JavaBean (EJB) Resources Using the

Administration Console.. 1-1
Tutorial 19: Copying and Reinitializing Security Configurations 1-1
Tutorial 20: Redeploying the MedRec Package.. 1-1
MedRec Development Tutorials iii

iv MedRec Development Tutorials

Overview of the Avitek Medical Records Development Tutorials
Overview of the Avitek Medical Records
Development Tutorials

The Avitek Medical Records Development Tutorials guide you through the process of
developing, packaging, and deploying real-world J2EE applications with WebLogic
Server. These tutorials use the Avitek Medical Records sample application suite
(Version 1.1.1) as a basis for instruction. However, you can easily apply the procedures
and best practices to your own J2EE applications.

What Is Avitek Medical Records?

Avitek Medical Records (or MedRec) is a WebLogic Server sample application suite
that concisely demonstrates all aspects of the J2EE platform. MedRec is designed as
an educational tool for all levels of J2EE developers; it showcases the use of each J2EE
component, and illustrates best practice design patterns for component interaction and
client development.

The MedRec application provides a framework for patients, doctors, and
administrators to manage patient data using a variety of different clients. Patient data
includes:

Patient profile information—A patient’s name, address, social security number,
and login information.

Patient medical records—Details about a patient’s visit with a physician, such as
the patient’s vital signs and symptoms as well as the physician’s diagnosis and
prescriptions.

The MedRec application suite consists of two main J2EE applications and one
supporting application that loads the MedRec informational page. The main
applications support one or more user scenarios for MedRec:

medrecEar—Patients log in to the patient Web Application (patientWebApp)
to edit their profile information, or request that their profile be added to the
system. Patients can also view prior medical records of visits with their
physician. Administrators use the administration Web Application
(adminWebApp) to approve or deny new patient profile requests.
MedRec Tutorials 1

medrecEar also provides all of the controller and business logic used by the
MedRec application suite, as well as the Web Service used by different clients.

physicianEar—Physicians and nurses log in to the physician Web Application
(physicianWebApp) to search and access patient profiles, create and review
patient medical records, and prescribe medicine to patients. The physician
application is designed to communicate using the Web Service provided in
medrecEar.

startupEar—The startupEar application is a simple Web Application that
automatically starts a Web browser and loads a MedRec informational page
when you start the installed MedRec domain. This application is not discussed
during the development tutorials, but is compiled and deployed as part of the
complete MedRec build process.

In the tutorials that follow, all applications will be deployed in a single-server domain.
Single-server domains are generally used during the development process for
convenience of deployment and testing. Figure 1 shows how each application would
be deployed to multiple servers in a production environment.
2 MedRec Tutorials

Overview of the Avitek Medical Records Development Tutorials
Figure 1: MedRec Application Suite in a Multiple-Server Domain

Throughout the course of the MedRec tutorials, you create the server instances, build
the MedRec applications, and deploy them to the new servers. If you are interested in
viewing or using the complete MedRec application before starting the tutorials, you
can use the pre-built MedRec domain that is installed with WebLogic Server.

While the MedRec tutorials explain how to develop application components using
WebLogic Server tools, they do not describe MedRec’s J2EE implementation or
explain how to program J2EE components in Java. For more information about
MedRec’s J2EE architecture and implementation, see the Avitek Medical Records
Architecture Guide.
MedRec Tutorials 3

http://e-docs.bea.com/wls/docs81/medrec_arch/index.html
http://e-docs.bea.com/wls/docs81/medrec_arch/index.html

How to Use the Tutorials

The MedRec tutorials are designed to be completed in the order they are presented. The
sequence of tutorials follows the various stages of J2EE application development, from
staging and coding the application, through building and deploying components.

If you choose to skip one or more tutorials, read the Prerequisites section of the tutorial
you want to follow. This section identifies steps you need to complete in order to
complete the tutorial. In many cases, BEA has provided scripts that help you catch up
to a given point in the tutorials. If you follow the tutorials in sequence, you will always
meet the prerequisites for the next tutorial.

Tutorial Descriptions

The tutorials are divided into the following sections:

Configuring Domains and Servers describes how to configure the domains,
WebLogic Server instances, and resources required to deploy the MedRec
application.

Building the MedRec Applications describes how to create the development
environment for the MedRec tutorials and build application components. The
development environment consists of the application directories and associated
Ant tasks that help you build and deploy the J2EE applications. Tutorials in this
section also describe how to use WebLogic Server tools generate deployment
descriptors, package, and deploy J2EE components.

Moving to Production Mode describes how to take the MedRec application from
the development environment into a production environment. Tutorials in this
section focus on packaging, deploying, and tuning the MedRec application.

Related Reading

Introduction to WebLogic Server and WebLogic Express

J2EE API Programming Guides

Developing WebLogic Server Applications

Avitek Medical Records Architecture Guide
4 MedRec Tutorials

http://e-docs.bea.com/wls/docs81/intro/index.html
http://e-docs.bea.com/wls/docs81/api.html
http://e-docs.bea.com/wls/docs81/programming/index.html
http://e-docs.bea.com/wls/docs81/medrec_arch/index.html

Tutorial 1: Creating a WebLogic Domain and Server Instance for Development
Configuring Domains and
Servers

Tutorial 1: Creating a WebLogic Domain and
Server Instance for Development

In this tutorial you use the WebLogic Server Configuration Wizard to create a domain
and server necessary to deploy and run the MedRec applications.The tutorial also
shows you how to start the server.

The Configuration Wizard asks for information about the domain you want to create
based on the configuration template you select, and then creates a config.xml file for
the domain based on your responses. The Configuration Wizard also creates startup
scripts for the server instances in the domain, and other helper files and directories to
help you start and use the new domain and its servers. You will work with these scripts
and directories in later tutorials.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading
MedRec Development Tutorials 1

Prerequisites

Before starting this tutorial:

Make sure WebLogic Server 8.1 and the server samples are installed on your
computer.

Read “Overview of the Avitek Medical Records Development Tutorials.”

Procedure

To create the MedRec domain and the WebLogic Server instance to which you will
deploy MedRec, follow these steps. You will use the domain and server in later
tutorials.

Step 1: Create the MedRec domain and MedRec server.

Step 2: Edit the server startup script.

Step 3: Start the MedRec server.

Step 1: Create the MedRec domain and MedRec server.

The MedRec domain includes one server that will host the MedRec back-end services,
the MedRec Administration application, and the Patient application (both applications
are Web applications). As you create the domain and server, click Next at the end of
each step to continue to the next step in the procedure.

1. Launch the Configuration Wizard:

Start→Programs→BEA WebLogic Platform 8.1→Configuration Wizard

2. In the Create or Extend a Configuration window, select Create a new WebLogic
configuration.

3. In the Select a Configuration Template window, select Basic WebLogic Server
Domain.

You select the Basic WebLogic Server Domain template instead of the Avitek
Medical Records Sample Domain template because this tutorial is designed to
show you how to create an application from the very beginning. The Avitek
2 MedRec Development Tutorials

Tutorial 1: Creating a WebLogic Domain and Server Instance for Development
Medical Records Sample Domain template includes configuration settings for
the sample domain which would enable you to skip some configuration steps.

4. In the Choose Express or Custom Configuration window, select Custom.

5. In the Configure the Administration Server window, enter or select:

MedRecServer for Name.

127.0.0.1 for Listen Address.

7101 for Listen Port. If necessary, enter a different value to avoid network
communication conflicts with other server instances, such as the Examples
server. The port must be dedicated TCP/IP port for the Administration
Server. The port number can be any integer from 1 to 65535.

The SSL Enabled check box.

7102 for SSL Listen Port. If necessary, enter a different value to avoid
network communication conflicts with other server instances, such as the
Examples server. The port must be dedicated TCP/IP port and cannot be the
same as the Server Listen Port. The port number can be any integer from 1 to
65535.

6. In the following windows, select No:

Managed Servers, Clusters, and Machines Options

Database (JDBC) Options

Messaging (JMS) Options

7. In the Configure Administrative Username and Password window, enter or select:

weblogic for Name

weblogic for Password

No for Configure additional users, groups, and global roles

You use this username and password when you boot the server and log in to the
Administration Console.

Note: In a production environment the user name and password should not be the
same.

8. In the Configure Windows Options window, select:

Yes for Create Start Menu
MedRec Development Tutorials 3

No for Install Administrative Server as Service

9. In the Build Start Menu Entries window, accept the defaults.

10. In the Configure Server Start Mode and Java SDK window, select:

Development Mode for WebLogic Configuration Startup Mode

Sun SDK 1.4.1_XX for Java SDK Selection

The Sun SDK is the default choice for Development mode. You can select either
the Sun SDK or the JRockit SDK. The Sun SDK offers faster startup times,
where as the JRockit SDK offers faster runtime performance on Intel
architectures.

11. In the Create WebLogic Configuration window:

a. Enter MedRecDomain as the Configuration Name.

b. Click Create to create the MedRec domain in the folder displayed in
Configuration Location. When the Configuration Wizard finishes creating the
domain, the WebLogic Configuration Created Successfully message is
displayed.

c. Click Exit or Done to close the Configuration Wizard.

Step 2: Edit the server startup script.

The MedRec application suite uses log4j for logging application messages. You must
copy the log4j properties file from the pre-configured MedRec domain and identify it
using a startup option in MedRecServer startup script. For Web Services, you must
also identify the .wsdl and the incoming directory for XML files. To complete these
steps:

1. Copy the log4j properties file from the pre-configured MedRec domain to the new
domain you just created. For example, in a command-line shell, enter:

copy c:\bea\weblogic81\samples\domains\medrec\log4j.properties
c:\bea\user_projects\domains\MedRecDomain

2. Open the startWebLogic.cmd script for your new domain in a text editor. For
example:

notepad
c:\bea\user_projects\domains\MedRecDomain\startWebLogic.cmd
4 MedRec Development Tutorials

Tutorial 1: Creating a WebLogic Domain and Server Instance for Development
3. Find the following line in the startWebLogic.cmd script:

set JAVA_VENDOR=Sun

4. Add the following line immediately after the “set JAVA_VENDOR” line:

Set JAVA_OPTIONS=-Dlog4j.config=log4j.properties
-Dcom.bea.medrec.xml.incoming=incoming
-Dphys.app.wsdl.url=http://127.0.0.1:7101/ws_medrec/MedRecWebSe
rvices?WSDL

5. Save the file and exit your text editor.

Step 3: Start the MedRec server.

From the Start menu:

Start→Programs→BEA WebLogic Platform 8.1→User Projects→MedRecDomain→Start
Server

From a script:

1. In a command-line shell, go to the root directory of the MedRec domain, typically
c:\bea\user_projects\domains\MedRecDomain. For example, from the c:\
prompt, enter:

cd bea\user_projects\domains\MedRecDomain

2. Invoke the startWebLogic.cmd script to start the MedRec server:

Windows: startWebLogic.cmd

UNIX: startWeblogic.sh

Best Practices

Use the Configuration Wizard to create and configure domains. The
Configuration Wizard creates the necessary configuration file (config.xml),
directory structure, and startup scripts for each new domain.

Create domain directories outside the WebLogic Server program files. It is best
not to mix application files with the application server files. By default, the
Configuration Wizard creates domain directories in
bea_home\user_projects\domains directory, typically
MedRec Development Tutorials 5

c:\bea\user_projects\domains, which is parallel to the directory in which
WebLogic Server program files are stored, typically c:\bea\weblogic81.

The Big Picture

This tutorial is the basis for setting up your development environment. Before you can
deploy applications to a server, you must first configure the domains and servers to
which you want to deploy the applications. In this tutorial, you created the MedRec
domain, which includes one server to host the MedRec applications. You use this
domain for most tutorials.

Related Reading

Creating Domains and Servers Using the Configuration Wizard in Configuring
and Managing WebLogic Server

Starting and Stopping Servers: Quick Reference in Configuring and Managing
WebLogic Server

Starting Administration Servers in the Administration Console Online Help
6 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/adminguide/createdomain.html
http://e-docs.bea.com/wls/docs81/adminguide/startquickref.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/startstop.html#UsingDomainStartScripts

Tutorial 2: Starting the PointBase Development Database
1 Configuring Domains
and Servers

Tutorial 2: Starting the PointBase
Development Database

This tutorial describes how to start the PointBase database management system so that
the MedRec application can use it to store application data.

In particular, the tutorial shows how to:

Start the PointBase database.

Use the PointBase console to view the tables in the database used by the
MedRec application.

Note: The installation of PointBase shipped with WebLogic Server is already set up
with the database tables and data used by the MedRec application. For
information on viewing the already-created tables, see Step 2: Use the
PointBase console to view the MedRec tables and data.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices
MedRec Development Tutorials 1

1 Configuring Domains and Servers
The Big Picture

Related Reading

Prerequisites

Before starting this tutorial, create the MedRec domain and MedRec server instance.
See “Tutorial 1: Creating a WebLogic Domain and Server Instance for Development”.

Procedure

Follow these steps to start and use PointBase:

Step 1: Start the PointBase database.

Step 2: Use the PointBase console to view the MedRec tables and data.

Step 1: Start the PointBase database.

1. Open a command prompt window.

2. Change to the PointBase tools directory:

cd c:\bea\weblogic81\common\eval\pointbase\tools

3. Start the PointBase database by executing the following command:

startPointBase.cmd

4. Leave this command window open for as long as you want the PointBase
database running. If you close the window, the PointBase database will shut
down.

Step 2: Use the PointBase console to view the MedRec tables and data.

The installation of PointBase shipped with WebLogic Server is already set up with the
database tables and data used by the MedRec application. To view these
already-created tables, use the PointBase Console.
2 MedRec Development Tutorials

Tutorial 2: Starting the PointBase Development Database
Note: You must start the PointBase database before you can start the PointBase
console. See Step 1: Start the PointBase database.

1. Launch the PointBase console:

From the Start menu:

Start→Programs→BEA WebLogic Platform 8.1→Examples→WebLogic Server
Examples→PointBase Console

From a script:

a. In a command-line shell, go to the
bea_home\weblogic81\common\eval\pointbase\tools directory where
bea_home is the main BEA home directory, typically c:\bea. For example,
enter the following command:

cd c:\bea\weblogic81\common\eval\pointbase\tools

b. Invoke the startPointBaseConsole.cmd command to launch the PointBase
console:

startPointBaseConsole.cmd

This command also sets the CLASSPATH to find the PointBase JAR files.

2. In the Driver field, enter com.pointbase.jdbc.jdbcUniversalDriver.

3. In the URL field, enter jdbc:pointbase:server://localhost/demo.

4. In the User field, enter MedRec.

5. In the Password field, enter MedRec.

6. Click OK.

7. In the left pane, expand Schemas→MedRec.

8. Browse the tables, triggers, views, and procedures that make up the MedRec
database.

Best Practices

Use the scripts in the PointBase tools directory to start the database and invoke its
console. See:
MedRec Development Tutorials 3

1 Configuring Domains and Servers
c:\bea\weblogic81\common\eval\pointbase\tools

The Big Picture

The MedRec application uses the PointBase database management system:

To store information about patients, physicians, and administrators who manage
the workflow of the MedRec application.

As the JMS JDBC store that contains persistent JMS messages.

Patient, Physician, and Administrator Data

The MedRec application uses container-managed entity EJBs to automatically persist
information about patients, physicians, and administrators in the PointBase database.
The following table lists these entity EJBs and the PointBase tables in which the
information is persisted.

Table 1: Relationship Between MedRec Entity EJBs and PointBase Tables

Entity EJB Application
That Uses the
EJB

Corresponding
PointBase Table

Description

AdminEJB Administration ADMIN Information about the administrators that
manage the workflow of the MedRec
application. Administrators handle patient
requests.

AddressEJB Administration,
Patient

ADDRESS Used by the PATIENT, PHYSICIAN, and
ADMIN tables to store their respective
addresses.

PatientEJB Administration,
Patient

PATIENT Information about patients, such as name,
address reference to the ADDRESS table, SSN,
and so on.

PhysicianEJB Administration PHYSICIAN Information about physicians, such as name,
address reference to the ADDRESS table,
phone, and email.
4 MedRec Development Tutorials

Tutorial 2: Starting the PointBase Development Database
Persistent JMS Message Storage

The MedRec application uses persistent JMS messaging, which means that any JMS
messages that are put in a queue are also stored in a database so that the messages can
be retrieved in case a problem occurs (such as a server crash) before the
message-driven bean is able to process them. The messages are stored in the following
two PointBase tables:

MEDRECJMSSTATE

MEDRECJMSSTORE

These tables are generated automatically when you create the JMS JDBC store using
the Administration Console and are used internally by JMS.

PrescriptionEJB Patient PRESCRIPTION Describes a prescription, such as the prescribed
drug, the dosage, frequency, instructions, and so
on. Also includes the patient ID, the ID of the
prescribing physician, and the particular visit
that instigated the prescription.

RecordEJB Patient RECORD Describes a single patient visit to a physician.
Includes the patient ID, the physician ID, the
date, the symptoms, diagnosis, and the vital
signs of the patient.

UserEJB Administration,
Patient,
Physician

USER Lists all users (patients, physicians, and
administrators) who are authorized to log into
the MedRec application. After a user is
authenticated, the application retrieves
additional information from the appropriate
table (PATIENT, PHYSICIAN, OR ADMIN).

VitalSignsEJB Patient VITALSIGNS Describes the vital signs of a patient for a
particular visit. Vital signs include temperature,
blood pressure, height, weight, and so on.

Table 1: Relationship Between MedRec Entity EJBs and PointBase Tables

Entity EJB Application
That Uses the
EJB

Corresponding
PointBase Table

Description
MedRec Development Tutorials 5

1 Configuring Domains and Servers
Related Reading

PointBase Console Guide at http://e-docs.bea.com/wls/docs81/pdf/pbconsole.pdf

PointBase Developer’s Guide at
http://e-docs.bea.com/wls/docs81/pdf/pbdeveloper.pdf

PointBase System Guide at http://e-docs.bea.com/wls/docs81/pdf/pbsystem.pdf

Understanding Enterprise Java Beans (EJB) at
http://e-docs.bea.com/wls/docs81/ejb/understanding.html

Designing Enterprise Java Beans at
http://e-docs.bea.com/wls/docs81/ejb/design_best_practices.html

Entity EJBs at http://e-docs.bea.com/wls/docs81/ejb/entity.html
6 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/pdf/pbconsole.pdf
http://e-docs.bea.com/wls/docs81/pdf/pbdeveloper.pdf
http://e-docs.bea.com/wls/docs81/pdf/pbsystem.pdf
http://e-docs.bea.com/wls/docs81/ejb/understanding.html
http://e-docs.bea.com/wls/docs81/ejb/design_best_practices.html
http://e-docs.bea.com/wls/docs81/ejb/entity.html

Tutorial 3: Setting Up WebLogic Server Resources for the MedRec Server
1 Configuring Domains
and Servers

Tutorial 3: Setting Up WebLogic Server
Resources for the MedRec Server

This tutorial describes how to set up the WebLogic Server resources required to deploy
and run the MedRec application. The tutorial sets up resources for the MedRec server.
These resources include:

Java Database Connectivity (JDBC) connection pools and data sources for the
PointBase database management system

Java Message Service (JMS) persistent store, JMS server, queue, and connection
factory

JavaMail mail sessions

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading
MedRec Development Tutorials 1

1 Configuring Domains and Servers
Prerequisites

Before starting this tutorial:

Create the MedRec domain and MedRec server, and start the MedRec server.
See “Tutorial 1: Creating a WebLogic Domain and Server Instance for
Development”.

Start the PointBase database management system. See Tutorial 2: Starting the
PointBase Development Database.

Procedure

Follow these steps to configure WebLogic Server resources for the MedRec server:

Step 1: Invoke the Administration Console for the MedRec server in your
browser.

Step 2: Create the JDBC connection pools.

Step 3: Create a JDBC DataSource.

Step 4: Create a JMS JDBC store.

Step 5: Create a JMS server.

Step 6: Create the JMS queues.

Step 7: Create a JMS connection factory.

Step 8: Add email capabilities to the MedRec application.

Step 9: Configure the MedRec Sample Authenticator.

Step 1: Invoke the Administration Console for the MedRec server in your
browser.

You use the Administration Console to create the WebLogic Server resources used by
the MedRec application suite.

1. Enter the following URL in your browser:
2 MedRec Development Tutorials

Tutorial 3: Setting Up WebLogic Server Resources for the MedRec Server
http://127.0.0.1:7101/console

2. Enter weblogic as the username and password, then click Sign In.

Step 2: Create the JDBC connection pools.

A JDBC connection pool describes how to physically connect to a database, in this
case a PointBase database. This procedure describes how to create two JDBC
connection pools: the first uses an XA JDBC driver and the second one does not.

Typically you always use an XA JDBC driver when creating a connection pool.
However, because JMS JDBC stores do not support XA resource drivers (WebLogic
JMS implements its own XA resource), a second non-XA connection pool is needed.
Later procedures show how to associate the XA connection pool to a JDBC
DataSource and the non-XA connection pool to a JMS JDBC store.

1. In the left pane of the Administration Console, expand Services→JDBC.

2. Click Connection Pools.

3. In the right pane, click Configure a new JDBC Connection Pool.

4. Select PointBase as the Database Type.

5. Select PointBase’s Driver (Type 4XA) Versions:4.X as the Database
Driver.

6. Click Continue.

7. In the Name field, enter MedRecPool-PointBase-XA.

8. In the Database Name field, enter demo.

9. Accept localhost as the Host Name of the computer that is hosting PointBase.

10. In the Port field, enter 9092.

11. In the Database User Name field, enter medrec.

12. In the Password and Confirm Password fields, enter medrec.

13. Click Continue.

14. Ensure that the information to test the connection to the PointBase database is
correct, then click Test Driver Configuration.
MedRec Development Tutorials 3

1 Configuring Domains and Servers
Note: Be sure you have started PointBase, or the test of its driver configuration
will fail. For details, see Tutorial 2: Starting the PointBase Development
Database.

15. After verifying that the connection succeeded, click Create and Deploy.

16. Click Configure a new JDBC Connection Pool.

17. Select PointBase as the Database Type.

18. Select PointBase’s Driver (Type 4) Versions:4.X as the Database
Driver.

19. Click Continue.

20. In the Name field, enter MedRecPool-PointBase.

21. In the Database Name field, enter demo.

22. Accept localhost as the Host Name of the computer that is hosting PointBase.

23. In the Port field, enter 9092.

24. In the Database User Name field, enter medrec.

25. In the Password and Confirm Password fields, enter medrec.

26. Click Continue.

27. Ensure that the information to test the connection to the PointBase database is
correct, then click Test Driver Configuration.

28. After verifying that the connection succeeded, click Create and Deploy.

Step 3: Create a JDBC DataSource.

Client and server-side JDBC applications obtain a DBMS connection through a
DataSource. A DataSource is an interface between an application and the JDBC
connection pool. This DataSources uses the XA connection pool you created in Step
2: Create the JDBC connection pools.

1. In the left pane of the Administration Console, expand Services→ JDBC.

2. Click Data Sources.

3. In the right pane, click Configure a new JDBC Data Source.
4 MedRec Development Tutorials

Tutorial 3: Setting Up WebLogic Server Resources for the MedRec Server
4. In the Name field, enter MedRecTxDataSource.

5. In the JNDI Name field, enter MedRecTxDataSource.

6. Select the Honor Global Transactions checkbox.

7. Click Continue.

8. In the Pool Name list box, select MedRecPool-PointBase-XA.

9. Click Continue.

10. Ensure that MedRecServer is selected as the server on which you want to deploy
this data source.

11. Click Create.

Step 4: Create a JMS JDBC store.

JMS stores are used to store persistent messages. This JMS JDBC store uses the
non-XA connection pool you created Step 2: Create the JDBC connection pools.

1. In the left pane of the Administration Console, expand Services→ JMS.

2. Click Stores.

3. In the right pane, click Configure a new JMS JDBC Store.

4. In the Name field, enter MedRecJMSJDBCStore.

5. In the Connection Pool list box, select MedRecPool-PointBase.

6. In the Prefix Name field, enter MedRec.

7. Click Create.

Step 5: Create a JMS server.

JMS servers host the queue and topic destinations used by JMS clients. To persistently
store messages in destinations, the JMS server must be configured with a JMS store.

1. In the left pane of the Administration Console, expand Services→ JMS.

2. Click Servers.
MedRec Development Tutorials 5

1 Configuring Domains and Servers
3. In the right pane, click Configure a new JMS Server.

4. In the Name field, enter MedRecJMSServer.

5. In the Persistent Store list box, select MedRecJMSJDBCStore.

6. Click Create.

7. In the Target list box, select MedRecServer.

8. Click Apply.

Step 6: Create the JMS queues.

JMS queues are based on the point-to-point (PTP) messaging model, which enables the
delivery of a message to exactly one recipient. A queue sender (producer) sends a
message to a specific queue. A queue receiver (consumer) receives messages from a
specific queue.

The following procedure describes how to create three JMS queues, which are used by
message-driven beans for registering new users of the MedRec application, handling
email, and uploading XML files.

1. In the left pane of the Administration Console, expand Services→
JMS→Servers→MedRecJMSSserver.

2. Create the queue for the registration message-driven bean:

a. In the left pane, click Destinations.

b. In the right pane, click Configure a new JMS Queue.

c. In the Name field, enter jms/REGISTRATION_MDB_QUEUE.

d. In the JNDI Name field, enter jms/REGISTRATION_MDB_QUEUE.

e. Click Create.

3. Create the queue for the email message-driven bean:

a. In the left pane, click Destinations.

b. In the right pane, click Configure a new JMS Queue.

c. In the Name field, enter jms/MAIL_MDB_QUEUE.
6 MedRec Development Tutorials

Tutorial 3: Setting Up WebLogic Server Resources for the MedRec Server
d. In the JNDI Name field, enter jms/MAIL_MDB_QUEUE.

e. Click Create.

4. Create the queue for the XML upload message-driven bean:

a. In the left pane, click Destinations.

b. In the right pane, click Configure a new JMS Queue.

c. In the Name field, enter jms/XML_UPLOAD_MDB_QUEUE.

d. In the JNDI Name field, enter jms/XML_UPLOAD_MDB_QUEUE.

e. Click Create.

Step 7: Create a JMS connection factory.

JMS clients use JMS connection factories to create a connection to a WebLogic Server
instance. JMS client messaging requests to a particular destination are routed through
their connection's host WebLogic Server to the WebLogic Server hosting the JMS
server destination. JMS connection factories are also used to configure the defaults for
the JMS clients that use them.

1. In the left pane of the Administration Console, expand Services→ JMS.

2. Click Connection Factories.

3. In the right pane, click Configure a new JMS Connection Factory.

4. In the Name field, enter jms/MedRecQueueConnectionFactory.

5. In the JNDI Name field, enter jms/MedRecQueueConnectionFactory.

6. Click Create.

7. In the Targets box, select MedRecServer.

8. Click Apply.

9. Select the Configuration→Transactions tab.

10. Select the XA Connection Factory Enabled check box.

11. Click Apply.
MedRec Development Tutorials 7

1 Configuring Domains and Servers
Step 8: Add email capabilities to the MedRec application.

WebLogic Server includes the JavaMail API version 1.1.3 reference implementation
from Sun Microsystems. Using the JavaMail API, you can add email capabilities to
your WebLogic Server applications. To configure JavaMail for use in WebLogic
Server, you create a Mail Session in the WebLogic Server Administration Console. A
mail session allows server-side components and applications to access JavaMail
services with JNDI, using Session properties that you preconfigure.

1. In the left pane of the Administration Console, expand Services→Mail.

2. In the right pane, click Configure a new Mail Session.

3. In the Name field, enter mail/MedRecMailSession.

4. In the JNDIName field, enter mail/MedRecMailSession.

5. In the Properties text box, enter values for the mail.user and mail.host
properties.

For example, if you want any email generated by the MedRec application to be
sent to you, and your email address is joe@mail.mycompany.com, enter:

 mail.user=joe;mail.host=mail.mycompany.com

6. Click Create.

7. In the Targets box, select MedRecServer.

8. Click Apply.

Step 9: Configure the MedRec Sample Authenticator.

