
BEAWebLogic
Server®

Deploying Applications
to WebLogic Server

Version 9.1
Revised: January 13, 2006

Copyright
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA
SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

Deploying Applications to WebLogic Server iii

Contents

1. Introduction and Roadmap
Document Scope and Audience . 1-2

Guide to This Document . 1-2

Related Documentation . 1-3

New and Changed Deployment Features in This Release . 1-3

2. Understanding WebLogic Server Deployment
Overview of the Deployment Process . 2-1

Deployment Standards . 2-3

Deployment Terminology . 2-5

Security Roles Required for Deployment . 2-6

WebLogic Server Deployment Features . 2-6

Rich Deployment Configuration. 2-6

Easy Deployment to Multiple, Varied Environments . 2-6

Administration Mode for Isolating Production Applications 2-7

Deployable JDBC, JMS, and WLDF Application Modules . 2-7

Module-Level Deployment and Redeployment for Enterprise Applications 2-8

Safe Redeployment for Production Applications . 2-8

Supported Deployment Units. 2-8

Enterprise Application . 2-9

Web Application . 2-9

Enterprise JavaBean . 2-10

iv Deploying Applications to WebLogic Server

Resource Adapter . 2-10

Web Service . 2-10

J2EE Library . 2-10

Optional Package . 2-11

JDBC, JMS, and WLDF Modules . 2-11

Client Application Archive . 2-12

Overview of Deployment Tools . 2-13

weblogic.Deployer . 2-13

Administration Console . 2-13

WLST. 2-13

Deployment Tools for Developers . 2-13

3. Preparing Applications
and Modules for Deployment

Overview of Preparing Applications and Modules . 3-1

Deployment Archive Files Versus Exploded Archive Directories 3-2

Archive Files . 3-2

Exploded Archive Directories . 3-3

Creating an Exploded Archive Directory from an Archive File 3-3

Understanding Default Deployment Names . 3-4

Understanding Application Naming Requirements . 3-4

Understanding Deployment Version Strings. 3-5

Creating an Application Installation Directory . 3-5

Steps for Creating an Application Installation Directory. 3-6

Best Practices for Preparing Deployment Files. 3-8

4. Configuring Applications for Production Deployment
Overview of Deployment Configuration. 4-2

Deploying Applications to WebLogic Server v

Understanding Application Deployment Descriptors . 4-2

Understanding WebLogic Server Deployment Plans . 4-2

Goals for Production Deployment Configuration . 4-5

Creating a New Deployment Plan to Configure an Application . 4-5

Preparing the Deployment Files . 4-6

Installing the Application Archive . 4-6

Saving Configuration Changes to a Deployment Plan . 4-7

Understanding Deployment Plan Contents . 4-7

Using an Existing Deployment Plan to Configure an Application 4-10

Additional Configuration Tasks . 4-11

Best Practices for Managing Application Configuration. 4-11

5. Deploying Applications and Modules
Overview of Common Deployment Scenarios . 5-2

Uploading Deployment Files from a Remote Client . 5-3

Deploying to a Single-Server Domain. 5-3

Deploying an Application with a Deployment Plan . 5-3

Deploying an Application That Looks Up System Resources from JNDI During preStart5-4

Targeting Deployments to Servers, Clusters, and Virtual Hosts . 5-5

Understanding Deployment Targets . 5-5

Deploying to One or More Targets. 5-6

Deploying to a Cluster Target. 5-7

Enforcing Consistent Deployment to All Configured Cluster Members 5-7

Using Module-Level Targeting for Deploying an Enterprise Application 5-8

Module-Targeting Syntax . 5-9

Targeting Web Application Modules . 5-9

Deploying JDBC, JMS, and WLDF Application Modules . 5-10

Targeting Application-Scoped JMS, JDBC, and WLDF Modules. 5-10

vi Deploying Applications to WebLogic Server

Using Sub-Module Targeting with JMS Application Modules 5-11

Sub-module Targeting for Stand-alone JMS Modules 5-11

Sub-module Targeting for Application-scoped JMS Modules 5-12

Controlling Deployment File Copying with Staging Modes . 5-13

Staging Mode Descriptions and Best Practices . 5-13

Using Nostage Mode Deployment . 5-16

Syntax for Nostage Mode . 5-16

Using Stage Mode Deployment . 5-17

Syntax for Stage Mode. 5-18

Using External_stage Mode Deployment . 5-18

Syntax for external_stage Mode . 5-18

Changing the Default Staging Behavior for a Server. 5-19

Distributing Applications to a Production Environment. 5-19

Distributing an Application . 5-20

Starting a Distributed Application in Administration Mode 5-20

Starting a Distributed Application . 5-20

Deploying Shared J2EE Libraries and Dependent Applications 5-21

Understanding Deployment Behavior for Shared Libraries 5-21

Registering Libraries with WebLogic Server. 5-22

Specifying Library Versions at Deployment . 5-22

Deploying Applications That Reference Libraries . 5-23

Auto-Deploying Applications in Development Domains . 5-24

Enabling and Disabling Auto-Deployment . 5-25

Auto-Deploying, Redeploying, and Undeploying Archived Applications 5-25

Auto-Deploying, Redeploying, and Undeploying Exploded Archives 5-26

Best Practices for Deploying Applications . 5-27

Deploying Applications to WebLogic Server vii

6. Updating Applications in a Production Environment
Overview of Redeployment Strategies . 6-2

Production Redeployment . 6-2

In-Place Redeployment . 6-2

Partial Redeployment of Static Files . 6-3

Partial Redeployment of J2EE Modules . 6-3

Understanding When to Use Different Redeployment Strategies 6-4

Using Production Redeployment to Update Applications. 6-4

How Production Redeployment Works . 6-5

Production Redeployment In Clusters . 6-6

Requirements and Restrictions for Using Production Redeployment 6-6

Development Requirements . 6-6

Deployment Requirements . 6-7

Restrictions on Production Redeployment Updates . 6-8

Specifying an Application Version Identifier . 6-8

Assigning a Version Identifier During Deployment and Redeployment. 6-8

Displaying Version Information for Deployed Applications 6-9

Redeploying a New Version of an Application . 6-9

Undeploying a Retiring Application . 6-11

Rolling Back the Production Redeployment Process. 6-11

Distributing a New Version of a Production Application . 6-12

Steps for Distributing a New Version of an Application . 6-13

Making an Application Available to Clients . 6-13

Best Practices for Using Production Redeployment . 6-14

Using In-Place Redeployment for Applications and Stand-alone Modules 6-15

Redeploying Applications and Modules In-Place . 6-16

Best Practices for Redeploying Applications and Modules In-Place. 6-18

viii Deploying Applications to WebLogic Server

Using Partial Redeployment for J2EE Module Updates . 6-18

Restrictions for Updating J2EE Modules in an EAR. 6-19

Best Practices for Updating J2EE Modules in an EAR . 6-19

Updating Static Files in a Deployed Application . 6-20

Updating the Deployment Configuration for an Application . 6-20

Modifying a Configuration Using the Administration Console. 6-21

How Configuration Changes Are Stored . 6-21

Updating an Application to Use a Different Deployment Plan 6-21

Understanding Redeployment Behavior for Deployment Configuration Changes . 6-22

7. Managing Deployed Applications
Taking a Production Application Offline . 7-2

Stopping an Application to Restrict Client Access . 7-2

Undeploying an Application or Module . 7-3

Undeploying Shared Libraries and Packages . 7-3

Adding a New Module to a Deployed Enterprise Application . 7-4

Changing the Order of Deployment at Server Startup . 7-4

Changing the Deployment Order for Applications and Stand-alone Modules 7-4

Changing the Deployment Order for Modules in an Enterprise Application 7-5

Ordering Startup Class Execution and Deployment . 7-5

Changing the Target List for an Existing Deployment . 7-6

Removing Files from a Web Application Deployment. 7-6

Managing Long-Running Deployment Tasks . 7-7

weblogic.Deployer Command-Line Reference
Required Environment for weblogic.Deployer . A-2

Syntax for Invoking weblogic.Deployer . A-2

Connection Arguments .A-4

Deploying Applications to WebLogic Server ix

User Credentials Arguments. .A-5

Common Arguments .A-7

Command Reference .A-9

Cancel .A-9

Deploy .A-10

Distribute .A-15

Listapps .A-18

List, Listtask .A-19

Redeploy .A-19

Start .A-23

Stop .A-25

Undeploy .A-27

Update .A-29

Example config.xml File and Corresponding weblogic.Deployer Command.A-31

weblogic.PlanGenerator Command Line Reference
Overview of weblogic.PlanGenerator . B-2

Required Environment for weblogic.PlanGenerator . B-2

Syntax for Invoking weblogic.PlanGenerator . B-2

Options . B-3

weblogic.PlanGenerator Examples . B-5

Creating an Initial Deployment Plan in an Application’s Root Directory B-5

Creating a New Deployment Plan Based on an Existing Plan B-5

Controlling the Components Exported to a Deployment Plan B-5

Exporting an Application for Deployment to New Environments
Overview of the Export Process . C-2

Goals for Exporting a Deployment Configuration . C-2

x Deploying Applications to WebLogic Server

Tools for Exporting a Deployment Configuration . C-2

Understanding Deployment Property Classifications . C-3

Steps for Exporting an Application’s Deployment Configuration C-4

Staging Application Files for Export . C-4

Generating a Template Deployment Plan using weblogic.PlanGenerator C-5

Customizing the Deployment Plan Using the Administration Console C-6

Install the Exported Application and Template Deployment Plan. C-7

Add Variables for Selected Tuning Properties . C-7

Retrieve the Customized Deployment Plan . C-7

Manually Customizing the Deployment Plan . C-7

Removing Variables from a Deployment Plan. C-7

Assigning Null Variables to Require Administrator Input. C-8

Validating the Exported Deployment Configuration . C-8

Best Practices for Exporting a Deployment Configuration. C-9

Deployment Plan Reference and Schema
How Deployment Plans Work. D-2

Deployment Plan Schema . D-4

Understanding the Deployment Configuration Process . D-10

Typical Deployment Configuration Workflows . D-11

Application with Single Deployment Plan. D-11

Single Deployment Plan Ownership and Limitations. D-13

Application with Multiple Deployment Plans . D-14

Multiple Deployment Plan Ownership and Limitations D-16

Deploying WebLogic Server Applications 1-1

C H A P T E R 1

Introduction and Roadmap

The following sections describe the audience for and organization of this document:

“Document Scope and Audience” on page 1-2

“Guide to This Document” on page 1-2

“Related Documentation” on page 1-3

“New and Changed Deployment Features in This Release” on page 1-3

I n t roduct i on and Roadmap

1-2 Deploying WebLogic Server Applications

Document Scope and Audience
This document is for administrators who want to deploy Java 2 Platform, Enterprise Edition
(J2EE) applications or application modules to WebLogic Server® instances or clusters. It is
assumed that you are working in a production environment, which is generally characterized by
multiple WebLogic Server instances or clusters running on multiple machines. It is also assumed
that you have one or more application module archive files that have been tested and are ready to
deploy on a production server.

If you are an engineer, you may need to perform activities such as:

Deploying an application in a development environment

Packaging an application for delivery to an administrator or deployer

Exporting the configuration of an application for deployment to a testing, staging, or
production environment

See Developing WebLogic Server Applications for information about performing these
development-related tasks.

Guide to This Document
This chapter, Introduction and Roadmap, describes the organization of this document and
highlights new deployment features introduced in BEA WebLogic Server 9.1.

Understanding WebLogic Server Deployment provides an overview of deployment features
used in WebLogic Server.

Preparing Applications and Modules for Deployment explains how to prepare application
and module files for deployment to WebLogic Server.

Configuring Applications for Production Deployment how to configure an application for
deployment to a specific WebLogic Server environment.

Deploying Applications and Modules describes basic and advanced techniques for
deploying applications to Weblogic Server.

Updating Applications in a Production Environment explains how to safely update,
redeploy, and reconfigure applications that you have deployed to a production
environment.

Managing Deployed Applications describes common tasks that an Administrator performs
when managing deployed applications and modules.

http://e-docs.bea.com/wls/docs91/programming/index.html

Rela ted Documentat ion

Deploying WebLogic Server Applications 1-3

weblogic.Deployer Command-Line Reference provides a complete reference for the
weblogic.Deployer tool syntax.

weblogic.PlanGenerator Command-Line Reference describes how to use the
weblogic.PlanGenerator utility to create a basic deployment plan.

Exporting an Application for Deployment to New Environments describes how to export
an application's WebLogic Server deployment configuration to a custom deployment plan,
which administrators use in deploying the application into non-development environments.

Deployment Plan Reference and Schema provides additional information about
deployment plan workflows, schema, and configuration.

Related Documentation
For additional information about deploying applications and modules to WebLogic Server, see
these documents:

Developing WebLogic Server Applications describes how to deploy applications during
development using the wldeploy Ant task, and provides information about the WebLogic
Server deployment descriptor for Enterprise Applications.

The WebLogic Server J2EE programming guides describe the J2EE and WebLogic Server
deployment descriptors used with each J2EE application and module:

– Developing Web Applications, Servlets, and JSPs for WebLogic Server

– Programming WebLogic Enterprise JavaBeans (EJB)

– Programming WebLogic Server Resource Adapters

– Programming WebLogic Web Services for WebLogic Server

Programming WebLogic JDBC describes the XML deployment descriptors for JDBC
application modules.

Programming WebLogic JMS describes the XML deployment descriptors for JMS
application modules.

New and Changed Deployment Features in This Release
This version of WebLogic Server includes support for production redeployment of Web Services
that meet certain criteia, as described in “Requirements and Restrictions for Using Production
Redeployment” on page 6-6.

http://e-docs.bea.com/wls/docs91/deployment/wlplangenerator.html
http://e-docs.bea.com/wls/docs91/deployment/wlplangenerator.html
http://e-docs.bea.com/wls/docs91/deployment/export.html
http://e-docs.bea.com/wls/docs91/deployment/plan.html
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/webapp/index.html
http://e-docs.bea.com/wls/docs91/ejb/index.html
http://e-docs.bea.com/wls/docs91/resadapter/index.html
http://e-docs.bea.com/wls/docs91/webserv/index.html
http://e-docs.bea.com/wls/docs91/jdbc/index.html
http://e-docs.bea.com/wls/docs91/jms/index.html

I n t roduct i on and Roadmap

1-4 Deploying WebLogic Server Applications

Additionally, many new and changed features were introduced in WebLogic Server 9.0.

For new and changed deployment features introduced in WebLogic Server 9.0, see New and
Changed Deployment Features in This Release in the 9.0 version of this manual.

For a description of all new and changed features introduced in WebLogic Server 9.0, see What’s
New in WebLogic Server 9.0 in WebLogic Server Release Notes.

http://e-docs.bea.com/wls/docs90/deployment/intro.html
http://e-docs.bea.com/wls/docs90/deployment/intro.html
http://e-docs.bea.com/wls/docs90/notes/new.html
http://e-docs.bea.com/wls/docs90/notes/new.html

Deploying Applications to WebLogic Server 2-1

C H A P T E R 2

Understanding WebLogic Server
Deployment

The following sections provide an overview of WebLogic Server deployment:

“Overview of the Deployment Process” on page 2-1

“Deployment Terminology” on page 2-5

“Deployment Standards” on page 2-3

“Security Roles Required for Deployment” on page 2-6

“WebLogic Server Deployment Features” on page 2-6

“Supported Deployment Units” on page 2-8

“Overview of Deployment Tools” on page 2-13

Overview of the Deployment Process
The term application deployment refers to the process of making an application or module
available for processing client requests in a WebLogic Server domain. For an administrator,
application deployment generally involves the following tasks:

1. Preparing applications and modules for deployment. You can deploy applications either
as archived files, or as exploded archive directories. In WebLogic Server there is also the
concept of an application installation directory, which helps you organize deployment files
and deployment configuration files for easy deployment using WebLogic Server tools. Before
deploying an application, an Administrator typically prepares the deployable modules by

http://e-docs.bea.com/wls/docs91/deployment/deployunits.html#overview

Unders tanding WebLog ic Serve r Dep lo yment

2-2 Deploying Applications to WebLogic Server

creating an application installation directory and copying the application archive file into the
appropriate subdirectory.

2. Configuring the application or module for deployment to the WebLogic Server
environment. Administrators typically receive a new application (or a new version of an
application) from their development team, and must deploy the application to a staging or
production environment that differs from the environments used during development and
testing. WebLogic Server helps you easily configure an application for a new target domain
without having to manually edit deployment descriptor files provided by development.
Configuration changes for a specific deployment environment are stored in a new
configuration artifact—a deployment plan—which can be stored and maintained
independently of the deployment files provided by the development team.

3. Deploying the application to WebLogic Server. After preparing both the deployment and
configuration files, applications are distributed to target servers in a WebLogic Server
domain and made active for processing client requests.

Some BEA deployment tools, such as the Administration Console, automatically guide you
through each step to help you quickly deploy applications to a WebLogic Server domain. Other
tools, such as the weblogic.Deployer tool, provide more control over individual steps in the
deployment process, but require additional conceptual knowledge about how WebLogic Server
performs each step. This document focuses mainly on using the weblogic.Deployer tool,
which provides access to many advanced deployment features. However, the Administration
Console is also documented where it provides unique functionality. For example, only the
Administration Console provides interactive deployment configuration for applications and
modules. For a detailed list of deployment tools, including those documented elsewhere in
WebLogic Server documentation, see “Overview of Deployment Tools” on page 2-13.

After an application has been deployed to one or more WebLogic Server instances, an
administrator typically performs several common maintenance tasks, such as:

Upgrading a deployed application to a newer version

Reconfiguring applications to make better use of system resources

Taking an application off-line for server or application maintenance

Changing the order of deployment at server startup time

Tracking and managing long-running deployment operations

The above topics are described in “Updating Applications in a Production Environment” on
page 6-1 and in “Managing Deployed Applications” on page 7-1.

http://e-docs.bea.com/wls/docs91/deployment/config.html#overview
http://e-docs.bea.com/wls/docs91/deployment/config.html#overview
http://e-docs.bea.com/wls/docs91/deployment/deploy.html#overview
http://e-docs.bea.com/wls/docs91/deployment/redeploy.html#overview
http://e-docs.bea.com/wls/docs91/deployment/redeploy.html#reconfigure
http://e-docs.bea.com/wls/docs91/deployment/managing.html#offline
http://e-docs.bea.com/wls/docs91/deployment/managing.html#loadorder
http://e-docs.bea.com/wls/docs91/deployment/managing.html#tracking

Deployment S tandards

Deploying Applications to WebLogic Server 2-3

Deployment Standards
WebLogic Server implements the J2EE 1.4 specification. J2EE 1.4 includes a deployment
specification, JSR-88, that describes a standard API used by deployment tools and application
server providers to configure and deploy applications to an application server.

WebLogic Server implements both the JSR-88 Service Provider Interface (SPI) plug-in and
model plug-in to comply with the J2EE 1.4 deployment specification. You can use a basic J2EE
1.4 deployment API deployment tool with the WebLogic Server plug-ins (without using
WebLogic Server extensions to the API) to configure, deploy, and redeploy J2EE applications
and modules to WebLogic Server. The WebLogic Server configuration generated by a J2EE 1.4
deployment API configuration process is stored in a deployment plan and one or more generated
WebLogic Server deployment descriptor files, as shown in Figure 2-1. WebLogic Server
deployment descriptors are generated as needed to store WebLogic Server configuration data.

Unders tanding WebLog ic Serve r Dep lo yment

2-4 Deploying Applications to WebLogic Server

Figure 2-1 Configuring Applications with the J2EE 1.4 Deployment API

The WebLogic Server deployment plan generated by a pure J2EE 1.4 deployment API
deployment tool identifies the WebLogic Server deployment descriptors that were generated for
the application during the configuration session.

Although the J2EE 1.4 deployment API provides a simple, standardized way to configure
applications and modules for use with a J2EE 1.4-compliant application server, the specification
does not address many deployment features that were available in WebLogic Server 8.1, or
introduced in WebLogic Server 9.0. For this reason, WebLogic Server provides important
extensions to the J2EE 1.4 deployment API specification to support capabilities described in
“WebLogic Server Deployment Features” on page 2-6.

application.xml

web.xml ejb-jar.xml

Enterprise Application

JSR-88 Configuration

plan.xml

weblogic-application.xml

weblogic.xml

weblogic-ejb-jar.xml

Deplo yment Te rmino logy

Deploying Applications to WebLogic Server 2-5

Deployment Terminology
The following WebLogic Server deployment terms are used throughout this document:

application module—An XML document that configures JMS or JDBC resources. Application
modules can be deployed as stand-alone modules in which case their resources are bound to the
global JNDI tree. Application modules can also be bundled as part of an Enterprise Application
and scoped within the application itself; in this case, the modules are referred to as
application-scoped modules.

application installation directory—A WebLogic Server directory structure designed to help
organize deployment files and generated deployment configuration artifacts for an application or
module. Also referred to as an application root directory.

application version—A string value that identifies the version of a deployed application.
Compatible applications that use version strings can use the WebLogic Server production
redeployment strategy.

deployment configuration—The process of defining the deployment descriptor values required to
deploy an application to a particular WebLogic Server domain. The deployment configuration for
an application or module is stored in three types of XML document: J2EE deployment
descriptors, WebLogic Server descriptors, and WebLogic Server deployment plans.

deployment descriptor—An XML document used to define the J2EE behavior or WebLogic
Server configuration of an application or module at deployment time.

deployment plan—An XML document that defines an application’s WebLogic Server
deployment configuration for a specific WebLogic Server environment. A deployment plan
resides outside of an application’s archive file, and can apply changes to deployment properties
stored in the application’s existing WebLogic Server deployment descriptors. Use deployment
plans to easily change an application’s WebLogic Server configuration for a specific environment
without modifying existing deployment descriptors. Multiple deployment plans can be used to
reconfigure a single application for deployment to multiple, differing WebLogic Server
environments.

distribution—The process by which WebLogic Server copies deployment source files to target
servers for deployment.

production redeployment—A WebLogic Server redeployment strategy that deploys a new
version of a production application alongside an older version, while automatically managing
HTTP connections to ensure uninterrupted client access.

Unders tanding WebLog ic Serve r Dep lo yment

2-6 Deploying Applications to WebLogic Server

staging mode—The method WebLogic Server uses to make deployment files available to target
servers in a domain. Staging modes determine whether or not files are distributed (copied) to
target servers before deployment.

Security Roles Required for Deployment
The built-in security roles for "Admin" and "Deployer" users allow you to perform deployment
tasks using the WebLogic Server Administration Console. Additionally, in this version of
WebLogic Server, there is a new security role, "AppTester" that allows you to test versions of
applications that are deployed to Administration mode.

WebLogic Server Deployment Features
BEA Weblogic Server supports the following advanced deployment features to help you reliably
deploy and manage applications in a production environment.

Rich Deployment Configuration
Whereas the J2EE 1.4 deployment API deployment specification enables you to generate
vendor-specific descriptor values necessary for deploying an application, WebLogic Server
extensions to J2EE 1.4 deployment API allow you to configure many additional deployment
properties, including:

The names of external resources required for the application to operate

The declared names of services provided in a deployed application (JNDI names), which
other applications may reference for their own use

Tuning properties that control the performance and behavior of the application on
WebLogic Server

Changes to the above deployment properties can be stored in WebLogic Server deployment
plans.

Easy Deployment to Multiple, Varied Environments
WebLogic Server extensions to the J2EE 1.4 deployment API make it easy to reconfigure an
application as needed for deployment to multiple, different WebLogic Server environments,
without unpacking or otherwise modifying the deployment source files. Migration of applications
is accomplished by exporting an application’s deployment configuration to a deployment plan
during development.

WebLog ic Se rve r Dep loyment Features

Deploying Applications to WebLogic Server 2-7

To export an application’s configuration, developers use the new weblogic.PlanGenerator
tool and select WebLogic Server deployment descriptor properties that need to change when the
application is deployed into another environment. For example, global resource names and tuning
parameters typically differ between environments because different domains provide different
types and quantities of resources to deployed applications. weblogic.PlanGenerator creates
variable definitions in a deployment plan which act as placeholders for the selected descriptor
properties. Deployment tools such as the Administration Console automatically present
deployment plan variables to a deployer for customizing before deployment.

Variable definitions allow an Administrator or other deployer to easily change the values of those
descriptor properties as needed for different server domains, without changing the actual
deployment descriptors files in the application itself. By setting empty (null) variable definitions
for required descriptor properties, a developer can require valid entries to be filled in before an
application can be deployed.

See “Configuring Applications for Production Deployment” on page 4-1 for information about
configuring applications with the Administration Console before deployment. See
“weblogic.PlanGenerator Command Line Reference” on page B-1 for information about using
the weblogic.PlanGenerator tool. See “Deployment Plan Reference and Schema” on
page D-1 for details about WebLogic Server deployment plans.

Administration Mode for Isolating Production Applications
Distributing an application copies deployment files to target servers and places the application in
a prepared state. You can then start the application in Administration mode, which restricts access
to the application to a configured Administration channel so you can perform final testing without
opening the application to external client connections or disrupting connected clients. You can
start an application in administration mode with the -adminmode option as described in “Starting
a Distributed Application in Administration Mode” on page 5-20. See “Distributing Applications
to a Production Environment” on page 5-19 and “Distributing a New Version of a Production
Application” on page 6-12.

After performing final testing, you can either undeploy the application to make further changes,
or start the application in Production mode to make it generally available to clients.

See “Distributing an Application” on page 5-20.

Deployable JDBC, JMS, and WLDF Application Modules
JDBC, JMS, and WLDF resources can now be stored as application modules, which can be
deployed stand-alone to multiple servers or clusters or included within an Enterprise Application

Unders tanding WebLog ic Serve r Dep lo yment

2-8 Deploying Applications to WebLogic Server

as application-scoped resources. Stand-alone JDBC, JMS, and WLDF application modules make
it easy to replicate resources in multiple WebLogic Server domains. Application-scoped resource
modules make it possible to include all of an application’s required resources within the
application module itself, for maximum portability to multiple environments. See Developing
Applications with WebLogic Server for more information about using application-scoped
resources. See “Deploying JDBC, JMS, and WLDF Application Modules” on page 5-10 to
deploy stand-alone or application-scoped resources to WebLogic Server.

Module-Level Deployment and Redeployment for Enterprise
Applications
WebLogic Server enables you to target individual modules of an Enterprise Application to
different server targets, or to deploy only a subset of available modules in an Enterprise
Application. This provides flexible packaging options, allowing you to bundle a group of related
modules together in an Enterprise Application, but deploy only selected modules to individual
servers in a domain.

Safe Redeployment for Production Applications
WebLogic Server enables you to safely update and redeploy a new version of a production
application without affecting current HTTP clients to the application. Production redeployment
helps you roll out bug fixes or new functionality without application downtime, and without
creating redundant servers in order to roll out the changes. See “Updating Applications in a
Production Environment” on page 6-1.

Supported Deployment Units
A deployment unit refers to a J2EE application (an Enterprise Application or Web application) or
a stand-alone J2EE module (such as an EJB or Resource Adapter) that has been organized
according to the J2EE specification and can be deployed to WebLogic Server.

For each type of deployment unit, the J2EE specification defines both the required files and their
location in the directory structure of the application or module. Deployment units may include
Java classes for EJBs and servlets, resource adapters, Web pages and supporting files,
XML-formatted deployment descriptors, and even other modules.

J2EE does not specify how a deployment unit is deployed on the target server—only how
standard applications and modules are organized. WebLogic Server supports the following types
of deployment units:

http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/programming/index.html

Suppor ted Deployment Un i ts

Deploying Applications to WebLogic Server 2-9

“Enterprise Application” on page 2-9

“Web Application” on page 2-9

“Enterprise JavaBean” on page 2-10

“Resource Adapter” on page 2-10

“Web Service” on page 2-10

“J2EE Library” on page 2-10

“Optional Package” on page 2-11

“JDBC, JMS, and WLDF Modules” on page 2-11

“Client Application Archive” on page 2-12

Enterprise Application
An Enterprise Application consists of one or more of the following J2EE applications or modules:

Web applications

Enterprise Java Beans (EJB) modules

Resource Adapter modules

An Enterprise Application is packaged as an archive file with an .ear extension, but is generally
deployed as an exploded EAR directory. An exploded EAR directory contains all of the JAR,
WAR, and RAR modules (also in exploded format) for an application as well as the XML
descriptor files for the Enterprise Application and its bundled applications and modules. See
Developing WebLogic Server Applications for more information.

Web Application
A Web application always includes the following files:

A servlet or JSP page, along with any helper classes.

A web.xml deployment descriptor, a J2EE standard XML document that configures the
contents of a WAR file.

Web applications may also contain JSP tag libraries, static .html and image files, supporting
classes and .jar files, and a weblogic.xml deployment descriptor, which configures WebLogic

http://e-docs.bea.com/wls/docs91/programming/index.html

Unders tanding WebLog ic Serve r Dep lo yment

2-10 Deploying Applications to WebLogic Server

Server-specific elements for Web applications. See Developing Web Applications for WebLogic
Server for more information.

Enterprise JavaBean
Enterprise JavaBeans (EJBs) are reusable Java components that implement business logic and
enable you to develop component-based distributed business applications. EJB modules are
packaged as archive files having a .jar extension, but are generally deployed as exploded
archive directories. The archive file or exploded archive directory for an EJB contains the
compiled EJB classes, optional generated classes, and XML deployment descriptors for the EJB.
See Programming WebLogic Server Enterprise JavaBeans for more information on the different
types of EJBs.

Resource Adapter
A Resource Adapter (also referred to as a connector) adds Enterprise Information System (EIS)
integration to the J2EE platform. Connectors provide a system-level software driver that
WebLogic Server can use to connect to an EIS. Connectors contain both the Java classes, and if
necessary, the native components required to interact with the EIS. See Programming WebLogic
Resource Adapters for more information.

Web Service
A Web Service is a set of functions packaged into a single entity that is available to other systems
on a network, and can be shared by and used as a component of distributed Web-based
applications. Web Services commonly interface with existing back-end applications, such as
customer relationship management systems, order-processing systems, and so on.

A Web Service module may include either Java classes or EJBs that implement the Web Service.
Web Services are packaged either as Web Application archives (WARs) or EJB modules (JARs)
depending on the implementation. See Programming WebLogic Web Services for more
information.

J2EE Library
A J2EE library is a stand-alone J2EE module, or multiple J2EE modules packaged in an
Enterprise Application (EAR), that is registered with the J2EE application container as a shared
library at deployment time. After a J2EE library has been registered, you can deploy Enterprise
Applications that reference the library in their weblogic-application.xml deployment

http://e-docs.bea.com/wls/docs91/webapp/index.html
http://e-docs.bea.com/wls/docs91/webapp/index.html
http://e-docs.bea.com/wls/docs91/ejb/index.html
http://e-docs.bea.com/wls/docs91/resadapter/index.html
http://e-docs.bea.com/wls/docs91/resadapter/index.html
http://e-docs.bea.com/wls/docs91/webserv/index.html

Suppor ted Deployment Un i ts

Deploying Applications to WebLogic Server 2-11

descriptors. Each referencing application receives a copy of the shared J2EE library module(s)
on deployment, and can use those modules as if they were packaged as part of the application
itself. J2EE library support provides an easy way to share one or more J2EE modules among
multiple Enterprise Applications without physically adding the shared modules to each
dependent application.

