
BEAWebLogic
Server®

WebLogic Server
Performance and Tuning

Version 9.0
Revised: October 16, 2006

Copyright
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2006 BEA Systems, Inc. All Rights Reserved.BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA
SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

BEA WebLogic Server Performance and Tuning v

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-1

Guide to this Document . 1-1

Performance Features of this Release . 1-3

Related Documentation . 1-4

2. Performance Tuning Roadmap
Performance Tuning Roadmap . 2-1

Understand Your Performance Objectives . 2-1

Measure Your Performance Metrics . 2-2

Monitor Disk and CPU Utilization . 2-3

Monitor Data Transfers Across the Network. 2-3

Locate Bottlenecks in Your System . 2-4

Minimize Impact of Bottlenecks. 2-4

Tune Your Application . 2-4

Tune your DB . 2-5

Tune WebLogic Server Performance Parameters . 2-5

Tune Your JVM . 2-5

Tune the Operating System . 2-5

Achieve Performance Objectives . 2-6

Tuning Tips . 2-6

vi BEA WebLogic Server Performance and Tuning

3. Top Tuning Recommendations for WebLogic Server
Tune Pool Sizes . 2-1

Use the Prepared Statement Cache . 2-2

Use Logging Last Resource Optimization . 2-2

Tune Connection Backlog Buffering . 2-2

Tune the Chunk Size . 2-2

Use Optimistic or Read-only Concurrency . 2-3

Use Local Interfaces . 2-3

Use eager-relationship-caching . 2-3

Tune HTTP Sessions. 2-3

Tune Messaging Applications. 2-4

4. Operating System Tuning
Basic OS Tuning Concepts . 3-1

Solaris Tuning Parameters . 3-2

Setting TCP Parameters With the ndd Command . 3-2

Setting Parameters In the /etc/system File . 3-3

CE Gigabit Network Card Settings . 3-3

Additional Solaris Tuning Information . 3-4

Linux Tuning Parameters . 3-4

HP-UX Tuning Parameters . 3-4

Windows Tuning Parameters . 3-5

Other Operating System Tuning Information . 3-5

5. Tuning Java Virtual Machines (JVMs)
JVM Tuning Considerations . 4-2

Which JVM for Your System? . 4-2

Changing To a Different JVM . 4-3

BEA WebLogic Server Performance and Tuning vii

Garbage Collection . 4-3

VM Heap Size and Garbage Collection . 4-3

Choosing a Garbage Collection Scheme . 4-4

Using Verbose Garbage Collection to Determine Heap Size 4-5

Specifying Heap Size Values . 4-7

Tuning Tips for Heap Sizes . 4-7

BEA JRockit JVM Heap Size Options . 4-7

Java HotSpot VM Heap Size Options . 4-9

Automatically Logging Low Memory Conditions . 4-11

Manually Requesting Garbage Collection . 4-11

Requesting Thread Stacks . 4-12

Enable Spinning for IA32 Platforms . 4-12

Sun JDK . 4-12

BEA JRockit . 4-12

. 4-13

6. Tuning WebLogic Server
Setting Java Parameters for Starting WebLogic Server . 5-1

Development vs. Production Mode Default Tuning Values . 5-2

Thread Management . 5-3

Tuning a Work Manager. 5-4

How Many Work Managers are Needed? . 5-4

What are the SLA Requirements for Each Work Manager? 5-4

Tuning Execute Queues . 5-4

Understanding the Differences Between Work Managers and Execute Queues 5-5

Migrating from Previous Releases . 5-5

Tuning the Stuck Thread Detection Behavior . 5-6

Tuning Network I/O . 5-7

viii BEA WebLogic Server Performance and Tuning

Tuning Muxers . 5-7

Which Platforms Have Performance Packs? . 5-8

Enabling Performance Packs . 5-9

Changing the Number of Available Socket Readers . 5-9

Network Channels . 5-9

Tuning Message Size . 5-10

Tune the Chunk Parameters . 5-10

Tuning Connection Backlog Buffering . 5-11

Setting Your Compiler Options. 5-12

Compiling EJB Classes . 5-12

Setting JSP Compiler Options . 5-12

Using WebLogic Server Clusters to Improve Performance . 5-13

Scalability and High Availability . 5-13

How to Ensure Scalability for WebLogic Clusters . 5-14

Database Bottlenecks . 5-14

Session Replication. 5-15

Invalidation of Entity EJBs. 5-15

Invalidation of HTTP sessions . 5-16

JNDI Binding, Unbinding and Rebinding . 5-16

Performance Considerations When Running Multiple Server Instances on Multi-CPU
Machines . 5-16

How to Monitor a WebLogic Server Domain. 5-17

Using the Administration Console to Monitor WebLogic Server 5-17

Using JMX to Monitor WebLogic Server . 5-17

Using WLST to Monitor WebLogic Server . 5-17

dev2dev Resources to Monitor WebLogic Server . 5-17

Third-Party Tools to Monitor WebLogic Server . 5-18

BEA WebLogic Server Performance and Tuning ix

7. Tuning the WebLogic Persistent Store
Overview of Persistent Stores . 6-1

Using the Default Persistent Store . 6-1

Using Custom File Stores and JDBC Stores . 6-2

Using JMS Paging Stores . 6-2

Best Practices When Using Persistent Stores . 6-3

Tuning JDBC Stores . 6-3

Tuning File Stores . 6-3

8. DataBase Tuning
General Suggestions . 7-1

Database-Specific Tuning . 7-2

Oracle . 7-2

Microsoft SQL Server . 7-4

Sybase. 7-4

9. Tuning WebLogic Server EJBs
General EJB Tuning Tips . 8-1

Tuning EJB Caches . 8-2

Tuning the Stateful Session Bean Cache . 8-2

Tuning the Entity Bean Cache . 8-2

Transaction-Level Caching . 8-3

Caching between transactions . 8-3

Tuning the Query Cache. 8-3

Tuning EJB Pools . 8-4

Tuning the Stateless Session Bean Pool . 8-4

Tuning the MDB Pool . 8-4

Tuning the Entity Bean Pool . 8-5

x BEA WebLogic Server Performance and Tuning

CMP Entity Bean Tuning . 8-5

Use Eager Relationship Caching . 8-6

Use JDBC Batch Operations . 8-6

Tuned Updates . 8-6

Using Field Groups . 8-6

include-updates . 8-7

call-by-reference . 8-7

Bean-level Pessimistic Locking . 8-7

Concurrency Strategy. 8-8

Tuning In Response to Monitoring Statistics . 8-9

Cache Miss Ratio . 8-9

Lock Waiter Ratio . 8-10

Lock Timeout Ratio . 8-10

Pool Miss Ratio . 8-11

Destroyed Bean Ratio . 8-11

Pool Timeout Ratio . 8-12

Transaction Rollback Ratio . 8-12

Transaction Timeout Ratio. 8-13

10.Tuning JDBC Applications
Tune the Number of Database Connections . 9-1

Waste Not . 9-2

Use Test Connections on Reserve with Care . 9-2

Cache Prepared and Callable Statements . 9-3

Use Best Design Practices. 9-3

11.Tuning Logging Last Resource
What is LLR? . 10-1

BEA WebLogic Server Performance and Tuning xi

LLR Tuning Guidelines. 10-2

12.Tuning WebLogic JMS
Defining Quota . 11-1

Quota Resources. 11-2

Destination-Level Quota . 11-2

JMS Server-Level Quota . 11-3

Specifying a Blocking Send Policy on JMS Servers . 11-3

Defining a Send Timeout on Connection Factories . 11-4

Compressing Messages . 11-5

Paging Out Messages To Free Up Memory . 11-6

Specifying a Message Paging Directory. 11-6

Tuning the Message Buffer Size Option . 11-6

Controlling the Flow of Messages on JMS Servers and Destinations. 11-7

How Flow Control Works. 11-7

Configuring Flow Control . 11-8

Flow Control Thresholds . 11-9

Handling Expired Messages . 11-11

Defining a Message Expiration Policy . 11-11

Configuring an Expiration Policy on Topics. 11-11

Configuring an Expiration Policy on Queues . 11-12

Configuring an Expiration Policy on Templates . 11-13

Defining an Expiration Logging Policy . 11-14

Enabling Active Message Expiration . 11-16

Configuring a JMS Server to Actively Scan Destinations for Expired Messages . .
11-16

Tuning MessageMaximum . 11-16

Setting Maximum Message Size on a Client . 11-17

xii BEA WebLogic Server Performance and Tuning

Tuning Applications Using Unit-of-Order . 11-17

Best Practices . 11-18

Using UOO and Distributed Destinations,. 11-18

Migrating Old Applications to Use UOO . 11-18

13.Tuning WebLogic JMS Store-and-Forward
Best Practices . 12-1

Tuning Tips . 12-2

14.Tuning WebLogic Message Bridge
Best Practices . 13-1

Changing the Batch Size . 13-2

Changing the Batch Interval . 13-2

Changing the Quality of Service . 13-2

Using Multiple Bridge Instances. 13-3

Changing the Thread Pool Size. 13-3

Avoiding Durable Subscriptions . 13-4

Co-locating Bridges with Their Source or Target Destination . 13-4

Changing the Asynchronous Mode Enabled Attribute . 13-4

15.Tuning Resource Adapters
Classloading Optimizations for Resource Adapters . 14-2

Connection Optimizations. 14-2

Thread Management . 14-2

InteractionSpec Interface. 14-2

16.Tuning Web Applications
Best Practices . 15-1

Disable Page Checks . 15-1

BEA WebLogic Server Performance and Tuning xiii

Use Custom JSP Tags . 15-2

Precompile JSPs . 15-2

Use Service Level Agreements . 15-2

Related Reading . 15-2

Session Management . 15-3

Managing Session Persistence . 15-3

Minimizing Sessions . 15-4

Aggregating Session Data . 15-4

17.Tuning WebLogic Tuxedo Connector
Configuration Guidelines. 16-1

Best Practices. 16-2

A. Related Reading: Performance Tools and Information
BEA Systems, Inc. Information. .A-2

Sun Microsystems Information .A-2

Linux OS Information .A-3

Hewlett-Packard Company Information .A-4

Microsoft Information .A-4

Web Performance Tuning Information .A-5

Network Performance Tools .A-5

Load Testing Tools .A-6

Performance Analysis Tools .A-6

Production Performance Management .A-7

Benchmarking Information .A-7

Java Virtual Machine (JVM) Information .A-7

Enterprise JavaBeans Information. .A-9

WebLogic Store Information. .A-9

xiv BEA WebLogic Server Performance and Tuning

Java Message Service (JMS) Information. A-9

Java Database Connectivity (JDBC) Information. A-9

General Performance Information. A-10

B. Using the WebLogic 8.1 Thread Pool Model
How to Enable the WebLogic 8.1 Thread Pool Model . B-1

Tuning the Default Execute Queue . B-2

Should You Modify the Default Thread Count? . B-3

Using Execute Queues to Control Thread Usage . B-4

Creating Execute Queues . B-5

Modifying the Thread Count . B-7

Tuning Execute Queues for Overflow Conditions. B-8

Assigning Servlets and JSPs to Execute Queues . B-9

Assigning EJBs and RMI Objects to Execute Queues. B-10

Monitoring Execute Threads. B-10

Allocating Execute Threads to Act as Socket Readers . B-11

Setting the Number of Socket Reader Threads For a Server Instance. B-11

Setting the Number of Socket Reader Threads on Client Machines B-12

Tuning the Stuck Thread Detection Behavior. B-12

C. Capacity Planning
Capacity Planning Factors. C-1

Programmatic and Web-based Clients . C-2

RMI and Server Traffic . C-3

SSL Connections and Performance . C-3

WebLogic Server Process Load . C-4

Database Server Capacity and User Storage Requirements. C-4

Concurrent Sessions . C-4

BEA WebLogic Server Performance and Tuning xv

Network Load. C-5

Clustered Configurations . C-5

Application Design. C-6

Assessing Your Application Performance Objectives. C-6

Hardware Tuning . C-6

Benchmarks for Evaluating Performance. C-6

Supported Platforms . C-6

Network Performance . C-7

Determining Network Bandwidth . C-7

Related Information . C-8

xvi BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning 1-1

C H A P T E R 1

Introduction and Roadmap

This section describes the contents and organization of this guide—WebLogic Server
Performance and Tuning.

“Document Scope and Audience” on page 1-1

“Guide to this Document” on page 1-1

“Performance Features of this Release” on page 1-3

“Related Documentation” on page 1-4

Document Scope and Audience
This document is written for people who monitor performance and tune the components in a
WebLogic Server platform. It is assumed that readers know server administration and hardware
performance tuning fundamentals, the WebLogic Server platform, XML, and the Java
programming language.

Guide to this Document
This chapter, Chapter 1, “Introduction and Roadmap,” introduces the organization of this
guide.

Chapter 3, “Top Tuning Recommendations for WebLogic Server,” discusses the most
frequently recommended steps for achieving optimal performance tuning for applications
running on WebLogic Server.

I n t roduct i on and Roadmap

1-2 BEA WebLogic Server Performance and Tuning

Chapter 2, “Performance Tuning Roadmap,” provides a roadmap to help tune your
application environment to optimize performance:

Chapter 4, “Operating System Tuning,” discusses operating system issues.

Chapter 5, “Tuning Java Virtual Machines (JVMs),” discusses JVM tuning considerations.

Chapter 6, “Tuning WebLogic Server,” contains information on how to tune WebLogic
Server to match your application needs.

Chapter 7, “Tuning the WebLogic Persistent Store,” provides information on how to tune a
persistent store.

Chapter 8, “DataBase Tuning,” provides information on how to tune your data base.

Chapter 9, “Tuning WebLogic Server EJBs,” provides information on how to tune
applications that use EJBs.

Chapter 10, “Tuning JDBC Applications,” provides information on how to tune JDBC
applications.

Chapter 11, “Tuning Logging Last Resource,” provides information on how to tune
Logging Last Resource transaction optimization.

Chapter 12, “Tuning WebLogic JMS,” provides information on how to tune applications
that use WebLogic JMS.

Chapter 13, “Tuning WebLogic JMS Store-and-Forward,” provides information on how to
tune applications that use JMS Store-and-Forward.

Chapter 14, “Tuning WebLogic Message Bridge,” provides information on how to tune
applications that use the Weblogic Message Bridge.

Chapter 15, “Tuning Resource Adapters,” provides information on how to tune applications
that use resource adaptors.

Chapter 16, “Tuning Web Applications,” provides best practices for tuning WebLogic Web
applications and application resources:

Chapter 17, “Tuning WebLogic Tuxedo Connector,” provides information on how to tune
applications that use WebLogic Tuxedo Connector.

Appendix A, “Related Reading: Performance Tools and Information,” provides an
extensive performance-related reading list.

Pe r fo rmance Fea tu res o f th is Re l ease

BEA WebLogic Server Performance and Tuning 1-3

Appendix B, “Using the WebLogic 8.1 Thread Pool Model,” provides information on using
execute queues.

Appendix C, “Capacity Planning,” provides an introduction to capacity planning.

Performance Features of this Release
WebLogic Server 9.0 introduces the following performance enhancements:

Support for CommonJ Timer and Work Manager API Specification. WebLogic Server 9.0
supports part of the BEA and IBM Joint Specifications (CommonJ) described at
http://dev2dev.bea.com/technologies/commonj/index.jsp. In particular, this release
implements the Timer and Work Manager 1.1 Specification, available at
http://dev2dev.bea.com/technologies/commonj/twm/index.jsp.

Server self-tuning for production environments. New self-tuning capabilities simplify the
process of configuring WebLogic Server for production environments with service level
requirements that vary over time or by application. Self-tuning helps prevent deadlocks
during periods of peak demand. Self-tuning features are also useful if your WebLogic
Server environment hosts multiple applications with different performance and availability
requirements—for example, allowing you to allocate a greater percentage of resources to a
user-facing order processing application than to a back-end inventory management
application.

New overload protection increases availability. New overload features protect a server
instance from out-of-memory (OOM) exceptions, execute queue overloads, increasing the
availability of a server or a cluster.

Query Caching provides a cache to store results from arbitrary non-primary key finders for
EJB 2.0 CMP read-only beans. This feature may increase the performance of read-only
beans up to an order of magnitude by avoiding database hits. Query caching also works for
internal finders used to implement container-managed relationships where the target is a
read-only bean and for the newly introduced SQL finders. See “Tuning WebLogic Server
EJBs” on page 9-1.

Comprehensive monitoring and diagnostic tools. See “Understanding WLDF
Configuration” in Configuring and Using the WebLogic Diagnostic Framework.

The WebLogic Server Persistent Store, which provides a built-in, high-performance storage
solution for subsystems and services that require persistence. See “Using the WebLogic
Persistent Store” in Configuring WebLogic Server Environments.

http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html
http://e-docs.bea.com/wls/docs90/wldf_configuring/index.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html
http://dev2dev.bea.com/technologies/commonj/index.jsp
http://dev2dev.bea.com/technologies/commonj/twm/index.jsp

I n t roduct i on and Roadmap

1-4 BEA WebLogic Server Performance and Tuning

Logging Last Resource (LLR) optimization can significantly improve transaction
performance by safely eliminating some of the 2PC XA overhead for database processing,
especially for two-phase commit database insert, update, and delete operations. See
“Understanding the Logging Last Resource Transaction Option” in Configuring and
Managing WebLogic JDBC.

JMS Unit-of-Order enables concurrent processing of multiple ordered sets of messages
within a single destination. See “Using Message Unit-of-Order” in Programming WebLogic
JMS.

JMS Store-and-Forward provides higher performance when forwarding messages between
WebLogic Server 9.X domains. See “Understanding the Store-and-Forward Service” in
Configuring and Managing WebLogic Store-and-Forward.

For a comprehensive listing of the new WebLogic Server features introduced in release 9.0, see
“What's New in WebLogic Server 9.0” in Release Notes.

Related Documentation
For related information about administering and tuning WebLogic Server, see Appendix A,
“Related Reading: Performance Tools and Information.”

http://e-docs.bea.com/wls/docs90/notes/new.html
http://e-docs.bea.com/wls/docs90/saf_admin/overview.html
http://e-docs.bea.com/wls/docs90/jms/uoo.html
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#llr

BEA WebLogic Server Performance and Tuning 2-1

C H A P T E R 2

Performance Tuning Roadmap

Performance tuning WebLogic Server and your WebLogic Server application is a complex and
iterative process. The following sections provide a tuning roadmap and tuning tips for you can
use to improve system performance:

“Performance Tuning Roadmap” on page 2-1

“Tuning Tips” on page 2-6

Performance Tuning Roadmap
The following steps provide a roadmap to help tune your application environment to optimize
performance:

1. “Understand Your Performance Objectives” on page 2-1

2. “Measure Your Performance Metrics” on page 2-2

3. “Locate Bottlenecks in Your System” on page 2-4

4. “Minimize Impact of Bottlenecks” on page 2-4

5. “Achieve Performance Objectives” on page 2-6

Understand Your Performance Objectives
To determine your performance objectives, you need to understand the application deployed and
the environmental constraints placed on the system. Gather information about the levels of
activity that components of the application are expected to meet, such as:

Pe r fo rmance Tun ing Roadmap

2-2 BEA WebLogic Server Performance and Tuning

The anticipated number of users.

The number and size of requests.

The amount of data and its consistency.

Determining your target CPU utilization.

Your target CPU usage should not be 100%, you should determine a target CPU utilization
based on your application needs, including CPU cycles for peak usage. If your CPU
utilization is optimized at 100% during normal load hours, you have no capacity to handle
a peak load. In applications that are latency sensitive and maintain the ability for a fast
response time is important, high CPU usage (approaching 100% utilization) can reduce
response times while throughput stays constant or even increases because of work queuing
up in the server. For such applications, a 70% - 80% CPU utilization recommended. A
good target for non-latency sensitive applications is about 90%.

Performance objectives are limited by constraints, such as

The configuration of hardware and software such as CPU type, disk size vs. disk speed,
sufficient memory.

There is no single formula for determining your hardware requirements. The process of
determining what type of hardware and software configuration is required to meet
application needs adequately is called capacity planning. Capacity planning requires
assessment of your system performance goals and an understanding of your application.
Capacity planning for server hardware should focus on maximum performance
requirements. See “Capacity Planning” on page C-1.

The ability to interoperate between domains, use legacy systems, support legacy data.

Development, implementation, and maintenance costs.

You will use this information to set realistic performance objectives for your application
environment, such as response times, throughput, and load on specific hardware.

Measure Your Performance Metrics
After you have determined your performance criteria in “Understand Your Performance
Objectives” on page 2-1, take measurements of the metrics you will use to quantify your
performance objectives. See “Load Testing Tools” on page A-6. The following sections provide
information on measuring basic performance metrics:

“Monitor Disk and CPU Utilization” on page 2-3

Per fo rmance Tun ing Roadmap

BEA WebLogic Server Performance and Tuning 2-3

“Monitor Data Transfers Across the Network” on page 2-3

Monitor Disk and CPU Utilization
Run your application under a high load while monitoring the:

Application server (disk and CPU utilization)

Database server (disk and CPU utilization)

The goal is to get to a point where the application server achieves your target CPU utilization. If
you find that the application server CPU is under utilized, confirm whether the database is bottle
necked. If the database CPU is 100 percent utilized, then check your application SQL calls query
plans. For example, are your SQL calls using indexes or doing linear searches? Also, confirm
whether there are too many ORDER BY clauses used in your application that are affecting the
database CPU. See “Operating System Tuning” on page 4-1.

If you discover that the database disk is the bottleneck (for example, if the disk is 100 percent
utilized), try moving to faster disks or to a RAID (redundant array of independent disks)
configuration, assuming the application is not doing more writes then required.

Once you know the database server is not the bottleneck, determine whether the application
server disk is the bottleneck. Some of the disk bottlenecks for application server disks are:

Persistent Store writes

Transaction logging (tlogs)

HTTP logging

Server logging

The disk I/O on an application server can be optimized using faster disks or RAID, disabling
synchronous JMS writes, using JTA direct writes for tlogs, or increasing the HTTP log buffer.

Monitor Data Transfers Across the Network
Check the amount of data transferred between the application and the application server, and
between the application server and the database server. This amount should not exceed your
network bandwidth; otherwise, your network becomes the bottleneck. See “Setting TCP
Parameters With the ndd Command” on page 4-2.

Pe r fo rmance Tun ing Roadmap

2-4 BEA WebLogic Server Performance and Tuning

Locate Bottlenecks in Your System
If you determine that neither the network nor the database server is the bottleneck, start looking
at your operating system, JVM, and WebLogic Server configurations. Most importantly, is the
machine running WebLogic Server able to get your target CPU utilization with a high client load?
If the answer is no, then check if there is any locking taking place in the application. You should
profile your application using a commercially available tool (for example, JProbe or OptimizeIt)
to pinpoint bottlenecks and improve application performance.

Tip: Even if you find that the CPU is 100 percent utilized, you should profile your application
for performance improvements.

For more information about application profiling tools, see “Performance Analysis Tools” on
page A-6.

Minimize Impact of Bottlenecks
In this step, you tune your environment to minimize the impact of bottlenecks on your
performance objectives. It is important to realize that in this step you are minimizing the impact
of bottlenecks, not eliminating them. Tuning allows you to adjust resources to achieve your
performance objectives. For the scope of this document, this includes (from most important to
least important):

“Tune Your Application” on page 2-4

“Tune your DB” on page 2-5

“Tune WebLogic Server Performance Parameters” on page 2-5

“Tune Your JVM” on page 2-5

“Tune the Operating System” on page 2-5

“Tuning the WebLogic Persistent Store” on page 7-1

Tune Your Application
To quote the authors of Mastering BEA WebLogic Server: Best Practices for Building and
Deploying J2EE Applications: “Good application performance starts with good application
design. Overly-complex or poorly-designed applications will perform poorly regardless of the
system-level tuning and best practices employed to improve performance.” In other words, a
poorly designed application can create unnecessary bottlenecks. For example, resource
contention could be a case of poor design, rather than inherent to the application domain.

Per fo rmance Tun ing Roadmap

BEA WebLogic Server Performance and Tuning 2-5

For more information, see:

“Tuning WebLogic Server EJBs” on page 9-1

“Tuning JDBC Applications” on page 10-1

“Tuning WebLogic JMS” on page 12-1

“Tuning WebLogic JMS Store-and-Forward” on page 13-1

“Tuning WebLogic Message Bridge” on page 14-1

“Tuning Resource Adapters” on page 15-1

“Tuning Web Applications” on page 16-1

“Tuning WebLogic Tuxedo Connector” on page 17-1

Tune your DB
Your database can be a major enterprise-level bottleneck. Database optimization can be complex
and vender dependent. See “DataBase Tuning” on page 8-1.

Tune WebLogic Server Performance Parameters
The WebLogic Server uses a number of OOTB (out-of-the-box) performance-related parameters
that can be fine-tuned depending on your environment and applications. Tuning these parameters
based on your system requirements (rather than running with default settings) can greatly
improve both single-node performance and the scalability characteristics of an application. See
“Tuning WebLogic Server” on page 6-1.

Tune Your JVM
The Java virtual machine (JVM) is a virtual “execution engine” instance that executes the
bytecodes in Java class files on a microprocessor. See “Tuning Java Virtual Machines (JVMs)”
on page 5-1.

Tune the Operating System
Each operating system sets default tuning parameters differently. For Windows platforms, the
default settings are usually sufficient. However, the UNIX and Linux operating systems usually
need to be tuned appropriately. See “Operating System Tuning” on page 4-1.

Pe r fo rmance Tun ing Roadmap

2-6 BEA WebLogic Server Performance and Tuning

Achieve Performance Objectives
Performance tuning is an iterative process. After you have minimized the impact of bottlenecks
on your system, go to Step 2, “Measure Your Performance Metrics” on page 2-2 and determine
if you have met your performance objectives.

Tuning Tips
This section provides tips and guidelines when tuning overall system performance:

Performance tuning is not a silver bullet. Simply put, good system performance depends
on: good design, good implementation, defined performance objectives, and performance
tuning.

Performance tuning is ongoing process. Implement mechanisms that provide performance
metrics which you can compare against your performance objectives, allowing you to
schedule a tuning phase before your system fails.

The object is to meet your performance objectives, not eliminate all bottlenecks. Resources
within a system are finite. By definition, at least one resource (CPU, memory, or I/O) will
be a bottleneck in the system. Tuning allows you minimize the impact of bottlenecks on
your performance objectives.

Design your applications with performance in mind:

– Keep things simple - avoid inappropriate use of published patterns.

– Apply J2EE performance patterns.

– Optimize your Java code.

BEA WebLogic Server Performance and Tuning 2-1

C H A P T E R 3

Top Tuning Recommendations for
WebLogic Server

Performance tuning WebLogic Server and your WebLogic Server application is a complex and
iterative process. To get you started, we have created a short list of recommendations to help you
optimize your application’s performance. These tuning techniques are applicable to nearly all
WebLogic applications.

“Tune Pool Sizes” on page 3-1

“Use the Prepared Statement Cache” on page 3-2

“Use Logging Last Resource Optimization” on page 3-2

“Tune Connection Backlog Buffering” on page 3-2

“Tune the Chunk Size” on page 3-2

“Use Optimistic or Read-only Concurrency” on page 3-3

“Use Local Interfaces” on page 3-3

“Use eager-relationship-caching” on page 3-3

“Tune HTTP Sessions” on page 3-3

“Tune Messaging Applications” on page 3-4

Tune Pool Sizes
Provide pool sizes (such as pools for JDBC connections, Stateless Session EJBs, and MDBs) that
maximize concurrency for the expected thread utilization.

Top Tun ing Recommendat ions fo r WebLog ic Se rve r

2-2 BEA WebLogic Server Performance and Tuning

For WebLogic Server releases 9.0 and higher—A server instance uses a self-tuned
thread-pool. The best way to determine the appropriate pool size is to monitor the pool's
current size, shrink counts, grow counts, and wait counts. See “Thread Management” on
page 6-3.

For releases prior to WebLogic Server 9.0— In general, the number of connections should
equal the number of threads that are expected to be required to process the requests
handled by the pool. The most effective way to ensure the right pool size is to monitor it
and make sure it does not shrink and grow. See “Using the WebLogic 8.1 Thread Pool
Model” on page B-1.

Use the Prepared Statement Cache
The prepared statement cache keeps compiled SQL statements in memory, thus avoiding a
round-trip to the database when the same statement is used later. See “Cache Prepared and
Callable Statements” on page 10-3.

Use Logging Last Resource Optimization
When using transactional database applications, consider using the JDBC data source Logging
Last Resource (LLR) transaction policy instead of XA. The LLR optimization can significantly
improve transaction performance by safely eliminating some of the 2PC XA overhead for
database processing, especially for two-phase commit database insert, update, and delete
operations. For more information, see “Tuning Logging Last Resource” on page 11-1.

Tune Connection Backlog Buffering
You can tune the number of connection requests that a WebLogic Server instance accepts before
refusing additional requests. This tunable applies primarily for web applications. See “Tuning
Connection Backlog Buffering” on page 6-11.

Tune the Chunk Size
A chunk is a unit of memory that the WebLogic Server network layer, both on the client and
server side, uses to read data from and write data to sockets. A server instance maintains a pool
of these chunks. For applications that handle large amounts of data per request, increasing the
value on both the client and server sides can boost performance. See “Tune the Chunk
Parameters” on page 6-10.

Use Opt imis t i c o r Read-on l y Concur rency

BEA WebLogic Server Performance and Tuning 2-3

Use Optimistic or Read-only Concurrency
Use optimistic concurrency with cache-between-transactions or read-only concurrency with
query-caching for CMP EJBs wherever possible. Both of these two options leverage the Entity
Bean cache provided by the EJB container.

Optimistic-concurrency with cache-between-transactions work best with read-mostly
beans. Using verify-reads in combination with these provides high data consistency
guarantees with the performance gain of caching. See “Tuning WebLogic Server EJBs” on
page 9-1.

Query-caching is a WebLogic Server 9.0 feature that allows the EJB container to cache
results for arbitrary non-primary-key finders defined on read-only EJBs. All of these
parameters can be set in the application/module deployment descriptors. See “CMP Entity
Bean Tuning” on page 9-5.

Use Local Interfaces
Use local-interfaces or use call-by-reference semantics to avoid the overhead of serialization
when one EJB calls another or an EJB is called by a servlet/JSP in the same application. Note the
following:

In release prior to WebLogic Server 8.1, call-by-reference is turned on by default. For
releases of WebLogic Server 8.1 and higher, call-by-reference is turned off by default.
Older applications migrating to WebLogic Server 8.1 and higher that do not explicitly turn
on call-by-reference may experience a drop in performance.

This optimization does not apply to calls across different applications.

Use eager-relationship-caching
Use eager-relationship-caching wherever possible. This feature allows the EJB container to load
related beans using a single SQL statement. It improves performance by reducing the number of
database calls to load related beans in transactions when a bean and it's related beans are expected
to be used in that transaction. See “Tuning WebLogic Server EJBs” on page 9-1.

Tune HTTP Sessions
Optimize your application so that it does as little work as possible when handling session
persistence and sessions. You should also design a session management strategy that suits your
environment and application. See “Session Management” on page 16-3.

