
BEAWebLogic
Server®

Avitek Medical Records
Development Tutorials

Version 9.1
Revised: December 20, 2005

Copyright
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.

Restricted Rights Legend
This software is protected by copyright, and may be protected by patent laws. No copying or other use of this software is
permitted unless you have entered into a license agreement with BEA authorizing such use. This document is protected
by copyright and may not be copied photocopied, reproduced, translated, or reduced to any electronic medium or machine
readable form, in whole or in part, without prior consent, in writing, from BEA Systems, Inc.

Information in this document is subject to change without notice and does not represent a commitment on the part of BEA
Systems. THE DOCUMENTATION IS PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND INCLUDING
WITHOUT LIMITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. FURTHER, BEA SYSTEMS DOES NOT WARRANT, GUARANTEE, OR MAKE ANY
REPRESENTATIONS REGARDING THE USE, OR THE RESULTS OF THE USE, OF THE DOCUMENT IN
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, OR OTHERWISE.

Trademarks and Service Marks
Copyright © 1995-2005 BEA Systems, Inc. All Rights Reserved.BEA, BEA JRockit, BEA WebLogic Portal, BEA
WebLogic Server, BEA WebLogic Workshop, Built on BEA, Jolt, JoltBeans, SteelThread, Top End, Tuxedo, and
WebLogic are registered trademarks of BEA Systems, Inc. BEA AquaLogic, BEA AquaLogic Data Services Platform,
BEA AquaLogic Enterprise Security, BEA AquaLogic Service Bus, BEA AquaLogic Service Registry, BEA Builder,
BEA Campaign Manager for WebLogic, BEA eLink, BEA Liquid Data for WebLogic, BEA Manager, BEA MessageQ,
BEA WebLogic Commerce Server, BEA WebLogic Communications Platform, BEA WebLogic Enterprise, BEA
WebLogic Enterprise Platform, BEA WebLogic Enterprise Security, BEA WebLogic Express, BEA WebLogic
Integration, BEA WebLogic Java Adapter for Mainframe, BEA WebLogic JDriver, BEA WebLogic Log Central, BEA
WebLogic Network Gatekeeper, BEA WebLogic Personalization Server, BEA WebLogic Personal Messaging API, BEA
WebLogic Platform, BEA WebLogic Portlets for Groupware Integration, BEA WebLogic Server Process Edition, BEA
WebLogic SIP Server, BEA WebLogic WorkGroup Edition, Dev2Dev, Liquid Computing, and Think Liquid are
trademarks of BEA Systems, Inc. BEA Mission Critical Support, BEA Mission Critical Support Continuum, and BEA
SOA Self Assessment are service marks of BEA Systems, Inc.

All other names and marks are property of their respective owners.

MedRec Development Tutorials v

Contents

Overview of the Avitek Medical Records Development Tutorials
What Is Avitek Medical Records? . 1-1

How to Use the Tutorials . 1-3

Tutorial Descriptions . 1-4

Related Reading . 1-4

Configuring Domains and Servers
Tutorial 1: Creating a WebLogic Domain and Server Instance for Development. 2-1

Tutorial 2: Starting the PointBase Development Database . 3-1

Tutorial 3: Configuring WebLogic Server Resources with the Administration Console . 4-1

Tutorial 4: Using WebLogic Server Development Mode . 5-1

Developing the MedRec Applications
Tutorial 5: Creating the MedRec Project Directory. 6-1

Tutorial 6: Understanding the WebLogic Server Split Directory Structure 7-1

Tutorial 7: Compiling Split Development Directory Applications with Ant Tasks 8-1

Tutorial 8: Walkthrough of Web Application Deployment Descriptors 9-1

Tutorial 9: Deploying MedRec from the Development Environment 10-1

Tutorial 10: Using EJBGen to Generate EJB Deployment Descriptors 11-1

Tutorial 11: Creating a J2EE Web Service by Programming a JWS File 12-1

Tutorial 12: Invoking a Web Service from a Client Application. 13-1

Tutorial 13: Compiling the Entire MedRec Project . 14-1

vi MedRec Development Tutorials

Moving to Production
Tutorial 14: Packaging MedRec for Distribution . 15-1

Tutorial 15: Using WLST and the Administration Console to Deploy the MedRec Package
for Production . 16-1

Tutorial 16: Creating Users, Groups, and Global Security Roles 17-1

Tutorial 17: Securing URL (Web) Resources Using the Administration Console 18-1

Tutorial 18: Using the Administration Console to Secure Enterprise JavaBean (EJB)
Resources . 19-1

Tutorial 19: Creating a Deployment Plan and Redeploying the MedRec Package 20-1

MedRec Development Tutorials 1-1

C H A P T E R 1

Overview of the Avitek Medical Records
Development Tutorials

The Avitek Medical Records Development Tutorials guide you through the process of
developing, packaging, and deploying real-world J2EE applications with WebLogic Server.
These tutorials use the Avitek Medical Records sample application suite (Version 2.0) as a basis
for instruction. However, you can easily apply the procedures and best practices to your own
J2EE applications.

The following sections provide an overview of the application and the tutorials:

“What Is Avitek Medical Records?” on page 1-1

“How to Use the Tutorials” on page 1-3

“Tutorial Descriptions” on page 1-4

“Related Reading” on page 1-4

What Is Avitek Medical Records?
Avitek Medical Records (or MedRec) is a WebLogic Server sample application suite that
concisely demonstrates all aspects of the J2EE platform. MedRec is an educational tool for all
levels of J2EE developers; it showcases the use of each J2EE component, and illustrates best
practice design patterns for component interaction and client development.

The MedRec application provides a framework for patients, doctors, and administrators to
manage patient data using a variety of different clients. Patient data includes:

Patient profile information—A patient’s name, address, social security number, and log-in
information.

Overv iew o f the Av i tek Med ica l Records Deve l opment Tuto r ia ls

1-2 MedRec Development Tutorials

Patient medical records—Details about a patient’s visit with a physician, such as the
patient’s vital signs and symptoms as well as the physician’s diagnosis and prescriptions.

The MedRec application suite consists of two main J2EE applications, medrecEar and
physicianEar, and two supporting applications, startBrowserEar and initEar, that load the
MedRec informational page and register management beans (MBeans). The main applications
support one or more user scenarios for MedRec:

medrecEar—Patients log in to the patient Web Application (patient) to edit their profile
information, or request that their profile be added to the system. Patients can also view
prior medical records of visits with their physician. Administrators use the administration
Web Application (admin) to approve or deny new patient profile requests.

medrecEar also provides all of the controller and business logic used by the MedRec
application suite, as well as the Web Service used by different clients.

physicianEar—Physicians and nurses log in to the physician Web Application
(physician) to search and access patient profiles, create and review patient medical
records, and prescribe medicine to patients. The physician application communicates
through the Web Service provided in medrecEar.

startBrowserEar—The startBrowserEar application is a simple Web Application that
automatically starts a Web browser and loads a MedRec informational page when you start
the installed MedRec domain. This application is not discussed during the development
tutorials, but is compiled and deployed as part of the complete MedRec build process.

initEar—The initEar application implements and registers a custom management bean
(MBean) that polls the database every 6 seconds to check for new users to be added to the
system.

In the tutorials that follow, all applications will be deployed in a single-server domain.
Single-server domains are generally used during the development process for convenience of
deployment and testing. Figure 1 shows how each application would be deployed to multiple
servers in a production environment.

How to Use the Tuto r ia ls

MedRec Development Tutorials 1-3

Figure 1-1 MedRec Application Suite in a Multiple-Server Domain

Throughout the course of the MedRec tutorials, you create the server instances, build the MedRec
applications, and deploy them to the new servers. If you are interested in viewing or using the
complete MedRec application before starting the tutorials, you can use the pre-built MedRec
domain that is installed with WebLogic Server.

Although the MedRec tutorials explain how to develop application components using WebLogic
Server tools, they do not describe the MedRec J2EE implementation or explain how to program
J2EE components in Java.

How to Use the Tutorials
The MedRec tutorials are designed to be completed in the order they are presented. The sequence
of tutorials follows the various stages of J2EE application development, from staging and coding
the application, through building and deploying components.

Overv iew o f the Av i tek Med ica l Records Deve l opment Tuto r ia ls

1-4 MedRec Development Tutorials

If you choose to skip one or more tutorials, read the Prerequisites section of the tutorial you want
to follow. This section identifies steps you need to complete in order to complete the tutorial. In
many cases, BEA provides scripts that help you catch up to a given point in the tutorials. If you
follow the tutorials in sequence, you will always meet the prerequisites for the next tutorial.

Because it is assumed in these tutorials that you are working on a Microsoft Windows computer,
all commands use Windows syntax.

Tutorial Descriptions
The tutorials are divided into the following sections:

Configuring Domains and Servers describes how to configure the domains, WebLogic
Server instances, and resources (such as persistent stores, JMS queues, and
store-and-forward agents) required to deploy the MedRec application.

Developing the MedRec Applications describes how to create the development
environment for the MedRec tutorials and build application components. The development
environment consists of the application directories and associated Ant tasks that help you
build and deploy the J2EE applications. Tutorials in this section also describe how to use
WebLogic Server tools to generate deployment descriptors, package, and deploy J2EE
components, as well as program some components, such as Web Services.

Moving to Production describes how to take the MedRec application from the development
environment into a production environment. Tutorials in this section focus on packaging,
deploying, and securing the MedRec application.

Related Reading
Introduction to WebLogic Server and WebLogic Express

Developing Applications on BEA WebLogic Server (topic page)

Developing Applications with WebLogic Server (Programming Guide)

MedRec Development Tutorials 2-1

C H A P T E R 2

Configuring Domains and Servers

Tutorial 1: Creating a WebLogic Domain and Server Instance for
Development

In this tutorial you use the WebLogic Server Configuration Wizard to create a domain and server
to deploy and run the MedRec applications.The tutorial also shows you how to start the server.

The Configuration Wizard asks for information about the domain you want to create based on the
configuration template you select, and then creates a config.xml file, along with other
supporting configuration XML files, for the domain based on your responses. The Configuration
Wizard also creates startup scripts for the server instances in the domain, and other helper files
and directories to help you start and use the new domain and its servers. You will work with these
scripts and directories in later tutorials.

The tutorial includes:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Conf igur ing Domains and Servers

2-2 MedRec Development Tutorials

Prerequisites
Before starting this tutorial:

Make sure WebLogic Server 9.1 and the server samples are installed on your computer.

Read “Overview of the Avitek Medical Records Development Tutorials.”

Procedure
To create the MedRec domain and the WebLogic Server instance to which you will deploy
MedRec, follow these steps. You will use the domain and server in later tutorials.

Step 1: Create the MedRec domain and MedRec server.

Step 2: Enable log4j for logging application messages.

Step 3: Add the MedRecDBMSPlugin.jar to the server’s CLASSPATH.

Step 4: Start the MedRec Administration Server.

Step 1: Create the MedRec domain and MedRec server.
The MedRec domain includes a single server that will host the MedRec back-end services, the
MedRec Administration application, and the Patient application (both applications are Web
applications).

1. Launch the Configuration Wizard:

Start→All Programs→BEA Products→Tools→Configuration Wizard

2. In the Welcome window, select Create a new WebLogic domain.

3. Click Next.

4. In the Select Domain Source window, select the option that begins Generate a domain
configured automatically ...

For the sake of simplicity, do not check AquaLogic Service Bus or Apache Beehive.

5. Click Next.

6. In the Configure Administrative Username and Password window, enter:

– weblogic for User Name

Tuto r ia l 1 : C reat ing a WebLog ic Domain and Se rve r Ins tance fo r Deve lopment

MedRec Development Tutorials 2-3

– weblogic for User Password and Confirm user Password

– An optional description.

You use this username and password when you start the server and log in to the
Administration Console.

Note: In a production environment the user name and password should not be the same.

7. Click Next.

8. In the Configure Server Start Mode and JDK window, select:

– Development Mode for WebLogic Domain Startup Mode

– Sun SDK 1.5.0_XX @ JDK_location, under the BEA Supplied JDKs option, for
JDK Selection

The Sun SDK is the default choice for Development mode. You can select either the Sun
SDK or the JRockit SDK. The Sun SDK offers faster startup times, where as the JRockit
SDK offers faster runtime performance on Intel architectures.

9. Click Next.

10. In the Customize Environments and Services Settings window, select Yes.

11. Click Next.

12. In the Configure the Administration Server window, enter or select:

– MedRecServer for Name.

– All Local Addresses for Listen Address.

– 7101 for Listen Port.

This tutorial specifies that you enter a port number that is deliberately different from
the default port number of the Examples server (7011), which is also the general
default WebLogic Server port number. If you have already configured this number for
another WebLogic Server instance, enter a different value to avoid network
communication conflicts. The port must be dedicated TCP/IP port for the
Administration Server. The port number can be any integer from 1 to 65535.

– The SSL Enabled check box.

– 7102 for SSL Listen Port.

This tutorial specifies that you enter an SSL port number that is deliberately different
from the default SSL port number (7012). If you have already configured this number

Conf igur ing Domains and Servers

2-4 MedRec Development Tutorials

for the SSL listen port of another WebLogic Server instance, enter a different value to
avoid network communication conflicts. The port must be dedicated TCP/IP port and
cannot be the same as the Server Listen Port. The port number can be any integer from
1 to 65535.

13. Click Next.

14. Select Next in the following windows without making any changes:

– Configure Managed Servers

– Configure Machines

15. In the Review WebLogic Domain window, click on MedRecServer in the left pane and
review your choices, then click Next.

16. In the Create WebLogic Domain window:

a. Enter MedRecDomain as the Domain Name.

b. Click Create to create the MedRec domain in the folder displayed in the Domain Location
text box. When the Configuration Wizard finishes creating the domain, the Domain
Created Successfully! message is displayed.

17. Click Done to close the Configuration Wizard.

Do not check Start Admin Server.

Step 2: Enable log4j for logging application messages.
The MedRec application suite uses log4j for logging application messages. You must copy the
log4j properties file from the pre-configured MedRec domain and identify it using a startup
option in MedRecServer startup script. You also need to copy the log4j jar files to the lib directory
of the MedRec domain. To complete these steps:

1. Copy the log4j properties file from the pre-configured MedRec domain (under the main
WebLogic Server installation directory) to the new domain you just created.

For example, if you installed WebLogic Server in the c:\bea directory, then enter the
following in a command-line shell:

prompt> copy c:\bea\weblogic91\samples\domains\medrec\log4jConfig.xml
c:\bea\user_projects\domains\MedRecDomain

2. Open the setDomainEnv.cmd script, located in the bin directory of your newly created
domain directory, for your new domain in a text editor. For example:

Tuto r ia l 1 : C reat ing a WebLog ic Domain and Se rve r Ins tance fo r Deve lopment

MedRec Development Tutorials 2-5

prompt> notepad
c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

3. Find the following line in the setDomainEnv.cmd script:

if NOT "%LOG4J_CONFIG_FILE%"=="" (

4. Add the following two lines immediately before the line specified in the preceding step:

set
LOG4J_CONFIG_FILE=c:\bea\user_projects\domains\MedRecDomain\log4jConfig
.xml

for %%i in ("%LOG4J_CONFIG_FILE%") do set LOG4J_CONFIG_FILE=%%~fsi

It is assumed in the preceding text that the MedRecDomain directory is
c:\bea\user_projects\domains\MedRecDomain; enter your exact domain directory if
it is different.

5. Save the file and exit your text editor.

6. Copy the log4j JAR files from the lib directory of the pre-configured MedRec domain to
the lib directory of the new domain you just created:

prompt> copy c:\bea\weblogic91\samples\domains\medrec\lib*.jar
c:\bea\user_projects\domains\MedRecDomain\lib

All JAR files in the lib subdirectory of a domain directory are automatically added to the
WebLogic Server system CLASSPATH when the servers in the domain start up.

Step 3: Add the MedRecDBMSPlugin.jar to the server’s
CLASSPATH.
The MedRec application suite uses a custom DBMS authenticator to retrieve login credentials
from the configured PointBase RDBMS for a given username. The Java class that implements
this authenticator is in the MedRecDBMSPlugin.jar file, located in the already-installed MedRec
domain. You must add the JAR file to the MedRecServer’s CLASSPATH so that you can
successfully configure the custom authenticator using the Administration Console (described in
Tutorial 3: Configuring WebLogic Server Resources with the Administration Console).

1. Open the setDomainEnv.cmd script, located in the bin directory of your domain directory,
for your new domain in a text editor. For example:

prompt> notepad
c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

2. Find the following line in the setDomainEnv.cmd script:

Conf igur ing Domains and Servers

2-6 MedRec Development Tutorials

set PRE_CLASSPATH=

3. Update the PRE_CLASSPATH variable by adding the full path name of the
MedRecDBMSPlug.jar file, which is located in the
WL_HOME\samples\domains\medrec\security directory, where WL_HOME refers to the
root directory of WebLogic Server (default c:\bea\weblogic91). For example:

set
PRE_CLASSPATH=c:\bea\weblogic91\samples\domains\medrec\security\MedRecD
BMSPlugin.jar

4. Save the file and exit your text editor.

Step 4: Start the MedRec Administration Server.
Start the MedRec Administration Server using one of the following methods:

From the Start menu:

Start→All Programs→BEA Products→User Projects→MedRecDomain→Start
Admin Server for WebLogic Server Domain

From a script:

1. In a command-line shell, go to the root directory of the MedRec domain, typically
c:\bea\user_projects\domains\MedRecDomain. For example, from the command prompt,
enter:

prompt> cd c:\bea\user_projects\domains\MedRecDomain

2. Invoke the startWebLogic.cmd script to start the MedRec server:

(Windows) prompt> startWebLogic.cmd

(UNIX) prompt> ./startWeblogic.sh

During startup, you will see a message similar to the following once the server is ready to be used:

<Dec 9, 2005 10:52:20 AM PST> <Notice> <WebLogicServer> <BEA-000360>
<Server started in RUNNING mode>

Best Practices
Use the Configuration Wizard to create and configure domains. The Configuration Wizard
creates the necessary configuration file (config.xml), supporting configuration XML
files, directory structure, and startup scripts for each new domain.

Tuto r ia l 1 : C reat ing a WebLog ic Domain and Se rve r Ins tance fo r Deve lopment

MedRec Development Tutorials 2-7

Create domain directories outside the WebLogic Server program files. It is best not to mix
application files with the application server files. By default, the Configuration Wizard
creates domain directories in bea_home\user_projects\domains directory, typically
c:\bea\user_projects\domains, which is parallel to the directory in which WebLogic
Server program files are stored, typically c:\bea\weblogic91.

Use the lib subdirectory of your domain directory to add one or more JAR files to the
WebLogic Server system CLASSPATH when servers start up. The lib subdirectory is
intended for JAR files that change infrequently and are required by all or most applications
deployed in the server, or by WebLogic Server itself. For example, you might use the lib
directory to store third-party utility classes that are required by all deployments in a
domain. You can also use it to apply patches to WebLogic Server.

The Big Picture
This tutorial is the basis for setting up your development environment. Before you can deploy
applications to a server, you must first configure the domains and servers to which you want to
deploy the applications. In this tutorial, you created the MedRec domain, which includes one
server to host the MedRec applications. You use this domain for most tutorials.

Related Reading
Creating WebLogic Domains Using the Configuration Wizard

Starting and Stopping Servers: Quick Reference in Managing Server Startup and Shutdown

Start and stop servers in the Administration Console Online Help

Understanding WebLogic Server Application Classloading in Developing Applications with
WebLogic Server

Log4j and the Commons Logging API in Configuring Log Files and Filtering Log
Messages

Authentication Providers in Developing Security Providers for WebLogic Server

Conf igur ing Domains and Servers

2-8 MedRec Development Tutorials

MedRec Development Tutorials 3-1

C H A P T E R 3

Configuring Domains and Servers

Tutorial 2: Starting the PointBase Development Database
This tutorial describes how to start the PointBase database management system so that the
MedRec application can use it to store application data.

In particular, the tutorial describes how to:

Start the PointBase database.

Use the PointBase console to view the tables in the database used by the MedRec
application.

The installation of PointBase shipped with WebLogic Server is already set up with the database
tables and data used by the MedRec application. To view these tables, see Step 2: Use the
PointBase console to view the MedRec tables and data.

Warning: The PointBase database management system shipped with WebLogic Server is
meant to be used for evaluation purposes only. You cannot use it in production
without a license from PointBase.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

3-2 MedRec Development Tutorials

Related Reading

Prerequisites
Create the MedRec domain and MedRec server instance. See “Tutorial 1: Creating a WebLogic
Domain and Server Instance for Development”.

Procedure
To start and use PointBase:

Step 1: Start the PointBase database.

Step 2: Use the PointBase console to view the MedRec tables and data.

Step 1: Start the PointBase database.
1. Open a command prompt window.

2. Go to the PointBase tools directory:

prompt> cd c:\bea\weblogic91\common\eval\pointbase\tools

3. Start the PointBase database:

prompt> startPointBase.cmd

Once the PointBase database server starts, you see a message:

Server started, listening on port 9092, display level: 3 ...

4. Leave this command window open to keep the PointBase database running. If you close the
window, the PointBase database will shut down.

Step 2: Use the PointBase console to view the MedRec tables
and data.
The installation of PointBase shipped with WebLogic Server is already set up with the database
tables and data used by the MedRec application. To view these tables, use the PointBase console.

Note: You must start the PointBase database before you can start the PointBase console. See
Step 1: Start the PointBase database.

1. Launch the PointBase console:

Tuto r ia l 2 : S ta r t ing the Po in tBase Deve l opment Database

MedRec Development Tutorials 3-3

From the Start menu:

Start→Programs→BEA Products→Examples→WebLogic Server→PointBase Console

From a script:

a. In a command-line shell, go to the
bea_home\weblogic91\common\eval\pointbase\tools directory where bea_home
is the main BEA home directory, typically c:\bea. For example:

prompt> cd c:\bea\weblogic91\common\eval\pointbase\tools

b. Invoke the startPointBaseConsole.cmd command to launch the PointBase console:

prompt> startPointBaseConsole.cmd

This command also sets the CLASSPATH to find the PointBase JAR files.

2. In the Driver field, enter com.pointbase.jdbc.jdbcUniversalDriver.

3. In the URL field, enter jdbc:pointbase:server://localhost/demo.

4. In the User field, enter medrec.

5. In the Password field, enter medrec.

6. Select Open Specified Database.

7. Click OK.

8. In the left pane, expand Schemas→MedRec.

9. Browse the tables that make up the MedRec database.

10. Click File→Exit to close the PointBase console.

Best Practices
Use the scripts in the PointBase tools directory to start the database and invoke its console.
See:

c:\bea\weblogic91\common\eval\pointbase\tools

Automatically start dependent processes, such as the PointBase database, by updating the
scripts that start WebLogic Server and adding calls to the relevant scripts, such as
startPointBase.cmd, at the beginning of the WebLogic Server start script. Alternatively,
create a master script to handle the control of starting all required processes for
development, including a call to start WebLogic Server.

3-4 MedRec Development Tutorials

See Step 4: Start the MedRec Administration Server. in Tutorial 1 for information about
the WebLogic Server start scripts.

The Big Picture
The MedRec application uses the PointBase database management system:

To store information about patients, physicians, and administrators who manage the
workflow of the MedRec application

As the JMS JDBC store that contains persistent JMS messages

Patient, Physician, and Administrator Data
The MedRec application uses container-managed entity EJBs to automatically persist
information about patients, physicians, and administrators in the PointBase database. The
following table lists these entity EJBs, the application that uses each EJB, and the PointBase
tables in which the information is persisted.

Table 3-1 Relationship Between MedRec Entity EJBs and PointBase Tables

Entity EJB Application That
Uses the EJB

Corresponding
PointBase Table

Description

AdminEJB Administration ADMIN Information about the administrators that
manage the workflow of the MedRec
application. Administrators handle patient
requests.

AddressEJB Administration,
Patient

ADDRESS Used by the PATIENT, PHYSICIAN, and
ADMIN tables to store their respective
addresses.

PatientEJB Administration,
Patient

PATIENT Patient information such as name, address
reference to the ADDRESS table, SSN, and so
on.

PhysicianEJB Administration PHYSICIAN Physician information such as name, address
reference to the ADDRESS table, phone, and
email.

Tuto r ia l 2 : S ta r t ing the Po in tBase Deve l opment Database

MedRec Development Tutorials 3-5

Persistent JMS Message Storage
The MedRec application uses persistent JMS messaging, which means that any JMS messages
that are put in a queue are also stored in a database so that the messages can be retrieved in case
a problem occurs (such as a server crash) before the message-driven bean (MDB) can process
them. The messages are stored in the MEDRECWLSTORE PointBase table.

This table is generated automatically when you use the Administration Console to create the JMS
JDBC store. The table is used internally by JMS.

Related Reading
PointBase Console Guide

PointBase Developer’s Guide

PrescriptionEJB Patient PRESCRIPTION Describes a prescription, such as the prescribed
drug, the dosage, frequency, instructions, and so
on. Also includes the patient ID, the ID of the
prescribing physician, and the particular visit
that instigated the prescription.

RecordEJB Patient RECORD Describes a single patient visit to a physician.
Includes the patient ID, the physician ID, the
date, the symptoms, diagnosis, and the vital
signs of the patient.

UserEJB Administration,
Patient,
Physician

USER Lists all users (patients, physicians, and
administrators) who are authorized to log into
the MedRec application. After a user is
authenticated, the application retrieves
additional information from the appropriate
table (PATIENT, PHYSICIAN, OR ADMIN).

VitalSignsEJB Patient VITALSIGNS Describes the vital signs of a patient for a
particular visit. Vital signs include temperature,
blood pressure, height, weight, and so on.

Table 3-1 Relationship Between MedRec Entity EJBs and PointBase Tables

Entity EJB Application That
Uses the EJB

Corresponding
PointBase Table

Description

3-6 MedRec Development Tutorials

PointBase System Guide

Understanding Enterprise Java Beans (EJB) in Programming WebLogic Enterprise
JavaBeans

Designing Enterprise Java Beans in Programming WebLogic Enterprise JavaBeans

Entity EJBs in Programming WebLogic Enterprise JavaBeans

MedRec Development Tutorials 4-1

C H A P T E R 4

Configuring Domains and Servers

Tutorial 3: Configuring WebLogic Server Resources with the
Administration Console

This tutorial describes how to configure the WebLogic Server resources required to deploy and
run the MedRec application on the MedRec server. These resources include:

Java Database Connectivity (JDBC) global data sources for the PointBase database
management system.

Java Message Service (JMS) persistent stores, JMS servers, and queues.

Store and Forward (SAF) agents to be used by Web Services reliable messaging

JavaMail mail sessions

Custom DBMS Authenticators

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

4-2 MedRec Development Tutorials

Prerequisites
Before starting this tutorial:

Create the MedRec domain and MedRec server, and start the MedRec administration
server. See “Tutorial 1: Creating a WebLogic Domain and Server Instance for
Development”.

Start the PointBase database management system. See Tutorial 2: Starting the PointBase
Development Database.

Procedure
Follow these steps to configure WebLogic Server resources for the MedRec server:

Step 1: Invoke the Administration Console for the MedRec server in your browser.

Step 2: Create the stand-alone JDBC data sources.

Step 3: Create the file stores used by Web Services reliable messaging.

Step 4: Create a JMS JDBC store.

Step 5: Create JMS servers.

Step 6: Create the stand-alone JMS module and queue.

Step 7: Create the Store and Forward (SAF) agent.

Step 8: Add email capabilities to the MedRec application.

Step 9: Configure the MedRec Custom DBMS Authenticator.

Step 1: Invoke the Administration Console for the MedRec
server in your browser.
You use the Administration Console to create the WebLogic Server resources used by the
MedRec application suite.

1. Open the Administration Console by navigating in a browser to:

http://host:7101/console

Tuto r ia l 3 : Conf igur ing WebLogic Se rve r Resources w i th the Admin is t ra t ion Conso le

MedRec Development Tutorials 4-3

where host refers to the computer on which MedRecServer is running. If your browser is
on the same computer as MedRecServer, then you can use the URL
http://localhost:7101/console.

2. Specify weblogic for both the username and password and click Log In.

Step 2: Create the stand-alone JDBC data sources.
In WebLogic Server, you configure database connectivity by adding JDBC data sources to your
WebLogic domain. A data source is a J2EE standard method of configuring connectivity to a
database. A data source can be deployed by itself as a stand-alone module, or deployed as part of
an Enterprise application as a packaged module.

Each WebLogic data source contains a pool of database connections. Applications look up the
data source in the JNDI tree or in the local application context and then reserve a database
connection with the getConnection method. Data sources and their connection pools provide
connection management processes that help keep your system running and performing well.