The MedRec Sample Authenticator retrieves login credentials from the configured
PointBase RDBMS for a given username. Within the provider, passwords are
validated, and if correct, the user’s group associations are retrieved.

1. In the left pane of the Administration Console, expand the
Security→Realms→myrealm→Providers node.

2. Select the Authentication node under the Providers node.

3. In the right pane, select Configure a New MedRec Sample Authenticator.

4. On the General tab in the right pane:
8 MedRec Development Tutorials

Tutorial 3: Setting Up WebLogic Server Resources for the MedRec Server
In the Name field, enter MedRecSampleAuthenticator.

From the Control Flag menu, select SUFFICIENT.

Click Create to create the new authenticator.

The SUFFICIENT control flag indicates that the LoginModule does not need to
succeed. If it does succeed, control is returned to the application. However, if it
does not succeed, the server tries other configured authentication providers.

5. In the left pane of the Administration Console, expand
Security→Realms→myrealm→Providers→Authentication.

6. In the left pane of the Administration Console, click DefaultAuthenticator.

7. In the General tab in the right pane, select SUFFICIENT from the Control Flag
menu.

8. Click Apply.

9. Because WebLogic Server cycles through available Authentication providers,
reorder the provider list so that the PointBase database is not queried each time a
login is attempted (for example, each time you log into the Administration
Console in subsequent tutorials).

In the left pane of the Administration Console, select
Security→Realms→myrealm→Providers→Authentication.

10. In the right pane of the Console, click Re-Order the Configured Authentication
Providers.

11. Use the arrows in the Configured Providers list to define the following order of
authentication providers:

a. DefaultAuthenticator

b. MedRec Samples Authenticator

c. DefaultIdentityAsserter

12. Click Apply.
MedRec Development Tutorials 9

1 Configuring Domains and Servers
Best Practices

When you create a JDBC DataSource, be sure you enable global transaction
support (by selecting the Honor Global Transactions box) so that your
application can support transaction services.

The MedRec application uses a DataSource with transactions enabled (a
TxDataSource object) when persisting application data to the database using
entity beans.

You typically want to use an XA JDBC driver when creating a JDBC connection
pool.

JMS JDBC stores do not support XA resource drivers as WebLogic JMS
implements its own XA resource. Therefore, do not associate a connection pool
that uses an XA JDBC driver with a JMS JDBC store.

In most cases, to avoid unnecessary JMS request routing, the JMS connection
factory should be targeted to the same WebLogic Server instance as the JMS
server.

When configuring the persistent JMS store, you can persist JMS messages to a
directory on the file system (called JMS file store) or to a database using JDBC
(called JMS JDBC database store).

If you want better performance and simpler configuration, BEA recommends
you persist JMS messages to the file system. If you want to store your persistent
messages in a remote database rather than on the JMS server’s host machine,
BEA recommends you use a JDBC JMS store.

Always configure quotas for WebLogic JMS servers. JMS quotas prevent too
many messages from overflowing server memory. In addition, consider
configuring message paging, as persistent and non-persistent messages consume
server memory unless paging is enabled.

The Big Picture

The MedRec application uses JMS to create a new patient record. The asynchronous
nature of JMS allows the task to be queued and completed later while the user
continues with another task.
10 MedRec Development Tutorials

Tutorial 3: Setting Up WebLogic Server Resources for the MedRec Server
After the user clicks Create on the Web page to register a new patient, a JMS message
is created and put on the REGISTRATION_MDB_QUEUE JMS queue. The
RegistrationEJB message-driven bean takes the message off the queue and persists
the new patient data to the database using an instance of the PatientEJB entity bean.
The PatientEJB entity bean uses the JDBC DataSource to connect to the PointBase
database.

The MedRec application uses other entity beans to persist additional data to the
database; for details, see “Patient, Physician, and Administrator Data” on page 1-4.

The MedRec application uses persistent JMS messaging, which means that the new
patient JMS messages that are put on the queue are also stored in a PointBase database
so that the messages can be retrieved in case a problem occurs (such as a server crash)
before the message-driven bean is able to process them. The application uses the JMS
JDBC store to connect to and to update the JMS tables in the PointBase database.

Related Reading

Introduction to WebLogic JDBC at
http://e-docs.bea.com/wls/docs81/jdbc/intro.html

JDBC Connection Pools at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html

JMS Topic Page at http://e-docs.bea.com/wls/docs81/messaging.html

WebLogic JMS Fundamentals at http://e-docs.bea.com/wls/docs81/jms/fund.html

Configuring JMS at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html

Using JavaMail with WebLogic Server Applications at
http://e-docs.bea.com/wls/docs81/programming/topics.html#topics003
MedRec Development Tutorials 11

http://e-docs.bea.com/wls/docs81/jdbc/intro.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html
http://e-docs.bea.com/wls/docs81/messaging.html
http://e-docs.bea.com/wls/docs81/jms/fund.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html
http://e-docs.bea.com/wls/docs81/programming/topics.html#topics003

1 Configuring Domains and Servers
12 MedRec Development Tutorials

Tutorial 4: Using WebLogic Server Development Mode
1 Configuring Domains
and Servers

Tutorial 4: Using WebLogic Server
Development Mode

This tutorial describes how to set up and use the new MedRec server instance in
development mode. WebLogic Server provides two distinct server modes—
development mode and production mode—that affect default configuration values and
subsystem behavior for all server instances in a domain.

Development mode enables you to use the demonstration trusted CA certificates for
security, and also allows you to deploy the MedRec applications directly from a
development environment. (You will create the development environment in the next
set of tutorials). For these reasons, you should always use development mode when
building or testing your own applications.

Note: Because newly installed WebLogic Server instances use development mode
by default, the steps in this tutorial are not strictly required. However, later
tutorials that describe how to move from a development to a production
environment depend on the changes you make now.

The tutorial includes the following sections:

Prerequisites

Procedure
MedRec Development Tutorials 1

1 Configuring Domains and Servers
Best Practices

The Big Picture

Related Reading

Prerequisites

Before starting this tutorial, create the MedRec server domain. See Tutorial 1: Creating
a WebLogic Domain and Server Instance for Development. You will modify the server
start script that was created during that tutorial.

Procedure

Follow these steps to put MedRec server in development mode:

Step 1: Shut down the MedRec server (if currently running).

Step 2: Edit the server startup file.

Step 3: Restart the server and verify development mode.

Step 1: Shut down the MedRec server (if currently running).

You must shut down the MedRec server because you edit its start script to explicitly
place the server in development mode.

If the server is not currently running, go to Step 2: Edit the server startup file.

1. Invoke the Administration Console for MedRecServer by entering the following
URL in your browser:

http://127.0.0.1:7101/console

2. Enter weblogic as the username and password, then click Sign In.

3. In the left pane, open the Servers node.

4. Right-click MedRecServer and select Start/Stop This Server.

5. In the right pane, click Graceful shutdown of this server.
2 MedRec Development Tutorials

Tutorial 4: Using WebLogic Server Development Mode
6. Click Yes.

Step 2: Edit the server startup file.

Development mode (or production mode) is set for all servers in a given domain by
supplying a command line option to the domain’s Administration Server. Because the
MedRec tutorials use two standalone servers in separate domains, you must edit each
server’s startup script to add the command line option.

1. In a command-line shell, move to the root directory of the MedRec domain:

cd c:\bea\user_projects\domains\MedRecDomain

2. Open the startWebLogic.cmd or startWebLogic.sh script in a text editor:

notepad startWebLogic.cmd

3. Look for the PRODUCTION_MODE script variable:

set PRODUCTION_MODE=

4. Add “false” to the value of the PRODUCTION_MODE variable to ensure the server
starts in development mode:

set PRODUCTION_MODE=false

5. Save your changes and exit the text editor.

Step 3: Restart the server and verify development mode.

After editing the server start script, reboot the server to ensure that it starts up in
development mode:

1. Start the MedRec server by executing its startup script:

C:\bea\user_projects\domains\MedRecDomain\startWebLogic.cmd

2. Observe the server startup message to determine the startup mode. The following
line indicates that the server is using development mode:

<Jul 10, 2003 5:40:01 PM PDT> <Notice> <WebLogicServer>
<BEA-000331> <Started WebLogic Admin Server "MedRecServer" for
domain "MedRecDomain" running in Development Mode>
MedRec Development Tutorials 3

1 Configuring Domains and Servers
Best Practices

Use development mode in a WebLogic Server domain to:

Develop, modify, and test applications in a development environment.

Enable auto-deployment for applications placed in the \applications
directory

Use demonstration trusted CA certificates for testing security configurations

Automatically create a JMS file store directory if needed for an application

If you start an Administration Server from the command line, or if you use
custom startup scripts, use the weblogic.Server command-line arguments
-DProductionModeEnabled=true | false to set the server mode.

Never use development mode for production-level servers, because development
mode relaxes the security constraints for all servers in the domain.

The Big Picture

The MedRec application uses the sample trusted CA certificates installed with
WebLogic Server to enable SSL authentication and demonstrate WebLogic Server
security features in later tutorials. Development mode allows you to use the sample
certificate files when working through later security tutorials.

In the next series of tutorials, you will create a development directory structure for
MedRec that shows how to manage source code and compiled code separately when
developing Enterprise Applications with WebLogic Server. Development mode
allows you to deploy applications directly from the development directory, without
having to package applications into .jar files or exploded .jar directories.

Related Reading

WebLogic Server Command-Line Reference

Developing WebLogic Server Applications
4 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/admin_ref/weblogicServer.html
http://e-docs.bea.com/wls/docs81/programming/environment.html

Tutorial 5: Creating the MedRec Project Directory
Building the MedRec
Applications

Tutorial 5: Creating the MedRec Project
Directory

This tutorial describes how to create the main project directory that holds the MedRec
source files and compiled classes. The tutorial also explains the high-level directory
structure and contents for the MedRec application suite components.

Tutorials that follow provide more detail about the development directory structure
and WebLogic Server ant tasks that help you easily build and deploy Enterprise
Applications and their subcomponents—Web applications, EJBs, and Web services.

This tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading
MedRec Development Tutorials 1

Prerequisites

Before starting this tutorial, create the MedRec domain and MedRec server. See
“Tutorial 1: Creating a WebLogic Domain and Server Instance for Development”.

Procedure

Follow these steps to create the source directory structure for the MedRec application
suite:

Step 1: Create the tutorial project directory.

Step 2: Unpack the project subdirectories.

Step 3: Verify the project directory contents.

Step 4: Verify the source directory contents.

Step 5: Edit the \src\medrec.properties file and run substitute.xml.

Step 1: Create the tutorial project directory.

Begin by creating a top-level project directory in which you will store source and
output files for the MedRec Enterprise Applications and client programs. Name the
directory medrec_tutorial:

mkdir c:\medrec_tutorial

Step 2: Unpack the project subdirectories.

BEA provides a .zip file that contains the source files and build subdirectories needed
to complete the MedRec tutorials. To populate your project directory with the
necessary files and directories:

1. Download the medrec_tutorial.zip file from
http://edocs.bea.com/wls/docs81/medrec_tutorial.zip. Save the downloaded file to
the c:\medrec_tutorial directory.

2. Set your command shell environment with the MedRecDomain environment
script:
2 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/medrec_tutorial.zip

Tutorial 5: Creating the MedRec Project Directory
c:\bea\user_projects\domains\MedRecDomain\setEnv.cmd

3. Move to the MedRec project directory and unpack the downloaded .zip file:

cd c:\medrec_tutorial

jar xvf medrec_tutorial.zip

Step 3: Verify the project directory contents.

Verify that the following files and subdirectories were created:

dir

 Directory of C:\medrec_tutorial

02/13/2003 08:59a <DIR> .
02/13/2003 08:59a <DIR> ..
02/13/2003 08:59a <DIR> build
02/13/2003 08:59a <DIR> dist
02/13/2003 08:59a <DIR> lib
02/13/2003 08:59a 2,782,963 medrec_tutorial.zip
02/13/2003 08:59a <DIR> META-INF
02/13/2003 08:59a 4,505 README.TXT
02/13/2003 08:59a <DIR> src
02/13/2003 08:59a 299 substitute.xml

The \build directory contains the compiled classes generated by the various MedRec
build scripts. It does not contain editable source files or deployment descriptors, which
reside in \src. Each subdirectory in \build represents the compiled classes for
MedRec clients (\client) or for a MedRec application (\medrec, \physician, and
\startup applications).

If you look at the contents of the \build directory, you notice that certain classes have
already been built for you. These include utility classes and the MedRec value objects
that many applications in the MedRec tutorial require. Having these classes prebuilt
allows you to concentrate on compiling Enterprise Applications using the WebLogic
wlcompile task, as described in Tutorial 7: Compiling Applications Using the Split
Development Directory.

The \src directory contains the full source for all MedRec applications. You will be
working in this directory for most remaining tutorials. Step 4: Verify the source
directory contents. describes the subdirectories in \src.
MedRec Development Tutorials 3

\build and \src together represent a WebLogic Server split development directory.
You can deploy individual MedRec applications to a development server by targeting
an application subdirectory in \build (such as \build\medrecEar) using
weblogic.Deployer or the wldeploy ant task described in Tutorial 9: Deploying
MedRec from the Development Environment. WebLogic Server locates the necessary
deployment descriptors (available in \src) by examining the .beabuild.txt file
located in \build subdirectory.

The \dist directory is also an output directory—it will store the archived .ear files
or exploded .ear directories created by the wlpackage task in Tutorial 14: Packaging
MedRec for Distribution. Right now it contains only the MedRecService.wsdl file
which is required to compile parts of the physicianEar application in Tutorial 7:
Compiling Applications Using the Split Development Directory. It will eventually
store complete, exploded .ear directories for the different MedRec applications. \dist
is not considered part of the split development directory structure, because it is not
required for compiling or deploying applications during development. It is used only
for storing final, completed applications—.ear files or exploded .ear directories—
that you generate after completing the development process.

\lib contains precompiled, third-party .jar files that several of the MedRec
applications require. This includes supporting .jars for struts and log4j.

Step 4: Verify the source directory contents.

The \src subdirectory contains the full application source for the MedRec
applications, and it is the subdirectory in which you will spend the most time during
the remaining tutorials. Take a look at the installed \src directory:

dir src

 Directory of C:\medrec_tutorial\src

02/13/2003 11:22p <DIR> .
02/13/2003 11:22p <DIR> ..
02/13/2003 11:22p 1,909 build.xml
02/13/2003 11:22p <DIR> clients
02/13/2003 11:22p <DIR> common
02/13/2003 11:23p 3,479 medrec.properties
02/13/2003 11:22p <DIR> medrecEar
02/13/2003 11:22p <DIR> physicianEar
02/13/2003 11:22p <DIR> security
02/13/2003 11:22p <DIR> startupEar
4 MedRec Development Tutorials

Tutorial 5: Creating the MedRec Project Directory
The build.xml file in the top level of the medrec_tutorial directory is a
project-wide build file. It:

Cleans up previously-built versions of MedRec before compiling

Builds the contents of each application subdirectory into the \build directory
by calling each application’s build.xml file

Packages each application as an exploded .ear file into the \dist directory

You will use this project-level build.xml before moving the WebLogic Server
instance into production mode in Tutorial 13: Compiling the Entire MedRec Project.
However, do not try to use it yet—you need to complete the next few tutorials to create
the application-level build.xml files that this script calls.

The subdirectories of \src represent either deployable MedRec applications or
MedRec components that are used by those applications:

\clients holds source files for the Java and C# clients of MedRec Web
Services.

\common holds source files for Java classes shared between the MedRec
Enterprise Applications. These include:

Shared constants and JNDI names

The ServiceLocator class, used to access MedRec services in the service tier

Factories for creating EJBs and JMS connections

Value objects, which represent data passed between tiers of the MedRec
application

Image files and Struts action classes shared across MedRec web components

The \medrecEar and \physicianEar subdirectories store the main Enterprise
Applications that make up the MedRec application suite. These subdirectories
use the WebLogic Server 8.1 Development Directory structure and ant tasks for
building and deploying, and are described in detail in the next tutorials.

The \security subdirectory contains the MedRec authentication provider
shared across applications.

The \startupEar subdirectory contains the startup class that automatically
boots the browser and loads MedRec’s main index JSP when you start MedRec
on a Windows machine. You do not work directly with this application in the
MedRec Development Tutorials 5

tutorials that follow. However, the application is compiled as part of the overall
MedRec build process.

Step 5: Edit the \src\medrec.properties file and run substitute.xml.

\src also contains a medrec.properties file that defines property values used by
the project-level build.xml file, as well as the build.xml files used in each
applications subdirectory. Follow these instructions to edit the properties file so that it
points to your tutorial domain and project directory:

1. Use a text editor to open the properties file:

notepad c:\medrec_tutorial\src\medrec.properties

2. Edit the wl.home property to point to your WebLogic Server installation
directory (c:/bea/weblogic81 by default):

wl.home=c:/bea/weblogic81

3. Edit the port property, setting the value to 7101:

port=7101

4. Edit the medrec.domain.dir property to point to the MedRecDomain directory
you created:

medrec.domain.dir=c:/bea/user_projects/domains/MedRecDomain

5. Edit the medrec.home property to point to your new project directory:

medrec.home.dir=c:/medrec_tutorial

6. The remaining property definitions build on medrec.home and you do not need
to modify them.

7. Save your changes and exit the editor.

8. Go to the c:\medrec_tutorial directory and run the substitute.xml script:

cd c:\medrec_tutorial

ant -f substitute.xml

This script substitutes a variable in the project files with the path to your
WebLogic home directory.
6 MedRec Development Tutorials

Tutorial 5: Creating the MedRec Project Directory
Best Practices

Smaller J2EE projects may not require the nested subdirectories found in the
MedRec project directory. For example, a project that produces a single
Enterprise application file can have minimal subdirectories such as:

\myProject—top-level project directory

\myProject\myEarBuild—output directory for storing compiled and
generated files

\myProject\myEarSrc—source files and editable content for the Enterprise
Application

This minimal directory structure still allows you to develop your application
using the WebLogic split development directory structure and ant tasks described
in Tutorial 6: Understanding the WebLogic Server Split Directory Structure.

The Big Picture

The MedRec application suite consists of three separate applications for the patient,
physician, and administrator user roles. Using a separate application for each user role
allows you to distribute each application function across different WebLogic Server
instances as needed. For example, the MedRec sample domain (optionally installed
with WebLogic Server) deploys all three applications on a single server instance for
easy demonstration purposes. The MedRec tutorials also deploy the applications in a
single-server domain, which is typical for development environments. However, you
can also deploy the MedRec and Physician applications on two different server
instances (in separate domains) to illustrate the use of Web Services between the
applications.

The MedRec project directory also contains subdirectories for compiling the client
applications that access MedRec via Web Services.

Related Reading

Developing WebLogic Server Applications
MedRec Development Tutorials 7

http://e-docs.bea.com/wls/docs81/programming/index.html

Programming WebLogic Web Services
8 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/webserv/index.html

Tutorial 6: Understanding the WebLogic Server Split Directory Structure
1 Building the MedRec
Applications

Tutorial 6: Understanding the WebLogic
Server Split Directory Structure

Several subdirectories in the medrec_tutorial project directory—medrecEar,
physicianEar, startupEar—use the WebLogic Server split development directory
structure for storing source files. The split development directory consists of a
directory layout and supporting ant tasks that help you easily build, deploy, and
package Enterprise Application files while automatically maintaining classpath
dependencies. The directory structure is split because source files and editable
deployment descriptors reside in one directory while compiled class files and
generated deployment descriptors reside in a separate directory.

The split development directory structure is a valuable tool to use for developing your
own applications. Because source files and generated files are kept separate, you can
easily integrate your development projects with source control systems. The split
development directory also allows you to easily deploy your applications without
having to first copy files and stage applications—WebLogic Server automatically uses
the contents of both the build and source directories to deploy an application.

This tutorial explains the layout and function of the source directory structure used in
the MedRec application suite. The next tutorial describes the build directory structure,
which is produced when you compile an Enterprise Application using the wlcompile
task. The source and build directories together make up a WebLogic split development
directory, which you will deploy and package in later tutorials.
MedRec Development Tutorials 1

1 Building the MedRec Applications
This tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites

Before starting this tutorial:

Create the project directory and unpack the MedRec tutorial source files to it
using the instructions in Tutorial 5: Creating the MedRec Project Directory.

Procedure

The following procedure guide you through the source directory structure for the
MedRec application suite:

Step 1: Examine the Enterprise Application directory structure.

Step 2: Examine the Web Application component directory structure.

Step 3: Examine the EJB component directory structure.

Step 1: Examine the Enterprise Application directory structure.

The WebLogic split development directory stores source files starting at the Enterprise
Application (EAR) level. Even if you are developing only a single Web Application or
EJB, you store the relevant component in a top-level directory that represents an
Enterprise Application. For example, examine the contents of the startupEar
subdirectory, which stores the source code for a single Web Application in the MedRec
application suite:

cd c:\medrec_tutorial\src\startupEar
2 MedRec Development Tutorials

Tutorial 6: Understanding the WebLogic Server Split Directory Structure
dir

 Directory of C:\medrec_tutorial\src\startupEar

01/23/2003 08:43a <DIR> .
01/23/2003 08:43a <DIR> ..
01/23/2003 08:43a 3,368 build.xml
01/23/2003 08:41a <DIR> META-INF
01/23/2003 08:24a <DIR> startupWebApp

Because this Web Application must be packaged independently of the other MedRec
applications, it is placed in its own source directory represented by an EAR file. The
META-INF subdirectory holds deployment descriptors for the Enterprise Application
itself (application.xml and optional weblogic-application.xml files).

Other source subdirectories in the project directory represent more typical Enterprise
Applications having both Web Applications and EJBs, such as physicianEar. Move
to the physicianEar subdirectory and examine its contents:

cd c:\medrec_tutorial\src\physicianEar

dir

 Directory of C:\medrec_tutorial\src\physicianEar

01/23/2003 08:43a <DIR> .
01/23/2003 08:43a <DIR> ..
01/20/2003 05:00p <DIR> APP-INF
01/23/2003 08:43a 5,447 build.xml
01/23/2003 08:41a <DIR> META-INF
01/23/2003 08:41a <DIR> physicianWebApp
01/23/2003 08:24a <DIR> sessionEjbs
01/23/2003 08:24a 218 wlcompile_tutorial.xml
01/23/2003 08:24a 287 wldeploy_tutorial.xml
01/23/2003 08:24a 293 wlpackage_tutorial.xml
01/23/2003 08:24a 393 ws_ejb_client_tutorial.xml

As you can see from the directory listing, the Physician application contains both a
Web Application component (stored in physicianWebApp) and EJB components
(stored in sessionEjbs). The split development directory structure requires that each
EAR component reside in a dedicated source directory. You can name the ear directory
and component subdirectories as you see fit, because the wlcompile ant task
automatically determines the type of component during compilation.
MedRec Development Tutorials 3

1 Building the MedRec Applications
Step 2: Examine the Web Application component directory structure.

The source directory structure allows you to easily manage the different file types that
constitute a Web Application. Move to the physicianWebApp subdirectory of the
physicianEar source directory and examine its contents:

cd physicianWebApp

dir

 Directory of C:\medrec_tutorial\src\physicianEar\physicianWebApp

02/17/2003 10:01a <DIR> .
02/17/2003 10:01a <DIR> ..
02/17/2003 09:57a 1,588 Confirmation.jsp
02/17/2003 09:57a 4,538 CreateRx.jsp
02/17/2003 09:57a 9,836 CreateVisit.jsp
02/17/2003 09:57a 2,107 Error.jsp
02/17/2003 09:57a 2,837 Login.jsp
02/17/2003 09:57a 3,770 PatientHeader.jsp
02/17/2003 09:57a 1,940 PhysicianHeader.jsp
02/17/2003 09:57a 2,927 Search.jsp
02/17/2003 09:57a 3,338 SearchResults.jsp
02/17/2003 09:57a 2,840 stylesheet.css
02/17/2003 09:57a 3,549 ViewProfile.jsp
02/17/2003 09:57a 6,443 ViewRecord.jsp
02/17/2003 09:57a 4,846 ViewRecords.jsp
02/17/2003 10:01a <DIR> WEB-INF

The top level of the Web Application subdirectory contains the JSPs that make up the
application. You could also store .html files or other static content such as image files
here, but it is less cumbersome to store such content in a dedicated subdirectory like
\images.

Java source files for Web Application components, such as Servlets or supporting
utility classes, are stored in package directories under the component’s WEB-INF\src
subdirectory. For example, a utility class for the Physician Web Application is stored
in
C:\medrec_tutorial\src\physicianEar\physicianWebApp\WEB-INF\src\c
om\bea\medrec\utils\PhysConstants.java.

The wlcompile task automatically compiles the contents of the WEB-INF\src
subdirectory into the WEB-INF\classes subdirectory of application’s output
directory, so that all components of the Web Application can access those classes.
4 MedRec Development Tutorials

Tutorial 6: Understanding the WebLogic Server Split Directory Structure
The WEB-INF subdirectory also stores deployment descriptors for the Web Application
component (web.xml and the optional weblogic.xml).

Step 3: Examine the EJB component directory structure.

Java source files for EJB components are stored in subdirectories that reflect the EJB’s
package structure. For example, the source for the Physician Application’s session
EJB is stored in
C:\medrec_tutorial\src\physicianEar\physSessionEjbs\com\bea\medre
c\controller\PhysicianSessionEJB.ejb.

Deployment descriptors for EJB components (such as ejb-jar.xml and the optional
weblogic-ejb-jar.xml) can be stored in the component’s META-INF subdirectory.
However, if you look at the physSessionEjbs subdirectory, you will notice there is
no META-INF subdirectory. This is because all EJBs in the MedRec application suite
use ejbgen tags in their JavaDoc comments, rather than defining them in deployment
descriptor files. The wlcompile ant task uses these tags to generate the EJB
deployment descriptors automatically when you compile the application.

Best Practices

Use the same source directory structure with your own J2EE application
projects, so you can utilize the WebLogic Server build scripts to compile and
deploy your applications. The following summarizes the contents of a simple
source directory that follows the WebLogic split development directory structure
format:

\myProject

\myProject\myEar

\myProject\myEar\META-INF\application.xml

\myProject\myEar\myEjb\com**.java

\myProject\myEar\myWebApp*.jsp

\myProject\myEar\myWebApp\WEB-INF\web.xml

\myProject\myEar\myWebApp\WEB-INF\src\com**.java

Use a source control system to manage the files in the source directory
hierarchy. The source directory contains your working files—Java files and
MedRec Development Tutorials 5

1 Building the MedRec Applications
deployment descriptors—and should be regularly backed up to maintain a
history of your development project.

Never store user-generated files in the \build directory. The \build directory
is intended to store only compiled classes for your J2EE applications. You
should be able to rebuild the entire \build directory simply by recompiling
your application.

You can store deployment descriptor files either in the top level of a J2EE
component subdirectory, or in the customary J2EE subdirectory for the
component’s descriptor files—\myWebApp\WEB-INF or myEjb\META-INF.

The Big Picture

The MedRec application suite uses three split development directories to hold the
source for the medrecEar, physicianEar, and startupEar applications. Utility
classes shared among these applications reside in a dedicated directory, common, with
a custom build script that does not use the split directory structure. Security
components are also staged in a custom build directory.

The top-level build.xml file iterates through the MedRec source directories and
coordinates building all of the components at once.

Although the wlcompile task automatically manages most component dependencies
during a build, certain split development directories, such as the medrecEar and
physicianEar subdirectories, hard-code the build order to enforce dependencies. The
source directory structure that you created during the tutorial contains intermediate
build steps, which allow you to focus on using the new WebLogic Server ant tasks
without worrying about the dependencies.