Top Tun ing Recommendat ions fo r WebLog ic Se rve r

2-4 BEA WebLogic Server Performance and Tuning

Tune Messaging Applications
BEA provides messaging users a rich set of performance tunables. In general, you should always
configure quotas and paging. See:

“Tuning the WebLogic Persistent Store” on page 7-1

“Tuning WebLogic JMS” on page 12-1

“Tuning WebLogic JMS Store-and-Forward” on page 13-1

“Tuning WebLogic Message Bridge” on page 14-1

BEA WebLogic Server Performance and Tuning 3-1

C H A P T E R 4

Operating System Tuning

Tune your operating system according to your operating system documentation. For Windows
platforms, the default settings are usually sufficient. However, the Solaris and Linux platforms
usually need to be tuned appropriately. The following sections describe issues related to operating
system performance:

“Basic OS Tuning Concepts” on page 4-1

“Solaris Tuning Parameters” on page 4-2

“Linux Tuning Parameters” on page 4-4

“HP-UX Tuning Parameters” on page 4-4

“Windows Tuning Parameters” on page 4-5

“Other Operating System Tuning Information” on page 4-5

Basic OS Tuning Concepts
Proper OS tuning improves system performance by preventing the occurrence of error conditions.
Operating system error conditions always degrade performance. Typically most error conditions
are TCP tuning parameter related and are caused by the operating system’s failure to release old
sockets from a close_wait call. Common errors are “connection refused”, “too many
open files” on the server-side, and “address in use: connect” on the client-side.

In most cases, these errors can be prevented by adjusting the TCP wait_time value and the TCP
queue size. Although users often find the need to make adjustments when using tunnelling, OS

Operat ing Sys tem Tun ing

3-2 BEA WebLogic Server Performance and Tuning

tuning may be necessary for any protocol under sufficiently heavy loads. The following sections
provide information on tuning parameters for various operating systems.

Note: Although the following sections provide information on tuning parameters that BEA has
determined can enhance application performance, BEA recommends following your OS
vendor's tuning documentation for tuning parameter values and monitoring performance
changes when changing tuning parameters in your local environment. Another resource
which may provide helpful tuning information is the All SPEC jAppServer2004 Results
Published by SPEC web page. It provides the OS tuning parameters used for each
reported WebLogic Server benchmark.

Solaris Tuning Parameters
The following sections provide information on tuning Solaris operating systems:

“Setting TCP Parameters With the ndd Command” on page 4-2

“Setting Parameters In the /etc/system File” on page 4-3

“CE Gigabit Network Card Settings” on page 4-3

“Additional Solaris Tuning Information” on page 4-4

Setting TCP Parameters With the ndd Command
This section lists important TCP tuning parameters that when tuned, can enhance application
performance:

/dev/tcp tcp_time_wait_interval

/dev/tcp tcp_conn_req_max_q

/dev/tcp tcp_conn_req_max_q0

/dev/tcp tcp_ip_abort_interval

/dev/tcp tcp_keepalive_interval

/dev/tcp tcp_rexmit_interval_initial

/dev/tcp tcp_rexmit_interval_max

/dev/tcp tcp_rexmit_interval_min

/dev/tcp tcp_smallest_anon_port

/dev/tcp tcp_xmit_hiwat

http://www.spec.org/jAppServer2004/results/jAppServer2004.html
http://www.spec.org/jAppServer2004/results/jAppServer2004.html

So la r i s Tun ing Parameters

BEA WebLogic Server Performance and Tuning 3-3

/dev/tcp tcp_recv_hiwat

/dev/ce instance

/dev/ce rx_intr_time

Tip: Use the netstat -s -P tcp command to view all available TCP parameters.

Set TCP-related tuning parameters using the ndd command, as demonstrated in the following
example:

ndd -set /dev/tcp tcp_conn_req_max_q 16384

Setting Parameters In the /etc/system File
This section lists important /etc/system file tuning parameters that when tuned, can enhance
application performance. Each socket connection to the server consumes a file descriptor. To
optimize socket performance, you may need to configure your operating system to have the
appropriate number of file descriptors. Therefore, you should change the default file descriptor
limits, as well as the hash table size and other tuning parameters in the /etc/system file.

Note: You must reboot your machine anytime you modify /etc/system parameters.

set rlim_fd_cur

set rlim_fd_max

set tcp:tcp_conn_hash_size

set shmsys:shminfo_shmmax Note: This should only be set for machines that have at
least 4 GB RAM or higher.

set autoup

set tune_t_fsflushr

CE Gigabit Network Card Settings
This section lists important CE Gigabit Network Card tuning parameters that when tuned, can
enhance application performance:

set ce:ce_bcopy_thresh

set ce:ce_dvma_thresh

set ce:ce_taskq_disable

set ce:ce_ring_size

Operat ing Sys tem Tun ing

3-4 BEA WebLogic Server Performance and Tuning

set ce:ce_comp_ring_size

set ce:ce_tx_ring_size

Additional Solaris Tuning Information
For more information about Solaris tuning options, see:

Solaris Tunable Parameters Reference Manual (Solaris 8), at
http://docs.sun.com/app/docs/doc/806-6779

Solaris Tunable Parameters Reference Manual (Solaris 9), at
http://docs.sun.com/app/docs/doc/806-7009

Solaris Tunable Parameters Reference Manual (Solaris 10), at
http://docs.sun.com/app/docs/doc/817-0404

Linux Tuning Parameters
This section lists important Linux tuning parameters that when adjusted, can enhance application
performance:

/sbin/ifconfig lo mtu

kernel.msgmni

kernel.sem

fs.file-max

kernel.shmmax

net.ipv4.tcp_max_syn_backlog

For more information about Linux tuning, you should consult your Linux vendor’s
documentation. Also, the Ipsysctl Tutorial 1.0.4, at
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html, describes all of
the IP options provided by Linux.

HP-UX Tuning Parameters
This section lists important HP-UX operating system tuning parameters that when adjusted, can
enhance application performance:

tcp_conn_req_max

http://docs.sun.com/app/docs/doc/806-6779
http://docs.sun.com/app/docs/doc/806-7009
http://docs.sun.com/app/docs/doc/817-0404
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html

Windows Tun ing Parameters

BEA WebLogic Server Performance and Tuning 3-5

tcp_xmit_hiwater_def

tcp_ip_abort_interval

tcp_rexmit_interval_initial

tcp_keepalive_interval

For more HP-UX tuning information, see the Tunable Kernel Parameters reference
documentation, at http://docs.hp.com/hpux/onlinedocs/TKP-90203/TKP-90203.html.

Windows Tuning Parameters
For Windows platforms, the default settings are usually sufficient. However, under sufficiently
heavy loads it may be necessary to adjust the MaxUserPort and TcpTimedWaitDelay. These
parameters determine the availability of user ports requested by an application.

By default, ephemeral (that is, short-lived) ports are allocated between the values of 1024 and
5000 inclusive using the MaxUserPort parameter. The TcpTimedWaitDelay parameter, which
controls the amount of time the OS waits to reclaim a port after an application closes a TCP
connection, has a default value of 4 minutes. During a heavy loads, these limits may be exceeded
resulting in an address in use: connect exception. If you experience address in use:
connect exceptions try setting the MaxUserPort and TcpTimedWaitDelay registry values
under the
HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services\Tcpip\Parameters key:

MaxUserPort = dword:00004e20 (20,000 decimal)
TcpTimedWaitDelay = dword:0000001e (30 decimal)

Increase the value of the MaxUserPort parameter if the exception persists.

For more information about Windows 2000 tuning options, see:

The Microsoft Windows 2000 TCP/IP Implementation Details white paper, at
http://www.microsoft.com/windows2000/techinfo/howitworks/communication
s/networkbasics/tcpip_implement.asp.

The Windows 2000 Performance Tuning white paper at
http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/o

ptimize/perftune.mspx.

Other Operating System Tuning Information
For more information about HP-UX, and AIX tuning options, refer to the following Web sites:

http://www.microsoft.com/windows2000/techinfo/howitworks/communications/networkbasics/tcpip_implement.asp
http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/optimize/perftune.mspx
http://docs.hp.com/hpux/onlinedocs/TKP-90203/TKP-90203.html

Operat ing Sys tem Tun ing

3-6 BEA WebLogic Server Performance and Tuning

For AIX tuning information, see the AIX 5L Version 5.2 Performance Management Guide,
at
http://publib16.boulder.ibm.com/pseries/en_US/aixbman/prftungd/prftungd

.htm.

Maximum memory for a user process — Check your operating system documentation for
the maximum memory available for a user process. In some operating systems, this value
is as low as 128 MB. Also, refer to your operating system documentation.For more
information about memory management, see Chapter 5, “Tuning Java Virtual Machines
(JVMs).”

http://publib16.boulder.ibm.com/pseries/en_US/aixbman/prftungd/prftungd.htm

BEA WebLogic Server Performance and Tuning 4-1

C H A P T E R 5

Tuning Java Virtual Machines (JVMs)

The Java virtual machine (JVM) is a virtual “execution engine” instance that executes the
bytecodes in Java class files on a microprocessor. How you tune your JVM affects the
performance of WebLogic Server and your applications. envelope

The following sections discuss JVM tuning options for WebLogic Server:

“JVM Tuning Considerations” on page 5-2

“Which JVM for Your System?” on page 5-2

“Garbage Collection” on page 5-3

“Enable Spinning for IA32 Platforms” on page 5-12

Tun ing Java V i r tua l Machines (JVMs)

4-2 BEA WebLogic Server Performance and Tuning

JVM Tuning Considerations
Table 5-1 presents general JVM tuning considerations for WebLogic Server.

Which JVM for Your System?
Although this section focuses on Sun Microsystems’ J2SE 5.0 JVM for the Windows, UNIX, and
Linux platforms, the BEA JRockit JVM was developed expressly for server-side applications and

Table 5-1 General JVM Tuning Considerations

Tuning Factor Information Reference

JVM vendor and version Use only production JVMs on which WebLogic Server has
been certified. This release of WebLogic Server supports
only those JVMs that are J2SE 5.0-compliant.

The Supported Configurations pages at
{PLATFORM}/index.html are frequently updated and
contains the latest certification information on various
platforms.

Tuning heap size and garbage
collection

For WebLogic Server heap size tuning details, see “Garbage
Collection” on page 5-3.

Choosing a GC (garbage
collection) scheme

Depending on your application, there are a number of GC
schemes available for managing your system memory, as
described in “Choosing a Garbage Collection Scheme” on
page 5-4.

Mixed client/server JVMs Deployments using different JVM versions for the client and
server are supported in WebLogic Server. See the support
page for Mixed Client/Server JVMs, at
{PLATFORM}/index.html#mix.

UNIX threading models Choices you make about Solaris threading models can have
a large impact on the performance of your JVM on Solaris.
You can choose from multiple threading models and
different methods of synchronization within the model, but
this varies from JVM to JVM.

See “Performance Documentation For the Java Hotspot
Virtual Machine: Threading” on Sun Microsystems’ Web
site at
http://http://java.sun.com/docs/hotspot/t
hreads/threads.html.

http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html#mix
http://java.sun.com/docs/hotspot/threads/threads.html
http://java.sun.com/docs/hotspot/threads/threads.html

Garbage Co l lec t i on

BEA WebLogic Server Performance and Tuning 4-3

optimized for Intel architectures to ensure reliability, scalability, manageability, and flexibility
for Java applications. For more information about the benefits of using JRockit on Windows and
Linux platforms, see Introduction to JRockit JDK, at
http://e-docs.bea.com/wljrockit/docs50/intro/index.html.

For more information on JVMs in general, see the Introduction to the JVM specification, at
http://java.sun.com/docs/books/vmspec/2nd-edition/html/Introduction.doc.ht

ml#3057. For links to related reading for JVM tuning, see Appendix A, “Related Reading:
Performance Tools and Information.”

Changing To a Different JVM
When you create a domain, if you choose to customize the configuration, the Configuration
Wizard presents a list of JDKs that WebLogic Server installed. From this list, you choose the
JVM that you want to run your domain and the wizard configures the BEA start scripts based on
your choice. After you create a domain, if you want to use a different JVM, see “Changing the
JVM That Runs Servers” at {DOCROOT}/server_start/overview.html#ChangingJVM.

Garbage Collection
Garbage collection is the VM’s process of freeing up unused Java objects in the Java heap. The
following sections provide information on tuning your VM’s garbage collection:

“VM Heap Size and Garbage Collection” on page 5-3

“Choosing a Garbage Collection Scheme” on page 5-4

“Using Verbose Garbage Collection to Determine Heap Size” on page 5-5

“Specifying Heap Size Values” on page 5-7

“Automatically Logging Low Memory Conditions” on page 5-11

“Manually Requesting Garbage Collection” on page 5-11

“Requesting Thread Stacks” on page 5-12

VM Heap Size and Garbage Collection
The Java heap is where the objects of a Java program live. It is a repository for live objects, dead
objects, and free memory. When an object can no longer be reached from any pointer in the

http://e-docs.bea.com/wls/docs90/server_start/overview.html#ChangingJVM
http://e-docs.bea.com/wls/docs90/server_start/overview.html#ChangingJVM
http://e-docs.bea.com/wljrockit/docs50/intro/index.html
http://java.sun.com/docs/books/vmspec/2nd-edition/html/Introduction.doc.html#3057

Tun ing Java V i r tua l Machines (JVMs)

4-4 BEA WebLogic Server Performance and Tuning

running program, it is considered “garbage” and ready for collection. A best practice is to tune
the time spent doing garbage collection to within 5% of execution time.

The JVM heap size determines how often and how long the VM spends collecting garbage. An
acceptable rate for garbage collection is application-specific and should be adjusted after
analyzing the actual time and frequency of garbage collections. If you set a large heap size, full
garbage collection is slower, but it occurs less frequently. If you set your heap size in accordance
with your memory needs, full garbage collection is faster, but occurs more frequently.

The goal of tuning your heap size is to minimize the time that your JVM spends doing garbage
collection while maximizing the number of clients that WebLogic Server can handle at a given
time. To ensure maximum performance during benchmarking, you might set high heap size
values to ensure that garbage collection does not occur during the entire run of the benchmark.

You might see the following Java error if you are running out of heap space:

java.lang.OutOfMemoryError <<no stack trace available>>

java.lang.OutOfMemoryError <<no stack trace available>>

Exception in thread "main"

To modify heap space values, see “Specifying Heap Size Values” on page 5-7.

To configure WebLogic Server to detect automatically when you are running out of heap space
and to address low memory conditions in the server, see “” on page 5-13.

Choosing a Garbage Collection Scheme
Depending on which JVM you are using, you can choose from several garbage collection
schemes to manage your system memory. For example, some garbage collection schemes are
more appropriate for a given type of application. Once you have an understanding of the
workload of the application and the different garbage collection algorithms utilized by the JVM,
you can optimize the configuration of the garbage collection.

Refer to the following links for in-depth discussions of garbage collection options for your JVM:

For an overview of the garbage collection schemes available with Sun’s HotSpot VM, see
Tuning Garbage Collection with the 5.0 Java Virtual Machine, at
http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html.

For a comprehensive explanation of the collection schemes available, see Improving Java
Application Performance and Scalability by Reducing Garbage Collection Times and
Sizing Memory Using JDK 1.4.1 at
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecoll

ection2/.

http://java.sun.com/docs/hotspot/gc5.0/gc_tuning_5.html
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollection2/
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollection2/
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollection2/

Garbage Co l lec t i on

BEA WebLogic Server Performance and Tuning 4-5

For a discussion of the garbage collection schemes available with the BEA JRockit JDK,
see Using the BEA JRockit Memory Management System, at
http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html.

For some pointers about garbage collection from an HP perspective, see Performance
tuning Java™: Tuning steps, at
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1

701,1604,00.html.

Using Verbose Garbage Collection to Determine Heap Size
The verbose garbage collection option (verbosegc) enables you to measure exactly how much
time and resources are put into garbage collection. To determine the most effective heap size, turn
on verbose garbage collection and redirect the output to a log file for diagnostic purposes.

The following steps outline this procedure:

1. Monitor the performance of WebLogic Server under maximum load while running your
application.

2. Use the -verbosegc option to turn on verbose garbage collection output for your JVM and
redirect both the standard error and standard output to a log file.

This places thread dump information in the proper context with WebLogic Server
informational and error messages, and provides a more useful log for diagnostic purposes.

For example, on Windows and Solaris, enter the following:
% java -ms32m -mx200m -verbosegc -classpath $CLASSPATH
-Dweblogic.Name=%SERVER_NAME% -Dbea.home="C:\bea"
-Dweblogic.management.username=%WLS_USER%
-Dweblogic.management.password=%WLS_PW%
-Dweblogic.management.server=%ADMIN_URL%
-Dweblogic.ProductionModeEnabled=%STARTMODE%
-Djava.security.policy="%WL_HOME%\server\lib\weblogic.policy"
weblogic.Server
>> logfile.txt 2>&1

where the logfile.txt 2>&1 command redirects both the standard error and standard
output to a log file.

On HPUX, use the following option to redirect stderr stdout to a single file:
-Xverbosegc:file=/tmp/gc$$.out

http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html
http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1701,1604,00.html

Tun ing Java V i r tua l Machines (JVMs)

4-6 BEA WebLogic Server Performance and Tuning

where $$ maps to the process ID (PID) of the Java process. Because the output includes
timestamps for when garbage collection ran, you can infer how often garbage collection
occurs.

3. Analyze the following data points:

a. How often is garbage collection taking place? In the weblogic.log file, compare the
time stamps around the garbage collection.

b. How long is garbage collection taking? Full garbage collection should not take longer than
3 to 5 seconds.

c. What is your average memory footprint? In other words, what does the heap settle back
down to after each full garbage collection? If the heap always settles to 85 percent free,
you might set the heap size smaller.

4. Review the New generation heap sizes (Sun) or Nursery size (BEA Jrockit).

For BEA Jrockit: see “BEA JRockit JVM Heap Size Options” on page 5-7.

For Sun: see “Java HotSpot VM Heap Size Options” on page 5-9.

5. Make sure that the heap size is not larger than the available free RAM on your system.

Use as large a heap size as possible without causing your system to “swap” pages to disk.
The amount of free RAM on your system depends on your hardware configuration and the
memory requirements of running processes on your machine. See your system
administrator for help in determining the amount of free RAM on your system.

6. If you find that your system is spending too much time collecting garbage (your allocated
virtual memory is more than your RAM can handle), lower your heap size.

Typically, you should use 80 percent of the available RAM (not taken by the operating
system or other processes) for your JVM.

7. If you find that you have a large amount of available free RAM remaining, run more
instances of WebLogic Server on your machine.

Remember, the goal of tuning your heap size is to minimize the time that your JVM spends
doing garbage collection while maximizing the number of clients that WebLogic Server
can handle at a given time.

Note: JVM vendors may provide other options to print comprehensive garbage collection
reports. For example, you can use the BEA JRockit JVM -Xgcreport option to print a
comprehensive garbage collection report at program completion, see “Viewing Garbage

http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html
http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html

Garbage Co l lec t i on

BEA WebLogic Server Performance and Tuning 4-7

Collection Behavior”, at
http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html.

Specifying Heap Size Values
System performance is greatly influenced by the size of the Java heap available to the JVM. This
section describes the command line options you use to define the heap sizes values.You must
specify Java heap size values each time you start an instance of WebLogic Server. This can be
done either from the java command line or by modifying the default values in the sample startup
scripts that are provided with the WebLogic distribution for starting WebLogic Server.

“Tuning Tips for Heap Sizes” on page 5-7

“BEA JRockit JVM Heap Size Options” on page 5-7

“Java HotSpot VM Heap Size Options” on page 5-9

Tuning Tips for Heap Sizes
The following section provides general guidelines for tuning VM heap sizes:

The heap sizes should be set to values such that the maximum amount of memory used by
the VM does not exceed the amount of available physical RAM. If this value is exceeded,
the OS starts paging and performance degrades significantly. The VM always uses more
memory than the heap size. The memory required for internal VM functionality, native
libraries outside of the VM, and permanent generation memory (for the Sun VM only:
memory required to store classes and methods) is allocated in addition to the heap size
settings.

When using a generational garbage collection scheme, the nursery size should not exceed
more than half the total Java heap size. Typically, 25% to 40% of the heap size is adequate.

In production environments, set the minimum heap size and the maximum heap size to the
same value to prevent wasting VM resources used to constantly grow and shrink the heap.
This also applies to the New generation heap sizes (Sun) or Nursery size (BEA Jrockit).

BEA JRockit JVM Heap Size Options
Although BEA JRockit provides automatic heap resizing heuristics, they are not optimal for all
applications. In most situations, best performance is achieved by tuning the VM for each
application by adjusting the heaps size options shown in Table 5-2.

http://e-docs.bea.com/wljrockit/docs50/userguide/memman.html

Tun ing Java V i r tua l Machines (JVMs)

4-8 BEA WebLogic Server Performance and Tuning

For example, when you start a WebLogic Server instance from a java command line, you could
specify the BEA JRockit VM heap size values as follows:

$ java -Xns10m -Xms512m -Xmx512m

The default size for these values is measured in bytes. Append the letter ‘k’ or ‘K’ to the value to
indicate kilobytes, ‘m’ or ‘M’ to indicate megabytes, and ‘g’ or ‘G’ to indicate gigabytes. The
example above allocates 10 megabytes of memory to the Nursery heap sizes and 512 megabytes of
memory to the minimum and maximum heap sizes for the WebLogic Server instance running in
the JVM.

For detailed information about setting the appropriate heap sizes for WebLogic’s JRockit JVM,
see Tuning the JRockit JVM, at
http://edocs.bea.com/wljrockit/docs50/tuning/index.html.

Other BEA JRockit VM Options

Table 5-2 BEA JRockit JVM Heap Size Options

Setting the Nursery -Xns Optimally, you should try to make the nursery as
large as possible while still keeping the garbage
collection pause times acceptably low. This is
particularly important if your application is
creating a lot of temporary objects.

The maximum size of a nursery cannot exceed
95% of the maximum heap size.

Setting minimum
heap size

-Xms BEA recommends setting the minimum heap size
(-Xms) equal to the maximum heap size (-Xmx)
to minimize garbage collections.

Setting maximum
heap size

-Xmx Setting a low maximum heap value compared to
the amount of live data decrease performance by
forcing frequent garbage collections.

Setting garbage
collection

-Xgc: parallel

Performs adaptive
optimizations as
early as possible in
the Java application
run.

-XXaggressive:memor
y

To do this, the bottleneck detector will run with a
higher frequency from the start and then gradually
lower its frequency. This options also tells BEA
JRockit to use the available memory aggressively.

http://edocs.bea.com/wljrockit/docs50/tuning/index.html

Garbage Co l lec t i on

BEA WebLogic Server Performance and Tuning 4-9

BEA provides other command-line options to improve the performance of your BEA JRockit
VM. For detailed information, see BEA JRockit JDK Command Line Options by Name, at
http://e-docs.bea.com/jrockit/docs50/options.html.

Java HotSpot VM Heap Size Options
You achieve best performance by individually tuning each application. However, configuring the
Java HotSpot VM heap size options listed in Table 5-3 when starting WebLogic Server increases
performance for most applications.

These options may differ depending on your architecture and operating system. See your
vendor’s documentation for platform-specific JVM tuning options.

Table 5-3 Java Heap Size Options

Task Option Comments

Setting the New generation
heap size

-XX:NewSize As a general rule, set -XX:NewSize to be
one-fourth the size of the heap size. Increase the
value of this option for larger numbers of short-lived
objects.

Be sure to increase the New generation as you
increase the number of processors. Memory
allocation can be parallel, but garbage collection is
not parallel.

Setting the maximum New
generation heap size

-XX:MaxNewSize Set the maximum size of the New Generation heap
size.

Setting New heap size
ratios

-XX:SurvivorRatio The New generation area is divided into three
sub-areas: Eden, and two survivor spaces that are
equal in size.

Configure the ratio of the Eden/survivor space size.
Try setting this value to 8, and then monitor your
garbage collection.

Setting minimum heap size -Xms As a general rule, set minimum heap size (-Xms)
equal to the maximum heap size (-Xmx) to minimize
garbage collections.

http://e-docs.bea.com/jrockit/docs50/options.html

Tun ing Java V i r tua l Machines (JVMs)

4-10 BEA WebLogic Server Performance and Tuning

For example, when you start a WebLogic Server instance from a java command line, you could
specify the HotSpot VM heap size values as follows:

$ java -XX:NewSize=128m -XX:MaxNewSize=128m -XX:SurvivorRatio=8 -Xms512m

-Xmx512m

The default size for these values is measured in bytes. Append the letter ‘k’ or ‘K’ to the value to
indicate kilobytes, ‘m’ or ‘M’ to indicate megabytes, and ‘g’ or ‘G’ to indicate gigabytes. The
example above allocates 128 megabytes of memory to the New generation and maximum New
generation heap sizes, and 512 megabytes of memory to the minimum and maximum heap sizes for
the WebLogic Server instance running in the JVM.

Other Java HotSpot VM Options
Sun provides other standard and non-standard command-line options to improve the performance
of your VM. How you use these options depends on how your application is coded.

Test both your client and server JVMs to see which options perform better for your particular
application. The Sun Microsystems Java HotSpot VM Options document provides information
on the command-line options and environment variables that can affect the performance
characteristics of the Java HotSpot Virtual Machine. See
http://java.sun.com/docs/hotspot/VMOptions.html.

For additional examples of the HotSpot VM options, see:

Standard Options for Windows (Win32) VMs at
http://java.sun.com/j2se/1.5.0/docs/tooldocs/windows/java.html.

Standard Options for Solaris VMs at
http://java.sun.com/j2se/1.5.0/docs/tooldocs/solaris/java.html.

Standard Options for Linux VMs at
http://java.sun.com/j2se/1.5.0/docs/tooldocs/linux/java.html.

Setting maximum heap size -Xmx Set the maximum size of the heap.

Setting Big Heaps and
Intimate Shared Memory

-XX:+UseISM
-XX:+AggressiveHe
ap

See
http://java.sun.com/docs/hotspot/ism
.html

Table 5-3 Java Heap Size Options (Continued)

Task Option Comments

http://java.sun.com/docs/hotspot/VMOptions.html
http://java.sun.com/docs/hotspot/ism.html
http://java.sun.com/j2se/1.4.1/docs/tooldocs/windows/java.html#standard
http://java.sun.com/j2se/1.4.1/docs/tooldocs/solaris/java.html#standard
http://java.sun.com/j2se/1.5.0/docs/tooldocs/linux/java.html#standard

Garbage Co l lec t i on

BEA WebLogic Server Performance and Tuning 4-11

Sun Microsystems’ Java Virtual Machine document provides a detailed discussion of the Client
and Server implementations of the Java virtual machine for J2SE 5.0. See
http://java.sun.com/j2se/1.5.0/docs/guide/vm/index.html.

Automatically Logging Low Memory Conditions
WebLogic Server enables you to automatically log low memory conditions observed by the
server. WebLogic Server detects low memory by sampling the available free memory a set
number of times during a time interval. At the end of each interval, an average of the free memory
is recorded and compared to the average obtained at the next interval. If the average drops by a
user-configured amount after any sample interval, the server logs a low memory warning
message in the log file and sets the server health state to “warning.”

To log low memory conditions:

1. In the left pane of the console, expand Environment > Servers.

2. On the Summary of Servers page, select the server instance for which you will configure
log low memory conditions.

3. On the Configuration > Tuning tab, update as necessary:

Low Memory GCThreshold—Threshold at which the server instance logs a low memory
warning and changes the health state to warning.

Low Memory Sample Size—Number of times the server instance samples free memory
during the Low Memory Time Interval.

Low Memory Time Interval—Amount of time, in seconds, that defines the interval over
which the server instance determines average free memory values.

4. Click Save.

5. Reboot the server instance to use the new low memory detection values.

Manually Requesting Garbage Collection
You may find it necessary to manually request full garbage collection from the Administration
Console. When you do, remember that garbage collection is costly as the JVM often examines
every living object in the heap.

To request garbage collection:

1. In the left pane of the console, expand Environment > Servers.

http://java.sun.com/j2se/1.5.0/docs/guide/vm/index.html
http://java.sun.com/j2se/1.5.0/docs/guide/vm/index.html

Tun ing Java V i r tua l Machines (JVMs)

4-12 BEA WebLogic Server Performance and Tuning

2. On the Summary of Servers page, select the server instance for which you will request
garbage collection.

3. Expand the Monitoring > Performance tab.

4. Click Garbage Collect.

Requesting Thread Stacks
You may find it necessary to display thread stacks while tuning your applications.

To display a thread stack:

1. In the left pane of the console, expand Environment > Servers.

2. On the Summary of Servers page, select the server instance for which you will request
garbage collection.

3. Expand the Monitoring > Performance tab.

4. Click Dump Thread Stacks.

Enable Spinning for IA32 Platforms
If you are running a high-stress application with heavily contended locks on a multiprocessor
system, you can attempt to improve performance by using spinning. This option enables the
ability to spin the lock for a short time before going to sleep.

Sun JDK
Sun has changed the default lock spinning behavior in JDK 5.0 on the Windows IA32 platform.
For the JDK 5.0 release, lock spinning is disabled by default. For this release, BEA has explicitly
enabled spinning in the environment scripts used to start WebLogic Server. To enable spinning,
use the following VM option:

-XX:+UseSpinning

BEA JRockit
The BEA JRockit VM automatically adjusts the spinning for different locks, eliminating the need
set this parameter.

Note: In the BEA JRockit 8.1 SDK release, spinning was adjusted by setting
-XXenablefatspin option.

BEA WebLogic Server Performance and Tuning 4-13

Tun ing Java V i r tua l Machines (JVMs)

4-14 BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning 5-1

C H A P T E R 6

Tuning WebLogic Server

The following sections describe how to tune WebLogic Server to match your application needs.

“Setting Java Parameters for Starting WebLogic Server” on page 6-1

“Development vs. Production Mode Default Tuning Values” on page 6-2

“Thread Management” on page 6-3

“Tuning Network I/O” on page 6-7

“Setting Your Compiler Options” on page 6-12

“Using WebLogic Server Clusters to Improve Performance” on page 6-13

“How to Monitor a WebLogic Server Domain” on page 6-17

Setting Java Parameters for Starting WebLogic Server
Java parameters must be specified whenever you start WebLogic Server. For simple invocations,
this can be done from the command line with the weblogic.Server command. However,
because the arguments needed to start WebLogic Server from the command line can be lengthy
and prone to error, BEA recommends that you incorporate the command into a script. To simply
this process, you can modify the default values in the sample scripts that are provided with the
WebLogic distribution to start WebLogic Server, as described in “Specifying Java Options for a
WebLogic Server Instance” at {DOCROOT}/server_start/overview.html#JavaOptions.

If you used the Configuration Wizard to create your domain, the WebLogic startup scripts are
located in the domain-name directory where you specified your domain. By default, this directory

http://e-docs.bea.com/wls/docs90/server_start/overview.html#JavaOptions
http://e-docs.bea.com/wls/docs90/server_start/overview.html#JavaOptions

Tun ing WebLog ic Se rve r

5-2 BEA WebLogic Server Performance and Tuning

is BEA_HOME\user_projects\domain\domain-name, where BEA_HOME is the directory that
contains the product installation, and domain-name is the name of the domain directory defined
by the selected configuration template. For more information about creating domains using the
Configuration Wizard, see “Creating Domains Using the Configuration Wizard” at
http://e-docs.bea.com/common/docs90/confgwiz/intro.html.

You need to modify some default Java values in these scripts to fit your environment and
applications. The important performance tuning parameters in these files are the JAVA_HOME
parameter and the Java heap size parameters:

Change the value of the variable JAVA_HOME to the location of your JDK. For example:
set JAVA_HOME=C:\bea\jdk150_03

For higher performance throughput, set the minimum java heap size equal to the maximum
heap size. For example:
"%JAVA_HOME%\bin\java" -server –Xms512m –Xmx512m -classpath
%CLASSPATH% -

See “Specifying Heap Size Values” on page 5-7 for details about setting heap size options.

Development vs. Production Mode Default Tuning Values
You can indicate whether a domain is to be used in a development environment or a production
environment. WebLogic Server uses different default values for various services depending on
the type of environment you specify. Specify the startup mode for your domain as shown in the
following table.

Table 6-2 lists the performance-related configuration parameters that differ when switching from
development to production startup mode.

Table 6-1 Startup Modes

Choose this mode when . . .

Development You are creating your applications. In this mode, the
configuration of security is relatively relaxed, allowing you
to auto-deploy applications.