This procedure describes how to create two stand-alone JDBC data sources: the first uses an XA
JDBC driver and the second one does not. Typically you always use an XA JDBC driver when
creating a data source. However, because JMS JDBC stores do not support XA resource drivers
(WebLogic JMS implements its own XA resource), a second non-XA data source is needed. A
later procedure shows how to associate the non-XA data source to a JMS JDBC store.

1. Click Lock & Edit, located in the upper left Change Center window of the Administration
Console.

2. In the left Domain Structure window, expand MedRecDomain→Services→JDBC.

3. Click Data Sources.

4. In the right pane, click New.

5. On the JDBC Data Source Properties page:

– In the Name field, enter MedRecGlobalDataSource.

– In the JNDI Name text box, enter jdbc/MedRecGlobalDataSource.

– Select PointBase as the Database Type.

– Select PointBase’s Driver (Type 4) Versions:4.X 5.X as the Database
Driver.

6. Click Next.

4-4 MedRec Development Tutorials

7. On the Transaction Options page, un-check Supports Global Transactions. Leave
One-Phase Commit checked.

This JDBC data source will be used to create a JDBC store, which requires that the data
source not support global transactions.

8. Click Next.

9. On the Connection Properties page:

– In the Database Name field, enter demo.

– In the Host Name field, enter localhost (default value).

– In the Port field, enter 9092 (default value).

– In the Database User Name field, enter medrec.

– In the Password and Confirm Password fields, enter medrec.

10. Click Next.

11. In the Test Database Connection page, ensure that the information to test the connection to
the PointBase database is correct.

Text field values are based on information you have already provided as well as default
PointBase values (such as the Pointbase driver class name of
com.pointbase.jdbc.jdbcUniversalDriver).

Click Test Configuration to test the connection; the message Connection test
succeeded appears in the Messages pane if you have configured the data source correctly.

Note: Be sure you have started PointBase, or the test of its driver configuration will fail. For
details, see Tutorial 2: Starting the PointBase Development Database.

12. Click Next.

13. Select the MedRecServer target.

14. Click Finish.

The new data source is listed in the Data Sources table.

15. In the Summary of JDBC Data Sources page, click New.

16. On the JDBC Data Source Properties page:

– In the Name field, enter MedRecGlobalDataSourceXA.

– In the JNDI Name text box, enter jdbc/MedRecGlobalDataSourceXA.

Tuto r ia l 3 : Conf igur ing WebLogic Se rve r Resources w i th the Admin is t ra t ion Conso le

MedRec Development Tutorials 4-5

– Select PointBase as the Database Type.

– Select PointBase’s Driver (Type 4XA) Versions:4.X 5.X as the Database
Driver.

17. Click Next.

18. On the Transaction Options page, click Next.

19. On the Connection Properties page:

– In the Database Name field, enter demo.

– In the Host Name field, enter localhost (default value).

– In the Port field, enter 9092 (default value).

– In the Database User Name field, enter medrec.

– In the Password and Confirm Password fields, enter medrec.

20. Click Next.

21. In the Test Database Connection page, ensure that the information to test the connection to
the PointBase database is correct.

The values of the text fields are based on information you have already provided as well as
default Pointbase values (such as the Pointbase XA driver class name of
com.pointbase.xa.xaDataSource).

Click Test Configuration to test the connection; the message Connection test
succeeded appears in the Messages pane if you have configured the data source correctly.

Note: Be sure you have started PointBase, or the test of its driver configuration will fail. For
details, see Tutorial 2: Starting the PointBase Development Database.

22. Click Next.

23. Select the MedRecServer target.

24. Click Finish.

The new data source is listed in the Data Sources table.

25. In the Change Center, click Activate Changes to update the MedRec server configuration.

4-6 MedRec Development Tutorials

Step 3: Create the file stores used by Web Services reliable
messaging.
The Web Services reliable messaging feature uses a persistent store to store its messages. The
MedRec tutorials describe how to use a file store to store the messages; you can also use a JDBC
store although this procedure is not documented in the tutorials.

Note: WebLogic Web Services reliable messaging is a service-to-service feature, which means
that one client Web Service invokes another Web Service reliably. Typically each Web
Service is deployed to two different WebLogic Server instances; each server instance in
turn has its own store-and-forward (SAF) agent and persistent store. However, because
these tutorials assume a single-server domain for ease of development, both Web
Services are deployed to the same server, and thus use the same SAF agent and persistent
store.

1. If you have not already done so, click Lock & Edit, located in the upper left Change Center
window of the Administration Console.

2. In the left Domain Structure window, expand MedRecDomain→Services.

3. Click Persistent Stores.

4. In the right pane, click New and choose the Create FileStore option.

5. In the Name field, enter MedRecWseeFileStore.

6. In the Target drop-down list, select MedRecServer.

7. In the Directory field, enter medrecWseeFileStore.

8. Click Finish.

9. In the Change Center, click Activate Changes to update the MedRec server configuration.

Step 4: Create a JMS JDBC store.
Persistent stores are used to store persistent messages. This JMS JDBC store uses the non-XA
data source you created in Step 2: Create the stand-alone JDBC data sources.

1. If you have not already done so, click Lock & Edit, located in the upper left Change Center
window of the Administration Console.

2. In the left Domain Structure window, expand MedRecDomain→Services.

Tuto r ia l 3 : Conf igur ing WebLogic Se rve r Resources w i th the Admin is t ra t ion Conso le

MedRec Development Tutorials 4-7

3. Click Persistent Stores.

4. In the right pane, click New and choose the Create JDBCStore option.

5. In the Name field, enter MedRecJMSJDBCStore.

6. In the Target drop-down list, select MedRecServer.

7. In the Data Source drop-down list, select MedRecGlobalDataSource.

8. In the Prefix Name field, enter MedRec.

9. Click Finish.

10. In the Change Center, click Activate Changes to update the MedRec server configuration.

Step 5: Create JMS servers.
JMS servers host the queue and topic destinations used by JMS clients. To persistently store
messages in destinations, the JMS server must be configured with a JMS store.

1. If you have not already done so, click Lock & Edit, located in the upper left Change Center
window of the Administration Console.

2. In the left Domain Structure window, expand MedRecDomain→Services→Messaging.

3. Click JMS Servers.

4. In the right pane, click New.

5. In the Name field, enter MedRecJMSServer.

6. In the Persistent Store drop-down list, select MedRecJMSJDBCStore.

7. Click Next.

8. In the Target drop-down list, select MedRecServer.

9. Click Finish.

10. In the Summary of JMS Servers page, click New.

11. In the Name field, enter MedRecWseeJMSServer.

12. In the Persistent Store drop-down list, select MedRecWseeFileStore.

13. Click Next.

4-8 MedRec Development Tutorials

14. In the Target drop-down list, select MedRecServer.

15. Click Finish.

16. In the Change Center, click Activate Changes to update the MedRec server configuration.

Step 6: Create the stand-alone JMS module and queue.
JMS queues are based on the point-to-point (PTP) messaging model, which enables the delivery
of a message to exactly one recipient. A queue sender (producer) sends a message to a specific
queue. A queue receiver (consumer) receives messages from a specific queue.

You configure JMS queues by first creating a stand-alone JMS module and then configuring it
with a JMS queue, as described in the following procedure.

In addition to the queue that is part of the stand-alone JMS module, the medrecEar application
uses the following JMS queues configured as part of a packaged JMS module,

REGISTRATION_MDB_QUEUE

MAIL_MDB_QUEUE

XML_UPLOAD_MDB_QUEUE

These application-scoped JMS queues are first registered in the weblogic-application.xml
deployment descriptor of the medrecEar application, and then described in XML files.

1. If you have not already done so, click Lock & Edit, located in the upper left Change Center
window of the Administration Console.

2. In the left Domain Structure window, expand MedRecDomain→Services→Messaging.

3. Click JMS Modules.

4. In the right pane, click New.

5. On the Create JMS System Module page:

– In the Name field, enter MedRec-jms.

– In the Descriptor File Name field, enter MedRec-jms.xml.

– Leave the Location in Domain field blank.

6. Click Next.

7. In the Targets box, check MedRecServer.

Tuto r ia l 3 : Conf igur ing WebLogic Se rve r Resources w i th the Admin is t ra t ion Conso le

MedRec Development Tutorials 4-9

8. Click Next.

9. Check the Would You Like to Add Resources to This JMS System Module? checkbox.

10. Click Finish.

11. At the bottom of the Configuration tab, above or below the Summary of Resources table,
click New.

12. Choose the Queue option.

13. Click Next.

14. In the JMS Destination Properties page:

– In the Name field, enter
weblogic.wsee.reliability.wseeMedRecDestinationQueue.

– In the JNDI Name field, enter weblogic.wsee.DefaultQueue.

– Leave the Template drop-down list to None.

15. Click Next.

16. Click Advanced Targeting.

17. To the right of the SubDeployments drop-down list, click Create a New Subdeployment.

18. In the SubDeployment Name field, enter MedRecWseeJMSServer.

19. Click OK.

20. In the Targets box, check MedRecWseeJMSServer.

21. Click Finish.

22. In the Change Center, click Activate Changes to update the MedRec server configuration.

Step 7: Create the Store and Forward (SAF) agent.
The Store-and-Forward (SAF) service enables WebLogic Server to deliver messages reliably
between applications that are distributed across WebLogic Server instances. In the MedRec
application, the SAF service is used internally by the Web Services that have been configured
with reliable messaging.

Note: WebLogic Web Services reliable messaging is a service-to-service feature, which means
that one client Web Service invokes another Web Service reliably. Typically each Web

4-10 MedRec Development Tutorials

Service is deployed to two different WebLogic Server instances; each server instance in
turn has its own SAF agent and persistent store. However, because these tutorials assume
a single-server domain for ease of development, both Web Services are deployed to the
same server, and thus use the same SAF agent.

1. If you have not already done so, click Lock & Edit, located in the upper left Change Center
window of the Administration Console.

2. In the left Domain Structure window, expand MedRecDomain→Services→Messaging.

3. Click Store-and-Forward Agents.

4. In the right pane, click New.

5. On the Store-and-Forward Agent Properties page:

– In the Name field, enter MedRecSAFAgent.

– In the Persistent Store drop-down list, select MedRecWseeFileStore.

– In the Agent Type drop-down list, select Both.

6. Click Next.

7. In the Servers box, check MedRecServer.

8. Click Finish.

9. In the Change Center, click Activate Changes to update the MedRec server configuration.

Step 8: Add email capabilities to the MedRec application.
WebLogic Server includes the JavaMail API version 1.3 reference implementation from Sun
Microsystems. Using the JavaMail API, you can add email capabilities to your WebLogic Server
applications. To configure JavaMail for use in WebLogic Server, you create a mail session in the
WebLogic Server Administration Console. A mail session allows server-side components and
applications to access JavaMail services with JNDI, using Session properties that you
pre-configure.

1. If you have not already done so, click Lock & Edit, located in the upper left Change Center
window of the Administration Console.

2. In the left Domain Structure window, expand MedRecDomain→Services.

3. Click Mail Sessions.

Tuto r ia l 3 : Conf igur ing WebLogic Se rve r Resources w i th the Admin is t ra t ion Conso le

MedRec Development Tutorials 4-11

4. In the right pane, click New.

5. In the Name field, enter mail/MedRecMailSession.

6. Click OK.

7. In the table of Mail Sessions, click on mail/MedRecMailSession.

8. Select the Configuration tab and:

– In the JNDI Name field, enter mail/MedRecMailSession.

– In the JavaMail Properties text box, enter values for the mail.user and mail.host
properties.

For example, if you want email generated by the MedRec application to be sent to you,
and your email address is joe@mail.mycompany.com, enter:

mail.user=joe,mail.host=mail.mycompany.com

9. Click Save.

10. Select the Targets tab.

11. In the Servers box, check MedRecServer.

12. Click Save.

13. In the Change Center, click Activate Changes to update the MedRec server configuration.

Step 9: Configure the MedRec Custom DBMS Authenticator.
The MedRec Custom DBMS Authenticator retrieves login credentials from the configured
PointBase RDBMS for a given username. Within the provider, passwords are validated, and if
correct, the user’s group associations are retrieved.

1. If you have not already done so, click Lock & Edit, located in the upper left Change Center
window of the Administration Console.

2. In the left Domain Structure window, click MedRecDomain→Security Realms.

3. In the right pane, click the myrealm entry of the Realms table.

4. Select the Providers→Authentication tab.

5. Click New.

6. On the Create a New Authentication Provider page:

4-12 MedRec Development Tutorials

– In the Name field, enter MedRecSampleAuthenticator.

– In the Type drop-down list, select CustomDBMSAuthenticator.

7. Click OK.

8. In the Authentication Providers table, click MedRecSampleAuthenticator.

9. Select the Configuration→Common tab.

10. In the Control Flag drop-down list, select SUFFICIENT.

The SUFFICIENT control flag indicates that the LoginModule does not need to succeed. If
it does succeed, control is returned to the application. However, if it does not succeed, the
server tries other configured authentication providers.

11. Click Save.

12. Select the Configuration→Provider Specific tab.

13. In the Data Source Name field, enter MedRecGlobalDataSourceXA.

14. In the Plug-in Class Name field, enter com.bea.medrec.security.MedRecDBMSPlugin.

This plug-in class is physically located in the MedRecDBMSPlugin.jar file that you added
to WebLogic Server’s CLASSPATH in Tutorial 1: Creating a WebLogic Domain and Server
Instance for Development.

15. Click Save.

16. In the left Domain Structure window, click MedRecDomain→Security Realms.

17. In the right pane, click the myrealm entry of the Realms table.

18. Select the Providers→Authentication tab.

19. In the Authentication Providers table, click DefaultAuthenticator.

20. In the Control Flag drop-down list, select SUFFICIENT.

21. Click Save.

22. In the left Domain Structure window, click MedRecDomain→Security Realms.

23. In the right pane, click the myrealm entry of the Realms table.

24. Select the Providers→Authentication tab.

Tuto r ia l 3 : Conf igur ing WebLogic Se rve r Resources w i th the Admin is t ra t ion Conso le

MedRec Development Tutorials 4-13

25. Click Reorder.

Because WebLogic Server cycles through available Authentication providers, this step
reorders the provider list so that the PointBase database is not queried each time a login is
attempted (for example, each time you log into the Administration Console in subsequent
tutorials).

26. Use the arrows in the Authentication Providers list to define the following order of
authentication providers:

a. DefaultAuthenticator

b. MedRecSamplesAuthenticator

c. DefaultIdentityAsserter

27. Click OK.

28. In the Change Center, click Activate Changes to update the MedRec server configuration.

Best Practices
You typically should use an XA JDBC driver to create a JDBC data source.

JMS JDBC stores do not support XA resource drivers because WebLogic JMS implements
its own XA resource. Therefore, do not associate a JDBC data source that uses an XA
JDBC driver with a JMS JDBC store.

In most cases, to avoid unnecessary JMS request routing, the JMS connection factory
should be targeted to the same WebLogic Server instance as the JMS server.

When configuring the persistent JMS store, you can persist JMS messages to a directory on
the file system (called JMS file store) or to a database that uses JDBC (called JMS JDBC
database store).

If you want better performance and simpler configuration, BEA recommends you persist
JMS messages to the file system. If you want to store your persistent messages in a remote
database rather than on the JMS server’s host machine, BEA recommends that you use a
JDBC JMS store.

Always configure quotas for WebLogic JMS servers. JMS quotas prevent too many
messages from overflowing server memory. In addition, consider configuring message
paging, as persistent and non-persistent messages consume server memory unless paging is
enabled.

4-14 MedRec Development Tutorials

The Big Picture
The MedRec application uses JMS to create a new patient record. The asynchronous nature of
JMS allows the task to be queued and completed later while the user continues with another task.

After the user clicks Create on the Web page to register a new patient, a JMS message is created
and put on the REGISTRATION_MDB_QUEUE application-scoped JMS queue. The
RegistrationEJB message-driven bean takes the message off the queue and persists the new
patient data to the database using an instance of the PatientEJB entity bean. The PatientEJB
entity bean uses the JDBC data source to connect to the PointBase database.

The MedRec application uses other entity beans to persist additional data to the database; for
details, see “Patient, Physician, and Administrator Data” on page 3-4.

The MedRec application uses persistent JMS messaging, which means that the new patient JMS
messages that are put on the queue are also stored in a PointBase database so that the messages
can be retrieved in case a problem occurs (such as a server crash) before the message-driven bean
is able to process them. The application uses the JMS JDBC store to connect to and to update the
JMS tables in the PointBase database.

The medrecEar application has two flavors of Web Services that the physicianEar application
invokes: reliable and non-reliable. The reliable Web Service uses the store-and-forward agent and
filestore internally to ensure that the messages are delivered reliably.

The WebLogic Server security framework cycles through the three configured providers
(DefaultAuthenticator, MedRecSamplesAuthenticator, and
DefaultIdentityAsserter) during patient authentication.

Related Reading
Configuring WebLogic JDBC Resources

Configure database connectivity in the Administration Console Online Help

Configuring and Managing WebLogic JMS

Configure Messaging in the Administration Console Online Help

Configuring and Managing WebLogic Store and Forward

Programming JavaMail with WebLogic Server

Configuring Authentication Providers

MedRec Development Tutorials 5-1

C H A P T E R 5

Configuring Domains and Servers

Tutorial 4: Using WebLogic Server Development Mode
This tutorial describes how to set up and use the new MedRec server instance in development
mode. WebLogic Server provides two distinct server modes—development mode and production
mode—that affect default configuration values and subsystem behavior for all server instances in
a domain.

Development mode enables you to use the demonstration trusted CA certificates for security, and
also allows you to deploy the MedRec applications directly from a development environment.
(You will create the development environment in the next set of tutorials). For these reasons, you
should always use development mode when building or testing your own applications.

Note: Because newly installed WebLogic Server instances use development mode by default,
the steps in this tutorial are not strictly required. However, later tutorials that describe
how to move from a development to a production environment depend on the changes
you make now.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

5-2 MedRec Development Tutorials

Prerequisites
Create the MedRec server domain. See Tutorial 1: Creating a WebLogic Domain and Server
Instance for Development. You will modify the server start script that was created during that
tutorial.

Procedure
To put the MedRec server in development mode:

Step 1: Shut down the MedRec server (if currently running).

Step 2: Edit the server startup file.

Step 3: Restart the server and verify development mode.

Step 1: Shut down the MedRec server (if currently running).
You must shut down the MedRec server because you edit its start script to explicitly place the
server in development mode.

If the server is not currently running, go to Step 2: Edit the server startup file.

1. Open the Administration Console by navigating in a browser to:

http://host:7101/console

where host refers to the computer on which MedRecServer is running. If your browser is
on the same computer as MedRecServer, then you can use the URL
http://localhost:7101/console.

2. Specify weblogic for both the username and password and click Log In.

3. In the left pane, expand MedRecDomain→Environments.

4. Click Servers.

5. In the right pane, in the Servers table, click MedRecServer(admin).

6. Select the Control→Start/Stop tab.

7. At the bottom of the page, in the Server Status table, check MedRecServer.

8. Click Shutdown→When Work Completes.

9. Click Yes.

Tuto r ia l 4 : Us ing WebLog ic Se rve r Deve lopment Mode

MedRec Development Tutorials 5-3

Note: Because you are shutting down the Administration Server, which is what you connect
to when you invoke the Administration Console, you will get a browser error once
the server actually shuts down.

Step 2: Edit the server startup file.
Development mode (or production mode) is set for all servers in a given domain by supplying a
command line option to the domain’s Administration Server. Because the MedRec tutorials use
two stand-alone servers in separate domains, you must edit each server’s startup script to add the
command line option.

1. In a command-line shell, move to the root directory of the MedRec domain:

prompt> cd c:\bea\user_projects\domains\MedRecDomain\bin

2. Open the setDomainEnv.cmd (Windows) or setDomainEnv.sh (UNIX) script in a text editor:

prompt> notepad setDomainEnv.cmd

3. Look for the line that sets the PRODUCTION_MODE script variable:

set PRODUCTION_MODE=

4. Add “false” to the value of the PRODUCTION_MODE variable to ensure the server starts in
development mode:

set PRODUCTION_MODE=false

5. Save your changes and exit the text editor.

Step 3: Restart the server and verify development mode.
Reboot the server to ensure that it starts up in development mode:

1. Start the MedRec server by executing its startup script:

prompt> c:\bea\user_projects\domains\MedRecDomain\startWebLogic.cmd

2. Observe the server startup message to determine the startup mode. The following line
indicates that the server is using development mode:

<Dec 9, 2005 11:35:57 AM PST> <Notice> <WebLogicServer> <BEA-000331>
<Started WebLogic Admin Server "MedRecServer" for domain "MedRecDomain"
running in Development Mode>

5-4 MedRec Development Tutorials

Best Practices
Use development mode in a WebLogic Server domain to:

– Develop, modify, and test applications in a development environment

– Enable auto-deployment for applications placed in the \autodeploy directory

– Use demonstration trusted CA certificates for testing security configurations

– Automatically create a JMS file store directory if needed for an application

If you start an Administration Server from the command line, or if you use custom startup
scripts, use the weblogic.Server command-line arguments
-DProductionModeEnabled=true | false to set the server mode.

Never use development mode for production-level servers, because development mode
relaxes the security constraints for all servers in the domain.

The Big Picture
The MedRec application uses the sample trusted CA certificates installed with WebLogic Server
to enable SSL authentication and demonstrate WebLogic Server security features in later
tutorials. Development mode allows you to use the sample certificate files when you work
through later security tutorials.

In the next series of tutorials, you will create a development directory structure for MedRec that
shows how to manage source code and compiled code separately when developing Enterprise
Applications with WebLogic Server. Development mode allows you to deploy applications
directly from the development directory, without having to package applications into .jar files
or exploded .jar directories.

Related Reading
Specify the Server Start Mode and JDK in Creating WebLogic Domains Using the
Configuration Wizard

Starting and Stopping Servers: Quick Reference in Managing Server Startup and Shutdown

Start and stop servers in the Administration Console Online Help

MedRec Development Tutorials 6-1

C H A P T E R 6

Developing the MedRec Applications

Tutorial 5: Creating the MedRec Project Directory
This tutorial describes how to create the main project directory that holds the MedRec source files
and compiled classes. The tutorial also explains the high-level directory structure and contents
for the MedRec application suite components.

Tutorials that follow provide more detail about the development directory structure and
WebLogic Server Ant tasks that help you easily build and deploy Enterprise Applications and
their subcomponents—Web applications, EJBs, and Web services.

The preferred BEA method for building applications with WebLogic Server is Apache Ant. Ant
is a Java-based build tool. One of the benefits of Ant is that is it is extended with Java classes,
rather than with shell-based commands. BEA provides numerous Ant extension classes to help
you compile, build, deploy, and package applications in the WebLogic Server split development
directory environment.

This tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Deve lop ing the MedRec App l i cat ions

6-2 MedRec Development Tutorials

Prerequisites
Before starting this tutorial:

Create the MedRec domain and MedRec server, and start the MedRec administration
server. See “Tutorial 1: Creating a WebLogic Domain and Server Instance for
Development”.

Start the PointBase database management system. See Tutorial 2: Starting the PointBase
Development Database.

Use the Administration Console to configure the resources needed to run the MedRec
applications. See Tutorial 3: Configuring WebLogic Server Resources with the
Administration Console.

Procedure
To create the source directory structure for the MedRec application suite:

Step 1: Create the tutorial project directory.

Step 2: Unpack the project subdirectories.

Step 3: Verify the project directory contents.

Step 4: Verify the source directory contents.

Step 5: Edit the install.properties file and run substitute.xml.

Step 1: Create the tutorial project directory.
Begin by creating a top-level project directory in which you will store source and output files for
the MedRec Enterprise Applications and client programs. Name the directory
medrec_tutorial:

prompt> mkdir c:\medrec_tutorial

Step 2: Unpack the project subdirectories.
BEA provides a .zip file that contains the entire source code of the MedRec application; the
source code files are used in these tutorials. This .zip file also contains a build directory that
contains some pre-compiled classes of the MedRec application, as well as the XML files that
correspond to procedures in these tutorials.

Tuto r ia l 5 : C reat ing the MedRec P ro jec t D i r ec to ry

MedRec Development Tutorials 6-3

To populate your project directory with the necessary files and directories:

1. Download the medrec_tutorial.zip (MD5 checksum) file. Save the downloaded file to the
c:\medrec_tutorial directory.

2. Open up a command window and set your command shell environment with the
MedRecDomain environment script:

prompt> c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

3. Move to the MedRec project directory and unpack the downloaded .zip file:

prompt> cd c:\medrec_tutorial

prompt> jar xvf medrec_tutorial.zip

Step 3: Verify the project directory contents.
Verify that the following files and subdirectories were created:

prompt> dir

 Directory of C:\medrec_tutorial

12/09/2005 11:39 AM <DIR> .

12/09/2005 11:39 AM <DIR> ..

12/09/2005 11:39 AM <DIR> build

12/09/2005 11:39 AM <DIR> dist

12/09/2005 11:39 AM 493 install.properties

12/09/2005 11:39 AM <DIR> lib

12/09/2005 11:39 AM 6,799,498 medrec_tutorial.zip

12/09/2005 11:39 AM <DIR> META-INF

12/09/2005 11:39 AM <DIR> src

12/09/2005 11:39 AM 996 substitute.xml

The \build directory contains the classes generated by the various MedRec build scripts. It
does not contain editable source files or deployment descriptors, which reside in \src. Each
subdirectory in \build represents the compiled classes for MedRec clients (\clients) or for a
MedRec application (\medrecEar, \physicianEar, \initEar, and \startBrowserEar
applications).

If you look at the contents of the \build directory, you’ll notice that many of the classes that
make up the MedRec application have already been built for you. In particular, all medrecEar
and startBrowserEar applications, and the Web Services in the physicianEar application,

Deve lop ing the MedRec App l i cat ions

6-4 MedRec Development Tutorials

have been pre-compiled. The parts of the physicianEar application that have not been
pre-compiled are those that you will be working with in these tutorials, namely EJBs and Web
applications. This pre-compilation is for your convenience, so you can browse many of the
directories and compiled classes of the MedRec application right away without having to build it
yourself. Later tutorials demonstrate how to re-compile parts, and then all, of the MedRec
application using the WebLogic Ant tasks, such as wlcompile and jwsc, as part of the normal
development process.

The \src directory contains the full source for all MedRec applications. You will be working in
this directory for most remaining tutorials. Step 4: Verify the source directory contents. describes
the subdirectories in \src.

\build and \src together represent a WebLogic Server split development directory. You can
deploy individual MedRec applications to a development server by targeting an application
subdirectory in \build (such as \build\medrecEar) using weblogic.Deployer or the
wldeploy Ant task described in Tutorial 9: Deploying MedRec from the Development
Environment. WebLogic Server locates the necessary deployment descriptors (available in \src)
by examining the .beabuild.txt file located in the appropriate \build subdirectory.

The \dist directory is also an output directory—it will store the archived .ear files or exploded
.ear directories created by the wlpackage task in Tutorial 14: Packaging MedRec for
Distribution. Right now it contains only a few JAR files corresponding to some of the
pre-compiled classes in the \build directory. The \dist directory will eventually store
complete, exploded .ear directories for the different MedRec applications. The \dist directory
is not considered part of the split development directory structure, because it is not required for
compiling or deploying applications during development. It is used only for storing final,
completed applications—.ear files or exploded .ear directories—that you generate after
completing the development process.

The \lib directory contains precompiled, third-party .jar files that several of the MedRec
applications require. This includes supporting .jars for struts and log4j.

Step 4: Verify the source directory contents.
The \src subdirectory contains the full application source for the MedRec applications, and it is
the subdirectory in which you will spend the most time during the remaining tutorials. Take a
look at the installed \src directory:

prompt> dir src

 Directory of C:\medrec_tutorial\src

Tuto r ia l 5 : C reat ing the MedRec P ro jec t D i r ec to ry

MedRec Development Tutorials 6-5

12/09/2005 11:39 AM <DIR> .

12/09/2005 11:39 AM <DIR> ..