Related Reading

Developing WebLogic Server Applications

Developing Web Applications for WebLogic Server

Programming WebLogic Server Enterprise JavaBeans
6 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/programming/index.html
http://e-docs.bea.com/wls/docs81/webapp/index.html
http://e-docs.bea.com/wls/docs81/ejb/index.html

Tutorial 7: Compiling Applications Using the Split Development Directory
1 Building the MedRec
Applications

Tutorial 7: Compiling Applications Using the
Split Development Directory

This tutorial explains how to compile Enterprise Application source files using the
wlcompile ant task. wlcompile works with a WebLogic split development directory
structure to produce a build or output directory, which contains the compiled Java
classes. The build directory and the source directory described in Tutorial 6:
Understanding the WebLogic Server Split Directory Structure constitute a deployable
application in WebLogic Server.

Later tutorials explain how to use other WebLogic Server ant tasks that work with the
split development directory to perform other application building tasks such as:

Packaging files from the source and build directories into an EAR file or
expanded EAR directory

Deploying applications

This tutorial includes the following sections:

Prerequisites

Procedure

Best Practices
MedRec Development Tutorials 1

1 Building the MedRec Applications
The Big Picture

Related Reading

Prerequisites

Before starting this tutorial:

Create the project directory and copy over the MedRec source files and output
directories using the instructions in Tutorial 5: Creating the MedRec Project
Directory.

Read the instructions in Tutorial 6: Understanding the WebLogic Server Split
Directory Structure to understand the organization of source files in the
WebLogic Server split development directory.

Procedure

Follow these steps to use the wlcompile task with a split development directory in the
MedRec application suite:

Step 1: Create the build.xml file.

Step 2: Compile the application.

Step 3: Examine the output files.

Step 1: Create the build.xml file.

Storing your source files using the WebLogic split development directory structure
simplifies the build.xml file required to compile your applications. For most
Enterprise Applications, a simple script of several lines is adequate to compile all
modules—the wlcompile task automatically determines the modules used in the
application and maintains classpath dependencies accordingly.

1. To see how wlcompile works, create a simple XML file to compile the Physician
application. First move to the physicianEar subdirectory in the MedRec project
directory:
2 MedRec Development Tutorials

Tutorial 7: Compiling Applications Using the Split Development Directory
cd c:\medrec_tutorial\src\physicianEar

The top-level of physicianEar contains subdirectories for the Web Application
and EJB components that form the Enterprise Application. You will store the
XML file here as well.

2. Use a text editor to create a new mybuild.xml file in the physicianEar
directory:

notepad mybuild.xml

Note: If you do not want to enter the build.xml file manually, copy the file
wlcompile_tutorial.xml file to the new file name, mybuild.xml.
Then follow along to understand the file contents.

3. Start the mybuild.xml file by defining a project named physiciantutorial:

<project name="tutorial" default=”build”>

4. Define the main target for building the application. This target (named “build”) is
fairly simple. It uses the wlcompile task to identify the source directory (which
uses the split development directory structure) and an output directory for storing
compiled files. Enter the following lines:

 <target name="build">
 <wlcompile srcdir="c:/medrec_tutorial/src/physicianEar"
destdir="c:/medrec_tutorial/build/physicianEar"/>
 </target>

For most simple Enterprise Applications, you need only to point wlcompile to
the source and build directories to use for compiling. Always make sure the
srcdir and destdir directories point to separate locations—you want to ensure
that your source and output files remain separate during the development
process.

5. To complete the mybuild.xml file, add the following line to close the project:

</project>

Your completed file should resemble the following. Remember that you can
copy over wlcompile_tutorial.xml if you do not want to type in the full text:

<project name="tutorial" default="build">

 <target name="build">
 <wlcompile srcdir="c:/medrec_tutorial/src/physicianEar"
destdir="c:/medrec_tutorial/build/physicianEar"/>
 </target>
MedRec Development Tutorials 3

1 Building the MedRec Applications
</project>

Step 2: Compile the application.

After you create the mybuild.xml file, you can use it to compile the application.

1. Make sure you have set your environment using the MedRecDomain environment
script:

c:\bea\user_projects\domains\MedRecDomain\setEnv.cmd

2. Move to the physicianEar directory and compile by running the mybuild.xml
script with ant:

cd c:\medrec_tutorial\src\physicianEar

ant -f mybuild.xml

Although you did not add any informational messages to your build script, the
wlcompile task produces its own output to show its progress:

Buildfile: mybuild.xml

mybuild:
 [javadoc] Generating Javadoc
 [javadoc] Javadoc execution
 [javadoc] Loading source file
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\m
edrec\controller\PhysicianSessionEJB.java...
 [javadoc] Constructing Javadoc information...
 [javadoc] EJBGen 2.13beta
 [javadoc] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\m
edrec\controller\PhysicianSessionHome.java
 [javadoc] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\m
edrec\controller\PhysicianSession.java
 [javadoc] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\ejb-jar.x
ml
 [javadoc] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\weblogic-
ejb-jar.xml
 [javadoc] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\ejbgen-bu
ild.xml
 [move] Moving 2 files to
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF
4 MedRec Development Tutorials

Tutorial 7: Compiling Applications Using the Split Development Directory
 [javac] Compiling 3 source files to
C:\medrec_tutorial\build\physicianEar\physSessionEjbs
 [javac] Compiling 13 source files to
C:\medrec_tutorial\build\physicianEar\physicianWebApp\WEB-INF\c
lasses

BUILD SUCCESSFUL

Total time: 4 seconds

3. If you did not receive the above output, you probably made a typo while creating
the mybuild.xml file. If so, run the alternate compile command using the
installed tutorial build file:

ant -f wlcompile_tutorial.xml

Step 3: Examine the output files.

Now that you have compiled physicianEar, take a look at the build directory to see
what happened. All output for the build target is placed in the output directory for the
Enterprise Application, c:\medrec_tutorial\build\physicianEar.

The wlcompile output shows that the build started by running ejbgen on the
Physician application’s EJBs. Verify that the deployment descriptors were created:

dir c:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF

 Directory of
c:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF

02/21/2003 05:32p <DIR> .
02/21/2003 05:32p <DIR> ..
02/21/2003 05:32p 697 ejb-jar.xml
02/21/2003 05:32p 884 weblogic-ejb-jar.xml

wlcompile also compiled the and copied the actual EJB classes to the
physSessionEjbs directory:

dir
c:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\med
rec\controller

 Directory of
c:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\med
rec\controller
MedRec Development Tutorials 5

1 Building the MedRec Applications
02/21/2003 05:32p <DIR> .
02/21/2003 05:32p <DIR> ..
02/21/2003 05:32p 11,359 PhysicianClientUtils.class
02/21/2003 05:32p 681 PhysicianSession.class
02/21/2003 05:32p 2,212 PhysicianSession.java
02/21/2003 05:32p 5,770 PhysicianSessionEJB.class
02/21/2003 05:32p 8,710 PhysicianSessionEJB.java
02/21/2003 05:32p 324 PhysicianSessionHome.class
02/21/2003 05:32p 428 PhysicianSessionHome.java
 7 File(s) 29,484 bytes

wlcompile compiled the Web Application servlet classes and placed them in the
WEB-INF\classes directory:

dir
c:\medrec_tutorial\build\physicianEar\physicianWebApp\WEB-INF\cla
sses\com\bea\medrec

 Directory of
c:\medrec_tutorial\build\physicianEar\physicianWebApp\WEB-INF\cla
sses\com\bea\medrec

02/24/2003 10:53a <DIR> .
02/24/2003 10:53a <DIR> ..
02/24/2003 10:53a <DIR> actions
02/24/2003 10:53a <DIR> utils

The actions directory stores struts action classes and the utils directory contains a
utility class that stores MedRec constants.

Notice that the entire build directory for the Enterprise Application
(c:\medrec_tutorial\build\physicianEar) contains deployment descriptor
files only for the EJB components. This is because the EJB descriptors are generated
using ejbgen tags. You can recreate the entire contents of the build directory,
including the EJB deployment descriptors, by rerunning the build script.

The Enterprise Application and Web Application deployment descriptors are left in the
source directory because they are created and edited manually, and cannot be easily
replaced or rebuilt.
6 MedRec Development Tutorials

Tutorial 7: Compiling Applications Using the Split Development Directory
Best Practices

More complex Enterprise Applications may have compilation dependencies that are
not automatically handled by the wlcompile task. However, you can use the include
and exclude options to wlcompile to enforce your own dependencies. include and
exclude accept the names of Enterprise Application modules—the names of
subdirectories in the Enterprise Application source directory—to include or exclude
them from the compile stage. See The Big Picture for an example.

The Big Picture

Although the MedRec Enterprise Applications use the WebLogic split development
directory structure and wlcompile task in their build scripts, they have certain
dependencies that are not handled by the default wlcompile task. For example,
examine this excerpt from the medrecEar\build.xml file:

 <wlcompile srcdir="${medrec.ear.src.dir}" destdir="${dest.dir}"
 excludes="adminWebApp, xml, mdbEjbs, webServicesEjb"/>

You can see that the build script starts by compiling all modules in the Enterprise
Application except for adminWebApp, xml, mdbEjbs, and webServicesEjb. These
correspond to subdirectories names in the medrecEar source directory.

The build then continues by compiling only the xml and webServicesEjb modules in
the application:

 <wlcompile srcdir="${medrec.ear.src.dir}" destdir="${dest.dir}"
 includes="xml, webServicesEjb"

Related Reading

Developing WebLogic Server Applications

Developing Web Applications for WebLogic Server

Programming WebLogic Server Enterprise JavaBeans

Programming WebLogic Web Services
MedRec Development Tutorials 7

http://e-docs.bea.com/wls/docs81/programming/index.html
http://e-docs.bea.com/wls/docs81/webapp/index.html
http://e-docs.bea.com/wls/docs81/ejb/index.html
http://e-docs.bea.com/wls/docs81/webserv/index.html

1 Building the MedRec Applications
8 MedRec Development Tutorials

Tutorial 8: Walkthrough of Web Application Deployment Descriptors
1 Building the MedRec
Applications

Tutorial 8: Walkthrough of Web Application
Deployment Descriptors

This tutorial examines the deployment descriptor files that define the resources and
operating attributes of the MedRec Web applications.

Like most WebLogic Server Web Applications, each MedRec Web application uses
two deployment descriptor files, web.xml and weblogic.xml. These files reside in
the WEB-INF folders that are part of the directory structure of WebLogic Server Web
Applications.

A web.xml deployment descriptor file is a J2EE standard XML document that sets
properties for a Web Application. These properties are defined by the DTD referenced
in a heading in each web.xml file, at
http://java.sun.com/dtd/web-app_2_3.dtd.

A weblogic.xml deployment descriptor file is an XML document that defines
WebLogic Server-specific properties for Web applications. These properties are
defined by the DTD at
http://www.bea.com/servers/wls810/dtd/weblogic810-web-jar.dtd.

The tutorial includes the following sections:

Prerequisites

Procedure
MedRec Development Tutorials 1

http://java.sun.com/dtd/web-app_2_3.dtd
http://www.bea.com/servers/wls810/dtd/weblogic810-web-jar.dtd

1 Building the MedRec Applications
Best Practices

The Big Picture

Related Reading

Prerequisites

Before starting this tutorial:

Create the MedRec domain and MedRec server. See Tutorial 1: Creating a
WebLogic Domain and Server Instance for Development.

Create the MedRec project directory. See Tutorial 5: Creating the MedRec
Project Directory.

Read about MedRec’s split directory structure. See Tutorial 7: Compiling
Applications Using the Split Development Directory.

Procedure

The following procedure walks you through the contents of the web.xml and
weblogic.xml files.

Step 1: Examine a web.xml file.

Step 2: Examine a weblogic.xml File

Step 1: Examine a web.xml file.

In this section, examine how the web.xml file from mainWebApp configures
mainWebApp’s resources. mainWebApp responds to HTTP requests in MedRec, either
creating HTTP responses or forwarding requests to other Web components.

web.xml can define following attributes for a Web Application:

Register servlets

Define servlet initialization attributes
2 MedRec Development Tutorials

Tutorial 8: Walkthrough of Web Application Deployment Descriptors
Register JSP tag libraries

Define security constraints

Define other Web Application attributes

1. In a text editor, open the web.xml file that configures mainWebApp, located at
C:\medrec_tutorial\src\medrecEar\mainWebApp\WEB-INF.

2. Note the required elements in the heading of the file, which set the encoding and
point to the DTD that defines the elements and attributes that can be set in a
web.xml file:
<?xml version="1.0" encoding="ISO-8859-1"?>

<!DOCTYPE web-app

 PUBLIC "-//Sun Microsystems, Inc.//DTD Web Application
2.3//EN"

 "http://java.sun.com/dtd/web-app_2_3.dtd">

Use caution with this section of the file, as erroneous edits here will likely
prevent the application from being deployed until they are corrected.

3. The elements described in the following steps reside within the web-app element
that they modify.
<web-app>

....

</web-app>

4. Note the registration of servlets in web.xml. The servlet element and its
servlet-class attributes set the name of the servlet and the location of the
compiled class that executes the servlet.

The following listing names a servlet called “action,” and associates it with a
class:

<servlet>

 <servlet-name>action</servlet-name>

<servlet-class>org.apache.struts.action.ActionServlet</servle
t-class>

5. The init-param attribute is part of the servlet element; in this case, of the
servlet defined in the previous step. The servlet reads its init-param values
when it is invoked.
MedRec Development Tutorials 3

1 Building the MedRec Applications
<init-param>

<param-name>config</param-name>

<param-value>/WEB-INF/struts-config.xml</param-value>

</init-param>

6. The servlet-mapping element determines how the MedRec application invokes
a servlet.
 <servlet-mapping>

 <servlet-name>action</servlet-name>

 <url-pattern>*.do</url-pattern>

 </servlet-mapping>

7. The welcome-file-list element defines the Web application’s welcome files.
 <welcome-file-list>

 <welcome-file>index.jsp</welcome-file>

 </welcome-file-list>

8. taglib defines the tag libraries that are available to the application:
<taglib>

<taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>

<taglib-location>/WEB-INF/struts-bean.tld</taglib-location>

</taglib>

See web.xml Deployment Descriptor Elements in Developing Web Applications for
WebLogic Server.

Step 2: Examine a weblogic.xml File

In this section, examine the contents of the weblogic.xml file that configures the
physicianWebApp. Physicians and nurses log in to the physician Web Application to
search and access patient profiles, create and review patient medical records, and
prescribe medicine to patients.

A WebLogic Server Web Application’s weblogic.xml file can set, among other
things, the following major properties:

JSP properties
4 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/webapp/web_xml.html

Tutorial 8: Walkthrough of Web Application Deployment Descriptors
JNDI mappings

Context root

URL mappings

Security role mappings

HTTP session attributes

1. In a text editor, open the weblogic.xml file that configures physicianWebApp,
located at
C:\medrec_tutorial\src\physicianEar\physicianWebApp\WEB-INF.

2. Note the heading that references the DTD file:

<!DOCTYPE weblogic-web-app

 PUBLIC "-//BEA Systems, Inc.//DTD Web Application 8.1//EN"

"http://www.bea.com/servers/wls810/dtd/weblogic810-web-jar.dtd"
>

This URL is the location of the current WebLogic Server 8.1 DTD for Web
Applications.

3. The elements and attributes in the weblogic.xml file are members of the
weblogic-web-app element that opens and closes every instance of
weblogic.xml:

<weblogic-web-app>

....

</weblogic-web-app>

4. The session-descriptor element contains session parameters for the Web
Application’s servlet sessions. The parameter names refer to parameters specified
in weblogic810-web-jar.dtd, whose values can be set within the same
session-descriptor element.

For example, the InvalidationIntervalSecs parameter is a
performance-related setting that specifies the number of seconds the server waits
before checking to determine if a session is invalid or has timed out.

The next parameter, TimeoutSecs, sets the number of seconds the server waits
before timing out a session.
MedRec Development Tutorials 5

1 Building the MedRec Applications
The value assigned to the third parameter, PersistentStoreType, determines
the persistent store method for servlet sessions. The current value,
replicated_if_clustered, means that sessions on this server are stored in
accordance with the value set for the cluster of servers to which this server
belongs—if the Web Application is deployed to a cluster. Absent a clustered
server configuration, servlet sessions default to the memory
PersistentStoreType, in which sessions are not stored persistently.

<session-descriptor>

 <session-param>

 <param-name>InvalidationIntervalSecs</param-name>

 <param-value>60</param-value>

 </session-param>

 <session-param>

 <param-name>TimeoutSecs</param-name>

 <param-value>600</param-value>

 </session-param>

 <session-param>

 <param-name>PersistentStoreType</param-name>

 <param-value>replicated_if_clustered</param-value>

 </session-param>

</session-descriptor>

5. The virtual-directory-mapping element sets the location that the servlet
checks first when fulfilling HTTP image requests. Its paired elements,
local-path and url-pattern, map the URL pattern of an incoming request to
a physical location.

<virtual-directory-mapping>

<local-path>C:/bea/weblogic81/samples/server/medrec/src/comm
on/web</local-path>

<url-pattern>images/*</url-pattern>

</virtual-directory-mapping>

6. The context-root element in a weblogic.xml file sets the context root
directory for a Web Application. The context root is the base path of a Web
application relative to the server's base URL. For example, MedRecServer’s base
6 MedRec Development Tutorials

Tutorial 8: Walkthrough of Web Application Deployment Descriptors
URL is http://localhost:7101 and the Web application’s context root is
physician. Users access components of the physician Web application
relative to http://localhost:7101/physician.

The setting physician means that users access the physicianWebApp when they
specifically request it.

<context-root>physician</context-root>

See weblogic.xml Deployment Descriptor Elements in Developing Web Applications
for WebLogic Server.

Best Practices

Use an XML editor to edit XML files, rather than a text editor. It is easy to
mishandle XML code, and you will save time by using an editor that validates
your work.

Use WebLogic Server tools to generate and edit XML deployment descriptors.
WebLogic Builder generates descriptors and includes an interface for editing
them—see WebLogic Builder Online Help at
http://edocs.bea.com/wls/docs81/wlbuilder/index.html. DDInit generates
descriptors for JARs, WARs, and EARs—see DDInit at
http://edocs.bea.com/wls/docs81/admin_ref/utils.html#1170077.

The Big Picture

The MedRec application contains five Web Applications:

physicianWebApp

patientWebApp

adminWebApp

mainWebApp

startupWebApp
MedRec Development Tutorials 7

http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html
http://edocs.bea.com/wls/docs81/wlbuilder/index.html
http://edocs.bea.com/wls/docs81/admin_ref/utils.html#1170077

1 Building the MedRec Applications
The resources and attributes of these Web Applications are defined by deployment
descriptor files. This tutorial describes the function of these deployment descriptors,
specifically web.xml, the standard J2EE Web application deployment descriptor file,
and weblogic.xml, the WebLogic Server-specific Web application deployment
descriptor file.

Deployment descriptor files configure properties for MedRec’s applications and EJBs,
as well as its Web applications.

For example, physicianEar, the application to which physicianWebApp belongs,
also contains a session EJB component, physSessionEJBs. physSessionEJBs’s
deployment descriptor files, located at
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF, are
the standard J2EE EJB deployment descriptor file ejb-jar.xml, and the WebLogic
Server-specific EJB deployment descriptor file, weblogic-ejb-jar.xml.

medrecEar, the main MedRec application, is configured by a standard J2EE
application deployment descriptor file, application.xml, located at
C:\medrec_tutorial\src\medrecEar\META-INF.

You are encouraged to examine the EJB and application deployment descriptor files
and the DTD files that they reference.

Related Reading

Developing Web Applications for WebLogic Server, especially web.xml
Deployment Descriptor Elements and weblogic.xml Deployment Descriptor
Elements

Sun’s DTD for web.xml

BEA WebLogic’s DTD for weblogic.xml
8 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/webapp/index.html
http://e-docs.bea.com/wls/docs81/webapp/web_xml.html
http://e-docs.bea.com/wls/docs81/webapp/weblogic_xml.html
http://java.sun.com/dtd/web-app_2_3.dtd
http://www.bea.com/servers/wls810/dtd/weblogic810-web-jar.dtd

Tutorial 9: Deploying MedRec from the Development Environment
1 Building the MedRec
Applications

Tutorial 9: Deploying MedRec from the
Development Environment

This tutorial describes how to deploy an application from a WebLogic split
development directory using the wldeploy ant task and weblogic.Deployer
utilities. You can use these techniques to deploy an application quickly to a
development environment without having to package the application or otherwise
modify your build environment.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading
MedRec Development Tutorials 1

1 Building the MedRec Applications
Prerequisites

Before starting this tutorial, complete tutorials 5 through 8 to create the project
directory and perform the intermediate build steps for the Physician Application. If you
completed tutorial 5 but skipped one or more of the subsequent tutorials, you can catch
up by moving to the c:\medrec_tutorial\src\physicianEar subdirectory,
setting the environment, and executing the Ant command:

ant -f build.xml

Procedure

By now you have seen how the split development directory structure helps you easily
build Enterprise Applications with WebLogic Server. But deploying Enterprise
Applications sometimes seems like as much work as building them—you usually need
to combine the compiled Java classes with modifiable deployment descriptors to create
an exploded EAR directory or a compressed EAR file, which you then deploy. This
process generally involves copying files from one place to another and changing their
directory structures before deploying (not to mention repeating this process each time
you rebuild the application or change a deployment descriptor).

With the split development directory, compiled files in the build directory are neatly
separated from modifiable source files and descriptors in the source directory.
WebLogic Server can deploy applications directly from a split development
directory—you only need to target the build directory to deploy your work. In this
procedure you use the split development directory to deploy physicianEar, which
has now been built to the point where it is deployable:

1. First start the MedRecServer if it is not already running:

a. Open a new command shell:

start cmd

b. Start the MedRec server by running its start script:

c:\bea\user_projects\domains\medrecdomain\startweblogic.cmd

2. Open a command shell and start PointBase, if it is not already running:

cd c:\bea\weblogic81\common\eval\pointbase\tools
2 MedRec Development Tutorials

Tutorial 9: Deploying MedRec from the Development Environment
startPointBase.cmd

3. Open another command shell and set your environment:

c:\bea\user_projects\domains\medrecdomain\setenv.cmd

4. Move to the physicianEar subdirectory if you are not already there:

cd c:\medrec_tutorial\src\physicianEar

5. Use a text editor to create a new file, deploy.xml:

notepad deploy.xml

Note: If you do not want to create the deploy.xml file manually in this tutorial,
copy the file named wldeploy_tutorial.xml to a new file named
deploy.xml and follow along.

6. Start the deploy.xml file by defining a project named physiciandeploy:

<project name="tutorial" default="deploy">

7. Define the main target for deploying the application:

 <target name="deploy">
 <wldeploy user="weblogic" password="weblogic"
adminurl="t3://127.0.0.1:7101" action="deploy"
name="tutorial_deployment"
source="c:\medrec_tutorial\build\physicianEar"/>
 </target>

8. Complete the deploy.xml file by closing the project element:

</project>

9. Your file contents should now resemble the following:

<project name="tutorial" default="deploy">

 <target name="deploy">
 <wldeploy user="weblogic" password="weblogic"
adminurl="t3://127.0.0.1:7101" action="deploy"
name="tutorial_deployment"
source="c:\medrec_tutorial\build\physicianEar" />
 </target>

</project>

Save the file and exit your text editor.

10. In the same command shell, enter the commands to execute the build script:
MedRec Development Tutorials 3

1 Building the MedRec Applications
ant -f deploy.xml

You should receive the following output from the wldeploy task:

Buildfile: deploy.xml

deploy:
 [wldeploy] weblogic.Deployer -noexit -name tutorial_deployment
-source C:\medrec_tutorial\build\physicianEar -adminurl
t3://127.0.0.1:7101 -user weblogic -password weblogic -deploy
 [wldeploy] Initiated Task: [0] [Deployer:149026]Deploy
application tutorial_deployment on MedRecServer.
 [wldeploy] Task 0 completed: [Deployer:149026]Deploy
application tutorial_deployment on MedRecServer.
 [wldeploy] Deployment completed on Server MedRecServer
 [wldeploy]

BUILD SUCCESSFUL

Total time: 12 seconds

If you do not receive the above output, MedRecServer may not have finished
starting up, or you may have made a typo in creating the deploy.xml file. If
this occurs, wait until the server has finished starting up, and try to deploy using
the installed tutorial file:

ant -f wldeploy_tutorial.xml

11. To verify that the application deployed, open a new browser window and enter
the URL, http://127.0.0.1:7101/physician. You should receive the
Physician Application’s login page. You cannot do much more than look at the
page right now, because the rest of the MedRec application suite is not available.

12. The wldeploy task works using the same options as those available with the
weblogic.Deployer command line utility. Before moving on to the next
tutorial, undeploy the Physician application using weblogic.Deployer. In the
same command-line window, enter the command:

java weblogic.Deployer -adminurl t3://127.0.0.1:7101 -user
weblogic -password weblogic -undeploy -name tutorial_deployment

The utility displays the following output messages:

Initiated Task: [1] [Deployer:149026]Remove application
tutorial_deployment on MedRecServer.
Task 1 completed: [Deployer:149026]Remove application
tutorial_deployment on MedRecServer.
Deployment completed on Server MedRecServer
4 MedRec Development Tutorials

Tutorial 9: Deploying MedRec from the Development Environment
Best Practices

You can use the either the weblogic.Deployer tool or its associated Ant task,
wldeploy to target the build directory to a server running in development mode.
You cannot use the Administration Console to deploy from a split development
directory.

The split development directory structure enables you to deploy applications
directly from your development environment without packaging or otherwise
copying any files.

In most cases, you need to deploy and redeploy frequently during the
development phase of an Enterprise Application. You should generally add
deploy and redeploy targets to your build files to your project build scripts to
facilitate these functions. To redeploy using the wldeploy task, simply replace
action="deploy" with action="redeploy", and omit the source definition;
wldeploy uses the deployment name to redeploy the application.

The Big Picture

How does wldeploy work with the split directory? The contents of
c:\medrec_tutorial\build\physicianEar look similar to an exploded EAR
directory, but there are no deployment descriptors. WebLogic Server finds the correct
deployment descriptors to use by examining the
c:\medrec_tutorial\build\physicianEar\.beabuild.txt file, which
references the application’s source directory,
c:\medrec_tutorial\src\physicianEar. The source directory contains the
component deployment descriptors needed to deploy the application.

Related Reading

Performing Common Deployment Tasks

Deployment Tools Reference
MedRec Development Tutorials 5

http://e-docs.bea.com/wls/docs81/deployment/scenarios.html
http://e-docs.bea.com/wls/docs81/deployment/tools.html

1 Building the MedRec Applications
6 MedRec Development Tutorials

Tutorial 10: Using EJBGen to Generate EJB Deployment Descriptors
1 Generating
Deployment
Descriptors

Tutorial 10: Using EJBGen to Generate EJB
Deployment Descriptors

This tutorial demonstrates how to use the WebLogic Server EJBGen utility to generate
deployment descriptor files and EJB source files such as the home interface file.

The demonstration uses the PhysicianSession EJB from the Physician application in
MedRec. You use EJBGen to generate new EJB source files and new versions of the
EJB deployment descriptor files for the Physician EJB.

You compare the original versions of the deployment descriptor files to the newly
generated versions. The files are:

ejb-jar.xml, which specifies PhysicianSessionEJB’s bean, its interfaces,
and its session and transaction types

weblogic-ejb-jar.xml, which specifies PhysicianSessionEJB’s pool and
time-out deployment settings

EJBGen uses annotations in the bean file to generate the deployment descriptor files
and the EJB Java source files. EJB files in the MedRec application are already
annotated for EJBGen.
MedRec Tutorials 1

1 Generating Deployment Descriptors
The tutorial includes the following sections:

Prerequisites

Procedures

Best Practices

The Big Picture

Related Reading

Prerequisites

Before starting this tutorial, complete Tutorial 9: Deploying MedRec from the
Development Environment. In this tutorial, it is assumed that MedRec is bundled as
the tutorial_deployment application and is ready to deploy to the MedRec server,
as it is at the end of Tutorial 9.