Production Your application is running in its final form. In this mode,
security is fully configured.

http://e-docs.bea.com/common/docs90/confgwiz/intro.html

Thread Management

BEA WebLogic Server Performance and Tuning 5-3

For information on switching the startup mode from development to production, see Change to
Production Mode in the Administration Console Online Help.

Thread Management
WebLogic Server provides the following mechanisms to manage threads to perform work.

“Tuning a Work Manager” on page 6-4

Table 6-2 Differences Between Development and Production Modes

Tuning Parameter In development mode . . . In production mode . . .

SSL You can use the demonstration digital
certificates and the demonstration
keystores provided by the WebLogic
Server security services. With these
certificates, you can design your
application to work within
environments secured by SSL.

For more information about
managing security, see “Configuring
SSL” in Securing WebLogic Server.

You should not use the demonstration
digital certificates and the
demonstration keystores. If you do
so, a warning message is displayed.

Deploying Applications WebLogic Server instances can
automatically deploy and update
applications that reside in the
domain_name/autodeploy directory
(where domain_name is the name of a
domain).

It is recommended that this method be
used only in a single-server
development environment.

For more information, see
“Auto-Deploying Applications in
Development Domains” in Deploying
Applications to WebLogic Server.

The auto-deployment feature is
disabled, so you must use the
WebLogic Server Administration
Console, the weblogic.Deployer tool,
or the WebLogic Scripting Tool
(WLST). For more information, see
Deploying Applications to WebLogic
Server .

JDBC Connection Pool:
MaxCapacity

The default capacity is 15
connections.

The default capacity is 25
connections.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/domainconfig/ChangeRuntimeModes.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/domainconfig/ChangeRuntimeModes.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html
http://e-docs.bea.com/wls/docs90/secmanage/ssl.html
http://e-docs.bea.com/wls/docs90/deployment/deploy.html#autodeploy
http://e-docs.bea.com/wls/docs90/deployment/deploy.html#autodeploy
http://e-docs.bea.com/wls/docs90/deployment/index.html
http://e-docs.bea.com/wls/docs90/deployment/index.html

Tun ing WebLog ic Se rve r

5-4 BEA WebLogic Server Performance and Tuning

“Tuning Execute Queues” on page 6-4

“Understanding the Differences Between Work Managers and Execute Queues” on
page 6-5

“Tuning the Stuck Thread Detection Behavior” on page 6-6

Tuning a Work Manager
In this release, WebLogic Server allows you to configure how your application prioritizes the
execution of its work. Based on rules you define and by monitoring actual runtime performance,
WebLogic Server can optimize the performance of your application and maintain service level
agreements (SLA).

You tune the thread utilization of a server instance by defining rules and constraints for your
application by defining a Work Manger and applying it either globally to WebLogic Server
domain or to a specific application component. The primary tuning considerations are:

“How Many Work Managers are Needed?” on page 6-4

“What are the SLA Requirements for Each Work Manager?” on page 6-4

See Using Work Managers to Optimize Scheduled Work in Configuring WebLogic Server
Environments.

How Many Work Managers are Needed?
Each distinct SLA requirement needs a unique work manager.

What are the SLA Requirements for Each Work Manager?
Service level agreement (SLA) requirements are defined by instances of request classes. A
request class expresses a scheduling guideline that a server instance uses to allocate threads. See
“Understanding Work Managers” in Configuring WebLogic Server Environments.

Tuning Execute Queues
Note: Execute Queues are deprecated in this release of WebLogic Server. BEA recommends

migrating applications to use work managers.

In previous versions of WebLogic Server, processing was performed in multiple execute queues.
Different classes of work were executed in different queues, based on priority and ordering

http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html
http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html#1063790.

Thread Management

BEA WebLogic Server Performance and Tuning 5-5

requirements, and to avoid deadlocks. See “Using the WebLogic 8.1 Thread Pool Model” on
page B-1.

Understanding the Differences Between Work Managers and
Execute Queues
The easiest way to conceptually visualize the difference between the execute queues of previous
releases with work managers is to correlate execute queues (or rather, execute-queue managers)
with work managers and decouple the one-to-one relationship between execute queues and
thread-pools.

For releases prior to WebLogic Server 9.0, incoming requests are put into a default execute queue
or a user-defined execute queue. Each execute queue has an associated execute queue manager
that controls an exclusive, dedicated thread-pool with a fixed number of threads in it. Requests
are added to the queue on a first-come-first-served basis. The execute-queue manager then picks
the first request from the queue and an available thread from the associated thread-pool and
dispatches the request to be executed by that thread.

For releases of WebLogic Server 9.0 and higher, there is a single priority-based execute queue in
the server. Incoming requests are assigned an internal priority based on the configuration of work
managers you create to manage the work performed by your applications. The server increases
or decreases threads available for the execute queue depending on the demand from the various
work-managers. The position of a request in the execute queue is determined by its internal
priority:

The higher the priority, closer it is placed to the head of the execute queue.

The closer to the head of the queue, more quickly the request will be dispatched a thread to
use.

Work managers provide you the ability to better control thread utilization (server performance)
than execute-queues, primarily due to the many ways that you can specify scheduling guidelines
for the priority-based thread pool. These scheduling guidelines can be set either as numeric values
or as the capacity of a server-managed resource, like a JDBC connection pool.

Migrating from Previous Releases
If you upgrade application domains from prior releases that contain execute queues, the resulting
9.0 domain will contain execute queues.

Tun ing WebLog ic Se rve r

5-6 BEA WebLogic Server Performance and Tuning

Migrating application domains from a previous release to WebLogic Server 9.0 does not
automatically convert an execute queues to work manager.

If execute queues are present in the upgraded application configuration, the server instance
assigns work requests appropriately to the execute queue specified in the
dispatch-policy.

Requests without a dispatch-policy use the self-tuning thread pool.

For more information on migrating a domain, see Upgrading WebLogic Application
Environments at http://e-docs.bea.com/common/docs90/upgrade/intro.html.

Tuning the Stuck Thread Detection Behavior
WebLogic Server automatically detects when a thread in an execute queue becomes “stuck.”
Because a stuck thread cannot complete its current work or accept new work, the server logs a
message each time it diagnoses a stuck thread.

WebLogic Server diagnoses a thread as stuck if it is continually working (not idle) for a set period
of time. You can tune a server’s thread detection behavior by changing the length of time before
a thread is diagnosed as stuck, and by changing the frequency with which the server checks for
stuck threads. Although you can change the criteria WebLogic Server uses to determine whether
a thread is stuck, you cannot change the default behavior of setting the “warning” and “critical”
health states when all threads in a particular execute queue become stuck. For more information,
see “Configuring WebLogic Server to Avoid Overload Conditions” in Configuring WebLogic
Server Environments.

To configure thread detection behavior:

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will configure
thread detection behavior.

4. On the Configuration > Tuning tab, update as necessary:

Stuck Thread Max Time—Amount of time, in seconds, that a thread must be continually
working before a server instance diagnoses a thread as being stuck.

http://e-docs.bea.com/wls/docs90/config_wls/overload.html
http://e-docs.bea.com/common/docs90/upgrade/intro.html
http://e-docs.bea.com/common/docs90/upgrade/intro.html

Tun ing Network I /O

BEA WebLogic Server Performance and Tuning 5-7

>Stuck Thread Timer Interval—Amount of time, in seconds, after which a server
instance periodically scans threads to see if they have been continually working for the
configured Stuck Thread Max Time.

5. Click Save.

6. To activate these changes, in the Change Center of the Administration Console, click
Activate Changes. Not all changes take effect immediately—some require a restart.

7. You must reboot the server to use the new thread detection behavior values.

Tuning Network I/O
The following sections provide information on network communication between clients and
servers (including t3 and IIOP protocols, and their secure versions):

“Tuning Muxers” on page 6-7

“Which Platforms Have Performance Packs?” on page 6-8

“Enabling Performance Packs” on page 6-9

“Changing the Number of Available Socket Readers” on page 6-9

“Network Channels” on page 6-9

“Tuning Message Size” on page 6-10

“Tune the Chunk Parameters” on page 6-10

“Tuning Connection Backlog Buffering” on page 6-11

Tuning Muxers
WebLogic Server uses software modules called muxers to read incoming requests on the server
and incoming responses on the client. These muxers are of two primary types: the Java muxer or
native muxer.

A Java muxer has the following characteristics:

Uses pure Java to read data from sockets.

It is also the only muxer available for RMI clients.

Blocks on reads until there is data to be read from a socket. This behavior does not scale
well when there are a large number of sockets and/or when data arrives infrequently at

Tun ing WebLog ic Se rve r

5-8 BEA WebLogic Server Performance and Tuning

sockets. This is typically not an issue for clients, but it can create a huge bottleneck for a
server.

Native muxers use platform-specific native binaries to read data from sockets. The majority of all
platforms provide some mechanism to poll a socket for data. For example, Unix systems use the
poll system and the Windows architecture uses completion ports. Native provide superior
scalability because they implement a non-blocking thread model. When a native muxer is used,
the server creates a fixed number of threads dedicated to reading incoming requests. BEA
recommends using the default setting of selected for the Enable Native IO parameter which
allows the server automatically selects the appropriate muxer for the server to use.

If the Enable Native IO parameter is not selected, the server instance exclusively uses the Java
muxer. This maybe acceptable if there are a small number of clients and the rate at which requests
arrive at the server is fairly high. Under these conditions, the Java muxer performs as well as a
native muxer and eliminate Java Native Interface (JNI) overhead. Unlike native muxers, the
number of threads used to read requests is not fixed and is tunable for Java muxers by configuring
the Percent Socket Readers parameter setting in the Administration Console. See “Changing
the Number of Available Socket Readers” on page 6-9. Ideally, you should configure this
parameter so the number of threads roughly equals the number of remote concurrently connected
clients up to 50% of the total thread pool size. Each thread waits for a fixed amount of time for
data to become available at a socket. If no data arrives, the thread moves to the next socket.

Which Platforms Have Performance Packs?
Benchmarks show major performance improvements when you use native performance packs on
machines that host WebLogic Server instances. Performance packs use a platform-optimized,
native socket multiplexor to improve server performance. For example, the native socket reader
multiplexor threads have their own execute queue and do not borrow threads from the default
execute queue, which frees up default execute threads to do application work

To see which platforms currently have performance packs available:

1. Go to the Certifications Pages at {PLATFORM}/index.html.

2. Select your platform from the list of certified platforms.

3. Use your browser’s Edit → Find to locate all instances of “Performance Pack” to verify
whether it is included for the platform.

http://e-docs.bea.com/platform/suppconfigs/index.html

Tun ing Network I /O

BEA WebLogic Server Performance and Tuning 5-9

Enabling Performance Packs
The use of native performance packs are enabled by default in the configuration shipped with
your distribution. You can use the Administration Console to verify that performance packs are
enabled.

To enable native IO:

1. In the left pane of the console, expand Environment > Servers.

2. On the Summary of Servers page, select the server instance for which you will enable
native IO.

3. Expand the Configuration > Tuning tab.

4. If the Enable Native IO check box is not selected, select the check box.

5. Click Save.

Changing the Number of Available Socket Readers
If you must use the pure-Java socket reader implementation for host machines, you can improve
the performance of socket communication by configuring the proper number of socket reader
threads for each server instance and client machine.

To change the percentage of execute threads used as socket readers:

1. In the left pane of the console, expand Environment > Servers.

2. On the Summary of Servers page, select the server instance for which you will configure
the number of available socket readers.

3. Expand the Configuration > Tuning tab.

4. On the Configuration > Tuning tab, update Socket Readers. The value of this parameter
is the percentage of execute threads from the self-tuning thread pool that can be used as
socket readers. This value can not exceed 50% of the thread pool. The default value is 33.

5. Click Save.

Network Channels
Network channels, also called network access points, allow you to specify different quality of
service (QOS) parameters for network communication. Each network channel is associated with
its own exclusive socket using a unique IP address and port. By default, requests from a

Tun ing WebLog ic Se rve r

5-10 BEA WebLogic Server Performance and Tuning

multi-threaded client are multiplexed over the same remote connection and the server instance
reads requests from the socket one at a time. If the request size is large, this becomes a bottleneck.

Although the primary role of a network channel is to control the network traffic for a server
instance, you can leverage the ability to create multiple custom channels to allow a
multi-threaded client to communicate with server instance over multiple connections, reducing
the potential for a bottleneck. To configure custom multi-channel communication, use the
following steps:

1. Configure multiple network channels using different IP and port settings. See “Configure
custom network channels” in Administration Console Online Help.

2. In your client-side code, use a JNDI URL pattern similar to the pattern used in clustered
environments. The following is an example for a client using two network channels:

t3://<ip1>:<port1>,<ip2>:<port2>

See “Understanding Network Channels” in Configuring WebLogic Server Environments.

Tuning Message Size
WebLogic Server allows you to specify a maximum incoming request size to reduce the potential
for Denial of Service (DoS) attacks by preventing a server from being bombarded by a series of
large requests. You can set a global value or set specific values for different protocols and
network channels. Although it does not directly impact performance, JMS applications that
aggregate messages before sending to a destination may be refused if the aggregated size is
greater than specified value. See “Servers: Protocols: General” in Administration Console Online
Help and “Tuning MessageMaximum” on page 12-16.

Tune the Chunk Parameters
A chunk is a unit of memory that the WebLogic Server network layer, both on the client and
server side, uses to read data from and write data to sockets. To reduce memory allocation costs,
a server instance maintains a pool of these chunks. For applications that handle large amounts of
data per request, increasing the value on both the client and server sides can boost performance.
The default chunk size is about 4K. Use the following properties to tune the chunk size and the
chunk pool size:

weblogic.Chunksize—Sets the size of a chunk (in bytes). The primary situation in
which this may need to be increased is if request sizes are large. It should be set to values
that are multiples of the network’s maximum transfer unit (MTU), after subtracting from

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/channels/ConfigureCustomNetworkChannelsForNonclusteredServers.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/channels/ConfigureCustomNetworkChannelsForNonclusteredServers.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/Corecoreserverserverprotocolsgeneraltitle.html
http://e-docs.bea.com/wls/docs90/config_wls/network.html#UnderstandingNetworkChannels

Tun ing Network I /O

BEA WebLogic Server Performance and Tuning 5-11

the value any Ethernet or TCP header sizes. Set this parameter to the same value on the
client and server.

weblogic.utils.io.chunkpoolsize—Sets the maximum size of the chunk pool. The
default value is 2048. The value may need to be increased if the server starts to allocate
and discard chunks in steady state. To determine if the value needs to be increased, monitor
the CPU profile or use a memory/ heap profiler for call stacks invoking the constructor
weblogic.utils.io.Chunk.

weblogic.PartitionSize—Sets the number of pool partitions used (default is 4). The
chunk pool can be a source of significant lock contention as each request to access to the
pool must be synchronized. Partitioning the thread pool spreads the potential for contention
over more than one partition.

Tuning Connection Backlog Buffering
You can tune the number of connection requests that a WebLogic Server instance will accept
before refusing additional requests. The Accept Backlog parameter specifies how many
Transmission Control Protocol (TCP) connections can be buffered in a wait queue. This
fixed-size queue is populated with requests for connections that the TCP stack has received, but
the application has not accepted yet.

You can tune the number of connection requests that a WebLogic Server instance will accept
before refusing additional requests. For more information on TCP tuning, see “Basic OS Tuning
Concepts” on page 4-1.

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will configure
connection backlog buffering.

4. Expand the Configuration > Tuning tab.

5. Modify the Accept Backlog value as necessary to tune the number of TCP connections the
server instance can buffer in the wait queue.

If many connections are dropped or refused at the client, and no other error messages are
on the server, the Accept Backlog value might be set too low.

Tun ing WebLog ic Se rve r

5-12 BEA WebLogic Server Performance and Tuning

If you are getting “connection refused” messages when you try to access WebLogic Server,
raise the Accept Backlog value from the default by 25 percent. Continue increasing the
value by 25 percent until the messages cease to appear.

The default value is 50 and the maximum value is operating system dependent.

6. To activate these changes, in the Change Center of the Administration Console, click
Activate Changes. Not all changes take effect immediately—some require a restart.

Setting Your Compiler Options
You may improve performance by tuning your server’s compiler options.

Compiling EJB Classes
Use the weblogic.appc utility to compile EJB 2.x and 1.1 container classes. If you compile Jar
files for deployment into the EJB container, you must use weblogic.appc to generate the
container classes. By default, ejbc uses the javac compiler. You may be able to improve
performance by specifying a different compiler (such as IBM Jikes) using the -compiler flag
or using the Administration console. For more information, see:

“Implementing Enterprise Java Beans” in Programming WebLogic EJB

Configure compiler options in Administration Console Online Help.

Setting JSP Compiler Options
WebLogic Server uses Javelin to compile JSPs. In the weblogic.xml file, the jsp-descriptor
element defines parameter names and values for servlet JSPs. Use the precompile parameter to
configure WebLogic Server to precompile your JSPs when WebLogic Server starts up. See the
jsp-descriptor element at {DOCROOT}/webapp/weblogic_xml.html#jsp-descriptor.

If you receive the following error message received when compiling JSP files on a UNIX
machine:
failed: java.io.IOException: Not enough space

Try any or all of the following solutions:

Add more RAM if you have only 256 MB.

Raise the file descriptor limit, for example:

set rlim_fd_max = 4096

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/ejb/ConfigureCompilerOptions.html
http://e-docs.bea.com/wls/docs90/ejb/implementing.html
http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html#jsp-descriptor

Us ing WebLog ic Se rve r C lus te rs to Improve Pe r fo rmance

BEA WebLogic Server Performance and Tuning 5-13

set rlim_fd_cur = 1024

Using WebLogic Server Clusters to Improve Performance
A WebLogic Server cluster is a group of WebLogic Servers instances that together provide
fail-over and replicated services to support scalable high-availability operations for clients within
a domain. A cluster appears to its clients as a single server but is in fact a group of servers acting
as one to provide increased scalability and reliability.

A domain can include multiple WebLogic Server clusters and non-clustered WebLogic Server
instances. Clustered WebLogic Server instances within a domain behave similarly to
non-clustered instances, except that they provide failover and load balancing. The Administration
Server for the domain manages all the configuration parameters for the clustered and
non-clustered instances.

For more information about clusters, see “Understanding WebLogic Server Clustering” at
{DOCROOT}/cluster/overview.html.

Scalability and High Availability
Scalability is the ability of a system to grow in one or more dimensions as more resources are
added to the system. Typically, these dimensions include (among other things), the number of
concurrent users that can be supported and the number of transactions that can be processed in a
given unit of time.

Given a well-designed application, it is entirely possible to increase performance by simply
adding more resources. To increase the load handling capabilities of WebLogic Server, add
another WebLogic Server instance to your cluster—without changing your application. Clusters
provide two key benefits that are not provided by a single server: scalability and availability.

WebLogic Server clusters bring scalability and high-availability to J2EE applications in a way
that is transparent to application developers. Scalability expands the capacity of the middle tier
beyond that of a single WebLogic Server or a single computer. The only limitation on cluster
membership is that all WebLogic Servers must be able to communicate by IP multicast. New
WebLogic Servers can be added to a cluster dynamically to increase capacity.

A WebLogic Server cluster guarantees high-availability by using the redundancy of multiple
servers to insulate clients from failures. The same service can be provided on multiple servers in
a cluster. If one server fails, another can take over. The ability to have a functioning server take
over from a failed server increases the availability of the application to clients.

http://e-docs.bea.com/wls/docs90/

Tun ing WebLog ic Se rve r

5-14 BEA WebLogic Server Performance and Tuning

Caution: Provided that you have resolved all application and environment bottleneck issues,
adding additional servers to a cluster should provide linear scalability. When doing
benchmark or initial configuration test runs, isolate issues in a single server
environment before moving to a clustered environment.

Clustering in the Messaging Service is provided through distributed destinations; connection
concentrators, and connection load-balancing (determined by connection factory targeting); and
clustered Store-and-Forward (SAF). Client load-balancing with respect to distributed
destinations is tunable on connection factories. Distributed destination Message Driven Beans
(MDBs) that are targeted to the same cluster that hosts the distributed destination automatically
deploy only on cluster servers that host the distributed destination members and only process
messages from their local destination. Distributed queue MDBs that are targeted to a different
server or cluster than the host of the distributed destination automatically create consumers for
every distributed destination member. For example, each running MDB has a consumer for each
distributed destination queue member.

How to Ensure Scalability for WebLogic Clusters
In general, any operation that requires communication between the servers in a cluster is a
potential scalability hindrance. The following sections provide information on issues that impact
the ability to linearly scale clustered WebLogic servers:

“Database Bottlenecks” on page 6-14

“Session Replication” on page 6-15

“Invalidation of Entity EJBs” on page 6-15

“Invalidation of HTTP sessions” on page 6-16

“JNDI Binding, Unbinding and Rebinding” on page 6-16

Database Bottlenecks
In many cases where a cluster of WebLogic servers fails to scale, the database is the bottleneck.
In such situations, the only solutions are to tune the database or reduce load on the database by
exploring other options. See “DataBase Tuning” on page 8-1 and “Tuning JDBC Applications”
on page 10-1.

Us ing WebLog ic Se rve r C lus te rs to Improve Pe r fo rmance

BEA WebLogic Server Performance and Tuning 5-15

Session Replication
User session data can be stored in two standard ways in a J2EE application: stateful session EJBs
or HTTP sessions. By themselves, they are rarely a impact cluster scalability. However, when
coupled with a session replication mechanism required to provide high-availability, bottlenecks
are introduced. If a J2EE application has Web and EJB components, you should store user session
data in HTTP sessions:

HTTP session management provides more options for handling fail-over, such as
replication, a shared DB or file.

Superior scalability.

Replication of the HTTP session state occurs outside of any transactions. Stateful session
bean replication occurs in a transaction which is more resource intensive.

The HTTP session replication mechanism is more sophisticated and provides optimizations
a wider variety of situations than stateful session bean replication.

See “Session Management” on page 16-3.

Invalidation of Entity EJBs
This applies to entity EJBs that use a concurrency strategy of Optimistic or ReadOnly with a
read-write pattern.

Optimistic—When an Optimistic concurrency bean is updated, the EJB container sends a
multicast message to other cluster members to invalidate their local copies of the bean. This is
done to avoid optimistic concurrency exceptions being thrown by the other servers and hence the
need to retry transactions. If updates to the EJBs are frequent, the work done by the servers to
invalidate each other’s local caches become a serious bottleneck. A flag called
cluster-invalidation-disabled (default false) is used to turn off such invalidations. This is
set in the rdbms descriptor file.

ReadOnly with a read-write pattern—In this pattern, persistent data that would otherwise be
represented by a single EJB are actually represented by two EJBs: one read-only and the other
updateable. When the state of the updateable bean changes, the container automatically
invalidates corresponding read-only EJB instance. If updates to the EJBs are frequent, the work
done by the servers to invalidate the read-only EJBs becomes a serious bottleneck.

Tun ing WebLog ic Se rve r

5-16 BEA WebLogic Server Performance and Tuning

Invalidation of HTTP sessions
Similar to “Invalidation of Entity EJBs” on page 6-15, HTTP sessions can also be invalidated.
This is not as expensive as entity EJB invalidation, since only the session data stored in the
secondary server needs to be invalidated. BEA advises users to not invalidate sessions unless
absolutely required.

JNDI Binding, Unbinding and Rebinding
In general, JNDI binds, unbinds and rebinds are expensive operations. However, these operations
become a bigger bottleneck in clustered environments because JNDI tree changes have to be
propagated to all members of a cluster. If such operations are performed too frequently, they can
reduce cluster scalability significantly.

Performance Considerations When Running Multiple Server
Instances on Multi-CPU Machines
With multi-processor machines, additional consideration must be given to the ratio of the number
of available CPUs to clustered WebLogic Server instances. Because WebLogic Server has no
built-in limit to the number of server instances that reside in a cluster, large, multi-processor
servers, such as Sun Microsystems’ Sun Enterprise 10000, can potentially host very large clusters
or multiple clusters.

In order to determine the optimal ratio of CPUs to WebLogic server instances, you must first
ensure that an application is truly CPU-bound, rather than network or disk I/O-bound. Use the
following steps to determine the optional ratio of CPUs to server instances:

1. Test your application to determine the Network Requirements.

If you discover that an application is primarily network I/O-bound, consider measures to
increase network throughput before increasing the number of available CPUs. For truly
network I/O-bound applications, installing a faster network interface card (NIC) may
increase performance more than additional CPUs, because most CPUs would remain idle
while waiting to read available sockets.

2. Test your application to determine the Disk I/O Requirements.

If you discover that an application is primarily disk I/O-bound, consider upgrading the
number of disk spindles or individual disks and controllers before allocating additional
CPUs.

How to Mon i to r a WebLogic Se rve r Domain

BEA WebLogic Server Performance and Tuning 5-17

3. Begin performance tests using a ratio of one WebLogic Server instance for every available
CPU.

4. If CPU utilization is consistently at or near 100 percent, increase the ratio of CPUs to server
instances by adding an additional CPU. Add additional CPUs until utilization reaches an
acceptable level. Remember, always reserve some spare CPU cycles on your production
systems to perform any administration tasks that may occur.

How to Monitor a WebLogic Server Domain
The following sections provide information on how to monitor WebLogic Server domains:

“Using the Administration Console to Monitor WebLogic Server” on page 6-17

“Using JMX to Monitor WebLogic Server” on page 6-17

“Using WLST to Monitor WebLogic Server” on page 6-17

“dev2dev Resources to Monitor WebLogic Server” on page 6-17

“Third-Party Tools to Monitor WebLogic Server” on page 6-18

Using the Administration Console to Monitor WebLogic Server
The tool for monitoring the health and performance of your WebLogic Server domain is the
Administration Console. See “Monitor servers” in Administration Console Online Help.

Using JMX to Monitor WebLogic Server
WebLogic Server® provides its own set of MBeans that you can use to configure, monitor, and
manage WebLogic Server resources. See “Developing Custom Management Utilities with JMX”.

Using WLST to Monitor WebLogic Server
The WebLogic Scripting Tool (WLST) is a command-line scripting interface that system
administrators and operators use to monitor and manage WebLogic Server instances and
domains. See “WebLogic Scripting Tool”.

dev2dev Resources to Monitor WebLogic Server
dev2dev.bea.com provides product downloads, articles, sample code, product documentation,
tutorials, white papers, news groups, and other key content for WebLogic Server.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/monitoring/MonitorServers.html
http://e-docs.bea.com/wls/docs90/config_scripting/index.html
http://dev2dev.bea.com/
http://e-docs.bea.com/wls/docs90/jmx/index.html

Tun ing WebLog ic Se rve r

5-18 BEA WebLogic Server Performance and Tuning

Third-Party Tools to Monitor WebLogic Server
BEA partners with other companies that provide production monitoring and management tools.
See “Production Performance Management” on page A-7.

BEA WebLogic Server Performance and Tuning 6-1

C H A P T E R 7

Tuning the WebLogic Persistent Store

The following sections explain how to tune the persistent store, which provides a built-in,
high-performance storage solution for WebLogic Server subsystems and services that require
persistence.

“Overview of Persistent Stores” on page 7-1

“Best Practices When Using Persistent Stores” on page 7-3

“Tuning JDBC Stores” on page 7-3

“Tuning File Stores” on page 7-3

Overview of Persistent Stores
The following sections provide information on using persistent stores.

“Using the Default Persistent Store” on page 7-1

“Using Custom File Stores and JDBC Stores” on page 7-2

“Using JMS Paging Stores” on page 7-2

Using the Default Persistent Store
Each server instance, including the administration server, has a default persistent store that
requires no configuration. The default store is a file-based store that maintains its data in a group
of files in a server instance’s data\store\default directory. A directory for the default store
is automatically created if one does not already exist. This default store is available to subsystems

Tun ing the WebLog ic Pe rs is tent S to re

6-2 BEA WebLogic Server Performance and Tuning

that do not require explicit selection of a particular store and function best by using the system’s
default storage mechanism. For example, a JMS Server with no persistent store configured will
use the default store for its Managed Server and will support persistent messaging. See:

“Using the WebLogic Persistent Store” in Configuring WebLogic Server Environments.

“Modify the Default Store Settings” in Administration Console Online Help.

Using Custom File Stores and JDBC Stores
In addition to using the default file store, you can also configure a file store or JDBC store to suit
your specific needs. A custom file store, like the default file store, maintains its data in a group
of files in a directory. However, you may want to create a custom file store so that the file store's
data is persisted to a particular storage device. When configuring a file store directory, the
directory must be accessible to the server instance on which the file store is located.

A JDBC store can be configured when a relational database is used for storage. A JDBC store
enables you to store persistent messages in a standard JDBC-capable database, which is accessed
through a designated JDBC data source. The data is stored in the JDBC store's database table,
which has a logical name of WLStore. It is up to the database administrator to configure the
database for high availability and performance. See:

“When to Use a Custom Persistent Store” in Configuring WebLogic Server Environments.

“Comparing File Stores and JDBC Stores” in Configuring WebLogic Server Environments.

“Creating a Custom (User-Defined) File Store” in Configuring WebLogic Server
Environments.

“Creating a JDBC Store” in Configuring WebLogic Server Environments.

Using JMS Paging Stores
Each JMS server implicitly creates a file based paging store. When the WebLogic Server JVM
runs low on memory, this store is used to page non-persistent messages as well as JDBC store
persistent messages. Depending on the application, paging stores may generate heavy disk
activity.

Note: File store persistent messages do not page using a paging store, such messages page
directly into and out of their respective file stores.

http://e-docs.bea.com/wls/docs90/config_wls/store.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/ConfigureDefaultStore.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html#whentouse
http://e-docs.bea.com/wls/docs90/config_wls/store.html#compare
http://e-docs.bea.com/wls/docs90/config_wls/store.html#CreatingaCustomFileStore
http://e-docs.bea.com/wls/docs90/config_wls/store.html#CreatingaJDBCStore

Best P ract ices When Us ing Pe rs is tent S to res

BEA WebLogic Server Performance and Tuning 6-3

JMS paging stores usually require no tuning. You can optionally change the directory location
and the thresholds setting at which paging begins. See “Paging Out Messages To Free Up
Memory” on page 12-6.

Best Practices When Using Persistent Stores
For subsystems that share the same server instance, share one store between multiple
subsystems rather than using a store per subsystem. Sharing a store is more efficient for the
following reasons:

– A single store batches concurrent requests into single I/Os which reduces overall disk
usage.

– Transactions in which only one resource participates are lightweight one-phase
transactions. Conversely, transactions in which multiple stores participate become are
heavier weight two-phase transactions.

For example, configure all SAF agents and JMS servers that run on the same server
instance so that they share the same store.

Add a new store only when the old store(s) no longer scale.

Tuning JDBC Stores
The location of the JDBC store DDL that is used to initialize empty stores is now configurable.
This simplifies the use of custom DDL for database table creation, which is sometimes used for
database specific performance tuning. For information, see “Create JDBC stores” in
Administration Console Online Help and “Using the WebLogic Persistent Store” in Configuring
WebLogic Server Environments.

Tuning File Stores
The following section provides information on tuning File Stores:

For basic (non-RAID) disk hardware, consider dedicating one disk per file store. A store
can operate up to four to five times faster if it does not have to compete with any other
store on the disk. Remember to consider the existence of the default file store in addition to
each configured store and a JMS paging store for each JMS server.

Use Direct-Write synchronous write policy.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/stores/CreateJDBCStores.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html

Tun ing the WebLog ic Pe rs is tent S to re

6-4 BEA WebLogic Server Performance and Tuning

– For releases of WebLogic Server 9.0 and higher, Direct-Write is the default write
policy. In most applications Direct-Write provides better performance than the
Cache-Flush write policy.