12/09/2005 11:39 AM 19,736 build.html

12/09/2005 11:39 AM 2,938 build.xml

12/09/2005 11:39 AM <DIR> clients

12/09/2005 11:39 AM <DIR> common

12/09/2005 11:39 AM <DIR> initEar

12/09/2005 11:39 AM 4,550 medrec.properties

12/09/2005 11:39 AM <DIR> medrecEar

12/09/2005 11:39 AM <DIR> physicianEar

12/09/2005 11:39 AM <DIR> security

12/09/2005 11:39 AM <DIR> startBrowserEar

The build.xml file in the top level of the medrec_tutorial directory is a project-wide build
file. It:

Cleans up previously-built versions of MedRec before compiling

Builds the contents of each application subdirectory into the \build directory by calling
each application’s build.xml file

Packages each application as an exploded .ear file into the \dist directory

You will use this project-level build.xml before moving the WebLogic Server instance into
production mode in Tutorial 13: Compiling the Entire MedRec Project. However, do not try to
use it yet—you need to complete the next few tutorials to create the application-level build.xml
files that this script calls.

The \src directory also contains a medrec.properties file that defines property values used
by the project-level build.xml file, as well as the build.xml files used in each applications
subdirectory.

The subdirectories of \src represent either deployable MedRec applications or MedRec
components that are used by those applications:

\clients holds source files for the Java and C# clients of MedRec Web Services.

\common holds source files for Java classes shared between the MedRec Enterprise
Applications. These include:

– Shared constants and JNDI names

– The ServiceLocator class, used to access MedRec services in the service tier

Deve lop ing the MedRec App l i cat ions

6-6 MedRec Development Tutorials

– Factories for creating EJBs and JMS connections

– Value objects, which represent data passed between tiers of the MedRec application

– Image files and Struts action classes shared across MedRec web components

The \initEar subdirectory contains an application that implements and registers a custom
MBean that polls the database every 6 seconds to check for new users to be added to the
system. You can use this application to register your own custom MBean.

The \medrecEar and \physicianEar subdirectories store the main Enterprise
Applications that make up the MedRec application suite. These subdirectories use the
WebLogic Server 9.1 Development Directory structure and Ant tasks for building and
deploying, and are described in detail in the next tutorials.

The \security subdirectory contains the MedRec authentication provider shared across
applications.

The \startupBrowserEar subdirectory contains the listener class that automatically
boots the browser and loads MedRec’s main index JSP when you start MedRec on a
Windows machine. You do not work directly with this application in the tutorials that
follow. However, the application is compiled as part of the overall MedRec build process.

Step 5: Edit the install.properties file and run substitute.xml.
The top-level project directory into which you unzipped the ZIP file contains a file called
install.properties that specifies information local to your environment, such as the name of
the computer which hosts WebLogic Server and the MedRec domain directory. After editing this
file with information specific to your environment, run the substitute.xml Ant file which uses
this properties file to substitute your local values for the place-holders in the files you unzipped.

1. Use a text editor to open the properties file:

prompt> notepad c:\medrec_tutorial\install.properties

2. Edit the SERVER_HOSTNAME property to point to the computer that hosts WebLogic Server:

SERVER_HOSTNAME=myhost.mycompany.com

3. If you did not use 7101 and 7102 as the administration server port numbers when creating
the MedRecDomain in Tutorial 1: Creating a WebLogic Domain and Server Instance for
Development, edit the SERVER_PORT and SERVER_SSL_PORT properties to point the
appropriate ports:

SERVER_PORT=7101
SERVER_SSL_PORT=7102

Tuto r ia l 5 : C reat ing the MedRec P ro jec t D i r ec to ry

MedRec Development Tutorials 6-7

4. Edit the WL_HOME property to point to your WebLogic Server installation directory
(c:/bea/weblogic91 by default):

WL_HOME=c:/bea/weblogic91

5. Edit the MEDREC_HOME_DIR property to point to your new project directory:

MEDREC_HOME_DIR=c:/medrec_tutorial

6. Edit the MEDREC_DOMAIN_DIR property to point to the MedRecDomain directory you
created (c:/bea/user_projects/domains/MedRecDomain by default):

MEDREC_DOMAIN_DIR=c:/bea/user_projects/domains/MedRecDomain

7. Save and close the install.properties file.

8. Go to the c:\medrec_tutorial directory and run the substitute.xml script:

prompt> cd c:\medrec_tutorial

prompt> ant -f substitute.xml

The substitution script may take a few seconds to complete, at the end of which you should
see output similar to the following:

Buildfile: substitute.xml

replace:

BUILD SUCCESSFUL

Total time: 23 seconds

Best Practices
Smaller J2EE projects may not require the nested subdirectories found in the MedRec
project directory. For example, a project that produces a single Enterprise application file
can have minimal subdirectories such as:

– \myProject—top-level project directory

– \myProject\myEarBuild—output directory for storing compiled and generated files

– \myProject\myEarSrc—source files and editable content for the Enterprise
Application

This minimal directory structure still allows you to develop your application by using the
WebLogic split development directory structure and Ant tasks described in Tutorial 6:
Understanding the WebLogic Server Split Directory Structure.

Deve lop ing the MedRec App l i cat ions

6-8 MedRec Development Tutorials

The Big Picture
The MedRec application suite consists of three separate applications for the patient, physician,
and administrator user roles. Using a separate application for each user role allows you to
distribute each application function across different WebLogic Server instances as needed. For
example, the MedRec sample domain (optionally installed with WebLogic Server) deploys all
three applications on a single server instance for easy demonstration purposes. The MedRec
tutorials also deploy the applications in a single-server domain, which is typical for development
environments. However, you can also deploy the MedRec and Physician applications on two
different server instances (in separate domains) to illustrate the use of Web Services between the
applications.

The MedRec project directory also contains subdirectories for compiling the client applications
that access MedRec via Web Services.

Related Reading
Creating a Split Development Directory Environment in Developing Applications with
WebLogic Server

Overview of WebLogic Server Application Development in Developing Applications with
WebLogic Server

Apache Ant in Developing Applications with WebLogic Server

MedRec Development Tutorials 7-1

C H A P T E R 7

Developing the MedRec Applications

Tutorial 6: Understanding the WebLogic Server Split Directory
Structure

Several subdirectories in the medrec_tutorial project directory—medrecEar,
physicianEar, startBrowserEar—use the WebLogic Server split development directory
structure for storing source files. The split development directory consists of a directory layout
and supporting Ant tasks that help you easily build, deploy, and package Enterprise Application
files while automatically maintaining CLASSPATH dependencies. The directory structure is
split because source files and editable deployment descriptors reside in one directory while
compiled class files and generated deployment descriptors reside in a separate directory.

The split development directory structure is a valuable tool to use for developing your own
applications. Because source files and generated files are kept separate, you can easily integrate
your development projects with source control systems. The split development directory also
allows you to easily deploy your applications without having to first copy files and stage
applications—WebLogic Server automatically uses the contents of both the build and source
directories to deploy an application.

This tutorial explains the layout and function of the source directory structure used in the MedRec
application suite. The next tutorial describes the build directory structure, which is produced
when you compile an Enterprise Application using the wlcompile task. The source and build
directories together make up a WebLogic split development directory, which you will deploy and
package in later tutorials.

This tutorial includes the following sections:

7-2 MedRec Development Tutorials

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites
Before starting this tutorial, create the project directory and unpack the MedRec tutorial source
files to it using the instructions in Tutorial 5: Creating the MedRec Project Directory.

Procedure
The following procedure guides you through the source directory structure for the MedRec
application suite:

Step 1: Examine the Enterprise Application directory structure.

Step 2: Examine the Web Application component directory structure.

Step 3: Examine the EJB component directory structure.

Step 4: Examine the Web Service directory structure.

Step 1: Examine the Enterprise Application directory structure.
The WebLogic split development directory stores source files starting at the Enterprise
Application (EAR) level. Even if you are developing only a single Web Application or EJB, you
store the relevant component in a top-level directory that represents an Enterprise Application.
Note the contents of the physicianEar subdirectory:

prompt> cd c:\medrec_tutorial\src\physicianEar

prompt> dir

 Directory of C:\medrec_tutorial\src\physicianEar

12/09/2005 11:39 AM <DIR> .

12/09/2005 11:39 AM <DIR> ..

12/09/2005 11:39 AM 59,584 build.html

12/09/2005 11:39 AM 10,382 build.xml

Tuto r ia l 6 : Unde rs tand ing the WebLog ic Server Sp l i t D i rec to ry S t ructure

MedRec Development Tutorials 7-3

12/09/2005 11:39 AM 592 ejbgen_tutorial.xml

12/09/2005 11:39 AM <DIR> META-INF

12/09/2005 11:39 AM <DIR> physicianWebApp

12/09/2005 11:39 AM <DIR> physSessionEjbs

12/09/2005 11:39 AM <DIR> webServices

12/09/2005 11:39 AM 284 wlcompile_tutorial.xml

12/09/2005 11:39 AM 396 wldeploy_tutorial.xml

12/09/2005 11:39 AM 1,015 ws_ejb_client_tutorial.xml

As you can see from the directory listing, the Physician application contains a Web Application
component (stored in the physicianWebApp directory), EJB components (stored in the
physSessionEjbs directory), and a Web Service (stored in the webServices directory). The
split development directory structure requires that each EAR component reside in a dedicated
source directory. You can name the ear directory and component subdirectories however you
want, because the wlcompile Ant task automatically determines the type of component during
compilation.

 The META-INF subdirectory holds deployment descriptors for the Enterprise Application itself
(application.xml and optional weblogic-application.xml files).

Note: The various *_tutorial.xml files are tutorial-related files.

Step 2: Examine the Web Application component directory
structure.
MedRec’s Web Applications are developed using Struts, which is an open source Web
framework developed by the Apache Jakarta Project.

The source directory structure allows you to easily manage the different file types that constitute
a Web Application, such as JSPs and servlets and the files required by the Struts framework.
Move to the physicianWebApp subdirectory of the physicianEar source directory and
examine its contents:

prompt> cd c:\medrec_tutorial\src\physicianEar\physicianWebApp

prompt> dir

 Directory of C:\medrec_tutorial\src\physicianEar\physicianWebApp

12/09/2005 11:39 AM <DIR> .

12/09/2005 11:39 AM <DIR> ..

12/09/2005 11:39 AM 12,950 Confirmation.html

7-4 MedRec Development Tutorials

12/09/2005 11:39 AM 1,639 Confirmation.jsp

12/09/2005 11:39 AM 41,763 CreatePrescription.html

12/09/2005 11:39 AM 5,389 CreatePrescription.jsp

12/09/2005 11:39 AM 87,839 CreateVisit.html

12/09/2005 11:39 AM 11,961 CreateVisit.jsp

12/09/2005 11:39 AM 14,708 Error.html

12/09/2005 11:39 AM 1,905 Error.jsp

12/09/2005 11:39 AM 32,486 Login.html

12/09/2005 11:39 AM 4,074 Login.jsp

12/09/2005 11:39 AM 15,377 PatientHeader.html

12/09/2005 11:39 AM 2,309 PatientHeader.jsp

12/09/2005 11:39 AM 7,365 PhysicianHeader.html

12/09/2005 11:39 AM 964 PhysicianHeader.jsp

12/09/2005 11:39 AM 30,765 Search.html

12/09/2005 11:39 AM 3,896 Search.jsp

12/09/2005 11:39 AM 29,938 SearchResults.html

12/09/2005 11:39 AM 4,243 SearchResults.jsp

12/09/2005 11:39 AM 5,971 stylesheet.css

12/09/2005 11:39 AM 24,957 ViewProfile.html

12/09/2005 11:39 AM 3,742 ViewProfile.jsp

12/09/2005 11:39 AM 46,175 ViewRecord.html

12/09/2005 11:39 AM 6,707 ViewRecord.jsp

12/09/2005 11:39 AM 37,675 ViewRecords.html

12/09/2005 11:39 AM 5,504 ViewRecords.jsp

12/09/2005 11:39 AM <DIR> WEB-INF

The top level of the Web Application subdirectory contains the JSPs that make up the application.
For each JSP, there is also a corresponding HTML file that simply shows the JSP code in HTML
format, with line numbers and color coding for easy reading. These HTML files are included for
tutorial purposes only; typically you do not include these types of HTML files in your application.
You could also store additional .html files or other static content such as image files here, but it
is less cumbersome to store such content in a dedicated subdirectory like \html_files or
\images.

Java source files for Web Application components, such as Servlets (also called actions in Struts
parlance) or supporting utility classes, are stored in package directories under the component’s
WEB-INF\src subdirectory. For example, a utility class for the Physician Web Application is
stored in

Tuto r ia l 6 : Unde rs tand ing the WebLog ic Server Sp l i t D i rec to ry S t ructure

MedRec Development Tutorials 7-5

C:\medrec_tutorial\src\physicianEar\physicianWebApp\WEB-INF\src\com\bea\me

drec\actions\PhysicianConstants.java.

The wlcompile task automatically compiles the contents of the WEB-INF\src subdirectory into
the WEB-INF\classes subdirectory of application’s output directory, so that all components of
the Web Application can access those classes.

The WEB-INF subdirectory also stores deployment descriptors for the Web Application
component (web.xml and the optional weblogic.xml) and the Struts-related files, such as
struts-config.xml.

The images used in the physician Web application are not stored in the physicianWebApp
directory, but rather in a common directory shared by all the MedRec applications. The
weblogic.xml deployment descriptor file of the physician Web application defines a virtual
directory that specifies the exact location of these images, as shown in the following excerpt:

 <virtual-directory-mapping>
 <local-path>c:/medrec_tutorial/src/common/web</local-path>
 <url-pattern>images/*</url-pattern>
 </virtual-directory-mapping>

Step 3: Examine the EJB component directory structure.
Java source files for EJB components are stored in subdirectories that reflect the EJB’s package
structure. For example, the source for the Physician Application’s session EJB is stored in
C:\medrec_tutorial\src\physicianEar\physSessionEjbs\com\bea\medrec\control

ler\PhysicianSessionEJB.ejb.

Deployment descriptors for EJB components (such as ejb-jar.xml and the optional
weblogic-ejb-jar.xml) can be stored in the component’s META-INF subdirectory. However,
if you look at the physSessionEjbs subdirectory, you will notice there is no META-INF
subdirectory. This is because all EJBs in the MedRec application suite use ejbgen metadata
annotations to specify the shape and behavior of the EJB, rather than defining them in deployment
descriptor files. The ejbgen annotations are based on the new JDK 5.0 metadata annotations
feature. The wlcompile Ant task, when it encounters an *.ejb file, invokes the EJBGen utility,
which in turn uses these annotations to generate the EJB deployment descriptors automatically
when you compile the application.

Step 4: Examine the Web Service directory structure.
Java source files for J2EE Web Service components are stored in subdirectories that reflect the
Web Service’s package structure. For example, the source for the Physician Web Service (that in

7-6 MedRec Development Tutorials

turn invokes the a Web Service of the medrecEar application reliably) is stored in
C:\medrec_tutorial\src\physicianEar\webServices\com\bea\medrec\webservices

\PhysicianWebServices.java.

All Web Services in the MedRec application suite are implemented using Java Web Service
(JWS) files. A JWS file is the core of your Web Service; it contains the Java code that determines
how it behaves. A JWS file is an ordinary Java class file that uses JDK 5.0 metadata annotations
to specify the shape and characteristics of the Web Service. The JWS annotations you can use in
a JWS file include the standard ones defined by the Web Services Metadata for the Java Platform
specification (JSR-181) as well as a set of WebLogic-specific ones.

The MedRec application then uses the jwsc Web Services Ant task to compile JWS files into a
deployable Web Service. As defined by the Enterprise Web Services 1.1 specification (JSR-921),
Web Services can be implemented by either plain Java classes (packaged in a Web Application
WAR) or a stateless session EJB (packaged in an EJB JAR). The jwsc Ant task automatically
determines what type of backend component to generate, and then generates all supporting files,
such as deployment descriptors, user-defined data type components, and the WSDL file. This
means that, similar to EJBs that use ejbgen annotations, only the JWS file that describes the Web
Service is stored in the \src directory.

Note: In this release of WebLogic Server, the wlcompile Ant task does not compile Web
Services that have been implemented with JWS files. Rather, you must explicitly call the
jwsc Web Service Ant task to generate the Web Service before calling the wlcompile
task to compile all other components, such as EJBs. Additional details about jwsc are
provided in Tutorial 11: Creating a J2EE Web Service by Programming a JWS File.

Best Practices
Use the same source directory structure with your own J2EE application projects, so you
can utilize the WebLogic Server build scripts to compile and deploy your applications. The
following summarizes the contents of a simple source directory that follows the WebLogic
split development directory structure format:

\myProject

\myProject\myEar

\myProject\myEar\META-INF\application.xml

\myProject\myEar\myEjb\com*\MyEjbGenEjb.ejb

\myProject\myEar\myEjb\com**.java

\myProject\myEar\myWebService\com*.*.java

Tuto r ia l 6 : Unde rs tand ing the WebLog ic Server Sp l i t D i rec to ry S t ructure

MedRec Development Tutorials 7-7

\myProject\myEar\myWebApp*.jsp

\myProject\myEar\myWebApp\WEB-INF\web.xml

\myProject\myEar\myWebApp\WEB-INF\src\com**.java

Use a source control system to manage the files in the source directory hierarchy. The
source directory contains your working files—Java files and deployment descriptors—and
should be regularly backed up to maintain a history of your development project.

Never store user-generated files in the \build directory. The \build directory is intended
to store only compiled classes for your J2EE applications. You should be able to rebuild
the entire \build directory simply by recompiling your application.

You can store deployment descriptor files either in the top level of a J2EE component
subdirectory, or in the customary J2EE subdirectory for the component’s descriptor files—
\myWebApp\WEB-INF or \myEjb\META-INF.

Run the jwsc Web Services Ant task (to compile JWS files into Web Services) before you
run the wlcompile Ant task to compile all other components, such as EJBs.

The Big Picture
The MedRec application suite uses three split development directories to hold the source for the
medrecEar, physicianEar, and startBrowserEar applications. Utility classes shared among
these applications reside in a dedicated directory, common, with a custom build script that does
not use the split directory structure. Security components are also staged in a custom build
directory.

The top-level build.xml file iterates through the MedRec source directories and coordinates
building all of the components at once.

Although the wlcompile Ant task automatically manages most component dependencies during
a build, certain split development directories, such as the medrecEar and physicianEar
subdirectories, hard-code the build order to enforce dependencies. The source directory structure
that you created during the tutorial contains intermediate build steps, which allow you to focus
on using the new WebLogic Server Ant tasks without worrying about the dependencies.

Related Reading
Creating a Split Development Directory Environment in Developing Applications with
WebLogic Server

7-8 MedRec Development Tutorials

Building Applications in a Split Development Directory in Developing Applications with
WebLogic Server

Overview of WebLogic Server Application Development in Developing Applications with
WebLogic Server

Developing Web Applications, Servlets, and JSPs for WebLogic Server

Programming WebLogic Server Enterprise JavaBeans

Programming Web Services for WebLogic Server

MedRec Development Tutorials 8-1

C H A P T E R 8

Developing the MedRec Applications

Tutorial 7: Compiling Split Development Directory Applications
with Ant Tasks

This tutorial explains how to compile Enterprise Application source files with the wlcompile
Ant task. wlcompile works with a WebLogic split development directory structure to produce a
build or output directory, which contains the compiled Java classes. The build directory and the
source directory described in Tutorial 6: Understanding the WebLogic Server Split Directory
Structure constitute a deployable application in WebLogic Server.

Later tutorials explain how to use other WebLogic Server Ant tasks that work with the split
development directory to perform other application building tasks such as:

Compiling Java Web Service (JWS) files into deployable Web Services. The wlcompile
Ant task does not currently compile Web Services implemented with JWS files.

Packaging files from the source and build directories into an EAR file or expanded EAR
directory

Deploying applications

This tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

8-2 MedRec Development Tutorials

The Big Picture

Related Reading

Prerequisites
Before starting this tutorial:

Create the project directory and copy over the MedRec source files and output directories
according to the instructions in Tutorial 5: Creating the MedRec Project Directory.

Read the instructions in Tutorial 6: Understanding the WebLogic Server Split Directory
Structure to understand the organization of source files in the WebLogic Server split
development directory.

As you may have noticed if you looked at the contents of the \build directory right after
unpacking the medrec_tutorial.zip file, many classes that make up the MedRec application
have already been built for you. This includes all the classes in the \medrecEar and
\startBrowserEar applications, as well as the Web Services in the \physicianEar
application. This tutorial describes how to compile the classes of the physicianEar application
that have not been pre-compiled (EJBs and Web application-related) using the wlcompile Ant
task. You can, of course, recompile any of the pre-built classes as well.

Procedure
To use the wlcompile task with a split development directory in the MedRec application suite:

Step 1: Create the build.xml file.

Step 2: Compile the application.

Step 3: Examine the output files.

Step 1: Create the build.xml file.
Storing your source files using the WebLogic split development directory structure simplifies the
build.xml file required to compile your applications. For most Enterprise Applications, a
simple script of several lines is adequate to compile all modules—the wlcompile task
automatically determines the modules used in the application and maintains classpath
dependencies accordingly.

Note: In this release of WebLogic Server, the wlcompile Ant task does not compile Web
Services that have been implemented with Java Web Service (JWS) files. Rather, you

Tuto r ia l 7 : Compi l ing Sp l i t Deve lopment D i rec to ry Appl i cat ions wi th Ant Tasks

MedRec Development Tutorials 8-3

must explicitly call the jwsc Web Service Ant task to generate the Web Service before
calling the wlcompile task to compile all other components, such as EJBs. Additional
details about jwsc are provided in Tutorial 11: Creating a J2EE Web Service by
Programming a JWS File.

1. To see how wlcompile works, create a simple XML file to compile the Physician application.
First move to the physicianEar subdirectory in the MedRec project directory:

prompt> cd c:\medrec_tutorial\src\physicianEar

The top-level of physicianEar contains subdirectories for the Web Application, EJB, and
Web Service components that form the Enterprise Application. You will store the XML file
here as well.

2. Use a text editor to create a new mybuild.xml file in the physicianEar directory:

prompt> notepad mybuild.xml

Note: If you do not want to enter the build.xml file manually, copy the file
wlcompile_tutorial.xml file, located in the
c:\medrec_tutorial\src\physicianEar directory, to the new file name,
mybuild.xml. Then follow along to understand the file contents.

3. Start the mybuild.xml file by defining a project named tutorial:

<project name="tutorial" default="build">

4. Define the main target for building the application. This target (named build) is fairly
simple. It uses the wlcompile task to identify the source directory (which uses the split
development directory structure) and an output directory for storing compiled files. Enter
the following lines:

 <target name="build">
 <wlcompile srcdir="c:/medrec_tutorial/src/physicianEar"
 destdir="c:/medrec_tutorial/build/physicianEar">
 <ejbgen source="1.5" />
 </wlcompile>
 </target>

For most simple Enterprise Applications, you need only to point wlcompile to the source
and build directories to use for compiling. Always make sure the srcdir and destdir
directories point to separate locations—you want to ensure that your source and output
files remain separate during the development process.

The ejbgen Ant task specifies the version of the JDK that the EJBGen command should
use when processing the *.ejb files. The EJBs in MedRec use the new JDK 5.0 metadata

8-4 MedRec Development Tutorials

annotation feature, thus you should set the version attribute to 1.5 (which is the same as
the 5.0 version of the JDK).

5. To complete the mybuild.xml file, add the following line to close the project:

</project>

Your completed file should resemble the following. Remember that you can copy over
wlcompile_tutorial.xml if you do not want to type in the full text:

<project name="tutorial" default="build">

 <target name="build">
 <wlcompile srcdir="c:/medrec_tutorial/src/physicianEar"
 destdir="c:/medrec_tutorial/build/physicianEar">
 <ejbgen source="1.5" />
 </wlcompile>
 </target>

</project>

Step 2: Compile the application.
After you create the mybuild.xml file, you can use it to compile the application.

1. Make sure you have set your environment using the MedRecDomain environment script:

prompt> c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

2. Move to the physicianEar directory and compile by running the mybuild.xml script
using the ant command:

prompt> cd c:\medrec_tutorial\src\physicianEar

prompt> ant -f mybuild.xml

Although you did not add any informational messages to your build script, the wlcompile
task produces its own output to show its progress:

Buildfile: mybuild.xml

build:

 [javac] Compiling 1 source file to
C:\medrec_tutorial\build\physicianEar\APP-INF\classes
 [ejbgen] EJBGen 9.0

 [ejbgen] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\medrec\co
ntroller\PhysicianSessionHome.java
 [ejbgen] Creating

Tuto r ia l 7 : Compi l ing Sp l i t Deve lopment D i rec to ry Appl i cat ions wi th Ant Tasks

MedRec Development Tutorials 8-5

C:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\medrec\co
ntroller\PhysicianSession.java
 [ejbgen] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\\ejb-jar.xml
 [ejbgen] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\\weblogic-ejb-jar
.xml
 [move] Moving 2 files to
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF
 [javac] Compiling 3 source files to
C:\medrec_tutorial\build\physicianEar\physSessionEjbs
[wlcompile] Note:
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\medrec\co
ntroller\PhysicianSessionEJB.java uses or overrides a deprecated API.
[wlcompile] Note: Recompile with -Xlint:deprecation for details.
 [javac] Compiling 12 source files to
C:\medrec_tutorial\build\physicianEar\physicianWebApp\WEB-INF\classes

BUILD SUCCESSFUL

Total time: 10 seconds

3. If you did not receive the above output, or ran into a problem, you can use the Ant build file
provided for this tutorial instead:

prompt> ant -f wlcompile_tutorial.xml

Step 3: Examine the output files.
Now that you have compiled physicianEar, take a look at the build directory to see what
happened. All output for the build target is placed in the output directory for the Enterprise
Application, c:\medrec_tutorial\build\physicianEar.

The wlcompile output shows that the build started by running ejbgen on the Physician
application’s session EJBs. Verify that the deployment descriptors were created:

prompt> dir c:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF

 Directory of

c:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF

12/09/2005 11:57 AM <DIR> .

12/09/2005 11:57 AM <DIR> ..

12/09/2005 11:57 AM 2,301 ejb-jar.xml

12/09/2005 11:57 AM 999 weblogic-ejb-jar.xml

8-6 MedRec Development Tutorials

The wlcompile Ant task also compiled the and copied the actual EJB classes to the
physSessionEjbs directory:

prompt> dir

c:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\medrec\contr

oller

 Directory of

c:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\medrec\contr

oller

12/09/2005 11:57 AM <DIR> .

12/09/2005 11:57 AM <DIR> ..

12/09/2005 12:00 PM 731 PhysicianSession.class

12/09/2005 12:00 PM 3,795 PhysicianSession.java

12/09/2005 12:00 PM 7,755 PhysicianSessionEJB.class

12/09/2005 12:00 PM 10,769 PhysicianSessionEJB.java

12/09/2005 12:00 PM 326 PhysicianSessionHome.class

12/09/2005 12:00 PM 1,776 PhysicianSessionHome.java

wlcompile compiled the Web Application servlet classes and placed them in the
WEB-INF\classes directory:

prompt> dir

c:\medrec_tutorial\build\physicianEar\physicianWebApp\WEB-INF\classes\com\

bea\medrec

 Directory of

c:\medrec_tutorial\build\physicianEar\physicianWebApp\WEB-INF\classes\com\

bea\medrec

12/09/2005 11:57 AM <DIR> .

12/09/2005 11:57 AM <DIR> ..

12/09/2005 11:57 AM <DIR> actions

The actions directory stores struts action classes.

Notice that the entire build directory for the Enterprise Application
(c:\medrec_tutorial\build\physicianEar) contains deployment descriptor files only for
the EJB and Web Service components. This is because the EJB and Web Service descriptors are
generated using ejbgen and Java Web Service (JWS) annotations, respectively. (The Web

Tuto r ia l 7 : Compi l ing Sp l i t Deve lopment D i rec to ry Appl i cat ions wi th Ant Tasks

MedRec Development Tutorials 8-7

Services were pre-compiled as part of the .zip file). You can recreate the entire contents of the
build directory, including the EJB and Web Services deployment descriptors, by rerunning the
build script.

The Enterprise Application and Web Application deployment descriptors (application.xml,
weblogic-application.xml, web.xml, and weblogic.xml) are left in the source directory
because they are created and edited manually, and cannot be easily replaced or rebuilt.

Best Practices
More complex Enterprise Applications may have compilation dependencies that are not
automatically handled by the wlcompile task. However, you can use the include and exclude
options to wlcompile to enforce your own dependencies. include and exclude accept the
names of Enterprise Application modules—the names of subdirectories in the Enterprise
Application source directory—to include or exclude them from the compile stage. See The Big
Picture for an example.

The Big Picture
Although the MedRec Enterprise Applications use the WebLogic split development directory
structure and wlcompile task in their build scripts, they have certain dependencies that are not
handled by the default wlcompile task. For example, examine the following sample excerpt from
a build.xml file:

 <wlcompile srcdir="${src.dir}" destdir="${dest.dir}"

 excludes="adminWebApp, xml, mdbEjbs, webServicesEjb"/>

You can see that the build script starts by compiling all modules in the Enterprise Application
except for adminWebApp, xml, mdbEjbs, and webServicesEjb. These correspond to
subdirectories names in the source directory.