Procedures

In the following procedures you view some of the files that EJBGen generates, use
EJBGen to regenerate those files, redeploy the application, and then view the newly
generated files.

Procedure 1: Deploy the application and view the deployment descriptor files.

Procedure 2: Generate new deployment descriptor and EJB files.

Procedure 3: Redeploy the application and view the generated files.

Procedure 1: Deploy the application and view the deployment descriptor files.

1. Set your environment by opening a command window and running setenv.cmd:

c:\bea\user_projects\domains\MedRecDomain\setenv.cmd

2. Move to the physicianEar subdirectory:

cd c:\medrec_tutorial\src\physicianEar
2 MedRec Tutorials

http://e-docs.bea.com/wls/docs81/medrec_tutorials/splitdeploy.html
http://e-docs.bea.com/wls/docs81/medrec_tutorials/splitdeploy.html

Tutorial 10: Using EJBGen to Generate EJB Deployment Descriptors
3. Redeploy the tutorial_deployment application. For example:

ant -f deploy.xml

4. Open the Administration Console by navigating in a browser to
http://localhost:7101/console.

5. In the left-hand panel of the Administration Console, expand
Deployments-->Applications-->tutorial_deployments and click
physSessionEjb.

6. In the right-hand panel, select the Descriptors tab.

7. Click the ejb-jar.xml file to view its text, so that you can compare it with the
text you will use EJBGen to generate. The XML code quoted in this step and the
next step is generated by EJBGen. You do not need to write it.

The XML should appear as follows:

<ejb-jar>

 <enterprise-beans>

 <session>

 <ejb-name>PhysicianSessionEJB</ejb-name>

 <home>com.bea.medrec.controller.PhysicianSessionHome</home>

 <remote>com.bea.medrec.controller.PhysicianSession</remote>

<ejb-class>com.bea.medrec.controller.PhysicianSessionEJB</ejb-cla
ss>

 <session-type>Stateless</session-type>

 <transaction-type>Container</transaction-type>

 </session>

 </enterprise-beans>

</ejb-jar>

8. Click the weblogic-ejb-jar.xml file. It should read as follows:

<weblogic-ejb-jar>

 <weblogic-enterprise-bean>
MedRec Tutorials 3

1 Generating Deployment Descriptors
 <ejb-name>PhysicianSessionEJB</ejb-name>

 <stateless-session-descriptor>

 <pool>

 <max-beans-in-free-pool>1000</max-beans-in-free-pool>

 <initial-beans-in-free-pool>0</initial-beans-in-free-pool>

 </pool>

 <stateless-clustering>

 </stateless-clustering>

 </stateless-session-descriptor>

 <transaction-descriptor>

 <trans-timeout-seconds>0</trans-timeout-seconds>

 </transaction-descriptor>

 <enable-call-by-reference>True</enable-call-by-reference>

<jndi-name>PhysicianSessionEJB.PhysicianSessionHome</jndi-name>

 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

Procedure 2: Generate new deployment descriptor and EJB files.

1. In the command window, change to the
C:\medrec_tutorial\src\physicianEar\physSessionEjbs\com\bea\med
rec\controller directory.

2. Change the suffix of PhysicianSessionEJB.ejb to .java. For example:

copy PhysicianSessionEJB.ejb PhysicianSessionEJB.java

The .ejb suffix exists to tell the wlcompile ant script to run EJBGen on the
EJB source files when it first compiles MedRec as described in Tutorial 7:
Compiling Applications Using the Split Development Directory.

3. Enter the following command to invoke EJBGen on physicianSessionEJB.
4 MedRec Tutorials

http://e-docs.bea.com/wls/docs81/medrec_tutorials/wlcompile.html
http://e-docs.bea.com/wls/docs81/medrec_tutorials/wlcompile.html

Tutorial 10: Using EJBGen to Generate EJB Deployment Descriptors
a. If you are using WebLogic Server 8.1 Service Pack 1 or higher, issue the
following command:

java weblogic.tools.ejbgen.EJBGen PhysicianSessionEJB.java -d
C:\medrec_tutorial\build\physicianEar\physSessionEjbs
-descriptorDir
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF

The -d flag tells EJBGen to write the Java files to the
C:\medrec_tutorial\build\physicianEar\physSessionEjbs directory.
The -descriptorDir flag specifies the directory for the deployment descriptor
files relative to the output directory specified with the -d flag.

EJBGen reports on its progress as follows:

Loading source file PhysicianSessionEJB.java...

Constructing Javadoc information...

EJBGen 2.15

 Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\m
edrec\controller\PhysicianSessionHome.java

 Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\m
edrec\controller\PhysicianSession.java

 Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF\
ejb-jar.xml

 Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF\
weblogic-ejb-jar.xml

 Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF\
ejbgen-build.xml

b. If you are using a WebLogic Server 8.1 release earlier than Service Pack 1,
your version of EJBGen does not support the -descriptorDir flag, so you
will have to create the
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-I
NF\directory and manually copy the generated files to it. Begin by issuing the
following command:

java weblogic.tools.ejbgen.EJBGen PhysicianSessionEJB.java

EJBGen reports on its output:
MedRec Tutorials 5

1 Generating Deployment Descriptors
[Info:] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\\ejb-jar.
xml

[Info:] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\\weblogic
-ejb-jar.xml

[Info:] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\ejbgen-bu
ild.xml13 warnings

Next, move the newly generated descriptor files to their proper directories as
listed below:

C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF\
ejb-jar.xml

C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF\
weblogic-ejb-jar.xml

C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF\
ejbgen-build.xml

Procedure 3: Redeploy the application and view the generated files.

1. Move to the physicianEar subdirectory:

cd c:\medrec_tutorial\src\physicianEar

2. Redeploy the tutorial_deployment application. For example:

ant -f deploy.xml

3. Open the Administration Console by navigating in a browser to
http://localhost:7101/console.

4. In the left-hand panel of the Administration Console, expand
Deployments>Applications>tutorial_deployment.

5. Click physSessionEjbs. The right pane shows the configuration of the EJB
module.

6. In the right pane, select the Descriptors tab.

7. Click ejb-jar.xml and weblogic-ejb-jar.xml to view them and compare
them to the original versions you viewed in the first procedure.

The new versions of PhysicianSessionHome.java and
PhysicianSessionHome.java are in the
6 MedRec Tutorials

Tutorial 10: Using EJBGen to Generate EJB Deployment Descriptors
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\m
edrec\controller directory.

Best Practices

Use EJBGen to develop the EJB component your application. You can simplify your
EJB development and code maintenance by writing just the bean files and annotating
them with EJBGen tags, and then generating all the remaining files—the home
interface, the local interface, the deployment descriptor files—using EJBGen.

The Big Picture

The scripts that compile and deploy MedRec use EJBGen to generate most of the EJB
files in the application.

The PhysicianSession bean contains all of the information necessary for EJBGen to
generate the EJB descriptor files and the home interface. You can view the EJBGen
annotations by opening
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF\co
m\bea\medrec\controller>PhysicianSession.java in a text editor.

For example, the following tags define the pool and timeout settings that you see in the
generated weblogic-ejb-jar.xml:

/**

 * <p>Session Bean implementation for physician functionality
including

 * access MedRec web services.</p>

 *

 * @author Copyright (c) 2003 by BEA Systems. All Rights Reserved.

 *

 * EJBGen tags:

 * @ejbgen:session

 * max-beans-in-free-pool = 1000
MedRec Tutorials 7

1 Generating Deployment Descriptors
 * initial-beans-in-free-pool = 0

 * trans-timeout-seconds = 0

 * type = Stateless

 * enable-call-by-reference = True

 * ejb-name = PhysicianSessionEJB

 *

 * @ejbgen:jndi-name

 * remote = PhysicianSessionEJB.PhysicianSessionHome

 */

Related Reading

EJBGen Reference

WebLogic Server Workshop

In the left-hand navigational area, expand the Developing Enterprise Java Beans
topic to learn about using WebLogic Server Workshop to create EJBs.

Deployment Descriptors, in Programming WebLogic Enterprise JavaBeans
8 MedRec Tutorials

http://e-docs.bea.com/wls/docs81/ejb/EJBGen_reference.html
http://edocs.bea.com/workshop/docs81/doc/en/core/index.html
http://e-docs.bea.com/wls/docs81/ejb/understanding.html#1125688

Tutorial 11: Exposing a Stateless Session EJB as a Web Service
1 Building the MedRec
Applications

Tutorial 11: Exposing a Stateless Session EJB
as a Web Service

This tutorial describes how to expose a stateless session EJB as a Web Service.
Tutorial 12: Invoking a Web Service from a Client Application describes how this Web
Service can be invoked by a variety of client applications using SOAP.

WebLogic Web Services Ant tasks expose an existing stateless session EJB as a
WebLogic Web Service. In particular, the Ant tasks:

Generate a web-services.xml deployment descriptor file that tells WebLogic
Server how to deploy the Web Service.

Generate the serialization classes, XML Schema representation, and type
mapping information for all non-built-in data types that are used as parameters
and return values of the EJB methods.

Package all the components into a Web Application within an EAR file, along
with any needed EJB JAR files.

This tutorial shows you how to use the individual Ant tasks autotype and
source2wsdd. BEA also provides another Ant task, servicegen, which can automate
many tasks for you.

The tutorial includes the following sections:
MedRec Tutorials 1

http://e-docs.bea.com/wls/docs81/webserv/anttasks.html

1 Building the MedRec Applications
Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites

Previous tutorials work exclusively with the Physician application, physicianEar.
This tutorial uses the main MedRec application, medrecEar, which contains the
session and entity EJBs that handle patient information such as personal data and
records of doctor visits.

It is assumed that you have already created the split directory structure for the MedRec
application, and compiled the EJBs that make up the application (in particular the
MedRecWebServices stateless session EJB) into their respective class files. To
accomplish these tasks, you must:

1. Create the project directory and copy over the source files and output directories
using the instructions in Tutorial 5: Creating the MedRec Project Directory.

2. Change to the medrecEar subdirectory in the MedRec project directory:

cd c:\medrec_tutorial\src\medrecEar

3. Set your environment using the MedRecDomain environment script:

c:\bea\user_projects\domains\MedRecDomain\setEnv.cmd

4. Execute the existing build.xml Ant file, specifying the prepare and
build.split.dir targets:

ant prepare build.split.dir

The prepare target creates needed directories, sets up the Web Application
directories, and copies the shared utility JAR files to the build directory. The
build.split.dir target compiles all the EJBs into class files.

After running the Ant task, examine the
c:\medrec_tutorial\build\medrecEar directory; you will see
subdirectories representing all the EJBs of the MedRec application, as well as
2 MedRec Tutorials

Tutorial 11: Exposing a Stateless Session EJB as a Web Service
Web Application directories. The ws_medrec Web Application will contain the
Web Services information. This tutorial shows how to convert the stateless
session EJB located in the webServicesEJB directory,
com.bea.medrec.webservices.MedRecWebServices, into a WebLogic Web
Service.

Procedure

To expose the MedRecWebServices EJB as a Web Service, follow these steps:

Step 1: Create the build file that contains calls to the Web Services Ant tasks.

Step 2: Execute the Web Services Ant tasks and create the Web Service.

Step 3: Deploy the Web Service and view its home page.

Step 1: Create the build file that contains calls to the Web Services Ant tasks.

WebLogic Server provides a variety of Ant tasks that help you expose an existing
stateless session EJB as a Web Service. This tutorial shows how to use the following
Ant tasks:

autotype: Generates the serialization classes, XML Schema representation, and
type mapping information for the non-built-in Java data types that are used as
parameters and return values of the EJB methods. The serialization class
converts data between its XML and Java representations during the invoke of a
Web Service operation.

source2wsdd: Generates the web-services.xml deployment descriptor file
that describes the Web Service. The source2wsdd Ant task uses information
generated from the autotype task (such as the type mapping information) as
well as information from the EJB being exposed (such as its methods and
parameters) to generate the web-services.xml file.

For detailed information about these Ant tasks, see Web Service Ant Tasks and
Command-Line Utilities.

In this tutorial, all components will be generated directly into the ws_medrec Web
Application of the MedRec build directory.

1. Change to the medrecEar subdirectory in the MedRec project directory:
MedRec Tutorials 3

http://e-docs.bea.com/wls/docs81/webserv/anttasks.html
http://e-docs.bea.com/wls/docs81/webserv/anttasks.html

1 Building the MedRec Applications
cd c:\medrec_tutorial\src\medrecEar

2. Use your favorite text editor to create a file called my_webserv.xml file (which
will contain calls to the Ant tasks) in the medrecEar directory:

notepad my_webserv.xml

Note: If you do not want to enter the build file manually, copy the file
webservices_tutorial.xml file to the new file name,
my_webserv.xml. Then follow along to understand the file contents. The
webservices_tutorial.xml file assumes that your MedRec project
directory is c:/medrec_tutorial.

3. Add the following lines to the my_webserv.xml file (substituting, if necessary,
your actual MedRec project directory for c:/medrec_tutorial):

<project name="WebServicesTutorial" default="build.ws">

 <target name="build.ws">

 <autotype
 javaComponents="com.bea.medrec.webservices.MedRecWebServices"
 targetNamespace="http://localhost:7101/ws_medrec/MedRecWebServices"
 packageName="com.bea.medrec.webservices"
 earClasspath="c:/medrec_tutorial/build/medrecEar"
 keepGenerated="false"
 destDir="c:/medrec_tutorial/build/medrecEar/ws_medrec/WEB-INF/classes"
 />

 <source2wsdd

javaSource="webServicesEjb/com/bea/medrec/webservices/MedRecWebServices.java"
 ejbLink="webServicesEjb#MedRecWebServicesEJB"

typesInfo="c:/medrec_tutorial/build/medrecEar/ws_medrec/WEB-INF/classes/types.x
ml"

ddFile="c:/medrec_tutorial/build/medrecEar/ws_medrec/WEB-INF/web-services.xml"
 serviceURI="/MedRecWebServices"
 earClasspath="c:/medrec_tutorial/build/medrecEar"

classpath="${java.class.path};c:/medrec_tutorial/build/medrecEar/ws_medrec/WEB-
INF/classes"
 wsdlFile="c:/medrec_tutorial/dist/MedRecService.wsdl"
 />

 </target>

</project>
4 MedRec Tutorials

Tutorial 11: Exposing a Stateless Session EJB as a Web Service
Table 1: Attributes of the autotype and source2wsdd Ant Tasks

Ant Task Attribute Description

autotype javaComponents The class name of the remote interface of the
MedRecWebServices stateless session EJB. The autotype Ant
task introspects this class to find the list of non-built-in Java data
types for which it needs to create the serialization class, XML
Schema representation, and type mapping information.

targetNamespace Namespace URI of the Web Service.

packageName Package name of the generated serialization classes.

earClasspath Specifies that the EJB JAR files and classes in the APP-INF
directory of the MedRec application build directory be added to the
CLASSPATH of the autotype Ant task. This ensures that
autotype finds the compiled Java classes of the
MedRecWebServices EJB, as well as the compiled classes of
non-built-in data types, that were generated as a prerequisite to this
tutorial.

keepGenerated Specifies that only the class files, and not the Java source files, of the
generated serialization classes should be generated to the build
directory.

destDir Full pathname of the directory that will contain the generated
components. The serialization classes will be placed in a directory
structure that mirrors their package name and the XML Schema
representation and type mapping information is generated in a file
called types.xml.
In this tutorial, the components are generated directly into the
WEB-INF directory of the ws_medrec Web Application of the
MedRec enterprise application.
MedRec Tutorials 5

1 Building the MedRec Applications
source2wsdd javaSource Name of the Java source file of the MedRecWebService EJB.
In the tutorial, this is a relative path, starting with
webServicesEjb, which contains the Java source files for the
MedRecWebService EJB.

ejbLink At runtime, WebLogic Server uses this element to determine the
name of the stateless session EJB, and the EJB JAR file in which it is
contained, that is being exposed as a Web Service. In particular, this
attribute specifies the value of the <ejb-link> child element of the
<stateless-ejb> element in the generated
web-services.xml file.

typesInfo Full pathname of the types.xml file that contains the XML
Schema representation and type mapping information for the
non-built-in data types. This file was generated by the autotype
Ant task.

ddFile Full pathname of the generated web-services.xml deployment
descriptor file.
In this tutorial, the file is generated directly into the WEB-INF
directory of the ws_medrec Web Application of the MedRec
application, medrecEar.

serviceURI The Web Service URI portion of the URL used by client applications
to invoke the deployed Web Service.

earClasspath Specifies that the EJB JAR files and classes in the APP-INF
directory of the MedRec application build directory be added to the
CLASSPATH of the source2wsdd Ant task. This ensures that
source2wsdd finds all the compiled classes that were generated as
a prerequisite to this tutorial.

classpath Adds the classes in the WEB-INF/classes directory of the
ws_medrec Web Application of the build directory to the
CLASSPATH of the source2wsdd Ant task. The
ws_medrec/WEB-INF/classes directory contains the
serialization classes generated by the autotype Ant task.

wsdlFile Specifies that you also want to generate a hard copy of the WSDL
(public contract of the Web Service) into the specified directory.

Note: The generated WSDL is used in Tutorial 12: Invoking
a Web Service from a Client Application to generate
a client JAR file that contains much of the Java code

Ant Task Attribute Description
6 MedRec Tutorials
needed by Java client applications to invoke the Web
Service. This step is performed now only to set up a
later tutorial; you typically never need to create a
static copy of the WSDL file. This is because
WebLogic Server dynamically publishes the WSDL
of any deployed Web Services at a known URI.

Tutorial 11: Exposing a Stateless Session EJB as a Web Service
Step 2: Execute the Web Services Ant tasks and create the Web Service.

After you have created the my_webserv.xml file, use it to execute the autotype and
source2wsdd Ant tasks to create the Web Service components:

1. Set your environment using the MedRecDomain environment script:

c:\bea\user_projects\domains\MedRecDomain\setEnv.cmd

2. Move to the medrecEar directory:

cd c:\medrec_tutorial\src\medrecEar

3. Execute the Web Service Ant tasks by running the my_webserv.xml script using
ant:

ant -f my_webserv.xml

Although you did not add any informational messages to your build script, the
autotype and source2wsdd Ant tasks produce output to show their progress:

Buildfile: my_webserv.xml

build.ws:
 [autotype] Autotyping for javaComponents
com.bea.medrec.webservices.MedRecWebServices

[source2wsdd] Loading source file
c:\medrec_tutorial\src\medrecEar\webServicesEjb\com\bea\medrec\webservices\MedR
ecWebServices.java...

[source2wsdd] Constructing Javadoc information...

BUILD SUCCESSFUL

Total time: 17 seconds

4. Move to the MedRec build directory to see what the Ant tasks generated:

cd c:\medrec_tutorial\build\medrecEar

The generated Web Service components are in subdirectories of the ws_medrec
Web Application directory:

The web-services.xml file is in the WEB-INF directory.

The serialization classes are in the WEB-INF\classes directory, in a
sub-directory structure that corresponds to the package name.
MedRec Tutorials 7

1 Building the MedRec Applications
Step 3: Deploy the Web Service and view its home page.

In this section, deploy the entire MedRec application, which includes the
MedRecWebService Web Service, in the same way that you deployed the Physician
application in Tutorial 9: Deploying MedRec from the Development Environment.

Once the Web Service is deployed, you can view its home page where you can test its
operations, view the WSDL of the Service, and so on.

1. Start MedRecServer, if it is not already running, by executing its start script:

c:\bea\user_projects\domains\MedRecDomain\startweblogic.cmd

2. Open another command shell and set your environment:

c:\bea\user_projects\domains\MedRecDomain\setenv.cmd

3. Move to the medrecEar subdirectory if you are not already there:

cd c:\medrec_tutorial\src\medrecEar

4. Use your favorite text editor to edit the my_webserv.xml file:

notepad my_webserv.xml

5. Add a new target to the file by adding the following text directly after the
</target> tag which ends the existing build.ws target:

 <target name="deploy">
 <wldeploy user="weblogic" password="weblogic"
adminurl="t3://localhost:7101" action="deploy"
name="medrec_deployment"
source="c:\medrec_tutorial\build\medrecEar"/>
 </target>

Note: If you do not want to enter the text manually, copy the text from the file
webservices_tutorial.xml file. Then follow along to understand the
file contents. The webservices_tutorial.xml file assumes that your
MedRec project directory is c:/medrec_tutorial.

Save the file and exit your text editor.

6. In the same command shell, enter the following command to execute just the
deploy target of the build script:

ant -f my_webserv.xml deploy

You should receive the following output from the wldeploy task:

Buildfile: my_webserv.xml
8 MedRec Tutorials

Tutorial 11: Exposing a Stateless Session EJB as a Web Service
deploy:

[wldeploy] weblogic.Deployer -noexit -name medrec_deployment
-source D:\medrec_tutorial\build\medrecEar -adminurl
t3://localhost:7101 -user weblogic -password weblogic -deploy

 [wldeploy] Initiated Task: [3] [Deployer:149026]Deploy
application medrec_deployment on MedRecServer.

 [wldeploy] Task 3 completed: [Deployer:149026]Deploy
application medrec_deployment on MedRecServer.

 [wldeploy] Deployment completed on Server MedRecServer

 [wldeploy]

BUILD SUCCESSFUL

Total time: 18 seconds

If you do not receive the above output, MedRecServer may not have finished
starting up, or you may have made a typo in creating the deploy target in the
my_webserv.xml file. If this occurs, wait until the server has finished starting
up, and try to deploy using the installed tutorial file (it is assumed that the
MedRec project directory is c:\medrec_tutorial):

ant -f webservices_tutorial.xml deploy

7. To verify that the Web Service deployed, open a new browser window and enter
the URL for the Web Service’s home page:

http://localhost:7101/ws_medrec/MedRecWebServices

From the home page you can test the operations of the Web Service by clicking
on the operation name; view the WSDL by clicking on the Service Description
link; and view the SOAP request and response messages of a successful
invocation of the operations.

Best Practices

A WebLogic Web Service can be implemented with a stateless session EJB or a
Java class. Use a stateless session EJB when you want to take advantage of
standard EJB features, such as transactions, pooling, and so on. Use a Java class
if you do not need these features and you want to develop or prototype a Web
Service quickly.
MedRec Tutorials 9

1 Building the MedRec Applications
When creating a Web Service, use a stateless session EJB or Java class facade
that exposes a simple interface to your application. This facade will not
necessarily do much other than call other session EJBs, which in turn might call
entity EJBs, that do the work. Encapsulating the main application logic into one
EJB facade that you expose as a Web Service, rather than exposing all the
session EJBs of your application, makes the public interface to your application
simpler and cleaner. It also allows you to change the supporting EJBs without
having to change the public face of your application.

Think about the non-built-in XML data types that your application uses and
whether they will interoperate with all client applications that will be invoking
your Web service. For example, although the autotype Ant task can create a
serialization class and XML Schema for the java.utils.Collection Java
data type, the resulting XML Schema data type might not necessarily
interoperate with all client applications.

For this reason, consider using simpler data types (such as Arrays) in the EJB
facade that will be exposed as a Web Service, and then, inside of the EJB facade,
convert these data types into the more complex Java types (such as
java.utils.Collection) used by the session EJBs that do the actual work.

WebLogic Server provides a variety of Ant tasks to help you expose an EJB or
Java class as a Web Service. If your Web Service is fairly simple and
straightforward, use the servicegen Ant task which does everything for you,
including optionally configuring your Web Service for security, reliable SOAP
messaging, and handler chain, as well as packaging the Web Service into an
EAR file. If, however, you want more control over the various stages of
assembling the Web Service, and want to package it yourself as part of a bigger
J2EE application, then use the individual Ant tasks that are targeted for specific
jobs, such as autotype and source2wsdd. This tutorial shows how to use the
individual Ant tasks.

Every deployed WebLogic Web Service has a home page from which you can
perform preliminary and simple testing of the service’s operations, view its
WSDL, and view SOAP messages of successful invokes of the operations. Use
the home page for a first-pass testing of your Web Service; use a client
application for more rigorous testing. See Deploying and Testing WebLogic Web
Services for detailed information on the URL used to invoke the home page.
10 MedRec Tutorials

http://e-docs.bea.com/wls/docs81/webserv/assemble.html#deploy_and_test
http://e-docs.bea.com/wls/docs81/webserv/assemble.html#deploy_and_test

Tutorial 11: Exposing a Stateless Session EJB as a Web Service
The Big Picture

The com.bea.medrec.webservices.MedRecWebServices stateless session EJB of
the MedRec application contains methods to view and update patient and record
information, such as addRecord(), updatePatient() and so on. These methods do
not actually perform any of the business logic; rather, they call the existing session
EJBs (such as com.bea.medrec.controller.PatientSession and
com.bea.medrec.controller.RecordSession) to do the real work of viewing and
searching for the patient and record information. You can think of the
MedRecWebServices EJB as a facade that takes incoming requests to the MedRec
application and hands them off to the other session and entity EJBs that do the actual
work.

For this reason, the MedRecWebServices EJB is a good candidate to be exposed as a
Web Service so that all kinds of different client applications, from EJBs running on a
different WebLogic Server instance to a .NET client, can easily get to and update the
patient and record information managed by the MedRec application. The client
applications use SOAP to invoke a Web Service operation, and WebLogic Server in
turn uses SOAP to send the information back to the client.

The methods of the MedRecWebServices EJB use the following complex non-built-in
data types as parameters and return values:

AddressWS

PatientWS

PrescriptionWS

RecordWS

RecordSummaryWS

VitalSignsWS

These data types are almost exactly the same as the com.bea.medrec.value.* value
objects used by the other session and entity EJBs of the MedRec application. The only
difference is that the Web Service-specific ones do not use Java types such as
java.util.List and java.util.Collection to represent collections of data, but
use arrays. The reason for this is that arrays are much more interoperable and
type-bound than List and Collection. The autotype Ant task creates the
serialization class to convert between the Web Service data types and their equivalent
MedRec Tutorials 11

1 Building the MedRec Applications
XML Schema type, and then the MedRecWebServices EJB converts the data between
the Web Service Java data type (such as AddressWS) and its equivalent Value object
(such as Address).

Related Reading

Programming WebLogic Web Services

Programming WebLogic XML

Programming WebLogic Enterprise Java Beans

Simple Object Access Protocol (SOAP) 1.1 Specification

Web Services Description Language (WSDL) 1.1 Specification
12 MedRec Tutorials

http://e-docs.bea.com/wls/docs81/webserv/index.html
http://e-docs.bea.com/wls/docs81/xml/index.html
http://e-docs.bea.com/wls/docs81/ejb/index.html
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl

Tutorial 12: Invoking a Web Service from a Client Application
1 Building the MedRec
Applications

Tutorial 12: Invoking a Web Service from a
Client Application

This tutorial describes how to invoke the MedRecWebServices WebLogic Web
Service you created in Tutorial 11: Exposing a Stateless Session EJB as a Web Service
from the following types of client applications:

Stateless session EJB deployed to WebLogic Server

Stand-alone Java Swing client application

.NET client

Stateless session EJBs and stand-alone Java clients use the Web Service-specific client
JAR file, generated by the clientgen Ant task, that contains most of the Java code
you need to invoke a Web Service. The .NET client is written in C# and is provided to
show that you can invoke a WebLogic Web Service from non-Java clients as well.

Note: You can use the clientgen Ant task to generate the JAX-RPC stubs for Web
Services deployed on both WebLogic Server and other application servers.

The tutorial includes the following sections:

Prerequisites

Procedures
MedRec Tutorials 1

1 Building the MedRec Applications
Best Practices

The Big Picture

Related Reading

Prerequisites

It is assumed that you already know how to create a session EJB, a stand-alone Java
Swing client application, and a .NET client application, and you want to learn how to
update them to invoke a Web Service.