The deployment files of a shared library resemble either a standard Enterprise Application or
J2EE module, as discussed in this section. Shared libraries differ from standard EARs and
modules only by the contents of their MANIFEST.MF files. Creating Shared J2EE Libraries and
Optional Packages in Developing Applications with WebLogic Server describes how to assemble
and configure J2EE libraries, and how to configure Enterprise Applications that utilize J2EE
libraries.

“Deploying JDBC, JMS, and WLDF Application Modules” on page 5-10 describes how to
deploy J2EE libraries and Enterprise Applications that reference J2EE libraries.

Optional Package
Optional packages provide similar functionality to J2EE libraries, allowing you to easily share a
single JAR file among multiple applications. However, optional packages function at the level of
an individual J2EE module (stand-alone or within an Enterprise Application), rather than at the
Enterprise Application level. For example, third-party Web Application Framework classes
needed by multiple Web applications can be packaged and deployed in a single JAR file, and
referenced by multiple Web application modules in the domain.

Optional packages are delivered as basic JAR files that have no deployment descriptors. You
simply designate the JAR as an optional package at deployment time, and WebLogic Server
registers the file with the target servers you select. After the optional package has been registered,
you can then deploy J2EE modules and applications that reference the optional package in their
MANIFEST.MF files. Creating Shared J2EE Libraries and Optional Packages in Developing
Applications with WebLogic Server describes how to assemble and configure optional packages,
and how to configure J2EE modules that utilize optional packages.

“Deploying Shared J2EE Libraries and Dependent Applications” on page 5-21 describes how to
deploy optional packages and J2EE modules that reference optional packages.

JDBC, JMS, and WLDF Modules
JMS and JDBC configurations in this release of WebLogic Server stored in XML documents that
conform to the appropriate WebLogic Server schema for the resource: weblogic-jmsmd.xsd or
weblogic-jdbc.xsd. You create and manage JMS and JDBC resources either as system

http://e-docs.bea.com/wls/docs91/programming/libraries.html
http://e-docs.bea.com/wls/docs91/programming/libraries.html
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/programming/libraries.html
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/programming/index.html

Unders tanding WebLog ic Serve r Dep lo yment

2-12 Deploying Applications to WebLogic Server

modules, similar to the way they were managed prior to pre-9.0 versions of WebLogic Server, or
as application modules, similar to standard J2EE modules.

A JMS, JDBC, or WLDF application module can be deployed as a stand-alone resource, in which
case the resource is available in the domain targeted during deployment, or as part of an
Enterprise application. An application module deployed as part of an Enterprise Application is
available only to the enclosing application (an application-scoped resource). Using
application-scoped resources ensures that an application always has access to required resources,
and simplifies the process of deploying the application into new environments.

In contrast to system modules, application modules are owned by the developer who created and
packaged the module, rather than the Administrator who deploys the module. This means that the
Administrator has more limited control over JDBC, JMS, and WLDF application modules. When
deploying an application module, an Administrator can change resource properties that were
specified in the module, but cannot add or delete resources.

System modules are created by the Administrator via the WebLogic Administration Console, and
can be changed or deleted as necessary by the Administrator. Similarly, stand-alone application
modules created by the Administrator can be used to recreate global resources in multiple
WebLogic Server environments simply by deploying the modules into new domains.

For more information about creating and using JDBC, JMS, and WLDF modules, see:

New and Changed Features In This Release in Configuring and Managing WebLogic JMS

Configuring and Managing WebLogic JDBC

Configuring and Using the WebLogic Diagnostic Framework

See “Deploying Applications and Modules” on page 5-1 for information about deploying JMS
and JDBC stand-alone modules.

Client Application Archive
The J2EE specification enables you to include a client application archive file within an
Enterprise Application. A J2EE client application module contains the Java classes that execute
in the client JVM (Java Virtual Machine) and deployment descriptors that describe EJBs
(Enterprise JavaBeans) and other WebLogic Server resources used by the client. This enables
both the server-side and client-side components to be distributed as a single unit. You define
client modules in an EAR using the J2EE standard application-client.xml deployment
descriptor and WebLogic Server weblogic-appclient.xml descriptor.

http://e-docs.bea.com/wls/docs91/jms_admin/intro.html#WhatsNewJMS
http://e-docs.bea.com/wls/docs91/jms_admin/index.html
http://e-docs.bea.com/wls/docs91/jdbc_admin/index.html
http://e-docs.bea.com/wls/docs91/wldf_configuring/index.html

Overv iew o f Dep loyment Too ls

Deploying Applications to WebLogic Server 2-13

Overview of Deployment Tools
Weblogic Server provides the following tools to help you configure and deploy applications.

weblogic.Deployer
weblogic.Deployer provides a command-line based interface for performing both basic and
advanced deployment tasks. Use weblogic.Deployer when you want command-line access to
WebLogic Server deployment functionality, or when you need to perform a deployment task that
is not supported using the Administration Console.

Administration Console
The Administration Console provides a series of Web-based Deployment Assistants that guide
you through the deployment process. The Administration Console also provides controls for
changing and monitoring the deployment status, and changing selected deployment descriptor
values while the deployment unit is up and running.

Use the Administration Console when you need to perform basic deployment functions
interactively and you have access to a supported browser.

WLST
The WebLogic Scripting Tool (WLST) is a new command-line interface that you can use to
automate domain configuration tasks, including application deployment configuration and
deployment operations. See WebLogic Scripting Tool for more information.

Deployment Tools for Developers
WebLogic Server provides several tools for deploying applications and stand-alone modules:

wldeploy is an Ant task version of the weblogic.Deployer utility. You can automate
deployment tasks by placing wldeploy commands in an Ant build.xml file and running
Ant to execute the commands.

weblogic.PlanGenerator is a command-line tools that enables developers to export an
application’s configuration for deployment to multiple WebLogic Server environments.

The deployment API allows you to perform deployment tasks programmatically using Java
classes.

http://e-docs.bea.com/wls/docs91/config_scripting/index.html

Unders tanding WebLog ic Serve r Dep lo yment

2-14 Deploying Applications to WebLogic Server

The autodeploy domain directory allows you to deploy an application quickly for
evaluation or testing in a development environment.

Deploying Applications to WebLogic Server 3-1

C H A P T E R 3

Preparing Applications
and Modules for Deployment

The following sections provide a basic overview of key WebLogic Server deployment topics:

“Overview of Preparing Applications and Modules” on page 3-1

“Deployment Archive Files Versus Exploded Archive Directories” on page 3-2

“Understanding Default Deployment Names” on page 3-4

“Understanding Application Naming Requirements” on page 3-4

“Understanding Deployment Version Strings” on page 3-5

“Creating an Application Installation Directory” on page 3-5

“Best Practices for Preparing Deployment Files” on page 3-8

Overview of Preparing Applications and Modules
WebLogic Server supports deployment of standard J2EE modules and applications, as well as
JDBC and JMS resource modules, as described in “Supported Deployment Units” on page 2-8.
When preparing supported applications and modules for deployment, an Administrator has
several options with regard to how the deployment files are arranged:

Archive file or exploded archive directory. Weblogic Server enables you to deploy the
application source files as either a Java archive, or as an exploded archive directory. Using
an exploded archive directory helps you easily update portions of the application after
deployment. If you choose to use an exploded archive directory, you may be required to
manually unpack a previously-archived deployment. See “Deployment Archive Files

Prepar ing App l i cat i ons and Modu les fo r Dep loyment

3-2 Deploying Applications to WebLogic Server

Versus Exploded Archive Directories” on page 3-2 and “Exploded Archive Directories” on
page 3-3.

Application installation directory or other deployment directory. In WebLogic Server,
an application installation directory structure helps you organize multiple versions of an
application’s source and configuration files in a standard way. Regardless of whether you
deploy from an archive file or exploded archive directory, BEA recommends that you copy
deployment files into the appropriate subdirectories of an application installation directory.
Doing so ensures that the Administration Console can easily find deployment configuration
files, such as WebLogic Server deployment descriptors and deployment plans, and can
easily distinguish between multiple versions of the same application.

An application installation directory is not required; you can also deploy archive files and
exploded archive directories from any directory that is accessible to the Administration
Console.

Deployment Archive Files Versus Exploded Archive Directories
WebLogic Server supports deployments that are packaged either as archive files using the jar
utility or Ant’s jar tool, or as exploded archive directories.

Note: In general, using archived files is more efficient when deploying applications to managed
servers. However, it makes updating the application, such as updating web content, more
difficult as it requires a redeployment of the application.

Archive Files
An archive file is a single file that contains all of an application’s or module’s classes, static files,
directories, and deployment descriptor files. In most production environments, the applications
an Administrator receives for deployment are stored as archive files.

Deployment units that are packaged using the jar utility have a specific file extension depending
on the type:

EJBs and client archives are packaged as .jar files.

Web Applications are packaged as .war files.

Resource Adapters are packaged as .rar files.

Enterprise Applications are packaged as .ear files, and can contain other J2EE modules
such as EJBs, Web Applications, and Resource Adapters.

Deplo yment A rch ive F i l es Versus Exp loded Arch ive D i rec to r i es

Deploying Applications to WebLogic Server 3-3

Web Services can be packaged either as .war files or as .jar files, depending on whether
they are implemented using Java classes or EJBs.

J2EE libraries are packaged either as an Enterprise Application (.ear file) or as a standard
J2EE module.

Client applications and optional packages are packaged as .jar files.

In addition to an archive file, you may also receive a deployment plan, which is a separate file
that configures the application for a specific environment. “Configuring Applications for
Production Deployment” on page 4-1 describes deployment plans in more detail.

Exploded Archive Directories
An exploded archive directory contains the same files and directories as a JAR archive. However,
the files and directories reside directly in your file system and are not packaged into a single
archive file with the jar utility.

You may choose to deploy from an exploded archive directory under the following
circumstances:

You want to perform partial updates of an Enterprise Application after deployment.
Deploying Enterprise Applications as an exploded archive directory makes it easier to
update individual modules of the application without having to re-create the archive file.

You are deploying a Web application or Enterprise Application that contains static files that
you will periodically update. In this case, it is more convenient to deploy the application as
an exploded directory, because you can update and refresh the static files without
re-creating the archive.

You are deploying a Web application that performs direct file system I/O through the
application context (for example, a Web application that tries to dynamically edit or update
parts of the Web application itself). In this case, the modules that perform the I/O
operations should have a physical filesystem directory in which to work; you cannot obtain
a file when the application is deployed as an archive, as per the specification.

Creating an Exploded Archive Directory from an Archive File
If you have an archive file that you want to deploy as an exploded archive directory, use the jar
utility to unpack the archive file in a dedicated directory. For example:

mkdir /myapp

cd /myapp

Prepar ing App l i cat i ons and Modu les fo r Dep loyment

3-4 Deploying Applications to WebLogic Server

jar xvf /dist/myapp.ear

If you are unpacking an archive file that contains other module archive files (for example, an
Enterprise Application or Web Service that includes JAR or WAR files) and you want to perform
partial updates of those modules, you must expand the embedded archive files as well. Make sure
that you unpack each module into a subdirectory having the same name as the archive file. For
example, unpack a module named myejb.jar into a /myejb.jar subdirectory of the exploded
Enterprise Application directory.

Note: If you want to use different subdirectory names for the archived modules in an exploded
EAR file, you must modify any references to those modules in the application itself. For
example, you must update the URI values specified in application.xml and
CLASSPATH entries in the manifest.mf file.

Understanding Default Deployment Names
When you first deploy an application or stand-alone module to one or more WebLogic Server
instances, you specify a deployment name to describe collectively the deployment files, target
servers, and other configuration options you selected. You can later redeploy or stop the
deployment unit on all target servers by simply using the deployment name. The deployment
name saves you the trouble of re-identifying the deployment files and target servers when you
want to work with the deployment unit across servers in a domain.

If you do not specify a deployment name at deployment time, the deployment tool selects a
default name based on the deployment source file(s). For archive files, weblogic.Deployer
uses the name of the archive file without the file extension. For example, the file myear.ear has
a default deployment name of myear. For an exploded archive directory, weblogic.Deployer
uses the name of the top-level directory you deploy.

For J2EE libraries and optional packages, weblogic.Deployer uses the name specified in the
library’s manifest file. If no name was specified in the library’s manifest file, you can specify one
with the -name option.

See the following section, “Understanding Application Naming Requirements” for information
on application naming requirements; See “Deploying Applications and Modules” on page 5-1 to
specify a non-default deployment name.

Understanding Application Naming Requirements
In order to successfully deploy an application to WebLogic Server, the application name must be
valid. Application naming requirements are as follows:

Unders tand ing Dep loyment Ve rs i on St r ings

Deploying Applications to WebLogic Server 3-5

Application names must only contain the following characters:

– a-z

– A-Z

– 0-9

– _ (underscore)

– - (hyphen/dash)

– . (period/dot)

No additional characters are allowed in application names.

Application names that contain the . (period/dot) character must contain at least one
additional different character; "." and ".." are not valid application names.

Application names must be less than 215 characters in length.

Understanding Deployment Version Strings
In addition to a deployment name, an application or module can also have an associated version
string. The version string distinguishes the initial deployment of the application from subsequent
redeployed versions. For example, you may want to later update the application to fix problems
or add new features. In production systems, it is critical to maintain a version string for both the
initial and subsequent deployments of an application. Doing so allows you to update and redeploy
an application version without interrupting service to existing clients. See “Updating
Applications in a Production Environment” on page 6-1 for more information.

The version string is specified in the manifest file for the application, and should be provided by
your development team along with the other deployment files. Assigning Application Versions
in Developing WebLogic Server Applications describes the conventions for specifying the
version string.

Creating an Application Installation Directory
The application installation directory separates generated configuration files from the core
application files, so that configuration files can be easily changed or replaced without disturbing
the application itself. The directory structure also helps you to organize and maintain multiple
versions of the same application deployment files.

The following figure shows the directory hierarchy for storing a single version of a deployable
application or module.

http://e-docs.bea.com/wls/docs91/programming/versioning.html

Prepar ing App l i cat i ons and Modu les fo r Dep loyment

3-6 Deploying Applications to WebLogic Server

Figure 3-1 Application Installation Directory

BEA recommends copying all new production deployments into an application installation
directory before deploying to a WebLogic Server domain. Deploying from this directory
structure helps you easily identify all of the files associated with a deployment unit—you simply
deploy the installation root using the Administration Console, and the Console automatically
locates associated files such as deployment plans and WebLogic Server deployment descriptors
that were generated during configuration.

Steps for Creating an Application Installation Directory
To create an application installation directory:

1. Choose a top-level directory where you want to store deployment files for applications and
modules on your system. Follow these best practices:

– Do not store deployment files within a WebLogic Server domain directory.

– Use source control if available to maintain deployment source files.

Creat ing an App l icat ion Ins ta l la t ion D i r ec to ry

Deploying Applications to WebLogic Server 3-7

– If possible, store deployment files in a directory that is accessible by the Administration
Server and Managed Servers in your domain.

The instructions that follow use the sample deployment directory,
c:\deployments\production.

2. Create a dedicated subdirectory for the application or module you want to deploy:

mkdir c:\deployments\production\myApplication

3. Create a subdirectory beneath the application directory to designate the version of the
application you are deploying. Name the subdirectory using the exact version string of the
application. For example:

mkdir c:\deployments\production\myApplication\91Beta

4. The version subdirectory will become the installation root directory from which you deploy
the directory. Create subdirectories named app and plan under the version subdirectory:

mkdir c:\deployments\production\myApplication\91Beta\app

mkdir c:\deployments\production\myApplication\91Beta\plan

Note: If you have more than one deployment plan associated with the application, create
one \plan subdirectory for each plan. For example, if you have two deployment
plans associated with the 91Beta version of the application myApplication, you
would create two \plan subdirectories. For instance:

mkdir c:\deployments\production\myApplication\91Beta\plan1

mkdir c:\deployments\production\myApplication\91Beta\plan2

5. Copy your application source deployment files into the \app subdirectory. If you are
deploying from an archive file, simply copy the archive file, as in:

cp c:\downloads\myApplication.ear
c:\deployments\production\myApplication\91Beta\app

If you are deploying from an exploded archive directory, copy the complete exploded
archive directory into \app:

cp -r c:\downloads\myApplication
c:\deployments\production\myApplication\91Beta\app

This results in the new directory,
c:\deployments\production\myApplication\91Beta\app\myApplication.

6. If you have one or more deployment plans for the application, copy them into the \plan
subdirectories.

If you have one deployment plan for the application:

Prepar ing App l i cat i ons and Modu les fo r Dep loyment

3-8 Deploying Applications to WebLogic Server

cp c:\downloads\myApplicationPlans\plan.xml
c:\deployments\production\myApplication\91Beta\plan

If you have two deployment plans for the application:

cp c:\downloads\myApplicationPlans\plan1.xml
c:\deployments\production\myApplication\91Beta\plan1

cp c:\downloads\myApplicationPlans\plan2.xml
c:\deployments\production\myApplication\91Beta\plan2

Note: If you do not have an existing deployment plan, you can create one using the
Administration Console as described in “Configuring Applications for Production
Deployment” on page 4-1. The Administration Console automatically stores
newly-generated deployment plans in the \plan subdirectory of the application
installation directory.

7. To install the application into a WebLogic Server domain using Administration Console,
select the application installation directory. By default, the Administration Console will use
a plan named plan.xml, if one is available in the \plan subdirectory. The Administration
Console does not identify plans in subdirectories other than the \plan subdirectory; in other
words, plans in \plan1 or \plan2 subdirectories are not identified by the Administration
Console. Therefore, if multiple plans for your application are available, you must indicate,
in config.xml, the plan you would like to use. See “Configuring Applications for
Production Deployment” on page 4-1. For information on config.xml, see Creating
WebLogic Domains Using the Configuration Wizard.

After installing the application, you can configure, deploy, or distribute the application as
necessary.

Note: You cannot specify an application installation directory when using the
weblogic.Deployer tool, and the tool does not use an available plan.xml file by
default. You must specify the actual deployment file(s) and plan to use for
deployment. See “Deploying Applications and Modules” on page 5-1.

Best Practices for Preparing Deployment Files
BEA recommends the following best practices when preparing applications and modules for
deployment:

Regardless of whether you deploy an archive file or exploded archive directory, store the
deployment files in an installation directory for the application, as described in “Creating
an Application Installation Directory” on page 3-5. Using an installation directory
simplifies the deployment process, because the Administration Console understands where
to locate deployment and configuration files.

http://e-docs.bea.com/wls/docs91/../../common/docs90/confgwiz/index.html

Best P rac t i ces fo r P repar ing Dep loyment F i l es

Deploying Applications to WebLogic Server 3-9

Manage the entire application installation directory in a source control system, so you can
easily revert to previous application versions if necessary.

Prepar ing App l i cat i ons and Modu les fo r Dep loyment

3-10 Deploying Applications to WebLogic Server

Deploying Applications to WebLogic Server 4-1

C H A P T E R 4

Configuring Applications for
Production Deployment

The following sections describe how you configure applications for deployment to a production
WebLogic Server environment:

“Overview of Deployment Configuration” on page 4-2

“Creating a New Deployment Plan to Configure an Application” on page 4-5

“Understanding Deployment Plan Contents” on page 4-7

“Using an Existing Deployment Plan to Configure an Application” on page 4-10

“Additional Configuration Tasks” on page 4-11

“Best Practices for Managing Application Configuration” on page 4-11

Conf igur ing Appl i cat ions fo r P roduct ion Dep loyment

4-2 Deploying Applications to WebLogic Server

Overview of Deployment Configuration
When you receive a new application, or a new version of an application, from your development
or quality assurance teams, the application has generally been configured for a development or
testing environment. This means that the application may use specific resource names and
performance tuning settings that match the available resources on the target servers used in the
development or QA environments where the application was last deployed.

Because development and testing environments can be significantly different from the production
environment in which the application is ultimately deployed, an Administrator must configure the
application to use resource names and performance tuning parameters that are valid and
appropriate for the production environment.

Understanding Application Deployment Descriptors
The basic deployment configuration for an application is defined in multiple XML documents,
known as deployment descriptors, that are included as part of the application archive file that you
receive for deployment. Deployment descriptor files fall into two separate categories:

J2EE deployment descriptors define the fundamental organization and behavior of a J2EE
application or module, regardless of where the application is deployed. Each J2EE
application and module requires a specific J2EE deployment descriptor as defined in the
J2EE 1.4 specification.

WebLogic Server deployment descriptors define the resource dependencies and tuning
parameters that an application uses in a specific WebLogic Server environment.

For the purposes of a production deployment, you should treat both the J2EE and WebLogic
Server deployment descriptors as part of the application’s source code, which is owned by your
development team. Do not edit application deployment descriptors in order to configure an
application for deployment to a production environment. Instead, use the Administration Console
to persist configuration changes into a WebLogic Server deployment plan, which is described in
the next section.

Understanding WebLogic Server Deployment Plans
A WebLogic Server deployment plan is an optional XML document that resides outside of an
application archive and configures an application for deployment to a specific WebLogic Server
environment. A deployment plan works by setting deployment property values that would
normally be defined in an application’s WebLogic Server deployment descriptors, or by
overriding property values that are already defined in a WebLogic Server deployment descriptor.

Overv iew o f Dep loyment Conf igurat ion

Deploying Applications to WebLogic Server 4-3

Deployment plans are created and owned by the Administrator or deployer for a particular
environment, and are stored outside of an application archive or exploded archive directory. As
a best practice, BEA recommends storing each deployment plan for a single application in its own
plan subdirectory of the application’s root directory (See “Creating an Application Installation
Directory” on page 3-5).

Deployment plans help the Administrator easily modify an application’s WebLogic Server
configuration for deployment into to multiple, differing WebLogic Server environments without
modifying the deployment descriptor files included in the application archive. For example, a
deployment plan enables you to deploy an application to multiple domains, or to multiple target
servers and clusters within the same domain, that have are different configurations. To deploy the
application to a new environment, an Administrator simply creates or uses a new deployment
plan as necessary.

Conf igur ing Appl i cat ions fo r P roduct ion Dep loyment

4-4 Deploying Applications to WebLogic Server

Figure 4-1 Configuring an Application for Multiple Deployment Environments

Figure 4-1 shows how deployment plans are typically used when releasing a new version of an
application. During development, a programmer creates both J2EE and WebLogic Server
deployment descriptors to configure the application for repeated deployments to their
development environment. At this point, the application is generally deployed from an split
development directory, rather than an archive file, to facilitate easy editing and redeployment of
the application. A deployment plan is not necessary during deployment, because the developer
has full access to the application’s deployment descriptors, and the development environment is
typically a simple, single-server domain. Figure 4-1 shows that the development server uses a
simple PointBase database for development, named “DevDataSource,” and the
weblogic-ejb-jar.xml descriptor identifies the resource. Application tuning parameters are
not defined in the development configuration, because the developer is focused on the basic
semantics and behavior of the application.

Creat ing a New Deployment P lan to Conf igure an Appl i cat ion

Deploying Applications to WebLogic Server 4-5

To release a new version of the application, the developer packages the application into an
archive file and delivers it to an Administrator or deployer in the quality assurance team. At this
point, the embedded deployment descriptors provide a configuration that is valid for the
development environment used by the developer, but are not valid for the testing environment
where the application must be deployed. Figure 4-1 shows that the testing environment uses a
different datasource name than the one used during development. To deploy the application, the
Administrator of the testing environment generates a deployment plan to override the datasource
name configured in the application’s embedded deployment descriptors. Figure 4-1 shows that
the deployment plan configures the application to use the resource named “QADataSource.”

Similarly, when the application is released into production, the Administrator of the staging or
production environment creates or uses another deployment plan to configure the application.
Figure 4-1 shows that the production deployment plan once again overrides the application
deployment descriptor to identify a new JDBC datasource name. For this environment, the
deployment plan also defines tuning parameters to make better use of the additional resources
available in the production domain.

Goals for Production Deployment Configuration
For the Administrator, the primary goal of configuring an application for production deployment
is to generate a new deployment plan that is valid and appropriate for the target WebLogic Server
environment. Specifically, the deployment plan must resolve all external resources references for
the application to refer to valid resources available in the target environment. If the Application’s
configuration does not define to valid external resources for the target servers, the application
cannot be deployed.

A deployment plan can optionally define or override WebLogic Server tuning parameters, to
make ideal use of resources in the target environment. Defining tuning parameters is not required
in order to successfully deploy an application. If an application’s deployment descriptors and
deployment plan do not define tuning parameters, WebLogic Server uses default values.

Creating a New Deployment Plan to Configure an Application
The Administration Console automatically generates (or updates) a valid XML deployment plan
for an application when you interactively change deployment properties for an application that
you have installed to the domain. You can use the generated deployment plan to configure the
application in subsequent deployments, or you can generate new versions of the deployment plan
by repeatedly editing and saving deployment properties.

Generating a deployment plan using the Administration Console involves these steps:

Conf igur ing Appl i cat ions fo r P roduct ion Dep loyment

4-6 Deploying Applications to WebLogic Server

1. “Preparing the Deployment Files” on page 4-6

2. “Installing the Application Archive” on page 4-6

3. “Saving Configuration Changes to a Deployment Plan” on page 4-7

The following sections describe these steps for the WebLogic Server sample application
jspExpressionEar.ear though the steps can also be applied for your own application.

Preparing the Deployment Files
If you did not install WebLogic Server sample applications when you installed WebLogic server,
follow the directions in this section to prepare your application for deployment. If you installed
WebLogic Server sample applications when you installed WebLogic Server, proceed to the next
section “Installing the Application Archive” on page 4-6.

1. Create a new root directory and app and plan subdirectories for your application. For
example:

mkdir c:\sample_root
mkdir c:\sample_root\app
mkdir c:\sample_root\plan

2. Download the WebLogic Server sample application jspExpressionEar.ear from
http://e-docs.bea.com/wls/docs90/jspExpressionEar.ear. Be sure to save the application to
the c:\sample_root\app directory you created in Step 1.

Installing the Application Archive
The Administration Console uses an application installation assistant to help you install a new
application for configuration and deployment to a WebLogic Server environment. The
installation assistant copies deployment files to the Administration Server and selects target
WebLogic Server instances for deploying the application. After installing an application or
module, the deployment files are available in the WebLogic Server domain and can be
configured, distributed, and deployed as necessary.

Follow these steps to install the sample application to the examples server domain:

1. Start the examples server WebLogic server by using the Windows start menu or by running
the WL_HOME\samples\domains\wl_server\startWebLogic.cmd script.

2. Access the Administration Console by pointing your browser to
http://localhost:7001/console.

3. Log in to the Administration Console.

http://e-docs.bea.com/wls/docs91/jspExpressionEar.ear

Unders tand ing Dep lo yment P lan Contents

Deploying Applications to WebLogic Server 4-7

4. Follow the steps in Install applications and modules in Administration Console Online Help
to install your application or the jspExpressionEar.ear sample application you
downloaded in the previous section (“Preparing the Deployment Files” on page 4-6).

Saving Configuration Changes to a Deployment Plan
Use the Administration Console to edit deployment configuration properties for the application
you installed in the previous section (“Installing the Application Archive” on page 4-6) and save
the configuration to a deployment plan. For example, you could change properties such as the
following in the jspExpressionEar.ear sample application:

1. On the Configuration page, edit one or more configuration properties. For example, change
the Session Invalidation Interval to 80 seconds, and the Session Timeout to 8000 seconds.

2. Click Save to save your changes. The Administration Console stores your configuration
changes to a new deployment plan. If you deployed the sample application from a root
directory, the Administration Console automatically places the new deployment plan in the
\plan subdirectory of the root directory. For example, c:\sample_root\plan\Plan.xml.

Understanding Deployment Plan Contents
The deployment plan generated in “Creating a New Deployment Plan to Configure an
Application” on page 4-5 contains the entries shown in “Sample Deployment Plan” on page 4-7.

Listing 4-1 Sample Deployment Plan

<deployment-plan xmlns="http://www.bea.com/ns/weblogic/90">
<application-name>sample_root</application-name>
<variable-definition>
<variable>

<name>SessionDescriptor_InvalidationIntervalSecs_11029744771850</name>
<value>80</value>

</variable>
<variable>

<name>SessionDescriptor_TimeoutSecs_11029744772011</name>
<value>8000</value>

</variable>
</variable-definition>

<module-override>
<module-name>jspExpressionEar.ear</module-name>
<module-type>ear</module-type>
<module-descriptor external="false">

<root-element>weblogic-application</root-element>

http://e-docs.bea.com/wls/docs91/ConsoleHelp/taskhelp/deployment/InstallApplicationsAndModules.html

Conf igur ing Appl i cat ions fo r P roduct ion Dep loyment

4-8 Deploying Applications to WebLogic Server

<uri>META-INF/weblogic-application.xml</uri>
</module-descriptor>
<module-descriptor external="false">

<root-element>application</root-element>
<uri>META-INF/application.xml</uri>

</module-descriptor>
</module-override>
<module-override>
<module-name>jspExpressionWar</module-name>
<module-type>war</module-type>
<module-descriptor external="false">

<root-element>weblogic-web-app</root-element>
<uri>WEB-INF/weblogic.xml</uri>
<variable-assignment>

<name>SessionDescriptor_InvalidationIntervalSecs_11029744771850</name>
<xpath>/weblogic-web-app/session-descriptor/invalidation-interval-secs

</xpath>
</variable-assignment>
<variable-assignment>

<name>SessionDescriptor_TimeoutSecs_11029744772011</name>
<xpath>/weblogic-web-app/session-descriptor/timeout-secs</xpath>

</variable-assignment>
</module-descriptor>
<module-descriptor external="false">

<root-element>web-app</root-element>
<uri>WEB-INF/web.xml</uri>

</module-descriptor>
</module-override>
<module-override>
<module-name>sample_root</module-name>
<module-type>ear</module-type>
<module-descriptor external="false">

<root-element>weblogic-application</root-element>
<uri>META-INF/weblogic-application.xml</uri>

</module-descriptor>
<module-descriptor external="false">

<root-element>application</root-element>
<uri>META-INF/application.xml</uri>

</module-descriptor>
</module-override>
<config-root>C:\sample_root\plan</config-root>

</deployment-plan>

The basic elements in the deployment plan serve the following functions:

deployment-plan encapsulates all of the deployment plan’s contents.

application-name corresponds to the deployment name for the application or module.

Unders tand ing Dep lo yment P lan Contents

Deploying Applications to WebLogic Server 4-9

variable-definition defines one or more variable elements. Each variable defines
the name of a variable used in a plan and a value to assign (which can be null). The
sample plan shown in “Sample Deployment Plan” on page 4-7 contains variable definitions
for the changes you made to the Session Invalidation Interval and Session Timeout
properties.

module-override elements define each module name, type, and deployment descriptor
that the deployment plan overrides. A module-descriptor element can optionally
contain a variable-assignment which identifies a variable name used to override a
property in the descriptor, and the exact location within the descriptor where the property is
overridden.