The build might then continue by compiling only the xml and webServicesEjb modules in the
application:

 <wlcompile srcdir="${src.dir}" destdir="${dest.dir}"

 includes="xml, webServicesEjb"

It is also useful to note that, prior to compilation, the wlcompile Ant task adds the contents of
both the source and the build/earName/APP-INF/lib and
build/earName/APP-INF/classes to its CLASSPATH.

8-8 MedRec Development Tutorials

Related Reading
Compiling Applications Using wlcompile in Developing Applications with WebLogic
Server

Building Applications in a Split Development Directory in Developing Applications with
WebLogic Server

Overview of WebLogic Server Application Development in Developing Applications with
WebLogic Server

Apache Ant in Developing Applications with WebLogic Server

Developing Web Applications, Servlets, and JSPs for WebLogic Server

Programming WebLogic Server Enterprise JavaBeans

Programming Web Services for WebLogic Server

MedRec Development Tutorials 9-1

C H A P T E R 9

Developing the MedRec Applications

Tutorial 8: Walkthrough of Web Application Deployment
Descriptors

This tutorial examines the deployment descriptor files that define the resources and operating
attributes of the MedRec Web applications.

Like most WebLogic Server Web Applications, each MedRec Web application uses two
deployment descriptor files, web.xml and weblogic.xml. These files reside in the WEB-INF
folders that are part of the directory structure of WebLogic Server Web Applications.

A web.xml deployment descriptor file is a J2EE standard XML document that sets properties for
a Web Application. These properties are defined by the Servlet 2.4 Deployment Descriptor XML
Schema.

A weblogic.xml deployment descriptor file is an XML document that defines WebLogic
Server-specific properties for Web applications. These properties are defined by the XML
Schema at http://www.bea.com/ns/weblogic/90/weblogic-web-app.xsd.

MedRec’s Web Applications are developed using Struts, which is an open source Web
framework developed by the Apache Struts. The Struts framework has its own configuration file,
called struts-config.xml, located in the same directory as the Web application deployment
descriptor (WEB-INF). This configuration file is defined by the Struts 1.2 DTD. These tutorials do
not describe the Struts framework; for more information, see the Apache Struts site.

The tutorial includes the following sections:

Prerequisites

9-2 MedRec Development Tutorials

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites
Before starting this tutorial:

Create the MedRec domain and MedRec server. See Tutorial 1: Creating a WebLogic
Domain and Server Instance for Development.

Create the MedRec project directory. See Tutorial 5: Creating the MedRec Project
Directory.

Read about MedRec’s split directory structure. See Tutorial 7: Compiling Split
Development Directory Applications with Ant Tasks.

Procedure
The following procedure walks you through the contents of the web.xml and weblogic.xml
files.

Step 1: Examine a web.xml file.

Step 2: Examine a weblogic.xml file.

Step 1: Examine a web.xml file.
In this section, examine how the web.xml file from mainWebApp Web Application (of the
medrecEar Enterprise application) configures mainWebApp’s resources. mainWebApp responds
to HTTP requests in MedRec, either creating HTTP responses or forwarding requests to other
Web components.

web.xml can define following attributes for a Web Application:

Register servlets

Define servlet initialization attributes

Register JSP tag libraries

Tuto r ia l 8 : Wa lk through o f Web Appl i ca t ion Dep lo yment Descr ip to rs

MedRec Development Tutorials 9-3

Define security constraints

Define other Web Application attributes

1. In a text editor, open the web.xml file that configures mainWebApp:

prompt> notepad
c:\medrec_tutorial\src\medrecEar\mainWebApp\WEB-INF\web.xml

2. Note the required element in the heading of the file, which sets the version and encoding:

<?xml version="1.0" encoding="UTF-8"?>

3. The elements described in the following steps reside within the web-app element that they
modify.

<web-app xmlns:j2ee="http://java.sun.com/xml/ns/j2ee">

....

</web-app>

4. Note the registration of servlets in web.xml. The servlet element and its
servlet-class attributes set the name of the servlet and the location of the compiled class
that executes the servlet.

The following listing names a servlet called action and associates it with a class:

<servlet>
 <servlet-name>action</servlet-name>
 <servlet-class>
 org.apache.struts.action.ActionServlet
 </servlet-class>

5. The init-param attribute is part of the servlet element; in this case, of the servlet
defined in the previous step. The servlet reads its init-param values when it is invoked.

<init-param>
 <param-name>config</param-name>
 <param-value>/WEB-INF/struts-config.xml</param-value>
</init-param>

6. The servlet-mapping element determines how the MedRec application invokes a servlet.

<servlet-mapping>
 <servlet-name>action</servlet-name>
 <url-pattern>*.do</url-pattern>
</servlet-mapping>

7. The welcome-file-list element defines the Web application’s welcome files.

9-4 MedRec Development Tutorials

<welcome-file-list>
 <welcome-file>index.jsp</welcome-file>
</welcome-file-list>

8. The taglib child element of the jsp-config element defines the tag libraries that are
available to the application:

<taglib>
 <taglib-uri>/WEB-INF/struts-bean.tld</taglib-uri>
 <taglib-location>/WEB-INF/struts-bean.tld</taglib-location>
</taglib>

See web.xml Deployment Descriptor Elements in Developing Web Applications for WebLogic
Server for a description of the other elements in the web.xml file, such as filter and
filter-mapping.

Step 2: Examine a weblogic.xml file.
In this section, examine the contents of the weblogic.xml file that configures the
physicianWebApp of the physicianEar application. Physicians and nurses log in to the
physician Web Application to search and access patient profiles, create and review patient
medical records, and prescribe medicine to patients.

A WebLogic Server Web Application’s weblogic.xml file can set, among other things, the
following major properties:

JSP properties

JNDI mappings

Context root

URL mappings

Security role mappings

HTTP session attributes

1. In a text editor, open the weblogic.xml file that configures physicianWebApp:

prompt> notepad
c:\medrec_tutorial\src\physicianEar\physicianWebApp\WEB-INF\weblogic.xm
l

2. Note the heading that sets the encoding and references the location of the XML Schema
file:

Tuto r ia l 8 : Wa lk through o f Web Appl i ca t ion Dep lo yment Descr ip to rs

MedRec Development Tutorials 9-5

<?xml version="1.0" encoding="UTF-8"?>

<weblogic-web-app xmlns="http://www.bea.com/ns/weblogic/90">

This URL is the directory that contains the current WebLogic Server 9.1 XML Schema for
Web Applications.

3. The elements and attributes in the weblogic.xml file are members of the
weblogic-web-app element that opens and closes every instance of weblogic.xml:

<weblogic-web-app>

....

</weblogic-web-app>

4. The session-descriptor element contains session parameters for the Web Application’s
servlet sessions. The names of the child elements are defined in weblogic-web-app.xsd,
whose values can be set within the same session-descriptor element:

 <session-descriptor>
 <timeout-secs>600</timeout-secs>
 <invalidation-interval-secs>60</invalidation-interval-secs>
 <persistent-store-type>
 replicated_if_clustered
 </persistent-store-type>
 </session-descriptor>

The timeout-secs child element sets the number of seconds the server waits before
timing out a session.

The second child element, invalidation-interval-secs, is a performance-related
setting that specifies the number of seconds the server waits before checking to determine
if a session is invalid or has timed out.

The value assigned to the third child element, persistent-store-type, determines the
persistent store method for servlet sessions. The current value,
replicated_if_clustered, means that sessions on this server are stored in accordance
with the value set for the cluster of servers to which this server belongs—if the Web
Application is deployed to a cluster. Absent a clustered server configuration, servlet
sessions default to the memory PersistentStoreType, in which sessions are not stored
persistently.

5. The virtual-directory-mapping element sets the location that the servlet checks first
when fulfilling HTTP image requests. Its child elements, local-path and url-pattern,
map the URL pattern of an incoming request to a physical location.

<virtual-directory-mapping>
 <local-path>c:/medrec_tutorial/src/common/web</local-path>

9-6 MedRec Development Tutorials

 <url-pattern>images/*</url-pattern>
</virtual-directory-mapping>

6. The context-root element in a weblogic.xml file sets the context root directory for a
Web Application. The context root is the base path of a Web application relative to the
server's base URL. For example, MedRecServer’s base URL is http://host:7101 and the
Web application’s context root is physician. Users access components of the physician
Web application relative to http://host:7101/physician.

The setting physician means that users access the physicianWebApp when they
specifically request it.

<context-root>physician</context-root>

See weblogic.xml Deployment Descriptor Elements in Developing Web Applications for
WebLogic Server for descriptions of all possible elements of the weblogic.xml file.

Best Practices
Use an XML editor to edit XML files, rather than a text editor. It is easy to mishandle
XML code, and you will save time by using an editor that validates your work.

Use WebLogic Server tools to generate and edit XML deployment descriptors. DDInit
generates descriptors for JARs, WARs, and EARs—see DDInit.

The Big Picture
The MedRec application contains five Web Applications:

physicianWebApp (in the physicianEar application)

patientWebApp (in the medrecEar application)

adminWebApp (in the medrecEar application)

mainWebApp (in the medrecEar application)

startBrowserWebApp (in the startBrowserEar application)

The resources and attributes of these Web Applications are defined by deployment descriptor
files. This tutorial describes the function of these deployment descriptors, specifically web.xml,
the standard J2EE Web application deployment descriptor file, and weblogic.xml, the
WebLogic Server-specific Web application deployment descriptor file.

Deployment descriptor files configure properties for MedRec’s applications, EJBs, and Web
Services, as well as its Web applications.

Tuto r ia l 8 : Wa lk through o f Web Appl i ca t ion Dep lo yment Descr ip to rs

MedRec Development Tutorials 9-7

For example, physicianEar, the application to which physicianWebApp belongs, also contains
a session EJB component, physSessionEJBs. physSessionEJBs’s deployment descriptor
files, generated into the
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF directory, are
the standard J2EE EJB deployment descriptor file ejb-jar.xml, and the WebLogic
Server-specific EJB deployment descriptor file, weblogic-ejb-jar.xml.

Similarly, the physicianEar also contains a Web Service called PhysicianWebServices,
whose deployment descriptor files are generated into the
C:\medrec_tutorial\build\physicianEar\PhysicianWebServices\META-INF
directory. The Web Service deployment descriptors include the J2EE standard
webservices.xml, as well as the WebLogic-specific weblogic-webservices.xml. Because
the PhysicianWebServices service is implemented with an EJB, the META-INF directory also
contains EJB-related deployment descriptor files.

medrecEar, the main MedRec application, is configured by a standard J2EE application
deployment descriptor file, application.xml, located at
C:\medrec_tutorial\src\medrecEar\META-INF.

You are encouraged to examine the EJB, Web Service, and application deployment descriptor
files and the XML Schema files that they reference.

Related Reading
web.xml Deployment Descriptor Elements

weblogic.xml Deployment Descriptor Elements

Sun Microsystems XML Schema for web.xml

BEA Systems XML Schema for weblogic.xml

 Apache Struts

Developing Web Applications, Servlets, and JSPs for WebLogic Server

9-8 MedRec Development Tutorials

MedRec Development Tutorials 10-1

C H A P T E R 10

Developing the MedRec Applications

Tutorial 9: Deploying MedRec from the Development
Environment

This tutorial describes how to deploy an application from a WebLogic split development
directory using the wldeploy Ant task and weblogic.Deployer utilities. You can use these
techniques to deploy an application quickly to a development environment without having to
package the application or otherwise modify your build environment.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites
Before starting this tutorial, complete tutorials 5 through 8 to create the project directory and
perform the intermediate build steps for the Physician Application. If you completed tutorial 5
but skipped one or more of the subsequent tutorials, you can catch up by moving to the
c:\medrec_tutorial\src\physicianEar subdirectory, setting the environment, and using
Ant to run the default build.xml file:

10-2 MedRec Development Tutorials

prompt> c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

prompt> cd c:\medrec_tutorial\src\physicianEar

prompt> ant -f build.xml

Procedure
By now you have seen how the split development directory structure helps you easily build
Enterprise Applications with WebLogic Server. In this procedure you learn how easy it is to
deploy Enterprise Applications with this directory structure.

Deploying Enterprise Applications sometimes seems like as much work as building them—you
usually need to combine the compiled Java classes with modifiable deployment descriptors to
create an exploded EAR directory or a compressed EAR file, which you then deploy. This
process generally involves copying files from one place to another and changing their directory
structures before deploying (not to mention repeating this process each time you rebuild the
application or change a deployment descriptor).

With the split development directory, compiled files in the build directory are neatly separated
from modifiable source files and descriptors in the source directory. WebLogic Server can
deploy applications directly from a split development directory—you only need to target the
build directory to deploy your work. In this procedure you use the split development directory to
deploy physicianEar, which has now been built to the point where it is deployable:

1. Open a command shell window and start PointBase, if it is not already running:

prompt> cd c:\bea\weblogic91\common\eval\pointbase\tools

prompt> startPointBase.cmd

2. First start the MedRecServer if it is not already running:

a. Open a new command shell window.

b. Start the MedRec server by running its start script:

prompt> c:\bea\user_projects\domains\medrecdomain\startweblogic.cmd

3. Open another command shell window and set your environment:

prompt> c:\bea\user_projects\domains\medrecdomain\bin\setDomainEnv.cmd

4. Move to the physicianEar subdirectory if you are not already there:

prompt> cd c:\medrec_tutorial\src\physicianEar

5. Use a text editor to create a new file, deploy.xml:

Tuto r ia l 9 : Dep lo y ing MedRec f rom the Deve lopment Env i ronment

MedRec Development Tutorials 10-3

prompt> notepad deploy.xml

Note: If you do not want to create the deploy.xml file manually in this tutorial, copy the
file named wldeploy_tutorial.xml to a new file named deploy.xml and follow
along.

6. Start the deploy.xml file by defining a project named tutorial:

<project name="tutorial" default="deploy">

7. Define the main target for deploying the application:

 <target name="deploy">
 <wldeploy user="weblogic"
 password="weblogic"
 adminurl="t3://127.0.0.1:7101"
 action="deploy"
 name="tutorial_deployment"
 source="c:\medrec_tutorial\build\physicianEar" />
 </target>

8. Complete the deploy.xml file by closing the project element:

</project>

9. Your file contents should now resemble the following:

<project name="tutorial" default="deploy">

 <target name="deploy">
 <wldeploy user="weblogic"
 password="weblogic"
 adminurl="t3://127.0.0.1:7101"
 action="deploy"
 name="tutorial_deployment"
 source="c:\medrec_tutorial\build\physicianEar" />
 </target>

</project>

Save the file and exit your text editor.

10. In the same command shell, enter the commands to execute the build script:

prompt> ant -f deploy.xml

You should receive the following output from the wldeploy task:

Buildfile: deploy.xml

deploy:

10-4 MedRec Development Tutorials

 [wldeploy] weblogic.Deployer -noexit -name tutorial_deployment -source
C:\medrec_tutorial\build\physicianEar -adminurl t3://127.0.0.1:7101
-user weblogic -password ******** -deploy
 [wldeploy] weblogic.Deployer invoked with options: -noexit -name
tutorial_deployment -source C:\medrec_tutorial\build\physicianEar
-adminurl t3://127.0.0.1:7101 -user weblogic -deploy
 [wldeploy] <Dec 9, 2005 12:13:01 PM PST> <Info> <J2EE Deployment SPI>
<BEA-260121> <Initiating deploy operation for application,
tutorial_deployment [archive:C:\medrec_tutorial\build\physicianEar], to
configured targets.>
 [wldeploy] Task 0 initiated: [Deployer:149026]deploy application
tutorial_deployment on MedRecServer.
 [wldeploy] Task 0 completed: [Deployer:149026]deploy application
tutorial_deployment on MedRecServer.
 [wldeploy] Target state: deploy completed on Server MedRecServer
 [wldeploy]

BUILD SUCCESSFUL
Total time: 30 seconds

If you do not receive the above output, MedRecServer may not have finished starting up,
or you may have made a typo in creating the deploy.xml file. If this occurs, wait until the
server has finished starting up, and try to deploy using the installed tutorial file:

prompt> ant -f wldeploy_tutorial.xml

If you receive the following error when trying to deploy physicianEar, you might have
forgotten to release the configuration when previously using the Administration Console:

BUILD FAILED

C:\medrec_tutorial\src\medrecEar\build.xml:256:
weblogic.management.ManagementException: [Deployer:149163]The domain
edit lock is owned by another session in non-exclusive mode - this
deployment operation requires exclusive access to the edit lock and hence
cannot proceed.

In this case, be sure you click either Activate Changes or Release Configuration in the
Change Center of the Administration Console and then rerun the deploy task.

11. To verify that the application deployed, open a new browser window and enter the URL
http://host:7101/physician, where host refers to the computer that hosts
MedRecServer. If your browser is on the same computer as MedRecServer, you can use
the URL http://localhost:7101/physician.

You should receive the Physician Application’s login page. You cannot do much more than
look at the page right now, because the rest of the MedRec application suite is not yet
available.

Tuto r ia l 9 : Dep lo y ing MedRec f rom the Deve lopment Env i ronment

MedRec Development Tutorials 10-5

12. You use the wldeploy task with the same options as those available with the
weblogic.Deployer command line utility. Before moving on to the next tutorial, undeploy
the Physician application using weblogic.Deployer. In the same command-line window,
enter the command:

prompt> java weblogic.Deployer -adminurl t3://127.0.0.1:7101 -user
weblogic -password weblogic -undeploy -name tutorial_deployment

The utility displays the following output messages:

<Dec 9, 2005 12:16:07 PM PST> <Info> <J2EE Deployment SPI> <BEA-260121>
<Initiating undeploy operation for application, tutorial_deployment
[archive: null], toconfigured targets.>
Task 3 initiated: [Deployer:149026]remove application
tutorial_deployment on MedRecServer.
Task 3 completed: [Deployer:149026]remove application
tutorial_deployment on MedRecServer.
Target state: undeploy completed on Server MedRecServer

13. Use the weblogic.Deployer utility to redeploy the physicianEar application in
preparation for the next tutorial:

prompt> java weblogic.Deployer -adminurl t3://127.0.0.1:7101 -user
weblogic -password weblogic -deploy -name tutorial_deployment -source
c:\medrec_tutorial\build\physicianEar

Best Practices
You can use the weblogic.Deployer tool or its associated Ant task, wldeploy to target
the build directory to a server running in development mode.

The split development directory structure enables you to deploy applications directly from
your development environment without packaging or otherwise copying any files.

In most cases, you need to deploy and redeploy frequently during the development phase
of an Enterprise Application, in particular after running wlcompile to regenerate and
recompile components. You should generally add deploy, redeploy, and undeploy targets to
your build files to your project build scripts to facilitate these functions.

To redeploy using the wldeploy task, simply replace action="deploy" with
action="redeploy", and omit the source definition; wldeploy uses the deployment
name to redeploy the application. Similarly, to undeploy, replace action="redeploy"
with action="undeploy".

Redeployment is unnecessary for changes to non-generated, non-deployment files such as
HTML files and JSPs.

10-6 MedRec Development Tutorials

The Big Picture
How does wldeploy work with the split directory? The contents of
c:\medrec_tutorial\build\physicianEar look similar to an exploded EAR directory, but
there are no deployment descriptors. WebLogic Server finds the correct deployment descriptors
to use by examining the c:\medrec_tutorial\build\physicianEar\.beabuild.txt file,
which references the application’s source directory,
c:\medrec_tutorial\src\physicianEar. The source directory contains the component
deployment descriptors needed to deploy the application.

Related Reading
wldeploy Ant Task Reference in Developing Applications with WebLogic Server

weblogic.Deployer Command-Line Reference in Deploying Applications to WebLogic
Server

Overview of Common Deployment Scenarios

Overview of Deployment Tools

Apache Ant in Developing Applications with WebLogic Server

MedRec Development Tutorials 11-1

C H A P T E R 11

Developing the MedRec Applications

Tutorial 10: Using EJBGen to Generate EJB Deployment
Descriptors

This tutorial demonstrates how to use the WebLogic Server EJBGen utility to generate
deployment descriptor files (ejb-jar.xml and weblogic-ejb-jar.xml) and EJB source files,
such as the Home interface file, from the main programmer-written EJB bean source file that
contains your business logic. In particular, this tutorial uses the PhysicianSession EJB from
the physicianEar application.

EJBGen uses JDK 5.0 metadata annotations in the bean file to generate the deployment descriptor
files and the supporting EJB Java source files, such as the Home and Remote interfaces. This
means that you only need to program one file that contains your business logic, and use
EJBGen-specific annotations inside this file to specify the shape and behavior of the EJB. The
EJBGen utility then takes care of generating all supporting files.

The wlcompile Ant task automatically invokes the EJBGen utility if it encounters a Java file
with a *.ejb extension, instead of the normal *.java extension. This means that you can mix
EJBGen-annotated files with standard Java files in an EAR structure and use a single wlcompile
Ant task to compile all the code.

All EJB files in the MedRec application are already annotated with EJBGen metadata
annotations.

The tutorial includes the following sections:

Prerequisites

11-2 MedRec Development Tutorials

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites
Before starting this tutorial, complete “Tutorial 9: Deploying MedRec from the Development
Environment” on page 10-1 so that you have already compiled the physicianEar application,
started the MedRec server, and deployed the application, including its EJBs.

If you completed up to Tutorial 5 but skipped one or more of the subsequent tutorials so that you
have not yet deployed the physicianEar application, you can catch up by moving to the
c:\medrec_tutorial\src\physicianEar subdirectory, setting the environment, and using
Ant to run the default build.xml file to build the entire application and deploy it to WebLogic
Server:

prompt> c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

prompt> cd c:\medrec_tutorial\src\physicianEar

prompt> ant -f build.xml build deploy.physician.ear

Procedure
In the following steps you use the Administration Console to view administrative information
about a deployed EJB; view the EJB Java source file that contains the EJBGen metadata
annotations; view some of the files that EJBGen generates, and finally use EJBGen to regenerate
those files.

Step 1: Use the Administration Console to view information about a deployed EJB.

Step 2: View the EJB bean class file that contains the EJBGen metadata annotations.

Step 3: View the already-generated deployment descriptor and Java files.

Step 4: Use the EJBGen utility to regenerate the deployment descriptor and EJB files.

Tuto r ia l 10 : Us ing EJBGen to Genera te E JB Dep lo yment Descr ip to rs

MedRec Development Tutorials 11-3

Step 1: Use the Administration Console to view information
about a deployed EJB.
The procedure is not necessary for using EJBGen; it is provided only as additional information
about using the Administration Console to view a deployed EJB.

1. Open the Administration Console by navigating in a browser to:

http://host:7101/console

where host refers to the computer on which MedRecServer is running. If your browser is
on the same computer as MedRecServer, then you can use the URL
http://localhost:7101/console.

2. Specify weblogic for both the username and password and click Log In.

3. In the left Domain Structure window, click MedRecDomain→Deployments.

4. In the right pane, in the Deployments table, expand the tutorial_deployment enterprise
application.

A list of all the modules, EJBs, and Web Services contained in the application appears
below the application name.

Note: If you followed the directions in Prerequisites to catch up, then the application is
listed with the name PhysicianEar.

5. Click PhysicianSessionEJB under the EJBs heading.

6. Select the tabs to view information about the EJB. For example, the Configuration tab
displays session and transaction information for the PhysicianSessionEJB.

Step 2: View the EJB bean class file that contains the EJBGen
metadata annotations.
1. Open a command window and move to the directory that contains the Java source file for the

PhysicianSessionEJB:

prompt> cd
C:\medrec_tutorial\src\physicianEar\physSessionEjbs\com\bea\medrec\cont
roller

2. Use an IDE or text editor to view the PhysicianSessionEJB.ejb file:

prompt> notepad PhysicianSessionEJB.ejb

11-4 MedRec Development Tutorials

Because this Java source file has an .ejb extension, the wlcompile Ant command
automatically uses the EJBGen utility to compile it into a deployable EJB. This is a handy
convenience when programming EJBs that use EJBGen annotations because you let the
wlcompile Ant determine how to process the file.

PhysicianSessionEJB.ejb file is the main stateless session EJB bean implementation
class file that programmers code and contains the business logic that defines how the EJB
behaves. The file implements the WebLogic-specific abstract class
weblogic.ejb.GenericSessionBean, which is a convenience class similar to the
standard J2EE javax.ejb.SessionBean interface. The file uses EJBGen metadata
annotations that further describe the shape and behavior of the EJB. Some typical
annotations include:

– @Session—Specifies, at the class-level, that the EJB is of type stateless session. Use
attributes to specify characteristics of the EJB, as shown in the following example:

@Session(maxBeansInFreePool = "1000",
 initialBeansInFreePool = "0",
 transTimeoutSeconds = "0",
 type = Session.SessionType.STATELESS,
 defaultTransaction = Constants.TransactionAttribute.REQUIRED,
 enableCallByReference = Constants.Bool.TRUE,
 ejbName = "PhysicianSessionEJB")

– @JndiName—Specifies, at the class-level, the remote or local JNDI name of the EJB.
For example:

@JndiName(remote = "PhysicianSessionEJB.PhysicianSessionHome")

– @RemoteMethod—Specifies, at the method-level, which methods are exposed in the
generated Remote interface.

See EJBGen Reference for additional information about EJBGen and the full list of annotations.

Step 3: View the already-generated deployment descriptor and
Java files.
In Tutorial 7: Compiling Split Development Directory Applications with Ant Tasks, you
executed the wlcompile Ant task, which in turn executed the EJBGen utility to compile the EJBs
of the physicianEar application. This procedure describes how to view the deployment
descriptor files and supporting Java interfaces that were generated by EJBGen, located in the
\build directory.

1. Open a command window and move to the directory that contains the deployment descriptor
files that were generated by the EJBGen utility for PhysicianSessionEJB:

Tuto r ia l 10 : Us ing EJBGen to Genera te E JB Dep lo yment Descr ip to rs

MedRec Development Tutorials 11-5

prompt> cd
c:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF

2. Use a text editor to view the two EJB-related deployment descriptor files:

– ejb-jar.xml—The standard J2EE deployment descriptor that specifies the
PhysicianSessionEJB bean, its interfaces, and its session and transaction types.

– weblogic-ejb-jar.xml—The WebLogic-specific deployment descriptor that
specifies the PhysicianSessionEJB-

–

– ‘1wq

– pool and time-out deployment settings.

For details about the elements used in these files, see the ejb-jar_2_1.xsd and
weblogic-ejb-jar.xsd XML Schema files.

3. Move to the directory that contains the compiled EJB classes; the wlcompile Ant task also
copies the Java source of the EJB files to this directory:

prompt> cd
c:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\medrec\co
ntroller

4. Use an IDE or text editor to view the Java source files that make up the
PhysicianSessionEJB. These files include the programmer-created bean class that
contains the EJBGen annotations (described in Step 2: View the EJB bean class file that
contains the EJBGen metadata annotations.), as well as the following Java files generated
by the EJBGen utility:

– PhysicianSession.java—The remote interface of the EJB that describes the
signature of its public methods, such as addRecord, getRecordSummary, and so on.
This interface extends the J2EE javax.ejb.EJBObject interface.

– PhysicianSessionHome.java—The home interface of the EJB that extends the J2EE
javax.ejb.EJBHome interface.

Step 4: Use the EJBGen utility to regenerate the deployment
descriptor and EJB files.
When you program EJBs using annotations within a split development directory structure, you
typically only need to execute the wlcompile Ant task over the entire source directory to compile
the EJB and generate its supporting files into the build directory. As long as the EJB files that use

11-6 MedRec Development Tutorials

annotations have the *.ejb extension, the wlcompile Ant task automatically knows to execute
the EJBGen Ant task on the file.

You can, however, also use the EJBGen utility on its own if you want to generate the EJB
deployment descriptors and supporting home and remote interfaces individually, outside of the
wlcompile Ant task. You can execute the EJBGen utility using either of the following methods:

As a Java utility whose class name is com.bea.wls.ejbgen.EJBGen.

As an Ant task whose task definition is com.bea.wls.ejbgen.ant.EJBGenAntTask.

The following procedure shows how to use the Ant task.

1. Open a command window and set your environment:

prompt> c:\bea\user_projects\domains\medrecdomain\bin\setDomainEnv.cmd

2. Move to the physicianEar subdirectory:

prompt> cd c:\medrec_tutorial\src\physicianEar

3. Use a text editor to create a new file, ejbgen.xml:

prompt> notepad ejbgen.xml

Note: If you do not want to create the ejbgen.xml file manually in this tutorial, copy the
file named ejbgen_tutorial.xml to a new file named ejbgen.xml and follow
along.