Note: The Direct-Write write-policy (default) can be unsafe on Microsoft Windows.
As with other vendors that use a direct write policy, MS-Windows system
administrators must ensure that the Windows disk configuration doesn't cache
direct-writes in memory instead of flushing them to disk. See
getSynchronousWritePolicy.

– File stores in releases prior to Weblogic Server 9.0 default to the Cache-Flush write
policy.

The Disabled write-policy option can dramatically improve performance, especially at
low client loads. However, it is unsafe because writes become asynchronous and data can
be lost in the event of Operating System or power failure.

When performing head-to-head vendor comparisons, make sure all the write policies for
the persistent store are equivalent. Some non-WebLogic vendors default to the equivalent
of the Disabled.

If disk performance continues to be a bottleneck, consider purchasing disk or RAID
controller hardware that has a built-in “write-back cache”. These caches significantly
improve performance by temporarily storing persistent data in volatile memory. Use a
battery backed write-back caches to provide protection from power outages, host machine
failure, and operating system failure.

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/FileStoreMBean.html#SynchronousWritePolicy

BEA WebLogic Server Performance and Tuning 7-1

C H A P T E R 8

DataBase Tuning

Your database can be a major enterprise-level bottleneck. Configure your database for optimal
performance by following the tuning guidelines in this section and in the product documentation
for the database you are using.

“General Suggestions” on page 8-1

“Database-Specific Tuning” on page 8-2

General Suggestions
This section provides general database tuning suggestions:

Good database design — Distribute the database workload across multiple disks to avoid
or reduce disk overloading. Good design also includes proper sizing and organization of
tables, indexes, and logs.

Disk I/O optimization — Disk I/O optimization is related directly to throughput and
scalability. Access to even the fastest disk is orders of magnitude slower than memory
access. Whenever possible, optimize the number of disk accesses. In general, selecting a
larger block/buffer size for I/O reduces the number of disk accesses and might substantially
increase throughput in a heavily loaded production environment.

Checkpointing — This mechanism periodically flushes all dirty cache data to disk, which
increases the I/O activity and system resource usage for the duration of the checkpoint.
Although frequent checkpointing can increase the consistency of on-disk data, it can also
slow database performance. Most database systems have checkpointing capability, but not
all database systems provide user-level controls. Oracle, for example, allows administrators

DataBase Tun ing

7-2 BEA WebLogic Server Performance and Tuning

to set the frequency of checkpoints while users have no control over SQLServer 7.x
checkpoints. For recommended settings, see the product documentation for the database
you are using.

Disk and database overhead can sometimes be dramatically reduced by batching multiple
operations together and/or increasing the number of operations that run in parallel
(increasing concurrency). Examples:

– Increasing the value of the Message bridge BatchSize or the Store-and-Forward
WindowSize can improve performance as larger batch sizes produce fewer but larger
I/Os.

– Programmatically leveraging JDBC’s batch APIs.

– Use the MDB transaction batching feature. .

– Increasing concurrency by increasing max-beans-in-free-pool and the thread pool
size for MDBs (or decreasing it if batching can be leveraged).

Database-Specific Tuning
The following sections provide basic tuning suggestions for Oracle, SQL Server, and Sybase:

“Oracle” on page 8-2

“Microsoft SQL Server” on page 8-4

“Sybase” on page 8-4

Note: Always check the tuning guidelines in your database-specific vendor documentation.

Oracle
This section describes performance tuning for Oracle.

Number of processes — On most operating systems, each connection to the Oracle server
spawns a shadow process to service the connection. Thus, the maximum number of
processes allowed for the Oracle server must account for the number of simultaneous
users, as well as the number of background processes used by the Oracle server. The
default number is usually not big enough for a system that needs to support a large number
of concurrent operations. For platform-specific issues, see your Oracle administrator’s
guide. The current setting of this parameter can be obtained with the following query:

SELECT name, value FROM v$parameter WHERE name = 'processes';

Database-Spec i f i c Tun ing

BEA WebLogic Server Performance and Tuning 7-3

Buffer pool size —The buffer pool usually is the largest part of the Oracle server system
global area (SGA). This is the location where the Oracle server caches data that it has read
from disk. For read-mostly applications, the single most important statistic that affects data
base performance is the buffer cache hit ratio. The buffer pool should be large enough to
provide upwards of a 95% cache hit ratio. Set the buffer pool size by changing the value,
in data base blocks, of the db_cache_size parameter in the init.ora file.

Shared pool size — The share pool in an important part of the Oracle server system global
area (SGA). The SGA is a group of shared memory structures that contain data and control
information for one Oracle database instance. If multiple users are concurrently connected
to the same instance, the data in the instance’s SGA is shared among the users. The shared
pool portion of the SGA caches data for two major areas: the library cache and the
dictionary cache. The library cache stores SQL-related information and control structures
(for example, parsed SQL statement, locks). The dictionary cache stores operational
metadata for SQL processing.

For most applications, the shared pool size is critical to Oracle performance. If the shared
pool is too small, the server must dedicate resources to managing the limited amount of
available space. This consumes CPU resources and causes contention because Oracle
imposes restrictions on the parallel management of the various caches. The more you use
triggers and stored procedures, the larger the shared pool must be. The
SHARED_POOL_SIZE initialization parameter specifies the size of the shared pool in bytes.

The following query monitors the amount of free memory in the share pool:

SELECT * FROM v$sgastat
WHERE name = 'free memory' AND pool = 'shared pool';

Maximum opened cursor — To prevent any single connection taking all the resources in
the Oracle server, the OPEN_CURSORS initialization parameter allows administrators to limit
the maximum number of opened cursors for each connection. Unfortunately, the default
value for this parameter is too small for systems such as WebLogic Server. Cursor
information can be monitored using the following query:

SELECT name, value FROM v$sysstat
WHERE name LIKE 'opened cursor%';

Database block size — A block is Oracle’s basic unit for storing data and the smallest unit
of I/O. One data block corresponds to a specific number of bytes of physical database
space on disk. This concept of a block is specific to Oracle RDBMS and should not be
confused with the block size of the underlying operating system. Note that since the block
size affects physical storage, this value can be set only during the creation of the database;
it cannot be changed once the database has been created. The current setting of this
parameter can be obtained with the following query:

DataBase Tun ing

7-4 BEA WebLogic Server Performance and Tuning

SELECT name, value FROM v$parameter WHERE name = 'db_block_size';

Sort area size — Increasing the sort area increases the performance of large sorts because it
allows the sort to be performed in memory during query processing. This can be important,
as there is only one sort area for each connection at any point in time. The default value of
this init.ora parameter is usually the size of 6–8 data blocks. This value is usually
sufficient for OLTP operations but should be increased for decision support operation,
large bulk operations, or large index-related operations (for example, recreating an index).
When performing these types of operations, you should tune the following init.ora
parameters (which are currently set for 8K data blocks):

sort_area_size = 65536
sort_area_retained_size = 65536

Microsoft SQL Server
The following guidelines pertain to performance tuning parameters for Microsoft SQL Server
databases. For more information about these parameters, see your Microsoft SQL Server
documentation.

Store tempdb on a fast I/O device.

Increase the recovery interval if perfmon shows an increase in I/O.

Use an I/O block size larger than 2 KB.

Sybase
The following guidelines pertain to performance tuning parameters for Sybase databases. For
more information about these parameters, see your Sybase documentation.

Lower recovery interval setting results in more frequent checkpoint operations, resulting in
more I/O operations.

Use an I/O block size larger than 2 KB.

Sybase controls the number of engines in a symmetric multiprocessor (SMP) environment.
They recommend configuring this setting to equal the number of CPUs minus 1.

BEA WebLogic Server Performance and Tuning 8-1

C H A P T E R 9

Tuning WebLogic Server EJBs

The following sections describe how to tune WebLogic Server EJBs to match your application
needs:

“General EJB Tuning Tips” on page 9-1

“Tuning EJB Caches” on page 9-2

“Tuning EJB Pools” on page 9-4

“CMP Entity Bean Tuning” on page 9-5

“Tuning In Response to Monitoring Statistics” on page 9-9

General EJB Tuning Tips
Deployment descriptors are schema-based. Descriptors that are new in this release of
WebLogic Server are not available as DTD-based descriptors.

Avoid using the RequiresNew transaction parameter. Using RequiresNew causes the EJB
container to start a new transaction after suspending any current transactions. This means
additional resources, including a separate data base connection are allocated.

Use local-interfaces or set call-by-reference to true to avoid the overhead of serialization
when one EJB calls another or an EJB is called by a servlet/JSP in the same application.
Note the following:

– In release prior to WebLogic Server 8.1, call-by-reference is turned on by default. For
releases of WebLogic Server 8.1 and higher, call-by-reference is turned off by default.

Tuning WebLog ic Se rve r E JBs

8-2 BEA WebLogic Server Performance and Tuning

Older applications migrating to WebLogic Server 8.1 and higher that do not explicitly
turn on call-by-reference may experience a drop in performance.

– This optimization does not apply to calls across different applications.

Use Stateless session beans over Stateful session beans whenever possible. Stateless
session beans scale better than stateful session beans because there is no state information
to be maintained.

WebLogic Server provides additional transaction performance benefits for EJBs that reside
in a WebLogic Server cluster. When a single transaction uses multiple EJBs, WebLogic
Server attempts to use EJB instances from a single WebLogic Server instance, rather than
using EJBs from different servers. This approach minimizes network traffic for the
transaction. In some cases, a transaction can use EJBs that reside on multiple WebLogic
Server instances in a cluster. This can occur in heterogeneous clusters, where all EJBs have
not been deployed to all WebLogic Server instances. In these cases, WebLogic Server uses
a multitier connection to access the datastore, rather than multiple direct connections. This
approach uses fewer resources, and yields better performance for the transaction. However,
for best performance, the cluster should be homogeneous — all EJBs should reside on all
available WebLogic Server instances.

Tuning EJB Caches
The following sections provide information on how to tune EJB caches:

“Tuning the Stateful Session Bean Cache” on page 9-2

“Tuning the Entity Bean Cache” on page 9-2

“Tuning the Query Cache” on page 9-3

Tuning the Stateful Session Bean Cache
The EJB Container caches stateful session beans in memory up to a count specified by the
max-beans-in-cache parameter specified in weblogic-ejb-jar.xml. This parameter should
be set equal to the number of concurrent users. This ensures minimum passivation of stateful
session beans to disk and subsequent activation from disk which yields better performance.

Tuning the Entity Bean Cache
Entity beans are cached at two levels by the EJB container:

“Transaction-Level Caching” on page 9-3

Tun ing E JB Caches

BEA WebLogic Server Performance and Tuning 8-3

“Caching between transactions” on page 9-3

Transaction-Level Caching
Once an entity bean has been loaded from the database, it is always retrieved from the cache
whenever it is requested when using the findByPrimaryKey or invoked from a cached reference
in that transaction. Note that getting an entity bean using a non-primary key finder always
retrieves the persistent state of the bean from the data base.

Caching between transactions
Entity bean instances are also cached between transactions. However, by default, the persistent
state of the entity beans are not cached between transactions. To enable caching between
transactions, set the value of the cache-between-transactions parameter to true.

Is it safe to cache the state? This depends on the concurrency-strategy for that bean. The
entity-bean cache is really only useful when cache-between-transactions can be safely set
to true. In cases where ejbActivate() and ejbPassivate() callbacks are expensive, it is still
a good idea to ensure the entity-cache size is large enough. Even though the persistent state may
be reloaded at least once per transaction, the beans in the cache are already activated. The value
of the cache-size is set by the deployment descriptor parameter max-beans-in-cache and
should be set to maximize cache-hits. In most situations, the value need not be larger than the
product of the number of rows in the table associated with the entity bean and the number of
threads expected to access the bean concurrently.

Tuning the Query Cache
Query Caching is a new feature in WebLogic Server 9.0 that allows read-only CMP entity beans
to cache the results of arbitrary finders. Query Caching is supported for all finders except
prepared-query finders. The query cache can be an application-level cache as well as a
bean-level cache. The size of the cache is limited by the weblogic-ejb-jar.xml parameter
max-queries-in-cache. The finder-level flag in the weblogic-cmp-rdbms descriptor file,
enable-query-caching is used to specify whether the results of that finder are to be cached. A
flag with the same name has the same purpose for internal relationship finders when applied to
the weblogic-relationship-role element. Queries are evicted from the query-cache under
the following circumstances:

The query is least recently used and the query-cache has hit its size limit.

At least one of the EJBs that satisfy the query has been evicted from the entity bean cache,
regardless of the reason.

Tuning WebLog ic Se rve r E JBs

8-4 BEA WebLogic Server Performance and Tuning

The query corresponds to a finder that has eager-relationship-caching enabled and
the query for the associated internal relationship finder has been evicted from the related
bean's query cache.

It is possible to let the size of the entity-bean cache limit the size of the query-cache by setting
the max-queries-in-cache parameter to 0, since queries are evicted from the cache when the
corresponding EJB is evicted. This may avoid some lock contention in the query cache, but the
performance gain may not be significant.

Tuning EJB Pools
The following section provides information on how to tune EJB pools:

“Tuning the Stateless Session Bean Pool” on page 9-4

“Tuning the MDB Pool” on page 9-4

“Tuning the Entity Bean Pool” on page 9-5

Tuning the Stateless Session Bean Pool
The EJB container maintains a pool of stateless session beans to avoid creating and destroying
instances. Though generally useful, this pooling is even more important for performance when
the ejbCreate() and the setSessionContext() methods are expensive. The pool has a lower
as well as an upper bound. The upper bound is the more important of the two.

The upper bound is specified by the max-beans-in-free-pool parameter. It should be
set equal to the number of threads expected to invoke the EJB concurrently. Using too
small of a value impacts concurrency.

The lower bound is specified by the initial-beans-in-free-pool parameter.
Increasing the value of initial-beans-in-free-pool increases the time it takes to
deploy the application containing the EJB and contributes to startup time for the server.
The advantage is the cost of creating EJB instances is not incurred at run time. Setting this
value too high wastes memory.

Tuning the MDB Pool
The lifecycle of MDBs is very similar to stateless session beans. The MDB pool has the same
tuning parameters as stateless session beans and the same factors apply when tuning them. In
general, most users will find that the default values are adequate for most applications.

CMP Ent i t y Bean Tun ing

BEA WebLogic Server Performance and Tuning 8-5

Tuning the Entity Bean Pool
The entity bean pool serves two purposes:

A target objects for invocation of finders via reflection.

A pool of bean instances the container can recruit if it cannot find an instance for a
particular primary key in the cache.

The entity pool contains anonymous instances (instances that do not have a primary key). These
beans are not yet active (meaning ejbActivate() has not been invoked on them yet), though
the EJB context has been set. Entity bean instances evicted from the entity cache are passivated
and put into the pool. The tunables are the initial-beans-in-free-pool and
max-beans-in-free-pool. Unlike stateless session beans and MDBs, the
max-beans-in-free-pool has no relation with the thread count. You should increase the value
of max-beans-in-free-pool if the entity bean constructor or setEnityContext() methods
are expensive.

CMP Entity Bean Tuning
The largest performance gains in entity beans are achieved by using caching to minimize the
number of interactions with the data base. However, in most situations, it is not realistic to be able
to cache entity beans beyond the scope of a transaction. The following sections provide
information on WebLogic Server EJB container features, most of which are configurable, that
you can use to minimize database interaction safely:

“Use Eager Relationship Caching” on page 9-6

“Use JDBC Batch Operations” on page 9-6

“Tuned Updates” on page 9-6

“Using Field Groups” on page 9-6

“include-updates” on page 9-7

“call-by-reference” on page 9-7

“Bean-level Pessimistic Locking” on page 9-7

“Concurrency Strategy” on page 9-8

Tuning WebLog ic Se rve r E JBs

8-6 BEA WebLogic Server Performance and Tuning

Use Eager Relationship Caching
Using eager relationship caching allows the EJB container to load related entity beans using a
single SQL join. Use only when the same transaction accesses related beans. See Relationship
Caching in Programming WebLogic Server Enterprise JavaBeans.

Use JDBC Batch Operations
JDBC batch operations are turned on by default in the EJB container. The EJB container
automatically re-orders and executes similar data base operations in a single batch which
increases performance by eliminating the number of data base round trips. BEA recommends
using batch operations.

Tuned Updates
When an entity EJB is updated, the EJB container automatically updates in the data base only
those fields that have actually changed. As a result the update statements are simpler and if a bean
has not been modified, no data base call is made. Because different transactions may modify
different sets of fields, more than one form of update statements may be used to store the bean in
the data base. It is important that you account for the types of update statements that may be used
when setting the size of the prepared statement cache in the JDBC connection pool. See “Cache
Prepared and Callable Statements” on page 10-3.

Using Field Groups
Field groups allow the user to segregate commonly used fields into a single group. If any of the
fields in the group is accessed by application/bean code, the entire group is loaded using a single
SQL statement. This group can also be associated with a finder. When the finder is invoked and
finders-load-bean is true, it loads only those fields from the data base that are included in the
field group. This means that if most transactions do not use a particular field that is slow to load,
such as a BLOB, it can be excluded from a field-group. Similarly, if an entity bean has a lot of
fields, but a transaction uses only a small number of them, the unused fields can be excluded.

Note: Be careful to ensure that fields that are accessed in the same transaction are not
configured into separate field-groups. If that happens, multiple data base calls occur to
load the same bean, when one would have been enough.

http://e-docs.bea.com/wls/docs90/ejb/entity.html#relationship_caching
http://e-docs.bea.com/wls/docs90/ejb/entity.html#relationship_caching

CMP Ent i t y Bean Tun ing

BEA WebLogic Server Performance and Tuning 8-7

include-updates
This flag causes the EJB container to flush all modified entity beans to the data base before
executing a finder. If the application modifies the same entity bean more than once and executes
a non-pk finder in-between in the same transaction, multiple updates to the data base are issued.
This flag is turned on by default to comply with the EJB specification.

If the application has transactions where two invocations of the same or different finders could
return the same bean instance and that bean instance could have been modified between the finder
invocations, it makes sense leaving include-updates turned on. If not, this flag may be safely
turned off. This eliminates an unnecessary flush to the data base if the bean is modified again after
executing the second finder. This flag is specified for each finder in the cmp-rdbms descriptor.

call-by-reference
When it is turned off, method parameters to an EJB are passed by value, which involves
serialization. For mutable, complex types, this can be significantly expensive. Consider using for
better performance when:

The application does not require call-by-value semantics, such as method parameters are
not modified by the EJB.

or

If modified by the EJB, the changes need not be invisible to the caller of the method.

This flag applies to all EJBs, not just entity EJBs. It also applies to EJB invocations between
servlets/JSPs and EJBs in the same application. The flag is turned off by default to comply with
the EJB specification. This flag is specified at the bean-level in the WebLogic-specific
deployment descriptor.

Bean-level Pessimistic Locking
Bean-level pessimistic locking is implemented in the EJB container by acquiring a data base lock
when loading the bean. When implemented, each entity bean can only be accessed by a single
transaction in a single server at a time. All other transactions are blocked, waiting for the owning
transaction to complete. This is a useful alternative to using a higher data base isolation level,
which can be expensive at the RDBMS level. This flag is specified at the bean level in the
cmp-rdbms deployment descriptor.

Note: If the lock is not exclusive lock, you man encounter deadlock conditions. If the data base
lock is a shared lock, there is potential for deadlocks when using that RDBMS.

Tuning WebLog ic Se rve r E JBs

8-8 BEA WebLogic Server Performance and Tuning

Concurrency Strategy
The concurrency-strategy deployment descriptor tells the EJB container how to handle
concurrent access of the same entity bean by multiple threads in the same server instance. Set this
parameter to one of four values:

Exclusive—The EJB container ensures there is only one instance of an EJB for a given
primary key and this instance is shared among all concurrent transactions in the server with
the container serializing access to it. This concurrency setting generally does not provide
good performance unless the EJB is used infrequently and chances of concurrent access is
small.

Database—This is the default value and most commonly used concurrency strategy. The
EJB container defers concurrency control to the database. The container maintains multiple
instances of an EJB for a given primary-key and each transaction gets it's own copy. In
combination with this strategy, the database isolation-level and bean level pessimistic
locking play a major role in determining if concurrent access to the persistent state should
be allowed. Note that it is possible for multiple transactions to access the bean concurrently
so long as it does not need to go to the database, as would happen when the value of
cache-between-transactions is true. However, setting the value of
cache-between-transactions to true unsafe and not recommended with the Dababase
concurrency strategy.

Optimistic—The goal of the optimistic concurrency strategy is to minimize locking at
the data base and while continuing to provide data consistency. The basic assumption is
that the persistent state of the EJB is changed very rarely. The container attempts to load
the bean in a nested transaction so that the isolation-level settings of the outer transaction
does not cause locks to be acquired at the data base. At commit-time, if the bean has been
modified, a predicated update is used to ensure it's persistent state has not been changed by
some other transaction. If so, an OptimisticConcurrencyException is thrown and must
be handled by the application.

Since EJBs that can use this concurrency strategy are rarely modified, using
cache-between-transactions on can boost performance significantly. This strategy
also allows commit-time verification of beans that have been read, but not changed. This is
done by setting the verify-rows parameter to Read in the cmp-rdbms descriptor. This
provides very high data-consistency while at the same time minimizing locks at the data
base. However, it does slow performance somewhat. It is recommended that the optimistic
verification be performed using a version column: it is faster, followed closely by
timestamp, and more distantly by modified and read. The modified value does not apply if
verify-rows is set to Read.

http://e-docs.bea.com/wls/docs90/ejb/DDreference-ejb-jar.html#concurrency-strategy

Tun ing In Response to Moni to r ing Stat is t i cs

BEA WebLogic Server Performance and Tuning 8-9

When an optimistic concurrency bean is modified in a server that is part of a cluster, the
server attempts to invalidate all instances of that bean cluster-wide in the expectation that it
will prevent OptimisticConcurrencyExceptions. In some cases, it may be more cost
effective to simply let other servers throw an OptimisticConcurrencyException. in this
case, turn off the cluster-wide invalidation by setting the
cluster-invalidation-disabled flag in the cmp-rdbms descriptor.

ReadOnly—The ReadOnly value is the most performant. When selected, the container
assumes the EJB is non-transactional and automatically turns on
cache-between-transactions. Bean states are updated from the data base at periodic,
configurable intervals or when the bean has been programmatically invalidated. The
interval between updates can cause the persistent state of the bean to become stale. This is
the only concurrency-strategy for which query-caching can be used. See “Caching
between transactions” on page 9-3.

Tuning In Response to Monitoring Statistics
The WebLogic Server Administration Console reports a wide variety of EJB runtime monitoring
statistics, many of which are useful for tuning your EJBs. This section discusses how some of
these statistics can help you tune the performance of EJBs.

To display the statistics in the Administration Console, see “Monitoring EJBs” in Administration
Console Online Help. If you prefer to write a custom monitoring application, you can access the
monitoring statistics using JMX or WLST by accessing the relevant runtime MBeans. See
Runtime MBeans in the WebLogic Server® MBean Reference.

Cache Miss Ratio
The cache miss ratio is a ratio of the number of times a container cannot find a bean in the cache
(cache miss) to the number of times it attempts to find a bean in the cache (cache access):

Cache Miss Ratio = (Cache Total Miss Count / Cache Total Access Count) * 100

A high cache miss ratio could be indicative of an improperly sized cache. If your application uses
a certain subset of beans (read primary keys) more frequently than others, it would be ideal to size
your cache large enough so that the commonly used beans can remain in the cache as less
commonly used beans are cycled in and out upon demand. If this is the nature of your application,
you may be able to decrease your cache miss ratio significantly by increasing the maximum size
of your cache.

If your application doesn’t necessarily use a subset of beans more frequently than others,
increasing your maximum cache size may not affect your cache miss ratio. We recommend

http://e-docs.bea.com/wls/docs90/wlsmbeanref/core/index.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/ejb/MonitorEJBs.html

Tuning WebLog ic Se rve r E JBs

8-10 BEA WebLogic Server Performance and Tuning

testing your application with different maximum cache sizes to determine which give the lowest
cache miss ratio. It is also important to keep in mind that your server has a finite amount of
memory and therefore there is always a trade-off to increasing your cache size.

Lock Waiter Ratio
When using the Exclusive concurrency strategy, the lock waiter ratio is the ratio of the number
of times a thread had to wait to obtain a lock on a bean to the total amount of lock requests issued:

Lock Waiter Ratio = (Current Waiter Count / Current Lock Entry Count) * 100

A high lock waiter ratio can indicate a suboptimal concurrency strategy for the bean. If acceptable
for your application, a concurrency strategy of Database or Optimistic will allow for more
parallelism than an Exclusive strategy and remove the need for locking at the EJB container level.

Because locks are generally held for the duration of a transaction, reducing the duration of your
transactions will free up beans more quickly and may help reduce your lock waiter ratio. To
reduce transaction duration, avoid grouping large amounts of work into a single transaction
unless absolutely necessary.

Lock Timeout Ratio
When using the Exclusive concurrency strategy, the lock timeout ratio is the ratio of timeouts
to accesses for the lock manager:

Lock Timeout Ratio =(Lock Manager Timeout Total Count / Lock Manager Total

Access Count) * 100

The lock timeout ratio is closely related to the lock waiter ratio. If you are concerned about the
lock timeout ratio for your bean, first take a look at the lock waiter ratio and our recommendations
for reducing it (including possibly changing your concurrency strategy). If you can reduce or
eliminate the number of times a thread has to wait for a lock on a bean, you will also reduce or
eliminate the amount of timeouts that occur while waiting.

A high lock timeout ratio may also be indicative of an improper transaction timeout value. The
maximum amount of time a thread will wait for a lock is equal to the current transaction timeout
value.

If the transaction timeout value is set too low, threads may not be waiting long enough to obtain
access to a bean and timing out prematurely. If this is the case, increasing the
trans-timeout-seconds value for the bean may help reduce the lock timeout ratio.

Tun ing In Response to Moni to r ing Stat is t i cs

BEA WebLogic Server Performance and Tuning 8-11

Take care when increasing the trans-timeout-seconds, however, because doing so can cause
threads to wait longer for a bean and threads are a valuable server resource. Also, doing so may
increase the request time, as a request ma wait longer before timing out.

Pool Miss Ratio
The pool miss ratio is a ratio of the number of times a request was made to get a bean from the
pool when no beans were available, to the total number of requests for a bean made to the pool:

Pool Miss Ratio = (Pool Total Miss Count / Pool Total Access Count) * 100

If your pool miss ratio is high, you must determine what is happening to your bean instances.
There are three things that can happen to your beans.

They are in use.

They were destroyed.

They were removed.

Follow these steps to diagnose the problem:

1. Check your destroyed bean ratio to verify that bean instances are not being destroyed.

Investigate the cause and try to remedy the situation.

2. Examine the demand for the EJB, perhaps over a period of time.

One way to check this is via the Beans in Use Current Count and Idle Beans Count
displayed in the Administration Console. If demand for your EJB spikes during a certain
period of time, you may see a lot of pool misses as your pool is emptied and unable to fill
additional requests.

As the demand for the EJB drops and beans are returned to the pool, many of the beans
created to satisfy requests may be unable to fit in the pool and are therefore removed. If
this is the case, you may be able to reduce the number of pool misses by increasing the
maximum size of your free pool. This may allow beans that were created to satisfy demand
during peak periods to remain in the pool so they can be used again when demand once
again increases.

Destroyed Bean Ratio
The destroyed bean ratio is a ratio of the number of beans destroyed to the total number of
requests for a bean.

Destroyed Bean Ratio = (Total Destroyed Count / Total Access Count) * 100

Tuning WebLog ic Se rve r E JBs

8-12 BEA WebLogic Server Performance and Tuning

To reduce the number of destroyed beans, BEA recommends against throwing non-application
exceptions from your bean code except in cases where you want the bean instance to be
destroyed. A non-application exception is an exception that is either a java.rmi.RemoteException
(including exceptions that inherit from RemoteException) or is not defined in the throws clause
of a method of an EJB’s home or component interface.

In general, you should investigate which exceptions are causing your beans to be destroyed as
they may be hurting performance and may indicate problem with the EJB or a resource used by
the EJB.

Pool Timeout Ratio
The pool timeout ratio is a ratio of requests that have timed out waiting for a bean from the pool
to the total number of requests made:

Pool Timeout Ratio = (Pool Total Timeout Count / Pool Total Access Count) *

100

A high pool timeout ratio could be indicative of an improperly sized free pool. Increasing the
maximum size of your free pool via the max-beans-in-free-pool setting will increase the
number of bean instances available to service requests and may reduce your pool timeout ratio.

Another factor affecting the number of pool timeouts is the configured transaction timeout for
your bean. The maximum amount of time a thread will wait for a bean from the pool is equal to
the default transaction timeout for the bean. Increasing the trans-timeout-seconds setting in
your weblogic-ejb-jar.xml file will give threads more time to wait for a bean instance to
become available.

Users should exercise caution when increasing this value, however, since doing so may cause
threads to wait longer for a bean and threads are a valuable server resource. Also, request time
might increase because a request will wait longer before timing out.

Transaction Rollback Ratio
The transaction rollback ratio is the ratio of transactions that have rolled back to the number of
total transactions involving the EJB:

Transaction Rollback Ratio = (Transaction Total Rollback Count / Transaction

Total Count) * 100

Begin investigating a high transaction rollback ratio by examining the Transaction Timeout Ratio
reported in the Administration Console. If the transaction timeout ratio is higher than you expect,
try to address the timeout problem first.

Tun ing In Response to Moni to r ing Stat is t i cs

BEA WebLogic Server Performance and Tuning 8-13

An unexpectedly high transaction rollback ratio could be caused by a number of things. We
recommend investigating the cause of transaction rollbacks to find potential problems with your
application or a resource used by your application.

Transaction Timeout Ratio
The transaction timeout ratio is the ratio of transactions that have timed out to the total number
of transactions involving an EJB:

Transaction Timeout Ratio = (Transaction Total Timeout Count / Transaction

Total Count) * 100

A high transaction timeout ratio could be caused by the wrong transaction timeout value. For
example, if your transaction timeout is set too low, you may be timing out transactions before the
thread is able to complete the necessary work. Increasing your transaction timeout value may
reduce the number of transaction timeouts.

You should exercise caution when increasing this value, however, since doing so can cause
threads to wait longer for a resource before timing out. Also, request time might increase because
a request will wait longer before timing out.

A high transaction timeout ratio could be caused by a number of things such as a bottleneck for
a server resource. We recommend tracing through your transactions to investigate what is causing
the timeouts so the problem can be addressed.

Tuning WebLog ic Se rve r E JBs

8-14 BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning 9-1

C H A P T E R 10

Tuning JDBC Applications

The following sections provide tips on how to get the best performance from JDBC applications:

“Tune the Number of Database Connections” on page 10-1

“Waste Not” on page 10-2

“Use Test Connections on Reserve with Care” on page 10-2

“Cache Prepared and Callable Statements” on page 10-3

“Use Best Design Practices” on page 10-3

Tune the Number of Database Connections
A straightforward and easy way to boost performance of JDBC in WebLogic Server applications
is to set the value of Initial Capacity equal to the value for Maximum Capacity when
configuring connection pools in your data source.

Creating a database connection is a relatively expensive process in any environment. Typically,
a connection pool starts with a small number of connections. As client demand for more
connections grow, there may not be enough in the pool to satisfy the requests. WebLogic Server
creates additional connections and adds them to the pool until the maximum pool size is reached.

One way to avoid connection creation delays for clients using the server is to initialize all
connections at server startup, rather than on-demand as clients need them. Set the initial number
of connections equal to the maximum number of connections in the Connection Pool tab of your
data source configuration. See “JDBC Data Source: Configuration: Connection Pool” in the

http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JDBCjdbcdatasourcesjdbcdatasourceconfigconnectionpooltitle.html

Tun ing JDBC App l i cat ions

9-2 BEA WebLogic Server Performance and Tuning

Administration Console Online Help. You will still need to determine the optimal value for the
Maximum Capacity as part of your pre-production performance testing.