The sample plan shown in “Sample Deployment Plan” on page 4-7 contains module
override elements for the Enterprise Application, the embedded Web application, and the
enclosing root directory. The module-descriptor entry for the weblogic.xml descriptor file
contains two variable-assignment elements that override the property values for the
Session Invalidation Interval and Session Timeout properties you changed in “Saving
Configuration Changes to a Deployment Plan” on page 4-7.

By default, the values in variable-assignment elements are added to the values that are
already defined in the descriptor. You can change this behavior and cause the
variable-assignment element to replace or remove the values that are defined in the
descriptor by setting the operation subelement in the variable-assignment element to
the value replace or remove, respectively.

For example, if:

– In ejb-jar.xml, you create a policy to allow access only to the security role named
ejbRole.

...
<assembly-descriptor>
<security-role>
<role-name>ejbRole</role-name>
</security-role>
<method-permission>
<role-name>ejbRole</role-name>
<method>
<ejb-name>ejb.SearchHandlerWrapperEJB</ejb-name>
<method-name>*</method-name>
</method>
</method-permission>
</assembly-descriptor>
...

Conf igur ing Appl i cat ions fo r P roduct ion Dep loyment

4-10 Deploying Applications to WebLogic Server

– In the security-role-assignment element in weblogic-ejb-jar.xml, you map
ejbRole to the principal named user1.

...
<security-role-assignment>
<role-name>ejbRole</role-name>
<principal-name>user1</principal-name>
</security-role-assignment>
...

– You want use a deployment plan to override the security-role-assignment element
defined in weblogic-ejb-jar.xml, so that ejbRole is mapped to user2 instead of user1,
you could achieve the desired override behavior by setting appropriate values for the
variable, variable-assignment, and operation elements in the deployment plan.
Make sure to set the value of operation to replace.

...
<variable>
<name>SecurityRoleAssignment_ejbRole_PrincipalNames_11168815313911</
name>
<value>user2</value>
</variable>

<variable-assignment>
<name>SecurityRoleAssignment_ejbRole_PrincipalNames_11168815313911</
name>
<xpath>/weblogic-ejb-jar/security-role-assignment/[role-name="ejbRol
e"]/principal-name</xpath>
<operation>replace</operation>
</variable-assignment>

For more information about the contents of a WebLogic Server deployment plan, see the
“Deployment Plan Reference and Schema” on page D-1.

Using an Existing Deployment Plan to Configure an Application
Applications that you receive for deployment may come with varying levels of configuration
information. If you have an existing deployment plan for an application, simply prepare the
application as described in “Preparing the Deployment Files” on page 4-6 and place the
deployment plan in the plan subdirectory of the application root. Then install the application
using the instructions in “Installing the Application Archive” on page 4-6. The Administration
Console automatically uses a deployment plan named plan.xml in the \plan subdirectory of an
application root directory if one is available. If multiple plans are available for your application,
they are placed in their own \plan subdirectories (for example \plan1 and \plan2), and the
Administration Console cannot identify them. Therefore, you must specify, in config.xml, the

Add i t i ona l Conf igura t ion Tasks

Deploying Applications to WebLogic Server 4-11

plan you want to use. For information on config.xml, see Creating WebLogic Domains Using the
Configuration Wizard.

After you install a new application and existing deployment plan, the Administration Console
validates the deployment plan configuration against the target servers and clusters that were
selected during installation. If the deployment plan contains empty (null) variables, or if any
values configured in the deployment plan are not valid for the target server instances, you must
override the deployment plan before you can deploy the application. You can also configure
tuning parameters to better suit the target environment in which you are deploying the
application, as described in “Saving Configuration Changes to a Deployment Plan” on page 4-7.
Changes you make to the application’s configuration are saved to a new deployment plan.

If you have a valid deployment plan that fully configures an application for the environment in
which you are deploying, you can use either the Administration Console or the
weblogic.Deployer utility to identify the application and plan to use for deployment. Note that
any deployment plan you use with the weblogic.Deployer utility must be complete and valid
for your target servers; weblogic.PlanGenerator does not allow you to set or override
individual deployment properties that are defined in the plan. To deploy a new application and
existing deployment plan using weblogic.Deployer, see “Deploying an Application with a
Deployment Plan” on page 5-3.

Additional Configuration Tasks
See the following sections for information about additional deployment configuration tasks:

“Deploying an Application with a Deployment Plan” on page 5-3 describes how to deploy
an application with a valid deployment plan using the weblogic.Deployer tool.

“Updating the Deployment Configuration for an Application” on page 6-20 describes how
to update the deployment configuration for a currently-deployed application.

“Exporting an Application for Deployment to New Environments” on page C-1 explains
how developers can create portable deployment plans using the
weblogic.PlanGenerator tool.

“weblogic.PlanGenerator Command Line Reference” on page B-1 provides a complete
reference to the weblogic.PlanGenerator tool.

Best Practices for Managing Application Configuration
Always manage multiple deployment configurations using deployment plans, rather than
multiple versions of the WebLogic Server deployment descriptor files.

http://e-docs.bea.com/wls/docs91/../../common/docs90/confgwiz/index.html

Conf igur ing Appl i cat ions fo r P roduct ion Dep loyment

4-12 Deploying Applications to WebLogic Server

Always store each existing deployment plan for an application in its own plan
subdirectory of an application root directory.

If your organization requires standardized, repeatable deployments to several
environments, use the Application with Single Deployment Plan workflow to maintain a
single deployment plan in your source control system.

If you make extensive changes to an application’s deployment configuration using the
Administration Console, back up or safely store the updated deployment plan for future
use. BEA recommends storing the entire application root directory in a source control
system, so that you can maintain configuration information for multiple environments and
multiple versions of an application.

Deploying Applications to WebLogic Server 5-1

C H A P T E R 5

Deploying Applications and Modules

The following sections describe how to perform basic and advanced deployment tasks using the
weblogic.Deployer utility:

“Overview of Common Deployment Scenarios” on page 5-2

“Deploying to a Single-Server Domain” on page 5-3

“Deploying an Application with a Deployment Plan” on page 5-3

“Deploying an Application That Looks Up System Resources from JNDI During preStart”
on page 5-4

“Uploading Deployment Files from a Remote Client” on page 5-3

“Targeting Deployments to Servers, Clusters, and Virtual Hosts” on page 5-5

“Using Module-Level Targeting for Deploying an Enterprise Application” on page 5-8

“Deploying JDBC, JMS, and WLDF Application Modules” on page 5-10

“Controlling Deployment File Copying with Staging Modes” on page 5-13

“Distributing Applications to a Production Environment” on page 5-19

“Deploying Shared J2EE Libraries and Dependent Applications” on page 5-21

“Auto-Deploying Applications in Development Domains” on page 5-24

“Best Practices for Deploying Applications” on page 5-27

Deploy ing App l icat ions and Modules

5-2 Deploying Applications to WebLogic Server

Overview of Common Deployment Scenarios
The sections that follow organize common deployment tasks into several general categories,
starting with the most basic tasks and progressing to more advanced tasks. Before you deploy an
application, perform the appropriate tasks described in “Configuring Applications for Production
Deployment” on page 4-1.

Uploading Deployment Files from a Remote Client—Explains how to upload an
application or module to the Administration Server from a remote client.

Deploying to a Single-Server Domain—Explains the basics of deploying an application or
module to a single-server WebLogic domain.

Deploying an Application with a Deployment Plan—Explains how to deploy an application
with a deployment plan that fully configures the application.

Deploying an Application That Looks Up System Resources from JNDI During preStart—
Explains how to deploy an application that looks up system resources via JNDI.

Targeting Deployments to Servers, Clusters, and Virtual Hosts—Describes all WebLogic
Server target types, and explains how to identify targets during deployment.

Using Module-Level Targeting for Deploying an Enterprise Application—Describes how
to target individual modules in an Enterprise Application to different WebLogic Server
targets.

Deploying JDBC, JMS, and WLDF Application Modules—Describes how to deploy both
stand-alone and application-scoped JDBC, JMS, and WLDF modules in a WebLogic
Server domain.

Controlling Deployment File Copying with Staging Modes—Describes how to use
non-default staging modes to control WebLogic Server file-copying behavior.

Distributing Applications to a Production Environment—Describes how to deploy and test
a new application directly in a production environment without making the application
available for processing client requests.

Deploying Shared J2EE Libraries and Dependent Applications—Describes how to deploy
J2EE Libraries and optional packages to a Weblogic Server environment, and how to
deploy and manage applications and modules that reference these shared resources.

Auto-Deploying Applications in Development Domains—Describes a procedure for
quickly deploying sample applications in a development domain.

Uploading Dep loyment F i l es f rom a Remote C l i ent

Deploying Applications to WebLogic Server 5-3

Best Practices for Deploying Applications—Summarizes key deployment practices.

Uploading Deployment Files from a Remote Client
In order to deploy an application or module to a domain, the deployment file(s) must be
accessible to the domain’s Administration Server. If the files do not reside on the Administration
Server machine or are not available to the Administration Server machine via a network mounted
directory, use the -upload option to upload the files before deploying them:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -deploy -upload c:\localfiles\myapp.ear

To upload an exploded archive directory, specify the directory name instead of an archive
filename (for example c:\localfiles\myappEar).

When you upload files to the Administration Server machine, the archive file is automatically
placed in the server’s upload directory. You can configure the path of this directory using the
instructions in “Changing the Default Staging Behavior for a Server” on page 5-19.

Deploying to a Single-Server Domain
A single-server WebLogic Server domain, consisting only of an Administration Server,
represents the simplest scenario in which to deploy an application or module. If you are deploying
files that reside on the same machine as the domain, use the -deploy command and identify the
file location, with connection arguments for the Administration Server. For example:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -deploy c:\localfiles\myapp.ear

In the above command, WebLogic Server creates a default deployment name of myapp, as
described in “Understanding Default Deployment Names” on page 3-4, because myapp is the
name of the deployment file without the extension. If you want to specify a non-default
deployment name, use the -name option, as in:

java weblogic.Deployer -adminurl http://localhost:7001

-user weblogic -password weblogic -deploy

-name myTestApplication c:\localfiles\myapp.ear

Deploying an Application with a Deployment Plan
When you use weblogic.Deployer to deploy an application, the deployment plan and
WebLogic Server deployment descriptors must define a valid configuration for the target

Deploy ing App l icat ions and Modules

5-4 Deploying Applications to WebLogic Server

environment, or the deployment fails. This means you cannot use weblogic.Deployer with a
deployment plan that defines null variables for an application’s required resource bindings.

To deploy an application and deployment plan using weblogic.Deployer, include the -plan
option with the -deploy command, as in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -deploy -name myTestDeployment

-source /myDeployments/myApplication.ear

-targets myCluster -stage

-plan /myDeployments/myAppPlan.xml

If you are deploying from an application root directory and the deployment plan is located in the
/plan subdirectory, you still need to identify both the actual deployment source files the plan to
use for deployment, as in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -deploy -name myTestDeployment

-source

/myDeployments/installedApps/myApplication/app/myApplication.ear

-targets myCluster -stage

-plan /myDeployments/installedApps/myApplication/plan/plan.xml

When you deploy or distribute an application with a deployment plan, the deployment plan and
any generated deployment descriptors are copied to the staging directories of target servers along
with the application source files.

Deploying an Application That Looks Up System Resources from
JNDI During preStart

Because preStart application lifecycle listeners are invoked during the prepare phase of an
application—which occurs when an edit session is activated—JNDI lookup of system resources
will fail if you create a new system resource during the same edit session in which you deploy an
application that uses the system resource. For example, if you acquire an edit lock from the
Administration Console, then create a new JDBC system resource and deploy an application that
uses the new JDBC system resource during the same edit session (in other words, before
activating changes in the Administration Console), JNDI lookup of the JDBC system resource
will fail because the preStart application lifecycle listeners were invoked before the system
resource was activated. To look up system resources from JNDI in your preStart lifecycle
listeners, BEA recommends that you create the system resource during startup or during a

Target ing Dep loyments to Serve rs , C lus te rs , and V i r tua l Hos ts

Deploying Applications to WebLogic Server 5-5

separate edit session, before you deploy any applications that use the system resource. For
example, you could:

1. Acquire an edit lock by clicking Lock & Edit in the Administration Console.

2. Create the desired system resource. For information, see Create JMS system modules in
Administration Console Online Help.

3. Complete the edit session by clicking Activate Changes in the Administration Console.

4. Acquire another edit lock by clicking Lock & Edit in the Administration Console.

Deploy the application that uses the system resource you created in step 2. For information on
deploying applications from the Administration Console, see Deploy applications and modules
in Administration Console Online Help.

See Overview of J2EE Libraries and Optional Packages in Developing Applications with
WebLogic Server for more information.

Targeting Deployments to Servers, Clusters, and Virtual Hosts
In most production environments, you typically deploy applications to one or more Managed
Servers configured in a Weblogic Server domain. In some cases, the servers may be included as
part of a WebLogic Server cluster, or a virtual host may be used for directing Web application
requests. The term deployment target refers to any server or collection of servers to which you
can deploy an application or module.

Understanding Deployment Targets
Deployment targets are the servers or groups of servers on which you deploy an application or
stand-alone module. During the deployment process, you select the list of targets from the
available targets configured in your domain. You can also change the target list after you have
deployed a module.

The following table describes all valid deployment targets for WebLogic Server, and lists the
types of modules that you can deploy to each target.

http://e-docs.bea.com/wls/docs91/ConsoleHelp/taskhelp/jms_modules/modules/CreateJMSModules.html
http://e-docs.bea.com/wls/docs91/ConsoleHelp/taskhelp/deployment/DeployApplicationsAndModules.html
http://e-docs.bea.com/wls/docs91/programming/libraries.html#liboverview

Deploy ing App l icat ions and Modules

5-6 Deploying Applications to WebLogic Server

Table 5-1 WebLogic Server 9.x Deployment Targets

Deploying to One or More Targets
To deploy to a single WebLogic Server target, list the configured target name after the -targets
option to weblogic.Deployer. For example, to deploy a Web application to a configured virtual
host named companyHost, use the command:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -deploy -targets companyHost

c:\localfiles\myWebApp.ear

Target Type Description Valid Deployments

WebLogic Server
Instance

A WebLogic Server instance,
such as an Administration
Server in a single-server
domain, or a Managed Server.

J2EE Applications
J2EE modules
JMS, JDBC, or WLDF modules
J2EE Libraries

Cluster A configured cluster of
multiple WebLogic Server
instances

J2EE Applications
J2EE modules
JMS, JDBC, or WLDF modules
J2EE Libraries

Virtual Host A configured host name that
routes requests for a particular
DNS name to a WebLogic
Server instance or cluster. See
Configuring Virtual Hosting in
Designing and Configuring
WebLogic Server
Environments for more
information.

Web applications

JMS Server A JMS Server configured in a
Weblogic Server domain

A JMS queue or topic defined within a
JMS module*

*When deployed as a stand-alone application module, a JMS, JDBC, or WLDF resource appears
as a J2EE deployment in the Administration Console.

A stand-alone JMS application module can be targeted to server, cluster, or virtual host targets;
queues and topics defined within a JMS module can be further targeted to a configured JMS
server. For information on sub-module targeting, see “Using Sub-Module Targeting with JMS
Application Modules” on page 5-11.

http://e-docs.bea.com/wls/docs91/config_wls/web_server.html#virtualhost
http://e-docs.bea.com/wls/docs91/config_wls/index.html
http://e-docs.bea.com/wls/docs91/config_wls/index.html

Target ing Dep loyments to Serve rs , C lus te rs , and V i r tua l Hos ts

Deploying Applications to WebLogic Server 5-7

Specify multiple targets using a comma-separated list, as in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -deploy -targets ManagedServer-1,ManagedServer-2

c:\localfiles\myapp.ear

Deploying to a Cluster Target
If you specify a cluster target (using -targets mycluster), WebLogic Server targets all server
instances in the cluster by default. This corresponds to homogenous module deployment, which
is recommended in most clusters. If you want to deploy a module only to a single server in the
cluster (that is, “pin” a module to a servers), specify the individual server instance name, rather
than the cluster, as the target. This type of deployment is less common, and should be used only
in special circumstances where pinned services are required. See Understanding Cluster
Configuration and Application Deployment in Using WebLogic Server Clusters for more
information.

Note: Pinning a deployment to a subset of server instances in a cluster (rather than to a single
server on the cluster) is not recommended and will generate a warning message.

When you deploy an application to a cluster target, WebLogic Server ensures that the deployment
successfully deploys on all available members of the cluster. If even a single, available WebLogic
Server instance in the cluster cannot deploy the application, the entire deployment fails and no
servers in the cluster start the application. This helps to maintain homogeneous deployments to
the cluster, because deployment operations succeed or fail as a logical unit.

If a clustered server is unreachable at the time of deployment (for example, because of a network
failure between the Administration Server and a Managed Server, or because a cluster member is
shut down) that server does not receive the deployment request until the network connection is
restored. This default behavior ensures that most deployment operations succeed, even when
servers are taken offline.

Enforcing Consistent Deployment to All Configured Cluster Members
The default cluster deployment behavior ensures homogeneous deployment for all clustered
server instances that can be reached at the time of deployment. However, if the Administration
Server cannot reach one or more clustered servers due to a network outage, those servers do not
receive the deployment request until the network connection is restored. For redeployment
operations, this can lead to a situation where unreachable servers use an older version of the
deployed application, while reachable servers use the newer version. When the network

http://e-docs.bea.com/wls/docs91/cluster/config.html
http://e-docs.bea.com/wls/docs91/cluster/config.html
http://e-docs.bea.com/wls/docs91/cluster/index.html

Deploy ing App l icat ions and Modules

5-8 Deploying Applications to WebLogic Server

connection is restored, previously-disconnected servers may abruptly update the application as
they receive the delayed redeployment request.

It is possible to change WebLogic Server’s default deployment behavior for clusters by setting
the ClusterConstraintsEnabled option when starting the WebLogic Server domain. The
ClusterConstraintsEnabled option enforces strict deployment for all servers configured in a
cluster. A deployment to a cluster succeeds only if all members of the cluster are reachable and
all can deploy the specified files.

Warning: Do not use the ClusterConstraintsEnabled option unless you have an extremely
reliable network configuration, and you can guarantee that all cluster members are
always available to receive deployment and redeployment requests. With
ClusterConstraintsEnabled, WebLogic Server will fail all deployment
operations to a cluster if any clustered server is unavailable, even if a single server
has been shut down for maintenance.

To set the ClusterConstraintsEnabled for the domain when you start the Administration
Server, include the appropriate startup argument:

-DClusterConstraintsEnabled=true enforces strict cluster deployment for servers in a
domain.

-DClusterConstraintsEnabled=false ensures that all available cluster members
deploy the application or module. Unavailable servers do not prevent successful
deployment to the available clustered instances. This corresponds to the default WebLogic
Server deployment behavior.

Using Module-Level Targeting for Deploying an Enterprise
Application

An Enterprise Application (EAR file) differs from other deployment units because an EAR can
contain other module types (WAR and JAR archives). When you deploy an Enterprise
Application using the Administration Console, you can target all of the archive’s modules
together as a single deployment unit, or target individual modules to different servers, clusters,
or virtual hosts.

You can also use module-level targeting to deploy only a subset of the modules available in an
EAR. This can simplify packaging and distribution of applications by packaging multiple
modules in a single, distributable EAR, but targeting only the modules you need to each domain.

Using Modu le-Leve l Ta rget ing fo r Dep loy ing an Ente rp r ise App l i cat ion

Deploying Applications to WebLogic Server 5-9

Module-Targeting Syntax
To target individual modules in an Enterprise Application, use the module_name@target_name
syntax. For example:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name myEnterpriseApp

-targets module1@myserver1,module2@myserver2,module3@myserver3

-stage -deploy c:\localfiles\myEnterpriseApp.ear

Targeting Web Application Modules
To target Web application modules that are part of an .ear file, you can use the Web
application’s context-root name as the module name or specify the web-uri.

For example, if the application.xml file for a file, myEnterpriseApp.ear, defines:

<module>

<web>

<web-uri>myweb.war</web-uri>

<context-root>/welcome</context-root>

</web>

</module>

You can deploy only the Web application module by using the context-root name:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mywebapplication -targets /welcome@myserver1

-stage -deploy c:\localfiles\myEnterpriseApp.ear

You can deploy only the Web application module by using the web-uri:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mywebapplication -targets myweb.war@myserver1

-stage -deploy c:\localfiles\myEnterpriseApp.ear

To deploy a Web application as a default Web application, set the value of the context-root
element to "/". For example, if the application.xml file for a file, myEnterpriseApp.ear,
defines:

<module>

<web>

<web-uri>myweb.war</web-uri>

<context-root>/</context-root>

Deploy ing App l icat ions and Modules

5-10 Deploying Applications to WebLogic Server

</web>

</module>

You can deploy only the Web application module by using the context-root name:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mywebapplication -targets /@myserver1

-stage -deploy c:\localfiles\myEnterpriseApp.ear

Deploying JDBC, JMS, and WLDF Application Modules
Stand-alone JDBC, JMS, and WLDF application modules can be deployed similar to stand-alone
J2EE modules. For a stand-alone JDBC, JMS, or WLDF application module, the target list
determines the WebLogic Server domain in which the module is available. JNDI names specified
within an application module are bound as global names and available to clients. For example, if
you deploy a stand-alone JDBC application module to a single-server target, then applications
that require resources defined in the JDBC module can only be deployed to the same server
instance. You can target application modules to multiple servers, or to WebLogic Server clusters
to make the resources available on additional servers.

If you require JDBC, JMS, or WLDF resources to be available to all servers in a domain, create
system modules, rather than deployable application modules. See Configuring JMS System
Resources in Configuring and Managing WebLogic JMS, Configuring WebLogic JDBC
Resources in Configuring and Managing WebLogic JDBC, and Configuring Diagnostic System
Modules in Configuring and Using the WebLogic Diagnostic Framework.

Note: Deploying a JMS module does not necessarily mean it is properly targeted and active,
and that the JNDI name is available. The JNDI name is not available until the JMS
module is properly targeted. For more information, see Understanding JMS Resource
Configuration in Configuring and Managing WebLogic JMS.

Targeting Application-Scoped JMS, JDBC, and WLDF Modules
JMS, JDBC, and WLDF application modules can also be included as part of an Enterprise
Application, as an application-scoped resource module. Application-scoped resource modules
can be targeted independently of other EAR modules during deployment, if necessary, by using
module-level targeting syntax. For example:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name myEnterpriseApp

-targets

http://e-docs.bea.com/wls/docs91/jms_admin/basic_config.html
http://e-docs.bea.com/wls/docs91/jms_admin/basic_config.html
http://e-docs.bea.com/wls/docs91/jdbc_admin/config.html
http://e-docs.bea.com/wls/docs91/jdbc_admin/config.html
http://e-docs.bea.com/wls/docs91/wldf_configuring/understand_wldf_config.html
http://e-docs.bea.com/wls/docs91/wldf_configuring/understand_wldf_config.html
http://e-docs.bea.com/wls/docs91/jms_admin/overview.html
http://e-docs.bea.com/wls/docs91/jms_admin/overview.html

Deploy ing JDBC, JMS, and WLDF App l i cat ion Modu les

Deploying Applications to WebLogic Server 5-11

myWebApp@myCluster,myJDBCModule@myserver1,myEJBModule@myserver1

-stage -deploy c:\localfiles\myEnterpriseApp.ear

Using Sub-Module Targeting with JMS Application Modules
Certain JMS resources defined within a JMS application module can be further targeted to a JMS
Server available on the module’s target during deployment. These resources are known as
submodules. Certain types of submodule require deployment to a JMS Server, such as:

Queues

Topics

Other submodules can be targeted to JMS Servers as well as WebLogic Server instances and
clusters:

Connection factories

Foreign servers

SAF imported destinations

Uniform distributed topics

Uniform distributed queues

During deployment, WebLogic Server selects default JMS Server targets for submodules in a
JMS application module, as described in Targeting JMS Modules and Subdeployment Resources
in Configuring and Managing WebLogic JMS. To specify submodule targets at deployment or
undeployment time, you must use an extended form of the module targeting syntax with the
-submoduletargets option to weblogic.Deployer.

Sub-module Targeting for Stand-alone JMS Modules
For a stand-alone JMS module, the submodule targeting syntax is: -submoduletargets
submodule_name@target_name. For example, to deploy a stand-alone JMS module on a single
server instance, targeting the submodule myQueue to a JMS Server named JMSServer1, enter the
command:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name myJMSModule

-targets ManagedServer1 -submoduletargets myQueue@JMSServer1

-deploy c:\localfiles\myJMSModule.xml

http://e-docs.bea.com/wls/docs91/jms_admin/basic_config.html#target_jms_modules

Deploy ing App l icat ions and Modules

5-12 Deploying Applications to WebLogic Server

To undeploy the same JMS module, enter the following command, which, assuming
myJMSModule contains more than one submodule, will undeploy only the myQueue submodule;
all other submodules are unaffected.
java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name myJMSModule
-undeploy -submoduletargets myQueue@JMSServer1

Sub-module Targeting for Application-scoped JMS Modules
For an application-scoped JMS module in an EAR, use the syntax:
submodule_name@module_name@target_name to target a submodule. For example, if the
queue in the above example were instead packaged as part of an enterprise application, you would
use the command:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name myEnterpriseApp

-targets ManagedServer1 -submoduletargets

myQueue@myJMSModule@JMSServer1

-deploy c:\localfiles\myEnterpriseApp.ear

To undeploy the same JMS module, enter the following command, which, assuming
myEnterpriseApp contains more than one submodule, will undeploy only the myQueue
submodule; all other submodules are unaffected.
java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name myEnterpriseApp
-undeploy -submoduletargets myQueue@myJMSModule@JMSServer1

Warning: When you undeploy an application that contains application-scoped resources, the
resources are deleted along with the application, which can potentially cause
abandoned transactions or lost messages as a result of deleted JMS destinations. For
more information, see Unregister Resource Grace Period in Programming
WebLogic JTA.

You should only undeploy applications that you are certain you want to completely
remove; to temporarily stop client access to applications, use the -stop command,
described in weblogic.Deployer Command-Line Reference.

For more information on JMS subdeployments, see Targeting JMS Modules and Subdeployment
Resources in Configuring and Managing WebLogic JMS.

http://e-docs.bea.com/wls/docs91/jta/trxcon.html#unregisterresourcegraceperiod
http://e-docs.bea.com/wls/docs91/jms_admin/basic_config.html#target_jms_modules
http://e-docs.bea.com/wls/docs91/jms_admin/basic_config.html#target_jms_modules

Cont ro l l ing Dep lo yment F i l e Copy ing wi th Stag ing Modes

Deploying Applications to WebLogic Server 5-13

Controlling Deployment File Copying with Staging Modes
The deployment staging mode determines how deployment files are made available to target
servers that must deploy an application or stand-alone module. WebLogic Server provides three
different options for staging files: stage mode, nostage mode, and external_stage mode.

“Staging Mode Descriptions and Best Practices” on page 5-13

“Using Nostage Mode Deployment” on page 5-16

“Syntax for Stage Mode” on page 5-18“Using External_stage Mode Deployment” on
page 5-18

“Syntax for external_stage Mode” on page 5-18

“Changing the Default Staging Behavior for a Server” on page 5-19

Staging Mode Descriptions and Best Practices
The following table describes the behavior and best practices for using the different deployment
staging modes.

Deploy ing App l icat ions and Modules

5-14 Deploying Applications to WebLogic Server

Table 5-2 Application Deployment Staging Modes

Deployment
Staging Mode

Behavior When to Use

stage The Administration Server first copies the
deployment unit source files to the staging
directories of target servers. (The staging
directory is named stage by default, and it
resides under the target server’s root
directory.)

The target servers then deploy using their
local copy of the deployment files.

• Deploying small or
moderate-sized applications to
multiple WebLogic Server
instances.

• Deploying small or
moderate-sized applications to a
cluster.

Cont ro l l ing Dep lo yment F i l e Copy ing wi th Stag ing Modes

Deploying Applications to WebLogic Server 5-15

nostage The Administration Server does not copy
deployment unit files. Instead, all servers
deploy using the same physical copy of the
deployment files, which must be directly
accessible by the Administration Server and
target servers.

With nostage deployments of exploded
archive directories, WebLogic Server
automatically detects changes to a
deployment’s JSPs or Servlets and refreshes
the deployment. (This behavior can be
disabled if necessary.)

• Deploying to a single-server
domain.

• Deploying to a cluster on a
multi-homed machine.

• Deploying very large applications
to multiple targets or to a cluster
where deployment files are
available on a shared directory.

• Deploying exploded archive
directories that you want to
periodically redeploy after
changing content.

• Deployments that require
dynamic update of selected
Deployment Descriptors via the
Administration Console.

external_stage The Administration Server does not copy
deployment files. Instead, the Administrator
must ensure that deployment files are
distributed to the correct staging directory
location before deployment (for example,
by manually copying files prior to
deployment).

With external_stage deployments, the
Administration Server requires a copy of
the deployment files for validation
purposes. Copies of the deployment files
that reside in target servers’ staging
directories are not validated before
deployment.

You can use the -noversion option to
turn off the requirement that deployment
files be on the Administration Server, but
the -noversion option causes versioning
information to be ignored; therefore, you
cannot use the -noversion option with
versioned applications. For information, see
“Common Arguments” on page A-7.

• Deployments where you want to
manually control the distribution
of deployment files to target
servers.

• Deploying to domains where
third-party applications or scripts
manage the copying of
deployment files to the correct
staging directories.

• Deployments that do not require
dynamic update of selected
Deployment Descriptors via the
Administration Console (not
supported in external_stage
mode).

• Deployments that do not require
partial redeployment of
application components.

Deployment
Staging Mode

Behavior When to Use

Deploy ing App l icat ions and Modules

5-16 Deploying Applications to WebLogic Server

A server’s staging directory is the directory in which the Administration Server copies
deployment files for stage mode deployments. It is also the directory in which deployment files
must reside before deploying an application using external_stage mode.

Most deployments use either stage or nostage modes, and the WebLogic Server deployment tools
use the appropriate default mode when you deploy an application or module. The sections that
follow explain how to explicitly set the deployment staging mode when deploying an application
or module.

Using Nostage Mode Deployment
In nostage mode, the Administration Server does not copy the archive files from their source
location. Instead, each target server must access the archive files from a single source directory
for deployment. The staging directory of target servers is ignored for nostage deployments.

For example, if you deploy a J2EE Application to three servers in a cluster, each server must be
able to access the same application archive files (from a shared or network-mounted directory) to
deploy the application.

Note: The source for the deployment files in nostage mode is the path provided by the user at
deployment time (as opposed to stage mode, where the source is the path in each server’s
staging directory). However, even in nostage mode, WebLogic Server copies out parts of
the deployment to temporary directories. This enables users to update entire archived
deployments or parts of archived deployments.

In nostage mode, the Web application container automatically detects changes to JSPs and
servlets. Nostage also allows you to later update only parts of an application by updating those
parts in one file system location and then redeploying.