4. Start the ejbgen.xml file by defining a project named ejbgen_tutorial with a default
target run-ejbgen:

<project name="ejbgen_tutorial" default="run-ejbgen">

5. Use the taskdef task to define the full classname of the EJBGen task:

 <taskdef name="ejbgen"
 classname="com.bea.wls.ejbgen.ant.EJBGenAntTask" />

6. Define the main target for executing the EJBGen task on the PhysicianSessionEJB.ejb
Java file:

 <target name="run-ejbgen">

 <ejbgen
 source="1.5"
 outputDir =
"C:\medrec_tutorial\build\physicianEar\physSessionEjbs"
 descriptorDir =
"C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF"

Tuto r ia l 10 : Us ing EJBGen to Genera te E JB Dep lo yment Descr ip to rs

MedRec Development Tutorials 11-7

 forceGeneration = "true"
 >
 <fileset dir="physSessionEjbs/com/bea/medrec/controller"
 includes="PhysicianSessionEJB.ejb" />
 </ejbgen>

 </target>

The source attribute specifies that the source EJB bean file uses JDK 1.5 metadata
annotations (rather than Javadoc tags used in previous releases of WebLogic Server.) The
outputDir and descriptorDir attributes specify the directories into which EJBGen
should generate the home and remote interfaces and the deployment descriptors,
respectively. The forceGeneration attribute specifies that files should always be
generated, even if there have been no changes to the source file. Finally, the Ant-standard
fileset task specifies the directory which contains the source EJB bean files and the
name of the file that EJBGen should process, in this case PhysicianSessionEJB.ejb.

7. Complete the ejbgen.xml file by closing the project element:

</project>

8. Your file contents should now resemble the following:

<project name="ejbgen_tutorial" default="run-ejbgen">

 <taskdef name="ejbgen"
 classname="com.bea.wls.ejbgen.ant.EJBGenAntTask" />

 <target name="run-ejbgen">

 <ejbgen
 source="1.5"
 outputDir =
"C:\medrec_tutorial\build\physicianEar\physSessionEjbs"
 descriptorDir =
"C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF"
 forceGeneration = "true"
 >
 <fileset dir="physSessionEjbs/com/bea/medrec/controller"
 includes="PhysicianSessionEJB.ejb" />
 </ejbgen>

 </target>

</project>

Save the file and exit your text editor.

9. In the same command shell, enter the commands to execute the build script:

prompt> ant -f ejbgen.xml

11-8 MedRec Development Tutorials

You should receive the following output from the ejbgen task:

Buildfile: ejbgen.xml

run-ejbgen:
 [ejbgen] EJBGen 9.0
 [ejbgen]
 [ejbgen] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\medrec\co
ntroller\PhysicianSessionHome.java
 [ejbgen] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\medrec\co
ntroller\PhysicianSession.java
 [ejbgen] Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF\ejb-jar.
xml
 Creating
C:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF\weblogic
-ejb-jar.xml

BUILD SUCCESSFUL
Total time: 3 seconds

If you did not receive the above output, or ran into a problem, you can use the Ant build
file provided for this tutorial instead:

prompt> ant -f ejbgen_tutorial.xml

10. Verify that the deployment descriptors and home/remote interfaces were indeed regenerated
by checking their file creation date and time:

prompt> dir
c:\medrec_tutorial\build\physicianEar\physSessionEjbs\META-INF

prompt> dir
c:\medrec_tutorial\build\physicianEar\physSessionEjbs\com\bea\medrec\co
ntroller*.java

The actual contents of the files is the same as that of the files that were previously
generated with the wlcompile Ant task.

Best Practices
Use EJBGen to develop the EJB component of your application. You can simplify your EJB
development and code maintenance by writing just the bean implementation files and annotating
them with EJBGen metadata annotations, and then generating all the remaining files—the home
interface, the local interface, the deployment descriptor files—using EJBGen.

Tuto r ia l 10 : Us ing EJBGen to Genera te E JB Dep lo yment Descr ip to rs

MedRec Development Tutorials 11-9

The Big Picture
The scripts that compile and deploy MedRec use EJBGen to generate most of the EJB files in the
application. The EJBGen task is called implicitly by the wlcompile task any time wlcompile
encounters a file with the *.ejb extension.

The PhysicianSessionEJB.ejb Java file contains all of the information necessary for EJBGen
to generate the EJB descriptor files and the home interface. You can view the EJBGen
annotations by opening
C:\medrec_tutorial\src\physicianEar\physSessionEjbs\com\bea\medrec\control

ler\PhysicianSessionEJB.ejb in an IDE or text editor.

For example, the following class-level @Session annotation specifies that the class implements
a stateless session EJB, and then defines the pool and timeout settings that you see in the
generated weblogic-ejb-jar.xml:

@Session(maxBeansInFreePool = "1000",

 initialBeansInFreePool = "0",

 transTimeoutSeconds = "0",

 type = Session.SessionType.STATELESS,

 defaultTransaction = Constants.TransactionAttribute.REQUIRED,

 enableCallByReference = Constants.Bool.TRUE,

 ejbName = "PhysicianSessionEJB")

public class PhysicianSessionEJB extends GenericSessionBean {

...

Related Reading
EJBGen Reference

Understanding Enterprise JavaBeans, in Programming WebLogic Enterprise JavaBeans

JDK 5.0 Metadata Annotations

Configure EJBs in the Administration Console Online Help

11-10 MedRec Development Tutorials

MedRec Development Tutorials 12-1

C H A P T E R 12

Developing the MedRec Applications

Tutorial 11: Creating a J2EE Web Service by Programming a JWS
File

This tutorial describes how to create a J2EE Web Service, as specified by the Enterprise Web
Services 1.1 specification (JSR-921).

The tutorial first looks at the Java Web Service (JWS) file that implements the Web Service, and
then shows how to use jwsc, the WebLogic Web Service Ant task, to automatically generate all
the supporting artifacts that make up the Web Service. The tutorial then shows how to deploy the
Web Service and view its WSDL file. Tutorial 12: Invoking a Web Service from a Client
Application describes how Web Services can be invoked by a variety of client applications using
SOAP.

A JWS file is an ordinary Java class file that uses JDK 5.0 metadata annotations to specify the
shape and characteristics of the Web Service. The JWS annotations you can use in a JWS file
include the standard ones defined by the Web Services Metadata for the Java Platform
specification (JSR-181) as well as a set of WebLogic-specific ones.

After you program the JWS file, you use the jwsc WebLogic Web Service Ant task to compile
the JWS file into either a Java class or a stateless session EJB, as described by the Enterprise Web
Services 1.1 specification. You typically do not need to decide this backend implementation of
the Web Service; the jwsc Ant task picks the optimal implementation based on the JWS
annotations you have specified in the JWS file. The jwsc Ant task also generates all the
supporting artifacts for the Web Service (deployment descriptors, XML Schema representation

12-2 MedRec Development Tutorials

of Java user-defined data types, WSDL file), packages everything into an archive file, and creates
an Enterprise Application that you can then deploy to WebLogic Server.

The tutorial includes:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites
Previous tutorials work exclusively with the Physician application, physicianEar. This tutorial
uses the main MedRec application, medrecEar, which contains a variety of Web Services in the
webServices subdirectory. This tutorial describes how to program the MedRecWebServices
service, whose JWS file is located in the
C:\medrec_tutorial\src\medrecEar\webServices\com\bea\medrec\webservices
directory. This Web Service provides public operations for the main MedRec services, such as
retrieving information about a patient or a particular visit, or updating a patient’s profile.

Before starting this tutorial, create the project directory and copy over the source files and output
directories using the instructions in Tutorial 5: Creating the MedRec Project Directory.

Procedure
To implement the MedRecWebServices service:

Step 1: View the MedRecWebServices.java JWS file that implements the Web Service.

Step 2: Create the build file that contains the call to the jwsc Ant task.

Step 3: Execute the jwsc Ant task to generate the Web Service.

Step 4: View the generated Web Service artifacts.

Step 5: Deploy the Web Service and view its WSDL.

Tuto r ia l 11 : Crea t ing a J2EE Web Serv ice by P rog ramming a JWS F i l e

MedRec Development Tutorials 12-3

Step 1: View the MedRecWebServices.java JWS file that
implements the Web Service.
1. Open a command window and move to the directory that contains the

MedRecWebServices.java JWS file that implements the MedRecWebServices service:

prompt> cd
C:\medrec_tutorial\src\medrecEar\webServices\com\bea\medrec\webservices

2. Use an IDE or text editor to view the MedRecWebServices.java file:

prompt> notepad MedRecWebServices.java

The MedRecWebServices.java JWS file is a Java file that contains JWS annotations,
both standard and WebLogic-specific, that describe the Web Service-specific shape and
behavior of the service. The methods of the Java file contain the business logic that
implements the public operations of the Web Service; these methods include getRecord
that returns the record of a patient based on a record ID and findPatientBySsn that
returns patient information based on the patient’s Social Security number.

The JWS annotations used in MedRecWebServices.java include:

– @WebService—Standard class-level annotation that specifies the name of the Web
Service, both internal and as it appears in the WSDL file, and the target name space
used in the WSDL:

@WebService(name = "MedRecWebServicesPortType",
 serviceName = "MedRecWebServices",
 targetNamespace = "http://www.bea.com/medrec")

– @SOAPBinding—Standard class-level annotations that specifies the type of Web
Service, such as document-literal-wrapped (shown in example) or rpc-encoded:

@SOAPBinding(style=SOAPBinding.Style.DOCUMENT,
 use=SOAPBinding.Use.LITERAL,
 parameterStyle=SOAPBinding.ParameterStyle.WRAPPED)

– @WLHttpTransport—WebLogic-specific class-level annotation that specifies the name
of the port in the WSDL file and the URI used to invoke the Web Service:

@WLHttpTransport(portName = "MedRecWebServicesPort",
 contextPath = "ws_medrec",
 serviceUri = "MedRecWebServices")

– @WebMethod—Standard method-level annotation that specifies which methods of the
JWS file will be exposed as public operations of the Web Service.

12-4 MedRec Development Tutorials

See Programming the JWS File for detailed information about creating a JWS file and JWS
Annotations Reference for the full list of JWS annotations you can use in a JWS file.

Step 2: Create the build file that contains the call to the jwsc
Ant task.
After you program the JWS file, you use the jwsc Ant task to generate a deployable Web Service.

1. Open a command window and change to the medrecEar subdirectory in the MedRec project
directory:

prompt> cd c:\medrec_tutorial\src\medrecEar

2. Use a text editor to create a file called my_webserv.xml file in the medrecEar directory:

prompt> notepad my_webserv.xml

Note: If you do not want to enter the build file manually, copy the file
webservices_tutorial.xml file to the new file name, my_webserv.xml. Then
follow along to understand the file contents. The webservices_tutorial.xml file
treats c:/medrec_tutorial as your MedRec project directory

3. Add the following lines to the my_webserv.xml file (substituting, if necessary, your actual
MedRec project directory for c:/medrec_tutorial); the Ant tasks are described at the
end of this step:

<project name="WebServicesTutorial" default="build.ws">

 <path id="jwsc.class.path">

 <pathelement path="${java.class.path}"/>
 <pathelement path="c:/medrec_tutorial/build/medrecEar/sessionEjbs"/>
 <pathelement
path="c:/medrec_tutorial/build/medrecEar/APP-INF/lib/value.jar" />
 <pathelement
path="c:/medrec_tutorial/build/medrecEar/APP-INF/lib/utils.jar" />
 <pathelement
path="c:/medrec_tutorial/build/medrecEar/APP-INF/lib/log4j.jar" />

 </path>

 <taskdef name="jwsc" classname="weblogic.wsee.tools.anttasks.JwscTask"
/>

 <target name="build.ws">

 <jwsc
 srcdir="webServices/com/bea/medrec/webservices"
 sourcepath="webServices"

Tuto r ia l 11 : Crea t ing a J2EE Web Serv ice by P rog ramming a JWS F i l e

MedRec Development Tutorials 12-5

 destdir="c:/medrec_tutorial/build/medrecEar"

applicationXml="c:/medrec_tutorial/src/medrecEar/META-INF/application.x
ml"
 >
 <classpath refid="jwsc.class.path" />
 <jws file="MedRecWebServices.java" explode="true"/>

 </jwsc>

 </target>

</project>

The <path> element is used to create a structure, called jwsc.class.path, that contains a list
of directories and JAR files that will later be added to the CLASSPATH of the jwsc Ant task
when it compiles the JWS file.

The <taskdef> task identifies the full classname of the jwsc Ant task.

The <jwsc> Ant task uses the following attributes:

srcdir—Full pathname of the top-level directory that contains the
MedRecWebServices.java JWS file.

sourcepath—Full pathname of the top-level directory that contains the Java files
referenced by the JWS file, such as JavaBeans used as parameters or user-defined
exceptions.

destdir—Full pathname of the directory that will contain the compiled JWS files, XML
Schemas, WSDL, and generated deployment descriptor files.

applicationXml—Full name and path of the application.xml deployment descriptor
of the Enterprise Application.

The <classpath> child element of <jwsc> adds to its CLASSPATH the directories and JAR
files previously specified with the <path> element. The <jws> child element specifies the name
of the JWS file to be compiled and that the generated components should be in exploded format,
rather than archived in a WAR or JAR file.

Step 3: Execute the jwsc Ant task to generate the Web Service.
After you create the my_webserv.xml file, use it to execute the jwsc Ant task to generate the
Web Service artifacts based on the MedRecWebServices.java JWS file:

1. Open a commend window and set your environment using the MedRecDomain environment
script:

12-6 MedRec Development Tutorials

prompt> c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

2. Move to the medrecEar directory:

prompt> cd c:\medrec_tutorial\src\medrecEar

3. Execute the Web Service Ant tasks by running the my_webserv.xml script using the ant
command:

prompt> ant -f my_webserv.xml

The jwsc Ant task produces output similar to the following to show its progress:

Buildfile: my_webserv.xml

build.ws:
 [jwsc] 1 JWS files will be processed.
 [jwsc] Processing JWS:
C:\medrec_tutorial\src\medrecEar\webServices\com\bea\medrec\webservices
\MedRecWebServices.java
 [jwsc] JWS:
C:\medrec_tutorial\src\medrecEar\webServices\com\bea\medrec\webservices
\MedRecWebServices.java Validated.
 [jwsc] Compiling 2 source files to C:\WINDOWS\TEMP_ptaghb
 [jwsc] Copying 1 file to
C:\medrec_tutorial\build\medrecEar\MedRecWebServices\WEB-INF
 [jwsc] Copying 9 files to
C:\medrec_tutorial\build\medrecEar\MedRecWebServices\WEB-INF
 [jwsc] Copying 4 files to
C:\medrec_tutorial\build\medrecEar\MedRecWebServices\WEB-INF\classes
 [jwsc] Created JWS deployment directory:
C:\medrec_tutorial\build\medrecEar\MedRecWebServices
[AntUtil.deleteDir] Deleting directory C:\WINDOWS\TEMP_ptaghb

BUILD SUCCESSFUL
Total time: 8 seconds

If you did not receive the preceding output, or ran into a problem, you can use the Ant
build file provided for this tutorial instead:

prompt> ant -f webservices_tutorial.xml

Step 4: View the generated Web Service artifacts.
Although you should never update the artifacts generated by the jwsc Ant task, it is sometimes
useful to view them so as to understand what makes up a deployable Web Service.

Tuto r ia l 11 : Crea t ing a J2EE Web Serv ice by P rog ramming a JWS F i l e

MedRec Development Tutorials 12-7

Move to the build directory into which the jwsc Ant task generated the MedRecWebServices
artifacts:

prompt> cd c:\medrec_tutorial\build\medrecEar\MedRecWebServices

The MedRecWebServicesPortType.java file is the generated endpoint service interface file;
its contents are based on the methods of the JWS file that will be exposed as public operations of
the Web Service.

The WEB-INF subdirectory contains the generated deployment descriptors, such as
webservices.xml and weblogic-webservices.xml, and the generated WSDL file
MedRecWebServices.wsdl. Because this Web Service will be packaged into a Web application
archive, this directory also contains corresponding descriptors: web.xml and weblogic.xml.
The WEB-INF\classes subdirectory contains the compiled Web Service classes, compiled either
from the JWS file or from generated Java files (such as the service endpoint interface
MedRecWebServicesPortType.java).

Step 5: Deploy the Web Service and view its WSDL.
In this section, you deploy the entire MedRec application, which includes the
MedRecWebServices Web Service, in the same way that you deployed the Physician application
in Tutorial 9: Deploying MedRec from the Development Environment. In this tutorial, however,
you use the deploy target of the existing build.xml file in the medrecEar directory rather than
creating a new one.

Once the Web Service is deployed, you can view its WSDL file.

1. Start MedRecServer, if it is not already running, by executing its start script from a command
window:

prompt> c:\bea\user_projects\domains\MedRecDomain\startweblogic.cmd

2. Start PointBase, if it is not already running, by executing its start script from another
command window:

prompt>
c:\bea\weblogic91\common\eval\pointbase\tools\startPointBase.cmd

3. Open another command shell and set your environment:

prompt> c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

4. Move to the medrecEar subdirectory if you are not already there:

prompt> cd c:\medrec_tutorial\src\medrecEar

12-8 MedRec Development Tutorials

5. Enter the following command to execute the deploy.medrec.ear target of the existing
build.xml file:

prompt> ant deploy.medrec.ear

You should receive the following output from the wldeploy task:

Buildfile: build.xml

deploy.medrec.ear:

 [wldeploy] weblogic.Deployer -noexit -name MedRecEAR -source
C:\medrec_tutorial\build\medrecEar -targets MedRecServer -adminurl
t3://localhost:7101 -user weblogic -password ******** -deploy
-submoduletargets MedRecJMSServer@MedRecAppScopedJMS@MedRecJMSServer
-securityModel CustomRolesAndPolicies
 [wldeploy] weblogic.Deployer invoked with options: -noexit -name
MedRecEAR -source C:\medrec_tutorial\build\medrecEar -targets
MedRecServer -adminurl t3://localhost:7101 -user weblogic -deploy
-submoduletargets MedRecJMSServer@MedRecAppScopedJMS@MedRecJMSServer
-securityModel CustomRolesAndPolicies
 [wldeploy] <Dec 9, 2005 3:54:33 PM PST> <Info> <J2EE Deployment SPI>
<BEA-260121> <Initiating deploy operation for application, MedRecEAR
[archive: C:\medrec_tutorial\build\medrecEar], to MedRecServer
MedRecJMSServer .>
 [wldeploy] Task 0 initiated: [Deployer:149026]deploy application
MedRecEAR on MedRecJMSServer,MedRecServer.
 [wldeploy] Task 0 completed: [Deployer:149026]deploy application
MedRecEAR on MedRecJMSServer,MedRecServer.
 [wldeploy] Target state: deploy completed on JMS Server MedRecJMSServer
 [wldeploy] Target state: deploy completed on Server MedRecServer
 [wldeploy]

BUILD SUCCESSFUL

Total time: 20 seconds

If you do not receive the preceding output, MedRecServer may not have finished starting
up, in which case wait until you see the following status in the command window from
which you started the server and then rerun the deploy task:

<Dec 9, 2005 10:52:20 AM PST> <Notice> <WebLogicServer> <BEA-000360>
<Server started in RUNNING mode>

If you receive the following error when trying to deploy medrecEar, you might have
forgotten to release the configuration when previously using the Administration Console:

BUILD FAILED

C:\medrec_tutorial\src\medrecEar\build.xml:256:
weblogic.management.ManagementException: [Deployer:149163]The domain
edit lock is owned by another session in non-exclusive mode - this

Tuto r ia l 11 : Crea t ing a J2EE Web Serv ice by P rog ramming a JWS F i l e

MedRec Development Tutorials 12-9

deployment operation requires exclusive access to the edit lock and hence
cannot proceed.

In this case be sure you click either Activate Changes or Release Configuration in the
Change Center of the Administration Console and then rerun the deploy task.

6. To verify that the Web Service deployed, open a new browser window and enter the URL
for the Web Service’s WSDL:

http://host:7101/ws_medrec/MedRecWebServices?WSDL

where host refers to the computer on which MedRecServer is running. If your browser is
on the same computer as MedRecServer, then you can use the URL:

http://localhost:7101/ws_medrec/MedRecWebServices?WSDL

Best Practices
Use JWS files to program a WebLogic Web Service. JWS files use JWS annotations, both
standard and WebLogic-specific, to describe the shape and behavior of the Web Service.
JWS annotations are based on the new JDK 5.0 metadata annotations feature. With this
feature, most Web Service information is contained within the JWS file; supporting
artifacts such as deployment descriptors and WSDL files are generated by Ant tasks.

In general, document-literal-wrapped Web Services are the most interoperable type of Web
Service. Use the @SOAPBinding annotation to specify the type of Web Service.
Document-literal-wrapped is the default.

Use the jwsc Ant task to generate all required Web Service artifacts from a JWS file.

The Big Picture
The com.bea.medrec.webservices.MedRecWebServices JWS file of the MedRec
application contains methods to view and update patient and record information, such as
getRecord(), findPatientByLastName(), updatePatient() and so on. The methods of
the JWS file that will be exposed as public operations are annotated with the @WebMethod
annotation. These methods do not actually perform any of the business logic; rather, they call the
existing session EJBs (such as com.bea.medrec.controller.PatientSession and
com.bea.medrec.controller.RecordSession) to do the real work of viewing and searching
for the patient and record information. You can think of the MedRecWebServices Web Service
as a facade that takes incoming requests to the MedRec application and hands them off to the
other session and entity EJBs that do the actual work.

12-10 MedRec Development Tutorials

The methods of the MedRecWebServices JWS file use the following user-defined Java data
types as parameters and return values:

com.bea.medrec.value.Patient

com.bea.medrec.value.Record

com.bea.medrec.value.RecordsSummary

Because clients invoke Web Services using SOAP, which uses XML files over the wire to
transmit information, these Java data types must also have a corresponding XML Schema data
type which the Web Services runtime uses when converting patient and record data between its
Java and XML representations. The jwsc Ant task, when compiling the JWS file, also
automatically generates XML Schemas types of these Java data types. See the <types> element
in the generated WSDL file to view the XML Schema types.

Once the MedRecWebServices Web Service is deployed, all kinds of different client
applications, from EJBs running on a different WebLogic Server instance to a .NET client, can
easily get to and update the patient and record information managed by the MedRec application
using the operations of the Web Service. The client applications use SOAP to invoke a Web
Service operation, and WebLogic Server in turn uses SOAP to send the information back to the
client.

Related Reading
Iterative Development of WebLogic Web Services Starting From Java: Main Steps in
Programming Web Services for WebLogic Server

Programming the JWS File in Programming Web Services for WebLogic Server

JWS Annotation Reference in Programming Web Services for WebLogic Server

jwsc Ant Task Reference in Programming Web Services for WebLogic Server

Apache Ant in Developing Applications with WebLogic Server

Web Services Metadata for the Java Platform (JSR-181) Specification

Enterprise Web Services 1.1 Specification

Web Services Description Language (WSDL) 1.1 Specification

MedRec Development Tutorials 13-1

C H A P T E R 13

Developing the MedRec Applications

Tutorial 12: Invoking a Web Service from a Client Application
This tutorial describes how to invoke the MedRecWebServices WebLogic Web Service
(contained in the medrecEar application) that you created in Tutorial 11: Creating a J2EE Web
Service by Programming a JWS File from the following types of client applications:

Stateless session EJB deployed to WebLogic Server

Stand-alone Java Swing client application

.NET client

Stateless session EJBs and stand-alone Java clients use the client-side artifacts generated by the
clientgen Ant task to invoke a Web Service. The .NET client is written in C# and is provided
to show that you can invoke a WebLogic Web Service from non-Java clients as well.

The clientgen WebLogic Web Services Ant task generates, from an existing WSDL file, the
client artifacts that client applications use to invoke both WebLogic and non-WebLogic Web
Services. These artifacts include:

The Java source code for the Java API for XML-Based RPC (JAX-RPC) Stub and Service
interface implementations for the particular Web Service you want to invoke.

The Java source code for any user-defined XML Schema data types included in the WSDL
file.

13-2 MedRec Development Tutorials

The JAX-RPC mapping deployment descriptor file which contains information about the
mapping between the Java user-defined data types and their corresponding XML Schema
types in the WSDL file.

 A client-side copy of the WSDL file.

Note: You can use the clientgen Ant task to generate the JAX-RPC stubs for Web Services
deployed on both WebLogic Server and other application servers.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites
It is assumed that you already know how to create a session EJB, a stand-alone Java Swing client
application, and a .NET client application, and you want to learn how to update them to invoke a
Web Service.

Before starting this tutorial, complete tutorials 5 through 11 to create the project directory and
perform the intermediate build steps for the Physician and Medrec Applications.

If you skipped any of the tutorials 5 through 11, you can catch up by following these steps:

1. Open a command window and set your environment:

prompt> c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

2. Move to the root physicianEar source directory and execute the ant command to
compiled its components:

prompt> cd c:\medrec_tutorial\src\physicianEar
prompt> ant

Although this tutorial shows how to build a Web Service in the physicianEar application,
it is assumed that other components of physicianEar, such as the value objects, have
already been compiled, which is why this step is required.

Tuto r ia l 12 : Invok ing a Web Serv ice f rom a C l ient App l i cat ion

MedRec Development Tutorials 13-3

3. Move to the root medrecEar source directory and execute the following ant commands to
first build medrecEar (including its MedRecWebServices service that you are going to
invoke in this tutorial) and then deploy the application:

prompt> cd c:\medrec_tutorial\src\medrecEar
prompt> ant
prompt> ant deploy.medrec.ear

Procedure
Each of the following steps shows the code excerpt needed to invoke a Web Service from a
different type of client application.

Step 1: Invoke a Web Service from an EJB deployed on WebLogic Server.

Step 2: Invoke a Web Service from a stand-alone Java Swing client application.

Step 3: Invoke a Web Service from a .NET client.

Step 1: Invoke a Web Service from an EJB deployed on
WebLogic Server.
This procedure describes how to invoke a Web Service from the PhysicianSessionEJB of the
Physician application. The procedure shows you how to run the clientgen Ant task to generate
most of the needed Java code, and then walks you through the EJB code in the
PhysicianSessionEJB used to invoke the Web Service.

1. Open a command window and set your environment:

prompt> c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

2. Change to the physicianEar subdirectory of the MedRec project directory:

prompt> cd c:\medrec_tutorial\src\physicianEar

3. Use a text editor to create a file called my_webserv_client.xml file:

prompt> notepad my_webserv_client.xml

4. Add the following lines to the my_webserv_client.xml file (substituting, if necessary,
your actual MedRec project directory for c:\medrec_tutorial).

Note: If you do not want to create the build file manually, copy the contents of the
ws_ejb_client_tutorial.xml file to the new file, my_webserv_client.xml.
Then follow along to understand the file contents. In the

13-4 MedRec Development Tutorials

ws_ejb_client_tutorial.xml file, it is assumed that your MedRec project
directory is c:\medrec_tutorial.

<project name="EJB Web Service Invoke" default="build.ws.client">

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <target name="build.ws.client">

 <clientgen
 wsdl="http://localhost:7101/ws_medrec/MedRecWebServices?WSDL"
 destDir="c:/medrec_tutorial/build/physicianEar/APP-INF/classes"
 packageName="com.bea.medrec.webservices.client"

classpath="${java.class.path};c:/medrec_tutorial/build/physicianEar/APP
-INF/lib/value.jar"/>

 <delete includeEmptyDirs="true" failonerror="false" quiet="false">
 <fileset
dir="c:/medrec_tutorial/build/physicianEar/APP-INF/classes/com/bea/medr
ec/value"/>
 </delete>

 <javac
 srcdir="c:/medrec_tutorial/build/physicianEar/APP-INF/classes/com"
 includes="**/*.java"

classpath="${java.class.path};c:/medrec_tutorial/build/physicianEar/APP
-INF/lib/value.jar;c:/medrec_tutorial/build/physicianEar/APP-INF/classe
s"/>

 </target>

</project>

The Ant build file first uses the taskdef task to specify the full classname of the
clientgen Ant task.