Waste Not
Another simple way to boost JDBC application performance avoid wasting resources. Here are
some situations where you can avoid wasting JDBC related resources:

JNDI lookups are relatively expensive, so caching an object that required a looked-up in
client code or application code avoids incurring this performance hit more than once.

Once client or application code has a connection, maximize the reuse of this connection
rather than closing and reacquiring a new connection. While acquiring and returning an
existing creation is much less expensive than creating a new one, excessive acquisitions
and returns to pools creates contention in the connection pool and degrades application
performance.

Don’t hold connections any longer than is necessary to achieve the work needed. Getting a
connection once, completing all necessary work, and returning it as soon as possible
provides the best balance for overall performance.

Use Test Connections on Reserve with Care
When Test Connections on Reserve is enabled, the server instance checks a database
connection prior to returning the connection to a client. This helps reduce the risk of passing
invalid connections to clients.

However, it is a fairly expensive operation. Typically, a server instance performs the test by
executing a full-fledged SQL query with each connection prior to returning it. If the SQL query
fails, the connection is destroyed and a new one is created in its place. A new and optional
performance tunable has been provided in WLS 9.0 within this “test connection on reserve”
feature. The new optional performance tunable in 9.0 allows WLS to skip this SQL-query test
within a configured time window of a prior successful client use (default is 10 seconds). When a
connection is returned to the pool by a client, the connection is timestamped by WLS. WLS will
then skip the SQL-query test if this particular connection is returned to a client within the time
window. Once the time window expires, WLS will execute the SQL-query test. This feature can
provide significant performance boosts for busy systems using “test connection on reserve”.

Cache P repared and Ca l lab le Sta tements

BEA WebLogic Server Performance and Tuning 9-3

Cache Prepared and Callable Statements
When you use a prepared statement or callable statement in an application or EJB, there is
considerable processing overhead for the communication between the application server and the
database server and on the database server itself. To minimize the processing costs, WebLogic
Server can cache prepared and callable statements used in your applications. When an application
or EJB calls any of the statements stored in the cache, WebLogic Server reuses the statement
stored in the cache. Reusing prepared and callable statements reduces CPU usage on the database
server, improving performance for the current statement and leaving CPU cycles for other tasks.
For more details, see “Increasing Performance with the Statement Cache” in Configuring and
Managing WebLogic JDBC.

Using the statement cache can dramatically increase performance, but you must consider its
limitations before you decide to use it. For more details, see “Usage Restrictions for the Statement
Cache” in Configuring and Managing WebLogic JDBC.

Use Best Design Practices
Most performance gains or losses in a database application is not determined by the application
language, but by how the application is designed. The number and location of clients, size and
structure of DBMS tables and indexes, and the number and types of queries all affect application
performance. For Detailed information on how to design a database application, see “Designing
Your Application for Best Performance” in Programming WebLogic JDBC.

http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#statementcache
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#cache_restrictions
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html#cache_restrictions
http://e-docs.bea.com/wls/docs90/jdbc/performance.html#performance005
http://e-docs.bea.com/wls/docs90/jdbc/performance.html#performance005

Tun ing JDBC App l i cat ions

9-4 BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning 10-1

C H A P T E R 11

Tuning Logging Last Resource

The following sections provide background and tuning information for Last Logging Resource
transaction optimization (LLR):

“What is LLR?” on page 11-1

“LLR Tuning Guidelines” on page 11-2

What is LLR?
The Logging Last Resource (LLR) transaction optimization through JDBC data sources safely
reduces the overhead of two-phase transactions involving database inserts, updates, and deletes.
Two phase transactions occur when two different resources participate in the same global
transaction (global transactions are often referred to as “XA” or “JTA” transactions). Consider
the following:

Typical two-phase transactions in JMS applications usually involve both a JMS server and
a database server. The LLR option can as much as double performance compared to XA.

The safety of the JDBC LLR option contrasts with well known but less-safe XA
optimizations such as “last-agent”, “last-participant”, and “emulate-two-phase-commit”
that are available from other vendors as well as BEA WebLogic.

JDBC LLR works by storing two-phase transaction records in a database table rather than
in the transaction manager log (the TLOG).

See “Logging Last Resource Transaction Optimization” in Programming WebLogic JTA.

http://e-docs.bea.com/wls/docs90/jta/llr.html

Tun ing Logg ing Las t Resource

10-2 BEA WebLogic Server Performance and Tuning

LLR Tuning Guidelines
The following section provides tuning guidelines for LLR:

Note: BEA recommends that you read and understand “Logging Last Resource Transaction
Optimization” in Programming WebLogic JTA and “Transaction Options” in
Configuring and Managing WebLogic JDBC. LLR has a number of important
administration and design implications.

JJDBC LLR generally improves performance of two-phase transactions that involve SQL
updates, deletes, or inserts.

LLR generally reduces the performance of two-phase transactions where all SQL
operations are read-only (just selects).

JDBC LLR pools provide no performance benefit to WebLogic JDBC stores. WebLogic
JDBC stores are fully transactional but do not use JTA (XA) transactions on their internal
JDBC connections.

Consider using LLR instead of the less safe “last-agent” optimization for connectors, and
the less safe “emulate-two-phase-commit” option for JDBC connection pools (formerly
known as the “enable two-phase commit” option for pools that use non-XA drivers).

On Oracle databases, heavily used LLR tables may become fragmented over time, which
can lead to unused extents. This is likely due to the highly transient nature of the LLR
table's data. To help avoid the issue, set PCT_FREE to 5 and PCT_USED to 95 on the LLR
table. Also periodically defragment using the ALTER TABLESPACE [tablespace-name]
COALESCE command.

http://e-docs.bea.com/wls/docs90/jta/llr.html
http://e-docs.bea.com/wls/docs90/jta/llr.html
http://e-docs.bea.com/wls/docs90/jdbc_admin/jdbc_datasources.html

BEA WebLogic Server Performance and Tuning 11-1

C H A P T E R 12

Tuning WebLogic JMS

The following sections explain how to get the most out of your applications by implementing the
administrative performance tuning features available with WebLogic JMS:

“Defining Quota” on page 12-1

“Compressing Messages” on page 12-5

“Paging Out Messages To Free Up Memory” on page 12-6

“Controlling the Flow of Messages on JMS Servers and Destinations” on page 12-7

“Handling Expired Messages” on page 12-11

“Tuning MessageMaximum” on page 12-16

“Tuning Applications Using Unit-of-Order” on page 12-17

Defining Quota
In prior releases, there were multiple levels of quotas: destinations had their own quotas and
would also have to compete for quota within a JMS server. In this release, there is only one level
of quota: destinations can have their own private quota or they can compete with other
destinations using a shared quota.

In addition, a destination that defines its own quota no longer also shares space in the JMS
server’s quota. Although JMS servers still allow the direct configuration of message and byte
quotas, these options are only used to provide quota for destinations that do not refer to a quota
resource.

Tun ing WebLog ic JMS

11-2 BEA WebLogic Server Performance and Tuning

Quota Resources
A quota is a named configurable JMS module resource. It defines a maximum number of
messages and bytes, and is then associated with one or more destinations and is responsible for
enforcing the defined maximums. Multiple destinations referring to the same quota share
available quota according to the sharing policy for that quota resource.

Quota resources include the following configuration parameters:

For more information about quota configuration parameters, see QuotaBean in the WebLogic
Server MBean Reference. For instructions on configuring a quota resource using the
Administration Console, see “Create a quota for destinations” in the Administration Console
Online Help.

Destination-Level Quota
Destinations no longer define byte and messages maximums for quota, but can use a quota
resource that defines these values, along with quota policies on sharing and competition.

The Quota parameter of a destination defines which quota resource is used to enforce quota for
the destination. This value is dynamic, so it can be changed at any time. However, if there are

Table 12-1 Quota Parameters

Attribute Description

Bytes Maximum and
Messages Maximum

The Messages Maximum/Bytes Maximum parameters for a
quota resource defines the maximum number of messages
and/or bytes allowed for that quota resource. No consideration
is given to messages that are pending; that is, messages that are
in-flight, delayed, or otherwise inhibited from delivery still
count against the message and/or bytes quota.

Quota Sharing The Shared parameter for a quota resource defines whether
multiple destinations referring to the same quota resource
compete for resources with each other.

Quota Policy The Policy parameter defines how individual clients compete
for quota when no quota is available. It affects the order in
which send requests are unblocked when the Send Timeout
feature is enabled on the connection factory, as described in
“Defining a Send Timeout on Connection Factories” on
page 12-4.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/quotas/CreateQuotas.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/QuotaBean.html

Def in ing Quota

BEA WebLogic Server Performance and Tuning 11-3

unsatisfied requests for quota when the quota resource is changed, then those requests will fail
with a javax.jms.ResourceAllocationException.

Note: Outstanding requests for quota will fail at such time that the quota resource is changed.
This does not mean changes to the message and byte attributes for the quota resource, but
when a destination switches to a different quota.

JMS Server-Level Quota
In some cases, there will be destinations that do not configure quotas. JMS Server quotas allow
JMS servers to limit the resources used by these “quota-less” destinations. All destinations that
do not explicitly set a value for the Quota attribute share the quota of the JMS server where they
are deployed. The behavior is exactly the same as if there were a special Quota resource defined
for each JMS server with the Shared parameter enabled.

The interfaces for the JMS server quota are unchanged from prior releases. The JMS server quota
is entirely controlled using methods on the JMSServerMBean. The quota policy for the JMS
server quota is set by the Blocking Send Policy parameter on a JMS server, as explained in
“Specifying a Blocking Send Policy on JMS Servers” on page 12-3. It behaves just like the Policy
setting of any other quota.

Specifying a Blocking Send Policy on JMS Servers
The Blocking Send policies enable you to define the JMS server’s blocking behavior on whether
to deliver smaller messages before larger ones when multiple message producers are competing
for space on a destination that has exceeded its message quota.

To use the Administration Console to define how a JMS server will block message requests when
its destinations are at maximum quota.

1. Follow the directions for navigating to the JMS Server: Configuration: Thresholds and
Quotas page of the Administration Console in “Configure JMS server thresholds and quota”
in the Administration Console Online Help.

2. From the Blocking Send Policy list box, select one of the following options:

– FIFO — All send requests for the same destination are queued up one behind the other
until space is available. No send request is permitted to complete when there another
send request is waiting for space before it.

– Preemptive — A send operation can preempt other blocking send operations if space is
available. That is, if there is sufficient space for the current request, then that space is
used even if there are previous requests waiting for space.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_servers/ConfigureJMSServerThresholds.html

Tun ing WebLog ic JMS

11-4 BEA WebLogic Server Performance and Tuning

For more information about the Blocking Send Policy field, see “JMS Server:
Configuration: Thresholds and Quota” in the Administration Console Online Help.

3. Click Save.

Defining a Send Timeout on Connection Factories
The Send Timeout feature provides more control over message send operations by giving
message produces the option of waiting a specified length of time until space becomes available
on a destination. For example, if a producer makes a request and there is insufficient space, then
the producer is blocked until space becomes available, or the operation times out.

To use the Administration Console to define how long a JMS connection factory will block
message requests when a destination exceeds its maximum quota.

1. Follow the directions for navigating to the JMS Connection Factory: Configuration: Flow
Control page in “Configure message flow control” in the Administration Console Online
Help.

2. In the Send Timeout field, enter the amount of time, in milliseconds, a sender will block
messages when there is insufficient space on the message destination. Once the specified
waiting period ends, one of the following results will occur:

– If sufficient space becomes available before the timeout period ends, the operation
continues.

– If sufficient space does not become available before the timeout period ends, you
receive a “resource allocation” exception.

If you choose not to enable the blocking send policy by setting this value to 0, then you
will receive a “resource allocation” exception whenever sufficient space is not available on
the destination.

For more information about the Send Timeout field, see “JMS Connection Factory:
Configuration: Flow Control” in the Administration Console Online Help.

3. Click Save.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureFlowControl.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfigflowcontroltitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfigflowcontroltitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsserverjmsserverconfigthresholdstitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsserverjmsserverconfigthresholdstitle.html

Compress ing Messages

BEA WebLogic Server Performance and Tuning 11-5

Compressing Messages
To improve the performance of sending messages traveling across JVM boundaries and help
conserve disk space, you can specify the automatic compression of any messages that exceed a
user-specified threshold size. Message compression can help reduce network bottlenecks by
automatically reducing the size of messages sent across network wires. Compressing messages
can also conserve disk space when storing persistent messages in file stores or databases.

Note: Compressed messages may actually inadvertently affect destination quotas since some
message types actually grow larger when compressed.

A message compression threshold can be set programmatically using a JMS API extension to the
WLMessageProducer interface, or administratively by either specifying a Default Compression
Threshold value on a connection factory or on a JMS SAF remote context.

For instructions on configuring default compression thresholds using the Administration
Console, see:

Connection factories — “Configure default delivery parameters” in the Administration
Console Online Help.

Store-and-Forward (SAF) remote contexts — “Configure SAF remote contexts” in the
Administration Console Online Help.

Once configured, message compression is triggered on producers for client sends, on connection
factories for message receives and message browsing, or through SAF forwarding. Messages are
compressed using GZIP. Compression only occurs when message producers and consumers are
located on separate server instances where messages must cross a JVM boundary, typically across
a network connection when WebLogic domains reside on different machines. Decompression
automatically occurs on the client side and only when the message content is accessed, except for
the following situations:

Using message selectors on compressed XML messages can cause decompression, since
the message body must be accessed in order to filter them. For more information on
defining XML message selectors, see “Filtering Messages” in Programming WebLogic
JMS.

Interoperating with earlier versions of WebLogic Server can cause decompression. For
example, when using the Messaging Bridge, messages are decompressed when sent from
the current release of WebLogic Server to a receiving side that is an earlier version of
WebLogic Server.

On the server side, messages always remains compressed, even when they are written to disk.

http://e-docs.bea.com/wls/docs90/jms/manage_apps.html#Defining_XML_Message_Selectors
http://e-docs.bea.com/wls/docs90/javadocs/weblogic/jms/extensions/WLMessageProducer.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureDefaultDeliveryParams.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/store_and_forward/remote_context/ConfigureRemoteContext.html

Tun ing WebLog ic JMS

11-6 BEA WebLogic Server Performance and Tuning

Paging Out Messages To Free Up Memory
With the message paging feature, JMS servers automatically attempt to free up virtual memory
during peak message load periods. This feature can greatly benefit applications with large
message spaces. Message paging is always enabled on JMS servers, and so a message paging
directory is automatically created without having to configure one. You can, however, specify a
directory using the Paging Directory option, then paged-out messages are written to files in this
directory.

JMS message paging saves memory for persistent messages, as even persistent messages cache
their data in memory. If a JMS server is associated with a file store (either user-defined or the
server's default store), paged persistent messages are generally written to that file store, while
non-persistent messages are always written to the JMS server's paging directory. If a JMS server
is associated with a JDBC store, then both paged persistent and non-persistent messages are
always written to the JMS server's paging directory. See “Best Practices When Using Persistent
Stores” on page 7-3.

However, a paged-out message does not free all of the memory that it consumes, since the
message header with the exception of any user properties, which are paged out along with the
message body, remains in memory for use with searching, sorting, and filtering. Queuing
applications that use selectors to select paged messages may show severely degraded
performance as the paged out messages must be paged back in. This does not apply to topics or
to applications that select based only on message header fields (such as CorrelationID).

Specifying a Message Paging Directory
If a paging directory is not specified, then paged-out message bodies are written to the default
\tmp directory inside the servername subdirectory of a domain’s root directory. For example, if
no directory name is specified for the default paging directory, it defaults to:
bea_home\user_projects\domains\domainname\servers\servername\tmp

where domainname is the root directory of your domain, typically
c:\bea\user_projects\domains\domainname, which is parallel to the directory in which
WebLogic Server program files are stored, typically c:\bea\weblogic90.

Tuning the Message Buffer Size Option
The Message Buffer Size option specifies the amount of memory that will be used to store
message bodies in memory before they are paged out to disk. The default value of Message Buffer
Size is approximately one-third of the maximum heap size for the JVM, or a maximum of 512

Cont ro l l ing the F low o f Messages on JMS Se rve rs and Dest inat ions

BEA WebLogic Server Performance and Tuning 11-7

megabytes. The larger this parameter is set, the more memory JMS will consume when many
messages are waiting on queues or topics. Once this threshold is crossed, JMS may write message
bodies to the directory specified by the Paging Directory option in an effort to reduce memory
usage below this threshold.

It is important to note that this parameter is not a quota. If the number of messages on the server
passes the threshold, the server will write messages to disk and evict them from memory as fast
as it can to reduce memory usage, but it will not stop accepting new messages. It is still possible
to run out of memory if messages are arriving faster than they can be paged out. Users with high
messaging loads who wish to support the highest possible availability should consider setting a
quota, or setting a threshold and enabling flow control to reduce memory usage on the server.

Controlling the Flow of Messages on JMS Servers and
Destinations

With the Flow Control feature, you can direct a JMS server or destination to slow down message
producers when it determines that it is becoming overloaded.

The following sections describe how flow control feature works and how to configure flow
control on a connection factory.

“How Flow Control Works” on page 12-7

“Configuring Flow Control” on page 12-8

“Flow Control Thresholds” on page 12-9

How Flow Control Works
Specifically, when either a JMS server or it’s destinations exceeds its specified byte or message
threshold, it becomes armed and instructs producers to limit their message flow (messages per
second).

Producers will limit their production rate based on a set of flow control attributes configured for
producers via the JMS connection factory. Starting at a specified flow maximum number of
messages, a producer evaluates whether the server/destination is still armed at prescribed
intervals (for example, every 10 seconds for 60 seconds). If at each interval, the server/destination
is still armed, then the producer continues to move its rate down to its prescribed flow minimum
amount.

As producers slow themselves down, the threshold condition gradually corrects itself until the
server/destination is unarmed. At this point, a producer is allowed to increase its production rate,

Tun ing WebLog ic JMS

11-8 BEA WebLogic Server Performance and Tuning

but not necessarily to the maximum possible rate. In fact, its message flow continues to be
controlled (even though the server/destination is no longer armed) until it reaches its prescribed
flow maximum, at which point it is no longer flow controlled.

Configuring Flow Control
Producers receive a set of flow control attributes from their session, which receives the attributes
from the connection, and which receives the attributes from the connection factory. These
attributes allow the producer to adjust its message flow.

Specifically, the producer receives attributes that limit its flow within a minimum and maximum
range. As conditions worsen, the producer moves toward the minimum; as conditions improve;
the producer moves toward the maximum. Movement toward the minimum and maximum are
defined by two additional attributes that specify the rate of movement toward the minimum and
maximum. Also, the need for movement toward the minimum and maximum is evaluated at a
configured interval.

Flow Control options are described in following table:

Table 12-2 Flow Control Parameters

Attribute Description

Flow Control Enabled Determines whether a producer can be flow controlled by the
JMS server.

Flow Maximum The maximum number of messages per second for a producer
that is experiencing a threshold condition.

If a producer is not currently limiting its flow when a threshold
condition is reached, the initial flow limit for that producer is
set to Flow Maximum. If a producer is already limiting its flow
when a threshold condition is reached (the flow limit is less
than Flow Maximum), then the producer will continue at its
current flow limit until the next time the flow is evaluated.

Once a threshold condition has subsided, the producer is not
permitted to ignore its flow limit. If its flow limit is less than
the Flow Maximum, then the producer must gradually increase
its flow to the Flow Maximum each time the flow is evaluated.
When the producer finally reaches the Flow Maximum, it can
then ignore its flow limit and send without limiting its flow.

Cont ro l l ing the F low o f Messages on JMS Se rve rs and Dest inat ions

BEA WebLogic Server Performance and Tuning 11-9

For more information about the flow control fields, and the valid and default values for them, see
“JMS Connection Factory: Configuration: Flow Control” in the Administration Console Online
Help.

Flow Control Thresholds
The attributes used for configuring bytes/messages thresholds are defined as part of the JMS
server and/or its destination. Table 12-3 defines how the upper and lower thresholds start and stop
flow control on a JMS server and/or JMS destination.

Flow Minimum The minimum number of messages per second for a producer
that is experiencing a threshold condition. This is the lower
boundary of a producer’s flow limit. That is, WebLogic JMS
will not further slow down a producer whose message flow
limit is at its Flow Minimum.

Flow Interval An adjustment period of time, defined in seconds, when a
producer adjusts its flow from the Flow Maximum number of
messages to the Flow Minimum amount, or vice versa.

Flow Steps The number of steps used when a producer is adjusting its flow
from the Flow Minimum amount of messages to the Flow
Maximum amount, or vice versa. Specifically, the Flow
Interval adjustment period is divided into the number of Flow
Steps (for example, 60 seconds divided by 6 steps is 10 seconds
per step).

Also, the movement (that is, the rate of adjustment) is
calculated by dividing the difference between the Flow
Maximum and the Flow Minimum into steps. At each Flow
Step, the flow is adjusted upward or downward, as necessary,
based on the current conditions, as follows:
• The downward movement (the decay) is geometric over the

specified period of time (Flow Interval) and according to
the specified number of Flow Steps. (For example, 100, 50,
25, 12.5).

• The movement upward is linear. The difference is simply
divided by the number of Flow Steps.

Table 12-2 Flow Control Parameters

Attribute Description

http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsconnectionjmsconnectionfactoryconfigflowcontroltitle.html

Tun ing WebLog ic JMS

11-10 BEA WebLogic Server Performance and Tuning

For detailed information about other JMS server and destination threshold and quota fields, and
the valid and default values for them, see the following pages in the Administration Console
Online Help:

JMS Server: Configuration: Thresholds and Quotas

JMS Queue: Configuration: Thresholds and Quotas

JMS Topic: Configuration: Thresholds and Quotas

Table 12-3 Flow Control Threshold Parameters

Attribute Description

Bytes/Messages Threshold High When the number of bytes/messages exceeds this
threshold, the JMS server/destination becomes armed and
instructs producers to limit their message flow.

Bytes/Messages Threshold Low When the number of bytes/messages falls below this
threshold, the JMS server/destination becomes unarmed
and instructs producers to begin increasing their message
flow.

Flow control is still in effect for producers that are below
their message flow maximum. Producers can move their
rate upward until they reach their flow maximum, at
which point they are no longer flow controlled.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsserverjmsserverconfigthresholdstitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsdestinationsjmsqueueconfigthresholdstitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsdestinationsjmstopicconfigthresholdstitle.html

Hand l ing Exp i red Messages

BEA WebLogic Server Performance and Tuning 11-11

Handling Expired Messages
The following sections describe two message expiration features, the message Expiration Policy
and the Active Expiration of message, which provide more control over how the system searches
for expired messages and how it handles them when they are encountered.

Active message expiration ensures that expired messages are cleaned up immediately. Moreover,
expired message auditing gives you the option of tracking expired messages, either by logging
when a message expires or by redirecting expired messages to a defined “error” destination.

“Defining a Message Expiration Policy” on page 12-11

“Enabling Active Message Expiration” on page 12-16

Defining a Message Expiration Policy
Use the message Expiration Policy feature to define an alternate action to take when messages
expire. Using the Expiration Policy attribute on the Destinations node, an expiration policy can
be set on a per destination basis. The Expiration Policy attribute defines the action that a
destination should take when an expired message is encountered: discard the message, discard
the message and log its removal, or redirect the message to an error destination.

Also, if you use JMS templates to configure multiple destinations, you can use the Expiration
Policy field to quickly configure an expiration policy on all your destinations. To override a
template’s expiration policy for specific destinations, you can modify the expiration policy on
any destination.

For instructions on configuring the Expiration Policy, click one of the following links:

“Configuring an Expiration Policy on Topics” on page 12-11

“Configuring an Expiration Policy on Queues” on page 12-12

“Configuring an Expiration Policy on Templates” on page 12-13

“Defining an Expiration Logging Policy” on page 12-14

Configuring an Expiration Policy on Topics
Follow these directions if you are configuring an expiration policy on topics without using a JMS
template. Expiration policies that are set on specific topics will override the settings defined on a
JMS template.

Tun ing WebLog ic JMS

11-12 BEA WebLogic Server Performance and Tuning

1. Follow the directions for navigating to the JMS Topic: Configuration: Delivery Failure page
in “Configure message delivery failure options” in the Administration Console Online Help.

2. From the Expiration Policy list box, select an expiration policy option.

– Discard — Expired messages are removed from the system. The removal is not logged
and the message is not redirected to another location.

– Log — Removes expired messages and writes an entry to the server log file indicating
that the messages were removed from the system. You define the actual information
that will be logged in the Expiration Logging Policy field in next step.

– Redirect — Moves expired messages from their current location into the Error
Destination defined for the topic.

For more information about the Expiration Policy options for a topic, see “JMS Topic:
Configuration: Delivery Failure” in the Administration Console Online Help.

3. If you selected the Log expiration policy in previous step, use the Expiration Logging
Policy field to define what information about the message is logged.

For more information about valid Expiration Logging Policy values, see “Defining an
Expiration Logging Policy” on page 12-14.

4. Click Save.

Configuring an Expiration Policy on Queues
Follow these directions if you are configuring an expiration policy on queues without using a
JMS template. Expiration policies that are set on specific queues will override the settings defined
on a JMS template.

1. Follow the directions for navigating to the JMS Queue: Configuration: Delivery Failure page
in “Configure message delivery failure options” in the Administration Console Online Help.

2. From the Expiration Policy list box, select an expiration policy option.

– Discard — Expired messages are removed from the system. The removal is not logged
and the message is not redirected to another location.

– Log — Removes expired messages from the queue and writes an entry to the server log
file indicating that the messages were removed from the system. You define the actual
information that will be logged in the Expiration Logging Policy field described in the
next step.

– Redirect — Moves expired messages from the queue and into the Error Destination
defined for the queue.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/topics/ConfigureTopicDeliveryFailure.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsdestinationsjmstopicconfigredeliverytitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsdestinationsjmstopicconfigredeliverytitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueDeliveryFailure.html

Hand l ing Exp i red Messages

BEA WebLogic Server Performance and Tuning 11-13

For more information about the Expiration Policy options for a queue, see “Configure
queue message delivery failure options” in the Administration Console Online Help.

3. If you selected the Log expiration policy in the previous step, use the Expiration Logging
Policy field to define what information about the message is logged.

For more information about valid Expiration Logging Policy values, see “Defining an
Expiration Logging Policy” on page 12-14.

4. Click Save

5. Repeat steps 3–7 to configure an expiration policy for additional queues.

Configuring an Expiration Policy on Templates
Since JMS templates provide an efficient way to define multiple destinations (topics or queues)
with similar attribute settings, you can configure a message expiration policy on an existing
template (or templates) for your destinations.

1. Follow the directions for navigating to the JMS Template: Configuration: Delivery Failure
page in “Configure message delivery failure options” in the Administration Console Online
Help.

2. In the Expiration Policy list box, select an expiration policy option.

– Discard — Expired messages are removed from the messaging system. The removal is
not logged and the message is not redirected to another location.

– Log — Removes expired messages and writes an entry to the server log file indicating
that the messages were removed from the system. The actual information that is logged
is defined by the Expiration Logging Policy field described in the next step.

– Redirect — Moves expired messages from their current location into the Error
Destination defined for the destination.

For more information about the Expiration Policy options for a template, see “JMS
Template: Configuration: Delivery Failure” in the Administration Console Online Help.

3. If you selected the Log expiration policy in Step 4, use the Expiration Logging Policy field
to define what information about the message is logged.

For more information about valid Expiration Logging Policy values, see “Defining an
Expiration Logging Policy” on page 12-14.

4. Click Save.

5. Repeat steps 2–6 to configure an expiration policy for additional JMS templates.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueDeliveryFailure.html

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/queues/ConfigureQueueDeliveryFailure.html

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/templates/ConfigureJMSTemplateDeliveryFailure.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmstemplatesjmstemplateconfigredeliverytitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmstemplatesjmstemplateconfigredeliverytitle.html

Tun ing WebLog ic JMS

11-14 BEA WebLogic Server Performance and Tuning

Defining an Expiration Logging Policy
Note: The Expiration Logging Policy parameter has been deprecated in this release of

WebLogic Server. In its place, BEA recommends using the Message Life Cycle Logging
feature, which provide a more comprehensive view of the basic events that JMS
messages will traverse through once they are accepted by a JMS server, including
detailed message expiration data. For more information about message life cycle logging
options, see Message Life Cycle Logging in Configuring and Managing WebLogic JMS.

Note: When the Expiration Policy is set to Log, the Expiration Logging Policy defines what
information about the message is logged. Valid values for Expiration Logging Policy
properties include%header%, %properties%, JMS header properties as defined in the
JMS specification, the WebLogic JMS-specific extended header fields
JMSDeliveryTime and JMSRedeliveryLimit, and any user-defined property. Each
property must be separated by a comma.

The %header% value indicates that all header fields should be logged. The %properties% value
indicates that all user properties should be logged. Neither values are case sensitive. However,
the enumeration of individual JMS header fields and user properties are case sensitive.

For example, you could specify one of the following values:

JMSPriority, Name, Address, City, State, Zip

%header%, Name, Address, City, State, Zip

JMSCorrelationID, %properties%

The JMSMessageID field is always logged and cannot be turned off. Therefore, if the Expiration
Policy is not defined (that is, none) or is defined as an empty string, then the output to the log file
contains only the JMSMessageID of the message.

Expiration Log Output Format
When an expired message is logged, the text portion of the message (not including timestamps,
severity, thread information, security identity, etc.) conforms to the following format:

<ExpiredJMSMessage JMSMessageId=’$MESSAGEID’ >

 <HeaderFields Field1=’Value1’ [Field2=’Value2’] …] />

 <UserProperties Property1=’Value1’ [Property=’Value2’] …] />

</ExpiredJMSMessage>

where $MESSAGEID is the exact string returned by Message.getJMSMessageID().

For example:

http://e-docs.bea.com/wls/docs90/jms_admin/troubleshoot.html#1128818

Hand l ing Exp i red Messages

BEA WebLogic Server Performance and Tuning 11-15

<ExpiredJMSMessage JMSMessageID=’ID:P<851839.1022176920343.0’ >

 <HeaderFields JMSPriority=’7’ JMSRedelivered=’false’ />

 <UserProperties Make=’Honda’ Model=’Civic’ Color=’White’

 Weight=’2680’ />

</ExpiredJMSMessage>

If no header fields are displayed, the line for header fields is not be displayed. If no user properties
are displayed, that line is not be displayed. If there are no header fields and no properties, the
closing </ExpiredJMSMessage> tag is not necessary as the opening tag can be terminated with
a closing bracket (/>).

For example:

<ExpiredJMSMessage JMSMessageID=’ID:N<223476.1022177121567.1’ />

All values are delimited with double quotes. All string values are limited to 32 characters in
length. Requested fields and/or properties that do not exist are not displayed. Requested fields
and/or properties that exist but have no value (a null value) are displayed as null (without single
quotes). Requested fields and/or properties that are empty strings are displayed as a pair of single
quotes with no space between them.

For example:

<ExpiredJMSMessage JMSMessageID=’ID:N<851839.1022176920344.0’ >

 <UserProperties First=’Any string longer than 32 char ...’

 Second=null Third=’’ />

</ExpiredJMSMessage>

Tun ing WebLog ic JMS

11-16 BEA WebLogic Server Performance and Tuning

Enabling Active Message Expiration
Use the Active Expiration feature to define the timeliness in which expired messages are removed
from the destination to which they were sent or published. Messages are not necessarily removed
from the system at their expiration time, but they are removed within a user-defined number of
seconds. The smaller the window, the closer the message removal is to the actual expiration time.

Configuring a JMS Server to Actively Scan Destinations for Expired Messages
Follow these directions to define how often a JMS server will actively scan its destinations for
expired messages. The default value is 30 seconds, which means the JMS server waits 30 seconds
between each scan interval.