The Administration Console uses nostage mode as the default when deploying only to the
Administration Server (for example, in a single-server domain). weblogic.Deployer uses the
target server’s staging mode, and Administration Servers use nostage mode by default. You can
also select nostage mode if you run a cluster of server instances on the same machine, or if you
are deploying very large applications to multiple machines that have access to a shared directory.
Deploying very large applications in nostage mode saves time during deployment because no
files are copied.

Syntax for Nostage Mode
To use nostage mode, specify -nostage as an option to weblogic.Deployer, as in:

Cont ro l l ing Dep lo yment F i l e Copy ing wi th Stag ing Modes

Deploying Applications to WebLogic Server 5-17

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mydeploymentname

-targets myserver1,myserver2,myserver3 -nostage

-deploy c:\localfiles\myapp.ear

Using Stage Mode Deployment
In stage mode, the Administration Server copies the deployment files from their original location
on the Administration Server machine to the staging directories of each target server. For
example, if you deploy a J2EE Application to three servers in a cluster using stage mode, the
Administration Server copies the deployment files to directories on each of the three server
machines. Each server then deploys the J2EE Application using its local copy of the archive files.

When copying files to the staging directory, the Administration Server creates a subdirectory with
the same name as the deployment name. So if you deployed using the command:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic -name mytestear -stage -targets mycluster
-deploy c:\bea\weblogic81\samples\server\medrecd\dist\physicianEar

a new directory, mytestear, would be created in the staging directory of each server in
mycluster. If you do not specify a deployment name, a default deployment name (and staging
subdirectory) is used:

For exploded archive deployments, the deployment name and staging subdirectory are the
name of the directory you deployed (physicianEar in the example above).

For archived deployments, the default deployment name is the name of the archive file
without the extension. For example, if you deploy physicianEar.ear, the deployment
name and staging subdirectory are physicianEar.

The Administration Console uses stage mode as the default mode when deploying to more than
one WebLogic Server instance. weblogic.Deployer uses the target server’s staging mode as
the default, and Managed Servers use stage mode by default.

Stage mode ensures that each server has a local copy of the deployment files on hand, even if a
network outage makes the Administration Server unreachable. However, if you are deploying
very large applications to multiple servers or to a cluster, the time required to copy files to target
servers can be considerable. Consider nostage mode to avoid the overhead of copying large files
to multiple servers.

Deploy ing App l icat ions and Modules

5-18 Deploying Applications to WebLogic Server

Syntax for Stage Mode
To use stage mode, specify -stage as an option to weblogic.Deployer, as in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mydeploymentname

-targets myserver1,myserver2,myserver3 -stage

-deploy c:\localfiles\myapp.ear

Using External_stage Mode Deployment
External_stage mode is similar to stage mode, in that target servers deploy using local copies of
the deployment files. However, the Administration Server does not automatically copy the
deployment files to targeted servers in external_stage mode; instead, you must copy the files to
the staging directory of each target server before deployment. You can perform the copy
manually or use automated scripts.

Within each target server’s staging directory, deployment files must be stored in a subdirectory
that reflects the deployment name. This can either be the name you type in for the deployment,
or the default deployment name (the name of the exploded archive directory, or the name of the
archive file without its file extension).

External_stage mode is the least common deployment staging mode. It is generally used only in
environments that are managed by third-party tools that automate the required copying of files.
You may also choose to use external_stage mode when you are deploying very large applications
to multiple machines and you do not have a shared file system (and cannot use nostage mode).
Using external_stage in this scenario decreases the deployment time because files are not copied
during deployment.

You can use the -noversion option to turn off the requirement that deployment files be on the
Administration Server, but the -noversion option causes versioning information to be ignored so
you cannot use the -noversion option with versioned applications. For information, see “Common
Arguments” on page A-7.

Syntax for external_stage Mode
To deploy an application in external_stage mode:

1. Make sure that the deployment files are accessible to the Administration Server. (See
“Uploading Deployment Files from a Remote Client” on page 5-3.)

Dis t r ibut ing App l i ca t i ons to a P roduct i on Env i ronment

Deploying Applications to WebLogic Server 5-19

2. On each target server for the deployment, create a subdirectory in the staging directory that
has the same name as the deployment name. For example, if you will specify the name
myEARExternal for the deployment name, create a myEARExternal subdirectory in the
staging directories for each target server.

Note: If you do not specify a deployment name at deployment time, WebLogic Server
selects a default name. See “Understanding Default Deployment Names” on page 3-4
for more information.

3. If you are deploying a versioned application for use with production redeployment, create a
subdirectory beneath the application directory for the version of the application you are
deploying. For example, if you are deploying myEARExternal at version level 2.0Beta, the
deployment files must reside in a subdirectory of each target server’s staging directory
named myEARExternal\2.0Beta.

4. Copy the deployment files into the staging subdirectories you created in Step 2 or 3 above.

5. Deploy the application or module using the weblogic.Deployer utility. For example:

java weblogic.Deployer -adminurl http://localhost:7001 -name weblogic
-password weblogic -external_stage -name myEARExternal
-deploy c:\myapps\myear

Changing the Default Staging Behavior for a Server
The server staging mode specifies the default deployment mode for a server if none is specified
at deployment time. For example, the server staging mode is used if you deploy an application or
stand-alone module using weblogic.Deployer and you do not specify a staging mode.

Notes: You can only change the server staging mode by using the Administration Console or by
directly changing the ServerMBean via JMX.

Changing the server staging mode does not affect existing applications. If you want to
change the staging mode for an existing application, you must undeploy the application
deployment and then redeploy it with the new staging mode.

To set the server staging mode using the Administration Console, follow the steps described in
Set a server staging mode in Administration Console Online Help. For detailed information on
staging modes, see Table 5-2, “Application Deployment Staging Modes,” on page 5-14.

Distributing Applications to a Production Environment
Distributing an application prepares it for deployment by copying its deployment files to all target
servers and validating it. After you distribute an application, you can start it in Administration

http://e-docs.bea.com/wls/docs91/ConsoleHelp/taskhelp/deployment/SetAServerStagingMode.html

Deploy ing App l icat ions and Modules

5-20 Deploying Applications to WebLogic Server

mode, which restricts access to the application to a configured Administration channel and allows
you to distribute the application to a production environment (or distribute a new version of an
application) without opening the application to external client connections.

While in Administration mode, you can connect to an application only via a configured
Administration channel. This allows you to perform final (“sanity”) checking of the application
directly in the production environment without disrupting clients. After performing final testing,
you can either undeploy the application to make further changes, or start the application to make
it generally available to clients.

You can use the -adminmode option application in administration mode. For information, see
“Starting a Distributed Application in Administration Mode” on page 5-20.

Distributing an Application
To distribute an application, use the weblogic.Deployer -distribute command, as in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -distribute -name myTestDeployment

/myDeployments/myApplication/

Starting a Distributed Application in Administration Mode
After WebLogic Server distributes the deployment files, you can start the application in
Administration mode so that you can access and test it via a configured Administration channel.
See Configuring Network Resources in Designing and Configuring WebLogic Server
Environments.

To start a distributed application in Administration mode, use the -start command with the
-adminmode option:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -start -adminmode -name myTestDeployment

/myDeployments/myApplication/

Starting a Distributed Application
After performing final testing of a distributed application using a configured Administration
channel, you can open the application to new client connections by using the
weblogic.Deployer -start command without the -adminmode option:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -start -name myTestDeployment

http://e-docs.bea.com/wls/docs91/config_wls/network.html
http://e-docs.bea.com/wls/docs91/config_wls/index.html
http://e-docs.bea.com/wls/docs91/config_wls/index.html

Deploy ing Shared J2EE L ib rar ies and Dependent App l icat ions

Deploying Applications to WebLogic Server 5-21

Deploying Shared J2EE Libraries and Dependent Applications
J2EE library support in WebLogic Server provides an easy way to share one or more J2EE
modules or JAR files among multiple Enterprise Applications. A J2EE library is a stand-alone
J2EE module, multiple J2EE modules packaged in an Enterprise Application (EAR), or a plain
JAR file that is registered with the J2EE application container upon deployment. After a J2EE
library has been registered, you can deploy Enterprise Applications that reference the library.
Each referencing application receives a copy of the shared J2EE library module(s) on
deployment, and can use those modules as if they were packaged as part of the application itself.

Note: BEA documentation and WebLogic Server utilities use the term library to refer to both
J2EE libraries and optional packages. Optional packages are called out only when
necessary.

Understanding Deployment Behavior for Shared Libraries
WebLogic Server supports shared J2EE libraries by merging the shared files with a referencing
application when the referencing application is deployed.

You first register a J2EE library or optional package with one or more WebLogic Server instances
or clusters by deploying the library and indicating that the deployment is a library (see
“Registering Libraries with WebLogic Server” on page 5-22). Deploying a library or package
does not activate the deployment on target servers. Instead, WebLogic Server distributes the
deployment files to target servers (if nostage deployment mode is used) and records the location
of the deployment files, the deployment name, and any version string information for the library
or package.

When an application that references a shared library or package is deployed, WebLogic Server
checks the names and version string requirements against the libraries registered with the server.
If an exact match for a library or package name is not found, or if the version requirements are
not met, the application deployment fails.

If WebLogic Server finds a name and version string match for all of the libraries referenced in
the application, the server adds the libraries’ classes to the classpath of the referencing application
and merges deployment descriptors from both the application and libraries in memory. The
resulting deployed application appears as if the referenced libraries were bundled with the
application itself.

The contents of a J2EE library are loaded into classloaders in the same manner as any other J2EE
modules in an enterprise application. For example, EJB modules are loaded as part of the
referencing application’s classloader, while Web application modules are loaded in classloaders

Deploy ing App l icat ions and Modules

5-22 Deploying Applications to WebLogic Server

beneath the application classloader. If a shared J2EE library consists of an EAR, any classes
stored in the EAR’s APP-INF/lib or APP-INF/classes subdirectory are also available to the
referencing application.

You cannot undeploy any J2EE libraries or optional packages that are referenced by a currently
deployed application. If you need to undeploy a shared library or package, you must first
undeploy all applications that use the shared files. For regular application maintenance, you
should deploy a new version of a shared library or package and redeploy referencing applications
to use the newer version of the shared files. See Editing Manifest Entries for Shared Libraries in
Developing Applications with WebLogic Server for more information.

Registering Libraries with WebLogic Server
A shared J2EE library is a standard J2EE module or Enterprise Application that is registered with
a WebLogic Server container as a library. To register a J2EE library with a WebLogic Server
container, perform the following steps:

1. Ensure that the deployment file(s) you are working with represent a valid J2EE library or
optional package. See Creating Shared J2EE Libraries in Developing Applications with
WebLogic Server.

2. Select the WebLogic Server targets to which you will register the library or package. Shared
libraries must be registered to the same WebLogic Server instances on which you plan to
deploy referencing applications. (You may consider deploying libraries to all servers in a
domain, so that you can later deploy referencing applications as needed.)

3. Register the library or package by deploying the files to your selected target servers, and
identifying the deployment as a library or package with the -library option. For example:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic -deploy -targets myserver1,myserver2
-library /deployments/myLibraryApplication/

Specifying Library Versions at Deployment
As a best practice, your development team should always include version string information for
a library or optional package in the manifest file for the deployment. See Editing Manifest
Attributes for Shared Libraries in Developing Applications with WebLogic Server for more
information about version string requirements and best practices.

If you are deploying a library or package that does not include version string information, you
can specify it at the command line using one or both of the following options:

http://e-docs.bea.com/wls/docs91/programming/libraries.html#libmanifest
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/programming/libraries.html
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/programming/libraries.html#libmanifest
http://e-docs.bea.com/wls/docs91/programming/libraries.html#libmanifest
http://e-docs.bea.com/wls/docs91/programming/index.html

Deploy ing Shared J2EE L ib rar ies and Dependent App l icat ions

Deploying Applications to WebLogic Server 5-23

libspecver—Defines a specification version for the library or package.

libimplver—Specifies an implementation version for the library or package.

For example:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -deploy -targets myserver1,myserver2

-library -libspecver 700 -libimplversion 7.0.0.1Beta

/deployments/myLibraryApplication/

Notes: If both the manifest file and the weblogic.Deployer command line specify version
information, and the values do not match, the deployment will fail.

If you initially registered a library without providing a specification or implementation
version, you must undeploy the library before registering a newer version and specifying
version string information.

You can register multiple versions of a library or package, but each version must use the
same version strings. For example, you cannot register a library having only a
specification version, and then register a new version of the library having both a
specification and an implementation version.

Deploying Applications That Reference Libraries
After you deploy the required library and package versions, you can deploy Enterprise
Applications and modules that reference the libraries. Successfully deploying a referencing
application requires that two conditions are met:

All referenced libraries are registered on the application’s target servers.

Registered libraries meet the version requirements of the referencing application.

There is no special syntax for deploying a referencing application. Deploy the application as you
would a standard Enterprise Application or J2EE module.

Note that referencing applications can be configured with varying levels of version requirements
for shared libraries. An application might be configured to require:

The latest version of a shared library or package (the latest registered version), or

A minimum version of a library or package (or a higher version), or

An exact version of a library or package.

Deploy ing App l icat ions and Modules

5-24 Deploying Applications to WebLogic Server

If you cannot deploy a referencing application because of version requirements, try registering
the required version of the conflicting library or package. Or, consult with your development
team to determine whether the version requirements of the application can be relaxed. See
Referencing Libraries in an Enterprise Application in Developing Applications with WebLogic
Server for more information.

Note: If you have an EAR library that contains Web application components, you cannot
deploy multiple applications that reference the library because attempting to do so will
result in a context path conflict. This is because context-root cannot be set for
individual Web applications in EAR libraries; it can only be set for an entire library.

See Overview of J2EE Libraries and Optional Packages in Developing Applications with
WebLogic Server for more information.

Auto-Deploying Applications in Development Domains
Notes: Auto-deployment is a method for quickly deploying an application to a stand-alone

server (Administration Server) for evaluation or testing. It is recommended that this
method be used only in a single-server development environment. Use of
auto-deployment in a production environment or for deployment to Managed Servers is
not recommended.

BEA recommends that you use the WebLogic Server split development directory and
wldeploy ant task, rather than auto-deployment, when developing an application. See
Creating a Split Development Directory in Developing Applications with WebLogic
Server.

If auto-deployment is enabled, when an application is copied into the \autodeploy directory of
the Administration Server, the Administration Server detects the presence of the new application
and deploys it automatically (if the Administration Server is running). If WebLogic Server is not
running when you copy the application to the \autodeploy directory, the application is deployed
the next time the WebLogic Server Administration Server is started. Auto-deployment deploys
only to the Administration Server.

Notes: Due to the file locking limitations of Windows, if an application is exploded, all the
modules within the application must also be exploded. In other words, you cannot use
auto-deployment with an exploded application or module that contains a JAR file.

Auto-deployment is intended for use with a single server target in a development
environment. If you use other tools, such as the Administration Console, to add targets
to an auto-deployed, exploded application, redeploying the application does not
propagate changes to the new target servers.

http://e-docs.bea.com/wls/docs91/programming/libraries.html#refver
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/programming/libraries.html#liboverview
http://e-docs.bea.com/wls/docs91/programming/splitcreate.html

Auto-Deplo y ing App l icat ions in Deve lopment Domains

Deploying Applications to WebLogic Server 5-25

Enabling and Disabling Auto-Deployment
You can run a WebLogic Server domain in two different modes: development and production.

Development mode enables a WebLogic Server instance to automatically deploy and update
applications that are in the domain_name/autodeploy directory (where domain_name is the
name of a WebLogic Server domain). In other words, development mode lets you use the
auto-deployment feature. Production mode disables the auto-deployment feature and prevents
any applications you place in the autodeploy directory after you switch to production mode
from being deployed. When you switch from development mode to production mode, any
applications that were previously deployed via the autodeploy directory remain deployed; if
you wish to undeploy or redeploy such applications after you have switched to production mode,
you must undeploy or redeploy them manually (for instance, with the weblogic.Deployer
command and the -undeploy or -redeploy options, as described in weblogic.Deployer
Command-Line Reference).

By default, a WebLogic Server domain runs in development mode. To specify the mode for a
domain, see Creating and Configuring Domains Using the Configuration Wizard.

Auto-Deploying, Redeploying, and Undeploying Archived
Applications
To auto-deploy an archived application, copy its archive file to the /autodeploy directory.
WebLogic Server automatically sets the application’s deployment mode to stage mode.

A deployment unit that was auto-deployed can be dynamically redeployed while the server is
running. To dynamically redeploy, copy the new version of the archive file over the existing file
in the /autodeploy directory.

To undeploy an archived deployment unit that was auto-deployed, delete the application from the
/autodeploy directory. WebLogic Server stops the application and removes it from the
configuration.

Note: If you delete an application from the /autodeploy directory when the server is not
active, WebLogic Server will not detect that the application was deleted even when the
server is again in an active state. In order to prevent an out-of-sync domain tree, BEA
recommends that you only remove applications from the /autodeploy directory when
the server is in an active state.

http://e-docs.bea.com/wls/docs91/../../common/docs90/confgwiz/index.html

Deploy ing App l icat ions and Modules

5-26 Deploying Applications to WebLogic Server

Auto-Deploying, Redeploying, and Undeploying Exploded
Archives
To auto-deploy an application in exploded archive format, copy the entire exploded archive
directory to the /autodeploy directory. WebLogic Server automatically deploys exploded
archive applications using the nostage deployment mode.

Notes: Due to Windows file locking limitations, if you deploy an exploded EAR directory that
contains archived modules (JAR files), the JAR files are locked during the deployment
and you will not be able to remove them. Therefore, if an application you plan to
auto-deploy is exploded, all of the modules it contains must also be exploded.

Auto-deployment will fail if you attempt to deploy an application in exploded archive
format when the contents of the entire exploded archive directory are not in the
/autodeploy directory. Because large applications in exploded archive format can take
a long time to copy into the /autodeploy directory, BEA recommends that you copy the
exploded archive directory into the /autodeploy directory while the server is in an
inactive state. After the entire exploded archive directory has been copied in the
/autodeploy directory, you can return the server to an active state and the application
will be autodeployed. Alternatively, BEA recommends that you deploy large
applications with weblogic.Deployer, described in “weblogic.Deployer
Command-Line Reference” on page A-1.

When an application has been auto-deployed in exploded archive format, the Administration
Server periodically looks for a file named REDEPLOY in the exploded application directory. If the
timestamp on this file changes, the Administration Server redeploys the exploded directory.

To redeploy files in an exploded application directory:

1. When you first deploy the exploded application directory, create an empty file named
REDEPLOY, and place it in the WEB-INF or META-INF directory, depending on the application
type you are deploying:

An exploded enterprise application has a META-INF top-level directory; this contains the
application.xml file.

An exploded Web application has a WEB-INF top-level directory; this contains the
web.xml file.

An exploded EJB application has a META-INF top-level directory; this contains the
ejb-jar.xml file.

An exploded connector has a META-INF top-level directory; this contains the ra.xml file.

Best P ract ices fo r Dep loy ing App l icat ions

Deploying Applications to WebLogic Server 5-27

Note: The REDEPLOY file works only for an entire deployed application or stand-alone
module. If you have deployed an exploded Enterprise Application, the REDEPLOY file
controls redeployment for the entire application—not for individual modules (for
example, a Web application) within the Enterprise Application. If you deploy a Web
application by itself as an exploded archive directory, the REDEPLOY file controls
redeployment for the entire Web application.

2. To redeploy the exploded application, copy the updated files over the existing files in that
directory.

3. After copying the new files, modify the REDEPLOY file in the exploded directory to alter its
timestamp.

When the Administration Server detects the changed timestamp, it redeploys the contents of the
exploded directory.

Note: You must touch the REDEPLOY file (alter its timestamp) any time you wish to trigger
redeployment of an auto-deployed application. Even if you modify an application while
a server is shut down, you must touch REDEPLOY to ensure that changes are applied when
the server next starts up.

To undeploy an application that was auto-deployed in exploded format, use the
weblogic.Deployer -undeploy command, or use the Administration Console to remove the
deployment configuration. Then remove the application files from the /autodeploy directory.

Note: If you delete application files from the /autodeploy directory when the server is not
active, WebLogic Server will not detect that the application files were deleted even when
the server is again in an active state. In order to prevent an out-of-sync domain tree, BEA
recommends that you only remove application files from the /autodeploy directory
when the server is in an active state.

Best Practices for Deploying Applications
BEA recommends the following best practices when deploying applications:

The Administration Server in a multiple-server domain should be used only for
administration purposes. Although you can deploy to the Administration Server in a
multiple-server domain, this practice is not recommended except during development.

Package deployment files in an archive format (.ear, .jar, .war, and so forth) when
distributing files to different users or environments.

Deploy ing App l icat ions and Modules

5-28 Deploying Applications to WebLogic Server

Check the scenarios described under “Deployment Archive Files Versus Exploded Archive
Directories” on page 3-2 before deploying. In many cases it is more convenient to deploy
applications in exploded format rather than archive format.

The Administration Console, weblogic.Deployer tool, wldeploy Ant task, and WLST
all provide similar functionality for deploying applications:

– Use the Administration Console for interactive deployment sessions where you do not
know the exact location of deployment files, or the exact names of target servers or
deployed applications.

– Use weblogic.Deployer to integrate deployment commands with existing
administrative shell scripts or automated batch processes.

– Use wldeploy in conjunction with the split development directory for developing and
deploying new applications. wldeploy can also be used in place of
weblogic.Deployer in administration environments that use Ant, rather than shell
scripts.

– Use WLST when you want to create automated scripts that perform deployment tasks.

Use wldeploy, rather than the autodeploy directory, to deploy your own applications
during development. The autodeploy directory is best used for quickly running new
applications in a test or temporary environment. For example, if you download a sample
application and want to evaluate its functionality, the autodeploy directory provides a
quick way to deploy the application to a development server.

Deploying Applications to WebLogic Server 6-1

C H A P T E R 6

Updating Applications in a Production
Environment

The following sections describe how to use WebLogic Server redeployment to update
applications and parts of applications in a production environment:

“Overview of Redeployment Strategies” on page 6-2

“Understanding When to Use Different Redeployment Strategies” on page 6-4

“Using Production Redeployment to Update Applications” on page 6-4

“Distributing a New Version of a Production Application” on page 6-12

“Using In-Place Redeployment for Applications and Stand-alone Modules” on page 6-15

“Using Partial Redeployment for J2EE Module Updates” on page 6-18

“Updating Static Files in a Deployed Application” on page 6-20

“Updating the Deployment Configuration for an Application” on page 6-20

Updat ing App l i cat i ons in a P roduct ion Env i ronment

6-2 Deploying Applications to WebLogic Server

Overview of Redeployment Strategies
In a production environment, deployed applications frequently require 24x7 availability in order
to provide uninterrupted services to customers and internal clients. WebLogic Server provides
flexible redeployment strategies to help you update or repair production applications based on
their required level of availability.

Production Redeployment
The production redeployment strategy works by deploying a new version of an updated
application alongside an older version of the same application. WebLogic Server automatically
manages client connections so that only new client requests are directed to the new version.
Clients already connected to the application during the redeployment continue to use the older
version of the application until they complete their work, at which point WebLogic Server
automatically retires the older application.

Production redeployment enables you to update and redeploy an application in a production
environment without stopping the application or otherwise interrupting the application’s
availability to clients. Production redeployment saves you the trouble of scheduling application
downtime, setting up redundant servers to host new application versions, manually managing
client access to multiple application versions, and manually retiring older versions of an
application (see “Redeploying Applications and Modules In-Place” on page 6-16 for information
about these manual steps).

Production redeployment can be used in combination with the -distribute command to
prepare a new version of an application for deployment. Then, you can deploy the application in
Administration mode, which allows you to perform final sanity testing of a new application
version directly in the production environment before making it available to clients. See
“Distributing a New Version of a Production Application” on page 6-12.

Production redeployment is supported only for certain J2EE application types. See “Using
Production Redeployment to Update Applications” on page 6-4.

In-Place Redeployment
The in-place redeployment strategy works by immediately replacing a running application’s
deployment files with updated deployment files. In contrast to production redeployment, in-place
redeployment of an application or stand-alone J2EE module does not guarantee uninterrupted
service to the application’s clients. This is because WebLogic Server immediately removes the

Overv iew o f Redep loyment S t ra teg ies

Deploying Applications to WebLogic Server 6-3

running classloader for the application and replaces it with a new classloader that loads the
updated application class files.

Note: In-place redeployment is the redeployment strategy used in previous versions of
WebLogic Server.

WebLogic Server uses the in-place redeployment strategy for J2EE applications that do not
specify a version identifier, and for J2EE applications and stand-alone modules that are not
supported with the Production Redeployment strategy. You should ensure that in-place
redeployment of applications and stand-alone J2EE modules takes place only during scheduled
downtime for an application, or when it is not critical to preserve existing client connections to
an application. See “Using In-Place Redeployment for Applications and Stand-alone Modules”
on page 6-15 for more information.

WebLogic Server uses the in-place redeployment strategy when performing partial redeployment
of a deployed application or module. Partial redeployment can replace either static files in an
application, or entire J2EE modules within an Enterprise Application deployment, as described
below.

Partial Redeployment of Static Files
WebLogic Server enables you to redeploy selected files in a running application, rather than the
entire application at once. This feature is generally used to update static files in a running Web
application, such as graphics, static HTML pages, and JSPs. Partial redeployment is available
only for applications that are deployed using an exploded archive directory.

Partial redeployment of static files does not affect existing clients of the application. WebLogic
Server simply replaces the static files for the deployed application, and the updated files are
served to clients when requested. See “Updating Static Files in a Deployed Application” on
page 6-20.

Partial Redeployment of J2EE Modules
Partial redeployment also enables you to redeploy a single module or subset of modules in a
deployed Enterprise Application. Again, partial deployment is supported only for applications
that are deployed using an exploded archive directory.

Note that redeployment for modules in an Enterprise Application uses the in-place redeployment
strategy, which does not guarantee uninterrupted client access to the module. For this reason, you
should ensure that partial redeployment of J2EE modules in an EAR takes place only during
scheduled application downtime, or when it is not critical to preserve client access to the
application. See “Using Partial Redeployment for J2EE Module Updates” on page 6-18.

Updat ing App l i cat i ons in a P roduct ion Env i ronment

6-4 Deploying Applications to WebLogic Server

Understanding When to Use Different Redeployment Strategies
The following table summarizes each WebLogic Server redeployment strategy and describes the
scenarios in which you would use each strategy.

Table 6-1 Summary of Redeployment Strategies

Using Production Redeployment to Update Applications
WebLogic Server enables you to redeploy a new, updated version of a production application
without affecting existing clients of the application, and without interrupting the availability of
the application to new client requests.

Redeployment
Strategy

Summary Usage:

Production
Redeployment

Redeploys a newer version of an
application alongside an existing
version of the application.

• Upgrading Web applications and
Enterprise Applications that demand
uninterrupted client access.

In-Place
Redeployment of
Applications and
Modules

Application classloaders are
immediately replaced with newer
classloaders to load the updated
application class files. WebLogic
Server does not guarantee
uninterrupted client access during
redeployment, and existing clients’
state information may be lost.

• Replacing applications that have been
taken off-line for scheduled maintenance.

• Upgrading applications that do not
require uninterrupted client access.

Partial Redeployment
of Static Files

HTML, JSPs, Graphics Files, or other
static files are immediately replaced
with updated files.

• Updating individual Web application files
that do not affect application clients.

Partial Redeployment
of J2EE Modules

Module classloaders are immediately
replaced with newer classloaders to
load the updated class files. WebLogic
Server does not guarantee
uninterrupted client access to the
module during redeployment, and
existing clients’ state information may
be lost.

• Replacing a component of an Enterprise
Application that has been taken off-line
for scheduled maintenance, or that does
not require uninterrupted client access.

Using P roduct ion Redep loyment to Update App l i cat i ons

Deploying Applications to WebLogic Server 6-5

How Production Redeployment Works
WebLogic Server performs production redeployment by deploying a new version of an
application alongside an older, running version of the application. While redeployment is taking
place, one version of the application “active,” while the other version is “retiring.” The active
application version receives all new client connection requests for the application, while the
retiring application version processes only those client connections that existed when
redeployment took place. WebLogic Server undeploys the retiring application version after all
existing clients of the application have finished their work, or when a configured timeout is
reached.

Figure 6-1 Production Redeployment

When you redeploy a new version of an application, WebLogic Server treats the newly-deployed
application version as the active version, and begins retiring the older version. During the
retirement period, WebLogic Server automatically tracks the application’s HTTP sessions and
in-progress transactions. WebLogic Server tracks each HTTP session until the session completes
or has timed out. In-progress transactions are tracked until the transaction completes, rolls-back,
or reaches the transaction timeout period.

You can roll back the production redeployment process by making the older application version
active. This may be necessary if, for example, you determine that there is a problem with the
newer version of the application, and you want WebLogic Server to begin moving clients back to
the older version. To make the older application version active, redeploy it.

Updat ing App l i cat i ons in a P roduct ion Env i ronment

6-6 Deploying Applications to WebLogic Server

Production Redeployment In Clusters
In a WebLogic Server cluster, each clustered server instance retires its local deployment of the
retiring application version when the current workload is completed. This means that an
application version may be retired on some clustered server instances before it is retired on other
servers in the cluster. Note, however, that in a cluster failover scenario, client failover requests
are always handled by the same application version on the secondary server, if the application
version is still available. If the same application version is not available on the secondary server,
the failover does not succeed.

Requirements and Restrictions for Using Production
Redeployment
In order to use the production redeployment feature, an application must meet certain
requirements during the development and deployment phases.

Development Requirements
The production redeployment strategy is supported for:

stand-alone Web Application (WAR) modules and Enterprise Applications (EARs) whose
clients access the application via a Web application (HTTP).

Enterprise Applications that are accessed by inbound JMS messages from a global JMS
destination, or from inbound JCA requests.

Stateless Web Services, provided the Web Services do not contain callbacks,
ServiceClients, controls, or reliable messaging (RM) assertions.

Production redeployment is not supported for stand-alone EJB or RAR modules. Production
redeployment is also not supported for stateful Web Services. If you attempt to use production
redeployment with such modules, WebLogic Server rejects the redeployment request. To
redeploy such modules, remove their version identifiers and explicitly redeploy the modules.

Additionally, production redeployment is not supported for:

applications that use JTS drivers.

For more information on JDBC application module limitations, see JDBC Application
Module Limitations in Configuring and Managing WebLogic JDBC.

applications that obtain JDBC data sources via the DriverManager API; in order to use
production redeployment, an application must instead use JNDI to look up data sources.

http://e-docs.bea.com/wls/docs91/jdbc_admin/packagedjdbc.html#limitations
http://e-docs.bea.com/wls/docs91/jdbc_admin/packagedjdbc.html#limitations
http://e-docs.bea.com/wls/docs91/jdbc_admin/index.html

Using P roduct ion Redep loyment to Update App l i cat i ons

Deploying Applications to WebLogic Server 6-7

applications that include EJB 1.1 container-managed persistence (CMP) EJBs. To use
production redeployment with applications that include CMP EJBs, use EJB 2.x CMP
instead of EJB 1.1 CMP.