Before starting this tutorial, complete tutorials 5 through 11 to create the project
directory and perform the intermediate build steps for the Physician and Medrec
Applications. If you skipped any of the tutorials 5 through 11, you can catch up by
following these steps:

1. Set your environment:

c:\bea\user_projects\domains\MedRecDomain\setenv.cmd

2. Move to the c:\medrec_tutorial\src\physicianEar subdirectory and
execute the ant command:

cd c:\medrec_tutorial\src\physicianEar
ant -f wlcompile_tutorial.xml
ant -f wldeploy_tutorial.xml

3. Move to the c:\medrec_tutorial\src\medrecEar subdirectory and execute
the ant command:

cd c:\medrec_tutorial\src\medrecEar
ant prepare build.split.dir
ant -f webservices_tutorial.xml
ant -f webservices_tutorial.xml deploy

Note: In the XXX_tutorial.xml files, it is assumed that your MedRec project
directory is c:\medrec_tutorial. If your project directory is different,
you must update the files to ensure that they work correctly.
2 MedRec Tutorials

Tutorial 12: Invoking a Web Service from a Client Application
Procedures

The following procedures show the steps and code excerpts needed to invoke a Web
Service from different types of client applications.

Procedure 1: Invoke a Web Service from an EJB deployed on WebLogic Server.

Procedure 2: Invoke a Web Service from a stand-alone Java Swing client
application.

Procedure 3: Invoke a Web Service from a .NET client.

Procedure 1: Invoke a Web Service from an EJB deployed on WebLogic Server.

This procedure describes how to invoke a Web Service from the
PhysicianSessionEJB of the Physician application. The procedure shows you how
to run the clientgen Ant task to generate most of the needed Java code into a client
JAR file, then walks you through the code in the PhysicianSessionEJB used to
invoke the Web Service.

1. Change to the physicianEar subdirectory of the MedRec project directory:

cd c:\medrec_tutorial\src\physicianEar

2. Use your favorite text editor to create a file called my_webserv_client.xml
file:

notepad my_webserv_client.xml

3. Add the following lines to the my_webserv_client.xml file (substituting, if
necessary, your actual MedRec project directory for c:/medrec_tutorial).

Note: If you do not want to create the build file manually, copy the contents of
the ws_ejb_client_tutorial.xml file to the new file,
my_webserv_client.xml. Then follow along to understand the file
contents. In the ws_ejb_client_tutorial.xml file, it is assumed that
your MedRec project directory is c:/medrec_tutorial.

<project name="EJB Web Service Invoke" default="build.ws.client">

 <target name="build.ws.client">
 <clientgen
 wsdl="http://localhost:7101/ws_medrec/MedRecWebServices?WSDL"
 packageName="com.bea.medrec.webservices"
 keepGenerated="false"
MedRec Tutorials 3

1 Building the MedRec Applications

clientjar="c:/medrec_tutorial/build/physicianEar/APP-INF/lib/webServicesEjb_cli
ent.jar" />

 </target>

</project>

The Ant build file calls the clientgen Web Services Ant task which generates a
client JAR file that contains most of the Java code (in particular, the JAX-RPC
stubs) you need to invoke a Web Service. The wsdl attribute specifies that the
clientgen Ant task should use the WSDL of the WebLogic Web Service you
deployed in Tutorial 11: Exposing a Stateless Session EJB as a Web Service
when generating the client JAR file. The JAR file, called
webServicesEjb_client.jar, is created in the APP-INF/lib build directory
of the Physician application, physicianEar.

Note: In the preceding Ant build file, it is assumed that the MedRecWebServices
WebLogic Web Service is deployed and its WSDL is accessible. If you
have not yet deployed the Web Service, you can point the wsdl attribute to
a static WSDL file, distributed as part of the MedRec tutorial JAR file. The
static file is distributed as a convenience; typically you point clientgen
to a dynamically generated WSDL to create the client JAR file. To use the
static WSDL file, update the my_webserv_client.xml as shown in bold:

<project name="EJB Web Service Invoke" default="build.ws.client">

 <target name="build.ws.client">
 <clientgen
 wsdl="c:/medrec_tutorial/dist/MedRecService.wsdl"
 packageName="com.bea.medrec.webservices"
 keepGenerated="false"

clientjar="c:/medrec_tutorial/build/physicianEar/APP-INF/lib/webServicesEjb_cli
ent.jar" />

 </target>

</project>

4. Ensure you have set your environment using the MedRecDomain environment
script:

c:\bea\user_projects\domains\MedRecDomain\setEnv.cmd

5. Execute the clientgen Ant task by running the my_webserv_client.xml
script:
4 MedRec Tutorials

Tutorial 12: Invoking a Web Service from a Client Application
ant -f my_webserv_client.xml

The clientgen Ant task shows the following output:

Buildfile: my_webserv_client.xml

build.ws.client:

[clientgen] Generating client jar for
http://localhost:7101/ws_medrec/MedRecWebServices?WSDL ...

BUILD SUCCESSFUL

Total time: 15 seconds

The clientgen Ant task automatically generates the client JAR file into the
APP-INF/lib directory of the physicianEar build directory, which means that
the JAR file is automatically added to the EJB’s CLASSPATH when the EJB is
deployed in development mode to WebLogic Server.

When you package the Physician application for production, package the Web
Services client JAR file the same as any other supporting JAR files inside of the
EJB JAR file.

6. Update the PhysicianSessionEJB to invoke the Web Service.

Note: This part of the tutorial simply walks you through the EJB code you would
write; the PhysicianSessionEJB.ejb code in the MedRec tutorial JAR
file already contains the code needed to invoke the MedRecWebServices
Web Service.

a. Change to the directory that contains the PhysicianSessionEJB Java code:

cd c:\medrec_tutorial\src\physicianEar\physSessionEjbs\com\bea\medrec\controller

b. Open the PhysicianSessionEJB.ejb file in your favorite editor:

notepad PhysicianSessionEJB.ejb

c. Search for the private method getMedRecWebServicesPort(). This method
contains the Java code that creates a JAX-RPC stub of the Web Service:

wsdl_url = System.getProperty("phys.app.wsdl.url");
logger.debug("Wsdl url: "+wsdl_url);
MedRecWebServices service = new
 MedRecWebServices_Impl(wsdl_url);
port = service.getMedRecWebServicesPort();

The URL of the WSDL of the deployed MedRecWebServices is passed to
the EJB using the phys.app.wsdl.url system property that was set in the
MedRec Tutorials 5

1 Building the MedRec Applications
MedRecServer startup script in the first tutorial, Tutorial 1: Creating a
WebLogic Domain and Server Instance for Development. The value of the
system property is the WSDL of the Web Service:

http://localhost:7101/ws_medrec/MedRecWebServices?WSDL

d. The public methods of PhysicianSessionEJB use this JAX-RPC stub to
invoke Web Service operations.

For example, search for the public method addRecord(). It contains the
following Java code that invokes the addRecord operation of the
MedRecWebServices Web Service:

RecordWS recordWS = PhysicianClientUtils.toRecordWS(pRecord);
port.addRecord(recordWS);

The PhysicianClientUtils.toRecordWS() method is a utility that
converts the standard Record Value object to a Web Service-specific
RecordWS data type, to ensure interoperability. For details, see The Big
Picture.

7. Compile and run PhysicianSessionEJB as usual.

For information about compiling, see Tutorial 7: Compiling Applications Using
the Split Development Directory.

Procedure 2: Invoke a Web Service from a stand-alone Java Swing client
application.

This procedure shows how to invoke a Web Service from a stand-alone Java Swing
client application. The procedure first describes how to run the clientgen Ant task to
generate most of the needed Java code into a client JAR file and then walks you
through the client code you need to write. It is assumed that you know how to write,
compile, and run a Java Swing client application.

A stand-alone client application must update its CLASSPATH to include the client
JAR file generated by the clientgen Ant task, as well as the runtime Web Services
JAR file WL_HOME\server\lib\webserviceclient.jar, where WL_HOME refers to
the top-level directory of WebLogic Platform.

1. Change to the clients subdirectory of the MedRec project directory:

cd c:\medrec_tutorial\src\clients
6 MedRec Tutorials

Tutorial 12: Invoking a Web Service from a Client Application
2. Use your favorite text editor to create a file called my_webserv_client.xml
file:

notepad my_webserv_client.xml

3. Add the following lines to the my_webserv_client.xml file (substituting, if
necessary, your actual MedRec project directory for c:/medrec_tutorial).

Note: If you do not want to create the build file manually, copy the contents of
the file ws_standalone_client_tutorial.xml file to the new file,
my_webserv_client.xml. Then follow along to understand the file
contents. It is assumed that your MedRec project directory is
c:/medrec_tutorial.

<project name="Standalone Web Service Invoke" default="build.ws.client" >

 <target name="build.ws.client">
 <clientgen
 wsdl="http://localhost:7101/ws_medrec/MedRecWebServices?WSDL"
 packageName="com.bea.medrec.webservices"
 keepGenerated="false"
 clientjar="c:/medrec_tutorial/build/clients/webServicesEjb_client.jar" />
 </target>

</project>

The Ant build file calls the clientgen Web Services Ant task which generates a
client JAR file that contains most of the Java code (in particular, the JAX-RPC
stubs) you need to invoke a Web Service. The wsdl attribute specifies that the
clientgen Ant task should use the WSDL of the WebLogic Web Service you
deployed in Tutorial 11: Exposing a Stateless Session EJB as a Web Service
when generating the client JAR file. The JAR file, called
webServicesEjb_client.jar, is created in the clients build directory.

Note: In the preceding Ant build file, it is assumed that the MedRecWebServices
WebLogic Web Service is deployed and its WSDL is accessible. If you
have not yet deployed the Web Service, you can point the wsdl attribute to
a static WSDL file, distributed as part of the MedRec tutorial JAR file. The
static file is distributed as a convenience; typically you point clientgen
to a dynamically generated WSDL to create the client JAR file. To use the
static WSDL file, update the my_webserv_client.xml as shown in bold:

<project name="Standalone Web Service Invoke" default="build.ws.client" >

 <target name="build.ws.client">
 <clientgen
 wsdl="c:/medrec_tutorial/dist/MedRecService.wsdl"
MedRec Tutorials 7

1 Building the MedRec Applications
 packageName="com.bea.medrec.webservices"
 keepGenerated="false"
 clientjar="c:/medrec_tutorial/build/clients/webServicesEjb_client.jar" />
 </target>

</project>

4. Ensure you have set your environment using the MedRecDomain environment
script:

c:\bea\user_projects\domains\MedRecDomain\setEnv.cmd

5. Execute the clientgen Ant task by running the my_webserv_client.xml
script:

ant -f my_webserv_client.xml

The clientgen Ant task shows the following output:

Buildfile: my_webserv_client.xml

build.ws.client:

[clientgen] Generating client jar for
http://localhost:7101/ws_medrec/MedRecWebServices?WSDL ...

BUILD SUCCESSFUL

Total time: 14 seconds

6. Update the stand-alone Java Swing client application to invoke the Web Service.

Note: This part of the tutorial simply walks you through the Java code you would
write; the Java Swing client application of the MedRec tutorial JAR file
already contains the code needed to invoke the MedRecWebServices Web
Service.

a. Change to the directory that contains the Java Swing client application code:

cd c:\medrec_tutorial\src\clients\com\bea\medrec\webservices\swing

b. Open the EditProfileFrame.java file in your favorite editor:

notepad EditProfileFrame.java

c. Search for the method submitButton_actionPerformed(ActionEvent e)
which returns patient information, based on the patient’s social security
number, when a user of the application clicks Submit. This method contains the
following Java code:
8 MedRec Tutorials

Tutorial 12: Invoking a Web Service from a Client Application
MedRecWebServices ws = new
 MedRecWebServices_Impl(this.WSDLTextField.getText());
MedRecWebServicesPort port = ws.getMedRecWebServicesPort();

PatientWS patientWS =
 (PatientWS)port.findPatientBySsn(this.patientIDTextField.getText());

The preceding code shows how to create a JAX-RPC stub of the
MedRecWebServices Web Service from the WSDL in the WSDLTextField
of the application, and then invoke the findPatientBySsn Web Service
operation.

d. Search for the method saveButton_actionPerformed(ActionEvent e),
which saves updated patient information to the MedRec application by
invoking the updatePatient Web Service operation:

 PatientWS patientWS = Utils.toPatientWS(patient);
 port.updatePatient(patientWS);

The Utils.toPatientWS() method is a utility that converts the standard
Patient Value object to a Web Service-specific PatientWS data type, to
ensure interoperability. For details, see The Big Picture.

7. Change to the main source directory for the client applications:

cd c:\medrec_tutorial\src\clients

8. Compile the Java Swing application using ant with the existing build.xml file:

ant -f build.xml compile.client

9. Run the application:

ant -f build.xml run

10. In the application, enter a SSN number of 123456789 and click Submit; if the
MedRec application is deployed and running correctly, you will see information
returned about a patient. The command window from which you ran the
application shows the SOAP request and response messages resulting from the
Web Service operation invokes.

When you run the stand-alone client application, make sure its CLASSPATH
includes the client JAR file generated by the clientgen Ant task, as well as the
runtime Web Services JAR file
WL_HOME/server/lib/webserviceclient.jar, where WL_HOME refers to the
top-level directory of WebLogic Platform.
MedRec Tutorials 9

1 Building the MedRec Applications
Procedure 3: Invoke a Web Service from a .NET client.

You can also invoke the MedRecWebServices WebLogic Web Service from a .NET
client application written in C#.

You must install the .NET Framework on your computer before you can create and run
the .NET client. For details, see
http://msdn.microsoft.com/netframework/downloads/howtoget.asp.

The sample .NET client that invokes the MedRecWebServices WebLogic Web
service is in the following directory:

c:\medrec_tutorial\src\clients\CSharpClient

To run the client, execute the following file:

c:\medrec_tutorial\src\clients\CSharpClient\bin\Release\CSharpClient.exe

Best Practices

When writing a Java client application to invoke a Web Service (either
WebLogic or non-WebLogic), use the clientgen Ant task to generate the client
JAR file that contains the JAX-RPC stubs for your Web Service. This client JAR
file contains almost all the Java code you need to invoke a Web Service. Be sure
to update the CLASSPATH of the client application with this JAR file.

Stand-alone Java client applications also need to include the runtime client JAR
file WL_HOME\server\lib\webserviceclient.jar in their CLASSPATH,
where WL_HOME refers to the top-level directory of WebLogic Platform. This
runtime JAR file contains the runtime implementation of JAX-RPC.

Use the wsdl attribute of clientgen to generate the client JAR file from the
WSDL, or public contract, of a Web Service.
10 MedRec Tutorials

http://msdn.microsoft.com/netframework/downloads/howtoget.asp

Tutorial 12: Invoking a Web Service from a Client Application
The Big Picture

Client applications that invoke Web Services can be written using any technology:
Java, Microsoft SOAP Toolkit, Microsoft .NET, and so on. Java client applications use
the Java API for XML-Based RPC (JAX-RPC), a Sun Microsystems specification that
defines the Java client API for invoking a Web Service. A Java client application can
be an EJB deployed on WebLogic Server, or a stand-alone Java client.

In Tutorial 11: Exposing a Stateless Session EJB as a Web Service, you learned how
to create and deploy the MedRecWebServices Web Service (part of the main MedRec
application), which contains operations to find and update patient information, such as
updatePatient and findPatientBySsn. The public contract of the Web Service is
published via its WSDL, which lists its operations, the URL endpoints, and so on.

The Physician application, in a real-life situation, would be deployed on a separate
WebLogic Server instance from the main MedRec application. The
PhysicianSessionEJB, therefore, needs a way to communicate with the MedRec
application over the Internet; using the operations of the MedRecWebServices Web
Service is the ideal way to do this. The client JAR file generated by the clientgen
Ant task contains the JAX-RPC stubs needed to invoke the Web Service operations—
the amount of code you need to actually write in the EJB is very small.

The stand-alone Java client works almost the same as the EJB, except that the
stand-alone client also needs the Web Services runtime client JAR file in its
CLASSPATH; the EJB uses the runtime files contained in WebLogic Server.

Related Reading

Programming WebLogic Web Services

Programming WebLogic XML

Programming WebLogic Enterprise Java Beans

Java API for XML-Based RPC (JAX-RPC) 1.0 Specification

Simple Object Access Protocol (SOAP) 1.1 Specification

Web Services Description Language (WSDL) 1.1 Specification

Java Swing
MedRec Tutorials 11

http://e-docs.bea.com/wls/docs81/webserv/index.html
http://e-docs.bea.com/wls/docs81/xml/index.html
http://e-docs.bea.com/wls/docs81/ejb/index.html
http://java.sun.com/xml/jaxrpc/index.html
http://www.w3.org/TR/SOAP/
http://www.w3.org/TR/wsdl
http://java.sun.com/products/jfc/tsc/index.html

1 Building the MedRec Applications
12 MedRec Tutorials

Tutorial 13: Compiling the Entire MedRec Project
1 Building the MedRec
Applications

Tutorial 13: Compiling the Entire MedRec
Project

Previous tutorials explained how to compile, build, and deploy parts of individual
MedRec applications. In this tutorial, you compile and build the entire MedRec
application suite using the project-level build.xml file. Compiling the entire
application suite is necessary to deploy all components on your system and verify that
MedRec is running and usable.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading
MedRec Development Tutorials 1

1 Building the MedRec Applications
Prerequisites

Before starting this tutorial, create the project directory using the instructions in
Tutorial 5: Creating the MedRec Project Directory.

Procedure

The project directory contains a master build.xml script that compiles all of the
MedRec applications in the correct order. To run this script:

1. Open a command shell and set the development environment:

c:\bea\user_projects\domains\medrecdomain\setenv.cmd

2. Move to the src subdirectory of the MedRec project directory:

cd c:\medrec_tutorial\src

3. Use the Ant command to execute the master build.xml script with the
deploy.dev target:

ant deploy.dev

The build process displays messages indicating the progress for each application.
The entire build process take approximately 2 to 5 minutes to complete,
depending on the speed of your computer. The script should complete with the
message, “BUILD SUCCESSFUL.”

Best Practices

Not all projects require a master build script. If you are creating only a single
Enterprise Application or a single component of an Enterprise Application, a
single build.xml file using the WebLogic ant tasks will suffice.

If your project requires multiple Enterprise Applications to be compiled in a
particular sequence (because of shared utility classes or Web Services
dependencies), use a master build.xml file at the source level to iterate through
each application’s build.xml files.
2 MedRec Development Tutorials

Tutorial 13: Compiling the Entire MedRec Project
The Big Picture

The MedRec application suite has many dependencies that require coordination during
the build process. When you run the master build file, the following events occur:

1. The contents of startupEar are compiled using the wlcompile task.

2. The contents of common are compiled. The common directory contains the source
for several kinds of objects used by different MedRec applications:

Utility classes—constants used throughout the application suite, exceptions,
factories, and the ServiceLocator class. Servlets in the Web Tier of the
MedRec application suite use ServiceLocator to lookup generic services
such as Enterprise JavaBeans.

Value objects—classes that represent data passed between tiers of the
MedRec suite.

Action classes—classes used by the struts framework to control page flow in
the Web tier of the MedRec suite.

JavaBeans—component beans used in the Web tier.

3. The medrecEar Enterprise Application is compiled. Although medrecEar uses
the split development directory structure and the WebLogic Ant tasks in the build
script, the application has several internal dependencies that are hard-coded in its
build.xml script, using the include and exclude options to wlcompile.

4. The physicianEar application is compiled. The physicianEar Web Service
client is generated from the .wsdl file copied into the dist directory.

5. The MedRec application suite client applications are compiled.

Related Reading

Developing WebLogic Server Applications
MedRec Development Tutorials 3

http://e-docs.bea.com/wls/docs81/programming/index.html

1 Building the MedRec Applications
4 MedRec Development Tutorials

Tutorial 14: Packaging MedRec for Distribution
Moving to Production Mode

Tutorial 14: Packaging MedRec for
Distribution

In previous tutorials you configured, compiled, and deployed MedRec in a
split-directory development environment. This tutorial describes how to use an Ant
script to package the compiled Physician application into a single portable EAR that
you can hand off to a production team.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites

Before starting this tutorial:

Complete tutorials 5 through 9 to create the project directory and perform the
intermediate build steps for the Physician Application. If you skipped any of
tutorials 6 through 9, you can catch up by setting your environment:

c:\bea\user_projects\domains\medrecdomain\setenv.cmd
MedRec Development Tutorials 1

and then moving to the c:\medrec_tutorial\src\physicianEar
subdirectory and executing the ant command:

ant -f build.xml

Complete Tutorial 13: Compiling the Entire MedRec Project.

Procedure

Step 1: Package the Physician application as an EAR.

Step 2: Test the package.

Step 1: Package the Physician application as an EAR.

The following procedures create and run a script that packages the contents of the
Physician application from the directories used in the split-directory development
environment—src and build—into a single deployable, distributable EAR file in a
distribution directory, dist.

1. Open a command shell and set your environment:

c:\bea\user_projects\domains\medrecdomain\setenv.cmd

2. Move to the src\physicianEar subdirectory of the MedRec project directory:

cd c:\medrec_tutorial\src\physicianEar

3. Use a text editor to create a new file called package.xml:

notepad package.xml

Note: If you do not want to create the package.xml file manually in this tutorial,
copy the file named wlpackage_tutorial.xml to the new name,
package.xml, and skip to step 9.

4. In the package.xml file, define a project named tutorial and supply a default
target name:

<project name="tutorial" default="package">

5. Define an Ant target name that you will specify when you run the script:

<target name="package">
2 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/medrec_tutorials/compile.html

Tutorial 14: Packaging MedRec for Distribution
6. Provide the argument of the Ant target, which calls the wlpackage Ant task and
combines the contents of the src and build physicianEAR directories into a
single directory in dist.

<wlpackage srcdir="c:/medrec_tutorial/src/physicianEar"
destdir="c:/medrec_tutorial/build/physicianEar"

toFile="c:/medrec_tutorial/dist/wlpackage_tutorial.ear" />

</target>

See Split Development Directory Ant Tasks for more information about the
wlpackage task.

7. Complete the package.xml file by closing the project element:

</project>

8. Your file contents should now resemble the following:

<project name="tutorial" default="package">

<target name="package">

<wlpackage srcdir="c:/medrec_tutorial/src/physicianEar"
destdir="c:/medrec_tutorial/build/physicianEar"

toFile="c:/medrec_tutorial/dist/wlpackage_tutorial.ear" />

</target>

</project>

Save the file and exit your text editor.

9. In the same command shell, enter the command to execute the build script:

ant -f package.xml

You should receive the following output from the package task:

Buildfile: package.xml

package:

[jar] Building jar:
C:\medrec_tutorial\dist\wlpackage_tutorial.ear

BUILD SUCCESSFUL

Total time: 4 seconds

If you do not receive the above output, MedRecServer may not have finished
starting up, or you may have made a typo in creating the package.xml file. If
MedRec Development Tutorials 3

http://e-docs.bea.com/wls/docs81/programming/environment.html#Packaging

this occurs, wait until the server has finished starting up, and try to package
using the installed tutorial file:

ant -f wlpackage_tutoria1.xml

10. To verify that wlpackage_tutorial.ear has been created, change to
C:\medrec_tutorial\dist:

cd C:\medrec_tutorial\dist

and then run ls or dir.

dir wlpackage_tutorial.ear

11. Verify the contents of wlpackage_tutorial.ear using the jar command:

C:\medrec_tutorial\dist>jar tf wlpackage_tutorial.ear

You should see the following list of files and subdirectories:

META-INF/

META-INF/MANIFEST.MF

APP-INF/

APP-INF/classes/

APP-INF/lib/

physicianWebApp/

physicianWebApp/WEB-INF/

physicianWebApp/WEB-INF/classes/

physicianWebApp/WEB-INF/classes/com/

physicianWebApp/WEB-INF/classes/com/bea/

physicianWebApp/WEB-INF/classes/com/bea/medrec/

physicianWebApp/WEB-INF/classes/com/bea/medrec/utils/

physicianWebApp/WEB-INF/src/

physicianWebApp/WEB-INF/src/com/

physicianWebApp/WEB-INF/src/com/bea/

physicianWebApp/WEB-INF/src/com/bea/medrec/

physicianWebApp/WEB-INF/src/com/bea/medrec/actions/

physicianWebApp/WEB-INF/src/com/bea/medrec/utils/

physSessionEjbs/
4 MedRec Development Tutorials

Tutorial 14: Packaging MedRec for Distribution
physSessionEjbs/com/

physSessionEjbs/com/bea/

physSessionEjbs/com/bea/medrec/

physSessionEjbs/com/bea/medrec/controller/

META-INF/application.xml

physicianWebApp/Confirmation.jsp

physicianWebApp/CreateRx.jsp

physicianWebApp/CreateVisit.jsp

physicianWebApp/Error.jsp

physicianWebApp/Login.jsp

physicianWebApp/PatientHeader.jsp

physicianWebApp/PhysicianHeader.jsp

physicianWebApp/Search.jsp

physicianWebApp/SearchResults.jsp

physicianWebApp/stylesheet.css

physicianWebApp/ViewProfile.jsp

physicianWebApp/ViewRecord.jsp

physicianWebApp/ViewRecords.jsp

physicianWebApp/WEB-INF/app.tld

physicianWebApp/WEB-INF/classes/com/bea/medrec/utils/Applicatio
nResources.properties

physicianWebApp/WEB-INF/classes/com/bea/medrec/utils/Applicatio
nResources_ja.properties

physicianWebApp/WEB-INF/struts-bean.tld

physicianWebApp/WEB-INF/struts-config.xml

physicianWebApp/WEB-INF/struts-html.tld

physicianWebApp/WEB-INF/struts-logic.tld

physicianWebApp/WEB-INF/struts-nested.tld

physicianWebApp/WEB-INF/struts-template.tld

physicianWebApp/WEB-INF/web.xml

physicianWebApp/WEB-INF/weblogic.xml
MedRec Development Tutorials 5

physSessionEjbs/com/bea/medrec/controller/PhysicianSessionEJB.e
jb

webservices_tutorial.xml

wlcompile_tutorial.xml

package.xml

physicianWebApp/WEB-INF/lib/

physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/

physicianWebApp/WEB-INF/classes/jsp_servlet/

physSessionEjbs/META-INF/

APP-INF/lib/exceptions.jar

APP-INF/lib/log4j-1.2.4.jar

APP-INF/lib/utils.jar

APP-INF/lib/value.jar

APP-INF/lib/webServicesEjb_client.jar

physicianWebApp/WEB-INF/lib/commons-beanutils.jar

physicianWebApp/WEB-INF/lib/commons-collections.jar

physicianWebApp/WEB-INF/lib/commons-dbcp.jar

physicianWebApp/WEB-INF/lib/commons-digester.jar

physicianWebApp/WEB-INF/lib/commons-logging.jar

physicianWebApp/WEB-INF/lib/commons-pool.jar

physicianWebApp/WEB-INF/lib/commons-services.jar

physicianWebApp/WEB-INF/lib/commons-validator.jar

physicianWebApp/WEB-INF/lib/commonWeb.jar

physicianWebApp/WEB-INF/lib/log4j-1.2.4.jar

physicianWebApp/WEB-INF/lib/struts.jar

physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/CreateRx
Action.class

physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/PhysBase
LookupDispatchAction.class

physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/CreateVi
sitAction.class

physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/PhysBase
Action.class
6 MedRec Development Tutorials

Tutorial 14: Packaging MedRec for Distribution
physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/PhysLog4
jInit.class

physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/PhysLogi
nAction.class

physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/PhysLogo
utAction.class

physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/PhysView
ProfileAction.class

physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/PhysView
RecordAction.class

physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/PhysView
RecordsSummaryAction.class

physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/SearchAc
tion.class

physicianWebApp/WEB-INF/classes/com/bea/medrec/actions/SearchRe
sultsAction.class

physicianWebApp/WEB-INF/classes/com/bea/medrec/utils/PhysConsta
nts.class

physicianWebApp/WEB-INF/classes/jsp_servlet/__physicianheader.c
lass

physicianWebApp/WEB-INF/classes/jsp_servlet/__confirmation.clas
s

physicianWebApp/WEB-INF/classes/jsp_servlet/__createrx.class

physicianWebApp/WEB-INF/classes/jsp_servlet/__createvisit.class

physicianWebApp/WEB-INF/classes/jsp_servlet/__error.class

physicianWebApp/WEB-INF/classes/jsp_servlet/__login.class

physicianWebApp/WEB-INF/classes/jsp_servlet/__patientheader.cla
ss

physicianWebApp/WEB-INF/classes/jsp_servlet/__search.class

physicianWebApp/WEB-INF/classes/jsp_servlet/__searchresults.cla
ss

physicianWebApp/WEB-INF/classes/jsp_servlet/__viewprofile.class

physicianWebApp/WEB-INF/classes/jsp_servlet/__viewrecord.class

physicianWebApp/WEB-INF/classes/jsp_servlet/__viewrecords.class
MedRec Development Tutorials 7

physSessionEjbs/com/bea/medrec/controller/PhysicianSessionEJB.c
lass

physSessionEjbs/com/bea/medrec/controller/PhysicianSessionHome.
class

physSessionEjbs/com/bea/medrec/controller/PhysicianSession.clas
s

physSessionEjbs/com/bea/medrec/controller/PhysicianClientUtils.
class

physSessionEjbs/com/bea/medrec/controller/PhysicianSessionEJB_n
7enxc_Intf.class

physSessionEjbs/com/bea/medrec/controller/PhysicianSessionEJB_n
7enxc_Impl.class

physSessionEjbs/com/bea/medrec/controller/PhysicianSessionEJB_n
7enxc_EOImpl.class

physSessionEjbs/com/bea/medrec/controller/PhysicianSessionEJB_n
7enxc_HomeImpl.class

physSessionEjbs/com/bea/medrec/controller/PhysicianSessionEJB_n
7enxc_HomeImplRTD.xml

physSessionEjbs/com/bea/medrec/controller/PhysicianSessionEJB_n
7enxc_EOImplRTD.xml

physSessionEjbs/ejbgen-build.xml

physSessionEjbs/META-INF/weblogic-ejb-jar.xml

physSessionEjbs/META-INF/ejb-jar.xml

physSessionEjbs/_WL_GENERATED

The EAR file you have created contains the Physician application bundled into a
deployable archive.