The Ant build file then calls the clientgen Web Services Ant task which generates the
client-side artifacts needed to invoke a Web Service. The wsdl attribute specifies that the
clientgen Ant task use the WSDL of the WebLogic Web Service you deployed in
Tutorial 11: Creating a J2EE Web Service by Programming a JWS File when generating
the artifacts. The destdir attribute specifies that clientgen generate its artifacts into the
APP-INF/classes directory of the physicianEar build directory. The APP-INF directory
is part of the WebLogic split development directory environment and is used to ensure that
the generated classes are available to other modules, such as the PhysicianSessionEJB,
in the deployed application. The packageName attribute specifies the package into which
Java code is generated. Finally, the classpath attribute updates the CLASSPATH with the

Tuto r ia l 12 : Invok ing a Web Serv ice f rom a C l ient App l i cat ion

MedRec Development Tutorials 13-5

value.jar JAR file that contains the compiled value-classes of the user-defined data
types, such as Patient and Record.

In this release of WebLogic Server, however, there is no way to tell the clientgen Ant
task not to generate Java representations of the user-defined data types in the WSDL file,
or in other words, the same value-classes that already exist in the value.jar file. The
classes generated by clientgen do not include additional methods added to the custom
value classes that are required by the MedRec application. For this reason, you must
execute the delete task to delete the clientgen-generated classes so that they are not
inadvertently used by the MedRec application.

Because clientgen generates uncompiled Java classes, the build file then calls the javac
task to compile all generated code.

Note: In the preceding Ant build file, it is assumed that the MedRecWebServices
WebLogic Web Service is deployed to WebLogic Server and its WSDL is accessible.
This is the typical way you always run the clientgen Ant task. However, if you have
not yet deployed the Web Service, you can point the wsdl attribute to a static WSDL
file, in particular the one that was generated when you compiled the medrecEar
application that contains the MedRecWebServices service. To use the static WSDL
file, update the wsdl attribute of the clientgen task in my_webserv_client.xml
as shown:

 <clientgen

wsdl="c:/medrec_tutorial/build/medrecEar/MedRecWebServices/WEB-INF/M
edRecWebServices.wsdl"
...

5. Execute the clientgen Ant task by running the my_webserv_client.xml script:

prompt> ant -f my_webserv_client.xml

The clientgen Ant task shows output similar to the following:

Buildfile: my_webserv_client.xml
Trying to override old definition of task clientgen

build.ws.client:

[clientgen] Generating client from
http://localhost:7101/ws_medrec/MedRecWebServices?WSDL ...
[clientgen] Getting partner link
[clientgen] Package name is com.bea.medrec.webservices.client
[clientgen] DestDir is
C:\medrec_tutorial\build\physicianEar\APP-INF\classes
[clientgen] class name is MedRecWebServicesPortType_Stub
[clientgen] service class name is MedRecWebServices

13-6 MedRec Development Tutorials

[clientgen] Porttype name is MedRecWebServicesPortType
[clientgen] service impl name is MedRecWebServices_Impl
 [delete] Deleting 8 files from
C:\medrec_tutorial\build\physicianEar\APP-INF\classes\com\bea\medrec\va
lue
 [delete] Deleted 1 directory from
C:\medrec_tutorial\build\physicianEar\APP-INF\classes\com\bea\medrec\va
lue
 [javac] Compiling 5 source files
 [javac] Note:
C:\medrec_tutorial\build\physicianEar\APP-INF\classes\com\bea\medrec\we
bservices\client\MedRecWebServicesPortType_Stub.java uses unchecked
orunsafe operations.
 [javac] Note: Recompile with -Xlint:unchecked for details.

BUILD SUCCESSFUL
Total time: 7 seconds

6. Update the PhysicianSessionEJB to invoke the Web Service.

Note: This part of the tutorial simply walks you through the EJB code you would write; the
PhysicianSessionEJB.ejb code in the medrecEar application already contains
the code needed to invoke the MedRecWebServices Web Service.

a. Change to the directory that contains the PhysicianSessionEJB Java code:

prompt> cd
c:\medrec_tutorial\src\physicianEar\physSessionEjbs\com\bea\medrec\cont
roller

b. Open the PhysicianSessionEJB.ejb file in an IDE or text editor:

prompt> notepad PhysicianSessionEJB.ejb

c. Search for the private method getMedRecWebServicesPort(). This method contains
the standard Java code that creates a JAX-RPC port of the MedRecWebServices Web
Service, shown in bold:

wsUrl = (String) initCtx.lookup("java:comp/env/webservice/url");
wsUsername = (String)
initCtx.lookup("java:comp/env/webservice/username");
wsPassword = (String)
initCtx.lookup("java:comp/env/webservice/password");
logger.debug("MedRec Web Service URL: " + wsUrl);
MedRecWebServices service = new
MedRecWebServices_Impl(wsUrl+"?WSDL");
port = service.getMedRecWebServicesPort(wsUsername, wsPassword);

The URL of the WSDL of the deployed MedRecWebServices, as well as the user and
password of the user that will invoke the Web Service, is defined using the

Tuto r ia l 12 : Invok ing a Web Serv ice f rom a C l ient App l i cat ion

MedRec Development Tutorials 13-7

@EnvEntries EJBGen annotation at the beginning of the PhysicianSessionEJB.ejb
file. The actual URL is:

http://host:7101/ws_medrec/MedRecWebServices?WSDL

where host is the name of the computer hosting MedRec.

d. The public methods of PhysicianSessionEJB use this JAX-RPC port to invoke Web
Service operations.

For example, search for the public method getRecord. It contains the following Java
code that invokes the getRecord operation of the MedRecWebServices Web Service
by using the port instance created in the preceding step:

 // Get record from MedRec.
recordVO = port.getRecord(pRecordId.intValue());

7. Compile, deploy, and run PhysicianSessionEJB as usual.

For information about compiling, see Tutorial 7: Compiling Split Development Directory
Applications with Ant Tasks.

Step 2: Invoke a Web Service from a stand-alone Java Swing
client application.
This procedure shows how to invoke a Web Service from a stand-alone Java Swing client
application. The procedure first describes how to run the clientgen Ant task to generate most
of the needed Java code, and then walks you through the actual Java client code you need to write.
It is assumed that you know how to write, compile, and run a Java Swing client application.

1. Open a command window and set your environment:

prompt> c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

2. Change to the clients subdirectory of the MedRec project directory:

prompt> cd c:\medrec_tutorial\src\clients

3. Use a text editor to create a file called my_webserv_client.xml file:

prompt> notepad my_webserv_client.xml

4. Add the following lines to the my_webserv_client.xml file (substituting, if necessary,
your actual MedRec project directory for c:/medrec_tutorial).

Note: If you do not want to create the build file manually, copy the contents of the file
ws_standalone_client_tutorial.xml file to the new file,

13-8 MedRec Development Tutorials

my_webserv_client.xml. Then follow along to understand the file contents. It is
assumed that your MedRec project directory is c:/medrec_tutorial.

<project name="Standalone Web Service Invoke" default="build.ws.client"
>

 <taskdef name="clientgen"
 classname="weblogic.wsee.tools.anttasks.ClientGenTask" />

 <target name="build.ws.client">

 <clientgen
 wsdl="http://localhost:7101/ws_medrec/MedRecWebServices?WSDL"
 destDir="c:/medrec_tutorial/build/swing_client/clientgen"
 packageName="com.bea.medrec.webservices"/>

 <javac
 srcdir="c:/medrec_tutorial/build/swing_client/clientgen"
 destdir="c:/medrec_tutorial/build/swing_client/wsclient"
 includes="**/*.java"/>

 <javac
 srcdir="com"
 destdir="c:/medrec_tutorial/build/swing_client/wsclient"
 includes="**/*.java"

classpath="${java.class.path};c:/medrec_tutorial/build/swing_client/wsc
lient" />

 </target>

</project>

The Ant build file first uses the taskdef task to specify the full classname of the
clientgen Ant task.

The Ant build file then calls the clientgen Web Services Ant task, which generates the
client-side artifacts needed to invoke a Web Service. The wsdl attribute specifies that the
clientgen Ant task use the WSDL of the WebLogic Web Service you deployed in
Tutorial 11: Creating a J2EE Web Service by Programming a JWS File when generating
the artifacts. The destdir attribute specifies that clientgen generate its artifacts into the
c:/medrec_tutorial/build/swing_client/clientgen directory. The packageName
attribute specifies the package into which Java code is generated.

Because clientgen generates uncompiled Java classes, the build file then calls the javac
task to compile all generated code. The second javac task compiles the Swing client itself
(whose source code is located in c:\medrec_tutorial\src\clients\com) into the
same directory into which the clientgen-generated Java code was compiled.

Tuto r ia l 12 : Invok ing a Web Serv ice f rom a C l ient App l i cat ion

MedRec Development Tutorials 13-9

Note: In the preceding Ant build file, it is assumed that the MedRecWebServices
WebLogic Web Service is deployed to WebLogic Server and its WSDL is accessible.
This is the typical way you run the clientgen Ant task. However, if you have not
yet deployed the Web Service, you can point the wsdl attribute to a static WSDL file,
in particular the one that was generated when you compiled the medrecEar
application that contains the MedRecWebServices service. To use the static WSDL
file, update the wsdl attribute of the clientgen task in my_webserv_client.xml
as shown:

 <clientgen

wsdl="c:/medrec_tutorial/build/medrecEar/MedRecWebServices/WEB-INF/M
edRecWebServices.wsdl"
...

5. Execute the clientgen Ant task by running the my_webserv_client.xml script:

prompt> ant -f my_webserv_client.xml

The clientgen Ant task shows the following output:

Buildfile: my_webserv_client.xml
Trying to override old definition of task clientgen

build.ws.client:
[clientgen] Generating client from
http://localhost:7101/ws_medrec/MedRecWebServices?WSDL ...
[clientgen] Getting partner link
[clientgen] Package name is com.bea.medrec.webservices
[clientgen] DestDir is C:\medrec_tutorial\build\swing_client\clientgen
[clientgen] class name is MedRecWebServicesPortType_Stub
[clientgen] service class name is MedRecWebServices
[clientgen] Porttype name is MedRecWebServicesPortType
[clientgen] service impl name is MedRecWebServices_Impl
 [javac] Compiling 13 source files to
C:\medrec_tutorial\build\swing_client\wsclient
 [javac] Note:
C:\medrec_tutorial\build\swing_client\clientgen\com\bea\medrec\webservi
ces\MedRecWebServicesPortType_Stub.java uses unchecked or unsafe operat

ions.
 [javac] Note: Recompile with -Xlint:unchecked for details.
 [javac] Compiling 4 source files to
C:\medrec_tutorial\build\swing_client\wsclient

BUILD SUCCESSFUL
Total time: 8 seconds

6. Update the stand-alone Java Swing client application to invoke the Web Service.

13-10 MedRec Development Tutorials

Note: This part of the tutorial simply walks you through the Java code you would write; the
Java Swing client application of the MedRec tutorial JAR file already contains the
code needed to invoke the MedRecWebServices Web Service.

a. Change to the directory that contains the Java Swing client application code:

prompt> cd
c:\medrec_tutorial\src\clients\com\bea\medrec\webservices\swing

b. Open the EditProfileFrame.java file in your favorite IDE or text editor:

prompt> notepad EditProfileFrame.java

c. Search for the method submitButton_actionPerformed(ActionEvent e) which
returns patient information, based on the patient’s Social Security number, when a user of
the application clicks Submit. This method contains the following Java code:

MedRecWebServices ws =
 new MedRecWebServices_Impl(this.WSDLTextField.getText());

MedRecWebServicesPortType port = ws.getMedRecWebServicesPort();

Patient Patient =

(Patient)port.findPatientBySsn(this.patientIDTextField.getText());

The preceding code shows how to create a JAX-RPC stub of the MedRecWebServices
Web Service from the WSDL in the WSDLTextField of the application, and then
invoke the findPatientBySsn Web Service operation.

d. Search for the method saveButton_actionPerformed(ActionEvent e), which saves
updated patient information to the MedRec application by invoking the updatePatient
Web Service operation on the JAX-RPC stub port, created in the preceding step:

port.updatePatient(patient);

7. Change to the main source directory for the client applications:

prompt> cd c:\medrec_tutorial\src\clients

8. Run the application using the run target in the existing build.xml file:

prompt> ant -f build.xml run

In the application, enter a Social Security number of 123456789 in the Enter Patient SSN
field and click Submit. If the MedRec application is deployed and running correctly, you
will see information returned about the patient Fred Winner.

Tuto r ia l 12 : Invok ing a Web Serv ice f rom a C l ient App l i cat ion

MedRec Development Tutorials 13-11

Step 3: Invoke a Web Service from a .NET client.
You can also invoke the MedRecWebServices WebLogic Web Service from a .NET client
application written in C#.

You must install the .NET Framework (Version 1.1) on your computer before you can create and
run the C# client. See Microsoft .NET Framework Development Center.

The sample C# client that invokes the MedRecWebServices WebLogic Web Service is in the
following directory:

prompt> c:\medrec_tutorial\src\clients\CSharpClient

To run the client, either rebuild it using the .NET IDE, or execute the following already-built
application:

prompt>
c:\medrec_tutorial\src\clients\CSharpClient\bin\Release\CSharpClient.ex
e

The already-built client is hard-coded to invoke the MedRecWebService deployed at
http://localhost:7001, so be sure to update the wsdl location field of the client with the host
and port number of your own MedRecServer.

Best Practices
When writing a Java client application to invoke a Web Service (either WebLogic or
non-WebLogic), use the clientgen Ant task to generate almost all the required client-side
artifacts, such as the JAX-RPC stubs.

After generating the client-side artifacts using clientgen, you must compile the generated
Java code into class files.

If you are invoking a Web Service from within a module of an Enterprise application, such
as an EJB, BEA recommends you compile the clientgen-generated Java code into the
APP-INF/classes directory of the application so that all modules of the application can
access the classes. It is assumed, of course, that you are using the WebLogic split
development directory environment.

Use the wsdl attribute of clientgen to generate the client-side artifacts from the WSDL,
or public contract, of a Web Service.

13-12 MedRec Development Tutorials

The Big Picture
Client applications that invoke Web Services can be written using any technology: Java,
Microsoft SOAP Toolkit, Microsoft .NET, and so on. Java client applications use the Java API
for XML-Based RPC (JAX-RPC), a Sun Microsystems specification that defines the Java client
API for invoking a Web Service. A Java client application can be an EJB deployed on WebLogic
Server, or a stand-alone Java client.

In Tutorial 11: Creating a J2EE Web Service by Programming a JWS File, you learned how to
create and deploy the MedRecWebServices Web Service (part of the main MedRec application),
which contains operations to find and update patient information, such as updatePatient and
findPatientBySsn. The public contract of the Web Service is published via its WSDL, which
lists its operations, the URL endpoints, and so on.

The Physician application, in a real-life situation, would be deployed on a separate WebLogic
Server instance from the main MedRec application. The PhysicianSessionEJB, therefore,
needs a way to communicate with the MedRec application over the Internet; using the operations
of the MedRecWebServices Web Service is the ideal way to do this. The client-side artifacts
generated by the clientgen Ant task contains the JAX-RPC stubs needed to invoke the Web
Service operations—the amount of code you need to actually write in the EJB is very small.

The stand-alone Java client works essentially the same way as the EJB as far as using the artifacts
generated by clientgen.

Related Reading
Invoking Web Services in Programming Web Services for WebLogic Server

clientgen Ant Task Reference in Programming Web Services for WebLogic Server

Programming WebLogic Enterprise Java Beans

Java API for XML-Based RPC (JAX-RPC) 1.1 Specification

Web Services Description Language (WSDL) 1.1 Specification

Simple Object Access Protocol (SOAP) 1.1 Specification

Java Swing

 Microsoft .NET Framework Development Center

MedRec Development Tutorials 14-1

C H A P T E R 14

Developing the MedRec Applications

Tutorial 13: Compiling the Entire MedRec Project
Previous tutorials explained how to compile, build, and deploy parts of individual MedRec
applications. In this tutorial, you compile and build the entire MedRec application suite using the
project-level build.xml file. Compiling the entire application suite is necessary to deploy all
components on your system and verify that MedRec is running and usable.

The tutorial includes:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites
Create the project directory using the instructions in Tutorial 5: Creating the MedRec Project
Directory.

Procedure
The project directory contains a master build.xml script that compiles and stages all of the
MedRec applications in the correct order. To run this script:

14-2 MedRec Development Tutorials

1. Open a command shell and set the development environment:

prompt> c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

2. Move to the src subdirectory of the MedRec project directory:

prompt> cd c:\medrec_tutorial\src

3. Use the Ant command to execute the master build.xml script with the deploy.dev target:

prompt> ant deploy.dev

The build process displays messages indicating the progress for each application. The
entire build process take approximately 2 to 5 minutes to complete, depending on the speed
of your computer. The script should complete with the following message:

build:
 [echo] #### E N D M E D R E C ####

BUILD SUCCESSFUL
Total time: 2 minutes 22 seconds

Best Practices
Not all projects require a master build script. If you are creating only a single Enterprise
Application or a single component of an Enterprise Application, a single build.xml file
using the WebLogic Ant tasks will suffice.

If your project requires multiple Enterprise Applications to be compiled in a particular
sequence (because of shared utility classes or Web Services dependencies), use a master
build.xml file at the source level to iterate through each application’s build.xml files.

The Big Picture
The MedRec application suite has many dependencies that require coordination during the build
process. When you run the master build file, the following events occur:

1. The contents of startBrowserEar and initEar are compiled using the wlcompile task.

2. The contents of the security directory are compiled using the javac task.

3. The contents of common are compiled. The common directory contains the Java source code
for several kinds of objects used by different MedRec applications:

– Utility classes—constants used throughout the application suite, exceptions, factories,
and the ServiceLocator class. Servlets in the Web Tier of the MedRec application
suite use ServiceLocator to lookup generic services such as Enterprise JavaBeans.

Tuto r ia l 13 : Compi l ing the Ent i re MedRec P ro jec t

MedRec Development Tutorials 14-3

– Value objects—classes that represent data passed between tiers of the MedRec suite.

– Action classes—classes used by the struts framework to control page flow in the Web
tier of the MedRec suite.

– JavaBeans—component beans used in the Web tier.

4. The medrecEar Enterprise Application is compiled. Although medrecEar uses the split
development directory structure and the WebLogic Ant tasks in the build script, the
application has several internal dependencies that are hard-coded in its build.xml script,
using the include and exclude options to wlcompile.

5. The physicianEar application is compiled. The Web Service clients in this application
that invoke the Web Services of both the physicianEar and medrecEar applications are
generated from the .wsdl files that were previously generated into the build directory by
the jwsc Web Services Ant task.

6. The MedRec application suite client applications, located in the clients directory, are
compiled.

The deploy.dev target of the master build.xml file takes an additional step of packaging up
the contents of the build directory for each application (initEar, medrecEar, and so on) and
creating an exploded directory for each application in the dist directory. These exploded
directories can be deployed to WebLogic Server in the standard way, outside of the split
development directory framework. The next tutorials in this suite (Tutorial 14: Packaging
MedRec for Distribution and Tutorial 15: Using WLST and the Administration Console to
Deploy the MedRec Package for Production) go into more detail.

Related Reading
Compiling Applications Using wlcompile in Developing Applications with WebLogic
Server

Building Applications in a Split Development Directory in Developing Applications with
WebLogic Server

Overview of WebLogic Server Application Development in Developing Applications with
WebLogic Server

Apache Ant in Developing Applications with WebLogic Server

14-4 MedRec Development Tutorials

MedRec Development Tutorials 15-1

C H A P T E R 15

Moving to Production

Tutorial 14: Packaging MedRec for Distribution
In previous tutorials you configured, compiled, and deployed MedRec in a split-directory
development environment. This tutorial describes how to use an Ant script to package the
compiled medrecEar application into a single portable EAR that you can hand off to a production
team.

The tutorial includes:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites
Complete Tutorial 13: Compiling the Entire MedRec Project.

Procedure
Step 1: Package the medrecEar application as an EAR archive file.

Step 2: Test the package.

Moving to P roduct ion

15-2 MedRec Development Tutorials

Step 1: Package the medrecEar application as an EAR archive
file.
The following procedures create and run a script that packages the contents of the medrecEar
application from the directories used in the split-directory development environment—src and
build—into a single deployable, distributable EAR file in a distribution directory, dist.

1. Open a command shell and set your environment:

prompt> c:\bea\user_projects\domains\MedRecDomain\bin\setDomainEnv.cmd

2. Move to the src\medrecEar subdirectory of the MedRec project directory:

prompt> cd c:\medrec_tutorial\src\medrecEar

3. Use a text editor to create a new file called package.xml:

prompt> notepad package.xml

Note: If you do not want to create the package.xml file manually in this tutorial, copy the
file named wlpackage_tutorial.xml to the new name, package.xml, and skip to
step 9.

4. In the package.xml file, define a project named tutorial and supply a default target
name:

<project name="tutorial" default="package">

5. Define an Ant target name that you will specify when you run the script:

<target name="package">

6. Provide the argument of the Ant target, which calls the wlpackage Ant task and combines
the contents of the src and build physicianEAR directories into a single directory in
dist.

<wlpackage srcdir="c:/medrec_tutorial/src/medrecEar"
 destdir="c:/medrec_tutorial/build/medrecEar"
 toFile="c:/medrec_tutorial/dist/wlpackage_tutorial.ear" />

</target>

See Packaging Applications Using wlpackage for more information about the wlpackage
task.

7. Complete the package.xml file by closing the project element:

</project>

Tuto r ia l 14 : Packaging MedRec fo r D i s t r ibut ion

MedRec Development Tutorials 15-3

8. Your file contents should now resemble the following:

<project name="tutorial" default="package">

 <target name="package">

 <wlpackage srcdir="c:/medrec_tutorial/src/medrecEar"
 destdir="c:/medrec_tutorial/build/medrecEar"
 toFile="c:/medrec_tutorial/dist/wlpackage_tutorial.ear" />

 </target>

</project>

Save the file and exit your text editor.

9. In the same command shell, enter the command to execute the build script:

prompt> ant -f package.xml

You should receive the following output from the wlpackage task:

Buildfile: package.xml

package:
 [jar] Building jar: C:\medrec_tutorial\dist\wlpackage_tutorial.ear

BUILD SUCCESSFUL
Total time: 1 second

If you do not receive the above output, you may have made a typo in creating the
package.xml file. If this occurs, try to package using the installed tutorial file:

prompt> ant -f wlpackage_tutorial.xml

10. To verify that wlpackage_tutorial.ear has been created, change to the MedRec dist
directory and use the dir command to view a contents of the directory:

prompt> cd c:\medrec_tutorial\dist

prompt> dir wlpackage_tutorial.ear

11. Verify the contents of wlpackage_tutorial.ear using the jar command:

prompt> jar tf wlpackage_tutorial.ear

The full list of files (over 700) is too long to include in this section, but the list will
typically start with the following files:

META-INF/
META-INF/MANIFEST.MF
META-INF/application.html
META-INF/application.xml
META-INF/weblogic-application.html

Moving to P roduct ion

15-4 MedRec Development Tutorials

META-INF/weblogic-application.xml
META-INF/weblogic-diagnostics.html
META-INF/weblogic-diagnostics.xml
adminWebApp/
adminWebApp/ConfirmImport.html
adminWebApp/ConfirmImport.jsp
adminWebApp/CreateAdminSuccessful.html
adminWebApp/CreateAdminSuccessful.jsp
adminWebApp/CreateNewAdmin.html
adminWebApp/CreateNewAdmin.jsp
adminWebApp/Diagnostics.html
adminWebApp/Diagnostics.jsp
adminWebApp/Error.html
adminWebApp/Error.jsp
adminWebApp/Header.html
adminWebApp/Header.jsp
adminWebApp/Home.html
adminWebApp/Home.jsp
adminWebApp/Login.html
adminWebApp/Login.jsp
adminWebApp/Logs.html
adminWebApp/Logs.jsp
adminWebApp/MedRecSchema.html
adminWebApp/MedRecSchema.xsd
adminWebApp/ViewImportRecords.html
adminWebApp/ViewImportRecords.jsp
adminWebApp/ViewPatientRequest.html
adminWebApp/ViewPatientRequest.jsp
adminWebApp/ViewRequests.html
adminWebApp/ViewRequests.jsp
adminWebApp/WEB-INF/
adminWebApp/WEB-INF/classes/
...

The EAR file you have created contains the medrecEar application bundled into a deployable
archive.

Step 2: Test the package.
To confirm that the archive is deployable, use the Administration Console Deployment Assistant
to deploy it to MedRecServer.

1. With MedRecServer running, open the Administration Console by navigating in a browser
to:

http://host:7101/console

Tuto r ia l 14 : Packaging MedRec fo r D i s t r ibut ion

MedRec Development Tutorials 15-5

where host refers to the computer on which MedRecServer is running. If your browser is
on the same computer as MedRecServer, then you can use the URL
http://localhost:7101/console.

2. Specify weblogic for both the username and password and click Log In.

3. In the middle left-hand pane called Domain Structure, click
MedRecDomain→Deployments.

If you have completed the previous tutorials in sequence, you should see the
physicianEAR (with the deployment name tutorial_deployment) and MedRecEar
applications already listed in the Deployments table in the right pane. The previous
tutorials deployed the two applications within the split development directory environment
rather than as a deployable archive. If either of the applications is deployed, uninstall it as
follows:

a. If you have not already done so, click Lock & Edit, located in the upper left Change Center
window of the Administration Console.

b. In the Deployments table, select the application (such as MedRecEar) by checking the box
to the left of its application name.

c. Click Stop→Force Stop Now to ensure that the application is stopped.

d. Click Yes.

e. In the Deployments table, select the application again.

f. Click Delete.

g. Click Yes.

h. In the Change Center, click Activate Changes to update the MedRec server configuration.

i. Repeat the preceding steps, if necessary, to stop and undeploy the physicianEar
application.

4. Click Lock & Edit, located in the upper left Change Center window of the Administration
Console.

5. In the right-hand pane, click Install.

6. Use the Location links to navigate to the C:\medrec_tutorial\dist directory.

7. Select wlpackage_tutorial.ear.

Moving to P roduct ion

15-6 MedRec Development Tutorials

8. Click Next.

9. In the Choose Targeting Style page, select Install this deployment as an
application.

10. Click Next until you see the Review Your Choices and Click Finish page.

Review your choices and click Finish when you are satisfied that your choices are correct.

11. The assistant automatically takes you to the configuration tabs for the deployed application.
Select the tabs if you want to view configuration information about the application.

12. In the Change Center, click Activate Changes to update the MedRec server configuration.

13. In the configuration pages of the application, select the Control tab.

14. In the Enterprise Application table, select wlpackage_tutorial by checking the box to
the left of its name.

This table also lists the Web applications, EJBs, and Web Services that are packaged in the
EAR; expand wlpackage_tutorial to see the list.

15. Click Start→Servicing all requests.

16. Click Yes.

As soon as WebLogic Server has completely started the application, the value in the State
column changes from Prepared to Active. This means that client applications can now
start using the medrecEar application (which is packaged in the wlpackage_tutorial
archive).

17. To verify that the application deployed and started, open a new browser window and enter
the URL http://host:7101/patient, where host refers to the computer that hosts
MedRecServer. If your browser is on the same computer as MedRecServer, you can use
the URL http://localhost:7101/patient.

You should receive the Patient Application’s login page. You cannot do much more than
look at the page right now, because the rest of the MedRec application suite is not yet
available.

Best Practices
Creating an actual *.ear archive file of an application with the wlpackage Ant task is most
useful when you want to distribute or hand off the application to a production team. However,
when you actually deploy the application for production, consider deploying your application in

Tuto r ia l 14 : Packaging MedRec fo r D i s t r ibut ion

MedRec Development Tutorials 15-7

exploded, unarchived format. Doing so allows you to access and update files, for example
deployment descriptor files, without having to unarchive and then rearchive the entire
application. See Tutorial 15: Using WLST and the Administration Console to Deploy the
MedRec Package for Productionfor instructions on deploying MedRec in exploded format.

The Big Picture
In this tutorial, you packaged the medrecEar application into a single portable EAR file suitable
for handing off to a production team. Because of the wlpackage Ant task, the split directory
structure for development presents no obstacle to switching to a manageable single directory
structure for production.

Related Reading
Deploying and Packaging from a Split Development Directory in Developing Applications
with WebLogic Server

Apache Ant in Developing Applications with WebLogic Server

Install an Enterprise application in the Administration Console Online Help

Start a deployed Enterprise application in the Administration Console Online Help

Deploying Applications to WebLogic Server

Moving to P roduct ion

15-8 MedRec Development Tutorials

MedRec Development Tutorials 16-1

C H A P T E R 16

Moving to Production

Tutorial 15: Using WLST and the Administration Console to
Deploy the MedRec Package for Production

This tutorial describes how to use the WebLogic Scripting Tool (WLST) and the Administration
Console to deploy the MedRec application to a server for production. In this example the
application files are packaged in exploded format in directories, rather than as EAR files. The
advantage of the exploded format for production is that deployment descriptor files in an
exploded directory can be updated without having to be unarchived and then rearchived
following the update.