Production redeployment only supports HTTP clients; Java clients are not supported.Your
development and design team must ensure that applications using production redeployment are
not accessed by an unsupported client. WebLogic Server does not detect when unsupported
clients access the application, and does not preserve unsupported client connections during
production redeployment.

During development, applications must be designed to meet specific requirements in order to
ensure that multiple versions of the application can safely coexist in a WebLogic Server domain
during production redeployment. See Developing Versioned Applications for Production
Redeployment in Developing WebLogic Server Applications for information about the
programming conventions required for applications to use production redeployment.

If an Enterprise Application includes a JCA resource adapter module, the module:

Must be JCA 1.5 compliant

Must implement the weblogic.connector.extensions.Suspendable interface

Must be used in an application-scoped manner, having enable-access-outside-app set
to false (the default value).

Before resource adapters in a newer version of the EAR are deployed, resource adapters in the
older application version receive a callback. WebLogic Server then deploys the newer application
version and retires the entire older version of the EAR.

For a complete list of production redeployment requirements for resource adapters, see
Production Redeployment in Programming WebLogic Resource Adapters.

Warning: Because the production redeployment strategy requires an application to observe
certain programming conventions, use production redeployment only with
applications that are approved by your development and design staff. Using
production redeployment with an application that does not follow BEA’s
programming conventions can lead to corruption of global resources or other
undesirable application behavior.

Deployment Requirements
A deployed application must specify a version number before you can perform subsequent
production redeployment operations on the application. In other words, you cannot deploy a

http://e-docs.bea.com/wls/docs91/programming/versioning.html
http://e-docs.bea.com/wls/docs91/programming/versioning.html
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/resadapter/packdepl.html#redeploy

Updat ing App l i cat i ons in a P roduct ion Env i ronment

6-8 Deploying Applications to WebLogic Server

non-versioned application, and later perform production redeployment with a new version of the
application.

Restrictions on Production Redeployment Updates
WebLogic Server can host a maximum of two different versions of an application at one time.

When you redeploy a new version of an application, you cannot change:

An application’s deployment targets

An application’s security model

A Web application’s persistent store settings

To change any of the above features, you must first undeploy the active version of the application.

Specifying an Application Version Identifier
WebLogic Server attempts to use the production redeployment strategy when the
currently-deployed application and the redeployed application specify different versions.

To assign a version identifier to an application, BEA recommends that you store a unique version
string directly in the MANIFEST.MF file of the EAR or WAR being deployed. Your development
process should automatically increment the version identifier with each new application release
before packaging the application for deployment.

Maintaining version information in this manner ensures that the production redeployment
strategy is used with each redeployment of the application in a production domain. See
Developing Versioned Applications for Production Redeployment in Developing WebLogic
Server Applications.

Assigning a Version Identifier During Deployment and Redeployment
If you are testing the production redeployment feature, or you want to use production
redeployment with an application that does not include a version string in the manifest file, the
weblogic.Deployer tool allows you to manually specify a unique version string using the
-appversion option when deploying or redeploying an application:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -deploy -name myTestDeployment

-source /myDeployments/myApplication/91Beta

-targets myCluster -stage -appversion .91Beta

http://e-docs.bea.com/wls/docs91/programming/versioning.html
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/programming/index.html

Using P roduct ion Redep loyment to Update App l i cat i ons

Deploying Applications to WebLogic Server 6-9

The version string specified with -appversion is applied only when the deployment source files
do not specify a version string in MANIFEST.MF. See Application Version Conventions in
Developing WebLogic Server Applications for information about valid characters and character
formats for application version strings.

Warning: Do not use -appversion to deploy or redeploy in a production environment unless
you are certain the application follows BEA’s programming conventions for
production redeployment. Using production redeployment with an application that
does not follow the programming conventions can cause corruption of global
resources or other undesirable application behavior.

Displaying Version Information for Deployed Applications
The WebLogic Server Administration Console displays both version string information and state
information for all deployed applications and modules. To view this information, select the
Deployments node in the left-hand pane of the Administration Console.

You can also display version information for deployed applications from the command line using
the weblogic.Deployer -listapps command:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -listapps

Redeploying a New Version of an Application
To redeploy a new version of an application using the production redeployment strategy:

1. Verify that only one version of the application is currently deployed in the domain. See
“Displaying Version Information for Deployed Applications” on page 6-9.

2. Verify that the deployed application and the newer application have different version
strings:

a. Use the instructions in “Displaying Version Information for Deployed Applications” on
page 6-9 to determine currently-deployed version of the application.

b. Examine the version string in the MANIFEST.MF file of the new application source you
want to deploy:

jar xvf myApp.ear MANIFEST.MF
cat MANIFEST.MF

http://e-docs.bea.com/wls/docs91/programming/versioning.html#conventions
http://e-docs.bea.com/wls/docs91/programming/index.html

Updat ing App l i cat i ons in a P roduct ion Env i ronment

6-10 Deploying Applications to WebLogic Server

3. Place the new application deployment files in a suitable location for deployment. BEA
recommends that you store each version of an application’s deployment files in a unique
subdirectory.

For example, if the currently-deployed application’s files are stored in:

/myDeployments/myApplication/91Beta

You would store the updated application files in a new subdirectory, such as:

/myDeployments/myApplication/1.0GA

Warning: For nostage or external_stage mode deployments, do not overwrite or delete the
deployment files for the older version of the application. The original deployment
files are required if you later choose to roll back the retirement process and revert
to the original application version.

4. Redeploy the new application version and specify the updated deployment files. If the
updated deployment files contain a unique version identifier in the manifest file, use a
command similar to:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic -redeploy -name myTestDeployment
-source /myDeployments/myApplication/1.0GA

If the new deployment files do not contain a version identifier in the manifest, see
“Assigning a Version Identifier During Deployment and Redeployment” on page 6-8.

By default WebLogic Server makes the newly-redeployed version of the application active
for processing new client requests. Existing clients continue to use the older application
until their work is complete and the older application can be safely undeployed.

If you want to specify a fixed time period after which the older version of the application is
retired (regardless of whether clients finish their work), use the -retiretimeout option
with the -redeploy command:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic -redeploy -name myTestDeployment
-source /myDeployments/myApplication/1.0GA
-retiretimeout 300

-retiretimeout specifies the number of seconds after which the older version of the
application is retired. You can also retire the older application immediately by using the
-undeploy command and specifying the older application version, as in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic -undeploy -name myTestDeployment
-appversion .91Beta

Using P roduct ion Redep loyment to Update App l i cat i ons

Deploying Applications to WebLogic Server 6-11

5. Verify that both the old and new versions of the application are deployed, and that the
correct version of the application is active. See “Displaying Version Information for
Deployed Applications” on page 6-9.

Undeploying a Retiring Application
If WebLogic Server has not yet retired an application version, you can immediately undeploy the
application version without waiting for retirement to complete. This may be necessary if, for
example, an application remains in the retiring state with only one or two long-running client
sessions that you do not want to preserve. To force the undeployment of a retiring version of an
application, use the -undeploy command and specify the application version:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -undeploy -name myTestDeployment

-appversion .91Beta

Notes: You cannot specify the -graceful option to the -undeploy command when
undeploying an application version that is being retired, or waiting for a retirement
timeout to occur.

If you do not explicitly specify an application version with the -appversion option,
WebLogic Server undeploys the active version and all retired versions of the application.
If an older version of the application is not yet retired and you run the -undeploy
command without specifying the -appversion option, WebLogic Server logs a warning
message in the server log and does not undeploy the unretired version. To later undeploy
such versions of the application, you must run the -undeploy command again and
specify the application version with the -appversion option.

Rolling Back the Production Redeployment Process
Reversing the production redeployment process switches the state of the active and retiring
applications and redirects new client connection requests accordingly. Reverting the production
redeployment process might be necessary if you detect a problem with a newly-deployed version
of an application, and you want to stop clients from accessing it.

To roll back the production redeployment process, issue a second -redeploy command and
specify the deployment source files for the older version, as in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -redeploy -name myTestDeployment

-source /myDeployments/myApplication/91Beta

-retiretimeout 300

Updat ing App l i cat i ons in a P roduct ion Env i ronment

6-12 Deploying Applications to WebLogic Server

If the deployment files do not contain a version identifier in the manifest, see “Assigning a
Version Identifier During Deployment and Redeployment” on page 6-8.

Distributing a New Version of a Production Application
When you distribute a new version of an application, WebLogic Server prepares the new
application version for deployment. You can then deploy the application in Administration mode,
which makes it available only via a configured Administration channel. External clients cannot
access an application that has been distributed and deployed in Administration mode.

You can use the -adminmode option to start the application in administration mode. For
information, see “Starting a Distributed Application in Administration Mode” on page 5-20.

The older version of the application remains active to process both new and existing client
requests. WebLogic Server does not automatically retire the older version of the application when
you distribute and deploy a newer version in Administration mode.

Figure 6-2 Distributing a New Version of an Application

After you complete testing of the new application via an Administration channel, you either
undeploy the new application version or start it. Starting the application causes WebLogic Server

Dist r ibut ing a New Vers ion o f a P roduc t i on Appl i cat ion

Deploying Applications to WebLogic Server 6-13

to route new client connections to the updated application, and begin retiring the older application
version.

Steps for Distributing a New Version of an Application
The basic steps for distributing an new version of an application in Administration mode are the
same as those documented in “Redeploying a New Version of an Application” on page 6-9. You
simply use the weblogic.Deployer -distribute command, rather than the -redeploy
command, as in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic -distribute -name myTestDeployment
-source /myDeployments/myApplication/1.0GA
-appversion 1.0GA

Once the application is distributed, start it in Administration mode:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic -start -adminmode -name myTestDeployment
-source /myDeployments/myApplication/1.0GA
-appversion 1.0GA

Starting the application in Administration mode makes it available only via a configured
Administration channel. See Configuring Network Resources in Designing and Configuring
WebLogic Server Environments.

You can optionally specify the retirement policy or timeout period for distributed applications.

Making an Application Available to Clients
After performing final testing using the configured Administration channel, you can open the
distributed version of the application that is running in Administration mode to new client
connections by using the weblogic.Deployer -start command without the -adminmode
option:

1. Use the Administration Console to view the version and state information of both application
versions:

a. Verify that both versions of the application are still deployed.

b. Note the version identifier of the application version that is running in Administration
mode.

2. Use the -appversion option to weblogic.Deployer to start the application that was
distributed then deployed in Administration mode:

http://e-docs.bea.com/wls/docs91/config_wls/network.html
http://e-docs.bea.com/wls/docs91/config_wls/index.html
http://e-docs.bea.com/wls/docs91/config_wls/index.html

Updat ing App l i cat i ons in a P roduct ion Env i ronment

6-14 Deploying Applications to WebLogic Server

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic -start -name myTestDeployment
-appversion .91Beta

By default WebLogic Server routes new client requests to the application version that was
previously distributed and running in Administration mode. Existing clients continue using
the older application until their work is complete and the older application can be safely
undeployed. If you want to specify a fixed time period after which the older version of the
application is retired (regardless of whether clients finish their work), use the
-retiretimeout option:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic -start -name myTestDeployment
-appversion .91Beta -retiretimeout 300

-retiretimeout specifies the number of seconds after which the older version of the
application is retired.

3. Use the Administration Console to verify that the previously-distributed application is now
active, and that the former application version is now retiring. See “Displaying Version
Information for Deployed Applications” on page 6-9.

Best Practices for Using Production Redeployment
When using production redeployment, keep in mind the following best practices:

Never specify a version string for a production application unless you are certain the
application follows BEA’s programming conventions for production redeployment. See
Developing Versioned Applications for Production Redeployment in Developing WebLogic
Server Applications.

It is easiest to use production redeployment when applications are deployed using the stage
deployment mode. With stage mode, WebLogic Server automatically creates a separate
directory for each different version of the application that is deployed. These directories are
stored in the configured staging directory for the server (by default, the
server_name/stage subdirectory of the domain directory) and are removed when an the
associated application version is undeployed.

If you deploy using nostage mode, store each new version of an application in a dedicated
subdirectory. This ensures that you do not overwrite older versions of your deployment
files, and allows you to revert to an earlier application version if you detect problems after
an update.

If you deploy using external_stage mode, you must store the deployment files for each
application version in the correct version subdirectory of each target server’s staging

http://e-docs.bea.com/wls/docs91/programming/versioning.html
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/programming/index.html

Us ing In-P lace Redep lo yment fo r App l i ca t i ons and Stand-a lone Modules

Deploying Applications to WebLogic Server 6-15

directory. For example, the versioned application files used in the previous sample
commands would need to be copied into the subdirectories /myTestDeployment/.91Beta
and /myTestDeployment/1.0GA in each server’s staging directory before deployment and
redeployment.

Using In-Place Redeployment for Applications and Stand-alone
Modules

The in-place redeployment strategy works by immediately replacing a running application’s
deployment files with updated deployment files. When used to redeploy entire applications or
J2EE modules, in-place redeployment makes the application or module unavailable during the
deployment process, and can cause existing clients to lose in-process work. This disruption of
client services occurs because application class files and libraries are immediately undeployed
from their class loaders and then replaced with updated versions.

Because in-place redeployment of applications and modules adversely affects clients of the
application, it should not be used with production applications unless:

No clients are currently using the application, or

It is acceptable to lose client access to the application and in-process work during
redeployment.

WebLogic Server always performs in-place redeployment for applications that do not include a
version identifier. WebLogic Server also uses in-place redeployment for many partial
redeployment operations (redeployment commands that affect only a portion of an application).
In some cases, using partial redeployment is acceptable with production applications, because the
redeployed files do not adversely affect active client connections. Table 6-2 describes each type
of partial deployment and its affect on deployed applications.

Table 6-2 Partial Redeployment Behavior

Updat ing App l i cat i ons in a P roduct ion Env i ronment

6-16 Deploying Applications to WebLogic Server

Redeploying Applications and Modules In-Place
To redeploy an entire application or stand-alone module using the in-place redeployment
strategy:

Scope of Partial
Redeployment

Redeployment Behavior Recommended Usage

Graphics files, static
HTML files, JSPs

Source files are
immediately replaced
on-disk and served on
the next client request.

Safe for production applications.

J2EE Modules in an
Enterprise
Application

All files are immediately
replaced. Java class files
and libraries are
unloaded from class
loaders and replaced
with updated files.

Use only during scheduled application downtime,
or when it is not critical to preserve client
connections and in-process work.

Deployment plan
with dynamic
property changes
(such as tuning
parameters)

The application is
updated in-place. If the
application is versioned,
the plan version is not
incremented.

Safe for all production environments.

Deployment plan
with non-dynamic
property (resource
binding) changes

If the application is
versioned, is compatible
with production
redeployment, and is
redeployed, WebLogic
Server increments the
version identifier and
uses the production
redeployment strategy to
update the application.

If the application cannot
use production
redeployment, you must
redeploy the entire
application.

Safe for versioned applications that are compatible
with production redeployment. See “Using
Production Redeployment to Update
Applications” on page 6-4.

If the application cannot use production
redeployment, update the deployment plan only
during scheduled application downtime or when it
is not critical to preserve client connections and
in-process work.

You must redeploy (instead of update)
applications with deployment plans that contain
changes to non-dynamic properties. Attempts to
update applications with such plans will fail.

Us ing In-P lace Redep lo yment fo r App l i ca t i ons and Stand-a lone Modules

Deploying Applications to WebLogic Server 6-17

1. If you want to preserve client connections to the application, first take the application offline
so and verify that no clients are accessing the application.

The exact method for taking an application offline will depend on the architecture of your
WebLogic Server domain. In most cases, a redundant server or cluster is created to host a
separate copy of the application, and load balancing hardware or software manages access
to both servers or clusters. To take the application offline, the load balancing policies are
changed to roll all client connections from one set of servers or clusters to the redundant
set.

2. Place the new application deployment files in a suitable location for deployment. BEA
recommends that you store each version of an application’s deployment files unique
subdirectories.

For example, if the currently deployed application’s files are stored in:

/myDeployments/myApplication/91Beta

You would store the updated application files in a new directory, such as:

/myDeployments/myApplication/1.0GA

3. Redeploy the application and specify the updated deployment source files. To redeploy the
application on all configured target servers, specify only the deployment name, as in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic -redeploy -name myApp

If an application was previously deployed to multiple, non-clustered server instances, you
can specify a target list to redeploy the application on only a subset of the target servers, as
in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic
-password weblogic -redeploy -name myApp
-targets myserver1,myserver2

Note: For applications deployed to a cluster, redeployment always occurs on all target
server instances in the cluster. If the application was previously deployed to all
servers in the cluster, you cannot subsequently redeploy the application on a subset
of servers in the cluster.

4. If you took the server or cluster hosting the application offline, bring the host servers back
online after the redeployment completes.

5. If necessary, restore the load balancing policies of your load balancing hardware or software
to migrate clients from the temporary servers back to the online production servers.

Updat ing App l i cat i ons in a P roduct ion Env i ronment

6-18 Deploying Applications to WebLogic Server

Best Practices for Redeploying Applications and Modules
In-Place
When using in-place redeployment to redeploy entire applications or stand-alone modules, keep
in mind the following:

Redeploying entire, staged applications may have performance implications due to
increased network traffic when deployment files are copied to the Managed Servers. If you
have very large applications, consider using the external_stage mode and copying
deployment files by hand before you redeploy the application. See “Using External_stage
Mode Deployment” on page 5-18.

Remember that applications deployed to a WebLogic Server cluster must always be
redeployed on all members of the cluster. You cannot redeploy a clustered application to a
subset of the cluster.

To successfully redeploy an Enterprise Application, all of the application’s modules must
redeploy successfully.

By default, WebLogic Server destroys current user sessions when you redeploy a Web
application. If you want to preserve Web application user sessions during redeployment, set
save-sessions-enabled to “true” in the container-descriptor stanza of the
weblogic.xml deployment descriptor file. Note, however, that the application still remains
unavailable while in-place redeployment takes place.

Using Partial Redeployment for J2EE Module Updates
The weblogic.Deployer utility uses a different command form if you want to redeploy
individual modules of a deployed Enterprise Application. To redeploy a subset of the modules of
an Enterprise Application, specify modulename@servername in the target server list to identify
the modules you want to redeploy. For example:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -redeploy -name myApp

-targets mymodule1@myserver1,mymodule2@myserver2

Note: The use of -redeploy module-uri is deprecated. Instead, use production
redeployment or redeploy the module using the -targets module@target syntax.

If the application was previously deployed to a cluster, you must redeploy the module to the entire
cluster, rather than a subset of servers. If you specify a subset of servers in the cluster,
weblogic.Deployer responds with the error:

Using Par t ia l Redep loyment fo r J2EE Modu le Updates

Deploying Applications to WebLogic Server 6-19

An attempt to add server target target_name to module module_name has been

rejected . This is because its parent cluster, cluster_name, is aso targeted

by the module.

Restrictions for Updating J2EE Modules in an EAR
The following restrictions apply to using partial redeployment for modules in an Enterprise
Application:

If redeploying a single J2EE module in an Enterprise Application would affect other J2EE
modules loaded in the same class loader, weblogic.Deployer requires that you explicitly
redeploy all of the affected modules. If you attempt to use partial redeployment with only a
subset of the affected J2EE modules, weblogic.Deployer displays the error:

Exception:weblogic.management.ApplicationException: [J2EE:160076] You
must include all of [module_list] in your files list to modify [module]

Remember that if you change an application’s deployment descriptor files, the container
redeploys the entire application even if you attempt a partial redeployment.

JAR files in WEB-INF/lib cannot be redeployed independently of the rest of the Web
application. The container automatically redeploys the entire application, but maintains the
state, when redeploying JAR files in WEB-INF/lib.

Best Practices for Updating J2EE Modules in an EAR
Keep in mind these best practices when using partial redeployment for Enterprise Application
modules:

When you use partial redeployment to redeploy a J2EE module in an Enterprise
Application, all classes loaded in the classloader for the updated module are reloaded. You
can define custom class loading hierarchies in the WebLogic Server deployment descriptor
to minimize the impact of partial redeployment to other modules in the application. See
WebLogic Server Application Classloading in Developing WebLogic Server Applications
for more information on class loading behavior.

Classes in the WEB-INF/classes directory can be redeployed independently of the rest of
the Web application. You can also deploy only the updated classes (rather than the entire
WEB-INF/classes directory) by setting the Reload Period for the Web application. (See
weblogic.xml Schema in Developing Web Applications, Servlets, and JSPs for WebLogic
Server for more information.)

http://e-docs.bea.com/wls/docs91/programming/classloading.html
http://e-docs.bea.com/wls/docs91/programming/index.html
http://e-docs.bea.com/wls/docs91/webapp/weblogic_xml.html
http://e-docs.bea.com/wls/docs91/webapp/index.html
http://e-docs.bea.com/wls/docs91/webapp/index.html

Updat ing App l i cat i ons in a P roduct ion Env i ronment

6-20 Deploying Applications to WebLogic Server

By default, WebLogic Server destroys current user sessions when you redeploy a Web
application module. If you want to preserve Web application user sessions during
redeployment, set save-sessions-enabled to “true” in the container-descriptor
stanza of the weblogic.xml deployment descriptor file. Note, however, that the
application still remains unavailable while in-place redeployment takes place.

Updating Static Files in a Deployed Application
In a production environment, you may occasionally need to refresh the static content of a Web
application module—HTML files, image files, JSPs, and so forth—without redeploying the
entire application. If you deployed a Web application or an Enterprise Application as an exploded
archive directory, you can use the weblogic.Deployer utility to update one or more changed
static files in-place. See Avoiding Unnecessary JSP Compilation on dev2dev.com.

To redeploy a single file associated within a deployment unit, specify the file name at the end of
the redeploy command. For example:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name myApp -redeploy myApp/copyright.html

Always specify the pathname to updated files relative to the root directory of the exploded
archive directory. In the above example, the Web application is deployed as part of an Enterprise
Application, so the module directory is specified (myApp/copyright.html).

If the Web application module had been deployed as a stand-alone module, rather than as part of
an Enterprise Application, the file would have been specified alone (copyright.html).

You can also redeploy an entire directory of files by specifying a directory name instead of a
single file. For example:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name myApp -redeploy myApp/myjsps

In the above example, all files and subdirectories located in the myjsps subdirectory of the
Enterprise Application are redeployed in-place.

Updating the Deployment Configuration for an Application
After you have deployed an application or stand-alone module, you can change the WebLogic
Server deployment configuration using either the Administration Console or
weblogic.Deployer.

http://dev2dev.bea.com/products/wlserver81/articles/JSP_reloaded.jsp

Updat ing the Dep loyment Conf igura t ion fo r an Appl i cat ion

Deploying Applications to WebLogic Server 6-21

The Administration Console enables you to interactively modify individual deployment
configuration properties, while weblogic.Deployer only allows you to specify an updated
deployment plan file to use for reconfiguring the application.

Modifying a Configuration Using the Administration Console
The Administration Console enables you to reconfigure all deployment configuration properties
for an application, including properties that were not included in the application’s deployment
plan. If an application was deployed with a deployment plan, the Console displays any
deployment plan configuration properties in the plan in the Deployment Plan tab for the
application.

The remaining configuration tabs for an application, enable you to change other WebLogic
Server configuration properties. The exact properties that are available for configuration depend
on the type of application or J2EE module that is deployed. These tabs are available regardless
of whether or not the application was deployed with an deployment plan.

Note that certain configuration changes are safe to apply to running production applications,
while other changes require you to shut down and restart the application. See “Understanding
Redeployment Behavior for Deployment Configuration Changes” on page 6-22.

How Configuration Changes Are Stored
When you use the Administration Console to make changes to properties that were defined in a
deployment plan, the Console generates a new deployment plan that containing variable
definitions for the new properties you modified, as well as any existing variables defined in the
plan. You can select where to save the new deployment plan.

Updating an Application to Use a Different Deployment Plan
The weblogic.Deployer utility enables you to update an application’s deployment
configuration by providing a new deployment plan to use with the application.

Note: The updated deployment plan must be valid for the application’s current target servers,
or the configuration update will fail.

To reconfigure an application with a different (and valid) deployment plan, use the -update
command and specify the new deployment plan file, as in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -update -name myTestDeployment

-plan /myDeployments/myNewPlan.xml

Updat ing App l i cat i ons in a P roduct ion Env i ronment

6-22 Deploying Applications to WebLogic Server

Note: Certain configuration changes are safe to apply to running production applications, while
other changes require you to shut down and restart the application. See “Understanding
Redeployment Behavior for Deployment Configuration Changes” on page 6-22.

Understanding Redeployment Behavior for Deployment
Configuration Changes
When you change the deployment configuration for a deployed application, WebLogic Server
applies the changes using a redeployment operation. The type of redeployment strategy used
depends on the nature of configuration changes applied. If you modified the value of a resource
binding property, the configuration update uses either the production redeployment strategy (if
the application supports production redeployment), or the in-place redeployment strategy for the
entire application. Performing in-place redeployment for an entire application or module is not
recommended for production environments, because the application is first undeployed, causing
connected clients to lose in-progress work. See “Overview of Redeployment Strategies” on
page 6-2 for more information.

The above redeployment behavior applies both to configuration changes made using the
Administration Console and via the weblogic.Deployer -update command.

Deploying Applications to WebLogic Server 7-1

C H A P T E R 7

Managing Deployed Applications

The following sections describe how to perform common maintenance tasks on applications and
modules that are currently deployed to a WebLogic Server domain:

“Taking a Production Application Offline” on page 7-2

“Undeploying Shared Libraries and Packages” on page 7-3

“Adding a New Module to a Deployed Enterprise Application” on page 7-4

“Changing the Order of Deployment at Server Startup” on page 7-4

“Changing the Target List for an Existing Deployment” on page 7-6

“Removing Files from a Web Application Deployment” on page 7-6

“Managing Long-Running Deployment Tasks” on page 7-7

Managing Dep loyed App l ica t i ons

7-2 Deploying Applications to WebLogic Server

Taking a Production Application Offline
WebLogic Server provides two different ways to take an application offline for testing or
maintenance purposes:

Stopping an Application to Restrict Client Access—Makes an application unavailable for
processing client requests, but does not remove the deployment from the WebLogic Server
domain. Stopping an application places the deployment in Administration mode, which
allows you to perform internal testing using a configured Administration channel.

Undeploying an Application or Module—Makes an application unavailable for processing
client requests and removes WebLogic Server-generated deployment files from the domain.

Stopping an Application to Restrict Client Access
As described in “Distributing Applications to a Production Environment” on page 5-19,
distributing an application and starting it in Administration mode, restricts access to an
application to a configured Administration channel. You can also stop a running application to
client requests and place it in Administration mode. In a production environment, you may want
to stop an application to confirm a reported problem, or to isolate the application from external
client processing in order to perform scheduled maintenance.

Use the -stop command to place a running application into Administration mode, as in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mymodule -stop -adminmode

By default, WebLogic Server immediately stops the application, without regard to pending HTTP
sessions or in-process work. If you want to wait for pending HTTP sessions to complete their
work before stopping the application to client requests and placing it in Administration mode, add
the -graceful option:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mymodule -stop -adminmode -graceful

Note: If you do not explicitly specify an application version with the -appversion option, the
-stop command will only stop the active version of the application. If there are other
versions of the application that you also want to stop (or that you want to stop instead or
the active version), you must specify them with the -appversion option.

To restart an application that was previously stopped, making it available to external clients, use
the -start command and specify the deployment name. You do not need to redeploy a stopped
application to make it generally available:

Undeplo y ing Shared L ib rar ies and Packages

Deploying Applications to WebLogic Server 7-3

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mymodule -start

Undeploying an Application or Module
After you deploy a new application or stand-alone module to servers in a domain, the deployment
name remains associated with the deployment files you selected. Even after you stop the
deployment on all servers, the files remain available for redeployment using either the
Administration Console or weblogic.Deployer utility.

If you want to remove a deployment name and its associated deployment files from the domain,
you must explicitly undeploy the application or stand-alone module. To undeploy a deployment
unit from the domain using weblogic.Deployer, specify the -undeploy command, as in:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mymodule -undeploy

Note: Using the -undeploy command without the -targets and -submoduletargets flags
completely removes the application or stand-alone module from all WebLogic Server
instances and untargets all JMS sub-module resources.

By default, WebLogic Server immediately stops and undeploys the application, interrupting
current clients and in-progress work. For a production application, you may want to undeploy
“gracefully,” allowing current HTTP clients to complete their work before undeploying:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mymodule -undeploy -graceful

Undeploying a deployment unit does not remove the original source files used for deployment. It
only removes the deployment’s configuration from the domain, as well as any deployment files
that WebLogic Server created during deployment (for example, files copied with stage
deployment mode and files uploaded to the Administration Server).

If you need to redeploy a deployment unit after undeploying it, you must again identify the
deployment files, targets, staging mode, and deployment name using the instructions in
“Deploying Applications and Modules” on page 5-1.

Undeploying Shared Libraries and Packages
A shared J2EE libraries or optional package cannot be undeployed until all applications that
reference the library or package are first undeployed. If no applications reference an application
or package, use the instructions in “Undeploying an Application or Module” on page 7-3 to
undeploy it.

Managing Dep loyed App l ica t i ons

7-4 Deploying Applications to WebLogic Server

Adding a New Module to a Deployed Enterprise Application
WebLogic Server’s module-level targeting support enables you to add and deploy a new
Enterprise Application module without having to redeploy other modules that are already
deployed. To deploy a new module in an EAR, you simply use module-level targeting syntax
described in “Module-Targeting Syntax” on page 5-9.

For example, if you were to add a module, newmodule.war, to a deployed Enterprise Application
named myapp.ear (update application.xml file as necessary), you could then deploy
newmodule.war using the weblogic.Deployer command:

java weblogic.Deployer -username myname -password mypassword

-name myapp.ear -deploy -targets newmodule.war@myserver

-source /myapp/myapp.ear

This command deploys the new module without redeploying the other modules in the application.
Note that you must specify the correct file extension (.war in the above example) for archived
modules in an EAR file.

Changing the Order of Deployment at Server Startup
By default, WebLogic Server deploys applications and resources in the following order:

1. JDBC system modules

2. JMS system modules

3. J2EE Libraries and optional packages

4. Applications and stand-alone modules

5. Startup classes

Note: WebLogic Server security services are always initialized before server resources,
applications, and startup classes are deployed. For this reason, you cannot configure
custom security providers using startup classes, nor can custom security provider
implementations rely on deployed server resources such as JDBC.

Changing the Deployment Order for Applications and
Stand-alone Modules
You can change the deployment order for a deployed application or stand-alone module by
setting the AppDeploymentMBean DeploymentOrder attribute in the Administration Console

Chang ing the Orde r o f Dep loyment at Se rve r S ta r tup

Deploying Applications to WebLogic Server 7-5

(or programmatically using the AppDeploymentMBean). The DeploymentOrder attribute
controls the load order of deployments relative to one another—modules with lower
DeploymentOrder values deploy before those with higher values. By default, each deployment
unit is configured with a Deployment Order value of 100. Deployments with the same
Deployment Order value are deployed in alphabetical order using the deployment name. In all
cases, applications and stand-alone modules are deployed after the WebLogic Server instance has
initialized dependent subsystems.