Step 2: Test the package.

To confirm that the archive is deployable, use the Administration Console Deployment
Assistant to deploy it to MedRecServer.

1. With MedRecServer running, access the Administration Console at
http://localhost:7101/console.

2. In the left-hand pane, expand Deployments and select Applications.

3. In the right-hand pane, select Deploy a new Application.
8 MedRec Development Tutorials

Tutorial 14: Packaging MedRec for Distribution
4. Use the Location links to select C:\medrec_tutorial\dist.

5. Select wlpackage_tutorial.ear and click Continue.

6. In the Deploy an Application page, verify that MedRecServer is the targeted
server and click Deploy.

7. The Deploy panel shows the status of the deployment. It refreshes to update the
status, and on completion shows the success or failure of the deployment.

Best Practices

For actual deployment for production, package your application in exploded,
unarchived format. Doing so allows you to access and update files, for example
deployment descriptor files, without having to unarchive and then rearchive the entire
application. See Tutorial 14: Deploying the MedRec Package for Production for
instructions on deploying MedRec in exploded format.

The Big Picture

In this tutorial, you packaged the Physician application into a single portable EAR file
suitable for handing off to a production team. The split directory structure for
development presents no obstacle to switching to a manageable single directory
structure for production.

Related Reading

Enterprise Application Deployment Descriptor Elements in Developing
WebLogic Server Applications

Overview of WebLogic Server Deployment in Deploying WebLogic Server
Applications
MedRec Development Tutorials 9

http://e-docs.bea.com/wls/docs81/medrec_tutorials/deploy_prod.html
http://e-docs.bea.com/wls/docs81/programming/app_xml.html
http://e-docs.bea.com/wls/docs81/deployment/overview.html

10 MedRec Development Tutorials

Tutorial 15: Deploying the MedRec Package for Production
1 Moving to Production
Mode

Tutorial 15: Deploying the MedRec Package
for Production

This tutorial describes how to use the Administration Console to deploy the MedRec
application to a server for production. In this example the application files are
packaged in exploded format in directories, rather than as EAR files. The advantage of
the exploded format for production is that deployment descriptor files in an exploded
directory can be updated without having to be unarchived and then rearchived
following the update.

For instructions on packaging the MedRec application into a single archived EAR file,
in contrast to the exploded format used in this tutorial, see Tutorial 14: Packaging
MedRec for Distribution. The advantage of packaging into an EAR file is that the
application is more portable when bundled into a single file, and can more easily be
moved or distributed.

The procedures below deploy the exploded contents of the medrecEar, startupEar,
and physicianEar subdirectories of the dist directory, created in Tutorial 13:
Compiling the Entire MedRec Project.

medrecEar is MedRec’s main enterprise application, containing its patient and
administrative Web Applications, the Web service used by the physician Web
application, and the EJBs that store and run MedRec’s logic and data.
MedRec Development Tutorials 1

http://e-docs.bea.com/wls/docs81/medrec_tutorials/packaging.html
http://e-docs.bea.com/wls/docs81/medrec_tutorials/packaging.html

1 Moving to Production Mode
physicianEar is a separate component of the MedRec application, with a
different set of users, which communicates with medrecEar using a Web
Service.

startupEar contains a single class file that starts the browser when the servlets
in the Web Applications are initialized.

For more information about the components of the MedRec application, see Overview
of the Avitek Medical Records Development Tutorials.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

Related Reading

Prerequisites

Before starting this tutorial:

Create the MedRec domain and the MedRec server. See Tutorial 1: Creating a
WebLogic Domain and Server Instance for Development.

Work through Tutorial 2: Starting the PointBase Development Database.

Work through Tutorial 3: Setting Up WebLogic Server Resources for the
MedRec Server.

Create the MedRec project directory. See Tutorial 5: Creating the MedRec
Project Directory.

Familiarize yourself with how MedRec’s split directory structure works, in
Tutorial 7: Compiling Applications Using the Split Development Directory.

Most importantly, work through Tutorial 13: Compiling the Entire MedRec
Project, because the directories that contain the MedRec application in exploded
format are created in its steps.
2 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/medrec_tutorials/overview.html
http://e-docs.bea.com/wls/docs81/medrec_tutorials/overview.html

Tutorial 15: Deploying the MedRec Package for Production
Procedure

1. Start the MedRec server, if it is not already running.

From the Windows start menu:
Start->Programs->BEA WebLogic Platform 8.1->User
Projects->MedRecDomain->Start Server

From the command line:

C:\bea\user_projects\domains\MedRecDomain>startWebLogic.cmd

2. Open the Administration Console.

Once the server starts, open http://localhost:7101/console in a browser,
where localhost is the network name of your computer.

3. Undeploy applications from previous tutorials:

a. Expand Deployments in the left pane of the Console and click the Applications
folder. The right pane of the Console may show existing deployments from the
previous tutorials (medrec_deployment and wlpackage_tutorial).

b. Click the trash can icon to the right of an existing deployment. The Console
prompts you to undeploy the application.

c. Click Yes to remove the deployment, then click Continue.

d. Repeat the above steps for any other MedRec deployments on the server.

4. Deploy the MedRec applications to MedRecServer:

a. Expand Deployments in the left pane of the Console.

b. Right-click Applications and select Deploy a New Application.

This initiates the Enterprise Application Deployment Assistant in the right
panel.

c. Use the links in the Location field to navigate to C:\medrec_tutorial\dist.

The Deploy an Application page table contains three applications that were
created in Tutorial 12: medrecEar, physicianEar, and startupEar.
Deploy all three applications, starting with medrecEar.

d. Select medrecEar and click Continue.
MedRec Development Tutorials 3

1 Moving to Production Mode
e. Click Deploy.

The Console displays the Deploy panel, which shows the deployment status
of applications and deployment activities on the server. The table in this page
shows that the deployment is underway, and then refreshes to report the
success or failure of the deployment.

f. Use steps a to c to return to the Deploy an Application page, and select and
deploy physicianEar.

g. Use steps a to c to return to the Deploy an Application page, and select and
deploy startupEar.

5. Access the MedRec applications to confirm that they are deployed. In a browser,
navigate to http://127.0.0.1:7101/physician, and log in using the
username and password supplied in the text fields.

Best Practices

Use the Administration Console Deployment Assistant to deploy your
application in a graphical environment that shows you the choices you can make
in your deployment, as an alternative to deploying using the command-line tool
weblogic.Deployer or to editing Ant scripts that run deployment targets.

For production, deploy in exploded format to simplify the process of updating
the application.

Use the Administration Console to monitor the progress of MedRec deployment
and application activities. In case of errors, scroll up in the console text for
useful messages.

Big Picture

The split-directory structure introduced in WebLogic Server 8.1 lets you deploy
MedRec’s compiled and generated files separately from the editable files. This
capability is convenient during the development stage, when changes to the application
are frequent. The expected format for production is the traditional single-directory
structure, with the separate applications in exploded format in separate subdirectories.
4 MedRec Development Tutorials

Tutorial 15: Deploying the MedRec Package for Production
In this tutorial, you deployed MedRec’s applications from a directories containing the
applications and all of their components and support files. The applications’ exploded
format makes their editable files more accessible than they would be if they were
bundled into archives.

Each application subdirectory in dist contains both the compiled classes and
generated deployment descriptors from the build directory, and the editable
deployment descriptors and other files from the src directory.

Related Reading

Enterprise Application Deployment Descriptor Elements in Developing
WebLogic Server Applications

Overview of WebLogic Server Deployment in Deploying WebLogic Server
Applications
MedRec Development Tutorials 5

http://e-docs.bea.com/wls/docs81/programming/app_xml.html
http://e-docs.bea.com/wls/docs81/deployment/overview.html

1 Moving to Production Mode
6 MedRec Development Tutorials

Tutorial 16: Using a Production Database Management System
1 Moving to Production
Mode

Tutorial 16: Using a Production Database
Management System

This tutorial describes how to change the database used by the deployed MedRec
application from one on a development relational database management system
(PointBase) to a production DBMS (Oracle).

In particular, this tutorial shows you how to use the Administration Console to:

Create both XA and non-XA JDBC connection pools used to connect to an
Oracle database.

Update the existing JDBC datasource used by the MedRec application to use the
new Oracle XA JDBC connection pool.

Update the existing JMS JDBC store to use the new Oracle non-XA JDBC
connection pool.

Note: It is assumed that you have already installed and configured the Oracle
database management system and that you have created an Oracle database.
Describing how to perform these tasks is beyond the scope of this tutorial.

The tutorial includes the following sections:

Prerequisites
MedRec Development Tutorials 1

1 Moving to Production Mode
Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites

Before starting this tutorial:

Install and configure the Oracle database management system. See the Oracle
documentation.

Create an Oracle database. See the Oracle documentation.

Work through the MedRec tutorials up to Tutorial 15: Deploying the MedRec
Package for Production, which describe how to compile, package, and deploy to
the MedRec server the three applications that make up the MedRec application
suite: medrecEar, physicianEar, and startupEar.

Procedure

Follow these steps:

Step 1: Create the Oracle tables and populate with MedRec application data.

Step 2: Invoke the Administration Console.

Step 3: Create an Oracle XA JDBC connection pool.

Step 4: Create a non-XA Oracle JDBC connection pool.

Step 5: Update the MedRecTXDataSource to use the new Oracle XA connection
pool.

Step 6: Update the JMS JDBC store to use the new Oracle non-XA connection
pool.

Step 7: Shut down and restart the MedRec server.
2 MedRec Development Tutorials

http://otn.oracle.com/documentation/content.html
http://otn.oracle.com/documentation/content.html
http://otn.oracle.com/documentation/content.html

Tutorial 16: Using a Production Database Management System
Step 8: Test the MedRec application using the Oracle database.

Step 1: Create the Oracle tables and populate with MedRec application data.

BEA provides two SQL scripts that you can use to create and populate the tables of
your Oracle database:

medrec_oracle.ddl—contains the SQL statements for creating the tables used
by the MedRec application.

medrec_oracle.sql—contains the SQL statements for populating the tables
with data.

These scripts are located in SAMPLES_HOME\server\medrec\setup\db directory,
where SAMPLES_HOME refers to the main examples directory of your WebLogic Server
installation, such as c:\beahome\weblogic81\samples.

Note: It is beyond the scope of this tutorial to describe exactly how to create and
populate Oracle tables. See the Oracle documentation.

Step 2: Invoke the Administration Console.

You use the Administration Console to create and update the WebLogic Server
resources used by the MedRec application suite.

1. Enter the following URL in your browser:

http://127.0.0.1:7101/console

2. Enter weblogic as the username and password, then click Sign In.

Step 3: Create an Oracle XA JDBC connection pool.

The JDBC connection pool configuration describes how to connect physically from
WebLogic Server to a database, in this case an Oracle database. This procedure
describes how to create a JDBC connection pool that uses an XA JDBC driver, which
is a BEA best practice.

The procedure also shows how to specify support for SQL without global transactions.

1. In the left pane of the Administration Console, expand Services→JDBC.

2. Click Connection Pools.
MedRec Development Tutorials 3

http://otn.oracle.com/documentation/content.html

1 Moving to Production Mode
3. In the right pane, click Configure a new JDBC Connection Pool.

4. For the Database Type, select Oracle.

5. For the Database Driver, select Oracle’s Driver (Thin XA) Versions:
8.1.7,9.0.1,9.2.0.

6. Click Continue.

7. In the Name field, enter MedRecPool-Oracle-XA.

8. In the Database Name field, enter the name of your Oracle database.

9. In the Host Name field, enter the name of the computer that is hosting the Oracle
database management system.

10. In the Port field, enter the port of the Oracle server.

11. In the Database User Name field, enter the name of the Oracle database user.

12. In the Password and Confirm Password fields, enter the password of the database
user.

13. Click Continue.

14. Ensure that the information to test the connection to the Oracle database is
correct, then click Test Driver Configuration.

Note: Be sure you have started the Oracle database management system and that
the database is accessible, or the test of its driver configuration will fail.

15. After verifying that the connection succeeded, click Create and Deploy.

16. In the left pane of the Administration Console, click MedRecPool-Oracle-XA
under the Services→JDBC→Connection Pools node.

17. In the right pane, select the Configuration→Connections tab.

18. Click the Show link to the right of the Advanced Options label.

19. Scroll down to the end of the page and click Supports Local Transactions.

20. Click Apply.
4 MedRec Development Tutorials

Tutorial 16: Using a Production Database Management System
Step 4: Create a non-XA Oracle JDBC connection pool.

This procedure describes how to create a JDBC connection pool that does not use an
XA JDBC driver.

Typically you use an XA JDBC driver when creating a connection pool. However,
because JMS JDBC stores do not support XA resource drivers (WebLogic JMS
implements its own XA resource), you need an additional connection pool that is
non-XA. Later procedures show how to associate the XA connection pool to a JDBC
DataSource and the non-XA connection pool to a JMS JDBC store.

1. In the left pane of the Administration Console, expand Services→JDBC.

2. Click Connection Pools.

3. Click Configure a new JDBC Connection Pool.

4. For the Database Type, select Oracle.

5. For the Database Driver, select Oracle’s Driver (Thin) Versions:
8.1.7,9.0.1,9.2.0.

6. Click Continue.

7. In the Name field, enter MedRecPool-Oracle.

8. In the Database Name field, enter the name of your Oracle database.

9. In the Host Name field, enter the name of the computer that is hosting the Oracle
database management system.

10. In the Port field, enter the port of the Oracle Server.

11. In the Database User Name field, enter the name of the Oracle database user.

12. In the Password and Confirm Password fields, enter the password of the database
user.

13. Click Continue.

14. Ensure that the information to test the connection to the Oracle database is
correct, then click Test Driver Configuration.

15. After verifying that the connection succeeded, click Create and Deploy.
MedRec Development Tutorials 5

1 Moving to Production Mode
Step 5: Update the MedRecTXDataSource to use the new Oracle XA connection
pool.

1. In the left pane of the Administration Console, expand Services→JDBC→Data
Sources.

2. Click MedRecTxDataSource.

3. In the right pane, select MedRecPool-Oracle-XA in the Pool Name drop-down
choice box.

4. Click Apply.

Step 6: Update the JMS JDBC store to use the new Oracle non-XA connection
pool.

1. In the left pane of the Administration Console, expand Services→JMS→Stores.

2. Click MedRecJMSJDBCStore.

3. In the right pane, select MedRecPool-Oracle in the Connection Pool drop-down
choice box.

4. Click Apply.

Step 7: Shut down and restart the MedRec server.

Changing the connection pool associated with a datasource requires that WebLogic
Server be restarted so that the changes take effect. In a real-life situation, you would
very likely restart WebLogic Server when moving from development to production
mode anyway.

1. In the left pane of the Administration Console, expand the Servers node.

2. Right-click MedRecServer and choose Start/Stop This Server.

3. In the right pane, click Graceful Shutdown of this Server.

4. Click Yes.

5. Once the MedRec server shuts down, open a new command window and change
to the MedRecDomain directory:
6 MedRec Development Tutorials

Tutorial 16: Using a Production Database Management System
cd C:\bea\user_projects\domains\MedRecDomain

6. Restart the MedRec Server by executing its start script:

startWebLogic.cmd

7. Invoke the Administration Console in a browser.

8. Verify that the three applications (medrecEar, physicianEar, and startupEar)
are deployed by expanding, in the left pane,
Deployments→Applications→AppName, then selecting the Deploy tab in the right
pane. If the Module Status for any application is anything other than Active, click
Deploy Application.

Step 8: Test the MedRec application using the Oracle database.

1. Shut down the PointBase database by closing the command window from which
you started it. This step ensures that the application is unable to get data from the
PointBase database.

2. In a browser, navigate to http://127.0.0.1:7101/physician, and log in
using the username and password supplied in the text fields.

3. Enter Couples in the Last Name field and click Search. If you see an entry for
Fred Couples, the data has come from your Oracle database.

Best Practices

Use JDBC DataSources to separate the details about connecting to a database
from an application. This makes it easy to change the database to which an
application connects without having to update the application itself.

WebLogic Server uses JDBC drivers to create the physical database connection
in a connection pool. When using the Administration Console to create a JDBC
connection pool, you specify the driver you want to use. BEA offers the
following drivers to connect to an Oracle database:

WebLogic jDriver for Oracle (Type 2, which requires native libraries)

WebLogic jDriver for Oracle XA (Type 2, which requires native libraries)

Oracle Thin driver (Type 4, pure Java)
MedRec Development Tutorials 7

1 Moving to Production Mode
Oracle Thin XA driver (Type 4, pure Java)

The WebLogic jDrivers use native libraries, but may perform faster than the pure
Java Type 4 drivers from Oracle. For additional details about deciding which
driver to use in your connection pool, see Introduction to WebLogic JDBC.

The Big Picture

A JDBC DataSource makes it easy to change the database management system to
which a WebLogic Server application connects because the DataSource provides a
layer of abstraction between the application and the details of a connection to the
database.

One DataSource is associated with one JDBC connection pool, which describes the
details about how to connect to a database, such as the host and port of the database
server, the name of the database, the database user, and so on. The deployment
descriptor of the component that needs database access, such as an entity EJB, lists the
DataSource that it will use to connect to a database. Therefore, to change the database
to which an application connects, you simply create a new connection pool, and use
the Administration Console to update the DataSource, changing the connection pool to
which it is associated.

For example, AddressEJB is an entity EJB in the medrecEar application. It uses
container-managed persistence (CMP) to persist its data to a database. The
WebLogic-specific deployment descriptor file that contains CMP information about
AddressEJB, weblogic-cmp-rdbms-jar.xml, specifies that the EJB uses the
MedRecTxDataSource when connecting to a database, as shown in the following
excerpt:

<weblogic-rdbms-jar>
 <weblogic-rdbms-bean>
 <ejb-name>AddressEJB</ejb-name>
 <data-source-name>MedRecTxDataSource</data-source-name>
 ...
 </weblogic-rdbms-bean>
</weblogic-rdbms-jar>

The deployment descriptor does not include specific details about how to connect to
the database, making the application more portable.
8 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/jdbc/intro.html

Tutorial 16: Using a Production Database Management System
Changing the database to which the JMS JDBC store persists data is very similar: you
use the Administration Console to change the connection pool to which the store is
associated.

You must restart WebLogic Server after making these changes to ensure that all
connections to the old database are ended and the application starts connecting to the
new database.

Related Reading

Oracle documentation

Introduction to WebLogic JDBC at
http://e-docs.bea.com/wls/docs81/jdbc/intro.html

WebLogic jDriver for Oracle at
http://e-docs.bea.com/wls/docs81/oracle/index.html

JDBC Connection Pools at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html

WebLogic JMS Fundamentals at http://e-docs.bea.com/wls/docs81/jms/fund.html

Configuring JMS at
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html
MedRec Development Tutorials 9

http://otn.oracle.com/documentation/content.html
http://e-docs.bea.com/wls/docs81/jdbc/intro.html
http://e-docs.bea.com/wls/docs81/oracle/index.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jdbc_connection_pools.html
http://e-docs.bea.com/wls/docs81/jms/fund.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/jms_config.html

1 Moving to Production Mode
10 MedRec Development Tutorials

Tutorial 17: Securing Application and URL (Web) Resources Using the Administration
1 Moving to Production
Mode

Tutorial 17: Securing Application and URL
(Web) Resources Using the Administration
Console

This tutorial describes how to secure application and URL (Web) resources using the
Administration Console. It includes step-by-step procedures for creating users, groups,
and global security roles. It also provides procedures for creating security policies at
various levels in the application and URL (Web) resource hierarchies.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading
MedRec Development Tutorials 1

1 Moving to Production Mode
Prerequisites

Before starting this tutorial:

Create MedRecDomain and MedRecServer, and start MedRecServer. See
“Tutorial 1: Creating a WebLogic Domain and Server Instance for
Development” on page -1.

Deploy the enterprise application named MedRecEar. See “Tutorial 15:
Deploying the MedRec Package for Production” on page 1-1.

Read the following sections in Securing WebLogic Resources:

Types of WebLogic Resources

Techniques for Securing URL (Web) and EJB Resources

Prerequisites for Securing URL (Web) and EJB Resources

Types of Security Roles: Global Roles and Scoped Roles

Procedure

Follow these steps to secure application and URL (Web) resources using the
Administration Console:

“Step 1: Specify security realm settings.” on page 1-3

“Step 2: Create groups.” on page 1-3

“Step 3: Create users and add the users to groups.” on page 1-4

“Step 4: Create global roles and grant the global roles to the groups.” on page
1-5

“Step 5: Secure the MedRecEAR application.” on page 1-6

“Step 6: Attempt to access a JSP in the MedRecEAR application.” on page 1-6

“Step 7: Secure the Patient Web Application.” on page 1-7

“Step 8: Attempt to access a JSP in the PatientWAR.” on page 1-8

“Step 9: Secure the medicalrecord.do page.” on page 1-9
2 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/secwlres/types.html
http://e-docs.bea.com/wls/docs81/secwlres/types.html#techniques
http://e-docs.bea.com/wls/docs81/secwlres/types.html#prerequisites
http://e-docs.bea.com/wls/docs81/secwlres/secroles.html#types

Tutorial 17: Securing Application and URL (Web) Resources Using the Administration
“Step 10: Attempt to access the medicalrecord.do page.” on page 1-10

Step 1: Specify security realm settings.

1. Start a Web browser and type http://localhost:7101/console/.

2. Enter weblogic as the username and weblogic as the password, then click Sign
In to sign in to the Administration Console for MedRecServer.

3. In the navigation tree at the left side of the Administration Console, expand
Security->Realms.

4. Click the myrealm security realm.

5. On the General tab, from the Check Roles and Policies drop-down menu, select
All Web Applications and EJBs.

This setting means that the WebLogic Security Service will perform security
checks on all URL (Web) and EJB resources. For more information, see
Understanding How to Check Security Roles and Security Policies in Securing
WebLogic Resources.

6. From the On Future Redeploys drop-down menu, select Ignore Roles and
Policies From DD.

This setting means that you will set security for Web Application and EJB resources in
the Administration Console, not in deployment descriptors. For more information,
see Understanding What to Do on Future Redeploys of the WebLogic Resource
in Securing WebLogic Resources.

7. Click Apply to save your changes.

8. Restart MedRecServer. (See Starting and Stopping Servers: Quick Reference in
Configuring and Managing WebLogic Server.)

Step 2: Create groups.

1. In the navigation tree at the left side of the Administration Console, expand
Security->Realms->myrealm.

2. Click Groups.

The Groups page displays all groups currently defined in the WebLogic
Authentication provider's database.
MedRec Development Tutorials 3

http://e-docs.bea.com/wls/docs81/secwlres/types.html#check_roles_policies
http://e-docs.bea.com/wls/docs81/secwlres/types.html#future_redeploys
http://e-docs.bea.com/wls/docs81/adminguide/startquickref.html

1 Moving to Production Mode
3. Click the Configure a new Group link to display the Create Group page.

4. On the General tab, in the Name field, type MedRecAdmins.

5. In the Description field, type MedRecAdmins can log on to the MedRec
Administrators website.

6. Click Apply to save your changes.

7. Repeat steps 4 - 7 to create a group named MedRecPatients, with a description
of MedRecPatients can log on to the MedRec Patients website.

8. In the navigation tree, click Groups, and confirm that the groups have been
added.

The Groups page shows the groups added to the WebLogic Authentication
provider’s database.

Step 3: Create users and add the users to groups.

1. In the navigation tree, click Users.

The Users page displays all users currently defined in the WebLogic
Authentication provider’s database.

2. Click the Configure a new User link to display the Create User page.

3. On the General tab, in the Name field, type admin@avitek.com.

4. In the Description field, type MedRec administrator.

5. In the Password and Confirm Password fields, type weblogic.

6. Click Apply to save your changes.

7. Select the Groups tab.

8. In the Possible Groups list box, highlight the MedRecAdmins group.

9. Click the highlighted arrow to move the MedRecAdmins group from the Possible
Groups list box to the Current Groups list box.

10. Click Apply to save your changes.
4 MedRec Development Tutorials

Tutorial 17: Securing Application and URL (Web) Resources Using the Administration
11. Repeat steps 2 - 10 to create a user named larry@celtics.com, a MedRec
patient who also uses the weblogic password and belongs in the
MedRecPatients group.

12. In the navigation tree, click Users, and confirm that the users have been added.

The Users page shows the users added to the WebLogic Authentication
provider’s database.

Step 4: Create global roles and grant the global roles to the groups.

1. In the navigation tree, click Global Roles.

The Global Roles page displays all global roles currently defined in the
WebLogic Role Mapping provider's database.

2. Click the Configure a new Global Role link to display the Create Global Role
page.

3. On the General tab, in the Name field, type MedRecAdmin.

4. Click Apply to save your changes.

5. Select the Conditions tab.

6. In the Role Condition list box, highlight Caller is a Member of the Group.

7. Click Add to display the Groups window.

8. In the Enter Group Name field, type MedRecAdmins.

9. Click Add, then click OK.

The Groups window closes. The Role Statement list box reads:
Caller is a Member of the Group

MedRecAdmins

10. Click Apply to save your changes.

11. Repeat steps 2 - 11 to create a global role named MedRecPatient and to grant
this global role to the MedRecPatients group.

12. In the navigation tree, click Global Roles, and confirm that the global roles have
been added.
MedRec Development Tutorials 5

1 Moving to Production Mode
The Global Roles page shows the global roles added to the WebLogic Role
Mapping provider’s database.

Step 5: Secure the MedRecEAR application.

1. In the navigation tree, expand Deployments->Applications.

2. Right-click MedRecEAR.

3. From the menu, select Define Security Policy to display the Policy Editor page.

Selecting this option enables you to create a security policy that will encompass
all components in the deployed Enterprise Application.

4. In the Policy Condition list box, highlight Caller is Granted the Role.

5. Click Add to display the Roles window.

6. In the Enter Role Name field, type MedRecAdmin.

7. Click Add, then click OK.

The Roles window closes. The Policy Statement list box reads:
Caller is Granted the Role

MedRecAdmin

8. Click Apply to save your changes.

Step 6: Attempt to access a JSP in the MedRecEAR application.