1. Follow the directions for navigating to the JMS Server: Configuration: General page of the
Administration Console in “Configure general JMS server properties” in the Administration
Console Online Help.

2. In the Scan Expiration Interval field, enter the amount of time, in seconds, that you want the
JMS server to pause between its cycles of scanning its destinations for expired messages to
process.

To disable active scanning, enter a value of 0 seconds. Expired messages are passively
removed from the system as they are discovered.

For more information about the Expiration Scan Interval attribute, see “JMS Server:
Configuration: General” in the Administration Console Online Help.

3. Click Save.

There are a number of design choices that impact performance of JMS applications. Some others
include reliability, scalability, manageability, monitoring, user transactions, message driven bean
support, and integration with an application server. In addition, there are WebLogic JMS
extensions and features have a direct impact on performance.

Tuning MessageMaximum
WebLogic JMS pipelines messages are delivered to asynchronous consumers, otherwise known
as message listeners. This action aids performance because messages are aggregated when they
are internally pushed from the server to the client. The messages backlog (the size of the pipeline)
between the JMS server and the client is tunable by configuring the MessagesMaximum setting
on the connection factory. See “Asynchronous Message Pipeline” in Programming WebLogic
JMS.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsserverjmsserverconfiggeneraltitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/JMSjmsserverjmsserverconfiggeneraltitle.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_servers/ConfigureJMSServerGeneral.html
http://e-docs.bea.com/wls/docs90/jms/implement.html#AsynchronousMessagePipeline

Tun ing App l i cat i ons Us ing Un i t -o f-Order

BEA WebLogic Server Performance and Tuning 11-17

In some circumstances, tuning the MessagesMaximum parameter may improve performance
dramatically, such as when the JMS application defers acknowledges or commits. In this case,
BEA suggests setting the MessagesMaximum value to:

2 * (ack or commit interval) + 1

For example:

If the JMS application acknowledges 50 messages at a time, set the MessagesMaximum value
to 101.

Tuning the MessagesMaximum value too high can cause:

Increased memory usage on the client.

Affinity to an existing client as its pipeline fills with messages. For example: If
MessagesMaximum has a value of 10,000,000, the first consumer client to connect will get
all messages that have already arrived at the destination. This condition leaves other
consumers without any messages and creates an unnecessary backlog of messages in the
first consumer that may cause the system to run out of memory.

Setting Maximum Message Size on a Client
You may need to configure WebLogic clients in addition to the server, when sending and
receiving large messages. To set the maximum message size on a client, use the following
command line property:

-Dweblogic.MaxMessageSize

Tuning Applications Using Unit-of-Order
Message Unit-of-Order is a WebLogic Server value-added feature that enables a stand-alone
message producer, or a group of producers acting as one, to group messages into a single unit with
respect to the processing order (a sub-ordering). This single unit is called a Unit-of-Order and
requires that all messages from that unit be processed sequentially in the order they were created.
UOO replaces the following complex design patterns:

A dedicated consumer with a unique selector per each sub-ordering

A new destination per sub-ordering, one consumer per destination.

See “Using Message Unit-of-Order” in Programming WebLogic JMS.

http://e-docs.bea.com/wls/docs90/jms/uoo.html

Tun ing WebLog ic JMS

11-18 BEA WebLogic Server Performance and Tuning

Best Practices
The following sections provide best practice information when using UOO:

Ideal for applications that have strict message ordering requirements. UOO simplifies
administration and application design, and in most applications improves performance.

Use MDB batching to:

– Speed-up processing of the messages within a single sub-ordering.

– Consume multiple messages at a time under the same transaction.

See TBD.

You can configure a default UOO for the destination. Only one consumer on the
destination processes messages for the default UOO at a time.

Using UOO and Distributed Destinations,
To ensure strict ordering when using distributed destinations, each different UOO is pinned to a
specific physical destination instance. There are two options for automatically determining the
correct physical destination for a given UOO:

Hashing—Is generally faster and the UOO setting. Hashing works by using a hash function
on the UOO name to determine the physical destination. It has the following drawbacks:

– It doesn't correctly handle the administrative deleting or adding physical destinations to
a distributed destination.

– If a UOO hashes to an unavailable destination, the message send fails.

Path Service—Is a single server UOO directory service that maps the physical destination
for each UOO. The Path Service is generally slower than hashing if there are many
differently named UOO created per second. In this situation, each new UOO name
implicitly forces a check of the path service before sending the message. If the number of
UOOs created per second is limited, Path Service performance is not an issue as the UOO
paths are cached throughout the cluster.

Migrating Old Applications to Use UOO
For releases prior to WebLogic Server 9.0, applications that had strict message ordering
requirements were required to do the following:

Use a single physical destination with a single consumer

Tun ing App l i cat i ons Us ing Un i t -o f-Order

BEA WebLogic Server Performance and Tuning 11-19

Ensure the maximum asynchronous consumer message backlog (The MessagesMaximum
parameter on the connection factory) was set to a value of 1.

UOO relaxes these requirements significantly as it allows for multiple consumers and allows for
a asynchronous consumer message backlog of any size. To migrate older applications to take
advantage of UOO, simply configure a default UOO name on the physical destination. See
“Configure connection factory unit-of-order parameters” in Administration Console Online Help.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/jms_modules/connection_factories/ConfigureUOOParams.html

Tun ing WebLog ic JMS

11-20 BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning 12-1

C H A P T E R 13

Tuning WebLogic JMS
Store-and-Forward

For WebLogic Server releases 9.0 and higher, JMS provides advanced store-and-forward
capability for high-performance message forwarding from a local server instance to a remote
JMS destination. See “Understanding the Store-and-Forward Service” in Configuring and
Managing WebLogic Store-and-Forward.

The following sections provide information on how to get the best performance from
Store-and-Forward (SAF) applications:

“Best Practices” on page 13-1

“Tuning Tips” on page 13-2

Best Practices
Avoid using SAF if remote destinations are already highly available. JMS clients can send
directly to remote destinations. Use SAF in situations where remote destinations are not
highly available, such as an unreliable network or different maintenance schedules.

Use the better performing JMS SAF feature instead of using a Messaging Bridge when
forwarding messages to remote destinations. In general, a JMS SAF agent is significantly
faster than a Messaging Bridge. One exception is a configuration when sending messages
in a non-persistent exactly-one mode.

Note: A Messaging Bridge is still required to store-and-forward messages to foreign
destinations and destinations from releases prior to WebLogic 9.0.

http://e-docs.bea.com/wls/docs90/saf_admin/overview.html

Tuning WebLog ic JMS Sto re-and-Forward

12-2 BEA WebLogic Server Performance and Tuning

Configure separate SAF Agents for JMS SAF and Web Services Reliable Messaging
Agents (WS-RM) to simplify administration and tuning.

Sharing the same WebLogic Store between subsystems provides increased performance for
subsystems requiring persistence. For example, transactions that include SAF and JMS
operations, transactions that include multiple SAF destinations, and transactions that
include SAF and EJBs. See “Tuning the WebLogic Persistent Store” on page 7-1.

Tuning Tips
Target imported destinations to multiple SAF agents to load balance message sends among
available SAF agents.

Increase the JMS SAF Window Size for applications that handle small messages. By
default, a JMS SAF agent forwards messages in batches that contain up to 10 messages.
For small messages size, it is possible to double or triple performance by increasing the
number of messages in each batch to be forwarded. A more appropriate initial value for
Window Size for small messages is 100. You can then optimize this value for your
environment.

Note: Changing the Window Size for applications handling large message sizes is not
likely to increase performance and is not recommended. Window Size also tunes
WS-RM SAF behavior, so it may not be appropriate to tune this parameter for SAF
Agents of type Both.

Increase the JMS SAF Window Interval. By default, a JMS SAF agent has a Window
Interval value of 0 which forwards messages as soon as they arrive. This can lower
performance as it can make the effective Window size much smaller than the configured
value. A more appropriate initial value for Window Interval value is 500 milliseconds.
You can then optimize this value for your environment. In this context, small messages are
less than a few K, while large messages are on the order of tens of K.

Note: Changing the Window Interval improves performance only in cases where the
forwarder is already able to forward messages as fast as they arrive. In this case,
instead of immediately forwarding newly arrived messages, the forwarder pauses to
accumulate more messages and forward them as a batch. The resulting larger batch
size improves forwarding throughput and reduces overall system disk and CPU usage
at the expense of increasing latency.

Set the Non-Persistent QOS value to At-Least-Once for imported destinations if your
application can tolerate duplicate messages.

Configuring and Managing the WebLogic Messaging Bridge 13-1

C H A P T E R 14

Tuning WebLogic Message Bridge

The following sections provide information on various methods to improve message bridge
performance:

“Best Practices” on page 14-1

“Changing the Batch Size” on page 14-2

“Changing the Batch Interval” on page 14-2

“Changing the Quality of Service” on page 14-2

“Using Multiple Bridge Instances” on page 14-3

“Changing the Thread Pool Size” on page 14-3

“Avoiding Durable Subscriptions” on page 14-4

“Co-locating Bridges with Their Source or Target Destination” on page 14-4

“Changing the Asynchronous Mode Enabled Attribute” on page 14-4

Best Practices
Avoid using a Messaging Bridge if remote destinations are already highly available. JMS
clients can send directly to remote destinations. Use messaging bridge in situations where
remote destinations are not highly available, such as an unreliable network or different
maintenance schedules.

Tun ing WebLog ic Message Br idge

13-2 Configuring and Managing the WebLogic Messaging Bridge

Use the better performing JMS SAF feature instead of using a Messaging Bridge when
forwarding messages to remote destinations. In general, a JMS SAF agent is significantly
faster than a Messaging Bridge. One exception is a configuration when sending messages
in a non-persistent exactly-one mode.

Note: A Messaging Bridge is still required to store-and-forward messages to foreign
destinations and destinations from releases prior to WebLogic 9.0.

Changing the Batch Size
When the Asynchronous Mode Enabled attribute is set to false and the quality of service is
Exactly-once, the Batch Size attribute can be used to reduce the number of transaction
commits by increasing the number of messages per transaction (batch). The best batch size for a
bridge instance depends on the combination of JMS providers used, the hardware, operating
system, and other factors in the application environment. See “Configure transaction properties”
in Administration Console Online Help.

Changing the Batch Interval
When the Asynchronous Mode Enabled attribute is set to false and the quality of service is
Exactly-once, the BatchInterval attribute is used to adjust the amount of time the bridge
waits for each batch to fill before forwarding batched messages. The best batch interval for a
bridge instance depends on the combination of JMS providers used, the hardware, operating
system, and other factors in the application environment. For example, if the queue is not very
busy, the bridge may frequently stop forwarding in order to wait batches to fill, indicating the
need to reduce the value of the BatchInterval attribute. See “Configure transaction properties”
in Administration Console Online Help.

Changing the Quality of Service
An Exactly-once quality of service may perform significantly better or worse than
At-most-once and Duplicate-okay.

When the Exactly-once quality of service is used, the bridge must undergo a two-phase commit
with both JMS servers in order to ensure the transaction semantics and this operation can be very
expensive. However, unlike the other qualities of service, the bridge can batch multiple
operations together using Exactly-once service.

You may need to experiment with this parameter to get the best possible performance. For
example, if the queue is not very busy or if non-persistent messages are used, Exactly-once

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MessagingBridgeMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MessagingBridgeMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MessagingBridgeMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MessagingBridgeMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MessagingBridgeMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MessagingBridgeMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MessagingBridgeMBean.html
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MessagingBridgeMBean.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/bridge/bridge_instance/ConfigureTransactions.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/bridge/bridge_instance/ConfigureTransactions.html

Using Mul t ip l e Br idge Ins tances

Configuring and Managing the WebLogic Messaging Bridge 13-3

batching may be of little benefit. See “Configure messaging bridge instances” in Administration
Console Online Help.

Using Multiple Bridge Instances
If message ordering is not required, consider deploying multiple bridges.

Multiple instances of the bridge may be deployed using the same destinations. When this is done,
each instance of the bridge runs in parallel and message throughput may improve. If multiple
bridge instances are used, messages will not be forwarded in the same order they had in the source
destination. See “Create messaging bridge instances” in Administration Console Online Help.

Consider the following factors when deciding whether to use multiple bridges:

Some JMS products do not seem to benefit much from using multiple bridges

WebLogic JMS messaging performance typically improves significantly, especially when
handling persistent messages.

If the CPU or disk storage is already saturated, increasing the number of bridge instances
may decrease throughput.

Changing the Thread Pool Size
A general bridge configuration rule is to provide a thread for each bridge instance targeted to a
server instance. Use one of the following options to ensure that an adequate number of threads is
available for your environment:

Use the common thread pool—A server instance changes its thread pool size automatically
to maximize throughput, including compensating for the number of bridge instances
configured. See Understanding How WebLogic Server Uses Thread Pools in Designing
and Configuring WebLogic Server Environments.

Configure a work manager for the weblogic.jms.MessagingBridge class. See
Understanding Work Managers in Designing and Configuring WebLogic Server
Environments.

Use the Administration console to set the Thread Pool Size property in the Messaging
Bridge Configuration section on the Configuration: Services page for a server instance.
To avoid competing with the default execute thread pool in the server, messaging bridges
share a separate thread pool. This thread pool is used only in synchronous mode
(Asynchronous Mode Enabled is not set). In asynchronous mode the bridge runs in a

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MessagingBridgeMBean.html
http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html#understanding_thread_pools
http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html#understanding_work_managers
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/bridge/bridge_instance/ConfigureGeneralAttributes.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/bridge/bridge_instance/CreateJMSBridgeInstance.html

Tun ing WebLog ic Message Br idge

13-4 Configuring and Managing the WebLogic Messaging Bridge

thread created by the JMS provider for the source destination. Deprecated in WebLogic
Server 9.0.

Avoiding Durable Subscriptions
If the bridge is listening on a topic and it is acceptable that messages are lost when the bridge is
not forwarding messages, disable the Durability Enabled flag to ensure undeliverable
messages do not accumulate in the source server's store. Disabling the flag also makes the
messages non-persistent. See “Configure messaging bridge instances” in Administration Console
Online Help.

Co-locating Bridges with Their Source or Target Destination
If a messaging bridge source or target is a WebLogic destination, deploy the bridge to the same
WebLogic server as the destination. Targeting a messaging bridge with one of its destinations
eliminates associated network and serialization overhead. Such overhead can be significant in
high-throughput applications, particularly if the messages are non-persistent.

Changing the Asynchronous Mode Enabled Attribute
The Asynchronous Mode Enabled attribute determines whether the messaging bridge receives
messages asynchronously using the JMS MessageListener interface, or whether the bridge
receives messages using the synchronous JMS APIs. In most situations, the Asynchronous
Enabled attributes value is dependent on the QOS required for the application environment as
shown in Table 14-1:

See “Configure messaging bridge instances” in Administration Console Online Help.

Table 14-1 Asynchronous Mode Enabled Values for QOS Level

QOS Asynchronous Mode Enabled Attribute value

Exactly-once1

1. If the source destination is a non-WebLogic JMS provider and the QOS is
Exactly-once, then the Asynchronous Mode Enabled attribute is disabled and the
messages are processed in synchronous mode.

false

At-least-once true

At-most-once true

http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MessagingBridgeMBean.html
http://java.sun.com/j2ee/1.4/docs/api/javax/jms/MessageListener.html
http://e-docs.bea.com/wls/docs90/bridge/design.html#Exactly-once
http://e-docs.bea.com/wls/docs90/bridge/design.html#Exactly-once
http://e-docs.bea.com/wls/docs90/bridge/design.html#At-least-once
http://e-docs.bea.com/wls/docs90/bridge/design.html#At-most-once
http://e-docs.bea.com/wls/docs90/wlsmbeanref/mbeans/MessagingBridgeMBean.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/bridge/bridge_instance/ConfigureGeneralAttributes.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/bridge/bridge_instance/ConfigureGeneralAttributes.html

Changing the Asynchronous Mode Enabled A t t r ibute

Configuring and Managing the WebLogic Messaging Bridge 13-5

A quality of service of Exactly-once has a significant effect on bridge performance. The bridge
starts a new transaction for each message and performs a two-phase commit across both JMS
servers involved in the transaction. Since the two-phase commit is usually the most expensive
part of the bridge transaction, as the number of messages being processed increases, the bridge
performance tends to decrease.

http://e-docs.bea.com/wls/docs90/bridge/design.html#Exactly-once

Tun ing WebLog ic Message Br idge

13-6 Configuring and Managing the WebLogic Messaging Bridge

BEA WebLogic Server Performance and Tuning 14-1

C H A P T E R 15

Tuning Resource Adapters

This appendix describes some best practices for resource adapter developers.

“Classloading Optimizations for Resource Adapters” on page 15-2

“Connection Optimizations” on page 15-2

“Thread Management” on page 15-2

“InteractionSpec Interface” on page 15-2

Tun ing Resource Adapte rs

14-2 BEA WebLogic Server Performance and Tuning

Classloading Optimizations for Resource Adapters
You can package resource adapter classes in one or more JAR files, and then place the JAR files
in the RAR file. These are called nested JARs. When you nest JAR files in the RAR file, and
classes need to be loaded by the classloader, the JARs within the RAR file must be opened and
closed and iterated through for each class that must be loaded.

If there are very few JARs in the RAR file and if the JARs are relatively small in size, there will
be no significant performance impact. On the other hand, if there are many JARs and the JARs
are large in size, the performance impact can be great.

To avoid such performance issues, you can either:

1. Deploy the resource adapter in an exploded format. This eliminates the nesting of JARs and
hence reduces the performance hit involved in looking for classes.

2. If deploying the resource adapter in exploded format is not an option, the JARs can be
exploded within the RAR file. This also eliminates the nesting of JARs and thus improves
the performance of classloading significantly.

Connection Optimizations
BEA recommends that resource adapters implement the optional enhancements described in
sections 7.14.2 and 7.14.2 of the J2CA 1.5 Specification. Implementing these interfaces allows
WebLogic Server to provide several features that will not be available without them.

Lazy Connection Association, as described in section 7.14.1, allows the server to automatically
clean up unused connections and prevent applications from hogging resources. Lazy Transaction
Enlistment, as described in 7.14.2, allows applications to start a transaction after a connection is
already opened.

Thread Management
Resource adapter implementations should use the WorkManager (as described in Chapter 10,
“Work Management” in the J2CA 1.5 Specification) to launch operations that need to run in a
new thread, rather than creating new threads directly. This allows WebLogic Server to manage
and monitor these threads.

InteractionSpec Interface
WebLogic Server supports the Common Client Interface (CCI) for EIS access, as defined in
Chapter 15, “Common Client Interface” in the J 2CA 1.5 Specification. The CCI defines a

http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/download.html
http://java.sun.com/j2ee/connector/

I n te rac t i onSpec In te r face

BEA WebLogic Server Performance and Tuning 14-3

standard client API for application components that enables application components and EAI
frameworks to drive interactions across heterogeneous EISes.

As a best practice, you should not store the InteractionSpec class that the CCI resource
adapter is required to implement in the RAR file. Instead, you should package it in a separate JAR
file outside of the RAR file, so that the client can access it without having to put the
InteractionSpec interface class in the generic CLASSPATH.

With respect to the InteractionSpec interface, it is important to note that when all application
components (EJBs, resource adapters, Web applications) are packaged in an EAR file, all
common classes can be placed in the APP-INF/lib directory. This is the easiest possible
scenario.

This is not the case for standalone resource adapters (packaged as RAR files). If the interface is
serializable (as is the case with InteractionSpec), then both the client and the resource adapter
need access to the InteractionSpec interface as well as the implementation classes. However,
if the interface extends java.io.Remote, then the client only needs access to the interface class.

Tun ing Resource Adapte rs

14-4 BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning 15-1

C H A P T E R 16

Tuning Web Applications

The following sections contain BEA best practices for tuning Web applications and managing
sessions:

“Best Practices” on page 16-1

“Session Management” on page 16-3

Best Practices
“Disable Page Checks” on page 16-1

“Use Custom JSP Tags” on page 16-2

“Precompile JSPs” on page 16-2

“Use Service Level Agreements” on page 16-2

“Related Reading” on page 16-2

Disable Page Checks
You can improve performance by disabling servlet and JDP page checks. Set each of the
following parameters to -1:

pageCheckSeconds

servlet-reload-check-secs

http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html#pageCheckSeconds
http://e-docs.bea.com/wls/docs90/webapp/weblogic_xml.html#servlet-reload-check-secs

Tuning Web App l i ca t i ons

15-2 BEA WebLogic Server Performance and Tuning

servlet Reload Check

These are default values for production mode.

Use Custom JSP Tags
BEA provides three specialized JSP tags that you can use in your JSP pages: cache, repeat, and
process. These tags are packaged in a tag library jar file called weblogic-tags.jar. This jar file
contains classes for the tags and a tag library descriptor (TLD). To use these tags, you copy this
jar file to the Web application that contains your JSPs and reference the tag library in your JSP.
See “Using Custom WebLogic JSP Tags (cache, process, repeat)” in Developing Web
Applications, Servlets, and JSPs for WebLogic Server.

Precompile JSPs
You can configure WebLogic Server to precompile your JSPs when a Web Application is
deployed or re-deployed or when WebLogic Server starts up by setting the precompile parameter
to true in the jsp-descriptor element of the weblogic.xml deployment descriptor. To avoid
recompiling your JSPs each time the server restarts and when you target additional servers,
precompile them using weblogic.jspc and place them in the WEB-INF/classes folder and
archive them in a .war file. Keeping your source files in a separate directory from the archived
.war file eliminates the possibility of errors caused by a JSP having a dependency on one of the
class files. For a complete explanation on how to avoid JSP recompilation, see Avoiding
Unnecessary JSP Compilation.

Use Service Level Agreements
You should assign servlets and JSPs to work managers based on the service level agreements
required by your applications. See “Thread Management” on page 6-3.

Related Reading
“Servlet Best Practices” in Developing Web Applications, Servlets, and JSPs for WebLogic
Server.

“Servlet and JSP performance tuning”, by Rahul Chaudhary, JavaWorld, June 2004.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/pagehelp/J2EEwebappwebappconfigurationtitle.html
http://e-docs.bea.com/wls/docs90/webapp/customtags.html#56944
http://dev2dev.bea.com/products/wlserver81/articles/JSP_reloaded.jsp
http://dev2dev.bea.com/products/wlserver81/articles/JSP_reloaded.jsp
http://e-docs.bea.com/wls/docs90/webapp/bestpractices.html#
http://www.javaworld.com/javaworld/jw-06-2004/jw-0628-performance_p.html

Sess ion Management

BEA WebLogic Server Performance and Tuning 15-3

Session Management
As a general rule, you should optimize your application so that it does as little work as possible
when handling session persistence and sessions. The following sections provide information on
how to design a session management strategy that suits your environment and application:

“Managing Session Persistence” on page 16-3

“Minimizing Sessions” on page 16-4

“Aggregating Session Data” on page 16-4

Managing Session Persistence
Weblogic Server offers five session persistence mechanisms that cater to the differing
requirements of your application. The session persistence mechanisms are configurable at the
Web application layer. Which session management strategy you choose for your application
depends on real-world factors like HTTP session size, session life cycle, reliability, and session
failover requirements. For example, a Web application with no failover requirements could be
maintained as a single memory-based session; whereas, a Web application with session fail-over
capability could be maintained as replicated sessions or JDBC-based sessions, based on their life
cycle and object size.

In terms of pure performance, in-memory session persistence is a better overall choice when
compared to JDBC-based persistence for session state. According to the authors of Session
Persistence Performance in BEA WebLogic Server 7.0: “While all session persistence
mechanisms have to deal with the overhead of data serialization and deserialization, the
additional overhead of the database interaction impacts the performance of the JDBC-based
session persistence and causes it to under-perform compared with the in-memory replication.”
However, in-memory-based session persistence requires the use of WebLogic clustering, so it
isn’t an option in a single-server environment.

On the other hand, an environment using JDBC-based persistence does not require the use of
WebLogic clusters and can maintain the session state for longer periods of time in the database.
One way to improve JDBC-based session persistence is to optimize your code so that it has as
high a granularity for session state persistence as possible. Other factors that can improve the
overall performance of JDBC-based session persistence are: the choice of database, proper
database server configuration, JDBC driver, and the JDBC connection pool configuration.

For more information on managing session persistence, see:

http://wldj.sys-con.com/read/42784.htm
http://wldj.sys-con.com/read/42784.htm

Tuning Web App l i ca t i ons

15-4 BEA WebLogic Server Performance and Tuning

“Session Persistence Performance in BEA WebLogic Server 7.0” in the BEA WebLogic
Developers Journal provides in-depth comparisons of the five session persistence
mechanisms supported by WebLogic Server, at
http://wldj.sys-con.com/read/42784.htm.

“Configuring Session Persistence” in Assembling and Configuring Web Applications, at
{DOCROOT}/webapp/sessions.html#session-persistence

“HTTP Session State Replication” in Using WebLogic Sever Clusters, at
http://{DOCROOT}/cluster/failover.html#httpstaterep

“Using a Database for Persistent Storage (JDBC Persistence)” in Assembling and
Configuring Web Applications, at
{DOCROOT}/webapp/sessions.html#jdbc_persistence

Minimizing Sessions
Configuring how WebLogic Server manages sessions is a key part of tuning your application for
best performance. Consider the following:

Use of sessions involves a scalability trade-off.

Use sessions sparingly. In other words, use sessions only for state that cannot realistically
be kept on the client or if URL rewriting support is required. For example, keep simple bits
of state, such as a user’s name, directly in cookies. You can also write a wrapper class to
“get” and “set” these cookies, in order to simplify the work of servlet developers working
on the same project.

Keep frequently used values in local variables.

For more information, see “Setting Up Session Management” in Assembling and Configuring
Web Applications, at {DOCROOT}/webapp/sessions.html#session-management.

Aggregating Session Data
This section provides best practices on how to aggregate session data. WebLogic Server tracks
and replicates changes in the session by attribute so you should:

Aggregate session data that changes in tandem into a single session attribute.

Aggregate session data that changes frequently and read-only session data into separate
session attributes

http://wldj.sys-con.com/read/42784.htm
http://e-docs.bea.com/wls/docs90/webapp/sessions.html#session-persistence
http://e-docs.bea.com/wls/docs90/cluster/failover.html#httpstaterep
http://e-docs.bea.com/wls/docs90/webapp/sessions.html#jdbc_persistence
http://e-docs.bea.com/wls/docs90/webapp/sessions.html#session-management

Sess ion Management

BEA WebLogic Server Performance and Tuning 15-5

For example: If you use a a single large attribute that contains all the session data and only 10%
of that data changes, the entire attribute has to be replicated. This causes unnecessary
serialization/deserialization and network overhead. You should move the 10% of the session data
that changes into a separate attribute.

Tuning Web App l i ca t i ons

15-6 BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning 16-1

C H A P T E R 17

Tuning WebLogic Tuxedo Connector

The WebLogic Tuxedo Connector (WTC) provides interoperability between WebLogic Server
applications and Tuxedo services. WTC allows WebLogic Server clients to invoke Tuxedo
services and Tuxedo clients to invoke WebLogic Server Enterprise Java Beans (EJBs) in
response to a service request. See BEA WebLogic Tuxedo Connector.

The following sections provide information on how to get the best performance from WTC
applications:

“Configuration Guidelines” on page 17-1

“Best Practices” on page 17-2

Configuration Guidelines
Use the following guidelines when configuring WebLogic Tuxedo Connector:

You may have more than one WTC Service in your configuration.

You can only target one WTC Service to a server instance.

WTC does not support connection pooling. WTC multiplexes requests though a single
physical connection.

Configuration changes implemented as follows:

– Changing the session/connection configuration (local APs, remote APs, Passwords, and
Resources) before a connection/session is established:

 The changes are accepted and are implemented in the new session/connection.

http://e-docs.bea.com/wls/docs90/wtc.html

Tun ing WebLog ic Tuxedo Connecto r

16-2 BEA WebLogic Server Performance and Tuning

– Changing the session/connection configuration (local APs, remote APs, Passwords, and
Resources) after a connection/session is established:

The changes accepted but are not implemented in the existing connection/session until
the connection is disconnected and reconnected. See “Assign a WTC Service to a
Server” in Administration Console Online Help.

– Changing the Imported and Exported services configuration:

The changes are accepted and are implemented in the next inbound or outbound
request. BEA does not recommend this practice as it can leave in-flight requests in an
unknown state.

– Changing the tBridge configuration:

Any change in a deployed WTC service causes an exception. You must untarget the
WTC service before making any tBridge configuration changes. After untargetting and
making configuraton changes, you must target the WTC service to implement the
changes.

Best Practices
The following section provides best practices when using WTC:

When configuring the connection policy, use ON_STARTUP and INCOMING_ONLY.

ON_STARTUP and INCOMING_ONLY always paired. For example: If a WTC remote access
point is configured with ON_STARTUP, the DM_TDOMAIN section of the Tuxedo domain
configuration must be configured with the remote access point as INCOMING_ONLY. In this
case, WTC always acts as the session initiator. See “Configuring the Connections Between
Access Points” in the WebLogic Tuxedo Connector Administration Guide.

Avoid using connection policy ON_DEMAND. The preferred connection policy is
ON_STARTUP and INCOMING_ONLY. This reduces the chance of service request failure due
to the routing semantics of ON_DEMAND. See “Configuring the Connections Between Access
Points” in the WebLogic Tuxedo Connector Administration Guide.

Consider using the following WTC features: Link Level Failover, Service Level failover
and load balancing when designing your application. See “Configuring Failover and
Failback” in the WebLogic Tuxedo Connector Administration Guide.

Consider using WebLogic Server clusters to provide additional load balancing and failover.
To use WTC in a WebLogic Server cluster:

– Configure a WTC instance on all the nodes of the WebLogic Server cluster.

http://e-docs.bea.com/wls/docs90/wtc_admin/BDCONFIG.html#ConfigureConnections
http://e-docs.bea.com/wls/docs90/wtc_admin/BDCONFIG.html#ConfigureConnections
http://e-docs.bea.com/wls/docs90/wtc_admin/BDCONFIG.html#ConfigureConnections
http://e-docs.bea.com/wls/docs90/wtc_admin/BDCONFIG.html#ConfigureConnections
http://e-docs.bea.com/wls/docs90/wtc_admin/BDCONFIG.html#FailoverFailback
http://e-docs.bea.com/wls/docs90/wtc_admin/BDCONFIG.html#FailoverFailback
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/wtc/AssignWTCServicesToServers.html
http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/wtc/AssignWTCServicesToServers.html

Best P ract ices

BEA WebLogic Server Performance and Tuning 16-3

– Each WTC instance in each cluster node must have the same configuration.

 See “How to Manage WebLogic Tuxedo Connector in a Clustered Environment” in the
WebLogic Tuxedo Connector Administration Guide.

If your WTC to Tuxedo connection uses the internet, use the following security settings:

– Set the value of Security to DM_PW. See “Authentication of Remote Access Points” in
the WebLogic Tuxedo Connector Administration Guide.

– Enable Link-level encryption and set the min-encrypt-bits parameter to 40 and the
max-encrypt-bits to 128. See “Link-Level Encryption” in the WebLogic Tuxedo
Connector Administration Guide.

Your application logic should provide mechanisms to manage and interpret error conditions
in your applications.

– See “Application Error Management” in the WebLogic Tuxedo Connector
Programmer's Guide.

– See “System Level Debug Settings” in the WebLogic Tuxedo Connector Administration
Guide.

Avoid using embedded TypedFML32 buffers inside TypedFML32 buffers. See “Using FML
with WebLogic Tuxedo Connector” in the WebLogic Tuxedo Connector Programmer's
Guide.

If your application handles heavy loads, consider configuring more remote Tuxedo access
points and let WTC load balance the work load among the access points. See “Configuring
Failover and Failback” in the WebLogic Tuxedo Connector Administration Guide.