Note: You cannot change the load order of applications and stand-alone modules using the
weblogic.Deployer utility.

To view or change the deployment order of deployments using the Administration Console,
follow the steps in Change the server deployment order in Administration Console Online Help.

Changing the Deployment Order for Modules in an Enterprise
Application
The modules contained in an Enterprise Application are deployed in the order in which they are
declared in the application.xml deployment descriptor. See Enterprise Application
Deployment Descriptor Elements in Developing WebLogic Server Applications.

Ordering Startup Class Execution and Deployment
By default WebLogic Server startup classes are run after the server initializes JMS and JDBC
services, and after applications and stand-alone modules have been deployed.

If you want to perform startup tasks after JMS and JDBC services are available, but before
applications and modules have been activated, you can select the Run Before Application
Deployments option in the Administration Console (or set the StartupClassMBean’s
LoadBeforeAppActivation attribute to “true”).

If you want to perform startup tasks before JMS and JDBC services are available, you can select
the Run Before Application Activations option in the Administration Console (or set the
StartupClassMBean’s LoadBeforeAppDeployments attribute to “true”).

To select Run Before Applications or Run Before Application Activations in the Administration
Console, see Configure startup classes in Administration Console Online Help.

The following figure summarizes the time at which WebLogic Server executes startup classes.

http://e-docs.bea.com/wls/docs91/ConsoleHelp/taskhelp/deployment/ChangeTheServerDeploymentOrder.html
http://e-docs.bea.com/wls/docs91/programming/app_xml.html
http://e-docs.bea.com/wls/docs91/programming/app_xml.html
http://e-docs.bea.com/wls/docs91/ConsoleHelp/taskhelp/startup_shutdown/ConfigureStartupAndShutdownClasses.html

Managing Dep loyed App l ica t i ons

7-6 Deploying Applications to WebLogic Server

Figure 7-1 Startup Class Execution

See the full Javadocs for StartupClassMBean for more information.

Changing the Target List for an Existing Deployment
After you deploy an application or stand-alone module in a WebLogic Server domain, you can
change the target server list to add new WebLogic Server instances or to remove existing server
instances. If you remove a target server, only the target list itself is updated—the deployment unit
remains deployed to the removed server until you explicitly undeploy it. Similarly, if you add a
new target server, you must explicitly deploy the deployment unit on the new server before it is
active on that server.

To add a new server to the target list using weblogic.Deployer, simply specify the new list of
target servers with the -deploy command. For example:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mydeploymentname -deploy

-targets server1, newserver

Removing Files from a Web Application Deployment
If you deploy a Web application using an exploded archive directory, you can update static
contents of the Web application either by refreshing the files (see “Updating Static Files in a
Deployed Application” on page 6-20), or by deleting files from the deployment. To delete files,
you must use the weblogic.Deployer utility with the delete_files option. For example:

java weblogic.Server

Initialize JDBC/JMS
Services

Deploy Applications
and Stand-alone Modules

Execute Startup Classes with
Run Before Application Deployments

Execute Startup Classes with
Run Before Application Activation

Execute Startup Classes
(Default Behavior)

http://e-docs.bea.com/wls/docs91/javadocs/index.html

Manag ing Long-Running Dep loyment Tasks

Deploying Applications to WebLogic Server 7-7

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mywebapp -delete_files mywebapp/copyright.html

Always specify the pathname to updated files starting with the top level of the exploded archive
directory. In the above example, the Web application resides in an exploded archive directory
named mywebapp.

Note: Because the -delete_files option deletes all specified files or, if you specify a
directory but do not specify files within the directory, all files in the specified directory,
BEA recommends that you use caution when using the delete_files option and that
you do not use the delete_files option in production environments.

Managing Long-Running Deployment Tasks
The WebLogic Server deployment system automatically assigns a unique ID to deployment tasks
so that you can track and manage their progress. weblogic.Deployer enables you to assign your
own task identification numbers for use with deployment commands, as well as monitor and
cancel long-running deployment tasks.

For example, the following command assigns a task ID of redeployPatch2 to a new deployment
operation:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -name mymodule -targets myserver -id redeployPatch2

-nowait -deploy c:\localfiles\myapp.ear

You can later check the status of the task:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -id redeployPatch2 -list

You can check the status of all running tasks:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -listtask

If a task takes too long to complete you can cancel it:

java weblogic.Deployer -adminurl http://localhost:7001 -user weblogic

-password weblogic -id redeployPatch2 -cancel

Managing Dep loyed App l ica t i ons

7-8 Deploying Applications to WebLogic Server

Deploying Applications to WebLogic Server A-1

A P P E N D I X A

weblogic.Deployer Command-Line
Reference

weblogic.Deployer is a Java-based deployment tool that provides a command-line interface to
the WebLogic Server deployment API. weblogic.Deployer is intended for administrators and
developers who want to perform interactive, command-line based deployment operations.

See the WLST Command and Variable Reference for information about performing deployment
operations using the WebLogic Scripting Tool (WLST).

The following sections describe the weblogic.Deployer utility:

“Required Environment for weblogic.Deployer” on page A-2

“Syntax for Invoking weblogic.Deployer” on page A-2

– “SSL Arguments” on page A-2

– “Connection Arguments” on page A-4

– “User Credentials Arguments” on page A-5

– “Common Arguments” on page A-7

“Command Reference” on page A-9

“Example config.xml File and Corresponding weblogic.Deployer Command” on page A-31

http://e-docs.bea.com/wls/docs91/config_scripting/reference.html

weblog ic .Dep loye r Command-L ine Refe rence

A-2 Deploying Applications to WebLogic Server

Required Environment for weblogic.Deployer
To set up your environment to use the weblogic.Deployer utility:

1. Install and configure the WebLogic Server software, as described in the WebLogic Server
Installation Guide.

2. Add the WebLogic Server classes to the CLASSPATH environment variable, and ensure that
the correct JDK binaries are available in your PATH. You can use the setWLSEnv.sh or
setWLSEnv.cmd script, located in the server/bin subdirectory of the WebLogic Server
installation directory, to set the environment.

3. If you are connecting to an Administration Server via a configured Administration channel,
you must also configure SSL on the machine on which you run weblogic.Deployer. See
See Using the SSL Protocol to Connect to WebLogic Server from weblogic.Admin in
Managing WebLogic Security for instructions about configuring SSL.

Syntax for Invoking weblogic.Deployer
java [SSL Arguments] weblogic.Deployer [Connection Arguments]

[User Credentials Arguments] COMMAND-NAME command-options

[Common Arguments]

Command names and options are not case-sensitive. See “Command Reference” on page A-9 for
detailed syntax and examples of using weblogic.Deployer commands.

SSL Arguments
java [-Dweblogic.security.TrustKeyStore=DemoTrust]

 [-Dweblogic.security.JavaStandardTrustKeystorePassPhrase=password]

 [-Dweblogic.security.CustomTrustKeyStoreFileName=filename

 -Dweblogic.security.TrustKeystoreType=CustomTrust

 [-Dweblogic.security.CustomTrustKeystorePassPhrase=password]

]

 [-Dweblogic.security.SSL.hostnameVerifier=classname]

 [-Dweblogic.security.SSL.ignoreHostnameVerification=true]

weblogic.Deployer

 [User Credentials Arguments]

 COMMAND-NAME command-arguments

If you have enabled the domain-wide administration port, or if you want to secure your
administrative request by using some other listen port that is secured by SSL, you must include

http://e-docs.bea.com/common/docs91/install/index.html
http://e-docs.bea.com/wls/docs91/secmanage/ssl.html#ssl_for_weblogic_admin

Syntax fo r Invok ing web log ic .Dep loye r

Deploying Applications to WebLogic Server A-3

SSL arguments when you invoke weblogic.Deployer. Table 7-1 describes all SSL arguments
for the weblogic.Deployer utility.

Table 7-1 SSL Arguments

Argument Definition

-Dweblogic.security.
TrustKeyStore=
DemoTrust

Causes weblogic.Deployer to trust the CA certificates in the
demonstration trust keystore
(WL_HOME\server\lib\DemoTrust.jks).

This argument is required if the server instance to which you want to
connect is using the demonstration identity and certificates.

By default, weblogic.Deployer trusts only the CA certificates
in the Java Standard Trust keystore
(SDK_HOME\jre\lib\security\cacerts).

-Dweblogic.security.
JavaStandardTrustKeysto
rePassPhrase=password

Specifies the password that was used to secure the Java Standard Trust
keystore.

If the Java Standard Trust keystore is protected by a password, and if
you want to trust its CA certificates, you must use this argument.

By default, the Java Standard Trust keystore is not protected by a
password.

-Dweblogic.security.
CustomTrustKeyStoreFileNa
me=filename
-Dweblogic.security.Trust
KeystoreType=CustomTrust

Causes weblogic.Deployer to trust the CA certificates in a custom
keystore that is located at filename. You must use both arguments to
trust custom keystores.

-Dweblogic.security.Custo
mTrustKeystorePassPhrase=
password

Specifies the password that was used to secure the custom keystore.

You must use this argument only if the custom keystore is protected by
a password.

-Dweblogic.security.SSL.
hostnameVerifier=
classname

Specifies the name of a custom Host Name Verifier class. The class
must implement the
weblogic.security.SSL.HostnameVerifier interface.

-Dweblogic.security.SSL.
ignoreHostnameVerificat
ion=true

Disables host name verification.

weblog ic .Dep loye r Command-L ine Refe rence

A-4 Deploying Applications to WebLogic Server

Connection Arguments
java [SSL Arguments] weblogic.Deployer

[-adminurl protocol://listen_address:port_number]

[User Credentials Arguments] COMMAND-NAME command-options [Common

Arguments]

Most weblogic.Deployer commands require you to specify the -adminurl arguments
described in Table 7-2 to connect to an Administration Server instance.

Table 7-2 Connection Arguments

Argument Definition

-adminurl
[protocol://]Admin-S
erver-listen-address
:listen-port

The -adminurl value must specify the listen address and listen port of the
Administration Server.

To use a port that is not secured by SSL, the format is -adminurl
[protocol]Admin-Server-listen-address:port where t3,
http, iiop, and iiops are valid protocols.

In order to use an adminurl with the HTTP protocol, you must enable the HTTP
tunneling option in the Administration Console. For more information, see
Setting Up WebLogic Server for HTTP Tunneling in Designing and
Configuring WebLogic Server Environments. For instructions on enabling
HTTP tunneling in the Administration Console, see Configure HTTP
protocol in Administration Console Online Help.

To use a port that is secured by SSL, the format is -adminurl
secure-protocol://Admin-Server-listen-address:port
where t3s and https are valid secure protocols.

To connect to the Administration Server via a configured Administration
channel, you must specify a valid administration port number: -adminurl
secure-protocol://Admin-Server-listen-address:domain-w
ide-admin-port

There is no default value for this argument.

http://e-docs.bea.com/wls/docs91/config_wls/web_server.html#HTTP_tunneling
http://e-docs.bea.com/wls/docs91/config_wls/index.html
http://e-docs.bea.com/wls/docs91/config_wls/index.html
http://e-docs.bea.com/wls/docs91/ConsoleHelp/taskhelp/channels/ConfigureHTTPProtocol.html
http://e-docs.bea.com/wls/docs91/ConsoleHelp/taskhelp/channels/ConfigureHTTPProtocol.html

Syntax fo r Invok ing web log ic .Dep loye r

Deploying Applications to WebLogic Server A-5

User Credentials Arguments
java [SSL Arguments] weblogic.Deployer [Connection Arguments]

[{ -username username [-password password] } |

[-userconfigfile config-file [-userkeyfile admin-key]]]

COMMAND-NAME command-options [Common Arguments]

Most weblogic.Deployer commands require you to specify the arguments in Table 7-3 to
provide the user credentials of a WebLogic Server administrator.

Table 7-3 User Credentials Arguments

Argument Definition

-username username The Administrator username. If you supply the -username option but you do
not supply a corresponding -password option, weblogic.Deployer
prompts you for the password.

-password password The password of the Administrator user.

To avoid having the plain text password appear in scripts or in process utilities
such as ps, first store the username and encrypted password in a configuration
file using the STOREUSERCONFIG command with weblogic.Admin. Omit
both the -username and -password options to weblogic.Deployer to
use the values stored in the default configuration file. See
STOREUSERCONFIG in the weblogic.Admin Command-Line Reference for
more information on storing and encrypting passwords.

If you want to use a specific configuration file and key file, rather than the
default files, use the -userconfigfile and -userkeyfile options to
weblogic.Deployer.

http://e-docs.bea.com/wls/docs91/admin_ref/cli.html#STOREUSERCONFIG
http://e-docs.bea.com/wls/docs91/admin_ref/cli.html

weblog ic .Dep loye r Command-L ine Refe rence

A-6 Deploying Applications to WebLogic Server

-userconfigfile
config-file

Specifies the location of a user configuration file to use for the administrative
username and password. Use this option, instead of the -user and
-password options, in automated scripts or in situations where you do not
want to have the password shown on-screen or in process-level utilities such as
ps. Before specifying the -userconfigfile option, you must first generate
the file using the weblogic.Admin STOREUSERCONFIG command as
described in STOREUSERCONFIG in the weblogic.Admin Command-Line
Reference.

-userkeyfile
admin-key

Specifies the location of a user key file to use for encrypting and decrypting the
username and password information stored in a user configuration file (the
-userconfigfile option). Before specifying the -userkeyfile option,
you must first generate the key file using the weblogic.Admin
STOREUSERCONFIG command as described in STOREUSERCONFIG in the
weblogic.Admin Command-Line Reference.

Argument Definition

http://e-docs.bea.com/wls/docs91/admin_ref/cli.html#STOREUSERCONFIG
http://e-docs.bea.com/wls/docs91/admin_ref/cli.html
http://e-docs.bea.com/wls/docs91/admin_ref/cli.html
http://e-docs.bea.com/wls/docs91/admin_ref/cli.html#STOREUSERCONFIG
http://e-docs.bea.com/wls/docs91/admin_ref/cli.html

Syntax fo r Invok ing web log ic .Dep loye r

Deploying Applications to WebLogic Server A-7

Common Arguments
The common options described in Table 7-4 can be used with any of the commands described in
“Command Reference” on page A-9.

Table 7-4 Common options for weblogic.Deployer

Option Name Description

-advanced Prints full command-line help text for all
weblogic.Deployer actions and options.

-debug Display debug messages in the standard output.

-examples Display example command lines for common tasks.

-help Prints command-line help text for the most commonly-used
weblogic.Deployer actions and options.

-noexit By default weblogic.Deployer calls System.exit(1) if
an exception is raised while processing a command. The exit
value displayed indicates the number of failures that occurred
during the deployment operation.

The -noexit option overrides this behavior for batch
processing.

-noversion Indicates that weblogic.Deployer should ignore all version
related code paths on the Administration Server. This behavior
is useful when deployment source files are located on Managed
Servers (not the Administration Server) and you want to use the
external_stage staging mode.

If you use this option, you cannot use versioned applications.

-nowait weblogic.Deployer prints the task ID and exits without
waiting for the action to complete. This option is used to initiate
multiple tasks and then monitor them later with the -list
action.

-output <raw |
formatted>

(Deprecated.) Specify either raw or formatted to control the
appearance of weblogic.Deployer output messages. Both
output types contain the same information, but raw output does
not contain embedded tabs. By default, weblogic.Deployer
displays raw output.

weblog ic .Dep loye r Command-L ine Refe rence

A-8 Deploying Applications to WebLogic Server

-purgetasks Indicates that weblogic.Deployer should flush out
deployment tasks that are retired.

-remote Indicates that weblogic.Deployer is not running on the
same machine as the Administration Server, and that source
paths specified in the command are valid for the Administration
Server machine itself. If you do not use the -remote option,
weblogic.Deployer assumes that all source paths are valid
paths on the local machine.

-timeout seconds Specifies the maximum time, in seconds, to wait for the
deployment task to complete. After the time expires,
weblogic.Deployer prints out the current status of the
deployment and exits.

-verbose Displays additional progress messages, including details about
the prepare and activate phases of the deployment.

-version Prints version information for weblogic.Deployer.

Option Name Description

Command Refe rence

Deploying Applications to WebLogic Server A-9

Command Reference
The following sections describe the weblogic.Deployer commands and command options used
to perform deployment tasks with WebLogic Server:

Cancel

Deploy

Distribute

Listapps

List, Listtask

Redeploy

Start

Stop

Undeploy

Update

Note: weblogic.Deployer commands are displayed in bold type to distinguish them from
command options.

Cancel
Attempt to cancel a running deployment task.

Syntax
java [SSL Arguments] weblogic.Deployer

Connection Arguments [User Credentials Arguments]

-cancel task_id

[Common Arguments]

Argument or Option Definition

task_id The identifier of the deployment task to cancel. The identifier can be
specified by using the id option with the deploy, distribute, update,
undeploy, redeploy, stop, and start commands.

weblog ic .Dep loye r Command-L ine Refe rence

A-10 Deploying Applications to WebLogic Server

Examples
The following command starts a deployment operation and specifies the task identifier,
myDeployment:

java weblogic.Deployer -adminurl http://localhost:7001

-username weblogic -password weblogic

-deploy ./myapp.ear -id myDeployment

If the deployment task has not yet completed, the following command attempts to cancel the
deployment operation:

java weblogic.Deployer -adminurl http://localhost:7001

-username weblogic -password weblogic

-cancel -id myDeployment

Deploy
Deploys or redeploys an application or module.

Note: The -ACTIVATE command, an alias for -deploy, is deprecated.

Syntax
java [SSL Arguments] weblogic.Deployer

Connection Arguments [User Credentials Arguments]

-deploy [[-name] deployment_name] [-source] file

[-plan file] [-targets target_list] [-submoduletargets target_list]

[-upload]

[-stage | -nostage | -external_stage]

[-retiretimeout seconds]

[-library [-libspecver version] [-libimplver version]]

[-altappdd file] [-altwlsappdd file]

[-securityModel] [-enableSecurityValidation]

[-id task_id]

[Common Arguments]

Command Refe rence

Deploying Applications to WebLogic Server A-11

Argument or Option Definition

-name deployment_name Specifies the deployment name to assign to a newly-deployed application
or stand-alone module.

Both the -name option and deployment_name argument are optional,
as described in the Syntax. If a deployment name is not explicitly
identified with the -deploy command, the name is derived from the
specified deployment file or directory:
• For an archive file, the default deployment name is the full name of

the archive file with the file extension. For example, the default
deployment name for the file myear.ear is myear.ear.

• For an exploded archive directory, the default deployment name is
the name of the top-level directory.

• If you specify an application installation root directory, the default
deployment name is derived from the archive filename or exploded
archive directory name in the /app subdirectory.

-source file Specifies the archive file or exploded archive directory to deploy. You
can omit the -source option and supply only the file or directory to
deploy.

-plan file Specifies a deployment plan to use when deploying the application or
module. By default, weblogic.Deployer does not use an available
deployment plan, even if you are deploying from an application root
directory that contains a plan.

-targets target_list Specifies the targets on which to distribute and deploy the application or
module.

The target_list argument is a comma-separated list of the target
servers, clusters, or virtual hosts. Each target may be qualified with a
J2EE module name (<module1>@<server1>). This enables you to
deploy different modules of an Enterprise Application to different servers
or clusters.

If you do not specify a target list with the -deploy command, the target
defaults to:
• the Administration Server instance for new deployments.
• the application’s current targets for deployed applications.

weblog ic .Dep loye r Command-L ine Refe rence

A-12 Deploying Applications to WebLogic Server

-submoduletargets
target_list

Specifies JMS Server targets for resources defined within a JMS
application module. See “Using Sub-Module Targeting with JMS
Application Modules” on page 5-11 and Using WLST to Manage JMS
Servers and JMS System Resources in Configuring and Managing
WebLogic JMS.

-upload Transfers the specified deployment files, including deployment plans and
alternate deployment descriptors, to the Administration Server. Use this
option when you are on a remote machine and you cannot copy the
deployment files to the Administration Server by other means. The
application files are uploaded to the WebLogic Server Administration
Server’s upload directory prior to distribution and deployment.

-stage | -nostage |
-external_stage

Specifies a staging mode to use when deploying or distributing an
application:
• -stage—Copies deployment files to target servers’ staging

directories. stage is the default mode used when deploying or
distributing to Managed Server targets.

• -nostage—Does not copy the deployment files to target servers,
but leaves them in a fixed location, specified by the -source option.
Target servers access the same, copy of the deployment files.
nostage is the default used when deploying or distributing to the
Administration Server (for example, in a single-server domain).

• -external_stage—Does not copy the deployment files to target
servers; instead, you must ensure that deployment files have been
copied to the correct subdirectory in the target servers’ staging
directories. You can manually copy the files or use a third-party tool
or script.

See “Controlling Deployment File Copying with Staging Modes” on
page 5-13.

-retiretimeout seconds Specifies the number of seconds before WebLogic Server retires the
currently-running version of this application or module. See
“Redeploying a New Version of an Application” on page 6-9.

Argument or Option Definition (Continued)

{DOCROOT}/jms_admin/wlst.html
{DOCROOT}/jms_admin/wlst.html
{DOCROOT}/jms_admin/index.html
{DOCROOT}/jms_admin/index.html

Command Refe rence

Deploying Applications to WebLogic Server A-13

-library Identifies the deployment as a shared J2EE library or optional package.
You must include the -library option when deploying or distributing
any J2EE library or optional package. See “Deploying Shared J2EE
Libraries and Dependent Applications” on page 5-21.

-libspecver version Provides the specification version of a J2EE library or optional package.
This option can be used only if the library or package does not include a
specification version in its manifest file. -libversion can be used only
in combination with -library. See “Registering Libraries with
WebLogic Server” on page 5-22.

-libimplver version Specifies the implementation version of a J2EE library or optional
package. This option can be used only if the library or package does not
include a implementation version in its manifest file.
-libimplversion can be used only in combination with -library.
See “Registering Libraries with WebLogic Server” on page 5-22.

-usenonexclusivelock Indicates that the deployment operation will use an existing lock, already
acquired by the same user, on the domain. This is useful the use is using
multiple deployment tools simultaneously and one of the tools has
already acquired a lock on the domain configuration.

-altappdd file (Deprecated.) Specifies the name of an alternate J2EE deployment
descriptor (application.xml) to use for deployment.

-altwlsappdd file (Deprecated.) Specifies the name of an alternate WebLogic Server
deployment descriptor (weblogic-application.xml) to use for
deployment.

-securityModel
[DDOnly | CustomRoles |
CustomRolesAndPolicy |
Advanced]

Specifies the security model to use for this deployment.

Argument or Option Definition (Continued)

weblog ic .Dep loye r Command-L ine Refe rence

A-14 Deploying Applications to WebLogic Server

Examples
See the following sections for examples of using the -deploy command:

“Deploying to a Single-Server Domain” on page 5-3

“Deploying an Application with a Deployment Plan” on page 5-3

“Uploading Deployment Files from a Remote Client” on page 5-3

“Deploying to One or More Targets” on page 5-6

“Deploying to a Cluster Target” on page 5-7

“Using Module-Level Targeting for Deploying an Enterprise Application” on page 5-8

“Targeting Application-Scoped JMS, JDBC, and WLDF Modules” on page 5-10

“Using Sub-Module Targeting with JMS Application Modules” on page 5-11

“Using Nostage Mode Deployment” on page 5-16

“Using Stage Mode Deployment” on page 5-17

“Using External_stage Mode Deployment” on page 5-18

“Distributing Applications to a Production Environment” on page 5-19

“Registering Libraries with WebLogic Server” on page 5-22

“Deploying Applications That Reference Libraries” on page 5-23

-enableSecurityValidation Specifies whether or not to enable validation of security data.

-id task_id Specifies the task identifier of a running deployment task. You can
specify an identifier with the -deploy, -redeploy, or -undeploy
commands, and use it later as an argument to the -cancel or -list
commands. Make sure that the identifier is unique to all other running
deployment tasks. The system automatically generates a unique identifier
if you do not specify one.

Argument or Option Definition (Continued)

Command Refe rence

Deploying Applications to WebLogic Server A-15

Distribute
Prepares deployment files for deployment by copying deployment files to target servers and validating them.

A distributed application can be quickly started by using the Start command. You can start the application
in Administration mode, or make it available to Administration and client requests. While in Administration
mode, the application can be accessed only by internal clients via a configured Administration port. External
clients cannot access the application.

Syntax
java [SSL Arguments] weblogic.Deployer

Connection Arguments [User Credentials Arguments]

-distribute [[-name] deployment_name] [-source] file

[-plan file] [-targets target_list] [-submoduletargets target_list]

[-upload]

[-stage | -nostage | -external_stage]

[-library [-libspecver version] [-libimplver version]]

[-altappdd file] [-altwlsappdd file]

[-securityModel] [-enableSecurityValidation]

[-id task_id]

[Common Arguments]

weblog ic .Dep loye r Command-L ine Refe rence

A-16 Deploying Applications to WebLogic Server

Argument or Option Definition

-name deployment_name Specifies the deployment name to assign to the distributed application or
module.

Both the -name option and deployment_name argument are optional,
as described in the Syntax. If a deployment name is not explicitly
identified, a name is derived from the specified deployment file or
directory:
• For an archive file, the default deployment name is the name of the

archive file without the file extension (myear for the file
myear.ear).

• For an exploded archive directory, the default deployment name is
the name of the top-level directory.

• If you specify an application installation root directory, the default
deployment name is derived from the archive filename or exploded
archive directory name in the /app subdirectory.

-source file Specifies the archive file or exploded archive directory to distribute. You
can omit the -source option and supply only the file or directory.

-plan file Specifies a deployment plan to distribute with the application or module,
used to configure the application.

-targets target_list Specifies the targets on which to distribute the application or module.

The target_list argument is a comma-separated list of the target
servers, clusters, or virtual hosts. Each target may be qualified with a
J2EE module name (<module1>@<server1>). This enables you to
distribute different modules of an Enterprise Application to different
servers or clusters.

If you do not specify a target list with the -deploy command, the target
defaults to:
• the Administration Server instance for new deployments.
• the application’s current targets for deployed applications.

-submoduletargets
target_list

Specifies JMS Server targets for resources defined within a JMS
application module. See “Using Sub-Module Targeting with JMS
Application Modules” on page 5-11 and Using WLST to Manage JMS
Servers and JMS System Resources in Configuring and Managing
WebLogic JMS.

{DOCROOT}/jms_admin/wlst.html
{DOCROOT}/jms_admin/wlst.html
{DOCROOT}/jms_admin/index.html
{DOCROOT}/jms_admin/index.html

Command Refe rence

Deploying Applications to WebLogic Server A-17

-upload Transfers the specified deployment files, including any specified
deployment plans, to the Administration Server before distribution. Use
this option when you are on a remote machine and you cannot copy the
deployment files to the Administration Server by other means. The
application files are uploaded to the WebLogic Server Administration
Server’s upload directory prior to distribution.

-stage | -nostage |
-external_stage

Specifies a staging mode to use when deploying or distributing an
application:
• -stage—Copies deployment files to target servers’ staging

directories. stage is the default mode used when deploying or
distributing to Managed Server targets.

• -nostage—Does not copy the deployment files to target servers,
but leaves them in a fixed location, specified by the -source option.
Target servers access the same, copy of the deployment files.
nostage is the default used when deploying or distributing to the
Administration Server (for example, in a single-server domain).

• -external_stage—Does not copy the deployment files to target
servers; instead, you must ensure that deployment files have been
copied to the correct subdirectory in the target servers’ staging
directories. You can manually copy the files or use a third-party tool
or script.

See “Controlling Deployment File Copying with Staging Modes” on
page 5-13.

-library Identifies the deployment as a shared J2EE library or optional package.
You must include the -library option when deploying or distributing
any J2EE library or optional package. See “Deploying Shared J2EE
Libraries and Dependent Applications” on page 5-21.

-libspecver version Provides the specification version of a J2EE library or optional package.
This option can be used only if the library or package does not include a
specification version in its manifest file. -libversion can be used only
in combination with -library. See “Registering Libraries with
WebLogic Server” on page 5-22.

Argument or Option Definition (Continued)

weblog ic .Dep loye r Command-L ine Refe rence

A-18 Deploying Applications to WebLogic Server

Examples
The -distribute command operates similar to -deploy, but WebLogic Server does not start
the application or module on target servers. See the examples links for the Deploy command for
more information.

Listapps
Lists the deployment names for applications and stand-alone modules deployed, distributed, or installed to
the domain.

-libimplver version Specifies the implementation version of a J2EE library or optional
package. This option can be used only if the library or package does not
include a implementation version in its manifest file.
-libimplversion can be used only in combination with -library.
See “Registering Libraries with WebLogic Server” on page 5-22.

-altappdd file (Deprecated.) Specifies the name of an alternate J2EE deployment
descriptor (application.xml) to use for deployment or distribution.

-altwlsappdd file (Deprecated.) Specifies the name of an alternate WebLogic Server
deployment descriptor (weblogic-application.xml) to use for
deployment or distribution.

-securityModel
[DDOnly |
CustomRoles |
CustomRolesAndPolicy |
Advanced]

Specifies the security model to be used for this application.

-enableSecurityValidation Specifies whether or not to enable validation of security data.

-id task_id Specifies the task identifier of a running deployment task. You can
specify an identifier with the -deploy, -redeploy, or -undeploy
commands, and use it later as an argument to the -cancel or -list
commands. Make sure that the identifier is unique to all other running
deployment tasks. The system automatically generates a unique identifier
if you do not specify one.

Argument or Option Definition (Continued)

Command Refe rence

Deploying Applications to WebLogic Server A-19

Syntax
java [SSL Arguments] weblogic.Deployer

Connection Arguments [User Credentials Arguments]

-listapps

[Common Arguments]

Examples
See “Displaying Version Information for Deployed Applications” on page 6-9.

List, Listtask
Displays the status of deployment tasks currently running in the domain.

Syntax
java [SSL Arguments] weblogic.Deployer Connection Arguments

[User Credentials Arguments] <-list | -listtask> [task_id]

[Common Arguments]

Examples
See “Managing Long-Running Deployment Tasks” on page 7-7.

Redeploy
Redeploys a running application or part of a running application.

Syntax
java [SSL Arguments] weblogic.Deployer

Connection Arguments [User Credentials Arguments]

-redeploy [[-name] deployment_name] {-source file | filelist}

Argument or Option Definition

task_id The identifier of a deployment task to display. The identifier can be
specified by using the -id argument to the DEPLOY, DISTRIBUTE,
UPDATE, UNDEPLOY, REDEPLOY, STOP, and START commands.

weblog ic .Dep loye r Command-L ine Refe rence

A-20 Deploying Applications to WebLogic Server

[-plan file] [-targets target_list] [-submoduletargets target_list]

[-upload]

[-delete_files]

[-retiretimeout seconds] [-id task_id]

[Common Arguments]

Argument or Option Definition

-name deployment_name Specifies the deployment name of a deployed application or module. The
-name option can be omitted, in which case the name is taken from the
-source file argument.