1. Open a new Web browser and type http://localhost:7101/start.jsp.

The browser prompts you for a username and password.

2. In the username field, type larry@celtics.com, and in the password field, type
weblogic, then click OK.

The browser re-prompts you for a username and password.

3. In the username field, type admin@avitek.com, and in the password field, type
weblogic, then click OK.

The browser displays the page shown in Figure 1.
6 MedRec Development Tutorials

Tutorial 17: Securing Application and URL (Web) Resources Using the Administration
Figure 1: Avitek Medical Records Start Page

User larry@celtics.com was denied access because you previously secured
all components of MedRecEAR (including start.jsp, part of MainWAR) with a
security policy based on the global security role MedRecAdmin, which user
admin@avitek.com is granted but user larry@celtics.com is not.

Step 7: Secure the Patient Web Application.

1. In the navigation tree at the left side of the Administration Console, expand
Deployments->Applications->MedRecEAR, then right-click on the patient Web
Application.

2. From the menu, select Define Security Policy to display the General tab.

Selecting this option enables you to create a security policy for this particular
Web Application or a particular component within the Web Application.

3. In the URL Pattern field, type: /*

The URL pattern of /* will secure all components, including JSPs and servlets.
MedRec Development Tutorials 7

1 Moving to Production Mode
4. Click the Define Security Policy button to display the Policy Editor page.

5. In the Policy Condition list box, highlight Caller is Granted the Role.

Do not modify the value shown in the Methods drop-down menu. (It should
read: ALL.)

6. Click Add to display the Roles window.

7. In the Enter Role Name field, type Anonymous.

Unlike the MedRecAdmin and MedRecPatient global roles you created and used
in previous steps, the Anonymous role is a default global role that is predefined
in WebLogic Server.

8. Click Add, then click OK.

The Roles window closes. The Policy Statement list box reads:
Caller is Granted the Role

Anonymous

By defining this security policy on PatientWAR, you are overriding the security
policy that has already been defined for all components of the MedRecEAR in
“Step 5: Secure the MedRecEAR application..” Specifically, you are overriding
the inherited policy statement of:

Caller is Granted the Role

MedRecAdmin

that is shown in the Inherited Policy Statements list box.

By overriding the security policy to grant access to users in the Anonymous
global role (rather than the MedRecAdmin global role), you are actually making
access on these pages less restrictive. (All users are granted the Anonymous
global role.)

9. Click Apply to save your changes.

Step 8: Attempt to access a JSP in the PatientWAR.

Open a new Web browser and type http://localhost:7101/patient/login.do.

The browser displays the page shown in Figure 2:.
8 MedRec Development Tutorials

Tutorial 17: Securing Application and URL (Web) Resources Using the Administration
Figure 2: Patient Login Page

This page is displayed because you secured all components of PatientWAR with a
security policy based on the global security role Anonymous, a security role that all
users are granted. Therefore, no login is required to access the login.do page. (The
user name and password fields are shown because of the login.do page’s design.)

Step 9: Secure the medicalrecord.do page.

1. In the navigation tree at the left side of the Administration Console, right-click on
the patient Web Application.

2. From the menu, select Define Security Policy to display the General tab.

Selecting this option enables you to create a security policy for this particular
Web Application or a particular component within the Web application.

Notice that the URL pattern you typed in “Step 7: Secure the Patient Web
Application.” on page 1-7 appears as a link under the title: Already Defined
URL Patterns. This allows you to modify existing security policies more easily.

3. In the URL Pattern field, type medicalrecord.do.

Because you are creating the security policy on PatientWAR, the context path of
/patient is implied in the URL pattern. (WebLogic Server obtains this context
path from the Web Application’s deployment descriptor.)
MedRec Development Tutorials 9

1 Moving to Production Mode
4. Click the Define Security Policy button to display the Policy Editor page.

5. In the Policy Condition list box, highlight Caller is Granted the Role.

Do not modify the value shown in the Methods drop-down menu. (It should read
ALL.)

6. Click Add to display the Roles window.

7. In the Enter Role Name field, type MedRecPatient.

8. Click Add, then click OK.

The Roles window closes. The Policy Statement list box reads:
Caller is Granted the Role

MedRecPatient

By defining this security policy on medicalrecord.do, you are overriding the
security policy that has already been defined for all components within
PatientWAR in “Step 7: Secure the Patient Web Application..” Specifically, you
are overriding the inherited policy statement of:

Caller is Granted the Role

Anonymous

that is shown in the Inherited Policy Statements list box.

9. Click Apply to save your changes.

Step 10: Attempt to access the medicalrecord.do page.

1. Open a new Web browser and type
http://localhost:7101/patient/medicalrecord.do.

The browser redirects you to the login page shown in Figure 2:. This result
occurs because only users who are granted the MedRecPatient global role can
access the medicalrecord.do page, but all users (who are granted the
Anonymous global role) can still access login.do.

2. In the username field, type admin@avitek.com, and in the password field, type
weblogic, then click Login.

The browser redisplays the login page shown in Figure 2: and indicates that you
have entered an invalid username and/or password. This result occurs because
only users who are granted the MedRecPatient global role can access the
10 MedRec Development Tutorials

Tutorial 17: Securing Application and URL (Web) Resources Using the Administration
medicalrecord.do page, and user admin@avitek.com is granted the global
role MedRecAdmin.

3. In the username field, type larry@celtics.com, and in the password field, type
weblogic, then click Login.

The browser redirects you to Larry’s Medical Records page, shown in Figure 3:.
This result occurs because user larry@celtics.com is granted the
MedRecPatient global role, which is required to access the
medicalrecord.do page.

Figure 3: Larry’s Medical Records Page

Best Practices

The security realm settings are extremely important. If you want to secure URL
(Web) resources using the WebLogic Server Administration Console rather than
deployment descriptors, you must use the Check Roles and Policies/On Future
Redeploys combination specified in “Step 1: Specify security realm settings..”

If you have deployed an application (or module) with the On Future Redeploys
drop-down menu set to Ignore Roles and Policies From DD one or more times
MedRec Development Tutorials 11

1 Moving to Production Mode
before setting it to Initialize Roles and Policies From DD, you can still set
security policies and security roles using the Administration Console. These
changes will override any security specified in deployment descriptors.

Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list for user, group, or security role names: \t, < >, #, |, &, ~, ?,
(), { }. User, group, and security role names are case sensitive. The proper
syntax for a security role name is as defined for an Nmtoken in the Extensible
Markup Language (XML) recommendation. The BEA convention is that group
names are plural, and security role names are singular.

BEA recommends assigning users to groups, then creating role statements using
the Caller is a Member of the Group role condition. Individual users
could also be granted a security role, but this is a less typical practice.

BEA recommends using security roles (rather than users or groups) to secure
WebLogic resources. Following this process makes it more efficient for
administrators who work with large numbers of users.

Create policy statements based on your organization's established business
procedures.

When creating new security policies, look for policy statements in the Inherited
Policy Statement box of the Policy Editor page. If inherited policy statements
exist, you will be overriding them.

Remember that more-specific security policies override less-specific security
policies. For example, a security policy on a specific URL pattern in a Web
application overrides a security policy on the Web application. Take care when
overriding with less restrictive security policies (that is, giving a wider set of
users access to a smaller set of components or WebLogic resources).

Take care to ensure that you understand the security policies and the security
role mappings on each URL pattern. If there are any URL patterns that you do
not expect, be sure to investigate.

Be sure you understand the precedence of servlet mappings to URL patterns as
specified in Chapter 11 of the Servlet 2.3 specification. This describes which
URL pattern will have precedence when an URL matches multiple URL
patterns.

You can delete all security settings for an application (or module) by deleting it
entirely from the WebLogic Server domain and then redeploying it.
12 MedRec Development Tutorials

http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://www.w3.org/TR/REC-xml#NT-Nmtoken

Tutorial 17: Securing Application and URL (Web) Resources Using the Administration
The Big Picture

This tutorial shows you how to secure application and various URL (Web) resources
using some examples. These examples may or may not be different from those used in
the full MedRec application. However, the full MedRec application uses these same
principles (as well as programmatic security) to secure URL (Web) resources for both
MedRec administrators and patients.

Related Reading

Securing WebLogic Resources

“Tutorial 18: Securing Enterprise JavaBean (EJB) Resources Using the
Administration Console” on page 1-1

“Tutorial 19: Copying and Reinitializing Security Configurations” on page 1-1
MedRec Development Tutorials 13

http://e-docs.bea.com/wls/docs81/secwlres/index.html

1 Moving to Production Mode
14 MedRec Development Tutorials

Tutorial 18: Securing Enterprise JavaBean (EJB) Resources Using the Administration
1 Moving to Production
Mode

Tutorial 18: Securing Enterprise JavaBean
(EJB) Resources Using the Administration
Console

This tutorial describes how to secure Enterprise JavaBean (EJB) resources using the
Administration Console. It includes step-by-step procedures for creating scoped roles
and security policies at various levels in the EJB resource hierarchy.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading
MedRec Development Tutorials 1

1 Moving to Production Mode
Prerequisites

Before starting this tutorial:

Create MedRecDomain and MedRecServer, and start MedRecServer. See
“Tutorial 1: Creating a WebLogic Domain and Server Instance for
Development” on page -1.

Deploy the Enterprise Application named MedRecEar. See “Tutorial 15:
Deploying the MedRec Package for Production” on page 1-1.

If you did not complete “Tutorial 17: Securing Application and URL (Web)
Resources Using the Administration Console,” create the users and groups
described in “Step 2: Create groups.” and “Step 3: Create users and add the users
to groups.” sections of that tutorial.

Read the following sections in Securing WebLogic Resources:

Types of WebLogic Resources

Techniques for Securing URL (Web) and EJB Resources

Prerequisites for Securing URL (Web) and EJB Resources

Types of Security Roles: Global Roles and Scoped Roles

Procedure

Follow these steps to secure Enterprise JavaBean (EJB) resources using the
Administration Console:

“Step 1: Specify security realm settings.” on page 1-3

“Step 2: Create scoped roles and grant the scoped roles to groups.” on page 1-4

“Step 3: Secure the SessionEJB JAR.” on page 1-5

“Step 4: Attempt to access an EJB in the SessionEJB JAR.” on page 1-6

“Step 5: Secure the AdminSessionEJB.” on page 1-8

“Step 6: Attempt to access AdminSessionEJB.” on page 1-9
2 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/secwlres/types.html
http://e-docs.bea.com/wls/docs81/secwlres/types.html#techniques
http://e-docs.bea.com/wls/docs81/secwlres/types.html#prerequisites
http://e-docs.bea.com/wls/docs81/secwlres/secroles.html#types

Tutorial 18: Securing Enterprise JavaBean (EJB) Resources Using the Administration
“Step 7: Secure the findNewUsers() EJB method.” on page 1-10

“Step 8: Attempt to access the findNewUsers() EJB method.” on page 1-11

Step 1: Specify security realm settings.

Note: If you completed this step as part of “Tutorial 17: Securing Application and
URL (Web) Resources Using the Administration Console,” you can skip to
“Step 2: Create scoped roles and grant the scoped roles to groups.” on page
1-4.

1. Start a Web browser and type http://localhost:7101/console/.

2. Enter weblogic as the username and weblogic as the password, then click Sign
In to sign in to the Administration Console for the MedRecServer.

3. In the navigation tree at the left side of the Administration Console, expand
Security->Realms.

4. Click the myrealm security realm.

5. On the General tab, from the Check Roles and Policies drop-down menu, select
All Web Applications and EJBs.

This setting causes the WebLogic Security Service to perform security checks on
all URL (Web) and EJB resources. For more information, see Understanding
How to Check Security Roles and Security Policies in Securing WebLogic
Resources.

6. From the Future Redeploys drop-down menu, select Ignore Roles and Polices
From DD.

This setting indicates that you will set security for Web application and EJB resources
using the Administration Console, not deployment descriptors. For more
information, see Understanding What to Do on Future Redeploys of the
WebLogic Resource in Securing WebLogic Resources.

7. Click Apply to save your changes.

8. Restart MedRecServer. (For help, see Starting and Stopping Servers: Quick
Reference in the Configuring and Managing WebLogic Server.)
MedRec Development Tutorials 3

http://e-docs.bea.com/wls/docs81/secwlres/types.html#check_roles_policies
http://e-docs.bea.com/wls/docs81/secwlres/types.html#check_roles_policies
http://e-docs.bea.com/wls/docs81/secwlres/types.html#future_redeploys
http://e-docs.bea.com/wls/docs81/secwlres/types.html#future_redeploys
http://e-docs.bea.com/wls/docs81/adminguide/startquickref.html
http://e-docs.bea.com/wls/docs81/adminguide/startquickref.html

1 Moving to Production Mode
Step 2: Create scoped roles and grant the scoped roles to groups.

1. In the navigation tree, expand Deployments->Applications->MedRecEar.

2. Right-click sessionEjbs.

3. From the menu, select Define Scoped Role to display the Scoped Roles page.

This page displays all the scoped roles currently defined in the WebLogic Role
Mapping provider's database.

Selecting this option enables you to create a security role that is scoped to this
particular EJB JAR. Thereafter, the scoped role can be used in a security policy
for this EJB JAR.

4. Click the Configure a new Scoped Role link to display the Create Scoped Role
page.

5. On the General tab, in the Name field, type MedRecSessionEJBPatient.

6. Click Apply to save your changes.

7. Select the Conditions tab.

8. In the Role Condition list box, highlight Caller is a Member of the Group.

9. Click Add to open the Groups window.

10. In the Enter Group Name field, type MedRecPatients.

Note: You created the MedRecPatients group as part of “Tutorial 17: Securing
Application and URL (Web) Resources Using the Administration
Console.” Recall that user larry@celtics.com is the only user in this
group.

11. Click Add, then click OK.

The Groups window closes. The Role Statement list box reads:
Caller is a Member of the Group

MedRecPatients

12. Click Apply to save your changes.

13. In the navigation tree, click the + sign next to MedRecEAR, then right-click on
sessionEjbs.
4 MedRec Development Tutorials

Tutorial 18: Securing Enterprise JavaBean (EJB) Resources Using the Administration
14. From the menu, select Define Policies and Roles for Individual Beans.

 A table listing all the EJBs that are in the JAR file appears.

Note: Selecting this option allows you to create a scoped role for a particular EJB
within an EJB JAR.

15. Click the [Define Scoped Roles] link for AdminSessionEJB.

16. Repeat steps 4 - 12 to create the scoped role named MedRecSessionEJBAdmin
and grant this scoped role to the MedRecAdmins group.

Step 3: Secure the SessionEJB JAR.

1. In the navigation tree, right-click sessionEjbs.

2. From the menu, select Define Security Policy to display the Policy Editor page.

Selecting this option indicates that you are creating a security policy at the EJB
JAR level, which includes all EJBs within the JAR, and all methods within those
EJBs.

3. In the Policy Condition list box, highlight Caller is Granted the Role.

4. Click Add to open the Roles window.

5. In the Enter Role Name field, type MedRecSessionEJBPatient.

6. Click Add, then click OK.

The Roles window closes. The Policy Statement list box reads:
Caller is Granted the Role

MedRecSessionEJBPatient

By defining this security policy for the SessionEJB JAR, you are overriding
any security policies that have already been defined for the EJB resource type. If
you completed “Tutorial 17: Securing Application and URL (Web) Resources
Using the Administration Console,” you are overriding the inherited policy
statement:

Caller is Granted the Role

MedRecAdmin

that is shown in the Inherited Policy Statements list box. Otherwise, you will be
overriding the default security policy:
MedRec Development Tutorials 5

1 Moving to Production Mode
Caller is a Member of the Group

Everyone

For more information about default security policies, see Default Security
Policies in Securing WebLogic Resources.

7. Click Apply to save your changes.

Step 4: Attempt to access an EJB in the SessionEJB JAR.

1. Open a new Web browser and type http://localhost:7101/admin/login.do.

The browser displays the login page shown in Figure 1.

Figure 1: Admin Login Page

2. In the username field, type admin@avitek.com, and in the password field, type
weblogic, then click Login.
6 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/secwlres/sec_poly.html#default_security_policies
http://e-docs.bea.com/wls/docs81/secwlres/sec_poly.html#default_security_policies

Tutorial 18: Securing Enterprise JavaBean (EJB) Resources Using the Administration
Figure 2: Administration Tasks Page

3. On the Administration Tasks page shown in Figure 2, click the View Pending
Requests link.

Figure 3: Error Page
MedRec Development Tutorials 7

1 Moving to Production Mode
The error page shown in Figure 3 is displayed because access to the
findNewUsers() method in AdminSessionEJB, an EJB within the
SessionEJB JAR you previously secured, is needed to view pending requests.
User admin@avitek.com is not granted the MedRecSessionEJBPatient
scoped role that was used to create the security policy, and is therefore is not
granted access.

Step 5: Secure the AdminSessionEJB.

1. In the navigation tree at the left side of the Administration Console, right-click
sessionEjbs.

2. From the menu, select Define Policies and Roles for Individual Beans.

A table listing all the EJBs that are in the JAR file appears.

Selecting this option enables you to create a security policy at the EJB level
(meaning the security policy will apply to all methods within the EJB), or a
particular method within the EJB.

3. Click the [Define Security Policies] link for AdminSessionEJB to display the
Policy Editor page.

4. In the Policy Condition list box, highlight Caller is Granted the Role.

Note: Do not modify the value shown in the Methods drop-down menu. (It
should read: ALL.)

5. Click Add to open the Roles window.

6. In the Enter Role Name field, type MedRecSessionEJBAdmin.

7. Click Add, then click OK.

The Roles window closes. The Policy Statement list box reads:
Caller is Granted the Role

MedRecSessionEJBAdmin

By defining this security policy for AdminSessionEJB, you are overriding the
security policy that has already been defined for the EJB JAR in Step 3: Secure
the SessionEJB JAR. Specifically, you are overriding the inherited policy
statement of:

Caller is Granted the Role
8 MedRec Development Tutorials

Tutorial 18: Securing Enterprise JavaBean (EJB) Resources Using the Administration
MedRecSessionEJBPatient

that is shown in the Inherited Policy Statements list box.

8. Click Apply to save your changes.

Step 6: Attempt to access AdminSessionEJB.

Repeat steps 1 - 3 in “Step 4: Attempt to access an EJB in the SessionEJB JAR.” on
page 1-6.

Instead of displaying the error page for step 3, the browser displays the View Pending
Requests page shown in Figure 4.

Figure 4: View Pending Requests

This result occurs because user admin@avitek.com is granted the
MedRecEJBSessionAdmin scoped role. This scoped role was used to create the
security policy for AdminSessionEJB, the EJB containing the findNewUsers()
method that is needed to view pending requests.
MedRec Development Tutorials 9

1 Moving to Production Mode
Step 7: Secure the findNewUsers() EJB method.

1. In the navigation tree at the left side of the Administration Console, right-click
sessionEjbs.

2. From the menu, select Define Policies and Roles for Individual Beans.

A table listing all the EJBs that are in the JAR file appears.

Selecting this option enables you to create a security policy at the EJB level
(meaning the security policy will apply to all methods within the EJB), or for a
particular method within the EJB.

3. Click the [Define Security Policies] link for AdminSessionEJB to display the
Policy Editor page.

4. Using the Methods drop-down menu, select the findNewUsers() - REMOTE
method.

5. In the Policy Condition list box, highlight Caller is Granted the Role.

6. Click Add to open the Roles window.

7. In the Enter Role Name field, type MedRecSessionEJBPatient.

You defined this scoped role on SessionEJB, but because the findNewUsers()
method is a component of AdminSessionEJB (itself a component of
SessionEJB), you can also use it here.

8. Click Add, then click OK.

The Roles window closes. The Policy Statement list box reads:
Caller is Granted the Role

MedRecSessionEJBPatient

By defining this security policy on the findNewUsers() method, you are
overriding the security policy that has already been defined for
AdminSessionEJB in “Step 5: Secure the AdminSessionEJB..” Specifically, you
are overriding the inherited policy statement of:

Caller is Granted the Role

MedRecSessionEJBAdmin

that is shown in the Policy Statement list box when ALL is selected from the
Methods drop-down menu.
10 MedRec Development Tutorials

Tutorial 18: Securing Enterprise JavaBean (EJB) Resources Using the Administration
9. Click Apply to save your changes.

Step 8: Attempt to access the findNewUsers() EJB method.

Repeat steps 1 - 3 in “Step 4: Attempt to access an EJB in the SessionEJB JAR.” on
page 1-6.

The browser displays the error page shown in Figure 3. This result occurs because only
users granted the scoped role MedRecSessionEJBPatient can access the
findNewUsers() method, which is needed to view pending requests. User
admin@avitek.com is not granted the scoped role that was used to create the security
policy, and therefore is not granted access.

Best Practices

The security realm settings are extremely important. If you want to secure URL
(Web) resources using the WebLogic Server Administration Console rather than
deployment descriptors, you must use the Check Roles and Policies/On Future
Redeploys combination specified in “Step 1: Specify security realm settings..”

If you have deployed an application (or module) with the On Future Redeploys
drop-down menu set to Ignore Roles and Policies From DD one or more times
before setting it to Initialize Roles and Policies From DD, you can still set
security policies and security roles using the Administration Console. These
changes will override any security specified in deployment descriptors.

Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list for user, group, or security role names: \t, < >, #, |, &, ~, ?,
(), { }. User, group, and security role names are case sensitive. The proper
syntax for a security role name is as defined for an Nmtoken in the Extensible
Markup Language (XML) recommendation. The BEA convention is that group
names are plural, and security role names are singular.

It is inadvisable to create global roles and scoped roles with the same name.
However, if you have a valid reason for doing this, know that the scoped role
will override the global role if used in a Caller is Granted the Role policy
condition.
MedRec Development Tutorials 11

http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://www.w3.org/TR/REC-xml#NT-Nmtoken

1 Moving to Production Mode
Scoped roles can be used in security policies from the level in the hierarchy
where they are defined and below.

BEA recommends assigning users to groups, then creating role statements using
the Caller is a Member of the Group role condition. Individual users
could also be granted a security role, but this is a less typical practice.

BEA recommends using security roles (rather than users or groups) to secure
WebLogic resources. Following this process makes it more efficient for
administrators who work with large numbers of users.

Create policy statements based on your organization's established business
procedures.

When creating new security policies, look for policy statements in the Inherited
Policy Statement box of the Policy Editor page. If inherited policy statements
exist, you will be overriding them.

Remember that more-specific security policies override less-specific security
policies. For example, a security policy on an EJB method overrides a security
policy on the same EJB. Take care when overriding with less restrictive security
policies (that is, giving a wider set of users access to a smaller set of components
or WebLogic resources).

You can delete all security settings for an application (or module) by deleting it
entirely from the WebLogic Server domain and then redeploying it.

The Big Picture

This tutorial shows you how to secure application and various Enterprise JavaBean
(EJB) resources using some examples. These examples may or may not be different
from those used in the full MedRec application. However, the full MedRec application
uses these same principles (as well as programmatic security) to secure EJB resources
for both MedRec administrators and patients.

Related Reading

Securing WebLogic Resources
12 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/secwlres/index.html

Tutorial 18: Securing Enterprise JavaBean (EJB) Resources Using the Administration
“Tutorial 17: Securing Application and URL (Web) Resources Using the
Administration Console” on page 1-1

“Tutorial 19: Copying and Reinitializing Security Configurations” on page 1-1
MedRec Development Tutorials 13

1 Moving to Production Mode
14 MedRec Development Tutorials

Tutorial 19: Copying and Reinitializing Security Configurations
1 Moving to Production
Mode

Tutorial 19: Copying and Reinitializing
Security Configurations

This tutorial describes how to copy a security configuration from deployment
descriptors into the configured Authorization and Role Mapping providers’ databases,
so that you can use the Administration Console for subsequent modifications to
security policies and security roles. It also describes how to reinitialize a security
configuration using the original deployment descriptors.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites

Before starting this tutorial:
MedRec Development Tutorials 1

1 Moving to Production Mode
Create MedRecDomain and MedRecServer, and start MedRecServer. See
“Tutorial 1: Creating a WebLogic Domain and Server Instance for
Development” on page -1.

Obtain the “AdminWebApp Web Application” (available under Code Samples
for WebLogic Server 8.1 on the dev2dev Web site), and unzip the
adminWebApp.zip file to a temporary directory (for example,
C:\adminWebApp).

If you deployed the Enterprise Application named MedRecEAR as part of any
prior tutorial, use the Administration Console to delete it.

Read Using the Combined Technique to Secure Your URL (Web) and Enterprise
JavaBean (EJB) Resources in Securing WebLogic Resources.

Procedure

This tutorial consists of three main steps:

“Step 1: Copy a security configuration.” on page 1-2

“Step 2: Modify a security policy using the Administration Console.” on page
1-7

“Step 3: Reinitialize a security configuration.” on page 1-8

Step 1: Copy a security configuration.

To copy security configurations for the adminWebApp Web application from its
deployment descriptors into the configured Authorization and Role Mapping
providers’ databases, follow these steps:

“Step 1: Specify security realm settings and deploy the Web application.” on
page 1-3

“Step 2: Verify the copied security policies (optional).” on page 1-4

“Step 3: Verify the copied security roles (optional).” on page 1-6

“Step 4: Revert the On Future Redeploys setting.” on page 1-7
2 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/secwlres/types.html#using_comb_tech
http://e-docs.bea.com/wls/docs81/secwlres/types.html#using_comb_tech

Tutorial 19: Copying and Reinitializing Security Configurations
Step 1: Specify security realm settings and deploy the Web application.

1. In the navigation tree at the left side of the Administration Console, expand
Security->Realms.

2. Click the myrealm security realm.

3. On the General tab, select All Web Applications and EJBs as the value for the
Check Roles and Policies drop-down menu.

This setting causes the WebLogic Security Service to perform security checks on
all URL (Web) and EJB resources. For more information, see Understanding
How to Check Security Roles and Security Policies in Securing WebLogic
Resources.

If All Web Applications and EJBs was already selected as the value of the Check
Roles and Policies drop-down menu, just continue to step 4.

4. Select Initialize Roles and Polices From DD from the On Future Redeploys
drop-down menu.

This setting causes WebLogic Server to copy security configurations for URL
(Web) and EJB resources from deployment descriptors into the configured
Authorization and Role Mapping providers' databases each time you deploy the
resource. For more information, see Understanding What to Do on Future
Redeploys of the WebLogic Resource in Securing WebLogic Resources.

5. Click Apply to save your changes.

6. If you had to set the Check Roles and Policies drop-down menu to All Web
Applications and EJBs in step 2 (that is, it was not already set this way), restart
the server. (For help, see “Starting and Stopping WebLogic Servers: Quick
Reference” in the WebLogic Server Administration Guide.)

If you did not have to modify the value of the Check Role and Policies
drop-down menu in step 3, continue to step 7 without restarting the server.

7. Deploy the adminWebApp Web Application module and target it to the
MedRecServer.

For instructions about how to deploy Web Applications, see Deploying
WebLogic Server Applications.
MedRec Development Tutorials 3

http://e-docs.bea.com/wls/docs81/secwlres/types.html#check_roles_policies
http://e-docs.bea.com/wls/docs81/secwlres/types.html#check_roles_policies
http://e-docs.bea.com/wls/docs81/secwlres/types.html#future_redeploys
http://e-docs.bea.com/wls/docs81/secwlres/types.html#future_redeploys
http://e-docs.bea.com/wls/docs81/adminguide/startquickref.html
http://e-docs.bea.com/wls/docs81/adminguide/startquickref.html
http://e-docs.bea.com/wls/docs81/deployment/index.html
http://e-docs.bea.com/wls/docs81/deployment/index.html

1 Moving to Production Mode
Step 2: Verify the copied security policies (optional).

1. Open the web.xml deployment descriptor for the adminWebApp Web application,
and record the content of any <url-pattern> and <http-method> elements, as
well as any <role-name> subelements of the <auth-constraint> element.
Listing 1 shows the relevant portions of the web.xml deployment descriptor file in
bold font.