When using transactional applications, try to make the remote services involved in the
same transaction available from the same remote access point. See “WebLogic Tuxedo
Connector JATMI Transactions” in the WebLogic Tuxedo Connector Programmer's Guide.

The number of client threads available when dispatching services from the gateway may
limit the number of concurrent services running. There is no WebLogic Tuxedo Connector
attribute to increase the number of available threads. Use a reasonable thread model when
invoking service. See “Thread Management” on page 6-3 and Using Work Managers to
Optimize Scheduled Work in Configuring WebLogic Server Environments.

http://e-docs.bea.com/wls/docs90/wtc_admin/BDCONFIG.html#LinkLevelEncryption
http://e-docs.bea.com/wls/docs90/wtc_admin/Cluster.html
http://e-docs.bea.com/wls/docs90/wtc_admin/BDCONFIG.html#AuthenticationofRAPs
http://e-docs.bea.com/wls/docs90/wtc_atmi/XML_FML.html
http://e-docs.bea.com/wls/docs90/wtc_atmi/XML_FML.html
http://e-docs.bea.com/wls/docs90/wtc_admin/BDCONFIG.html#FailoverFailback
http://e-docs.bea.com/wls/docs90/wtc_admin/BDCONFIG.html#FailoverFailback
http://e-docs.bea.com/wls/docs90//wtc_atmi/Transactions.html
http://e-docs.bea.com/wls/docs90//wtc_atmi/Transactions.html
http://e-docs.bea.com/wls/docs90/wtc_atmi/Errors.html
http://e-docs.bea.com/wls/docs90/wtc_admin/Install.html#Debug
http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html
http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html

Tun ing WebLog ic Tuxedo Connecto r

16-4 BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning A-1

A P P E N D I X A

Related Reading: Performance Tools
and Information

The following sections provide an extensive performance-related reading list:

“BEA Systems, Inc. Information” on page A-2

“Sun Microsystems Information” on page A-2

“Linux OS Information” on page A-3

“Hewlett-Packard Company Information” on page A-4

“Microsoft Information” on page A-4

“Web Performance Tuning Information” on page A-5

“Network Performance Tools” on page A-5

“Load Testing Tools” on page A-6

“Performance Analysis Tools” on page A-6

“Production Performance Management” on page A-7

“Benchmarking Information” on page A-7

“Java Virtual Machine (JVM) Information” on page A-7

“Enterprise JavaBeans Information” on page A-9

“WebLogic Store Information” on page A-9

“Java Message Service (JMS) Information” on page A-9

Rela ted Read ing : Pe r fo rmance Too ls and In fo rmat ion

A-2 BEA WebLogic Server Performance and Tuning

“Java Database Connectivity (JDBC) Information” on page A-9

“General Performance Information” on page A-10

BEA Systems, Inc. Information
For general information about BEA Systems, see the BEA Web site

 See http://www.bea.com

BEA WebLogic Server Documentation page

See {DOCROOT}

BEA’s dev2dev Web site

See http://dev2dev.bea.com/index.jsp

BEA WebLogic Server Evaluation White Papers (for example, “J2EE Design
Considerations for WebLogic Server” and “Distributed Computing with BEA WebLogic
Server”)

See
http://www.bea.com/framework.jsp?CNT=papers.htm&FP=/content/products/se
rver/evaluate/

Professional J2EE Programming with BEA WebLogic Server by Paco Gomez and Peter
Zadrozny, 2000

BEA WebLogic Server Bible by Joe Zuffoletto, et al, 2002

J2EE Performance Testing with BEA WebLogic Server by Peter Zadrozny, Philip Aston,
and Ted Osborne, 2002

Mastering BEA WebLogic Server: Best Practices for Building and Deploying J2EE
Applications by Gregory Nyberg, Robert Patrick, Paul Bauerschmidt, Jeff McDaniel, and
Raja Mukherjee, 2003

Sun Microsystems Information
For general information about Sun Microsystems, see Sun’s Web site at
http://www.sun.com

Sun Microsystems Performance Information

See http://java.sun.com/docs/performance/index.html

http://www.BEA.com
http://e-docs.bea.com/wls/docs90
http://dev2dev.bea.com/index.jsp
http://www.bea.com/framework.jsp?CNT=papers.htm&FP=/content/products/server/evaluate/
http://www.amazon.com/exec/obidos/ASIN/1861002998/qid%3D990130139/107-7659827-5248549
http://www.amazon.com/exec/obidos/ASIN/0764548549/ref=ase_zeeware-20/002-9563870-3452011
http://www.amazon.com/exec/obidos/ASIN/1904284000/qid=1024655766/sr=8-3/ref=sr_8_3/102-8494684-1874510
http://www.sun.com
http://java.sun.com/docs/performance/index.html
http://www.amazon.com/exec/obidos/tg/detail/-/047128128X/104-9412286-0155141?v=glance&me=ATVPDKIKX0DER&st=books
http://www.amazon.com/exec/obidos/tg/detail/-/047128128X/104-9412286-0155141?v=glance&me=ATVPDKIKX0DER&st=books

L inux OS In fo rmat ion

BEA WebLogic Server Performance and Tuning A-3

Java Standard Edition Platform Documentation

See http://java.sun.com/docs/index.html

Java 2 SDK, Standard Edition Documentation

See http://java.sun.com/j2se/1.5.0/docs

Solaris Tunable Parameters Reference Manual

See http://docs.sun.com/app/docs/doc/819-2724?

For BEA WebLogic Server and Solaris-specific details, see the SPARC Solaris links on the
Supported Configurations pages at {PLATFORM}/index.html.

For more about Solaris configuration, check the Solaris FAQ

See http://www.science.uva.nl/pub/solaris/solaris2/index.html

Sun Performance and Tuning: Java and the Internet by Adrian Cockcroft, et al, 1998

Solaris 7 Performance Administration Tools by Frank Cervone, 2000

Linux OS Information
For general information about the Linux operating system, see Linux Online at
http://www.linux.org/

For information about the Linux Documentation Project, see LDP at
http://www.tldp.org/

For information about Redhat Enterprise Linux, see Redhat at
http://www.redhat.com/software/rehel/

For information about SuSE Linux Enterprise Server, see SuSE Linux at
http://www.novell.com/products/linuxenterpriseserver/

Linux Performance Tuning and Capacity Planning, by Jason R. Find, et al, 1997, Sams
2001

Ipsysctl Tutorial 1.0.4, at
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html, describes
the IP options provided by Linux

The Linux Cookbook: Tips and Techniques for Everyday Use, by Michael Stutz at
http://www.amazon.com/exec/obidos/tg/detail/-/1886411484/104-4452937-46
44719?v=glance

http://docs.sun.com/app/docs/doc/819-2724?
http://java.sun.com/docs/index.html
http://java.sun.com/j2se/1.5.0/docs
http://www.science.uva.nl/pub/solaris/solaris2/index.html
http://www.amazon.com/exec/obidos/ASIN/0130952494/o/qid=990130340/sr=8-1/ref=aps_sr_b_1_1/107-7659827-5248549
http://www.amazon.com/exec/obidos/ASIN/0072122110/qid%3D990130401/107-7659827-5248549
http://e-docs.bea.com/platform/suppconfigs/index.html
http://ipsysctl-tutorial.frozentux.net/ipsysctl-tutorial.html
http://www.linux.org/
http://www.redhat.com/software/rhel/
http://www.tldp.org/
http://www.amazon.com/exec/obidos/tg/detail/-/0672320819/104-9412286-0155141?vi=glance
http://www.amazon.com/exec/obidos/tg/detail/-/1886411484/104-4452937-4644719?v=glance
http://www.novell.com/products/linuxenterpriseserver/

Rela ted Read ing : Pe r fo rmance Too ls and In fo rmat ion

A-4 BEA WebLogic Server Performance and Tuning

Hewlett-Packard Company Information
General Hewlett-Packard information

See http://www.thenewhp.com.

For BEA WebLogic Server and HP-UX-specific details, see Hewlett-Packard HP/9000
with HP-UX 11.0 and 11i on the BEA Certifications Pages

See {PLATFORM}/hp9000.html

Java Performance Tuning on HP-UX

See
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1
701,1602,00.html

Hewlett Packard JMeter, a tool for analyzing profiling information

See http://www.hp.com/products1/unix/java/hpjmeter/

GlancePlus system performance diagnostic tool

See http://www.managementsoftware.hp.com/products/gplus/index.html

HPjconfig Java system configuration tool

See http://www.hp.com/products1/unix/java/java2/hpjconfig/index.html

Microsoft Information
General Microsoft information

See http://www.microsoft.com/ms.htm

Windows 2000 Performance Tuning White Paper

See
http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/o
ptimize/perftune.mspx

Windows 2000 Performance Guide, by Mark Friedman and Odysseas Pentakalos, 2002,
O’Reilly

See
http://www.amazon.com/exec/obidos/ASIN/1565924665/qid%3D1055443647/sr%3
D11-1/ref%3Dsr%5F11%5F1/104-9412286-0155141

http://thenew.hp.com/
http://e-docs.bea.com/platform/suppconfigs/index.html
http://e-docs.bea.com/platform/suppconfigs/index.html
http://h21007.www2.hp.com/dspp/tech/tech_TechDocumentDetailPage_IDX/1,1701,1602,00.html
http://www.hp.com/products1/unix/java/hpjmeter/
http://www.managementsoftware.hp.com/products/gplus/index.html
http://www.hp.com/products1/unix/java/java2/hpjconfig/index.html
http://www.microsoft.com/ms.htm
http://www.microsoft.com/technet/prodtechnol/windows2000serv/maintain/optimize/perftune.mspx
http://www.amazon.com/exec/obidos/ASIN/1565924665/qid%3D1055443647/sr%3D11-1/ref%3Dsr%5F11%5F1/104-9412286-0155141

Web Pe r fo rmance Tuning In fo rmat ion

BEA WebLogic Server Performance and Tuning A-5

SQL-Server-Performance.Com, Microsoft SQL Server Performance Tuning and
Optimization

See http://www.sql-server-performance.com/

Microsoft SQL Server 2000 Performance Optimization and Tuning Handbook, by Ken
England, 2001, Digital Press

See
http://www.sql-server-performance.com/sql_server_2000_perform_optimizat
ion_review.asp

Web Performance Tuning Information
Apache Performance Notes

See http://httpd.apache.org/docs/misc/perf-tuning.html

iPlanet Web Server 4.0 Performance Tuning, Sizing, and Scaling
See http://docs.sun.com/db/doc/816-5663-10

The Art and Science of Web Server Tuning with Internet Information Services 5.0

See
http://www.microsoft.com/windows2000/techinfo/administration/web/tuning
.asp

Web Performance Tuning: Speeding Up the Web, by Patrick Killelea, Linda Mui (Editor),
O'Reilly Nutshell, 1998

Capacity Planning for Web Performance: Metrics, Models, and Methods, by Daniel A.
Menasce, Virgilio A. F. Almeida, Prentice Hall PTR, 1998

Scaling for E-Business: Technologies, Models, Performance, and Capacity Planning, by
Daniel A. Menasce, Virgilio A. F. Almeida, Prentice Hall PTR, 2000

Network Performance Tools
TracePlus/Ethernet, a network packet analysis tool for Windows 95/98/ME, NT 4.x,
Windows 2000/XP

See http://www.sstinc.com/home.html

http://www.sql-server-performance.com/
http://httpd.apache.org/docs/misc/perf-tuning.html
http://docs.sun.com/db/doc/816-5663-10
http://www.microsoft.com/windows2000/techinfo/administration/web/tuning.asp
http://www.amazon.com/exec/obidos/ASIN/1565923790/qid=995320796/sr=1-1/ref=sc_b_1/002-2021652-9667227
http://www.amazon.com/exec/obidos/ASIN/0130659037/qid=1019850167/sr=1-1/ref=sr_1_1/002-9563870-3452011
http://www.sstinc.com/home.html
http://www.amazon.com/exec/obidos/tg/detail/-/0130863289/ref=pd_bxgy_text_1/102-9088491-5954535?v=glance&s=books&st=*
http://www.sql-server-performance.com/sql_server_2000_perform_optimization_review.asp

Rela ted Read ing : Pe r fo rmance Too ls and In fo rmat ion

A-6 BEA WebLogic Server Performance and Tuning

Load Testing Tools
LoadRunner, a tool that predicts enterprise-level system behavior and performance by
emulating thousands of users and employs performance monitors to identify and isolate
problems.

See http://www-heva.mercuryinteractive.com/products/loadrunner/

e-Load, a fast and accurate way to perform load testing, scalability testing, stress testing of
enterprise Web applications.

See
http://www.empirix.com/Empirix/Web+Test+Monitoring/testing+solutions/we
b+application+load+testing.html

The Grinder, a pure Java load-testing framework.

See http://sourceforge.net/projects/grinder/

Performance Analysis Tools
A profiler is a performance analysis tool that allows you to reveal hot spots in the application that
result in either high CPU utilization or high contention for shared resources. Some common
profilers are:

OptimizeIt Java Performance Profiler from Borland, a performance debugging tool for
Solaris and Windows

See http://borland.com/optimizeit/optimizeit_profiler/index.html

JProbe Profiler with Memory Debugger, a family of products that provide the capability to
detect performance bottlenecks, perform code coverage and other metrics

See http://www.sitraka.com/software/jprobe

Hewlett Packard JMeter, a tool for analyzing profiling information

See http://www.hp.com/products1/unix/java/hpjmeter/

Topaz, Mercury Interactive’s application performance management solution

See http://www-svca.mercuryinteractive.com/products/topaz/

VTune Performance Analyzer a tool to identify and locate performance bottlenecks in your
code

See http://www.intel.com/software/products/vtune/

http://www.borland.com/optimizeit/optimizeit_profiler/index.html
http://www.sitraka.com/software/jprobe
http://www.hp.com/products1/unix/java/hpjmeter/
http://www-svca.mercuryinteractive.com/products/topaz/
http://www-heva.mercuryinteractive.com/products/loadrunner/
http://www.empirix.com/Empirix/Web+Test+Monitoring/testing+solutions/web+application+load+testing.html
http://sourceforge.net/projects/grinder/
http://www.intel.com/software/products/vtune/

Product ion Per fo rmance Management

BEA WebLogic Server Performance and Tuning A-7

PerformaSure a tool to detect, diagnose, and resolve performance problems in multi-tier
J2EE applications

See http://http:java.quest.com/performasure/performasure.shtml

Production Performance Management
Acsera provides comprehensive, enterprise class, fully integrated application production
monitoring and diagnostic solutions for J2EE Infrastructures.

See http://www.acsera.com

Veritas i3 for Web-J2EE is a monitoring, analysis, and tuning tool for Web-based J2EE
Applications.

See http://www.veritas.com/Products/www?c=product&refId=316)

Wily Technology, Inc. provides management solutions for large-scale, real-time production
Web applications, applications servers, portal solutions and integration middleware.

See http://partners.bea.com/search.portal?partnerId=192

Benchmarking Information
SPECjbb2000, a software benchmark product developed by the Standard Performance
Evaluation Corporation (SPEC). SPECjbb2000 is designed to measure a system’s ability to
run Java server applications.

See http://www.spec.org/osg/jbb2000/docs/whitepaper.html

SPECjAppServer2004 (Java Application Server), a client/server benchmark for measuring
the performance of Java Enterprise Application Servers using a subset of J2EE API's in a
complete end-to-end web application.

See http://www.spec.org/osg/jAppServer2004/

Java Virtual Machine (JVM) Information
BEA JRockit JDK Documentation

See http://e-docs.bea.com/wljrockit/docs50/index.html

BEA JRockit Memory Leak Detector

See http://dev2dev.bea.com/jrockit/tools.html

http://www.veritas.com/Products/www?c=product&refId=316
http://www.spec.org/osg/jbb2000/docs/whitepaper.html
http://www.spec.org/osg/jAppServer2004/
http://e-docs.bea.com/wljrockit/docs50/index.html
http://partners.bea.com/search.portal?partnerId=192
http://www.acsera.com/start/home/
http://java.quest.com/performasure/performasure.shtml
http://dev2dev.bea.com/jrockit/tools.html

Rela ted Read ing : Pe r fo rmance Too ls and In fo rmat ion

A-8 BEA WebLogic Server Performance and Tuning

BEA JRockit Runtime Analyzer

See http://dev2dev.bea.com/jrockit/tools.html

JVM Corner at artima.com

See http://www.artima.com/java/index.html

Performance Tuning for HP-UX Systems

See http://www.presentationselect.com/hpinvent/archivec.asp?ctg=PFT.

Sun Microsystems FAQ about Java HotSpot technology and about performance in general

See http://java.sun.com/docs/hotspot/PerformanceFAQ.html

Performance Documentation for the Java HotSpot Virtual Machine

See http://java.sun.com/docs/hotspot/index.html

Java HotSpot VM Options, a Sun Microsystems document provides information on the
command-line options and environment variables that can affect the performance
characteristics of the HotSpot JVM.

See http://java.sun.com/docs/hotspot/VMOptions.html

Improving Java Application Performance and Scalability by Reducing Garbage Collection
Times and Sizing Memory Using JDK 1.4.1, a Sun Microsystem document on how to
reduce garbage collection times with JDK 1.4.1.

See
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecoll
ection2/index.html

The Java Virtual Machines for J2SE 1.5.0

See http://java.sun.com/j2se/1.5.0/docs/guide/vm/index.html

Which Java VM scales best? From JavaWorld, results of a VolanoMark 2.0 server
benchmark show how 12 virtual machines stack up.

See http://www.javaworld.com/jw-08-1998/jw-08-volanomark.html

Garbage Collection: Algorithms for Automatic Dynamic Memory Management by Richard
Jones, Rafael D Lins, John Wiley & Sons, 1999

See
http://www.amazon.com/exec/obidos/ASIN/0471941484/richardjones/002-1748
120-9756040

http://www.presentationselect.com/hpinvent/archivec.asp?ctg=PFT
http://www.artima.com/java/index.html
http://java.sun.com/docs/hotspot/PerformanceFAQ.html
http://java.sun.com/docs/hotspot/index.html
http://java.sun.com/docs/hotspot/VMOptions.html
http://java.sun.com/j2se/1.5.0/docs/guide/vm/index.html
http://www.javaworld.com/jw-08-1998/jw-08-volanomark.html
http://www.amazon.com/exec/obidos/ASIN/0471941484/richardjones/002-1748120-9756040
http://dev2dev.bea.com/jrockit/tools.html
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollection2/index.html
http://developers.sun.com/techtopics/mobility/midp/articles/garbagecollection2/index.html

Ente rpr i se JavaBeans In fo rmat ion

BEA WebLogic Server Performance and Tuning A-9

Enterprise JavaBeans Information
Programming WebLogic Enterprise JavaBeans

See {DOCROOT}/ejb/index.html

Enterprise JavaBeans, Second Edition, by Richard Monson-Haefel, Mike Loukides
(Editor), 2000

Mastering Enterprise JavaBeans and the Java 2 Platform, Enterprise Edition, by Ed
Roman, 1999

TheServerSide.com, a free online community dedicated to Enterprise JavaBeans (EJBs)
and J2EE.

See http://www.theserverside.com/home/index.jsp

Seven Rules for Optimizing Entity Beans, by Akara Sucharitakul, Java Developer
Connection, 2001

See
http://developer.java.sun.com/developer/technicalArticles/ebeans/sevenr
ules/

WebLogic Store Information
Using the WebLogic Persistent Store in Configuring WebLogic Server Environments.

Java Message Service (JMS) Information
Messaging (JMS) for BEA WebLogic Server

JMS Specification

See http://java.sun.com/products/jms/docs.html

Java Database Connectivity (JDBC) Information
Performance Tuning Your JDBC Application

See {DOCROOT}/jdbc/performance.html

http://e-docs.bea.com/wls/docs90/jdbc/performance.html
http://e-docs.bea.com/wls/docs90/ejb/index.html
http://www.amazon.com/exec/obidos/ASIN/0471417114/o/qid=990129064/sr=2-1/107-7659827-5248549
http://www.amazon.com/exec/obidos/ASIN/0471332291/qid=990128989/sr=1-1/ref=sc_b_1/107-7659827-5248549
http://www.theserverside.com/home/index.jsp
http://developer.java.sun.com/developer/technicalArticles/ebeans/sevenrules/
http://e-docs.bea.com/wls/docs90/messaging.html
http://e-docs.bea.com/wls/docs90/config_wls/store.html
http://java.sun.com/products/jms/docs.html

Rela ted Read ing : Pe r fo rmance Too ls and In fo rmat ion

A-10 BEA WebLogic Server Performance and Tuning

General Performance Information
Jack Shirazi’s Java Performance Tuning Web site

See http://www.javaperformancetuning.com

The Software Testing and Quality Engineering Magazine, Web Application Scalability,
“Avoiding Scalability Shock” by Bill Shea, May/June 2000

See
http://www.stqemagazine.com/index.asp?frame=CORE&content=BACKISSUE&stam
p=417165320)

High-Performance Java Platform Computing™ by Thomas W. Christopher, George K.
Thiruvathukal, 2000

See http://www.toolsofcomputing.com/JavaThreads

Performance and Idiom Guide by Craig Larman and Rhett Guthrie, 1999

http://www.javaperformancetuning.com
https://www.stickyminds.com/getfile.asp?ot=XML&id=5003&fn=Smzr1XDD1814filelistfilename1%2Epdf
http://java.sun.com/developer/Books/performance2/
http://www.amazon.com/exec/obidos/ASIN/0130142603/qid%3D990129234/107-7659827-5248549

BEA WebLogic Server Performance and Tuning B-1

A P P E N D I X B

Using the WebLogic 8.1 Thread Pool
Model

If you have been using execute queues to improve performance prior to this release, you may
continue to use them after you upgrade your application domains to WebLogic Server 9.0.

Note: BEA recommends migrating from execute queues to using the self-tuning execute queue
with work managers. See Using Work Managers to Optimize Scheduled Work in
Configuring WebLogic Server Environments.

“How to Enable the WebLogic 8.1 Thread Pool Model” on page B-1

“Tuning the Default Execute Queue” on page B-2

“Using Execute Queues to Control Thread Usage” on page B-4

“Monitoring Execute Threads” on page B-10

“Allocating Execute Threads to Act as Socket Readers” on page B-11

“Tuning the Stuck Thread Detection Behavior” on page B-12

How to Enable the WebLogic 8.1 Thread Pool Model
BEA provides a flag that enables you to disable the self-tuning execute pool and provide
backward compatibility for upgraded applications to continue to use user-defined execute
queues.

To use user-defined execute queues in a WebLogic Server 9.0 domain, you need to include
the use81-style-execute-queues sub-element of the server element in the
config.xml file and reboot the server.

http://e-docs.bea.com/wls/docs90/config_wls/self_tuned.html

Us ing the WebLog ic 8 .1 Thread Poo l Mode l

B-2 BEA WebLogic Server Performance and Tuning

Note: To run WebLogic Server in the 81-style-execute-queues mode to tune the thread count,
you need to create the weblogic.kernel.Default execute queue after you set the
use81-style-execute-queues element to true in the configuration file. Create this
execute queue from the Administration Console and reboot the server.

The following example code allows an instance of myserver to use execute queues.

Listing B-1 Using the use81-style-execute-queues Element

.

.

.

<server>

<name>myserver</name>

<use81-style-execute-queues>true</use81-style-execute-queues>

.

.

.

</server>

.

.

.

Configured work managers are converted to execute queues at runtime by the server
instance.

Tuning the Default Execute Queue
The value of the ThreadCount attribute of an ExecuteQueue element in the config.xml file
equals the number of simultaneous operations that can be performed by applications that use the
execute queue. As work enters an instance of WebLogic Server, it is placed in an execute queue.
This work is then assigned to a thread that does the work on it. Threads consume resources, so
handle this attribute with care—you can degrade performance by increasing the value
unnecessarily. WebLogic Server uses different default values for the thread count of the default
execute queue depending on the startup mode of the server instance. See Specify a startup mode
in Administration Console Online Help.

http://e-docs.bea.com/wls/docs90/ConsoleHelp/taskhelp/startstop/SpecifyAStartupMode.html

Tun ing the Defau l t Execute Queue

BEA WebLogic Server Performance and Tuning B-3

Unless you configure additional execute queues, and assign applications to them, the server
instance assigns requests to the default execute queue.

Note: If native performance packs are not being used for your platform, you may need to tune
the default number of execute queue threads and the percentage of threads that act as
socket readers to achieve optimal performance. For more information, see “Allocating
Execute Threads to Act as Socket Readers” on page B-11.

Should You Modify the Default Thread Count?
Adding more threads to the default execute queue does not necessarily imply that you can process
more work. Even if you add more threads, you are still limited by the power of your processor.
You can degrade performance by increasing the value of the ThreadCount attribute
unnecessarily. A high execute thread count causes more memory to be used and may increases
context switching, which can degrade performance.

The value of the ThreadCount attribute depends very much on the type of work your application
does. For example, if your client application is thin and does a lot of its work through remote
invocation, that client application will spend more time connected — and thus will require a
higher thread count — than a client application that does a lot of client-side processing.

If you do not need to use more than 15 threads (the development default) or 25 threads (the
production default) for your work, do not change the value of this attribute. As a general rule, if
your application makes database calls that take a long time to return, you will need more execute
threads than an application that makes calls that are short and turn over very rapidly. For the latter
case, using a smaller number of execute threads could improve performance.

To determine the ideal thread count for an execute queue, monitor the queue’s throughput while
all applications in the queue are operating at maximum load. Increase the number of threads in
the queue and repeat the load test until you reach the optimal throughput for the queue. (At some
point, increasing the number of threads will lead to enough context switching that the throughput
for the queue begins to decrease.)

Table B-1 Default Thread Count for Startup Modes

Server Mode . . . Default Thread Count . . .

Development 15 threads

Production 25 threads

Us ing the WebLog ic 8 .1 Thread Poo l Mode l

B-4 BEA WebLogic Server Performance and Tuning

Note: The WebLogic Server Administration Console displays the cumulative throughput for all
of a server’s execute queues. To access this throughput value, follow steps 1-6 in “Using
Execute Queues to Control Thread Usage” on page B-4.

Table B-2 shows default scenarios for adjusting available threads in relation to the number of
CPUs available in the WebLogic Server domain. These scenarios also assume that WebLogic
Server is running under maximum load, and that all thread requests are satisfied by using the
default execute queue. If you configure additional execute queues and assign applications to
specific queues, monitor results on a pool-by-pool basis.

Using Execute Queues to Control Thread Usage
You can fine-tune an application’s access to execute threads (and thereby optimize or throttle its
performance) by using user-defined execute queues in WebLogic Server. However, keep in mind
that unused threads represent significant wasted resources in a WebLogic Server system. You
may find that available threads in configured execute queues go unused, while tasks in other
queues sit idle waiting for threads to become available. In such a situation, the division of threads
into multiple queues may yield poorer overall performance than having a single, default execute
queue.

Table B-2 Scenarios for Modifying the Default Thread Count

When... And you see... Do This:

Thread Count < number of CPUs CPUs are under utilized, but
there is work that could be
done.

Increase the thread count.

Thread Count = number of CPUs CPUs are under utilized, but
there is work that could be
done.

Increase the thread count.

Thread Count > number of CPUs (by a
moderate number of threads)

CPUs have high utilization,
with a moderate amount of
context switching.

Tune the moderate number of
threads and compare performance
results.

Thread Count > number of CPUs (by a
large number of threads)

Too much context switching. Reduce the number of threads.

Us ing Execute Queues to Cont ro l Thread Usage

BEA WebLogic Server Performance and Tuning B-5

Default WebLogic Server installations are configured with a default execute queue which is used
by all applications running on the server instance. You may want to configure additional queues
to:

Optimize the performance of critical applications. For example, you can assign a single,
mission-critical application to a particular execute queue, guaranteeing a fixed number of
execute threads. During peak server loads, nonessential applications may compete for
threads in the default execute queue, but the mission-critical application has access to the
same number of threads at all times.

Throttle the performance of nonessential applications. For an application that can
potentially consume large amounts of memory, assigning it to a dedicated execute queue
effectively limits the amount of memory it can consume. Although the application can
potentially use all threads available in its assigned execute queue, it cannot affect thread
usage in any other queue.

Remedy deadlocked thread usage. With certain application designs, deadlocks can occur
when all execute threads are currently utilized. For example, consider a servlet that reads
messages from a designated JMS queue. If all execute threads in a server are used to
process the servlet requests, then no threads are available to deliver messages from the
JMS queue. A deadlock condition exists, and no work can progress. Assigning the servlet
to a separate execute queue avoids potential deadlocks, because the servlet and JMS queue
do not compete for thread resources.

Be sure to monitor each execute queue to ensure proper thread usage in the system as a whole.
See “Should You Modify the Default Thread Count?” on page B-3 for general information about
optimizing the number of threads.

Creating Execute Queues
An execute queue represents a named collection of execute threads that are available to one or
more designated servlets, JSPs, EJBs, or RMI objects.

To configure a new execute queue using the Administration Console:

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will configure
an execute queue.

4. Select the Configuration > Queues tab and click New.

Us ing the WebLog ic 8 .1 Thread Poo l Mode l

B-6 BEA WebLogic Server Performance and Tuning

5. Name the execute queue and click OK.

6. On the User-Defined Execute Queues page, select the execute queue you just created.

7. On the execute queue Configuration tab, modify the following attributes or accept the
system defaults:

Queue Length—Always leave the Queue Length at the default value of 65536 entries.
The Queue Length specifies the maximum number of simultaneous requests that the server
can hold in the queue. The default of 65536 requests represents a very large number of
requests; outstanding requests in the queue should rarely, if ever reach this maximum
value.

If the maximum Queue Length is reached, WebLogic Server automatically doubles the size
of the queue to account for the additional work. Note, however, that exceeding 65536
requests in the queue indicates a problem with the threads in the queue, rather than the
length of the queue itself; check for stuck threads or an insufficient thread count in the
execute queue.

Queue Length Threshold Percent—The percentage (from 1–99) of the Queue Length
size that can be reached before the server indicates an overflow condition for the queue.
All actual queue length sizes below the threshold percentage are considered normal; sizes
above the threshold percentage indicate an overflow. When an overflow condition is
reached, WebLogic Server logs an error message and increases the number of threads in
the queue by the value of the Threads Increase attribute to help reduce the workload.

By default, the Queue Length Threshold Percent value is 90 percent. In most situations,
you should leave the value at or near 90 percent, to account for any potential condition
where additional threads may be needed to handle an unexpected spike in work requests.
Keep in mind that Queue Length Threshold Percent must not be used as an automatic
tuning parameter—the threshold should never trigger an increase in thread count under
normal operating conditions.

Thread Count—The number of threads assigned to this queue. If you do not need to use
more than 15 threads (the default) for your work, do not change the value of this attribute.
(For more information, see “Should You Modify the Default Thread Count?” on page B-3.)

Threads Increase—The number of threads WebLogic Server should add to this execute
queue when it detects an overflow condition. If you specify zero threads (the default), the
server changes its health state to “warning” in response to an overflow condition in the
thread, but it does not allocate additional threads to reduce the workload.

Note: If WebLogic Server increases the number of threads in response to an overflow
condition, the additional threads remain in the execute queue until the server is

Us ing Execute Queues to Cont ro l Thread Usage

BEA WebLogic Server Performance and Tuning B-7

rebooted. Monitor the error log to determine the cause of overflow conditions, and
reconfigure the thread count as necessary to prevent similar conditions in the future.
Do not use the combination of Threads Increase and Queue Length Threshold Percent
as an automatic tuning tool; doing so generally results in the execute queue allocating
more threads than necessary and suffering from poor performance due to context
switching.

Threads Minimum—The minimum number of threads that WebLogic Server should
maintain in this execute queue to prevent unnecessary overflow conditions. By default, the
Threads Minimum is set to 5.