-source file Specifies the archive file or exploded archive directory to distribute,
deploy, or redeploy.

When used with the redeploy command, the -source option
specifies the location of new deployment files to redeploy, for example,
when updating an application to a new version.

To specify multiple files for a partial redeployment, omit the -source
option and supply only a filelist.

Note: To redeploy an entire J2EE module within an Enterprise
Application, use the module-targeting syntax, -targets
module@target, described in “Using Partial
Redeployment for J2EE Module Updates” on page 6-18.

filelist Specifies one or more files to redeploy. If the filelist specifies
multiple files, the redeployment is treated as a partial redeployment of the
specified files.

Note: Use a filelist specification only for redeploying static
files within a J2EE module. To redeploy an entire J2EE
module within an Enterprise Application, use the
module-targeting syntax, -targets module@target,
described in “Using Partial Redeployment for J2EE
Module Updates” on page 6-18.

The use of -redeploy module-uri is deprecated.
Instead, use production redeployment or redeploy the
module using the -targets module@target syntax.

Command Refe rence

Deploying Applications to WebLogic Server A-21

-plan file Specifies a deployment plan to use when distributing, deploying, or
redeploying.

When redeploying an application, the -plan option allows you to
specify an updated configuration to use during the redeployment. If the
revised deployment plan contains changes to resource bindings,
WebLogic Server attempts to redeploy a new version of the application
alongside an older version. See “Updating the Deployment Configuration
for an Application” on page 6-20.

-targets target_list Specifies the targets on which to distribute, deploy, or redeploy the
application or module.

The target_list argument is a comma-separated list of the target
servers, clusters, or virtual hosts. Each target may be qualified with a
J2EE module name (<module1>@<server1>). This enables you to
redeploy different modules of an Enterprise Application to different
servers or clusters.

If you do not specify a target list with the -deploy command, the target
defaults to:
• the Administration Server instance for new deployments.
• the application’s current targets for deployed applications.

If you do not specify a target list with the -redeploy command, the
application is redeployed on all of its current target servers.

-submoduletargets
target_list

Specifies JMS Server targets for resources defined within a JMS
application module. See “Using Sub-Module Targeting with JMS
Application Modules” on page 5-11 and Using WLST to Manage JMS
Servers and JMS System Resources in Configuring and Managing
WebLogic JMS.

-upload Transfers the specified deployment files, including deployment plans and
alternate deployment descriptors, to the Administration Server. Use this
option when you are on a remote machine and you cannot copy the
deployment files to the Administration Server by other means. The
application files are uploaded to the WebLogic Server Administration
Server’s upload directory prior to distribution and deployment.

Use the -upload option with the REDEPLOY command when you are
upgrading an application to a new version.

Argument or Option Definition (Continued)

{DOCROOT}/jms_admin/wlst.html
{DOCROOT}/jms_admin/wlst.html
{DOCROOT}/jms_admin/index.html
{DOCROOT}/jms_admin/index.html

weblog ic .Dep loye r Command-L ine Refe rence

A-22 Deploying Applications to WebLogic Server

Examples
See the following sections for examples of using the -redeploy command:

“Redeploying a New Version of an Application” on page 6-9

-delete_files Removes static files from a server’s staging directory. delete_files
is valid only for unarchived deployments, and only for applications
deployed using -stage mode. You must specify target servers when
using this option, as shown in the following example:
java weblogic.Deployer -adminurl
http://myserver:7001 -username weblogic
-password weblogic -name myapp
-targets myapp@myserver -redeploy
-delete_files myapp/tempindex.html

delete_files only removes files that WebLogic Server copied to the
staging area during deployment. If you use the delete_files option
with an application that was deployed using either -nostage or
-external_stage mode, the command does not delete the files.

delete_files can only be used in combination with the -redeploy
command.

Note: Because the -delete_files option deletes all specified
files or, if you specify a directory but do not specify files
within the directory, all files in the specified directory,
BEA recommends that you use caution when using the
delete_files option and that you do not use the
delete_files option in production environments.

-retiretimeout seconds Specifies the number of seconds before WebLogic Server retires the
currently-running version of this application or module. See
“Redeploying a New Version of an Application” on page 6-9.

-id task_id Specifies the task identifier of a running deployment task. You can
specify an identifier with the -deploy, -redeploy, or -undeploy
commands, and use it later as an argument to the -cancel or -list
commands. Make sure that the identifier is unique to all other running
deployment tasks. The system automatically generates a unique identifier
if you do not specify one.

Argument or Option Definition (Continued)

Command Refe rence

Deploying Applications to WebLogic Server A-23

“Rolling Back the Production Redeployment Process” on page 6-11

“Steps for Distributing a New Version of an Application” on page 6-13

“Redeploying Applications and Modules In-Place” on page 6-16

“Using Partial Redeployment for J2EE Module Updates” on page 6-18

“Updating Static Files in a Deployed Application” on page 6-20

Start
Makes a stopped (inactive) application available to clients on target servers. -start does not redistribute
deployment files to target servers. Optionally, with the -adminmode option, starts the application in
Administration mode, which makes it available only via a configured Administration channel. In order to
issue a -start command, the files must already be available via an earlier -deploy or -distribute
command.

Note: The -activate command, an alias for -start, is deprecated.

Syntax
java [SSL Arguments] weblogic.Deployer

Connection Arguments [User Credentials Arguments]

-start [-adminmode] [-name] deployment_name

[-appversion version] [-planversion version]

[-targets target_list] [-submoduletargets target_list]

[-retiretimeout seconds]

[-id task_id]

[Common Arguments]

Argument or Option Definition

-adminmode Indicates that the application should start in Administration mode, not
Production mode (which is the default).

-name deployment_name Specifies the deployment name of a deployed application or module. The
-name option can be omitted, in which case the name is taken directly
from the deployment_name. (If the deployment_name specifies a
file or directory name, the deployment name is derived from the file
specification.)

weblog ic .Dep loye r Command-L ine Refe rence

A-24 Deploying Applications to WebLogic Server

-appversion version The version of the application to start.

-planversion version The version of the deployment plan to use when starting the application.

-targets target_list Specifies the targets on which to DISTRIBUTE, DEPLOY, REDEPLOY, or
START the application or module.

The target_list argument is a comma-separated list of the target
servers, clusters, or virtual hosts. Each target may be qualified with a
J2EE module name (<module1>@<server1>). This enables you to
deploy different modules of an Enterprise Application to different servers
or clusters.

If you do not specify a target list with the -deploy command, the target
defaults to:
• the Administration Server instance for new deployments.
• the application’s current targets for deployed applications.

If you do not specify a target list with the -redeploy or -start
commands, the command is performed on all of the application’s current
targets.

-submoduletargets
target_list

Specifies JMS Server targets for resources defined within a JMS
application module. See “Using Sub-Module Targeting with JMS
Application Modules” on page 5-11 and Using WLST to Manage JMS
Servers and JMS System Resources in Configuring and Managing
WebLogic JMS.

-retiretimeout seconds Specifies the number of seconds before WebLogic Server retires the
currently-running version of this application or module. See
“Redeploying a New Version of an Application” on page 6-9.

-id task_id Specifies the task identifier of a running deployment task. You can
specify an identifier with the -distribute, -deploy, -redeploy,
-start, or -undeploy commands, and use it later as an argument to
the -cancel or -list commands. Make sure that the identifier is
unique to all other running deployment tasks. The system automatically
generates a unique identifier if you do not specify one.

Argument or Option Definition (Continued)

{DOCROOT}/jms_admin/wlst.html
{DOCROOT}/jms_admin/wlst.html
{DOCROOT}/jms_admin/index.html
{DOCROOT}/jms_admin/index.html

Command Refe rence

Deploying Applications to WebLogic Server A-25

Examples
See the following sections for examples of using the -start command:

“Starting a Distributed Application” on page 5-20

“Making an Application Available to Clients” on page 6-13

“Stopping an Application to Restrict Client Access” on page 7-2

Stop
Makes an application inactive and unavailable administration and client requests. All of the application’s
staged files remain available on target servers for subsequent -start, -deploy, -redeploy, or
-undeploy actions. You can optionally choose to stop the application only to client requests by placing it
in Administration mode with the -adminmode option. While in Administration mode, the application be
accessed only via a configured Administration channel.

Note: The -deactivate command, an alias for -stop, is deprecated.

Syntax
java [SSL Arguments] weblogic.Deployer

Connection Arguments [User Credentials Arguments]

-stop [-adminmode] [-name] deployment_name

[-appversion version] [-planversion version]

[-targets target_list] [-submoduletargets target_list]

[-ignoresessions] [-graceful]

[-id task_id]

[Common Arguments]

weblog ic .Dep loye r Command-L ine Refe rence

A-26 Deploying Applications to WebLogic Server

Argument or Option Definition

-adminmode Indicates that a running application should switch to Administration
mode and accept only Administration requests via a configured
Administration channel. If this option is not specified, the running
application is stopped and cannot accept Administration or client requests
until is it restarted.

-name deployment_name Specifies the deployment name of a deployed application or module. The
-name option can be omitted, in which case the name is taken directly
from the deployment_name. (If the deployment_name specifies a
file or directory name, the deployment name is derived from the file
specification.)

-appversion version The version identifier of the deployed application.

-planversion version The version identifier of the deployment plan.

-targets target_list Specifies the targets on which to -distribute, -deploy,
-redeploy, -start, or -stop the application or module.

The target_list argument is a comma-separated list of the target
servers, clusters, or virtual hosts. Each target may be qualified with a
J2EE module name (<module1>@<server1>). This enables you to
deploy different modules of an Enterprise Application to different servers
or clusters.

If you do not specify a target list with the -deploy command, the target
defaults to:
• the Administration Server instance for new deployments.
• the application’s current targets for deployed applications.

If you do not specify a target list with the -redeploy, -start, or
-stop commands, the command is performed on all of the application’s
current targets.

-submoduletargets
target_list

Specifies JMS Server targets for resources defined within a JMS
application module. See “Using Sub-Module Targeting with JMS
Application Modules” on page 5-11 and Using WLST to Manage JMS
Servers and JMS System Resources in Configuring and Managing
WebLogic JMS.

{DOCROOT}/jms_admin/wlst.html
{DOCROOT}/jms_admin/wlst.html
{DOCROOT}/jms_admin/index.html
{DOCROOT}/jms_admin/index.html

Command Refe rence

Deploying Applications to WebLogic Server A-27

Examples
See the following sections for examples of using the -stop command, see “Stopping an
Application to Restrict Client Access” on page 7-2.

Undeploy
Stops the deployment unit and removes staged files from target servers.

Note: The -REMOVE command, an alias for -undeploy, is deprecated.

Warning: When you undeploy an application that contains application-scoped resources, the
resources are deleted along with the application, which can potentially cause
abandoned transactions or lost messages as a result of deleted JMS destinations. For
more information, see Unregister Resource Grace Period in Programmikng
WebLogic JTA.

You should only undeploy applications that you are certain you want to completely
remove; to temporarily stop client access to applications, use the -stop command,
described in weblogic.Deployer Command-Line Reference, instead.

-graceful Stops the application after existing HTTP clients have completed their
work. If you do not specify the -graceful option, WebLogic Server
immediately stops the application or module. See “Taking a Production
Application Offline” on page 7-2.

-ignoresessions This option immediately places the application into Administration mode
without waiting for current HTTP sessions to complete.

-id task_id Specifies the task identifier of a running deployment task. You can
specify an identifier with the -distribute, -deploy, -redeploy,
-start, -stop, or -undeploy commands, and use it later as an
argument to the -cancel or -list commands. Make sure that the
identifier is unique to all other running deployment tasks. The system
automatically generates a unique identifier if you do not specify one.

Argument or Option Definition (Continued)

http://e-docs.bea.com/wls/docs91/jta/trxcon.html#unregisterresourcegraceperiod
http://e-docs.bea.com/wls/docs91/jta/index.html
http://e-docs.bea.com/wls/docs91/jta/index.html

weblog ic .Dep loye r Command-L ine Refe rence

A-28 Deploying Applications to WebLogic Server

Syntax
java [SSL Arguments] weblogic.Deployer

Connection Arguments [User Credentials Arguments]

-undeploy [-name] deployment_name

[-appversion version] [-planversion version]

[-targets target_list] [-submoduletargets target_list]

[-graceful] [-ignoresessions]

[-id task_id]

[Common Arguments]

Argument or Option Definition

-name deployment_name Specifies the deployment name of a deployed application or module. The
-name option can be omitted, in which case the name is taken directly
from the deployment_name. (If the deployment_name specifies a
file or directory name, the deployment name is derived from the file
specification.)

-appversion version The version identifier of the deployed application.

-planversion version The version identifier of the deployment plan.

-targets target_list Specifies the targets from which the application or module are
undeployed.

Note: Any target not included in the target list is not removed.
The target_list argument is a comma-separated list of the target
servers, clusters, or virtual hosts. Each target may be qualified with a
J2EE module name (<module1>@<server1>). This enables you to
undeploy different modules of an Enterprise Application from different
servers or clusters.

-submoduletargets
target_list

Specifies the JMS resources to be undeployed.

Note: Any sub-module target not included in the target list is not
removed.

See “Using Sub-Module Targeting with JMS Application Modules” on
page 5-11 and Using WLST to Manage JMS Servers and JMS System
Resources in Configuring and Managing WebLogic JMS

http://e-docs.bea.com/wls/docs91/jms_admin/wlst.html
http://e-docs.bea.com/wls/docs91/jms_admin/wlst.html

Command Refe rence

Deploying Applications to WebLogic Server A-29

Examples
See the following sections for examples of using the -undeploy command:

“Undeploying an Application or Module” on page 7-3

“Sub-module Targeting for Stand-alone JMS Modules” on page 5-11

Update
Updates an application’s deployment plan by redistributing the plan files and reconfiguring the
application based on the new plan contents.

Note: -update cannot be used to update an application’s resource bindings. To update the
resource bindings for an application, you must use the Redeploy command.

Syntax
java [SSL Arguments] weblogic.Deployer

Connection Arguments [User Credentials Arguments]

-update -plan deployment_plan [-name] deployment_name

[-appversion version] [-planversion version]

[-targets target_list] [-submoduletargets target_list]

-graceful Stops the application after existing HTTP clients have completed their
work. If you do not specify the -graceful option, WebLogic Server
immediately stops the application or module. See “Taking a Production
Application Offline” on page 7-2.

The module is undeployed after it is stopped.

-ignoresessions Immediately stops and undeploys the application without waiting for
current HTTP sessions to complete.

-id task_id Specifies the task identifier of a running deployment task. You can
specify an identifier with the -distribute, -deploy, -redeploy,
-start, -stop, or -undeploy commands, and use it later as an
argument to the -cancel or -list commands. Make sure that the
identifier is unique to all other running deployment tasks. The system
automatically generates a unique identifier if you do not specify one.

Argument or Option Definition (Continued)

weblog ic .Dep loye r Command-L ine Refe rence

A-30 Deploying Applications to WebLogic Server

[-upload] [-id task_id]

[Common Arguments]

Argument or Option Definition

-plan deployment_plan Identifies the deployment plan to use for updating the application’s
configuration. The specified deployment plan must be valid for the
application’s target servers. For example, the plan cannot contain null
variables for required resources unless those resources were previously
defined in the associated desrciptor.

Update operations update only those descriptors for which there is a
changed, not null value in the deployment plan. If a plan that is used by
an update operation contains null variables, the current values in the
corresponding descriptors are not updated.

-name deployment_name Specifies the deployment name of a deployed application or module. The
-name option can be omitted, in which case the name is taken directly
from the deployment_name. (If the deployment_name specifies a
file or directory name, the deployment name is derived from the file
specification.)

-appversion version The version identifier of the deployed application.

-planversion version The version identifier of the deployment plan.

-targets target_list Specifies the targets on which to -distribute, -deploy,
-redeploy, -undeploy, -start, or -stop the application or
module.

The target_list argument is a comma-separated list of the target
servers, clusters, or virtual hosts. Each target may be qualified with a
J2EE module name (<module1>@<server1>). This enables you to
deploy different modules of an Enterprise Application to different servers
or clusters.

If you do not specify a target list with the -deploy command, the target
defaults to:
• the Administration Server instance for new deployments.
• the application’s current targets for deployed applications.

If you do not specify a target list with the -redeploy, -undeploy,
-start, or -stop commands, the command is performed on all of the
application’s current targets.

Example conf ig . xml F i l e and Cor respond ing web log ic .Dep loye r Command

Deploying Applications to WebLogic Server A-31

Example
See “Updating an Application to Use a Different Deployment Plan” on page 6-21

Example config.xml File and Corresponding weblogic.Deployer
Command

This section demonstrates an application’s config.xml file and the corresponding
weblogic.Deployer command to deploy the application.

Assuming:

mycluster is a cluster name

D1C2S1 and D1C2S2 are server names

RemoteJMSServer1 and RemoteJMSServer2 are JMS server names

The application’s config.xml file would contain:

<AppDeployment

Name="dd-remote-cluster"

SourcePath="./udd-debug-deployment-on-remote-cluster-jms.xml"

Targets="mycluster">

-submoduletargets
target_list

Specifies JMS Server targets for resources defined within a JMS
application module. See “Using Sub-Module Targeting with JMS
Application Modules” on page 5-11 and Using WLST to Manage JMS
Servers and JMS System Resources in Configuring and Managing
WebLogic JMS.

-upload Uploads a new deployment plan to the Administration Server before
updating the application.

-id task_id Specifies the task identifier of a running deployment task. You can
specify an identifier with the -distribute, -deploy, -redeploy,
-update, -start, -stop, or -undeploy commands, and use it later
as an argument to the -cancel or -list commands. Make sure that the
identifier is unique to all other running deployment tasks. The system
automatically generates a unique identifier if you do not specify one.

Argument or Option Definition (Continued)

{DOCROOT}/jms_admin/wlst.html
{DOCROOT}/jms_admin/wlst.html
{DOCROOT}/jms_admin/index.html
{DOCROOT}/jms_admin/index.html

weblog ic .Dep loye r Command-L ine Refe rence

A-32 Deploying Applications to WebLogic Server

<SubDeployment Name="RemoteCluster" Targets="mycluster"/>

<SubDeployment Name="D1C2S2" Targets="D1C2S2"/>

<SubDeployment Name="RemoteClusterServers" Targets="D1C2S1,D1C2S2"/>

<SubDeployment Name="RemoteClusterJMSServers"

Targets="RemoteJMSServer1,RemoteJMSServer2"/>

<SubDeployment Name="RemoteQueue1" Targets="RemoteJMSServer1"/>

</AppDeployment>

The weblogic.Deployer -deploy command to deploy the application would be:

java weblogic.Deployer -adminurl t3://MySystem:10000 -username system
-password system -name dd-remote-cluster
-deploy "config\jms\udd-debug-deployment-on-remote-cluster-jms.xml"
-targets mycluster -submoduletargets RemoteCluster@mycluster,
D1C2S2@D1C2S2, RemoteClusterServers@D1C2S1,
RemoteClusterServers@D1C2S2, RemoteClusterJMSServers@RemoteJMSServer1,
RemoteClusterJMSServers@RemoteJMSServer2, RemoteQueue1@RemoteJMSServer1

Deploying Applications to WebLogic Server B-1

A P P E N D I X B

weblogic.PlanGenerator Command Line
Reference

weblogic.PlanGenerator is a Java-based deployment configuration tool. It is primarily
intended for developers who want to export portions of a WebLogic Server deployment
configuration into an XML deployment plan. weblogic.PlanGenerator also enables you to
generate a basic WebLogic Server configuration for applications that have only J2EE deployment
descriptors.

See also WebLogic Scripting Tool for information about performing deployment configuration
operations using the WebLogic Scripting Tool (WLST).

The following sections describe using the weblogic.PlanGenerator utility:

“Overview of weblogic.PlanGenerator” on page B-2

“Required Environment for weblogic.PlanGenerator” on page B-2

“Syntax for Invoking weblogic.PlanGenerator” on page B-2

“weblogic.PlanGenerator Examples” on page B-5

http://e-docs.bea.com/wls/docs91/config_scripting/index.html

weblog ic .P lanGenera to r Command L ine Re fe rence

B-2 Deploying Applications to WebLogic Server

Overview of weblogic.PlanGenerator
weblogic.PlanGenerator generates WebLogic Server deployment configuration files for an
application or stand-alone module. weblogic.PlanGenerator provides two primary functions:

Exporting different categories of WebLogic Server deployment descriptor properties into
empty (null) variables in a template deployment plan. You can optionally use an existing
deployment plan as input to the configuration export session. Template plans are generally
modified further before they can be used.

Generating a simple initial deployment plan from a J2EE application.

By default, weblogic.PlanGenerator writes an application’s deployment plan to a file named
plan.xml in the application’s root directory. If your application is not in an application root
directory, weblogic.PlanGenerator writes plan.xml to
<your_dir>/config/deployments/<user>/<application_name>/plan where:

your_dir is your TEMP directory if it is specified in the property java.io.tmpdir. If the
property java.io.tmpdir is not specified, your_dir is the WebLogic Server domain
directory.

user is your user name.

application is the name of the application.

Required Environment for weblogic.PlanGenerator
To set up your environment to use the weblogic.PlanGenerator utility:

1. Install and configure the WebLogic Server software, as described in the WebLogic Server
Installation Guide.

2. Add the WebLogic Server classes to the CLASSPATH environment variable, and ensure that
the correct JDK binaries are available in your PATH. You can use the setWLSEnv.sh or
setWLSEnv.cmd script, located in the server/bin subdirectory of the WebLogic Server
installation directory, to set the environment.

Syntax for Invoking weblogic.PlanGenerator
java weblogic.PlanGenerator [Options] [filespec]

The filespec can be either:

An absolute or relative path to an archive file

http://e-docs.bea.com/common/docs91/install/index.html

Syntax fo r Invok ing web log ic .P lanGenerato r

Deploying Applications to WebLogic Server B-3

An absolute or relative path to an exploded archive directory

BEA recommends:

That you store your applications in an installation root directory.

That you specify an application’s installation root directory, with the -root option as
described in “Options” on page B-3 when you issue a weblogic.PlanGenerator command.

In all cases, the application identified with the filespec must contain valid J2EE deployment
descriptor files.

If you do not specify an application root directory with the -root option or a deployment plan
path and name with the -plan option, by default, weblogic.PlanGenerator writes an
application’s deployment plan to a file named plan.xml in the application’s root directory. If it
cannot locate an application root directory, weblogic.PlanGenerator writes plan.xml to
<your_dir>/config/deployments/<user>/<application_name>/plan where:

your_dir is your TEMP directory if it is specified in the property java.io.tmpdir. If the
property java.io.tmpdir is not specified, your_dir is the WebLogic Server domain
directory.

user is your user name.

application is the name of the application.

Options
The following table describes each weblogic.PlanGenerator option.

Figure 7-2 weblogic.PlanGenerator Options

Option Description

-debug Enables debug mode.

-plan plan_file Identifies the path and name of the plan file to create for the
configuration session.

weblog ic .P lanGenera to r Command L ine Re fe rence

B-4 Deploying Applications to WebLogic Server

-useplan plan_file Specifies an existing deployment plan file to initialize from. If
you use -root to specify an application root directory,
weblogic.PlanGenerator uses the /plan/plan.xml
file in the root directory as input, if one is available; otherwise,
weblogic.PlanGenerator creates a plan in the root
directory.

weblogic.PlanGenerator adds additional exported properties to
the input plan; any exported properties that were already in the
input plan are retained.

-root root_directory Specifies an application root directory on which to perform the
plan generation or export.

category where valid values
for category are:

• -all

• -configurables

• -dependencies

• -declarations

• -dynamics

• -none

Generates null variable definitions in a template deployment
plan for different categories of deployment configuration
property:
• all—Creates a plan that exports all editable properties.
• configurables—Creates a plan that exports all editable

properties except dependencies and declarations.
• dependencies—Creates a plan that exports all

WebLogic Server descriptor properties that resolve external
resource references. This is the default value.

• declarations—Creates a plan that exports all properties
that declare a resource to other applications and modules.

• dynamics—Creates a plan that exports all properties that
can be changed on-the-fly without requiring the application
to be redeployed.

• none—Creates a plan that exports no properties.

-variables [global |
unique]

Specifies whether variable names created in the deployment
plan can be used across all modules of an application, or only
within a particular module. For example, a role assignment
might be applied to an entire EAR, or to only a single Web
application or other module within the EAR. By default,
PlanGenerator creates global variables that apply to the
entire application.

Option Description

weblog ic .P lanGenerato r Examples

Deploying Applications to WebLogic Server B-5

weblogic.PlanGenerator Examples
The following sections describe common configuration and export scenarios, with examples
examples of weblogic.PlanGenerator syntax.

Creating an Initial Deployment Plan in an Application’s Root
Directory
If you store your application using an installation root directory, and you specify the root
directory with the -root option, generated deployment plan files are automatically stored in the
root directory’s plan subdirectory.

java weblogic.PlanGenerator -root /appRelease/MyApplication

In the above example, the plan.xml file is automatically stored in
/appRelease/MyApplication/plan.

Creating a New Deployment Plan Based on an Existing Plan
The following command uses an existing plan as input and generates a new plan in the /plan
subdirectory of the application root directory:

java weblogic.PlanGenerator -useplan /plans/MyApplication_template.xml

-root /appRelease/MyApplication

Controlling the Components Exported to a Deployment Plan
You can use the -all, -configurables, -dependencies, -declarations, -dynamics, and
-none options to specify the WebLogic Server deployment descriptor components that are
exported to a template deployment plan. The following command exports all configurable
properties to null variables in a template deployment plan:

java weblogic.PlanGenerator -root /appRelease/MyApplication -all

See “Exporting an Application for Deployment to New Environments” on page C-1 for more
information about exporting a deployment configuration.

weblog ic .P lanGenera to r Command L ine Re fe rence

B-6 Deploying Applications to WebLogic Server

Deploying Applications to WebLogic Server C-1

A P P E N D I X C

Exporting an Application for
Deployment to New Environments

The following sections describe how to export an application’s WebLogic Server deployment
configuration to a custom deployment plan, which helps administrators easily deploy the
application into non-development environments:

“Overview of the Export Process” on page C-2

“Understanding Deployment Property Classifications” on page C-3

“Steps for Exporting an Application’s Deployment Configuration” on page C-4

“Staging Application Files for Export” on page C-4

“Generating a Template Deployment Plan using weblogic.PlanGenerator” on page C-5

“Customizing the Deployment Plan Using the Administration Console” on page C-6

“Manually Customizing the Deployment Plan” on page C-7

“Validating the Exported Deployment Configuration” on page C-8

“Best Practices for Exporting a Deployment Configuration” on page C-9

Expor t ing an App l i ca t i on fo r Dep loyment to New Env i ronments

C-2 Deploying Applications to WebLogic Server

Overview of the Export Process
Exporting an application’s deployment configuration is the process of creating a custom
deployment plan that administrators can use for deploying the application into new WebLogic
Server environments. You distribute both the application deployment files and the custom
deployment plan to deployers (for example, testing, staging, or production administrators) who
use the deployment plan as a blueprint for configuring the application for their environment.

An administrator can install both the application and the custom deployment plan using the
Administration Console, which validates the deployment plan and indicates when specific
configuration properties need to be filled in before deployment.

See the Deployment Plan Reference and Schema for more information about deployment plans.

Goals for Exporting a Deployment Configuration
The primary goals in exporting a deployment configuration are:

1. To expose the external resources requirements of the application as null variables in a
deployment plan. Any external resources required by the application are subject to change
when the application is deployed to a different environment. For example, the JNDI names of
datasources used in your development environment may be different from those used in
testing or production. Exposing those JNDI names as variables makes it easy for deployers to
use available resources or create required resources when deploying the application. Using
empty (null) variables forces the deployer to fill in a valid resource name before the
application can be deployed.

2. To expose additional configurable properties, such as tuning parameters, as variables
in a deployment plan. Certain tuning parameters that are acceptable in a development
environment may be unacceptable in a production environment. For example, it may suffice
to accept default or minimal values for EJB caching on a development machine, whereas a
production cluster would need higher levels of caching to maintain acceptable performance.
Exporting selected tunables as deployment plan variables helps an administrator focus on
important tuning parameters when deploying the application. The Administration Console
highlights tuning parameters exposed as variables in a deployment plan, but does not
require a deployer to modify them before deployment.

Tools for Exporting a Deployment Configuration
BEA WebLogic Server provides the following tools to help you export an application’s
deployment configuration:

Unders tanding Deployment P roper t y C lass i f i cat i ons

Deploying Applications to WebLogic Server C-3

weblogic.PlanGenerator creates a template deployment plan with null variables for
selected categories of WebLogic Server deployment descriptors. This tool is recommended
if you are beginning the export process and you want to create a template deployment plan
with null variables for an entire class of deployment descriptors (see “Understanding
Deployment Property Classifications” on page C-3). You typically need to manually
modify the deployment plan created by weblogic.PlanGenerator, either manually or
using the Administration Console, to delete extraneous variable definitions or add variables
for individual properties.

The Administration Console updates or creates new deployment plans as necessary when
you change configuration properties for an installed application. You can use the
Administration Console to generate a new deployment plan or to add or override variables
in an existing plan. The Administration Console provides greater flexibility than
weblogic.PlanGenerator, because it allows you to interactively add or edit individual
deployment descriptor properties in the plan, rather than export entire categories of
descriptor properties.

Understanding Deployment Property Classifications
Each WebLogic Server deployment descriptor property (for all J2EE module descriptors as well
as JDBC, JMS, and WLDF application modules) is formally classified into one of the following
four categories:

Non-configurable properties cannot be changed by an administrator during a deployment
configuration session. Non-configurable properties are used to describe application
behavior that is fundamental to the basic operation of the application. For example, the
ejb-name property is categorized as non-configurable, because changing its value also
requires changing the EJB application code.

Dependency properties resolve resource dependencies defined in the J2EE deployment
descriptors. For example, if the J2EE descriptor for an EJB defines a datasource name that
is used within the EJB code, the WebLogic Server descriptor uses a dependency property
to bind the datasource name to an actual datasource configured in the target WebLogic
Server domain.

Declaration properties declare a resource that other applications can use. For example, the
JNDI name of an EJB declares the EJB name that other applications or modules would use
to access the EJB.

Configurable properties are the remaining properties not classified as dependency or
declaration properties. Generally configurable properties enable or configure WebLogic
Server-specific features and tuning parameters for the deployed application. For example,

Expor t ing an App l i ca t i on fo r Dep loyment to New Env i ronments

C-4 Deploying Applications to WebLogic Server

the WebLogic Server descriptor for an EJB might define the number of EJBs that
WebLogic Server caches in memory.

These categories are used during the configuration export process to select properties to expose
as variables in the deployment plan. For example, you can generate a new deployment plan
containing variable definitions for all properties tagged as “dependencies” in an application’s
WebLogic Server deployment descriptors. The variables can then be easily changed by an
administrator deploying the application to an environment having different resource names.

All changeable descriptor properties (dependency, declaration, and configurable properties) are
further classified as either dynamic or non-dynamic properties. Dynamic properties can be
changed in a deployed application without requiring you to redeploy for the changes to take
effect. Non-dynamic properties can be changed but require redeployment for the changes to take
effect. The Administration Console identifies non-dynamic properties as a reminder for when
redeployment is necessary.