For instructions on packaging the MedRec application into a single archived EAR file, in contrast
to the exploded format used in this tutorial, see Tutorial 14: Packaging MedRec for Distribution.
The advantage of packaging into an EAR file is that the application is more portable when
bundled into a single file, and can more easily be moved or distributed.

The procedures below deploy the exploded contents of the medrecEar, startBrowserEar,
physicianEar, and initEar subdirectories of the dist directory, created in Tutorial 13:
Compiling the Entire MedRec Project.

medrecEar is MedRec’s main enterprise application, containing its patient and
administrative Web Applications, the Web Service used by the physician Web application,
and the EJBs that store and run MedRec’s logic and data.

physicianEar is a separate component of the MedRec application, with a different set of
users, which communicates with medrecEar using a Web Service.

16-2 MedRec Development Tutorials

startBrowserEar contains a single class file that starts the browser when the servlets in
the Web Applications are initialized.

initEar contains an application that implements and registers a custom MBean that polls
the database every 6 seconds, checking for new users that are added to the system

For more information about the components of the MedRec application, see Overview of the
Avitek Medical Records Development Tutorials.

The tutorial includes:

Prerequisites

Procedure

Best Practices

Related Reading

Prerequisites
Before starting this tutorial:

Create the MedRec domain and the MedRec server. See Tutorial 1: Creating a WebLogic
Domain and Server Instance for Development.

Work through Tutorial 2: Starting the PointBase Development Database.

Work through Tutorial 3: Configuring WebLogic Server Resources with the Administration
Console.

Create the MedRec project directory. See Tutorial 5: Creating the MedRec Project
Directory.

Familiarize yourself with how MedRec’s split directory structure works, in Tutorial 7:
Compiling Split Development Directory Applications with Ant Tasks.

Most importantly, work through Tutorial 13: Compiling the Entire MedRec Project,
because the directories that contain the MedRec application in exploded format are created
in its steps.

Procedure
To deploy the MedRec applications for production:

Step 1: Start PointBase and the MedRec server.

Tuto r ia l 15 : Us ing WLST and the Admin is t ra t i on Conso le to Dep loy the MedRec Package fo r P roduct ion

MedRec Development Tutorials 16-3

Step 2: Delete the applications that have already been deployed.

Step 3: Deploy medrecEar using WLST.

Step 4: In the Administration Console, deploy physicianEar, initEar, and startBrowserEar .

Step 1: Start PointBase and the MedRec server.
1. Start PointBase, if it is not already running.

See Step 1: Start the PointBase database.

2. Start the MedRec server, if it is not already running.

From the Windows start menu:

Start→Programs→BEA Products→User Projects→MedRecDomain→Start Admin
Server for WebLogic Server Domain

From the command line:

prompt> C:\bea\user_projects\domains\MedRecDomain\startWebLogic.cmd

Step 2: Delete the applications that have already been
deployed.
To ensure that you start from a clean slate, use the Administration Console to delete the various
MedRec applications that you might have deployed as part of the preceding tutorials:

1. Open the Administration Console by navigating in a browser to the following URL:

http://host:7101/console

where host refers to the computer on which MedRecServer is running. If your browser is
on the same computer as MedRecServer, then you can use the URL
http://localhost:7101/console.

2. Specify weblogic for both the username and password, and click Log In.

3. In the left Domain Structure pane, click MedRecDomain→Deployments.

4. If the Deployments table in the right pane lists applications from previous tutorials, delete
them by following these steps for each application:

a. If you have not already done so, click Lock & Edit, located in the upper left Change Center
window of the Administration Console.

16-4 MedRec Development Tutorials

b. In the Deployments table, select the deployments from previous tutorials (such as
tutorial_deployment and wlpackage_tutorial) by checking the box to the left of
the application name.

c. Click Stop→Force Stop Now to ensure that the application is stopped.

d. Click Yes.

e. In the Deployments table, select the application again.

f. Click Delete.

g. Click Yes.

h. In the Change Center, click Activate Changes to update the MedRec server configuration.

Step 3: Deploy medrecEar using WLST.
The following procedure shows how to use the WebLogic Scripting Tool (WLST) to deploy
medrecEar to WebLogic Server for production.

The WebLogic Scripting Tool (WLST) is a command-line scripting interface that system
administrators and operators use to monitor and manage WebLogic Server instances and
domains. The WLST scripting environment is based on the Java scripting interpreter, Jython.

System administrators typically use WLST to:

Propagate a WebLogic Server domain to multiple destinations.

Retrieve domain configuration and runtime information.

Edit the domain configuration and persist the changes in the domain’s configuration files.

Automate domain configuration tasks and application deployment.

Control and manage the server life cycle.

Access the Node Manager and start, stop, and suspend server instances remotely or locally,
without requiring the presence of a running Administration Server.

WLST functionality also includes the capabilities of the WebLogic Server command-line utilities
such as the wlconfig Ant task and the weblogic.Deployer utility. This procedure first
describes how to create a Jython script that includes WLST commands, such as connect and
deploy, and then how to create an Ant build file that invokes the WLST tool and passes it the
Jython script file as an argument. You can also use WLST interactively, although this feature is
not discussed in this tutorial.

Tuto r ia l 15 : Us ing WLST and the Admin is t ra t i on Conso le to Dep loy the MedRec Package fo r P roduct ion

MedRec Development Tutorials 16-5

1. Open a command window and set your environment:

prompt> c:\bea\user_projects\domains\medrecdomain\bin\setDomainEnv.cmd

2. Move to the medrecEar subdirectory:

prompt> cd c:\medrec_tutorial\src\medrecEar

3. Use a text editor to create a new file called deploy.py; this file will contain the WLST
commands. For example:

prompt> notepad deploy.py

Note: If you do not want to create the deploy.py file manually in this tutorial, copy the
file named deploy_tutorial.py to a new file named deploy.py and follow along.

4. Add the following lines to the deploy.py file (substituting, if necessary, your actual
MedRec project directory for c:\medrec_tutorial); the WLST commands are described
at the end of this step:

userName = "weblogic"
passWord = "weblogic"
url="t3://localhost:7101"

connect(userName, passWord, url)

progress= deploy(
 'medrecEar',
 'c:\medrec_tutorial\dist\medrecEar',
 targets='MedRecServer',

subModuleTargets='MedRecJMSServer@MedRecAppScopedJMS@MedRecJMSServer',
 securityModel='CustomRolesAndPolicies')

progress.printStatus()

disconnect()

exit()

The userName, passWord, and url variables simply set up the value of the administration
user, password, and the URL used to connect to the Administration Server. The connect
WLST command connects to the MedRecServer using these variables. The progress
variable captures a WLSTProgress object that defines the status of the deployment. The
deploy command deploys the medrecEar application. In addition to the standard options,
such as the source (c:\medrec_tutorial\dist\medrecEar) and deployment targets, the
deploy command also specifies these additional options: subModuleTargets to specify
the sub-deployment level of the application-scoped JMS modules included in medrecEar
and securityModel to specify that the medrecEar application uses custom security roles
and policies. Finally, the printStatus method of the progress variable prints out the

16-6 MedRec Development Tutorials

status of the deployment. The disconnect command closes the connection and the exit
command closes the scripting shell.

5. Save and close the file.

6. Use a text editor to create a new file called wlst_deploy.xml. For example:

prompt> notepad wlst_deploy.xml

Note: If you do not want to create the wlst_deploy.xml file manually in this tutorial, copy
the file named wlst_tutorial.xml to a new file named wlst_deploy.xml and
follow along.

7. Start the wlst_deploy.xml file by defining a project named wlst_tutorial with a
default target deploy:

<project name="wlst_tutorial" default="deploy">

8. Define the main target for executing the WLST Java utility; use the arg task to specify the
deploy.py argument:

<target name="deploy">
 <java classname="weblogic.WLST" fork="yes">
 <arg line="deploy.py" />
 </java>
</target>

The Java classname of WLST is weblogic.WLST, as specified by the classname attribute
of the java task.

9. Complete the wlst_deploy.xml file by closing the project element:

</project>

10. Your file contents should now resemble the following:

<project name="wlst_tutorial" default="deploy">

 <target name="deploy">
 <java classname="weblogic.WLST" fork="yes">
 <arg line="deploy.py" />
 </java>
 </target>

</project>

Save the file and exit your text editor.

11. In the same command shell, enter the command to execute the build script:

prompt> ant -f wlst_deploy.xml

Tuto r ia l 15 : Us ing WLST and the Admin is t ra t i on Conso le to Dep loy the MedRec Package fo r P roduct ion

MedRec Development Tutorials 16-7

You should output similar to the following from WLST:

Buildfile: wlst_deploy.xml

deploy:

 [java] Initializing WebLogic Scripting Tool (WLST) ...

 [java] Welcome to WebLogic Server Administration Scripting Shell

 [java] Type help() for help on available commands

 [java] Connecting to weblogic server instance running at
t3://localhost:7101 as username weblogic ...

 [java] Successfully connected to Admin Server 'MedRecServer' that
belongs to domain 'MedRecDomain'.

 [java] Warning: An insecure protocol was used to connect to the
server.
 [java] To ensure on-the-wire security, the SSL port or Admin port
 [java] should be used instead.

 [java] Deploying application from c:\medrec_tutorial\dist\medrecEar
to targets MedRecServer upload=false ...
 [java] <Dec 12, 2005 3:17:27 PM PST> <Info> <J2EE Deployment SPI>
<BEA-260121> <Initiating deploy operation for application, medrecEar
[archive: C:\medrec_tutorial\dist\medrecEar], to MedRecJMSServer
MedRecServer .>
 [java] ...Completed the deployment of Application with status
 [java] Current Status of your Deployment:
 [java] Deployment command type: deploy
 [java] Deployment State : completed
 [java] Deployment Message : no message
 [java] Current Status of your Deployment:
 [java] Deployment command type: deploy
 [java] Deployment State : completed
 [java] Deployment Message : no message

 [java] Disconnected from weblogic server: MedRecServer

 [java] Exiting WebLogic Scripting Tool ...

 [java] <Dec 12, 2005 3:17:37 PM PST> <Warning> <JNDI> <BEA-050001>
<WLContext.close() was called in a different thread than the one in which
it was created.>

BUILD SUCCESSFUL
Total time: 48 seconds

12. Using the Administration Console, verify that medrecEar appears in the Deployments table
and is in an Active state. See the first few steps in Step 2: Delete the applications that have
already been deployed. for details.

16-8 MedRec Development Tutorials

Step 4: In the Administration Console, deploy physicianEar,
initEar, and startBrowserEar .
Deploy the remaining MedRec applications to WebLogic Server as follows. See Step 2: Delete
the applications that have already been deployed. for details on invoking the Administration
Console in your browser.

1. Click Lock & Edit, located in the upper left Change Center window of the Administration
Console.

2. In the left Domain Structure pane, click MedRecDomain→Deployments.

3. In the Deployments table in the right pane, click Install.

4. Use the links in the Location field to navigate to C:\medrec_tutorial\dist.

5. Select physicianEar and click Next.

6. In the Choose Targeting Style window, select Install this deployment as an
application and click Next.

7. In the Optional Settings window, in the Security section, select Advanced: Use a
custom model that you have configured on the realm's configuration
page.

This choice ensures that you can use the Administration Console to configure custom
security roles and policies for the deployment.

8. Click Next.

9. In the Review Your Choices And Click Finish window, select No, I will review the
configuration later in the Additional Configuration section.

Review your other choices to ensure that all are correct. The Summary should look
something like the following:

Deployment: C:\medrec_tutorial\dist\physicianEar
Name: physicianEar
Staging mode: Use the defaults defined by the chosen targets
Security Model: Advanced: Use a custom model that you have configured
on the realm's configuration page.

10. Click Finish.

11. Repeat steps 2 through 10 to install the initEar and startBrowserEar applications.

Tuto r ia l 15 : Us ing WLST and the Admin is t ra t i on Conso le to Dep loy the MedRec Package fo r P roduct ion

MedRec Development Tutorials 16-9

12. In the Change Center, click Activate Changes to update your configuration.

13. In the Deployments table, select the three applications you just installed.

14. Click Start→Servicing all requests.

15. Click Yes.

As soon as MedRecServer starts the applications, the State column for each application in
the Deployments table should say Active.

You might also see the main MedRec informational page appear in your browser.

16. Confirm that the MedRec applications are deployed by navigating to the following login
pages in a browser:
– http://host:7101/physician

– http://host:7101/patient

– http://host:7101/admin

In the preceding URLs, host refers to the computer that hosts MedRecServer. If your
browser is on the same computer as MedRecServer, you can use localhost; for example,
http://localhost:7101/physician.

You cannot do much more than look at the login pages right now, because these pages
require security that you have not yet configured. This task is described in the next few
tutorials.

Best Practices
Use the Administration Console Deployment Assistant to deploy your application in a
graphical environment that shows you the choices you can make in your deployment, as an
alternative to using the WebLogic Scripting Tool (WLST), the command-line tool
weblogic.Deployer, or Ant scripts that run deployment targets.

Use WLST to deploy your application using command-line scripts. You can also use this
tool to perform a vast number of system administration tasks. The WLST scripting
environment is based on the Java scripting interpreter, Jython. In addition to WebLogic
scripting functions, you can use common features of interpreted languages, including local
variables, conditional variables, and flow control statements. WebLogic Server developers
and administrators can extend the WebLogic scripting language to suit their environmental
needs by following the Jython language syntax.

For production, deploy in exploded format to simplify the process of updating the
application.

16-10 MedRec Development Tutorials

Use the Administration Console to monitor the progress of MedRec deployment and
application activities. In case of errors, scroll up in the console text for useful messages.

Big Picture
The split development directory framework allows you to deploy MedRec’s compiled and
generated files separately from the editable files. This capability is convenient during the
development stage, when changes to the application are frequent. The expected format for
production, however, is the traditional single-directory structure, with the separate applications
in exploded format in separate subdirectories.

In this tutorial, you deployed MedRec’s applications from directories that contained the
applications and all of their components and support files. The applications’ exploded format
makes their editable files more accessible than they would be if they were bundled into archives.

Each application subdirectory in dist contains both the compiled classes and generated
deployment descriptors from the build directory, and the editable deployment descriptors and
other files from the src directory.

Related Reading
Delete an Enterprise application in the Administration Console Online Help

Install an Enterprise application in the Administration Console Online Help

Start a deployed Enterprise application in the Administration Console Online Help

Deploying Applications to WebLogic Server

WebLogic Scripting Tool

Apache Ant in Developing Applications with WebLogic Server

MedRec Development Tutorials 17-1

C H A P T E R 17

Moving to Production

Tutorial 16: Creating Users, Groups, and Global Security Roles
This tutorial describes how to create the users, groups, and global security roles that are required
by the MedRec application.

After you finish this tutorial, you will be able to log in to all three MedRec Web applications as
the appropriate type of user (administrator, patient, or physician) and start using the application.

The tutorial includes:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites
Before starting this tutorial:

Create MedRecDomain and MedRecServer, and start MedRecServer. See Tutorial 1:
Creating a WebLogic Domain and Server Instance for Development.

Deploy the enterprise application named MedRecEar. See Tutorial 15: Using WLST and
the Administration Console to Deploy the MedRec Package for Production.

17-2 MedRec Development Tutorials

Procedure
To create the required users, groups, and security roles using the Administration Console:

Step 1: Specify security realm settings.

Step 2: Create groups.

Step 3: Create users and add the users to groups.

Step 4: Create global roles and grant the global roles to the groups.

Step 1: Specify security realm settings.
1. With MedRecServer running, open the Administration Console by navigating in a browser

to:

http://host:7101/console

where host refers to the computer on which MedRecServer is running. If your browser is
on the same computer as MedRecServer, you can use the URL
http://localhost:7101/console.

2. Specify weblogic for both the username and password and click Log In.

3. If you have not already done so, click Lock & Edit, located in the upper left Change Center
window of the Administration Console.

4. In the middle left-hand pane called Domain Structure, click MedRecDomain→Security
Realms.

5. In the Realms table in the right pane, click myrealm.

6. Select the Configuration→General tab.

7. From the Check Roles and Policies drop-down menu, select All Web Applications and
EJBs.

This setting means that the WebLogic Security Service will perform security checks on all
URL (Web) and EJB resources. For more information, see Understanding How to Check
Security Roles and Security Policies in Securing WebLogic Resources.

8. In the When Deploying Web Applications or EJBs drop-down menu, select Ignore Roles
and Policies From DD.

Tuto r ia l 16 : Crea t ing Users , G roups , and G loba l Secur i t y Ro l es

MedRec Development Tutorials 17-3

This setting indicates that you will set security for Web Application and EJB resources in the
Administration Console, not in deployment descriptors. For more information, see
Understanding the On Future Redeploys Setting in Securing WebLogic Resources.

9. Click Save.

10. In the Change Center, click Activate Changes to update the MedRec server configuration.

11. Restart MedRecServer. (See Starting and Stopping Servers: Quick Reference in Managing
Server Startup and Shutdown.)

Step 2: Create groups.
1. In the left Domain Structure pane of the Administration Console, click

MedRecDomain→Security Realms.

2. In the Realms table in the right pane, click myrealm.

3. Select the Users and Groups→Groups tab.

The Groups table displays all groups currently defined in the WebLogic Authentication
provider's database.

4. Click New.

5. In the Name field, enter MedRecAdmins.

6. In the Description field, enter MedRecAdmins can log on to the MedRec
Administrators Web site.

7. In the Provider drop-down list, select DefaultAuthenticator (default value).

8. Click OK.

9. Repeat steps 4 - 8 to create a group named MedRecPatients, with a description of
MedRecPatients can log on to the MedRec Patients Web site, and
DefaultAuthenticator provider.

10. Repeat steps 5 - 9 to create a group named MedRecPhysicians, with a description of
MedRecPhysicians can log on to the MedRec Physician Web site, and
DefaultAuthenticator provider.

11. In the Groups table, confirm that the three groups have been added.

17-4 MedRec Development Tutorials

Step 3: Create users and add the users to groups.
1. In the left Domain Structure pane of the Administration Console, click

MedRecDomain→Security Realms.

2. In the Realms table in the right pane, click myrealm.

3. Select the Users and Groups→Users tab.

The Users table displays all users currently defined in the WebLogic Authentication
provider’s database.

4. Click New.

5. In the Name field, enter admin@avitek.com.

6. In the Description field, enter MedRec administrator.

7. In the Provider drop-down list, select DefaultAuthenticator (default value).

8. In the Password and Confirm Password fields, enter weblogic.

9. Click OK to save your changes.

10. In the Users table, click admin@avitek.com.

11. Select the Groups tab.

12. In the Available choice box, highlight the MedRecAdmins group.

13. Click the highlighted arrow to move the MedRecAdmins group from the Available to the
Chosen choice box.

14. Click Save.

15. Repeat steps 1 - 14 to create a user named mary@md.com, a MedRec physician who also
uses the weblogic password and the DefaultAuthenticator provider, and belongs in the
MedRecPhysicians group.

16. Repeat steps 1 - 14 to create a user named larry@bball.com, a MedRec patient who
also uses the weblogic password and the DefaultAuthenticator provider, and belongs
in the MedRecPatients group.

17. Repeat steps 1 - 14 to create a user named medrec_webservice_user, a MedRec Web
Service User who also uses the weblogic password and the DefaultAuthenticator
provider, and belongs in the MedRecPhysicians group.

Tuto r ia l 16 : Crea t ing Users , G roups , and G loba l Secur i t y Ro l es

MedRec Development Tutorials 17-5

18. Repeat steps 1 - 3 to navigate to the Users table of the myrealm security realm to confirm
that the three users have been added.

Step 4: Create global roles and grant the global roles to the
groups.
1. In the left Domain Structure pane of the Administration Console, click

MedRecDomain→Security Realms.

2. In the Realms table in the right pane, click myrealm.

3. Select the Roles and Policies→Roles tab.

The Roles table displays all global and scoped roles currently defined in the WebLogic
Role Mapping provider's database.

4. In the Roles table, expand Global Roles and click Roles.

The Global Roles table displays all global roles currently defined in the WebLogic Role
Mapping provider's database.

5. Click New.

6. In the Name field, enter MedRecAdmin.

7. Click OK.

8. In the Global Roles table, click MedRecAdmin.

9. In the Global Role Conditions page, click Add Conditions.

10. In the Choose a Predicate page, select Group for the Predicate List.

11. Click Next.

12. In the Group Argument Name field, enter MedRecAdmins.

13. Click Add.

14. Click Finish.

The Role Conditions table includes the following entry:

Group MedRecAdmins

15. Click Save.

17-6 MedRec Development Tutorials

16. Repeat steps 1 - 15 to create a global role named MedRecPatient and to grant this global
role to the MedRecPatients group.

17. Repeat steps 1 - 15 to create a global role named MedRecPhysician and to grant this global
role to the MedRecPhysicians group.

18. Repeat steps 1 - 4 to view the Global Roles table and confirm that the three new global roles
have been added.

Step 5: Log in to and use the MedRec applications.
Now that you have created all the required users, groups, and roles, you can actually log in to the
various MedRec Web applications and start using them. First navigate to the following start page
in a browser:

http://host:7101/start.jsp

In the preceding URL, host refers to the computer that hosts MedRecServer. If your browser is
on the same computer as MedRecServer, you can use localhost; for example:
http://localhost:7101/start.jsp.

The main MedRec application page appears. Click on the links to log in in to the different Web
applications, using the following username/passwords:

Patients—larry@bball.com, weblogic

Administrators—admin@avitek.com, weblogic

Physicians—mary@md.com, weblogic

Best Practices
The security realm settings are extremely important. If you want to secure URL (Web)
resources using the WebLogic Server Administration Console rather than deployment
descriptors, you must use the Check Roles and Policies/On Future Redeploys combination
specified in Step 1: Specify security realm settings.

If you have deployed an application (or module) with the On Future Redeploys drop-down
menu set to Ignore Roles and Policies From DD one or more times before setting it to
Initialize Roles and Policies From DD, you can still set security policies and security roles
using the Administration Console. These changes will override any security specified in
deployment descriptors.

Tuto r ia l 16 : Crea t ing Users , G roups , and G loba l Secur i t y Ro l es

MedRec Development Tutorials 17-7

Do not use blank spaces, commas, hyphens, or any characters in this comma-separated list
for user, group, or security role names: \t, < >, #, |, &, ~, ?, (), { }. User, group, and
security role names are case sensitive. The proper syntax for a security role name is as
defined for an Nmtoken in the Extensible Markup Language (XML) recommendation. The
BEA convention is that group names are plural, and security role names are singular.

BEA recommends assigning users to groups, then creating role statements using the Group
role condition. Individual users could also be granted a security role, but this is a less
typical practice.

BEA recommends using security roles (rather than users or groups) to secure WebLogic
resources. Following this process makes it more efficient for administrators who work with
large numbers of users.

The Big Picture
The MedRec application has been coded such that only certain roles are allowed to access certain
modules, in particular login to Web Applications such as patient, physician, and admin. This
tutorial showed you first how to create groups to represent patients, administrators, and
physicians, then how to create individual users and assign them to a particular group, and finally,
how to map a group to a role. Once this security configuration is in place, you can log in to the
applications using the appropriate user.

You might have noticed, however, that in Step 3: Create users and add the users to groups., you
did not create an actual patient user. This is because patients, along with their personal
information, are stored in the PointBase database and are authenticated using a Custom DBMS
Authenticator. The database also stores the group to which the user is assigned. You must,
however, use the Administration Console to create the MedRecPatients group and the
MedRecPatient role, and then map the group to the role.

The next tutorials show how to secure specific resources, such as Web applications and EJBs.

Related Reading
Users, Groups, and Security Roles

Types of Security Roles: Global Roles and Scoped Roles

Securing WebLogic Resources

Tutorial 17: Securing URL (Web) Resources Using the Administration Console

17-8 MedRec Development Tutorials

Tutorial 18: Using the Administration Console to Secure Enterprise JavaBean (EJB)
Resources

MedRec Development Tutorials 18-1

C H A P T E R 18

Moving to Production

Tutorial 17: Securing URL (Web) Resources Using the
Administration Console

This tutorial describes how to secure URL (Web) resources using the Administration Console. It
also provides procedures for creating security policies for URL (Web) resource hierarchies.

After you finish this tutorial, the security for the MedRec application running on the domain you
created for these tutorials will be the same as the security configured for the out-of-the-box
MedRec application and domain.

The tutorial includes:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites
Before starting this tutorial:

Create MedRecDomain and MedRecServer, and start MedRecServer. See Tutorial 1:
Creating a WebLogic Domain and Server Instance for Development.

18-2 MedRec Development Tutorials

Deploy the Medrec enterprise application. See Tutorial 15: Using WLST and the
Administration Console to Deploy the MedRec Package for Production.

Create the required users, groups, and global roles. See Tutorial 16: Creating Users,
Groups, and Global Security Roles.

Procedure
To secure URL (Web) resources by using the Administration Console:

Step 1: Invoke the Administration Console in your browser.

Step 2: Secure the patient Web Application of medrecEar.

Step 3: Attempt to access the patient Web application.

Step 4: Secure the admin Web Application of medrecEar.

Step 5: Attempt to access the admin Web application.

Step 6: Secure the physician Web Application of physicianEar.

Step 7: Attempt to access the physician Web application.

Step 1: Invoke the Administration Console in your browser.
1. With MedRecServer running, open the Administration Console by navigating in a browser

to:

http://host:7101/console

where host refers to the computer on which MedRecServer is running. If your browser is
on the same computer as MedRecServer, then you can use the URL
http://localhost:7101/console.

2. Specify weblogic for both the username and password and click Log In.

Step 2: Secure the patient Web Application of medrecEar.
1. In the left Domain Structure pane of the Administration Console, click

MedRecDomain→Deployments.

2. In the Deployments table in the left pane, expand medrecEar.

3. Under the Modules category, click the patient Web application module.

Tuto r ia l 17 : Secur ing URL (Web) Resources Us ing the Admin is t rat ion Conso le

MedRec Development Tutorials 18-3

4. Select the Security→Policies tab.

5. Click New.

An assistant appears that enables you to create a security policy for this particular Web
Application or a particular component within the Web Application.

6. In the Create a New Policy URL Pattern page, enter *.do in the URL Pattern field.

The URL pattern of *.do will secure all components that have a .do suffix.

7. Do not change the default value of the Provider Name field.

8. Click Finish.

9. In the Web Application Module URL Patterns table, click *.do.

10. In the Policy Conditions section, click Add Conditions.

11. In the Predicate List drop-down list, select Role.

12. Click Next.

13. In the Role Argument Name field, enter MedRecPatient.

This policy specifies that only users with the MedRecPatient role are allowed to access
these components.

14. Click Add.

15. Click Finish.

16. Click Save.

The Policy Conditions section includes the entry Role MedRecPatient.

The Overwritten Policy section includes the entry Group everyone.

17. Repeat steps 1 - 16 to specify that only the MedRecPatient role can access URL resources
with the suffix *.jsp.

The Policy Conditions section includes the entry Role MedRecPatient.

The Overwritten Policy section includes the entry Group everyone.

18. Repeat steps 1 - 16 to specify that the Anonymous role can access the specific URL resource
called login.do.

The Policy Conditions section includes the entry Role Anonymous.

18-4 MedRec Development Tutorials

The Overwritten Policy section includes the entry Role MedRecPatient.

The Anonymous role, unlike MedRecPatient, is a default global role that is predefined in
WebLogic Server. This step overrides the security policy you previously defined for all
*.do URL resources so that every user, regardless of their role, is allowed to view the
login.do page.

19. Repeat steps 1 - 16 to specify that the Anonymous role can access the specific URL resource
called error.do.

The Policy Conditions section includes the entry Role Anonymous.

The Overwritten Policy section includes the entry Role MedRecPatient.

20. Repeat steps 1 - 16 to specify that the Anonymous role can access the specific URL resource
called register.do.

The Policy Conditions section includes the entry Role Anonymous.

The Overwritten Policy section includes the entry Role MedRecPatient.

21. When you are finished, the Web Application Module URL Patterns table for the patient
Web application should include the following URL Pattern entries:

– *.do

– *.jsp

– /error.do

– /login.do

– /register.do

Step 3: Attempt to access the patient Web application.
1. Open a new Web browser and type the following URL:

http://host:7101/patient

where host refers to the computer hosting MedRecServer. If your browser is on the same
computer, then you can use the URL http://localhost:7101/patient.

The browser prompts you for a username and password.