Listing 1: The adminWebApp Web Application web.xml Deployment
Descriptor

<!DOCTYPE web-app (View Source for full doctype...)>
<web-app>

...
<security-constraint>

<web-resource-collection>
<web-resource-name>images</web-resource-name>
<url-pattern>*.gif</url-pattern>

</web-resource-collection>
</security-constraint>
<security-constraint>

<web-resource-collection>
<web-resource-name>UnsecureLoginAction
</web-resource-name>
<url-pattern>login.do</url-pattern>

</web-resource-collection>
</security-constraint>
<security-constraint>

<web-resource-collection>
<web-resource-name>UnsecureLoginPages
</web-resource-name>
<url-pattern>Login.jsp</url-pattern>

</web-resource-collection>
</security-constraint>
<security-constraint>

<web-resource-collection>
<web-resource-name>AdminActions</web-resource-name>
<description>These pages are only accessible by authorized

administrators.</description>
<url-pattern>*.do</url-pattern>
<url-pattern>*.jsp</url-pattern>
<http-method>POST</http-method>
<http-method>GET</http-method>

</web-resource-collection>
<auth-constraint>
4 MedRec Development Tutorials

Tutorial 19: Copying and Reinitializing Security Configurations
<description>These are the roles who have access.</description>
<role-name>admin</role-name>

</auth-constraint>
...

</security-constraint>
...
<security-role>

<description>An administrator</description>
<role-name>admin</role-name>

</security-role>
</web-app>

2. In the navigation tree at the left side of the Administration Console, expand Web
Application Modules, then right-click adminWebApp.

3. From the menu, select Define Security Policy to display the General tab.

There are five hyperlinked URL patterns that correspond to those you recorded
in step 1 listed under the Already Defined URL Patterns heading.

4. Click the hyperlinked URL pattern *.do to display the Policy Editor page.

5. Using the Methods drop-down menu, select POST.

The Caller is Granted the Role Policy Condition is highlighted and the
Policy Statement list box reads:
Caller is Granted the Role

admin

If you click a hyperlinked URL pattern that did not have a corresponding
<http-method> element in the web.xml deployment descriptor, the Policy
Statement list box displays the appropriate security policy when the Methods
drop-down menu contains the value ALL. For example, the security policy for the
URL pattern *.gif from Listing 1 can be viewed when the Methods drop-down
reads ALL.

If the URL pattern does not have a corresponding <auth-constraint> element
in the web.xml deployment descriptor, the security policy for that URL pattern
will be created using the Anonymous global role (for example, the security
policy for the URL pattern *.gif from Listing 1). For more information about
default global roles, see Default Global Roles in Securing WebLogic Resources.

6. Repeat steps 2 - 5 to verify multiple security policies.
MedRec Development Tutorials 5

http://e-docs.bea.com/wls/docs81/secwlres/secroles.html#defaultgroups_and_globalroles

1 Moving to Production Mode
Step 3: Verify the copied security roles (optional).

1. Open the weblogic.xml deployment descriptor for the adminWebApp Web
Application, and record the content of any <security-role-assignment>
elements, specifically focusing on the <role-name> and <principal-name>
subelements. Listing 2 shows the relevant portions of the weblogic.xml
deployment descriptor file in bold font.

Listing 2: The adminWebApp Web Application weblogic.xml Deployment
Descriptor

<!DOCTYPE weblogic-web-app (View Source for full doctype...)>
<weblogic-web-app>

<context-root>admin</context-root>
<security-role-assignment>

<role-name>admin</role-name>
<principal-name>admin</principal-name>

</security-role-assignment>
</weblogic-web-app>

2. In the navigation tree at the left side of the Administration Console, right-click on
the adminWebApp Web Application.

3. From the menu, select Define Scoped Role to display the General tab.

4. Click the hyperlinked URL pattern /*.

The Scoped Roles page displays all the scoped roles for this Web Application
that are currently defined in the WebLogic Role Mapping provider's database,
including the scoped role called admin.

 Security roles obtained from deployment descriptors are always copied into the
configured Role Mapping provider's database as scoped roles, with a URL
pattern of /*.

5. Click the hyperlinked scoped role admin.

6. Select the Conditions tab.

The Role Statement list box contains a Role Statement based on the content of
the deployment descriptor’s corresponding <principal-name> element, which
in this case is a user or group called admin.
6 MedRec Development Tutorials

Tutorial 19: Copying and Reinitializing Security Configurations
Step 4: Revert the On Future Redeploys setting.

Caution: You must perform this step. Failure to revert this setting may result in
inconsistent security configurations when your URL (Web) resources are
redeployed. If you do not perform this step or perform this step incorrectly,
you see the following message the next time you load the Policy Editor
page:

The information presented below may not be accurate. To
ensure that you are viewing accurate information, you may
need to delete and redeploy your WebLogic resources.

1. In the navigation tree at the left side of the Administration Console, expand
Security->Realms.

2. Click the myrealm security realm.

3. On the General tab, select Ignore Roles and Polices From DD as the value for the
On Future Redeploys drop-down menu.

This setting indicates that you will set security for URL (Web) and EJB resources using
the Administration Console, not deployment descriptors. For more information, see
Understanding What to Do on Future Deploys of the WebLogic Resource in
Securing WebLogic Resources.

4. Click Apply to save your changes.

Step 2: Modify a security policy using the Administration Console.

1. In the navigation tree at the left side of the Administration Console, expand Web
Application Modules, then right-click adminWebApp.

2. From the menu, select Define Security Policy to display the General tab.

Five hyperlinked URL patterns correspond to those you recorded in “Step 2:
Verify the copied security policies (optional).” on page 1-4 listed under the
Already Defined URL Patterns heading.

3. Click the hyperlinked URL pattern *.do to display the Policy Editor page.

4. Using the Methods drop-down menu, select POST.

The Caller is Granted the Role Policy Condition is highlighted and the
Policy Statement list box reads:
MedRec Development Tutorials 7

http://e-docs.bea.com/wls/docs81/secwlres/types.html#future_redeploys

1 Moving to Production Mode
Caller is Granted the Role

admin

5. In the Policy Condition list box, highlight the Hours of Access are Between
policy condition.

6. Click Add, then click OK in the Time Constraint window to select the default
start and end times.

The Policy Statement list box reads as follows:
Caller is Granted the Role

developers

and Hours of Access are Between

08:00:00 and 19:00:00

7. Click Apply to save your changes.

Step 3: Reinitialize a security configuration.

To reinitialize security configurations for the adminWebApp Web Application from its
deployment descriptors, follow these steps:

“Step 1: Modify the On Future Redeploys setting.” on page 1-8

“Step 2: Redeploy the adminWebApp Web application.” on page 1-9

“Step 3: Verify that the security configuration has been reinitialized (optional).”
on page 1-9

“Step 4: Revert the On Future Redeploys setting.” on page 1-10

Step 1: Modify the On Future Redeploys setting.

1. In the navigation tree at the left side of the Administration Console, expand
Security->Realms.

2. Click the myrealm security realm.

3. On the General tab, from the On Future Redeploys drop-down menu, select
Initialize Roles and Polices From DD.

This setting means that WebLogic Server will copy security configurations for
URL (Web) and EJB resources from deployment descriptors into the configured
8 MedRec Development Tutorials

Tutorial 19: Copying and Reinitializing Security Configurations
Authorization and Role Mapping providers' databases each time you deploy the
resource. For more information, see Understanding What to Do on Future
Redeploys of the WebLogic Resource in Securing WebLogic Resources.

If All Web Applications and EJBs was already selected as the value of the
Check Roles and Policies drop-down menu, just continue to step 4.

4. Click Apply to save your changes.

Step 2: Redeploy the adminWebApp Web application.

1. In the navigation tree at the left side of the Administration Console, expand
Deployments->Web Application Modules.

2. Click the adminWebApp Web application.

A table that lists all the Web application or EJB modules appears in the right
pane.

3. Click the trash can icon that is located in the same row as the adminWebApp Web
Application.

4. Click Yes, then the Continue link to delete the adminWebApp Web Application.

The adminWebApp Web Application no longer appears in the table.

5. Click the Deploy button that corresponds to MedRecServer, to which you
targeted the adminWebApp Web Application module.

6. Re-deploy the adminWebApp Web Application, targeting it to MedRecServer.

Note: For instructions about how to deploy Web Application and EJB modules,
see Deploying WebLogic Server Applications.

Step 3: Verify that the security configuration has been reinitialized (optional).

1. In the navigation tree at the left side of the Administration Console, right-click
adminWebApp.

2. From the menu, select Define Security Policy to display the General tab.

Five hyperlinked URL patterns correspond to those you recorded in step 1 listed
under the Already Defined URL Patterns heading.

3. Click the hyperlinked URL pattern *.do to display the Policy Editor page.
MedRec Development Tutorials 9

http://e-docs.bea.com/wls/docs81/secwlres/types.html#future_redeploys
http://e-docs.bea.com/wls/docs81/secwlres/types.html#future_redeploys
http://e-docs.bea.com/wls/docs81/deployment/index.html

1 Moving to Production Mode
4. Using the Methods drop-down menu, select POST.

The Caller is Granted the Role Policy Condition is highlighted and the
Policy Statement list box reads:
Caller is Granted the Role

admin

The policy statement you created using the Hours of Access are Between
policy condition in “Step 2: Modify a security policy using the Administration
Console.” on page 1-7 is gone, because it was not defined in the deployment
descriptor from which you just initialized the security configuration.

Step 4: Revert the On Future Redeploys setting.

Caution: You must perform this step. Failure to revert this setting may result in
inconsistent security configurations when your URL (Web) resources are
redeployed. If you do not perform this step or perform this step incorrectly,
you see the following message the next time you load the Policy Editor
page:

The information presented below may not be accurate. To
ensure that you are viewing accurate information, you may
need to delete and redeploy your WebLogic resources.

1. In the navigation tree at the left side of the Administration Console, expand
Security->Realms.

2. Click the myrealm security realm.

3. On the General tab, select Ignore Roles and Polices From DD as the value for the
On Future Redeploys drop-down menu.

Note: This setting means that you will set security for URL (Web) and EJB resources
using the Administration Console, not deployment descriptors. For more
information, see Understanding What to Do on Future Deploys of the
WebLogic Resource in Securing WebLogic Resources.

4. Click Apply to save your changes.
10 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/secwlres/types.html#future_redeploys
http://e-docs.bea.com/wls/docs81/secwlres/types.html#future_redeploys

Tutorial 19: Copying and Reinitializing Security Configurations
Best Practices

Do not use blank spaces, commas, hyphens, or any characters in this
comma-separated list for user, group, or security role names: \t, < >, #, |, &, ~, ?,
(), { }. User, group, and security role names are case sensitive. The proper
syntax for a security role name is as defined for an Nmtoken in the Extensible
Markup Language (XML) recommendation. The BEA convention is that group
names are plural, and security role names are singular.

Remember that redeploying a WebLogic resource with the On Future Redeploys
drop-down menu set to Ignore Roles and Policies From DD does not affect the
security configuration (that is, security policies or security roles) of the resource.

When the On Future Redeploys drop-down menu is set to Initialize Roles and
Policies From DD, any redeploy of a WebLogic resource will update the security
configuration. This includes targeting a new server and setting a server with an
application or module targeted to it to bounce. Take care when altering security
policies and security roles that are specified in a deployment descriptor when the
On Future Redeploys drop-down menu is set to Initialize Roles and Policies
From DD.

If you initialize a security configuration from deployment descriptors and then
customize security policies and security roles using the Administration Console,
make sure that you never boot a server when the value of the On Future
Redeploys drop-down menu is Reinitialize Roles and Policies From DD. If you
do, then all the security policy and security role customizations you performed
using the Administration Console for all of your Web applications (and EJBs)
will be lost.

Always have the On Future Redeploys set to Ignore Roles and Policies From
DD except when:

You are about to deploy a new Web Application or EJB module

You want to redeploy a Web Application or EJB module and initialize its
security configuration (security policies and security roles).
MedRec Development Tutorials 11

http://www.w3.org/TR/REC-xml#NT-Nmtoken
http://www.w3.org/TR/REC-xml#NT-Nmtoken

1 Moving to Production Mode
The Big Picture

This tutorial shows you how to copy the security configuration for a Web Application
from its deployment descriptors into the configured Authorization and Role Mapping
providers’ databases, so that you can use the Administration Console for subsequent
modifications to the Web Application’s security roles and security policies. The same
example shows you how to reinitialize the security configuration using the Web
Application’s original deployment descriptors.

The full MedRec application uses the principles described in “Tutorial 17: Securing
Application and URL (Web) Resources Using the Administration Console” on page
1-1 and “Tutorial 18: Securing Enterprise JavaBean (EJB) Resources Using the
Administration Console” on page 1-1 (as well as programmatic security) to secure EJB
resources for both MedRec administrators and patients.

Related Reading

Securing WebLogic Resources

“Tutorial 17: Securing Application and URL (Web) Resources Using the
Administration Console” on page 1-1

“Tutorial 18: Securing Enterprise JavaBean (EJB) Resources Using the
Administration Console” on page 1-1
12 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/secwlres/index.html

Tutorial 20: Redeploying the MedRec Package
1 Moving to Production
Mode

Tutorial 20: Redeploying the MedRec
Package

This tutorial shows how to use the Administration Console to redeploy the MedRec
application to MedRecServer in a production environment. The MedRec applications
are contained in the dist directory, packaged in three directories in the recommended
exploded format.

Redeploy an application if you have updated its class files or its generated deployment
descriptor files.

The tutorial includes the following sections:

Prerequisites

Procedures

Best Practices

The Big Picture

Related Reading
MedRec Development Tutorials 1

1 Moving to Production Mode
Prerequisites

Before starting this tutorial:

Work through Tutorial 13: Packaging MedRec for Distribution.

Work through Tutorial 14: Deploying the MedRec Package for Production, and
have the package currently deployed to MedRecServer.

Procedures

This demonstration includes three separate procedures:

Procedure 1: Edit a deployment descriptor without redeploying.

Procedure 2: Refresh a static file without redeploying the application.

Procedure 3: Redeploy the entire application.

Procedure 1: Edit a deployment descriptor without redeploying.

Use the Administration Console to modify certain deployment descriptor elements and
their attributes for Applications that are deployed as exploded archive files. You
cannot edit these descriptors for applications packaged as EARs.

In this procedure, change the value that determines the number of seconds a Web
Application remains idle before timing out.

1. Open the Administration Console.

Browse to http://localhost:7101/console, where localhost is the
network name of your computer.

2. In the left pane of the Console, expand Deployment and select Applications.

The Applications table displays all deployed applications, which include the
medrecEar, physicianEar, and startupEar applications you deployed in
Tutorial 15: Deploying the MedRec Package for Production.

3. In the right panel, expand medrecEAR and select patient to select the patient
Web Application.
2 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/medrec_tutorials/packaging.html
http://e-docs.bea.com/wls/docs81/medrec_tutorials/deploy_prod.html

Tutorial 20: Redeploying the MedRec Package
4. In the right pane, select Configuration->Descriptor.

The descriptor elements displayed in the Descriptor tab are limited to descriptor
elements that can be dynamically changed at runtime.

5. Scroll down to the Deployment Descriptors box and click weblogic.xml to open
it in a separate window.

6. Locate the session-descriptor element, which should look like this stanza:

 <session-descriptor>

 <session-param>

 <param-name>TimeoutSecs</param-name>

 <param-value>600</param-value>

 </session-param>

7. Return to the WebLogic Server Administration Console and edit the TimeoutSecs
parameter by adding a “1” before the “600.”

8. Click Apply.

9. Return to the weblogic.xml page and refresh your browser to see the updated
param-value, which is now in effect for the application.

Procedure 2: Refresh a static file without redeploying the application.

Use the weblogic.Deployer utility to notify the server when static files have
changed.

In this procedure, you change an image, refresh the image file on the server, and view
the refreshed file in the Web Application. Clean up the application by restoring the
image and refreshing the file again.

Use the file logo.gif in the physicianWebApp component of physicianEar. The
Web Application references this file from a virtual directory specified in the
weblogic.xml file located in the WEB-INF directory (not from the Web Application
images directory).

The relevant stanza from weblogic.xml follows:

 <virtual-directory-mapping>
MedRec Development Tutorials 3

1 Moving to Production Mode
<local-path>C:/bea/weblogic81sp1/weblogic81/samples/server/m
edrec/src/common/web</local-path>

<url-pattern>images/*</url-pattern>

 </virtual-directory-mapping>

1. Save logo.gif to an alternate name such as logo1.gif.

2. Save a different GIF file to logo.gif.

3. Open a command window and set your environment

WL_HOME\samples\domains\medrec> setMedRecEnv.cmd

Change to the application directory,
WL_HOME\samples\server\medrec\dist\physicianEar.

4. Enter the redeploy command, specifying logo.gif.
java weblogic.Deployer -adminurl http://localhost:7101 -user
weblogic -password weblogic -name physicianEar -redeploy
..\..\src\common\web\images\logo.gif

The server reports on the task:

Initiated Task: [11] [Deployer:149026]Redeploy application
physicianEar on MedRecServer.

Task 11 completed: [Deployer:149026]Redeploy application
physicianEar on MedRecServer.

Deployment completed on Server MedRecServer

5. Rename logo1.gif to logo.gif.

6. Repeat the redeploy command:

java weblogic.Deployer -adminurl http://localhost:7101 -user
weblogic -password weblogic -name physicianEar -redeploy
..\..\src\common\web\images\logo.gif

Procedure 3: Redeploy the entire application.

In this procedure it is assumed that MedRec is deployed to a currently running instance
of MedRecServer. Follow these steps to update a deployed application whose class
files or generated deployment descriptor files have been changed.

1. Open the Administration Console.
4 MedRec Development Tutorials

Tutorial 20: Redeploying the MedRec Package
Browse to http://localhost:7101/console, where localhost is the
network name of your computer.

2. In the left pane of the Console, expand Deployments and select Applications.

The Applications table displays all deployed applications, which include the
medrecEAR, physicianEAR, and startupEAR applications you deployed in
Tutorial 15: Deploying the MedRec Package for Production.

3. Redeploy all three applications, starting with medrecEAR.

a. Click on medrecEAR.

In the right-hand panel, the medrecEAR Configuration tab displays
configuration details.

b. Select the Deploy tab.

The Deploy panel lists deployment status of EJB modules and Web
Application modules.

c. Click Redeploy Application.

d. Return to the Deploy->Applications panel, select medrecEAR, and repeat steps
b and c.

e. Return to the Deploy->Applications panel, select startupEAR, and repeat
steps b and c.

Best Practices

Redeploying an application in production is a serious undertaking that can affect
performance, so plan application updates carefully. Redeploying an application
re-sends the entire application over the network to all of the servers targeted by that
Web Application. Increased network traffic may affect network performance when an
application is re-sent to the Managed Servers. If the application is currently in
production and in use, redeploying causes WebLogic Server to lose all active HTTP
sessions.

If you have only modified static files, it is probably possible to refresh the files without
redeploying the entire application. See Redeploying Static Files in a Web Application
in Deploying WebLogic Server Applications.
MedRec Development Tutorials 5

http://e-docs.bea.com/wls/docs81/deployment/scenarios.html#static

1 Moving to Production Mode
Some deployment descriptor elements can be modified without redeploying the
application. See Viewing and Updating Deployment Descriptors in the Administration
Console Online Help.

The Big Picture

This tutorial explains how to redeploy an application in production using the
Administration Console. You can also use the command-line weblogic.Deploy tool
to redeploy applications, and to refresh static files in a deployed application.

If you have added modules in your application, redeploying the application deploys the
current modules. If you have deleted modules from your application, explicitly remove
them from the application domain to remove them from deployment. See Removing
an Application or Module from the Domain in Deploying Applications and Modules.

Related Reading

Deploying Applications and Modules
6 MedRec Development Tutorials

http://e-docs.bea.com/wls/docs81/ConsoleHelp/applications.html#1108035
http://e-docs.bea.com/wls/docs81/ConsoleHelp/deployment.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/deployment.html
http://e-docs.bea.com/wls/docs81/ConsoleHelp/deployment.html

	Configuring Domains and Servers
	Building the MedRec Applications
	Moving to Production Mode
	Overview of the Avitek Medical Records Development Tutorials
	What Is Avitek Medical Records?
	How to Use the Tutorials
	Tutorial Descriptions

	Related Reading

	Tutorial 1: Creating a WebLogic Domain and Server Instance for Development
	Prerequisites
	Procedure
	Step 1: Create the MedRec domain and MedRec server.
	Step 2: Edit the server startup script.
	Step 3: Start the MedRec server.

	Best Practices
	The Big Picture
	Related Reading

	1 Configuring Domains and Servers
	Tutorial 2: Starting the PointBase Development Database
	Prerequisites
	Procedure
	Step 1: Start the PointBase database.
	Step 2: Use the PointBase console to view the MedRec tables and data.

	Best Practices
	The Big Picture
	Patient, Physician, and Administrator Data
	Persistent JMS Message Storage

	Related Reading

	1 Configuring Domains and Servers
	Tutorial 3: Setting Up WebLogic Server Resources for the MedRec Server
	Prerequisites
	Procedure
	Step 1: Invoke the Administration Console for the MedRec server in your browser.
	Step 2: Create the JDBC connection pools.
	Step 3: Create a JDBC DataSource.
	Step 4: Create a JMS JDBC store.
	Step 5: Create a JMS server.
	Step 6: Create the JMS queues.
	Step 7: Create a JMS connection factory.
	Step 8: Add email capabilities to the MedRec application.
	Step 9: Configure the MedRec Sample Authenticator.

	Best Practices
	The Big Picture
	Related Reading

	1 Configuring Domains and Servers
	Tutorial 4: Using WebLogic Server Development Mode
	Prerequisites
	Procedure
	Step 1: Shut down the MedRec server (if currently running).
	Step 2: Edit the server startup file.
	Step 3: Restart the server and verify development mode.

	Best Practices
	The Big Picture
	Related Reading

	Tutorial 5: Creating the MedRec Project Directory
	Prerequisites
	Procedure
	Step 1: Create the tutorial project directory.
	Step 2: Unpack the project subdirectories.
	Step 3: Verify the project directory contents.
	Step 4: Verify the source directory contents.
	Step 5: Edit the \src\medrec.properties file and run substitute.xml.

	Best Practices
	The Big Picture
	Related Reading

	1 Building the MedRec Applications
	Tutorial 6: Understanding the WebLogic Server Split Directory Structure
	Prerequisites
	Procedure
	Step 1: Examine the Enterprise Application directory structure.
	Step 2: Examine the Web Application component directory structure.
	Step 3: Examine the EJB component directory structure.

	Best Practices
	The Big Picture
	Related Reading

	1 Building the MedRec Applications
	Tutorial 7: Compiling Applications Using the Split Development Directory
	Prerequisites
	Procedure
	Step 1: Create the build.xml file.
	Step 2: Compile the application.
	Step 3: Examine the output files.

	Best Practices
	The Big Picture
	Related Reading

	1 Building the MedRec Applications
	Tutorial 8: Walkthrough of Web Application Deployment Descriptors
	Prerequisites
	Procedure
	Step 1: Examine a web.xml file.
	Step 2: Examine a weblogic.xml File

	Best Practices
	The Big Picture
	Related Reading

	1 Building the MedRec Applications
	Tutorial 9: Deploying MedRec from the Development Environment
	Prerequisites
	Procedure
	Best Practices
	The Big Picture
	Related Reading

	1 Generating Deployment Descriptors
	Tutorial 10: Using EJBGen to Generate EJB Deployment Descriptors
	Prerequisites
	Procedures
	Procedure 1: Deploy the application and view the deployment descriptor files.
	Procedure 2: Generate new deployment descriptor and EJB files.
	Procedure 3: Redeploy the application and view the generated files.

	Best Practices
	The Big Picture
	Related Reading

	1 Building the MedRec Applications
	Tutorial 11: Exposing a Stateless Session EJB as a Web Service
	Prerequisites
	Procedure
	Step 1: Create the build file that contains calls to the Web Services Ant tasks.
	Step 2: Execute the Web Services Ant tasks and create the Web Service.
	Step 3: Deploy the Web Service and view its home page.

	Best Practices
	The Big Picture
	Related Reading

	1 Building the MedRec Applications
	Tutorial 12: Invoking a Web Service from a Client Application
	Prerequisites
	Procedures
	Procedure 1: Invoke a Web Service from an EJB deployed on WebLogic Server.
	Procedure 2: Invoke a Web Service from a stand-alone Java Swing client application.
	Procedure 3: Invoke a Web Service from a .NET client.

	Best Practices
	The Big Picture
	Related Reading

	1 Building the MedRec Applications
	Tutorial 13: Compiling the Entire MedRec Project
	Prerequisites
	Procedure
	Best Practices
	The Big Picture
	Related Reading

	Tutorial 14: Packaging MedRec for Distribution
	Prerequisites
	Procedure
	Step 1: Package the Physician application as an EAR.
	Step 2: Test the package.

	Best Practices
	The Big Picture
	Related Reading

	1 Moving to Production Mode
	Tutorial 15: Deploying the MedRec Package for Production
	Prerequisites
	Procedure
	Best Practices
	Big Picture
	Related Reading

	1 Moving to Production Mode
	Tutorial 16: Using a Production Database Management System
	Prerequisites
	Procedure
	Step 1: Create the Oracle tables and populate with MedRec application data.
	Step 2: Invoke the Administration Console.
	Step 3: Create an Oracle XA JDBC connection pool.
	Step 4: Create a non-XA Oracle JDBC connection pool.
	Step 5: Update the MedRecTXDataSource to use the new Oracle XA connection pool.
	Step 6: Update the JMS JDBC store to use the new Oracle non-XA connection pool.
	Step 7: Shut down and restart the MedRec server.
	Step 8: Test the MedRec application using the Oracle database.

	Best Practices
	The Big Picture
	Related Reading

	1 Moving to Production Mode
	Tutorial 17: Securing Application and URL (Web) Resources Using the Administration Console
	Prerequisites
	Procedure
	Step 1: Specify security realm settings.
	Step 2: Create groups.
	Step 3: Create users and add the users to groups.
	Step 4: Create global roles and grant the global roles to the groups.
	Step 5: Secure the MedRecEAR application.
	Step 6: Attempt to access a JSP in the MedRecEAR application.
	Step 7: Secure the Patient Web Application.
	Step 8: Attempt to access a JSP in the PatientWAR.
	Step 9: Secure the medicalrecord.do page.
	Step 10: Attempt to access the medicalrecord.do page.

	Best Practices
	The Big Picture
	Related Reading

	1 Moving to Production Mode
	Tutorial 18: Securing Enterprise JavaBean (EJB) Resources Using the Administration Console
	Prerequisites
	Procedure
	Step 1: Specify security realm settings.
	Step 2: Create scoped roles and grant the scoped roles to groups.
	Step 3: Secure the SessionEJB JAR.
	Step 4: Attempt to access an EJB in the SessionEJB JAR.
	Step 5: Secure the AdminSessionEJB.
	Step 6: Attempt to access AdminSessionEJB.
	Step 7: Secure the findNewUsers() EJB method.
	Step 8: Attempt to access the findNewUsers() EJB method.

	Best Practices
	The Big Picture
	Related Reading

	1 Moving to Production Mode
	Tutorial 19: Copying and Reinitializing Security Configurations
	Prerequisites
	Procedure
	Step 1: Copy a security configuration.
	Step 2: Modify a security policy using the Administration Console.
	Step 3: Reinitialize a security configuration.

	Best Practices
	The Big Picture
	Related Reading

	1 Moving to Production Mode
	Tutorial 20: Redeploying the MedRec Package
	Prerequisites
	Procedures
	Procedure 1: Edit a deployment descriptor without redeploying.
	Procedure 2: Refresh a static file without redeploying the application.
	Procedure 3: Redeploy the entire application.

	Best Practices
	The Big Picture
	Related Reading

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