Steps for Exporting an Application’s Deployment Configuration
Exporting an application’s deployment configuration typically involves the following
procedures:

1. Staging Application Files for Export

2. Generating a Template Deployment Plan using weblogic.PlanGenerator

3. Customizing the Deployment Plan Using the Administration Console

4. Manually Customizing the Deployment Plan

5. Validating the Exported Deployment Configuration

The sections that follow describe each procedure in detail.

Staging Application Files for Export
BEA recommends placing application files into an application installation directory before
exporting the deployment configuration. When using an installation directory, generated
configuration files, such as the deployment plan, are automatically copied to the \plan
subdirectory during export.

To create an application installation directory:

1. Create a top-level installation directory for your application:

Gene ra t ing a Template Deployment P lan us ing web log ic .P lanGenerato r

Deploying Applications to WebLogic Server C-5

mkdir c:\exportapps\myApplication

2. Create \app and \plan subdirectories:

mkdir c:\exportapps\myApplication\app

mkdir c:\exportapps\myApplication\plan

3. Copy the complete application to be exported into the \app subdirectory. The application
can be either in archive or exploded archive form:

cp -r c:\dev\myApplication c:\exportapps\myApplication\app

The \app directory must include the full application distribution, and can include the
WebLogic Server descriptor files that you use for deployment to your development
environment.

If you choose not to use an installation directory when exporting an application, BEA
recommends using the -plan option to weblogic.PlanGenerator to specify the location and
filename of the generated plan. By default, weblogic.PlanGenerator stores generated files in
the TEMP/weblogic-install/application_name/config directory, where TEMP is the
temporary directory for your environment. For Windows platforms, this means generated
configuration files are stored in C:\Documents and Settings\username\Local
Settings\Temp\weblogic\install\myApplication.ear\config. Use the -plan option to
place generated files in a known location.

Generating a Template Deployment Plan using
weblogic.PlanGenerator

The weblogic.PlanGenerator tool provides a quick and easy way to generate a template
deployment plan with null variables for an entire category of deployment descriptors. BEA
recommends using weblogic.PlanGenerator to generate a new deployment plan with null
variables for all of an application’s dependencies. This ensures that all global resources required
for an application can be easily configured by administrators who must deploy the application in
a new environment.

When using an application staged in an installation root directory, the basic syntax for using
weblogic.PlanGenerator is:

java weblogic.PlanGenerator -root install_root category

category specifies the category of WebLogic Server deployment descriptors for which you want
to create variables. (See “Understanding Deployment Property Classifications” on page C-3 for
a description of each category.) For the purposes of generating a template deployment plan, you

Expor t ing an App l i ca t i on fo r Dep loyment to New Env i ronments

C-6 Deploying Applications to WebLogic Server

should usually use only the -dependencies option, which is the default option, as this limits
variables to external resources required by the application.

Note: The -dependencies option creates null variables for every possible
dynamically-configurable deployment property, which can result in a large number of
variable definitions that may not be required for your application. The -declarations
option is generally not required, because declaration properties are typically associated
with the basic functioning of the application and should not be changed before
deployment to a new environment.

For example:

java weblogic.PlanGenerator -root c:\exportapps\myApplication -dependencies

java weblogic.PlanGenerator -root c:\exportapps\myApplication

With the above commands, which are synonymous because -dependencies is the default option
so you are not required to specify it in your weblogic.PlanGenerator command,
weblogic.PlanGenerator inspects all J2EE deployment descriptors in the selected
application, and creates a deployment plan with null variables for all relevant WebLogic Server
deployment properties that configure external resources for the application. Using this template
deployment plan, an administrator using the Administration Console would be directed to assign
valid resource names for each null variable before the application could be deployed.

Customizing the Deployment Plan Using the Administration
Console

The template deployment plan generated in “Generating a Template Deployment Plan using
weblogic.PlanGenerator” on page C-5 contains only those deployment properties that resolve
external dependencies for the application. You will generally customize the template plan to add
one or more WebLogic Server tuning properties for the application. The Administration Console
enables you to easily add deployment plan variables for individual deployment descriptor
properties as needed. To customize a deployment plan using the Administration Console:

1. Install the Exported Application and Template Deployment Plan

2. Add Variables for Selected Tuning Properties

3. Retrieve the Customized Deployment Plan

Manual l y Customiz ing the Dep loyment P lan

Deploying Applications to WebLogic Server C-7

Install the Exported Application and Template Deployment
Plan
To modify a deployment configuration using the Administration Console, you must first install
the application and existing deployment plan as described in Install applications and modules in
Administration Console Online Help.

Add Variables for Selected Tuning Properties
After installing the exported application, follow the steps in Update a deployment plan in
Administration Console Online Help to add new tuning properties to the deployment plan:

Retrieve the Customized Deployment Plan
When you modify an application’s deployment configuration using the Administration Console,
your changes to deployment properties are stored in a WebLogic Server deployment plan and/or
in generated WebLogic Server deployment descriptor files. If you modified only those
deployment properties that were already defined as variables in the application’s deployment
plan, your changes are written back to a new version of the plan file. If you modified deployment
properties that were not specified in the deployment plan, new variables are added to the plan.

When you configure an application that was installed from an installation directory, the
Administration Console stores generated configuration files in the plan subdirectory by default.

Manually Customizing the Deployment Plan
In some cases you may need to edit a custom deployment plan manually, using a text editor. This
may be necessary for the following reasons:

You want to remove an existing deployment plan variable.

You want to assign a null value to a generated variable in the plan.

Note: You cannot use the Administration Console to remove variable definitions from the
deployment plan or assign a null value for a deployment property.

See Deployment Plan Schema before manually editing deployment plan entries.

Removing Variables from a Deployment Plan
The variable-definition stanza in a deployment plan defines the names and values of
variables used for overriding WebLogic Server deployment descriptor properties. The

http://e-docs.bea.com/wls/docs91/ConsoleHelp/taskhelp/deployment/InstallApplicationsAndModules.html
http://e-docs.bea.com/wls/docs91/ConsoleHelp/taskhelp/applications/UpdateDeploymentPlan.html
http://e-docs.bea.com/wls/docs91/ConsoleHelp/taskhelp/deployment/InstallApplicationsAndModules.html
http://e-docs.bea.com/wls/docs91/deployment/plan.html#schema

Expor t ing an App l i ca t i on fo r Dep loyment to New Env i ronments

C-8 Deploying Applications to WebLogic Server

module-override element may contain one or more variable-assignment elements that
define where a variable is applied to a given deployment descriptor. To remove a variable from
a deployment plan, use a text editor to delete:

the variable definition from the variable-definition stanza

all variable-assignment elements that reference the deleted variable.

Assigning Null Variables to Require Administrator Input
To assign a null value to an existing variable definition, simply change any text value that is
present in the value subelement in the variable element to <value
xsi:nil="true"></value> where the xsi namespace is defined as:
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance". For example, change:

...
<variable-definition>
<variable>

<name>SessionDescriptor_InvalidationIntervalSecs_11029744771850</name>
<value>80</value>

</variable>
</variable-definition>

...

to:

...
<variable-definition>
<variable>

<name>SessionDescriptor_InvalidationIntervalSecs_11029744771850</name>
<value xsi:nil="true"></value>

</variable>
</variable-definition>

...

Validating the Exported Deployment Configuration
The Administration Console automatically validates the deployment configuration for a
newly-installed application or module. To validate a custom deployment plan that you have
created during the export process:

1. Follow the steps under “Install the Exported Application and Template Deployment Plan” on
page C-7 to install the application or module with the final version of the custom deployment
plan. The Administration Console automatically uses a deployment plan named plan.xml in
the plan subdirectory of an installation directory, if one is available.

Bes t P ract ices f o r Expor t ing a Dep loyment Conf igurat ion

Deploying Applications to WebLogic Server C-9

2. On the Summary of Deployments page, select the name of the application or module that
you installed.

3. Select the Deployment Plan > Dependencies tab.

4. Verify that the dependencies configured for the deployed module are valid for the selected
target servers.

Best Practices for Exporting a Deployment Configuration
Keep in mind these best practices when exporting an application’s deployment configuration:

The primary goal for exporting an application is to create null variables for all of an
application’s external resource dependencies. This ensures that deployers have the ability
to assign resource names based on resources available in their target environment.

Use weblogic.PlanGenerator only for exporting resource dependencies. Using
weblogic.PlanGenerator to export other categories of deployment descriptor properties
generally results in too many variables in the deployment plan.

Use the Administration Console to add individual tuning property values to the deployment
plan, or to validate a custom deployment plan.

Neither the Administration Console nor weblogic.PlanGenerator allow you to remove
variables from a plan or set null values for variables. Use a text editor when necessary to
complete these tasks.

Expor t ing an App l i ca t i on fo r Dep loyment to New Env i ronments

C-10 Deploying Applications to WebLogic Server

Deploying Applications to WebLogic Server D1

A P P E N D I X D

Deployment Plan Reference and
Schema

This appendix provides additional information about WebLogic Server deployment plans. It
includes the following sections:

“How Deployment Plans Work” on page D-2

“Deployment Plan Schema” on page D-4

“Understanding the Deployment Configuration Process” on page D-10

“Typical Deployment Configuration Workflows” on page D-11

Deployment P lan Refe rence and Schema

D2 Deploying Applications to WebLogic Server

How Deployment Plans Work
A WebLogic Server deployment plan is an optional XML file that configures an application for
deployment to WebLogic Server. A deployment plan works by setting property values that would
normally be defined in the WebLogic Server deployment descriptors, or by overriding property
values already defined in a WebLogic Server deployment descriptor. When exporting an
application, the deployment plan typically acts to override selected properties in the WebLogic
Server deployment descriptors you created during development.

Deployment plans help an Administrator easily modify an application’s WebLogic Server
configuration for deployment into to multiple, differing WebLogic Server environments without
modifying the packaged WebLogic Server deployment descriptor files. Configuration changes
are applied by adding or changing variables in the deployment plan, which define both the
location of the WebLogic Server descriptor properties to change and the value to assign to those
properties. Administrators deploying an application need only change the deployment plan—the
original deployment files and deployment descriptors remain unchanged.

Figure 7-3 WebLogic Server Deployment Plan

How Dep lo yment P lans Work

Deploying Applications to WebLogic Server D3

Deployment P lan Refe rence and Schema

D4 Deploying Applications to WebLogic Server

Deployment Plan Schema
<?xml version="1.0" encoding="UTF-8"?>

<xsd:schema

 targetNamespace="http://www.bea.com/ns/weblogic/90"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:wls="http://www.bea.com/ns/weblogic/90"

 xmlns:j2ee="http://java.sun.com/xml/ns/j2ee"

 elementFormDefault="qualified"

 attributeFormDefault="unqualified"

 version="1.0">

 <xsd:import namespace="http://java.sun.com/xml/ns/j2ee"

 schemaLocation="http://java.sun.com/xml/ns/j2ee/j2ee_1_4.xsd" />

<xsd:element name="deployment-plan" type="wls:deployment-planType"/>

<xsd:complexType name="deployment-planType">

 <xsd:sequence>

 <xsd:element name="description"

 type="xsd:string"

 minOccurs="0"

 nillable="true"/>

 <xsd:element name="application-name"

 type="xsd:string"/>

 <xsd:element name="version"

 type="xsd:string"

Deplo yment P lan Schema

Deploying Applications to WebLogic Server D5

 minOccurs="0"/>

 <xsd:element name="variable-definition"

 type="wls:variable-definitionType"

 minOccurs="0" />

 <xsd:element name="module-override"

 type="wls:module-overrideType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="config-root"

 type="xsd:string"

 nillable="true"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="global-variables"

 type="xsd:boolean"

 use="optional"

 default="false"/>

</xsd:complexType>

<xsd:complexType name="variable-definitionType">

 <xsd:sequence>

 <xsd:element name="variable"

 type="wls:variableType"

 minOccurs="0"

 maxOccurs="unbounded"/>

Deployment P lan Refe rence and Schema

D6 Deploying Applications to WebLogic Server

 </xsd:sequence>

</xsd:complexType>

<!--

A single variable definition

-->

<xsd:complexType name="variableType">

 <xsd:sequence>

 <xsd:element name="name"

 type="xsd:string"/>

 <xsd:element name="value"

 type="xsd:string"

 minOccurs="0"

 nillable="true"/>

 <xsd:element name="description"

 type="xsd:string"

 minOccurs="0"/>

 </xsd:sequence>

</xsd:complexType>

<!--

Each variable assignment has the following elements:

name: identifies the variable.

xpath: valid xpaths into the descriptor identified by the uri. The xpaths may
resolve to multiple elements.

description: an optional description.

-->

Deplo yment P lan Schema

Deploying Applications to WebLogic Server D7

<xsd:complexType name="variable-assignmentType">

 <xsd:sequence>

 <xsd:element name="description"

 type="xsd:string"

 minOccurs="0"/>

 <xsd:element name="name"

 type="xsd:string"/>

 <xsd:element name="xpath"

 type="j2ee:pathType"/>

 <xsd:element name="operation" default="add" minOccurs="0">

 <xsd:simpleType>

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="add"/>

 <xsd:enumeration value="remove"/>

 <xsd:enumeration value="replace"/>

 </xsd:restriction>

 </xsd:simpleType>

 </xsd:element>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="module-overrideType">

 <xsd:sequence>

 <xsd:element name="module-name"

 type="xsd:string"/>

 <xsd:element name="module-type"

Deployment P lan Refe rence and Schema

D8 Deploying Applications to WebLogic Server

 type="xsd:string"/>

 <xsd:element name="module-descriptor"

 type="wls:module-descriptorType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 </xsd:sequence>

</xsd:complexType>

<xsd:complexType name="module-descriptorType">

 <xsd:sequence>

 <xsd:element name="root-element"

 type="xsd:string"/>

 <xsd:element name="uri"

 type="j2ee:pathType"/>

 <xsd:element name="variable-assignment"

 type="wls:variable-assignmentType"

 minOccurs="0"

 maxOccurs="unbounded"/>

 <xsd:element name="hash-code"

 type="xsd:string"

 minOccurs="0"/>

 </xsd:sequence>

 <xsd:attribute name="external"

 type="xsd:boolean"

 use="optional"

 default="false"/>

</xsd:complexType>

Deplo yment P lan Schema

Deploying Applications to WebLogic Server D9

</xsd:schema>

Deployment P lan Refe rence and Schema

D10 Deploying Applications to WebLogic Server

Understanding the Deployment Configuration Process
Deployment configuration for an application can occur at several points in the lifecycle of an
application. Each phase of deployment configuration typically involves creating and working
with different deployment files:

1. Development configuration—During development, a programmer creates J2EE deployment
descriptors for an application or module. The programmer also creates WebLogic Server
deployment descriptors to configure the application for deployment to a Weblogic Server
development environment.

Note: Applications developed outside of the WebLogic Server development environment
(for example, a sample or third-party J2EE application such as PetStore) may include
only J2EE descriptors.

2. Export configuration—Before releasing an application from development, a programmer or
designer may optionally export the application’s deployment configuration to a WebLogic
Server deployment plan. Exporting a configuration creates deployment plan variables for all
or a subset of the deployment properties already defined in the application’s WebLogic
Server descriptor files.

Exporting an application helps deployers in other areas of the organization (such as
engineers on the QA team or production Administrators) easily deploy the application to
environments that differ from the programmer’s development environment. The ideal
deployment plan provides a complete list of properties that a deployer will likely need to
change before deploying the application in a new environment.

3. Deployment-time configuration—An Administrator or deployer configures the application
before deploying the application into the target environment. Deployment-time
configuration may use the same Weblogic Server deployment configuration files created
during development, modified versions of the development configuration files, or custom
configuration files that the deployer previously created for the environment, depending on
the deployment configuration workflow for your organization.

4. Post-deployment configuration—After an application has been deployed to a target
environment, an Administrator or deployer can reconfigure the application by redeploying
with a new deployment plan or by using the Administration Console to update and redeploy
an existing deployment plan.

Because deployment configuration is performed by different people at different points in the
lifecycle of an application, both administrators and developers should work together to create a
repeatable configuration workflow for their organization. See “Typical Deployment
Configuration Workflows” on page D-11 for more information.

Typ ica l Dep loyment Conf igura t i on Work f l ows

Deploying Applications to WebLogic Server D11

Administrators and deployers typically perform deployment configuration only at deployment
time or after an application has been deployed. At these stages, the additional configuration
required for an application depends on the available configuration files. See “Updating the
Deployment Configuration for an Application” on page 6-20.

Typical Deployment Configuration Workflows
Deployment plans enable you to define a convenient, repeatable workflow for configuring an
application for deployment to multiple WebLogic Server environments. A configuration
workflow for production applications requires cooperation between your development and
design teams, which create and package the deployable application, and the administrator or
deployer for each target WebLogic Server environment.

The ideal deployment configuration workflow for your organization is determined by:

Number of different environments in which you deploy the same application

Difference in resources provided by each target environment

Frequency with which each target environment changes

Frequency with which the application’s J2EE configuration changes

Ownership requirements for configuration information in different areas of your
organization

The sections that follow describe common deployment configuration workflows for managing
deployment plans and deploying applications to multiple WebLogic Server domains.

Application with Single Deployment Plan
Organizations that know the exact configuration of different deployment environments can use a
single, well-defined deployment plan to deploy an application to multiple WebLogic Server
domains. The single deployment plan configuration workflow works in the following way:

1. The development team, cooperating with administrators and deployers, creates a master
deployment plan for use with all target environments. The number of target environments will
vary depending on your organizational structure. Common deployment environments include
one or more Quality Assurance (QA) or testing domains, staging domains, and production
domains.

The deployment plan that the team creates at this phase defines variables for all
configuration properties that are known to differ between each target environment. For

Deployment P lan Refe rence and Schema

D12 Deploying Applications to WebLogic Server

example, the plan might define empty variables for resource names that differ between
environments and must be configured before the application can be deployed. The plan
may also define default values for common tuning parameters that deployers may want to
change in their environments.

For more information about creating a deployment plan during development, see
“Exporting an Application for Deployment to New Environments” on page C-1.

2. When a version of the application is ready to be released, the development team packages
the application deployment files and delivers both the deployment files and a master
deployment plan to deployers for each target environment.

3. Each deployer uses the Administration Console to install the application and identify the
deployment plan to use for configuration. The Administration Console validates the overall
deployment configuration based on the resources available in the target domain. The
Console then presents a list of configurable properties defined in the plan (as well as any
invalid properties) to the deployer for editing.

Figure 7-4 Single Deployment Plan Workflow

http://e-docs.bea.com/wls/docs91/programming/export.html

Typ ica l Dep loyment Conf igura t i on Work f l ows

Deploying Applications to WebLogic Server D13

4. The deployer uses the Administration Console to interactively configure properties that
were defined in the deployment plan. Deployment plan variables that have null values, or
invalid values for the target WebLogic Server instances or clusters, must be configured
before the application can be deployed. Deployment plan variables that already have valid
values need not be changed before deployment.

Deployers in each environment agree to limit their configuration changes to those
properties defined in the deployment plan. If additional configuration changes are required,
the deployer must communicate those requirements to the development or design team that
modifies the master deployment plan.

Using the single deployment plan workflow provides the following benefits:

It enables the development or design team to control the deployment configuration of the
application.

It reduces the number of configuration decisions that a deployer must make when
deploying the application to a target environment.

It minimizes the number of configuration files associated with the application, making it
easy to store deployment configuration information in a source control system.

In general, you would use a single deployment plan workflow if your organization has a few,
well-understood target environments, and you want to easily replicate a standardized deployment
configuration in each environment.

Single Deployment Plan Ownership and Limitations
The single deployment plan workflow assumes that the development or design team maintains
ownership of the deployment plan, and that deployers limit their plan changes to those variables
defined in the plan. If the deployer modifies only those properties defined in the deployment plan,
their changes are written back to the same deployment plan as updates to the variables.

However, WebLogic Server imposes no restrictions on the configuration properties that a
deployer can modify using the Administration Console. If a deployer configures deployment
properties that were not originally defined in a plan, the Console generates a new deployment
plan having the additional variable entries, and uses the new plan for deployment or
redeployment operations. This can lead to a situation where the deployer uses a deployment plan
that is drastically different from the master deployment plan owned by the development team.

To incorporate new changes into the master deployment plan, the deployer retrieves the new,
customized deployment plan created by the Console. Ideally, those changes should be applied to
the master deployment plan.

Deployment P lan Refe rence and Schema

D14 Deploying Applications to WebLogic Server

Application with Multiple Deployment Plans
Organizations that have numerous deployment environments that frequently change should use a
configuration workflow with multiple deployment plans. In a multiple deployment plan
workflow, each deployment plan is owned by the deployer of the application rather than the
development team. The multiple deployment plan configuration workflow works in the following
way:

1. The development team releases a version of the packaged application deployment files
(containing J2EE and Weblogic Server descriptors). The development team may or may not
include a basic deployment plan with exported variables for resource definitions or common
tunable parameters.

2. Before first deploying the application, each deployer generates a custom deployment plan to
configure the application for their target environment.

A custom deployment plan can be created by starting with a template deployment plan (or
no deployment plan) and making interactive changes to the application’s deployment
configuration using the Administration Console. Changes made using the Console are
either written back to the original deployment plan, or are stored in a newly-generated
deployment plan for the application.

3. After defining the deployment configuration for their environment, each deployer retrieves
their custom deployment plan and maintains it for future deployments of the application.
BEA recommends storing custom configuration plans in a source control system so that
new versions can be tracked and reverted to if necessary.

Typ ica l Dep loyment Conf igura t i on Work f l ows

Deploying Applications to WebLogic Server D15

Figure 7-5 Multiple Deployment Plan Workflow

4. For subsequent releases of the application, each deployer uses their customized deployment
plan to configure the application for deployment. Using the customized plan allows
deployers to perform non-interactive deployments with the weblogic.Deployer or fully
automated deployments using WLST.

Using the multiple deployment plan workflow provides the following benefits:

It enables the administrator or deployer to manage both the application configuration and
environment configuration in tandem.

It enables deployers to automate the deployment process by using a custom plan that fully
configures the application for their application.

In general, you would use a multiple deployment plan workflow if your organization has many
deployment environments that change frequently, making it difficult or impossible to maintain a
single master deployment plan.

Deployment P lan Refe rence and Schema

D16 Deploying Applications to WebLogic Server

Multiple Deployment Plan Ownership and Limitations
The multiple deployment plan workflow assumes that the deployer or administrator (rather than
the programming or design team) owns and maintains the deployment configuration for an
application. It also assumes that the basic J2EE configuration of the application rarely changes,
because certain J2EE configuration changes would render a deployer’s custom configuration
plans invalid. For example, if a module in an Enterprise Application is added, removed, or
changed, custom deployment plans referencing the module would become invalid. In this case,
each deployer would need to re-create their custom plan by interactively configuring the
application using the Administration Console.

	Introduction and Roadmap
	Document Scope and Audience
	Guide to This Document
	Related Documentation
	New and Changed Deployment Features in This Release

	Understanding WebLogic Server Deployment
	Overview of the Deployment Process
	Deployment Standards
	Deployment Terminology
	Security Roles Required for Deployment
	WebLogic Server Deployment Features
	Rich Deployment Configuration
	Easy Deployment to Multiple, Varied Environments
	Administration Mode for Isolating Production Applications
	Deployable JDBC, JMS, and WLDF Application Modules
	Module-Level Deployment and Redeployment for Enterprise Applications
	Safe Redeployment for Production Applications

	Supported Deployment Units
	Enterprise Application
	Web Application
	Enterprise JavaBean
	Resource Adapter
	Web Service
	J2EE Library
	Optional Package
	JDBC, JMS, and WLDF Modules
	Client Application Archive

	Overview of Deployment Tools
	weblogic.Deployer
	Administration Console
	WLST
	Deployment Tools for Developers

	Preparing Applications and Modules for Deployment
	Overview of Preparing Applications and Modules
	Deployment Archive Files Versus Exploded Archive Directories
	Archive Files
	Exploded Archive Directories
	Creating an Exploded Archive Directory from an Archive File

	Understanding Default Deployment Names
	Understanding Application Naming Requirements
	Understanding Deployment Version Strings
	Creating an Application Installation Directory
	Steps for Creating an Application Installation Directory

	Best Practices for Preparing Deployment Files

	Configuring Applications for Production Deployment
	Overview of Deployment Configuration
	Understanding Application Deployment Descriptors
	Understanding WebLogic Server Deployment Plans
	Goals for Production Deployment Configuration

	Creating a New Deployment Plan to Configure an Application
	Preparing the Deployment Files
	Installing the Application Archive
	Saving Configuration Changes to a Deployment Plan

	Understanding Deployment Plan Contents
	Using an Existing Deployment Plan to Configure an Application
	Additional Configuration Tasks
	Best Practices for Managing Application Configuration

	Deploying Applications and Modules
	Overview of Common Deployment Scenarios
	Uploading Deployment Files from a Remote Client
	Deploying to a Single-Server Domain
	Deploying an Application with a Deployment Plan
	Deploying an Application That Looks Up System Resources from JNDI During preStart
	Targeting Deployments to Servers, Clusters, and Virtual Hosts
	Understanding Deployment Targets
	Deploying to One or More Targets
	Deploying to a Cluster Target
	Enforcing Consistent Deployment to All Configured Cluster Members

	Using Module-Level Targeting for Deploying an Enterprise Application
	Module-Targeting Syntax
	Targeting Web Application Modules

	Deploying JDBC, JMS, and WLDF Application Modules
	Targeting Application-Scoped JMS, JDBC, and WLDF Modules
	Using Sub-Module Targeting with JMS Application Modules
	Sub-module Targeting for Stand-alone JMS Modules
	Sub-module Targeting for Application-scoped JMS Modules

	Controlling Deployment File Copying with Staging Modes
	Staging Mode Descriptions and Best Practices
	Using Nostage Mode Deployment
	Syntax for Nostage Mode
	Using Stage Mode Deployment
	Syntax for Stage Mode
	Using External_stage Mode Deployment
	Syntax for external_stage Mode
	Changing the Default Staging Behavior for a Server

	Distributing Applications to a Production Environment
	Distributing an Application
	Starting a Distributed Application in Administration Mode
	Starting a Distributed Application

	Deploying Shared J2EE Libraries and Dependent Applications
	Understanding Deployment Behavior for Shared Libraries
	Registering Libraries with WebLogic Server
	Specifying Library Versions at Deployment
	Deploying Applications That Reference Libraries

	Auto-Deploying Applications in Development Domains
	Enabling and Disabling Auto-Deployment
	Auto-Deploying, Redeploying, and Undeploying Archived Applications
	Auto-Deploying, Redeploying, and Undeploying Exploded Archives

	Best Practices for Deploying Applications

	Updating Applications in a Production Environment
	Overview of Redeployment Strategies
	Production Redeployment
	In-Place Redeployment
	Partial Redeployment of Static Files
	Partial Redeployment of J2EE Modules

	Understanding When to Use Different Redeployment Strategies
	Using Production Redeployment to Update Applications
	How Production Redeployment Works
	Production Redeployment In Clusters
	Requirements and Restrictions for Using Production Redeployment
	Development Requirements
	Deployment Requirements
	Restrictions on Production Redeployment Updates

	Specifying an Application Version Identifier
	Assigning a Version Identifier During Deployment and Redeployment

	Displaying Version Information for Deployed Applications
	Redeploying a New Version of an Application
	Undeploying a Retiring Application
	Rolling Back the Production Redeployment Process

	Distributing a New Version of a Production Application
	Steps for Distributing a New Version of an Application
	Making an Application Available to Clients
	Best Practices for Using Production Redeployment

	Using In-Place Redeployment for Applications and Stand-alone Modules
	Redeploying Applications and Modules In-Place
	Best Practices for Redeploying Applications and Modules In-Place

	Using Partial Redeployment for J2EE Module Updates
	Restrictions for Updating J2EE Modules in an EAR
	Best Practices for Updating J2EE Modules in an EAR

	Updating Static Files in a Deployed Application
	Updating the Deployment Configuration for an Application
	Modifying a Configuration Using the Administration Console
	How Configuration Changes Are Stored
	Updating an Application to Use a Different Deployment Plan
	Understanding Redeployment Behavior for Deployment Configuration Changes

	Managing Deployed Applications
	Taking a Production Application Offline
	Stopping an Application to Restrict Client Access
	Undeploying an Application or Module

	Undeploying Shared Libraries and Packages
	Adding a New Module to a Deployed Enterprise Application
	Changing the Order of Deployment at Server Startup
	Changing the Deployment Order for Applications and Stand-alone Modules
	Changing the Deployment Order for Modules in an Enterprise Application
	Ordering Startup Class Execution and Deployment

	Changing the Target List for an Existing Deployment
	Removing Files from a Web Application Deployment
	Managing Long-Running Deployment Tasks

	weblogic.Deployer Command-Line Reference
	Required Environment for weblogic.Deployer
	Syntax for Invoking weblogic.Deployer
	Connection Arguments
	User Credentials Arguments
	Common Arguments

	Command Reference
	Cancel
	Deploy
	Distribute
	Listapps
	List, Listtask
	Redeploy
	Start
	Stop
	Undeploy
	Update

	Example config.xml File and Corresponding weblogic.Deployer Command

	weblogic.PlanGenerator Command Line Reference
	Overview of weblogic.PlanGenerator
	Required Environment for weblogic.PlanGenerator
	Syntax for Invoking weblogic.PlanGenerator
	Options

	weblogic.PlanGenerator Examples
	Creating an Initial Deployment Plan in an Application’s Root Directory
	Creating a New Deployment Plan Based on an Existing Plan
	Controlling the Components Exported to a Deployment Plan

	Exporting an Application for Deployment to New Environments
	Overview of the Export Process
	Goals for Exporting a Deployment Configuration
	Tools for Exporting a Deployment Configuration

	Understanding Deployment Property Classifications
	Steps for Exporting an Application’s Deployment Configuration
	Staging Application Files for Export
	Generating a Template Deployment Plan using weblogic.PlanGenerator
	Customizing the Deployment Plan Using the Administration Console
	Install the Exported Application and Template Deployment Plan
	Add Variables for Selected Tuning Properties
	Retrieve the Customized Deployment Plan

	Manually Customizing the Deployment Plan
	Removing Variables from a Deployment Plan
	Assigning Null Variables to Require Administrator Input

	Validating the Exported Deployment Configuration
	Best Practices for Exporting a Deployment Configuration

	Deployment Plan Reference and Schema
	How Deployment Plans Work
	Deployment Plan Schema
	Understanding the Deployment Configuration Process
	Typical Deployment Configuration Workflows
	Application with Single Deployment Plan
	Single Deployment Plan Ownership and Limitations

	Application with Multiple Deployment Plans
	Multiple Deployment Plan Ownership and Limitations

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f0072002000720065006c006900610062006c0065002000760069006500770069006e006700200061006e00640020007000720069006e00740069006e00670020006f006600200062007500730069006e00650073007300200064006f00630075006d0065006e00740073002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