2. In the username field, type mary@md.com, and in the password field, type weblogic, then
click Login.

Tuto r ia l 17 : Secur ing URL (Web) Resources Us ing the Admin is t rat ion Conso le

MedRec Development Tutorials 18-5

The login page returns the error Invalid User Name and/or Password and re-prompts
you for a username and password. (If this is the first time you use the browser to navigate
to this screen, it might also request information about the digital certificate being used by
the application.)

3. In the username field, type larry@bball.com, and in the password field, type weblogic,
then click Login.

The browser displays information for the larry@bball.com patient, whose full name is
Larry Parrot.

User mary@md.com was denied access because you created a security policy for the
patient Web Application based on the global security role MedRecPatient, which user
larry@bball.com is granted but user mary@md.com is not.

Step 4: Secure the admin Web Application of medrecEar.
1. In the left Domain Structure pane of the Administration Console, click

MedRecDomain→Deployments.

2. In the Deployments table in the left pane, expand medrecEar.

3. Under the Modules category, click the admin Web application module.

4. Select the Security→Policies tab.

5. Click New.

An assistant enables you to create a security policy for this particular Web Application or a
particular component within the Web Application.

6. In the Create a New Policy URL Pattern page, enter *.do in the URL Pattern field.

The URL pattern of *.do will secure all components that have a .do suffix.

7. Do not change the default value of the Provider Name field.

8. Click Finish.

9. In the Web Application Module URL Patterns table, click *.do.

10. In the Policy Conditions section, click Add Conditions.

11. In the Predicate List drop-down list, select Role.

12. Click Next.

18-6 MedRec Development Tutorials

13. In the Role Argument Name field, enter MedRecAdmin.

This policy specifies that only users with the MedRecAdmin role are allowed to access
these components.

14. Click Add.

15. Click Finish.

16. Click Save.

The Policy Conditions section includes the entry Role MedRecAdmin.

The Overwritten Policy section includes the entry Group everyone.

17. Repeat steps 1 - 16 to specify that only the MedRecAdmin role can access URL resources
with the suffix *.jsp.

The Policy Conditions section includes the entry Role MedRecAdmin.

The Overwritten Policy section includes the entry Group everyone.

18. Repeat steps 1 - 16 to specify that the Anonymous role can access the specific URL resource
called login.do.

The Policy Conditions section includes the entry Role Anonymous.

The Overwritten Policy section includes the entry Role MedRecAdmin.

The Anonymous role, unlike MedRecAdmin, is a default global role that is predefined in
WebLogic Server. This step overrides the security policy you previously defined for all
*.do URL resources so that every user, regardless of their role, is allowed to view the
login.do page.

19. Repeat steps 1 - 16 to specify that the Anonymous role can access the specific URL resource
called error.do.

The Policy Conditions section includes the entry Role Anonymous.

The Overwritten Policy section includes the entry Role MedRecAdmin.

20. When you are finished, the Web Application Module URL Patterns table for the admin Web
application should include the following URL pattern entries:

– *.do

– *.jsp

– /error.do

Tuto r ia l 17 : Secur ing URL (Web) Resources Us ing the Admin is t rat ion Conso le

MedRec Development Tutorials 18-7

– /login.do

Step 5: Attempt to access the admin Web application.
1. Open a new Web browser and type the following URL:

http://host:7101/admin

where host refers to the computer hosting MedRecServer. If your browser is on the same
computer, then you can use the URL http://localhost:7101/admin.

The browser prompts you for a username and password.

2. In the username field, type mary@md.com, and in the password field, type weblogic, then
click Login.

The login page returns the error Invalid User Name and/or Password and re-prompts
you for a username and password. (If this is the first time you use the browser to navigate
to this screen, it might also request information about the digital certificate being used by
the application.)

3. In the username field, type admin@avitek.com, and in the password field, type weblogic,
then click Login.

The browser displays a list of administration tasks.

User mary@md.com was denied access because you created a security policy for the admin
Web Application based on the global security role MedRecAdmin, which user
admin@avitek.com is granted but user mary@md.com is not.

Step 6: Secure the physician Web Application of physicianEar.
1. In the left Domain Structure pane of the Administration Console, click

MedRecDomain→Deployments.

2. In the Deployments table in the left pane, expand physicianEar.

3. Under the Modules category, click the physician Web application module.

4. Select the Security→Policies tab.

5. Click New.

An assistant enables you to create a security policy for this particular Web Application or a
particular component within the Web Application.

18-8 MedRec Development Tutorials

6. In the Create a New Policy URL Pattern page, enter *.do in the URL Pattern field.

The URL pattern of *.do will secure all components that have a .do suffix.

7. Do not change the default value of the Provider Name field.

8. Click Finish.

9. In the Web Application Module URL Patterns table, click *.do.

10. In the Policy Conditions section, click Add Condition.

11. In the Predicate List drop-down list, select Role.

12. Click Next.

13. In the Role Argument Name field, enter MedRecPhysician.

This policy specifies that only users with the MedRecPhysician role are allowed to access
these components.

14. Click Add.

15. Click Finish.

16. Click Save.

The Policy Conditions section includes the entry Role MedRecPhysician.

The Overwritten Policy section includes the entry Group everyone.

17. Repeat steps 1 - 16 to specify that only the MedRecPhysician role can access URL
resources with the suffix *.jsp.

The Policy Conditions section includes the entry Role MedRecPhysician.

The Overwritten Policy section includes the entry Group everyone.

18. Repeat steps 1 - 16 to specify that the Anonymous role can access the specific URL resource
called login.do.

The Policy Conditions section includes the entry Role Anonymous.

The Overwritten Policy section includes the entry Role MedRecPhysician.

The Anonymous role, unlike MedRecPhysician, is a default global role that is predefined
in WebLogic Server. This step overrides the security policy you previously defined for all
*.do URL resources so that every user, regardless of their role, is allowed to view the
login.do page.

Tuto r ia l 17 : Secur ing URL (Web) Resources Us ing the Admin is t rat ion Conso le

MedRec Development Tutorials 18-9

19. Repeat steps 1 - 16 to specify that the Anonymous role can access the specific URL resource
called error.do.

The Policy Conditions section includes the entry Role Anonymous.

The Overwritten Policy section includes the entry Role MedRecPhysician.

20. When you are finished, the Web Application Module URL Patterns table for the physician
Web application should include the following URL pattern entries:

– *.do

– *.jsp

– /error.do

– /login.do

Step 7: Attempt to access the physician Web application.
1. Open a new Web browser and type the following URL:

http://host:7101/physician

where host refers to the computer hosting MedRecServer. If your browser is on the same
computer, then you can use the URL http://localhost:7101/physician.

The browser prompts you for a username and password.

2. In the username field, type larry@bball.com, and in the password field, type weblogic,
then click Login.

The browser returns an error.

3. Navigate to the http://host:7101/physician page again, and this time enter
mary@md.com in the username field and weblogic in the password field, then click Login.

The browser displays a search page to look up patient information.

User larry@bball.com was denied access because you created a security policy for the
physician Web Application based on the global security role MedRecPhysician, which
user mary@md.com is granted but user larry@bball.com is not.

Best Practices
Create policy statements based on your organization's established business procedures.

18-10 MedRec Development Tutorials

When creating new security policies, look for policy statements in the Overwritten Policy
box of the Policy Editor page. If inherited policy statements exist, you will be overriding
them.

Remember that more-specific security policies override less-specific security policies. For
example, a security policy on a specific resource (login.do) in a Web application
overrides a security policy on a group of resources (*.do). Take care when overriding with
less restrictive security policies (that is, giving a wider set of users access to a smaller set
of components or WebLogic resources).

Make sure that you understand the security policies and the security role mappings on each
URL pattern. If there are any URL patterns that you do not expect, be sure to investigate.

Make sure you understand the precedence of servlet mappings to URL patterns as specified
in Chapter 11 of the Servlet 2.3 specification. This describes which URL pattern will have
precedence when an URL matches multiple URL patterns.

You can delete all security settings for an application (or module) by deleting it entirely
from the WebLogic Server domain and then redeploying it.

The Big Picture
This tutorial shows you how to secure various URL (Web) resources using the same security as
that of the out-of-the-box MedRec application.

Related Reading
Types of WebLogic Resources

Techniques for Securing URL (Web) and EJB Resources

Prerequisites for Securing URL (Web) and EJB Resources

Tutorial 16: Creating Users, Groups, and Global Security Roles

Tutorial 18: Using the Administration Console to Secure Enterprise JavaBean (EJB)
Resources

MedRec Development Tutorials 19-1

C H A P T E R 19

Moving to Production

Tutorial 18: Using the Administration Console to Secure
Enterprise JavaBean (EJB) Resources

This tutorial describes how to secure Enterprise JavaBean (EJB) resources by using the
Administration Console. It includes step-by-step procedures for creating scoped roles and
security policies at various levels in the EJB resource hierarchy.

Warning: This tutorial does not mimic the security configuration of the out-of-the-box
MedRec application. Rather, it walks you through a series of steps that secure
different levels of EJBs. After each step, you attempt to access the EJB resource to
see the effect of implementing the security policy. It does not necessarily reflect a
real-life scenario; the procedures just show you what is possible. At the end of the
tutorial consider deleting the security policies you created so that the application
returns to its correct security configuration. The configured security policies actually
interfere with the correct functioning of the MedRec application.

The tutorial includes the following sections:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

19-2 MedRec Development Tutorials

Prerequisites
Before starting this tutorial:

Create MedRecDomain and MedRecServer, and start MedRecServer. See Tutorial 1:
Creating a WebLogic Domain and Server Instance for Development.

Deploy the Medrec enterprise application. See Tutorial 15: Using WLST and the
Administration Console to Deploy the MedRec Package for Production.

Create the required users, groups, and global roles. See Tutorial 16: Creating Users,
Groups, and Global Security Roles.

Procedure
To secure Enterprise JavaBean (EJB) resources by using the Administration Console:

Step 1: Create scoped roles and grant the scoped roles to groups.

Step 2: Secure the sessionEjbs JAR.

Step 3: Attempt to access an EJB in the SessionEJB JAR.

Step 4: Secure the AdminSessionEJB.

Step 5: Attempt to access AdminSessionEJB.

Step 6: Secure the findNewUsers() EJB method.

Step 7: Attempt to access the findNewUsers() EJB method.

Step 8: Optionally, remove the EJB security policies.

Step 1: Create scoped roles and grant the scoped roles to
groups.
1. In the left Domain Structure pane of the Administration Console, click

MedRecDomain→Deployments.

2. In the Deployments table in the left pane, expand medrecEar.

3. Under the Modules category, click the sessionEjbs EJB module.

4. Select the Security→Roles tab.

Tuto r ia l 18 : Us ing the Admin is t ra t i on Conso le to Secure Ente rp r i se JavaBean (E JB) Resources

MedRec Development Tutorials 19-3

This page displays all the scoped roles currently defined in the WebLogic Role Mapping
provider's database.

Selecting this option enables you to create a security role that is scoped to this particular
EJB JAR. Thereafter, the scoped role can be used in a security policy for this EJB JAR.

5. Click New.

6. In the Name field, enter MedRecSessionEJBPatient.

7. Do not change the default value of the Provider Name field.

8. Click OK.

9. In the EJB Module Roles table, click MedRecSessionEJBPatient.

10. In the Role Conditions section, click Add Conditions.

11. In the Predicate List drop-down list box, select Group.

12. Click Next.

13. In the Role Argument Name field, enter MedRecPatients.

Note: You created the MedRecPatients group as part of “Tutorial 16: Creating Users,
Groups, and Global Security Roles” on page 17-1. Recall that user
larry@bball.com is the only user in this group.

14. Click Add.

15. Click Finish.

16. Click Save.

The Role Conditions sections includes the entry Group MedRecPatients.

17. Repeat steps 1- 16 to create the scoped role named MedRecSessionEJBAdmin and grant
this scoped role to the MedRecAdmins group.

Step 2: Secure the sessionEjbs JAR.
1. In the left Domain Structure pane of the Administration Console, click

MedRecDomain→Deployments.

2. In the Deployments table in the left pane, expand medrecEar.

3. Under the Modules category, click the sessionEjbs EJB module.

19-4 MedRec Development Tutorials

4. Select the Security→Policies tab.

From this page you can create a security policy at the EJB JAR level, which includes all
EJBs within the JAR, and all methods within those EJBs.

5. Click Add Conditions.

6. In the Predicate List drop-down list, select Role.

7. Click Next.

8. In the Role Argument Name field, enter MedRecSessionEJBPatient.

9. Click Add.

10. Click Finish.

11. Click Save.

The Policy Conditions section includes the entry Role MedRecSessionEJBPatient.

The Overwritten Policy section includes the entry Group everyone.

By defining this security policy for the sessionEjbs JAR, you are overriding any security
policies that have already been defined for the EJB resource type. For example, if you had
previously specified that the entire medrecEar application can be accessed only by the
MedRecAdmin role, then the Overwritten Policy section would include the text Role
MedRecAdmin.

However, in this case you are only overwriting the default security policy (Group
everyone).

For more information about default security policies, see Default Security Policies in
Securing WebLogic Resources.

Step 3: Attempt to access an EJB in the SessionEJB JAR.
1. Open a new Web browser and type http://host:7101/admin, where host refers to the

computer hosting MedRecServer. If your browser is on the same computer, then you can use
the URL http://localhost:7101/admin.

2. In the User Name field, type admin@avitek.com, and in the Password field, type
weblogic, then click Login.

Remember that in Tutorial 17: Securing URL (Web) Resources Using the Administration
Console, you granted the MedRecAdmin role permission to access the admin Web
Application. Because admin@avitek.com has been assigned the MedRecAdmin role (via

Tuto r ia l 18 : Us ing the Admin is t ra t i on Conso le to Secure Ente rp r i se JavaBean (E JB) Resources

MedRec Development Tutorials 19-5

the MedRecAdmins group), the admin@avitek.com user is thus allowed to log in to the
admin Web Application.

3. On the Administration Tasks page, click the View Pending Requests link.

The browser returns the following error:

[EJB:010160]Security Violation: User: 'admin@avitek.com' has
insufficient permission to access EJB: type=<ejb>,
application=medrecEar, module=sessionEjbs, ejb=AdminSessionEJB,
method=findNewUsers, methodInterface=Remote, signature={}.

The error is displayed because access to the findNewUsers() method in
AdminSessionEJB, an EJB within the sessionEjbs JAR you previously secured, is
needed to view pending requests. User admin@avitek.com is not granted the
MedRecSessionEJBPatient scoped role that was used to create the security policy, and
therefore is not granted access.

Step 4: Secure the AdminSessionEJB.
1. In the left Domain Structure pane of the Administration Console, click

MedRecDomain→Deployments.

2. In the Deployments table in the left pane, expand medrecEar.

3. Under the EJBs category, click the AdminSessionEJB EJB module.

4. Select the Security→Policies tab.

From this page you can create a security policy for the specified EJB, either at the EJB
level (meaning the security policy will apply to all methods within the EJB), or a particular
method within the EJB.

5. In the EJB Component Methods drop-down list, ensure that the default ALL is selected.

6. Click Add Conditions.

7. In the Predicate List drop-down list, select Role.

8. Click Next.

9. In the Role Argument Name field, enter MedRecSessionEJBAdmin.

10. Click Add.

11. Click Finish.

19-6 MedRec Development Tutorials

12. Click Save.

The Policy Conditions section includes the entry Role MedRecSessionEJBAdmin.

The Overwritten Policy section includes the entry Role MedRecSessionEJBPatient.

By defining this security policy for AdminSessionEJB, you are overriding the security
policy that has already been defined for the EJB JAR in Step 2: Secure the sessionEjbs
JAR. Specifically, you are overriding the inherited policy statement of Role
MedRecSessionEJBPatient.

Step 5: Attempt to access AdminSessionEJB.
Repeat steps 1 - 3 in “Step 3: Attempt to access an EJB in the SessionEJB JAR.” on page 19-4.

Instead of displaying the error page, the browser now displays the list of pending requests.

This result occurs because user admin@avitek.com has been granted the
MedRecEJBSessionAdmin scoped role. This scoped role was used to create the security policy
for AdminSessionEJB, the EJB containing the findNewUsers() method that is needed to view
pending requests.

Step 6: Secure the findNewUsers() EJB method.
1. In the left Domain Structure pane of the Administration Console, click

MedRecDomain→Deployments.

2. In the Deployments table in the left pane, expand medrecEar.

3. Under the EJBs category, click the AdminSessionEJB EJB module.

4. Select the Security→Policies tab.

From this page you can create a security policy for the specified EJB, either at the EJB
level (meaning the security policy will apply to all methods within the EJB), or a particular
method within the EJB.

5. Using the EJB Component Methods drop-down list, select findNewUsers() - REMOTE.

6. Click Add Conditions.

7. In the Predicate List drop-down list, select Role.

8. Click Next.

9. In the Role Argument Name field, enter MedRecSessionEJBPatient.

Tuto r ia l 18 : Us ing the Admin is t ra t i on Conso le to Secure Ente rp r i se JavaBean (E JB) Resources

MedRec Development Tutorials 19-7

You defined this scoped role on SessionEJB, but because the findNewUsers() method is
a component of AdminSessionEJB (itself a component of SessionEJB), you can also use
it here.

10. Click Add.

11. Click Finish.

12. Click Save.

The Policy Conditions section includes the entry Role MedRecSessionEJBPatient.

The Overwritten Policy section includes the entry Role MedRecSessionEJBAdmin.

By defining this security policy on the findNewUsers() method, you are overriding the
security policy that has already been defined for AdminSessionEJB in “Step 4: Secure the
AdminSessionEJB..” Specifically, you are overriding the inherited policy statement of
Role MedRecSessionEJBAdmin that is shown when ALL is selected from the EJB
Component Methods drop-down list.

Step 7: Attempt to access the findNewUsers() EJB method.
Repeat steps 1 - 3 in “Step 3: Attempt to access an EJB in the SessionEJB JAR.” on page 19-4.

The browser displays an error page. This result occurs because only users granted the scoped role
MedRecSessionEJBPatient can access the findNewUsers() method, which is needed to view
pending requests. User admin@avitek.com is not granted the scoped role that was used to create
the security policy, and therefore is not granted access.

Step 8: Optionally, remove the EJB security policies.
The security policies configured in this tutorial do not mimic the out-of-the-box security
configuration of the MedRec application, but rather, simply provide examples of how you can
secure EJB policies if you choose to do so in your own applications. The configured security
policies actually interfere with the correct functioning of the MedRec application, so if you want
to run the application without problems, you should remove the security policies as described in
the following procedure.

1. In the left Domain Structure pane of the Administration Console, click
MedRecDomain→Deployments.

2. In the Deployments table in the left pane, expand medrecEar.

3. Under the Modules category, click the sessionEjbs EJB module.

19-8 MedRec Development Tutorials

4. Select the Security→Policies tab.

5. In the Policies Conditions table, check Role MedRecSessionEJBPatient.

6. Click Remove.

7. Click Save.

8. In the left pane, click MedRecDomain→Deployments.

9. In the Deployments table in the right pane, navigate to the AdminSessionEJB EJB module
of the medrecEar application.

10. Select the Security→Policies tab.

11. In the EJB Component Methods drop-down list, select ALL.

12. In the Policy Conditions table, check Role MedRecSessionAdmin.

13. Click Remove.

14. Click Save.

15. In the EJB Component Methods drop-down list, select findNewUsers() - REMOTE.

16. In the Policy Conditions table, check Role MedRecSessionEJBPatient.

17. Click Remove.

18. Click Save.

Best Practices
Do not use blank spaces, commas, hyphens, or any characters in this comma-separated list
for scoped role names: \t, < >, #, |, &, ~, ?, (), { }. Role names are case sensitive. The
proper syntax for a security role name is as defined for an Nmtoken in the Extensible
Markup Language (XML) recommendation. The BEA convention is that security role
names are singular.

Try to avoid creating global roles and scoped roles with the same name. However, if you
have a valid reason for doing this, know that the scoped role will override the global role if
used in Role policy condition.

Scoped roles can be used in security policies from the level in the hierarchy where they are
defined and below.

Tuto r ia l 18 : Us ing the Admin is t ra t i on Conso le to Secure Ente rp r i se JavaBean (E JB) Resources

MedRec Development Tutorials 19-9

Create policy statements based on your organization's established business procedures.

When creating new security policies, look for policy statements in the Overwritten Policy
Statement box of the Policy Editor page. If inherited policy statements exist, you will be
overriding them.

Remember that more-specific security policies override less-specific security policies. For
example, a security policy on an EJB method overrides a security policy on the same EJB.
Take care when overriding with less restrictive security policies (that is, giving a wider set
of users access to a smaller set of components or WebLogic resources).

You can delete all security settings for an application (or module) by deleting it entirely
from the WebLogic Server domain and then redeploying it.

The Big Picture
This tutorial shows you how to secure application and various Enterprise JavaBean (EJB)
resources. The examples here do not reflect the security configuration of the out-of-the-box
MedRec application. However, the full MedRec application uses these same principles (as well
as programmatic security) to secure EJB resources for both MedRec administrators and patients.

Related Reading
Types of WebLogic Resources

Techniques for Securing URL (Web) and EJB Resources

Prerequisites for Securing URL (Web) and EJB Resources

Tutorial 16: Creating Users, Groups, and Global Security Roles

Tutorial 17: Securing URL (Web) Resources Using the Administration Console

19-10 MedRec Development Tutorials

MedRec Development Tutorials 20-1

C H A P T E R 20

Moving to Production

Tutorial 19: Creating a Deployment Plan and Redeploying the
MedRec Package

This tutorial shows how to use the Administration Console to create a deployment plan to store
changes to a deployment property of the medrecEar application.

A WebLogic Server deployment plan is an optional XML document that resides outside of an
application archive and configures an application for deployment to a specific WebLogic Server
environment. A deployment plan works by setting deployment property values that would
normally be defined in an application's WebLogic Server deployment descriptors, or by
overriding property values that are already defined in a WebLogic Server deployment descriptor.

Deployment plans are created and owned by the administrator or deployer for a particular
environment, and are stored outside of an application archive or exploded archive directory. As
a best practice, BEA recommends storing each deployment plan for a single application in its own
plan subdirectory of the application's root directory.

Deployment plans help the administrator easily modify an application's WebLogic Server
configuration for deployment into to multiple, differing WebLogic Server environments without
modifying the deployment descriptor files included in the application archive. For example, a
deployment plan enables you to deploy an application to multiple domains, or to multiple target
servers and clusters within the same domain, that have different configurations. To deploy the
application to a new environment, an administrator simply creates or uses a new deployment plan
as necessary.

20-2 MedRec Development Tutorials

The tutorial also shows how to redeploy the MedRec applications to MedRecServer in a
production environment. The MedRec applications are contained in the dist directory, packaged
in four directories in the recommended exploded format. Redeploy an application if you have
updated its class files or its generated deployment descriptor files.

The tutorial includes:

Prerequisites

Procedure

Best Practices

The Big Picture

Related Reading

Prerequisites
Before starting this tutorial:

Work through Tutorial 14: Packaging MedRec for Distribution.

Work through Tutorial 15: Using WLST and the Administration Console to Deploy the
MedRec Package for Production, and have the package currently deployed to
MedRecServer.

Procedure
To create and update deployment plans and to redeploy the application:

Step 1: Update a deployment property and save the new configuration to a deployment
plan.

Step 2: Redeploy the entire application.

Step 1: Update a deployment property and save the new
configuration to a deployment plan.
Use the Administration Console to modify certain deployment properties in applications that are
deployed as exploded archive files. When you save the new values for these deployment
properties, the Administration Console automatically updates the deployment plan associated
with the application, or creates a new one if one does not already exist.

Tuto r ia l 19 : Crea t ing a Dep loyment P lan and Redep loy ing the MedRec Package

MedRec Development Tutorials 20-3

In this procedure, you will change the number of seconds the patient Web Application of
medrecEar remains idle before timing out.

1. Open the Administration Console by navigating in a browser to:

http://host:7101/console

where host refers to the computer on which MedRecServer is running. If your browser is
on the same computer as MedRecServer, then you can use the URL
http://localhost:7101/console.

2. Specify weblogic for both the username and password and click Log In.

3. Click Lock & Edit, located in the upper left Change Center window of the Administration
Console.

4. In the left Domain Structure pane, click MedRecDomain→Deployments.

5. In the Deployments table in the right pane, expand medrecEar.

6. Under the Modules section, click the patient Web App module.

7. Select the Configuration→General tab.

8. In the Session Timeout (in seconds) field, enter 3600.

9. Click Save.

10. In the Save Deployment Plan page, navigate to, and then select, the directory into which
you will store the deployment plan.

For example, if you want to store the deployment plan in the same root directory as the
production-ready medrecEar application is stored, navigate to the
c:\medrec_tutorial\dist directory and select medrecEar.

11. Click Finish.

The Administration Console creates a file called Plan.xml in the directory you specified.
This XML file contains the deployment plan that is associated with the medrecEar
application.

12. In the Change Center, click Activate Changes to update the medrecEar configuration.

13. To view the new deployment plan:

a. In the left Domain Structure pane, click MedRecDomain→Deployments.

b. In the Deployments table in the right pane, click medrecEar.

20-4 MedRec Development Tutorials

c. Select Deployment Plan→Tuning Parameters.

d. Expand Modules, if it is not already expanded.

e. Click on patient.

The Tunable Deployment Plan Variables table lists the property you just updated:
timeoutSecs.

Step 2: Redeploy the entire application.
In this procedure it is assumed that MedRec is deployed to a currently running instance of
MedRecServer and that you have made changes to the application that you want to redeploy.
Follow these steps to update a deployed application whose class files or generated deployment
descriptor files have changed.

1. In the Administration Console, click Lock & Edit, located in the upper left Change Center
window of the Administration Console.

2. In the left Domain Structure pane, click MedRecDomain→Deployments.

The Deployments table in the right pane displays all deployed applications, which include
the medrecEar, physicianEar, initEar, and startBrowserEar applications you
deployed in Tutorial 15: Using WLST and the Administration Console to Deploy the
MedRec Package for Production.

3. In the Deployments table, select the medrecEar application by checking the box to the left
of its name.

4. Click Update.

5. In the Locate New Deployment Files, click Next without making any changes.

The Locate New Deployment Files pages allows you to specify a completely new source or
deployment plan directory if you want to redeploy a new version of the application. For
this tutorial, however, redeploy the application using the current files.

6. Review your choices, then click Finish.

If the application has changed since the last time it was deployed, the State column for
medrecEar in the Deployments table might change from Active to Redeploy
Initializing.

7. In the Change Center, click Activate Changes; the state of the application should change to
Active.

Tuto r ia l 19 : Crea t ing a Dep loyment P lan and Redep loy ing the MedRec Package

MedRec Development Tutorials 20-5

8. Optionally repeat steps 2 through 7 for each of the remaining applications: physicianEar,
initEar, and startBrowserEar.

Best Practices
Redeploying an application in production is a serious undertaking that can affect performance, so
plan application updates carefully. Redeploying an application re-sends the entire application
over the network to all of the servers targeted by that Web Application. Increased network traffic
may affect network performance when an application is re-sent to the Managed Servers. If the
application is currently in production and in use, redeploying causes WebLogic Server to lose all
active HTTP sessions.

If you use the Administration Console to update deployment properties of an application, the
console automatically creates a deployment plan and associates it with the application (or updates
an existing one). A deployment plan is an XML document that defines an application's WebLogic
Server deployment configuration for a specific WebLogic Server environment. A deployment
plan resides outside of an application's archive file, and can apply changes to deployment
properties stored in the application's existing WebLogic Server deployment descriptors. Use
deployment plans to easily change an application's WebLogic Server configuration for a specific
environment without modifying existing deployment descriptors. Multiple deployment plans can
be used to reconfigure a single application for deployment to multiple, differing WebLogic
Server environments.

If you have only modified static files, it is probably possible to refresh the files without
redeploying the entire application; in this case you would use the weblogic.Deployer utility rather
than the Administration Console. See Updating Static Files in a Deployed Application in
Deploying Application to WebLogic Server.

The Big Picture
This tutorial explains how to redeploy an application in production using the Administration
Console. You can also use the command-line weblogic.Deploy tool to redeploy applications,
and to refresh static files in a deployed application.

If you have added modules in your application, redeploying the application deploys the current
modules. If you have deleted modules from your application, explicitly remove them from the
application domain to remove them from deployment. See Managing Deployed Applications in
Deploying Applications and Modules.

20-6 MedRec Development Tutorials

Related Reading
Update (redeploy) an Enterprise application in the Administration Console Online Help

Update a Deployment Plan in the Administration Console Online Help

Understanding WebLogic Deployment

Updating Applications in a Production Environment