Threads Maximum—The maximum number of threads that this execute queue can have;
this value prevents WebLogic Server from creating an overly high thread count in the
queue in response to continual overflow conditions. By default, the Threads Maximum is
set to 400.

8. Click Save.

9. To activate these changes, in the Change Center of the Administration Console, click
Activate Changes. Not all changes take effect immediately—some require a restart.

10. You must reboot the server to use the new thread detection behavior values.

Modifying the Thread Count
To modify the default execute queue thread count using the Administration Console:

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will configure
thread detection behavior.

4. On the Configuration > Queues tab, select the execute queue for which you will modify
the default thread count.

Note: You can only modify the default execute queue for the server or a user-defined
execute queue.

5. Locate the Thread Count value and increase or decrease it, as appropriate.

6. Click Save.

Us ing the WebLog ic 8 .1 Thread Poo l Mode l

B-8 BEA WebLogic Server Performance and Tuning

7. To activate these changes, in the Change Center of the Administration Console, click
Activate Changes. Not all changes take effect immediately—some require a restart.

8. You must reboot the server to use the new thread detection behavior values.

Tuning Execute Queues for Overflow Conditions
You can configure WebLogic Server to detect and optionally address potential overflow
conditions in the default execute queue or any user-defined execute queue. WebLogic Server
considers a queue to have a possible overflow condition when its current size reaches a
user-defined percentage of its maximum size. When this threshold is reached, the server changes
its health state to “warning” and can optionally allocate additional threads to perform the
outstanding work in the queue, thereby reducing the queue length.

To automatically detect and address overflow conditions in a queue, you can configure the
following items:

The threshold at which the server indicates an overflow condition. This value is set as a
percentage of the configured size of the execute queue (the QueueLength value).

The number of threads to add to the execute queue when an overflow condition is detected.
These additional threads work to reduce the size of the queue and reduce the size of the
queue to its normal operating size.

The minimum and maximum number of threads available to the queue. In particular,
setting the maximum number of threads prevents the server from assigning an overly high
thread count in response to overload conditions.

To tune an execute queue using the WebLogic Server Administration Console:

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will configure
overflow conditions behavior.

4. Select the Configuration > Queues tab, select the execute queue for which you will
configure overflow conditions behavior.

5. Specify how the server instance should detect an overflow condition for the selected queue
by modifying the following attributes:

Us ing Execute Queues to Cont ro l Thread Usage

BEA WebLogic Server Performance and Tuning B-9

Queue Length—Specifies the maximum number of simultaneous requests that the server
can hold in the queue. The default of 65536 requests represents a very large number of
requests; outstanding requests in the queue should rarely, if ever reach this maximum
value. Always leave the Queue Length at the default value of 65536 entries.

Queue Length Threshold Percent—The percentage (from 1–99) of the Queue Length
size that can be reached before the server indicates an overflow condition for the queue.
All actual queue length sizes below the threshold percentage are considered normal; sizes
above the threshold percentage indicate an overflow. By default, the Queue Length
Threshold Percent is set to 90 percent.

6. To specify how this server should address an overflow condition for the selected queue,
modify the following attribute:

Threads Increase—The number of threads WebLogic Server should add to this execute
queue when it detects an overflow condition. If you specify zero threads (the default), the
server changes its health state to “warning” in response to an overflow condition in the
execute queue, but it does not allocate additional threads to reduce the workload.

7. To fine-tune the variable thread count of this execute queue, modify the following
attributes:

Threads Minimum—The minimum number of threads that WebLogic Server should
maintain in this execute queue to prevent unnecessary overflow conditions. By default, the
Threads Minimum is set to 5.

Threads Maximum—The maximum number of threads that this execute queue can have;
this value prevents WebLogic Server from creating an overly high thread count in the
queue in response to continual overflow conditions. By default, the Threads Maximum is
set to 400.

8. Click Save.

9. To activate these changes, in the Change Center of the Administration Console, click
Activate Changes. Not all changes take effect immediately—some require a restart.

10. You must reboot the server to use the new thread detection behavior values.

Assigning Servlets and JSPs to Execute Queues
You can assign a servlet or JSP to a configured execute queue by identifying the execute queue
name in the initialization parameters. Initialization parameters appear within the init-param
element of the servlet’s or JSP’s deployment descriptor file, web.xml. To assign an execute

Us ing the WebLog ic 8 .1 Thread Poo l Mode l

B-10 BEA WebLogic Server Performance and Tuning

queue, enter the queue name as the value of the wl-dispatch-policy parameter, as in the
example:

<servlet>

<servlet-name>MainServlet</servlet-name>

<jsp-file>/myapplication/critical.jsp</jsp-file>

<init-param>

<param-name>wl-dispatch-policy</param-name>

<param-value>CriticalAppQueue</param-value>

</init-param>

</servlet>

See Creating and Configuring Servlets in Developing Web Applications, Servlets, and JSPs for
WebLogic Server for more information about specifying initialization parameters in web.xml.

Assigning EJBs and RMI Objects to Execute Queues
To assign an EJB object to a configured execute queue, use the new dispatch-policy element
in weblogic-ejb-jar.xml. For more information, see the weblogic-ejb-jar.xml Deployment
Descriptor, at {DOCROOT}/ejb/reference.html#dispatch_policy.

While you can also set the dispatch policy through the appc compiler -dispatchPolicy flag,
BEA strongly recommends you use the deployment descriptor element instead. This way, if the
EJB is recompiled, during deployment for example, the setting will not be lost.

To assign an RMI object to a configured execute queue, use the -dispatchPolicy option to the
rmic compiler. For example:
java weblogic.rmic -dispatchPolicy CriticalAppQueue ...

Monitoring Execute Threads
To use the Administration Console to monitor the status of execute threads:

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will configure
thread detection behavior.

4. Select the Monitoring > Threads tab.

http://e-docs.bea.com/wls/docs90/webapp/configureservlet.html
http://e-docs.bea.com/wls/docs90/ejb/DDreference-ejb-jar.html#dispatch-policy
http://e-docs.bea.com/wls/docs90/ejb/DDreference-ejb-jar.html#dispatch-policy

Al locat ing Execute Threads to Ac t as Socket Readers

BEA WebLogic Server Performance and Tuning B-11

5. A table of the execute queues available on this server instance is displayed.

6. Select an execute queue for which you would like to view thread information.

7. A table of execute threads for the selected execute queue is displayed.

Allocating Execute Threads to Act as Socket Readers
For best performance, BEA recommends that you use the native socket reader implementation,
rather than the pure-Java implementation, on machines that host WebLogic Server instances (see
“Thread Management” on page 6-3). However, if you must use the pure-Java socket reader
implementation for host machines, you can still improve the performance of socket
communication by configuring the proper number of execute threads to act as socket reader
threads for each server instance.

The ThreadPoolPercentSocketReaders attribute sets the maximum percentage of execute
threads that are set to read messages from a socket. The optimal value for this attribute is
application-specific. The default value is 33, and the valid range is 1–99.

Allocating execute threads to act as socket reader threads increases the speed and the ability of
the server to accept client requests. It is essential to balance the number of execute threads that
are devoted to reading messages from a socket and those threads that perform the actual execution
of tasks in the server.

Setting the Number of Socket Reader Threads For a Server
Instance
To use the Administration Console to set the maximum percentage of execute threads that read
messages from a socket:

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will configure
thread detection behavior.

4. Select the Configuration > Tuning tab.

5. Specify the percentage of Java reader threads in the Socket Readers field. The number of
Java socket readers is computed as a percentage of the number of total execute threads (as
shown in the Thread Count field for the Execute Queue).

Us ing the WebLog ic 8 .1 Thread Poo l Mode l

B-12 BEA WebLogic Server Performance and Tuning

6. Click Save.

7. To activate these changes, in the Change Center of the Administration Console, click
Activate Changes.

Setting the Number of Socket Reader Threads on Client
Machines
On client machines, you can configure the number of available socket reader threads in the JVM
that runs the client. Specify the socket readers by defining the following parameters in the java
command line for the client:

-Dweblogic.ThreadPoolSize=value

-Dweblogic.ThreadPoolPercentSocketReaders=value

Tuning the Stuck Thread Detection Behavior
WebLogic Server automatically detects when a thread in an execute queue becomes “stuck.”
Because a stuck thread cannot complete its current work or accept new work, the server logs a
message each time it diagnoses a stuck thread.

WebLogic Server diagnoses a thread as stuck if it is continually working (not idle) for a set period
of time. You can tune a server’s thread detection behavior by changing the length of time before
a thread is diagnosed as stuck, and by changing the frequency with which the server checks for
stuck threads. Although you can change the criteria WebLogic Server uses to determine whether
a thread is stuck, you cannot change the default behavior of setting the “warning” and “critical”
health states when all threads in a particular execute queue become stuck. For more information,
see Understanding WebLogic Logging Services in Configuring Log Files and Filtering Log
Messages.

To configure stuck thread detection behavior:

1. If you have not already done so, in the Change Center of the Administration Console, click
Lock & Edit.

2. In the left pane of the console, expand Environment > Servers.

3. On the Summary of Servers page, select the server instance for which you will configure
thread detection behavior.

4. On the Configuration > Tuning tab, update as necessary:

http://e-docs.bea.com/wls/docs90/logging/logging_services.html

Tun ing the Stuck Th read Detec t ion Behav io r

BEA WebLogic Server Performance and Tuning B-13

Stuck Thread Max Time—Amount of time, in seconds, that a thread must be continually
working before a server instance diagnoses a thread as being stuck.

>Stuck Thread Timer Interval—Amount of time, in seconds, after which a server
instance periodically scans threads to see if they have been continually working for the
configured Stuck Thread Max Time.

5. Click Save.

6. To activate these changes, in the Change Center of the Administration Console, click
Activate Changes. Not all changes take effect immediately—some require a restart.

7. You must reboot the server to use the new thread detection behavior values.

Us ing the WebLog ic 8 .1 Thread Poo l Mode l

B-14 BEA WebLogic Server Performance and Tuning

BEA WebLogic Server Performance and Tuning C-1

A P P E N D I X C

Capacity Planning

The process of determining what type of hardware and software configuration is required to meet
application needs adequately is called capacity planning. Capacity planning is not an exact
science. Every application is different and every user behavior is different. The following
sections provide an introduction to capacity planning:

“Capacity Planning Factors” on page C-1

“Assessing Your Application Performance Objectives” on page C-6

“Hardware Tuning” on page C-6

“Network Performance” on page C-7

“Related Information” on page C-8

Capacity Planning Factors
A number of factors influence how much capacity a given hardware configuration will need in
order to support a WebLogic Server instance and a given application. The hardware capacity
required to support your application depends on the specifics of the application and configuration.
You should consider how each of these factors applies to your configuration and application.

The following sections discuss several of these factors. Understanding these factors and
considering the requirements of your application will aid you in generating server hardware
requirements for your configuration. Consider the capacity planning questions in Table C-1.

Capac i t y P lann ing

C-2 BEA WebLogic Server Performance and Tuning

Table C-1 Capacity Planning Factors and Information Reference

Programmatic and Web-based Clients
Primarily, two types of clients can connect to WebLogic Server:

Web-based clients, such as Web browsers and HTTP proxies, use the HTTP or HTTPS
(secure) protocol to obtain HTML or servlet output.

Programmatic clients, such as Java applications and applets, can connect through the T3
protocol and use RMI to connect to the server.

The stateless nature of HTTP requires that the server handle more overhead than is the case with
programmatic clients. However, the benefits of HTTP clients are numerous, such as the
availability of browsers and firewall compatibility, and are usually worth the performance costs.

Capacity Planning Questions For Information, See:

Is WebLogic Server well-tuned? “Assessing Your Application Performance
Objectives” on page C-6

How well-designed is the user application? “Database Server Capacity and User Storage
Requirements” on page C-4

Is there enough bandwidth? “Network Load” on page C-5

How many transactions need to run
simultaneously?

“Concurrent Sessions” on page C-4

Is the database a limiting factor? Are there
additional user storage requirements?

“Database Server Capacity and User Storage
Requirements” on page C-4

What is running on the machine in addition to
WebLogic Server?

“Network Load” on page C-5

Do clients use SSL to connect to WebLogic
Server?

“SSL Connections and Performance” on page C-3

What types of traffic do the clients generate? “RMI and Server Traffic” on page C-3

What types of clients connect to the WebLogic
Server application?

“Programmatic and Web-based Clients” on
page C-2

Is your deployment configured for a cluster? “Clustered Configurations” on page C-5

Capac i t y P lann ing Facto rs

BEA WebLogic Server Performance and Tuning C-3

Programmatic clients are generally more efficient than HTTP clients because T3 does more of
the presentation work on the client side. Programmatic clients typically call directly into EJBs
while Web clients usually go through servlets. This eliminates the work the server must do for
presentation. The T3 protocol operates using sockets and has a long-standing connection to the
server.

A WebLogic Server installation that relies only on programmatic clients should be able to handle
more concurrent clients than an HTTP proxy that is serving installations. If you are tunneling T3
over HTTP, you should not expect this performance benefit. In fact, performance of T3 over
HTTP is generally 15 percent worse than typical HTTP and similarly reduces the optimum
capacity of your WebLogic Server installation.

RMI and Server Traffic
What types of server traffic do the clients generate? If you are using T3 clients, most interaction
with the server involves Remote Method Invocation (RMI.) Clients using RMI do not generate
heavy traffic to the server because there is only one sender and one listener.

RMI can use HTTP tunneling to allow RMI calls to traverse a firewall. RMI tunneled through
HTTP often does not deliver the higher degree of performance provided by non-tunneled RMI.

SSL Connections and Performance
Secure sockets layer (SSL) is a standard for secure Internet communications. WebLogic Server
security services support X.509 digital certificates and access control lists (ACLs) to authenticate
participants and manage access to network services. For example, SSL can protect JSP pages
listing employee salaries, blocking access to confidential information.

SSL involves intensive computing operations. When supporting the cryptography operations in
the SSL protocol, WebLogic Server can not handle as many simultaneous connections.

Note the number of SSL connections required out of the total number of clients required.
Typically, for every SSL connection that the server can handle, it can handle three non-SSL
connections. SSL substantially reduces the capacity of the server depending upon the strength of
encryption used in the SSL connections. Also, the amount of overhead SSL imposes is related to
how many client interactions have SSL enabled. WebLogic Server includes native performance
packs for SSL operations.

Capac i t y P lann ing

C-4 BEA WebLogic Server Performance and Tuning

WebLogic Server Process Load
What is running on the machine in addition to a WebLogic Server? The machine may be
processing much more than presentation and business logic. For example, it could be running a
Web server or maintaining a remote information feed, such as a stock information feed from a
quote service.

Consider how much of your WebLogic Server machine’s processing power is consumed by
processes unrelated to WebLogic Server. In the case in which WebLogic Server (or the machine
on which it resides) is doing substantial additional work, you need to determine how much
processing power will be drained by other processes. When a Web server proxy is running on the
same machine as WebLogic Server, expect anywhere from 25 to 50 percent of the computing
capacity.

Database Server Capacity and User Storage Requirements
Is the database a bottleneck? Are there additional user storage requirements? Often the database
server runs out of capacity much sooner that WebLogic Server does. Plan for a database that is
sufficiently robust to handle the application. Typically, a good application’s database requires
hardware three to four times more powerful than the application server hardware. It is good
practice to use a separate machine for your database server.

Generally, you can tell if your database is the bottleneck if you are unable to maintain WebLogic
Server CPU usage in the 85 to 95 percent range. This indicates that WebLogic Server is often idle
and waiting for the database to return results. With load balancing in a cluster, the CPU utilization
across the nodes should be about even.

Some database vendors are beginning to provide capacity planning information for application
servers. Frequently this is a response to the three-tier model for applications.

An application might require user storage for operations that do not interact with a database. For
example, in a secure system disk and memory are required to store security information for each
user. You should calculate the size required to store one user’s information, and multiply by the
maximum number of expected users.

Concurrent Sessions
How many transactions must run concurrently? Determine the maximum number of concurrent
sessions WebLogic Server will be called upon to handle. For each session, you will need to add
more RAM for efficiency. BEA Systems recommends that you install a minimum of 256 MB of
memory for each WebLogic Server installation that will be handling more than minimal capacity.

Capac i t y P lann ing Facto rs

BEA WebLogic Server Performance and Tuning C-5

Next, research the maximum number of clients that will make requests at the same time, and how
frequently each client will be making a request. The number of user interactions per second with
WebLogic Server represents the total number of interactions that should be handled per second
by a given WebLogic Server deployment. Typically for Web deployments, user interactions
access JSP pages or servlets. User interactions in application deployments typically access EJBs.

Consider also the maximum number of transactions in a given period to handle spikes in demand.
For example, in a stock report application, plan for a surge after the stock market opens and before
it closes. If your company is broadcasting a Web site as part of an advertisement during the World
Series or World Cup Soccer playoffs, you should expect spikes in demand.

Network Load
Is the bandwidth sufficient? WebLogic Server requires enough bandwidth to handle all
connections from clients. In the case of programmatic clients, each client JVM will have a single
socket to the server. Each socket requires bandwidth. A WebLogic Server handling programmatic
clients should have 125 to 150 percent the bandwidth that a server with Web-based clients would
handle. If you are interested in the bandwidth required to run a web server, you can assume that
each 56kbps (kilobits per second) of bandwidth can handle between seven and ten simultaneous
requests depending upon the size of the content that you are delivering. If you are handling only
HTTP clients, expect a similar bandwidth requirement as a Web server serving static pages.

The primary factor affecting the requirements for a LAN infrastructure is the use of in-memory
replication of session information for servlets and stateful session EJBs. In a cluster, in-memory
replication of session information is the biggest consumer of LAN bandwidth. Consider whether
your application will require the replication of session information for servlets and EJBs.

To determine whether you have enough bandwidth in a given deployment, look at the network
tools provided by your network operating system vendor. In most cases, including Windows NT,
Windows 2000, and Solaris, you can inspect the load on the network system. If the load is very
high, bandwidth may be a bottleneck for your system.

Clustered Configurations
Clusters greatly improve efficiency and failover. Customers using clustering should not see any
noticeable performance degradation. A number of WebLogic Server deployments in production
involve placing a cluster of WebLogic Server instances on a single multiprocessor server.

Large clusters performing in-memory replication of session data for Enterprise JavaBeans (EJBs)
or servlets require more bandwidth than smaller clusters. Consider the size of session data and
the size of the cluster.

Capac i t y P lann ing

C-6 BEA WebLogic Server Performance and Tuning

Application Design
How well-designed is the application? WebLogic Server is a platform for user applications.
Badly designed or unoptimized user applications can drastically slow down the performance of a
given configuration from 10 to 50 percent. The prudent course is to assume that every application
that is developed for WebLogic Server will not be optimal and will not perform as well as
benchmark applications. Increase the maximum capacity that you calculate or expect. See “Tune
Your Application” on page 2-4.

Assessing Your Application Performance Objectives
At this stage in capacity planning, you gather information about the level of activity expected on
your server, the anticipated number of users, the number of requests, acceptable response time,
and preferred hardware configuration. Capacity planning for server hardware should focus on
maximum performance requirements and set measurable objectives for capacity.

The numbers that you calculate from using one of our sample applications are of course just a
rough approximation of what you may see with your application. There is no substitute for
benchmarking with the actual production application using production hardware. In particular,
your application may reveal subtle contention or other issues not captured by our test
applications.

Hardware Tuning
When you examine performance, a number of factors influence how much capacity a given
hardware configuration will need in order to support WebLogic Server and a given application.
The hardware capacity required to support your application depends on the specifics of the
application and configuration. You should consider how each factor applies to your configuration
and application.

Benchmarks for Evaluating Performance
The Standard Performance Evaluation Corporation, at www.spec.org, provides a set of
standardized benchmarks and metrics for evaluating computer system performance.

Supported Platforms
The information on the Supported Configurations pages, at {PLATFORM}/index.html, contains the
latest certification information on the hardware/operating system platforms that are supported for each
release of WebLogic Server.

http://www.spec.org
http://e-docs.bea.com/platform/suppconfigs/index.html

Network Per fo rmance

BEA WebLogic Server Performance and Tuning C-7

Network Performance
Network performance is affected when the supply of resources is unable to keep up with the
demand for resources. Today’s enterprise-level networks are very fast and are now rarely the
direct cause of performance in well-designed applications. However, if you find that you have a
problem with one or more network components (hardware or software), work with your network
administrator to isolate and eliminate the problem. You should also verify that you have an
appropriate amount of network bandwidth available for WebLogic Server and the connections it
makes to other tiers in your architecture, such as client and database connections. Therefore, it is
important to continually monitor your network performance to troubleshoot potential
performance bottlenecks.

Determining Network Bandwidth
A common definition of bandwidth is “the rate of the data communications transmission, usually
measured in bits-per-second, which is the capacity of the link to send and receive
communications.” A machine running WebLogic Server requires enough network bandwidth to
handle all WebLogic Server client connections. In the case of programmatic clients, each client
JVM has a single socket to the server, and each socket requires dedicated bandwidth. A
WebLogic Server instance handling programmatic clients should have 125–150 percent of the
bandwidth that a similar Web server would handle. If you are handling only HTTP clients, expect
a bandwidth requirement similar to a Web server serving static pages.

To determine whether you have enough bandwidth in a given deployment, you can use the
network monitoring tools provided by your network operating system vendor to see what the load
is on the network system. You can also use common operating system tools, such as the netstat
command for Solaris or the System Monitor (perfmon) for Windows, to monitor your network
utilization. If the load is very high, bandwidth may be a bottleneck for your system.

Also monitor the amount of data being transferred across the your network by checking the data
transferred between the application and the application server, and between the application server
and the database server. This amount should not exceed your network bandwidth; otherwise, your
network becomes the bottleneck. To verify this, monitor the network statistics for retransmission
and duplicate packets, as follows:

netstat -s -P tcp

For instructions on viewing other TCP parameters using the netstat -s -P command, see
“Setting TCP Parameters With the ndd Command” on page 4-2.

Capac i t y P lann ing

C-8 BEA WebLogic Server Performance and Tuning

Related Information
The BEA corporate Web site provides all documentation for WebLogic Server. Information
related to capacity planning is available in “Preparing to Install WebLogic Server: System
Requirements” in the BEA WebLogic Server Installation Guide.

Information on topics related to capacity planning is available from numerous third-party
software sources, including the following:

Capacity Planning for Web Performance: Metrics, Models, and Methods. Prentice Hall,
1998, ISBN 0-13-693822-1 at http://www.cs.gmu.edu/~menasce/webbook/index.html.

Configuration and Capacity Planning for Solaris Servers, by Brian Wong.

J2EE Applications and BEA WebLogic Server. Prentice Hall, 2001,
ISBN 0-13-091111-9 at http://www.phptr.com.

Web portal focusing on capacity-planning issues for enterprise application deployments at
http://www.capacityplanning.com/.

http://www.cs.gmu.edu/~menasce/webbook/index.html
http://www.phptr.com
http://www.capacityplanning.com/

	Introduction and Roadmap
	Document Scope and Audience
	Guide to this Document
	Performance Features of this Release
	Related Documentation

	Performance Tuning Roadmap
	Performance Tuning Roadmap
	Understand Your Performance Objectives
	Measure Your Performance Metrics
	Monitor Disk and CPU Utilization
	Monitor Data Transfers Across the Network

	Locate Bottlenecks in Your System
	Minimize Impact of Bottlenecks
	Tune Your Application
	Tune your DB
	Tune WebLogic Server Performance Parameters
	Tune Your JVM
	Tune the Operating System

	Achieve Performance Objectives

	Tuning Tips

	Top Tuning Recommendations for WebLogic Server
	Tune Pool Sizes
	Use the Prepared Statement Cache
	Use Logging Last Resource Optimization
	Tune Connection Backlog Buffering
	Tune the Chunk Size
	Use Optimistic or Read-only Concurrency
	Use Local Interfaces
	Use eager-relationship-caching
	Tune HTTP Sessions
	Tune Messaging Applications

	Operating System Tuning
	Basic OS Tuning Concepts
	Solaris Tuning Parameters
	Setting TCP Parameters With the ndd Command
	Setting Parameters In the /etc/system File
	CE Gigabit Network Card Settings
	Additional Solaris Tuning Information

	Linux Tuning Parameters
	HP-UX Tuning Parameters
	Windows Tuning Parameters
	Other Operating System Tuning Information

	Tuning Java Virtual Machines (JVMs)
	JVM Tuning Considerations
	Which JVM for Your System?
	Changing To a Different JVM

	Garbage Collection
	VM Heap Size and Garbage Collection
	Choosing a Garbage Collection Scheme
	Using Verbose Garbage Collection to Determine Heap Size
	Specifying Heap Size Values
	Tuning Tips for Heap Sizes
	BEA JRockit JVM Heap Size Options
	Java HotSpot VM Heap Size Options

	Automatically Logging Low Memory Conditions
	Manually Requesting Garbage Collection
	Requesting Thread Stacks

	Enable Spinning for IA32 Platforms
	Sun JDK
	BEA JRockit

	Tuning WebLogic Server
	Setting Java Parameters for Starting WebLogic Server
	Development vs. Production Mode Default Tuning Values
	Thread Management
	Tuning a Work Manager
	How Many Work Managers are Needed?
	What are the SLA Requirements for Each Work Manager?

	Tuning Execute Queues
	Understanding the Differences Between Work Managers and Execute Queues
	Migrating from Previous Releases

	Tuning the Stuck Thread Detection Behavior

	Tuning Network I/O
	Tuning Muxers
	Which Platforms Have Performance Packs?
	Enabling Performance Packs
	Changing the Number of Available Socket Readers
	Network Channels
	Tuning Message Size
	Tune the Chunk Parameters
	Tuning Connection Backlog Buffering

	Setting Your Compiler Options
	Compiling EJB Classes
	Setting JSP Compiler Options

	Using WebLogic Server Clusters to Improve Performance
	Scalability and High Availability
	How to Ensure Scalability for WebLogic Clusters
	Database Bottlenecks
	Session Replication
	Invalidation of Entity EJBs
	Invalidation of HTTP sessions
	JNDI Binding, Unbinding and Rebinding

	Performance Considerations When Running Multiple Server Instances on Multi-CPU Machines

	How to Monitor a WebLogic Server Domain
	Using the Administration Console to Monitor WebLogic Server
	Using JMX to Monitor WebLogic Server
	Using WLST to Monitor WebLogic Server
	dev2dev Resources to Monitor WebLogic Server
	Third-Party Tools to Monitor WebLogic Server

	Tuning the WebLogic Persistent Store
	Overview of Persistent Stores
	Using the Default Persistent Store
	Using Custom File Stores and JDBC Stores
	Using JMS Paging Stores

	Best Practices When Using Persistent Stores
	Tuning JDBC Stores
	Tuning File Stores

	DataBase Tuning
	General Suggestions
	Database-Specific Tuning
	Oracle
	Microsoft SQL Server
	Sybase

	Tuning WebLogic Server EJBs
	General EJB Tuning Tips
	Tuning EJB Caches
	Tuning the Stateful Session Bean Cache
	Tuning the Entity Bean Cache
	Transaction-Level Caching
	Caching between transactions

	Tuning the Query Cache

	Tuning EJB Pools
	Tuning the Stateless Session Bean Pool
	Tuning the MDB Pool
	Tuning the Entity Bean Pool

	CMP Entity Bean Tuning
	Use Eager Relationship Caching
	Use JDBC Batch Operations
	Tuned Updates
	Using Field Groups
	include-updates
	call-by-reference
	Bean-level Pessimistic Locking
	Concurrency Strategy

	Tuning In Response to Monitoring Statistics
	Cache Miss Ratio
	Lock Waiter Ratio
	Lock Timeout Ratio
	Pool Miss Ratio
	Destroyed Bean Ratio
	Pool Timeout Ratio
	Transaction Rollback Ratio
	Transaction Timeout Ratio

	Tuning JDBC Applications
	Tune the Number of Database Connections
	Waste Not
	Use Test Connections on Reserve with Care
	Cache Prepared and Callable Statements
	Use Best Design Practices

	Tuning Logging Last Resource
	What is LLR?
	LLR Tuning Guidelines

	Tuning WebLogic JMS
	Defining Quota
	Quota Resources
	Destination-Level Quota
	JMS Server-Level Quota
	Specifying a Blocking Send Policy on JMS Servers
	Defining a Send Timeout on Connection Factories

	Compressing Messages
	Paging Out Messages To Free Up Memory
	Specifying a Message Paging Directory
	Tuning the Message Buffer Size Option

	Controlling the Flow of Messages on JMS Servers and Destinations
	How Flow Control Works
	Configuring Flow Control
	Flow Control Thresholds

	Handling Expired Messages
	Defining a Message Expiration Policy
	Configuring an Expiration Policy on Topics
	Configuring an Expiration Policy on Queues
	Configuring an Expiration Policy on Templates
	Defining an Expiration Logging Policy

	Enabling Active Message Expiration
	Configuring a JMS Server to Actively Scan Destinations for Expired Messages

	Tuning MessageMaximum
	Setting Maximum Message Size on a Client

	Tuning Applications Using Unit-of-Order
	Best Practices
	Using UOO and Distributed Destinations,
	Migrating Old Applications to Use UOO

	Tuning WebLogic JMS Store-and-Forward
	Best Practices
	Tuning Tips

	Tuning WebLogic Message Bridge
	Best Practices
	Changing the Batch Size
	Changing the Batch Interval
	Changing the Quality of Service
	Using Multiple Bridge Instances
	Changing the Thread Pool Size
	Avoiding Durable Subscriptions
	Co-locating Bridges with Their Source or Target Destination
	Changing the Asynchronous Mode Enabled Attribute

	Tuning Resource Adapters
	Classloading Optimizations for Resource Adapters
	Connection Optimizations
	Thread Management
	InteractionSpec Interface

	Tuning Web Applications
	Best Practices
	Disable Page Checks
	Use Custom JSP Tags
	Precompile JSPs
	Use Service Level Agreements
	Related Reading

	Session Management
	Managing Session Persistence
	Minimizing Sessions
	Aggregating Session Data

	Tuning WebLogic Tuxedo Connector
	Configuration Guidelines
	Best Practices

	Related Reading: Performance Tools and Information
	BEA Systems, Inc. Information
	Sun Microsystems Information
	Linux OS Information
	Hewlett-Packard Company Information
	Microsoft Information
	Web Performance Tuning Information
	Network Performance Tools
	Load Testing Tools
	Performance Analysis Tools
	Production Performance Management
	Benchmarking Information
	Java Virtual Machine (JVM) Information
	Enterprise JavaBeans Information
	WebLogic Store Information
	Java Message Service (JMS) Information
	Java Database Connectivity (JDBC) Information
	General Performance Information

	Using the WebLogic 8.1 Thread Pool Model
	How to Enable the WebLogic 8.1 Thread Pool Model
	Tuning the Default Execute Queue
	Should You Modify the Default Thread Count?

	Using Execute Queues to Control Thread Usage
	Creating Execute Queues
	Modifying the Thread Count
	Tuning Execute Queues for Overflow Conditions
	Assigning Servlets and JSPs to Execute Queues
	Assigning EJBs and RMI Objects to Execute Queues

	Monitoring Execute Threads
	Allocating Execute Threads to Act as Socket Readers
	Setting the Number of Socket Reader Threads For a Server Instance
	Setting the Number of Socket Reader Threads on Client Machines

	Tuning the Stuck Thread Detection Behavior

	Capacity Planning
	Capacity Planning Factors
	Programmatic and Web-based Clients
	RMI and Server Traffic
	SSL Connections and Performance
	WebLogic Server Process Load
	Database Server Capacity and User Storage Requirements
	Concurrent Sessions
	Network Load
	Clustered Configurations
	Application Design

	Assessing Your Application Performance Objectives
	Hardware Tuning
	Benchmarks for Evaluating Performance
	Supported Platforms

	Network Performance
	Determining Network Bandwidth

	Related Information

